Main Project: Development of an Expert System Shell.

"Good work in Artificial Intelligence concerns the automation of

Bachelor of Science in Business Computing.

things we know how to do, not the automation of
things we would like to know how to do." -Alan Perlis.

Main Project: Development of an Expert System Shell.

ACKNOWIBAGEMENLES. ... s 3

Technical Manual

L INEFOAUCEION. ... e
1.1. Purpose...
1.2. Artificial Intelligence..........
1.3. The Growth of Expert Systems.. .
1.4. What iS an EXPert SYSIEM?.........ccciiiisiriicc e s
1.5. History of EXPert SYSLEMS. ...t s
16. Expert System Architecture.. .
1.7. Expert System Shells.10
18, Limitations...

2. RequirementsDefinition.

3. System Specification.13

3.1 Programming LanNQUAOE.c.cururururururiiecisicisisecisese s sssses 13
4.SySEM AT ChITECLUI 15
5. The KnowledgeBase. .16

5.1. Knowledge Acquisition. .
5.2. Knowledge Representation.

5.3. RuleEditor.................. .18
6.Thelnference Engine..........occoovcurinncencrinnnne .22
6.1. SQL Compatible Tables VS, MeMOry ArTays.........ccccururecurineciniirisisesisseses s 22
6.1. Information before starting the inference Process...........cccvcrncnnicsecrcsecsseenns 23
6.2. Search SIrategies..........ccevcurevcucireccinericisenenes .23
6.3. The Forward Chaining AIGOITTNM.cccoiiiiiiiiiieccee s 24
6.4. The Backward Chaining AIGOrthIM...........cccoieiiiii s 31
7.Enhancements. .
7.1. Uncertainty .
7.2. The Threshold VAIUE..........c.coiiiicc e e 38
7.3, EXPlanation FaClity..........ccoorruiiiiic e 38
BT ESHING. ...t 40
User Manual
LINSEAIALTON. ... 42
2.RUNNINGtREAPPIICALION. ..o 12
3.Start menu of the Expert System .42
4.Editingtheknowledgebase................. .43
5.Inferencewith the Expert System Shell. ... a4
APPENiX Az SOUFCECOUE. ...t a7
BiDIOGrAPNY. ... s 72

Bachelor of Science in Business Computing.

Main Project: Development of an Expert System Shell. Main Project: Development of an Expert System Shell.

Acknowledgements.

| wish to acknowledge the support and sympathy of many people and friends who
helped me in the development of this project. Thanks to my project supervisor, Paul
Powell (Lecturer in the Inditute of Technology, Sligo) for his guidance,
understanding and time dedicated to me. | wish to thank aso the rest of lecturers of
the Degree in Science of Computing at the Ingtitute of Technology, John O’ Donnell,
John Kelleher and Tom McCormack, who provided a source of many useful ideas
applied in this Project.

Particular mention must be made to the students of the Degree in Science of
Computing, whose collaboration and friendship far exceeded what can be considered
as hospitality with foreigners.

Finally, my family in Granada, although more than 2,000 miles away from here, were
a continuous source of support and courage for me.

Technical Manual

Bachelor of Science in Business Computing. 3 Bachelor of Science in Business Computing.

Main Project: Development of an Expert System Shell.

1. Introduction.

1.1. Purpose.

The following document describes the analysis and devel opment process carried out
during the elaboration of the Main Project of the Bachelor in Science of Business Computing.
The Project is included in the scope of Artificial Intelligence. The objective of the Project is
the development of an application, which will be used as a shell for the creation,
manipulation, and query of expert systems. Special efforts were put in developing an user
interface that will be easy to use and independent of the Knowledge Base used, taking
advantage of the actual windows environment that visual programming languages (such as
C++ Builder, Delphi, Visua C++ or Visual Basic) provide.

1.2. Artificial Intelligence

Artificia Intelligence is a difficult concept to define. Almost each expert in the field
of Al proposes a different definition. Some of the most smple and concise are the following:

“Artificia Intelligence is basicaly atheory of how the human mind works’

“Artificia Intelligence is the study of how to make computers do things at which, at the
moment, people are better” (Rich, 1983).

“Artificia intelligence is behaviour by a machine that, if performed by a human being, would
be called intelligent”.

The mgjor areas in which Artificial Intelligence has been applied are:
Natural Language Processing
Speech (Voice) Understanding
Robotics and Sensory Systems
Computer Vision and Scene Recognition
Intelligent Computer-Aided Instruction
Machine Learning (Neural Computing)
Expert Systems, which are the most popular and successful Al Technology at the
moment.

1.3. The Growth of Expert Systems.

There has been, in the past decade and present decade, a virtual explosion of interest
in the field known as expert systems (or, aternatively, as knowledge-based systems).
Appearing from seemingly out of nowhere, expert systems have quickly evolve from an
academic notion into a proven and highly profitable product —one that offers an efficient and
effective approach to the solution of an exceptionally wide array of important, rea-world
problems. In particular, expert systems provide a powerful and flexible means for obtaining
the solution to a variety of problems that often can not be dealt by other, more orthodox
methods. Typically, such problems have always been considered too large and too “messy”
for solution by conventional approaches. In this regard, expert systems may be considered to
represent a potent new instrument to solve this kind of complex problems.

Bachelor of Science in Business Computing.

Main Project: Development of an Expert System Shell.

By the end of the 1980s, the implementation of at least 2000 expert systems had
already been documented within the corporate world aone (Ignizio, 1991). However, most of
the implementations had occurred in the military sector, within local, state, and federal
government. The number of expert systems implementations has increased dramatically
during the 1990s. In the United States alone, revenues from expert systems reached $6 billion
by 1995 (nearly eight times over the receipts documented in 1989).

1.4. What is an Expert System?

Knowledge-based expert systems, or smply expert systems, are computer programs
that emulate the reasoning process of a human expert or perform in an expert manner in a
domain for which no human expert exists or the cost of human expertise is too high. Typicaly
they reason with uncertain information. In addition to the descriptive knowledge, Expert
Systems also imitate the expert’ s reasoning processes (procedural knowledge) to solve
specific problems

Expert Systems use human knowledge to solve problems that normally would require
human intelligence. These expert systems represent the expertise knowledge as data or rules
within the computer. These rules and data can be called upon when needed to solve problems.
Books and manuals have a tremendous amount of knowledge but a human has to read and
interpret the knowledge for it to be used. Conventional computer programs perform tasks
using conventional decision-making logic - containing little knowledge other than the basic
algorithm for solving that specific problem and the necessary boundary conditions. This
program knowledge is often embedded as part of the programming code, so that as the
knowledge changes, the program has to be changed and then rebuilt. Knowledge-based
systems collect the small fragments of human know-how into a knowledge base which is used
to reason through a problem, using the knowledge that is appropriate. A different problem,
within the domain of the knowledge base, can be solved using the same program without
reprogramming. The ability of these systems to explain the reasoning process through back-
traces and to handle levels of confidence and uncertainty provides an additional festure that
conventional programming does not handle.

Most expert systems are developed via specialised software tools called shells. These
shells come equipped with an inference mechanism (backward chaining, forward chaining, or
both), and require knowledge to be entered according to a specified format. These shells
qualify as languages, athough certainly with a narrower range of application than most
programming languages.

Expert systems are limited by the information contained in their database. It is up to
the knowledge engineer and the expert to work together to gather the correct information and
inference rules to be contained in the knowledge base. Therefore, a productive expert system
needs, not only a good inference engine, but aso a good knowledge base.

1.5. History of Expert Systems.

The digital computers have been since World War Il wherein the British and
Americans used them in such tasks as numerical computations and code bresking. However,
while the computer possesses an astonishing capability to store and manipulate data, few of us
would consider such activities to congtitute any form of true intelligence. These activities are
considered to be mechanical in nature.

Bachelor of Science in Business Computing.

Main Project: Development of an Expert System Shell.

However, among the early users and designers of digital computers were a smdl
group of “radicals’: they wondered if one might not be able to use the computer as a means
for smulating various aspects of human intelligence. As a result, a conference was held in
1956 in Hanover, New Hampshire, the home of Dartmouth College. In that conference, now
known as the Dartmouth Conference, certain forecasts for Artificia Intelligence were
established (Simon and Newell, 1958). Specifically, it was predicted that, by 1970, a
computer would do the following:

Be a grandmaster at chess.

Discover significant, new mathematical theorems.

Understand spoken language and provide language trandations.
Compose music of classical quality.

Rather obvioudly, and with our advantage of hindsight, these forecasts were too
ambitious. However, these forecasts did serve to encourage wider interest in Al and establish
certain godls for those within the field. But they also served to have a very negative impact as,
with the passage of time, it became clearer that these forecasts were not going to be met and
had been, at least, unredlistic.

The early enthusiasm in Al was, by the mid-1960s, considerably subdued. In fact, Al
seemed to virtually vanish at about that time and it did not resurrect until the 1980s. The Al
community felt that it was time to reconsider the goals. Developments and research in Al
should be as follows:

- More modest.

- More focused.

- Directed toward a narrow sector of expertise, rather than general, overall
intelligence.

The name given to this sub-field of Al was expert systems, or knowledge-based
systems.

Some of the most relevant Expert Systems have been:

DENDRAL: it was the first expert system and was started in 1965. Edward Feigenbaum
helped to develop DENDRAL and in the process he created and named the field of
Knowledge Engineering.

MY CIN: it was the first system that deliberately mimicked human behaviour in terms of
its questioning strategy. It was also the prototype for dl rule based expert systems.
Therefore, MY CIN is a continuous point of reference in the development of this project.

MACSYMA: it is a symbolic mathematics engine that does algebra, calculus, differential
equations, etc. It is an example of old style knowledge systems. It uses brute force and
exhaustive searching to solve problems.

HEARSAY | and I1: they were the prototypes for speech recognition involving sentences
rather than just individual words.

INTERNIST: it isthe largest expert system currently being developed. 1dedlly it will be a
diagnostic tool for the entire field of internal medicine. In the last 25 years they have
covered 25% of the field. In this system, diseases, symptoms, etc. are coded as objects,
which are allowed to interact according to a series of rules.

Bachelor of Science in Business Computing.

Main Project: Development of an Expert System Shell.

PROSPECTOR: it is an ore-deposit locator. It was the first system to use semantic
networks in its knowledge base.

PUFF: it is a diagnostic tool that interprets the results of respiratory tests. It was designed
using an expert system shell derived from MY CIN called EMY CIN. Whereas MY CIN to
50 person-years to complete, PUFF took 5.

Later expert systems were primarily designed by and/or for companies. Instead of
being research tools they are more commercially oriented and are expected to turn a profit. In
1990, more than 50% of the businesses listed in Fortune 500 were developing expert systems,
either for in house use or to sell.

A major goal of expert system developers is to make the systems more artificially
intelligent. The current focus is on designing programs that have a deeper theoretical
understanding of their domain, and that can provide deeper explanations. New expert systems
utilise meta-knowledge about their own knowledge base, inference engines and general
congtruction to develop more informed heuristics to implement in their rules systems. As
programs grow larger and more complex, the program must assume some of the burden of
understanding its own behaviour, documenting and justifying itself, and even modifying itself
when necessary.

1.6. Expert System Architecture.

The following figure depicts one possible representation of an expert system:

Bachelor of Science in Business Computing.

Main Project: Development of an Expert System Shell.

L ——
£ 3
’

; [
["Working Knowlefige

| Memory | *,,Base” ~—Rule Adjuste
L [

‘ User Interface I

Knowieagé Engineer

Fig.1. A generic expert system.

Note that access capabilities for two types of human users are provided. One is that
individual designated as the knowledge engineer. The knowledge engineer is the person
responsible for placing the knowledge into the expert system’s knowledge base (the portion of
the of the expert system shown at the top of Fig.1.) He or she accomplishes this through the
interface and the rule adjuster.

The knowledge engineer is also the interface between the human expert (if thereis
one) and the expert system. That is, the knowledge engineer somehow must capture the
expertise of the human expert and then express this expertise in a format that may be stored in
the knowledge base and will be used by the expert system. In the ideal expert system, there
would be no need for a knowledge engineer. The domain expert would interact directly with
the expert system and would replace the knowledge engineer in the figure.

The second type of individual with access to the expert system is designated, in Fig.1.
as smply the user. This designation refers to anyone who will be using the expert system as a
decision-making aid (i.e., as a consultant). The successful knowledge engineer must always

Bachelor of Science in Business Computing.

Main Project: Development of an Expert System Shell.

keep in mind that the expert system is ultimately intended for the benefit of the user, not for
that of the knowledge engineer or the domain expert.

Theinterface handles dl input to the computer and controls and formats al output. A
well-designed interface would be one that exhibits ease of use (so called user friendliness),
even for the novice user. The interface also handles all communication with the knowledge
engineer during the development of the expert’s system knowledge base. Another property
that is sometimes exhibited in expert systems is that of explanation.

Theinference engine is employed during a consultation session. During consultation,
it performs two primary tasks. Firgt, it examines the status of the knowledge base and working
memory so as to determine what facts are known at any given time, and to add any new facts
that became available. Second, it provides for the control of the session by determining the
order in which inferences are made. The inference engine serves to merge facts with rules to
develop, or infer, new facts.

The knowledge base is the very heart of any expert system. A knowledge base will
typicaly contain two types of knowledge, that is, facts and rules. The facts within a
knowledge base re
present various aspects of a specific domain that are known prior to the consultation session
of the expert system. The rules within a knowledge base are simply heuristics. If the
knowledge base has been constructed through interaction with a human expert, these rules
represent the knowledge engineer’ s perception of the heuristics that are employed by the
expert in decision making.

The working memory of an expert system changes according to the specific problem
a hand. The contents of the working memory consist of facts. However, unlike the facts
within the knowledge base, these facts are those that have been determined for the specific
problem under consideration during (and at the conclusion of) the consultation session or

query.

The final module to be discussed is therule adjuster. In most existing expert systems,
the rule adjuster serves merely as arule editor. That is, it enters the rules specified by the
knowledge engineer into the knowledge base during the development phase of the expert
system. In more ambitious expert systems, the rule adjuster may be used in an attempt to
incorporate learning into the process. In such instances, we would teach the expert system by
providing it with a set of examples and then critique its performance. If its performance is
unsatisfactory, the rule adjuster automatically revises the knowledge base. If satisfactory, the
rule adjuster may simply reinforce the existing knowledge base.

1.7. Expert System Shells.

By this time, the difference between an expert system and an expert system shell is
clear: an expert system includes al of the components discussed above minus the knowledge
base. Using a shell, it is up to the knowledge engineer to develop the knowledge base and to
then insert this knowledge base into the architecture to form a complete expert system, as
intended for a specific domain. The use of a shell thus frees the knowledge engineer from the
need to repeatedly develop al the supporting elements of an expert system, and thus to focus
his or her attention on the development of the knowledge base.

It must remain clear that this project is about developing and implementing an Expert

System Shell. Therefore the main focus and effort is on the design of the inference engine and
therest of the elements associated with it (interface, rule adjuster, knowledge base structure,

Bachelor of Science in Business Computing.

10

Main Project: Development of an Expert System Shell.

explanation facility, working memory...) rather than the contents of the knowledge base. The
system will work independently of the knowledge base used, being the knowledge engineer’s
responsibility to develop awell-structured and consistent knowledge base.

The architecture of the generic expert system depicted in Fig.1., should serve to
indicate at least some of the differences between this approach and that of agorithmic
procedures and heuristic programming. In particular, note that the knowledge base is
separated from the inference engine. In other words, and unlike agorithms and heuristic
programming, an expert system separates the heuristic rules from the solution procedure. The
knowledge base contains a description, or model, of what we know (i.e. about deriving a
solution to a given problem). The inference engine contains a description of what we do to
actually develop the solution. While the knowledge base changes from domain to domain, the
inference engine remains the same.

1.8. Limitations.

Some limitations arise when comparing expert systems with conventional human
expertise:

Fragile Systems: small environment changes can force revision of all of the rules.

Vague Rules: rules can be hard to define. It is adifficult task for an expert to express his
knowledge in terms of rules.

Conflicting Experts: With multiple opinions, who is right?
Unforeseen events: events outside of domain can lead to nonsense decisions.

Expert systems can handle only narrow domains, otherwise the knowledge base will
contain millions of rules.

Expert systems do not possess common sense. A human expert uses common sense to
reach solutions, but this concept can not be built (at the moment) in a computer.

Expert systems have limited ability to learn and these limitations lead to loss of faith on
them.

Neural Nets and Fuzzy Logic are new approaches that can solve some of this

limitations in the future. Neural Nets provide great ability to learn, while Fuzzy Logic
represents the best approach nowadays to human uncertainty and imprecision.

Bachelor of Science in Business Computing.

Main Project: Development of an Expert System Shell.

2. Requirements Definition.

The objective of the Project can be summarised in one sentence as: “Design and
implement a rule-based expert system shell, applying it to an specific field (i.e. choose a car,
diagnose heart diseases ...)"

The reguirements for the Main Project are the usud for an Expert System Shell. We
paid special attention to the easiness of use.

Production rules based expert system shell. The knowledge in the knowledge base is
stored as rules.

Formal definition:

Knowledge base ::= [Rul€e]*,

Rule ::= IF [Premise]* THEN Conclusion,
Premise ::= Attribute, Value.

Conclusion ::= Attribute, Value.

(Attribute and Value are strings of characters)

Friendly User Interface. Facilitate interaction with the user using windows-style, menus,
graphics,... Avoid conversational menus (typical of the first expert systems).

Knowledge Base Editor. The user must be able to create and modify the knowledge base
just using the application, with no need of an external database management system.

Support of uncertainty (certainty or confidence factors) during the consultation or query
session.

Explanation facility, with the ability to explain why and how a particular conclusion was
reached.

Capability of inserting known facts at the beginning of the consultation session, so that
the typical “question-and-answer” process of expert systems is reduced.

Capability of changing single values in consecutive consultations in order to observe
differences in the conclusions reached (differential analysis).

Use of graphics and any additional multimedia feature which aids the user recognition
and association with the real world.

11 Bachelor of Science in Business Computing. 12

Main Project: Development of an Expert System Shell.

3. System Specification.

Characteristic Vaue
Programming Language C++
Programming Language Environment Borland C++ Builder, Version 1.0.
Operating System Microsoft Windows 95

3.1. Programming Language.

The programming language used in the development of this project is C++ (Object
Oriented C). The programming paradigm is, therefore, procedural®. However, alot of expert
systems have been built following the declarative programming paradigm, using
programming languages such as Prolog, Clips or Lisp. Those programming languages are
typical of Artificia Intelligence and provide avirtually built-in inference engine for the
expert system.

Procedural languages require the programmer to specify the precise, step-by-step set
of instructions to be carried out in the solution of a problem. Declarative languages, on the
other hand, only require that one provide the program with the facts and relationships (e.g.
data and knowledge base) that exist for a problem; the solution to the problem is then
accomplished by the language’s own internal inference engine.

The question then is: Why use C++, where we have to implement our own inference
engine, instead of using Prolog, for instance, which already gives the programmer a built-in
inference engine? Several reasons lead to the use of a procedural language:

First of dl, the purpose of the project is academic, so that the implementation of an
inference engine will show the programmer how an expert system works internally.

Using a declarative programming language restricts the flexibility of the expert system.
For instance, Prolog employs backward chaining and backtracking. Search is conducted
depth first and all rules are scanned. We can not change naturally the way Prolog works?,

and consequently, we will lose some control over the expert system inference mechanism.

Nevertheless, the development of a rule-based expert system in Prolog is, quite possibly,
easier than with any other language. As an indication, consider the following production
rule:

Rule: If inflation is high
Then invest in gold.

The samerule in Prolog may be written as:
gold_investment(yes):- write(* Inflation "),

read(Inflation),
Inflation=high.

* Some authors distinguish between the Procedural Paradigm and the Object Oriented
Paradigm. However, for Expert Systems development this distinction is not significant.

2 Using a Prolog program we can change form Backward to Forward Chaining, but internally,
Prolog will still work backwards.

Bachelor of Science in Business Computing.

13

Main Project: Development of an Expert System Shell.

Building our own expert systems software package gives us control over the entire
consultation/inference process, as well as the ability to modify, revise, or enhance any
portion of the package that we wish.

The manipulation of tables (Paradox tables or dBase tables) is easier with C++ Builder. In
Prolog or Lisp the database would have to be specially built for the application and would
not be standard.

The inclusion of multimedia features (graphics, sound....) is easier with visual
programming packages such as Visua Basic or C++ Builder.

Another question is why use C++ Builder instead of Visual C++ or Visud Basic. The
answer issimply “I used C++ Builder because is the environment that | know better”. In
fact, this system could be easily trandated into MS Visual C++ or MS Visual Basic. C++
Builder is powerful and easy to use, dthough is not so well known or standard as the
Microsoft's packages.

Bachelor of Science in Business Computing.

14

Main Project: Development of an Expert System Shell.

4. System Architecture.

The system architecture is guided by the way C++ Builder (and most visua programming
packages) works, i.e. using forms. The various components of the expert systems shell
(knowledge base editor, inference process) correspond to several forms which are accessible
from the main form. The hierarchical structure of the system is the following:

Main Form
(Application Menu)

A A A
Splash Edit_Rule Form Inference Form
Form (Rule viewer) f (Start of inference)

Main Project: Development of an Expert System Shell.

Add_Rule Form Query Form
(Add/Modify Rules) (Attribute)

explanation)

Conclusion Form
(Conclusion and

(Frequently used functions)

Bachelor of Science in Business Computing.

5. The Knowledge Base.

5.1. Knowledge Acquisition.

Asit was mentioned in the introductory section, the main focus of this project is not
in the contents of the knowledge base, but in the operation of the expert system shell itself.
Therefore; the knowledge base rules may not be optimal and there are not meta-rules (rules
that give information about rules) that increase the efficiency of the inference process.
However, in order to test the expert system shell and to provide a tangible application in the
real world, arelatively large knowledge base was built.

1t would seem that the most obvious way in which one may acquire a knowledge base
isto go directly to the human expert. However, there are some reasons why this may not
work, or at least not provide totally satisfactory results (Ignizio, 1991):

For some problems, there smply may not be an expert. E.g. Investing in the stock market.
The dleged experts may actually be exhibiting poor to mediocre performance. All too
often, the term expert is loosely applied to anyone who simply gets the job done.

The experts may not wish to reved their secrets.

The experts often are just unable to articulate the approach that they use. Many experts, in
fact, simply and honestly do not really understand how they actually make their decisions.

Moreover, if we use an expert the knowledge engineer has to plan carefully severa
meetings with him, extracting all the knowledge needed for the knowledge base. A special
situation is the use of multiple domain experts. This situation can be specidly frustrating if
not properly handled. A good approach (Surko, 1989) is using a rule base cloned from one
expert and then build a prototype expert system and let the other domain experts critique the
results.

Knowledge acquisition can aso be accomplished via rule induction: convert an
existing database into a set of production rules. A popular approach to rule induction is the
algorithm ID3 (Quinlan, 1983) in which rules are generated from trees.

5.2. Knowledge Representation.

The knowledge that is contained within an expert system consists of:
Avpriori knowledge: the facts and rules that are known about a specific domain prior.
Inferred knowledge: the facts concerning a specific case that are derived during, and at
the conclusion of, a consultation with the expert system.

There are several approaches to represent knowledge in a expert system:
Semantic networks.
Frames.
Neural Networks.
Production rules.

The knowledge mode of representation chosen for the development of our expert

system shell was by the use of production rulesor rule-based systems. There are severa
reasons which lead me to that choice:

Bachelor of Science in Business Computing.

16

Main Project: Development of an Expert System Shell.

1. The mgority of existing expert systems (and especialy expert system shell), employ rule
bases.

2. Rules represent a particularly natural mode of knowledge representation. Consequently,
the time required to learn how to develop rule bases is minimised.

3. Rule bases can be relatively easily modified. In particular, additions, deletions and
revisions to rule bases are relatively straightforward processes®.

Production rules are of the IF-THEN variety. To represent the EL SE statement we
only have to split the rules in two.

E.g: IFStudentScoreis50 or more
THEN admit the student
EL SE do not admit the student

Thisruleis equivaent to:
IF StudentScore is 50 or more
THEN admit the student

IF StudentScore is less than 50
THEN do not admit the student

Similarly the use of OR in the premises can be avoided by splitting the premises and
keeping the same conclusion.

As noted, each premise and conclusion clause contains attributes and vaues. In the
example above, an attribute would be “ StudentScore” and avalue “50 or more”.

The ruleswere internally represented in the Project by Paradox tables. There are four
tables which make up a complete rule:

Premises.db: there is one entry for each premise® in each rule

Field Name Type Size
RID Short Integer
PID Short Integer
Attribute String 40 chars.
Vaue String 40 chars.
Status String 1 char.
CF Number

Where:

RID: ruleidentifier. Each rule has an unique identifier which acts as the primary key.
PID: premise identifier. Identifies each premisein arule.

Attribute: name of the attribute.

Value: value given to the attribute.

Status: status of the premise (Active, true, or fase)

CF: numeric value of the certainty factor (between 0 and 100)

Prem2.db: each entry corresponds to all the premises of arule.

® This also depends on the “quality” of the knowledge base. If we have a well-designed rule
bases, the process will be transparent.

4 By premise, we understand each of the pairs { Attribute, Value} which are in the IF clause of
therule.

Bachelor of Science in Business Computing.

17

Main Project: Development of an Expert System Shell.

Field Name Type Size

RID Short Integer

Premises String 255 chars.
Where:

RID: ruleidentifier. Each rule has an unique identifier which acts as the primary key.
Premises: a string that represents all the premises in the rule in the format “1F
[Attributel=Valuel] AND [Attribute2=Value2]... AND [AttributeN=ValueN]" .

Conclusions.db: there is one entry for each conclusion.

Field Name Type Size
RID Short Integer
Images Graphic

Where:

RID: ruleidentifier. Each rule has an unique identifier which acts as the primary key.
Attribute: name of the attribute.

Value: value given to the attribute.

Status: status of the rule (Active, Inactive, Triggered, or Fired)

CF: numeric value of the certainty factor (between 0 and 100)

Images.db: each entry corresponds to an image of each conclusion.

Field Name Type Size
RID Short Integer
Image Graphic

Where:

RID: ruleidentifier. Each rule has an unique identifier which acts as the primary key.
IMAGE: graphic associated with the conclusion of the rule with identifier RID.

A ruleisretrieved from the database by joining these tables using the RID field.
Although the tables are physically separated, they will appear logically as an unit in the
application.

5.3. Rule Editor.

The rule editor or rule adjuster as shown in Fig.1. will allow the knowledge engineer
to add, delete or modify rules. The rules are shown in the grid by using a SQL query. C++
Builder provides a special class for SQL queries called TQuery. In order to launch the query
we give to the object property “SQL Text” the following value:

SELECT Pren®. RI D, Pren®. Preni ses,

Concl usi on. Attri but e, Concl usi on. Val , Concl usi on. CF
FROMPren2, Concl usion

WHERE Pr en®. RI D = Concl usi on. RI D

The results for a simple knowledge base are chosen in Fig..

Bachelor of Science in Business Computing.

18

Main Project: Development of an Expert System Shell.

Main Project: Development of an Expert System Shell.

M. Rule editor | [O] x|
Hl«llblHl"."lv—l/lr/ 4 (:'l Eﬂewrulel
RID THEN... oF =]
1 Engine type = Frop Flane C130 100
2 Engine type = Jet AND “wing Position = Low Flane B747 100
m Engine type = Jet AMD Wing Position = High AMD Bulges = Mone Flane Cha 75
4 Engire type = Jet AMND “wing Position = High Plane C141 B0 J

m o

Fig.2.; The Rule Editor window form.

For adding, deleting or modifying rules we use another form that facilitates the task
of generating arule and avoids syntactic errors. It is based in the use of combo boxes. There
are two combo boxes for the premises and another for the conclusion. The contents of the
“vaue’ combo boxes change dynamically depending on the current selection in the
“attribute” combo boxes. The updating is made again by the use of the object “TQuery”,
specifically using the function implemented in UNIT.CPP “Update_combo”:

/1 voi d Updat eConbo (TComboBox * ConboBox, TQuery *Query, TDBConboBox
* DBConboBox,

/1 AnsiString Query_text, AnsiString Field):

11 Fill a conbo box with the results of a query.

voi d Updat eConbo(TConboBox * ComboBox, TQuery *Query, TDBConmboBox * DBConboBox,
Ansi String Query_text, Ansi String Field)
{

Query->Cl ose();

Query->SQ.->Cl ear () ;

Query->SQL- >Add(Query_text);

Query->Prepare();

DBConboBox- >Dat aFi el d=Fi el d;

Query->Qpen() ;

DBConmboBox- >l t ens->C ear () ;
DBConmboBox- >I t ens- >Add(DBConboBox- >Text) ;
whi | e(Query->Fi ndNext ()){
DBConmboBox- >I t ens- >Add(DBConboBox- >Text) ;

}
ConboBox- > t ens=DBConboBox- >I t ens;
ComboBox- >Text =ConboBox- >I t ens- >St ri ngs[0] ;

The call from the “AddRuleForm” is, therefore, the following:

/1 void __fastcall TAddRul eFor m : ComboBox1Change(TObj ect * Sender)
/1 1f the contents of the first conbo box (attribute) change
/1 the second (val ues)

Bachelor of Science in Business Computing.

Updat eConmbo(ComboBox2, Query1l, DBConboBox1, "sel ect distinct val from
preni ses where attri bute=\""+ComboBox1->Text+"\"", "val");

The function which adds arule takes al the inputs given in the form and then post
them to the database (note that the user does not have to know the physical structure of the
database). The Rule Identifier field is automatically generated by the application, selecting the
maximum RID of the posted rules and adding to it 1:

Queryl. SQLText =sel ect MAX(RI D) fromPreni ses;

I]éEditl»>Te><t = (Ansi String) (atoi (DBEdit1->Text.c_str())+ (int) 1);

Once all the fields are filled, we can post the rule to the database. Before, posting it
we must check that the value of the Certainty Factor isin the valid range, otherwise the rule
will not be posted and the application will show an error message to the user. We use the
following function for that purpose (AddRuleBtnClisck):

int i;
TMsgDl gBut t ons Bt ns;
float cf;
char error[256], str[5];
/'l check certainty factor
Bt ns<<nbCK;
strcpy(str, Editl->Text.c_str());
cf=atof (str);
if (cf>100]||cf<0){
wsprintf(error, "The valid range for Certainty Factors is between 0 a
nd 100");
MessageDl g(error, nt Error, Bt ns, NULL);
return; // do not commit changes

}

Concl Tabl e- >Open() ;
Pr entrabl e- >Open() ;

I/ post current rule
for (i=0; i<CurrentRow, i++){ // post preni ses
Pr enfrabl e- >Append() ;
PrenTabl eRl D->Val ue=at ol (DBEdi t 1->Text.c_str());
Pr enTabl ePl D- >Val ue=i +1;
Prenfrabl eAttri but e- >Val ue=StringGidl->Cel | s[0][i];
PrenTabl eVal - >Val ue=StringGidl->Cel I s[1][i];
Pr enTabl eSt at us->Val ue="A";
Pr enifabl eCF- >Val ue=100. 0;
Pr enfrabl e- >Post () ;

/1 post concl usion

Concl Tabl e- >Append() ;

Concl Tabl eRl D- >Val ue= at of (DBEdi t 1- >Text.c_str());
Concl Tabl eAtt ri but e->Val ue=ConboBox3- >Text ;

Concl Tabl eVal - >Val ue=ConboBox4- >Text ;

Concl Tabl eSt at us->Val ue="A";

Concl Tabl eCF->Val ue=at of (Edi t 1->Text.c_str());
Concl Tabl e- >Post () ;

//we use RID posted to avoid posting 2 times if we click the "Ck" button
Rl Dpost ed=at ol (DBEdi t 1- >Text.c_str());

Pr enfrabl e->C ose();

Concl Tabl e- >0 ose() ;

Bachelor of Science in Business Computing. 20

Main Project: Development of an Expert System Shell.

Cur r ent Row=0;

The “Prem2.db” table (the table with al the premises of each rule together) has also
to be updated. For doing so, we use the following function, which goes over the table
“Premises.db” looking for rows with the same RID to update the “ Prem2.db” table.

R e e
/1 void__fastcal | TAddRul eForm : Ref reshTabl e()
/1 Post current rule, close wi ndow and refresh rul e viewer.

int CurrentRID;

Ansi Stringpreni ses;

Pr enfrabl e- >Open() ;

LPr enifabl e- >Enpt yTabl e() ;
LPr enifabl e- >Open() ;

Prentrabl e->First();

Cur r ent Rl D=Pr enirabl eRlI D- >Val ue;

preni ses=(Ansi String) PrenTabl eAttri but e->Val ue+" ="+(Ansi String)
Pr enirabl eVval - >Val ue;

Pr enfrabl e- >Next () ;

/1 loop through the files of the table
whil e (! Prenirabl e- >Eof) {
i f (Prenirabl eRlI D->Val ue==Current Rl D) {
premni ses=prem ses+" AND"+(Ansi String) Prenilabl eAttri bute->Val ue+
" = "+(Ansi String) Prenirabl eVal - >Val ue;
}

el se{
I/ post current rule
LPr enifabl e- >Append() ;
LPr enTTabl eRI D- >Val ue=Current Rl D;
LPr enifabl ePr emi ses->Val ue=preni ses;
LPr enifabl e- >Post () ;

/'l next rule

Cur r ent Rl D=Pr enirabl eRl D- >Val ue;

prem ses=(Ansi String) PreniTabl eAttri but e->Val ue+" =
"+(Ansi String) Preniabl eVal - >Val ue;

}
Pr enfrabl e- >Next () ;
}//end of while | oop

I/ post current rule

LPr enifabl e- >Append() ;

LPr enTTabl eRI D- >Val ue=Current Rl D;
LPr enifabl ePr eni ses- >Val ue=preni ses;
LPr enifabl e- >Post () ;

Pr enifabl e- >Cl ose();
LPr enifabl e- >0 ose() ;

The processes for editing and deleting an existing rule are approximately the same.
Note that the state of the database must be consistent, so that if we modify a particular part of
arulein onetable, the others will have to be appropriately modified.

Bachelor of Science in Business Computing.

21

Main Project: Development of an Expert System Shell.

6. The Inference Engine.

The inference engine serves as the inference and control mechanism for the expert
system and, as such, is an essentia part of the expert system as well as amgjor factor in the
determination of the effectiveness and efficiency of such systems. Inference is the knowledge
processing element of an expert system.

The inference strategy used here and in most expert systems is known as modus
ponens. Simply stated, modus ponen means that if the premise of aruleistrue, then its

conclusion isalso true. Thus, if A infers B and A istrue, then B istrue. This may be
represented as A — B.

6.1. SQL Compatible Tables Vs. Memory Arrays.

During the inference process the facts inferred and the state of the rules and premises
have to be stored somewhere. There are two possibilities: using tablesin the same way stored
the rules in the knowledge base or using memory bidimensional arrays. Each approach has its
advantages and drawbacks:

SQL CompatibleApproach.

« “Purer” approach in the meaning that the data can be manipulated solely by SQL
queries and updates.

&’ Homogeneity with the knowledge base.

X Itrequiresalot of writings to the hard drive, because rule and premise status is
continually changing. Thus, efficiency during the inference process decreases.

X It requires duplication of the database at the beginning of each consultation because,
otherwise the set of rules of the knowledge base (static during the inference process)
would be changed. In the same way, at the end of the consultation the origina set of
tables would have to be restored. Therefore, efficiency decreases and double hard drive
space is required (this can be specially problematic for large knowledge bases)

Memory Bidimensional Arrays.

« Dataisstored in RAM memory, therefore the modification of rule and premises statusis
efficient.

&’ No duplication of data is needed. At the beginning of each session an empty set of
arrays will be generated to store data generated during the inference process.

&’ C++ Builder facilitates the manipulation of bidimensional arrays of strings by providing
the class TStringGrid.
X Itisnot homogenous with the rule representation in the knowledge base.

X Itisnot possible to execute SQL queries over the data stored in the arrays.

Bachelor of Science in Business Computing.

22

Main Project: Development of an Expert System Shell.

The approach chosen was using memory arrays because of the enormous loss of
efficiency that continuous hard-drive writings and reading involve. The ideal data structure
would have been a SQL compatible data structure stored in RAM memory.

6.1. Information before starting the inference process.

Before starting the inference process, we optionaly can supply initia facts to the
inference engine, as well as specifying the Threshold Vaue (which will be discussed |ater) for
the propagation of certainty factorsin rules. In this way, we avoid most of the annoying
typical expert system Question-and-answer interface. The inference engine will try to reach a
conclusion with the facts given in the initia stage, and only if it can not, then it will ask the
user for the value of an specific attribute necessary to fill agap.

6.2. Search Strategies.

The purpose of an expert system is to develop and recommend a proposed solution to
agiven problem. To accomplish this task, the expert system must conduct a search for the
solution; and it is the responsibility of the inference engine in particular to perform this search
in an efficient and effective manner.

In the search process we are faced with a number of alternatives (i.e. potentia
solutions) and a variety of constraints. For example, when faced with the problem of
determining just what automobile to purchase, our aternatives theoretically include literally
all of the different automobiles in existence. However, we are also faced with certain
constraints, such as price limitations, style, availability... Such constraints serve to filter out
the number of potential automobiles from which we will make our selection.

The search strategy implied in the selection of a car may be described in more
technical terms as aforward chaining process. That is, we begin the process with certain data
concerning the type of automobile desired, its style, cost, speed, mileage, and so on. These
data, along with our constraints, serve to filter out the majority of the potential aternatives
and thus we ultimately arrive at only a few automobiles from which we make our fina
selection.

We could approach the automobile selection problem from an entirely different
direction by first specifying a particular car for purchase, and the determining whether or not
it meets our needs. When using this approach, we are said to be employing backward
chaining.

The two fundamenta search strategies by an expert system (specifically the inference
engine) are then forward and backward chaining. Forward chaining proceeds from premises
(or data) to conclusions, and is said to be data driven (Turban, 1992). Backward chaining
proceeds from a conclusion (hypothesis), and then seeks evidence that supports that
conclusion. Backward chaining is often called agoal driven approach and proceed from the
right of arule to the left®.

Ultimately, the conclusion reached by both approaches must be the same, but their
search efficiency is dependent on the nature of the problem faced. Specificaly, if one hasa
few premises and many conclusions, then forward chaining is generally the best search

® E.g. Prolog inference engine works backward chaining.

Bachelor of Science in Business Computing.

Main Project: Development of an Expert System Shell.

strategy. Otherwise, with many premises and relatively few conclusions, we should normally
employ backward chaining.

In the Project, both forward and backward algorithms were implemented and it is up
to the user at the beginning of the consultation session to choose which approach to use.
Normally, in acommercial expert system just one approach is implemented. However, the
implementation of bot of them alow us to compare and give us a better understanding of the
different search methods available during the inference process.

6.3. The Forward Chaining Algorithm.

The implementation of the forward chaining algorithm can be described as a
sequence of eight steps (Ignizio, 1991).

1. Initialization.
Establish three empty tables: the Working Memory table, the Attribute-Queue table, and
the Rule/Premise Status table (that it is, in fact, the joining of the premise and conclusions
tables by thefield “RID").

The Working memory table will be used to record al assertions (i.e., al the facts deduced
during the consultation). The Attribute-Queue table records, in order, al attributes for
which a value has been assigned or is being sought. The attribute at the top of thistableis
the attribute presently under consideration. The Rule/Premise Status table records the rule
status (i.e. Active“A”, Discarded “D”, Triggered “T”, or Fired “F") aswell as the status
of each premise clause (i.e. Active“A”, False“F”, or True “T"). All active premises
clauses and rules areinitially loaded in the Rule/Premise Status table.

Structure:

I/ define structure Attribute-Value tuple
struct AV_tupl ef

char attribute[40];

char val ue [40];

float cf;

sl[ruct Attributef
char attribute[40];
int RID;
b
AV_tupl e * WorkMem Tabl e; // Worki ng Menory Tabl e
Attribute * AttQueue_Table; // Attribute-Queue Table

()
Premi sesTh->Cpen() ;
Concl Th- >Open() ;

Reset Query(Queryl, "select * fromconclusion where status=\"A"");
LoadG i d(Queryl, Concl usi onsGid);

Reset Query(Queryl, "sel ect prem ses. Rl D,
premises. PI D, premi ses. Attribute, prem ses. Val , preni ses. St at us, preni ses.
CF frompreni ses, concl usi on where concl usi on. status=\"A" and
premi ses. Rl D=concl usion. RID");

LoadG i d(Queryl, Prem sesGid);

2. StartInference.
- If the user gave no entries at the beginning of the consultation, ask him an initial fact.

Record this attribute at the top of the Attribute-Queue table. Also, record this attribute
and its associated value at the bottom of the Working Memory table.

Bachelor of Science in Business Computing. 24

Main Project: Development of an Expert System Shell. Main Project: Development of an Expert System Shell.

- Otherwise, take the last fact given by the user at the beginning of the consultation,
record the attribute at the top of the Attribute-Queue table. Also, record the attribute

and its associated value at the bottom of the Working Memory table. Llitalzatcn

3. Rulescan.
Examine the Rule/Premise Status table. If no rules are active, STOP. Otherwise, scan the
active rule-set premise clauses for all occurrences of the attribute on the top of Attribute-

Queue table, and record any changes in status of the premise clauses of the active rule set. ir?fé?etﬁge

A

(a) If the premise® of any ruleis false, discard that the rule.

(b) If the premise of any rule is true, then mark the associated rule as being triggered.

Place its conclusion attribute and RID at the bottom of the Attribute-Queue table. A
3. Rule scan

(c) If no rules are presently in the triggered state (i.e. viaa check of the Rule/Premise > and <

Statustable, go to STEP 5. Otherwise, go to STEP 4. updating.
4. Rulefiring.

Cross out the topmost attribute on the Attribute-Queue table. Change the status of the rule

associated with the new topmost attribute from triggered to fired. Place conclusion at the No

bottom of the Working-Memory Table. STOP
5. QueueStatus.

Cross out the topmost attribute on the Attribute-Queue table. Proceed to STEP 6.
6. ConvergenceCheck.

Scan the Rule/Premise Status table for any active rule. If no such rules are found STOP. No

Otherwise Proceed to STEP 7.
7. Query.

- If there are dtill initial facts given by the user that were not used, take one.

- Otherwise, query the user for the value of an attribute in any of the rule's free premise A A

clauses. 5. Queue
Goto STEPS. 4. Rule firing Status and
. updating.

8. Updating.

Place the associated attribute (and rule number) on the top of the Attribute-Queue table.

Also, place conclusion at the bottom of the Working-Memory Table. A

Returnto STEP 3. 6.

Convergence
check
l No
Yes
7. Query the
user.

v

8. Attribute-Queue and

Working Memory
updating.
Fig.3. Forward Chaining Algorithm flow chart.
Bachelor of Science in Business Computing. 25 Bachelor of Science in Business Computing.

® By “premise”, | refer to the entire premise of the rule, which may be composed of severa
premise clauses.

Main Project: Development of an Expert System Shell.

The implementation of the forward chaining algorithm in C++ was written as follows:

/*********************~k**************************~k*************************/
/*********************~k~k*********~k***********~k*****************************/
/** FORWARD CHAI NI NG ALGORI THM *x
/*********************~k~k*********~k***********~k*****************************/
/*********************~k~k*********~k***********~k*****************************/

e e
I/ void__fastcall TInferenceForm : FwdButtonCl i ck(TObj ect *Sender)

TMsgDl gBut t ons Bt ns;
char error[256];

CleanGrids(); // enpty results fromfornmer queries
Mai nFor m >Thr eshol dVal ue=at oi (Edi t 2->Text.c_str());
PageCont r ol 1- >Sel ect Next Page(true);

For war dChai ni ng() ;

if (RulesGrid->Cells[0][1]==""){ // no concl usions found
I/ check certainty factor
Bt ns<<nbCK;

wsprintf(error, “No concl usions found");
MessageDl g(error, mtError, Bt ns, NULL) ;

return;
el se{
Concl Bt n- >Enabl ed=t r ue;

}
}
e
I/ void__fastcall Tl nferenceForm : Forwar dChai ni ng(voi d)
11 Forwar d Chai ni ng al gorithm Consists of 8 steps.
e

voi d__fastcal | TI nferenceFor m : For war dChai ni ng(voi d)

{

// STEP 1: Initialisations
Ansi StringVal;
int position;

Premi sesTh->0Open() ;
Concl Tb->Open() ;

Reset Query(Queryl, "select * fromconcl usion where status=\"A"");
LoadG i d(Queryl, Concl usi onsGid);

Reset Query(Queryl, "sel ect prem ses. Rl D,

premises. PI D, premi ses. Attribute, prem ses. Val , preni ses. St at us, preni ses. CF
frompreni ses, concl usi on whereconcl usi on. status=\"A" and

premi ses. Rl D=concl usion. RID");

LoadG i d(Queryl, Prem sesGid);

ag_ind=0; // index for Attribute-queue table
top_nost=0; // index for Attribute-queue table
wm i nd=0; // index for Working-menory table

/1 STEP 2: Start Inference
if(CurrentRow==0){//if the user gave no entries, we need aninitial fact
Premi sesTh->First(); //get first entry
Val = Mai nFor m >Quer y(Prem sesTbAttri but e->Val ue);

Il save results

strcpy(Wor kMem Tabl efwm ind].attribute, Prem sesTbAttribute-
>Val ue.c_str());

strcpy(Wor kMem Tabl e[wm i nd] . val ue, Val . c_str());

Bachelor of Science in Business Computing.

27

Main Project: Development of an Expert System Shell.

Wor kMem Tabl e[wm i nd] . cf =Mai nFor m >CF;

Fact sGi d->Cel | s[0] [wm_i nd] =Pr emi sesTbAt t ri but e->Val ue;
FactsGid->Cel | s[1] [wm. i nd] =Val ;

FactsGid->Cel | s[2] [wm.ind] =(Ansi String) Mai nFor m >CF;
wm_i nd++;

strcpy(Att Queue_Tabl e[aqg_ind].attribute, Prem sesTbAttribute-
>Val ue.c_str());
Att Queue_Tabl e[aq_i nd] . Rl D=Pr eni sesTbRI D- >Val ue;
aq_i nd++;

}

else{ // if the user gave entries, take as the initial fact
strcpy(WorkMem Tabl efwm.ind].attribute, Initial FactsGid-
>Cel I s[O][Current Row1].c_str());

strcpy(Wr kMem Tabl e[wm i nd] . val ue, I nitial FactsGi d-
>Cel I s[1][Current Row1].c_str());

Wor kMem Tabl e[wm i nd] . cf =at of (I nitial FactsGri d->Cel | s[1] [Curr ent Row
1].c_str());

Mai nFor m >CF=Wor kMem_Tabl e[wm_i nd] . cf ;

FactsGid->Cel | s[0] [wm.ind]=Initial FactsGid->Cells[0][CurrentRow 1];
FactsGid->Cel | s[1] [wm.ind]=Initial FactsGid->Cel|s[1][CurrentRow 1];
FactsGid->Cel | s[2] [wm.ind]=Initial FactsGid->Cells[2][CurrentRow 1];
wm_i nd++;

strcpy(Att Queue_Tabl e[ag_ind].attribute, I nitial FactsGid-
>Cel I s[O][Current Row1].c_str());
Att Queue_Tabl e[aq_ind].RID=-1; // it does not come froma rule, but
fromthe user
aq_i nd++;
Current Row -;
}

/1 STEP 3: Rul e scan and check for convergence
STEP3: i f (Forwar dChai ni ngSt ep3()) {
i f (CheckFiel d(ConclusionsGid, 3, "T")==-1){// check for
triggeredrules
Forwar dChai ni ngStep5(); // notriggeredrules
posi ti on=Forwar dChai ni ngSt ep6() ;
if (position!= -1){// convergence check. True if there
are activerules still.
For war dChai ni ngSt ep7(posi tion); // Query val ue

got o STEP3;
}
el se{
For war dChai ni ngStep4(); // there are triggeredrules
got o STEP3;
}
}
/1l else End
}
R e

I/ bool __fastcall Tl nferenceForm : Forwar dChai ni ngSt ep3(voi d)
/1 Forward Chaining algorithm 3rd. step. If there are no active rul es or
/1 triggered rul es returns FALSE.

char TopAttribute[40];
char AttrVal [40];
int i;
i f (CheckFiel d(ConclusionsGid, 3, "A")==-1){ // check for active

rules
i f (CheckFiel d(ConclusionsGid, 3, "T")==-1) // check for active rules

Bachelor of Science in Business Computing. 28

Main Project: Development of an Expert System Shell.

return false; // no active or triggered rules
el sereturn true;
}
strcpy(TopAttribute, Att Queue_Tabl e[top_npst].attribute);
/1 top of Attribute queue table

/1 update state of premi ses and concl usi ons
for (i=0; i<wm.ind;i++){
if(strcnp(WorkMem Table[i].attribute, TopAttribute)==0)
strcpy(AttrVal, WrkMvem Tabl e[i]. val ue);

}
Updat eRul eSet ((Ansi String) TopAttribute, (Ansi String) AttrVval,
Premni sesGrid, Concl usi onsGrid);

returntrue; // there were active rules

e

I/ void__fastcal |l TI nferenceForm : Forwar dChai ni ngSt ep4(voi d)
/1 Forward Chaining algorithm 4th. step. Rule firing

int position;

I/ cross topnost attribute on Attribute-Queue Tabl e
t op_nost ++;

/1 change rul e associated with topnost attribute fromtriggered to
/1 fired

posi tion=Updat eGri d((Ansi String) Att Queue_Tabl e[top_npbst].RID, "F",
Concl usionsGrid); // change conclusion stateto "fired"

/1 place conclusion at the bottomof the Wrking-Menory Tabl e
strcpy(Wr kMem Tabl e[wn i nd] . attri bute, Concl usi onsGri d-
>Cel I s[1][position].c_str());

strcpy(Wr kMem Tabl e[wm i nd] . val ue, Concl usi onsGi d-
>Cel I s[2][position].c_str());
Mai nFor m >CF=Wor kMem _Tabl e[wm_i nd] . cf ;

Wor kMem Tabl e[wm i nd] . cf

= atof (ConclusionsGid-
>Cel | s[4][position].c_str())

,

I/ showrule firedinGid
ShowRul e(Query1, (Ansi String) Att Queue_Tabl e[top_npst]. RI D,
Rul esGid);

FactsGid->Cel | s[0] [wm. i nd] =Concl usi onsGri d->Cel | s[1] [posi tion];
FactsGid->Cel | s[1] [wm. i nd] =Concl usi onsGri d->Cel | s[2] [posi tion];
FactsGid->Cel | s[2] [wm. i nd] =Concl usi onsGri d->Cel | s[4] [posi tion];
wm_i nd++;

J e e e e il

I/ void__fastcal |l TI nferenceForm : Forwar dChai ni ngSt ep5(voi d)
/1 Forward Chaining al gorithm 5th. step. Queue status.

voi d__fastcal | TI nferenceForm : For war dChai ni ngSt ep5(voi d)

{
I/ cross topnpst attribute on Attribute-Queue Table
t op_nost ++;

J e e e e e il

//int __fastcall TI nferenceForm : Forwar dChai ni ngSt ep6(voi d)

// Forward Chai ning al gorithm 6th. step. Convergence check and rul e marki ng.
L e LR

Bachelor of Science in Business Computing.

Main Project: Development of an Expert System Shell.

int__fastcall TI nferenceForm : For war dChai ni ngSt ep6(voi d)

{

}

e
/1 void __fastcall TInferenceForm : ForwardChai ni ngSt ep7(i nt position)
/1 Forward Chaining algorithm 7th. step. Query.

return (CheckFi el d(Concl usionsGrid, 3, "A"));

int prenm se;
Ansi Stringval ue;

if(CurrentRow>0){ // there are still facts given by the user
I/ place attribute of premise in positioninthe Gidon the top
/1 of the Attribute-queue table
if (top_nost !=0){
top_nost--;
strcpy(Att Queue_Tabl e[top_nost].attribute, Initial FactsGid-
>Cel I s[O][Current Row1].c_str());
Att Queue_Tabl e[t op_nost] . R D=-1;

el se{
MoveAQrabl e() ;
strcpy(Att Queue_Tabl e[top_npst].attribute, Initial FactsGid-
>Cel I s[O][Current Row1].c_str());
Att Queue_Tabl e[top_nost] . Rl D=-1;
}

/1 place attribute plus its value at the bottomof the Wrking-Menory Tabl e
FactsGid->Cel | s[0] [wm.ind]=Initial FactsGid->Cells[0][CurrentRow 1];
FactsGid->Cel | s[1] [wm.ind]=Initial FactsGid->Cel|s[1][CurrentRow 1];
FactsGid->Cel | s[2][wm.ind]=Initial FactsGid->Cells[2][CurrentRow 1];

strcpy(Wr kMem Tabl efwm ind] . attribute, FactsGid-
>Cel I s[O] [wm.ind].c_str());

strcpy(Wr kMem Tabl e[wn i nd] . val ue, Fact sGri d-
>Cel I s[1][wm.ind].c_str());

Wor kMem Tabl e[wm i nd] . cf =at of (FactsGid->Cel I s[2] [wm.ind].c_str());
Mai nFor m >CF=Wor kMem _Tabl e[wm_i nd] . cf ;

wm_i nd++;
Cur rent Row - ;
}
el se{
prem se=CGet Fr eePr eni se(Concl usi onsG i d->Cel | s[0] [posi tion],
Premi sesGid);
val ue= Mai nFor m >Quer y(Prem sesGri d->Cel | s[2] [premni se]);
For war dChai ni ngSt ep8(preni se, Preni sesGri d, val ue);
}
}
e
/1 void__fastcall TInferenceForm : Forwar dChai ni ngSt ep8
11 (int position, TStringGid *Grid, Ansi String Val ue)

// Forward Chai ning al gorithm 8th. step. Update A-Qtabl e and Worki ng Menory
/1 Table.

voi d__fastcal | TI nferenceForm : Forwar dChai ni ngSt ep8(i nt position,
TStringGid*Gid, AnsiString Val ue)
{

I/ place attribute of premise in positioninthe Gidonthe top of the

/1 Attribute-queue table
if (top_nost !=0){

Bachelor of Science in Business Computing.

Main Project: Development of an Expert System Shell.

top_nost--;

strcpy(Att Queue_Tabl e[top_npst].attribute, Gid-

>Cel I s[2][position].c_str());

Att Queue_Tabl e[top_npst]. R D=at oi (Gid->Cel | s[O][position].c_str());

el se{

MoveAQrabl e() ;

strcpy(Att Queue_Tabl e[top_nost].attribute, Gid-

>Cel I s[2][position].c_str());

Att Queue_Tabl e[t op_npst]. R D=atoi (Grid->Cel | s[O][position].c_str());
}

Il place attribute plus its value at the bottomof the Wrking-Menory Tabl e
strcpy(Wor kMem Tabl efwm ind].attribute, Gid->Cells[2][position].c_str());
strcpy(Wr kMem Tabl e[wm_i nd] . val ue, Val ue. c_str());

Wor kMem _Tabl e[wm_i nd] . cf =Mai nFor m >CF;

FactsGid->Cel | s[0] [wm_i nd] =G'i d->Cel | s[2] [posi tion];
FactsGid->Cel | s[1] [wm. i nd] =Val ue;

FactsGid->Cel | s[2] [wm_i nd] =(Ansi Stri ng) Mai nFor m >CF;
wm i nd++;

6.4. The Backward Chaining Algorithm.

The implementation of the backward chaining algorithm can be described as a

sequence of six steps (Ignizio, 1991).

1

Initialization.

Establish three empty tables, the Working Memory Table, the Goal Table, and the
Rule/Premise Status table. The Working Memory Table and the Rule/Premise Status table
do the same function as in the forward chaining algorithm. The goal table records, in
order, those attributes for which a values is sought.

Startinference.

Save facts given by the user at the beginning and update Rule/Premise Status table.
Specify afina goal (i.e., a conclusion clause attribute). Place the associated goal attribute
at the top of the Goal table.

Rulescan.

Scan the conclusion clauses of the active rules (i.e., rules that have not yet been fired or
discarded) to find any occurrence of the goal attribute presently on the top of the Goal
table.

(a) If the God table is empty, STOP

(b) If only one such rule may be found, go to step 6. If severa such rules may be found,
and any of these are triggered, select any one of the triggered rules and proceed to
step 6. Otherwise, select one rule from among the rules found that contains the
subject goal attribute in its conclusion clause set, and go to step 6.

(c) If no active rules are found that contain the subject goal attribute
in their conclusion clause set, then go to step 4.

Query.

Query the user for the god attribute on top of the Goal Table, record his or her response,
remove the top god attribute from the Goal table and place it, plusits value (as supplied
by the user), in the Working Memory table. Go to step 5.

Bachelor of Science in Business Computing.

31

Main Project: Development of an Expert System Shell.

Rule/premisestatusupdate.

Using the contents of the Working Memory table, update the Rule/Premise Status table.
Specifically, if the premise of any rule is false, discard that rule, and if the premiseis
true, trigger that rule. Return to step 3.

Ruleevaluation.
For the rule found in step 3:

(a) If thisruleistriggered, then remove the current topmost goal attribute from the Goal
table and place it, plusits value, in the Working Memory table. Change the status of
this rule from triggered to fired. Go to step 5. Otherwise (i.e., if thisruleis not
triggered) proceed to step 6b, below.

(b) If thisruleis not triggered, then select the first unknown premise attribute of the rule
and place it, plus the rule number, at the top of the Goal table. Return to step 3.

Bachelor of Science in Business Computing.

32

Main Project: Development of an Expert System Shell.

1. Initialization

A

6. Rule
evaluation

A

2. Start
inference

A

3. Rule scan

Main Project: Development of an Expert System Shell.

and <
updating.

5. Rule/Premise

STOP

Status update

A

Fig.4. Backward Chaining Algorithm flow chart.

Bachelor of Science in Business Computing.

Source code of the backward chaining algorithm:

/********************~k***********~k***********~k*****************************/
/***********~k***********~k***********~k***********~k**************************/
/** BACKWARD CHAI NI NG ALGORI THM *x
/********************~k***********~k***********~k*****************************/
/********************~k***********~k~k**/

CleanGrids(); // empty results fromformer queries
PageCont r ol 1- >Sel ect Next Page(true);

Mai nFor m >Thr eshol dVal ue=at oi (Edi t 2->Text.c_str());
Backwar dChai ni ng() ;

Concl Bt n- >Enabl ed=t r ue;

}
e e T R
/1 void__fastcall Tl nferenceForm : Backwar dChai ni ng(voi d)

11 Forward Chai ni ng al gori thm Consists of 6 steps.
e R

voi d __fastcal |l TI nf erenceFor m : Backwar dChai ni ng(voi d)

{

// STEP 1: Initialisations
Ansi StringVal;
int position, i;
Premi sesTh->0Open() ;
Concl Tb->Open() ;
bool iterate;

Reset Query(Queryl, "sel ect * fromconcl usi on where status=\"A"");
LoadG i d(Query1l, Concl usi onsGrid);

Reset Query(Queryl, "sel ect prem ses. Rl D,

premises. PI D, premi ses. Attribute, prem ses. Val , preni ses. St at us, preni ses. CF
frompreni ses, concl usi on wher e concl usi on. status=\"A" and

premi ses. Rl D=concl usion. RID");

LoadGri d(Queryl, PrenisesGid);

goal _ind=0; // index for Goal table
top_goal =0; // index for top of Goal table
wm i nd=0; // index for Working-nmenory table

/1 copy contents of initial facts given by the user in the Facts grid
CopyGid(lnitial FactsGid, FactsGid);

/| STEP 2: Start Inference

I/ save results given by the user inthe initial facts and update rules

for(i=0;i<CurrentRow; i ++){
Mai nFor m >CF=at of (I niti al FactsGid->Cel I s[0][i].c_str());
Updat eRul eSet (I nitial FactsGid->Cells[0][i],Initial FactsGid-
>Cel I's[1][i], Prem sesGid, Concl usi onsGid);

}

Concl Tb->First(); //get first entry

Il save results

strcpy(Goal _Tabl e[top_goal].attribute, Concl TbAttri bute->Value.c_str());
Goal _Tabl e[t op_goal] . Rl D=Concl TbRI D- >Val ue;

goal _i nd++;

/1 STEP 3: Rul e scan and check for convergence
//scan active rules for occurences of the attribute in the top of the goal
I/ table, giving prority to triggered rules
do{
i t er at e=Backwar dChai ni ngSt ep3() ;

Bachelor of Science in Business Computing.

Main Project: Development of an Expert System Shell.

Iwhile(iterate);

e e
I/ bool __fastcall Tl nferenceForm : Backwar dChai ni ngSt ep3(voi d)

/1 Backward Chaining al gorithm 3rd. step. Returns false if the goal

I/ table is enmpty

int position;

if (top_goal ==goal _ind){ // if both indexes are equal =>the goal
table is enpty
returnfal se;

el se{
posi ti on=Get Rul e(Concl usi onsGri d, (Ansi String)
Goal _Tabl e[top_goal].attribute);
if (position!=-1){
Backwar dChai ni ngSt ep6(posi tion);

el se{
Backwar dChai ni ngSt ep4() ;
Backwar dChai ni ngSt ep5() ;

returntrue;

R e T
I/ void__fastcall Tl nferenceForm : Backwar dChai ni ngSt ep4(voi d)
/1 Backward Chaining al gorithm 4th. step. Query.

Ansi Stringval ue;
val ue= Mai nFor m >Quer y((Ansi String) Goal _Tabl e[top_goal].attribute);

I/ place topnpst attribute plus its value on the Wrking Menory Tabl e
strcpy(WorkMem Tabl efwm i nd] . attribute, Goal _Tabl e[top_goal].attribute);
strcpy(Wr kMem Tabl e[wm_i nd] . val ue, val ue.c_str());

Wor kMem Tabl e[wm_i nd] . cf =Mai nFor m >CF;

FactsGid->Cel | s[0] [wm. i nd] =(Ansi Stri ng) Goal _Tabl e[top_goal].attri bute;
Fact sGid->Cel | s[1] [wm_ i nd] =val ue;

FactsGid->Cel | s[2] [wm_i nd] =(Ansi Stri ng) Mai nFor m >CF;

wm_i nd++;

I/ cross topnost attribute on Goal Table
t op_goal ++;

e R
/1 void __fastcall Tl nferenceFor m: Backwar dChai ni ngSt ep5(voi d)
/| Backward Chai ni ng al gorithm 5th. step. Rul e/ preni se status update.

Updat eRul eSet ((Ansi String) Wor kMem Tabl e[wm_i nd-1] . attribute,
(Ansi String)WrkMem Tabl e[wm_i nd-1] . val ue, Prem sesGri d,
Concl usi onsGid);

e e
/1 void __fastcall TInferenceForm : Backwar dChai ni ngSt ep6(i nt posi ti on)

Bachelor of Science in Business Computing.

Main Project: Development of an Expert System Shell.

/| Backward Chaining al gorithm 6th. step. Rul e eval uation.

int premse_nr;

i f (ConclusionsGrid->Cells[3][position]=="T"){
/Il if ruleistriggered =>fireit
I/ place topnopst attribute plus its value on the Wrking Menory Tabl e
strcpy(Wr kMem Tabl e[wm i nd] . attri bute, Concl usi onsGri d-
>Cel I s[1][position].c_str());
strcpy(Wr kMem Tabl e[wm i nd] . val ue, Concl usi onsGi d-
>Cel I s[2][position].c_str());
Wor kMem Tabl e[wm_i nd] . cf =Mai nFor m >CF;

I/ showrule firedinGid
ShowRul e(Query1, Concl usi onsGri d->Cel | s[0] [posi tion],
Rul esGid);

FactsGid->Cel | s[0] [wm.i nd] =(Ansi Stri ng)

Goal _Tabl e[top_goal] . attribute;

FactsGid->Cel | s[1] [wm._i nd] =Concl usi onsG i d-

>Cel I s[2][position].c_str();

FactsGid->Cel | s[2] [wm_i nd] =(Ansi Stri ng) Mai nFor m >CF;
wm_i nd++;

I/ cross topnost attribute on Goal Table
t op_goal ++;

!/ update rul e-prem setable
Concl usi onsGid->Cel | s[3][position]="F";//fired

el se{
I/ select first unknown prenise attribute of the rule
prem se_nr=Cet Fr eePr em se(Concl usi onsGi d->Cel | s[0] [posi tion],
Premi sesGid);
/1 place it at the top of the Goal table
if (top_goal !=0){
top_goal --;
strcpy(Coal _Tabl e[top_goal].attribute, Prem sesGid-
>Cel I s[2][prem se_nr].c_str());
Goal _Tabl e[top_goal] . Rl D=at oi (Premni sesGi d-
>Cel I s[O] [prem se_nr].c_str());
}
el se{
MoveGoal Tabl e() ;
Strcpy(GCoal _Tabl e[top_goal] . attribute, Prem sesGid-
>Cel I s[2][prem se_nr].c_str());
Goal _Tabl e[top_goal] . Rl D=at oi (Preni sesGi d-
>Cel I s[O] [prem se_nr].c_str());
}
}

Bachelor of Science in Business Computing.

36

Main Project: Development of an Expert System Shell.

7. Enhancements.

7.1. Uncertainty.

Up until now, our focus has been on deterministic rules. However, as the structure of
the database reveals, the system also provides support for uncertainty. The real world in fact
is characterised by uncertainty and it is desirable that this characteristic is available in any
expert system.

In general, there are two primary sources of uncertainty that may be encountered in
the expert system:
Uncertainty with regard to the validity of a knowledge base rule.
Uncertainty with regard to the validity of a user response.

The method employed to represent uncertainty is using Certainty Factors. There are
several methods of using certainty factors in handling uncertainty in knowledge-based
systems. We use a humeric value associated with each rule and each premise that ranges from
0to 100 (Turban, 1992). 0 represents absolute certainty that a rule or premise is false, while
100 represents absolute certainty that the rule/premise is true. Note that certainty factors are
not probabilities.

The propagation of certainty factors is made following the approach used in MY CIN:

The certainty factor of the whole premise is the minimum of the CFs of each
premise.
E.g.: IF sky_color = grey (CF = 70)
AND month = April (CF = 60)
THEN weather = rainy.

Thus, the CF of the premise will be the minimum of the two, that is 60.

The certainty factor of the conclusion will be calculated by multiplying the actual
value of the conclusion CF by the CF of the premise.

CF(rule)’ = (CF(rule) * CF(premise))/100

In the application, the certainty factor of the premise (IF part) is calculated by storing
in a variable the temporal minimum of the premises’ certainty factors while we update the
status of the premises:

The fragment of code that cal culates the accumulated CF of the premisesis:

fl oat Tenporar yCF=100;

for (i=0; Gid->Cells[O][i] !="EOF"; i++){
if (Gid->Cells[0][i]==RID){
if (Gid->Cells[4][i]=="F"){ // mark the rest of premises in
the rule as false to increase efficiency
mar k=t r ue;
br eak;

el se{

Bachelor of Science in Business Computing.

37

Main Project: Development of an Expert System Shell.

if (Gid->Cells[4][i]=="A")
br eak;

else{ // true premi se => cal cul ate accunul ated CF
if (atoi (Grid->Cells[5][i].c_str())<(int)
TenporaryCF){ // newm ni num

Tenpor aryCF=at of (Gri d-
>Cel I s[5][i].c_str());
}

}
}
} //end of for |oop

The calculation of the certainty factor of the conclusion is calculated by the function
“CalcCF":

/1 float Cal cCF(fl oat preconditionCF, int Position, TStringGid*Gid)
I/ Calculates the Certainty Factor of the rule given the CF of the prenises
e

float Cal cCF(fl oat preconditionCF, int Position, TStringGid*Gid)
{

fl oat concl usi onCF, CF;

char cf[5];

strcepy(cf, Gid->Cells[4][Position].c_str());
concl usi onCF=at of (cf);

CF=(concl usi onCF*precondi ti onCF)/ 100;

/1 New CF = (Prenmi se CF * Concl usi on CF)/ 100

i f (CF<Mai nFor m >Thr eshol dVal ue) {
return 0; // if it is under the Threshold Value, return 0 as

the C. F.
el se{
Mai nFor m >CF=CF;
return (CF);
}
}

7.2. The Threshold Value.

In the function above, note that we use the variable “ ThresholdVaue’. The threshold
level wasusein MY CIN aso, but in that expert system it was a static value (0.2 in ascae
from —1 to 1). In this implementation, the user can change the value of thethreshold level in
each consultation. The threshold level discards rules under a certain vaue of certainty.

7.3. Explanation Facility.
At the end of a consultation, the system is able to justify why a particular solution

was reached. The explanation consists in keeping track of the facts inferred and the rules
applied and present them to the user at the end of the consultation, if he or she requires them.

In the following figure a particular explanation is showed.

Bachelor of Science in Business Computing.

38

Main Project: Development of an Expert System Shell.

Conclusion

LConcluzions

The following facts were proved ta be true:

Engine type = Jet with 3 C.F. of 100
Wwing Position = High with a C.F. of 70
Bulges = Aft of wing with a C.F. of 55
Plane = F 15 with a C.F. of 52.25

The following rules were fired:

Rule Mr.4:

IF Engine type = Jet AND Wing Position = High AMD Bulges = Aft
of wing

THEN Flare = F 15, with a C.F. of 52.25

Fig.5. Explanation facility provided by the expert system shell.

Bachelor of Science in Business Computing.

39

Main Project: Development of an Expert System Shell.

8. Testing.

The system was tested during all the design process. Most of the times, the method that |
have found more useful and effective is printing the code on paper and tracing the program
manually to see what portions of code could be improved or where is a specific flaw of the
application.

In fact, for any programmer who reads the code for forward or backward chaining
algorithms it would be difficult to know how the algorithms work without using a particular
example and apply the algorithm to it step-by-step.

Obvioudly, the debugging facilities provided by modern software development tools such
as C++ Builder also help in the task of testing and debugging the code, specialy for small
errors in assignations or stopping conditions in loops. A special feature that | really appreciate
in C++ Builder (available in most of other visual programming packages) is the inspection of
objects as awhole, being able to watch/modify (almost) any property of the object inspected.

Bachelor of Science in Business Computing.

Main Project: Development of an Expert System Shell.

Bachelor of Science in Business Computing.

User Manual

41

Main Project: Development of an Expert System Shell.

1. Installation.

To ingtall the Expert System Shell application, simply run the “setup.exe” application
from Windows' 95 or Windows' 98 and follow the steps indicated in the screen (E.g.
destination directory). The interface of the set-up application is the standard provided with
almost every M'S Windows application.

2. Running the Application.

The application may be run using the common steps for every MS Windows
application, i.e., either by double-clicking the icon of the application in Windows Explorer, or
typing the full path in the “Run” option of the “ Start” menu (Installation directory +
expert.exe).

3. Start menu of the Expert System.

Asin other applications (such as MS PowerPoint), when we run the application we
get an initial window which guide us through the main options, i.e. editing the knowledge
base, or starting a new consultation. Also the user can simply start the application by clicking
“Cancel” or selecting the radio button of “ Start Expert System Shell”.

Bachelor of Science in Business Computing.

42

Main Project: Development of an Expert System Shell.

li;_.Experl System Shell
File Edit Inference ‘window Help

e o|meEm 7|

Main Project: Development of an Expert System Shell.

Expert System Shell []

rOptions——————

 Start inference

€ Start Expert System 5hell

X Cancel |

Fig.6. Start menu of the application.

4. Editing the knowledge base.

Before we can edit the knowledge base, we must supply the application with the path
where the knowledge base is stored. Then we get aform with al the rules of the knowledge
base in agrid. We can edit, delete or add rules from/to the knowledge base.

L Rule editor M= E3
Hlﬂlblbll"."ll—l/l'” 5\’|(_':| @ﬂewrulel
RID THEN.. CF 1=
L 1 Engine type = Prop Flane C130 100
2 Engine type = et AND "wing Position = Low Flane B747 100
m Engine type = Jet AMD Wing Position = High AMD Bulges = None Flane cey 75
4 Engine type = Jet AND “Wing Position = High Flane C141 50 J

" of

Fig.7. Ruleviewer.

Bachelor of Science in Business Computing.

In order to edit an existing rule we just have to double-click on the desired
rule. The form for adding/editing rules is showed:

! Add Rule - (0] x|
If {(premises) Then (conclusion)
Mbue = Vaue RID:[4 Atibute = Yalue

j INone j IF'Iane jIBN? j
Jet
Certainty Factor I‘I

High

Wing Position

I_J
0 50 100

o8 Add Eremisal = [el Premisel

g Add Rule |

Fig. 8. Form for adding/editing arule.

x LCancel |

In the left side of the form, we can add or delete premises to/from the rule. The
combo-boxes are automatically loaded with the possible values for each attribute. The RID
number is automatically generated by the application, although we can change manually if
thereis not any rule with the same RID.

In the right side of the form, we specify the conclusion of the rule and associate a
certainty factor to the rule, either using the edit box or the track bar. When we click “Add
Rule” or “Ok” the rule is posted (after checking that the fields were filled correctly) and the
Rule Viewer form is updated. The difference between the two buttons is that “Ok” posts the
rule and closes the window and “Add Rul€’ just posts the rule.

5. Inference with the Expert System Shell.

To start a consultation session with the expert system shell we select “Inference” from
the menu bar and the “ Start inference”. If we did not specify a knowledge base the system
will ask us for the path of the knowledge base we want to consult.

We can provide data to the system either at the beginning of the consultation or
during the consultation. Also, we must associate a certainty factor to each fact that we assert.

The threshold value can be different for each consultation, we can modify it using the
track bar or the edit box in the same way we modify certainty factors. The value by default is
0, i.e. noruleisdiscarded if the certainty factor islow (obvioudly, since no rule can have a
certainty factor under 0).

Bachelor of Science in Business Computing.

Main Project: Development of an Expert System Shell.

Ih Inference Process [_ (O] x]
Start Data I Inference |
Enter the initial data to start the inference process :
Attribute: alue: Threshald Walue:

= Fe =]

Certainky Factar: |93 IU
[— % bctdFact|

A
Abtribute Walue Certainty Factor
Engine type Jet 93 ﬂ
Bulges Mone 93
-
< of
LClear list Forward Chaining Backward Chainingl

[EarelusEe |

Fig. 9. Start of the inference process.

To dtart the inference engine we select the inference mechanism (forward or
backward) by clicking the appropriate button. Then, the system will try to reach a conclusion
from the facts given at the beginning (if any was given) and if it can not then it will ask the

user for more information.

The form used to ask the user for avalue for a given attribute is shown next.

¥alue query for Wing Position
Select avalue for the attribute:

Wing Position
Walues Available:

J Certainty Factor: |?2
Lo hd
- []

1] 50 100

Fig. 10. Form for querying the user about a particular attribute.

During the inference process the expert system shows the known facts (either

provided by the user or by inference) and rules that it is firing.

Bachelor of Science in Business Computing.

Main Project: Development of an Expert System Shell.

Ih Inference Process [_ (O] x]
Start Data |nference I
Fnown Facts:
Attribute Walue Certainty Factor
“wing Position High 70 2]
Bulges Aft of wing 55 _I
Flane F15 52,28 b
A 3
Rules Applied:
Rule ID Premizes Attribute Yalue ﬂ
Engine type = Jet Ak Plane F15
-
4 3
& Conclusions |

Fig.11. Theinference processin action.

If the system reaches a conclusion, the conclusion button is enabled. If we click it the
conclusion is shown in an individual form. That explanation facility for the conclusion
reached (we just have to select the “tab” labelled “ explanation”).

Conclusion [x]

Explanation I

The conclusion reached by the expert system for a Plane is:

F 15 (C.F. =52.25)

LConclugions

The following facts were proved to be tiue:

Engine type = Jet with a C.F. of 100
"ing Pogition = High with a C.F. of 70
Bulges = Aft of wing with & C.F. of 55
Flane = F 15 with a CF. of 52.25

The following rules were fired:

Fiule Nr.4:

IF Engine type =Jet AMD Wing Position = High AND Bulges = Aft
of i

THEM Plane = F 15, with a C.F. of 52.25

Fig.12. Conclusion Form.

If severa conclusions are reached, the expert

system will show consecutively each

conclusion. We can repest the inference changing some vaues and see how the conclusions

reached by the expert system vary.

Bachelor of Science in Business Computing.

46

Main Project: Development of an Expert System Shell. Main Project: Development of an Expert System Shell.

Appendix A: Source Code.

Next, the most relevant units of the expert system implementation are shown. The Biblio grap hy_
project is divided in several modules, which are connected as described in section 4 of the
technical manual (see page 15). Normally, each file corresponds to aform in the application, e . .
except “UNIT.CPP" that is a repository of frequently used functions. - Cawsey, A. (1998) The essence of Artificial Intelligence. Prentice Hall.

Covington, M., Nute, D., Vellino, E. (1997) Prolog Programming in Depth. Prentice
Hall.

Ignizio, J. (1991) Introduction to Expert Systems. Mc. Graw-Hill, Inc.
Marquez, A. (1997) Programacion con C++ Builder. Anaya Multimedia
Newman, W.M., Lamming M.G. (1995) Interactive Sytem Design. Addison-Wesley.

Quinlan, JR. (1983) Learning Efficient Classification Procedures and Their Applications
to Chess End Games. Machine Learning: An Artificial Intelligence Approach.

Rich, E. (1983) Artificial Intelligence. McGraw-Hill.

Simon, H.A. and Newell, A. (1958) Heuristic Problem Solving: The next advance in
Operations Research. Operation Resear ch, January-February 1958, pp.1-10

Sommerville, 1. (1992) Software Engineering. Addison-Wedey Publishing Company.
Surko, P., Tips for Knowledge Acquisition, PC Al, May-June 1989. pp. 14-18.

Turban, E. (1992) Expert Systems And Applied Artificial Intelligence. Prentice Hall.

Bachelor of Science in Business Computing. a7 Bachelor of Science in Business Computing.

