
Lecture 23: Port Scanning, Vulnerability Scanning,

Packet Sniffing, and Intrusion Detection

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 27, 2009

c©2009 Avinash Kak, Purdue University

Goals:

• Port scanners

• The nmap port scanner

• Vulnerability scanners

• The Nessus vulnerability scanner

• Packet sniffers

• Intrusion detection

1

23.1: Port Scanning

• See Section 21.1 of Lecture 21 on the mapping between the ports

and many of the standard and non-standard services. As men-

tioned there, each service provided by a computer monitors a

specific port for incoming connection requests. There are 65,535

different possible ports on a machine.

• The main goal of port scanning is find out which ports are open,

which are closed, and which are filtered (meaning that there

is no reply at all from the remote host).

• If a port on a remote host is open for incoming connection re-

quests and you send it a SYN packet, the remote host will respond

back with a SYN+ACK packet (see Lecture 16 for a discussion

of this).

• If a port on a remote host is closed and your computer sends

it a SYN packet, the remote host will respond back with a RST

packet (see Lecture 16 for a discussion of this).

2

• Let’s say a port on a remote host is filtered with something like

an iptables based packet filter (see Lecture 18 slides) and your

scanner sends it a SYN packet or an ICMP ping packet, you may

not get back anything at all.

• A frequent goal of port scanning is to find out if a remote host

is providing a service that is vulnerable to buffer overflow attack

(see Lecture 21 slides for this attack).

• Port scanning may involve all of the 65,535 ports or only the ports

that are well-known to provide services vulnerable to different

security-related exploits.

3

23.2: Port Scanning with Calls to connect()

• The simplest type of a scan is made with a call to connect().

The manpage for this system call on Unix/Linux systems has the

following prototype for this function:

#include <sys/socket.h>

int connect(int socketfd, const struct sockaddr *address, socklen_t address_len);

where the parameter socketfd is the file descriptor associated

with the internet socket constructed by the client (with a call to

three-argument socket()), the pointer parameter address that

points to a sockaddr structure that contains the IP address of

the remote server, and the parameter address_len that specifies

the length of the structure pointed to by the second argument.

• A call to connect() if successful completes a three-way hand-

shake (that was described in Lecture 16) for a TCP connection

with a server. The header file sys/socket.h include a number

of definitions of structs needed for socket programming in C.

• When connect() is successful, it returns 0, otherwise it returns

−1.

4

• In typical use of connect() for port scanning, if the connec-

tion succeeds, the port scanner immediately closes the connection

(having ascertained that the port is open).

5

23.3: Port Scanning with TCP SYN Packets

• Scanning remote hosts with SYN packets is probably the most

popular form of port scanning.

• As discussed at length in Lecture 16 when we talked about SYN

flooding for DoS attacks, if your machine wants to open a TCP

connection with another machine, your machine sends the re-

mote machine a SYN packet. If the remote machine wants to

respond positively to the connection request, it responds back

with a SYN+ACK packet, that must then be acknowledged by

your machine with an ACK packet.

• In a port scan based on SYN packets, the scanner machine sends

out SYN packets to the different ports of a remote machine.

When the scanner machine machine receives a SYN+ACK packet

in return, the scanner can be sure that the port on the remote

machine is open.

• In port scans based on SYN packets, the scanner never sends

back the ACK packet to close any of the connections. So any

connections that are created are always in half-open states, until

6

of course they time out.

• Usually, instead of sending back the expected ACK packet, the

scanner sends an RST packet to close the half-open connection.

7

23.4: The nmap Port Scanner

• nmap stands for “network map”. This open-source scanner has

been developed by Fyodor (see http://insecure.org/.).

• This is one of the most popular port scanners that runs on

Unix/Linux machines.

• nmap is actually more than just a port scanner. In addition to

listing the open ports on a network, it also tries to construct an

inventory of all the services running in a network. It also tries to

detect as to which operating system is running on each machine,

etc.

• In addition to carrying out a TCP SYN scan, nmap can also

carry out TCP connect() scans, UDP scans, ICMP scans, etc.

Regarding UDP scans, note that SYN is a TCP concept, so there is NO

such thing as a UDP SYN scan. In a UDP scan, if a UDP packet is sent to

a port that is NOT open, the remote machine will respond with an ICMP

port unreachable message. So the absence of a returned message can be

construed as a sign of an open UDP port. However, as you should know

from Lecture 18, a packet filtering firewall at a remote machine may prevent

8

the machine from responding with an ICMP error message even when a port

is closed.

• As listed in the manpage, nmap comes with a large number of

options for carrying out different kinds of security scans of a net-

work. nmap. To give the reader a sense of the range of possibilities

incorporated in these options, here is a partial description of the

entries for the two options ’-sP’ and ’-sV’:

-sP : This option, also known as the “ping scanning” option,

is for ascertaining as to which machines are up

in a network. Under this option, Nmap sends out ICMP

echo request packets to every IP address in a network. Hosts

that respond are up. But this does not always work since

many sites now block echo request packets. To get around

this, nmap can also send a TCP ACK packet to (by de-

fault) port 80. If the remote machine responds with a RST

back, then that machine is up. Another possibility is to send

the remote machine a SYN packet and waiting for a RST

or a SYN/ACK. For root users, nmap uses both the

ICMP and ACK techniques in parallel. For non-root

users, only the TCP connect() method is used.

-sV : This is also referred to as “Version Detection”. After nmap

figures out which TCP and/or UDP ports are open, it next

9

tries to figure out what service is actually running at each of

those ports. A file called nmap-services-probes is used to

determine the best probes for detecting various services. In

addition to determine the service protocol (http, ftp, ssh, tel-

net, etc.), nmap also tries to determine the application name

(such as Apache httpd, ISC bind, Solaris telnetd, etc.), version

number, etc.

• If nmap is compiled with OpenSSL support, it will connect to SSL

servers to figure out the service listening behind the encryption.

• To carry out a port scan of your own machine, you could try

(called as root)

nmap -sS localhost

The “-sS” option carries out a SYN scan. If you wanted to carry

out an “aggressive” SYN scan of, say, moonshine.ecn.purdue.edu,

you would call as root:

nmap -sS -A moonshine.ecn.purdue.edu

By the way, the “-sT” option carries out a TCP connect() scan.

• When I invoked nmap on localhost, I got the following result

10

Starting nmap 3.70 (http://www.insecure.org/nmap/) at 2007-03-14 10:20 EDT

Interesting ports on localhost.localdomain (127.0.0.1):

(The 1648 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

22/tcp open ssh

25/tcp open smtp

53/tcp open domain

80/tcp open http

111/tcp open rpcbind

465/tcp open smtps

587/tcp open submission

631/tcp open ipp

814/tcp open unknown

953/tcp open rndc

1241/tcp open nessus

3306/tcp open mysql

Nmap run completed -- 1 IP address (1 host up) scanned in 0.381 seconds

• By default, nmap first pings a remote host in a network before

scanning the host. The idea is that if the machine is down, why

waste time by scanning all its ports. But since many sites now

block/filter the ping echo request packets, this strategy may by-

pass machines that may otherwise be up in a network. To change

this behavior, the following sort of a call to nmap may produce

richer results (at the cost of slowing down a scan):

nmap -sS -A -P0 moonshine.ecn.purdue.edu

The ’-P0’ option (the second letter is ’zero’) tells nmap to not

use ping in order to decide whether a machine is up.

11

23.5: Vulnerability Scanners

• The terms security scanner, vulnerability scanner, and security

vulnerability scanner all mean roughly the same thing. Any such

“system” may also be called just a scanner in the context of

network security. Vulnerability scanners frequently include port

scanning.

• A vulnerability scanner scans a specified set of ports on a remote

host and tries to test the service offered at each port for its known

vulnerabilities.

• Be warned that an aggressive vulnerability scan may crash the

machine you are testing. It is a scanner’s job to connect to all

possible services on all the open ports on a host. By the very

nature of such a scan, a scanner will connect with the ports and

test them out in quick succession. If the TCP engine on the

machine is poorly written, the machine may get overwhelmed by

the network demands created by the scanner and could simply

crash. That is why many sysadmins carry out security

scans of their networks no more than once a month

or even once a quarter.

12

23.6: The Nessus Vulnerability Scanner

• According to the very useful web site “Top 100 Network Secu-

rity Tools” (http://sectools.org), the source code for Nes-

sus, which started out as an open-source project, was closed in

2005. Now you have to maintain a paid subscription to the com-

pany Tenable Computer Networks for the latest vulnerability sig-

natures.

• Nessus is a remote security scanner, meaning that it is typically

run on one machine to scan all the services offered by a remote

machine in order to determine whether the latter is safeguarded

against all known security exploits.

• According to the information posted at http://www.nessus.org:

Nessus is the world’s most popular vulnerability scanner that is

used in over 75,000 organizations world-wide.

• The ”Nessus” Project was started by Renaud Deraison in 1998.

In 2002, Renaud co-founded Tenable Network Security with Ron

Gula, creator of the Dragon Intrusion Detection System and Jack

Huffard. Tenable Network Security is the owner, sole developer

13

and licensor for the Nessus system.

• The Nessus vulnerability scanning system consists of a server and

a client. They can reside in two separate machines.

• The server program is called nessusd. This is the program that

“attacks” other machines in a network.

• The client program is called nessus. The client orchestrates

the server, meaning that it tells the server as to what forms of

attacks to launch and where to deposit the collected security

information. The client packages different attack scenarios under

different names so that you can use the same attack scenario

on different machines or different attack scenarios on the same

machine.

• While the server nessusd runs on a Unix/Linux machine, it is

capable of carrying out a vulnerability scan of machines running

other operating systems.

• The security tests for the Nessus system are written in a special

scripting language called Network Attack Scripting Lan-

14

guage (NASL). Supposedly, NASL makes it easy to create new

security tests.

• Each security test, written in NASL, consists of an external

plugin. There are currently over 13, 000 plugins available. New

plugins are created as new security vulnerabilities are discovered.

The command nessus-update-plugins can automatically up-

date the database of plugins on your computer and do so on a

regular basis.

• The client tells the server as to what category of plugins to use

for the scan.

• Nessus can detect services even when they are running on ports

other than the standard ports. That is, if the HTTP service is

running at a port other than 80 or TELNET is running on a port

other than port 23, Nessus can detect that fact and apply the

applicable tests at those ports.

• Nessus has the ability to test SSLized services such as https,

smtps, imaps, etc.

15

23.7: Configuring the nessusd Server

• You must first create one or multiple user accounts that will be

used when a nessus client GUI connects with the nessus server to

initiate a scan. This is done with the following command as root

nessus-adduser

This will ask for what authentication to use — password au-

thentication is the easiest. It will also ask you for rules to

be applied to the user. There is no great reason to use any user-

specific rules at all for personal installations of Nessus. So leave

this empty by entering <ctrl-D>. This will enable all possible

permissions for the new user. For further information on this

command, do

man nessus-adduser

There you can find out that to remove a user you should say as

root

nessus-rmuser

• This is the last step for server configuration. This step updates

the plugins. Note that each plugin is based on a vulnerability

signature:

16

nessus-update-plugins

By the way, this updating step only works if your server is regis-

tered with http://www.nessus.org/register/.

17

23.8: Installing the Nessus Client Software

• You need to install a nessus client before you can do any scan-

ning with the server. As mentioned earlier, it is the client that

controls the server (although it is the server that actually does

the attacking and scanning).

• You have three choices for clients:

– A command line client, nessus

– A GUI based client in Linux. On a Ubuntu platform, when

you execute just nessus in a command line, that brings up

the GUI version of the nessus client.

– A GUI based client in Windows. You run the server (mean-

ing the scanner) on a Linux machine while the client is run

remotely on a Windows machine. For this you must install on

a Windows machine the dll’s in

nessuswx-1.4.5d-source.zip

18

23.9: Starting up and Configuring a Nessus Client

• Configuring a client means telling the client to create a particular

attack scenario. But since it is the server that actually attacks a

remote host, the server must be on before you can start putting

together attack scenarios on the client.

• Therefore, you first start the nessusd server daemon by (as root)

nessusd -D &

where the ampersand is needed only if you want to server in

the background. The ’-D’ option is for running the server as a

daemon in the background. Do ’man nessusd’ to all options for

the server.

• The default port for the server daemon, nessusd, is 1241. This

is the port the daemon will monitor for incoming connection re-

quests from Nessus clients. To make sure that the server is mon-

itoring this port, you can invoke:

netstat -an | grep 1241

It should return

tcp 0 0 0.0.0.0:1241 0.0.0.0:* LISTEN

19

or better yet by

netstat -tap | grep -i listen

• Now you are ready to start the client. It is possible to use a

command-line invocation of the client by using syntax an example

of which is shown below:

nessus -q localhost 1241 <user> <pwd> <targets> <results>

where ’-q’ option is for running Nessus in the batch mode, and

where <user> and <pwd> are the username and the password for

the authorized user created with the nessus-adduser command

when the server was first installed. The argument <targets> is

the full pathname to the file that lists the symbolic hostnames of

the target machines to be attacked and <results> is the name

of the file in which the results of the scan can be dumped. Here

is an example of this command line call

nessus -q localhost 1241 ack2 ack2 nessus_targets nessus.txt

where I have assumed that ack2 was a username created with

the nessus-adduser command and that the password asso-

ciated with this username is the same. In the above invoca-

tion, the name of the target machine to be scanned is in the file

nessus_targets file and we want the scan results to be dumped

in the file nessus.txt. Note that by default the scanner will

only check the first 15,000 ports.

20

• Notwithstanding the above command-line syntax for firing up a

client, you are more likely to use a GUI based client that we will

now explain. On a Ubuntu machine, a GUI based client on a

Linux machine can be brought up by:

nessus &

while you are logged in as root.

• The GUI will show the following tabs at the top:

Nessusd host

Plugins

Credentials

Scan Options

Target

User

Prefs.

KB

The first of these, Nessusd host is the name of the machine

on which the nessusd daemon server is running. If you running

the client and the server on the same machine, Nessusd host

can be set to localhost. The other information needed under

21

the Nessusd host is the port number that the daemon server

will be monitoring for connection requests from Nessus clients,

the user login, and the user password. The user login name and

the password must be what you created earlier with the nessus-

adduser command. You must enter the information required

under the first tab and connect with the server in order to

activate the other tabs.

• Now let’s talk about the second tab shown on the Nessus client

GUI. This tab is for Plugins. Each plugin defines a separate test

for a security vulnerability and currently there are over 13, 000

plugins. The plugins are arranged into families of re-

lated tests. The upper window under the Plugin tab will list

the family names of the plugins. If you click on a family name,

the lower window will show all the plugins in that family. If you

click on one of the plugins in the lower window, a window will

pop up explaining the nature of the plugin and what security

threat the plugin represents. It is interesting to read the docs on

the plugin for CGI related security holes. [For applying the Nessus scanner to

a small home-based network, there would probably never be a reason to have all 13277 plugins turned

on. Suppose all the machines in your network are either RedHat Linux and Windows, you’d want to

disable the plugins that are meant for other operating system, such as for Mandrake Linux, MacOS,

HP-UX, etc. To disable plugins either on an entire family basis or individually, you have to click on

the respective plugin entry to highlight it, and to then scroll the display all the way to the right to see

the checkbox for that entry. As you disable the not-needed plugins, note the count at the bottom of

the Plugin Selection Display. After all the disabling I did, I was left with 5825 out of 13277 plugins.]

22

• I ignored the ”Credentials” options. Apparently, you need it for

the ”Local Security Checks” feature of Nessus. When this feature

is enabled, Nessus carries out an ssh login (using certificates) into

each host on the network that has a ’nessus’ account installed on

it. Nessus then carries out a local security check on each host

looking at the host from the inside. This security check consists

of verifying that all the security related patches are installed and

up-to-date.

• I’ll next go through all the options for setting up a scan. These

are under the Scan Options tab on the Nessus client GUI page.

The scan options are

1. port range: The default is 1 to 15000.

2. I checked ”Consider unscanned ports as closed”. This makes

scanning faster as it keeps Nessus from sending packets to

ports that were not specified above.

3. I went with the default of 20 for the number of hosts to test

at one time. The Nessus server spawns that many scanner

processes.

4. I went with the default of 4 for the maximum number of secu-

rity checks to be launched simultaneously. Each of the scanner

processes mentioned above will launch 4 security check pro-

23

cesses (one for each plugin). [What that means is that with

these settings, the Nessus server will launch a total of 80 pro-

cesses.]

5. I ignored the ”Path to CGI’s”

6. I ignored the ”Do a reverse lookup of the IP before testing it”.

7. I ignored the ”Optimize the tests”. (See the Nessus client

manual for why you may wish to disable it.)

8. I unchecked ”Safe checks” and thus disabled it. But note that

by disabling ”Safe checks” you run the risk that some security

checks may harm the host being attacked.

9. I ignored the ”Designate hosts by their MAC address”. The

manual says that designating hosts by their MAC addresses

can be useful in DHCP networks. I am not going for this

option since I am hoping to specify the network hosts in my

home network by their IP addresses. [The acronym MAC here stands

for Media Access Control. Recall that in Lecture 15, we used the same acronym for Message

Authentication Code.]

10. That brings us to the Port Scanners option under the Scan

Options tab. Nessus lists the following port scanners to

choose from:

24

– Netstat scanner (As described in Lecture 16, netstat is

a utility for printing out information regarding network

connections, routing tables, interface statistics, masquer-

ade connections, and multicast memberships. Calling this

a scanner makes sense for old platforms. For newer plat-

forms, note that netstat cannot be invoked on a remote

host; it can only be used to scan the local ports to see what

relationship it is vis-a-vis the remote hosts.

– Ping the remote host.

– Nessus SNMP scanner (SNMP stands for Simple Network

Management Protocol. It is the internet standard proto-

col for exchanging management information between man-

agement console applications and managed entities (hosts,

routers, bridges, hubs). An SNMP scanner allows you to

scan a list of hosts by carrying out ping, DNS, and SNMP

queries. For each host queried, an SNMP query typically

fetches the following information: whether or not the host

is a router, the system description, current number of estab-

lished TCP connections, the max number of TCP connec-

tions the host can support, the number of network interfaces

on the host, etc.)

– SYN scan (Performs a fast SYN port scan. It achieves

its speed by first computing the RTT (Round Trip Time)

with ping and then using that info to quickly send SYN

packets to the remote host. Needs the ping port scanner to

25

be turned on.)

– Scan for LaBrea Tarpitted Hosts. Your nessusd

server sends a bogus ACK and ACK+windowprobe packet

to a host. Also sends a SYN packet to test for non-persisting

LaBrea machines. LaBrea is a program that creates a tarpit or, as

some have called it, a ”sticky honeypot”. LaBrea takes over unused

IP addresses on a network and creates ”virtual machines” that answer

to connection attempts. LaBrea answers those connection attempts

in a way that causes the machine at the other end to get ”stuck”,

sometimes for a very long time. The system uses IP aliasing to redi-

rect an packet directed to an unused IP address in a network so that

it can be processed by a machine with a legitimate IP address. So

an incoming connection request, in the form of a SYN packet, to an

unused IP address can be responded to with a SYN+ACK packet,

which the remote intruder responds to with an ACK packet, thus

completing the 3-way handshake. This is referred to as tarpitting

unused IP addresses in a network because the remote intruder gets

stuck, until the connections timeout, dealing with what look like open

connections to the intruder.

• That takes us to the Target tab on the Nessus client GUI. For

the Target option, I entered

moonshine.ecn.purdue.edu

I did NOT enable ”Perform a DNS Zone Transfer”. My under-

standing is that, when enabled, it allows the Nessus client to figure

26

out all of the hosts in a local network by downloading the zone

information from a specified nameserver. Obviously, if the target

nameserver is some external nameserver, the hosts returned will

be what that nameserver is an authoritative nameserver for.

• I ignored the User tab on the client GUI.

• The next tab on the Nessus client GUI is Prefs. for Preferences.

The very long page under this tab gives you all kinds

of options for controlling your scans. Scroll down this

page to see all the choices. You can also use this option to change

the default values used for ports by some of the plugins. For

example, the default port for SNMP attacks is 161. It can be

changed by clicking on ”SNMP Settings” and entering a new

value in the panel underneath. Similarly, if HTTP access to

a remote host requires a username and password, that can be

supplied by clicking on ”HTTP Login Page”. I did not change

anything through this option.

• The next tab on the Nessus client GUI is KB. The KB option

stands for ”Knowledge Base”. Using this feature allows you to

not disturb the users of your network by doing a daily portscan

of a /24 network and to not waste the results of prior tests.

The Knowledge Base is the list of information gathered about

27

a trusted host. It contains the list of open ports, the OS on the

host, and much more information.

• You are now ready to start scanning. Click on ’Start the Scan’

at the bottom of the client GUI.

• After a scan is complete, a new window will pop up to display

the report produced by the scan. You will have to click on the

various items in this window to see the security holes and other

vulnerabilities found by the scan. You can save the report for a

permanent record by clicking on a button in the window.

28

23.10: Packet Sniffing

• A packet sniffer is a passive device (as opposed to a port or vul-

nerability scanners that by their nature are “active” systems).

• Packet sniffers are more formally known as network analyzers

and protocol analyzers.

• The name network analyzer is justified by the fact that you

can use a packet sniffer to localize a problem in a network. As an

example, suppose that a packet sniffer says that the packets are

indeed being put on the wire by the different hosts. Now if the

network interface on a particular host is not seeing the packets,

you can be a bit more sure that the problem may be with the

network interface in question.

• The name protocol analyzer is justified by the fact that a

packet sniffer could look inside the packets for a given service

(especially the packets exchanged during handshaking and other

such negotiations) and make sure that the packet composition is

as specified in the RFC document for that service protocol.

29

• What makes packet sniffing such a potent tool is that a majority

of LANs are based on the shared Ethernet notion. In a shared

Ethernet, you can think of all of the computers in a LAN as

being plugged into the same wire (notwithstanding appearances

to the contrary). So all the Ethernet interfaces on all the

machines that are plugged into the same router will

see all the packets. On wireless LANs, all the interfaces on

the same channel see all the packets meant for all of the hosts

who have signed up for that channel.

• If you will recall from Lecture 16, it is the lowest layer of the

TCP/IP protocol stack, the Link Layer, that actually puts the

information on the wire. What is placed on the wire consists of

data packets called frames. Each Ethernet interface gets a 48-

bit address called the MAC address that is used to specify both

the source and the destination of each frame. Even though each

network interface in a LAN sees all the frames, any given interface

normally would not accept a frame unless the destination MAC

address corresponds to the interface. [Like its earlier usage in this lecture,

the acronym MAC here stands for Media Access Control. Recall that in Lecture 15, we used the same

acronym for Message Authentication Code.]

• Here is the structure of an Ethernet frame:

30

Preamble D-addr S-addr Frame-Type Data CRC

MAC MAC

8 bytes 6 bytes 6 bytes 2 bytes 4 bytes

<------------ MAC Header ----------------->

<------------------- maximum of 1518 bytes ------------------->

where “D-addr” stands for destination address and “S-addr” for

source address. The 8-byte “Preamble” field consists of alternat-

ing 1’s and 0’s for the first seven bytes and ’10101011’ for the

last byte; its purpose is to announce the arrival of a new frame

and to enable all receivers in a network to synchronize them-

selves to the incoming frame. The 2-byte “Type” field identifies

the higher-level protocol (e.g., IP or ARP) contained in the data

field. The “Type” field therefore tells us how to interpret the data

field. The last field, the 4-byte CRC (Cyclic Redundancy Check)

provides a mechanism for the detection of errors that might have

occurred during transmission. If an error is detected, the frame

is simply dropped.

• The minimum size of an Ethernet frame is 64 bytes (D-addr: 6

bytes, S-addr: 6 bytes, Frame Type: 2 bytes, Data: 46 bytes,

CRC checksum: 4 bytes). Padding bytes must be added if the

data itself consists of fewer than 46 bytes. The maximum size is

limited to 1518 bytes. That is, the number of bytes in the data

field must not exceed 1500 bytes.

31

• It is the Network Layer’s job to map the destination IP address

in an outgoing packet to the destination MAC address that is

eventually inserted by the Link Layer (which is where the frames

are created) in an outgoing frame that contains the packet.

• The system uses a protocol called the Address Resolution Pro-

tocol (ARP) to figure out the destination MAC address corre-

sponding to the destination IP address. As a first step in this

protocol, the system looks into the locally available ARP cache.

If no MAC entry is found in this cache, the system broadcasts an

ARP request for the needed MAC address. As this request prop-

agates outbound toward the destination machine, either en-route

gateway machine supplies the answer from its own ARP cache,

or, eventually, the destination machine supplies the answer. The

answer received is cached for a maximum of 2 minutes.

• A packet sniffer will accept all of the frames in the local Ethernet

regardless of the destination MAC addresses in the individual

frames.

• When a network interface does not discriminate between the in-

coming frames on the basis of the destination MAC address, we

say the interface is operating in the promiscuous mode. (You

can easily get an interface to work in the promiscuous mode simply by in-

32

voking ’ifconfg ethX promisc’ as root where ethX stands for the name of the

interface (it would be something like eth0, eth1, etc.).)

• About the power of packet sniffers to “spy” on the users in a

LAN, the dsniff packet sniffer contains the following utilities

that can collect a lot of information on the users in a network

sshmitm : This can launch a man-in-the-middle attack on an

SSH link. (See Lecture 9 for the Man-in-the-Middle attack).

As mentioned earlier, basically the idea is to intercept the

public keys being exchanged between two parties A and B

wanting to establish an SSH connection. The attacker, X,

that can eavesdrop on the communication between A and B

with the help of a packet sniffer pretends to be B vis-a-vis A

and A vis-a-vis B.

urlsnarf : From the sniffed packets, this utility extracts the

URL’s of all the web sites that the network users are visiting.

mailsnarf: This utility can track all the emails that the network

users are receiving.

webspy : This utility can track a designated user’s web surfing

pattern in real-time.

and a few others

33

23.11: Packet Sniffing with tcpdump

• This is an open-source packet sniffer that comes bundled with all

Linux distributions.

• You saw many examples in Lectures 16 and 17 where I used

tcpdump to give demonstrations regarding the various aspects

of TCP/IP and DNS. The notes for those lectures include

explanations for the more commonly used command-

line options for tcpdump.

• tcpdump uses the pcap API (in the form of the libpcap library)

for packet capturing. (The Windows equivalent of libpcap is

WinCap.)

• Check the pcap manpage in your Linux installation for more

information about pcap. You will be surprised by how easy it

is to create your own network analyzer with the pcap packet

capture library.

34

• Here is an example of how I could use tcpdump on my Linux

laptop:

– First create a file for dumping all of the information that will

be produced by tcpdump:

touch tcpdumpfile

chmod 600 tcpdumpfile

where I have also made it inaccessible to all except myself as

root.

– Now invoke tcpdump:

tcpdump -w tcpdumpfile

This is where tcpdump begins to do its work. It will will print

out a message saying as to which interface it is listening to.

– After a while of data collection, now invoke

strings tcpdumpfile | more

This will print out all the strings, meaning sequences of charac-

ters delimited by nonprintable characters, in the tcpdumpfile.

The function ’strings ’ is in the binutils package.

– For example, if you wanted to see your password in the dump

file, you could invoke:

strings tcpdumpfile | grep -i password

35

– Hit <ctrl-c> in the terminal window in which you started

tcpdump to stop packet sniffing.

36

23.12: Snort for Intrusion Detection

• First a word about intrusion detection with a packet sniffer.

Since it can examine every packet in a LAN, one would think that

it should be possible to equip a packet sniffer with additional logic

that would permit it to detect intrusions into the local network.

Whereas it might be difficult to decide whether an intruder has

broken into your network on the basis of just the packets enter-

ing any one machine (this would be particulary the case

for detecting botnet intrusions), if you can look at all the

packets entering (and leaving) a network, you should be able to

create a more powerful sentry for the whole network. Think of

the analogy between posting a separate guard at each house in a

city and allowing cops to roam free in the city so they can observe

the goings-on both globally and locally.

• Snort does exactly that. By examining all the packets in a net-

work and applying appropriate rulesets to them, it make do a

powerful job of detecting intrusions.

• I think of snort as tcpdump on steroids. snort does everything

that tcpdump does plus more. Like tcpdump, snort is an open-

source command-line tool.

37

• What makes snort a popular choice is its easy-to-learn and easy-

to-use rule language for intrusion detection. Just to get a sense

of the range of attacks people have written rules for, here are the

names of the rule files in /etc/snort/rules directory on my

Ubuntu machine:

backdoor.rules community-web-iis.rules pop2.rules

bad-traffic.rules community-web-misc.rules pop3.rules

chat.rules community-web-php.rules porn.rules

community-bot.rules ddos.rules rpc.rules

community-deleted.rules deleted.rules rservices.rules

community-dos.rules dns.rules scan.rules

community-exploit.rules dos.rules shellcode.rules

community-ftp.rules experimental.rules smtp.rules

community-game.rules exploit.rules snmp.rules

community-icmp.rules finger.rules sql.rules

community-imap.rules ftp.rules telnet.rules

community-inappropriate.rules icmp-info.rules tftp.rules

community-mail-client.rules icmp.rules virus.rules

community-misc.rules imap.rules web-attacks.rules

community-nntp.rules info.rules web-cgi.rules

community-oracle.rules local.rules web-client.rules

community-policy.rules misc.rules web-coldfusion.rules

community-sip.rules multimedia.rules web-frontpage.rules

community-smtp.rules mysql.rules web-iis.rules

community-sql-injection.rules netbios.rules web-misc.rules

community-virus.rules nntp.rules web-php.rules

community-web-attacks.rules oracle.rules x11.rules

community-web-cgi.rules other-ids.rules

community-web-client.rules p2p.rules

• Let’s now peek into some of the rule files that are

used for intrusion detection. Shown below are some be-

ginning rules in the file community-bot.rules. These rules

look for botnets using popular bot software. [A botnet

is a typically a collection of compromised computers — usually called zombies or bots — working

38

together under the control of their human handlers — frequently called bot herders — who may

use the botnet to spew out malware such as spam, spyware, etc. It makes it more difficult to track

down malware if it seems to emanate randomly from a large network of zombies.] A bot

herder typically sets up an IRC (Internet Relay Chat) channel

for instant communications with the bots under his/her control.

Therefore, the beginning of the ruleset shown below focuses on

the IRC traffic in a network. [Although it is relatively trivial to set up a chat server

(for example, see Chapter 19 of my PwO book for C++ and Java examples and Chapter 15 of my SwO

book for Perl and Python examples), what makes IRC different is that one IRC server can connect

with other IRC servers to expand the IRC network. Ideally, when inter-server hookups are allowed,

the servers operate in a tree topology in which the messages are routed only through the branches

that are necessary to serve all the clients but with every server aware of the state of the network. IRC

also allows for private client-to-client messaging and for private individual-to-group link-ups. That

should explain why bot herders like IRC. Joining an IRC chat does not require a log-in, but it

does require a nickname (frequently abbreviated as just nick in IRC jargon).]

The following rule merely looks for IRC traffic on any TCP port (by detecting NICK change

events, which occur at the beginning of the session) and sets the is_proto_irc flowbit.

It does not actually generate any alerts itself:

alert tcp any any -> any any (msg:"COMMUNITY BOT IRC Traffic Detected By Nick Change"; \

flow: to_server,established; content:"NICK "; nocase; offset: 0; depth: 5; flowbits:set,\

community_is_proto_irc; flowbits: noalert; classtype:misc-activity; sid:100000240; rev:3;)

Using the aforementioned is_proto_irc flowbits, do some IRC checks. This one looks for

IRC servers running on the $HOME_NET

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"COMMUNITY BOT Internal IRC server detected"; \

flow: to_server,established; flowbits:isset,community_is_proto_irc; classtype: policy-violation; \

sid:100000241; rev:2;)

These rules look for specific Agobot/PhatBot commands on an IRC session

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"COMMUNITY BOT Agobot/PhatBot bot.about \

command"; flow: established; flowbits:isset,community_is_proto_irc; content:"bot.about"; \

classtype: trojan-activity; sid:100000242; rev:2;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"COMMUNITY BOT Agobot/PhatBot bot.die command";

flow: established; flowbits:isset,community_is_proto_irc; content:"bot.die"; classtype:

39

trojan-activity; sid:100000243; rev:2;)

....

....

....

• Next let us peek into the file community-virus.rules. Here

are the first three rules, meant for detecting the viruses Dabber

(at two different ports) and BlackWorm.

alert tcp $EXTERNAL_NET any -> $HOME_NET 5554 (msg:"COMMUNITY VIRUS Dabber PORT overflow \

attempt port 5554"; flow:to_server,established,no_stream; content:"PORT"; nocase; isdataat:100,\

relative; pcre:"/^PORT\s[^\n]{100}/smi"; reference:MCAFEE,125300; classtype:attempted-admin; \

sid:100000110; rev:1;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 1023 (msg:"COMMUNITY VIRUS Dabber PORT overflow \

attempt port 1023"; flow:to_server,established,no_stream; content:"PORT"; nocase; isdataat:100,\

relative; pcre:"/^PORT\s[^\n]{100}/smi"; reference:MCAFEE,125300; classtype:attempted-admin; \

sid:100000111; rev:1;)

alert tcp $HOME_NET any -> 207.172.16.155 80 (msg:"COMMUNITY VIRUS Possible BlackWorm or \

Nymex infected host"; flow:to_server,established; uricontent:"/cgi-bin/Count.cgi?df=765247"; reference:url,ww

Win32%2fMywife.E%40mm; reference:url,cme.mitre.org/data/list.html#24; reference:url,isc.\

sans.org/blackworm; classtype:trojan-activity; sid:100000226; rev:2;)

....

....

• It is easy to install snort through your Synaptic Packet Man-

ager, but be warned that the installation does not run to com-

pletion without additional intervention by you. Before telling

you what that intervention is, the installation will place the ex-

ecutable in /usr/sbin/snort, the start/stop/restart script in

/etc/init.d/snot, and the config files in the /etc/snort/

40

directory. As you’d expect the documentation is placed in the

/usr/share/doc/snort/ directory. Please read the various

README files in this directory before completing the installation.

Some of these README files are compressed; so you will have to

use a command like

zcat README.Debian.gz | more

to see what the instructions are. As you will find out from these

README files, a full installation of snort requires that you also

install a database server like MySQL or PostgreSQL. But if you

want to just have fun with snort as you are becoming

familiar with the tool, it is not necessary to do so. You

just need to make sure that you delete the zero-content file named

db-pending-config from the /etc/snort/ directory.

• The syntax for writing the intrusion detection rules is explained

in the file /usr/share/doc/snort/snort_rules.html.

• Your main config file is /etc/snort/snort.conf, but it should

be good enough as it is for an initial introduction to the system.

• Once you get snort going, try the following command lines as

root:

snort -v -i eth0 // will see ALL packets visible

41

// to the eth0 interface

// the -v option is for verbose

// it slows down snort and it can lose

// packets with -v

snort -d -e -a -i eth0 // will also show you data in packets

// -d option is for data, -e is for

// link-layer packets, -a for ARP

snort -dea -i eth0 // a compressed form of the above

snort -d -i eth0 -l logile -h 192.168.1.0/24 // will scan your home

// LAN and dump info

// into the log file

snort -d -i eth0 -l logfile -c rule-file // will dump all of the

// info into the logfile

// but only for packets

// that trigger the rules

Do ‘man snort’ to see all the options.

• If instead of the above command lines, you start up snort with

(as root, of course):

/etc/init.d/snort start

and then if you do ps ax | grep snort, you will discover that

this automatic start is equivalent to the following command line

invocation:

snort -m 027 -D -d -l /var/log/snort -u snort -g snort -c /etc/snort/snort.conf\

-S HOME_NET=[192.168.0.0/16] -i eth0

assuming you are connected to a home LAN (192.168.1.0/24).

Note the -c option here. In this case, this option points to the

42

config file itself, meaning in general all the rule files pointed to

by the config file.

• You can customize how snort works for each separate interface

by writing a config file specific to that interface. The naming con-

vention for such files is /etc/snort/snort.$INTERFACE.conf

• Some of the source code in snort is based directly on tcpdump.

• Martin Roesch is the force behind the development of Snort. It

is now maintained by his company Sourcefire. The main website

for Snort is http://www.snort.org. The main manual for the

system is snort_manual.pdf (it did not land in my computer

with the installation).

43

23.13: Packet Sniffing with wireshark (formerly

ethereal)

• wireshark is a packet sniffer that, as far as the packet sniffing

is concerned, work pretty much the same way as tcpdump. (It

also uses the pcap library.) What makes wireshark special is

its GUI front end that makes it extremely easy to analyze the

packets.

• As you play with wireshark, you will soon realize the importance

of a GUI based interface for understanding the packets and an-

alyzing their content in your network. As but one example of

the ease made possible by the GUI frontend, suppose you have

located a suspicious packet and now you want to look at the rest

of the packets in just that TCP stream. With wireshark, all you

have to do is to click on that packet and turn on “follow TCP

stream feature”. Subsequently, you will only see the packets in

that stream. The packets you will see will include resend packets

and ICMP error message packets relevant to that stream.

• With a standard install of the packages, you can bring up the

wireshark GUI by

wireshark

44

Yes, you can call wireshark with a large number of options to

customize its behavior, but it is better to use the GUI itself for

that purpose. So call wireshark without any options as shown

above.

• The wireshark user’s manual (HTML) is readily accessible through

the “Help” menu button at the top of the GUI.

• To get started with sniffing, you could start by clicking on “cap-

ture”. This will bring up a dialog window that will show all of

the network interfaces on your machine. Click on “Start” for the

interface you want to sniff on. Actually, instead click on the “Op-

tions” for the interface and click on “Start” through the resulting

dialog window where you can name the file in which the packets

will be dumped.

• You can stop sniffing at any time by clicking on the second-row

icon with a little red ’x’ on it.

• Wireshark understand 837 different protocols. You can see the

list under “Help” menu button. It is instructive to scroll down

this list if only to get a sense of how varied and diverse the world

internet communications has become.

45

• Wireshark gives you three views of each packet:

– A one line summary that looks like

Packet Time Source Destination Protocol Info

Number

--

1 1.018394 128.46.144.10 192.168.1.100 TCP SSH > 33824 [RST,ACK] ..

– A display in the middle part of the GUI showing further details

on the packet selected. Suppose I select the above packet by

clicking on it, I could see something like the following in this

“details” display:

Frame 1 (54 bytes on the wire, 54 bytes captured)

Ethernet II, Src: Cisco-Li_6f:a8:db (00:18:39:6f:a8:db), Dst:

Internet Protocol: Src: 128.46.144.10 (128.46.144.10) Dst:

Transmission Control Protocol: Src Port: ssh (22), Dst Port: 33824

– The lowest part of the GUI shows the hexdump for the packet.

• Note that wireshark will set the local Ethernet interface to promis-

cuous mode so that it can see all the Ethernet frames.

46

