
Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 1

"Good work in Artificial Intelligence concerns the automation of
things we know how to do, not the automation of

things we would like to know how to do." -Alan Perlis.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 2

Acknowledgements. ... 3

Technical Manual
1. Introduction.. 5

1.1. Purpose.. 5
1.2. Artificial Intelligence.. 5
1.3. The Growth of Expert Systems... 5
1.4. What is an Expert System? ...6
1.5. History of Expert Systems. ...6
1.6. Expert System Architecture. .. 8
1.7. Expert System Shells. ...10
1.8. Limitations... 11

2. Requirements Definition. ..12
3. System Specification. ... 13

3.1. Programming Language.. 13
4.System Architecture. .. 15
5. The Knowledge Base.. 16

5.1. Knowledge Acquisition. ... 16
5.2. Knowledge Representation. .. 16
5.3. Rule Editor..18

6.The Inference Engine.. 22
6.1. SQL Compatible Tables Vs. Memory Arrays...22
6.1. Information before starting the inference process... 23
6.2. Search Strategies... 23
6.3. The Forward Chaining Algorithm. ... 24
6.4. The Backward Chaining Algorithm.. 31

7.Enhancements. ..37
7.1. Uncertainty..37
7.2. The Threshold Value...38
7.3. Explanation Facility.. 38

8.Testing.. 40

User Manual
1.Installation... 42
2.Running the Application. ...42
3.Start menu of the Expert System... 42
4.Editing the knowledge base.. 43
5.Inference with the Expert System Shell. ...44

Appendix A: Source Code. ..47

Bibliography. .. 72

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 3

Acknowledgements.

I wish to acknowledge the support and sympathy of many people and friends who
helped me in the development of this project. Thanks to my project supervisor, Paul
Powell (Lecturer in the Institute of Technology, Sligo) for his guidance,
understanding and time dedicated to me. I wish to thank also the rest of lecturers of
the Degree in Science of Computing at the Institute of Technology, John O’Donnell,
John Kelleher and Tom McCormack, who provided a source of many useful ideas
applied in this Project.

Particular mention must be made to the students of the Degree in Science of
Computing, whose collaboration and friendship far exceeded what can be considered
as hospitality with foreigners.

Finally, my family in Granada, although more than 2,000 miles away from here, were
a continuous source of support and courage for me.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 4

Technical Manual

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 5

1. Introduction.

1.1. Purpose.

The following document describes the analysis and development process carried out
during the elaboration of the Main Project of the Bachelor in Science of Business Computing.
The Project is included in the scope of Artificial Intelligence. The objective of the Project is
the development of an application, which will be used as a shell for the creation,
manipulation, and query of expert systems. Special efforts were put in developing an user
interface that will be easy to use and independent of the Knowledge Base used, taking
advantage of the actual windows environment that visual programming languages (such as
C++ Builder, Delphi, Visual C++ or Visual Basic) provide.

1.2. Artificial Intelligence

Artificial Intelligence is a difficult concept to define. Almost each expert in the field
of AI proposes a different definition. Some of the most simple and concise are the following:

“Artificial Intelligence is basically a theory of how the human mind works”
“Artificial Intelligence is the study of how to make computers do things at which, at the
moment, people are better” (Rich, 1983).
“Artificial intelligence is behaviour by a machine that, if performed by a human being, would
be called intelligent”.

The major areas in which Artificial Intelligence has been applied are:
• Natural Language Processing
• Speech (Voice) Understanding
• Robotics and Sensory Systems
• Computer Vision and Scene Recognition
• Intelligent Computer-Aided Instruction
• Machine Learning (Neural Computing)
• Expert Systems, which are the most popular and successful AI Technology at the

moment.

1.3. The Growth of Expert Systems.

There has been, in the past decade and present decade, a virtual explosion of interest
in the field known as expert systems (or, alternatively, as knowledge-based systems).
Appearing from seemingly out of nowhere, expert systems have quickly evolve from an
academic notion into a proven and highly profitable product –one that offers an efficient and
effective approach to the solution of an exceptionally wide array of important, real-world
problems. In particular, expert systems provide a powerful and flexible means for obtaining
the solution to a variety of problems that often can not be dealt by other, more orthodox
methods. Typically, such problems have always been considered too large and too “messy”
for solution by conventional approaches. In this regard, expert systems may be considered to
represent a potent new instrument to solve this kind of complex problems.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 6

By the end of the 1980s, the implementation of at least 2000 expert systems had
already been documented within the corporate world alone (Ignizio, 1991). However, most of
the implementations had occurred in the military sector, within local, state, and federal
government. The number of expert systems implementations has increased dramatically
during the 1990s. In the United States alone, revenues from expert systems reached $6 billion
by 1995 (nearly eight times over the receipts documented in 1989).

1.4. What is an Expert System?

Knowledge-based expert systems, or simply expert systems, are computer programs
that emulate the reasoning process of a human expert or perform in an expert manner in a
domain for which no human expert exists or the cost of human expertise is too high. Typically
they reason with uncertain information. In addition to the descriptive knowledge, Expert
Systems also imitate the expert’s reasoning processes (procedural knowledge) to solve
specific problems

Expert Systems use human knowledge to solve problems that normally would require
human intelligence. These expert systems represent the expertise knowledge as data or rules
within the computer. These rules and data can be called upon when needed to solve problems.
Books and manuals have a tremendous amount of knowledge but a human has to read and
interpret the knowledge for it to be used. Conventional computer programs perform tasks
using conventional decision-making logic - containing little knowledge other than the basic
algorithm for solving that specific problem and the necessary boundary conditions. This
program knowledge is often embedded as part of the programming code, so that as the
knowledge changes, the program has to be changed and then rebuilt. Knowledge-based
systems collect the small fragments of human know-how into a knowledge base which is used
to reason through a problem, using the knowledge that is appropriate. A different problem,
within the domain of the knowledge base, can be solved using the same program without
reprogramming. The ability of these systems to explain the reasoning process through back-
traces and to handle levels of confidence and uncertainty provides an additional feature that
conventional programming does not handle.

Most expert systems are developed via specialised software tools called shells. These
shells come equipped with an inference mechanism (backward chaining, forward chaining, or
both), and require knowledge to be entered according to a specified format. These shells
qualify as languages, although certainly with a narrower range of application than most
programming languages.

Expert systems are limited by the information contained in their database. It is up to
the knowledge engineer and the expert to work together to gather the correct information and
inference rules to be contained in the knowledge base. Therefore, a productive expert system
needs, not only a good inference engine, but also a good knowledge base.

1.5. History of Expert Systems.

The digital computers have been since World War II wherein the British and
Americans used them in such tasks as numerical computations and code breaking. However,
while the computer possesses an astonishing capability to store and manipulate data, few of us
would consider such activities to constitute any form of true intelligence. These activities are
considered to be mechanical in nature.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 7

However, among the early users and designers of digital computers were a small
group of “radicals”: they wondered if one might not be able to use the computer as a means
for simulating various aspects of human intelligence. As a result, a conference was held in
1956 in Hanover, New Hampshire, the home of Dartmouth College. In that conference, now
known as the Dartmouth Conference, certain forecasts for Artificial Intelligence were
established (Simon and Newell, 1958). Specifically, it was predicted that, by 1970, a
computer would do the following:

• Be a grandmaster at chess.
• Discover significant, new mathematical theorems.
• Understand spoken language and provide language translations.
• Compose music of classical quality.

Rather obviously, and with our advantage of hindsight, these forecasts were too
ambitious. However, these forecasts did serve to encourage wider interest in AI and establish
certain goals for those within the field. But they also served to have a very negative impact as,
with the passage of time, it became clearer that these forecasts were not going to be met and
had been, at least, unrealistic.

The early enthusiasm in AI was, by the mid-1960s, considerably subdued. In fact, AI
seemed to virtually vanish at about that time and it did not resurrect until the 1980s. The AI
community felt that it was time to reconsider the goals. Developments and research in AI
should be as follows:

- More modest.
- More focused.
- Directed toward a narrow sector of expertise, rather than general, overall

intelligence.

The name given to this sub-field of AI was expert systems, or knowledge-based
systems.

Some of the most relevant Expert Systems have been:

• DENDRAL: it was the first expert system and was started in 1965. Edward Feigenbaum
helped to develop DENDRAL and in the process he created and named the field of
Knowledge Engineering.

• MYCIN: it was the first system that deliberately mimicked human behaviour in terms of
its questioning strategy. It was also the prototype for all rule based expert systems.
Therefore, MYCIN is a continuous point of reference in the development of this project.

• MACSYMA: it is a symbolic mathematics engine that does algebra, calculus, differential
equations, etc. It is an example of old style knowledge systems. It uses brute force and
exhaustive searching to solve problems.

• HEARSAY I and II: they were the prototypes for speech recognition involving sentences
rather than just individual words.

• INTERNIST: it is the largest expert system currently being developed. Ideally it will be a
diagnostic tool for the entire field of internal medicine. In the last 25 years they have
covered 25% of the field. In this system, diseases, symptoms, etc. are coded as objects,
which are allowed to interact according to a series of rules.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 8

• PROSPECTOR: it is an ore-deposit locator. It was the first system to use semantic
networks in its knowledge base.

• PUFF: it is a diagnostic tool that interprets the results of respiratory tests. It was designed
using an expert system shell derived from MYCIN called EMYCIN. Whereas MYCIN to
50 person-years to complete, PUFF took 5.

Later expert systems were primarily designed by and/or for companies. Instead of
being research tools they are more commercially oriented and are expected to turn a profit. In
1990, more than 50% of the businesses listed in Fortune 500 were developing expert systems,
either for in house use or to sell.

A major goal of expert system developers is to make the systems more artificially
intelligent. The current focus is on designing programs that have a deeper theoretical
understanding of their domain, and that can provide deeper explanations. New expert systems
utilise meta-knowledge about their own knowledge base, inference engines and general
construction to develop more informed heuristics to implement in their rules systems. As
programs grow larger and more complex, the program must assume some of the burden of
understanding its own behaviour, documenting and justifying itself, and even modifying itself
when necessary.

1.6. Expert System Architecture.

The following figure depicts one possible representation of an expert system:

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 9

Fig.1. A generic expert system.

Note that access capabilities for two types of human users are provided. One is that
individual designated as the knowledge engineer. The knowledge engineer is the person
responsible for placing the knowledge into the expert system’s knowledge base (the portion of
the of the expert system shown at the top of Fig.1.) He or she accomplishes this through the
interface and the rule adjuster.

The knowledge engineer is also the interface between the human expert (if there is
one) and the expert system. That is, the knowledge engineer somehow must capture the
expertise of the human expert and then express this expertise in a format that may be stored in
the knowledge base and will be used by the expert system. In the ideal expert system, there
would be no need for a knowledge engineer. The domain expert would interact directly with
the expert system and would replace the knowledge engineer in the figure.

The second type of individual with access to the expert system is designated, in Fig.1.
as simply the user. This designation refers to anyone who will be using the expert system as a
decision-making aid (i.e., as a consultant). The successful knowledge engineer must always

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 10

keep in mind that the expert system is ultimately intended for the benefit of the user, not for
that of the knowledge engineer or the domain expert.

The interface handles all input to the computer and controls and formats all output. A
well-designed interface would be one that exhibits ease of use (so called user friendliness),
even for the novice user. The interface also handles all communication with the knowledge
engineer during the development of the expert’s system knowledge base. Another property
that is sometimes exhibited in expert systems is that of explanation.

The inference engine is employed during a consultation session. During consultation,
it performs two primary tasks. First, it examines the status of the knowledge base and working
memory so as to determine what facts are known at any given time, and to add any new facts
that became available. Second, it provides for the control of the session by determining the
order in which inferences are made. The inference engine serves to merge facts with rules to
develop, or infer, new facts.

The knowledge base is the very heart of any expert system. A knowledge base will
typically contain two types of knowledge, that is, facts and rules. The facts within a
knowledge base re
present various aspects of a specific domain that are known prior to the consultation session
of the expert system. The rules within a knowledge base are simply heuristics. If the
knowledge base has been constructed through interaction with a human expert, these rules
represent the knowledge engineer’s perception of the heuristics that are employed by the
expert in decision making.

The working memory of an expert system changes according to the specific problem
at hand. The contents of the working memory consist of facts. However, unlike the facts
within the knowledge base, these facts are those that have been determined for the specific
problem under consideration during (and at the conclusion of) the consultation session or
query.

The final module to be discussed is the rule adjuster. In most existing expert systems,
the rule adjuster serves merely as a rule editor. That is, it enters the rules specified by the
knowledge engineer into the knowledge base during the development phase of the expert
system. In more ambitious expert systems, the rule adjuster may be used in an attempt to
incorporate learning into the process. In such instances, we would teach the expert system by
providing it with a set of examples and then critique its performance. If its performance is
unsatisfactory, the rule adjuster automatically revises the knowledge base. If satisfactory, the
rule adjuster may simply reinforce the existing knowledge base.

1.7. Expert System Shells.

By this time, the difference between an expert system and an expert system shell is
clear: an expert system includes all of the components discussed above minus the knowledge
base. Using a shell, it is up to the knowledge engineer to develop the knowledge base and to
then insert this knowledge base into the architecture to form a complete expert system, as
intended for a specific domain. The use of a shell thus frees the knowledge engineer from the
need to repeatedly develop all the supporting elements of an expert system, and thus to focus
his or her attention on the development of the knowledge base.

It must remain clear that this project is about developing and implementing an Expert
System Shell. Therefore the main focus and effort is on the design of the inference engine and
the rest of the elements associated with it (interface, rule adjuster, knowledge base structure,

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 11

explanation facility, working memory...) rather than the contents of the knowledge base. The
system will work independently of the knowledge base used, being the knowledge engineer’s
responsibility to develop a well-structured and consistent knowledge base.

The architecture of the generic expert system depicted in Fig.1., should serve to
indicate at least some of the differences between this approach and that of algorithmic
procedures and heuristic programming. In particular, note that the knowledge base is
separated from the inference engine. In other words, and unlike algorithms and heuristic
programming, an expert system separates the heuristic rules from the solution procedure. The
knowledge base contains a description, or model, of what we know (i.e. about deriving a
solution to a given problem). The inference engine contains a description of what we do to
actually develop the solution. While the knowledge base changes from domain to domain, the
inference engine remains the same.

1.8. Limitations.

Some limitations arise when comparing expert systems with conventional human
expertise:

• Fragile Systems: small environment changes can force revision of all of the rules.

• Vague Rules: rules can be hard to define. It is a difficult task for an expert to express his
knowledge in terms of rules.

• Conflicting Experts: With multiple opinions, who is right?

• Unforeseen events: events outside of domain can lead to nonsense decisions.

• Expert systems can handle only narrow domains, otherwise the knowledge base will
contain millions of rules.

• Expert systems do not possess common sense. A human expert uses common sense to
reach solutions, but this concept can not be built (at the moment) in a computer.

• Expert systems have limited ability to learn and these limitations lead to loss of faith on
them.

Neural Nets and Fuzzy Logic are new approaches that can solve some of this
limitations in the future. Neural Nets provide great ability to learn, while Fuzzy Logic
represents the best approach nowadays to human uncertainty and imprecision.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 12

2. Requirements Definition.

The objective of the Project can be summarised in one sentence as: “Design and
implement a rule-based expert system shell, applying it to an specific field (i.e. choose a car,
diagnose heart diseases …)”

The requirements for the Main Project are the usual for an Expert System Shell. We
paid special attention to the easiness of use.

• Production rules based expert system shell. The knowledge in the knowledge base is
stored as rules.

Formal definition:

Knowledge base ::= [Rule]*,
Rule ::= IF [Premise]* THEN Conclusion,
Premise ::= Attribute, Value.
Conclusion ::= Attribute, Value.
(Attribute and Value are strings of characters)

• Friendly User Interface. Facilitate interaction with the user using windows-style, menus,
graphics,… Avoid conversational menus (typical of the first expert systems).

• Knowledge Base Editor. The user must be able to create and modify the knowledge base
just using the application, with no need of an external database management system.

• Support of uncertainty (certainty or confidence factors) during the consultation or query
session.

• Explanation facility, with the ability to explain why and how a particular conclusion was
reached.

• Capability of inserting known facts at the beginning of the consultation session, so that
the typical “question-and-answer” process of expert systems is reduced.

• Capability of changing single values in consecutive consultations in order to observe
differences in the conclusions reached (differential analysis).

• Use of graphics and any additional multimedia feature which aids the user recognition
and association with the real world.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 13

3. System Specification.

Characteristic Value
Programming Language C++

Programming Language Environment Borland C++ Builder, Version 1.0.
Operating System Microsoft Windows 95

3.1. Programming Language.
The programming language used in the development of this project is C++ (Object

Oriented C). The programming paradigm is, therefore, procedural1. However, a lot of expert
systems have been built following the declarative programming paradigm, using
programming languages such as Prolog, Clips or Lisp. Those programming languages are
typical of Artificial Intelligence and provide a virtually built-in inference engine for the
expert system.

Procedural languages require the programmer to specify the precise, step-by-step set
of instructions to be carried out in the solution of a problem. Declarative languages, on the
other hand, only require that one provide the program with the facts and relationships (e.g.
data and knowledge base) that exist for a problem; the solution to the problem is then
accomplished by the language’s own internal inference engine.

The question then is: Why use C++, where we have to implement our own inference
engine, instead of using Prolog, for instance, which already gives the programmer a built-in
inference engine? Several reasons lead to the use of a procedural language:

• First of all, the purpose of the project is academic, so that the implementation of an
inference engine will show the programmer how an expert system works internally.

• Using a declarative programming language restricts the flexibility of the expert system.
For instance, Prolog employs backward chaining and backtracking. Search is conducted
depth first and all rules are scanned. We can not change naturally the way Prolog works2,
and consequently, we will lose some control over the expert system inference mechanism.

Nevertheless, the development of a rule-based expert system in Prolog is, quite possibly,
easier than with any other language. As an indication, consider the following production
rule:

Rule: If inflation is high
Then invest in gold.

The same rule in Prolog may be written as:

gold_investment(yes):- write(‘Inflation :’),
read(Inflation),
Inflation=high.

1 Some authors distinguish between the Procedural Paradigm and the Object Oriented
Paradigm. However, for Expert Systems development this distinction is not significant.
2 Using a Prolog program we can change form Backward to Forward Chaining, but internally,
Prolog will still work backwards.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 14

• Building our own expert systems software package gives us control over the entire
consultation/inference process, as well as the ability to modify, revise, or enhance any
portion of the package that we wish.

• The manipulation of tables (Paradox tables or dBase tables) is easier with C++ Builder. In
Prolog or Lisp the database would have to be specially built for the application and would
not be standard.

• The inclusion of multimedia features (graphics, sound,...) is easier with visual
programming packages such as Visual Basic or C++ Builder.

Another question is why use C++ Builder instead of Visual C++ or Visual Basic. The
answer is simply “I used C++ Builder because is the environment that I know better”. In
fact, this system could be easily translated into MS Visual C++ or MS Visual Basic. C++
Builder is powerful and easy to use, although is not so well known or standard as the
Microsoft’s packages.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 15

4. System Architecture.

The system architecture is guided by the way C++ Builder (and most visual programming
packages) works, i.e. using forms. The various components of the expert systems shell
(knowledge base editor, inference process) correspond to several forms which are accessible
from the main form. The hierarchical structure of the system is the following:

5.

Main Form
(Application Menu)

Edit_Rule Form
(Rule viewer)

Add_Rule Form
(Add/Modify Rules)

Splash
Form

Inference Form
(Start of inference)

Query Form
(Attribute)

Conclusion Form
(Conclusion and

explanation)

Unit.cpp
(Frequently used functions)

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 16

5. The Knowledge Base.

5.1. Knowledge Acquisition.
As it was mentioned in the introductory section, the main focus of this project is not

in the contents of the knowledge base, but in the operation of the expert system shell itself.
Therefore; the knowledge base rules may not be optimal and there are not meta-rules (rules
that give information about rules) that increase the efficiency of the inference process.
However, in order to test the expert system shell and to provide a tangible application in the
real world, a relatively large knowledge base was built.

It would seem that the most obvious way in which one may acquire a knowledge base
is to go directly to the human expert. However, there are some reasons why this may not
work, or at least not provide totally satisfactory results (Ignizio, 1991):

• For some problems, there simply may not be an expert. E.g. Investing in the stock market.
• The alleged experts may actually be exhibiting poor to mediocre performance. All too

often, the term expert is loosely applied to anyone who simply gets the job done.
• The experts may not wish to reveal their secrets.
• The experts often are just unable to articulate the approach that they use. Many experts, in

fact, simply and honestly do not really understand how they actually make their decisions.

Moreover, if we use an expert the knowledge engineer has to plan carefully several
meetings with him, extracting all the knowledge needed for the knowledge base. A special
situation is the use of multiple domain experts. This situation can be specially frustrating if
not properly handled. A good approach (Surko, 1989) is using a rule base cloned from one
expert and then build a prototype expert system and let the other domain experts critique the
results.

Knowledge acquisition can also be accomplished via rule induction: convert an
existing database into a set of production rules. A popular approach to rule induction is the
algorithm ID3 (Quinlan, 1983) in which rules are generated from trees.

5.2. Knowledge Representation.

The knowledge that is contained within an expert system consists of:
• A priori knowledge: the facts and rules that are known about a specific domain prior.
• Inferred knowledge: the facts concerning a specific case that are derived during, and at

the conclusion of, a consultation with the expert system.

There are several approaches to represent knowledge in a expert system:
• Semantic networks.
• Frames.
• Neural Networks.
• Production rules.

The knowledge mode of representation chosen for the development of our expert
system shell was by the use of production rules or rule-based systems. There are several
reasons which lead me to that choice:

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 17

1. The majority of existing expert systems (and especially expert system shell), employ rule
bases.

2. Rules represent a particularly natural mode of knowledge representation. Consequently,
the time required to learn how to develop rule bases is minimised.

3. Rule bases can be relatively easily modified. In particular, additions, deletions and
revisions to rule bases are relatively straightforward processes3.

Production rules are of the IF-THEN variety. To represent the ELSE statement we
only have to split the rules in two.

E.g.: IF StudentScore is 50 or more
THEN admit the student
ELSE do not admit the student

This rule is equivalent to:
IF StudentScore is 50 or more
THEN admit the student

IF StudentScore is less than 50
THEN do not admit the student

Similarly the use of OR in the premises can be avoided by splitting the premises and
keeping the same conclusion.

As noted, each premise and conclusion clause contains attributes and values. In the
example above, an attribute would be “StudentScore” and a value “50 or more”.

The rules were internally represented in the Project by Paradox tables. There are four
tables which make up a complete rule:

• Premises.db: there is one entry for each premise4 in each rule

Field Name Type Size
RID Short Integer
PID Short Integer
Attribute String 40 chars.
Value String 40 chars.
Status String 1 char.
CF Number

Where:
RID: rule identifier. Each rule has an unique identifier which acts as the primary key.
PID: premise identifier. Identifies each premise in a rule.
Attribute: name of the attribute.
Value: value given to the attribute.
Status: status of the premise (Active, true, or false)
CF: numeric value of the certainty factor (between 0 and 100)

• Prem2.db: each entry corresponds to all the premises of a rule.

3 This also depends on the “quality” of the knowledge base. If we have a well-designed rule
bases, the process will be transparent.
4 By premise, we understand each of the pairs {Attribute, Value} which are in the IF clause of
the rule.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 18

Field Name Type Size
RID Short Integer
Premises String 255 chars.

Where:
RID: rule identifier. Each rule has an unique identifier which acts as the primary key.
Premises: a string that represents all the premises in the rule in the format “IF
[Attribute1=Value1] AND [Attribute2=Value2]…AND [AttributeN=ValueN]” .

• Conclusions.db: there is one entry for each conclusion.

Field Name Type Size
RID Short Integer
Images Graphic

Where:
RID: rule identifier. Each rule has an unique identifier which acts as the primary key.
Attribute: name of the attribute.
Value: value given to the attribute.
Status: status of the rule (Active, Inactive, Triggered, or Fired)
CF: numeric value of the certainty factor (between 0 and 100)

• Images.db: each entry corresponds to an image of each conclusion.

Field Name Type Size
RID Short Integer
Image Graphic

Where:
RID: rule identifier. Each rule has an unique identifier which acts as the primary key.
IMAGE: graphic associated with the conclusion of the rule with identifier RID.

A rule is retrieved from the database by joining these tables using the RID field.
Although the tables are physically separated, they will appear logically as an unit in the
application.

5.3. Rule Editor.

The rule editor or rule adjuster as shown in Fig.1. will allow the knowledge engineer
to add, delete or modify rules. The rules are shown in the grid by using a SQL query. C++
Builder provides a special class for SQL queries called TQuery. In order to launch the query
we give to the object property “SQL Text” the following value:

SELECT Prem2.RID, Prem2.Premises,
Conclusion.Attribute,Conclusion.Val,Conclusion.CF
FROM Prem2, Conclusion
WHERE Prem2.RID = Conclusion.RID

The results for a simple knowledge base are chosen in Fig..

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 19

Fig.2.; The Rule Editor window form.

For adding, deleting or modifying rules we use another form that facilitates the task
of generating a rule and avoids syntactic errors. It is based in the use of combo boxes. There
are two combo boxes for the premises and another for the conclusion. The contents of the
“value” combo boxes change dynamically depending on the current selection in the
“attribute” combo boxes. The updating is made again by the use of the object “TQuery”,
specifically using the function implemented in UNIT.CPP “Update_combo”:

//--
// void UpdateCombo (TComboBox *ComboBox,TQuery *Query, TDBComboBox
*DBComboBox,
// AnsiString Query_text, AnsiString Field):
// Fill a combo box with the results of a query.
//--
void UpdateCombo(TComboBox *ComboBox,TQuery *Query, TDBComboBox *DBComboBox,
AnsiString Query_text, AnsiString Field)
{

Query->Close();
Query->SQL->Clear();
Query->SQL->Add(Query_text);
Query->Prepare();
DBComboBox->DataField=Field;
Query->Open();

DBComboBox->Items->Clear();
DBComboBox->Items->Add(DBComboBox->Text);
while(Query->FindNext()){

DBComboBox->Items->Add(DBComboBox->Text);
}
ComboBox->Items=DBComboBox->Items;
ComboBox->Text=ComboBox->Items->Strings[0];

}

The call from the “AddRuleForm” is , therefore, the following:

//--
// void __fastcall TAddRuleForm::ComboBox1Change(TObject *Sender)
// If the contents of the first combo box (attribute) change
// the second (values)
//--
void __fastcall TAddRuleForm::ComboBox1Change(TObject *Sender)
{

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 20

UpdateCombo(ComboBox2,Query1, DBComboBox1, "select distinct val from
premises where attribute=\""+ComboBox1->Text+"\"", "val");

}

The function which adds a rule takes all the inputs given in the form and then post
them to the database (note that the user does not have to know the physical structure of the
database). The Rule Identifier field is automatically generated by the application, selecting the
maximum RID of the posted rules and adding to it 1:

Query1.SQLText=select MAX(RID) from Premises;
(…)
DBEdit1->Text = (AnsiString) (atoi(DBEdit1->Text.c_str())+ (int) 1);

Once all the fields are filled, we can post the rule to the database. Before, posting it
we must check that the value of the Certainty Factor is in the valid range, otherwise the rule
will not be posted and the application will show an error message to the user. We use the
following function for that purpose (AddRuleBtnClisck):

//--
// void __fastcall TAddRuleForm::AddRuleBtnClick(TObject *Sender)
//--
void __fastcall TAddRuleForm::AddRuleBtnClick(TObject *Sender)
{

int i;
TMsgDlgButtons Btns;
float cf;
char error[256], str[5];

// check certainty factor
Btns<<mbOK;
strcpy(str, Edit1->Text.c_str());
cf=atof(str);
if (cf>100||cf<0){

wsprintf(error, "The valid range for Certainty Factors is between 0 a
nd 100");
MessageDlg(error, mtError,Btns,NULL);
return; // do not commit changes

}

ConclTable->Open();
PremTable->Open();

// post current rule
for (i=0; i<CurrentRow; i++){ // post premises

PremTable->Append();
PremTableRID->Value= atol(DBEdit1->Text.c_str());
PremTablePID->Value= i+1;
PremTableAttribute->Value=StringGrid1->Cells[0][i];
PremTableVal->Value=StringGrid1->Cells[1][i];
PremTableStatus->Value="A";
PremTableCF->Value=100.0;
PremTable->Post();

}

// post conclusion
ConclTable->Append();
ConclTableRID->Value= atof(DBEdit1->Text.c_str());
ConclTableAttribute->Value=ComboBox3->Text;
ConclTableVal->Value=ComboBox4->Text;
ConclTableStatus->Value="A";
ConclTableCF->Value= atof(Edit1->Text.c_str());
ConclTable->Post();

//we use RID posted to avoid posting 2 times if we click the "Ok" button
RIDposted=atol(DBEdit1->Text.c_str());
PremTable->Close();
ConclTable->Close();

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 21

CurrentRow=0;
}

The “Prem2.db” table (the table with all the premises of each rule together) has also
to be updated. For doing so, we use the following function, which goes over the table
“Premises.db” looking for rows with the same RID to update the “Prem2.db” table.

//--
// void __fastcall TAddRuleForm::RefreshTable()
// Post current rule, close window and refresh rule viewer.
//--
void __fastcall TAddRuleForm::RefreshTable()
{

int CurrentRID;
AnsiString premises;
PremTable->Open();
LPremTable->EmptyTable();
LPremTable->Open();

PremTable->First();
CurrentRID=PremTableRID->Value;
premises=(AnsiString) PremTableAttribute->Value+" = "+(AnsiString)

PremTableVal->Value;
PremTable->Next();

// loop through the files of the table
while (! PremTable->Eof){

if (PremTableRID->Value==CurrentRID){
premises=premises+ " AND "+(AnsiString) PremTableAttribute->Value+

" = "+(AnsiString) PremTableVal->Value;
}
else{

// post current rule
LPremTable->Append();
LPremTableRID->Value= CurrentRID;
LPremTablePremises->Value= premises;
LPremTable->Post();

// next rule
CurrentRID=PremTableRID->Value;
premises=(AnsiString) PremTableAttribute->Value+" =

"+(AnsiString) PremTableVal->Value;
}
PremTable->Next();

}//end of while loop

// post current rule
LPremTable->Append();
LPremTableRID->Value= CurrentRID;
LPremTablePremises->Value= premises;
LPremTable->Post();

PremTable->Close();
LPremTable->Close();

}

The processes for editing and deleting an existing rule are approximately the same.
Note that the state of the database must be consistent, so that if we modify a particular part of
a rule in one table, the others will have to be appropriately modified.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 22

6. The Inference Engine.

The inference engine serves as the inference and control mechanism for the expert
system and, as such, is an essential part of the expert system as well as a major factor in the
determination of the effectiveness and efficiency of such systems. Inference is the knowledge
processing element of an expert system.

The inference strategy used here and in most expert systems is known as modus
ponens. Simply stated, modus ponen means that if the premise of a rule is true, then its
conclusion is also true. Thus, if A infers B and A is true, then B is true. This may be
represented as A B.

6.1. SQL Compatible Tables Vs. Memory Arrays.

During the inference process the facts inferred and the state of the rules and premises
have to be stored somewhere. There are two possibilities: using tables in the same way stored
the rules in the knowledge base or using memory bidimensional arrays. Each approach has its
advantages and drawbacks:

SQL Compatible Approach.

“Purer” approach in the meaning that the data can be manipulated solely by SQL
queries and updates.

Homogeneity with the knowledge base.

It requires a lot of writings to the hard drive, because rule and premise status is
continually changing. Thus, efficiency during the inference process decreases.

It requires duplication of the database at the beginning of each consultation because,
otherwise the set of rules of the knowledge base (static during the inference process)
would be changed. In the same way, at the end of the consultation the original set of
tables would have to be restored. Therefore, efficiency decreases and double hard drive
space is required (this can be specially problematic for large knowledge bases)

Memory Bidimensional Arrays.

Data is stored in RAM memory, therefore the modification of rule and premises status is
efficient.

No duplication of data is needed. At the beginning of each session an empty set of
arrays will be generated to store data generated during the inference process.

C++ Builder facilitates the manipulation of bidimensional arrays of strings by providing
the class TStringGrid.

It is not homogenous with the rule representation in the knowledge base.

It is not possible to execute SQL queries over the data stored in the arrays.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 23

The approach chosen was using memory arrays because of the enormous loss of
efficiency that continuous hard-drive writings and reading involve. The ideal data structure
would have been a SQL compatible data structure stored in RAM memory.

6.1. Information before starting the inference process.

Before starting the inference process, we optionally can supply initial facts to the
inference engine, as well as specifying the Threshold Value (which will be discussed later) for
the propagation of certainty factors in rules. In this way, we avoid most of the annoying
typical expert system Question-and-answer interface. The inference engine will try to reach a
conclusion with the facts given in the initial stage, and only if it can not, then it will ask the
user for the value of an specific attribute necessary to fill a gap.

6.2. Search Strategies.
The purpose of an expert system is to develop and recommend a proposed solution to

a given problem. To accomplish this task, the expert system must conduct a search for the
solution; and it is the responsibility of the inference engine in particular to perform this search
in an efficient and effective manner.

In the search process we are faced with a number of alternatives (i.e. potential
solutions) and a variety of constraints. For example, when faced with the problem of
determining just what automobile to purchase, our alternatives theoretically include literally
all of the different automobiles in existence. However, we are also faced with certain
constraints, such as price limitations, style, availability… Such constraints serve to filter out
the number of potential automobiles from which we will make our selection.

The search strategy implied in the selection of a car may be described in more
technical terms as a forward chaining process. That is, we begin the process with certain data
concerning the type of automobile desired, its style, cost, speed, mileage, and so on. These
data, along with our constraints, serve to filter out the majority of the potential alternatives
and thus we ultimately arrive at only a few automobiles from which we make our final
selection.

We could approach the automobile selection problem from an entirely different
direction by first specifying a particular car for purchase, and the determining whether or not
it meets our needs. When using this approach, we are said to be employing backward
chaining.

The two fundamental search strategies by an expert system (specifically the inference
engine) are then forward and backward chaining. Forward chaining proceeds from premises
(or data) to conclusions, and is said to be data driven (Turban, 1992). Backward chaining
proceeds from a conclusion (hypothesis), and then seeks evidence that supports that
conclusion. Backward chaining is often called a goal driven approach and proceed from the
right of a rule to the left5.

Ultimately, the conclusion reached by both approaches must be the same, but their
search efficiency is dependent on the nature of the problem faced. Specifically, if one has a
few premises and many conclusions, then forward chaining is generally the best search

5 E.g. Prolog inference engine works backward chaining.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 24

strategy. Otherwise, with many premises and relatively few conclusions, we should normally
employ backward chaining.

In the Project, both forward and backward algorithms were implemented and it is up
to the user at the beginning of the consultation session to choose which approach to use.
Normally, in a commercial expert system just one approach is implemented. However, the
implementation of bot of them allow us to compare and give us a better understanding of the
different search methods available during the inference process.

6.3. The Forward Chaining Algorithm.
The implementation of the forward chaining algorithm can be described as a

sequence of eight steps (Ignizio, 1991).

1. Initialization.
Establish three empty tables: the Working Memory table, the Attribute-Queue table, and
the Rule/Premise Status table (that it is, in fact, the joining of the premise and conclusions
tables by the field “RID”).

The Working memory table will be used to record all assertions (i.e., all the facts deduced
during the consultation). The Attribute-Queue table records, in order, all attributes for
which a value has been assigned or is being sought. The attribute at the top of this table is
the attribute presently under consideration. The Rule/Premise Status table records the rule
status (i.e. Active “A”, Discarded “D”, Triggered “T”, or Fired “F”) as well as the status
of each premise clause (i.e. Active “A”, False “F”, or True “T”). All active premises
clauses and rules are initially loaded in the Rule/Premise Status table.

Structure:

// define structure Attribute-Value tuple
struct AV_tuple{

char attribute[40];
char value [40];
float cf;

};
struct Attribute{

char attribute[40];
int RID;

};
AV_tuple * WorkMem_Table; // Working Memory Table
Attribute * AttQueue_Table; // Attribute-Queue Table

(…)
PremisesTb->Open();
ConclTb->Open();

ResetQuery(Query1, "select * from conclusion where status=\"A\"");
LoadGrid(Query1, ConclusionsGrid);

ResetQuery(Query1, "select premises.RID,
premises.PID,premises.Attribute,premises.Val,premises.Status,premises.
CF from premises,conclusion where conclusion.status=\"A\" and
premises.RID=conclusion.RID");

LoadGrid(Query1, PremisesGrid);

2. Start Inference.

- If the user gave no entries at the beginning of the consultation, ask him an initial fact.
Record this attribute at the top of the Attribute-Queue table. Also, record this attribute
and its associated value at the bottom of the Working Memory table.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 25

- Otherwise, take the last fact given by the user at the beginning of the consultation,
record the attribute at the top of the Attribute-Queue table. Also, record the attribute
and its associated value at the bottom of the Working Memory table.

3. Rule scan.
Examine the Rule/Premise Status table. If no rules are active, STOP. Otherwise, scan the
active rule-set premise clauses for all occurrences of the attribute on the top of Attribute-
Queue table, and record any changes in status of the premise clauses of the active rule set.

(a) If the premise6 of any rule is false, discard that the rule.

(b) If the premise of any rule is true, then mark the associated rule as being triggered.
Place its conclusion attribute and RID at the bottom of the Attribute-Queue table.

(c) If no rules are presently in the triggered state (i.e. via a check of the Rule/Premise
Status table, go to STEP 5. Otherwise, go to STEP 4.

4. Rule firing.
Cross out the topmost attribute on the Attribute-Queue table. Change the status of the rule
associated with the new topmost attribute from triggered to fired. Place conclusion at the
bottom of the Working-Memory Table.

5. Queue Status.
Cross out the topmost attribute on the Attribute-Queue table. Proceed to STEP 6.

6. Convergence Check.
Scan the Rule/Premise Status table for any active rule. If no such rules are found STOP.
Otherwise Proceed to STEP 7.

7. Query.
- If there are still initial facts given by the user that were not used, take one.
- Otherwise, query the user for the value of an attribute in any of the rule’s free premise

clauses.
Go to STEP 8.

8. Updating.
Place the associated attribute (and rule number) on the top of the Attribute-Queue table.
Also, place conclusion at the bottom of the Working-Memory Table.
Return to STEP 3.

6 By “premise”, I refer to the entire premise of the rule, which may be composed of several
premise clauses.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 26

1. Initialization

7. Query the
user.

6.
Convergence

check

5. Queue
Status and
updating.

4. Rule firing

3. Rule scan
and

updating.

2. Start
inference

STOP
Are there
active rules ?

Are there
Triggered rules ?

Are there
active rules ?

8. Attribute-Queue and
Working Memory

updating.

Yes

Yes

Yes

No

No

No

Fig.3. Forward Chaining Algorithm flow chart.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 27

The implementation of the forward chaining algorithm in C++ was written as follows:

/**/
/**/
/** FORWARD CHAINING ALGORITHM **/
/**/
/**/

//--
// void __fastcall TInferenceForm::FwdButtonClick(TObject *Sender)
//--
void __fastcall TInferenceForm::FwdButtonClick(TObject *Sender)
{

TMsgDlgButtons Btns;
char error[256];

CleanGrids(); // empty results from former queries
MainForm->ThresholdValue=atoi(Edit2->Text.c_str());
PageControl1->SelectNextPage(true);
ForwardChaining();

if (RulesGrid->Cells[0][1]==""){ // no conclusions found
// check certainty factor

Btns<<mbOK;
wsprintf(error, "No conclusions found");
MessageDlg(error, mtError,Btns,NULL);
return;

}
else{

ConclBtn->Enabled=true;
}

}
//--
// void __fastcall TInferenceForm::ForwardChaining(void)
// Forward Chaining algorithm. Consists of 8 steps.
//--
void __fastcall TInferenceForm::ForwardChaining(void)
{
// STEP 1: Initialisations

AnsiString Val;
int position;

PremisesTb->Open();
ConclTb->Open();

ResetQuery(Query1, "select * from conclusion where status=\"A\"");
LoadGrid(Query1, ConclusionsGrid);

ResetQuery(Query1, "select premises.RID,
premises.PID,premises.Attribute,premises.Val,premises.Status,premises.CF
from premises,conclusion where conclusion.status=\"A\" and
premises.RID=conclusion.RID");
LoadGrid(Query1, PremisesGrid);

aq_ind=0; // index for Attribute-queue table
top_most=0; // index for Attribute-queue table
wm_ind=0; // index for Working-memory table

// STEP 2: Start Inference
if(CurrentRow==0){//if the user gave no entries, we need an initial fact

PremisesTb->First(); //get first entry
Val= MainForm->Query(PremisesTbAttribute->Value);

// save results
strcpy(WorkMem_Table[wm_ind].attribute, PremisesTbAttribute-
>Value.c_str());
strcpy(WorkMem_Table[wm_ind].value, Val.c_str());

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 28

WorkMem_Table[wm_ind].cf=MainForm->CF;
FactsGrid->Cells[0][wm_ind]=PremisesTbAttribute->Value;
FactsGrid->Cells[1][wm_ind]=Val;
FactsGrid->Cells[2][wm_ind]=(AnsiString) MainForm->CF;
wm_ind++;

strcpy(AttQueue_Table[aq_ind].attribute,PremisesTbAttribute-
>Value.c_str());
AttQueue_Table[aq_ind].RID=PremisesTbRID->Value;
aq_ind++;

}
else{ // if the user gave entries, take as the initial fact

strcpy(WorkMem_Table[wm_ind].attribute, InitialFactsGrid-
>Cells[0][CurrentRow-1].c_str());

strcpy(WorkMem_Table[wm_ind].value, InitialFactsGrid-
>Cells[1][CurrentRow-1].c_str());

WorkMem_Table[wm_ind].cf=atof (InitialFactsGrid->Cells[1][CurrentRow-
1].c_str());
MainForm->CF= WorkMem_Table[wm_ind].cf;
FactsGrid->Cells[0][wm_ind]=InitialFactsGrid->Cells[0][CurrentRow-1];
FactsGrid->Cells[1][wm_ind]=InitialFactsGrid->Cells[1][CurrentRow-1];
FactsGrid->Cells[2][wm_ind]=InitialFactsGrid->Cells[2][CurrentRow-1];
wm_ind++;

strcpy(AttQueue_Table[aq_ind].attribute,InitialFactsGrid-
>Cells[0][CurrentRow-1].c_str());
AttQueue_Table[aq_ind].RID=-1; // it does not come from a rule, but
from the user
aq_ind++;
CurrentRow--;

}

// STEP 3: Rule scan and check for convergence
STEP3: if (ForwardChainingStep3()){

if (CheckField(ConclusionsGrid, 3, "T")==-1){// check for
triggered rules

ForwardChainingStep5(); // no triggered rules
position= ForwardChainingStep6();
if (position!= -1){// convergence check. True if there
are active rules still.

ForwardChainingStep7(position); // Query value
goto STEP3;

}
}
else{

ForwardChainingStep4(); // there are triggered rules
goto STEP3;

}
}
// else End

}

//---
// bool __fastcall TInferenceForm::ForwardChainingStep3(void)
// Forward Chaining algorithm. 3rd. step. If there are no active rules or
// triggered rules returns FALSE.
//--
bool __fastcall TInferenceForm::ForwardChainingStep3(void)
{

char TopAttribute[40];
char AttrVal[40];
int i;

if (CheckField(ConclusionsGrid, 3, "A")==-1){ // check for active
rules

if (CheckField(ConclusionsGrid, 3, "T")==-1) // check for active rules

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 29

return false; // no active or triggered rules
else return true;

}
strcpy(TopAttribute,AttQueue_Table[top_most].attribute);
// top of Attribute queue table

// update state of premises and conclusions
for (i=0; i<wm_ind;i++){

if (strcmp (WorkMem_Table[i].attribute,TopAttribute)==0)
strcpy(AttrVal,WorkMem_Table[i].value);

}
UpdateRuleSet((AnsiString) TopAttribute,(AnsiString) AttrVal,
PremisesGrid, ConclusionsGrid);

return true; // there were active rules
}

//--
// void __fastcall TInferenceForm::ForwardChainingStep4(void)
// Forward Chaining algorithm. 4th. step. Rule firing
//--
void __fastcall TInferenceForm::ForwardChainingStep4(void)
{

int position;

// cross topmost attribute on Attribute-Queue Table
top_most++;

// change rule associated with topmost attribute from triggered to
// fired
position=UpdateGrid ((AnsiString) AttQueue_Table[top_most].RID, "F",
ConclusionsGrid); // change conclusion state to "fired"

// place conclusion at the bottom of the Working-Memory Table
strcpy(WorkMem_Table[wm_ind].attribute, ConclusionsGrid-
>Cells[1][position].c_str());

strcpy(WorkMem_Table[wm_ind].value, ConclusionsGrid-
>Cells[2][position].c_str());
MainForm->CF= WorkMem_Table[wm_ind].cf;

WorkMem_Table[wm_ind].cf = atof (ConclusionsGrid-
>Cells[4][position].c_str());

// show rule fired in Grid
ShowRule(Query1, (AnsiString) AttQueue_Table[top_most].RID,
RulesGrid);

FactsGrid->Cells[0][wm_ind]=ConclusionsGrid->Cells[1][position];
FactsGrid->Cells[1][wm_ind]=ConclusionsGrid->Cells[2][position];
FactsGrid->Cells[2][wm_ind]=ConclusionsGrid->Cells[4][position];
wm_ind++;

}

//--
// void __fastcall TInferenceForm::ForwardChainingStep5(void)
// Forward Chaining algorithm. 5th. step. Queue status.
//--
void __fastcall TInferenceForm::ForwardChainingStep5(void)
{

// cross topmost attribute on Attribute-Queue Table
top_most++;

}

//--
// int __fastcall TInferenceForm::ForwardChainingStep6(void)
//Forward Chaining algorithm. 6th. step. Convergence check and rule marking.
//--

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 30

int __fastcall TInferenceForm::ForwardChainingStep6(void)
{

return (CheckField(ConclusionsGrid, 3, "A"));
}

//--
// void __fastcall TInferenceForm::ForwardChainingStep7(int position)
// Forward Chaining algorithm. 7th. step. Query.
//--
void __fastcall TInferenceForm::ForwardChainingStep7(int position)
{

int premise;
AnsiString value;

if(CurrentRow>0){ // there are still facts given by the user
// place attribute of premise in position in the Grid on the top
// of the Attribute-queue table
if (top_most !=0){

top_most--;
strcpy(AttQueue_Table[top_most].attribute,InitialFactsGrid-
>Cells[0][CurrentRow-1].c_str());
AttQueue_Table[top_most].RID=-1;

}
else{

MoveAQTable();
strcpy(AttQueue_Table[top_most].attribute,InitialFactsGrid-
>Cells[0][CurrentRow-1].c_str());
AttQueue_Table[top_most].RID=-1;

}

// place attribute plus its value at the bottom of the Working-Memory Table
FactsGrid->Cells[0][wm_ind]=InitialFactsGrid->Cells[0][CurrentRow-1];
FactsGrid->Cells[1][wm_ind]=InitialFactsGrid->Cells[1][CurrentRow-1];
FactsGrid->Cells[2][wm_ind]=InitialFactsGrid->Cells[2][CurrentRow-1];

strcpy(WorkMem_Table[wm_ind].attribute,FactsGrid-
>Cells[0][wm_ind].c_str());

strcpy(WorkMem_Table[wm_ind].value,FactsGrid-
>Cells[1][wm_ind].c_str());

WorkMem_Table[wm_ind].cf = atof(FactsGrid->Cells[2][wm_ind].c_str());
MainForm->CF= WorkMem_Table[wm_ind].cf;
wm_ind++;
CurrentRow--;

}

else{
premise=GetFreePremise(ConclusionsGrid->Cells[0][position],
PremisesGrid);

value= MainForm->Query(PremisesGrid->Cells[2][premise]);
ForwardChainingStep8(premise,PremisesGrid, value);

}
}

//--
// void __fastcall TInferenceForm::ForwardChainingStep8
// (int position, TStringGrid *Grid, AnsiString Value)
//Forward Chaining algorithm. 8th. step. Update A-Q table and Working Memory
// Table.
//--
void __fastcall TInferenceForm::ForwardChainingStep8(int position,
TStringGrid *Grid, AnsiString Value)
{

// place attribute of premise in position in the Grid on the top of the
// Attribute-queue table
if (top_most !=0){

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 31

top_most--;
strcpy(AttQueue_Table[top_most].attribute,Grid-
>Cells[2][position].c_str());
AttQueue_Table[top_most].RID=atoi(Grid->Cells[0][position].c_str());

}
else{

MoveAQTable();
strcpy(AttQueue_Table[top_most].attribute,Grid-
>Cells[2][position].c_str());
AttQueue_Table[top_most].RID=atoi(Grid->Cells[0][position].c_str());

}

//place attribute plus its value at the bottom of the Working-Memory Table
strcpy(WorkMem_Table[wm_ind].attribute, Grid->Cells[2][position].c_str());
strcpy(WorkMem_Table[wm_ind].value, Value.c_str());
WorkMem_Table[wm_ind].cf = MainForm->CF;

FactsGrid->Cells[0][wm_ind]=Grid->Cells[2][position];
FactsGrid->Cells[1][wm_ind]=Value;
FactsGrid->Cells[2][wm_ind]=(AnsiString) MainForm->CF;
wm_ind++;

}

6.4. The Backward Chaining Algorithm.

The implementation of the backward chaining algorithm can be described as a
sequence of six steps (Ignizio, 1991).

1. Initialization.
Establish three empty tables, the Working Memory Table, the Goal Table, and the
Rule/Premise Status table. The Working Memory Table and the Rule/Premise Status table
do the same function as in the forward chaining algorithm. The goal table records, in
order, those attributes for which a values is sought.

2. Start inference.
Save facts given by the user at the beginning and update Rule/Premise Status table.
Specify a final goal (i.e., a conclusion clause attribute). Place the associated goal attribute
at the top of the Goal table.

3. Rule scan.
Scan the conclusion clauses of the active rules (i.e., rules that have not yet been fired or
discarded) to find any occurrence of the goal attribute presently on the top of the Goal
table.

(a) If the Goal table is empty, STOP

(b) If only one such rule may be found, go to step 6. If several such rules may be found,
and any of these are triggered, select any one of the triggered rules and proceed to
step 6. Otherwise, select one rule from among the rules found that contains the
subject goal attribute in its conclusion clause set, and go to step 6.

(c) If no active rules are found that contain the subject goal attribute
in their conclusion clause set, then go to step 4.

4. Query.
Query the user for the goal attribute on top of the Goal Table, record his or her response,
remove the top goal attribute from the Goal table and place it, plus its value (as supplied
by the user), in the Working Memory table. Go to step 5.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 32

5. Rule/premise status update.
Using the contents of the Working Memory table, update the Rule/Premise Status table.
Specifically, if the premise of any rule is false, discard that rule, and if the premise is
true, trigger that rule. Return to step 3.

6. Rule evaluation.
For the rule found in step 3:

(a) If this rule is triggered, then remove the current topmost goal attribute from the Goal
table and place it, plus its value, in the Working Memory table. Change the status of
this rule from triggered to fired. Go to step 5. Otherwise (i.e., if this rule is not
triggered) proceed to step 6b, below.

(b) If this rule is not triggered, then select the first unknown premise attribute of the rule
and place it, plus the rule number, at the top of the Goal table. Return to step 3.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 33

1. Initialization

6. Rule
evaluation

3. Rule scan
and

updating.

2. Start
inference

STOP
Are there entries
in the Goal Table?

Yes

Yes
No

No

Are there
active rules which

contain the attribute in top of
the Goal Table ?

Is the rule in the
Triggered state?

No

Yes

5. Rule/Premise
Status update

4. Query

Fig.4. Backward Chaining Algorithm flow chart.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 34

Source code of the backward chaining algorithm:

/**/
/**/
/** BACKWARD CHAINING ALGORITHM **/
/**/
/**/
//--
// void __fastcall TInferenceForm::BackButtonClick(TObject *Sender)
//--
void __fastcall TInferenceForm::BackButtonClick(TObject *Sender)
{

CleanGrids(); // empty results from former queries
PageControl1->SelectNextPage(true);
MainForm->ThresholdValue=atoi (Edit2->Text.c_str());
BackwardChaining();
ConclBtn->Enabled=true;

}

//--
// void __fastcall TInferenceForm::BackwardChaining(void)
// Forward Chaining algorithm. Consists of 6 steps.
//--
void __fastcall TInferenceForm::BackwardChaining(void)
{
// STEP 1: Initialisations

AnsiString Val;
int position, i;
PremisesTb->Open();
ConclTb->Open();
bool iterate;

ResetQuery(Query1, "select * from conclusion where status=\"A\"");
LoadGrid(Query1, ConclusionsGrid);

ResetQuery(Query1, "select premises.RID,
premises.PID,premises.Attribute,premises.Val,premises.Status,premises.CF
from premises,conclusion where conclusion.status=\"A\" and
premises.RID=conclusion.RID");

LoadGrid(Query1, PremisesGrid);

goal_ind=0; // index for Goal table
top_goal=0; // index for top of Goal table
wm_ind=0; // index for Working-memory table

// copy contents of initial facts given by the user in the Facts grid
CopyGrid(InitialFactsGrid, FactsGrid);

// STEP 2: Start Inference
// save results given by the user in the initial facts and update rules
for (i=0;i<CurrentRow;i++){

MainForm->CF=atof(InitialFactsGrid->Cells[0][i].c_str());
UpdateRuleSet(InitialFactsGrid->Cells[0][i],InitialFactsGrid-
>Cells[1][i],PremisesGrid,ConclusionsGrid);

}

ConclTb->First(); //get first entry
// save results
strcpy(Goal_Table[top_goal].attribute, ConclTbAttribute->Value.c_str());
Goal_Table[top_goal].RID=ConclTbRID->Value;
goal_ind++;

// STEP 3: Rule scan and check for convergence
//scan active rules for occurences of the attribute in the top of the goal
// table, giving prority to triggered rules
do{

iterate=BackwardChainingStep3();

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 35

}while(iterate);

}

//---
// bool __fastcall TInferenceForm::BackwardChainingStep3(void)
// Backward Chaining algorithm. 3rd. step. Returns false if the goal
// table is empty
//---
bool __fastcall TInferenceForm::BackwardChainingStep3(void)
{

int position;

if (top_goal==goal_ind){ // if both indexes are equal => the goal
table is empty

return false;
}
else{

position=GetRule(ConclusionsGrid,(AnsiString)
Goal_Table[top_goal].attribute);
if (position != -1){

BackwardChainingStep6(position);
}
else{

BackwardChainingStep4();
BackwardChainingStep5();

}
return true;

}
}

//--
// void __fastcall TInferenceForm::BackwardChainingStep4(void)
// Backward Chaining algorithm. 4th. step. Query.
//--
void __fastcall TInferenceForm::BackwardChainingStep4(void)
{

AnsiString value;

value= MainForm->Query((AnsiString) Goal_Table[top_goal].attribute);

// place topmost attribute plus its value on the Working Memory Table
strcpy(WorkMem_Table[wm_ind].attribute, Goal_Table[top_goal].attribute);
strcpy(WorkMem_Table[wm_ind].value, value.c_str());
WorkMem_Table[wm_ind].cf = MainForm->CF;

FactsGrid->Cells[0][wm_ind]=(AnsiString) Goal_Table[top_goal].attribute;
FactsGrid->Cells[1][wm_ind]=value;
FactsGrid->Cells[2][wm_ind]=(AnsiString) MainForm->CF;
wm_ind++;

// cross topmost attribute on Goal Table
top_goal++;

}

//--
// void __fastcall TInferenceForm::BackwardChainingStep5(void)
// Backward Chaining algorithm. 5th. step. Rule/premise status update.
//--
void __fastcall TInferenceForm::BackwardChainingStep5(void)
{

UpdateRuleSet((AnsiString) WorkMem_Table[wm_ind-1].attribute,
(AnsiString) WorkMem_Table[wm_ind-1].value, PremisesGrid,
ConclusionsGrid);

}

//--
// void __fastcall TInferenceForm::BackwardChainingStep6(int position)

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 36

// Backward Chaining algorithm. 6th. step. Rule evaluation.
//--
void __fastcall TInferenceForm::BackwardChainingStep6(int position)
{

int premise_nr;

if (ConclusionsGrid->Cells[3][position] =="T"){
// if rule is triggered => fire it
// place topmost attribute plus its value on the Working Memory Table

strcpy(WorkMem_Table[wm_ind].attribute, ConclusionsGrid-
>Cells[1][position].c_str());
strcpy(WorkMem_Table[wm_ind].value, ConclusionsGrid-
>Cells[2][position].c_str());
WorkMem_Table[wm_ind].cf = MainForm->CF;

// show rule fired in Grid
ShowRule(Query1, ConclusionsGrid->Cells[0][position],
RulesGrid);

FactsGrid->Cells[0][wm_ind]=(AnsiString)
Goal_Table[top_goal].attribute;
FactsGrid->Cells[1][wm_ind]=ConclusionsGrid-
>Cells[2][position].c_str();
FactsGrid->Cells[2][wm_ind]=(AnsiString) MainForm->CF;
wm_ind++;

// cross topmost attribute on Goal Table
top_goal++;

// update rule-premise table
ConclusionsGrid->Cells[3][position]="F"; //fired

}
else{

// select first unknown premise attribute of the rule
premise_nr=GetFreePremise(ConclusionsGrid->Cells[0][position],
PremisesGrid);

// place it at the top of the Goal table
if (top_goal !=0){

top_goal--;
strcpy(Goal_Table[top_goal].attribute,PremisesGrid-
>Cells[2][premise_nr].c_str());
Goal_Table[top_goal].RID=atoi(PremisesGrid-
>Cells[0][premise_nr].c_str());

}
else{

MoveGoalTable();
Strcpy(Goal_Table[top_goal].attribute,PremisesGrid-
>Cells[2][premise_nr].c_str());
Goal_Table[top_goal].RID=atoi(PremisesGrid-
>Cells[0][premise_nr].c_str());

}
}

}

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 37

7. Enhancements.

7.1. Uncertainty.

Up until now, our focus has been on deterministic rules. However, as the structure of
the database reveals, the system also provides support for uncertainty. The real world in fact
is characterised by uncertainty and it is desirable that this characteristic is available in any
expert system.

In general, there are two primary sources of uncertainty that may be encountered in
the expert system:

• Uncertainty with regard to the validity of a knowledge base rule.
• Uncertainty with regard to the validity of a user response.

The method employed to represent uncertainty is using Certainty Factors. There are
several methods of using certainty factors in handling uncertainty in knowledge-based
systems. We use a numeric value associated with each rule and each premise that ranges from
0 to 100 (Turban, 1992). 0 represents absolute certainty that a rule or premise is false, while
100 represents absolute certainty that the rule/premise is true. Note that certainty factors are
not probabilities.

The propagation of certainty factors is made following the approach used in MYCIN:

• The certainty factor of the whole premise is the minimum of the CFs of each
premise.

E.g.: IF sky_color = grey (CF = 70)
AND month = April (CF = 60)
THEN weather = rainy.

Thus, the CF of the premise will be the minimum of the two, that is 60.

• The certainty factor of the conclusion will be calculated by multiplying the actual
value of the conclusion CF by the CF of the premise.

CF(rule)’ = (CF(rule) * CF(premise))/100

In the application, the certainty factor of the premise (IF part) is calculated by storing
in a variable the temporal minimum of the premises’ certainty factors while we update the
status of the premises:

The fragment of code that calculates the accumulated CF of the premises is:

float TemporaryCF=100;

for (i=0; Grid->Cells[0][i] !="EOF"; i++){
if (Grid->Cells[0][i]==RID){

if (Grid->Cells[4][i]=="F"){ // mark the rest of premises in
the rule as false to increase efficiency

mark=true;
break;
}
else{

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 38

if (Grid->Cells[4][i]=="A")
break;

else{ // true premise => calculate accumulated CF
if (atoi (Grid->Cells[5][i].c_str())< (int)
TemporaryCF){ // new minimum

TemporaryCF=atof (Grid-
>Cells[5][i].c_str());
}

}
}

}
} //end of for loop

The calculation of the certainty factor of the conclusion is calculated by the function
“CalcCF”:

//--

// float CalcCF(float preconditionCF, int Position, TStringGrid *Grid)
// Calculates the Certainty Factor of the rule given the CF of the premises
//--

float CalcCF(float preconditionCF, int Position, TStringGrid *Grid)
{

float conclusionCF, CF;
char cf[5];
strcpy(cf, Grid->Cells[4][Position].c_str());
conclusionCF=atof (cf);
CF=(conclusionCF*preconditionCF)/100;
// New CF = (Premise CF * Conclusion CF)/100

if (CF<MainForm->ThresholdValue){
return 0; // if it is under the Threshold Value, return 0 as

the C.F.
}
else{

MainForm->CF=CF;
return (CF);

}
}

7.2. The Threshold Value.

In the function above, note that we use the variable “ThresholdValue”. The threshold
level was use in MYCIN also, but in that expert system it was a static value (0.2 in a scale
from –1 to 1). In this implementation, the user can change the value of the threshold level in
each consultation. The threshold level discards rules under a certain value of certainty.

7.3. Explanation Facility.

At the end of a consultation, the system is able to justify why a particular solution
was reached. The explanation consists in keeping track of the facts inferred and the rules
applied and present them to the user at the end of the consultation, if he or she requires them.

In the following figure a particular explanation is showed.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 39

Fig.5. Explanation facility provided by the expert system shell.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 40

8. Testing.

The system was tested during all the design process. Most of the times, the method that I
have found more useful and effective is printing the code on paper and tracing the program
manually to see what portions of code could be improved or where is a specific flaw of the
application.

In fact, for any programmer who reads the code for forward or backward chaining
algorithms it would be difficult to know how the algorithms work without using a particular
example and apply the algorithm to it step-by-step.

Obviously, the debugging facilities provided by modern software development tools such
as C++ Builder also help in the task of testing and debugging the code, specially for small
errors in assignations or stopping conditions in loops. A special feature that I really appreciate
in C++ Builder (available in most of other visual programming packages) is the inspection of
objects as a whole, being able to watch/modify (almost) any property of the object inspected.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 41

User Manual

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 42

1. Installation.

To install the Expert System Shell application, simply run the “setup.exe” application
from Windows’95 or Windows’98 and follow the steps indicated in the screen (E.g.
destination directory). The interface of the set-up application is the standard provided with
almost every MS Windows application.

2. Running the Application.

The application may be run using the common steps for every MS Windows
application, i.e., either by double-clicking the icon of the application in Windows Explorer, or
typing the full path in the “Run” option of the “Start” menu (Installation directory +
expert.exe).

3. Start menu of the Expert System.

As in other applications (such as MS PowerPoint), when we run the application we
get an initial window which guide us through the main options, i.e. editing the knowledge
base, or starting a new consultation. Also the user can simply start the application by clicking
“Cancel” or selecting the radio button of “Start Expert System Shell”.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 43

Fig.6. Start menu of the application.

4. Editing the knowledge base.

Before we can edit the knowledge base, we must supply the application with the path
where the knowledge base is stored. Then we get a form with all the rules of the knowledge
base in a grid. We can edit, delete or add rules from/to the knowledge base.

Fig.7. Rule viewer.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 44

In order to edit an existing rule we just have to double-click on the desired
rule. The form for adding/editing rules is showed:

Fig. 8. Form for adding/editing a rule.

In the left side of the form, we can add or delete premises to/from the rule. The
combo-boxes are automatically loaded with the possible values for each attribute. The RID
number is automatically generated by the application, although we can change manually if
there is not any rule with the same RID.

In the right side of the form, we specify the conclusion of the rule and associate a
certainty factor to the rule, either using the edit box or the track bar. When we click “Add
Rule” or “Ok” the rule is posted (after checking that the fields were filled correctly) and the
Rule Viewer form is updated. The difference between the two buttons is that “Ok” posts the
rule and closes the window and “Add Rule” just posts the rule.

5. Inference with the Expert System Shell.

To start a consultation session with the expert system shell we select “Inference” from
the menu bar and the “Start inference”. If we did not specify a knowledge base the system
will ask us for the path of the knowledge base we want to consult.

We can provide data to the system either at the beginning of the consultation or
during the consultation. Also, we must associate a certainty factor to each fact that we assert.

The threshold value can be different for each consultation, we can modify it using the
track bar or the edit box in the same way we modify certainty factors. The value by default is
0, i.e. no rule is discarded if the certainty factor is low (obviously, since no rule can have a
certainty factor under 0).

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 45

Fig. 9. Start of the inference process.

To start the inference engine we select the inference mechanism (forward or
backward) by clicking the appropriate button. Then, the system will try to reach a conclusion
from the facts given at the beginning (if any was given) and if it can not then it will ask the
user for more information.

The form used to ask the user for a value for a given attribute is shown next.

Fig. 10. Form for querying the user about a particular attribute.

During the inference process the expert system shows the known facts (either
provided by the user or by inference) and rules that it is firing.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 46

Fig.11. The inference process in action.

If the system reaches a conclusion, the conclusion button is enabled. If we click it the
conclusion is shown in an individual form. That explanation facility for the conclusion
reached (we just have to select the “tab” labelled “explanation”).

Fig.12. Conclusion Form.

If several conclusions are reached, the expert system will show consecutively each
conclusion. We can repeat the inference changing some values and see how the conclusions
reached by the expert system vary.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 47

Appendix A: Source Code.

Next, the most relevant units of the expert system implementation are shown. The
project is divided in several modules, which are connected as described in section 4 of the
technical manual (see page 15). Normally, each file corresponds to a form in the application,
except “UNIT.CPP” that is a repository of frequently used functions.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing. 48

Bibliography.

• Cawsey, A. (1998) The essence of Artificial Intelligence. Prentice Hall.

• Covington, M., Nute, D., Vellino, E. (1997) Prolog Programming in Depth. Prentice
Hall.

• Ignizio, J. (1991) Introduction to Expert Systems. Mc. Graw-Hill, Inc.

• Marquez, A. (1997) Programaciòn con C++ Builder. Anaya Multimedia.

• Newman, W.M., Lamming M.G. (1995) Interactive Sytem Design. Addison-Wesley.

• Quinlan, J.R. (1983) Learning Efficient Classification Procedures and Their Applications
to Chess End Games. Machine Learning: An Artificial Intelligence Approach.

• Rich, E. (1983) Artificial Intelligence. McGraw-Hill.

• Simon, H.A. and Newell, A. (1958) Heuristic Problem Solving: The next advance in
Operations Research. Operation Research, January-February 1958, pp.1-10

• Sommerville, I. (1992) Software Engineering. Addison-Wesley Publishing Company.

• Surko, P., Tips for Knowledge Acquisition, PC AI, May-June 1989. pp. 14-18.

• Turban, E. (1992) Expert Systems And Applied Artificial Intelligence. Prentice Hall.

