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1. Objectives
As illustrated in Figure 1, below, the purpose
of the AMD-1 experiment is to design a
control system that dampens the vibration of
a bench-scale building-like tall structure
using an Active Mass Damper (AMD)
mounted at the top. The Active Mass
Damper - One Floor (AMD-1) experiment
can be used in earthquake mitigation studies
and to investigate Control-Structure
Interaction (CSI). It is conceptually similar
to active mass dampers used to suppress
vibrations in tall structures (e.g. high-rise
buildings) and to protect not only against
earthquakes but also, for example, strong
winds (e.g. hurricanes).

The Active Mass Damper � One Floor
(AMD-1) plant is illustrated in Figure 1,
below, and is fully described in Reference
[1]. This laboratory takes advantage that the
dynamics of the active mass (i.e. cart) are
tightly coupled to these of the building-like
structure to which it is attached. Therefore,
the active mass can either be used to excite
or to dampen the flexible structure vibration.
The purpose of the AMD-1 laboratory is to
design a switching-mode control system that
first excites the vibration mode of the one-
story structure and then dampens the
structure oscillation.

Figure 1 AMD-1 Experiment

During the course of this experiment, you will become familiar with the design of
Proportional-plus-Velocity (PV) position controller to drive the linear cart (i.e. active mass)
such that it excites the flexible structure natural vibrations. Then a vibration reduction
control strategy will be designed in order to dampen the structure oscillations. Such a AMD
control strategy will be implemented using a full-state feedback law based on a full-order
observer. Pole placement will be used to tune the control scheme.
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At the end of the session, you should know the following:
How to mathematically model the IP01- or IP02-based linear servo plant from first
principles in order to obtain the open-loop transfer function, in the Laplace domain.
How to design and tune a Proportional-Velocity (PV) position controller to meet the
required design specifications.
How to mathematically model the Active Mass Damper � One Floor (AMD-1) plant
using the Lagrange's method and to obtain its state-space representation.
How to design and tune a full-order state-observer based on the structure's
acceleration feedback signal.
How to design and tune a state-feedback controller satisfying the closed-loop system's
desired design specifications.
How to implement in real-time the total AMD-1 mode-switching (between vibration
excitation and active mass damping) control scheme and evaluate its actual
performance.

2. Prerequisites
To successfully carry out this laboratory, the prerequisites are:

i) To be familiar with your Active Mass Damper � One Floor (AMD-1) main
components (e.g. actuator, sensors), your data acquisition card (e.g. Q8, MultiQ), and
your power amplifier (e.g. UPM), as described in References [1], [3], [4], and [5].

ii) To have successfully completed the pre-laboratory described in Reference [2].
Students are therefore expected to be familiar in using WinCon to control and monitor
the plant in real-time and in designing their controller through Simulink, as detailed in
Reference [6].

iii) To have successfully completed the laboratory described in Reference [7].
iv) To be familiar with the complete wiring of your Active Mass Damper � One Floor

(AMD-1) plant, as per dictated in Reference [1].
v) To be familiar with the design theory of full-order state observers, as described for

example in Reference [8].

3. References
[1] Active Mass Damper – One Floor (AMD-1) User Manual.
[2] IP01 and IP02 – Linear Experiment #0: Integration with WinCon – Student Handout.
[3] IP01 and IP02 User Manual.
[4] Data Acquisition Card User Manual.
[5] Universal Power Module User Manual.
[6] WinCon User Manual.
[7] IP01 and IP02 - Linear Experiment #1: PV Position Control – Student Handout.
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[8] P. R. Bélanger. Control Engineering: A Modern Approach. 1995, Saunders College
Publishing.

4. Experimental Setup

4.1. Main Components
To setup this experiment, the following hardware and software are required:

Power Module: Quanser UPM 1503 / 2405, or equivalent.

Data Acquisition Board: Quanser Q8 / MultiQ PCI / MQ3, or equivalent.

Active Mass Damper Plant: Quanser Active Mass Damper � One Floor (AMD-1),
as represented in Figure 1, above.

Real-Time Control Software: The WinCon-Simulink-RTX configuration, as
detailed in Reference [6], or equivalent.

For a complete and detailed description of the main components comprising this setup,
please refer to the manuals corresponding to your configuration.

4.2. Wiring
To wire up the system, please follow the default wiring procedure for your Active Mass
Damper � One Floor (AMD-1) system, as fully described in Reference [1]. When you are
confident with your connections, you can power up the UPM.
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5. Controllers Design Specifications
The Active Mass Damper � One Floor (AMD-1) experiment essentially consists of a
switching-mode controller using a pre-defined logic sequence to alternate between a mode
of repeatable structural excitation and the Active Mass Damping (AMD) mode to stiffen the
structure. Each mode is achieved through its own closed-loop control scheme. 
However, the power amplifier (e.g. UPM) should not go into saturation in any case. Also
both controllers control effort, which is proportional to the motor input voltage Vm, should
stay within the system's physical limitations.

5.1. Excitation Mode: PV Controller Design Specifications
The (self-)excitation mode uses the active mass to generate a repeatable disturbance to the
AMD-1's building-like structure. In this case, the linear cart (i.e. active mass) control loop
consists of a Proportional-Velocity (PV) position controller. 

In the present laboratory (i.e. the pre-lab and in-lab sessions), you will design and
implement a control strategy based on the Proportional-Velocity (PV) control scheme, in
order for your linear cart system to satisfy the following performance closed-loop
requirements:

1. The cart position Percent Overshoot, PO, should be less than 10%, i.e.:
 ≤ PO 10 [ ]"%" [1]

2. The time to first peak should be less than 150 ms, i.e.:
 ≤ tp 0.15 [ ]s [2]

5.2. Active Mass Damping (AMD) Mode
In the Active Mass Damping (AMD) mode, the linear cart is controlled by using a state-
feedback law based on a full-order observer. This time around, the purpose of the control
strategy is to dampen the AMD-1 top floor oscilations (created in the excitation mode) by
stiffening the structure.

The general AMD design requirements are expressed below in terms of settling time and
decayed amplitude of the floor deflection (xf) for an initial deflection of around 30 mm:

 ≤ ts 1.0 [ ]s for ≤ xf 1.5 [ ]mm
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The particular pole placements presented in the following by Equations [3] and [4] were
chosen for the AMD closed-loop system to meet the specifications stated above.

5.2.1. State-Feedback Design: Pole Locations
Determine the AMD-1 full-state feedback gain vector, K, such that the closed-loop poles
(i.e. eigenvalues) due to the state-feedback law are placed at the following locations:

, , ,−  + 6 15 j −  − 6 15 j -8 -16 [3]

5.2.2. Full-Order State Observer Design: Pole Locations
However in order to be based on a full-state feedback (i.e. all structural displacements and
velocities) law, the AMD-1's active structural control strategy should be based on a state
observer. This is explained by the fact that the AMD-1's floor deflection and velocity are not
measured directly, only its acceleration is. This particular design for the AMD-1 plant is due
to full-scale real-life applications where floor deflections and velocities are difficult to
measure directly. However, they can be estimated from acceleration measurements, since
accelerometers provide an affordable and reliable way of sensing a building dynamic
behaviour.

Determine the AMD-1 full-order observer gain matrix, G, such that the closed-loop poles
(i.e. eigenvalues) due to the observer error dynamics are placed at the following locations:

, , ,-20 -25 -30 -35 [4]

Comparing Equations [3] and [4], it can be noted that the dynamics of the observer error
(i.e. rate at which the estimation error goes to zero) are at least three times faster (i.e. farther
to the left in the s-plane) than the plant itself. This should ensure that the estimator does not
interfere with the plant's dynamics.
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6. Pre-Lab Assignments

6.1. Assignment #1: Proportional-Velocity (PV) Controller
Design
In this design procedure for the PV controller, the one-floor flexible structure on top of
which the linear cart is mounted is ignored. The system is considered to consist of the IP01-
or IP02-based linear servo plant alone. A schematic of the AMD-1 linear cart system's input
and output is represented in Figure 7, below.

Figure 2 The AMD-1 Linear Cart Input and Output

1. Based on your previous work from Reference [7], write down the open-loop transfer
function of your IP01- or IP02-based system, Gc(s), as defined below: 

 = ( )Gc s
( )xc s
( )Vm s [5]

2. The Proportional-Velocity (PV) position controller implemented in this lab for your lin-
ear servo plant introduces two corrective terms: one is proportional (by Kp) to the cart po-
sition error while the other is proportional (by Kv) to the cart velocity. Equation [6], be-
low, expresses the resulting PV control law:

 = ( )Vm t  − Kp ( ) − ( )xc_d t ( )xc t Kv






d

d
t ( )xc t [6]

3.
Quickly re-iterate your previous work from Pre-Lab Assignment #3 (i.e. the PV
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Controller Design Section) of Reference [7] in order to determine the two PV controller's
gains, Kp and Kv, as functions of the second-order system's characteristic parameters ωnc

and ζc.

4. Using the two Hint formulae provided below, express ωnc and ζc as functions of the two
PV design specifications previously defined, PO and tp.  
Hint formula #1:

 = PO 100 eeee













−
πζ

c

 − 1 ζ
c

2 [7]

Hint formula #2:

 = tp
π

ωnc  − 1 ζ c
2 [8]

5. Determine the values of ωnc and ζc corresponding to the desired PV design specifications,
as defined previously. Determine, then, from your results the numerical values of Kp and
Kv satisfying the desired time requirements of your closed-loop PV-plus-cart system.
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6.2. AMD-1 System Representation and Notations
A schematic of the Active Mass Damper � One Floor (AMD-1) plant is represented in
Figure 3, below. The AMD-1 scaled building is a Single-Degree-Of-Freedom (SDOF)
structure (i.e. single story). The AMD-1 system's nomenclature is provided in Appendix A.
As illustrated in Figure 3, the positive direction of horizontal displacement is towards the
right when facing the system.

Figure 3 Schematic of the AMD-1 Plant

For small floor deflection angles, the AMD-1 "roof" is modelled as a standard linear spring-
mass system, as represented in Figure 3 above. Using the system's specifications given in
Reference [1], the floor assembly mass, Mf, can be calculated from:

 = Mf  + Mr Mtf [9]

The AMD-1's top floor linear stiffness constant Kf, for small angular structure oscillations,
is given in Reference [1]. Kf models the lateral stiffness of the structure. However, it is
consistent with the following relationship, obtained from the standard Ordinary Differential
Equation (ODE) describing the free-oscillatory motion of a mass:
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 = Kf 4 ( ) + Mf Mc π2 fn
2

[10]

In the presented modelling approach, the structure viscous damping coefficient, Bf, is
neglected.

6.3. Assignment #2: Determination of the AMD-1 System's
Linear Equations Of Motion (EOM)
The determination of the AMD-1's structure-plus-cart equations of motion is derived in
Appendix B. If Appendix B has not been supplied with this handout, derive the system's
equations of motion following the system's schematic and notations previously defined and
illustrated in Figure 3. Also, put the resulting EOM under the following format:

 = 
∂
∂2

t2 xc
















∂

∂2

t2 xc , , , ,xc xf ∂
∂
t xc ∂

∂
t xf Fc [11]

and

 = 
∂
∂2

t2 xf
















∂

∂2

t2 xf , , , ,xc xf ∂
∂
t xc ∂

∂
t xf Fc [12]

Hint #1:
By neglecting the Coulomb (a.k.a. static) friction of the cart system, the two EOM should be
linear. They represent a pure spring-mass-damper system.

Hint #2:
You can use the method of your choice to model the system's dynamics. However, the
modelling developed in Appendix B uses the energy-based Lagrangian approach. In this
case, since the system has two Degrees-Of-Freedom (DOF), there should be two Lagrangian
coordinates (a.k.a. generalized coordinates). The chosen two coordinates are namely: xc and
xf. Also, the input to the system is defined to be Fc, the linear force applied by the motorized
cart.

6.4. Assignment #3: AMD-1 State-Space Representation
In order to design and implement a state-feedback controller for our system, a state-space
representation of that system needs to be derived. Moreover, it is reminded that state-space
matrices, by definition, represent a set of linear differential equations that describe the sys-
tem's dynamics. Since the two EOM of the AMD-1, as found in Assignment #2, should al-
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ready be linear, they can be written under the state-space matrices representation.
Answer the following questions:

1. Determine from the system's two equations of motion, the state-space representation of
our AMD-1 plant. That is to say, determine the state-space matrices A, B, C, and D
verifying the following relationships:

 = ∂
∂
t X  + A X B U and = Y + C X D U [13]

where X is the system's state vector. In practice, X is often chosen to include the
generalized coordinates as well as their first-order time derivatives. In our case, X is
defined such that its transpose is as follows:

 = XT 





, , ,( )xc t ( )xf t d

d
t ( )xc t d

d
t ( )xf t [14]

Furthermore, it is reminded that the system's measured output vector is:

 = YT 







,( )xc t

d
d2

t2 ( )xf t [15]

Also in Equation [13], the input U is set in a first time to be Fc, the driving force of the
linear motorized cart. Thus we have:

 = U Fc [16]
As a remark, it can be seen from Equations [15] and [16] that the AMD-1 system
consists of two outputs for one input.

2. From the system's state-space representation previously found, transform the state-space
matrices for the case where the system's input U is equal to the linear cart's DC motor
voltage Vm, instead of the linear force Fc. The system's input U can now be expressed by:

 = U Vm [17]
Hint:
In order to convert the previously found force equation state-space representation to
voltage input, it is reminded that the driving force, Fc, generated by the DC motor and
acting on the cart through the motor pinion has already been determined in previous
laboratories. As shown for example in Equation [B.9] of Reference [7], Fc can be
expressed by:

 = Fc −  + 
ηg Kg

2
ηm Kt Km







d

d
t ( )xc t

Rm rmp
2

ηg Kg ηm Kt Vm

Rm rmp

[18]
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3. Evaluate the matrices A, B, C, and D found in question 2, that is to say in case the
system's input U is equal to the cart's DC motor voltage, as expressed in Equation [16]. 
Hint:
Evaluate state-space matrices by using the model parameter values given in Reference
[1]. Ask your laboratory instructor what system configuration you are going to use in
your in-lab session. In case no additional information is provided, assume that the two
additional masses are mounted on top of the linear cart.

4. Calculate the open-loop poles from the system's state-space representation, as previously
evaluated in question 3. Is it stable? What is the type of the system? What can you infer
regarding the system's dynamic behaviour? Do you see the need for a closed-loop
controller? Explain.
Hint:
The characteristic equation of the open-loop system can be expressed as shown below:

= ( )det  − s I A 0 [19]
where det() is the determinant function, s is the Laplace operator, and I the identity
matrix. Therefore, the system's open-loop poles can be seen as the eigenvalues of the
state-space matrix A.

6.5. Assignment #4: Full-Order Observer
Since all the states contained in X, as defined in Equation [14], cannot be directly measured
(e.g. xf), a state observer needs to be built to estimate them. The system's variables directly
measured are expressed in the output vector defined in Equation [15]. This laboratory
focuses on the design of a full-order observer.

The full-order observer structure is defined as follows:

 = ∂
∂
t Xo  +  + A Xo B U G ( ) − Y Yo [20]

and:

 = Yo  + C Xo D U [21]
It can be seen from Equations [20] and [21] that the state observer has for inputs the sys-
tem's input(s) and output(s) and calculates as outputs the states estimates. The observer is
basically a replica of the actual plant with a corrective term G(Y-Yo) multiplied by the ob-
server gain matrix.
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The obtained estimated state vector can then be used for state-feedback law, as expressed
below:

 = ( ) = U Vm −K Xo [22]

Let us define the estimation error vector as follows:

 = Xe  − X Xo [23]

Using Equations [13], [20], [21], and [23], the estimation error dynamically behaves accord-
ingly to the following relationship:

 = ∂
∂
t Xe ( ) − A G C Xe [24]

Therefore from Equation [24], the estimation error will asymptotically go to zero if and only
if (A-GC) is stable, that is to say iff G is determined such as (A-GC) has all its eigenvalues
in the left-hand plane. However, a theorem shows that if (A,C) is observable, then (A-GC)
can always be made stable by a proper choice of G. Therefore, it is possible to estimate the
state(s) of a system if and only if that system is observable. Please refer to your in-class
notes as required.

Determine whether (A,C) is observable.
Hint:
By definition, a system is observable iff its observability matrix has full rank (i.e. number of
states). The observability matrix is defined as follows:

 = Wo [ ], , ,C C A C A2 C A3
T

[25]
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7. In-Lab Procedure

7.1. Experimental Setup And Wiring
Even if you do not configure the experimental setup entirely yourself, you should be at least
completely familiar with it and understand it. If in doubt, refer to References [1], [4], [5],
and/or [6].

The first task upon entering the lab is to ensure that the complete system is wired as fully
described in Reference [1]. You should be familiar with the complete wiring and connec-
tions of your Active Mass Damper � One Floor (AMD-1) system. If you are still unsure of
the wiring, please ask for assistance from the Teaching Assistant assigned to the lab. When
you are confident with your connections, you can power up the UPM. You are now ready to
begin the lab.

7.2. Real-Time Implementation Of The AMD-1 Switching-
Mode Controller

7.2.1. Objectives
To implement in real-time with WinCon the previously designed PV position
controller in order to command your actual AMD-1 linear servo plant.
To design through pole placement a full-order observer for the actual AMD-1 system.
To design through pole placement a state-feedback law for the actual AMD-1 system
by using the obtained estimated state vector.
To implement in real-time with WinCon the previously determined observer-based
state-feedback to dampen the vibration of the AMD-1 structure by appropriately
driving the active mass on top of it.

7.2.2. Experimental Procedure
Please follow the steps described below:

Step1. If you have not done so yet, you can start-up Matlab now. Depending on your sys-
tem configuration, open the Simulink model file of name type q_amd1_ZZ.mdl or
q_amd1_e_ZZ.mdl, where ZZ stands for either for 'mq3', 'mqp', 'q8', or 'nie'. Ask the
TA assigned to this lab if you are unsure which Simulink model is to be used in the
lab. You should obtain a diagram similar to the one shown in Figure 4, below. 
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Figure 4 Real-Time Implementation of the AMD-1 Controller
In order to use your actual AMD-1 system, the controller diagram directly interfaces
with your system hardware, as shown in Figure 5, below.

Figure 5 Interface Subsystem to the Actual AMD-1 Plant Using the MultiQ-PCI Card
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To familiarize yourself with the diagram, it is suggested that you open the model sub-
systems to get a better idea of their composing blocks as well as take note of the I/O
connections.
The real-time model, shown in Figure 4 above, implements a switching-mode control-
ler. A pre-defined Mode-Switching Sequence alternatively controls the linear cart us-
ing either a Proportional-Velocity (PV) position controller or an observer-based state-
feedback law. In short, the PV controller is mostly used in the excitation mode to self-
excite the vibration in the building-like structure. On the other hand, the state-feed-
back law is designed to dampen the structure oscillation by driving the active mass
(i.e. cart). Both control loops are the actual implementations of the pre-laboratory as-
signments previously carried out.
Opening the Disturbance Setpoint sub-system should show a diagram similar to Fig-
ure 6. This diagram generates the cart position setpoint to follow in order to best ex-
cite the AMD-1's flexible structure. The setpoint basically consists of one full period
of a sine wave of frequency 2.5 Hz (i.e. for a duration of 0.4 seconds) and amplitude 6
cm. The sinusoidal excitation's frequency has been chosen accordingly to the struc-
ture's natural frequency, as given in Reference [1]. This excitation repeats itself every
10 seconds.

Figure 6 Excitation Mode: Cart Position Setpoint Generation

Figure 4, above, also includes a subsystem named PV Position Controller, which im-
plements your linear cart PV controller's two feedback loops. This PV controller is
based on the actual measurement of the cart position (coming from the encoder). The
obtained position signal is then differentiated and low-pass filtered to attenuate any
high-frequency noise.
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Figure 7 Diagram used for the Real-Time Implementation of the AMD-1 Cart PV Position Controller

CAUTION:
The velocity signal used in the control inner-loop of the actual linear cart is ob-
tained by first differentiating the position signal (i.e. encoder counts), and then
by low-pass filtering the obtained signal in order to eliminate its high frequency
content. As a matter of fact, high-frequency noise, which is moreover amplified
during differentiation, causes long-term damage to the motor. To protect your
DC motor, the recommended cut-off frequency is 50 Hz.

When the Mode-Switching Sequence block outputs "2" instead of "1", that turns on the
Active Mass Damping (AMD) capabilities of the linear cart located on top of the
structure. The AMD behaviour is achieved by implementing a full-order-observer-
based state-feedback control loop, as illustrated in Figure 4 above by the orange
blocks. The full-order state observer defined by Equations [20] and [21] is imple-
mented in the subsystem called Full-Order Observer and depicted in Figure 8, below.
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Figure 8 Actual AMD-1 Full-Order State Observer

Step2. Before being able to run the actual control loops, the different controller gains
must be initialized in the Matlab workspace, since they are to be used by the Simulink
controller diagram. Start by running the Matlab script called setup_lab_amd1.m.
However, ensure beforehand that the CONTROLLER_TYPE flag is set to 'MANUAL'.
This file initializes all the AMD-1 model parameters, user-defined parameters, and
AMD-1's state-space matrices, as defined in pre-lab Assignment #3. First, the two PV
controller gains, Kp and Kv, calculated in pre-lab Assignment #1 and satisfying the de-
sired time requirements must be entered in the Matlab workspace. To assign Kp and
Kv, type their values in the Matlab command window by following the Matlab nota-
tions used for the controller gains as presented in Table A.2 of Appendix A. Second,
the state-feedback gain vector, K, must be calculated and entered in the Matlab work-
space. Use Matlab to carry out the pole-placement calculations satisfying the design
requirement expressed by Equation [3]. Third and last, the observer gain matrix, G,
must also be calculated and entered in the Matlab workspace. Use Matlab to carry out
the pole-placement calculations satisfying the design requirement expressed by Equa-
tion [4]. Refer to your in-class notes regarding the full-order observer design theory as
needed.
Hint:
Pole-placement calculations can be achieved in Matlab by using the function 'place()'
or 'acker()'.
CAUTION:
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Have your lab assistant check your controller gain values. Do not proceed to the
next step without his or her approval.

Step3. You are now ready to go ahead with compiling and running your actual switch-
ing-mode controller for the AMD-1 system. First, compile the real-time code corre-
sponding to your diagram, by using the WinCon | Build option from the Simulink
menu bar. After successful compilation and download to the WinCon Client, you
should see the green START button available on the WinCon Server window. You are
now in a position to use WinCon Server to run in real-time your actual closed-loop
system.
CAUTION:
Before starting your actual controller, manually move the linear cart (located on
the top floor) to the middle of the track (i.e. mid-stroke position). Also make sure
that the AMD-1 "ground" floor is properly clamped/mounted to a table.

Step4. You can now run your Active Mass Damper experiment on the actual AMD-1
plant by clicking on the START/STOP button of the WinCon Server window. This
should start the AMD-1 control sequence, as illustrated by real data in Figure 9,
below. 

Figure 9 AMD-1 Actual Experiment
As previously mentioned, the AMD-1's linear cart is commanded by a switching-
mode controller. In excitation mode (i.e. Mode Switching Sequence equals to "1", or
AMD OFF), the cart is subject to the PV position controller. In Active Mass Damping
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(AMD) mode (i.e. Mode Switching Sequence equals to "2", or AMD ON), the cart is
subject to an observer-based state-feedback controller. The AMD-1 experiment is
setup such that the cart excites the structural dynamics once every 10 seconds by fol-
lowing a full-period sinusoidal excitation at the structure's natural frequency. This is
illustrated in Figure 9, above, by Excitation #1 and Excitation #2. This initial and re-
peatable mass movement causes a vibration in the AMD-1 flexible structure which
persists at its natural rate if the AMD mode/controller is not switched on, as depicted
by the first 10 seconds in Figure 9. The AMD mode is only turned on after the second
structural excitation. This causes the top floor vibrations to dampen out quickly, as
shown by the last 10 seconds in Figure 9. In order to observe the structure natural be-
haviour versus its actively damped (or controlled) behaviour, the AMD mode is only
switched on once every over 10-second period, while the excitation disturbance re-
peats itself once every 10-second period.

Step5. In order to observe the system's real-time responses from the actual system, open
the following WinCon Scopes: xf_ddot (m/s^2), xf (mm), and PV Position
Controller/PV Control: xc (mm). You should now be able to monitor on-the-fly, as the
system goes through the synchronized excitation/AMD-control sequences, the
measured top floor acceleration, the controller mode, the estimated floor deflection,
and the linear cart setpoint and actual position, respectively. Furthermore, you can
also open the sink Vm (V) in a WinCon Scope. This allows you to monitor on-line the
actual commanded motor voltage, which is proportional to the control effort spent,
sent to the power amplifier.
Hint #1: 
To open a WinCon Scope, click on the Scope button of the WinCon Server window
and choose the display that you want to open (e.g. xf_ddot (m/s^2)) from the selection
list.
Hint #2:
For a good visualization of the actual system responses, you should set the WinCon
scope buffer to 20 seconds. To do so, use the Update | Buffer... menu item from the
desired WinCon scope.

Step6. Over an example run of 20 seconds, your actual AMD-1's floor acceleration and
control mode sequences should look similar to the ones displayed in Figure 10, below.
Corresponding to the same experimental run, the time recors of the AMD-1's cart
measured position and excitation setpoint are depicted in Figure 11, below.
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Figure 10 AMD-1 Floor Actual Acceleration And Controller Mode

Figure 11 AMD-1 Cart Actual Position Response And Excitation Setpoint
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Step7. Compare the structure's actively damped and natural behaviours in terms of
settling time and amplitude of the floor deflection (xf) and/or acceleration (xf_ddot).
Assess the actual performance of your Active Mass Damping controller. Measure your
floor estimated deflection response settling time. Are the design specifications
satisfied? Explain.
Hint:
In order to accurately measure a signal amplitude and time values from your WinCon
Scope plot, you can first select Freeze Plot from the WinCon Scope Update menu and
then reduce the window's time interval by opening the Set Time Interval input box
through the Scope's Axis | Time... menu item. You should now be able to scroll
through your plotted data. Alternatively, you can also save your Scope trace(s) to a
Matlab file for further data processing. Do so by using the File | Save selection list
from the WinCon Scope menu bar.

Step8. If your AMD-1 responses do not meet the desired design specifications, review
your PV and/or observer and/or state-feedback gain calculations and/or alter the
closed-loop pole locations until they do. If you are still unable to achieve the required
performance level, ask your T.A. for advice.

Step9. Include in your lab report your final values for Kp, Kv, K, and G as well as the
resulting plots of the actual system responses (e.g. floor acceleration, estimated
deflection, controller mode, cart position, command voltage). Ensure to properly
document all your results and observations.

Step10. You can move on and begin your report for this lab.
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Appendix A. Nomenclature
Table A.1, below, provides a complete listing of the symbols and notations used in the
Active Mass Damper � One Floor (AMD-1) mathematical modelling, as presented in this
laboratory.  The numerical values of the system parameters can be found in Reference [1].

Symbol Description Matlab / Simulink
Notation

Mtf Structure Top Floor Mass Mtf
Mr Rack Mass Mr
fn Floor (a.k.a. Roof) Natural Frequency fn
Kf Floor (a.k.a. Roof) Linear Stiffness Constant Kf

Mf Floor/Roof (i.e. floor 1 + rack) Total Mass Mf
xf Floor Horizontal Deflection (Relative To The Ground) xf

∂
∂
t xf Floor Horizontal Velocity (Relative To The Ground) xf_dot

∂
∂2

t2 xf Floor Horizontal Acceleration (Relative To The Ground) xf_ddot

Mc Total Mass of the Cart System Mc

Vm Cart Motor Armature Voltage Vm
Im Cart Motor Armature Current Im
Rm Cart Motor Armature Resistance Rm
Lm Cart Motor Armature Inductance Lm
Kt Cart Motor Torque Constant Kt
ηm Cart Motor Efficiency Eff_m

Km Cart Back-ElectroMotive-Force (EMF) Constant Km
Jm Cart Rotor Moment of Inertia Jm
Beq Equivalent Viscous Damping Coefficient, as seen at the

Motor Pinion
Beq

Kg Cart Planetary Gearbox Gear Ratio Kg
ηg Cart Planetary Gearbox Efficiency Eff_g
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Symbol Description Matlab / Simulink
Notation

rmp Cart Motor Pinion Radius r_mp
Fc Cart Driving Force Produced by the Motor (i.e. Control

Force)
Fc

xc Cart Linear Position (Relative To The Floor) xc

∂
∂
t xc Cart Linear Velocity (Relative To The Floor) xc_dot

VT Total Potential Energy of the AMD-1 System
Ttc Cart's Translational Kinetic Energy
Trc Cart Rotor's Rotational Kinetic Energy
Ttf Structure Top Floor's Translational Kinetic Energy

TT Total Kinetic Energy of the AMD-1 System
Qxc Generalized Force Applied on the Generalized Coordinate

xc

Qxf Generalized Force Applied on the Generalized Coordinate
xf

Table A.1 AMD-1 Model Nomenclature

Table A.2, below, provides a complete listing of the symbols and notations used in the PV
position controller design, as used in this laboratory.

Symbol Description Matlab / Simulink
Notation

PO Percent Overshoot PO
tp Peak Time tp
ωnc Cart Undamped Natural Frequency wn_c
ζc Cart Damping Ratio zeta_c

Kp Cart Proportional Gain Kp
Kv Cart Velocity Gain Kv
xc_d Cart Desired Position (i.e. Reference Signal) xc_d
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Symbol Description Matlab / Simulink
Notation

t Continuous Time
s Laplace Operator

Table A.2 PV Cart Controller Nomenclature

Table A.3, below, provides a complete listing of the symbols and notations used in the full-
order observer and state-feedback controller design, as presented in this laboratory.

Symbol Description Matlab / Simulink
Notation

A, B, C, D State-Space Matrices of the AMD-1 System A, B, C, D
X Actual State Vector X
Y Actual Output Vector Y
U System Input U
K State-Feedback Gain Vector K
Xo Estimated State Vector Xo

Yo Estimated Output Vector Yo
G Full-Order State Observer Gain Matrix G

Wo Observer's Observability Matrix Wo
Xe State Vector Estimation Error Xe

Table A.3 Control Loop Nomenclature
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Appendix B. AMD-1 Equations Of
Motion (EOM)

This Appendix derives the general dynamic equations of the Active Mass Damper � One
Floor (AMD-1) system. The Lagrange's method is used to obtain the dynamic model of the
system. In this approach, the single input to the system is considered to be Fc. Furthermore,
it is reminded that  the reference frame used is defined in Figure 3, on page 8.

To carry out the Lagrange's approach, the Lagrangian of the system needs to be determined.
This is done through the calculation of the system's total potential and kinetic energies.

Let us first calculate the system's total potential energy VT. The potential energy in a system
is the amount of energy that that system, or system element, has due to some kind of work
being, or having been, done to it. It is usually caused by its vertical displacement from
normality (gravitational potential energy) or by a spring-related sort of displacement (elastic
potential energy). Here, there is no gravitational potential energy since both AMD-1 cart
and structure are assumed to stay at a constant elevation (i.e. no vertical displacement from
normality), for small angular structure oscillations. However as represented in Figure 3, the
AMD-1 top floor is modelled as a linear spring-mass system. Therefore, the AMD-1's total
potential energy is only due to its elastic potential energy. It results that the total potential
energy of the AMD-1 plant can be fully expressed as:

 = VT
1
2 Kf ( )xf t

2
[B.1]

It can be seen from Equation [B.1] that the total potential energy can be expressed in terms
of the system's generalized coordinates alone.

Let us now determine the system's total kinetic energy TT. The kinetic energy measures the
amount of energy in a system due to its motion. Here, the total kinetic energy is the sum of
the translational and rotational kinetic energies arising from the motorized linear cart (since
the cart's direction of translation is orthogonal to that of the rotor's rotation) and the
translational kinetic energy of the flexible structure's floor. In other words, the total kinetic
energy of the AMD-1 system can be formulated as below:

 = TT  +  + Ttc Trc Ttf [B.2]
 
First, the translational kinetic energy of the motorized cart can be expressed as a function of
its centre of gravity's linear velocity, as shown by the following equation:

 = Ttc
1
2 Mc







 + 






d

d
t ( )xc t 






d

d
t ( )xf t

2

[B.3]
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Second, the rotational kinetic energy due to the cart's DC motor can be characterized by:

 = Trc
1
2

Jm Kg
2 





d

d
t ( )xc t

2

rmp
2

[B.4]

Third and last, the structure floor's translational kinetic energy can be characterized as
follows:

 = Ttf
1
2 Mf







d

d
t ( )xf t

2

[B.5]

Thus by replacing Equations [B.3], [B.4], and [B.5] into Equation [B.2], the system's total
kinetic energy results to be such as:

TT












 + 

1
2 Mc

1
2

Jm Kg
2

rmp
2







d

d
t ( )xc t

2

Mc






d

d
t ( )xf t 






d

d
t ( )xc t +  = 







 + 

1
2 Mc

1
2 Mf







d

d
t ( )xf t

2

 + 

[B.6]

It can be seen from Equation [B.6] that the total kinetic energy can be expressed in terms of
the generalized coordinates' first-time derivatives.

Let us now consider the Lagrange's equations for our system. By definition, the two
Lagrange's equations, resulting from the previously-defined two generalized coordinates, xc

and xf, have the following formal formulations:

 =  − 









∂ ∂

∂

t d
d
t ( )xc t

L 







∂

∂
xc

L Qxc [B.7]

and:

 =  − 









∂ ∂

∂

t d
d
t ( )xf t

L 







∂

∂
xf

L Qx
f [B.8]

In Equations [B.7] and [B.8], above, L is called the Lagrangian and is defined to be equal to:
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 = L  − TT VT [B.9]

For our system, the generalized forces can be defined as follows:

 = ( )Qxc
t  − ( )Fc t Beq







d

d
t ( )xc t and = ( )Qx

f
t 0 [B.10]

It should be noted that the (nonlinear) Coulomb friction applied to the linear cart has been
neglected. Furthermore, the viscous damping force applied to the structure floor has also
been neglected.

Calculating Equation [B.7] results in a more explicit expression for the first Lagrange's
equation, such that:

 =  + 
( ) + Mc rmp

2
Jm Kg

2 







d

d2

t2 ( )xc t

rmp
2 Mc









d

d2

t2 ( )xf t  − Fc Beq






d

d
t ( )xc t [B.11]

Likewise, calculating Equation [B.8] also results in a more explicit form for the second
Lagrange's equation, as shown below:

 =  +  + Mc








d

d2

t2 ( )xc t ( ) + Mc Mf








d

d2

t2 ( )xf t Kf ( )xf t 0 [B.12]

Finally, solving the set of the two Lagrange's equations, as previously expressed in
Equations [B.11] and [B.12], for the second-order time derivative of the two Lagrangian
coordinates results in the following two equations:

d
d2

t2 ( )xc t
rmp

2
Mc ( )xf t Kf

 +  + Mc rmp
2

Mf Jm Kg
2

Mc Jm Kg
2

Mf

rmp
2

( )−  − Mc Beq Mf Beq






d

d
t ( )xc t

 +  + Mc rmp
2

Mf Jm Kg
2

Mc Jm Kg
2

Mf

 +  = 

rmp
2

( ) + Mc Fc Mf Fc

 +  + Mc rmp
2

Mf Jm Kg
2

Mc Jm Kg
2

Mf

 + 

[B.13]

and:
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d
d2

t2 ( )xf t
( ) + Mc rmp

2
Jm Kg

2
( )xf t Kf

 +  + Mc rmp
2

Mf Jm Kg
2

Mc Jm Kg
2

Mf

Mc Beq rmp
2 





d

d
t ( )xc t

 +  + Mc rmp
2

Mf Jm Kg
2

Mc Jm Kg
2

Mf

−  +  = 

Mc Fc rmp
2

 +  + Mc rmp
2

Mf Jm Kg
2

Mc Jm Kg
2

Mf

 − 

[B.14]

Equations [B.13] and [B.14] represent the Equations Of Motion (EOM) of the system. It can
be noticed, in the case of the AMD-1 system, that the EOM are linear.

As a remark, if both Beq and Jm are neglected, Equations [B.13] and [B.14] become:

 = 
d
d2

t2 ( )xc t  + 
Kf ( )xf t

Mf

( )+ Mc Mf Fc

Mc Mf
[B.15]

and:

 = 
d
d2

t2 ( )xf t −  − 
Kf ( )xf t

Mf

Fc

Mf
[B.16]
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