AD3700
User’s Manual

®
W Real Time Devices, Inc.

ISO9001 and AS9100 Certified

“Accessing the Analog World";,,

AD3700

User’s Manual

Wiloii/g

REAL TIME DEVICES, INC.
820 North University Drive
Post Office Box 906
State College, Pennsylvania 16804 USA
Phone: (814) 234-8087
FAX: (814) 234-5218

Published by
Real Time Devices, Inc.
820 N. University Dr.
P.O. Box 906
State College, PA 16804 USA

Copyright © 1991 by Real Time Devices, Inc.
All rights reserved

Printed in U.S.A.

Rev. C 9239

Table of Contents

INTRODUCTION i-1
Analog-to-Digital CONVETSIONc.cccviruerererreasrisesissssssosssssmsnsassssesnssssssessssssesssssassesestossssssssassserass sossssssssassssossasansansssses i-3
8254 TAMEI/COUNLELS ..eoouveeriernirurereiessrsnsssssnesstssesssssssssssssessssnssnssssnssssssessasnsosssessassassssns s sostssesssasassssssers soassssnsanesass i-3
DIGIALI/O ... reeereenrsantseeressstsesiessstssessnesesssssssssssssssssanantsassasssssasssssessssssssssssassesessestsess sasonsesassesssnensssasssesntens i-3
What Comes With YOUT BOGTAcvcovveeireririenicecneesenternsenesresmsssnsossstssssresessessosesesssssesssssssessssosmessasasassass snnsssnasses i-4
BOAIA ACCESSOTIES ...ccueivrercererscosaiisessssoreessesessesscssesasstssessensessessessassassassssssssssassassnasssssesassssastossessosasssssnsstesassssssasanssess i-4

Application SOftware and DIIVETScccveriiniunnisisieniisssssmssssiesinsiesnisesssssssssissisesssssessasssssssssorossossass i4
HATAWATE ACCESSOTIES vovtivirirarerrarerraresssressatsssstsssonesssssesessessssessssassstssssorossarsasorsassnsssossasassss sbssssassssasassasssssasnsanensens i4
USING THiS MANUALc.ooviviiniriicinirirentrensesnsissssssssisssmorsacsssssssasssssssssss sosssessnssssossorsssstssssesssssssstess sssssassosssnsssnnassssssss i-4
WHER YOU NECA HEIP ...ccoviiriiiririiinnnisniitiesesissisissnessisssssssssssssssssssssssssessssssssesssssssssasssesssasssssss sassassosssnsssassasess i-4

CHAPTER 1 — BOARD SETTINGS 1-1

Factory-Configured Switch and JUMPEL SELHNEZScccccvccmerrrrnrnrserssnsssiinisssiiiescsessssststsesassssesssssenesscsssessass 1-3
P3 — Input Voitage Range (Factory Setting: L10V)ccvivnccisennsimmieeneoesssssssssssaresesssassesesseassessssasesssssssses 1-3
P4 — FIFO Full/Half-Full Flag (Factory Setting: FIFO Full)cccccovvesmimmmmuneienemsiinsmissssmsesrsasens 1-3
P5 — Unipolar/Bipolar Analog Input (Factory Setting: Bipolar)cccocevcveeemernerneenrcsesisessisestscssesnesssosnssanaes 1-5
P6 — Timer/Counter 2 Source and OUT Select (Factory Settings: XTAL (top), +5V, OUTO)ccveeunee 1-5

P7 — Pacer Clock Source Select (Factory Setting: XTAL) .cccneeneinirmsesresesssrsresrsssssssssnmesssnessssessersssssasses 1-6
P8 — TC1, Counter 2 Sources (Factory Settings: +5V, XTAL)cccvererrnereeseressesssssessssssssesesassassessessssasneses 1-6
P9 — External Trigger/External Gate Monitor (Factory Setting: External THgEer)c..covermsisunsescreesnesseenanss 1-6
P10 — Board Compatibility Select (Factory Setting: Jumper on B)ccccccevrrirnececesmnnnisisircssnenmnesseesessnseses 1-6
P11 — Simultaneous Sample-and-Hold Select (Factory Setting: NOR)cooviuiereeecencniininesiisincsnerereseecesennne 1-7
S1 — Base Address (Factory Setting: 200 hex (512 decimal))ccervrsreesesnsnrnsssesesesassercscrssssesssaasasssssesssreasasses 1-7

Gx, USer-Configurable GaN..........c.cveeveeieriereeeneneenenrienienorsssssersssesessssessssssssssessssassssassssessesnssesasssssassaressesasassassasss 1-8

CHAPTER 2 — BOARD INSTALLATION 2-1
Board INSLALALIONcocceieiiiiriietiinieesiieranesstensssessesenssseressessessesssssse e sssse seasessssus sasssasssertsoasssssssntsnasorasnnsnssnsanss 2-3
EXEEINal I/O CONNECHOMS ..c..eiiiuiiiieiiiniesie st ctise et sssatasse e snssnessessesusssesssssssasstessssas s sasessoss sossrasassssessasnessssnnnes 23

Connecting the ANAlOZ INPULScovevieeiemisiisiicsiiecereseresssrsesresstssistsststssnessstsstssssssnsasssssssssasssssstonsanaseasassassases 2-4
Connecting the Trigger In and Trigger Out Pins, Cascading BOArds............cuvircvvceereressseniccsiesssssmonsssnesssssens 24
Connecting the Timer/Counters and DIgital IOccvivcrrcivererieresecsenenssesensensntssssessssssssssssssssssssssssssnssessen 2-5

Running the 3700DIAG DiagnostiCs PIOZIAIMc.cveveeerrenrereienacsesesssssssssssassamnssssrnstsmssssssssssssssssssssssassesasssssnsesssass 2-5

CHAPTER 3 — HARDWARE DESCRIPTION 31

A/D CONVETSION CIICUIITY «..oetsvisnsisesssrsrismneesorsssssssesssnsssnsassssassssssasssarsssosssosssesssassasassassssssassssssssssssnosssenssssssssssesasensns 33
ANALOZ INPULS ..cevevereieriecrirnininiseieniessssmorssorssssesssassssestssssasssrsssaseseassssnssssssson sesesess saaseseasess st assseseesssssesssssssssesenses 3-3
ASD CONVETIET ..ceuveevsississssssresiorssssssssssnmsastssssssssareassnssssssassssressssest 500t ssasssatsasassssassnsasase sbsst satossanssssnssensassasssssares 34
FIFO INEEITACE ...veveuervininciieniicsinintsecsicssnassasesessssosestsssssssssessarsasssassssssssssossssness ssonasasssessestess sosssnssssesasnsrnsessssassasns 34

TAMEI/COUNIETSvevcrrevrrereeeerseeseassssassessrosssssansasssassssssasaserssssesesestasssaresssssssssssssasessssnsssesensatasssssesssssssssaessasesersssssses 34

DIGIAL IO oo irireciiicnncnnesinisissiiinisnniisoniossssonmensessssessstsnmssrssssesnssssssesessss seasesest sesst sesessassasssssessadss et sssassssnsenessstasessnsasas 3-5

CHAPTER 4 — BOARD OPERATION AND PROGRAMMING 4-1

DefiniNg the IO MAD ..ot sttt sesesesennsesesenenssssssessssneusaesesensnsatsssssnsnsne e st sesossssanansussssssssansnns 4-3
BA + 0: Digital I/O (REAA/WTILE)cccccernrerercseriesneesesonnsenrissrassessessssssssisssssssssssessssosesssssssssssssesssaensssssssasessasens 4-3
BA + 1: Channel/Conversion Mode Select (REAA/WTILE)ocvrverrervrerrereresreesssssssssssscrisnsssssesseserssssssosessossesens 4-4
BA + 2: Scan Channel Range Select (REAA/WTILE)cvevvveereerererionessessersersersassessnssessassassessessassasssessossessosans 4-4

BA + 3: Read Status/Clear FIFO (REAA/WTILE)coccerrrereerrenrseensseereseressssressasssesssssssssssssesssssssssssnsasennssersses 4-4
BA + 4: Read FIFO Data/Start Conversion (REAA/WIILE)cersrerrerrsinrressnsieessnssesessressossessessessssssssassessosanes 4-5

BA + 5: Clear DMA Done Bit (WIEe ORLY)coevvuereeinmicnneeesiesssesesssssssssssesssssssenssssssmseesssssaesmseesessssssesanse 4-5

BA + 6: IRQ/DMA Select (REAA/WILIE)cuceeerererrrerersiereeorseresesseserssssesissessssossessssessasssssssssessessntossonsassnssnesssses 4-6
BA +7: Clear (Reset) BOArd (WIIe ONIY)cccovuereeeeeerereinrnrnnsesesssessassssssssssssssssesssssssssessssssssssesssessssssssessmsmsen 4-6
BA +8: TC1 Counter 0 (REAA/WEILE)vvvverenrreccerenriiressnessresnesissssssssssssssssssssossssssssssssssssssossssssessasssesensssesses 4-6
BA +9: TCL Counter 1 (REAA/WTIE) c..ccveuernrireeenrennrsrree s riceesissssesstsessasssssssssssssssssssssssnessassnssesssssssesssnssares 4-6
~BA +10: TC1 Counter 2 (REAA/WIIE)occvvererirereirrsrneeensesesssaeessseesesssisssessssessssssssssessonsarenssssassssasassessssassasensas 4-6
BA + 11: TC1 Control WOord (WIHHE ONLY)c.cveereieevrerrrrerisnerssresissessssossssessesesssstossstsesseseesessssaseseasessensesssnsaes 4-6
BA + 12: TC2 Counter 0 (REAA/WTILE)ovverereerererrrareessiesseresesesesssssssassssssesssasssssssssssssssssessnsssrossassnssesossson 4-7
BA + 13: TC2 Counter 1 (REAAIWIILE)cevevererierirerirreseseesessssesssssssssessssessessessssasesssssnsssssssssssssss sesssssssssssssssnns 4.7
BA + 14: TC2 Counter 2 (REAA/WIILE) ..cccververeereeerreressereressrssessseessssorsssessssessessssssasssssnsossnnssssesssssesessesssssnsans 4-7
BA + 15; TC2 Control WOrd (WIIte ONLY)ccecvireureecrerirnerineesessesesesssseseressinssessessssessossssssssssssssesssssasssssssnanes 4-7
Programming the AD3700........ccvveemeeeeeesirissssssirsiessssssrnsesnsesesssersrsssssssssssssssessssssssssssranssesssssssassssssasessssssssesesssssses 4.8
Clearing and Setting Bits il @ POIcccvvvuiineiciiiniecccrinmmssnstseessssssasisssesssssmsssssssaresesssesssassorssonsssssssosessses 49
AJD CONVETSIONS ...vovirisiuesisieececseresiasssssssessssssssasssssssssssssssssressessnsssssssssssersestssssesessssssssssesasessssssssesesasssssossossssses 4-10
ClIearing the BOAKAc.ccvvrerenrreesiesssessnrerennnenrersssiessissisesesssessssssssesesssssssssssssssesessssesessssssonsassssossssasssessanes 4-10
CIEarNg the FIFO ...ttt csesesesesssesssssssssssisssssstsssssssassssssssesssssssasesessssssssssnsssssasasssesssssnne 4-10
Selecting @ CHANNEL ..ot s ssesesssessesssssssarsvssssssssassssssasssssssesssonssnsassssesesesssssas 4-10
Conversion Modes and Channel SeleCt OPLONScovverererenrsiviererismrenessresesssesssesssssssmssssssesssssssssssessssssas 4-11
Conversion MOAES/TIIZEEIINGccceererrmriisrrerisssreasessesesessassesssssssessssssssssessasssosssesssssssssscssassssssssenes 4-11
Channel SEleCt OPUONS/SCANSccoiverererrverersrersseesesesnsesesasssosssssessseesesesssssssssesssssssssssesssssssesssessssossosen 4-12
TIMING DIABTAMScccocieurrnerrereerccrcresssismresererssesssssssssessssseserssssssssssasesssssssssessssssssssssesessssssessssssssnsasas 4-12
Starting an A/D CONVETSIONccccvcvimsiseieininnencscesessssissessasssssessssossesssssssressssssssassssssessssssssssssasssessssssssesssss 4-15
Monitoring Conversion Status (EF Flag or End-0f-CONVELL)coeeverrmrrerermninesnccensisnsesesssssessssssssasaseses 4-15
Halting CONVEISIONScecueuruirercecncacnsinsencacsesese e srsssesessssssststssssesssessesesessssessssasssasasasesssenssssssonsossessasssesesssesene 4-15
Reading the CONVEILEd DALAecvviiiiisnisinecesssasnsssnmieesmsssrsessssssssssesstsssesesassssrssasssassssssssssassssssssssnsasses 4-15
Programming the PACET CIOCKcccocverurerineieinrirnnnentnecrereseres s sesssssssssssassessssnsssesssssesessssssnsssssssnsssssssesas 4-16
INIEITUDLS .ocvriciiiiiiceiieennnsecss s sinsstasssassessssssssesssssnsseesessssessssssssssssassnsssensesssessasessnssssnesssensasesssess 4-18
WHAL IS QN INEEITUPLY ...ttt en et esesrsvesssassesssessrssssssessasessssesssnssnesasssassssnsssnesesssiesaess sunas 4-18
INEEITUPL REQUESE LINES ...ttt sestseesasans s sesesas s st sesesssssserasesesssasesesssssesarassonasesstssvasassasasons 4-18
8259 Programmable INterrupt CONLIONIETcccoevvevrenrreerreeeeessesissnreseresnsssessesasssssesesesenssessrsesssssssessens 4-18
Interrupt Mask Register (IMR)cociveeiecenticennennenniesesesessssereesrsssessssssssessssessssssssesessssessasssessssssstsasssssesasens 4-18
End-of-Interrupt (EOI) COMMANcocourirrrirrreirreririeressesessoressassssessssasssnsesessesessessesessssssssseosassessosensassas 4-18
What Exactly Happens When an INterrupt OCCUIS?ccoeevereresssenmereresesesssessssssessssessersresssssesesssssssnes 4-19
Using INtEITUPLS in YOUT PTOZTAMScouevecriuienrnereeesansresssssssssssssssesesassssssaseassosetasssssssessssssssssssssssssssesasoses 4-19
‘Writing an Interrupt Service ROULNE (ISR) ...ouvucivrerieierernrresnessessserustesesnesssssessssssessssssesssnssesesssssssensons 4-19
Saving the Startup Interrupt Mask Register (IMR) and Interrupt VECLOrc.ceeeeuvreeerereurereerereneenenes 4-20
Restoring the Startup IMR and INEITUPEL VECIOTcocevererersusrrsesssrerssssresesssssssesssesessssissssesssssssssossassass 4-21
Common INEEITUPE MISIAKEScccvvtiiseeceeneriricensesensseessesssssesanssssesssssasssssssesensessssssesesssenssassssssssssssossenas 4-21
Data Transfers USING DMA ... iioccicernnnnnneisnssss s isessssssssstssssssssssssssessassssssessssssssssscssssnsstosssssesssasons 4-21
Choosing @8 DMA CRannEl...........ccccevvrrmmrninirerensesnsesesessssssssssmesesssesssssssssssssasssssssssssessassssssssssssssssssssssns 4-21
Allocating @ DMA BUTETcucovceveerrrenriniisiereinsrcssssssesesesssssssssesessssssssesesesssssssasssesessssssasnsssesensossasss 4-22
Calculating the Page and Offset 0f @ BUSTETcvvrceeeeeerenrsvesensssnnennsessenssssssssnssssssosesssssssssssoserss 4-22
Setting the DMA Page REISIETuueviivuisiececrnenrninesenssssssisermasaseesssssssorsssessssassssssssssssssssssassrsosssosssssanes 4-23

The DMA CONMIOIIETcooviieiiricesinisssisceciertnneressmessssssiosssssssssssssssssessssssssssssssessnersssssesssssssssossasssssossses 4-24
DMA Single Mask REGISIETccoouiuimiererncirernrninessinssssssresssessssssssssssssssesssssssssssansssssssesossssscessesssssssssens 4-24
DMA MOUE REGISIET ...cvvevrerisisissiorsisisisiisisssesessecsssssstsssssrssssssssseessesessssssssasssssssssssssassssssssssssssossesssosassssses 4-25
Programming the DIMA CONIIOIIETc.cucuiuvivreiiecesenenessinsesessassssssssssssesssesssssesesasssssssssssssssssssesesessssses 4-25
Programming the AD3700 fOr DMAvcvviimicmiereiierinnneneeessesssssssssssssasssesssersssessssssssesssessossssssenssesssses 4-25
MOonitoring fOr DMA DORNEccccevvivirirmmerniirerereesenmsesessisseisesssaresesssssssssssssissssssossssssssessssssesnsonssencsssens 4-26
CommoOn DMA PIODIEINSc.c.eveuieeereesnemennsnssneresmississsssssssssssessssnsssesssssesesessssssssassessscsesssasstsssssssssises 4-26
THNEI/COUDIETS ...cvoveriniissinisisessssssseisissssssasssssnsorsssssssssssstssssssssssesssssssssssesssssasesessssesesssssssasossssnssosseserossesses 4-26
DIGIAL IO cvueiirrieiritiniriininitncnincistsssse s tssssssssessssssstasssssssssessssssssssesssssessssessssssesssssssssssssssessssssasnones 4-28
Example Programs and FIOW DIEIamisc.ccoeeivuemierrtnreceneseereiesescssesersssssssssesesssssensssenssesssssiossssssssasesssones 4-29

ii

C and Pascal PrOZIAIMScccocvurrererenererisenirnsnssssssstssesesssisssiosssesisessessesssesssosssessssessesssenssssssssnsossassessansosssssssmanns

BASIC PIOZIAIMS wucucuiecuisnncsssiestsisisesssstsisnacasesssnssssssssssssssssssssssssasssssssossssesssssessssssesssesssosssassssassssssnsssncestssosenenns 4.29
FLOW DAQEIAIMSoveeertruererrereererssinressssessensssesesssssessesssesssesssesssessssssssessessssssssassssssssssosssssussssssasssenansenonsassssneen 4-30
Single Convert Flow Diagram (FigUre 4-12)ccvcevenuirnnennesinsormsesssisiesssessssosresssssessssasssessssesosenssones 4-30

FIFO Flow Diagram (FiGUIE 4-13) ..cccerririrereerreernmerieeserenssesesssorssnssssssesssesssssssssssesessssssesosasssonsssssssneanse 4-31

DMA Flow Diagram (FIZUIE 4-14)cccvcvrirerrrerreneersiesseserssssssnssssrssssesessssssssnsossesssessssesessesssosssssssssssssassnses 4-32

Scan Flow Diagram (FIGUIE 4-15)vvrvivcisecerierenenecsseesssensasssscssssessaseesssssessasessessscasssasssersssonsssssesesssnns 4-32
Interrupts Flow Diagram (FIZUIE 4-10)cecvrererercrerersessnessssesssesesessssssssssssssssesssssesssssssssessssssssssasssssnsons 4-32
CHAPTER 5§ — CALIBRATION 5-1
ReqUIred BQUIPIMENE «..ccouuveceersiriirireecncesisisecnsasesennanescosnsisssssssssisessssssssssssessssssssssasasssssnssesossssssssesssessssssssonsesssosossanes 5-3
AD CalIDIAUOMN .oovveeirisisiisesssesmssssisiscssessossssssssessstsessessessmsasssssssssssassessssssesssserssssssasessssssssssorssssssssssnesossssssssosasssans 5-3
UNIPOLAr CADIALIONc.eececcrriiesinecresneinnsesese e sssessassssesssssssnsssssserssssssssmaesessssssssssasaesesessasssssnsasasnes 5-5
BiDOIar CaliDIAtONu.uccciriiiiiiicccisisieccssrsrsasiessrsssssasnsssesssessesssrssesasassssststssesesssssssssssesasanesssssssnssssnses st esssesensres 5-6
Bipolar Range AdJustients: -5 10 45 VOISccoovviierecrnerernersernrermrssssnsesersssssssssssssssssssssssssssssesssssesassssses 5-6
Bipolar Range Adjustments: -10 £0 410 VOIScuueueerrinreereienrsiesesssersnsssssesssessrssseresicsssessesssessssessssssssessasnes 5-6
APPENDIX A — AD3700 SPECIFICATIONS A-1
APPENDIX B — P2 CONNECTOR PIN ASSIGNMENTS B-1
APPENDIX C — COMPONENT DATA SHEETS C1
APPENDIX D — CONFIGURING THE AD3700 FOR SIGNAL*MATH D-1
’ APPENDIX E — CONFIGURING THE AD3700 FOR ATLANTIS E-1

APPENDIX F — WARRANTY

LIST OF ILLUSTRATIONS

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12
2-1

23
3.1
32
4-1
4-2
4-3
44
4-5
4-6
4.7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
5-1

Board Layout Showing Factory-Configured SElNESceceererirereririrerenrsssssssesseseecoeeessessssessessssessssenens 14
Input Voltage Range JUMPEE, P3 ..ot sesesssssssssssssssessstsessnsmesessrssasssasssessenens 1-3
FIFO Full/Half-Full Flag JUMPET, P4cccoirriorimnrerestesnneesinsseissssessessesssnsanssssssssssssscssssssssessssessessnns 1-5
Analog Input Polarity JUMPET, P35 ..o isssssenessessssssssssssssssssssassssssesssessassssssssssssssssasnes 1-5
TC2 Source and OUT SeleCt JUMPET, PO...........cucveererrerrrrerernseeensasennesessssesenssssssssessssessssceseessssssssnsassssessns 1-5
Pacer Clock Source SElect JUMPET, P7ccucoereeenneevireserereeeessesesesssssssessesssnsssessssssamssssssssssassssesssssssaes 1-6
TC1, Counter 2 SOUIces JUMPET, P8ccooovminninisiseesssesessesesasesseensseeeseesssessassssassssssssssssssnsssssasens 1-6
External Trigger/External Gate MONItor JUMPET, POoevvevinrerenienereceieesesseessssnesescncssssossessssssssesesenns 1-6
Board Compatibility Select JUMPET, P10ccocvuererrrennrernressesesererssessemsssnsesssessosssessssssossssesesssssssssssssasae 1-6
Simultaneous Sample-and-Hold/Normal Operation JUmPEr, P11coerverimreinecnieeesese e sessassessssesens 1-7
Base AdAress SWILCh, ST ...t esssssessessererersssssssossssssssrsonsassssssssssmencesesenssssens 1-8
Gain Circuitry and Formulas for Calculating GX and fcoueemveeerereenmserensssenesesesscessscesssesssesssssssns 1-8
P2 I/O Connector Pin ASSIZNIMENLScccucuicuerenerernenisisessisesssssssesseessscsssssssssesenseeceseecnsssssssensssssssssssssssas 2-3
Analog INDUt CONMECHONScccvuriuermrrerrsinnieresesesesresenensessssessressssssssssesssnssssssnsssssssesesssesssssssessrsssssseses 24
Cascading Two Boards for Simultaneous SAmMPLNGc.ceeeeeveeeiieeneecseseeeeereeessssssssessssssssessesssssssssees 2-5
AD3700 BIOCK DIQGIAMccoivincerincnrencrsssesnsesssesssessessssessssesssnsassssesssssssssssssnssssssssssssan e sessessssesessensans 3-3
8254 Programmable Interval Timer Circuits BIOCK DIQZIamc.ccvuvrememveesesesesseeseereeessesssssssssessssens 3-5
Timing Diagram, Single Convert, Intemal Trigger/Direct Channelc.coevveneeennecrersnseeneesesessvesens 4-13
Timing Diagram, Single Convert, Internal Trigger/Scan ChANnE]cc.oveeueeeeereeeeeveseesnserssesssnssenens 4-13
Timing Diagram, Multi-Convert, Internal Gate/Direct Channelc.ccovuerivereveersensessesesconesmsenersnns 4-13
Timing Diagram, Multi-Convert, Internal Gate/Scan Channel............covveeveeecenversnvesesenenseseseecccrerecsenns 4-13
Timing Diagram, Single Convert, External Trigger/Direct Channelcceveneeeeeessseseeseeceeeesseas 4-14
Timing Diagram, Single Convert, External Trigger/Scan Channelceevevvenceresceseemmeeeensesessssesens 4-14
Timing Diagram, Multi-Convert, External Gate/Direct Channelcc.ouooueiemnmensnseeeeeeesnsnssensesens 4-14
Timing Diagram, Multi-Convert, External Gate/Scan 8 Chanmnelscocuvuerernieressescsecseresnseesenns 4-14
Pacer CloCk BIOCK DIIAMccccuiinmricnrnensssnissennmnsssssssssessssssssasessssessesessssssesssssssssssssssssssncssrsenssns 4-17
8254 Programmable Interval Timer Circuits BIOCK DIagramo.uceveviverivenesenssesesescesssssceseesssescsssees 4-27
Digital INPUt PUl-UP RESISIOTS ...cucvevevrrrrerrrverensensesssserossasessssssssesessssestsssossssssssssmasnsnsessecsssesssssssssssasssass 4-28
Single Convert FIOW DIagIaMcovvisieecreesivnsscnsnsnnsessssessssesesssessssssssssessssessssssesssssssssssssssssnsensesnessases 4-30
FIFO FIOW DIQZIAIN ...couivivecrireceecenssnsssnrnrsssrssssssesesssssssssssssssssssssssesssssssassasssassssssssssensesessssssesasssssssssses 4-31
DMA FIOW DIGZIAMoervriiirsininniniteesienasenssesssssssssesesssssssssssssssssssssessssssresssessessssesensesssssassssscsenes 4-32
SCAN FIOW DIGZTAMecverincniinnnisceniinssenneese s sssassssssssansassnssssnsissessasssssasssssssssssesesassessesssssassosssnen 4-33
Interrupts FIOW DIQGIAMooimiimiciiccnceeennsetniressssessssssssessessssssssssssesssssssssonsesssossssssssesssessssens 4-34

Board Layout Showing Calibration THINPOLSeveevrereerernecesrsrsssesesesssssesssssssssssscssssnsmsessesesesssssssens 54

INTRODUCTION

i-1

i-2

The AD3700 DataMaster™ board turns your IBM PC XT/AT or compatible computer into a high-speed, high-
performance data acquisition and control system. Installed within a single expansion slot in the computer, the
AD3700 features:

» Eight single-ended analog input channels,

« 12-bit, 5 microsecond analog-to-digital converter with 200 kHz throughput,

+ 15,10, or 0 to +10 volt input range,

* Resistor-configurable input gain,

 Four conversion modes and programmable channel scan option,

* On-board FIFO interface and DMA wransfer,

» Trigger in and trigger out for external triggering or cascading boards,

» Eight digital input and eight digital output lines,

» Four user-configurable 16-bit timer/counters which can be used to generate interrupts, or as an event counter,
a frequency counter, a programmable one-shot, a rate generator, or for other special functions,

» BASIC, Turbo Pascal, and Turbo C source code; diagnostics program.

The following paragraphs briefly describe the major functions of the board. A more detailed discussion of board
functions is included in Chapter 3, Hardware Operation, and Chapter 4, Board Operation and Programming. The
board setup is described in Chapter 1, Board Settings.

Analog-to-Digital Conversion

The analog-to-digital (A/D) circuitry receives up to eight single-ended analog inputs and converts these inputs
into 12-bit digital data words which can then be read and/or transferred to PC memory.

The input voltage range is jumper-selectable for bipolar ranges of -5 to +5 volts or -10 to +10 volts, or a
unipolar range of 0 to +10 volts. It is not necessary to recalibrate after changing the input range or polarity. The
board is factory set for -5 to +5 volts. Overvoltage protection to £35 volts is provided at the inputs.

A user-configurable gain, Gx, is provided so that you can customize a gain for a specific application. Gx is set
as described in Chapter 1.

A/D conversions are performed in 5 microseconds, with a maximum throughput rate of 200 kHz. Conversions
are controlled through software, by an on-board pacer clock, or by an external trigger brought onto the board
through the I/O connector. A first in, first out (FIFO) interface helps your computer manage the high throughput rate
of the A/D converter by acting as an elastic storage bin for the converted data. Even if the computer does not read
the data as fast as conversions are performed, conversions can continue until the FIFO is full.

The converted data can be transferred to PC memory in one of two ways: by using the microprocessor or by
using direct memory access (DMA). The mode of transfer and DMA channel are chosen through software. The PC
data bus is used to read and/or transfer data, one byte at a time, to PC memory. In the DMA transfer mode, you can
transfer a selected block of data in a single data dump, or you can make continuous transfers directly to PC memory
without going through the processor.

8254 Timer/Counters

Two 8254 programmable interval timers, TC1 and TC2, each contain three 16-bit, 8-MHz timer/counters to
support a wide range of timing and counting functions. Two of the timer/counters in TC1 are cascaded and used
internally for the pacer clock. The third is available for counting applications. The three timer/counters in TC2 are
cascaded for timing applications.

Digital I/O

The AD3700 has eight input and eight output TTL/CMOS-compatible digital lines which can be directly
interfaced with external devices or signals to sense switch closures, trigger digital events, or activate solid-state
relays. The input lines have on-board pull-up resistors.

What Comes With Your Board

You receive the following items in your AD3700 package:

+ AD3700 interface board
+ Software and diagnostics diskette with example programs in BASIC, Turbo Pascal, and Turbo C; source code
» User’s manual

If any item is missing or damaged, please call Real Time Devices’ Customer Service Department at
(814) 234-8087. If you require service outside the U.S., contact your local distributor.

Board Accessories

In addition to the items included in your AD3700 package, Real Time Devices offers a full line of software and
hardware accessories. Call your local distributor or our main office for more information about these accessories and
for help in choosing the best items to support your board’s application.

Application Software and Drivers

Our custom application software packages provide excellent data acquisition and analysis support. Use
SIGNAL*MATH for integrated data acquisition and sophisticated digital signal processing and analysis, or
ATLANTIS for real-time monitoring and data acquisition. rtdLINX and 1labLINX drivers provide full-featured high
level interfaces between the AD3700 and custom or third party software, including LABTECH NOTEBOOK,
NOTEBOOK/XE, and LT/CONTROL. rtdLINX source code is available for a one-time fee, Our Pascal and C
’ Programmer’s Toolkit provides routines with documented source code for custom programming.

Hardware Accessories

| Hardware accessories for the AD3700 include the MX32 analog input expansion board which can expand a
single input channel on your AD3700 to 16 differential or 32 single-ended input channels, SSH4/SSHS four- and
eight-channel simultaneous sample-and-hold boards, MR series mechanical relay output boards, OP series
optoisolated digital input boards, the OR16 mechanical relay/optoisolated digital I/O board, the TS16 thermocouple
sensor board, the TB50 terminal board and XB50 prototype/terminal board for prototype development and easy
signal access, EX-XT and EX-AT extender boards for simplified testing and debugging of prototype circuitry, and
the XT50 twisted pair flat ribbon cable assembly for external interfacing.

Using This Manual

This manual is intended to help you install your new board and get it running quickly, while also providing
enough detail about the board and its functions so that you can enjoy maximum use of its features even in the most
complex applications. We assume that you already have an understanding of data acquisition principles and that you
can customize the example software or write your own applications programs.

When You Need Help

This manual and the example programs in the software package included with your board provide enough
information to properly use all of the board’s features. If you have any problems installing or using this board,
contact our Technical Support Department, (814) 234-8087, during regular business hours, eastern standard time or
eastern daylight time, or send a FAX requesting assistance to (814) 234-5218. When sending a FAX request, please
include your company’s name and address, your name, your telephone number, and a brief description of the
problem.

CHAPTER 1

BOARD SETTINGS

The AD3700 board has jumper and switch settings you can
change if necessary for your application. The board is factory-
configured with the most often used settings. The factory settings
are listed and shown on a diagram in the beginning of this chapter.
Should you need to change these settings, use these easy-to-follow
instructions before you install the board in your computer.

Also note that by installing two resistors and a trimpot on the
board, you can define the user-configurable gain, Gx, to be what-
ever value your application may require. A pad for installing a
capacitor, C51, is also included in the gain circuitry for creating a
low-pass filter. The procedure for customizing Gx is included at
the end of this chapter.

1-1

1-2

Factory-Configured Switch and Jumper Settings

Table 1-1 lists the factory settings of the user-configurable jumpers and switches on the AD3700 board.
Figure 1-1, on the next page, shows the board layout and the locations of the factory-set jumpers. The following
paragraphs explain how to change the factory settings. Pay special attention to the setting of S1, the base address
switch, to avoid address contention when you first use your board in your system.

Table 1-1 — Factory Settings

Switch/
Jumper Function Controlled Factory Setting
P3 Sets the A/D input voltage range 10 volts
Sets the FIFO full/FIFO half-full flag to halt A/D conversions
P4 when full or half-full FIFO full
Ps Sets the analog input for unipolar or bipolar Bipolar

XTAL (top), +5V, and
P6 Sets 8254 TC2's clock and gate sources and TIMER output | OUTO

P7 Sets the pacer clock source XTAL

P8 Sets 8254 TC1, Counter 2's clock and gate sources +5V, OUTH

Selects the external trigger in or external gate signal to be
P9 available for monitoring TRIGIN

Jumper setting A sets the 3700 to be fully compatible with | Jumper installed on
earlier 3700 boards (scan functions limited); jumper setting | Group B (not compatible

P10 B provides full board capability with earlier boards)
Configures the 3700 for normal use or for use with RTD’s

P11 SSH series simultaneous sample- and-hold boards NOR

S1 Sets the base address 300 hex (768 decimal)

P3 — Input Voltage Range (Factory Setting: 10V)

This header connector, located in the upper right area of the board, sets the input voltage range at 10 or 20 volts.
The 10V setting is for the +5 volts and 0 to +10 volts ranges; the 20V setting is for the 10 volt range. Figure 1-2
shows P3 with the jumper installed at 10V. You do not have to recalibrate the board when you change voltage

ranges.
o
P3
L
> >
o O
N -

Fig. 1-2 — Input Voltage Range Jumper, P3

P4 — FIFO Full/Half-Full Flag (Factory Setting: FIFO Full)

This header connector, located above the FIFO at the top of the board, is used to halt A/D conversions when the
FIFO is full (FF) or half-full (HF). The advantage of setting the FIFO to stop conversions when it is half-full is the
assurance that there is room in the FIFO to store both bytes of the current conversion before shut-off. It is possible to
lose the LSB of a conversion when the jumper is set to FIFO full, since the FF flag signals that only one 8-bit slot
remains in the FIFO to be filled and each 12-bit conversion requires two 8-bit slots, one for the MSB and one for the
LSB. Figure 1-3 shows P4 with the jumper installed so that conversions are halted when the FIFO is full.

1-3

sbumas painbiuon-Aiojoe4 Buimoys noke preog — -1 ‘B4

f _I_
o . e T N v e W3LSAS TOHINOD ¥ NOILISINDOV VIVG ~ 8A3H g
7 .B@ E .@ o . OONOD(%Lﬂﬂnﬂ.ﬂﬂo I"n_m
0000000000 ooooooooon 00000000 oooooon oooooaon \ 000oo0od ooooooou ~ 00000008
7 ﬂ SYZTLOHYL n m ﬂ 889LDHYL A _ L9ELOHYL m _ CELOHYL w _ 6ELLOHYL N _ €218vL N _ QELLOHYL w _ $SHLOHPL N w
| 0000000000\ 0600000000 oooooooo ooooooo oooooooo ooooooo oooooooo 00000000
0 [} [~ oin IO Ln 1 2tn 20 En €0 wn o #o sin si0 VX [+] {o]
7 Ho 00000000 M 00000000 R 0000000000 M) 0000000 00000000 0000000000 R 000000000ND w M
Lﬁ ﬁmﬁlnmﬁ _.or_.oxﬁmm Rﬁoz!.m m_ mmrm._llmm_ omﬁozﬁmm_ SNm._KN m— na._.oxﬁmm o o
7 H 0000000000\ 00000000\ 0000000000\ 0000000/ 00000000/ 0000000000 0000000000 w w
, I ain 919 Hn a0 N 8L 8N 8D RN 029 b AOH.HOHOHOH- v 2n 120 o o
n 0000000000/ 00000000 [00000000004 0000000 M) 00000000 M 0000000000 ooooooooon w w
d yP2SIvL €83LOHPL PYSLOHYL B0LOHYL BELLOHYL YYSLOHPL YPeLOHPL 3
5 of 3 o
~70000000000'\J 0000606000 = 06000000006 \/60060600J60000000LJ0000000000 oooooooooo 5@ m 8 fm M
Wt
il V] o[Jo o lo o[[0 o[Jo o[|o of jo © .uoooooocn__.gm...,h
o[o z I3 B o © ol lo of o of lo o lo of [0 o o o OEEEF: =
ol |o g lo o 0 oj.l0o of.lo of o of.[0 of.jo o.l0o of_lo
of |o < o w O O o|flo o|fjo ojglo oif|lo olf|lo~offlo of|3{ooccoo0000 OV O o
2ol lo ° ° % ojglo olglo of-|o ~olelo ofg|ofmlojgio ©|2]0 s000000h] © 0
ol2lo o o ¢ O o|lsfo olx|o o|lglofmolxlo o|=|o] loj¥lo ojF|o ~xfoo| o o
S S o 9 olnla=olRlo=o|%lo} |olnla=o|Alalojol~Ja=o gl sewn (00l O °
B4 S om © 0o =@ D= WE D= = *E D=(E@ D Fo0000600 " “wo o
o 10 o b4 S o Jo o[Jo o Jo o Jo of [0 o[Jo of Jo :[09:9 9
wf |90 o ° o o [o |o of [o o lo of [0 of |o o |0 9 |° o o
ol = |9 o ° o 9.l0 o.lo ol ,jo o.j0o olglo of.l0 of,lo z lo
o|2 1o o Sl 2 |8 of8lo o|flo ojflo o|flo o|flo offlo o|Bo @segomd & |9
ol~Jo o *@O~3l & |n olglo ofglo o|glo ofelo ofjejo o|gfo ofgfo ooooco™ga ° g
(o) e sl olslo o|r|lo o|f|lo o|]slo o|j¥[lo ofF|lo o]F|o A _
sd o o N ~ ~ ~ ~ ~ ~ :o._._;m
5) - =@ _O) ol~AJa= 0 o RN o] Q= O 3 =" O] A 10 * O~ I8 = O ns:o o I !.8
o 4 - D D@ B~@D=CD~CD~CD~@D= L% 85600 » «

FF HF
Io
°

Fig. 1-3 — FIFO Full/Half-Full Flag Jumper, P4

P4

PS5 — Unipolar/Bipolar Analog Input (Factory Setting: Bipolar)

This header connector, shown in Figure 1-4, configures the analog input for unipolar (0 to +10 volts) or bipolar
(£5 or £10 volts) operation. You do not have to recalibrate the board when you change polarity.

+/- | —O
+ o e

P5
Fig. 1-4 — Analog Input Polarity Jumper, P5

P6 — Timer/Counter 2 Source and QUT Select (Factory Settings: XTAL (top), +5V, OUT0)

This header connector, shown in Figure 1-5, configures timer/counter 2’s clock and gate sources and the
selected TIMER output to the I/O connector (P2-42). The top two pairs.of pins, XTAL and EXTCK, set the clock
source for the three cascaded counters in TC2. XTAL connects the counters to the on-board 5-MHz clock, and
EXTCK connects them to an external clock source brought onto the board through the I/O connector. The +5V and
EXTGT pins connect the counters’ gate input to +5 volts or to an external gate brought onto the board through the
1/0 connector, The bottom four pins, OUTO0, OUT1, OUT2, and XTAL, let you select any one of the three counter
outputs or the on-board 5-MHz clock to be available at the TIMER output on the I/O connector. The timer/counters
are further described in Chapters 3 and 4.

P6
—e | XTAL
® @ | EXTCK
*—® | +5V
® o | EXTGT
—e | OUTO
@ | OUT1
® o | OUT2
® o | XTAL

Fig. 1-56 — TC2 Source and QUT Select Jumper, P6

1-5

P7 — Pacer Clock Source Select (Factory Setting: XTAL)

This header connector, shown in Figure 1-6, connects the pacer clock’s clock source to the on-board 5 MHz
(XTAL) clock or to an external clock applied through I/O connector P2.

P7

—® | XTAL
® @ | EXTPCK

Fig. 1-6 — Pacer Clock Source Select Jumper, P7

P8 — TC1, Counter 2 Sources (Factory Settings: +5V, XTAL)

This header connector, shown in Figure 1-7, configures the clock and gate sources for Counter 2 in TC1. The
top two pairs of pins set the gate input for +5 volts or the external gate source. The bottom three pairs of pins set the
clock source for the on-board 5-MHz clock (XTAL), the external clock source (EXTCK), or the output of the pacer
clock (OUT1). Note that the external gate and clock sources are the same ones connected to P6 for TC2.

P8
—® | +5V
® o | EXTGT
® | XTAL
® | EXTCK
o—eo | OUT1

Fig. 1-7 — TC1, Counter 2 Sources Jumper, P8

P9 — External Trigger/External Gate Monitor (Factory Setting: External Trigger)

This header connector, shown in Figure 1-8, lets you select either the external trigger input (P2-39) or the
external gate input (P2-46) to be available for monitoring at bit 4 of the status word (BA +3).

P9 | e—e | TRIGIN
® o | EXTGT

Fig. 1-8 — External Trigger/External Gate Monitor Jumper, P9

P10 — Board Compatibility Select (Factory Setting: Jumper on B)

This header connector, shown in Figure 1-9, allows you to maintain software and hardware compatibility with
earlier AD3700 boards (board serial numbers 64XXXX). By installing a jumpers on the A pins (top) your new
AD3700 will be fully compatible in data acquisition and control systems using the earlier board. However, the new
AD3700’s expanded features such as programmable channel scan cannot be used. When the jumper is installed
across the B pins (factory setting), all new AD3700 functions are activated, but compatibility with previous boards is
lost.

A

ol ® @

o

| o—o
B

Fig. 1-9 — Board Compatibility Select Jumper, P10

1-6

P11 — Simultaneous Sample-and-Hold Select (Factory Setting: NOR)

This header connector, shown in Figure 1-10, configures the AD3700 to operate normally, or with Real Time
Devices’ SSH4 or SSH8 simultaneous sample-and-hold board. The SSH setting adapts the triggering for optimal use
on the SSH boards.

SSH
L I
*~—o
NOR

P11

Fig. 1-10 — Simultaneous Sampie-and-Hold/Normal Operation Jumper, P11

S1 — Base Address (Factory Setting: 300 hex (768 decimal))

One of the most common causes of failure when you are first trying your board is address contention. Some of
your computer’s I/O space is already occupied by internal I/O and other peripherals. When the AD3700 board
attempts to use I/O address locations already used by another device, contention results and the board does not work.

To avoid this problem, the AD3700 has an easily accessible DIP switch, S1, which lets you select any one of 32
starting addresses in the computer’s I/O. Should the factory setting of 300 hex (768 decimal) be unsuitable for your
system, you can select a different base address simply by setting the switches to any value shown in Table 1-2. The
table shows the switch settings and their corresponding decimal and hexadecimal (in parentheses) values. Note that
switch 5 is the lefimost switch and switch 1 is the rightmost switch when looking at the component side of the
board. When the switches are pulled forward, they are OPEN, or set to logic 1, as labeled on the DIP swiich

Table 1-2 — Base Address Switch Settings, S1

Base Address Switch Setting Base Address Switch Setting

Decimal / (Hex) 54321 Decimal / (Hex) 5§4321
512/ (200) 00000 768 / (300) 10000
528/ (210) 00001 784/ (310) 10001
544 / (220) 00010 800 / (320) 10010
560 /(230) 00011 816/ (330) 10011
576 / (240) 00100 832/ (340) 10100
592 / (250) 00101 848/ (350) 10101
608 / (260) 00110 864 / (360) 10110
624 / (270) 00111 880/ (370) 10111
640/ (280) 01000 896 / (380) 11000
656 / (290) 01001 912/ (390) 11001
672/ (2A0) 01010 928 / (3A0) 11010
688 / (2B0) 01011 944 / (3B0) 11011
704/ (2C0) 01100 960 / (3C0) 11100
720/ (2D0O) 01101 976 / (3D0) 11101
736/ (2E0) 01110 992 / (3E0) 11110
752 / (2F0) 01111 1008 / (3F0) 11111

0 = closed, 1 = open

1-7

package. When you set the base address for your board, record the value in the table inside the back cover.
Figure 1-11 shows the DIP switch set for a base address of 300 (decimal 768) (switch S OPEN).

Fig. 1-11 — Base Address Switch, S1

Gx, User-Configurable Gain

Gx is provided so that you can easily configure a special gain setting for a specific application. Note that when
you use this feature and set up the board for a gain of other than 1, all of the input channels will operate only at your
custom gain setting. Gx is derived by adding resistors R2 and R3, trimpot TR4, and capacitor C51, all located in the
upper right area of the board. The resistors and trimpot combine to set the gain, as shown in the formula in Fig-
ure 1-12. Capacitor C51 is provided so that you can add low-pass filtering in the gain circuit. If your input signal is a
slowly changing one and you do not need to measure it at a higher rate, you may want to add a capacitor at C51 in
order to reduce the input frequency range and in turn reduce the noise on your input signal. The formula for setting
the frequency is given in the diagram below. If you install a custom gain circuit, a small trace on the bottom (non-
component) side of the board must be cut to activate the circuit. Figure 1-12 shows how the Gx circuitry is config-
ured.

3
+
U40 !
2 -—
(cut trace)
—_ C51
TR4
R2
R3
To calculate Gx:
Gx =[(TR4 + R2)/R3] + 1
To calculate frequency:
— f = 1/[2rC51(R2 + TR4)]

Fig. 1-12 — Gain Circuitry and Formulas for Calculating Gx and f

1-8

CHAPTER 2

BOARD INSTALLATION

The AD3700 board is easy to install in your IBM PC/XT/AT or
compatible computer. It can be placed in any full-sized slot. This
chapter tells you step-by-step how to install and connect the board.

After you have installed the board and made all of your con-
nections, you can turn your system on and run the 3700DIAG
board diagnostics program included on your example software disk
to verify that your board is working.

2-2

Board Installation

Keep the board in its antistatic bag until you are ready to install it in your computer. When removing it from the
bag, hold the board at the edges and do not touch the components or connectors.

Before installing the board in your computer, check the jumper and switch settings. Chapter 1 reviews the
factory settings and how to change them. If you need to change any settings, refer to the appropriate instructions in
Chapter 1. Note that incompatible jumper settings can result in unpredictable board operation and erratic response.

To install the board:

1.
2.

Turn OFF the power to your computer.

Remove the top cover of the computer housing (refer to your owner’s manual if you do not already know
how to do this).

. Select any unused full-size expansion slot and remove the slot bracket.

4. Touch the metal housing of the computer to discharge any static buildup and then remove the board from its

antistatic bag.

. Holding the board by its edges, orient it so that its card edge (bus) connector lines up with the expansion slot

connector in the bottom of the selected expansion slot.

. After carefully positioning the board in the expansion slot so that the card edge connector is resting on the

computer’s bus connector, gently and evenly press down on the board until it is secured in the slot.

NOTE: Do not force the board into the slot. If the board does not slide into place, remove it and try again.
Wiggling the board or exerting too much pressure can result in damage to the board or to the computer.

. After the board is installed, secure the slot bracket back into place and put the cover back on your computer.

The board is now ready to be connected via the external I/O connector at the rear panel of your computer. Be
sure to observe the keying when connecting your external cable to the I/O connector.

External I/O Connections

Figure 2-1 shows the AD3700’s P2 IO connector pinout. Refer to this diagram as you make your I/O connec-

tions.

AIN1 | (D@ ANaLOG GND
AIN2 [(B)(@)| ANALOG GND
ANz | (5)(6)| ANALOG GND
AINs | (D (®)] ANALOG GND
AINs [(@ (D] ANALOG GND
AINe | ()32 | ANALOG GND
AIN7 | (3G9] ANALOG GND
AINg | (19| ANALOG GND
ANALOG GND { ()(3] ANALOG GND
ANALOG GND | (9@ | anaLOG GND
ANALOG GND | @)@ | ANALOG GND
DIN7 | @)Ed| pouT?
DINe |@)ES| pouTe
DINs | EDEY| pouts
DIN4 | @) (9] pouT4
DiN3 | @D@ED] pouts
DINz | G3@EY] pout2
DIN1 1 39(E9 | pouTs
DINo | G) (| poute
TRIGGER IN DIGITAL GND
IXT PACER CLK |@D@E)| TIMER OUT
TRIGGER OUT | 3@ | COUNTER oU1
EXT CLK | @@ EXT GATE
+12 voLTs @)@ | +5 vours
-12 voLTs | @9ED| piGITAL GND

Fig. 2-1 — P2 I/0O Connector Pin Assignments

2-3

Connecting the Analog Inputs

Connect the high side of the analog input to one of the analog input channels, AIN1 through AINS, and connect
the low side to the selected channel’s dedicated ANALOG GND. Figure 2-2 shows how these connections are made.

NOTE: It is good practice to connect all unused channels to ground, as shown with channel 8 in the following
diagrams. Failure to do so may affect the accuracy of your results.

3700
1/0 CONNECTOR
P2

|
|
l
SIGNAL A PIN 1
SOURCE | * ¢ AN
1 OUT: |
A PIN 2
GND ¢
|
|
|
® L] ' []
b b I . MUX
.] | . b
|
! .
l
SIGNAL APIN 13
source (* ¢ AIN 7 ouT
7 ourt I
A PIN 14
GND <
3
I
|
|
|
| PIN 15
e AIN 8
Llpin s
I
|
1
| pIN 22

Fig. 2-2 — Analog Input Connections

Connecting the Trigger In and Trigger Out Pins, Cascading Boards

The AD3700 board has an external trigger input (P2-39) and output (P2-43) so that conversions can be started
based on external events, or so that two or more boards can be cascaded and run synchronously in a “master/slave”
configuration. By cascading two (or more) boards as shown in Figure 2-3, they can be triggered to start an A/D
conversion at the same time (sampling uncertainty is less than 50 nanoseconds). When you cascade boards, be sure
to set each board for a different base address (see Chapter 1), or system contention will result,

NOTE: The only delay you must take into account when cascading boards is the time it takes for the trigger
signal to propagate through the boards. Because the sampling uncertainty is less than 50 nanoseconds, this should
not affect boards operating at lower conversion rates. However, it may cause timing problems when you operate at
higher speeds. If you want to make sure of precise, simultaneous triggering at higher speeds, then connect the trigger
signal to the trigger input of each board, or use RTD’s SSH4 or SSHE four- or eight-channel simultaneous sample-
and-hold board.

If you apply an external trigger to the board’s trigger in pin, note that the board is triggered on the positive edge
of the pulse. The pulse duration should be at least 50 nanoseconds.

2-4

3700
1/0 CONNECTOR
P2

BOARD #1 :
(MASTER) I o
SIGNAL PIN 1
SOURCE + JYL CH1 | ANt
#1]
out |
GND oPIN2
I
| é
|
|
PIN 43
TRIGGER OUT
L R N L L L LT) ' - -
....... S RS
BOARD #2 i
(SLAVE) | MUX
SIGNAL PIN 1
SOURCE + J\‘r CHA | At
¥2
out 1
GND J‘[\PIN 2
'
I E
I
IpiN 30

——Io—">TRIGGER IN

Fig. 2-3 — Cascading Two Boards for Simultaneous Sampling

Connecting the Timer/Counters and Digital /O

For all of these connections, the high side of an external signal source or destination device is connected to the
appropriate signal pin on the I/O connector, and the low side is connected to any DIGITAL GND.

Running the 3700DIAG Diagnostics Program

Now that your board is ready to use, you will want to try it out. An easy-to-use, menu-driven diagnostics
program, 3700DIAG, is included with your example software to help you verify your board’s operation. You can
also use this program to make sure that your current base address setting does not contend with another device.,

CHAPTER 3

HARDWARE DESCRIPTION

This chapter describes the features of the AD3700 hardware.
The major circuits are the A/D, the timer/counters, and the digital
I/O lines.

3-1

The AD3700 board has three major circuits, the A/D, the timer/counters, and the digital I/O lines. Figure 3-1
shows the block diagram of the board. This chapter describes the hardware which makes up the major circuits.

Fig. 3-1 — AD3700 Block Diagram

A/D Conversion Circuitry

—
DATA l
s ANALOG mr;uts
-5V TO 45
- 0 10 +10V
DMA FIFO AD678 :E"If‘E‘éFI RESISTOR -1ov TSOEHOV
CONTROL 2048 X 8 CONFIG- 8y 8 S.E.
AND 02 X8 AD 0 o[GRam [wex &
SELECT 8192 X8 :1 I;V GAIN
TRIGGER OUT
=
PACER
TRIGGER I8l N
cLock SELECT
INTERRUPT s MHe
SELECT ok 0sC
l_ T PAC £
- oLk
8254
TIMER EXT CLOCK
aartel &
ouT e TIMER/ §
a COUNTER JIMER OUT o
2 Vo
2 ADDRESS ADDRESS SELECT g
CONTROL JUMPERS EXT GATE °
b d CLK
8254
COUNTER
GATE
out COUNTER OUT
=
DIGITAL 5, DIGITAL OUT
out
gy
DIGITAL 8, DIGITAL IN
W > et
+12 VOLTS
CONTROL +5 VOLTS
DIGITAL
-

The AD3700 board performs analog-to-digital conversions on up to eight software-selectable analog input

channels. The following paragraphs describe the A/D circuitry.

Analog Inputs

The input voltage range is jumper-selectable for -5 to +5 volts, -10 to +10 volts, or 0 to +10 volts. A user-
configurable gain, Gx, lets you amplify lower level signals to more closely match the board’s input ranges. When

you increase the gain, the effective input range decreases by the input range divided by the gain. You can customize
this gain setting by following the instructions at the end of Chapter 1. Overvoltage protection to 35 volts is
provided at the inputs.

A/D Converter

The AD678 12-bit successive approximation A/D converter accurately digitizes dynamic input voltages in
5 microseconds, for a maximum throughput rate of 200 kHz. The AD678 contains a sample-and-hold amplifier, a
12-bit A/D converter, a 5-volt reference, a clock, and a digital interface to provide a complete A/D conversion
function on a single chip. Its low-power CMOS logic combined with a high-precision, low-noise design give you
accurate results.

Conversions are controlled through software (internally triggered) or by an external trigger brought onto the
board through the I/O connector. An on-board pacer clock can be used to control the conversion rate. Conversion
modes and channel select options are described in Chapter 4, Board Operation and Programming.

FIFO Interface

A first in, first out (FIFO) interface helps your computer manage the high throughput rate of the A/D converter
by providing an elastic storage bin for the converted data. Even if the computer does not read the data as fast as
conversions are performed, conversions will continue until a FIFO full flag (or half-full flag, depending on the
setting of the jumper at P4) is sent to stop the converter. The size of the FIFO was specified as 2K, 4K, or 8K when
you placed your board order.

The FIFO does not need to be addressed when you are writing to or reading from it; internal addressing makes
sure that the data is properly stored and retrieved. All data accumulated in the FIFO is stored intact until the PC is
able to complete the data transfer. Its asynchronous operation means that data can be written to or read from it at any
time, at any rate. When a transfer does begin, the data first placed in the FIFO is the first data out.

The converted data can be transferred to PC memory in one of two ways: through the PC data bus or by using
direct memory access (DMA). Data bus transfers take more processor time to execute. They use polling and
interrupts to determine when data has been acquired and is ready for transfer. DMA places data directly into the
PC’s memory, one byte at a time, with minimal use of processor time. DMA transfers are managed by the DMA
controller as a background function of the PC, letting you operate at higher throughput rates.

Timer/Counters

Two 8254 programmable interval timers, TC1 and TC2, provide six 16-bit, 8-MHz timer/counters to support a
wide range of timing and counting functions. Two of the timer/counters in TC1 are cascaded and used for the pacer
clock. The pacer clock is described in Chapter 4. You can use the remaining four timer/counters — one from TC1 for
counting applications and three cascaded on TC2 for timing applications. Figure 3-2 shows the timer/counter
circuitry.

Each timer/counter has two inputs, CLK in and GATE in, and one output, timer/counter OQUT. They can be
programmed as binary or BCD down counters by writing the appropriate data to the command word, as described in
Chapter 4. The command word also lets you set up the mode of operation. The six programmable modes are:

Mode 0 Event Counter (Interrupt on Terminal Count)
Mode 1 Hardware-Retriggerable One-Shot

Mode 2 Rate Generator

Mode 3 Square Wave Mode

Mode 4 Software-Triggered Strobe

Mode 5 Hardware Triggered Strobe (Retriggerable)

These modes are detailed in the 8254 Data Sheet, reprinted from Intel in Appendix C.

e o —_—— 5 MHz (XTAL)

1 1 “
: TIMER/COUNTER 1 : | P7 : +5 VOLTS
.
i LK t 6 O 4
| COUNTER GATE 1 | |
: o ot : ro o+ <| EXTERNAL PACER CLOCK
| 1
1 I
: ciK \ PACER CLOCK
| COUNTER GATE : S
1 ouT T I P8 I
: i I omm | — 5 MHz (XTAL)
' +
] I [1 I
i cLK I 0 O-— $
[| COUNTER GATE t I " o] 1
1 ouT 1 | O EXTERNAL CLOCK
! 1 e
L i] 6 o svons . vSVouTs
_________________ 1 o :
| R
EXTERNAL GATE
e e e o . e e e o - I\ COUNTER OUT
! TIMER/COUNTER 2 ! v =
I 1 1 oee, |
I Lk 1 16 o+ 5 MHz (XTAL)
1 cou:'rsu GATE } | I |
: out : 1 ,__o‘ ll
i | : P.S H +5 VOLTS
: 1 I
1 o4
I | | I bemse i
I COUNTER CLK | 5 + S TIMER OUT
1 ! GATE |— 1 | | L~
: out t —o OT——
I
| | ———lo o
1 | !]
1 CLK 1 o+
| COUNTER GATE — | L
: out : 5 MHz (XTAL)
e e e 1

Fig. 3-2 — 8254 Programmable Interval Timer Circuits Block Diagram

Digital VO

Eight digital input and eight digital output lines can be used to transfer data between the computer and external
devices. Data transfers through the digital I/O lines are independent of other board functions. The input lines have
pull-up resistors. All 16 lines are available at the external I/O connector.

3-5

3-6

CHAPTER 4

BOARD OPERATION AND PROGRAMMING

This chapter shows you how to program and use your AD3700
board. It provides a complete description of the I/O map, a detailed
description of programming operations and operating modes, and
flow diagrams to aid you in programming. The example programs
included on the disk in your board package are listed at the end of
this chapter. These programs, written in Turbo C, Turbo Pascal,
and BASIC, include source code to simplify your applications
programming.

4-2

Defining the I/O Map

The 1/0 map for the AD3700 is shown in Table 4-1 below. As shown, the board occupies 16 consecutive I/O
port locations. The base address (designated as BA) can be selected using DIP switch S1, located on the top edge at
the rear of the board (furthest from I/O connector P2), as described in Chapter 1, Board Settings. This switch can be
accessed without removing the board from the computer. The following sections describe the register contents of
each address used in the I/O map.

Table 4-1 — AD3700 I/O Map
Address *
Register Description Read Function Write Function {Decimal)
Digital /0 Read 8 digital input lines Program 8 digital output lines BA+0
Channel/Conversion Mode |Read A/D channel & Program A/D channel &
Seiect conversion mode settings conversion mode BA+1
Scan Channel Range Read number of channels to | Program number of channels
Select be active in scan cycle BA +2
Status/Clear FIFO Read status word Clear FIFO BA+3
Read Data/Start Convert Read FiFO data, MSB & LSB | Start A/D conversion BA+4
Clear DMA Done Reserved Clear DMA done bit BA+5
Read interrupt & DMA Program interrupt source &
IRQ/DMA Select settings channel select; DMA select BA +6
Clear Board Reserved Clear (reset) board BA+7
TC1 Counter 0
(Used for pacer clock) Read count value Load count register BA +8
TC1 Counter 1
(Used for pacer clock) Read count value Load count register BA+9
TC1 Counter 2
(Available for external use) |Read count value Load count register BA +10
TC1 Control Word Reserved Program counter mode BA + 11
TC2 Counter 0 Read count vaiue Load count register BA + 12
TC2 Counter 1 Read count value Load count register BA + 13
TC2 Counter 2 Read count value Load count register BA + 14
TC2 Control Word Reserved Program counter mode BA + 15
* BA = Base Address

BA + 0: Digital /O (Read/Write)

Transfers the 8-bit digital input and digital output data between the board and an external device. A read
transfers data from the external device through P2 onto the board where it can be placed in user memory; a write
transfers data from the board to an external device.

In7 In6é In5 In4 In3 In2 Int In0

D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO

Out7 Quté Outs Qut4 Out3 Qut2 Out1 Outo

43

BA + 1: Channel/Conversion Mode Select (Read/Write)

Programs the analog input channel, A/D conversion mode, and the channel select option. The conversion modes
and channel select options are detailed later in this chapter under Programming the AD3700. D6 and D7 are not
used. Reading this register shows you the current settings.

D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO

Channel
000 =1
001=2
010=3
011 =4
Channel Select Option 100=5
0 = Direct Channel 101=86
1 = Scan Channel 110=7
111=8

Conversion Mode

00 = Single Convert, Internal Trigger
01 = Multi-Convent, Internal Gate
10 = Single Convert, External Trigger
11 = Multi-Convert, External Gate

BA + 2: Scan Channel Range Select (Read/Write)

Programs the number of channels to be activated for a scan cycle. This number, coupled with the analog input
channel select programmed at BA + 1, establishes the sequence for the channel scan. For example, if you want to do
a scan of three channels starting with channel 3 (analog input channel select), one cycle will convert the input
voltages at channels 3, 4, and 5.

D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO

L]

Number of
Channels
0000 = invalid
0001 =1
0010 =2
0011 =3
0100=4
0101 =5
0110=6
o111 =7
1000=8

BA + 3: Read Status/Clear FIFO (Read/Write)

A read provides the eight-bit status word defined below. The A/D converter HALT bit, D2, is set to 1, stopping
A/D conversions whenever the FIFO is full or half-full, depending on the setting of the jumper on P4, This is the
only way conversions can be stopped in the Multi-Convert modes. D1 is the FIFO full flag. This flag is set to 0
whenever the FIFO is full. D4 shows the status of either the external trigger in signal (P2-39) or the external gate
signal (P2-46), depending on the setting of jumper P6.

A write clears the FIFO (data written is irrelevant). When the FIFO is cleared using BA + 3, the FIFO empties
out all data, sets the FIFO empty flag, EF, low, and sets the FIFO full flag high. Clearing the FIFO also sets the
LSB/MSB flag to 1 so that the next byte of data read is the MSB, and clears the HALT bit, enabling A/D conver-

sions.
D7 (D6 | D5 { D4 | D3 | D2 | D1 | DO
DMA Done EF (FIFO Empty Flag)
0 = DMA not done 0 = FIFO empty
1 = DMA done 1 = FIFO not empty
(active in DMA mode only)
FF (FIFO Full Flag)

LSB/MSB Flag 0 = FIFO full
0 = Next byte read is LSB 1 = FIFO not full
1 = Next byte read is MSB
Halt
EOC Status 0 = A/D enabled
0 = converting 1 = A/D disabled

1 = not converting (cleared whenever clear FIFO sent)

External Trigger/External Gate
Monitors TRIGGER IN or

EXTGATE status, depending on
P9 jumper setting

BA + 4: Read FIFO Data/Start Conversion (Read/Write)

Two successive reads provide the MSB and LSB of the A/D conversion, as defined below. A write starts a
conversion (data written is irrelevant). Note that the MSB line and LSB line toggle with each read. Bit 6 in the
Status word (BA + 3) shows which byte is next.

mse | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO
X X X x Bit11 Bit10 Bit9 Bit8

Lse | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO

Bit 7 Bité Bit5 Bit4 Bit3 Bit2 Bit1 Bit 0

BA + 5: Clear DMA Done Bit (Write Only)

Writing to this address clears the DMA done bit at BA + 3, bit D7 (data written is irrelevant). This command
lets you perform continuous DMA dumps of 64K from the FIFO into PC memory without losing any data while
conversions are in progress.

4-5

BA + 6: IRQ/DMA Select (Read/Write)

Programs the interrupt source and channel, and the DMA transfer mode. Reading this register shows you the
current settings.

D7 | D6 | DS | D4 | D3 | D2 | D1 | DO

Interrupt Channel Select Interrupt Source

DMA §elect 000 = interrupt disabled 000 = halt converter (high = A/D disabled)
00 = disabled 001 = IRQ2 001 = HF (high = FIFO half full)
01 = DRQ1 (DMA Channel 1) 010 = IRQ3 010 = DMA done (high = transfer done)
10 - DRQS (DMA Channel 3) 411 . |rQ4 011 = TC2-OUT
11 = not defined 100 = IRQ5 100 = external trigger infexternal gate

101 = IRQ6 101 =EOC

110 = IRQ7 110 = TC1 counter out

111 = interrupt disabled 111 = TC2 timer IRQ

BA + 7: Clear (Reset) Board (Write only)

A write to this location clears, or resets, the board (data written is irrelevant). This command resets all of the on-
board registers to 0. It also initializes the A/D converter after power-up.

BA + 8: TC1 Counter 0 (Read/Write)

A read shows the count in the counter, and a write loads the counter with a new value. Counting begins as soon
as the count is loaded. This counter is part of the 32-bit on-board pacer clock (TC1 counters O and 1).

BA +9: TC1 Counter 1 (Read/Write)

A read shows the count in the counter, and a write loads the counter with a new value. Counting begins as soon
as the count is loaded. This counter is part of the 32-bit on-board pacer clock (TC1 counters 0 and 1).

BA + 10: TC1 Counter 2 (Read/Write)

A read shows the count in the counter, and a write loads the counter with a new value. Counting begins as soon
as the count is loaded. This counter is user-configurable for counter applications.

BA + 11: TC1 Control Word (Write Only)

Accesses the TC1 control register to directly control the three TC1 counters.

D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO

L BCD/Binary

0 = binary
1=BCD

Counter Select
00 = Counter 0

Counter Mode Select

01 = Counter 1 000 = Mode 0, event count

10=Counter2 Read/l.oad 001 = Mode 1, programmable 1-shot

11 = read back setting 00 = latching operation 010 = Mode 2, rate generator
01 = read/load LSB only 011 = Mode 3, square wave rate generator
10 = read/load MSB only 100 = Mode 4, software-triggered strobe

11 = Read/load LSB, then MSB 101 = Mode 5, hardware-triggered strobe

4-6

BA + 12: TC2 Counter 0 (Read/Write)

A read shows the count in the counter, and a write loads the counter with a new value. Counting begins as soon
as the count is loaded. This counter is used for timer operations.

BA + 13: TC2 Counter 1 (Read/Write)

A read shows the count in the counter, and a write loads the counter with a new value. Counting begins as soon
as the count is loaded. This counter is used for timer operations.

BA + 14: TC2 Counter 2 (Read/Write)

A read shows the count in the counter, and a write loads the counter with a new value. Counting begins as soon
as the count is loaded. This counter is used for timer operations.

BA + 15; TC2 Control Word (Write Only)
Accesses the TC2 control register to directly control the three TC2 counters.

D7 | D6 | D5 | D4 | D3 | D2 | D1 DO

L BCD/Binary
0 = binary
1=BCD
Counter Select
00 = Counter 0 Counter Mode Select
01 = Counter 1 000 = Mode 0, event count
10 = Counter 2 _ Read/Load 001 = Mode 1, programmable 1-shot
11 = read back setting 00 = latching operation 010 = Mode 2, rate generator
01 = read/load LSB only 011 = Mode 3, square wave rate generator
10 = read/load MSB only 100 = Mode 4, software-triggered strobe

11 = Read/load LSB, then MSB 101 = Mode 5, hardware-triggered strobe

4.7

Programming the AD3700

This section gives you some general information about programming and the AD3700 board, and then walks
you through the major AD3700 programming functions. These descriptions will help you as you use the example
programs included with the board and the programming flow diagrams at the end of this chapter. All of the program
descriptions in this section use decimal values unless otherwise specified.

The AD3700 is programmed by writing to and reading from the correct I/O port locations on the board. These
1/0 ports were defined in the previous section. Most high-level languages such as BASIC, Pascal, C, and C++, and
of course assembly language, make it very easy to read/write these ports. The table below shows you how to read
from and write to I/O ports using some popular programming languages.

Language Read Write
BASIC Data = INP(Address) OUT Address, Data
Turbo C Data = inportb(Address) outportb(Address, Data)
Turbo Pascal Data := Porf{Address] Port{Address] := Data
Assembly mov dx, Address mov dx, Address
in al, dx mov al, Data
out dx, al

In addition to being able to read/write the 1/0 ports on the AD3700, you must be able to perform a variety of
operations that you might not normally use in your programming. The table below shows you some of the operators
discussed in this section, with an example of how each is used with Pascal, C, and BASIC. Note that the modulus
operator is used to retrieve the least significant byte (LSB) of a two-byte word, and the integer division operator is
used to retrieve the most significant byte (MSB).

Language Modulus Integer Division AND OR
o] % / & |
a=b%c a=b/c a=bé&c a=bjc
Pascal MOD Div AND OR
a:=bMODc a:=bDIVc a:=bANDCc a:=bORc
BASIC MOD \ (backslash) AND OR
a=bMODc a=b\c a=bANDc a=bORc¢

Many compilers have functions that can read/write either 8 or 16 bits from/to an I/O port. For example, Turbo
Pascal uses Port for 8-bit port operations and PortW for 16 bits, Turbo C uses inportb for an 8-bit read of a port
and inport for a 16-bit read. Be sure to use only 8-bit operations with the AD3700!

4-8

Clearing and Setting Bits in a Port

When you clear or set one or more bits in a port, you must be careful that you do not change the status of the
other bits. You can preserve the status of all bits you do not wish to change by proper use of the AND and OR
binary operators. Using AND and OR, single or multiple bits can be easily cleared in one operation.

To clear a single bit in a port, AND the current value of the port with the value b, where b = 255 - 20,

Example: Clear bit 5 in a port. Read in the current value of the port, AND it with 223
(223 = 255 - 2%), and then write the resulting value to the port. In BASIC, this is programmed as:

v INP (PortAddress)
V = V AND 223
OUT PortAddress, V

To set a single bit in a port, OR the current value of the port with the value b, where b = 2%,

Example: Setbit 3 in a port. Read in the current value of the port, OR it with 8 (8 = 27), and then
write the resulting value to the port. In Pascal, this is programmed as:

V := Port[PortAddress];
V := V OR 8§;
Port [PortAddress] := V;

Setting or clearing more than one bit at a time is accomplished just as easily. To clear multiple bits in a port,
AND the current value of the port with the value b, where b = 255 - (the sum of the values of the bits to be cleared).
Note that the bits do not have to be consecutive.

Example: Clear bits 2, 4, and 6 in a port. Read in the current value of the port, AND it with 171
(171 = 255 - 2% - 2* - 2%, and then write the resulting value to the port. In C, this is programmed
as:

v inportb(port address) ;
v=v & 171;
outportb (port address, v);

To set multiple bits in a port, OR the current value of the port with the value b, where b = the sum of the
individual bits to be set. Note that the bits to be set do not have to be consecutive.

Example: Setbits 3, 5, and 7 in a port. Read in the current value of the port, OR it with 168
(168 = 2% + 2° + 27), and then write the resulting value back to the port. In assembly language, this
is programmed as:

mov dx, PortAddress
in al, dx
or al, 168
out dx, al

Often, assigning a range of bits is a mixture of setting and clearing operations. You can set or clear each bit
individually or use a faster method of first clearing all the bits in the range then setting only those bits that must be
set using the method shown above for setting multiple bits in a port. The following example shows how this two-
step operation is done.

Example: Assign bits 3, 4, and 5 in a port to 101 (bits 3 and 5 set, bit 4 cleared). First, read in the
port and clear bits 3, 4, and 5 by ANDing them with 199. Then set bits 3 and 5 by ORing them
with 40, and finally write the resulting value back to the port, In C, this is programmed as:

v = inportb(port_address);
v v & 199;
v =1v | 40;
outportb (port_address, v);

A final note: Don’t be intimidated by the binary operators AND and OR and try to use operators for which you
have a better intuition. For instance, if you are tempted to use addition and subtraction to set and clear bits in place
of the methods shown above, DON’T! Addition and subtraction may seem logical, but they will not work if you try
to clear a bit that is already clear or set a bit that is already set. For example, you might think that to set bit 5 of a
port, you simply need to read in the port, add 32 (2°) to that value, and then write the resulting value back to the port.
This works fine if bit 5 is not already set. But, what happens when bit 5 is already set? Bits 0 to 4 will be unaffected
and we can’t say for sure what happens to bits 6 and 7, but we can say for sure that bit 5 ends up cleared instead of
being set. A similar problem happens when you use subtraction to clear a bit in place of the method shown above.

Now that you know how to clear and set bits, we are ready to look at the programming steps for the AD3700
board functions.

A/D Conversions

The following paragraphs walk you through the programming steps for performing A/D conversions. Detailed
information about the conversion modes and channel select options is presented in this section. You can follow these
steps on the flow diagrams at the end of this chapter and in our example programs included with the board. In this
discussion, BA refers to the base address.

« Clearing the Board

It is good practice to start your program by resetting the AD3700 board. You can do this by writing to the
CLEAR BOARD port located at BA + 7. The actual value you write to this port is irrelevant, After writing to this
port, you should pause several milliseconds and then clear the FIFO to remove any data placed there by the reset
process.

» Clearing the FIFO

To clear the FIFO, write any value to the CLEAR FIFO port, located at BA + 3. Any data in the FIFO when this
port is written to is lost.

» Selecting a Channel

To select a conversion channel or a starting channel for a scan of channels, you must assign values to bits 0
through 2 in the CHANNEL/CONVERSION MODE SELECT port at BA + 1. The table below shows you how to
determine the bit settings. Note that if you do not want to change other settings also programmed through BA + 1,
you must preserve them when you set the channel.

x | x | x | x [x |CH2|CH1| CHO BA +1

Channel CH2 CH1 CHoO
1 0 0 0
2 0 0 1
3 0 1 0
4 0 1 1
5 1 0 0
6 1 0 1
7 1 1 0
8 1 1

4-10

« Conversion Modes and Channel Select Options

The AD3700 provides several triggering (conversion) modes and scan (channel select) options. Four conversion
modes and two channel select options give you a variety of combinations of triggering and channel selection to meet
just about any sampling requirement. This section describes the modes and options and includes a series of timing
diagrams at the end so that you can see how they are implemented. The conversion mode and channel select option
are setatport BA + 1.

- Conversion Modes/Triggering

Internal vs. external triggering. With internal triggering (also called software triggering), conversions are
initiated by writing a value to the START CONVERT port at BA + 4 on the board. With external triggering,
conversions are initiated by applying a high TTL signal to the external TRIGGER IN pin (P2-39). Any TTL signal
can be used as a trigger source. In fact, you can use the TIMER OUT (P2-42) or COUNTER OUT (P2-44) as a
trigger source.

Single convert, internal trigger. In this mode, a single specified channel is sampled whenever a value is
written to the START CONVERT port, BA + 4. The active channel is the one specified in the CHANNEL/CON-
VERSION MODE SELECT port.

X X 0 0 X p'e X X BA +1

This is the easiest of all riggering modes. It can be used in a wide variety of applications, such as sample every
time a key is pressed on the keyboard, sample with each iteration of a loop, or watch the system clock and sample
every five seconds. See the SOFTTRIG sample program in C and Pascal and the SINGLE sample program in
BASIC.

Multi-convert, internal gate. In this mode, conversions are continuously performed at the pacer clock rate.
Sampling is initiated from software. To use this mode, you must program the pacer clock to run at the desired rate
(see the pacer clock discussion later in this chapter).

X X 0 1 X X X X BA +1

This is the ideal mode for filling an array with data. Triggering is automatic, so your program is spared the
chore of monitoring the pacer clock to determine when to sample. See the MULTI sample program in C and Pascal.

Single convert, external trigger. In this mode, a single conversion is initiated by the rising edge of an external
trigger pulse.

X X 1 0 X X X X BA +1

This mode is implemented when an external device is used to determine when to sample. See the EXTTRIG
sample program in C and Pascal.

4-11

Multi-convert, external gate. In this mode, channels are sampled at the pacer clock rate. The pacer clock is
gated on and off by the external trigger line. When the external trigger line is held high, sampling occurs at the pacer
clock rate. When the line is low, sampling is halted.

X X 1 1 X X X X BA +1

This is an ideal mode when you want to acquire data for only as long as an external device holds the trigger
high. See the MULTGATE sample program in C and Pascal.
- Channel Select Options/Scans

Direct channel. In this option, the channel specified in the CHANNEL/CONVERSION MODE SELECT port
is sampled each time a trigger is applied.

X X X X 0 X X X BA +1

Use the direct channel option when you only need to sample from one channel or if the order of channels to be
sampled is unknown or not consecutive.

Scan channel. In this option, the channel from which to sample is automatically incremented after a conversion
is complete. The scan starts at the channel specified in the CHANNEL/CONVERSION MODE SELECT port. After
converting channel 8, the AD3700 returns to channel 1.

X X X X 1 X X X BA + 1

Use the scan channel option when you want to sample from all eight channels in consecutive order. Since the
channel counter is automatically incremented, it is faster (and easier) than using the direct scan option and setting
the channel for each conversion from software.

- Timing Diagrams

The following timing diagrams show how each of the eight possible conversion mode/channel select option
combinations are implemented by the A/D converter and associated circuitry. Figures 4-1 and 4-2 show you the
Single Convert, Internal Trigger mode timing; Figures 4-3 and 4-4 show you the Multi-Convert, Internal Gate mode
timing; Figures 4-5 and 4-6 show you the Single Convert, External Trigger mode timing; and Figures 4-7 and 4-8
show you the Multi-Convert, External Gate mode timing,.

1

4-12

Internal Trigger _[1 1 I [[

AD Trigger _J 1 M1 1 M 1
Sampled Channel 1 1 1 1 1 1...

Fig. 4-1 — Timing Diagram, Single Convert, Internal Trigger/Direct Channel

Internal Trigger _I 1 M__11 1 1 [

AD Trigger _[1___[1 [1 [[
Sampled Channel 1 2 3 4 5 6...

Fig. 4-2 — Timing Diagram, Single Convert, Internal Trigger/Scan Channel

Internal Trigger I

Pacer Clock I [[L [1 Il I =

A/D Trigger M1 M R T I ! 1

Sampled Channel 1 1 1 1 1 1 1 1 1...

Fig. 4-3 — Timing Diagram, Multi-Conven, internal Gate/Direct Channel

Internal Trigger L

Pacer Clock [1 i [[[L 1 M

A/D Trigger M 11 1 M 11 1 [1 I
2 3 4 5

Sampled Channel 1 6 7 8 1...

Fig. 4-4 — Timing Diagram, Muiti-Convenrt, Internal Gate/Scan Channel

Internal Trigger 1

Trigger In M M 1 11 1 M
A/D Trigger 1 1 [1 1 [
Sampled Channel 1 1 1 1 1 1.

Fig. 4-5 — Timing Diagram, Single Convert, External Trigger/Direct Channel

Internal Trigger 1
Trigger In _J1 M1 I 1 1 M-I
A/D Trigger 1T M _r._nmn M 1 M_ri.
Sampled Channel 1 2 3 4 1 2 3 4 i...

Fig. 4-6 — Timing Diagram, Sihgle Convert, External Trigger/Scan Channel

Internal Trigger M
Trigger In | 1 | | I
PacerClock [11111 R 1
ADTrgger _______ T1IT1TLILILI1 1 I 1 I
Sampled Channel L T I T B 1 1 1 1 1

Fig. 4-7 — Timing Diagram, Muliti-Convert, External Gate/Direct Channel

Internal Trigger [

Trigger In | 1] l
PacerClock T 1T LILILILI1 WLI—LJ_]—_
ADTrigger ______ [1T1TLILILI N I I I

Sampled Channel 1 2 3 4 5 6 7 8 1 2 3

Fig. 4-8 — Timing Diagram, Multi-Convert, External Gate/Scan 8 Channels

4-14

« Starting an A/D Conversion

Whether you are using internal triggers, external triggers, single convert or multi-convert, you must start the
conversion process by writing to the START CONVERT port at BA + 4. The value you write is irrelevant. For
single conversion scan options, you must write to this port to initiate every conversion. In the multi-conversion
modes, you need to write to this port only once to start the conversion cycle.

» Monitoring Conversion Status (EF Flag or End-of-Convert)

The A/D conversion status can be monitored through the FIFO empty (EF) flag or through the end-of-convert
(EOC) bit in the STATUS port at BA + 3. Typically, you will want to monitor the EF flag for a transition from low
to high. This tells you that a conversion is complete and data has been placed in the FIFO. The EOC line is available
for monitoring conversion status in special applications.

« Halting Conversions

In the single convert modes, a single conversion is performed and the board waits for another START CON-
VERT command. In the multi-convert modes, conversions are halted when the FIFO is full. The HALT bit, bit 2 of
the Status word (BA + 3), is set when the FIFO is full, disabling the A/D converter. If you want to stop execution in
the middle of a run, you can send a CLEAR BOARD command by writing to BA + 7. However, if you do this, note
that the contents of the FIFO will be lost.

» Reading the Converted Data

Two successive reads of port BA + 4 provide the MSB and LSB of the 12-bit A/D conversion in the format
defined in the I/O map section at the beginning of this chapter. The MSB line and LSB line toggle with each read.
The MSB must always be read first, followed by the LSB. Bit 6 of the Status word (BA + 3) shows which byte is
next. This bit is set whenever a FIFO CLEAR command is issued so that the first byte read is the MSB.

The output code and the resolution of the conversion vary, depending on the input voltage range selected.
Bipolar conversions are in twos complement form, and unipolar conversions are straight binary. When a bipolar
value is read, you must first convert the result to straight binary and then calculate the voltage. The conversion
formula is simple: for values greater than 2047, you must subtract 4096 from the value to get the sign of the voltage.
For example, if your output is 2048, you subtract 4096: 2048 - 4096 = -2048. This result corresponds to -5 volts or
-10 volts, depending on your binary range. For values of 2047 or less, you simply convert the result. The key digital
codes and their input voltage values are given for each range in the following three tables.

A/D Bipolar Code Table
(+5V; twos complement)
Input Voltage Output Code
+4.998 volts MSB 0111 1111 1111 LSB
+2.500 volts 0100 0000 0000
0 volts 0000 0000 0000
-.00244 volts 1111 1111 1111
-5.000 volts 1000 0000 0000
1 LSB = 2.44 millivolts

4-15

A/D Bipolar Code Table
(+10V; twos complement)

Input Voltage Output Code

+9.995 volts MSBO111 1111 1111 LSB

+5.000 volts 0100 0000 0000

0 volts 0000 0000 0000
-.00488 volts 1111 1111 1111
-10.000 volts 1000 0000 0000

1 LSB = 4.88 millivolts

A/D Unipolar Code Table
(0 to +10V; straight binary)

Input Voltage Output Code

+9.99756 volts MSB 1111 1111 1111 LSB

+5.00000 volts 1000 0000 0000

0 volts 0000 0000 0000
1 LSB = 2.44 millivoits

* Programming the Pacer Clock

Two 16-bit timer/counters in the 8254 Timer/Counter TC1 are cascaded to form the on-board pacer clock,
shown in Figure 4-9. When you want to use the pacer clock for continuous A/D conversions, you must program the
clock rate. To find the value you must load into the clock to produce the desired rate, you first have to calculate the

value of Divider 1 (TC1 Counter 0) and Divider 2 (TC1 Counter 1) shown in the diagram. The formulas for making
this calculation are as follows:

Pacer clock frequency = Clock Source Frequency/(Divider 1 x Divider 2)
Divider 1 x Divider 2 = Clock Source Frequency/Pacer Clock Frequency

To set the pacer clock frequency at 200 kHz using the on-board 5-MHz clock source, this equation becomes:
Divider 1 x Divider 2 = 5 MHz/200 kHz ---> 25 =5 MHz/200 kHz

After you determine the value of Divider 1 x Divider 2, you then divide the result by the least common denomi-
nator. The least common denominator is the value that is loaded into Divider 1, and the result of the division, the
quotient, is loaded into Divider 2. In our example above, the least common denominator is 5, so Divider 1 equals 5,
and Divider 2 equals 25/5, or § also. The table with the diagram lists some common pacer clock frequencies and the
counter settings (using the on-board 5-MHz clock source).

After you calculate the decimal value of each divider, you can convert the result to a hex value if it is easier for
you when loading the count into the 16-bit counter.

4-16

To set up the pacer clock on the AD3700, follow these steps:

1. Select a clock source (the 5-MHz on-board clock or and external clock source).
2. Program TC1, Counter 0 for Mode 2 operation.
3. Program TC1, Counter 1 for Mode 2 operation.
4. Load Divider 1 LSB.

5. Load Divider 1 MSB.
6. Load Divider 2 LSB.

7. Load Divider 2 MSB.

Depending on your conversion mode, the counters start their countdown and the pacer clock starts running

when a trigger occurs.

5MHz ——Pp

TC1 Counter 0
Divider 1

TC1 Counter 1
—p Divider 2 ——J» Pacer Clock

Fig. 4-9 — Pacer Clock Block Diagram

Divider 1 Divider 2
Pacer Clock decimal / (hex) decimal / (hex)
200 kHz 5/ (0005) 5/ (0005)
100 kHz 2/(0002) 25/ (0019)
50 kHz 2/(0002) 50/ (0032)
10 kHz 2/(0002) 250 / (OOFA)
1 kHz 2/(0002) 2500 / (09C4)
100 Hz 2/(0002) 25000 / (61A8)

4-17

* Interrupts

- What Is an Interrupt?

An interrupt is an event that causes the processor in your computer to temporarily halt its current process and
execute another routine. Upon completion of the new routine, control is returned to the original routine at the point
where its execution was interrupted.

Interrupts are very handy for dealing with asynchronous events (events that occur at less than regular intervals).
Keyboard activity is a good example; your computer cannot predict when you might press a key and it would be a
waste of processor time for it to do nothing while waiting for a keystroke to occur. Thus, the interrupt scheme is
used and the processor proceeds with other tasks. Then, when a keystroke does occur, the keyboard ‘interrupts’ the
processor, and the processor gets the keyboard data, places it in memory, and then returns to what it was doing
before it was interrupted. Other common devices that use interrupts are modems, disk drives, and mice.

Your AD3700 board can interrupt the processor when a variety of conditions are met, such as FIFO not empty,
timer countdown finished, and others. By using these interrupts, you can write software that effectively deals with
real world events.

- Interrupt Request Lines

To allow different peripheral devices to generate interrupts on the same computer, the PC bus has eight different
interrupt request (IRQ) lines. A transition from low to high on one of these lines generates an interrupt request
which is handled by the PC’s interrupt controller. The interrupt controller checks to see if interrupts arc to be
acknowledged from that IRQ and, if another interrupt is already in progress, it decides if the new request should
supersede the one in progress or if it has to wait until the one in progress is done. This prioritizing allows an
interrupt to be interrupted if the second request has a higher priority. The priority level is based on the number of the
IRQ; IRQO has the highest priority, IRQ1 is second-highest, and so on through IRQ7, which has the lowest. Many of
the IRQs are used by the standard system resources. IRQQ is used by the system timer, IRQ1 is used by the key-
board, IRQ3 by COM2, IRQ4 by COML1, and IRQ6 by the disk drives. Therefore, it is important for you to know
which IRQ lines are available in your system for use by the AD3700 board.

- 8259 Programmable Interrupt Controller

The chip responsible for handling interrupt requests in the PC is the 8259 Programmable Interrupt Controller.
To use interrupts, you will need to know how to read and set the 8259’s interrupt mask register IMR) and how to
send the end-of-interrupt (EOI) command to the 8259.

- Interrupt Mask Register (IMR)

Each bit in the interrupt mask register (IMR) contains the mask status of an IRQ line; bit 0 is for IRQO, bit 1 is
for IRQ1, and so on. If a bit is set (equal to 1), then the corresponding IRQ is masked and it will not generate an
interrupt. If a bit is clear (equal to 0), then the corresponding IRQ is unmasked and can generate interrupts. The
IMR is programmed through port 21H.

IRQ7 | IRG6 | IRG5 | IRQ4 | IRQ3 | IRQ2 | IRQ1 | IRQO | VO Port21H

For all bits:

0 = IRQ unmasked (enabled)
1 = IRQ masked (disabled)

= End-of-Interrupt (EOI) Command

After an interrupt service routine is completed, the 8259 interrupt controller must be notified. This is done by
writing the value 20H to I/O port 20H.

- What Exactly Happens When an Interrupt Occurs?

Understanding the sequence of events when an interrupt is triggered is necessary to properly write software
interrupt handlers. When an interrupt request line is driven high by a peripheral device (such as the AD3700), the
interrupt controller checks to see if interrupts are enabled for that IRQ, and then checks to see if other interrupts are
active or requested and determines which interrupt has priority. The interrupt controller then interrupts the proces-
sor, The current code segment (CS), instruction pointer (IP), and flags are pushed on the stack for storage, and a new
CS and IP are loaded from a table that exists in the lowest 1024 bytes of memory. This table is referred to as the
interrupt vector table and each entry is called an interrupt vector. Once the new CS and IP are loaded from the
interrupt vector table, the processor begins executing the code located at CS:IP. When the interrupt routine is
completed, the CS, IP, and flags that were pushed on the stack when the interrupt occurred are now popped from the
stack and execution resumes from the point where it was interrupted.

- Using Interrupts in Your Programs

Adding interrupts to your software is not as difficult as it may seem, and what they add in terms of performance
is often worth the effort. Note, however, that although it is not that hard to use interrupts, the smallest mistake will
often lead to a system hang that requires a reboot. This can be both frustrating and time-consuming. But, after a few
tries, you’ll get the bugs worked out and enjoy the benefits of properly executed interrupts. In addition to reading the
following paragraphs, study the INTRPTS source code included on your AD3700 program disk for a better under-
standing of interrupt program development.

- Writing an Interrupt Service Routine (ISR)

The first step in adding interrupts to your software is to write the interrupt service routine (ISR). This is the
routine that will automatically be executed each time an interrupt request occurs on the specified IRQ. An ISR is
different than standard routines that you write. First, on entrance, the processor registers should be pushed onto the
stack BEFORE you do anything else. Second, just before exiting your ISR, you must write an end-of-interrupt
(EOI) command to the 8259 interrupt controller. Finally, when exiting the ISR, in addition to popping all the
registers you pushed on entrance, you must use the IRET instruction and not a plain RET. The IRET automatically
pops the flags, CS, and IP that were pushed when the interrupt was called.

If you find yourself intimidated by interrupt programming, take heart. Most Pascal and C compilers allow you
to identify a procedure (function) as an interrupt type and will automatically add these instructions to your ISR, with
one important exception: most compilers do not automatically add the end-of-interrupt command to the procedure;
you must do this yourself. Other than this and the few exceptions discussed below, you can write your ISR just like
any other routine. It can call other functions and procedures in your program and it can access global data. If you are
writing your first ISR, we recommend that you stick to the basics; just something that will convince you that it
works, such as incrementing a global variable.

NOTE: If you are writing an ISR using assembly language, you are responsible for pushing and popping
registers and using IRET instead of RET.

There are a few cautions you must consider when writing your ISR. The most important is, do not use any
DOS functions or routines that call DOS functions from within an ISR. DOS is not reentrant; that is, a DOS
function cannot call itself. In typical programming, this will not happen because of the way DOS is written. But
what about when using interrupts? Then, you could have a situation such as this in your program. If DOS function X
is being executed when an interrupt occurs and the interrupt routine makes a call to DOS function X, then function
X is essentially being called while it is already active. Such a reentrancy attempt spells disaster because DOS
functions are not written to support it. This is a complex concept and you do not need to understand it. Just make
sure that you do not call any DOS functions from within your ISR. The one wrinkle is that, unfortunately, it is not
obvious which library routines included with your compiler use DOS functions. A rule of thumb is that routines
which write to the screen, or check the status of or read the keyboard, and any disk I/O routines use DOS and should
be avoided in your ISR.

The same problem of reentrancy exists for many floating point emulators as well, meaning you may have to
avoid floating point (real) math in your ISR,

4-19

Note that the problem of reentrancy exists, no matter what programming language you are using. Even if you
are writing your ISR in assembly language, DOS and many floating point emulators are not reentrant. Of course,
there are ways around this problem, such as those which involve checking to see if any DOS functions are currently
active when your ISR is called, but such solutions are well beyond the scope of this discussion.

The second major concern when writing your ISR is to make it as short as possible in terms of execution time.
Spending long periods of time in your ISR may mean that other important interrupts are being ignored. Also, if you
spend 100 long in your ISR, it may be called again before you have completed handling the first run. This often leads
to a hang that requires a reboot.

Your ISR should have this structure:

» Push any processor registers used in your ISR. Most C and Pascal interrupt routines automatically do this for
you.

« Put the body of your routine here.
» Issue the EOI command to the 8259 interrupt controller by writing 20H to port 20H.
» Pop all registers pushed on entrance. Most C and Pascal interrupt routines automatically do this for you.
The following C and Pascal examples show what the shell of your ISR should be like:
InC:

void interrupt ISR(void)

{
/* Your code goes here. Do not use any DOS functions! */

outportb (0x20, 0x20); /* Send EOI command to 8259 */
}
In Pascal:

Procedure ISR; Interrupt:;

begin
{ Your code goes here. Do not use any DOS functions! }
Port[$20] := $20; { Send EOI command to 8259 }
end;

- Saving the Startup Interrupt Mask Register (IMR) and Interrupt Vector

The next step after writing the ISR is to save the startup state of the interrupt mask register and the interrupt
vector that you will be using. The IMR is located at I/O port 21H. The interrupt vector you will be using is located
in the interrupt vector table which is simply an array of 256-bit (4-byte) pointers and is located in the first 1024
bytes of memory (Segment = 0, Offset = 0). You can read this value directly, but it is a better practice to use DOS
function 35H (get interrupt vector). Most C and Pascal compilers provide a library routine for reading the value of a
vector. The vectors for the hardware interrupts are vectors 8 through 15, where IRQO uses vector 8, IRQ1 uses
vector 9, and so on. Thus, if the AD3700 will be using IRQ3, you should save the value of interrupt vector 11.

Before you install your ISR, temporarily mask out the IRQ you will be using. This prevents the IRQ from
requesting an interrupt while you are installing and initializing your ISR. To mask the IRQ, read in the current IMR
at /O port 21H and set the bit that corresponds to your IRQ (remember, setting a bit disables interrupts on that IRQ
while clearing a bit enables them). The IMR is arranged so that bit 0 is for IRQO, bit 1 is for IRQ1, and so on. See
the paragraph entitled Interrupt Mask Register (IMR) earlier in this chapter for help in determining your IRQ’s bit.
After setting the bit, write the new value to I/O port 21H.

With the startup IMR saved and the interrupts on your IRQ temporarily disabled, you can assign the interrupt
vector to point to your ISR. Again, you can overwrite the appropriate entry in the vector table with a direct memory
write, but this is a bad practice. Instead, use either DOS function 25H (set interrupt vector) or, if your compiler
provides it, the library routine for setting an interrupt vector. Remember that vector 8 is for IRQO, vector 9 is for
IRQ1, and so on.

4-20

If you need to program the source of your interrupts, do that next. For example, if you are using the program-
mable interval timer to generate interrupts, you must program it to run in the proper mode and at the proper rate.

Finally, clear the bit in the IMR for the IRQ you are using. This enables interrupts on the IRQ.

~ Restoring the Startup IMR and Interrupt Vector

Before exiting your program, you must restore the interrupt mask register and interrupt vectors to the state they
were in when your program started. To restore the IMR, write the value that was saved when your program started
to I/O port 21H. Restore the interrupt vector that was saved at startup with either DOS function 35H (get interrupt
vector), or use the library routine supplied with your compiler. Performing these two steps will guarantee that the
interrupt status of your computer is the same after running your program as it was before your program started
running.

- Common Interrupt Mistakes

+ Remember that hardware interrupts are numbered 8 through 15, even though the corresponding IRQs are
numbered 0 through 7.

» One of the most common mistakes when writing an ISR is forgetting to issue the EOI command to the 8259
interrupt controller before exiting the ISR.

« Data Transfers Using DMA

Direct Memory Access (DMA) transfers data between a peripheral device and PC memory without using the
processor as an intermediate. Bypassing the processor in this way allows very fast transfer rates. All PCs contain the
necessary hardware components for accomplishing DMA. However, software support for DMA is not included as
part of the BIOS or DOS, leaving you with the task of programming the DMA controller yourself. With a little care,
such programming can be successfully and efficiently achieved.

The following discussion is based on using the DMA controller to get data from a peripheral device and write it
to memory. The opposite can also be done; the DMA controller can read data from memory and pass it to a periph-
eral device. There are a few minor differences, mostly concerning programming the DMA controller, but in general
the process is the same.

The following steps are required when using DMA:

Choose a DMA channel.

Allocate a buffer.

Calculate the page and offset of the buffer.

Set the DMA page register.

Program the DMA controller.

Program the device generating data (AD3700).
Wait until DMA is complete.

Disable DMA.

Each step is detailed in the following paragraphs.

e BN

- Choosing a DMA Channel

There are a number of DMA channels available on the PC for use by peripheral devices. The AD3700 can use
either DMA channel 1 or DMA channel 3. You can arbitrarily choose one or the other; in most cases either choice is
fine. Occasionally though, you will have another peripheral device (for example, a tape backup or Bernoulli drive)
that also uses the DMA channel you have selected. This will certainly cause erratic results and can be hard to detect.
The best approach to pinpoint this problem is to read the documentation for the other peripheral devices in your
computer and try to determine which DMA channel each uses.

- Allocating a DMA Buffer

When using DMA, you must have a location in memory where the DMA controller will place data from the
AD3700 board. This buffer can be either static or dynamically allocated. Just be sure that its location will not change
while DMA is in progress. The following code examples show how to allocate buffers for use with DMA.

In Pascal:

Var Buffer :
-or-

Array[1..10000] of Byte; { static allocation }

Var Buffer : “Byte; {dynamic allocation }

Buffer := GetMem(10000);

InC:

char Buffer[10000];
-0r-

/* static allocation */

char *Buffer; /* dynamic allocation */

Buffer = calloc (10000, 0);

In BASIC:
DIM BUFFER% (5000)

- Calculating the Page and Offset of a Buffer

Once you have a buffer into which to place your data, you must inform the DMA controller of the location of
this buffer. This is a little more complex than it sounds because the DMA controller uses a page:offset memory
scheme, while you are probably used to thinking about your computer’s memory in terms of a segment:offset
scheme. Paged memory is simply memory that occupies contiguous, non-overlapping blocks of memory, with each
block being 64K (one page) in length. The first page (page 0) starts at the first byte of memory, the second page
(page 1) starts at byte 65536, the third page (page 2) at byte 131072, and so on. A computer with 640K of memory
has 10 pages of memory.

The DMA controller can write to (or read from) only one page without being reprogrammed. This means that
the DMA controller has access to only 64K of memory at a time. If you program it to use page 3, it cannot use any
other page until you reprogram it to do so.

When DMA is started, the DMA controller is programmed to place data at a specified offset into a specified
page (for example, start writing at byte 512 of page 3). Each time a byte of data is written by the controller, the
offset is automatically incremented so the next byte will be placed in the next memory location, The problem for
you when programming these values is figuring out what the corresponding page and offset are for your buffer.
Most compilers contain macros or functions that allow you to directly determine the segment and offset of a data
structure, but not the page and offset. Therefore, you must calculate the page number and offset yourself. Probably
the most intuitive way of doing this is to convert the segment:offset address of your buffer to a linear address and
then convert that linear address to a page:offset address. The table below shows functions/macros for determining
the segment and offset of a buffer.

Language Segment Offset
c FP_SEG FP_OFF
s = FP_SEG(&Buffer) o = FP_OFF(&Buffer)
Pascal Seg Ofs
S := Seg(Buffer) O = Ofs(Buffer)
BASIC VARSEG VARPTR
S = VARSEG(BUFFER) O = VARPTR(BUFFER)

4-22

Once you’ve determined the segment and offset, multiply the segment by 16 and add the offset to give you the
linear address. (Make sure you store this result in a long integer, or DWORD, or the results will be meaningless.)
The page number is the quotient of the division of the linear address by 65536 and the offset into the page is the
remainder of that division. Below are some programming examples for Pascal, C, and BASIC.

In Pascal:

Segment := SEG(Buffer);

Offset := OFS (Buffer);

Linear Address := Segment * 16 + Offset;
Page := LinearAddress DIV 65536;

get segment of buffer }

get offset of buffer }

calculate a linear address }

determine page corresponding to this linear

e e R

address }
PageOffset := LinearAddress MOD 65536; { determine offset into the page }
InC:
segment = FP_SEG (&Buffer); /* get segment of buffer */
offset = FP_OFS (&Buffer); /* get offset of buffer */
linear_address = segment * 16 + offset; /* calculate a linear address */
page = linear address / 65536; /* determine page corresponding to this linear
address */
page offset = linear address % 65536; /* determine offset into the page */
In BASIC:

S = VARSEG (BUFFER)

O = VARPTR(BUFFER)

IA= S * 16 + O

PAGE = INT(LA / 65536)
POFF = LA - (PAGE * 65536)

Beware! There is one big catch when using page-based addresses. The DMA controller cannot write properly to
a buffer that ‘straddles’ a page boundary. A buffer straddles a page boundary if one part of the buffer resides in one
page of memory while another part resides in the following page. The DMA controller cannot properly write to such
a buffer because the DMA controller can only write to one page without reprogramming. When it reaches the end of
the current page, it does not start writing to the next page. Instead, it starts writing back at the first byte of the
current page. This can be disastrous if the beginning of the page does not correspond to your buffer. More often than
not, this location is being used by the code portion of your program or the operating system, and writing data to it
almost always causes bizarre behavior and an eventual system crash.

You must check to see if your buffer straddles a page boundary and, if it does, take action to prevent the DMA
controller from trying to write to the portion that continues on the next page You can reduce the size of the buffer or
try to reposition the buffer. However, this can be difficult when using large static data structures, and often, the only
solution is to use dynamically allocated memory.

- Setting the DMA Page Register

Oddly enough, you do not inform the DMA controller directly of the page to be used. Instead, you put the page
to be used into the DMA page register which is separate from the DMA controller, as shown in the table below. The
location of this register depends on the DMA channel being used.

DMA Channel Location of Page Register
1 83/(131)

3 82/(130)

« The DMA Controller

The DMA controller is a complex chip that occupies the first 16 bytes of the PC’s I/O port space. A complete
discussion on how it operates is beyond the scope of this manual; only relevant information is included here. The
DMA controller is programmed by writing to the DMA registers in your PC. The table below lists these registers.
Note that when you write 16-bit values to any of these registers (such as to the Count registers), you must write the
LSB first, followed by the MSB.

Address hex/(decimal) Register Description
02/{02) Channel 1 Page Offset (write 2 bytes, LSB first)
03/(03) Channel 1 Count (write 2 bytes, LSB first)
06/(06) Channel 3 Page Offset (write 2 bytes, LSB first)
07/(07) Channel 3 Count (write 2 bytes, LSB first)
0A/(10) Single Mask Register
oB/(11) Mode Register (write only)
0C/(12) Clear Byte Pointer Flip-Flop (write only)

If you are using DMA channel 1, write your page offset and count to ports 02H and 03H; if you are using
channel 3, write your page offset and count to ports 06H and 07H. The page offset is simply the offset that you
calculated for your buffer (see discussion above). Count indicates the number of bytes that you want the DMA
controller to transfer. Remember that each digitized sample from the AD3700 consists of 2 bytes, so the count that
you write to the DMA controller should be equal to (the number of samples x 2) - 1. The single mask register and
mode register are described below. The clear byte pointer sets an internal flip-flop on the DMA controller that keeps
track of whether the LSB or MSB will be sent next to registers that accept both LSB and MSB. Ordinarily, you
never need to write to this port, but it is a good habit to do so before programming the DMA controller. Writing any
value to this port clears the flip-flop.

- DMA Single Mask Register

The DMA single mask register is used to enable or disable DMA on a specified DMA channel. You should
mask (disable) DMA on the DMA channel you will be using while programming the DMA controller. After the
DMA controller has been programmed and the AD3700 has been programmed to sample data, you can enable DMA
by clearing the mask bit for the DMA channel you are using. You should manually disable DMA by seiting the
mask bit before exiting your program or, if for some reason, sampling is halted before the DMA controller has
transferred all the data it was programmed to transfer. If you leave DMA enabled and it has not transferred all the
data it was programmed to transfer, it will resume transfers the next time data appears in the AD3700 FIFO. This
can spell disaster if your program has ended and the buffer has been reallocated to another application.

X X X X X B2 B1 BO 1/0 Port 0AH

-

Channel Select
Mask Bit 00 = Channel 0
0=unmask 01 = Channel 1
1 = mask 10 = Channel 2

11 = Channel 3

4-24

- DMA Mode Register

The DMA mode register is used to set parameters for the DMA channel you will be using. The read/write bits
are self explanatory; the read mode cannot be used with the AD3700. Autoinitialization allows the DMA controller
to automatically start over once it has transferred the requested number of bytes. Decrement means the DMA
controller should decrement its offset counter after each transfer; the default is increment, We recommend that you
use either the demand or single transfer mode when transferring data. The demand mode transfers data to the PC on
demand. The single transfer mode forces the DMA controller to relinquish every other cycle so that the processor
can take care of other tasks. We recommend that you do not use the block mode since it can tie up the processor and
interfere with system operation.

B7 | B6 | Bs | B4 | B3 | B2 | B1 | BO I/O Port 0BH

I_l__l [|]]]
Transfer Mode Channel Select
00 = demand ‘I)\utzinitgfllzatlon 00 = Channel 0
01 = single transfer 1 = |sab'e 01 = Channel 1
10 = block = enavle 10 = Channel 2
11 = cascade : 11 = Channel 3

Offset Counter .
0 = increment Read/V\.l rite
1 = decrement 01 = write

10 = read (not used with AD3700)

- Programming the DMA Controller
To program the DMA controller, follow these steps:

1. Clear the byte pointer flip-flop.

2. Disable DMA on the channel you are using.

3. Write the DMA mode register to choose the DMA parameters.
4. Write the LSB of the page offset of your buffer.

5. Write the MSB of the page offset of your buffer.

6. Write the LSB of the number of bytes to transfer.

7. Write the MSB of the number of bytes to transfer.

8. Enable DMA on the channel you are using.

- Programming the AD3700 for DMA

Once you have set up the DMA controller, you must program the AD3700 for DMA., The following steps list
this procedure:

1. Set the DMA channel bits in the IRQ DMA register.
2. Set the channel scan mode.

3. Set the triggering mode.

4. Program the pacer clock (if appropriate).

5. Start conversions.

6. Monitor the DMA done bit.

NOTE: If the DMA is set up in the single transfer mode, each DMA transfer will take two read cycles to
complete. Therefore, when you run the AD3700 at 200 kHz in this mode, the DMA transfer rate cannot keep up with
the board’s conversion rate. Single transfers will run with the board up to about 120 kHz. Above 120 kHz, the FIFO
can be used as a storage bin for the converted data until the DMA can transfer it to PC memory or the demand mode
can be used.

4-25

- Monitoring for DMA Done

There are two ways to monitor for DMA done. The easiest is to poll the DMA done bit in the AD3700 status
register (BA + 3). While DMA is in progress, the bit is clear (0). When DMA is complete, the bit is set (1). The
second way to check is to use the DMA done signal to generate an interrupt. An interrupt can immediately notify
your program that DMA is done and any actions can be taken as necded. Both methods are demonstrated in the
sample C and Pascal programs, the polling method in the program named DMA and the interrupt method in
DMASTR.

- Common DMA Problems
» Make sure that your buffer is large enough to hold all of the data you program the DMA controller to transfer.
« Check to be sure that your buffer does not straddle a page boundary.

» Remember that the number of bytes for the DMA controller to transfer is equal to twice the number of
samples. This is because each sample is two bytes in size.

« If you terminate sampling before the DMA controller has transferred the number of bytes it was programmed
for, be sure to disable DMA by setting the mask bit in the single mask register.

Timer/Counters

Two 8254 programmable interval timers, TC1 and TC2, each provide three 16-bit, 8-MHz timer/counters for
timing and counting functions such as frequency measurement, event counting, and interrupts. Two of the timer/
counters in TC1 are cascaded and used for the pacer clock, discussed earlier in this chapter. The remaining four
timer/counters, Counter 2 in TC1 and Counters 0, 1, and 2, cascaded on TC2, are available for your use. Figure 4-10
shows the timer/counter circuitry.

Each timer/counter has two inputs, CLK in and GATE in, and one output, timer/counter OUT. They can be
programmed as binary or BCD down counters by writing the appropriate data to the command word, as described in
the I/O map section at the beginning of this chapter.

One of two clock sources, the on-board 5-MHz crystal or the external clock (P2-45), can be jumpered as the
clock input to TC1, Counter 2 and/or TC2’s timer/counters. The clock source for the pacer clock is jumper-select-
able for 5 MHz or the external pacer clock (P2-41). The diagram shows how these clock sources are connected to
the timer/counters.

Two gate sources are available for enabling the timer/counters: a +5 volt source and an external gate source
(P2-46). The same external gate source is connected to TC1, Counter 2 and the timer/counters in TC2.

The output from TC1, Counter 2 is available at the COUNTER OUT pin (P2-44) on the I/O connector where it
can be used for interrupt generation, as an A/D trigger, or for counting functions. Any one of the three TC2 timer/
counter outputs or the 5-MHz clock can be connected to the TIMER OUT pin (P2-42) on the I/O connector where it
can be used for interrupt generation, as an A/D trigger, or for timing functions. These connections are jumper-
selectable.

The timer/counters can be programmed to operate in one of six modes, depending on your application. For
example, when measuring frequencies, the timer/counters in TC2 are set up for Mode 3 and TC1, Counter 2 is set up
for Mode 0; when using it as an event counter, it is set up for Mode 0; and the pacer clock is set up for Mode 2. The
following paragraphs briefly describe each mode.

Mode 0, Event Counter (Interrupt on Terminal Count). This mode is typically used for event counting.
While the timer/counter counts down, the output is low, and when the count is complete, it goes high. The output
stays high until a new Mode 0 control word is written to the timer/counter.

Mode 1, Hardware-Retriggerable One-Shot. The output is initially high and goes low on the clock pulse
following a trigger to begin the one-shot pulse. The output remains low until the count reaches 0, and then goes high
and remains high until the clock pulse after the next trigger.

4-26

Mode 2, Rate Generator. This mode functions like a divide-by-N counter and is typically used to generate a
real-time clock interrupt. The output is initially high, and when the count decrements to 1, the output goes low for
one clock pulse. The output then goes high again, the timer/counter reloads the initial count, and the process is
repeated. This sequence continues indefinitely.

Mode 3, Square Wave Mode. Similar to Mode 2 except for the duty cycle output, this mode is typically used
for baud rate generation. The output is initially high, and when the count decrements to one-half its initial count, the
output goes low for the remainder of the count. The timer/counter reloads and the output goes high again. This
process repeats indefinitely.

Mode 4, Software-Triggered Strobe. The output is initially high. When the initial count expires, the output
goes low for one clock pulse and then goes high again. Counting is “triggered” by writing the initial count.

Mode 5, Hardware Triggered Strobe (Retriggerable). The output is initially high. Counting is triggered by
the rising edge of the gate input. When the initial count has expired, the output goes low for one clock pulse and
then goes high again.

i.__....___.(;;.u_ _______ 1 I S Mz (XTAL)
| TIMER/COUNTER 1 | M L5 vouTS
| 1] oo |
= COUNTER oL H o o | %
| N 6335 I lo o <}; i EXTERNAL PACER CLOCK
i [—-——a
i 1
| |
I oLk i PACER CLOCK
| COUNTER GATE 1
| 1 | e
1 our T Iopso
i 1 e) 5 MHz (XTAL)
I ! o +5 VOLTS
| H]
: CLK : io O
COUNTER GATE
! 2 H L—o—o o < EXTERNAL GLOCK
: our I el ~
L
L i +o o —JorTE—— +5 YoLTs
—_—l |
_______________ | O o
il
EXTERNAL GATE
__________________ - ll> COUNTER OUT
! TIMER/COUNTER 2] T
1 | I :
I I -
] CLK 1 . . + § MHz (XTAL)
l COUNTER GATE 4 ! !
: out : 2.9 I'
i)
1 | Lo o+ +6 VOLTS
; | ['I 1
| O
I] I ees)
\ COUNTER CLK i Ld o N TIMER OUT
1 GATE et 1 | | l/
| ! out + i‘Q Ot—
1 | |
i 1 -——__Lo O]
l | ! !
I cLK i o—+—
\ COUNTER GATE — 1 LI |
: out : 5 MHz (XTAL)
e e |

Fig. 4-10 — 8254 Programmabile interval Timer Circuits Block Diagram

4-27

Digital /O

The eight digital input and eight digital output lines can be used to transfer data between the computer and
external devices. The digital input lines have pull-up resistors as shown in Figure 4-11 so that they will be pulled
high when the input source is disconnected. This is ideal to support switching applications.

The digital input data can be read at I/O port BA + 0 and transferred into PC memory. To output data, the
desired value is written to I/0 port BA + 0 and sent out to the external device connected to the digital output pins on

external I/O connector P2.

i

o

>

\

DIN O
DIN 1
DIN 2
DIN 3
DIN 4
DIN 5
DIN 6
DIN 7

Fig. 4-11 — Digital Input Pull-up Resistors

4-28

—————— e]
|

Example Programs and Flow Diagrams

Included with the AD3700 is a set of example programs that demonstrate the use of many of the board’s
features. These examples are in written in C, Pascal, and BASIC. Also included is an easy-to-use menu-driven
diagnostics program, 3700DIAG, which is especially helpful when you are first checking out your board after
installation and when calibrating the board (Chapter 5).

Before using the software included with your board, make a backup copy of the disk. You may make as many
backups as you need.
C and Pascal Programs

These programs are source code files so that you can easily develop your own custom software for your
AD3700 board. In the C directory, AD3700.H and AD3700.INC contain all the functions needed to implement the
main C programs. H defines the addresses and INC contains the routines called by the main programs. In the Pascal
directory, AD3700.PNC contains all of the procedures needed to implement the main Pascal programs.

Analog-to-Digital:

SOFTTRIG Demonstrates how to use the software trigger mode for acquiring data.

EXTTRIG Similar to SOFTTRIG except that an external trigger is used.

MULTI Shows how to fill an array with data using a software trigger.

MULTGATE Shows how to use the external trigger to gate multiple conversions.

SCANN Demonstrates channel scanning of five channels

Timer/Counters:

TIMER A short program demonstrating how to program the 8254 for use as a timer.

Digital I/O;

DIGITAL Simple program that shows how to read from and write to the digital I/O lines.

Interrupts:

INTRPTS Shows the bare essentials required for using interrupts.

INTSTR A complete program showing interrupt-based streaming to disk.

DMA:

DMA Demonstrates how to use DMA to acquire data to a memory buffer. Buffer can be written
to disk and viewed with the included VIEWDAT program.

DMASTR Demonstrates how to use DMA for disk streaming. Very high continuous acquisition
rates can be obtained.

BASIC Programs

These programs are source code files so that you can easily develop your own custom software for your
AD3700 board.

Analog-to-Digital:

SINGLE Demonstrates how to use the single convert, internal trigger mode for acquiring data.
SCAN Shows how to scan channels.

FIFO:

FIFO Shows how to run the pacer clock and use the on-board FIFO.

DMA:

DMA Shows how to take samples and transfer them to PC memory using DMA.

4-29

Flow Diagrams

The following paragraphs provide descriptions and flow diagrams for some of the AD3700’s A/D conversion
functions. These diagrams will help you to build your own custom applications programs.

» Single Convert Flow Diagram (Figure 4-12)

This flow diagram shows you the steps for taking a single sample on a selected channel. A sample is taken each
time you send the Start Convert command. All of the samples will be taken on the same channel until you change
the value in the CHANNEL/CONVERSION MODE SELECT register (BA + 1). Changing this value before each
Start Convert command is issued lets you take the next reading from a different channel.

By changing the value in the CHANNEL/CONVERSION MODE SELECT register, you can change your
program so that a sample is taken each time an external trigger occurs.

Clear Board

v

Clear FIFO

Select Channel

Change
Channel?

Start
Conversion

|

Check FIFO
Empty Flag
EF =1?

Read MSB

v

Read LSB

Continue? Stop Program

Fig. 4-12 — Single Convert Flow Diagram

« FIFO Flow Diagram (Figure 4-13)

This flow diagram shows you how to run the AD3700 from the pacer clock and use the on-board FIFO interface
to store the converted data. You program the clock rate and take samples until the FIFO is full (FIFO full flag = 0).
The samples are then read from the FIFO and displayed. A sample is taken each time the pacer clock generates a
pulse. By using the pacer clock, the time interval between samples can be precisely set. The total number of samples
taken depends on the size of the FIFO on your board. Each sample is sent to the FIFO in two 8-bit words, the MSB
and the LSB. A 2K FIFO can hold 1024 samples, a 4K FIFO can hold 2048 samples, and an 8K FIFO can hold 4096
samples. The samples are taken on the channel specified in the bottom three bits of the CHANNEL/CONVERSION
MODE SELECT register (BA + 1). By setting the channel select option bit in this register to Scan Channel, the

converter will incrementally scan through all eight channels and store the data.

Clear Board

v

Program
Pacer Clock

v

Select Pacer Clock
Operation:
Multiconvert/
internal Gate

v

Select Channel

v

Clear FIFO

v

Start
Conversion

Check FIFO
Full Flag
FF =07

Read MSB

v

Read LSB

Fig. 4-13 — FIFO Flow Diagram

No

Check FIFO
Empty Flag
EF =0?

Stop Program

4-31

* DMA Flow Diagram (Figure 4-14)

This flow diagram shows you how to take samples and transfer the data directly into the computer’s memory.
You can use DMA channel 1 or 3 to transfer 1024 samples (2048 bytes) to the computer’s memory.

Clear Board

v

Program
Pacer Clock

v

Select Pacer Clock
Operation:
Multiconvert/
Internal Gate

v

Select Channel

v

| Select DMA
| Channel

v

Clear
DMA Done Bit

v

Clear FIFO

v

Program DMA
Controller

v

Start
Conversion

Check if
converter halted
HALT =1?

No

Report Error:
FIFO full before if DMA done Stop Proaram
DMA was done. DMA DONE = 12 P o9
Stop Program

Fig. 4-14 — DMA Flow Diagram

432

+ Scan Flow Diagram (Figure 4-15)

This flow diagram shows you how to take samples from a sequence of channels without selecting the channel
each time a conversion is started.

By setting the channel select option bit in the CHANNEL/CONVERSION MODE SELECT register (BA + 1)
to Scan Channel and setting the number of channels to be scanned at BA + 2, the converter will automatically
increment the channel each time the Start Convert command is sent. The first channel sampled is the channel that is
specified in the bottom three bits of the CHANNEL/CONVERSION MODE SELECT register. When the board
increments through the number of channels programmed at BA + 2, it automatically starts over at the first channel in
the sequence.

By changing the value in the CHANNEL/CONVERSION MODE SELECT register, you can change your
program so that a sample is taken each time an external trigger occurs.

Clear Board

v

Clear FIFO

v

Select Channel
Scan Mode,
Number of
Channels to Scan

v

Start
Conversion

|

Check FIFO
Empty Flag
EF =17

Read MSB
¢ Yes
" No
Read LSB Continue? Stop Program

Fig. 4-15 — Scan Flow Diagram

4-33

* Interrupts Flow Diagram (Figure 4-16)

| This flow diagram shows you how to program an interrupt routine for your AD3700. The diagram parallels the
| interrupts discussion included in the chapter. You can use this diagram in conjunction with the detailed text in this
chapter to develop an interrupt program for your AD3700.

Clear Board

v

Save startup
IMR value

v

Clear FIFO

Save startup
interrupt vector

v

v

Clear IRQ bit
in IMR

Set IRQ bit
in IMR

v

v

Body of user
program

Vector new
interrupt service
routine (ISR)

v

v

Set interrupt
disabled bit in

IRQ/DMA register

Program interrupt
source

v

v

Restore startup
interrupt vector

Set IRQ & interrupt
source bits in
IRQ/DMA register

v

Restore startup
IMR value

—

Stop Program

4-34

Fig. 4-16 — Interrupts Flow Diagram

CHAPTER 5

CALIBRATION

This chapter tells you how to calibrate the AD3700 using the
3700DIAG calibration program included in the example software
package and the four trimpots (TR1 through TR3 and TRS) on the
board. These trimpots calibrate the A/D converter gain and offset.

This chapter tells you how to calibrate the A/D converter gain and offset. The offset and full-scale performance
of the board’s A/D converter is factory-calibrated. Any time you suspect inaccurate readings, you can check the
accuracy of your conversions using the procedure below, and make adjusts as necessary. Using the 3700DIAG
diagnostics program is a convenient way to monitor conversions while you calibrate the board.

Calibration is done with the board installed in your PC. You can access the trimpots with the computer’s cover
removed. Power up the computer and let the board circuitry stabilize for 15 minutes before you start calibrating.

Required Equipment
The following equipment is required for calibration:

« Precision Voltage Source: -10 to +10 volts

+ Digital Voltmeter; 5-1/2 digits

 Small Screwdriver (for trimpot adjustment)

While not required, the 3700DIAG diagnostics program (included with example software) is helpful when
performing calibrations. Figure 5-1 shows the board layout. The four trimpots used for calibration are located in the
upper left area of the board.

A/D Calibration

Two procedures are used to calibrate the A/D converter for all input voltage ranges. The first procedure cali-
brates the converter for the unipolar range (0 to +10 volts), and the second procedure calibrates the bipolar ranges
(%5, £10 volts). Table 5-1 shows the ideal input voltage for each bit weight for the unipolar, straight binary range,
and Table 5-2 shows the ideal voltage for each bit weight for the bipolar, twos complement ranges.

Table 5-1 — A/D Converter Bit Weights,
Unipolar, Straight Binary

Ideal Input Voltage (millivolts)
A/D Bit Weight 0 to +10 Volts
1111 1111 1111 +9997.6
1000 0000 0000 +5000.0
0100 0000 0000 +2500.0
0010 0000 0000 +1250.0
0001 0000 0000 +625.00
0000 1000 0000 +312.50
0000 0100 0000 +156.250
0000 0010 0000 +78.125
0000 0001 0000 +39.063
0000 0000 1000 +19.5313
0000 0000 0100 +9.7656
0000 0000 0010 +4.8828
0000 0000 0001 +2.4414
0000 0000 0000 +0.0000

53

sbumeg painbyuon-Aiojoe4 buimoys inoke preog — -G Hi4

o| |

.
w@D- “@o @®"”

now

Y d

W3ILSAS TOHLNOD ® NOILISINOOV VLVG 8A3 00/EQV

en 2 m 82

$0891 "Bd “ebopo) emig
o ‘500 i Ieo

" L] mn 0
0000000000 0000000000 00000000 Qoooooon OOOOOOOH [e]eXo o oX]o] oQ0oooo00Dn 00000008 M\"”
L omomgl)—woi [i @_Il:s [_wiomgf[s m!mlm

0000000000 0600000000'J 60000000 ooooooo oooooooo 0000000 000006000 G606000600
A n 80 oin 810 (2 IS an 210 [{1 I %] nn "o sin UFO wixK °
50000000008 ™ 00000008 [0000000000 M) 0000000 () 00000000 ooooooooou ooooooooon w0 ”u S
O _ ﬁum._lwm_ sorLonrz QF |1 ﬂukorﬁnmj mmwm#nlnm_ 8¢ox§.m _ :.Nm#nw _ ﬂﬁ.o.._ﬁw wolool o
m 000000006002 000600000 'J060600000000 000600002 0006600006' 66660000602 66600600000 u
m 21N 910 Hn 1o @in 8D an 8o gA.N.NHN.~..§ [*~] o
n 0000000000 [00000000) 0000000008 ™ 0000000 00000000 (3 0000000000 (4 000000000m (3 “IOF w
= [s&m#m r nﬁkoxﬁiﬁ [waionr. ¢ m [eoromw:¢ m [eeromd m | wzLonnL m [YWZLOHYL m a0 o
8660666066602 606666600 2006006066602 6666600 ' 66666060 66006600600 6066660000 §5@ b
i
o] o[7]o o[Jlo o[Jo of Jo o Jo o[Jo o oooooooou 56
o[Jo =o En z |9 B o O ol |lo ol [0 of |[o of |o o |o of |o o ogzsuﬁ,rm:
ol o 3 la o O ol o o].lo o jo o],J]o o|f.lo o]_,lo o_lo
of o= e |o w O O ojflo o[flo ofjzjo o|flo olfjo~0 5|0 o|Z|joococo000 “oY o
=0 o mm o b4 S o|glo ofglo ol-lo ~olglo ofgiofo|g|o O[S0 5600000m2RY O
o| 2o o o 2 O o|flo o|s|o o|glofa)ojFlo o|Flo| |oiFjo o F|o T o
Omo o e S olnla=olnlam=ol %o [olAla«= olAjaloJolAla= ol Ja[— sewonr Qe °
ol E:.o S om 9 o @B=E B~ NYE D= ¥ *C D=@ D gJe065000 0
o b4 S o0 o Jo o Jo o Jo o [0 o Jo oo = [069:9
wl| 19 o o o o o © |lo. of |[o of lo o |lo of [0 of lo of |o ©° |e o
ol |0 o o o 9al© Ol.j0 Of.|0 Of.]0o ojzlo o j0 o,lo
Omo 0 2 ol8lo o|/Elo o|F|lo offlo olfle ojBlo o|B8lo @oooom2
ol oo..ba agow 9 F fc olglo o|lglo ofslo ojclo olGlo o|ltlo olS|e "~
%EEo 2 © o olile olifc olfle olE[e 9li[e olfle o[20009
Bols D B @B A A A e e e e o |
TR 2 6B kY. CD~C B=ECD=ED~ED=~E B~ D= L. F55os «
VBT U SN dH 34 SSIHO0Y ISVE

.

000000000000

000000000000

i 82C54

c

)
L]

5-4

Table 5-2 — A/D Converter Bit Weights,
Bipolar, Twos Complement
Ideal Input Voltage (milllivolts)
A/D Bit Weight -5 to +5 Volts -10 to +10 Volts
1111 1111 1111 -2.44 -4.88
1000 0000 0000 -5000.00 -10000.00
0100 0000 0000 +2500.00 +5000.00
0010 0000 0000 +1250.00 +2500.00
0001 0000 0000 +625.00 +1250.00
0000 1000 0000 +312.50 +625.00
0000 0100 0000 +156.25 +312.50
0000 0010 0000 +78.13 +156.25
0000 0001 0000 +39.06 +78.13
0000 0000 1000 +19.53 +39.06
0000 0000 0100 +9.77 +19.53
0000 0000 0010 +4.88 +9.77
0000 0000 0001 +2.44 +4.88
0000 0000 0000 0.00 0.00
Unipolar Calibration

Two adjustments are made to calibrate the A/D converter for the unipofar range of 0 to +10 volts. One is the
offset adjustment, and the other is the full scale, or gain, adjustment. Trimpot TRS is used to make the offset
adjustment, and trimpot TR1 is used for gain adjustment. This calibration procedure is performed with the board set
up for a 0 to +10 volt input range. Before making these adjustments, make sure that the jumper on P3 is set for 10V
and the jumper on PS5 is set for +,

Use analog input channel 1 while calibrating the board. Connect your precision voltage source to channel 1. Set
the voltage source to0 +1.22070 millivolts, start a conversion, and read the resulting data. Adjust trimpot TRS until it
flickers between the values listed in the table below. Next, set the voltage to +9.49829 volts, and repeat the proce-
dure, this time adjusting TR1 until the data flickers between the values in the table. Note that the value used to adjust
the full scale voltage is not the ideal full scale value for a 0 to +10 volt input range. This value is used because it is
the maximum value at which the A/D converter is guaranteed to be linear, and ensures accurate calibration resuls.

Data Values for Calibrating Unipolar 10 Volt Range (0 to +10 volts)

Otfset (TR5) Converter Gain (TR1)
Input Voltage = +1.22070 mV | Input Voltage = +9.49829 V

0000 0000 0000 1111 0011 0010
A/D Converted Data 0000 0000 0001 1111 0011 0011
5-5

Bipolar Calibration
» Bipolar Range Adjustments: -5 to +5 Volts

Two adjustments are made to calibrate the A/D converter for the bipolar range of -5 to +5 volts. One is the
offset adjustment, and the other is the full scale, or gain, adjustment. Trimpot TR2 is used to make the offset
adjustment, and trimpot TR1 is used for gain adjustment. Before making these adjustments, make sure that the
jumper on P3 is set for 10V and the jumper on P5 is set for +/-.

Use analog input channel 1 and set it for a gain of 1 while calibrating the board. Connect your precision voltage
source to channel 1. Set the voltage source to -4.99878 volts, start a conversion, and read the resulting data. Adjust
trimpot TR2 until it flickers between the values listed in the table below. Next, set the voltage to +4.99634 volts, and
repeat the procedure, this time adjusting TR1 until the data flickers between the values in the table,

Data Values for Calibrating Bipolar 10 Volt Range (-5 to +5 volts)

Offset (TR2) Converter Gain (TR1)
Input Voltage = -4.99878V | Input Voltage = +4.99634V

1000 0000 0000 0111 1111 1110
A/D Converted Data 1000 0000 0001 o111 1111 1111

* Bipolar Range Adjustments: -10 to +10 Volts

To adjust the bipolar 20-volt range (-10 to +10 volts), change the jumper on P3 so that it is installed across the
20V pins. Leave the P5 jumper at +/-. Then, set the input voltage to +5.0000 volts and adjust TR3 until the output
matches the data in the table below.

Data Value for Calibrating Bipolar 20 Volt Range (-10 to +10 volits)

TR3
Input Voltage = +5.0000V

A/D Converted Data 0100 0000 0000

5-6

APPENDIX A

A-1

AD3700 SPECIFICATIONS

AD3700 Characteristics Typical @ 25°C

Interface

IBM PC/XT/AT compatible

Switch-selectable base address, I/O mapped
Jumper-selectable interrupts
Software-selectable DMA channel

Analog Input
8 single-ended inputs

Input impedance, each channel...........ccccccnviniinccneees >10 megohms
INPUL FANGES c.oeei ettt s eeee s st sarenesaes 15, £10, or 0 to +10 volts
Overvoltage Protection ...t s 135 Vdc
SN HIMB ..c.oiirceceeirite e e 5 usec, max
A/D CONVEIET ..oceeiernrracssissssssissssessessssssssnsessssssnesmsssmassssssasssssssssessesonssansnsns AD678
TYPE ottt e s e s e Successive approximation
ReSOIULION ...ttt e srssrnr e snne e 12 bits (2.44 mV/4.88 mV)
LINBAMEY ..cocivietie i creie ettt e sece et e e s e s +1 LSB, typ
CoNVErSioN SPBEAcieereiiiintiiii et see st sresranenens 5 usec, typ
THIOUGRPUL ..cvveien ettt e s s nereaeesas e s eee st e s aese e e e e se s e e snasssesrsenes s manasensens 200 kHz
Pacer Clock
Range (using on-board Clock)ccccvvvrrrrcnrieneesrerernsenneeniesenens 14 minutes to 5 usec
1 2K, 4K, or 8K
IDT7203 ...ttt st e tssaeatssne s sse s rnve e 2048 bytes, 1024 samples
IDT7204......cooeieeirnserecneraeieeies st ete e sseasresessae e srssnanns 4096 bytes, 2048 samples
IDTT7205.....ocoecrercierce e esre s ererrseesss e se s e e e e e sne e e seeneens 8192 bytes, 4096 samples
Digital 1’0
NUMbBT Of liNeS......ccoiiiiiii et e 8 input, 8 output
TIMEr/COUNIETS ..ouveciiieinierinissisesnsnssanssnsssmssnsssessecssnsssasssssansasananes CMOS 82C54

(Optional NMOS 8254)
Six 16-bit down counters (3 per IC)

Binary or BCD counting
Programmable operating modes (6) Interrupt on terminal count; programmable
one-shot; rate generator; square wave rate generator;
software-triggered strobe; hardware-triggered strobe
Counter iNPUL SOUICEccccerrereeenerreneencesrnseesessssseraes External clock (8 MHz, max) or
on-board 5-MHz clock
Counter OULPULScccccereecceieeeceenene e ceenens Available externally; used as PC interrupts
Counter gate SOUICEceuvvecveererirseninresesrrrerassnesvnns External gate or always enabled
Miscellaneous Inputs/Outputs (PC bus-sourced)
15 volts
+12 volts
Ground
Current Requirements
FB VOIS (o e r e enae sae e ae sae s e sn e e 80 mA
FT12 VOIS oottt et st sh e e et e e r e sansars 36 mA
T2 VORS ..ottt e s e s e e e se e seesenesresnaen e e nnanns 34 mA
Connector
50-pin, right angle, shrouded box header
Size

3.875"H x 8.7"W (99mm x 221mm)

A3

APPENDIX B

P2 CONNECTOR PIN ASSIGNMENTS

B-1

B-2

AiINt1

AIN2

AIN3

AIN4

AINS

AING6

AIN7

AIN8
ANALOG GND
ANALOG GND
ANALOG GND
DIN7

DIN&

DINS

DIN4

DIN3

DIN2

DIN1

DINO
TRIGGER IN

IXT PACER CLK

TRIGGER OUT
EXT CLK

+12 VOLTS
-12 VOLTS

BleleleaeCSIHEBIGEICISEIE RSO0
CREORERERREREARBRERFREEEE

B-3

ANALOG GND
ANALOG GND
ANALOG GND
ANALOG GND
ANALOG GND
ANALOG GND
ANALOG GND
ANALOG GND
ANALOG GND
ANALOG GND
ANALOG GND
DouTt7
DOUTse
DOUTS
DOUT4
DOUT3
DOUT2
DOUTH
DOUTO
DIGITAL GND
TIMER OUT
COUNTER OU1
EXT GATE

+5 VOLTS
DIGITAL GND

APPENDIX C

COMPONENT DATA SHEETS

C-1

Intel 82C54 Programmable Interval Timer
Data Sheet Reprint

] ®
lntel 82C54

CHMOS PROGRAMMABLE INTERVAL TIMER

Compatibie with all Intel and most m Three independent 16-bit counters
other microprocessors m Low Power CHMOS

High Speed, “Zero Wait State” —Ilcc = 10 mA @ 8 MHz Count
Operation with 8 MHz 8086/88 and frequency

80186/188

Handies Inputs from DC to 8 MHz
10 MHz for 82C54-2 Six Programmable Counter Modes

Avallable In EXPRESS Binary or BCD counting
— Standard Temperature Range Status Read Back Command
— Extended Temperature Range B Available in 24-Pin DIP and 28-Pin PLCC

The Intel 82C54 is a high-performance, CHMOS version of the industry standard 8254 counter/timer which is
designed to solve the timing control problems common in microcomputer system design. It provides three
independent 16-bit counters, each capable of handling clock inputs up to 10 MHz. Al modes are software
programmable. The 82C54 is pin compatible with the HMOS 8254, and is a superset of the 8253.

Completely TTL Compatible

Six programmable timer modes allow the 82C54 to be used as an event counter, elapsed time indicator,
programmable one-shot, and in many other applications.

The 82C54 is fabricated on Intel’'s advanced CHMOS Ill tachnology which provides low power consumption
with performance equal to or greater than the equivalent HMOS product. The 82C54 is available in 24-pin DIP
and 28-pin plastic leaded chip carrier (PLCC) packages.

wg B B EMEE R
CORNER /] 3 2 1 2 27 %
oara F‘ oLk ’ D«{]s 25[INC
A —_
oroo{ 8 8US COUNTER |q ——aaTE O ;s uples
BUFFER o7 afa
P OUT 0
Di[}e 82Cs4 2 a0
f Do} o nfjoxe
choE 10 20] out2
g 9 rEAD: § f——cux s el n 1] GaTe2
WRITE 5 COU:*TER - GATE 1 L 12 13w 5 % 7 =
N o 8 OUTO GATED GND NC U1 GATE1GLKT
[—outt
A——— 2 231244-3
T 1 PLASTIC LEADED CHIP CARRIER
[+ 4 4
oy 41 T) Vec
CONTROL ——CLK2 os []2 nf) Wh
WORD @ cou;nea - GATE 2 os [}3 2 "D
REGISTER e I n &
f—— 0UT 2 el 2007 a
[} - 2018 gaces WP %
[AmEs w]cik2
Do []e t7[aouT2
cuol]e 18] aATE2
o ouro[]w0 ek
231244-1 GATEO (] 11 1w cares
Figure 1. 82C54 Block Diagram Gnp (]2 1w[Jouts
. 231244-2
Diagrams are for pin reference only.
Package sizes are not to scale.
Figure 2. 82C54 Pinout
September 1989

3-83 Order Number: 231244-005

82C54

Table 1. Pin Description

Symbol Pin Number Type Function
DiP PLCC
D7-Do 1-8 2-9 170 Data: Bidirectional tri-state data bus lines,
: connected to system data bus.

CLKO 9 10 | Clock 0: Ciock input of Counter 0.

ouUTo 10 12 0] Qutput 0: Output of Counter 0.

GATEO 11 13 | Gate 0: Gate input of Counter 0.

GND 12 14 Ground: Power supply connection.

OuUT 1 13 16 0] Out 1: Output of Counter 1.

GATE 1 14 17 | Gate 1: Gate input of Counter 1.

CLK 1 15 18 | Clock 1: Clock input of Counter 1.

GATE 2 16 19 - Gate 2: Gate input of Counter 2.

ouT 2 17 20 O Out 2: Output of Counter 2.

ClLK2 18 21 I Clock 2: Clock input of Counter 2.

A4, Ag 20-19 23-22 | Address: Used to select one of the three Counters
or the Control Word Register for read or write
operations. Normally connected to the system
address bus.

A4 Ag Selects

0 0 Counter 0

o 1 Counter 1

1 0 Counter 2

1 1 Control Word Register

Cs 21 24 I Chip Select: A low on this input enables the 82C54
to respond to RD and WR signals. RD and WR are
ignored otherwise.)

RD 22 26 I Read Control: This input is low during CPU read
operations.

WR 23 27) Write Control: This input is low during CPU write
operations.

Vee 24 28 Power: + 5V power supply connection.

NC 1,11,15, 25 No Connect

FUNCTIONAL DESCRIPTION

General

The 82C54 is a programmable interval timer/counter
designed for use with Intel microcomputer systems.
It is a general purpose, multi-timing element that can
be treated as an array of I/0O ports in the system
software.

The 82C54 solves one of the most common prob-
lems in any microcomputer system, the generation
of accurate time delays under software control. in-
stead of setting up timing loops in software, the pro-
grammer configures the 82C54 to match his require-
ments and programs one of the counters for the de-

3-84

sired delay. After the desired delay, the 82C54 will
interrupt the CPU. Software overhead is minimal and
variable length delays can easily be accommodated.

Some of the other counter/timer functions common
to microcomputers which can be implemented with
the 82C54 are:

Real time clock

Even counter

Digital one-shot :
Programmable rate generator
Square wave generator

Binary rate multiplier

Complex waveform generator
Complex motor controller

intel

82C54

Block Diagram

DATA BUS BUFFER

This 3-state, bi-directional, 8-bit buffer is used to in-
terface the 82C54 to the system bus (see Figure 3).

COUNTER §
0

COUNTER
]

INTERNAL BUS

CONTROL
WORD
REGISTER

-

COUNTER
2

ﬁ

L~
231244-4

Figure 3. Block Diagram Showing Data Bus
Buffer and Read/Write Logic Functions

READ/WRITE LOGIC

The Read/Wirite Logic accepts inputs from the sys-
tem bus and generates control signals for the other
functional blocks of the B2C54. Ay and Ap select
one of the three counters or the Control Word Regis-
ter to be read from/written into. A “low” on the RD
input tells the 82C54 that the CPU is reading one of
the counters. A “low” on the WR input tefls the
82C54 that the CPU is writing either a Control Word
or an initial count. Both RD and WR are qualified by
CS; RD and WR are ignored unless the 82C54 has
been selected by holding CS low.

CONTROL WORD REGISTER

The Control Word Register (see Figure 4) is selected
by the Read/Write Logic when A4, Ag = 11. If the
CPU then does a write operation to the 82C54, the
data is stored in the Control Word Register and is
interpreted as a Control Word used to define the
operation of the Counters.

The Control Word Register can only be written to;
status information is available with the Read-Back
Command.

INTERNAL BUS

231244-5

Figure 4. Block Diagram Showing Control Word
Register and Counter Functions

COUNTER 0, COUNTER 1, COUNTER 2

These three functional biocks are identical in opera-
tion, so only a single Counter will be described. The
internal block diagram of a single counter is shown
in Figure 5.

The Counters are fully independent. Each Counter
may operate in a different Mode.

The Control Word Register is shown in the figure; it
is not part of the Counter itself, but its contents de-
termine how the Counter operates.

3-85

INTERNAL BUS

STATUS
LATCH

STATUS
REGISTER

Olm

|

GATE n
ClXn OUTn

231244-6

Figure 5. Internal Block Diagram of a Counter .

The status register, shown in the Figure, when
latched, contains the current contents of the Control
Word Register and status of the output and nuil
count flag. (See detailed explanation of the Read-
Back command.)

The actual counter is labelled CE (for “Counting Ele-
ment”). It is a 16-bit presettabie synchronous down
counter.

OLy and OL are two 8-bit latches. OL stands for
“Output Latch”; the subscripts M and L stand for
“Most significant byte” and *‘Least significant byte”
respectively. Both are normally referred to as one
unit and calied just OL. These latches normally “fol-
low” the CE, but if a suitable Counter Latch Com-
mand is sent to the 82C54, the latches “latch” the
present count until read by the CPU and then return
to “following’’ the CE. One latch at a time is enabled

by the counter’s Control Logic to drive the internal”

bus. This is how the 16-bit Counter communicates
over the 8-bit internal bus. Note that the CE itself
cannot be read; whenever you read the count, it is
the OL that is being read.

Similarly, there are two 8-bit registers called CRy
and CR_ (for “Count Register”’). Both are normally
referred to as one unit and called just CR. When a
new count is written to the Counter, the count is

3-86

stored in the CR and latef transferred to the CE. The

Control Logic allows one register at a time to be
loaded from the internal bus. Both bytes are trans-
ferred to the CE simultaneously. CRy and CR(_ are
cleared when the Counter is programmed. In this
way, if the Counter has been programmed for one
byte counts (either most significant byte only or least
significant byte only) the other byte will be zero.
Note that the CE cannot be written into; whenever a
count is written, it is written into the CR.

The Control Logic is also shown in the diagram. CLK
n, GATE n, and OUT n are all connected to the out-
side world through the Control Logic.

82C54 SYSTEM INTERFACE

The 82C54 is treated by the systems software as an
array of peripheral 1/0 ports; three are counters and
the fourth is a control register for MODE program-
ming.

Basically, the select inputs Ag, A1 connect to the Ag,
A4 address bus signals of the CPU. The CS can be
derived directly from the address bus using a linear
select method. Or it can be connected to the output
of a decoder, such as an Intel 8205 for larger sys-
tems.

. ADDRESS BUS (16) I
[|
¢ CONTROL 8US 3
L [on Jrow
Y DATA 8US (8) I
AR II Y
Aoy TB Dy-0y L]
8284
' cou;nsn COUNTER COUNTER
0 H 2
'OUT GATE CLK' ‘ouT GATE cLx’ "OUT GATE LK
2312447

Figure 6. 82C54 System Interface

intel

82C54

OPERATIONAL DESCRIPTION

General

After power-up, the state of the 82C54 is undefined.
The Mode, count value, and output of all Counters
are undefined.

How each Counter operates is determined when itis
programmed. Each Counter must be programmed
before it can be used. Unused counters need not be
programmed.

Programming the 82C54

Counters are programmed by writing a Control Word
and then an initial count. The control word format is
shown in Figure 7.

All Control Words are written into the Control Word
Register, which is selected when A4, Ag = 11. The
Control Word itself specifies which Counter is being
programmed.

By contrast, initial counts are written into the Coun-
ters, not the Control Word Register. The Ay, Ag in-
puts are used to select the Counter to be written
into. The format of the initial count is determined by
the Control Word used.

Control Word Format

A, Ao=11 CS=0 RD=1

D7 Dg Ds Dy

Dy D, D; Dy

| sc1 | sco | rw1 | Rwo [M2 [M1 | mo | BeD |

1 1 |Read/Write least significant byte first,
then most significant byte.

NOTE: Don't care bits (X) should be 0 to insure
compatibility with future Intel products.

SC — Select Counter: M — MODE:
SC1 SCo M2 M1 MO
0 Select Counter 0 0 0 0 Mode 0
0 1 Select Counter 1 0 0 1 Mode 1
0 Select Counter 2 X 1 0 Mode 2
1 1 Read-Back Comm.and X 1 1 Mode 3
(See Read Operations) 1 0 0 Mode 4
RW — Read/Write: 1 0 ! Mode 5
RW1 RWO
0 0 |Counter Latch Command (see Read BCD:
1Operations) o] Binary Counter 16-bits
0 1 |Read/Wirite least significant byte only. 1 Binary Coded Decimal (BCD) Counter
0 |Read/Write most significant byte only. (4 Decades)

Figure 7. Control Word Format

3-87

intel

82C54

Write Operations

The programming procedure for the 82C54 is very
flexible. Only two conventions need to be remem-
bered:

1) For each Counter, the Control Word must be
written before the initial count is written.

2) The initial count must follow the count format

- specified in the Control Word (least significant
byte only, most significant byte only, or least sig-
nificant byte and then most significant byte).

Since the Control Word Register and the three
Counters have separate addresses (selected by the
A4, Ag inputs), and each Control Word specifies the
Counter it applies to (SCO, SC1 bits), no special in-

struction sequence is required. Any programming
sequence that follows the conventions above is ac-
ceptable.

A new initial count may be written to a Counter at
any time without affecting the Counter’s pro-
grammed Mode in any way. Counting will be affected
as described in the Mode definitions. The new count
must follow the programmed count format.

if a Counter is programmed to read/write two-byte
counts, the following precaution applies: A program
must not transfer control between writing the first
and second byte to another routine which also writes
into that same Counter. Otherwise, the Counter will
be loaded with an incorrect count.

Ay Ap
Control Word — Counter 0 1 1
LSB of count— Counter 0 0 0
MSB of count — Counter 0 0 0
Control Word — Counter 1 1 1
LSB of count— Counter 1 0 1
MSB of count — Counter 1 0 1
Control Word — Counter 2 1 1
LSB of count— Counter 2 1 0
MSB of count — Counter 2 1 0
Aq Ag

Control Word — Counter 0 1 1
Counter Word — Counter 1 1 1
Control Word — Counter 2 1 1
LSB of count — Counter 2 1 0
LSB of count— Counter 1 0 1
LSB of count— Counter 0 0 0
MSB of count— Counter 0 0 0
MSB of count —_Counter 1 0 1
MSB of count — Counter 2 1 0

NOTE:

In ali four examples, all counters are programmed to read/write two-byte counts.

These are only four of many possible programming sequences.

: Ay A
Control Word — Counter 2 1 1
Control Word — Counter 1 1 1
Control Word — Counter 0 1 1
LSB of count — Counter 2 1 0
MSB of count — Counter 2 1 0
LSB of count— Counter 1 0 1
MSB of count— Counter 1 0] 1
LS8 of count— Counter 0 0 o
MSB of count — Counter 0 0 0
Aq Ag
Control Word — Counter 1 1 1
Control Word — Counter 0 1 1
LSB of count— Counter 1 0 1
Control Word — Counter 2 1 1
LSB of count — Counter 0 0 0
MSB of count — Counter 1 0 1
1.S8 of count — Counter 2 1 0
MSB of count — Counter 0 0 0
MSB of count — Counter 2 1 0

Figure 8. A Few Possible Programming Sequences

Read Operations

It is often desirable to read the value of a Counter
without disturbing the count in progress. This is easi-
ly done in the 82C54.

There are three possible methods for reading the
counters: a simple read operation, the Counter

3-88

Latch Command, and the Read-Back Command.
Each is explained below. The first method is to per-
form a simple read operation. To read the Counter,
which is selected with the A1, AO inputs, the CLK
input of the selected Counter must be inhibited by
using either the GATE input or external logic. Other-
wise, the count may be in the process of changing
when it is read, giving an undefined resuit.

82C54

COUNTER LATCH COMMAND

The second method uses the “Counter Latch Com-
mand' . Like a Control Word, this command is written
to the Control Word Register, which is selected
when A4, Ag = 11. Also like a Control Word, the
SCO0, SC1 bits select one of the three Counters, but
two other bits, D5 and D4, distinguish this command
from a Control Word.

Ay, Ag=11;CS=0; RD=1; WR=0

D7
| sc1

De
SCo

Ds
0

D4
0

D3
X

D2
X

D4
X

Do

SC1, SCO - specify counter to be latched

SC1 SCO Counter

0

1

2
Read-Back Command

D5,D4 - 00 designates Counter Latch Command

X - don’t care

NOTE:
Don't care bits (X) should be 0 to insure compatibility
with future Intel products.

Figure 9. Counter Latching Command Format

The selected Counter’s output latch (OL) latches the
count at the time the Counter Latch Command is
received. This count is held in the latch until it is read
by the CPU (or until the Counter is reprogrammed).
The count is then unlatched automatically and the
OL returns to “following” the counting element (CE).
This allows reading the contents of the Counters
“on the fly” without affecting counting in progress.
Multiple Counter Latch Commands may be used to
latch more than one Counter. Each fatched Coun-
ter's OL hoids its count until it is read. Counter Latch
Commands do not affect the programmed Mode of
the Counter in any way.

If a Counter is latched and then, some time later,
latched again before the count is read, the second
Counter Latch Command is ignored. The count read
will be the count at the time the first Counter Latch
Command was issued.

With either method, the count must be read accord-
ing to the programmed format; specifically, if the
Counter is programmed for two byte counts, two
bytes must be read. The two bytes do not have to be
read one right after the other; read or write or pro-

3-89

gramming operations of other Counters may be in-
serted between them.

Another feature of the B2C54 is that reads and
writes of the same Counter may be interleaved; for
example, if the Counter is programmed for two byte
counts, the following sequence is valid.

"1. Read least significant byte.
2. Write new least significant byte.
3. Read most significant byte.
4. Write new most significant byte.

If a Counter is programmed to read/write two-byte
counts, the following precaution applies; A program
must not transfer control between reading the first
and second byte to another routine which also reads
from that same Counter. Otherwise, an incorrect
count will be read. '

READ-BACK COMMAND

The third method uses the Read-Back command.
This command allows the user to check the count
value, programmed Mode, and current state of the
OUT pin and Null Count flag of the selected coun-
ter(s).

The command is written into the Control Word Reg-
ister and has the format shown in Figure 10. The
command applies to the counters selected by set-
ting their corresponding bits D3,02,D1 = 1.

AO,A1 =11 CS=0 RD=1 WR=0

D; Dg Ds D4 D; D2 Dy Dg
{ 1] 1 |coUNT|sTATUS | CNT 2] CNT 1]CnTo] 0

Ds: 0 = Latch count of selected counter(s)
D4: 0 = Latch status of selected counter(s)
Ds: 1 = Select counter 2
D,: 1 = Select counter 1

Dq: 1 = Select counter 0
Dg: Reserved for future expansion; must be 0

Figure 10. Read-Back Command Format

The read-back command may be used to latch multi-
gle counter output latches (OL) by setting the

OUNT bit D5=0 and selecting the desired coun-
ter(s). This single command is functionally equiva-
lent to several counter latch commands, one for
each counter latched. Each counter’s latched count
is held until it is read (or the counter is repro-
grammed). That counter is automatically unlatched
when read, but other counters remain latched until
they are read. If multiple count read-back commands
are issued to the same counter without reading the

82C54

count, all but the first are ignored; i.e., the count
which will be read is the count at the time the first
read-back command was issued.

The read-back command may also be used to latch
status information of selected counter(s) by setting
STATUS bit D4=0. Status must be latched to be
read; status of a counter is accessed by a read from
that counter.

The counter status format is shown in Figure 11. Bits
D5 through DO contain the counter's programmed
Mode exactly as written in the last Mode Control
Word. QUTPUT bit D7 contains the current state of
the OUT pin. This allows the user to monitor the
counter’'s output via software, possibly eliminating
some hardware from a system.

Dy Dg Ds D4 D3 D Dy Dy
NULL
OUTPUT COUNT BRW1RWO0|M2|M1}MO0|BCD

D71t =OutPinis 1
0 = OutPinis O
Dg 1 = Null count
0 = Count available for reading
Ds-Dg Counter Programmed Mode (See Figure 7)

Figure 11. Status Byte

NULL COUNT bit D6 indicates when the last count
written to the counter register (CR) has been loaded
into the counting element (CE). The exact time this
happens depends on the Mode of the counter and is
described in the Mode Definitions, but until the count
is loaded into the counting element (CE), it can't be
read from the counter. If the count is latched or read
before this time, the count value will not reflect the
new count just written. The operation of Null Count
is shown in Figure 12.

THIS ACTION: CAUSES:

A. Write to t'he control Nuil count = 1
word register:[1]

B. Write to the count _
register (CR); 2] Null count=1

C. New count is loaded Null count=0

into CE (CR —» CE);

(1] Only the counter specified by the control word will
have its null count set to 1. Null count bits of other
counters are unaffected.

[2] if the counter is programmed for two-byte counts
(least significant byte then most significant byte) nuli
count goes to 1 when the second byte is written.

Figure 12. Null Count Operation

If multiple status latch operations of the counter(s)
are performed without reading the status, all but the
first are ignored; i.e., the status that will be read is
the status of the counter at the time the first status
read-back command was issued.

Both count and status of the selected counter(s)
may be latched simultaneously by setting both
COUNT and STATUS bits D5,D04=0. This is func-
tionally the same as issuing two separate read-back
commands at once, and the above discussions ap-
ply here also. Specifically, if multiple count and/or
status read-back commands are issued to the same
counter(s) without any intervening reads, all but the
first are ignored. This is illustrated in Figure 13.

if both count and status of a counter are latched, the
first read operation of that counter will return latched
status, regardless of which was latched first. The
next one or two reads (depending on whether the
counter is programmed for one or two type counts)
return latched count. Subsequent reads return un-

" latched count.

Command
D; Dg Ds Dy D3 D Dy Dy

Description

Resuits

111100} 0{0}1}0
Counter 0

HRead back count and status of

Count and status latched
for Counter 0

ty1y110]0}1{0]}0

Read back status of Counter 1

Status latched for Counter 1

1111101111010

Read back status of Counters 2, 1 | Status latched for Counter

2, but not Counter 1

Read back count of Counter 2

Count latched for Counter 2

Counter 1

Read back count and status of

Count latched for Counter 1,
but not status

Read back status of Counter 1

Command ignored, status
already latched for Counter 1

Figure 13. Read-Back Command Example

82C54

intal

CS|RD|WR!A | Ap
0 1 0 0 | 0 | Writeinto Counter 0
0 1 0 | 0] 1 | Writeinto Counter 1
0 1 0 1 | 0 | Write into Counter 2
0 1 0 1 | 1 | Write Control Word
0 0 1 0 | O | Read from Counter 0
0 0 1 0 | 1 | Read from Counter 1
040 1 1 | 0 | Read from Counter 2
010 1 1 | 1 | No-Operation (3-State)
1 X X | X | X | No-Operation (3-State)
0 | 1| 1 | X | X | No-Operation (3-State)

Figure 14. Read/Write Operations Summary

Mode Definitions

The following are defined for use in describing the
operation of the 82C54.

CLK PULSE: a rising edge, then a falling edge, in
that order, of a Counter's CLK input.

TRIGGER: a rising edge of a Counter’s GATE in-
put.

COUNTER LOADING: the transfer of a count from
the CR to the CE (refer to
the “Functional Descrip-
tion™)

MODE 0: INTERRUPT ON TERMINAL COUNT

Mode 0 is typically used for event counting. After the
Control Word is written, QUT is initially low, and will
remain low until the Counter reaches zero. OUT then
goes high and remains high until a new count or a
new Mode 0 Control Word is written into the Coun-
ter.

GATE = 1 enables counting; GATE = 0 disables
counting. GATE has no effect on OUT.

After the Control Word and initial count are written to
a Counter, the initia! count will be loaded on the next
CLK pulse. This CLK puise does not decrement the
count, so for an initial count of N, OUT does not go
high untit N + 1 CLK pulses after the initial count is
written.

If a new count is written to the Counter, it will be
loaded on the next CLK pulse and counting will con-
tinue from the new count. If a two-byte count is writ-
ten, the following happens:

1) Writing the first byte disables counting. OUT is set
low immediately (no clock pulse required).

2) Writing the second byte allows the new count to
be loaded on the next CLK pulse.

3-91

This allows the counting sequence to be synchroniz-
ed by software. Again, OUT does not go high until N
+ 1 CLK pulses after the new count of N is written.

If an initial count is written while GATE = 0, it will
still be loaded on the next CLK pulse. When GATE
goes high, OUT will go high N CLK puises later; no
CLK pulse is needed to load the Counter as this has
already been done.

CW=td L58x4

e ——
v lwlwinlglel el e

Cwa=1i0

F¥
FE

o | FF
o | FF

LSB=)

Wh

o T,
e wlnlnlelelsfsrelsin)

CWs=10 L8Ba3

L1882

o

WT-_-‘ '
wlwlwlwlstarstelegere
231244-8
NOTE:

The Following Conventions Apply To All Mode Timing
Diagrams:

1. Counters are programmed for binary (not BCD)
counting and for Reading/Writing ieast significant byte
(LSB) only.

2. The counter is always selected (CS always fow).

3. CW stands for “Control Word”; CW = 10 means a
control word of 10, hex is written to the counter.

4. LSB stands for “Least Significant Byte” of count.

5. Numbers below diagrams are count values.

The lower number is the least significant byte.

The upper number is the most significant byte. Since
the counter is programmed to Read/Write LSB only,
the most significant byte cannot be read.

N stands for an undefined count.

Vertical lines show transitions between count values.

Figure 15. Mode 0

82C54

MODE 1: HARDWARE RETRIGGERABLE
ONE-SHOT

OUT will be initially high. OUT will go low on the CLK
pulse following a trigger to begin the one-shot pulse,
and will remain low until the Counter reaches zero.
OUT will then go high and remain high until the CLK
pulse after the next trigger.

After writing the Control Word and initial count, the
Counter is armed. A trigger results in loading the
Counter and setting OUT low on the next CLK puise,
thus starting the one-shot pulse. An initial count of N
will result in a one-shot pulse N CLK cycles in dura-
tion. The one-shot is retriggerable, hence OUT will
remain low for N CLK pulses after any trigger. The
one-shot pulse can be repeated without rewriting the
same count into the counter. GATE has no effect on
OUT.

If a new count is written to the Counter during a one-
shot pulse, the current one-shot is not affected un-
less the Counter is retriggered. In that case, the
Counter is loaded with the new count and the one-
shot pulse continues until the new count expires.

MODE 2: RATE GENERATOR

This Mode functions like a divide-by-N counter. it is
typicially used to generate a Real Time Clock inter-
rupt. OUT will initially be high. When the initial count
has decremented to 1, OUT goes low for one CLK
pulse. OUT then goes high again, the Counter re-
loads the initial count and the process is repeated.
Mode 2 is periodic; the same sequence is repeated
indefinitely. For an initial count of N, the sequence
repeats every N CLK cycles.

GATE = 1 enables counting; GATE = 0 disables
counting. If GATE goes low during an output pulse,
OUT is set high immediately. A trigger reloads the
Counter with the initial count on the next CLK pulse;
OUT goes low N CLK pulses after the trigger. Thus
the GATE input can be used to synchronize the
Counter.

After writing a Control Word and initial count, the
Counter will be loaded on the next CLK pulse. OUT
goes low N CLK Pulses after the initial count is writ-
ten. This allows the Counter to be synchronized by
software also.

CW=12 1SB8=13

CW=12 LSB=)

FE|FEJ 0 |0
FF rel Al

231244-9

RN

CWai4 LS8=3
wh
GATE
o | |
[fwlwnl sy etslelols]
CW=14 L5823
wm L[]
CLK l \ ’ ‘7’ \ ’ ‘ ' \ ' ‘ ' \ ’ ‘ "‘ l ‘ '
GATE ‘ '
ourt —-_' L_j_
wfwlwln stalsfsletelsl
CWstd (SB=4 L58=5
GATE
out —-_’ \.—J
v i ot vfelals]
231244-10
NOTE:
A GATE transition should not occur one clock prior to
terminal count.

Figure 16. Mode 1

3-92

Figure 17. Mode 2

82C54

Writing a new count while counting does not affect

the current counting sequence. If a trigger is re-
ceived after writing a new count but before the end
of the current period, the Counter will be loaded with
the new count on the next CLK pulse and counting
will continue from the new count. Otherwise, the
new count will be loaded at the end of the current
counting cycle. In mode 2, a COUNT of 1 is iliegal.

MODE 3: SQUARE WAVE MODE

Mode 3 is typically used for Baud rate generation.
Mode 3 is similar to Mode 2 except for the duty cycle
of OUT. OUT will initially be high. When half the ini-
tial count has expired, OUT goes low for the remain-
der of the count. Mode 3 is periodic; the sequence
above is repeated indefinitely. An initial count of N
results in a square wave with a period of N CLK
cycles.

GATE = 1 enables counting; GATE = 0 disables
counting. If GATE goes low while OUT is low, OUT is
set high immediately; no CLK pulse is required. A
trigger reloads the Counter with the initial count on
the next CLK pulse. Thus the GATE input can be
used to synchronize the Counter.

After writing a Control Word and initial count, the
Counter will be loaded on the next CLK pulse. This
allows the Counter to be synchronized by software
also.

Writing a new count while counting does not affect
the current counting sequence. if a trigger is re-
ceived after writing a new count but before the end
of the current half-cycle of the square wave, the
Counter will be loaded with the new count on the
next GLK puise and counting will continue from the
new count. Otherwise, the new count will be loaded
at the end of the current half-cycle.

Mode 3 is implemented as follows:

Even counts: OUT is initially high. The initial count is
loaded on one CLK pulse and then is decremented
by two on succeeding CLK pulses. When the count
expires OUT changes value and the Counter is re-
loaded with the initial count. The above process is
repeated indefinitely.

Odd counts: OUT is initially high. The initia! count
minus one (an even number) is loaded on one CLK
pulse and then is decremented by two on succeed-
ing CLK pulses. One CLK pulse after the count ex-
pires, OUT goes low and the Counter is reloaded
with the initial count minus one. Succeeding CLK
pulses decrement the count by two. When the count
expires, OUT goes high again and the Counter is
reloaded with the initial count minus one. The above
process is repeated indefinitely. So for odd counts,

3-93

OUT will be high for (N + 1)/2 counts and low for
(N —1)/2 counts.

CWuts LSB=x4
owr | 1 R [L
el e slelsteteisteteley
CWenif iBBxS
w1 1]
QATE
our L)
Ielwlwpwlefstoreisisielelsgs
CW =18 L3B=4
WR
GATE l ’
Ouv—--' ‘ I \ ’
Iwfwiwfwfolaleralatslarstelsl
231244-11
NOTE:
A GATE transition should not occur one clock prior to
terminal count.

Figure 18. Mode 3

MODE 4: SOFTWARE TRIGGERED STROBE

OUT will be initially high. When the initial count ex-
pires, OUT will go low for one CLK pulse and then
go high again. The counting sequence is “triggered”
by writing the initial count.

GATE = 1 enables counting; GATE = 0 disables
counting. GATE has no effect on OUT.

After writing a Control Word and initial count, the
Counter will be loaded on the next CLK pulse. This
CLK pulse does not decrement the count, so for an
initial count of N, OUT does not strobe low until
N + 1 CLK pulses after the initial count is written.

If a new count is written during counting, it will be
ioaded on the next CLK pulse and counting will con-
tinue from the new count. if a two-byte count is writ-
ten, the following happens: '

intel

82C54

1) Writing the first byte has no effect on counting.

2) Writing the second byte aliows the new count to
be loaded on the next CLK pulse.

This allows the sequence to be ‘‘retriggered” by
software. QUT strobes low N+ 1 CLK pulses after
the new count of N is written.

CwW=18 LSB=3

Wwh

GATE

] o] o 8 | FF
|""‘I"|"[a|z|1lolr=

FF
FE

FF
FD

CwW=18 (58213

WK

aate |

L | L
Iwlwlwlwlslslslslele il

GATE

our __f Lj—‘

EECIRA R AR AR A R A RR A

231244-12

Figure 19. Mode 4

MODE 5: HARDWARE TRIGGERED STROBE
(RETRIGGERABLE)

OUT will initially be high. Counting is triggered by a
rising edge of GATE. When the initial count has ex-
pired, OUT will go low for one CLK pulse and then
go high again.

3-94

After writing the Control Word and initial count, the
counter will not be loaded untii the CLK pulse after a
trigger. This CLK pulse does not decrement the
count, so for an initial count of N, OUT does not
strobe low until N+ 1 CLK pulses after a trigger.

A trigger results in the Counter being loaded with the
initial count on the next CLK pulse. The counting
sequence is retriggerable. OUT will not strobe low
for N + 1 CLK pulses after any trigger. GATE has
no effect on OUT.

If a new count is written during counting, the current
counting sequence will not be affected. If a trigger
occurs after the new count is written but before the
current count expires, the Counter will be loaded
with the new count on the next CLK pulse and
counting will continue from there.

CW=1A (58=13

Gate .~ '\‘ ﬂ:‘ ——————— -“ ﬂf _——
out :[U

!u|n|nlnlulg]

0|FF|01
o |lfr i3

~o

Lol

CW=tA LSB=3

S AVAVAVAVAVARANAVANRNRNA VS
e T~ ~7 ‘J'\ ““““““ -\ﬂ —————

owr 7 L]
Pelwlwlwinl sl elelmielsis]
231244-13

Figure 20. Mode 5

intel

Signat Low
Status Or Going Rising High
Modes Low
0 Disables - Enables
counting counting
1 —_ 1) Initiates —
counting
2) Resets output
after next
clock
2 1) Disables
counting Initiates Enables
2) Sets output counting counting
immediately
high
3 1) Disables
counting Initiates Enables
2) Sets output counting counting
immediately
high
4 Disables —_ Enables
counting counting
5 — Initiates —
counting

Figure 21. Gate Pin Operations Summary

IN | MAX
MODE cguur COUNT
0 1 0
1 1 0
2 2 0
3 2 0
4 1 0

NOTE:
0 is equivalent to 216 for binary counting and 104 for
BCD counting

Figure 22. Minimum and Maximum initial Counts

Operation Common to All Modes

Programming

When a Control Word is written to a Counter, all
Control Logic is immediately reset and OUT goes to
a known initial state; no CLK pulses are required for
this.

GATE

The GATE input is always sampled on the rising
edge of CLK. in Modes 0, 2, 3, and 4 the GATE input
is level sensitive, and the logic level is sampled on
the rising edge of CLK. In Modes 1, 2, 3, and 5 the
GATE input is rising-edge sensitive. In these Modes,
a rising edge of GATE (trigger) sets an edge-sensi-
tive flip-flop in the Counter. This flip-flop is then sam-
pled on the next rising edge of CLK; the fiip-flop is
reset immediately after it is sampled. In this way, a
trigger will be detected no matter when it occurs—a
high logic level does not have to be maintained until
the next rising edge of CLK. Note that in Modes 2
and 3, the GATE input is both edge- and level-sensi-
tive. In Modes 2 and 3, if a CLK source other than
the system clock is used, GATE should be pulsed
immediately following WR of a new count value.

COUNTER

New counts are loaded and Counters are decré-
mented on the falling edge of CLK.

The largest possible initial count is 0; this is equiva-
lent to 216 for binary counting and 104 for BCD
counting.

The Counter does not stop when it reaches zero. in’
Modes 0, 1, 4, and 5 the Counter “wraps around” to
the highest count, either FFFF hex for binary count-
ing or 9999 for BCD counting, and continues count-
ing. Modes 2 and 3 are periodic; the Counter reloads
itself with the initial count and continues counting

from there.

3-95

82C54

Ambient Temperature Under Bias
Storage Temperature

Supply Voltage

Operating Voltage

Voltage on any Input

Voltage on any Output . .GND—0.5V to Vg + 0.5V
Power Dissipation 1 Watt

—0.5t0 +8.0V
+4Vio +7V

D.C. CHARACTERISTICS

*Notice: Stresses above those listed under “Abso-

lute Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera-
tional sections of this specification is not implied. Ex-
posure to absolute maximum rating conditions for
extended periods may affect device reliability.

(TAa=0°C to 70°C, Voc=5V+ 10%, GND=0V) (TA = —40°C to +85°C for Extended Temperature)

Symbol Parameter Min Max Units Test Conditions
ViL Input Low Voltage -05 0.8 \
ViH Input High Voltage 2.0 Ve + 0.5 \'
VoL Output Low Voltage 04 \) loL = 25 mA
VoH Output High Voltage 3.0 v o= —25mA
Ve — 0.4 v loy = —100 nA
he input Load Current +2.0 pA Vin=Vcg to OV
lorL Qutput Float Leakage Current +10 RA Vout = V¢ to 0.0V
lcc Ve Supply Current 20 mA Clk Freq= ' hgmrézsg&s;
lccse Ve Supply Current-Standby 10 pA | CLKFreq = DC
CS = Vee.
All Inputs/Data Bus Ve
All Qutputs Floating
lccset | Voo Supply Current-Standby 150 pA | CLKFreq = DC
CS = Vcc. All Other Inputs,
1/0 Pins = VgnNp, Outputs Open
CiN Input Capacitance 10 pF fo = 1 MHz
Cyo 1/0 Capacitance 20 pF | Unmeasured pins
Cour | Output Capacitance 20 pF | returned to GND(S)
A.C. CHARACTERISTICS
(TA = 0°C to 70°C, Vo = 5V £10%, GND =0V) (Tp = —40°C to +85°C for Extended Temperature)
BUS PARAMETERS (Note 1)
READ CYCLE
Symbol Parameter 82C54 82C54-2 Units
Min Max Min Max
taR Address Stable Before RD | 45 30 ns
tsR CS Stable Before RD | 0 0 ns
tRA Address Hold Time After RD 1 0 0 ns
trA RD Pulse Width 150 95 ns
tRD Data Delay from RD | 120 85 ns
tAD Data Defay from Address 220 185 ns
toF RD T to Data Floating 5 90 5 65 ns
try Command Recovery Time 200 165 ns
NOTE:

1. AC timings measured at Vo = 2.0V, Vg = 0.8V.

3-96

A.C. CHARACTERISTICS (Continued)

WRITE CYCLE

Symbol Parameter 82C54 82C54-2 Units
' Min Max Min Max

taw Address Stable Before WR | 0 0 ns
tsw CS Stable Before WR | 0 0 ns
twa Address Hold Time After WR T 0 0 ns
tww WR Pulse Width 150 95 ns
tow Data Setup Time Before WR 1 120 95 ns
twp Data Hold Time After WR T 0 0 ns
try Command Recovery Time 200 165 ns

CLOCK AND GATE
Symbol Parameter 82C54 82C54-2 Units

Min Max Min Max

toLk Clock Period 125 DC 100 DC ns
tPWH High Pulse Width 603 300) ns
tPwiL Low Pulse Width 60(3) 50(3) ns
TR Clock Rise Time 25 25 ns
te Clock Fall Time 25 25 ns
tow Gate Width High 50 50 . ns
{GL Gate Width Low 50 50 ns
tgs Gate Setup Time to CLK T 50 40 ns
tGH Gate Hold Time After CLK T 50(2) 50(2) ns
Top Output Delay from CLK]| 150 100 ns
toog Output Delay from Gate | 120 100 ns
twe CLK Delay for Loading(4) 0 55 0 55 ns
twa Gate Delay for Sampling(4) -5 50 -5 40 ns
two OUT Delay from Mode Write 260 240 ns
toL CLK Set Up for Count Latch —40 45 —40 40 ns

NOTES:

2. In Modes 1 and 5 triggers are sampled on each rising clock edge. A second trigger within 120 ns (70 ns for the 82C54-2)
of the rising clock edge may not be detected.
3. Low-going glitches that violate tpwh, tpw(May cause errors requiring counter reprogramming.
4. Except for Extended Temp., See Extended Temp. A.C. Characteristics below.
5. Sampled not 100% tested. T4 = 25°C.

6. If CLK present at Twc min then Count equals N+ 2 CLK pulses, Twc max equals Count N+ 1 CLK pulse. Tyc mir to
Twc max, count will be either N+1 or N+ 2 CLK pulses.

7. in Modes 1 and 5, if GATE is present when writing a new Count value, at Twg min Counter will not be triggered, at Twg
max Counter will be triggered.

8. If CLK present when writing a Counter Latch or ReadBack Command, at Tg min CLK will be reflected in count value
latched, at Tgy max CLK will not be reflected in the count vaiue latched. Writing a Counter Latch or ReadBack Command
between T min and Ty max will result in a latched count vallue which is + one least significant bit.

EXTENDED TEMPERATURE (T4 = —40°Cto +85°C for Extended Temperature)

Symbol © Parameter 82C54 82C54-2 Units
Min Max Min Max

twe CLK Delay for Loading -25 25 —25 25 ns

twa Gate Delay for Sampling —25 25 -25 25 ns

3-97

WAVEFORMS

WRITE

DATA BUS

231244-14

c3
tsn
RO
! tnp e~ - OF [E—
g AD >
DATA BUS =om wom cmm omp cte oms wasas s sty cnes e oomms: VALID o — —
. 231244-15
RECOVERY
231244-16

3-98

lnte[82C54

CLOCK AND GATE

- —\uooe coum%‘wc‘ \{
trwi— la—tpwi —»- teLk————e1 lag—o| el
Pl)
h—*‘ pa— m->| fo— te
GATE : e ﬁ \ j
|
l

ctx

tan ——— - [—+—190

OUTPUT 0 i)(
b two
231244-17
* Last byte of count being written
A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT
INPUT/OUTPUT
M 2.0 20 -
>< > TEST POINTS < >< Test 10‘ -~ 100 pF
0.0 08
0.45 -
231244-18 -
A.C. Testing: inputs are driven at 2.4V for a logic 1" and 0.45V CL = 150 pF 231244-19
for a logic **0.” Timing measurements are made at 2.0V for a logic .
“1" and 0.8V for a logic “0." C includes jig capacitance

3-99

APPENDIX D

CONFIGURING THE AD3700 FOR SIGNAL*MATH

D-1

Jumper and Switch Settings

When running SIGNAL*MATH, you may have to change some of the AD3700’s on-board jumpers from their
current positions. All jumpers must be set to the factory positions as described in Chapter 1, except for P3 and P5,
which can be configured for any of the three possible input ranges.

S1 — Base Address

SIGNAL*MATH assumes that the base address of your AD3700 is the factory setting of 300 hex (768 deci-
mal). If you change this setting, you must run the ADAINST program and reset the base address.

NOTE: When using the ADAINST program, you can enter the base address in decimal or hexadecimal
notation. When entering a hex value, you must precede the number by a dollar sign (for example, $300).

Running ADAINST

After the jumpers and switch are set and the AD3700 board is installed in the computer, you are ready to
configure SIGNAL*MATH so that it is compatible with your board’s settings. This is done by running the
ADAINST driver installation program. After running the program, open AD3700.EXE from the Open a File menu.
You will see a screen similar to the screen shown in Figure D-1 below. The factory default settings are shown in the
illustration. Your settings may or may not match the default settings, depending on whether you have made changes
to these decimal or hexadecimal value (hex values must be preceded by a dollar sign (for example, $300)). Refer to
your board’s manual if you need help in determining the correct value to enter.

EOC IT (End-of-Convert Interrupt). In this block, enter the IRQ channel number to be used by the end-of-
convert interrupt (see BA + 6 description in Chapter 4).

End-of-Convert Timer/Counter
Interrupt Channel Interrupt Channel Base Address

Software
Interrupt
Address
A/D DMA D/A DMA
Channel Channel
Select; Select;
External Gain External Gain
& Loss & Loss
A/D Unipolat/
Bipolar
Select D/A Unipolar/
Bipolar
Select

Fig. D-1 — ADAINST.EXE Screen

D-3

Timer IT (Timer/Counter Interrupt). This block is not used on the AD3700, and should be left blank.

LabTech SW IT (LABTECH NOTEBOOK Software Interrupt). This sets the software interrupt address
where LABTECH NOTEBOOK ’s 1abLINX driver is installed. The factory setting is $60. This setting can be
ignored when running SIGNAL*MATH.

A/D Parameters. Six A/D board parameters are listed: resolution, number of channels, active DMA channel,
gain, loss, and input voltage polarity.

Resolution and number of channels are fixed by the program for your board.

If you are using DMA transfer, you must enter the channel number you are using in the DMA channel block.
Valid channels numbers are 1 and 3.

The next two blocks, gain and loss, are provided so that you can make adjustments for external gain or loss,
including resistor configurable gain circuitry you added to the board. For example, if you have a gain circuit
installed, then you must tell SIGNAL*MATH this gain. If your input signal is externally attenuated, then you can
adjust for this by setting a value other than 1 for loss. Numbers must be entered as whole decimal values. The
factory default setting for gain and loss is 1.

For a bipolar input range, an X should be placed before Bipolar on the screen (default setting). For unipolar
operation, remove the X.

D/A Parameters. These settings are not applicable to the AD3700.

APPENDIX E

CONFIGURING THE AD3700 FOR ATLANTIS

E-1

If you have purchased ATLANTIS data acquisition and real time monitoring application software for your
AD3700, please note that the ATLANTIS drivers for your board must be loaded from your driver disk into the same
directory as the ATLANTIS.EXE program. All jumpers must be set to the factory positions as described in Chapter
1, except for P3 and PS5, which can be configured for any of the three possible input ranges. When running
ATLANTIS, make sure the base address setting in the program and on the board match.

S1 — Base Address

ATLANTIS assumes that the base address of your AD3700 is the factory setting of 300 hex (see Chapter 1). If
you changed this setting, you must run the ATINST program and reset the base address.

NOTE: The ATINST program requires the base address to be entered in decimal notation.

E-3

APPENDIX F

F-1

WARRANTY

LIMITED WARRANTY

Real Time Devices, Inc. warrants the hardware and software products it manufactures and produces to be free
from defects in materials and workmanship for one year following the date of shipment from REAL TIME DE-
VICES. This warranty is limited to the original purchaser of product and is not transferable.

During the one year warranty period, REAL TIME DEVICES will repair or replace, at its option, any defective
products or parts at no additional charge, provided that the product is returned, shipping prepaid, to REAL TIME
DEVICES. All replaced parts and products become the property of REAL TIME DEVICES. Before returning any
product for repair, customers are required to contact the factory for an RMA number.

THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY PRODUCTS WHICH HAVE BEEN DAM-
AGED AS A RESULT OF ACCIDENT, MISUSE, ABUSE (such as: use of incorrect input voltages, improper or
insufficient ventilation, failure to follow the operating instructions that are provided by REAL TIME DEVICES,
“acts of God” or other contingencies beyond the control of REAL TIME DEVICES), OR AS A RESULT OF
SERVICE OR MODIFICATION BY ANYONE OTHER THAN REAL TIME DEVICES. EXCEPT AS EX-
PRESSLY SET FORTH ABOVE, NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, AND REAL TIME DEVICES EXPRESSLY DISCLAIMS ALL WARRANTIES NOT
STATED HEREIN. ALL IMPLIED WARRANTIES, INCLUDING IMPLIED WARRANTIES FOR
MECHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED TO THE DURATION
OF THIS WARRANTY. IN THE EVENT THE PRODUCT IS NOT FREE FROM DEFECTS AS WARRANTED
ABOVE, THE PURCHASER’S SOLE REMEDY SHALL BE REPAIR OR REPLACEMENT AS PROVIDED
ABOVE. UNDER NO CIRCUMSTANCES WILL REAL TIME DEVICES BE LIABLE TO THE PURCHASER
OR ANY USER FOR ANY DAMAGES, INCLUDING ANY INCIDENTAL OR CONSEQUENTIAL DAM-
AGES, EXPENSES, LOST PROFITS, LOST SAVINGS, OR OTHER DAMAGES ARISING OUT OF THE USE
OR INABILITY TO USE THE PRODUCT.

SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSE-
QUENTIAL DAMAGES FOR CONSUMER PRODUCTS, AND SOME STATES DO NOT ALLOW LIMITA-
TIONS ON HOW LONG AN IMPLIED WARRANTY LASTS, SO THE ABOVE LIMITATIONS OR EXCLU-
SIONS MAY NOT APPLY TO YOU.

THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER
RIGHTS WHICH VARY FROM STATE TO STATE.

F-3

3700 Board User-Selected Settings

Base I/0 Address:

(hex)

(decimal)

