VOLUME 2, ISSUE 7

AN ARESCO PUBLICATION

FEBRUARY 1980, \$2.50

TABLE OF CONTENTS

EDITORIAL
PUBLISHER'S NOTES
READER 1/02.07.04
CHIP-8 CHIP-8IIIJohn Chmielewski2.07.06 Little LoopsTom Swan2.07.08
MUSIC MusicodeGilbert Detillieux2.07.12
GAMES Killer RobotsCarmelo Cortes2.07.16
MACHINE LANGUAGE Super-Duper 3-Way Memory DiagnosticTom Swan2.07.24
MISCELLANEOUS Advertisements: RCA2.07.15.2.07.23 Corrections: Awtrey's FOOTBALL game2.07.03 Ordering Information: ARESCO

Please note that the January 15 pre-publication price for the third volume of PIPS for VIPS was well received! We were able to print 200 copies altogether, so there are plenty more (at \$19.95 with the program tape). Thanks to all of you who pre-paid and waited so long for your order.

ATTENTION: We have a new editor! Be sure to read this month's Editorial (and, of course, the publisher's notes) for a real pleasure!

SUBSCRIPTION RATES, ADVERTISING RATES, & OTHER INFORMATION

The VIPER is published ten times each year by ARESCO, at 6303 Golden Hook, Columbia MD, 21044, and mailed to subscribers on or around the 15th of each month except June and December. The single copy price is \$2 per copy and the subscription price is \$15/10 issues of the current volume. Subscriptions do not carry over from one volume to the next, and readers who want less than the full volume should send \$2 for each issue desired. Renewals are accepted during the last two months of the current volume year, and the first issue of each volume is published in July. The entire contents of the VIPER are copyrighted c 1979 by ARESCO, Inc.

Second class postage paid in Columbia MD 21045 (USPS 520-550). <u>Postmaster</u>: Send all address changes to ARESCO, P O Box 1142, Columbia MD 21044.

Subscriptions: Subscription orders should be sent to P O Box 1142, Columbia, MD, 21044; not to the street address given above. USA residents: \$20/10 issues mailed second class; \$25/10 issues mailed first class. Non-USA residents: \$20/10 issues mailed second class; \$30/10 issues mailed first class. VISA/ MC/ personal checks, cash, money orders accepted as payment. All funds should be in US dollars. Checks drawn on foreign banks should include any exchange rate difference in currencies.

Advertising rates: Non-commercial ads by subscribers: \$10/3 lines of 60 characters each. Non-commercial ads by non-subscribers: \$15/3 lines of 60 characters each. For commercial ads, please write for advertising rates. Payment must accompany ad in any event.

<u>Staff</u>: Publisher: Terry L Laudereau, ARESCO, Inc. Editor: Tom Swan Subscriptions: Sandy Nolan

"VIP" and "COSMAC" are registered trademarks of RCA Corporation. The VIPER is not associated with RCA in any way, and RCA is not responsible for its contents. Readers should not correspond with RCA regarding VIPER material. Please direct all inquiries to ARESCO, P O Box 1142, Columbia, MD, 21044.

<u>Contributions</u>: Readers are encouraged to submit material of interest to VIP owners. However, it must be understood that the function of the VIPER is to duplicate the materials--and to mail them out to other VIPER readers. We cannot pay (sigh) for your efforts. In time, perhaps....

EDITORIAL

by Tom Swan

One year ago almost to the day, I dug out one dusty, neglected COSMAC VIP and decided to write a group of articles and programs with the hope that some readers would pass more easily over many of the hurdles I had had to claw my way around in my never ending attempt to learn more about programming. The project grew into the PIPS FOR VIPS series, and the overwhelming response to PIPS' publication has shown me just what an insatiably curious, eager to learn, determined bunch you VIP people are! Wonderful. I feel as though we are all aboard the Santa (VIPER) Maria headed into uncharted waters set upon discovering new worlds. And I can't tell you how pleased I was when Rick and Terry, faced with the management of a growing company, asked me to become one of the officers of the ship. Would I edit the VIPER from now on? You bet!

As your editor, however, I'm more the cook in the galley than the captain on the bridge. The VIPER is your newsletter; a vehicle for relaying your experiences to other VIP programmers. Each issue of the VIPER has been prepared (and will continue to be prepared) from the stores in the hold. You tell us what you want to eat, and we'll do what we can to whip it up from the raw material you bring on board!

One thing I hope to accomplish is a thorough check of the programs printed here. Now I can't purchase a new video board just to check out a driver routine, but I will do what I can not to <u>introduce</u> errors into an author's code. Though the initials of my name suggest a relation to a famous microcomputer (my middle initial is "R"), I am only human, darn it, and errors are bound to occur. I will walk the psychological gangplank for each one.

Carmelo's "Killer Robots" in this issue is a good example. I hand loaded the program directly from the typed code you see printed here and it ran perfectly. If it doesn't work for you, then something was either dropped at the printer (unlikely) or you have made a loading error somewhere. In the past, Terry and Rick understandably didn't have the time to hand load each program. We do, and in most cases, we <u>will</u>. "We" includes my wife Anne who does all my dirty work such as typing this editorial, etc. (Nice game, by the way. Thank you Carmelo!)

As Terry has always said, your comments and suggestions are welcome. The VIPER is building an accumulation of original VIP programming knowledge, and we want to add your contributions. To those of you who have written, we look forward to hearing from you again. To you who intend to write, go ahead, pick up a pencil and send us your ideas. Don't be left on shore. We sail with the tide. Anchors Aweigh!

Best regards and good luck with your programming

Tom Swan, editor

OM

PUBLISHER'S NOTE

We are delighted to have Tom with us! At last we have an editor who is truly qualified to answer technical questions about the VIP! Welcome aboard, Tom!

About the <u>light pen</u>...We've had enough positive response from readers that we bought up a carload of the pens, printed up a bunch of manuals, and can offer them to you at \$19.95 per package. No cassette tapes. The manual gives listings of the demonstration programs (which are in BASIC), so they can be "translated" into CHIP-8 or machine language. So now we can take orders, folks...anybody interested?

<u>RCA</u> is doing some advertising with us these days...let's encourage them to do so by ordering products from them instead of through ARESCO. We don't make a "profit" through sales of RCA products, and they can ship directly to you instead of through us (which should help the turn-around time a lot).

<u>Rumored</u>: VIP II is being retooled to include a conventional keyboard; completion date tentatively late February. Seems too good to be true, in light of past rumors that the VIP II was being dropped altogether! We'll keep you posted as the plot thickens. <u>PIPS IV</u>, now only a twinkle in its author's eye, is beginning to take form rapidly. No orders yet, please, since we haven't even been able to get Tom to hint about the contents.

Jeff Duntemann has published an 1802-oriented booklet: <u>Captain</u> <u>Cosmo's Whizbang</u> (\$5.00). It's the most entertaining reading we've come across in a long time - and jampacked full of good, hard information for 1802 aficionados. A <u>must</u> for your 1802 library, and available from Jeff (he prefers cash rather than checks, and orders must be prepaid) by writing to him at 301 Susquehanna, Rochester, NY, 14618.

The <u>Studio II RAM Card</u> is ready at last - \$45 without the two 2114 RAM chips, completely assembled, otherwise. With all the necessary paperwork, of course. Our thanks to Paul Everitt and David Hall for their contribution (they designed it) to the effort.

As many of you have guessed (and phoned or written to tell us) there were a few errors in the FOOTBALL program by Frank Awtrey (see issue 2.05.12). John C Hanner was the first to call and let us know something was wrong with our listing (damn! I worked overtime on that one, and had two other people check it!). In any event, here are the corrections, with our thanks to all of you who have helped us spot the errors:

Change location 05D7 from 20 to 30 06CA from 0D to 00 0D30 from FB to F8

I guess three errors in all that code isn't all <u>that</u> bad, but it is such a nuisance to anyone who tries to punch in the code! Again...I apologize. See you next month!

terry

2.07.03

READER I/O

Dear VIPER - Don King (one of your subscribers) and I have developed several programs for VIP Tiny BASIC including a crude version of STAR TREK. We are also working on doubling the tape data rate, and sending the tape data over the telephone lines, acoustically coupled to eliminate problems with direct connection to the telephone lines.

Thank you for providing a newsletter for and about the most powerful (as we all know) eight bit processor around today, the 1802. Please keep <u>some</u> non-VIP articles, but as your title indicates the majority of each issue should pertain to the VIP. - Marvin Kraska

Editor's Note - Marvin also mentioned he will be sending details on a "high speed A/D, D/A (analog/digital) converter with a sample rate of 10,000 samples per second capable of digitizing, storing, and reconstructing voice!!" The mouth waterith over! - Tom

Dear VIPER - I have enjoyed the Little Loops columns, and I find I agree with Tom in his review of the VIP700 BASIC in that it's tiny & slow. When I first connected a keyboard (an AMkey) to it, the automatic repeat on the keyboard (8/sec, after a small delay) was faster than the BASIC response, and led to multiple repeats (unless I was fast with the fingers). Luckily, I was able to get one of the RCA keyboards, and my previous problem was not repeated.

I had intended to use the keyboard/BASIC combination to learn new vocabulary words, but I was disappointed to find that this BASIC only inputs numeric data, and not alphabetic info. Aha, I thought, I'll add a machine language subroutine, but this BASIC turned out to be closed to that way also. I think there might be some hope if I try working with the CHIP-8 II and some additional routines for display, etc.

At least this BASIC does provide for some nice graphicsoriented commands, which leads me to start thinking about the light pen recently mentioned in da VIPER. - Eric Nabel Dear VIPER - In the August '79 VIPER Al McCann requests a one-page version of Ben Hutchinson's circuit diagram and also asks if the RAMs are "wire-ORed' together. Feeling the need for a clearer diagram myself, I prepared the sketch shown here. I followed B.H.'s diagram in the February '79 VIPER as faithfully as I could. I hope I have not introduced any errors. It is evident that the tri-state RAMs are directly connected. Since the same diagram also appeared in the April '79 IPSO FACTO and was redrawn with errors, I am submitting a copy of the sketch to ACE as well.

In PIPS FOR VIPS, Volume 1, page 31, Tom Swan presents a cursor on/off subroutine for Text Editor-21, located at 03C0-03D2. The function can be performed more elegantly in 10 bytes instead of 19 by substituting an SDI #7F for the XRI #20 at location 03C7 and eliminating the code from 03C8 to 03D0. Subtracting 32 from 127 yields 95 and vice versa, which effectively compliments the cursor each time through. - F. Rodgers, Switzerland

0306 OF LDN RF ;get current value 0307 FDSDI #7F₁₆; subtract it from (itself + its 7F; alternate value) 0309 5F STR RF ; put back new (alt.) value 03CA D5 SEP R5 ;return (RF must be initiated to 2016) (9 bytes now free)

Editor's Note - From the sun baked Sierra Madres of Mexico to the snowy peaks of your Alps, thanks. You are quite correct. - Tom

DOUBLE - BUFFER GRAPHICS SPEED-UP

CHIP-8III

by John Chmielewski

VIPER has published various modifications of CHIP-8 to implement input/output instructions. Using the VIPER page code scheme, the articles are as follows:

1.03.04	CHIP-8I by Rick Simpson (replaces BMMM with
	BOKK, B1X0 & B1X1),
1.07.27	Corrected CHIP-8I code (there is still one
м. 	error in the function B1X1, but it works!),
2.02.08	I/O PORT DRIVER ROUTINE by James Barnes (adds
	FXF2 & FXF5, but has no provisions for testing EF4).
2.04.05	KEYBOARD KONTROL by Tom Swan (adds FX00 to CHIP-81).

CHIP-8III is a modification of the functions and code contained in the above referenced articles. The purpose is to try to provide an upgraded CHIP-8 completely compatible with the original. Hopefully, the input/output instructions provided will be suitable for most applications dealing with I/O. If future articles standardize on CHIP-8III readers will benefit by not having a different version of CHIP-8 for each article using the input/output ports.

The following instructions are added to CHIP-8 by CHIP-8III:

FX00 - VX = input port if key is pressed VX = 0 if no key depressed (EF4 is used as the input flag) FXF2 - VX = input port Waits for a key to be pressed & released. (EF4 is used as the input flag) FXF9 - Output port = VX

Make the following code additions to CHIP-8 as given under each function name:

FX:00

0100	3F D4	BN4	; if no key pressed, set VX=00	exit.
0102	E6 .	SEX R6	set I/O pointer to VX	•
0103	6в	INP 3	set input, put in VX	
0104	D4	SEP R4	;exit	

The above code is similar to that in VIPER 2.04.05. By changing location 0100 from B4 to BN4, the routine fits into 5 locations. By changing location 0101 data D4 to 04, the above routine is exactly equivalent to Tom Swan's. But it is one byte shorter, making his modification to the interpreter unnecessary. The above routine will function as is in the sample program Tom gave, but it's additional feature of setting VX to zero at no keypress eliminates the need for the instruction in the program that sets VX to zero for the keyboard test.

FXF2

01F2	E6	SEX R6	;set I/O pointer to VX
01F3	3F F3	BN4	;wait for keypress
01F5	6в	INP 3	;set input, put in VX
01F6	37 F6	B4	;wait for key release
01F8	D4	SEP R4	;exit

The above code is similar to that in VIPER 1.07.27 starting at location 01F2. Note that the code in that issue still contains an error. The corrected code should read: 00F2 3F F2 6B 37 F5 D4.

FXF9

01F9	E6	SEX	R6	;set I/O pointer to VX
01FA	63	OUT	3	; output $V\bar{X}$. $VX = VX + 1$
01FB	D4	SEP	R 4	;exit

The above code is similar to that in VIPER 2.02.08. By eliminating the resetting of R6, the routine by James Barnes fits in the above remaining three memory locations available in CHIP-8.

CHIP-8I did contain one additional instruction not included in CHIP-8III. That is the BOKK instruction. I feel this instruction is of limited use, and as such, I'd rather preserve the complete CHIP-8 interpreter.

* * *

One word of caution. This implementation of the instruction FX00 assumes DF to be zero as the branch to 01D4 is to a section that rotates DF into VX. It seems that this is the case following the decoding of any CHIP-8 instruction, but you should be aware that if DF was equal to one, the FX00 would not result in VX being set to zero. Also, do not output VF with the FXF9. CHIP-8 will crash! Thank you, John, for consolidating input/output into CHIP-8III. It should have been done long ago. - Tom

LITTLE LOOPS by Tom Swan

IT'S GETTING BETTER ALL THE TIME

The little Mexican children, when they come to visit, love my VIP. Their favorite game is the Figure Shooting at Moving Target. "El Senior chicito con la Pistola" (The little man with the pistol) is what they call him and they all burst out laughing whenever someone reminds them of him. They also cannot understand why my CRT monitor does not pick up TV stations. "So, it's bad isn't it?" they ask me.

Big kids aren't always so impressed. The one comment I hear more often is "Well, it's ok, but it's so slow!"

Then a few months ago, VIPER ran an article on a Fast DXYN instruction which is limited to displaying one bit at a time. It was a nicely done program, and is quite fast. But when I attempted to convert a game such as Wipe Off or "El Senior," there was no easy way around the one bit limitation. I certainly didn't want to construct "El Hombre" out of single dot DXYN's!

For a long time this whole question of speed worried me. As I thought about the Chip-8 display instruction, I came to realize that Chip-8's slowness just didn't make sense. The computer is certainly capable of top speed graphics, but Chip-8 sure doesn't seem to be. Why not?

Then, on the upteenth journey through Chip-8's mysteries I discovered a very interesting fact about the display sub with the help of VIPER's Vol. 1 issue 2 breakdown of the interpreter. With a <u>single byte change</u> I have achieved the same speed of the Fast DXYN instruction! And it works for <u>all</u> Chip-8 programs. Next time someone says Wipe Off is too easy, simply change the byte at location OOAC to EC (normally = 00) and run the program. That's all you have to do and I bet you'll have trouble following the ball let alone playing the game! Same with kaleidoscope. You only need to change the one byte to achieve super fast speed.

As with many modifications, this change has one drawback. <u>Sometimes</u>, but not always, a figure will appear to move with less grace. Location OOAC in the display sub is normally set to OO, an IDL instruction that causes the processor to wait at that location until receiving an interrupt request. <u>Only</u> after the video display chip, the 1861, requests data will the program continue past OOAC. Therefore, the use of a DXYN instruction may actually delay your program up to 1/60 of a second while waiting for the go-ahead signal. That's a lot of time for a computer.

There was a good reason for the IDL instruction at OOAC, however, and you must make a careful decision whether to leave it in or take it out. For very smooth graphics, it may be needed. . for super fast wall ball games -- definitely not. The purpose of the IDL is to insure that all changes to the display are never interrupted in midpoint causing whatever figure you are displaying to be cut in half for a moment until the interrupt is completed. It was not a design oversight -- in fact I find it to be quite a clever device -- but for many programs you will never know the difference. Except you may need timing loops to slow the balls down!

If you want to see some real speed, try this change along with the HI-RES CHIP-8 modifications and the sample random line drawing program presented elsewhere. Holy Warp Drive Batman!

OPTIMIZATIONS

Speed isn't the only factor of a good computer program. In fact some applications may neglect speed as a negligible advantage allowing for less expensive design. One thing about speed in electronics; it usually comes at a higher price.

Most algorithms, however, are evaluated in terms of speed vs. application. The ability to prove the speed of a program may require a mathematics degree, but you do not need any special training to discover ways to improve your programs. Take Chip-8 again, for example, and let's look for a way to optimize one of its instructions, OOEO ERASE DISPLAY.

The first things to look for in optimizing routines are loops. Even though a loop may only occupy 10 bytes of computer space, it may be executed 100 times. If each of those bytes is an instruction, the execution time is the same as a routine having 1000 instructions. One-half the size of a 2K VIP! Removing only one instruction from the 10 byte loop will result in 100 instruction executions less each time the loop is used. This times the number of times the loop itself will be needed gives the relative amount of time saved. If the 10-byte, 100 pass loop is used 100 times for example, one less instruction results in a program that is effectively 100 x 100 or 10,000 instructions shorter! Things do mount up and they can mount up fast.

This principal may be used to vastly improve the erase display instruction. Let's look at them side by side. (I've drawn arrows to help in comparing the loops.)

Old OOEO ERASE DISPLAY #1

00E0	9B		GHI	RB	;Display page address is kept in RB.1
E1	BF		PHI	RF	;RF.1=RB.1/RF is erase pointer
E2	F8	FF	LDI	\$FF	4
E4	AF		PLO	RF	;RF.0=FF (Last byte)
E51	→ 93		GHI	R3	;(R3.1=00)
E6	5F		STR	RF	;Store zero to erase byte @ M(R(F))
E7	8F		GLO	\mathbf{RF}	;Test pointer
E8	32	DF	BZ		; If done, exit to OODF
EA	2F		DEC	RF	Pointer -1
EB	L30	E5	BR		;Loop until 256 bytes erased

	New	00E0	ERASE DISPLAY #2
00E0 9B E1 BF E2 F8 E4 AF E5 EF E6 ₱93 E7 73	FF	GHI RB PHI RF LDI \$FF PLO RF SEX F GHI R3 STXD	<pre>See above comments - set RF = last byte of display """"""""""""""""""""""""""""""""""""</pre>
E8 E9 E9 SF EB SF EC D4	Eć	GLO RF BNZ STR RF SEP R4	decremented ;Test low byte of pointer ;If ≠ 00, then loop to continue erasing ;Erase last display byte (③ 0X00) ;Return

Both routines occupy the same space 00E0-00EC. The new subroutine contains 11 instructions, the old has 10 instructions. (The apparent discrepency is from an additional 2 byte branch in routine #1. Timing 1802 programs is simplified by the fact that all instructions except for 3-cycle types not used here, take the same execution time.)

However, the inner loop of the second erase sub is two instructions shorter than sub #1. The first loop will execute 256 times, the second 255 loops with byte #256 erased by the single instruction at OOEB (#2). On the last loop of sub #1, two less instructions will be executed due to the early exit condition at OOE8 (#1).

Let's see how this affects the loops' relative speeds.

Number times loop is executed x number instructions in loop	<u>00E0 #1</u> 256 <u>x 6</u> 1536	00E0 <u>#2</u> 255 <u>x 4</u> 1020
Less special exit on last loop Total executions in loop	$\frac{-2}{1534}$	$- 0 \\ 1020$
Plus number instructions outside loop Total executions each call	+ 4 1538	$+ \frac{7}{1027}$
Difference (1538 - 1027)		511

Sub #2 results in 511 less instruction executions on each use of the 00E0 command. That's like eliminating two pages of machine language code, and all we did was shorten the loop by two instructions.

The rule is simply: keep everything that does not have to be in the loop out of the loop. Do this even if it results in more code in most cases.

Good luck with your programming. May all your little loops be

as short as possible.

(To all of you who have written: Thank you, I have enjoyed reading your comments. If you'd like a reply, I'd appreciate receiving a stamped, self-addressed envelope due to the number of letters I receive. Eventually. I make it down to the Burro Express office with all of my return correspondence.)

PROJECTS:

1) Design an all purpose Chip-8 subroutine that will allow the action in a game to go progressively faster the longer a person plays the game. Incorporate the change into the Wipe Off program.

2) Design a machine language subroutine that will automatically toggle the DXYN instruction from fast to slow or from slow to fast. It should be completely relocatable, that is, use no branching instructions.

LAST MONTH'S ANSWERS:

1) Equal values are always brought together during any sort. For either a Bubble or an Insertion Sort, like values retain their relative position in memory. For this reason, the two sorting techniques are said to be "stable."

2) Bubble Sort	Insertion Sort *
Pass 0 9;1;3;7;2;6;4;8;5	9;1;3;7;2;6;4;8;5
" 1 1;3;7;2;6;4;8;5;9	1;9;3;7;2;6;4;8;5
" 2 1;3;2;6;4;7;5;8;9	1;3;9;7;2;6;4;8;5
" 3 1;2;3;4;6;5;7;8;9	1;3;7;9;2;6;4;8;5
" 4 1;2;3;4;5;6;7;8;9	1;2;3;7;9;6;4;8;5
	1;2;3;6;7;9;4;8;5
*Do not be deceived by the	1;2;3;4;6;7;9;8;5
apparent lengths of these	1;2;3;4;6;7;8;9;5
results. Insertion is	1:2:3:4:5:6:7:8:9
still faster!	

3) Use V6 V7 for the display X & Y (or other variables not used during sorting). Keep last value entered in V8 and sort after each value is entered. Test if V8=0. If so, branch to display the sorted results. Here's an <u>undocumented Chip-8</u> Sort Test #3 that will do this which you may use to test either sort sub as described last month. 0200 66 00 67 00 6D 00 A4 00 The insertion sort is "made" 0208 FD 1E FO 0A FO 55 88 00 for this technique of sorting 0210 7D 01 FO 29 D6 75 76 05 on-the-fly because of the 0218 23 00 38 00 12 06 60 04 assumption that all records 0220 FO 18 66 00 67 08 6C 00 are already in order before

0228A400FC1EFO65FO290230D67576057C015CD002381228123A00000000

NEXT MONTH: PRIME TIME

an insertion is made!

MUSICODE

· 的复数推进了一路建筑计学和全部推进。

by Gilbert Detillieux

The advantage of the music program described in the January, 1979 VIPER is that both the hardware and the software required are very simple. The disadvantage is that encoding music can be long and tedious, especial when a lot of 3/4, 3/8, and 3/16notes are to be played. These durations must be calculated, since they are not given in the table.

Since the computer is better equipped for handling boring calculations that we are, why not make the VIP do the dirty work? This is what I've done with MusiCode.

The user can enter simple codes for pitch and duration, and the computer will calculate the required frequency and number of cycles to play. MusiCode uses the same hardware as was shown in the January, 1979 VIPER.

The new codes for pitch and duration are shown in Figure 1A and 1B. For each note, enter the pitch code first, then enter the duration code. End the list with ED to stop the tune or with EE to replay the tune from the beginning.

The program ignores memory locations containing 00, so this code can be used to delete a note (or to reserve space for entry of future notes). The tempo is controlled by the byte at location 003D. The rest time between notes is stored in location 0064.

Enter the program beginning at location 0000 (through 00C6). Then begin entering the music list starting at 0100. To play the tune, push key C <u>after</u> having entered RUN mode. If you have entered ED at the end of the list, the music will stop at the end of the tune. You can start it again by pressing key C. The tune will play continuously if you ended the list with EE.

The program shown is for the VIP. You can easily modify it to run on an ELF by changing location 0000 to 3F and location 001A to 64. Then, to hear the tune after it has been entered, push the IN button.

Figure 2 contains a coding sheet for your music codes, as well as reminders for the appropriate keys to press. Hope you all enjoy the "Mystery Tune"!

2.07.12

Figure 1A

	and an and an and a second second Second second second Second second		
LOC PITCH DUR CODE CODE	LOC PITCH DUR CODE CODE	LOC PITCH DUR CODE CODE	LOC PITCH DUR CODE CODE
00	26	4C	72
02	28	4E	74
04	2A	50	76
06	2C	52	78
08	2E	54	80
OA A A A A A A A A A A A A A A A A A A	30	56	82
OC	32	58	84
OE	34	5A	86
10	36	50	88
12	38	5E	8A
14	ЗА	50	8B
16	30	62	8C
18	ЗE	64	8E
1 A	40	56	
10	42	68	
1 E	44	6A	en Santa de la composición de la composición Santa de la composición
20	46	6C	
22	48	5E	
24	4A	70	

Figure 2

Be sure to enter ED or EE at end of list! ED = Stop playing the tune EE = Repeat the tune continuously

CODING SHEET FOR MUSIC - MAY BE COPIED

The VIP hobby computer: Start programming for only \$99.

New! VP 111 **\$99.** Microcomputer **\$99.** Assembled* and tested.

Features:

RCA 1802 Microprocessor.

• 1K Bytes static RAM.

Expandable on-board to 4K.

Expandable to 32K Bytes total.

- 512 Byte ROM operating system.
- CHIP-8 interpretive language or machine language programmable.
- Hexidecimal keypad.
- Audio tone generator.
- Single 5-volt operation.
- Video output to monitor or modulator.
- Cassette interface—100 Bytes/sec.

 Instruction Manual with 5 video game listings, schematics, CHIP-8, much more!

Ideal for low-cost control applications.

Expandable to full VIP capability with VP-114 Kit.

*User need only connect cables (included), a 5-volt power supply, and speaker.

ΡI	ease sen	d me the RCA COSMAC VIP items indicated.
	VP-111	New low cost Microcomputer (See description above) \$99
	VP-114	Expansion Kit for VP-111—Includes 3K RAM, I/O Port and connectors \$ 76
	VP-711	VIP—The original VIP Microcomputer (See description above) \$199
	VP-44	RAM On-Board Expansion Kit—Four 2114 RAM IC's. Expands VP 711 memory to 4K bytes
	VP-590	VIP Color Board—Converts VIP to color. Four background and eight foreground colors
	VP-595	VIP Simple Sound Board—Provides 256 programmable frequencies. For simple music or sound effects. Includes speaker
	VP-550	VIP Super Sound Board—Turns your VIP into a music synthesizer! Two independent sound channels. On- board tempo control. Outputs to audio system
	VP-551	4-Channel Super Sound—Includes VP-576 expander, demo cassette and manual. Requires VP-550 and 4K RAM
	VP-570	VIP Memory Expansion Board— Plug-in 4K RAM memory \$ 95
	VP-580	VIP Auxiliary Keypad—Adds two- player interactive capability. 16-key keypad with cable. Connects to sockets on VP-590 or VP-585
	VP-585	VIP Keypad Interface Board—Inter- faces two VP-580 Auxiliary Keypads to VIP \$ 15

New low price! **\$199**. The original VIP ... **199**. Completely assembled and tested.

All the features of the VP-111 plus:

- A total of 2K Bytes static RAM.
- Power supply.
- 8 Bit input port.
- 8 Bit output port.
- I/O port connector.
- System expansion connector.
- Built-in speaker.
- Plastic cover.
- Three comprehensive manuals:
- VIP Instruction Manual—20 video

game listings, schematics, much more.
VIP User's Guide—operating instruc-

tions and CHIP-8 for the beginner.

• RCA 1802 User's Manual (MPM-201B) - complete 1802 reference guide.

LI VP-560	VIP EPROM Board—Interfaces two 2716 EPROMs to VIP \$ 34	C
□ VP-565	VIP EPROM Programmer Board— Programs 2716 EPROMs. With software	C
D VP-575	VIP Expansion Board—Provides 4 buffered and one unbuffered	C
D VD-576	VIP Two-Board Expander Allows	2
	use of 2 Accessory Boards in either I/O or Expansion Socket	C
□ VP-601	ASCII Keyboard—128-character ASCII Encoded alphanumeric	C
	keyboard \$ 65	C
Enclosed Add your Lenclose	t is \$ for items checked p state and local taxes \$	
□ Master	r Charge.	-
Credit ca	rd account No	
Master C	harge Interbank No.	
Signature	e (required for credit card orders):	,
•		

COSMAC VIP lets you add computer power a board at a time.

With easy-to-buy options, the versatile RCA COSMAC VIP means even more excitement. More challenges in graphics, games and control functions. For everyone, from youngster to serious hobbyist.

Built around an RCA COSMAC microprocessor, the VIP is easy to program and operate. Powerful CHIP-8 interpretive language gets you into programming the first evening. Complete documentation provided.

Send the coupon now...

Complete the coupon below and mail to: RCA VIP Customer Service, New Holland Avenue, Lancaster, PA 17604.

Or call toll free (800) 233-0094

to place your Master Charge or VISA credit card order. In Pennsylvania, call (717) 397-7661, extension 3179.

D VP-611	ASCII/Numeric Keyboard—Same as VP-601 plus 16 key numeric keypad \$ 80
□ VP-620	Cable: Connects ASCII keyboards to VIP \$ 20
D VP-700	VIP Tiny BASIC ROM Board—BASIC code stored in 4K of ROM \$ 39
D VP-710	VIP Game Manual—Listing for 16 exciting games \$ 10
D VP-720	VIP Game Manual-II—More exciting games (Available 2nd qtr. '80) \$ 10
D MPM- 2018	CDP1802 User Manual—(Included with VP-711) \$ 5
	Please send more information

Add your state and local taxes l enclose check or money order or, charge Master Charge.	us shipping & handling charge of \$3.00. Total enclosed \$ my VISA/Bank Americard
Credit card account No Master Charge Interbank No	Expiration date:
Signature (required for credit card orders): Name (please type or print):	
Street address:	City:

State & Zip: _

Make checks payable to RCA Corp. Prices and specifications are subject to change without notice.

2.07.15 VIPER

Telephone: (

KILLER ROBOTS By Carmelo Cortes

First before I describe the game, I'd like to thank Mr. Tom Swan for his books Pips for Vips I and II. For without his utility programs, Text Editor-21, Assembler-3, Chip-8 Program Editor, and Messager, I would have never written this program.

You see I am the lazy sort when it comes to programing, I hate the drudgery of figuring out all those goto and subroutine addresses. And with Assembler-3 I don't have to worry about all that, I can put my full concentration on writing the program.

Also the Chip-8 Program Editor allowed me to easily work on and debug my program after assembly. And the Messager Program lets me display messages so easily, I wonder how I did without it before.

So, I'd like to say, Thank You Tom for putting the "FUN" back in Chip-8 programing for me.

Now the game.

I got the program from an artical in Personal Computing*, for the TRS-80 Level 1 basic

Mine is a bit different as dictated by the differences in language. In this game, you are trapped in a room with two manhunting (personhunting?) robots, that have heat sensors for eyes, and so can detect you by your body heat. These will track you down and kill you if they can. But, in the room, unseen and unknown by the robots, are force beams, which give off no heat, and will destroy anything that moves into them (including humans). The human can see, and so can avoid these force beams.

The robots will run into the force beams and/or into each other, in which case the stationary robot will destroy the mobile one. When a robot is destroyed, it will be replaced with another, but in a random location.

The object of the game is to manuvoer yourself in such a way, that the robots move into the force beams or each other. You win when all the robots are destroyed. (There are $2\emptyset$ in all).

The game starts on a playing field of 64 squares, (like a chess board) on which 4 walls are placed in random locations, with the two robots being placed next, also randomly. Lastly the human is randomly placed. You move by pressing keys 1 to 9, 1 is upperleft, 2 is up, 3 is upper right, and so on. Pressing 5 will leave you where you are. (So will the rest of the keys but 5 is easier to remember).

ø3øø	239A	DO TITLE		Ø362 64	31Ø1 1358	LOOP TILL DONE
STAF	TY		1	66	ØØEE	
Ø3Ø2	2346	DO BORDR	÷ .			
ø4	237E	DO WALLS		BBIT		
Ø6	2334	DO ROBOT	•	Ø368	8øøø	
ø8	8300					
ØA	847ø			HUMAI	V	
ØC	2334	DO ROBOT		Ø36A	23BC	DO PICK
ØE	8500			60	8100	20 1101
Ø31Ø	867Ø			6F	23BC	DO PICK
12	236A	DO HUMAN		Ø 37Ø	8200	20 1101
14	6DØØ			72	ARDE	HBTTS
16	6A12	# OF ROBOTS		74	D128	112410
18	6800			76	3701	
1 A	6900			78	ØØEE	RETIIRN
				70	D128	
MLOC	P			70	136A	DO HUMAN
Ø31C	23F8	DO KEYP		• •		
1E	38FF			WALLS	3	
Ø32Ø	24FE	DO RMOV1		Ø37E	62Ø4	# OF WALLS
22	39FF			Ø38Ø	23E6	DO PICKY
24	2532	DO RMOV2		82	81ØØ	
26	48FF			84	23E6	DO PICKY
28	132E	YES GO NEXT		86	A3CE	WBITS
2A	26ØØ	DO MESS		88	DØ18	
20	1310	GO MLOOP		8A	3FØ1	
2E	49FF			8C	1392	NO. GO ANOTHER
Ø33Ø	15AA	YES GOTO WIN		8E	DØ18	····, ································
32	132A	NO GO BACK		Ø39Ø	138Ø	GO TRY AGAIN
				92	72FF	
ROBO	T			94	32ØØ	
Ø334	23BC	DO PICK		96	138Ø	LOOP TILL DONE
36	87ØØ			98	ØØEE	RETURN
38	23BC	DO PICK				
3A (A3D6	RBITS		TITLE	2	
30	DØ78			Ø39A	6øøø	
3E	3FØ1			90	6118	
0340	ØØEE	YES RETURN		9E	A3AC	MESSC
42	DØ78	NO ERASE		Ø3AØ	Ø244	CALL MESSAGER
44	1334	GOTO ROBOT	$r = 10^{-1}$	A2	DØ15	
ממסמ	. Th			A4	6090	
aslic	1268	mrad		AD	24AC	TIMER
10 10	A300 6000	BBII		Að	Ø23Ø	ERASE
40	6100	and a the second state of the second		AA	DOFE	
HC HC				MEGO	1	
- 40 川田	6120			MEDOL	JAUD	
a32a				Ø JAC		
52	70011			AC AC	4940	
54	3010		1 a.	שעקש	5220	
56	1344	LOOP TILL DONE	•	БZ	フェニル 521戸	
58	603F			B6	ノ <u>ニュ</u> 」 山つ川中	
5A	71FF			BR	5452	
5C	DØ11			BA	สัสสัส	
5Ē	6øøø			<i></i>		
Ø36Ø	DØII					

PICK Ø3BC	CØØ7		Ø4ØE Ø41Ø	4EØ6 1446	GOTO RT
BE Ø3CØ C2	A3C6 FØ1E FØ65	BOXES	12 14 16	4EØ7 144C 4EØ8	GOTO DNLF
C4	ØØEE		18 1 A	1456 450	GOTO DN
BOXE Ø3C6	S ØØØ8		1C 1E	145C D128	GOTO DNRT
C8 CA CC	1018 2028 3038		Ø42Ø 22 24	4FØ1 1566 ØØEE	GOTO DEAD
WBIT Ø3CE Ø3DØ D2 D4	'S 5AA5 5ABD BD5A A55A		UPLF Ø426 28 2A 2C	31ØØ 71F8 32ØØ 72F8	
RBIT	'S		2E	141E	GO SHOW
Ø3D6 D8 DA DC	ØØ3C 2424 1824 42ØØ		UP Ø43Ø 32 34	32ØØ 72F8 141E	GO SHOW
НВТТ	S		יתפסוו		
Ø3DE Ø3EØ E2 E4	ØØ18 1866 1824 24ØØ		Ø436 38 3A 3C	3138 71Ø8 32ØØ 72F8	
PICK	Y		2E	1416	GU SHUW
E8 E8 EC EE	CØØ7 A3FØ FØ1E FØ65 ØØEE	SBOX	LF Ø44Ø 42 44	31ØØ 71F8 141E	GO SHOW
SBOX	aona		RT Ø446	3138	
F2 F4	1Ø18 2Ø28		48 4A	7108 141E	GO SHOW
F6	3Ø18		DNLF Ø44C	3100	
KEYP	E E C A		4E	71F8	
FA FC	A3DE D128	HBITS	52 54 54	3230 72Ø8 141E	GO SHOW
f'E Ø4ØØ	4EØ1 1426	GO UPLF	DN		
Ø2 Ø4	4EØ2 143Ø	GO UP	Ø456 58	3238 7208	
Ø6 ø8	4EØ3		5A	141E	
ØA	4EØ4	GO UFRI	· •		
ØC	144Ø	GO LF			

DNRT Ø45C 5E Ø460 62	3138 71Ø8 3238 72Ø8		DBIT: Ø4B6 B8 BA BC	1 AA55 AA55 AA55 AA55 AA55	
DD Ø466 68 6A 6C	D348 6CØ8 24AC D348	DO TIMER	DBIT: Ø4BE Ø4CØ C2 C4	2 55AA 55AA 55AA 55AA	
6E DD1 Ø47Ø 72 74	ØØEE D568 6CØ8 24AC	DO TIMER	DBIT Ø4C6 C8 CA CC	3 AA55 AA55 AA55 AA55 AA55	
76 78 RDES: Ø47A	D568 ØØEE 1 D348		RDES: Ø4CE Ø4DØ D2 D4	2 D568 6EØ1 FE18 A3D6	RBITS
7C 7E Ø48Ø 82 84	6EØ1 FE18 A3D6 6EØF D348	RBITS	D6 D8 DA DC DE	6EØF D568 D568 7EFF 3EØØ	
86 88 8A 8C 8E	D348 7EFF 3EØØ 1484 A4B6	LOOP TILL DONE DBIT1	Ø4EØ E2 E4 E6 E8	14D8 A4B6 247Ø A4BE 247Ø	LOOP TILL DONE DBIT1 DO DD1 DBIT2 DO DD1
Ø49Ø 92 94 96 98	2466 A4BE 2466 A4C6 2466	DO DD DBIT2 DO DD DBIT3 DO DD	EA EC EE Ø4FØ F2	14EC 4AØØ 14FA 7AFF 2334	NOP YES GO SKIP DO ROBOT
9A 9C 9E Ø4AØ A2	4AØØ 14A8 7AFF 2334 83ØØ 847Ø	YES GO SKIP DO ROBOT	F4 F6 F8 FA FC	8500 8670 ØØEE 69FF ØØEE	
A4 A6 A8 AA TIMEI	ØØEE 68FF ØØEE R		RMOV: Ø4FE Ø5ØØ Ø2 Ø4	1 A3D6 D348 8B1Ø 8C2Ø	RBITS
Ø4AC AE Ø4BØ B2 B4	FC15 FCØ7 3CØØ 14AE ØØEE	LOOP TILL DONE	Ø6 Ø8 ØA ØC ØE	9B3Ø 1518 8B35 4FØØ 73F8	YES GO NEXT

	Ø51Ø 12 14 16 18 1A 1C 1E Ø52Ø 22 24 26 28 2A 2C 2E Ø53Ø	4FØ1 73Ø8 9C4Ø 1522 8C45 4FØØ 4FØØ D348 5132C 924Ø 15661 4FØ1 247A ØØEE	GO SHOW NO, GO OVER GO DEAD DO RDES1	Ø578 7A 7C 858Ø 82 84 86 88 88 88 88 82 959Ø 92 94 96 98	6C8Ø 24AC Ø23Ø A67C Ø244 DDE5 6E18 A688 Ø244 DDE5 6C8Ø 24AC Ø23Ø A6B4 Ø244 DDE5	DO TIMER MESS6 CALL MESSAGER MESS7 CALL MESSAGER MESSA CALL MESSAGER
	RMOV2 Ø532 34 36 38 3A 3C	A3D6 D568 8B1Ø 8C2Ø 9B5Ø 154C	RBITS YES GO NEXT	9A 9C 9E Ø5AØ A2 A4 A6 A8	A6C4 6E18 Ø244 DDE5 Ø5EØ 15D4 15D4 15D4	MESSB CALL MESSAGER CALL MLS3 GOTO BACK NOP NOP
	3E 8B55 Ø54Ø 4FØØ 42 75F8 44 4FØ1 46 75Ø8 48 9C6Ø 4A 1556 4C 8C65 4E 4FØØ Ø55Ø 76F8 52 4FØ1 54 76Ø8 56 D568 58 515Ø 56 D568 58 515Ø 56 156Ø 5E 1566 Ø56Ø 4FØ1 62 24CE 64 ØØEE	GO SHOW	WIN Ø5AA AC AE Ø5BØ B2 B4 B6 B8	Ø5E4 Ø23Ø A696 6E1Ø Ø244 DDE5 6E18 A6A4	CALL MLS1 MESS8 CALL MESSAGER MESS9	
		GO OVER GO DEAD DO RDES2	BA BC BE Ø5CØ C2 C4 C6 C8 CA CC	Ø244 DDE5 6C9Ø 24AC Ø23Ø A6B4 6E1Ø Ø244 DDE5 A6C4	CALL MESSAGER DO TIMER MESSA CALL MESSAGER MESSB	
	DEAD Ø566 68 6C 6E Ø57Ø 72 74 76	A3DE D128 26D2 Ø5E4 Ø23Ø 6E1Ø A67Ø Ø244 DDE5	HBITS DO`HDEST CALL MLS1 MESS5 CALL MESSAGER	CE Ø5DØ D2 BACK Ø5D4 D6 D8 DA DC DE	6E18 Ø244 DDE5 FFØA 3FØF 15D4 Ø5EA Ø23Ø 13Ø2	CALL MESSAGER NO, GOTO BACK CALL MLS2 GOTO START

 \sim

2.07.20

MLS3 Ø5EØ E2	Ø312 12D4		Ø63C 3E Ø64Ø	2Ø4C 494B 452Ø
MLS1 Ø5E4 E6	Ø19B FFØ3		44 46	4C4C 21ØØ
Eδ	BBD4		MESS	2
MT CO		· · · · · · · · · · · · · · · · · · ·	0040	2020
MLDZ	a o o o		4A	2020
W JEA EC	<i>ゆと</i> 90		40 11 11	404r 115015
0 <u>1</u> 77	כשטיו		915 0650	+1/+D つの川戸
تلاتل			52	5554
asfa	aaaa	NOT USED	- 52 - 5五	2100
₩ F2	aaaa			
F4	สัสสัส	11 11 11	MESS	3
F6	ดัดดัด	11 11	Ø656	2Ø4E
F8	ØØØØ	11 11	58	4F54
FA	ØØØØ	11 11 11 11 11 11 11 11 11 11 11 11 11	5A	2054
FC	ØØØØ	11	50	4841
FE	ØØØØ	11 11	5E	542Ø
			ø66ø	5741
MESS			62	59ØØ
ø6øø	CØØ7			. 1.
Ø2	4000		MESS	4
Ø4	ØØEE		Ø664	2020
Ø6	4001		66	2020
Ø8	A638	MESS1	68	2059
Ø A Ø A	4002		6A	494B
ØC	00EE		60 60	4553
0E 0610	4003	MECCO	아노	2100
	1040	Medda	MEGG	E .
1/1	4004 00FF		0670	่วสวส
16	1005 1005		72	2020
18	A656	MESS3	74	4152
1A	4006		76	5252
10	ØØEE		78	4721
1E	4007		7A	2100
Ø62Ø	A664	MESS4		
22	6C3Ø		MESS	6
24	24AC	DO TIMER	Ø67C	2ø2ø
26	Ø5E4	CALL MLS1	7E	2ø2ø
28	Ø23Ø		Ø68Ø	534F
2A	6E18		82	5252
20	Ø244	CALL MESSAGER	84	5921
2E 8628			00	2100
9030 20	0050 2652	DO FRASE	MEGG	7
2L	2082 05F1	CALL MISS	aress aress	่วสวส
34	ØØEF	ATTI JITOF	2000 8 A	501F
	ונו בני עיע		80	5527
MESS	1		8F	5645
Ø638	2Ø52		ø69ø	2044
3A	554E		92	4945
-		•	94	4400

MES	S8	MESS	SB
Ø696	2ø2ø	Ø6C4	2ø2ø
98	2Ø2Ø	C6	5354
9A	414C	C8	4152
90	5249	CA	542ø
9E	4748	CC	4147
ø6aø	5421	CE	4149
A2	ØØØØ	ø6dø	4EØØ
MES	S9	HDES	ST
ø6a4	2Ø2Ø	Ø6D2	FE18
A6	594F	D4	6E15
A8	552Ø	D6	D128
AA	4D41	D8	D128
AC	4445	DA	7EFF
ΑE	2ø49	DC	3EØØ
Ø6BØ	5421	DE	16D6
B2	ØØØØ	Ø6EØ	ØØEE
MES	SA	ERAS	SE
Ø6B4	5ø52	Ø6E2	24AC
B6	4553	E4	Ø23Ø
В8	532Ø	E6	ØØEE
BA	4B45		
BC	592Ø		
BE	462Ø		
ø6cø	544F		
C2	ØØØØ		

Ø

LOADING INSTRUCTIONS

This program uses the 2-page display described in the september, 1978 issue of the VIPER, with the changes made by Tom Swan as described in his book, Pips for Vips I. These can be found in the Chapter intitled, Character Designer, on pages 82 & 83. next you must load his Messager program at Ø244, making the changes desribed on page 102. Then load 2 pages of the character set, at Ø7ØØ, again from his Character Designer program. Last you must change the byte at $\emptyset 25E$ to $\emptyset 7$, and the bytes at $\emptyset 24D$ and Ø28B to FD.

Then load 4 pages of the program starting at Ø3ØØ. Flip up the reset switch and play.

HAVE FUN!

The RCA VP-601 keyboard has a 58 key typewriter format for alphanumeric entry. The VP-611 (\$15 additional*) offers the same typewriter format plus an additional 16 key calculator type keypad.

Both keyboards feature modern flexible membrane key switches with contact life rated at greater than 5 million operations, plus two key rollover circuitry.

A finger positioning overlay combined with light positive activation key pressure gives good operator "feel", and an on-board tone generator gives aural key press feedback.

The unitized keyboard surface is spillproof and dustproof. This plus the high noise immunity of CMOS circuitry makes the VP-601 and VP-611 particularly suited for use in hostile environments.

The keyboards operate from a single 5-volt, DC power supply, and the buffered output is TTL compatible. For more information contact RCA Customer Service, New Holland Avenue, Lancaster, PA 17604.

Or call our toll-free number: 800-233-0094. *Optional user price. Dealer and OEM prices available.

SUPER DUPER 3-WAY MEMORY DIAGNOSTIC

by Tom Swan

If you are experiencing unusual difficulties getting your programs to run, you may have a bad memory chip. Though your VIP manual contains a simple memory test, it is not designed to catch what could be subtle defects in RAM. Plus, it is difficult to test all of memory as that program was written to do only a small section at a time.

This 3-way memory diagnostic will put your VIP through the paces using byte manipulations that duplicate most any condition RAM is likely to experience during normal program runs -- and then some. Even pattern sensitivities are unlikely to escape scrutiny. Should your VIP pass this test, you can be sure your memory is as good as Dumbo's. If not, you'll know exactly where the error occurred.

HOW TO OPERATE

Load the following machine language program starting at 0000, then save one page (also at 0000) on tape for future uses. Flip to run and the test will begin. All available on-card RAM except for 0000-00FF will be tested. If you suspect an error in the first 256 bytes of RAM, you should switch that chip first with a known good one, then run the test.

There are three parts to the test and each page is displayed on screen while it is being tested.

- 1) TEST A -- Full Page: Each page of RAM is filled with bytes from 00 to FF then the <u>full</u> page is checked for accuracy.
- 2) TEST B -- Byte by Byte: Each byte is filled with values from 00-FF and each value is checked for accuracy.
- 3) TEST C -- Sequencer: An entire page is filled with a sequence from 00-FF. The sequence is swapped front to back twice then checked for accuracy.

The test advances through each page and will end automatically when the last page has been tested. This will hold true for 2K, 3K or 4K systems. At the end of the test, provided there were no errors, all memory from 0100-0XFF (OX=highest on-card RAM page) is cleared to 00 bytes and an automatic return to the VIP operating system is performed so you do not have to reset the computer to continue programming. If there is an error, the test will halt and a beeper will sound until you shut it off. The bad byte's address is then contained in R5 and is also deposited at 00E0-00E1 which you may examine using the VIP operating system. To hear what this sounds like, change: 00A0; F8 01 A4 30 06 but reload the original program before an actual test.

The program could be sped up by removing the timing loops, but these were included to give a bad byte the time to do whatever it is doing wrong. A slow leak (indicating a power supply problem most likely) could be missed by too fast of a test. You may want to <u>increase</u> the timing loop values for an even slower test. These are at locations 002A and 0069 for Test A and C. Test B's speed can not be as easily changed.

TESTING OFF-CARD RAM

When you purchase a new block of memory, you should run this memory test to be sure your RAM operates properly. The memory test needs to be adjusted, however, for testing off-card RAM.

Make the following changes:

00A0	A4	PLO	R4	R4.0=00 (00 was in D)
A1	F8	LDI		
A2	XX			Insert start page minus one
A3	B4	PHI	R4	• •••• •••••••••••••••••••••••••••••••
A4	F8	LDI		·
A5	XX			Insert end page address
АĞ	BE	PHI	RE	
A7	30	BR		Return from patch
A8	66			

At 00A2 you must insert the starting address of the RAM block to be tested <u>minus</u> one. If your off-card RAM starts at address 1000, you would place the value OF in 00A2. At 00A5, place the address of the last page of memory to be tested. If your memory extends to 1FFF, insert the value 1F in 00A5.

Also make the following change:

0092	$\mathbf{F8}$	LDI				
93	XX		Insert	high	on-card	address

Place the value of your highest on-card RAM page at 0093 to insure a proper return to the VIP operating system when testing off-card RAM. (For a 4K system this would be the hex value "OF"; 3K="0B" and 2K="07".)

FURTHER NOTES

The program is straightforward and should be understandable with the help of the comments to those of you with a little 1802 experience. You do not need to understand it to use it of course. Nothing wrong with that.

If you like developing your own system software, you may be interested in the section that causes an automatic return to the VIP operating system without having to reset, flipping to run with Key C depressed. It offers a unique way to end a program such as this memory test.

First all memory is cleared (except for page "0") with the routine at 0089-008F though this step is not necessary.

At 0091 the video is turned off. It will be turned on again momentarily but we need to use R1 which serves as the interrupt program counter while the video chip is on. After turning the video off, R1 is set to the address of the last byte of on-card RAM. The operating system needs this address to set up the display properly.

Next, R2 is set to 8028 where the operating system normally begins to run when you flip the run switch up while holding Key C down. P is set equal to 2, and the operating system begins running in R2.

That's it -- not too complicated, but a neat trick you may want to steal for your own stuff.

Best of luck!

REGISTER ASSIGNMENT

RO		DMA pointerset in interrupt
R1		Interrupt program counter (at 8146)
R2	-	Stack pointer (at OOFF and down)
R3		Program counter starting at 0013
R4		Holds test page address
R5		Work register for byte manipulations
R6		19 19 19 10 10 to the second
R7		Not used
R8		R8.1=timer/R8.0=tone/both in interrupt
R9		Not used (but changed by interrupt routine)
RA		Not used
RB		RB.1 hold display page
RC		Not used
RD		Not used
RE		RE.1 highest page to be tested
RF	-	RF.0 used to hold test values

3-WAY MEMORY DIAGNOSTIC

0000 01 02 03 04 05 06 07 08 09	90 B2 B3 B4 30 A0 F8 81 B1 F8	GHI PHI PHI BR LDI PHI LDI	R0 R2 R3 R4 R1	R0.1=00 on start R2.1=00 - initialize stack pointer R3.1=00 - "PC R4.1=00 - test pointer Branch to patch @ 00A0 Initialize R1=8146 For use as interrupt PC
0Å	46			•
OB	A1	PLO	R 1	
0C	F8	LDI	FF	R2.0=FF to complete
OD	FF		-	
0E	A2	PLO	R2	Initialization of stack pointer (00FF)
0F	rð	TUT		
0010	12		$\int_{-\infty}^{\infty} \nabla f ^2 = \int_{-\infty}^{\infty} \nabla f ^2 = \int_{-\infty}^$	
11	17	DT.O	22	.P3 is mostly to become DC
12	רת	CII I CII D	83	R3 is program counter
12	52	SEY	2	Stack nointer is R2
14	22	DEC	R2	Prenare to turn on video
15	69	TNP	0	Video on
16	12	TNC	R2	Reset stack pointer
17	94	GHT	R4	Start main loop
18	FC	ADI	,	Increase R4 to next memory page
19	01			For test (0100 first time through)
1Å	B4	PHI	R4	
1B	BB	PHI	RB	Also set display to view page tested
10	F8	LDI		Set RF.0=00 (test byte holder)
1D	00			g H1 11 11 11 11
1E	AF	PLO	RF	3 ¹⁰ ¹¹ ¹¹ ¹¹

TEST A -- FULL PAGE

001F	94	GHI	R4	Reset/set R5 to test page
20	B5	PHI	R5	H H H H
21	84	GLO	R4	R5 will be work register
22	A5	PLO	R5	
23	8F	GLO	RF	Get test byte from RF.0
24	55	STR	R5	Store at test location
25	15	INC	R5	;Next location
26	85	GLO	R5	;Test if R5.0=00
27	3A	BNZ		; If \neq 00, loop to fill page with
28	23		•	value in RF.0
29	F8	LDI		;Load R8.1 with maximum timer value
2A	04			g 11 11 11 11
2 B	B8	PHI	R8	р н н н н
2C	98	GHI	R 8	;Test R8.1 (decremented each interrupt)

002D 2E	3A 20	BNZ		If $\neq 0$, loop to waste time here
2F	94	GHI	R4	Reset R5 to top of test page
0030 31 32 33 34 35 36	B5 8F 52 05 F3 3A B0	PHI GLO STR LDN XOR BNZ	R5 RF R2 R5	RF.0 holds current test byte Push test value onto stack Get byte from location being tested Compare with byte on stack If ≠, branch to error (byte in R5)
37 38 39 3 A	15 85 3A 33	INC GLO BNZ	R5 R5	<pre>;R5 + 1 for next byte ;Test if R5.0=00 ;If not = 00, loop to test full page</pre>
3B 3C 3D	1F 8F 3A	INC GLO BNZ	RF RF	<pre>;RF + 1 for next test <u>value</u> ;Test RF.0 ;If ≠ 0, loop to do full range of test values</pre>
3E	1F			;(Test A ends when RF.0=00 again)
			TES	T B BYTE BY BYTE
003F 40123445678	94 85 52 52 E2 E2 E2 05	GHI PHI GLO STR STR SEX SEX SEX SEX LDN	R4 R5 RF R2 R5 R2 R2 R2 R2 R2 R2 R2	Reset R5 to top of test page (R5.0 already = 00) Get test valueRF.0=00 to start Push test value onto stack And also at current test location NOP's kill time """"""""""""""""""""""""""""""""""""

49 F3 XOR ;Compare with value on stack ; If \neq , branch to error (byte in R5) 3Á B0 4A BNZ 4B4C 1F RF ;Next test value INC 4D8FRF ; Test RF.0 GLO4E3A 41 If RF.0 \neq 00, loop to test next value BNZ 4F15 85 R5 ;Next test location 0050 INC 51 52 53 R5 ;Test R5.0 GLO ; If R5.0 \neq 00, loop to test next location 3Ā 41 BNZ ١ TEST C -- SEQUENCER

0054 94 GHI R4 ;Reset R5 to top test page 55 B5 PHI R5

0056 57 58 59 58 58 58 50 50 55 55 55 55 55 55	8F 555 1FF 3A 752 9B	GLO STR INC GLO BNZ DEC GHI PHI	RF R5 RF RF RF R5 R4 R6	<pre>;Get initial test value (00) ;Store value at test location ;Next test location ;Next value ;Test RF.0 ;If ≠ 00, loop to full page with sequential values 00-FF ;Reset R5 to last byte on test page ;Set R6 to first byte on test page ; " " " " "</pre>
0060 61 62 63 64 65 66 67 68 69	846 525 502 582 582 582 582	GLO PLO LDN STR LDN STR LDN STR LDI	R4 R6 R2 R5 R6 R2 R5	Begin exchange Push M(R(6)) Get M(R(5)) Store @ M(R(6)) Pop old M(R(6)) Store @ M(R(5)) Timer value
6A 6B 6C 6D 6E 6F	B8 98 3A 6B 16 25	PHI GHI BNZ INC DEC	R8 R8 R6 R5	<pre>Put in R8.1 (auto decrement) ;Test R8.1 ;If ≠ 00, loop to kill time here ;Next location down :Next location up</pre>
0070 71 72	86 3A 62	GLO BNZ	R6	Test R6.0 ;If ≠ 00, loop to continue exchange
				TEST SEQUENCE
0073 74 75 76 77 78 79 78 79 78 70 75 75 75	158 0 AF 52 8 F 3 A 0 52 F 3 B 15 1 F 5	INC LDI PLO LDN STR GLO XOR BNZ INC INC GLO	R5 RF R5 R2 RF R5 R5 R5	<pre>Reset R5 to top of test page Make sure RF.0 = 00 first value """"""""""""""""""""""""""""""""""""</pre>
0080 81 82	3A 77 25	BNZ DEC	R5	<pre>;If ≠ 00, loop until page is tested (R5 set to next highest page) ;R5 points to last byte current page</pre>

0083	95	GHI	R5	;Test R5.1	
84	52	STR	RŽ	Push R5.1 onto stack	
85 86	9E F3	GHI	RE	Get saved value of top memory	page
87	3A	BNZ		: If \neq . loop to do another page	
88	17			; Test ends when R5.1=RE.1	

NO ERRORS -- EXIT ROUTINE

0089 88	F8 00	LDI		Begin erase of memory
88	55	GUD	₽K	Store 00 byte @ M(R(5))
OD))	STU	<u></u>	STOLE OF DALE & W(W()))
3 8	25	DEC	R5	Next byte
8D	95	GHI	R5	Test R5.1
8E	3Ă	BNZ	_	If $\neq 00$, loop to erase all but last
SF	89			memory page

RETURN TO OPERATING SYSTEM

0090	22	DEC	R2	Prepare for turning off video
91	61	OUT	1	;Turn video off
92	E2	SEX	2	:NOP (see notes on testing off-card RAM)
93	9E	GHI	RE	RE.1 contains high on-card RAM page
94	B1	PHI	R1	Put in R1 to duplicate operating
95	F8	LDI		;System start-up conditions
96	FF			• • • • • • • • • • • • • • • • • • •
97	A1	PLO	R1	R1 = OXFF
98	F8	LDI		;Set R2 (no longer stack pointer
99	80			now) to 8028 where the
9A	B 2	PHI	R2	operating system begins
9B	F8	LDI		running (normally on Key C/run)
90	28			
9D	A2	PLO	R2	
9Ē	D2	SEP	R2	;Call operating system- exit memory test

PATCH

00A0	A4	PLO	R4	;R4.0=00
A1	91	GHI	R1	Get high memory page
A2	BE	PHI	RE	;Store in RE.1
A3	30	BR		; Branch back from patch
A4	06			

ERROR DETECTED

00B0 B1	F8 00	LDI		Set RF = 00E0
B2 B3	BF F8 F0	PHI LDI	RF	, 11 11 11 , 11 11 11 , 11 11 11 , 11 11 11
85 86 87 88 89 88 88 88	AF 55F 155F 85F 85F 85F 85F 85F 85F 85F 85F 85F	PLO GHI STR INC GLO STR LDI	RF R5 RF R5 RF	Store error byte in R5 At OOEO via RF """"" 03 = tone value
BC BD BE BF	0F A8 F8 1F	PLO LDI	R8 [^]	;Sound tone ;02 = timer value
00C0 C1 C2	B8 98 3A	PHI GHI BNZ	R8 R8	;Set timer = 2X tone ;Test timer ;If ≠ 0, loop to kill time
C4 C5	30 BB	BN		;Then repeat to beep

ORDERING INFORMATION

On a blank sheet of paper, write your name, address, city, state, and zip code. And, if you plan to use a credit card for payment, write the card number and expiration date. If you're using Master charge, there are four other digits above your name; the "Interbank number" - and we need that number, too. If you want us to ship your order via UPS COD, give us a street address (not a postoffice box number) and write "COD" instead of the credit card number. Then write down the name of the product you'd like to receive and put it all in an envelope (with your check, if you're not using a credit card or COD) and mail it to us!

PIPS FOR VIPS VOLUME I...\$19.95PIPS FOR VIPS VOLUME II...\$19.95PIPS FOR VIPS VOLUME III.\$19.95PIPS FOR VIPS VOL.\$14.95*VIPER VOL. I or VOL II...\$15.00*without the program cassette!Studio II Stuff:PROM Card (assembled)..\$55.00MicroStudio News...\$10/6 issuesRAM Card (assembled, but without the two 2114 RAM ICs..\$45.00Backplane Card (4 connectors mounted, not soldered)...\$36.00

Please note that you have to bring two signals out from the S II in order to use the RAM card! All appropriate paperwork is included with the card you order. We also have the RCA service manual & Studio II schematic (\$3.50) and the 1861 data sheet (\$1.50) You can get the original information package, which will tell you how to do the conversion on your own, without buying our cards, for \$5.00. Can't hardly lose, can you?