
AD3700
Userts Manual

ffi RearTimeDevices,rnc.
"Accessing the Analog World'k

IISSOO99000011 aanndd AASS99110000 CCeerrttiiffiieedd

AD3700
User's Manual

ffi
REAL TIME DEVICES, INC.

820 North University Drive
Post CIfice Box 906

State College, Pennsylvania 16804 USA
Phone: (814) 234-8087
FAX: (814) 234-5218

Published by
Real Time Devices,Inc.
820 N. University Dr.

P.O. Box 906
State College, PA 16804 USA

Copyright @ 1991 by Real Time Devices, Inc.
All righb reserved

Printed in U.S.A.

Rev. C 9239

Thble of Contents

INTRODUCTrON.....t-1

WhatComes

Application Software

cHAprER 1 -BOARD S8TTINGS.............1-1

Factory-Configwed Switch and Jumper Settings1-3
P3 - Input Voltage Range (Factory Setting: 10V)1-3
P4 - FIFO Fulfllalf-Full Flag (Factory Setting: FIFO Full)1-3
P5 - Unipolar/Bipolar Analog Input (Factory Setting: Bipolar) 1-5
P6 - Timer/Counter 2 Source and OUT Select (Factory Settings: XTAL (!op), +5V, OUm)1-5
P7 -Pacer Clock Source Select (Factory Setting: XTAL)1-6
P8 - TCl, Counter 2 Sources (Facory Settings: +5V, XTAL)1-6
P9 - External Trigger/Exernal Gate Monitor (Factory Sening: External Trigger)1-6
P10 - Board Compatibility Select (Factory Setting: Jumper on B)1-6
Pl I - Simultaneous Sample-and-Hold Select (Factory Secing: NOR)1-7
Sl - Base Address (Factory Setting: 200 hex (512 decimal)1-7

CIIAPTER 2 - BOARD INSTALLATION2.I

Connecting
Connecting ttre Trigger In and Trigger Out Pins, Cascading Boards....24
Connecting ttre TimevCounters and Digital VO2-5

Running the 3700DIAG Diagnostics Program2-5

CHAPTER 3 - HARDWARE DESCRIPTION 3-1

CHAPTER 4 - BOARD OPERATION AND PROGRAMN4ING4- t

Defining the I/O lvlap
BA + 0: Digial VO (Read/lMrite)4-3
BA + l: ChanneVConversion Mode Select (ReadflVrite)................4-4
BA+2: Scan Channel Range Select @eadlWrite)..............4-4
BA + 3: Read Status/Clear FIFO (Read/TVrite)4-4
BA + 4: Read FIFO Data/Sart Conversion (ReadAMrite)4-5

_ B A +
B A +
B A +
B A +

BA + 5: Clear DMA Done Bit (Write Only)...........4-5
BA + 6: IRQ/DMA Select @eadlWrite)................4-6
BA + 7: Clear (Reset) Board (Write only)4-6
BA+ 8: TCI Counter 0 (Readfllyrite)4-6
BA + 9: TCI Counter 1 (Read/'tMrite)4-6

BA + 14: TC2 Counter 2 (Read/Write)4-7
BA + 15: TC2 Control Word (Write Only)...........4-7

Clearing and Setting Bits in a Port..........

Conversion Modes and Channel Select Options...................4-IL
Conversion Mode$Triggering............4-11
Channel Select Options/Scans4-12
Timing

Starting an AID Conversion4-15
Monitoring Conversion Status @F Flag or End-of-Convert)4-15

Reading the Converted Data4-15
hogramming the Pacer Clock4-16

What Is an Intemrpt?4-18
Intemrpt Request Lines....4-18
8259 Programmable Intemrpt Controller4-18
Intemrpt Mask Register (IlvR)4-18
End-of-Intemrpt (EOI) Command...4-18
What Exactly Happens When an Intemrpt Occurs?4-19
Using Intemrpts in Your Programs...........4-19
Writing an Intemrpt Service Routine 0SR)............4-19
Saving the Startup Intemrpt Mask Register (IMR) and Interrupt Vector.........4-20
Restoring the Startup IMR and Intemrpt Vector4-2I
Common Intemrpt Misakes4-2L

Data Transfers Using DMA4-21
Chmsing a DMA Channel.......4-ZI
Allocating a DMA Buffer4-22
Calculating the Page and Offset of a Buffer4-22
Setting the DMA Page Register4-23
The DMA Controller4-24
DMA Single Mask Register4-24
DMA Mode Register,...............4-25
Programming the DMA Controller....4-25
Programming the AD3700 for DMA.....4-25
Monitoring for DMA Done4-26
Common DMA Problems4-26

Example Programs and Flow Diagrams4-29

tl

C and Pascal

Single Convert Flow Diagram (Figure 4-I2)4-30
FIFO Flow Diagram @gure4-13)4-31
DMA Flow Diagram (Figure 4-14)............4-32
Scan Flow Diagram (Figure 4-15)4-32
Intempts Flow Diagram (Figure 4-16)4-32

CHAPTER 5 - CALIBRATION

BipolarRange Adjustrnen8: -5 to +5 Vo1ts............5-6
Bipolar Range Adjusftnents: -10 to +10 Vo1ts............5-6

APPENDIX A - AD37OO SPECIFICATIONSA.1

APPENDIX B _P2 CONNECTOR PIN ASSIGNMENTS B-l

c-rAPPENDIX C _ COMPONENT DATA SHEETS

APPBNDIX D _ CONFIGIJRING THE AD37OO FOR SIGNAL*MATH..........D-1

APPENDIX E - CONFIGTruNG THE AD37OO FOR ATLANTIS E-l

APPENDIXF-WARRANTYF.1

ut

lv

LIST OF ILLUSTRATIONS

1-1
t-2
1-3
r-4
1-5
r-6
t-7
1-8
r-9
l -10
1-1 I
T .T2
2-r
2-2
2-3
3-1
3-2
4-l
4-2
4-3
44
4-5
4-6
4-7
4-8
4-9
4-10
4-tr
4-12
4-r3
4-14
4-r5
4-16
5-1

Board Layout Showing Factory4onfigured Settings1-4
Input Volage Range Jumper, P31-3
FIFO Fullf{alf-Full Flag Jumper, P41-5
Analog Input Polarity Jumper, P5................1-5
TC2 Source and OUT Select Jumper, P6............... 1-5
Pacer Clock Source Select Jumper, H1-6
TCl, Counter 2 Sources Jumper, P8 l-6
External Trigger/Extemal Gate Monitor Jumper, P9.........1-6
Board Compatibility Select Jumper, P10............ 1-6
Simultaneous Sample-and-HoldAlormal Operation Jumper, Pl11-7
Base Address Switch, Sl1-8
Gain Circuiry and Formulas for Calculating Gx and f1-8
n"VO ConnectorPin Assignments2-3
Analog Input Connections24
Cascading Two Boards for Simultaneous Sampling2-5
AD3700 Block Diagram3-3
8254 Programmable Interval Timer Circuia Block Diagram......3-5
Timing Diagram, Single Convert, Intemal Trigger/Direct Channel4-13
Timing Diagram, Single Convert,Intemal Trigger/Scan Channel4-13
Timing Diagram, Multi-Convert,Internal Gate/Direct Channel4-13
Timing Diagram, Multi-Convert,Internal Gate/Scan Channel.......4-13
Timing Diagram, Single Convert, External Trigger/Direct Channel4-14
Timing Diagram, Single Convert, External Trigger/Scan Channel4-L4
Timing Diagram, Multi-Convert, External Gate/Direct Channel4-14
Timing Diagram, Multi-Convert, External Gate/Scan 8 Channels4-14
Pacer Clock Block Diagram4-lT
8254 Programmable Interval Timer Circuits Block Diagram4-27
Digital Input Pull-up Resistors......4-28
Single Convert Flow Diagram4-30
FIFO Flow Diagram4-31
DMAFlow Diagram4-32
Scan Flow Diagram ...4-33
Intemrpts Flow Diagram4-34
BoardLayout Showing Calibration Trimpots......54

vt

INTRODUCTION

i-1

i-2

The AD3700 DataMasterru board nrns your IBM PC XT/AT or compatible computer into a high-speed, high-
performance data acquisition and control system. Insalled within a single expansion slot in the computer, the
AD3700 features:

. Eight single-ended analog input channels,

. 12-bit, 5 microsecond analog-to-digital converter with 200 kHz ttrroughput,

. 15, 110, or 0 o +10 volt input range,

. Resistor-configurable input gain,

. Four conversion modes and programmable channel scan option,

. On-board FIFO interface and DMA transfer,

. Trigger in and trigger out for external triggering or cascading boards,

. Eight digrtal input and eight digital output lines,

. Four user-configurable 16-bit timer/counters which can be used to generate interrupts, or as an event counfer,
a frequency counter, a programmable one-shot, a rate generaror, or for other special functions,

. BASIC, Turbo Pascal, and Turbo C source code; diagnostics program.

The following paragraphs briefly describe the major functions of the board. A more detailed discussion of board
functions is included in Chapter 3, Hardware Operatian, and Chapter 4, Board Operation and Progrananing. The
board setup is described in Chapter l,Board Settings.

Analog-to-Digital Conversion

The analog-todigital (A/D) circuitry receives up to eight single-ended analog inputs and converts these inputs
into l2-bit digital data words which can then be read and/or ransferred to PC memory.

The input volage range is jumper-selecable for bipolar ranges of -5 to +5 volts or -10 to +10 volts, or a
unipolar range of 0 to +10 volts. It is not necessary to recalibrate after changing the input range or polarity. The
board is factory set for -5 to +5 volts. Overvoltage protection to +35 volls is provided at the inputs.

A user-configurable gain, Gx, is provided so that you can customize a gain for a specific application. Gx is set
as described in Chapter 1

A/D conversions are performed in 5 microseconds, with a maximum throughput rate of 200 kIIz. Conversions
are controlled through software, by an on-board pacer clock, or by an external trigger brought onto the board
through the VO connector. A first in, first out (FIFO) interface helps your computer manage the high throughput rate
of the A/D converter by acting as an elastic storage bin for the converted data. Even if the computer does not read
the daa as fast as conversions are performed, conversions can continue until the FIFO is full.

The converted data can be transferred to PC memory in one of two ways: by using the microprocessor or by
using direct memory access (DMA). The mode of transfer and DMA channel are chosen through software. The PC
data bus is used to read and,/or transfer da[a, one byt€ at a time, !o PC memory. In the DMA transfer mode, you can
transfer a selected block of data in a single data dump, or you can make continuous transfers directly to PC memory
without going through the processor.

8254 Timer/Counters

Two 8254 programmable interval timers, TCl and TC2, each contain tfuee 16-bit, 8-MlIz timer/counters to
support a wide range of timing and counting functions. Two of ttre timer/counters in TCI are cascaded and used
internally for the pacer clock. The third is available for counting applications. The three timer/counten in TC2 are
cascaded for timing applications.

Digital VO

The AD3700 has eight input and eight output TTL/CMOS-compatible digilal lines which can be directly
interfaced wittr external devices or signals to sense switch closures, trigger digital events, or activate solid-state
relays. The input lines have on-board pull-up resistors.

i-3

What Comes With Your Board

You receive the following items in your AD3700 package:

. AD3700 interface board

. Software and diagnostics diskette with example programs in BASIC, Turbo Pascal, and Turbo C; source code

. IJser's manual

If any item is missing or damaged, please call Real Time Devices' Customer Service Department at
(814) 234-8087. If you require service outside the U.S., coniact your local distributor.

Board Accessories

In addition to the items included in your AD3700 package, Real Time Devices offers a full line of software and
hardware accessories. Call your local distributor or our main office for more information about these accessories and
for help in choosing the best items to support your board's application.

Application Software and Drivers

Our cuslom application software packages provide excellent daa acquisition and analysis support. Use
SIGNAL*MATH for integrated data acquisition and sophisticated digital signal processing and analysis, or
ATLANTIS for real-time monitoring and data acquisition. rtdLINX and labLINX drivers provide full-featured high
level interfaces between the AD3700 and custom or third party sofuare, including LABTECH NOTEBOOK,
NOTEBOOI(DG, and LTICONTROL. rtdLINX source code is available for a one-time fee. Our Pascal and C
Programmer's Toolkit provides routines with documented source code for custom progamming.

Hardware Accessories

Hardware accessories for the AD3700 include the ND(32 analog input expansion board which can expand a
single input channel on your AD3700 to 16 differennal ar 32 single-ended input channels, SSH4/SSH8 four- and
eight-channel simultaneous sample-and-hold boards, MR series mechanical relay output boards, OP series
opbisolated digital input boards, the OR16 mechanical relay/optoisolated digital I/O board, the TS16 thermocouple
sensor board, the TB50 terminal board and XB50 prototype/terminal board for prototype development and easy
signal access, EX-XT and EX-AT extender boards for simplified testing and debugging of prototype circuitry, and
the XT50 twisted pair flat ribbon cable assembly for external interfacing.

Using This Manual

This manual is intended to help you install your new board and get it running quickly, while also providing
enough detail about the board and its functions so that you can enjoy maximum use of its features even in the most
complex applications. We assume that you already have an understanding of data acquisition principles and that you
can customize the example software or write your own applications progams.

When You Need Help

This manual and the example programs in the software package included with your board provide enough
information to properly use all of the board's features. If you have any problems installing or using ttris board,
contact our Technical Support Deparfinent, (814) 234-8087, during regular business hours, eastern standard time or
eastern daylight time, or send a FAX requesting assistance to (814) 234-5218. When sending a FAX request, please
include your company's name and address, your name, your telephone number, and a brief description of the
problem.

i-4

CHAPTER 1

BOARD SETTINGS

The AD3700 board has jumper and switch settings you can
change if necessary for your application. The board is factory-
configured with the most often used settings. The factory settings
are listed and shown on a diagram in the beginning of this chapter.
Should you need to change these settings, use these easy-to-follow
instructions before you install the board in your computer.

Also note that by installing two resistors and a trimpot on the
board, you can define the user-configurable gain, Gx, to be what-
ever value your application may require. A pad for installing a
capacitor, C51, is also included in the gain circuitry for creating a
low-pass filter. The procedure for customizing Gx is included at
the end of this chapter.

1-1

Factory-Configured Switch and Jumper Settings

Table 1-1 lists the factory settings of the user-configurable jumpers and swirches on the AD3700 board.
Figure 1-1, on the next page, shows the board layout and the locations of the factory-set jumpers. The following
paragraphs explain how to change ttre factory settings. Pay special attention to the setting of Sl, ttre base address
switch, to avoid address contention when you first use your board in your system.

Table 1-l - Factory settlngs

Swltch/
Jumper Function Conlrollsd Factory s8illng

P3 Sets the A/D input voltage range 10 volts

P4
Sets the FIFO full/FIFO half-fullflag to hah A'lD conversions
when fullor half-full FIFO full

P5 Sets the analog input for unipolar or bipolar Bipolar

P6 Sets 8254 TC2's clock and gate sources and TIMER output
XTAL (top), +5V, and
OUTO

P7 Sets the pacer clock source XTAL

P8 Sets 8254 TC1, Counter 2's clock and gate sources +5V, OUT1

P9
Selects the external trigger in or external gate signal to be
available for monitoring TRIGIN

P 1 0

Jumper setting A sets the 3700 to be fully compatible with
earlier 3700 boards (scan functions limited); jumper setting
B provides full board capability

Jumper installed on
Group B (not compatible
with earlier boards)

P 1 1
Configures the 3700 for normal use or for use with RTD's
SSH series simultaneous sample- and-hold boards NOR

S1 Sets the base address 300 hex (768 decimal)

P3 - Input Voltage Range (Factory Setting: 10V)

This header connector, located in the upper right area of the board, sets the input voltage range at 10 or 20 vols.
The 10V setting is for the t5 volts and 0 to +10 volts ranges; the 20V setting is for the +10 volt range. Figure l-2
shows P3 with the jumper installed at 10V. You do not have to recalibrate the board when you change voltage
ranges.

P3

Fig. 1-2 - lnput Voltage Range Jumper, P3

P4 - FIFO FulUHalf-Full Flag (Factory Setting: FIFO Full)

This header connector, located above the FIFO at the top of the board, is used to halt A/D conversions when the
FIFO is full (FF) or half-full (I{F). The advantage of setting the FIFO to stop conversions when it is half-full is fte
assurance that there is room in the FIFO to store both bytes of the current conversion before shut-off. It is possible to
lose the LSB of a conversion when the jumper is set to FIFO full, since the FF flag signals that only one 8-bit slot
remains in the FIFO to be filled and each 12-bit conversion requires two 8-bit slots, one for the MSB and one for the
LSB. Figure 1-3 shows P4 with the jumper installed so that conversions are halted when the FIFO is full.

o o
(\l

1-3

o
o)
E

(D
U'
o
o)
f

.9)
g
o
o

I

o
t5(U
l!
o).s
=o
-c
a
=o
(5
J
T'
(!
o
c0

I

I

.d,
LL

t4

P4

Fig. 1-3 - FIFO Full/Half-Full Flag Jumpet, P4

P5 - UnipolarlBipolar Analog Input (Factory Setting: Bipolar)

This header connector, shown in Figure 14, configures the analog input for unipolar (0 to +10 volts) or bipolar
(t5 or t10 volts) operation. You do not have to recalibrate the board when you change polarity.

+ l -

+

Fig. 1-4 - Analog lnput Polarity Jumper, P5

P6 -Timer/Counter 2 Source and OUT Select (Factory Settings: XTAL (top), +5V, OUT0)

This header connector, shown in Figure 1-5, configures timer/counter 2's clock and gate sources and the
selected TIMER output to the I/O conn@tor FZ42). The top two pairs of pins, XTAL and EXTCK, set the clock
source for the three cascaded counters in TC2. XTAL connects the counters to tle on-board s-lvfrIz clock, and
EXTCK connects them to an external clock source brought onto the board through the VO connector. The +5V and
EXTGT pins connect the counters' gate input to +5 volts or !o an external gate brought onto the board through the
I/O connector. The bottom four pins, OUT0, OUTI, OUT2, and XTAL,let you select any one of the three counter
outputs or the on-board 5-MHz clock to be available at the TIMER output on the I/O connector. The timer/counters
are further described in Chapters 3 and 4.

XTAL

EXTCK

+5V

EXTGT

ouT0
OUTl

OUT2

XTAL

Fig. 1-5 -TCz Source and OUT Select Jumper, P6

FF HF

E

H
P5

1-5

P7 - Pacer Clock Source Select (Factory Setting: XTAL)

This header connec[or, shown in Figure 1-6, connects the pacer clock's clock source to the on-board 5 MIIz
(XTAL) clock or to an external clock applied through VO connector P2.

P7

XTAL

EXTPCK

Fig. 1-6 - Pacer Clock Source Select Jumper, P7

P8 - TCl, Counter 2 Sources (Factory Settings: +5V, XTAL)

This header connector, shown in Figure 1-7, configures the clock and gate sources for Counter 2 in TCl. The
top two pin of pins set the gate input for +5 volts or the external gate source. The botrom three pairs of pins set the
clock source for the on-board s-MHz clock (XTAL), the external clock source (EXTCK), or the output of the pacer
clock (OUTI). Note that the external gate and clock sources are the s:rme ones connected to K for TC2.

+5V

EXTGT

XTAL

EXTCK

OUTl

Fig. 1-7 - TC1, Counter 2 Sources Jumper, P8

P9 - External Trigger/External Gate Monitor (Factory Setting: External Trigger)

This header connector, shown in Figure 1-8, lets you select either the external trigger input (P2-39) or the
external gate input V246) to be available for monitoring at bit 4 of the status word (BA +3).

TRIGIN

EXTGT

Fig. 1-8 - External Trigger/External Gate Monitor Jumper, P9

P10 - Board Compatibility Select (Factory Setting: Jumper on B)

This header connector, shown in Figure 1-9, allows you to maintain software and hardware compatibility with
earlier AD3700 boards (board serial numbers 64XXXX). By installing a jumpers on the A pins (top) your new
AD3700 will be fully compatible in data acquisition and control systems using the earlier board. However, the new
AD3700's expanded features such as programmable channel scan cannot be used. When the jumper is installed
across *re B pins (factory setting), all new AD3700 functions are activated, but compatibility with previous boards is
lost.

Fig. 1-9 - Board Compatibility Select Jumper, Pl0

P8

E
P9

A

-l;;l
Ft l*lHl

B

1-6

Pll - Simultaneous Sarrple-and-Hold Select (Factory Setting: NOR)

This header connector, shown in Figure 1-10, configures the AD3700 to operate normally, or with Real Time
Devices' SSH4 or SSH8 simulaneous sample-and-hold board. The SSH setting adapts the triggering for optimal use
on the SSHboards.

Fig. 1-10 - Simultaneous Sample-and-Hold/Normal Operation Jumper, P11

Sl - Base Address (Factory Setting: 300 hex (768 decimal))

One of the most common causes of failure when you are first trying your board is address contention. Some of
your computer's I/O space is already occupied by internal VO and other peripherals. When the AD3700 board
attempts to use VO addrcss locations already used by another device, contention results and the board does not work.

To avoid this problem, ttre AD3700 has an easily accessible DIP switch, S1, which lets you select any one of 32
starting addresses in the computer's VO. Should the facory seuing of 300 hex (768 decimal) be unsuitable for your
system, you can select a different base address simply by setting the switches to any value shown in Table l-2.The
table shows the switch settings and their corresponding decimal and hexadecimal (in parentheses) values. Note that
switch 5 is the leftmost swirch and swirch I is ttre righrnost swirch when looking at the component side of ttre
board. When the swirches are pulled forward, they are OPEN, or set to logic l, as labeled on the DIP switch

Tabfe 1-2- Base Address Swltch Settings, 51
Base Addres$
Declmal/ (Hex)

Switch Setting
5 4 3 2 1

Base Address
Declmal/ (Hex)

Swltch Settlng
5 4 3 2 1

512 | (2oo) 0 0 0 0 0 768 / (300) 1 0 0 0 0

528 | (21O) 0 0 0 0 1 784 | (3101 1 0 0 0 1

544 | (22o) 0 0 0 1 0 800 / (320) 1 0 0 1 0

560 / (230) 0 0 0 1 1 816 / (330) 1 0 0 1 1

576 | (24o) 0 0 1 0 0 832 / (340) 1 0 1 0 0

592 | (250) 0 0 1 0 1 848 / (350) 1 0 1 0 1

608 / (260) 0 0 1 1 0 s64 / (360) 1 0 1 1 0

624 | (270) 0 0 1 1 1 e80 / (370) 1 0 1 1 1

640 | (2801 0 1 0 0 0 896 / (380) 1 1 0 0 0

656 / (290) 0 1 0 0 1 912 / (390) 1 1 0 0 1

672 | (2AO) 0 1 0 1 0 928 / (3A0) 1 1 0 1 0

688 / (2Bo) 0 1 0 1 1 944 / (380) 1 1 0 1 1

704 | (2C0) 0 1 1 0 0 960 / (3Co) 1 1 1 0 0

720 t(2Do) 0 1 1 0 1 e76 / (sDo) 1 1 1 0 1

736 /(zEo) 01110 9e2 / (3Eo) 1 1 1 1 0

752 | (zFo) 0 1 1 1 1 1008 / (3F0) 1 1 1 1 1

0=c losed , 1=ope l l

ssH

=1. .l
*l- |

NOR

t-7

package. When you set the base address for your board, record the value in the table inside the back cover.
Figure 1-11 shows the DIP swirch set for a base address of 300 (decimal 768) (swirch 5 OPEI$.

Fig. 1-11 - Base Address Switch, 51

Gx, User-Configurable Gain

Gx is provided so that you can easily configure a special gain setting for a specific application. Note that when
you use this feature and set up the board for a gain of ottrer than 1, all of the input channels will operate only at your
custom gain setting. Gx is derived by adding resistors R2 and R3, trimpot TR4, and capacitor C5l, all located in the
upper right area of the board. The resistors and trimpot combine to set the gain, as shown in the formula in Fig-
ure 1-12. Capacitor C5l is provided so that you can add low-pass filtering in the gain circuit. If your input signal is a
slowly changing one and you do not need to measure it at a higher rate, you may want to add a capacitor at C51 in
order to reduce the input frequency range and in turn reduce the noise on your input signal. The formula for setring
the frequency is given in the diagram below. If you install a custom gain circuit, a small trace on the bottom (non-
component) side of the board must be cut to activate the circuit. Figure 1-12 shows how the Gx circuitry is config-
ured.

To calculate Gx:
Gx =[(TR4 + R2)/R3] + 1

To calculate frequency:
f=1/ [2nC51(R2+TRa)]

Fig. 1-12 - Gain Circuitry and Formulas for Calculating Gx and f

(cut trace)

1-8

CHAPTER 2

BOARD INSTALLATION

The AD3700 board is easy to install in your IBM PCIKT/AT or
compatible computer. It can be placed in any full-sized slot. This
chapter tells you step-by-step how to install and connect the board.

After you have installed the board and made all of your con-
nections, you can turn your system on and run the 3700DIAG
board diagnostics program included on your example software disk
to verify that your board is working.

2-1

2-2

Board Installation

Keep the board in its antistatic bag until you are ready to insall it in your computer. When removing it from ttre
bag, hold the board at the edges and do not touch the components or connectors.

Before installing the board in your computer, check the jumper and swirch settings. Chapter 1 reviews the
factory settings and how to change them. If you need to change any settings, refer to the appropriate insructions in
Chapter 1. Note that incompatible jumper settings can result in unpredictable board operation and erratic response.

To install the board:

1. Turn OFF the power 0o your computer.

2. Remove the top cover of the computer housing (refer to your owner's manual if you do not already know
how to do this).

3. Select any unused full-size expansion slot and remove the slot bracket.

4. Touch the metal housing of the computer to discharge any static buildup and then remove ttre board from its
antistaric bag.

5. Holding the board by its edges, orient it so that its card edge (bus) connector lines up with the expansion slot
connector in the bottom of the selected expansion sloL

6. After carefully positioning the board in the expansion slot so that the card edge connector is resting on the
computer's bus connector, gently and evenly press down on the bard until it is secured in the slot

NOTE: Do not force the board into the slot. If the board does not slide into place, remove it and ry again.
Wiggling the board or exerting [oo much pressure can result in damage to the board or to the computer.

7. After the board is installed, secure the slot bracket back into place and put the cover back on your computer.
The board is now ready to be connected via the external VO connector at the rear panel of your computer. Be
sure to observe the keying when connecting your external cable to the I/O conneclor.

External VO Connections

Figure 2-1 shows the AD3700's P2 VO connector pinout. Refer to this diagram as you make your I/O connec-
tions.

A I N 1

A I N 2

A I N 3

AIN4

A I N 5

A I N 6

A I N T

A I N s

ANALOG GND

ANALOG GND

ANALOG GND

o t N T

D I N 6

0 t N s

D lN,l

D I N S

DIN2

D I N l

o t N 0

T R I G G E R I N

:XT PACER CLK

TRIGGER OUT

E X T C L K

+t2 VOLTS

. r2 VOLTS

ANALOG GND

ANALOG GND

ANALOG GND

ANALOG GND

ANALOG GND

ANALOG GND

ANALOG GND

ANALOG GND

ANALOG GND

ANALOG GND

ANALOG GND

DOUTT

DOUT6

DOUT5

DOUT4

DOUT3

DOUTz

DOUTl

DOUTO

DIGITAL GND

TIMER OUT

COUNTER OU'I

EXT GATE

+5 VOLTS

DIGITAL GND

Fig. 2-1 - P2 VO Connector Pin Assignments

2-3

Connecting the Analog Inputs

Connect the high side of the analog input to one of the analog input channels, AIN1 through AIN8, and connect
the low side to the selected channel's dedicated ANALOG GND. Figure 2-2 shows how these connections are made.

NOTE: It is good practice to connect all unused channels to ground, as shown with channel 8 in the following
diagrams. Failure to do so may affect tle accuracy of your results.

3700
I /O CONNECTOR

P 2

Fig.2-2 - Analog Input Connections

Connecting the Trigger In and Trigger Out Pins, Cascading Boards

The AD3700 board has an extemal rigger input (P2-39) and output e2-43) so that conversions can be started
based on external events, or so that two or more boards can be cascaded and run synchronously in a "master/slave"
configuration. By cascading two (or more) boards as shown in Figure 2-3, they can be triggered to start an A/D
conversion at the same time (sampling uncertainty is less than 50 nanoseconds). When you cascade boards, be sure
to set each board for a different base address (see Chapter l), or system contention will result.

NOTE: The only delay you must take into account when cascading boards is the time it takes for the trigger
signal to propagate through the boards. Because the sampling uncertainty is less than 50 nanoseconds, this should
not affect boards operating at lower conversion rates. However, it may cause timing problems when you operate at
higher speeds. If you want to make sure of precise, simultaneous riggering at higher speeds, then connect the trigger
signal to the trigger input of each board, or use RTD's SSH4 or SSH8 four- or eight-channel simultaneous sample-
and-hold board.

Ifyou apply an external trigger to the board's trigger in pin, note that the board is triggered on the positive edge
of the pulse. The pulse duration should be at least 50 nanoseconds.

a
. MUX
a

SIGNAL I
SOURCE |

+
1 ourl

(G N

2-4

BOARO I I
(MASTER)

3700
I/O CONNECTOR

P2

I
I
I

TRIGGER OUT

BOARD 12
(sLAvE)

! ptru gg
TRIGGER IN

Fig. 2-3 - Cascading Two Boards for Simultaneous Sampling

Connecting the Timer/Counters and Digital VO

For all ofthese connections, the high side ofan external signal source or destination device is connected to the
appropriate signal pin on the VO connector, and the low side is connected to any DIGITAL GND.

Running the 3700DIAG Diagnostics Program

Now that your board is ready o use, you will want to try it out. An easy-to-use, menu-driven diagnostics
program, 3700DIAG, is included with your example software to help you verify your board's operation. You can
also use this program to make sure that your current base address setting does not contend with another devica.

2-5

2-6

CHAPTER 3

HARDWARE DESCRIPTION

This chapter describes the features of the AD37m hardware.
The major circuits are the A/D, the timer/counters, and the digital
VO lines.

3-r

3-2

The AD3700 board has three major circuits, the A/D, the timer/counters, and the digial VO lines. Figure 3-l
shows ttre block diagram of the board. This chapter describes the hardware which makes up the major circuits.

8 AAIALOO INPUTS
-5V TO asv
0 TO +10V

-10V TO +10V
I 6.E.

Fig. 3-1 - AD3700 Block Diagram

A/D Conversion Circuitry

The AD3700 board performs analog-to-digital conversions on up to eight softrvare-selectable analog input
channels. The following paragaphs describe tle A/D circuitry.

Analog Inputs

The input voltage range is jumper-selectable for -5 to +5 volts, -10 to +10 volts, or 0 to +10 volts. A user-
configurable gain, Gx, lets you amplify lower level signals to more closely match the board's input ranges. When

3-3

you increase the gain, the effective input range decreases by the input range divided by the gain. You can customize
this gain setting by following the instructions at the end of Chapter l. Overvoltage protection to +35 volts is
provided at the inputs.

A,/D Converter

The AD678 l2-bit successive approximation A/D converter accurately digitizes dynamic input voltages in
5 microseconds, for a maximum throughput rate of 200 kHz. The AD678 concains a sample-and-hold amplifier, a
I2-bit AID converter, a 5-volt reference, a clock, and a digital interface to provide a complete A,/D conversion
function on a single chip. Its low-power CMOS logic combined with a high-precision, low-noise design give you
accurate results.

Conversions are controlled through software (intemally triggered) or by an external rigger brought onto the
board through the VO conneclor. An on-board pacer clock can be used to contrcl the conversion rate. Conversion
modes and channel select options are described in Chapter 4, Board Operatbn and Progranvning.

FIFO Interface

A first in, first out (FIFO) interface helps your computer manage the high throughput rate of the A/D converter
by providing an elastic storage bin for the converted data. Even if the computer does not read the data as fast as
conversions are performed, conversions will continue until a FIFO full flag (or half-full flag, depending on the
setting of the jumper at P4) is sent to stop ttre converter. The size of the FIFO was specified as 2K, 4K, or 8K when
you placed yow board order.

The FIFO does not need [o be addressed when you are writing to or reading from iq internal addressing makes
sure thaf the data is properly stored and retrieved. All data accumulated in the FIFO is stored inact until the PC is
able to complete the data transfer. Its asynchronous operation means that daa can be wriuen to or read from it at any
time, at any rate. When a transfer does begin, the daa first placed in the FIFO is the frst data out.

The converted data can be nansfened to PC memory in one of two ways: through the PC daa bus or by using
direct memory access (DMA). Data bus Eansfers take more processor time to execute. They use polling and
intemrps to determine when data has been acquired and is ready for transfer. DMA places data directly into the
PC's memory, one byte at a time, with minimal use of processor time. DMA transfers are managed by the DMA
controller as a background function of the PC, letting you operate at higher throughput rates.

Timer/Counters

Two 8254 programmable interval timers, TCI and TC2, provide six 16-bit, 8-MFIZ timer/counters to support a
wide range of timing and counting functions. Two of the timer/counters in TCI are cascaded and used for the pacer
clock. The pacer clock is described in Chapter 4. You can use the remaining four timer/counters - one from TCI for
counting applications and three cascaded on TC2 for timing applications. Figure 3-2 shows the timer/counter
circuitry.

Each timer/counter has two inputs, CLK in and GATE in, and one output, timer/counter OUT. They can be
programmed as binary or BCD down counten by writing the appropriatodatato the command word, as described in
Chapter 4. The command word also les you set up the mode of operation. The six programmable modes are:

Mode0
Mode I
Mode 2
Mode 3
Mode4
Mode 5

Event Counter (Intenupt on Terminal Count)
Ilardware-Retriggerable One- S hot
Rate Generator
Square Wave Mode
Software-Triggered S nobe
I{ardware Triggered Srobe (Reriggerable)

These modes are detailed in the 8254 Data Sheet, reprinted from Intel in Appendix C.

3-4

TIIIER/COUNTER 1
s MHz (XTAL)

EXTEBNAL PACER CL@K

PACER CLOCK

s MHz (XT L)

EXTERNAL CLOCK

+5 VOLTS

EXTERNAL GATE

COUNTER OUT

s MHr (XTAL)

+5 VOLTS

TIMER OUT

TIf,ER/COUNTER 2

5 MHr (XTAL)

Fig. 3-2 - 8254 Programmable Interval Timer Circuils Block Diagram

Digitat VO

Eight digital input and eight digital output lines can be used to transfer data betrveen the computer and extemal
devices. Data Eansfers through tle digital VO lines are independent of other board functions. The input lines have
pull-up resistors. All 16lines are available at the external VO connector.

3-5

3-6

CHAPTER 4

BOARD OPERATION AND PROGRAMMING

This chapter shows you how to program and use your AD3700
board. It provides a complete description of the VO map, a detailed
description of programming operations and operating modes, and
flow diagrams to aid you in programming. The example programs
included on the disk in your board package are listed at the end of
this chapter. These programs, written in Turbo C, Turbo Pascal,
and BASIC, include source code to simplify your applications
programming.

4-l

A a

Defining the VO Map

The VO map for the AD3700 is shown in Table 4-l below. As shown, the boad occupies 16 consecutive VO
port locations. The base address (designated as BA) can be selected using DIP switch S1, located on the top edge at
the rear of the board (furthest from VO connector P2), as described in Chapter l, Board Settings. This switch can be
accessed wittrout removing the board from the computer. The following sections describe the register contents of
each address used in the VO map.

Table rt-l - AD3700 l/O Map

Register Description Read Function Wrlte Function
Address'
(Decimal)

Digitall/O Read 8 digital input lines Program 8 digitaloutpul lines B A + 0
Channel/Conversion Mode
Seba

Read A/D channel &
conversion mode senings

Program A,/D channel &
conversion mode B A + 1

Scan Channel Range
Select

Flead number of channels to
be active

Program number of channels
in scan cycle B A + 2

StatuVClear FIFO Read status word Clear FIFO B A + 3

Read Data/Start Convert REAd FIFO dAtA, MSB & LSB Slart A/D conversion B A + 4

Clear DMA Done Reserved Clear DMA done bit B A + 5

IRQ/DMA Select
Read interrupt & DMA
settings

Program inlerrupt source &
channel select: DMA select B A + 6

Clear Board Reserved Clear (reset) board B A + 7

TC1 Counter 0
(Used for pacer clock) Readcount value Load counl register B A + 8

TC1 Counter 1
(Used for pacer clock) Read count value Load count register B A + 9

TC1 Counter 2
(Available lor external use) Read count value Load count register B A + 1 0

TC1 ControlWord Reserved Program counter mode B A + 1 1

TC2 Counter 0 Read count value Load count register B A + 1 2

TC2 Counter 1 Read count value Load count register B A + 1 3

TC2 Counter 2 Read count value Load count register B A + 1 4

TC2 ControlWord Rsserved Program counter mode B A + 1 5

* BA - Base Address

BA + 0: Digital VO (Read/IVrite)

Transfers the 8-bit digital input and digial output data between the board and an external device. A read
transfers data from the extemal device through P2 onto the board where it can be placed in user memory; a write
transfers data from the board to an external device.

ln7 ln6 ln5 In4 ln3 ln2 lnl lnO

D7 D6 D5 D4 D3 D2 D1 DO

OutT Out6 Out5 Out4 Out3 Out2 Outl Out0

4-3

BA + 1: ChanneUConversion Mode Select (ReadAilrite)

Programs the analog input channel, A/D conversion mode, and ttre channel select option. The conversion modes
and channel select options are deailed later in this chapter under Programming the AD3700. D6 and D7 are not
used. Reading this register shows you the current settings.

Channel
0 0 0 - 1
001 =2
0 1 0 = 3
0 1 1 = 4
1 0 0 = 5
1 0 1 = 6
1 1 O = 7
1 1 1 = 8

Converslon ilode
00 - Single Convert, lnternal Trigger
01 = Multi-Convert, InternalGate
10 = g;nn1" Convert, External Trigger
11 = Yu[l-grnvert, External Gate

BA+ 2t Scan Channel Range Select (Read/Write)

Programs the number of channels to be activated for a scan cycle. This number, coupled with the analog input
channel select programmed at BA + 1, esfablishes the sequence for the channel scan. For example, if you want to do
a scan of three channels starting with channel 3 (analog input channel selecf), one cycle will convert the input
voltages at channels 3, 4, and 5.

Number of
Channels
0000 = invalid
0001 = 1
0010 - 2
0 0 1 1 = 3
0100 = 4
0 1 0 1 = 5
0 1 1 0 = 6
0 1 1 1 = 7
1000 = I

BA + 3: Read Status/Clear FIFO (Read/Write)

A read provides the eight-bit status word defined below. The AID converter HALT Urt,D2, is set to 1, stopping
A,/D conversions whenever the FIFO is full or half-full, depending on the setting of the jumper on P4. This is ttre
only way conversions can be stopped in ttre Multi-Convert modes. Dl is the FIFO full flag. This flag is set to 0
whenever the FIFO is full. Dt shows the status of either the external uigger in signal (P2-39) or the external gate
signal (P2-46), depending on the setting ofjumper P6.

4-4

ChannelSelect Optlon
0 = Direct Channel
1 = Scan Channel

A write clears the FIFO (data written is irrelevant). When the FIFO is cleared using BA + 3, the FIFO empties
out all data, sets the FIFO empty flag, EF, low, and sets the FIFO full flag high. Clearing the FIFO also sets the
LSBMSB flag to I so that the next byte of data read is the MSB, and clears the HALT bit, enabling AID conver-
sions.

DMA]
0 = DMA not done
1 = DMAdone
(active in DMA mode

D7 D6 D5 D4 D3 D2 D1 DO

Donel l l l le r ln
I I | | | o=rr
| | | | | l =F r l

;onrv)
| I | | |
r | | | FF(F tFoFu i lF

LSB/MSBF|ag I I I o=FtFofut l
4e read is LSB | | | 1 = FIFO not ful
te read is MSB

| |
|

| | Halt

EOCStatus | 0=A,/Denabled

o=convert ing |
1=47gdisabled

1 = not converting |
(cleared whenever clear

(FIFO Empty Flag)
FIFO empty
FIFO not empty

lFlag)

full

FIFO sent)

External Trigger/External Gate
Monitors TRIGGER lN or

EXTGATE status, depending on
P9 jumper setting

BA + 4: Read FIFO Data/Start Conversion (ReadAMrite)

Two successive reads provide the MSB and LSB of the A/D conversion, as defined below. A write starts a
conversion (data written is irrelevant). Note that the MSB line and LSB line toggle with each read. Bit 6 in the
Status word (BA + 3) shows which byte is nexl

D7 D6 D5 D4 D3 D2 D1 DO

Bir 11 Bir 10 Bit I Bit I

D7 D6 D5 D4 D3 D2 D1 DO

Bir 7 Bir 6 Bir s Bit 4 Bit 3 Bir 2 Bir 1 Bit 0

BA + 5: Clear DMA Done Bit (Write Only)

Writing to this address clears the DMA done bit at BA + 3, bit D7 (data written is inelevant). This command
lets you perform continuous DMA dumps of 64K from the FIFO into PC memory wittrout losing any da[a while
conversions are in progress.

0 = Next byte
1 = Next byte

MSB

LSB

4-5

BA + 6: IRQ/DMA Select (Read/Write)

Programs the intemrpt source and channel, and the DMA cransfer mode. Reading this register shows you the
current settings.

D7 D6 D5 D4 D3 D2 D1 DO

Interrupt Channel Select lnterrupt Source

BA + 7: Clear (Reset) Board (Write only)

A write to this location clears, or resets, the board (data written is irrelevant). This command resets all of the on-
board registers to 0. It also initializes the AID converter after power-up.

BA + 8: TCl Counter 0 (Read/Write)

A read shows the count in the counter, and a write loads the counter with a new value. Counting begins as soon
as tlre count is loaded. This counter is part of the 32-bit on-board pacer clock (TCl counters 0 and l).

BA + 9: TCl Counter 1(Read/Write)

A read shows the count in the counbr, and a write loads the counter with a new value. Counting begins as soon
as the count is loaded. This counter is part ofthe 32-bit on-board pacer clock (TCl counters 0 and l).

BA + 10: TCl Counter 2 (Read/Write)

A read shows the count in the counter, and a write loads the counter with a new value. Counting begins as soon
as the count is loaded. This counter is user-configurable for counter applications.

BA + 11: TCl Control Word (Write Only)

Accesses the TCI control register to directly control ttre three TCI counters.

DMA Select
00 = disabled
01 = DRQ1 (DMA Channel 1)
10 = DRQ3 (DMA Channel3)
11 = not defined

000 = intsruPl disabled
001 = tRQ2
010 = |RQS
011 * lRQ4
100 = lRQs
101 = lRQ6
110 = |ROT
111 * interrupt disabled

Read/Load
00 = latching operation
01 = read/load LSB only
10 = read/load MSB only
11 = Read/load LSB, then MSB

000 = halt converter (high = A/D disabled)
001 = HF (high = FIFO half full)
010 = DMA done (high - transfer done)
011 = TC2-OUT1
100 = external trigger inlexternal gate
101 = EOC
1 10 = TC1 counler out
111 = TC2 t imer IRQ

BCD/Binary
0 = binary
1 = B C D

Counter Mode Select
000 = Mode 0, event count
001 = Mode 1, programmable 1-shot
010 = Mode 2, rate generator
01 1 = Mode 3, square wave rate generator
100 = Mode 4, software-lriggered strobe
101 = Mode 5, hardware-triggered strobe

Counter Selec
00 = Counter 0
01 = Csunlsl 1
10 = Counter 2
11 = read back setting

D7 D6 D5 D4 D3 D2 D1 DO

Select
0 Counter

BA + 12: TC2 Counter 0 (ReadAMrite)

A read shows the count in the counter, and a write loads the counter with a new value. Counting begins as soon
as the count is loaded. This counter is used for timer operations.

BA + 13: TC2 Counter 1(Read/Write)

A read shows the count in the counter, and a write loads the counter witi a new value. Counting begins as soon
as the count is loaded. This counter is used for timer operations.

BA + 14: TC2 Counter 2 (Read/VYrite)

A read shows the count in the counter, and a write loads the counter with a new value. Counting begins as soon
as the count is loaded. This counter is used for timer operations.

BA + 15: TC2 Control Word (Write Only)

Accesses the TC2 control register to directly conEol0re three TC2 counters.

Counter Selec
00 = Counter 0
01 = Counter 1
10 = Counter 2
11 = read back setting

Read/Load
00 = latching operation
01 = read/load LSB only
10 = read/load MSB only
11 = Read/load LSB, then MSB

D7 D6 D5 D4 D3 D2 D1 DO

Select
0 Counter

BCD/Binary
0 = binaU
1 = B C D

Counter Mode Select
000 = Mode 0, event count
001 = Mode 1, programmable 1-shot
010 = Mode 2, rate generator
01 1 = Mode 3, square wave rate generator
100 = Mode 4, software-triggered strobe
101 = Mode 5, hardware-triggered strobe

4-7

Programming the AD3700

This section gives you some general information about programming and the AD3700 board, and then walks
you through the major AD3700 programming functions. These descriptions will help you as you use the example
programs included with the board and the programming flow diagrams at the end of this chapter. All of the progam
descriptions in ttris section use decimal values unless otherwise specified.

The AD3700 is programmed by writing to and reading from the correct I/O port locations on the board. These
VO ports were defined in the previous section. Most high-level languages such as BASIC, Pascal, C, and C++, and
of course assembly language, make it very easy to read/write these ports. The table below shows you how to read
from and write to I/O ports using some popular programming languages.

Language Read Write

BASIC Data = INP(Address) OUT Address, Data

Turbo C Data = inportb(Address) outportb(Add ress, Data)

Turbo Pascal Data := Port[Address] Port[Address] := Data

Assembly mov dx, Address
in al, dx

mov dx, Address
mov al, Data
out dx, al

In addition to being able to read/write th" VO ports on the AD3700, you must be able to perform a variety of
operations that you might not normally use in your programming. The table below shows you some of the operators
discussed in this section, with an example of how each is used with Pascal, C, and BASIC. Note that the modulus
operator is used to retrieve the least significant byte (LSB) of a two-byte word, and the integer division operator is
used to retrieve the most significant byte (MSB).

Language Modulus Integer Division AND OR

c
A = b o / o C

I
a = b l c

&
a=b&c

I
a = b l c

Pascal MOD
a:= b MOD c

DIV
a : = b D l V c

AND
a : = b A N D c

OR
a : = b O R c

BASIC MOD
a = b M O D c

\ (backslash)
a = b \ c

AND
a = b A N D c

OR
a = b O R c

Many compilers have functions that can read/write either 8 or 16 bis from/to an I/O port. For example, Turbo
Pascal uses Port for 8-bit port operations and PortW for 16 bits, Turbo C uses inportb for an 8-bit read of a port
and inport for a 16-bit read. Be sure to use only 8-bit operations with the AD3700!

Clearing and Setting Bits in a Port

When you clear or set one or more bits in a port, you must be careful that you do not change the status of the
other bits. You can preserve the status of all bits you do not wish to change by proper use of the AND and OR
binary operators. Using AND and OR, single or multiple bits can be easily cleared in one operation.

To clear a single bit in a port, AND the current value of the port with the value b, where b = 255 - 2a,.

Example: Clear bit 5 in a port. Read in tle current value of the port, AND itwith223
(223 = 255 - X), and then write the resulting value to the port. In BASIC, this is programmed as:

V = INP (PortAddress)
V : V A N D 2 2 3
OUT PortAddress, V

To set a single bit in a port, OR the cunent value of the port with the value b, where b = 2u'.

Example: Set bit 3 in a port. Read in the current value of the port, OR it with 8 (8 = 23), and then
write the resulting value !o the port. In Pascal, ttris is programmed as:

V := Por t lPor tAddress] ;
V : = V O R 8 , '
Por t lPor tAddress l := V ;

Seaing or clearing more than one bit at a time is accomplished just as easily. To clear multiple bits in a port,
AND the cwrent value of the port with the value b, where b = 255 - (the sum of the values of the bits to be cleared).
Note that the bits do not have to be consecutive.

Example: Clear bits 2 ,4, and 6 in a port. Read in the current value of the port, AND it with 171
(171 = 255 - 22 - 2n - 2'), and then write the resulting value to ttre port. In C, this is programmed
zts:

v : inportb (port_address) ,'
v : v & t 7 I ;
outportb(port_address, v) ;

To set multiple bits in a port, OR the current value of the port with the value b, where b = the sum of the
individual bits to be set. Note that the bits to be set do not have to be consecutive.

Example: Set bits 3, 5, and 7 in a port. Read in the current value of ttre port, OR it with 168
(168 = T + T + T), and then write the resulting value back !o the port. In assembly language, this
is programmed as:

mov dx, PortAddress
in al-, dx
o r a I , L 6 8
out dx, al-

Often, assigning a range of bits is a mixture of setting and clearing operations. You can set or clear each bit
individually or use a faster mettrod of first clearing all ttre bits in the range then setting only those bis ttrat must be
set using the method shown above for setting multiple bits in a port. The following example shows how this two-
step operation is done.

Example: Assign bits 3, 4, and 5 in a port to 101 (bits 3 and 5 set, bit 4 cleared). First, read in the
port and clear bits 3, 4, and 5 by ANDing them with 199. Then set bits 3 and 5 by ORing them
with 40, and finally write the resulting value back to the port. In C, this is programmed as:

4-9

v : inportb (port_address) ;
v = v C 1 9 9 ;
v = v | 4 0 ;
outportb (port_address, v) ;

A final note: Don't be intimidated by the binary operators AND and OR and try to use operators for which you
have a better intuition. For instance, if you are tempted to use addidon and subraction 0o set and clear bits in place
of the methods shown above, DON'T! Addition and subEaction may seem logical, but they will not work if you try
to clear a bit that is already clear or set a bit that is already set. For example, you might think that to set bit 5 of a
port, you simply need to read in the port, add32 (25) to ttrat value, and then write the resulting value back to the port.
This works fine if bit 5 is not already set. But, what happens when bit 5 is already set? Bits 0 to 4 will be unaffected
and we can't say for sure what happens to bits 6 arrd,T,but we can say for sure that bit 5 ends up cleared instead of
being set A similar problem happens when you use subtraction to clear a bit in place of the method shown above.

Now that you know how to clear and set bits, we are ready fo look at the programming steps for the AD3700
board functions.

A"/D Conversions

The following paragraphs walk you through the programming steps for performing A/D conversions. Detailed
information about the conversion modes and channel select options is presented in this section. You can follow these
steps on the flow diagrams at ttre end of this chapter and in our example progams included with ttre bomd. In this
discussion, BA refers to the base address.

. Clearing the Board

It is good practice to start your program by resetting the AD3700 board. You can do this by writing !o the
CLEAR BOARD port located at BA + 7. The actual value you write o this port is irrelevant. After writing to this
port, you should pause several milliseconds and then clear the FIFO to remove any dataplaced there by tlre reset
process.

. Clearing the FIFO

To clear the FIFO, write any value to the CLEAR FIFO port, located at BA + 3. Any data in ttre FIFO when this
port is wdtten to is lost.

. Selecting a Channel

To select a conversion channel or a starting channel for a scan of channels, you must assign values to bits 0
tkough 2 in the CHANNEL/CONVERSION MODE SELECT port at BA + 1. The able below shows you how to
determine the bit settings. Note that if you do not want to change other settings also programmed through BA + 1,
you must preserve them when you set the channel.

x x x x x cH2 cH1 cH0 BA+1

Channel cH2 cH1 cH0

1 0 0 0

2 0 0 I

3 0 I 0

4 0 1 1

5 1 0 0

o 1 0 1

7 1 I 0

I 1 1

4-r0

. Conversion Modes and Channel Select Options

The AD3700 provides several riggering (conversion) modes and scan (channel select) options. Four conversion
modes and two channel select options give you a variety of combinations of triggering and channel selection to meet
just about any sampling requirement. This section describes the modes and options and includes a series of timing
diagrams at the end so that you can see how they are implemented. The conversion mode and channel select option
aresetatportBA+ 1.

- Conversion Modes/Triggering

Internal vs. external triggering. With internal triggering (also called software riggering), conversions are
initiated by writing a value to the START COI{VERT port at BA + 4 on the board. With extemal triggering,
convenions are initiated by applying a high TTL signal to the external TRIGGER IN pin V2-39). Any TTL signal
can be used as a nigger source. In fact, you can use the TIMER OUt @,42) or COUNTER OUT (2-44) u a
nigger source.

Single converf internal trigger.In this mode, a single specified channel is sampled whenever a value is
written to the START COI'il/ERT port, BA + 4. The active channel is the one specified in the CIIANNEL/CON-
VERSION MODE SELECT port.

BA+1

This is the easiest of all riggering modes. It can be used in a wide variety of applications, such as sample every
time a key is pressed on the keyboard, sample with each iteration of a loop, or watch tle system clock and sample
every five seconds. See the SOFTIRIG sample program in C and Pascal and the SINGLE sample program in
BASIC.

Multi-convert, internal gate. In this mode, conversions are continuously performed at the pacer clock rate.
Sampling is initiated from software. To use this mode, you must program the pacer clock to run at the desired rate
(see the pacer clock discussion later in this chapter).

BA+1

This is the ideal mode for filling an anay with data. Triggering is automatic, so your program is spared the
chore of monitoring the pacer clock to determine when to sample. See the MULTI sample pro$am in C and Pascal.

Single convert' external fuigger. In this mode, a single conversion is initiated by the rising edge of an external
rigger pulse.

BA+1

This mode is implemented when an external device is used to determine when to sample. See ttre EXTTRIG
sample program in C and Pascal.

x x 0 0 x x x x

x x 0 1 x x x x

x x 1 0 x x x x

4-11

Multi-convert, external gate. In this mode, channels are sampled at the pacer clock rate. The pacer clock is
gated on and off by the external trigger line. When the external trigger line is held high, sampling occurs at ttle pacer
clock rate. When the line is low, sampling is halted.

BA+1

This is an ideal mode when you want to acquire data for only as long as an external device holds the trigger
high. See the MULTGATE sample program in C andPascal.

- Channel Select OptiondScans

Direct channel. In this option, the channel specified in the CHANNEL/COI{fERSION MODE SELECT port
is sampled each time a trigger is applied.

BA+1

Use the direct channel option when you only need to sample from one channel or if the order of channels to be
sampled is unknown or not consecutive.

Scan channel. In ttris option, the channel from which o sample is automatically incremented after aconversion
is complete. The scan stafls at the channel specified in the CHANNEL/COI\I/ERSION MODE SELECT port. Afrer
converting channel 8, the AD3700 returns m channel 1.

BA+1

Use the scan channel option when you want to sample from all eight channels in consecutive order. Since the
channel counter is automatically incremented, it is faster (and easier) than using the direct scan option and setting
the channel for each conversion from software.

- Timing Diagrams

The following timing diagrams show how each of the eight possible conversion mode/channel select option
combinations are implemented by the A,/D converter and associated circuitry. Figures 4-l and,4-2 show you the
Single Convert, Internal Trigger mode timing; Figures 4-3 and 4-4 show yotthe Multi-Convert,Internal Gate mode
timing; Figures 4-5 and4-6 show you the Single Convert, External Trigger mode timing; and Figures 4-7 and4-8
show you the Multi-Convert, External Gste mode timing.

4-r2

x x 1 1 x x x x

x x x x 0 x x x

x x x x I x x x

Internal Trigger

A/D Trigger

Sampled Channel 1 1 1 1 1 1 . . .

Fig. 4-1 - Timing Diagram, Single Convert, Internal Trigger/Direct Channel

InternalTrigger

A/D Trigger

Sampled0hanne l 1 2 3 4 5 6 . . .

Fig.4-2 - Timing Diagram, Single Convert, Internal Trigger/Scan Channel

Internal Trigger

Pacer Clock

A/D Trigger

SampledOhannel 1 1 1 1 1 1 1 . . .

Fig. 4-3 - Timing Diagram, Multi-Convert, lntemal Gate/Direct Channel

Internal Trigger

Pacer Clock

A/D Trigger

Sampled Channel 1 7 8 1 . . .

Fig. 4-4 - Timing Diagram, Multi-Convert, lnternal Gate/Scan Channel

4-13

InternalTrigger

rrisser]n l-l f-l l-'l f''l l--l l-'l

A/D Trigger

SampledGhannel 1 1 1 1 1 1 . . .

Fig. 4-5 - Timing Diagram, Single Convert, External Trigger/Direct Channel

Internal Trigger

Trigger tn

A/Drrisser n fl n n n n n n FL
Sampled Ghannel 1 2 3 4 1 2 3 4 1 . . .

Fig. 4-6 - Timing Diagram, Single Convert, External Trigger/Scan Channel

lnternalTrigger

Trigger In

Pacerclock m fl-f-1-f1-fl-fl

A/Drrisser ffi f]-fl-fl-flfl

Sampled Channel 1 1 1 1 1 1 1 1 1 1 1

Fig.4-7 - Timing Diagram, Mutti-Convert, External Gate/Direct Channel

lnternalTrigger

Trigger In

Pacer Clock

A/D Trigger

Sampled Channel

ffi TLJ'LTLTLJ-I

ffi rl-fl-fl-rl-fi
1234s6 7 8 1 2 3

Fig. 4-8 - Timing Diagram, Multi-Convert, Extemal Gate/Scan 8 Channels

4-t4

. Starting an A/D Conversion

Whether you are using internal triggers, external triggers, single convert or multi-convert, you must start the
conversion process by writing to the START COI{\{ERT port at BA + 4. The value you write is irrelevant. For
single conversion scan options, you must write fo this port to initiate every conversion. In the multi-conversion
modes, you need to write to ttris port only once to start the conversion cycle.

. Monitoring Conversion Status (EF Flag or End-of-Convert)

The A/D conversion status can be monitored through the FIFO empty (ED flag or through the end-of-convert
(EOC) bit in the STATUS port at BA + 3. Typically, you will want to monitor the EF flag for a transition from low
to high. This tells you that a conversion is complete and data has been placed in the FIFO. The EOC line is available
for monitoring conversion status in special applications.

. Halting Conversions

In the single convert modes, a single conversion is performed and the board waits for another START CON-
VERT command. In the multi-convert mdes, conversions are halted when the FIFO is full. The HALT bit, bit 2 of
the Status word (BA + 3), is set when the FIFO is full, disabling the A,/D converter. If you want to stop execution in
the middle of a run, you can send a CLEAR BOARD command by writing to BA + 7. However, if you do ttris, note
that the contents of the FIFO will be lost.

. Reading the Converted Data

Two successive reads of port BA + 4 provide the MSB and LSB of the 12-bit AID conversion in the format
defined in the VO map section at the beginning of this chapter. The MSB line and LSB line toggle with each read.
The MSB must always be read fint, followed by the LSB. Bit 6 of the Status word (BA + 3) shows which byte is
next. This bit is set whenever a FIFO CLEAR command is issued so that the first byte read is the MSB.

The output code and the resolution of the conversion vary, depending on the input voltage range selected.
Bipolar conversions are in twos complement form, and unipolar conversions arc sftaight binary. When a bipolar
value is read, you must first convert the result to straight binary and then calculate the voltage. The conversion
formula is simple: for values greater than2H7, you must subtract 4096 from the value to get the sign of the voltage.
For example, if your output is 2048, you subtract 4096: 2048 - 4096 = -2M8. This result corresponds to -5 volts or
-10 volts, depending on your binary range. For values of2047 or less, you simply convert the result. The key digltal
codes and their input voltage values are given for each range in the following three tables.

A/D Bipolar Code Table
(+5V;twos complement)

Input Voltage Output Code

+4.998 vofts M S B 0 1 1 1 1 1 1 1 1 1 1 1 L S B

+2.500 volts 0100 0000 0000

0 volts 0000 0000 0000

-.00244 volts 1 1 1 1 1 1 1 1 1 1 1 1

-5.000 volts 1000 0000 0000

1 LSB = 2.44 millivolts

4-15

A/D Blpolar Code Table
(110v; twos complement)

Input Voltage Output Code

+9.995 vohs M S B 0 1 1 1 1 1 1 1 1 1 1 1 L S B

+5.000 volts 0100 0000 0000

0 volts 0000 0000 0000

-.00488 volts 1 1 1 1 1 1 1 1 1 ' r 1 1

-10.000 volts 1000 0000 0000

1 LSB = 4.88 millivolts

A/D Unlpolar Code Table
(0 to +10V;straight binary)

Input Voltage Output Code

+9.99756 volts M S B 1 1 1 1 1 1 1 1 1 1 1 1 L S B

+5.00000 volts 1000 0000 0000

0 volts 0000 0000 0000

1 LSB = 2.44 millivolts

. Programming the Pacer Clock

Two 16bit timer/counters in ttre S2S4TimerlCounter TCI are cascaded to form ttre on-board pacer clock,
shown in Figure 4-9. When you want !o use the pacer clock for continuous A/D conversions, you must program the
clock rate. To find the value you must load into the clock to produce the desired rate, you first have to calculate the
value of Divider I (TCl Counter 0) and Divider 2 (TCl Counter 1) shown in the diagram. The formulas for making
this calculation are as follows:

Pacer clock frequency = Clock Sourcs Frequency/(Divider 1 x Divider 2)
Divider 1 x Divider 2 = Clock Source Frequency/Pacer Clock Frequency

To set the pacer clock frequency atZ0OkJIz using the on-board 5-MHz clock source, this equation becomes:

Divider 1 x Divider 2=5MHzl200kHz --> 25=5y1171200 kHz

After you det€rmine the value of Divider I x Divider 2, you then divide the result by the least common denomi-
nator. The least common denominator is the value that is loaded into Divider 1, and the result of the division, the
quotient, is loaded into Divider 2. In our example above, the least common denominator is 5, so Divider I equals 5,
and Divider 2 equals 2515,or 5 also. The able with the diagram lists some common pacer clock frequencies and the
counter settings (using the on-board 5-MHz clock source).

After you calculate the decimal value of each divider, you can convert the result to a hex value if it is easier for
you when loading tle count into ttre 16-bit counter.

4-16

To set up the pacer clock on the AD3700, follow these steps:

1. Select a clock sowce (the 5-MIIz on-board clock or and external clock source).
2. Program TCl, Counter 0 for Mode 2 operation.
3. Program TCl, Counter 1 for Mode 2 operation.
4.1-oad Divider 1LSB.
5. Load Divider 1 MSB.
6. Ioad Divider 2 LSB.
7. Lnad Divider 2 MSB.

Depending on your conversion mode, the counters strrt their countdown and the pacer clock starts running
when a tigger occurs.

Pacer Clock

Fig.4-9 - Pacer Clock Block Diagram

TC1 Counter 1
Divider 2

Pacer Clock
Divider 1

decimal/ (hex)
Divider 2

decimal / (hex)

2OOkHz s / (0005) 5 / (000s)

1 00 kHz 2 | (OOO2) 25 / (001e)

50 kHz 2 / (0002) 50 / (0032)

10 kHz 2 | (0002) 2s0 / (00F4)

1 kHz 2 | (OOO2) 2500 / (09c4)

100 Hz 2 | (0002) 2s000 / (61A8)

4-r7

. Interrupts

- What Is an Interrupt?

An intemrpt is an event that causes the processor in your computer to temporarily halt its current process and
execute another routine. Upon completion of the new routine, control is retumed to the original routine at the point
where its execution was intemrpted.

Intemrpts are very handy for dealing with asynchronous events (events that occur at less than regular intervals).
Keyboard activity is a good example; your computer cannot predict when you might press a key and it would be a
waste of processor time for it to do nothing while waiting for a keystroke to @cur. Thus, the intemrpt scheme is
used and the processor proceeds with other tasks. Then, when a keystroke does occur, the keyboard 'intemrpts' the
processor, and the processor gets the keyboard data, places it in memory, and then returns to what it was doing
before it was intemrpted. Other common devices that use intemrpts are modems, disk drives, and mice.

Your AD3700 board can intemrpt the processor when a variety of conditions are met, such as FIFO not empty,
timer countdown finished, and others. By using these intemrpts, you can write software that effectively deals with
real world events.

- Interrupt Request Lines

To allow different peripheral devices to generate intemrpts on tle same computer, the PC bus has eight different
interupt request (IRQ) lines. A tansition from low to high on one of these lines generates an intemrpt request
which is handled by the PC's intemrpt confroller. The intemrpt controller checks to see if intemrpts are to be
acknowledged from that IRQ and, if another intemrpt is already in progress, it decides if the new request should
supersede the one in progress or if it has to wait until the one in progress is done. This prioritizing allows an
intemrpt to be interrupted if the second request has a higher priority. The priority level is based on the number of the
IRQ; IRQ0 has the highest priority, IRQI is second-highest, and so on through IRQ7, which has the lowest. Many of
the IRQs are used by the standard system resources. IRQO is used by the system timer, IRQ1 is used by the key-
board, IRQ3 by COM2,IRQ4 by COMI, and IRQ6 by the disk drives. Therefore, it is important for you to know
which IRQ lines are available in your system for use by the AD3700 board.

- 8259 Programmable Interrupt Controller

The chip responsible for handling interrupt requests in the PC is the 8259 Programmable Intemrpt Controller.
To use interrup8, you will need to know how to read and set the 8259's intemrpt mask register (IMR) and how to
send the end-of-intemrpt (EOD command to the 8259.

- Interrupt Mask Register (IMR)

Each bit in the intemrpt mask register (IMR) contains the mask status of an IRQ line; bit 0 is for IRQ0, bit 1 is
for IRQI, and so on. If a bit is set (equal to 1), then the corresponding IRQ is masked and il will not generate an
intemrpL If a bit is clear (equal to 0), then the corresponding IRQ is unmasked and can generate intemrps. The
IMR is programmed through port 21H.

IRQT tR06 IRQ5 IRQ4 IRQ3 IRQ2 IRQl IRQO l/O Port 21H

For all bits:
0 = IRQ unmasked (enabled)
1 = IRQ masked (disabled)

- End-of-Interrupt (EOI) Command

After an intenupt service routine is completed, the 8259 intemrpt conroller must be notified. This is done by
writing the value 20H to I/O port 20H.

4-18

- What Exactly Happens When an Interrupt Occurs?

Understanding the sequence of events when an intemrpt is triggered is necessary to proper$ write software
intemrpt handlers. When an intemrpt request line is driven high by a peripheral device (such as the AD3700), the
intemrpt controller checks to see if intemrpts are enabled for that IRQ, and then checks to see if other intemrpts are
active orrequested and determines which intemrpt has priority. The intemrpt conftoller then intemrpts the proces-
sor. The current code segment (CS), instruction pointer (IP), and flags are pushed on the stack for storage, and a new
CS and IP are loaded from a able that exists in the lowest 1024 bytes of memory. This table is referred to as the
intemrpt vector table and each entry is called an intemrpt vector. Once the new CS and IP are loaded from the
interrupt vector table, the processor begins executing the code located at CS:IP. When the interrupt routine is
completed, the CS, IP, and flags that were pushed on the stack when the intemrpt occurred are now popped from the
stack and execution resumes from the point where it was intemrpted.

- Using fnterrupts in Your Programs

Adding intemrpts to your software is not as difficult as it may seem, and what they add in terms of performance
is often worth the effort. Note, however, that although it is not that hard to use interrupts, the smallest mistake will
often lead to a systom hang that requires a reboot. This can be both frusrating and time-consuming. But, after a few
tries, you'll get the bugs worked out and enjoy the benefis of properly executed intemrpts. In addition to reading the
following paragraphs, study the INTRPTS source code included on your AD3700 program disk for a better under-
standing of intemrpt program developmenl

- Writing an Interrupt Service Routine QSR)

The first step in adding intemrpts to your sofhvare is to write the intemrpt service routine (ISR). This is the
routine that will automatically be executed each time an intenupt rcquest occurs on the specified IR'Q. An ISR is
different than standard routines that you write. First, on enFance, the processor registers should be pushed onto the
stack BEFORE you do anything else. Second, just before exiting your ISR, you must write an end-of-interrupt
@OI) command to the 8259 intemrpt controller. Finally, when exiting the ISR, in addition to popping all the
registers you pushed on enEance, you must use the IRET insnuction and not a plain RET. The IRET automatically
pops the flags, CS, and IP tlat were pushed when the inlerrupt was called.

If you find yourself intimidated by intemrpt programming, take heart. Most Pascal and C compilers allow you
to identify a procedure (function) as an intemrpt type and will auomatically add these instructions to your ISR, with
one important exception: most compilers do not automatically add the end-of-intemrpt command to the procedure;
you must do this yourself. Other than this and the few exceptions discussed below, you can write your ISR just like
any other routine. It can call other functions and procedures in yotu progftlm and it can access global data. If you are
writing your first ISR, we recommend that you stick to the basics;just something that will convince you that it
works, such as incrementing a global variable.

NOTE: If you are miting an ISR using assmbly lang'rags, you are responsible for pushing and popping
registers and using IRET instead of RBT.

There are a few cautions you must consider when writing your ISR. The most important is, do not use any
DOS functions or routines that call DOS functions from within an ISR. DOS is not reenfrant; that is, a DOS
function cannot call itself. In typical programming, this will not happen because of the way DOS is written. But
what about when using intemrpts? Then, you could have a situation such as this in your program. If DOS function X
is being executed when an intemrpt occurs and the intemrpt routine makes a call to DOS function X, then function
X is essentially being called while it is already active. Such a reentrancy attempt spells disaster because DOS
functions are not written to support it. This is a complex concept and you do not need to understand iL Just make
sure that you do not call any DOS functions from within your ISR. The one wrinkle is that, unfortunately, it is not
obvious which library routines included with your compiler use DOS functions. A rule of thumb is that routines
which write to the screen, or check the status of or read the keyboard, and any disk I/O routines use DOS and should
be avoided in your ISR.

The same problem of reenftancy exists for many floating point emulators as well, meaning you may have to
avoid floating point (real) math in your ISR.

4-19

Note that the problem of reenftancy exists, no matter what programming lang"age you are using. Even if you
are writing your ISR in assembly language, DOS and many floating point emulators are not reentrant. Of course,
there are ways around this problem, such as those which involve checking to see if any DOS functions are currently
active when your ISR is called, but such solutions are well beyond the scope ofthis discussion.

The second major concem when writing your ISR is to make it as short as possible in terms of execution time.
Spending long periods of time in your tSR may mean that other important intenupts are being ignored. Also, if you
spend too long in your ISR, it may be called again before you have completed handling the first run. This often leads
to a hang that requires a reboot.

Your ISR should have this structure:

. Push any processor registers used in your ISR. Most C and Pascal intemrpt routines automatically do this for
you.

. Put the body of your routine here.

. Issue the EOI command to the 8259 intemrpt controller by writing ?f,Hw port 20H.

. Pop all registers pushed on entrance. Most C and Pascal intemrpt rcutines automatically do ttris for you.

The following C and Pascal examples show what the shell of your ISR should be like:

In C:

void in terrupt ISR(void)
{

/ * Your code goes here. Do not
o u t p o r t b (0 x 2 0 , 0 x 2 0 1 ;

)

In Pascal:

Procedure ISR; Interrupt ;
begin

i Your code goes here. Do not
P o r t [$ 2 0] : : $ 2 0 ;

end,'

- Saving the Startup Interrupt Mask Register {IMR) and Interrupt Vector

The next step after writing the ISR is to save ttre startup state of ttre intemrpt mask register and the intemrpt
vector that you will be using. The IMR is located atllOpo*2tH. The intemrpt vector you will be using is located
in the intemrpt veclor table which is simply an aray of 256-bit (a-byte) pointers and is located in the first 1024
bytes of memory (Segment = 0, Offset = 0). You can read this value directly, but it is a better practice to use DOS
function 35H (get intemrpt vector). Most C and Pascal compilers provide a library routine for reading the value of a
vector. The vectors for the hardware intemrp6 are vectors 8 through 15, where IRQ0 uses veclor 8, IRQI uses
vector 9, and so on. Thus, if ttre AD3700 will be using IRQ3, you should save the value of intemrpt vector 11.

Before you install your ISR, temporarily mask out the IRQ you will be using. This prevents the IRQ from
requesting an interrupt while you are insalling and initializing your ISR. To mask ttre IRQ, read in the current IMR
atVO port 2lH and set the bit that corresponds to your IRQ (remember, setting a bit disables intemrpts on that IRQ
while clearing a bit enables them). The IMR is ananged so that bit 0 is for IRQ0, bit 1 is for IRQI, and so on. See
the paragraph entttJedlnterrupt MaskRegister (IMR) earlier in this chapter for help in determining your IRQ's bit.
After setting the bit, write the new value to I/O port 21H.

With the startup IMR saved and the intemrpts on your IRQ temporarily disabled, you can assign the intemrpt
vector to point to your ISR. Again, you can overwrite the appropriate entry in the vector table with a direct memory
wrife, but this is a bad practice. Instead, use either DOS function 25H (set intemrpt vector) or, if your compiler
provides it, the library routine for setting an intemrpt vector. Remember that vector 8 is for IRQ0, vector 9 is for
IRQI, and so on.

4-20

use any DOS funct ions ! * /
/* Send EOf corunand to 8259 */

use any DOS funct ions !)
{ Send EOI command to 8259 }

If you need to program the source of your interrupts, do ttrat next. For example, if you are using the program-
mable interval timer to generate intemrpts, you must program it to run in the proper mode and at the proper rate.

Finally, clear the bit in the IMR for the IRQ you are using. This enables interrupts on the IRQ.

- Restoring the Startup IMR and Interrupt Vector

Before exiting your proglam, you must reslore the intemrpt mask register and intemrpt vectors to the state they
were in when your pro$am started. To restore the IMR, write the value that was saved when your program started
to I/O port 21H. Restore ttre intemrpt vector that was saved at sartup with either DOS function 35H (get intemrpt
vector), or use the library routine supplied with your compiler. Performing these two steps will guarant€e that ttre
interrupt status of your computer is the same after running your progmm as it was before your program stafted
running.

- Common Interrupt Mistakes

. Remember ttrat hardware interrupts are numbered 8 tlnough 15, even though the corresponding IRQs are
numbered 0 through 7.

. One of the most common mistakes when writing an ISR is forgetting to issue the EOI command to the 8259
intemrpt controller before exiting the ISR.

. Data Transfers Using DMA

Direct Memory Access (DMA) transfers data between a peripheral device and PC memory wittrout using the
processor as an intermediate. Bypassing the processor in this way allows very fast transfer rates. All PCs contain the
necessary hardware components for accomplishing DMA. However, sofhpare support for DMA is not included as
part of the BIOS or DOS, leaving you with ttre task of programming the DMA controller yourself. With a little care,
such programming can be successfully and efficiently achieved.

The following discussion is based on using the DMA controller to get data from a peripheral device and write it
to memory. The opposite can also be done; the DMA controller can read data from memory and pass it lo a periph-
eral device. There are a few minor differences, mostly concerning programming the DMA controller, but in general
the process is tle same.

The following steps are required when using DMA:

1. Choose a DMA channel.
2. Allocate a buffer.
3. Calculate the page and offset of the buffer.
4. Set the DMA page register.
5. Program the DMA controller.
6. Program the device generating data (AD3700).
7. Waituntil DMA is complete.
8. Disable DMA.

Each step is deailed in the following paragraphs.

- Choosing a DMA Channel

There are a number of DMA channels available on the PC for use by peripheral devices. The AD3700 can use
either DMA channel I or DMA channel 3. You can arbitarily choose one or the other; in most cases either choice is
fine. Occasionally though, you will have another peripheral device (for example, a iape backup or Bernoulli drive)
that also uses the DMA channel you have selected. This will certainly cause erratic results and can be hard to detect.
The best approach to pinpoint this problem is to read the documen&ation for the other peripheral devices in your
computer and try to determine which DMA channel each uses.

4.21

- Allocating a DMA Buffer

When using DMA, you must have a location in memory where the DMA controller will place data from the
AD3700 board. This buffer can be either static or dynamically allocated. Just be sure ttrat its location will not change
while DMA is in progress. The following code examples show how to allocate buffers for use with DMA.

In Pascal:

V a r B u f f e r : A r r a y [1 . . 1 0 0 0 0] o f
-or-

Var Buf fer : ^Byte;

Bu f fe r : : Ge tMem(10000) ;

In C:

c h a r B u f f e r [1 0 0 0 0] ;
-or-

char *Buf fer i

B u f f e r = c a l l - o c (1 0 0 0 0 , 0) ;

In BASIC:

Drr" l BUFFERS (5000)

{ s tat ic a l - locat ion }

{dynamic a l locat ion }

/ * s ta t i c a l l oca t i on * /

/ * dynamic a l l -ocat ion * /

- Calculating the Page and Offset of a Buffer

Once you have a buffer into which to place your data, you must inform the DMA controller of the location of
this buffer. This is a little more complex than it sounds because the DMA conholler uses a page:offset memory
scheme, while you are probably used to thinking about your computer's memory in terms of a segment:offset
scheme. Paged memory is simply memory that occupies contiguous, non-overlapping blocks of memory, with each
block being 64K (one page) in length. The first page (page 0) starts at the first byte of memory, the second page
(page 1) starts at byt€ 65536, the third page (page 2) atbyte 131072, and so on. A computer with 640K of memory
has l0pages of memory.

The DMA controller can write to (or read from) only one page wittrout being reprogrammed. This means that
the DMA controller has access to only 64K of memory at a time. If you program it to use page 3, it cannot use any
other page until you reprogxam it to do so.

When DMA is started, the DMA confroller is programmed to place datAat a specified offset into a specified
page (for example, start writing at byte 5I2 of pge 3). Each time a byte of data is written by the conftoller, the
offset is automatically incremented so the next byte will be placed in the next memory location. The problem for
you when programming these values is figuring out what the corresponding page and offset are for your buffer.
Most compilers contain macros or functions that allow you !o directly determine the segment and offset of a data
slructure, but not the page and offset. Therefore, you must calculate the page number and offset yourself. Probably
the most intuitive way of doing this is to convert the segmenroffset address of your buffer to a linear address and
then convert that linear address to a page:offset address. The table below shows functions/macros for determining
the segment and offset of a buffer.

Language Segment Olfset

c FP_SEG
s = FP_SEG(&Buffer)

FP_OFF
o = FP_OFF(&Buffer)

Pascal seg
S := Seg(Buffer)

Ofs
O := Ofs(Bufte0

BASIC VARSEG
s = VARSEG(BUFFER)

VARPTR
o = VARPTR(BUFFER)

A a a

Once you've determined the segment and offset, multiply the segment by 16 and add the offset to give you the
linear address. (Make sure you store this result in a long integer, or DWORD, or the results will be meaningless.)
The page number is the quotient of the division of the linear address by 65536 and the offset into the page is the
remainder of that division. Below are some programming examples forPascal, C, and BASIC.

In Pascal:

Segment := SEG(Buffer),'
Offset := OFS(Buffer), '
Li-near Address := Segrnent * 15 + Offset,'
Page := LinearAddress DIV 65536,'

PageOffset :: LinearAddress MOD 65536;

In C:

segrnent : FP_SEG(&Buffer),'
offset - FP_OFS(&Buffer) ;
linear_address = segnpnt * 16 + offset;
page = linear address ,/ 65536;

page_offset : linear_address % 65536;

In BASIC:

s = VARSEG(BUEEER)
O = VARPTR(BUFT'ER)
L A = S * 1 5 + O
P A G E = I N T (L A / 6 s 5 3 6 1

POFF : LA - (PAGE 't 55536)

i get segment of buffer)
{ get offset of buffer }
{ calculate a linear address }
{ deterrnine page corresponding to this

address)

{ determine offset into the page }

/* ge|. seqr€nt of buffer *,/

/* geL offset of buffer */

/* calculate a li-near address */

/* determine page corresponding to this linear
address */

/* deterrnine offset into the page */

Beware! There is one big catch when using page-based addresses. The DMA controller cannot write properly to
a buffer that 'straddles' a page boundary. A buffer sEaddles a page boundary if one part of the buffer resides in one
page of memory \ilhile another part resides in the following page. The DMA controller cannot properly write to such
a buffer because the DMA controller can only write to one page without reprogamming. When it reaches the end of
the current page, it does not staft writing to the next page. Instead, it starts writing back at the first byte of the
current page. This can be disastous if the beginning of the page does not correspond to your buffer. More often than
not, this location is being used by the code portion of your pro$am or the operating system, and writing da0a to it
almost always causes bizane behavior and an eventual system crash.

You must check to see if your buffer sraddles a page boundary and, if it does, take action to prevent the DMA
controller from trying to wdte to the portion that continues on the next page You can reduce the size of the buffer or
try to reposition the buffer. However, this can be difficult when using large static data structures, and often, the only
solution is to use dynamically allocated memory.

- Setting the DMA Page Register

Oddly enough, you do not inform the DMA controller directly of the page to be used. Instead, you put the page
to be used into the DMA page register which is separate from the DMA connoller, as shown in the table below. The
location of this register depends on the DMA channel being used.

DMA Channel Location of Page Register

1 83(131)

3 82(130)

4-23

- The DMA Controller

The DMA controller is a complex chip that occupies the first 16 bytes of the PC's t/O port space. A complete
discussion on how it operates is beyond the scope of this manual; only relevant information is included here. The
DMA connoller is programmed by writing to the DMA registers in your PC. The table below lists these registers.
Note that when you write 16-bit values to any of these registers (such as to the Count registers), you must write the
LSB frst, followed by the MSB.

Address hex/(decimal) Register Descriptlon

02/(02) Channel 1 Page Offset (write 2 bytes, LSB first)

o3(03) Channel 1 Count (write 2 bytes, LSB first)

o6(06) Channel 3 Page Offset (write 2 bytes, LSB first)

07t(07') Channel3 Count (write 2 bytes, LSB lirst)

otu(10) Single Mask Register

oB(1 1) Mode Register (write only)

oct(12) Clear Byte Pointer Flip-Flop (write only)

If you are using DMA channel l, write your page offset and count to ports 02H and 03H; if you are using
channel 3, write your page offset and count to ports 06H and 07H. The page offset is simply the offset that you
calculated for your buffer (see discussion above). Count indicates the number of bytes that you want the DMA
controller to transfer. Remember that each digitized sample from the AD3700 consists of 2 bytes, so the count that
you write to the DMA controller should be equal to (the number of samples x 2) - 1. The single mask register and
mode register are described below. The clear byte pointer sets an internal flip-flop on the DMA controller that keeps
track of whether the LSB or MSB will be sent next to registers that accept both LSB and MSB. Ordinarily, you
never need to write to this port, but it is a good habit to do so before programming the DMA controller. Writing any
value to this port clears the flip-flop.

- DMA Single Mask Register

The DMA single mask register is used to enable or disable DMA on a specified DMA channel. You should
mask (disable) DMA on the DMA channel you will be using while programming the DMA controller. After the
DMA connoller has been programmed and the AD3700 has been programmed to sample da[a, you can enable DMA
by clearing the mask bit for the DMA channel you are using. You should manually disable DMA by setting the
mask bit before exiting your program or, if for some reason, sampling is halted before the DMA controller has
transfened all the datr it was programmed to transfer. If you leave DMA enabled and it has not transfened all the
data it was programmed to transfer, it will resume transfers the next time data appears in the AD3700 FIFO. This
can spell disaster if your program has ended and ttre buffer has been reallocated to another application.

l/O Port OAH

Channel Selecl
Mask Bit 00 = Channel0
0 = unmask 01 = Channel 1
1 = mask 10 = Channel 2

1 1 = C h a n n e l 3

A a A
a-La

- DMA Mode Register

The DMA mode register is used to set parameters for the DMA channel you will be using. The read/writB bits
are self explanatory; the read mode cannot be used with the AD3700. Auoinitialization allows the DMA controller
to automatically start over once it has transferred the requested number of bytes. Decrement means the DMA
controller should decrement its offset counter after each transfer; the default is increment. We recommend that you
use either the demand or single transfer mode when transferring daa. The demand mode transfers data to ttre PC on
demand. The single transfer mode forces the DMA controller to relinquish every other cycle so ttr,at ttre processor
can take care of other tasks. We recommend that you do not use the block mode since it can tie up the processor and
interfere with system operation.

1/O Port OBH

Transfer Mode
00 = demand
01 - single transfer
10 = block
1 1 = cascade

Autoinltlallzatlon
0 = disable
1 = enable

ChannelS€lect
00 = Ghannel 0
01 - Channel 1
10 = Channel 2
11 = Channel 3

ReadA/l/rite
01 - write
10 = read (not used with AD3700)

Offset Counter
0 = increment
1 = decrement

- Programming the DMA Controller

To program the DMA controller, follow thase steps:

1. Clear the byte pointer flip-flop.
2. Disable DMA on the channel you are using.
3. Write the DMA mode register to choose the DMA parameters.
4. Write the LSB of the page offset of your buffer.
5. Write the MSB of the page offset of your buffer.
6. Write the LSB of the number of bytes to transfer.
7. Write the MSB of the number of bytes to fransfer.
8. Enable DMA on the channel you are using.

- Programming the AD3700 for DMA

Once you have set up the DMA controller, you must progam the AD3700 for DMA. The following steps list
this procedure:

1. Set the DMA channel bits in the IRQ DMA register.
2. Set the channel scan mode.
3. Set the riggering mode.
4. Program the pacer clock (if appropriate).
5. Start conversions.
6. Monitor the DMA done bit.

NOTE: If the DMA is set up in the single transfer mode, each DMA ransfer will take two read cycles to
complete. Therefore, when you run the AD3700 at200kJlz in this mode, the DMA transferrate cannotkeep up with
the board's conversion rate. Single transfers will run with the board up to about 120 kl{z. Above l20l<Ilz, the FIFO
can be used as a storage bin for the converted data until the DMA can uansfer it to PC memory or the demand mode
can be used.

4-25

- Monitoring for DMA Done

There are two ways to monitor for DMA done. The easiest is to poll the DMA done bit in the AD3700 status
register (BA + 3). While DMA is in progress, the bit is clear (0). When DMA is complete, the bit is set (1). The
second way to check is to use the DMA done signal to generat€ an intemrpt. An intemrpt can immediately notify
your progam that DMA is done and any actions can be taken as needed. Both methods are demonstrated in the
sample C and Pascal progfirms, the polling method in the program named DMA and the intemrpt method in
DMASTR.

- Common DMA Problems

. ldake sure that your buffer is large enough to hold all of the daa you prognm the DMA controller to transfer.

. Check to be sure that your buffer does not sfraddle a page boundary.

. Remember that the number of bytes fon ttre DMA controller to transfer is equal to twice the number of
samples. This is because each sample is npo bytes in size.

. If you terminate sampling before the DMA controller has ransferred the number of bytes it was programmed
for, be sure to disable DMA by setting the mask bit in the single mask register.

Timer/Counters

Two 8254 programmable interval timers, TCl and TC2, each provide three 16-bit, 8-MI{z timer/counten for
timing and counting functions such as frequency measurement, event counting, and interrupts. Two of the timer/
counters in TCl are cascaded and used for the pacer clock, discussed earlier in this chapter. The remaining four
timer/counters, Counter 2inTCl and Counters 0, l, and 2,casc&ed on TC2, are available for your use. Figure 4-10
shows the timer/counter circuitry.

Each timer/counter has nvo inputs, CLK in and GATE in, and one output, timer/counter OUT. They can be
programmed as binary or BCD down counters by writing the appropriate data to the command word, as described in
the VO map section at the beginning of this chapter.

One of two clock sources, the on-board 5-MIIz crystal or the extemal clock (P245), can be jumpered as the
clock input to TCl, Counter 2 andlor TC2's timer/counters. The clock source for the pacer clock is jumper-select-
able for 5 MlIz or the external pacer clock (P2-41). The diagram shows how these clock sources are connected to
the timer/counters.

Two gate sources are available for enabling the timer/counters: a +5 volt soruce and an external gate source
V246). The same external gate source is connected to TCl, Counter 2 and the timerrcounters in TC2.

The ouput from TCl, Counter 2 is available at the COUNTER OUT pin @.44) on the VO connector where it
can be used for inlemrpt generation, as an A,/D trigger, or for counting functions. Any one of ttre three TCZ timerl
counter outputs or the 5-MlIz clock can be connected to the TIMER OUT pin (V242) on the VO connector where it
can be used for intemrpt generation, as an A/D trigger, or for timing functions. These connections are jumper-
selectable.

The timer/count€rs can be programmed to operate in one of six modes, depending on your application. For
example, when measuring frequencies, the timer/counters in TC2 are set up for Mode 3 and TCl, Counter 2 is set up
for Mode 0; when using it as an event counter, it is set up for Mode 0; and the pacer clock is set up for Mode 2.The
following paragraphs briefly describe each mode.

Mode 0, Event Counter (Interrupt on Terminal Count). This mode is typically used for event counting.
While the timer/counter counts down, the output is low, and when the count is complete, it goes high. The output
says high until a new Mode 0 conEol word is written to ttre timer/counter.

Mode 1, Hardware-Retriggerable One-Shot. The output is initially high and goes low on the clock pulse
following a trigger to begin the one-shot pulse. The output remains low until the count reaches 0, and ttren goes high
and remains high until the clock pulse after the next ftigger.

4-26

Mode 2' Rate Generator. This mode functions like a divide-by-N counter and is typically used to generate a
real-time clock intemrpt. The ouput is initially high, and when the count decrements to 1, the output goes low for
one clock pulse. The output then goes high again, the timer/counter reloads ttre initial count, and the process is
repeated. This sequence continues indefinitely.

Mode 3, Square Wave Mode. Similar to Mode 2 exczpt for the duty cycle output, this mode is typically used
for baud rate generation. The ouput is initially high, and when the count decrements to one-half its initial count, the
output goes low for the remainder of the count. The timer/counter reloads and the output goes high again. This
process repeats indefi nitely.

Mode 4, Software-Triggered Strobe. The output is initially high. When the initial count expires, the output
goes low for one clock pulse and then goes high again. Counting is "triggered" by writing the initial count.

Mode 5, Hardware Triggered Strobe (Retriggerable). The output is initially high. Counting is riggered by
the rising edge of the gate input. When the initial count has expired, the output goes low for one clock pulse and
then goes high again.

CLK
couilTEa GATE

o
ouT

CLK
couitTEi GATE

I
OUT

I t -

tCLK
couNTER GATE

OUT

5 Mtl! (XTAL)

EXTERNAL PACER CLOCK

PAOER CLOCK

5 MHz (xT Ll

EXTERNAL CLOCK

+5 VOLTS

EXTEFNAL GATE

COUNTEB OUT

5 MHr (XTAL)

+5 VoLTS

TIMEB OUT

5 MHz (XTAL)

Fig. 4-10 - 8254 Programmable lnterval Timer Circuits Block Diagram

4-27

DigitalVO

The eight digital input and eight digital output lines can be used to Eansfer daa between the computer and
external devices. The digital input lines have pull-up resistors as shown in Figure 4-11 so ttrat they will be pulled
high when the input source is disconnected. This is ideal to support swirching applications.

The digital input data can be read at I/O port BA + 0 and fiansferred into PC memory. To output data, the
desired value is written to I/O port BA + 0 and sent out to the external device connected to the digial output pins on
external VO connector P2.

L - - _ _ _ _ _ _ _ _ _ J _ _

Fig. 4-11 - Digital lnput Pull-up Resistors

4-28

Example Programs and Flow Diagrams

Included wittr the AD3700 is a set of example programs that demonsfrate the use of many of ttre board's
features. These examples are in written in C, Pascal, and BASIC. Also included is an easy-to-use menu-driven
diagnostics program, 3700DIAG, which is especially helpful when you are fint checking out yoru board after
installation and when calibrating the board (Chapter 5).

Before using the software included with your board, make a backup copy of the disk. You may make as many
backups as you need.

C and Pascal Programs

These programs are source code files so that you can easily develop yoru own custom software for your
AD3700 board. In the C direcory, AD3700.H and AD3700.INC contain all the functions needed to implement the
main C programs. H defines the addresses and INC contains the routines called by the main progmms. In the Pascal
directory, AD3700.PNC contains all of the procedures needed to implement the main Pascal programs.

Analog-to-Digital:

SOFITRIG Demonstrates how to use the software trigger mode for acquiring data.
EXTTRIG Similar to SOFTTRIG except that an extemal rigger is used.
MULTI Shows how to fill an anay with data using a software trigger.
MULTGATE Shows how to use the external trigger to gate multiple conversions.
SCANN Demonstrates channel scanning of five channels

Timer/Counters:

TIMER A short program demonstrating how to prograrn the 8254 for use as a timer.

DigitalVO:

DIGITAL

Interrupts:

INTRPTS
INTSTR

DMA:

Simple program that shows how to read from and wite to the digital VO lines.

Shows the bare essentials required for using intemrpts.
A complete prograrn showing intemrpt-based streaming to disk.

DMA Demonsftates how to use DMA to acquire data to a memory buffer. Buffer can be written
to disk and viewed with the included VIEWDAT progmm.

DMASTR Demonstrates how to use DMA for disk streaming. Very high continuous acquisition
rates can be obtained.

BASIC Programs

These programs are source code files so that you can easily develop your own custom software for your
AD3700 board.

Analog-to-Digital:

SINGLE Demonstrates how !o use the single convert, internal trigger mode for acquiring data.
SCAN Shows how !o scan channels.

FIFO:

FIFO Shows how to run the pacer clock and use the on-board FIFO.

DMA:

Shows how to take samples and transfer them to PC memory using DMA.DMA

4-29

FIow Diagrams

The following paragraphs provide descriptions and flow diagrams for some of the AD3700's A/D conversion
functions. These diagrams will help you to build your own custom applications prcgmms.

. Single Convert FIow Diagram (Figure 4-12)

This flow diagram shows you fte steps for taking a single sample on a selected channel. A sample is taken each
time you send the Start Convert command. All of the samples will be taken on the same channel until you change
the value in the CHANNEL/CONVERSION MODE SELECT register (BA + 1). Changing this value before each
Start Convert command is issued lets you take the next reading from a different channel.

By changing the value in the CHANNEL/COII/ERSION MODE SELECT register, you can change your
program so that a sample is taken each time an extemal trigger occurs.

Fig. 4-12 - Singte Convert Flow Diagram

4-30

. FIFO Flow Diagram (Figure 4-13)

This flow diagram shows you how to run ttre AD3700 from the pacer clock and use the on-board FIFO interface
to store the converted data. You prograrn the clock rate and take samples until the FIFO is full (FIFO full flag = S).
The samples are then read from the FIFO and displayed. A sample is taken each time the pacer clock generates a
pulse. By using the pacer clock, ttre time interval between samples can be precisely set The total number of samples
taken depends on the size of the FIFO on your board. Each sample is sent to the FIFO in two 8-bit words, the MSB
and the LSB. A 2K FIFO can hold 1024 samples, a 4K FIFO can hold 2M8 samples, and an 8K FIFO can hold 4096
samples. The samples are taken on tlre channel specified in the bottom three bits of the CHANNEL/CONVERSION
MODE SELECT register (BA + 1). By setting the channel select option bit in this register ta Scan Channel,the
converter will incrementally scan through all eight channels and store the daa.

Fig.4-13 - FIFO Flow Diagram

4-3r

. DMA Flow Diagram (Figure 4-14)

This flow diagram shows you how to take samples and fransfer the data directly into the computer's memory.
You can use DMA channel I or 3 to transfer 1024 samples (20a8 bytes) to the computer's memory.

Fig.4-14 - DMA Flow Diagram

Report Error:
FIFO full before
DMA was done.
Stop Program

4-32

. Scan Flow Diagram (Figure 4-15)

This flow diagram shows you how to take samples from a sequence of channels without selecting the channel
each time a convenion is sared.

By setting the channel select option bit in the CHANNEL/COI.WERSION MODE SELECT register (BA + l)
to Scan Channel and setting the number of channels to be scanned at BA + 2, the converter will automatically
increment the channel each time the Start Convert command is sent. The first channel sampled is the channel that is
specified in the bottom three bits of the CHANNEL/CONVERSION MODE SELECT register. When the board
increments through the number of channels programmed at BA + 2, it automatically starts over at the first channel in
the sequence.

By changing the value in the CHANNEL/COI,IVERSION MODE SELECT register, you can change your
program so ttnt a sample is taken each time an extemal trigger occurs.

Fig. 4-15 - Scan Flow Diagram

Select Channel
Scan Mode,
Number of

Channels to Scan

4-33

. fnterrupts FIow Diagram (Figure 4-16)

This flow diagram shows you how Jo program an intemrpt routine for your AD3700. The diagram parallels the
intemrps discussion included in ttre chapter. You can use this diagram in conjunction with the detailed text in ttris
chapter to develop an intemrpt program for your AD3700.

Fig. 4-16 - Interrupts Flow Diagram

4-34

Set intenupt
disabled bit in

IRQ/Dl/A register

CHAPTER 5

CALIBRATION

This chapter tells you how to calibrate the AD3700 using the
3700DIAG calibration prcgram included in the example software
package and the four trimpots (IRl through TR3 and TR5) on the
board. These trimpots calibrate the A/D converter gain and offset.

5-1

This chapter tells you how to calibrate the A/D converter gain and offset The offset and full-scale performance
of the board's A,/D converter is frctory-calibrated. Any time you suspect inaccurate readings, you can check the
accuracy of your conversions using ttre procedure below, and make adjusts as necesmry. Using the 3700DIAG
diagnostics prognm is a convenient way to monitor conversions while you calibrate the board.

Calibration is done with the board installed in your PC. You can access the trimpots with the computer's cover
removed. Power up the computer and let the board circuitry stabilize for 15 minutes before you start calibrating.

Required Equipment

The following equipment is required for calibration:

. Precision Voltage Source: -10 to +10 volts

. Digital Voltmeter: 5-1/2 digis

. Small Screwdriver (for trimpot adjustment)

While not required, the 3700DIAG diagnostics program (included with example software) is helpful when
performing calibrations. Figure 5-1 shows the board layout. The four trimpots used for calibration are located in the
upper left area ofthe board.

A/D Calibration

Two procedures are used to calibrate the A/D converter for all input voltage ranges. The first procedure cali-
brates the converter for the unipolar range (0 to +10 volts), and the second procedure calibrates the bipolar ranges
(15, t10 volts). Table 5-1 shows the ideal input volage for each bit weight for ttre unipolar, straight binary range,
and Table 5-2 shows the ideal voltage for each bit weight for the bipolar, twos complementranges.

Table 5-1 - A/D Converter Btt Wetghts,
Unlpolar, Stralght Blnary

A/D Blt Weight

ldeal Input Voltage (millivolts)

0 to +10 Volts

1 1 1 1 1 1 1 1 1 1 1 1 +9997.6

1000 0000 0000 +5000.0

0100 0000 0000 +2500.0

0010 0000 0000 +1250.0

0001 0000 0000 +625.00

0000 1000 0000 +312.50

0000 0100 0000 +156.250

0000 0010 0000 +78j25

0000 0001 0000 +39.063

0000 0000 1000 +19.5313

0000 0000 0100 +9.7656

0000 0000 0010 +4.8828

0000 0000 0001 +2.4414

0000 0000 0000 +0.0000

5-3

D @3 E(r6E6EddoT6.' @
roo oooooooo or-- lo or-- lo o-o
@r5;""" lr !l 13 3l 13 3l 13 *L
r o o 5 0 0 0 0 0 0 0 0 0 l l o o l l o o l l o l o l

tuto Sl lS 3l lS 31"139

=lwH gtr=glill,ffi=d
6d- o=ooooooooooooo @ r -?,

m' l !)E-g-- ono orl
u- i I *'oo (i !l lS 3l 13 3l 13 "t

88@slg|3slElEil,lg
ry';E: oEo H; ts;; lliji,
@lfQ oboooooooooooo, SnS Sn3 @'uqrnfll3sl li frs
F"#ilEli fl$l! flElt
et.0000000.6p-ooo.ooo. 3lAJ3; 3HB = 3Li.J3 '

I=JH#UH#ffi;m'ffi'

i

i@&b, E@

ryEoEooo6lgEoooooo ol--lo
"|--lg SnS :EE Iq eeee3lulg 3l-lg shls

E

QffiQR# slijs, s|jli, Etili, =
A6oooooo b6oooooo @: @t @o H

Um:m3ft 3ru EnEpqm:fuffi' ffi; ffi'E8 3 t i

Qffi'*ffiiUinilg iEli :6t s@

8ffi8gffiEH'|gpiHll=ffi:;
CIMp"w,m'ffi'alsli H
:'srcili :l-li sl*|g H:
,ru fllli ilEli gRlg' iliji= El3 ;s
uHtBffi"ffiffh=ffiffi$
;- .E q9:Eeee-sEsEs :8999999.s @N' o o o o o o o o o o o o t = o o o o o o o o o o o o E k - t l

61m'l-::------:goN

ut
(J,
c

o
U)
E
(l)

f
.9)
c
o()
bo
6(5
IL
O)q'-
o

G
U,
f
o
(!

J

P
Go
ct

I

I

lo

.8,
tt

Tabfe 5-2- A/D Converter Blt Welghts,
Blpolar, Twos Complement

A/D Blr Weighr

ldeal Input Voltago (mllllvolts)

-5 to +5 Volts -10 to +10 Volts

1 1 1 1 1 1 1 1 1 1 1 1 -2.44 -4.88

1000 0000 0000 -s000.00 -10000.00

0100 0000 0000 +2500.00 +5000.00

0010 0000 0000 +1250.00 +2500.00

0001 0000 0000 +625.00 +1250.00

0000 1000 0000 +312.50 +625.00

0000 0100 0000 +156.25 +312.50

0000 0010 0000 +78.13 +156.25

0000 0001 0000 +39.06 +78.13

0000 0000 1000 +19.53 +39.06

0000 0000 0100 +9.77 +19.53

0000 0000 0010 +4.88 +9.77

0000 0000 0001 +2.M +4.88

0000 0000 0000 0.00 0.00

Unipolar Calibration

Two adjusunents are made to calibrate the AID converter for the unipotar range of 0 to +10 volts. One is the
offset adjustment, and the ottrer is the full scale, or gain, adjustmenL Trimpot TR5 is used to make the offset
adjustment, and trimpot TRl is used for gain adjustment. This calibration procedure is performed wittr the board set
up for a 0 to + 10 volt input range. Before making these adjusrnents, make sure tlnt the jumper on P3 is set for 10V
and the jumper on P5 is set for +.

Use analog input channel 1 while calibrating the board. Connect your precision voltage source to channel 1. Set
the voltage source ta +1.22070 millivolts, start a conversion, and read the resulting data. Adjust trimpot TR5 until it
flickers betrveen tle values listed in the able below. Next, set the voltage n +9.49829 volts, and repeat the proce-
dure, this time adjusting TRl until the data flicken between the values in the table. Note that the value used to adjust
the full scale voltage is not the ideal full scale value for a 0 to +10 volt input range. This value is used because it is
the maximum value at which the A/D converter is guaranteed o be linear, and ensures accurate calibration results.

Data Values for Calibrating Unipolar i0 Vott Range (0 to +10 volts)

Olfset (TR5)
Input Voltage = +1.22070 mV

Convertsr Galn (TR1)
Input Voltage = +9.49829 V

A/D Converted Data
0000 0000 0000
0000 0000 0001

1 1 1 1 0 0 1 1 0 0 1 0
1 1 1 1 0 0 1 1 0 0 1 1

)-)

Bipolar Calibration
. Bipolar Range Adjustments: -5 to +5 Volts

Two adjustrnents are made to calibrate the A/D converter for the bipolar range of -5 to +5 volts. One is the
offset adjustment, and the other is the full scale, or gain, adjustnenl Trimpot TR2 is used to make the offset
adjustment, and trimpot TRI is used for gain adjustment. Before making these adjustments, make sure that the
jumper on P3 is set for lOV and the jumper on P5 is set for +/-.

Use analog input channel 1 and set it for a gain of I while calibrating the boad. Connect your precision voltage
source to channel l. Set the voltage source to 4.99878 volts, sart a conversion, and read ttre resulting datr. Adjust
trimpot TR2 until it flickers between the values listed in the table below. Next, set the voltage to +4.99634 volts, and
repeat the procedure, this time adjusting TRI until the data flickers between the values in the table.

Data Values for Calibratlng Blpolar 10 Volt Range (-5 to +5 volte)

Olfset (TR2)
Input Voltage = -4.99878V

Converter Galn (TRl)
Input Vottage = +4.99634V

A/D Converted Data
1000 0000 0000
1000 0000 0001

0 1 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 ' l

. Bipolar Range Adjustments: -10 to +10 Volts

To adjust the bipolar 20-volt range (10 to +10 volts), change the jumper on P3 so that it is insalled across the
20V pins. Leave the P5 jumper at +/-. Then, set the input voltage to +5.0000 volts and adjust TR3 until the output
matches the data in the table below.

Data Value for Calibrating Bipolar 20 Volt Range (-10 to +10 votts)

TR3
Input Voltage = +5.0000V

A/D Converted Data 0100 0000 0000

5-6

APPENDIX A

AD37OO SPECIFICATIONS

AD3700 Characteristics rypical@ 2s" c

Interface
IBM PC/XT/AT compatible
Switch-selectable base address, l/O mapped
J u mper-selectable interrupts
Soft ware-selectable DMA channel

Analog Input
8 single-ended inputs
Input impedance, each channel........>10 megohms
lnput ranges+5, +10, or 0 to +10 volts
Overvoltage protection ..t35 Vdc
Sett l ing t ime5 psec, max

A/D Convefter............... ..AD678
Type............Successive approximation
Resolution 12 bits (2.214 mVi4.88 mV)
Linearity11 LSB, typ
Conversion speed5 psec, typ
Throughput .200 kHz

Pacer Clock
Range (using on-board clock) 14 minutes to 5 psec

F1FO...2K,4K, or 8K
lDT72032048 bytes, 1024 samples
1DI/2O4....'.4096 bytss, 2048 samples
lDT72058192 bytes,4096 samples

Digltal l/O
Number of 1ines..8 input, 8 output

Timer/CountersCMOS 82C54
(Optlonal NMOS 8254)

Six 16-bit down counters (3 per lC)
Binary or BCD counting
Programmable operating modes (6) Interrupt on terminal count; programmable

one-shot; rats generator; square wave rate gen€rator;
software-triggered strobe; hardware-triggered strobe

Counter input sourceExiernal clock (8 MHz, max) or
on-board 5-MHz clock

Counter outputs Available externally; used as PC interrupts
Counter gate source.. External gate or always enabled

Miscellaneous Inputs/Outputs (PC bus-sourced)
t5 volts
t12 volts
Ground

Current Requlrements
+5 volts80 mA
+12 volts36 mA
-12 vohs34 mA

Connector
50-pin, right angle, shrouded box header

Slze
3.875'H x 8.7"W (99mm x221mm)

A-3

A-4

APPENDIX B

P2 CONNECTOR PIN ASSIGNMENTS

B-1

B-2

A I N l

A I N 2

A I N 3

A I N 4

A I N 5

A I N s

A I N T

A I N 8

A N A L O G G N D

ANALOG GND

A N A L O G G N D

DINT

D I N 6

DIN5

D I N 4

DIN3

D I N 2

D I N l

D INO

T R I G G E R I N

:XT PACER CLK

T R I G G E R O U T

E X T C L K

+12 VOLTS

-12 VOLTS

ANALOG GNO

ANALOG GND

ANALOG GND

ANALOG GND

ANALOG GND

ANALOG GND

ANALOG GND

ANALOG GND

ANALOG GND

ANALOG GND

ANALOG GND

DOUTT

DOUT6

DOUTs

DOUT4

DOUT3

DOUT2

DOUTl

DOUTO

DIGITAL GND

TIMER OUT

COUNTER OUI

EXT GATE

+5 VOLTS

DIGITAL GND

B-3

APPENDIX C

COMPONENT DATA SHEETS

Intel 82C54 Programmable Interval Timer
Data Sheet Reprint

intel'
82C54

I Three Independent 16-blt counters

I LowPowerCHMOS
- lcc : 10 mA @ I MHz Count

frequency

I Completely TTL Gompatlble

I Six Programmable Counter lt/lodes

r Binary or BCD counting

I Status Read Back Command

r Avallable In 24-Pln DIP and 28.Pln PLCC

CHMOS PROGRAMMABLE INTERVAL TIMER

I Gompatlble with all Intel and most
other microprocessors

r Hlgh Speed, "Zero Walt State"
Operation wlth 8 MHz 8086/88 and
80186/188

I Handles Inpute from DC to I MHz
- 10 MHz for 82C54-2

r Avallable In EXPRESS
- Standard Temperature Range
- Extended Temperature Range

The lntel 82C54 is a high-performance, CHMOS version of the industry standard 8254 counter/timer which is
designed to solve the timing control problems common in microcomputer syslem design. lt provides three
independent 16-bit counters, each capable of handling clock inputs up to 10 MHz. All modes are sottware
programmable. The 82C54 is pin compatible with the HMOS 8254, and is a superset ol the 8253.

Six programmable timer modes allow the 82C54 to be used as an event counter, elapsed time indicator,
programmable one-shot, and in many other applications.

The 82C54 is fabricated on lntel's advanced CHMOS lll technology which provides low power consumption
with performance equal to or greater than the equivalent HMOS product. The 82C54 is available in 24-pin DIP
and 28-pin plastic leaded chip carrier (PLCC) packages.

ouro GAIEocLo tac ouflG^Elcltl
2312M-3

PLASTIC LEAT'ED CHIP CARRIER

vc€
*-e
i-o
6
Ar
lo
cLr 2
ottt ?

olrE 2
clr ' l
grrE r

o{n r

ae$-2
Diagrams are for pin r6f€r6nc€ only

Package sizes are not to scal€.

Ffgure 2.82C54 Pinout

Oa

o3

Oz

D !

DO

clx0

xc

Dr

Oa
q

Dr

O!

D2

Dt

Oo

,CLT O

OUT O

OATE O

cxD

5

6

f

t

9

t0

t'l

r a ' 1 5 * f t i

231244-1

Flgure 1.82C54 Block Dlagram

a l t

5 2 0

t
|.cg

tl

t0 !6

I t t a

12 r3

3-83
ScptGmbc. te89

fficr l{umber:23124{d5

intef 82C54

Table 1. Pln Descrlption

Symbol Pln Number Type Functlon
DIP PLCC

Dz-Do 1-8 2-9 l lo Data: Bidirectional tri-state data bus lines,
connected to system data bus.

CLK O s 1 0 I Clock 0: Clock input of Counter 0.

OUT O 10 1 2 o Output 0: Output of Counter 0.
GATE O 1 1 13 I Gate 0: Gate inout of Counter 0.

GND 1 2 1 4 Ground: Power suoolv connection.
OUT 1 13 1 6 o Out 1: Output of Counter 1

GATE 1 1 4 1 7 Gate 1: Gate input of Counter 1
CLK 1 1 5 1 8 Cfock 1: Clock input of Counter 1.

GATE 2 1 6 1 9 Gate 2: Gate input of Counter 2.
OUT 2 1 7 20 o Out 2: Output of Counter 2.
CLK 2 1 8 21 Clock 2: Clock input of Counter 2.
Ar' Ao 20-19 23-22 Address: Used to sefect one of the three Counters

orthe ControlWord Register for read or write
operations. Normally connected to the system
address bus.

Ar As Selects
0
0
1
1

0
1
0
1

Counter 0
Counter I
Counter 2
ControlWord Reoister

6 21 24 Chip Selecl A low on this input enables the 82C54
to respond to FiD and WFI signals. FiD and WFI are
ignored otherwise.

RD 22 26 Read Control: This input is low during CPU read
operations.

WF 23 27 Write Control: This input is low during CPU write
operations.

Vce 24 28 Power: * 5V power supply connection.
NC 1 1 1 , 1 5 , 2 5 No Connect

FUNCTIONAL DESCRIPTION

General

The 82C54 is a programmable intervaltimer/counter
designed for use with Intel microcomputer systems.
It is a general purpose, multitiming element that can
be treated as an anay of llO ports in the system
software.

The 82C54 solves one ol the most comrnon prob-
lems in any microcomputer system, the generation
of accurate time delays under software control. ln-
stead of setling up timing loops in software, the pro-
grammer configures the 82C54 to match his require-
ments and programs one of the counters for the de-

sired delay. After the desired delay, the 82C54 will
interrupt the CPU. Software overhead is minimal and
variable length delays can easily be accommodated.

Some of the other counter/timer functions common
to microcomputers which can be implemented with
the 82C54 are:

o Realtime clock
o Even counter
o Digital one-shot
o Programmable rate generator
o Square wave generator
r Binary rate multiplier
r Complex waveform generator
. Complex motor controller

3-84

82C54

Bloek Dlagram

DATA BUS BUFFER

This 3-state, bi-directional, 8-bit buffer is used to in-
terface the 82C54 to the system bus (see Figure 3).

Flgure 3. Block Dlagram Showlng Data 8us
Buffer and Read/Wrlte Loglc Functions

READ/WRITE LOGIC

The Read/Write Logic acc€pts inputs from the sys-
tem bus and generates control signals for the other
functional blocks of the 82C54. A1 and Aq s€lect
one of the three counters or the Control Word ReE
ter to be read from/written into. A "low" on the RD
input tells the 82C54 that the CPgjg reading one of
the counters. A "low" on the WR input tells the
82C54 that the CPU is lt4llng either a Control Word
or an initialcount. Both RD and WR are qualified by
G; FD and WFI are ignored unless the 82C54 has
been selected by holding CS low.

CONTROL WORD REGISTER

The ControlWord Register (see Figure 4) is selected
by the Read/Write Logic when Ar, A0 : 11. lf the
CPU then does a write operation to the 82C54, the
data is stored in the Control Word Register and is
interpreted as a Control Word used to define the
operation of the Counters.

The Control Word Register can only be written to;
status inlormation is available with the Read-Back
Command.

e C l t 0

R O . +

& +

231241-5

Flgure 4. Block Diagram Showing Control Word
Register and Counter Functions

couNTER 0, couNTER 1, COUNTER 2

These three functional blocks are identical in opera-
tion, so only a single Counter will be described. The
internal block diagram of a single counter is shown
in Figure 5.

The Counters are fully independent. Each Counter
may operate in a different Mode.

Tfre Control Word Register is shown in the figure; it
is not part of the Counter itself, but its contents de-
termine how the Counter operates.

3-85

Cr(o

6At€ 0

our 0

clx t

CAIE T

o0l r

231244-4

intef 82C54

231244-6

Flgure 5. Internal Block Dlagram of a Counter

The status register, shown in the Figure, when
latched, contains the cunent contents of the Control
Word Register and status of the output and null
count flag. (See detailed explanation of the Read-
Back command.)

The actual counterls labelled CE (for "Counting Ele-
menf'). lt is a 16-bit presettable synchronous down
counter.

OLy and OL1 are two 8-bit latches. OL stands for
"Output Latch"; the subscripts M and L stand for
"Mosl significant byte" and "Least significant byte"
respectively. Both are normally refened to as on€
unit and called just OL. These latches normally "fol-
low" the CE, but if a suitable Counter Latch Com-
mand is sent to the 82C54. the latches "latch" the
present count until read by the CPU and then return
to "following" the CE. One latch at a time is enabled
by the counter's Control Logic to drive the internal
bus. This is how the 16-bit Gounter communicates
over the 8-bit internal bus. Note that the CE itself
cannot be read; whenever you read the count, it is
the OL that is being read.

Similady, there are two 8-bit registers called CRi,l
and CRs (for "Count Register"). Both are normally
refened to as one unit and calted just CR. When a
new count is written to the Counter, the count is

stored in the CR and later transfened to the CE. The
Control Logic allows one register at a time to be
loaded from the internal bus. Both bytes are trans-
ferred to the CE simultaneously. CRM and CRg are
cleared when the Counter is programmed. ln this
way, if the Counter has been programmed for one
$[e counts (either most signilicant byte only or least
significant byte only) the other byte will be zero.
Note that the CE cannot be written into; whenever a
count is written, it is written into the CR.

The Control Logic is also shown in the diagram. CLK
n, GATE n, and OUT n are allconnected to the out-
side worfd through the Control Logic.

82C54 SYSTEM INTERFACE

The 82C54 is treated by the systems software as an
anay of peripheral l/O ports; three are counters and
the fourth is a control register for MODE program-
ming.

Basically, the select inputs A6, A1 connect to the A9,
A1 address bus signals of the CPU. The CS can be
derived directly from the address bus using a linear
select method. Or it can be connected to the output
of a decoder, such as an lntel 8205 for larger sys-
tems.

rr & Cf DrOr FU FI
Itcta

couxttt coutt:t coutr[t
o t 2

OUt OAIC CLi '
'OUr

Clt : CLx'
'OUl

OAIE CLx'

231244-7

Flgure 6.82C54 System Interface

3€6

intet 82C54

OPERATIONAL DESCRIPTION

General

After power-up, the state of the 82C54 is undefined.
The Mode, count value, and output of all Counters
are undefined.

How each Counter operates is determined when it is
programmed. Each Counter must be programmed
before it can be used. Unused counters need not be
programmed.

Programming the 82C54

Counters are programmed by writing a Control Word
and then an initial count. The controlword format is
shown in Figure 7.

All Control Words are written into the Control Word
Register, which is selecled when A1, Ao : 11. The
Control Word itself specifies which Counier is being
programmed.

By contrast, initial counts are written into the Coun-
ters, not the Control Word Register. The A1, Aq in-
puts are used to select the Counter to be written
into. The format of the initial count is determined by
the ControlWord used.

Control Word Format

41 ,46 :11 6 :0 FD : t WF :O

SC - Select Counter:
scl sco

M - IIODE:

il2 ttl MO

RW - Read/Wrlte:
FWl RWo

NOTE: Don't care bils (X) should be 0 to insure
compatibility with future Intel products.

D7 D5 D5 Da D3 D2 D1 De

sc1 sc0 RWl RWO M2 M1 MO BCD

0 0 Select Counter 0

0 1 Select Counter 1

1 0 Select Counter 2

1 1
Bead-Back Command
(See Read Operations)

0 0 0 Mode 0

0 0 1 Mode 1

X 1 0 Mode 2

X 1 1 Mode 3

1 0 0 Mode 4

1 0 1 Mode 5

0 0 Counter Latch Command (see Read
Operations)

0 1 Read/Write least significant byte only.

1 0 Read/Write most significant byte only.

1 1 Read/Write least significant byte first,
then most significant byte.

BCD:

0 Binary Counter 16-bits

1 Binary Coded Decimal (BCD) Counter
(4 Decades)

Flgure 7. Control Word Format

3-87

intel 82C54

Write Operations
The programming procedure tor the 82C54 is very
flexible. Only two conventions need to be remem-
bered:
1) For each Counter, the Control Word must be

written before the initial count is written.
2) The initial count must follow the count format

specified in the Control Word (least significant
byte only, most significant byte only, or least sig-
nificant byte and then most significant byte).

Since the Control Word Register and the three
Gounlers have separate addresses (selected by the
At, Ao inputs), and each Control Word specifies the
Counter it applies to (SC0, SC1 bits), no special in-

Read Operations

It is often desirable to read the value of a Gounter
without disturbing the count in progress. This is easi-
ly done in the 82C54.

There are three possible methods for reading the
counters: a simple read operation, the Counter

struction ssquencs is required. Any programming
sequence that follows the conventions above is ac-
ceptable.

A new initial count may be written to a Counter at
any time without affecting th€ Counter's pro-
grammed Mode in any way. Counting will be atfected
as described in the Mode definitions. The new count
must follow the programmed count format.

lf a Counter is programmed to readlwrite two-byte
counts, the following precaution applies: A program
must not transfer control between writing the first
and second byte to another routine which also writes
into that same Counter. Othenryise, the Counter will
be loaded with an incorrect count.

Latch Command, and the Read-Back Command.
Each is explained below. The first method is to per-
form a simple read operation. To read the Counter,
which is selected with the 41, A0 inputs, the CLK
input of the selected Counter must be inhibited by
using either the GATE input or external logic. Other-
wise, the count may be in the process of changing
when it is read, giving an undefined result.

3-88

ControlWord -
LSB of count -
MSB of count -
ControlWord -
LSB of count -
MSB of count -
ControlWord -
LSB of count -
MSB of count-

ControlWord -
Counter Word -
ControlWord -
LSB of count -
LSB of count -
LSB of count -
MSB of count-
MSB of count -
MSB of count -

NOTE:

Counter 0
Counter 0
Counter 0
Gounter 1
Counter 1
Counter 1
Counter 2
Counter 2
Counter 2

Counter 0
Counter 1
Counter 2
Gounter 2
Counter 1
Counter 0
Counter 0
Counter 1
Counter 2

Control Word -
Control Word -
ControlWord -
LSB of count -
MSB of count-
LSB ol count -
MSB of count -
LSB of count -
MSB of count -

ControlWord-
ControlWord-
LSB of count-
Controf Word -
LSB of count -
MSB of count-
LSB of count -
MSB of count-
MSB of count -

Counter 2
Counter 1
Counter 0
Counler 2
Counter 2
Counter 1
Counter 1
Counter 0
Counter O

Counter 1
Counter 0
Counter 1
Counter 2
Counter 0
Counter 1
Counter 2
Counter 0
Counter 2

A1 Ao
1 1
1 1
1 1
1 0
1 0
0 1
0 1
0 0
0 0

A1 Ao
1 ' l
00
00
11
01
01
11
10
10

A1 Aq
' t 1

1 1
0 1
1 1
0 0
0 1
1 0
0 0
1 0

A1 Ag
1 1
1 1
1 1
1 0
0 1
0 0
0 0
0 1
1 0

In all four examples, all counters ar€ programmed to readlwrite two-by{e counts.
These are only four of many possible programming sequences.

Figure 8. A Few Possible Programmlng Sequences

intet 82C54

COUNTER LATCH COMMAND

The second method uses the "Counter Latch Com-
mand''. Like a Control Word, this command is written
to the Control Word Register, which is selected
when 41, A0 : 11. Also like a Control Word, the
SCO, SC1 bits select one of the three Counters, but
two other bits, D5 and D4, distinguish this command
from a ControlWord.

A r , A o : 1 1 ; Q $: 0 ; R D : t ; W R : 0

D7 D5 D5 Da D3 D2 D1

SC1, SCO - specify counter to be latched

SCI SCO Counter

0 t0 t 0
0 l 1 l 1
1 t0 t 2
1 | 1 | Read-BackCommand

D5,D4 - 00 designates Counter Latch Command

X - don'l care

NOTE:
Don't care blts (X) should be 0 to insure compatibility
with future Intel products.

De

sc1 sc0 0 0 X X X X

Figure 9. Counter Latching Command Format

The selected Counter's output latch (OL) latches the
count at the time the Counter Latch Command is
received. This count is held in the latch until it is read
by the CPU (or until the Counter is reprogrammed).
The count is then unlatched automatically and the
OL returns to "following" the counting element (CE).
This allows reading the contents of the Counters
"on the fly" without affecting counting in progress.
Multiple Counter Latch Commands may be used to
latch more than one Counter. Each latched Coun-
ter's OL holds its count until it is read. Counter Latch
Commands do not affect the programmed Mode of
the Counter in any way.

lf a Counter is latched and then, some lime later,
latched again before the count is read, the second
Counter Latch Command is ignored. The count read
will be the count at the time the first Counter Latch
Command was issued.

With either method, the count must be read accord-
ing to the programmed format; specifically, if the
Counter is programmed for two byte counts, two
bytes must be read. The two bytes do not have to be
read one right atler the other; read or write or pro-

gramming operations of other Counters may be in-
serted between them.

Another feature of the 82C54 is that reads and
writes of the same Counter may be interleaved; for
example, if the Counter is programmed for two byte
counts, the following sequence is valid.

'1.
Read least significant byte.

2. Write new least significant byte.
3. Read most significant byte.
4. Write new most significant byte.

ll a Counter is programmed to read/write two-byte
counts, the following precaution applies; A program
must not transfer control between reading the first
and second byte to another routine which also reads
from that same Counter. Othenrvise, an incorrect
count will be read.

READ.BACK COMMAND

The third method uses the Read-Back command.
This command allows the user to check the count
value, programmed Mode, and cunent state of the
OUT pin and Null Count flag of the selected coun-
te(s).

The command is written into the ControlWord Reg-
ister and has the format shown in Figure 10. The
command applies to the counters selected by set-
ting their corresponding bits D3,D2,D1 - 1.

Figure 10. Read-Back Command Format

The read-back command may be used to latch multi-
ple counter output latches (OL) by setting the
COUNT bit D5:0 and selecting the desired coun-
ler(s). This single command is functionally equiva-
lent to several counter latch commands, one for
each counter latched. Each counter's lalched count
is held until it is read (or the counter is repro-
grammed). That counter is automatically unlatched
when read, but other counlers remain latched until
they are read. lf multiple count read-back commands
are issued to the same counter without reading the

A0 ,A r :11 e5 :O HD: r WF :O

D5:0 : Latch count of selected counter(s)
Da:0 : Latch status ol selected counter(s)
D3: 1 : Select counter 2
D2: 1 = Select counler 1
Dr: 1 : Select counter 0
Dg: Reserved for luture expansion; must be 0

D5 Da D3 Dq

1 t doumSTFTUSCNT 2 CNT 1 CNTO 0

3-89

inbf 82C54

count, all but the first are ignored; i.e., ths count
which will be read is the count at the time the first
read-back command was issued.

The read-back command may also be used to latch
status information of selected counte(s) by setting
ffifUS bit D4:0. Status must be latched to be
read; status of a counter is accessed by a read trom
that counter.

The counter status format is shown in Figure 1 '1. Bits
D5 through D0 contain the counter's programmed
Mode exactly as written in the last Mode Control
Word. OUTPUT bif D7 contains the current state of
the OUT pin. This allows the user to monitor the
counter's output via software, possibly eliminating
some hardware from a system.

D

OUTPUT NULL
COUNT

Ftwl RWO M2 M1 MO BCD

D7'l : Out Pin is' l
0 : O u t P i n i s 0

D6 1 : Null count
0 : Count avaitable for reading

Ds-Do Counter Programmed Mode (See Figure 7)

Flgure 11. Status Byte

NULL COUNT bit DO indicates when the last count
written to the count€r register (CR) has been loaded
into the counting element (CE). The exact time this
happens depends on the Mode of the counter and is
described in the Mode Definitions, but until the count
is loaded into the counting element (CE), it can't be
read from the counter. lf the count is latched or read
before this time, the count value will not reflect the
new count just written. The operation of Null Count
is shown in Figure 12.

THIS ACTION: CAUSES:
A. Write to th6 control

*orJ registerirt
Nullcount:1

B. WritEto th€ counl
register (cn);izl Nullcount:1

C. New count is loaded
Null count: 0

into CE (CR -.r CE);

tll Onry the counter specified by the control word will
have its null count sot to 1. Null count bits of other
counters are unaffected.
I2l 11 66 counter is programmed tor two-byte countg
(least significant byte thsn most significant byte) null
count goes to 1 when ths s€cond byte is writt€n.

Flgure 12. NullCount Operatlon

lf multiple status latch operations of the counter(s)
are performed without reading the status, all but the
first are ignored; i.e., the status that will be read is
the status of the counter at the time the first status
read-back command was issued.

Both count and status of the selected counter(s)
may be latched simultaneously by setting both
COUNT and STATUS bits D5,D4=0. This is func-
tionally the same as issuing two separate read-back
commands at once, and the above discussions ap-
ply here also. Specifically, if multiple count and/or
status read-back commands are issued to the sam6
counter(s) without any intervening reads, all but the
first are ignored. This is illustrated in Figure 13.

lf both count and status of a counter are latched, the
first read operation of that counter will return latched
status, regardless of which was latched first. The
next one or two reads (depending on whether the
counter is programmed for one or two type counts)
return latched count. Subsequent reads return un-
latched count.

Command
D7 D6 D5 Da D3 D2 D1 Ds Descrlptlon Results

1 1 0 0 0 0 1 0 Read back count and status of
Counter 0

Count and status latched
for Counter 0

1 1 1 0 0 1 0 0 Read back status of Counter 1 Status latched for Counter 1
1 1 1 0 I 1 0 0 Read back status of Counters 2, 1 Status latched for Counter

2, but not Counter 1
1 1 0 1 1 0 0 0 Read back count of Counter 2 Count latched for Counter 2
1 1 0 0 0 I 0 0 Read back count and status of

Counter 1
fuunt latched for Counter 1,
but not status

1 1 1 0 0 0 1 0 Read back status of Counter 1 Command ignored, status
already latched for Counter 1

Figure 13. Head-Back Command Example

3-90

inbr 82C54

cs m WR Ar Ao

0 1 0 0 0 Write into Counter 0

0 1 0 0 1 Write into Counter 1
0 1 0 1 0 Write into Counter 2
0 1 0 't 1 Write ControlWord
0 0 I 0 0 Read from Counter 0

0 0 1 0 1 Read from Counter 1
0 0 1 1 0 Read from Counter 2
0 0 1 1 1 No-Operation (3-State)

X X X X No-Operation (3-State)
0 1 1 X X No-Operation (3-State)

Flgure 14. Read/Write Operations Summary

This allows the counting sequence to be synchroniz-
ed by sottware. Again, OUT does not go high until N
+ 1 CLK pulses after the new count of N is written.

lf an initial count is writien while GATE : O, it will
still be loaded on the next CLK pulse. When GATE
goes high, OUT will go high N CLK pulses later; no
CLK pulse is needed to load the Counter as this has
already been done.

ltlode Definitions
The following are defined for use in describing the
operation of the 82C54.

CLK PULSE: a rising edge, then a falling edge, in
that order, of a Counter's CLK input.

TRIGGER: a rising edge of a Counter's GATE in-
put.

COUNTER LOADING: the transfer of a count from
the CR to the CE (refer to
the "Functional Descrip-
tion")

MODE 0: INTERRUPT ON TERMINAL COUNT

Mode 0 is typically used for event counting. After the
Control Word is writlen, OUT is initially low, and will
remain low untilthe Counter reaches zero. OUT then
goes high and remains high until a new count or a
new Mode 0 Control Word is written into the Coun-
ter.

GATE : 1 enables counting; GATE : 0 disables
counting. GATE has no effect on OUT.

After the Control Word and initial count are written to
a Counter, the initial count will be loaded on the next
CLK pulse. This CLK pulse does not decrement the
count, so for an initial count of N, OUT does nol go
high until N + 1 CLK pulses after the initial count is
written.

lf a new count is written to the Counter, it will be
loaded on the next CLK pulse and counting will con-
tinue from the new count. lf a two-byte count is writ-
ten, the following happens:
1) Writing the first byte disables counting. OUT is set

low immedialely (no clock pulse required).

2) Writing the second byte allows the new count to
be loaded on the next CLK pulse.

l , l " l - i . l : l l I I l i i l l f f l t r l
C U r l 0 L S l r t

l * l , . l , l - l t l t l ! l l l? l t l f f l
Cw. t0 Lll. I tt l r 2

l - l * i - l - l i l : I I l t l t l3 l I l
z.31244-8

IOTE:
The Following Conventions Apply To All Mode Timing
Diagrams:
1. Counters are pfogramrned for binary (not BCD)
counting and for Reading/Writing least significant byte
(LSB) only.
2. The counter is always selected (eS always low).
3. CW stands for "Control Word"; CW = 10 means a
control word ol 10, hex is written to the counter.
4. LSB stands for "Least Significant Byte" of count.
5. Numbers below diagrams are count values.
The lower number is the least signilicant byte.
The upper number is the mosl significant byte. Since
the counler is programmed to Read/Write LSB only,
the mosl significant byte cannot be read.
N stands for an undefined count.
Vertical lines show transitions between count values.

Figure 15. Mode 0

3-91

intet 82C54

ttlODE 1: HARDWARE RETRIGGERABLE
ONE-SHOT

OUT will be initially high. OUT will go low on the CLK
pulse following a trigger to begin th€ one-shot pulse,
and will remain low until the Counter reaches zero.
OUT willthen go high and remain high untilthe CLK
pulse atter the next trigger.

After writing the Control Word and initial count, the
Counter is armed. A trigger results in loading the
Counter and setting OUT low on the next GLK pulse,
thus starting the one-shot pulse. An initial count of N
wilf result in a one-shot pulse N CLK cycles in dura-
tion. The one-shot is retriggerable, hence OUT will
remain low for N CLK pulses after any trigger. The
one-shot pulse can be repeated without rewriting the
sarne count into the counter. GATE has no etfect on
OUT.

lf a new count is written to the Counter during a one-
shot pulse, the current one-shot is not atfected un-
less the Counter is retriggered. In that case, the
Counter is loaded with the new count and the one-
shot pulse continues until the new count expires.

MODE 2: RATE GENERATOR

This Mode functions like a divide-by-N counter. lt is
typicially used to generate a Real Time Clock inter'
rupt. OUT will initially be high. When th€ initial count
has decremented to 1, OUT goes low for one CLK
pulse. OUT then goes high again, the Counter re-
loads the initial count and the process is repeated.
Mode 2 is periodic; the same sequence is repeated
indefinitefy. For an initial count of N, the sequence
repeats every N CLK cycles.

GATE : 1 enables counting; GATE : 0 disables
counting. lf GATE goes low during an output pulse,
OUT is s€t high immediately. A trigger reloads the
Counter with the initial count on the next CLK pulse;
OUT goes low N CLK pulses atter the trigger. Thus
the GATE input can be used to synchronize the
Counter.

After writing a Control Word and initial count, the
Counter will be loaded on the next CLK pulse. OUT
goes low N CLK Pulses after the initial count is writ-
ten. This allows the Counter to be synchronized by
software also.

FI

ctt

oltc

ou?

*t

ctr

cliE

oul

WT

cLx

clrl

our

xrn 1* i : I I l l i f : l : : l l ! l I
231244-9

Figure 16. Mode 1

m

cLx

crrE

oul

ffi

cLl(

GAtE

our

-F t

cLx

GATE

oul

l " l , l * l * | l : l t l : l : j i l : l

C W . r a t S 8 ' . t S A - t

l " l - l " l " [l l l l l l l l : l : l l I
231244-10

NOTE:
A GATE transition should not occur one clock prior to
terminal count.

Figure 17. Mode 2

3-92

inbf 82C54

Writing a new count while counting does not affect
the curent counting sequence. lf a trigger is re-
ceived after writing a new count but before the end
of the current period, the Counter willbe loaded with
the new count on the next CLK pulse and counting
will continue from the new count. Othenvise, the
new count will be loaded at the end of the cunent
counting cycle. In mode 2, a COUNT of 'l is illegal.

MODE 3: SQUARE WAVE MODE

Mode 3 is typically used for Baud rate generation.
Mode 3 is similar to Mode 2 except for the duty cycte
of OUT. OUT willinitially be high. When hatf the ini-
tial count has expired, OUT goes low for the remain-
der of the count. Mode 3 is periodic; the sequence
above is repeated indefinitely. An initial count of N
results in a square wave with a period of N CLK
cycles.

GATE : 1 enables counting; GATE : 0 disables
counting. lf GATE goes low while OUT is low, OUT is
set high immediately; no CLK pulse is required. A
trigger reloads the Counter with the initial count on
the next CLK pulse. Thus the GATE input can be
used to synchronize the Counter.

Atter writing a Control Word and initial count, the
Counter will be loaded on th€ next CLK pulse. This
allows the Counter to be synchronized by sottware
also.

Writing a new count while counting does not atfect
the current counting sequence. lf a trigger is re-
ceived after writing a new count but before the end
of the current half-cycle of the square wave, the
Counter will be loaded with the new count on the
next CLK pulse and counting will continue from the
new count. Othenrise, the new count will be loaded
at the end of the cunent haltcycle.

Mode 3 is implemented as follows:

Even counts: OUT is initialfy high. The initial count is
loaded on one CLK pulse and then is decremented
by two on succeeding CLK pulses. When the count
expires OUT changes value and the Counter is re-
loaded with the initial count. The above process is
repeated indefinitely.

Odd counts: OUT is initially high. The initiat count
minus one (an even number) is loaded on one CLK
pulse and then is decremented by two on succeed-
ing CLK pulses. One CLK pulse after the count ex-
pires, OUT goes low and the Counter is reloaded
with the initial count minus one. Succeeding CLK
pulses decrement the count by two. When the count
expires, OUT goes high again and the Counter is
reloaded with the initialcount minus one. The above
process is repeated indefinitely. So for odd counts,

OUT will be high for (N + 1)/2 counts and low tor
(N -1)/2 counts.

MODE 4: SOFTWARE TRIGGEREO STROBE

OUT will be initially high. When the initial count ex-
pires, OUT will go low for one CLK pulse and then
go high again. The counting sequence is "triggered"
by writing the initial count.

GATE : 1 enables counting; GATE = 0 disables
counting. GATE has no etfect on OUT.

After writing a Control Word and initial count, the
Counter will be loaded on the next CLK pulse. This
CLK pulse does not decrement the count, so for an
initial count of N, OUT does not strobe low until
N + 1 CLK pulses after the initial count is written.

lf a new count is written during counting, it will be
loaded on the next CLK pulse ancl counting will con-
tinue from the new count. ft a two-byte count is writ-
ten, the following happens:

3,93

m

ctr

Glt !

s l

llr

ctr

ol t t

@t

wt

ett

oltt

oul

NOTE:
A GATE lransition should not occur one clock prior to
lerminal count.

l r l i l ' l . l : l ! l : l : l ! 1 i l : 1 i l : i t l
231244-11

Figure 18. Mode 3

inbr 82C54

1) Writing the first byte has no effect on counting.
2) Writing the second byte allows the new count to

be loaded on tha next CLK Pulse.

This allows the sequence to be "retriggered" by
software. OUT strobes low N*l CLK pulses after
the new count of N is written.

MODE 5: HARDWARE TRIGGERED STROBE
(RETRIGGERABLE)

OUT will initially be high. Counting is triggered by a
rising edge of GATE. When the initial count has ex-
pired, OUT will go low for one CLK pulse and then
go high again.

After writing the Control Word and initial count, the
counter will not be loaded until the CLK pulse after a
trigger. This CLK pulse does not decrement the
count, so for an initial count of N, OUT does not
strobe low until N + 1 CLK pulses atter a trigger.

A trigger resulls in the Counter being loaded with the
initial count on the next CLK pulse. The counting
ssquence is retriggerable. OUT will not strobe low
for N * 1 CLK pulses after any trigger. GATE has
no effect on OUT.

lf a new count is written during counting, the current
counting sequence will not be atfected. lf a trigger
occurs atter the new count is written but belore the
current count expires, the Counter will be loaded
with the new count on the next CLK pulse and
counting will continue from there.

ou'
---[-*---------l

/--

C W - l l

3-94

WT

ctr

G 'E

oul

o l o l F F l F F l F F l
I I o I F F I F E I F 0 I

r|

cLx

olrl

oul

P't

cLl(

oAl€

oul

l - i . l * I " I 3 | : l 3 l I | ? lS l i : l
C l . l t L S l t S L S I ' z

Figure 19. Mode 4

w - - l t t
l---J

ow mf

C w : l l l s l ' 3

aa"

231244-13

82C54

Slgnel
Stetu!
llodes

Low
OrGolng

Low
Rlshg Hlgh

0 Disables
countinq

Enables
countino

1 1) lnitiates
counting

2) Resets output
atter next
clock

2 1) Disables
counting

2) Sels output
immediately
hiqh

Initiates
counting

Enables
counting

3 1) Disables
couhting

2) Sets output
immediately
hioh

Initiates
counting

Enables
counting

4 Disables
counting

Enables
countino

5 Initiates
countino

Flgure 21. Gate Pln Operations Summary

Operatlon Common to All Modes

Programming

When a Control Word is written to a Counter, all
Control Logic is immediately reset and OUT go€s to
a known initial state; no CLK pulses are required for
this.

GATE

The GATE input is always sampled on the rising
edge of CLK. ln Modes 0, 2, 3, and 4 the GATE input
is level sensitive, and the logic level is sampled on
the rising edge of CLK. In Modes 1, 2, 3, and 5 the
GATE input is rising-edge sensitive. In these Modes,
a rising edge of GATE (trigger) sets an odge-s€nsi-
tive flip-flop in the Counter. This flip-flop is then sam-
pled on the next rising edge of CLK; the flip-flop is
reset immediately after it is sampled. In this wdy, a
trigger will be detected no matter when it occure-a
high logic level does not have to be maintained until
the next rising edge of CLK. Note that in Modes 2
and 3, the GATE rnput is both edge- and level-sensi-
tive. In Modes 2 and 3, if a CLK source other than
the system clock is used, GATE should be pulsed
immediately following WR of a new count value.

COUNTER

New counts are loaded and Counters are dege-
mented on the falling edge of CLK.

The largest possible initial count is 0; this is equiva-
lent to 216 tor binary counting and 104 for BCD
counting.

The Counter does not stop when it reaches zero. In
Modes 0, 1, 4, and 5 the Counter "wraps around" to
the highest count, either FFFF hex for binary count-
ing or 9999 for BCD counting, and continues count-
ing. Modes 2 and 3 are periodic;the Counter reloads
itself with the initial count and continues counting
from there.

MODE ttllN
COUNT

ilAX
COUNT

0 1 0
1 1 0

2 2 0

3 2 0
4 1 0

NOTE:
0 is equivalent to 216 for binary counting and 10a for
BCD counting

Figure 22. llinlmum and llaxlmum InitlalCounts

3-9s

inbf 82C54

ABSOLUTE MAXIMUM RATINGS*

AmbientTemperature Under Bias.. '0"C to 70'C
Storage Temperature -65" to + 150'C
Supply Voltage . -0,5 to +8.0V
OperatingVoltage +4Vto f 7V
Voltage on any lnput. . . . GND - 2V to + 6.5V
Voltage on any Output . .GND-O.SV to V66 + 0'5V
PowerDissipation . ' . ' . .1Watt

D.C. CHARACTERISTICS
(Tn:0"C to 70"C, Vcc:5Vt 10%, GND=0V) (Tl

'Notice: Sfresses abave thosa listed under "Abso'
lute Maximum Ratings" may cause permanent dam-
age to tha device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the apera'
tional sections ot this specilication is not implied. Ex'
posure to absolute maximum rating conditions tor
ertended periods may affect device reliability.

: -40"C to *85'G for Extended Temperature)

A.C. CHARACTERISTICS
(T4 : 0'C to 70'C, Vcc : 5V + 10o/o, GND :0V) (Tg : -40"G to *85"C for Extended Temperature)

BUS PARAMETERS (Note 1)
REAO CYCLE

3-96

Symbol Parameter Mln Max Unltg Test Condltlons

Vu Input Low Voltage -0 .5 0.8 V

Vrr.r Input High Voltag€ 2.0 Vcc + 0.5 V

Vor Output Low Voltage 0.4 v lor : 2.5 mA

Vox Output High Voltage 3.0
Vcn - 0.4

V
V

lon : -2.5 ml
l o r + : - 1 0 0 p A

ltr Inout Load Current. r 2.0 pA Vrr.r:Vcc to 0V

Inrr Output Float Leakage Current i 1 0 pA Vour:Vcc to 0.0V

166 V66 Supply Cunent 20 mA crk Freq: ,r^i$i;rt""Tl
lccse V66 Supply Current-Standby 1 0 pA CLK Freq : P6

e3: Vcc.
Alllnputs/Data Bus Vcc
AllOutputs Floating

lccsgr Vg6 Supply Current-Standby 150 p.A CLK Freq : 96
eE : Vcc.Alf Other Inputs,
l/O Pins : VGND, Outputs OPen

Crru lnput Capacitance 1 0 PF f c : 1 MHz

Unmeasured pins
returned to GND(s)

Cvo l/O Capacitance 20 pF

cour Output Capacitance 20 pF

Symbol Parameter 82C54 82C54-2 Unite
Mln Mar Mln Max

taR Address Stable Before FD J 45 30 ns
tsR C-S Stabte Before FiD J, 0 0 ns

tna Address Hold Time After FiD 1 0 0 ns

hn FiD Putse Width 150 95 ns
tRo Data Delay from FD J 120 85 ns

tRo Data Delav from Address 220 185 ns
tor Ho- f to Data Floating 3 90 5 65 ns

tRv Command Recovery Time 200 165 ns
NOTE:
1. AC tirnings measured at V6p : 2.OY, Vol : 0.8V.

inbr 82C54

A.C. CHARACTERISTICS (continued)

WRITE CYCLE

CLOCK AND GATE

NOTES:
2. In Modes 1 and 5 iriggers are sampled on each rising clock edge. A second trigger within 120 ns (70 ns for the 82C5+21
ol the rising clock edge may not be detected.
3. Low-going glitches that violate tpWn, tpWU may cause errors requiring counter reprogramming.
4. Except lor Extended Temp., See Extended Temp. A.C. Characteristics below.
5. Sampled nol 1000/" tested. T4 : 25"C.
6. It CLK present at Try6 min then Count equals N + 2 CLK pulses, T616 max equals Count N + 1 CLK pulse. Tyy6 min to
Tryg max, count will be either N + 1 or N + 2 CLK pulses.
7. In Modes 1 and 5, if GATE is present when writing a new Count value, at T1116 min Counter will not be triggered, at Tyy6
max Counter will be triggered.
8. lf CLK present when writing a Counter Latch or ReadBack Command, at T61 min CLK will be reflecled in count value
latched, at Tg1 max CLK will not be reflected in the count value latched. Writing a Counter Latch or ReadBack Command
between T61- min and Tyyl max will r€sult in a latched count vallue which is + one least significant bit.

: -40'Cto *85'C for Extended T

Symbol Parameter 82C54 82C54-2 Units
Mln ilax Min Max

tew Address Stable Before WF J 0 0 ns
tsw eS staote Before WFi J 0 0 ns
twe Address Hold Time AfterWFI T 0 0 ns
tww WR Pulse Width 150 95 ns
tow Data Setup Time Before WF f 120 95 ns
twD Data Hold Time Atter WFI f 0 0 ns
tRv Command Recovery Time 200 165 ns

Symbol Parameter 82C54 82C54-2 Units
l i in liax llin llax

tcr-x Clock Period 125 DC 100 DC ns
tpwH High Pulse Width 60(3) 30(3) ns
tpwl Low Pulse Width 60(3) 50{3} ns
Tn Clock Rise Time 25 25 ns
tp Clock FallTime 25 25 ns
tcw Gate Width High 50 50 . ns
tcr- Gate Width Low 50 50 ns
tes Gate Setup Time to CLK T 50 40 ns
tcn Gate Hold Time After CLK T 50(2) 50(2) ns
Too Output Delay from CLK J 150 100 ns
tooo Ouiput Delay from Gate J 120 100 ns
twc CLK Delay for Loading(a) 0 55 0 55 ns
twc Gate Delay for Sampling(a) - 5 50 - 5 40 ns
two OUT Delay from Mode Write 260 240 ns

br- CLK Set Up for Count Latch -40 45 -40 40 ns

3-97

EXTENDED TET'PERATURE O

int€t

231244-16

231244-14

231241-15

intet 82C54

CLOCK AND GATE

?3121/4.-17
' Lrst byt6 ot connt bdry written

A,C. TESTING INPUT, OUTPUT WAVEFORI/I AC. TESTING LOAD CIBCUIT

INPUT/OUTPUT

231211-18
A.C. Testing: Inputs ar€ driven et 2.4V tor e logic "1" and 0.45V
tor a logic "0." Timing m€asurements aro macle at 2.0V fo a logic
"1" and 0.8V for a logic "0."

,.0 e.0
\ - t

> ?tlr for|rt <r \
0.4 0.0

I o:v,cr I
I uxocr
I t t t r t l
I | 3 G r ' t l t r

I
J-

Cu - 150 PF
C1 ircddee lh clpacJtano.

?31211-19

3-99

APPENDIX D

CONFIGURING THE AD37OO FOR SIGNAL*MATH

Jumper and Switch Settings

When running SIGNAL*MATH, you may have to change some of the AD3700's on-board jumpers from their
current positions. All jumpen must be set to the factory positions as described in Chapter 1, except for P3 and P5,
which can be configured for any of the three possible input ranges.

51- Base Address

SIGNAL*MATH assumes that the base address of your AD3700 is the factory setting of 300 hex (768 deci-
mal). If you change this setting, you must run the ADAINST program and reset the base address.

NOTE: When using the ADAINST program, you can enter the base address in decimal or hexadecimal
notation. When entering a hex value, you must precede the number by a dollar sign (for example, $300).

Running ADAINST

After the jumpers and swirch are set and the AD3700 board is installed in the computer, you are ready to
configure SIGNAL*MATH so that it is compatible with your board's settings. This is done by running the
ADAINST driver installation program. After running the program, open AD3700.DG from the Open a File ment.
You will see a screen similar to the screen shown in Figure D-l below. The factory default settings are shown in the
illusnation. Your settings may or may not match the default settings, depending on whether you have made changes
to tlese decimal or hexadecimal value (hex values must be preceded by a dollar sign (for example, $300). Refer to
your board's manual if you need help in determining the conect value to enter.

EOC IT (End-of-Convert Interrupt). In this block, enter the IRQ channel number to be used by the end-of-
convert intemrpt (see BA + 6 description in Chapter4).

End-ol-Convert
Interrupt Channel

Timer/Counter
lnterrupt Channel

Fig. D-l - ADAINST.EXE Screen

Base Address

A/D DMA
Channel
Select;

External Gain
& Loss

A/D Unipolar/
Bipolar
Select

Software
Interrupt
Address

D/A DMA
Channel
Select;

External Gain
& Loss

D/A Unipolar/
Bipolar
Select

D-3

Timer IT (Timer/Counter Interrupt). This block is not used on the AD3700, and should be left blank.

LabTech SW IT (LABTECH NOTEBOOK Software Interrupt). This sets the software intemrpt address
where LABTECH NOIEBOOK's labLINX driver is installed. The factory setting is $60. This setting can be
ignored when running SIGNAL*MATH.

A./D Parameters. Six A/D board paramet€rs are listed: resolution, number of channels, active DMA channel,
gain, loss, and input voltage polarity.

Resolution and number ofchannels are fixed by the program for your board.

If you are using DMA transfer, you must enter the channel number you are using in the DMA channel block.
Valid channels numben are I and 3.

The next two blocks, gain and loss, are provided so that you can make adjustments for external gain or loss,
including resistor configurable gain circuitry you added to the board. For example, if you have a gain circuit
installed, then you must tell SIGNAL*MATH ttris gain. If your input signal is externally affenuated, then you can
adjust for this by setting a value other than 1 for loss. Numbers must be entered as whole decimal values. The
factory default setting for gain and loss is 1.

For a bipolar input range, an X should be placed before Bipolar on tle screen (default setting). For unipolar
operation, remove the X.

D/A Parameters. These settings are not applicable to the AD3700.

D-4

l
APPENDIX E

CONFIGURING THE AD37OO FOR ATLANTIS

If you have purchased ATLANTIS data acquisition and real time monitoring application software for your
AD3700, please note that the ATLANTIS drivers for your board must be loaded from your driver disk into the same
directory as the ATLANTIS.EXE program. All jumpers must be set to the factory positions as described in Chapter
l, except for P3 and P5, which can be configured for any of the three possible input ranges. When running
ATLANTIS, make sure the base address setting in the program and on the board match.

51- Base Address

ATLANTIS assumes that the base address of your AD3700 is the factory setting of 300 hex (see Chapter 1). If
you changed this setting, you must run the ATINST progam and reset the base address.

NOTE: The ATINST program requires the base address [o be entered in decimal notation.

E-3

APPENDIX F

WARRANTY

LIMITED WARRANTY

Real Time Devices, Inc. warrants the hardware and software products it manufactures and produces !o be free
from defects in materials and workmanship for one year following ttre date of shipment from REAL TIME DE-
VICES. This warranty is limited to the original purchaser of product and is not Eansferable.

During tle one year warranty period, REAL TIME DEVICES will repair or replace, at its option, any defective
products or parts at no additional charge, provided ttrat the product is returned, shipping prepaid, to REAL TIME
DEVICES. All replaced parts and products become the property of REAL TIME DEVICES. Before returning any
product for repair, customers are required to contact the factory for an RMA nunber.

THIS LIMITED WARRANTY DOES NOT EXTEND TO AI.IY PRODUCTS WHICH HAVE BEEN DAM-
AGED AS A RESULT OF ACCIDENT, MISUSE, ABUSE (such as: use of incorrect input voltages, improper or
insufficient ventilation, failure to follow the operuing instructions that are provided by REAL TIME DEVICES,
"acts of God" or other contingencies beyond the control of REAL TIME DEVICES), OR AS A RESULT OF
SERVICE OR MODIFICATION BY ANIYONE OTIIER THAN REAL TIME DEVICES. EXCEPT AS EX-
PRESSLY SET FORTH ABOVE, NO OTIIER WARRANTIES ARE E)GRESSED OR IMPLIED, INCLUDING,
BUTNOTLIMITED TO, ANIY IMPLIED WARRANTIES OFMERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, AND REAL TIME DEVICES E)PRESSLY DISCLAIMS ALL WARRANTIES NOT
STATED IIEREIN. ALL IMPLIED WARRANTIES,INCLUDING IMPLIED WARRANTIES FOR
MECHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED TO TI{E DURATION
OF THIS WARRANTY. IN T}IE EVENT TIIE PRODUCT IS NOT FREE FROM DEFECTS AS WARRANTED
ABOVE, T}IE PURCHASER'S SOLE REMEDY SHALL BE REPAIR OR REPLACEMENT AS PROVIDED
ABOVE. UNDER NO CIRCUMSTANCES WILL REAL TIME DEVICES BE LIABLE TO TIIE PURCHASER
OR ANY USER FOR AI.ry DAMAGES,INCLUDING A}.IY INCIDENTAL OR CONSEQIJENTIAL DAM.
AGES, E)GENSES, LOST PROFITS, LOST SAVINGS, OR OTHER DAMAGES ARISING OUT OF TIIE USE
OR INABILITY TOUSE TIIE PRODUCT.

SOME STATES DO NOT ALLOW T}IE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSE-
QUEI.IflAL DAMAGES FOR CONSUMER PRODUCTS, AND SOME STATES DO NOT ALLOW LIMITA-
TIONS ON HOW LONG AN IMPLMD WARRANTY LASTS, SO T}M ABOVE LIMITATIONS OR EXCLU-
SIONS MAYNOTAPPLY TO YOU.

THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGTilS, AND YOU MAY ALSO HAVE OTI{ER
RIGIITS WHICH VARY FROM STATE TO STATE.

F-3

3700 Board User-Selected Settings

Base l/O Address:

(hex) (decimal)

