
 LPC2478 -1

ﾲ

Nicolas Lacaille

System architectureSystem architecture

 I/O interface -2

PresentationPresentation

 Computer system is made up of

 Microprocessor

 Clock

 Memory

 For each cycle processor

 Fetch an instruction from memory (program)

 Execute instruction

 Instruction can do

 Data processing

 Move data from/to memory

 Branch to an other address in memory

 I/O interface -3

ExternalExternal communication communication

 Since a microprocessor can only move data to/from memory
external communication can only be done with special
memory device : interfaces

 To exchange data with external peripherals, processor need
interfaces

Processor side interface are memory device called I/O port
or memory mapped registers

User side interface are specialized device for specific
peripheral

 Applications control peripheral through the I/O port of
interfaces (exchange data, control the device, knowing the
state of the device, ...)

 I/O interface -4

Simple systemSimple system

Address

processor

Data

Control

ROM RAM

I/O

interface

I/O

Interface

External devices (keyboard, display, ...)

 I/O interface -5

More complex systemMore complex system

Processor Bridge 1

SDRAM

I/O
Interface

I/O
Interface

Bridge
 2

I/O
Interface

System
Bus

Peripheral
bus

ROM

Memory
bus

Peripheral
bus

 I/O interface -6

ExampleExample

 An embedded system control an industrial process
On one side you have captor connected to input ports
On the other side you have motor unit connected to

output ports

 The application do cycle made up of
Reading data from the input port (at a known memory

address)
Computing the data
Writing new data to the output port

 I/O interface -7

Memory mapped registerMemory mapped register

 Input / output port are device register that can be acceded in
the physical memory map
Memory mapped register

 Memory mapped register, most of time, don't work like
standard memory use for variable
Read only (RO) or Write only (WO) registers
Variable size (8, 16, 32 bits)
Values can change outside the running application

 The correct type must be used in C language
 The 'volatile' term must be used (signals compiler that the

variable can be changed outside the program)

 I/O interface -8

SamplesSamples

 Using a simple pointer to access the I/O port

 C macro

 Using a macro provided by the kernel
 HAL_WRITE_UINT32(address, value) or inl(int) or …

 Using structure
struct port {

volatile unsigned config;
volatile unsigned data;
} *portA;

portA = (struct port *) 0x40000000;
portA->config = value1;
value2 = portA->data;

volatile unsigned *port = (unsigned int *) 0x40000000;

/*for an output port */ *port = value ;

/* for an input port */ variable = *port;

#define port *(volatile unsigned int *) 0x40000000

port = value ; /* or value = port */

 I/O interface -9

ARM7TDMI microprocessorARM7TDMI microprocessor

 I/O interface -10

PresentationPresentation

 32 bits general purpose architecture

 3 stages pipeline RISC architecture

 32 bits instructions (ARM mode) or 16 bits instructions
for code compression (THUMB mode)

 Register to register and load/store architecture

 Single bus for instruction and data

 Low consumption (for embedded system)

 I/O interface -11

Execution modesExecution modes

 7 execution modes
 User (usr)

 Supervisor (svc) privilieged for OS

 FIQ (fiq) : Fast Interrupt

 IRQ (irq) : Normal Interrupt

 System (sys) privileged for OS

 Abort (abt) addressing's fault

 Undefined : not defined instruction

 Changed are done by software or on special event (exceptions)

 Modes out of usr are privileged modes

 I/O interface -12

RegistersRegisters

 31 general purpose registers

 Only 16 registers can be used in each mode
 r0 → r15

 In all mode
 r15 is program counter (pc)

 r14 is the link register (lr)

 r13 is the stack pointer (sp)

 By convention (AAPCS/EABI)
 r4 to r11 are variable registers (v1 to v8)

 r0 to r3 are scratch/argument registers (a1 to a4)

 I/O interface -13

 I/O interface -14

PSRPSR

 PSR : program state register
 cpsr : current program state register

 spsr : saved program state register (only present in privileged
mode)

 CPSR contains
ALU flags (C,V, Z, N)

 I and F flags for allowing interrupts

Processor mode

 I/O interface -15

PSRPSR

11111System

11011Undefined

10111Abort

10011Supervisor

10010IRQ

10001FIQ

10000User

M[4:0]Mode

 I/O interface -16

3 stages pipeline3 stages pipeline

 3 operations per cycles (instructions parallelism)
Fetch : instructions fetch

Decode : operands fetch

Execute : integer operation and store

 PC points 2 instructions forward the executing one (fetch)

 No branch prediction

 I/O interface -17

ARM instruction setARM instruction set

 32 bits RISC instructions :
Register to register or register to immediate operand

operations

CPSR flags are not changed except if explicitly asked

Load/store instruction for moving data from register to/from
memory (register based addressing)

 Most instructions can be conditionally executed

 I/O interface -18

ARM instructionsARM instructions

 I/O interface -19

THUMB instruction setTHUMB instruction set

 16 bits : instructions are more constrained
Only 8 registers are code reachable

Shortest immediate operands

…

 Flags are always updated (no more explicitly)

 Only branch instruction can be conditional

 …

 I/O interface -20

THUMB instructionTHUMB instruction

 I/O interface -21

ARM7 exceptionsARM7 exceptions

FIQ pin activatedFIQ

IRQ pin activatedIRQ

Data memory access violationData Abort

Memory access violation during fetchPrefetch Abort

Instruction code used to generate exception, system
call

Software Interrupt
(SWI)

Special instruction codeUndefined
Instruction

Reset pin activatedReset

DescriptionException

 I/O interface -22

PrincipePrincipe

 When an exception occurs
PC-4 is saved in lr_mode
CPSR is saved in SPSR_mode
CPSR is changed

 Mode becomes : svc, irq, fiq, data or prefetch abort
depending the exception

 I bit is set (IRQ not allowed) for all exceptions
 F bit is set if the exception is a FIQ or reset

PC is loaded with exception vector
 Address between 0x0 (reset) to 0x1C (FIQ)

 I/O interface -23

Exception vectorsException vectors

3fiqFIQ (Fast Interrpt)0x1C

4irqIRQ (Interrupt)0x18

Reserved0x14

2AbortData Abort0x10

5AbortPrefetch Abort0x0C

6Supervisor (svc)Software Interrupt (SWI)0x08

6UndefUndefined Instruction0x04

1Supervisor (svc)Reset0x00

PriorityProcessor's modeExceptionaddress

 I/O interface -24

 For arm processor each mode has their own stack pointer
 Allow the exception handler to save data in its own memory area

without corrupting the application data

 During the execution of the exception handler no interrupt are
allowed
 No peripheral or system services can be serviced without

re-enable interrupt

 Exception handler are architecture specific and differs from
standard function
Exception routine need special entry and exit code that can be

written in asm or provided by a library

 I/O interface -25

Code exampleCode example

; Exception Vectors
; Mapped to Address 0.
; Absolute addressing mode must be used.
; Dummy Handlers are implemented as infinite loops which can be modified.

Vectors LDR PC, Reset_Addr
 LDR PC, Undef_Addr
 LDR PC, SWI_Addr
 LDR PC, PAbt_Addr
 LDR PC, DAbt_Addr
 NOP ; Reserved Vector
 LDR PC, IRQ_Addr
 LDR PC, FIQ_Addr

Reset_Addr DCD Reset_Handler
Undef_Addr DCD Undef_Handler
SWI_Addr DCD SWI_Handler
PAbt_Addr DCD PAbt_Handler
DAbt_Addr DCD DAbt_Handler
 DCD 0 ; Reserved Address
IRQ_Addr DCD IRQ_Handler
FIQ_Addr DCD FIQ_Handler

 I/O interface -26

ARM architecture evolutionARM architecture evolution

 LPC2478 -27

NXP - LPC2478NXP - LPC2478

Nicolas Lacaille

 LPC2478 -28

PrésentationPrésentation

 Microcontroler from nxp with ARM7TDMI-S core

 Running up to 80MHz

 64 kbyte of SRAM

 518 kbyte of flash program memory

 External memory interface
An external memory controller is present to connect static or

dynamic RAM or FLASH

 Peripherals
AHB peripherals (VIC, ethernet, usb, memory, FastGPIO)

APB peripherals (sérial, Timer, PWM, ADC, RT clock, ...)

 LPC2478 -29

Block diagramBlock diagram

 LPC2478 -30

Memory mapMemory map

 LPC2478 -31

Memory mapMemory map

 LPC2478 -32

RemappingRemapping

 ARM exception vectors are at address 0x0 → 0x1C

 Remapping on LPC2478 consists in changing some
memory address to map vector address (64 byte from
0x0 to 0x3F)

 Modes :

 LPC2478 -33

MEMMAP RegisterMEMMAP Register

 LPC2478 -34

Flash bootloaderFlash bootloader

 Provide initial operation after reset and means to
programs user flash memory

 At reset, with certain conditions an ISP handler is
invoked (In System Programming)
P2.10 sampled low

Watchdog flag not set

 If P2.10 is sampled High, the boot loader search for a
valid user program in flash
A checksum of exception vector is done (signature in 0x14

added with the sum of other exception vectors must be 0)

 If checksum is valid the user program is launch otherwise no

 LPC2478 -35

ClockClock
 3 oscillators

 Main oscillator : 1 to 24 MHz (12MHz)

 Internal RC oscillator (4MHz)

 RTC oscillator

 All oscillator can drive a PLL and subsequently the CPU

 PLL allow to choose the CPU clock frequency from the clock
source

f pll=
2∗M

N
∗ f sected

 LPC2478 -36

ClockClock

 LPC2478 -37

Selecting clockSelecting clock

 At startup, the internal RC oscillator is used and PLL is
bypassed

 User boot can activate the main oscillator (SCS : system
Control ans Status Register)

 When main oscillator is stabilized user program can use
it as clock source for the PLL (CLKSRCSEL register)
and activate it with specific value (PLLCFG to choose
M and N)

 CPU (CCLKCFG) and USB (USBCLKCFG) divider are
set

 Peripheral clocks are set (PCLKSEL0 and 1)

 LPC2478 -38

Example : ConfigurePLL() (framework.c)Example : ConfigurePLL() (framework.c)
void ConfigurePLL (void){
 unsigned int MValue, NValue;

 if (PLLSTAT & (1 << 25)){
 PLLCON = 1; /* Enable PLL, disconnected */
 PLLFEED = 0xaa;
 PLLFEED = 0x55;
 }
 PLLCON = 0; /* Disable PLL, disconnected */
 PLLFEED = 0xaa;
 PLLFEED = 0x55;

 SCS |= 0x20; /* Enable main OSC */
 while(!(SCS & 0x40)); /* Wait until main OSC is usable */

 CLKSRCSEL = 0x1; /* select main OSC, 12MHz, as the PLL clock source */

 PLLCFG = PLL_MValue | (PLL_NValue << 16);
 PLLFEED = 0xaa;
 PLLFEED = 0x55;

 PLLCON = 1; /* Enable PLL, disconnected */
 PLLFEED = 0xaa;
 PLLFEED = 0x55;

 CCLKCFG = CCLKDivValue; /* Set clock divider */
#if USE_USB
 USBCLKCFG = USBCLKDivValue; /* usbclk = 288 MHz/6 = 48 MHz */
#endif

 while (((PLLSTAT & (1 << 26)) == 0)); /* Check lock bit status */

 MValue = PLLSTAT & 0x00007FFF;
 NValue = (PLLSTAT & 0x00FF0000) >> 16;
 while ((MValue != PLL_MValue) && (NValue != PLL_NValue));

 PLLCON = 3; /* enable and connect */
 PLLFEED = 0xaa;
 PLLFEED = 0x55;
 while (((PLLSTAT & (1 << 25)) == 0)); /* Check connect bit status */
}

 LPC2478 -39

Peripheral clocksPeripheral clocks

PCLKSEL0
PCLKSEL1

 LPC2478 -40

PowerPower
 4 special modes of power reduction :

 Idle
 Clocks core stopped

 Resume on reset or interrupt

 Sleep
 Main oscillator powered down and all clock stopped

 Wake up on reset or interrupt

 PLL must be reconfigured

 Power-down
 All clock powered down

 Flash is powered down (unlike sleep)

 Deep power-down
 Power regulator turned off (register values are not retained)

 LPC2478 -41

Peripheral power controlPeripheral power control

 Each peripheral can be turned off (clock disable)

 Control of power peripheral done through PCONP reg.

1 : enable
0 : disable

If peripheral is disable, read or write register are not valid

 LPC2478 -42

Peripheral power controlPeripheral power control

 Each peripheral can be turned off (clock disable)

 Control of power peripheral done through PCONP reg.

1 : enable
0 : disable

If peripheral is disable, read or write register are not valid

 LPC2478 -43

External Memory ControllerExternal Memory Controller

 LPC2478 -44

EMCEMC

 LPC2478 -45

LPC2478 board : external memoryLPC2478 board : external memory

 External NOR FLASH (32 MBit = 4 MByte in size)
addressed by CS0 (address range: 0x8000 0000 –
0x80FF FFFF). Accessed via 16-bit databus.

 External NAND FLASH (1 GBit = 128 MByte in size)
addressed by CS1 (address range: 0x8100 0000 –
0x81FF FFFF). Accessed via 8-bit databus.

 External SDRAM (256 MBit = 32 MByte in size)
addressed by DYCS0 (address range: 0xA000 0000 –
0xA1FF FFFF). Accessed via 32-bit databus

 LPC2478 -46

Memory Accelerator ModuleMemory Accelerator Module

 Small SRAM memory between flash and core

 Allow fast instruction access
Direct access to flash is limited to 20MHz (50ns access time)

 Load 4 arm instructions from flash
2 buffers are alternatively used to maintain prefetch rate

 Include a branch trail buffer for loops
 /* Set memory accelerater module*/
 MAMCR = 0;
#if Fcclk < 20000000
 MAMTIM = 1;
#else
#if Fcclk < 40000000
 MAMTIM = 2;
#else
 MAMTIM = 3;
#endif
#endif
 MAMCR = MAM_SETTING; //0=disabled, 1=partly enabled (enabled for code prefetch, but not for data), 2=fully enabled

 LPC2478 -47

PINPIN

 To reduce number of pins on chip, pins are multiplexed
Different functions can use the pins

 Registers which are controlling pin function are
PINSEL (PINSEL0 to PINSEL11)

PINMODE (PINMODE0 to PINMODE9)


PINSEL controls
pin multiplexer

PINMODE define
electrical pin connexion

 LPC2478 -48

ExempleExemple

Chip's pin

00

01

10

11

P0.1

CHIP

GPIO port 0.1

CAN1 :TD1

UART3 : RXD3

I2C1 SCL1

 LPC2478 -49

GPIO : General Purpose I/OGPIO : General Purpose I/O

 5 general purpose 32 bits port

 GPIO controller are located on the local bus for fast
controlling

 Port0 and Port1 can also be controlled by legacy control
register on APB bus (slow)

 Port0 and Port2 can generate interrupts on individual
change of individual pin

 Each individual pin can be configured as input or out put
(FIOxDIR)

 Each individual pin can be masked (FIOxMASK) for
reading and writing (read 0 and no effects on write)

 LPC2478 -50

RegistersRegisters

 LPC2478 -51

Writing on a pinWriting on a pin

 To configure pin as output a 1 must be written on the
corresponding pin in FIOxDIR (0 is for input)

 To set or clear a pin Two register can be used
FIOxSET : set the pin by writing a 1 on the corresponding bit

FIOxCLEAR : clear the bin by writing a 1 on the
corresponding bit

 Writing a value in FIOxPIN can also be used

 Corresponding bit in FIOxMASK must be 0

 Ex

FIO0DIR = 0x2 ;
FIO0PIN |= 0x2; // set P0.1
FIO0PIN &= ~0x2; // clear P0.1

FIO0DIR = 0x2 ; // set direction for bit 1
FIO0SET = 0x2; // set P0.1
FIO0CLEAR = 0x2; // clear P0.1

 LPC2478 -52

Interrupt with GPIOInterrupt with GPIO

 Port0 and 2 can be configured to generate interrupt

 2 pairs of enable/status registers are present : one for a
rising edge and one for falling edge
 InEnF/R : enable corresponding pin for interrupt

 IntStatF/R (RO) : to verify which pin has generate interrupt

 Interrupt must be cleared through IntClr register

 LPC2478 -53

ExempleExemple
void led210_init(void){
 // Power control
 //GPIO cannot be turned off
 // CLOCK
 PCLKSEL1 &= ~(0x3 << 2); //3:2 = 0b00 (CCLK / 4)
 // PIN :
 // function select for P2.10 (GPIO) in PINSEL4 (PINSEL4[21..20] = 0b00) (RW)
 PINSEL4 &= ~(3 << 20) ;
 // connect mode selection for pin (00 = pull up resistor selected) (RW)
 PINMODE4 &= ~(3 << 20) ;
 //PIO
 // direction mode selection : output = 1 et input = 0 (out selected) (R/W)
 FIO2DIR |= (1 <<10);
 // to allowed read an write on the selected pin (0 = enable)
 FIO2MASK &= ~(1 <<10);
}

void led210_turn_on(void){
 FIO2CLR = 1<<10;
}

void led210_turn_off(void){
 FIO2SET = 1<< 10;
}

 LPC2478 -54

Clock for pio :chap4 p59 & 60Clock for pio :chap4 p59 & 60

PCLKSEL1 &= ~(0x3 << 2);

The 2 bits 3:2 are cleared,
selecting a clock of CCLK/4 for
the GPIO

 LPC2478 -55

PINconnectPINconnect

/* function select for P2.10 (GPIO) in PINSEL4
(PINSEL4[21..20] = 0b00) (RW) */
 PINSEL4 &= ~(3 << 20) ;

 LPC2478 -56

General purpose timerGeneral purpose timer
 The LPC2478 includes four 32-bit Timer/Counters

 Count cycles of the system derived clock or an externally-supplied
clock

 Include programmable 32-bit prescaler

 Can optionally generate interrupts or perform other actions at
specified timer values, based on four match registers

 Set LOW on match, Set HIGH on match, Toggle on match, Do nothing on
match.

 The Timer/Counter also includes four capture inputs to trap the
timer value when an input signal transitions

 A capture event may also optionally generate an interrupt

 LPC2478 -57

PrescalerPrescaler

 LPC2478 -58

Prescaler and Timer counter controlPrescaler and Timer counter control

 Prescaler :
Each PCLK edge the prescaler counter is incremented

When the prescaler counter equals the prescaler register the
timer counter is incremented and the prescaler counter is
cleared

 Timer Control register :
Enable or disable the 2 counter (prescaler and timer)

 reset of the timer counter and the prescaler counter

 LPC2478 -59

Capture modeCapture mode

 Use to measure pulse duration
Counter captured on external events on CAP pin

 Rising edge, falling edge, toggle

 Interrupt request can be generated by a capture

 LPC2478 -60

Match modeMatch mode
 Used to control the counter

 Disable or reset the counters

 Can generate an interrupt request on match

 The pin level can be changed on match (external match register)

 Set, cleared, toggle

 LPC2478 -61

Timing on matchTiming on match

 LPC2478 -62

User manualUser manual

 LPC2478 -63

Lab ExampleLab Example

static void mdelay(unsigned int ms)
{
 T1TCR = 0x02; // stop and reset timer
 T1PR = 0x00; // set prescaler to zero
 T1MR0 = ms * (Fpclk / 1000); // Fpclk = 36000000
 T1MCR = 0x04; // stop timer on match
 T1TCR = 0x01; // start timer

 //wait until delay time has elapsed : test the 'enable' bit
 while(T1TCR & 0x01)
 ;
}

 LPC2478 -64

I2CI2C

 Inter Integrated Circuit (Two Wire Interface)

 Two wire communication bus (synchronous serial
transmission)

 Multimaster

 400kbit/s (for slow devices)

 Each device has an address (8 or 10 bits) which is used
when addressed in slave mode

 LPC2478 -65

I2C bus connectionI2C bus connection

 LPC2478 -66

TransferTransfer

 Master drives the clocks and initiate transfer

 Slave respond to master request

 A Transmission is started by a “start” sequence

 Data are transferred in sequence of 8 bits (from/to
master) MSb first
Data are changed during low edge of clock

Data must be stable during high edge of clock

 Transmission ends with a “stop” sequence

 For each 8 bits data receiver must acknowledge sender
by sending an “ack” bit (low level)

 LPC2478 -67

Start and stop conditionsStart and stop conditions

 LPC2478 -68

TransfersTransfers

 Transfer from master to slave
First byte transmitted by master is slave address (7 bits)

The 8th bit is low signaling a write to the device

Next follows a numbers of data bytes

Slave returns an ACK bit after each received byte

 LPC2478 -69

TransfersTransfers

 Transfer from slave to master
First byte transmitted by master is slave address (7 bits)

The 8th bit is high signaling a read from the device

Next follows a numbers of data bytes send by the slave

The master send a NACK to stop the reading

 LPC2478 -70

LPC I2C interfaceLPC I2C interface

 LPC2478 -71

I2CONSET

I2CONCLEAR

I2CONT Reg

SET

CLEAR

I2CONSTAT

I2C
Interface

command

status

 LPC2478 -72

Handling the interfaceHandling the interface

 Master Transmitter mode
 Initialize ICONSET (clear SI/STA/STO in I2CONCLR)

Set the STA bit (SI bit is set when done and a new status code
is present in I2STAT)

Place data in I2DAT register (Address for first byte)

Clear SI and STA

Wait for SI (set when data has been sent, new status code)

Place new data

…

Set STO to end transmission

 LPC2478 -73

Sample codeSample code
 I20CONSET = I2C_STA; /* send START */
 while (!(I20CONSET & I2C_SI)); /* Wait for START */
/* check status to handle error */
 I20CONCLR = I2C_SI | I2C_STA; /* clear SI and STA */

 I20DAT = slave_address; /* slave address */
 while (!(I20CONSET & I2C_SI)); /* Wait for ADDRESS send */
/* check status to handle error (nack)*/
 I20CONCLR = I2C_SI; /* clear SI */

 I20DAT = data0; /* data 0*/
 while (!(I20CONSET & I2C_SI)); /* Wait for DATA send */
/* check status to handle error (nack)*/
 I20CONCLR = I2C_SI; /* clear SI */

 I20CONSET = I2C_STO; /* send STOP */
 while (I20CONSET & I2C_STO); /* Wait for STOP */

/* note : STO is cleared automatically */

 LPC2478 -74

NoteNote

 Controlling interface
For every events

 SI is set

 A status code is present in I2STAT

When SI is set, the status code can be used to take appropriate
action

After each operation, software must wait for SI to be set
(interruption can be used)

 Bit AA is used to allow interface to become slave

 Repeated STA (new start before stop) must be used with
some interface (selecting register inside a device before
a read by example)

 LPC2478 -75

Status codeStatus code

 LPC2478 -76

Sample 2 : using I2CISRSample 2 : using I2CISR
Void I2CISR(void) {

switch(I2STAT){
case (0x08) : //start bit

I2CONCLR = I2C_STA;
I2DAT = I2CAddress; //send address
break;

case(0x18): //slave address ack
I2DAT = I2CData;
break;

case(0x20): // slave address nack
I2DAT = I2CAddress;
break;

case(0x28): // data ack
I2CONSET = I2C_STO;
break

default :
break;

}
I2CONCLR = I2C_SI; // clear interrupt flag
VICVectAddr = 0; //VIC ack

}

 LPC2478 -77

Exemple of device : PC19532 (led driver)Exemple of device : PC19532 (led driver)

 I2C 16 led driver

 Controlled by 10 registers

 Writing
Sending address of the device : 0xC0

Sending the number of the register

Sending data to the device register

 Reading
Sending address of the device : 0xC0

Sending the number of the register

Sending address of the device : 0xC1 with repeated STA

 read data from the device register

 LPC2478 -78

Bus transactionBus transaction

 LPC2478 -79

PCA9532 registersPCA9532 registers

 LPC2478 -80

PCA9532 registersPCA9532 registers

 LPC2478 -81

ExampleExample
 PCA9532 is connected to pin P0.27 (SDA0) and to pin P0.28 (SCL0) (an

I2C EPROM is also connected)

 Initialization
 Power activation for I2C0 : PCONP0 |= 1 <<7

 Clock division : PCLKSEL0[15:14] = 00 for pclk = cclk/4 = 18MHz =>
PCLKSEL0 &= ~(3<<14)

 Pin : PINSEL1 [23:22] = 01 and PINSEL1 [25:24] = 01
 PINSEL &= ~((3 <<22) | (3 << 24))

 PINSEL1 |= (1 << 22) | (01 << 24)

 Clock timing (100kHz)
 High duty cycle = 90 pclk tic : I20SCLH = 90

 Low duty cycle = 90 pclk tic : I20SCLL = 90

 I2C0CONCLR = I2C_AA | I2C_SI | I2C_STO | I2C_STA | I2C_I2EN

 I2C0CONSET = I2C_I2EN

 LPC2478 -82

Sample code to light led 8 to 11Sample code to light led 8 to 11
 I20CONSET = I2C_STA; /* send START */
 while (!(I20CONSET & I2C_SI)); /* Wait for START */
/* check status to handle error */
 I20CONCLR = I2C_SI | I2C_STA; /* clear SI and STA */
 I20DAT = 0xC0; /* PCA address */
 while (!(I20CONSET & I2C_SI)); /* Wait for ADDRESS send */
/* check status to handle error (nack)*/
 I20CONCLR = I2C_SI; /* clear SI */
 I20DAT = 0x18; /* select register LS2 and AI*/
 while (!(I20CONSET & I2C_SI)); /* Wait for DATA send */
/* check status to handle error (nack)*/
 I20CONCLR = I2C_SI; /* clear SI */
 I20DAT = 0x01 | 0x4 | 0x10 | 0x40 ; /* 4 leds on : led8 to 11 */
 while (!(I20CONSET & I2C_SI)); /* Wait for DATA send */
/* check status to handle error (nack)*/
 I20CONCLR = I2C_SI; /* clear SI */
 I20CONSET = I2C_STO; /* send STOP */
 while (I20CONSET & I2C_STO); /* Wait for STOP */

/* note : STO is cleared automatically */

 LPC2478 -83

VIC : Vectored Interrupt ControllerVIC : Vectored Interrupt Controller

 32 interrupt request inputs

 Interrupt request must be HIGH level

 VIC ORs vectored interrupt request to produce irq or fiq
signal to the core

 Each interrupt can be enable or disable

 Each interrupt can be asserted by software

 Each interrupt is assigned to irq or fiq line

 Each interrupt is programmed with a priority on 4 bits
0 : highest priority

15 : lowest priority

 LPC2478 -84

DiagramDiagram

 LPC2478 -85

VIC registersVIC registers

...

 LPC2478 -86

RegistersRegisters
 VICSoftInt : ORed with interrupt request

 VICSoftIntClear : to clear one or more bit in VICSoftInt

 VICIntEnable : enable soft and hard irq
 VICIntEnClear : to clear one or more bit in VICIntEnable

 VICProtect : allow usr mode to access VIC register

 VICIntSelect : contribue to irq(0) or fiq (1)

 VICIrqStatus/VICFiqStatus : show active irq/fiq request

 VICVectAddr0-31 : isr address for each request lines

 VICVectPriority0-31 : priority for each request lines, 0 to 15 with 15
lowest priority

 VICAddress : address of isr that is to be serviced
 Musts be written at end of isr to acknowledge the IRQ

 LPC2478 -87

Interrupt flowInterrupt flow

 When interrupt N occurs, if interrupt is enable the irq
line is asserted

 If the interrupt line is not masked
Bit N in VICIntEnable set

 The current priority is lower than the priority assigned to the
corresponding IRQ N

 The VICVectAddrN of associated interrupt is copied in
VICAddress register to be read by software (most of
time this is the isr address)

 The IRQ (or FIQ) line connected to the core is asserted

 ...

 LPC2478 -88

 When software read VICAddress :
 the irq (fiq) line to the core is de-asserted

 Hardware priority in VIC is set to the highest priority irq pending (here N)

 During the time of the irq is serviced by software
 If an irq M with lower priority appears : nothing occurs

 If an irq M with higher priority appears : same stages as described before
(activation of the irq line, copy of VICVectAddrM, ...)

 When interrupt is serviced, software must write a dummy value in
VICAddress

 This signal the end of the treatment and the Hardware priority in VIC is
lowered to the higher pending irq priority

 LPC2478 -89

Interrupt linesInterrupt lines

 LPC2478 -90

Example of vectored irq usageExample of vectored irq usage

Vectors
 LDR PC, Reset_Addr
 LDR PC, Undef_Addr
 LDR PC, SWI_Addr
 LDR PC, PAbt_Addr
 LDR PC, DAbt_Addr
 NOP ; Reserved Vector
 LDR PC, [PC, #-0x0120] ; Vector from VicVectAddr
 LDR PC, FIQ_Addr

 For vectorized irq, each interrupt routine address (isrx)
must be written in VICVectAddrx

 At irq vector address (0x18) instruction load pc with
VIC address and so jump to the appropriate isr :

 LPC2478 -91

Exemple of configuration Exemple of configuration

 Configuring VIC for UART0

VICIntSelect &= ~(1<<6) ; /* IRQ contribution */
VICVectAddr6 = (unsigned long) uart_isr ; /* isr address */
VICVectPriority6 = 10; /* priority = 10*/
VICIntEnable |= 1<<6 ; /* enable uart0 IRQ */

 LPC2478 -92

Vectored interrupt flowVectored interrupt flow
 1. An interrupt occurs.

 2. The ARM processor branches to either the IRQ or FIQ interrupt vector.

 3. If the interrupt is an IRQ, read the VICVectAddr Register and branch to the interrupt
service routine. You can do this using an LDR PC instruction. Reading the VICAddress
Register updates the interrupt controllers hardware priority register.

 4. Stack any registers that will be used to avoid any register corruption

 5. Execute the service

 6. Clear the requesting interrupt in the peripheral, or write to the VICSoftIntClear
register if the request was generated by a software interrupt.

 7. Restore the previously saved register

 8. Write to the VICAddress Register. This clears the respective interrupt in the internal
interrupt priority hardware.

 9. Return from the interrupt. This re-enables the interrupts.

 LPC2478 -93

Vectored interrupt example codeVectored interrupt example code
0x18 LDR pc, [pc, #-0x120] @ Load Vector into PC
@ ...
vector_handler

@Code to enable interrupt nesting
STMFD r13!, {r0-r3, r12, lr} @ stack registers that will be corrupted by a function call

 @ Interrupt service routine...
 BL 2nd_level_handler @ this corrupts lr_irq and r0-r3 and r12
@...
@Add code to clear the interrupt source;

@Code to exit handler
LDMFD r13!, {r0-r3, r12, r14} @ unstack lr_irq and r0-r3, r12
LDR r1, =VectorAddr
STR r0, [r1] @ Acknowledge VIRQ serviced with a dummy write
SUBS pc, lr, #4 @ Return from ISR

 LPC2478 -94

Vectored interrupt flow with nested interruptsVectored interrupt flow with nested interrupts
 1. An interrupt occurs.

 2. The ARM processor branches to either the IRQ or FIQ interrupt vector.

 3. If the interrupt is an IRQ, read the VICVectAddr Register and branch to the interrupt
service routine. You can do this using an LDR PC instruction. Reading the VICAddress
Register updates the interrupt controllers hardware priority register.

 4. Stack the workspace so that you can re-enable IRQ interrupts.

 5. Enable the IRQ interrupts so that a higher priority can be serviced.

 6. Execute the Interrupt Service Routine (ISR).

 7. Disable the interrupts and restore the workspace.

 8. Clear the requesting interrupt in the peripheral, or write to the VICSoftIntClear
register if the request was generated by a software interrupt.

 9. Write to the VICAddress Register. This clears the respective interrupt in the internal
interrupt priority hardware.

 10. Return from the interrupt. This re-enables the interrupts.

 LPC2478 -95

Vectored interrupt example codeVectored interrupt example code
0x18 LDR pc, [pc, #-0x120] @ Load Vector into PC
@ ...
vector_handler

@ Code to enable interrupt nesting
STMFD r13!, {r12, r14} @stack lr_irq and r12 [plus other regs used below, if appropriate]
MRS r12, spsr @ Copy spsr into r12...
STMFD r13!, {r12} @ and save to stack

 MSR cpsr_c, #0x1f @ Switch to SYS mode, re-enable IRQ
STMFD r13!, {r0-r3, r14} @stack lr_sys and r0-r3

@ Interrupt service routine...
@Add code to clear the interrupt source; Code to exit handler

 BL 2nd_level_handler @ this corrupts lr_sys and r0-r3

LDMFD r13!, {r0-r3, r14} @ unstack lr_sys and r0-r3
MSR cpsr_c, #0x92 @ Disable IRQ, and return to IRQ mode
LDMFD r13!, {r12} @ unstack r12...
MSR spsr_cxsf, r12 @ and restore spsr...
LDMFD r13!, {r12, r14} @ unstack registers
LDR r1, =VectorAddr
STR r0, [r1] @ Acknowledge VIRQ serviced
SUBS pc, lr, #4 @ Return from ISR

 LPC2478 -96

Interrupt using a library (to avoid asm)Interrupt using a library (to avoid asm)

 Some toolchains can provide entry/exit code of a
interrupt routine

 Basic entry/exit code
To use more complex code (to allow nested interrupt or to

switch context, ...) you still have to write the entry/exit code
in asm

 With gcc you can use the “attribute” keyword to modify
the entry/exit code of a function.
For a interrupt use “interrupt” attribute :

void myISR(void) __attribute__ ((interrupt));

Pour ARM : __attribute__ ((interrupt ("IRQ")));

 LPC2478 -97

UARTUART
 Universal Asynchronous Receiver/transmitter

Standard PC serial line

 Serial :data are transmitted bit after bit (lsb first)

 Asynchronous
No clock to synchronize symbol detection
Transmitter and receiver must use the same baud rate
Synchronization with start/stop bit
Automatic baud rate detection capable

 Full duplex via two different lines (RX and TX)

 LPC2478 -98

Asynchronous transmission detectionAsynchronous transmission detection

 LPC2478 -99

Diagram of a serial interfaceDiagram of a serial interface

serializer

UnTHR

TX

UnRBR

serializer RX

Application

Application

FIFO

FIFO

Lines

 LPC2478 -100

LPC2478 UART0/1/2/3 register overviewLPC2478 UART0/1/2/3 register overview

 16 bytes FIFO for receiver and transmitter
Write and read from a unique register : Read Buffer Register

(UnRBR) and Transmit Holding Register (UnTHR)

Trigger point 1, 4, 8, 14 for receiver

 Line Status Register (UnLSR) for status information
Data received or transmitted, error on received data, ...

 Control
UARTn Line Control Register (UnLCR) : Number of bits, stop

bit, parity enable , parity type, divisor latch access(DLAB)

FIFO Control Register (UnFCR) to reset emitter or transmitter
and to chose receiver's fifo trigger

 LPC2478 -101

LPC2478 UART0/1/2/3 register overviewLPC2478 UART0/1/2/3 register overview

 Baud rate
Divisor latch (UnDLL and UnDLM)

Fractional Divider Register (UnFDR) for baud rate

 Interrupt
 Interrupt Enable Register (UnIER) to allow interrupt source

request to the system (data received, transmitter's fifo empty,
received data error or time-out)

 Interrupt Identification Register (UnIIR) to identify the
interrupt source

 LPC2478 -102

UART registersUART registers

 LPC2478 -103

UART registersUART registers

 LPC2478 -104

Baud rateBaud rate

 To allow a working serial line the baud rate must be set
to match both emitter/transmitter device

 The baud rate is selected with 2 registers
UnDLM an UnDLL which are respectively at UnTHR and

UnRBR address location when DLAB in UnLCR is set

Fractional Divider Register (UnFDR)

 LPC2478 -105

Example of configurationExample of configuration

 For a 8,1,N configuration and 115 200 baud

 Baud rate :
Pclk = 72/4 = 18MHz => DL = 18e6/16/115200 = 9,76

DL is calculated to have FR near 1,5
 DL = 9,76/1,5 = 6 and FR = 1.628

FR is chosen from tab p393 => DIVADDVAL = 5; MULVAL
= 8 and real FR = 1.625

Baud rate = 115 384 (diff = 0,1%)
UnFDR = 0x85; /* Fractional divider */
UnLCR = 0x83; /* 8 bits, no Parity, 1 Stop bit DLAB = 1 */
UnDLL = 6; /* 115200 Baud Rate @ 18 MHZ PCLK */
UnDLM = 0; /* High divisor latch = 0 */
UnLCR = 0x03; /* DLAB = 0 (& 8 bits, no Parity, 1 Stop bit) */

 LPC2478 -106

UART Status register UnLSRUART Status register UnLSR

 LPC2478 -107

Using UARTUsing UART

 Configure the baud rate

 Configure bit number, parity, stop bit, ...

 Optionally reset emitter and transmitter and enable fifo

 Transmitting data
Write in UnTHR (up to 16 byte)

Wait for THE (transmitter's fifo empty) flag to set or for
Transmitter empty (TEMT) flag signaling serializer empty
(last byte completely transfered)

Write other data in UnTHR



THE can be source of IRQ

 LPC2478 -108

Using UARTUsing UART

 Receiving data
RDR in UnLSR is set when an unread data is present in the

RBR FIFO

Software waiting for data must poll RDR bit (wait for RDR to
be set)

Software must read data from UnRBR until RDR is cleared

 Using interrupt
UnIER allow interrupt request on THRE, RBR, RX line status

(Overrun error (OE), Parity Error (PE), break (BI)) and time
out on reception

UnIIR allow software to identify interrupt source

 LPC2478 -109

Simple receiving/transmitting (polling)Simple receiving/transmitting (polling)
void init_serial (void) {
 PCONP |= (1 <<3); /* Enable UART0 power */
 PCLKSEL0 &= 0xFFFFFF3F; /*Pclock uart0 = Cclock/4 */
 PINSEL0 &= ~0x000000F0;
 PINSEL0 |= 0x00000050; /* Enable TxD0 and RxD0 */

 U0FDR = 0x85; /* Fractional divider */
 U0LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit , DLAB = 1 */
 U0DLL = 6; /* 115200 Baud Rate @ 18 MHZ PCLK */
 U0DLM = 0; /* High divisor latch = 0 */
 U0LCR = 0x03; /* 8 bits, no Parity, 1 Stop bit , DLAB = 0 */
}

int sendchar (int ch) { /* Write character to Serial Port */
 while (!(U2LSR & 0x20)); /* Wait for transmitt buffer empty */
 return (U2THR = ch);
}

int getkey (void) { /* Read character from Serial Port */
 while (!(U2LSR & 0x01)); /* Wait for receive buffer not empty */
 return (U2RBR);
}

 LPC2478 -110

Real time clockReal time clock

 The RTC is a set of counters for measuring time when
system power is on, and optionally when it is off

 RTC can be clocked by a separate 32.768 kHz oscillator
or by a programmable prescaler divider based on PCLK

 RTC and battery SRAM have a separate power domain
supplying 3.3V to the Vbat pin

 Provides Seconds, Minutes, Hours, Day of Month,
Month, Year, Day of Week, and Day of Year.

 LPC2478 -111

RTC InterruptRTC Interrupt

 An alarm output pin is included to assist in waking up
when the chip has had power removed to all functions
except the RTC and Battery RAM.

 Periodic interrupts can be generated from increments of
any field of the time registers, and selected fractional
second values.
This enhancement enables the RTC to be used as a System

Timer.

 The alarm registers allow the user to specify a date and
time for an interrupt to be generated

 LPC2478 -112

RTC InterruptRTC Interrupt

 LPC2478 -113

WatchdogWatchdog

 Provide a method of recovering control of a crashed
program

 Timer that can produce
 Interrupt

Reset

 Watchdog timer must be “feeded” (reloaded) within a
predetermined amount of time
From few μsec to few minutes

 LPC2478 -114

Other InterfaceOther Interface

 PWM : Pulse Width Modulation

 I2S-bus : inter integrated circuit sound interface

 SSP : Synchronous Serial Peripheral

 ADC and DAC : Analog/digital conversion

 SD-MMC Card Interface

 CAN : Controller Area Network

 Ethernet

 USB host and device

 LCD controller

 LPC2478 -115

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84
	Diapo 85
	Diapo 86
	Diapo 87
	Diapo 88
	Diapo 89
	Diapo 90
	Diapo 91
	Diapo 92
	Diapo 93
	Diapo 94
	Diapo 95
	Diapo 96
	Diapo 97
	Diapo 98
	Diapo 99
	Diapo 100
	Diapo 101
	Diapo 102
	Diapo 103
	Diapo 104
	Diapo 105
	Diapo 106
	Diapo 107
	Diapo 108
	Diapo 109
	Diapo 110
	Diapo 111
	Diapo 112
	Diapo 113
	Diapo 114
	Diapo 115

