AMD QA

AMD SimNow™ Simulator
4.6.1

User’s Manual

Revision Date

2.14 November 2010

Advanced Micro Devices, Inc.
One AMD Place
Sunnyvale, CA 94088

simnow@amd.com

AMDZ

© 2004-2009 Advanced Micro Devices, Inc.

The Contents of this document are provided in connection with Advanced
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or
warranties with respect to the accuracy or completeness of the contents of this
publication and reserves the right to make changes to specifications and
product descriptions at any time without notice. No license, whether express,
implied, arising by estoppels or otherwise, to any intellectual property rights is
granted by this publication. Except as set forth in AMD’s Standard Terms and
Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any
express or implied warranty, relating to its products including, but not limited
to, the implied warranty of merchantability, fitness for a particular purpose, or
infringement of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use
as components in systems intended for surgical implant into the body, or in
other applications intended to support or sustain life, or in any other
application in which the failure of AMD’s product could create a situation
where personal injury, death, or severe property or environmental damage
may occur. AMD reserves the right to discontinue or make changes to its
products at any time without notice.

Trademarks

AMD, the AMD Arrow logo, AMD Athlon, AMD Opteron, ATl Radeon and
combinations thereof, SimNow, 3DNow!, AweSim, AMD-8111, AMD-8131, AMD-
8132 and AMD-8151 are trademarks of Advanced Micro Devices, Inc.

HyperTransport is a trademark of the HyperTransport Technology Consortium.
Microsoft, Windows and DirectX are registered trademarks of Microsoft Corporation.
PCI-X and PCle are registered trademarks of PCI-SIG.

Sysmark is a registered trademark of Business Applications Performance Corp.
SPECint2000 and SPECfp2000 are registered trademarks of the Standard Performance
Evaluation Coorporation (SPEC).

MMX is a trademark of Intel Corporation.

Linux is a registered trademark of Linus Torvalds.

Other product names used in this publication are for identification purposes only and may
be trademarks of their respective companies.

User Manual November 2010

Contents
10 0 SRS iX
JLIE: 0] 2RSSR xiii
L OVEIVIBW .ttt bbbttt bbb bbbt et e et bbb nbenbe s 1
2 INSEAITALION. ... ettt 3
2.1 SYSIEM REQUITEMENTS.......eeivieieiiesii ettt e et ens 3
2.2 INStallation PrOCEAUNEcoviiieciiee e e 3
2.3 Directory Structure and EXeCUtabIecccevveieiieiiee e 4
2.4 Setting® up Linux for the SIMUIALOTco.vvvieveeeeeeceeeeseceeseeesesies s, 4
2.5 Configuration FIle.........cccooiiiiie e 5
2.6 Updates and QUESTIONS.cueiiiieiiriisie sttt 6
3 Graphical USEr INTErfacecoiiiiiiiiiiie ittt 7
T8 o T I =T Tl = U 1 0] SR RRP 7
3.2 DEVICE WINUOW ..ooveiiiiiiiieieeiee ettt sttt bbb 9
3.2.1 Add @ NEW DEBVICEcuvi ettt sttt nee e 10
3.2.2 Workspace POPUP MENUcc.coiiiieeieiic ettt 10
3.2.2.1 Add CONNECHION ..ottt 10
3.2.2.2 CoNfigUIre DEVICE.......ccveiiiie et 12
3.2.2.3 DiSCONNECT DEVICEceeoiiieiieiii ettt 12
3.2.2.4 DEIEtE DRVICE.......cceeieeieeiiieie ettt nre e 12
3.2.3 Example Computer DeSCIIPLION.......ccveieiieiiiierieriesiieeeee s 12
3.2.4 Device Window — QUICK REFEIENCEceevvvvicieeiieieece e 14
3.3 DBVICE GIOUPSvvveeueeneeneeteste st sttt sttt ettt sbesb bbbt e bt nb bbb ene s 15
331 TIMS ettt 15
3.3.2 CONCEPL DIAGIAIMS.......viuiiiiiiitisiesii ettt 16
3.3.3 Working With DEVICE GrOUPSccveeveiieiiieiesieeiteetesee et ste e sra e 17
3.3.4 Shell Automation Commands for Device GrouUpPSccceververererienieniesennns 18
G I N R B 1V o I = OSSR 18
3.3.4.2 Enabled vs. Disabled vs. MiXed..........ccccooviiviininiiieieiec e 19
3.3.5 Device Group EXamples ..o 20
3.3.5.1 Example: 1GB DDR2 MEMOTIYccccceiiririiniiiiaiieieese e 20
3.3.5.2 Example: Quad-Core NOUEcccccvevieiiiiiieesece e 21
3.3.5.3 Example: SuperlO devVviCecccoveviiiiiiiii i 23
3.3.6 Creating a Device Group (GUI).....cooiiiiiiiiieeee e 23
3.3.7 Creating a Device Group (Automation Commands)cccccevvereervereeareenn 26
3.3.8 Ungrouping a created deViCe grOUPccvveeiveerieeiie i ciieetee s seesee e 27
3.4 [V LT T AV T [0 SR 28
3.4.1 SimStats and DiagnostiC POIS.......ccccvieiiiiiiiiec e 28
3.4.2 CPU-SEatiStICS Graphsccooiiiiiiiiiiieieie e s 29
3.4.2.1 Translation Graph.......cccoiiiii e 29
3.4.2.2 Real MIPS Graph ...ttt 29
3.4.2.3 Invalidation Rate Graphcccccceiiiiiiiiiiii e 30
3.4.2.4 Exception Rate Graphcccviiieiiieieiinese e 30
3.4.25 PIO Rate Graph......cccoeiiviiiiieciece e 30

Contents ii

User Manual November 2010

3.4.2.6 MMIO Rate Graph.........cccccooviiiiiiiiiiie st 31
3.4.3 SIMUIALE VIARO....c.eiueiiiiicie s 31
3.4.4 Hard Disk and FIoppy DisSplaycccooeiiiiiiiiiiiieeeeeese s 31
3.4.5 Using Hard Drive, DVD-/CD-ROM and Floppy Images.............ccccevervrennne. 32
3.4.6 Help, Problems and Bug REPOIS.........cceiieiiiiiiiininieeeeee s 32

N I T 1] g [0 o 1= OSSPSR 35
4.1 Creating A Blank Hard-Drive IMage........ccccereieiiiinineiieceee s 35
5 RUNNING the SIMUIALOTccviiiecccce e 39
51 Command-Line ArQUMENTSc.cciueieiiriieieeiesieesie e e e snee e sae e e e seesnee s 39
5.1.1 Open a Simulation Definition File...........ccccooieiiiiiiiie e 40
5.2 Installing an Operating SYSEMcoviiirie e 42
5.2.1 AsSIgNINg DisK-TMAagES........coviiiiieieiieciee e 42
5.2.2 RUN the SIMUIALION ...c.ooiiiiice e 44
5.2.3 Interaction with the Simulated Maching............ccccovviiiiiiienes e 45
5.2.4 SIMUIALION RESEL......eoiiiieiieie e 45
5.3 Multi-Maching SUPPOIT........ccviiiiieiecie st 45
6 Create @ SIMulated COMPULETc.oiiiiiieiieiercee e 49
6.1 BSD FIlES .ttt 49
6.2 DEVICE PlaCEMENL.....ccuei et enee e 49
6.3 Solo.bsd Device Configuration............cccccueviiiieieeie e 51
6.4 SAVE ANA RUN ...eiieiiice ettt ettt eeene e 52
7 Device ConfiguIatiON........ccoiiiiieie e 53
7.1 AWESIM™ ProceSSOr DEVICE . .uuiiiiiiiiieiiiiiee ettt 55
7.2 DeDUQQEI DEVICE ..cvveviieieciiecie ettt 58
7.3 DIMM DBVICE ...c.tveuieeiie sttt ettt et e teenee e steeeeeneesneeneeaneesseenseanee e 59
7.4 Emerald GraphiCS DEVICEccveiviiiiiieiiccie ettt 65
7.5 Matrox MGA-G400 PCI/AGPcooiieieeiece ettt 69
7.6 ATI Radeon™ HD 3870cciiiiiieiiiiiie ettt e e 78
7.7 Super 10 Devices: Winbond W83627HF SIO/ITE 8712 SIO.........cccccvvirenene 82
7.8 MEMOIY DEBVICEovieiiciecie ettt sttt et sae e eeene e 85
7.9 PCAO9548 SMB DEBVICEccueiieiieiiieieeeeieiesie ettt sneeneas 88
7.10 PCAI9556 SMB DEVICEccuiiiiiiiiiieieiiieiieie ettt eneas 89
7.11 AMD 8th Generation Integrated Northbridge Deviceccccceveveniiciinnnnnns 90
7.12 AMD-8111™ Southbridge Devices — IO HUDS ..o 94
713 PCIBUS DEVICE ...ttt 100
7.14 AMD-8131™ PCI-X® CONrOMErorvvvecrererisiieseieseses e 102
7.15 AMD-8132™ PCI-X® CONIOIEToorvvverrerrricriecseesseeeses e 103
716 PCI-X TESE DEVICE....cuieiiiiieiiieie ettt sttt 105
7.17 AMD-8151™ AGP Bridge DEVICE........coceriiriiriiiieiinieiieieiee e 106
7.18 Raid Device: Compag SmartArray 5304ccocevvieiieiiieiie e 108
7.19 SMB HUD DEVICEcoiiieiiiie ettt 109
720 AT24C DEVICE ..ocvveueenieieiie ettt sttt b et st re s e 111
721 EXDI SEIVEI DEVICEocvveiieeiieeie et eie ettt sta e sae e e s e 112
7.22 USB Keyboard and USB MOoUSE DEVICES........ccccevverieiiiieiieiiiee e siieesine s 113
723 XTR DEBVICE ...ocvicieceieieie ettt sttt sttt sn et e sneereene e 114
7231 USING XTR oottt sttt sttt nnenne s 115

iv Contents

User Manual November 2010

7.23.1.1 Recoding XTR TraCeccccuviieireie e sieesie e 115
7.23.1.2 StOP XTR RECOIMooiiiiiiiiiieieicrese e 115
7.23.1.3 XTR PIAYDACKcoiiiieieieeec e 115
7.23.1.4 Stop XTR PlaybackK........c.cccccceiviiiiiiiiee e 116
7.23.2 XTR SIUCIUIE ...ttt ettt 118
7.23.2. 1 XML SHUCHUIE ...ttt 118
7.23.2.2 XTR Binary File CONteNtSc.ccceevevverieiie e 120
7.23.3 MOUEFIAGS. ... 120
7.23.4 LIMITALIONS 1ottt 121
7.23.5 Example XTR XML FIE ..ot 121
7.24 JUMPDIIVE DEVICE ...ocveeeiiciie ettt ettt e e 127
7.25 E1000 Network Adapter DEVICE..........coveiieiieiieieiiesisieseeeeee e 128
7.25.1 Simulated Link Negotiation..........ccccevvveiiiiiiienece e 129
7.25.2 The Mediator DABIMONccueiierieieiie e eie e 130
7.25.3 MAC Addresses for use with the Adapter..........cccccevvvevveieiiieiecce s, 131
7.25.4 Example Configurationsccccvveieiieieeie e 131
7.25.4.1 ADSOIULE NIC ..ot 131
7.25.4.2 Client-Server simulated NEtWOrK..........cccccoveverenenenieiiiencans 132
7.25.4.3 Isolated Client-Server simulated network (Same process) ... 132
7.25.5 Visibility DIagramccccooveieiieiece e 133
7.26 Plug and Play MONItOr DEVICE..........ccueiiiiiiieieiieseeieeeeee e 134
7.27 ATI SB400/SB600/SB700/SB800 Southbridge Devices..........cccoervrvriennnnn 136
7.28 ATI RS480/RS780/RD790/RD890 Northbridge Devicesccocevvrvriennnne 138
7.29 AMD “IStanbul” DEVICEceeiiiiiiiieiiiiiie e 139
7.30 AMD “Sa0 Paulo” DEVICEccvveiiriieiiiie it ciie e siee s e e e snae e nnae e 140
7.31 AMD “Magny-Cours” DEVICEcccueruiiiiiiiiiiiiiiieii s 141
7.32 AMD “DeerHound” DEVICE.......ccciuveiiiieiiiiie i siie e see e siee e e e sve e snaeeennnee s 142
8 PCI Configuration VIBWETcciuiiiiiieie ettt 143
8.1 SCANNING PCI BUSESc.eitiiiitiiieiiisieeieeieie ettt 143
8.2 Maodifying the PCI Configuration CONteNts...........ccoeevveveiieii i 143
e o o [o TP U SRS PO PP 145
9.1 VLTS To [I Lo [TSRS 145
9.2 EITOT LOQ . oo 147
9.3 7L 3 I oo 1 T TSSOSO 148
10 CPU DEBUGETeiieeiiteitieie ettt 151
10.1 Using the CPU DebUQGQET........coiiiiiiiie et 151
10.1.1 Setting @ Breakpoint.........coooiiiiiiiiiiieiee e 151
10.1.2 Single Stepping the Simulation.............cccovviiiiiiii i 152
10.1.3 Stepping OVer an INStrUCLIONccooviieiieiiiieie e 152
10.1.4 SKipping an INSrUCLIONcccvveiiieiieeiie et 153
10.1.5 Viewing a Memory REGION.......cccoiiiiiiiiiieiesie st 153
10.1.6 Reading PCI Configuration RegiSters..........cccccvveviieiiieiie e 154
10.1.7 Reading CPU MSR CONENES.......c.ccoiiieieiiiieiie s 154
10.1.8 Find Pattern in MEemOIYcccvoiiiiiieiie et 155
10.2 Debugger Command REFEreNCE...........coviiriiieieie e 155
11 DebUQ INTEITACE. ... 161

Contents \Y;

User Manual November 2010

11,1 KErNEl DEDUGGET ..c.eveiieiieiie sttt st sreenae s 161
11.2 GDB INTEITACE......iiiieiiieiieieieie ettt 162
1121 SIMPIe APPIOACH ..o 162
11.2.2 Alternate APProach ..o 163
11.2.3 Using Another Port on the Same Machinecccoovieieiiiine 163
11.2.4 Using Two Separate MacChingscccccvivieiiereiiieieese e seese e e 163
11.3 Linux® Host Serial Port COMMUNICALION.coovvevereeeeeeeeseeeseeseeeseeseeae 163
12 ComMMANG AP ..o 165
13 DISKTOO! ...ttt ettt 167
13.1 Command-Lineg MOE...........ooeiiiiiiiisiirieeie e 167
13.2 GUI MO ...ttt st enreene s 168
14 BIOS Developer’s Quick Start GUIAe.........cceiiviriiiiiiiiiiiiieese e 173
14.1 L0ading @ BIOS IMAJEc.veiiieieiiiiiisieeeee e 173
14.2 Changing DRAM SIZEccooi oottt 173
14.3 Changing SPD Data........ccccerueriiriiriiiiiiiieieiee et 174
144 Clearing CMOSoooioi ettt sre e e ae s 175
14.5 Logging PCI Configuration CYCIEScccoeiiiiiiieiiiiceeee e 175
14.6 Logging CPU CYCIESoovieieeice ettt 176
14.7 Creating a FIoppy-Disk IMage...........ccooiiiiiiiiiieieee e 177
15 Frequently Asked QUESLIONS (FAQ) ..ocveeivieiiiieie e 179
A APPENTIX it nre s 183
A.l Format of Floppy and Hard-Drive IMages........c.cccecvevveveeiieieene e 183
A2 Bill of Material.........ccoooviiiiiiiice e 184
A.2.1 Computer Platform FileS (BSD)ccccoeiiiiiiieiiece e 184
A22 DeViCe FIleS (F.BSL) ..ocoiiiiiiiiiieeee e 184
A.2.3 Product FIles (¥.ID) ...coioieiieceee et 184
A.2.4 Image Files (*.HDD, *.FDD, *.ROM, *.SPD, *.BIN)cccc0svrrrrnr.n. 185
A.2.4.1 Hard-Disk Image FileS........ccccoeiieiiiiiiieie e 185
A.2.4.2 MeMOrY SPD FIlESc..cooiieeccceee e 186

A.3 Supported Guest Operating SYSEMScccecveieeiiiie i 187
N 1 = U | | 5 SR 188
A.41 CPUID Standard Feature Support (Standard Function 0x01)................. 188
A.4.2 CPUID AMD Feature Support (Extended Function 0x80000001)......... 188

AL KNOWN ISSUEBS ...ttt 190
A5.1 FSAVE/FRSTOR and FSTENV/FLDENVccccoeiiiiieie e 190
AS5.2 THPIE FAUIING v 190
A.5.3 Performance-Monitoring Counter EXteNSIiONS.........cccovrvereriereneneninne 190
A5.4 Microcode PatChingcccveiiiiiiiiie e 190
A5.5 INSErUCLION CONEIENCYc.viviiiiiiiiiieiee e s 190

A6 INStrUCtioN REFEIENCEeiiiieeiee e 192
Ab6.1 I\ 0] 72] o OSSPSR 192
A6.1.1 MNEMONIC SYNTAX......iiuiiiiiiiiieieiee e 192
A.6.1.2 OPCOUE SYNTAX ..eiviiiiiiiie et 194

A.6.2 General PUrpose INSIIUCTIONSccuviiiriiiiiiiieiicsie e 195
A.6.3 SYSEEM INSLIUCIONSvvieiie et 223
A.6.3.1 INT — Interrupt t0 VECION.......ccve i 225

Vi Contents

User Manual November 2010

A.6.3.2 IRET — Return from INterrupt.........cccovvevvieiievecie e 225
A.6.4 Virtualization Instruction Reference.........ccccccovevvereiieieece i 226
A.6.5 64-Bit Media Instruction Reference..........ccovvvvvieie i s 226
A.6.6 3DNOW!™ INSIIUCHION SEL....uvviieiiiiiieeiiiiieeesiiree e e e e e e e e e eees 226
A6.7 Extension to the 3DNow! Instruction Set.........cccocevvevinieniienene e, 227
A.6.8 Prescott NeW INSLIUCLIONSccveiviiiiieie e 227

A.6.8.1 MONITOR — Setup Monitor Address.........cccccevveveiieeseeiieseene 228

A.6.8.2 MWAIT — MONItOr WAtccoeiiiiiiieccseee s 229

A7 Automation COMMANGASccveieerieeiece e nas 230
AT.L SN 231
AT7.2 IDE .. ettt 235
AT 3 SAT A e ans 237
ATA USB it 238
N T 11V, @ 1 TSRS 238
ATB ACPI e 239
AT.7 FIOPPY e 239
A.7.8 3T o U o OSSP 239
AT7.9 AMD-8I51™ AGP Bridgecceoviveirierieieieriese e sie s 240
AT.L0 VGA e 240
ATLL SEHIAl oo 240
AT7.12 HglperTransportTM Technology Configurationcccoceviiiiiiiiinnnn, 242
A7.13 8" Generation NOMhDIIAGEc..cvvevveeveereeeecieieseseee s, 242
AT LA DBC ittt e 242
AT7.15 AMD-8111T™ DEVICE...ciiierrirrerieireireeeeiesiestesiessessessasseeseessessessessessesseans 243
ATLE EHC et e 243
A AN (o ¥ - | USSP 243
AT L8 CPU ittt bbb n e 243

A.7.18.1 Profiling in SimNow™ Technologycccccevviiiviviviiicieee 244

A.7.18.2 CPU Code Generator Commands...........cccecverurrierreerersieeseanenns 245
A.7.19 Emerald GraphiCs........cccoiiiiiieieiie st 246
A.7.20 Matrox MGA-G400 GraphiCs........cccueerirririeieneiisiseeee e 246
AT.2L PCIBUS oottt bbb 246
ALT.22 SO et ens 247
A.7.23 MEMOIY DEVICE ..ottt 247
AT.24 RAI ...ttt e ans 249
AT.25 DIMM oo 249
A.7.26 Keyboard and MOUSEccooiiiiiiiiieiee e 251
AT.27 JUMPDIIVE ..ottt rae e aneas 252
A.7.28 EL000ttt et e reans 254
ALT.29 XT Rttt ettt bt reen e 255
A.7.30 ATI SB400/SB600/SB700/SB800..........cccerrerieririieiiareeiesiesiesie e e ereanas 255
AT.3L ATIRSABO ...ttt ene e 256
A.7.32 ATIRaAAEON HD 3870......ccciiieiieiiee e 256
AT.33 ATIRST80 ...ttt re e 257
A.7.34 ATIRD790/RD780/RXT780......ccccveieieieireiesiesesie s 257
A.7.35 ATI RD890S/RD890/RD780S/RX8B80.......ccuerverririiriinrierieieriesiesiesieneeans 257

Contents Vil

User Manual November 2010

viii Contents

User Manual November 2010

Figures

Figure 3-1: Main Window (In SIMUlation) ..o 7
Figure 3-2: DeVICE WINUOW.ccviiieieeie ettt sra e snaesne e 9
Figure 3-3: Workspace POPUP MENUoiiiiiiiiieieiciee s 10
Figure 3-4: Add Connection Dialog of Device Properties Window...........c.cccceevevveriennn. 11
Figure 3-5: Computer Simulation in “cheetah 1p.bsd” Fileccccoovviiiiiiiniiiiiiiie 12
Figure 3-6: Device group: BSD with one machine group and three child devices........... 16
Figure 3-7: Device group (different conceptual view — devices are inside groups) 17
Figure 3-8: Device Group (2 group devices 1 library device)cccoovevveveieeseciiesnene 17
Figure 3-9: MOGITY GIOUPcoueiiiieieiesie et 17
FIgUIE 3-10: DEVICE GIOUP ...uveivieieeie et eiestee et te st ta et te et esaaeste e e sraeteenaesneenas 18
Figure 3-11: Example DIMM DEVICE GrOUP.......ccueieiuerierierieriesiesieeeeieeesee e sieens 20
Figure 3-12: Created DIMM DeViCe GIOUPcceevviiieiiieriecieiteesiesie e sre e srae e saesree s 21
Figure 3-13: Children of DIMM DEVICE GrOUPcceerververieriirieniinieeieieiesee e 21
FIQUIE 3-14: GroupP DEVICES.......eccueeieiieeite ettt sttt sttt sree e 23
Figure 3-15: ConS0Ie WINUOW.........ccuiiiiiiiiiiiiieieseeee e 28
Figure 3-16: Progress Meter and DiagnostiC POIS..........ccccovveieeieiieieeie e 29
Figure 3-17: CPU Translation Graph..........cocoiiiiiiieiiis s 29
Figure 3-18: CPU Real MIPS Graphcccooviiiiiicccecce e 30
Figure 3-19: CPU Invalidation Graph...........ccocuoiriiieiiieie s 30
Figure 3-20: CPU Exception Rate Graphcccooviieiicie e 30
Figure 3-21: CPU PIO RaAte Graphcccoiiiiiiiiiieieienese e 31
Figure 3-22: CPU MMIQO Rate Graphc.cooveivieiiiiieiiccie e 31
Figure 3-23: Primary, Secondary, and Floppy Displays..........ccccuvviiiiinencncncscsee 31
Figure 4-1: DiskTool Dialogue WINGAOWccceeiuiiiiiieieiicseese e 36
Figure 4-2: DiSKTOOl Shell WINCOW..........ccooiiiiiiiiiiecee s 36
Figure 4-3: NeW IMAgE SIZEc.eccveiieiie ettt 37
Figure 4-4: Create Blank IMage..........ccooiiiiiiiiiiee s 37
Figure 4-5: DiskTool Operation SUCCESSTULccveiieiieiiiiccece e 38
Figure 5-1: Main Window (N0 BSD Loaded)cccooeriiinininiiniiiieieeese s 39
Figure 5-2: Main Window (BSD L0Aded)cccceouiiieiieiiiicieeie e 41
Figure 5-3: DEVICE WINUOW........coouiiiiiiiiie ittt 42
Figure 5-4: Installing WINAOWSXPcooiiiiiiie ettt 44
Figure 5-5: Special Keys GENEIAtOr.........ccciiiiiieiie ittt 45
Figure 6-1: S0l0.bsd CoNfIGUIAtIONcceiiiiiiiiiieiee s 49
Figure 6-2: Connections Tab of Device Properties WiNndoW...........ccccccevvevieiieeiiecnieennne. 50
Figure 6-3: PCI Bus Configuration dialog WINdOWccooiiiiiiininiienc e 52
Figure 7-1: AweSim Processor-TYpe Propertiesccccoveivveiieeiiieiie e 56
Figure 7-2: AweSim Processor Logging Properties Dialogccccoovveveneicienincnene, 57
Figure 7-3: AMD Opteron™ Processor Virtual Bank-Select Line Configuration........... 60
Figure 7-4: AMD Athlon™ 64 Processor Bank-Select Line Configuration 60
Figure 7-5: DIMM-Bank Options Properties Dialog...........cccccvveiiiiiieiiieiie e, 62
Figure 7-6: DIMM Module Properties Dialog.........cccooeieiiiinininiiieieeese s 63
Figure 7-7: Graphics-Device VGA Sub Device Properties Dialogccoccevveereninniennne. 66
Figures iX

User Manual

November 2010

Figure 7-8: Graphics Device Frame Buffer SubDevice Propertiescccooevenvrvninne. 67
Figure 7-9: Matrox G400 BIOCK DIiagramccccceeveeiieieiieieeie e seesie e se e s 69
Figure 7-10: Matrox G400 Information Property Dialogccccoovvieiieienencicniiiee 71
Figure 7-11: Matrox G400 Configuration Propertiescccovveveivevveneeieseenesie e 72
Figure 7-12: Enable Full Hardware Acceleration on WindowsXP guest.............cc.ccoue.... 77
Figure 7-13: ATI Radeon HD 3870 Configuration Informationcccccccevvevviiieiennne. 79
Figure 7-14: Display Device configurationccooererenenenenineseeeeese s 80
Figure 7-15: Extended Display Identification Data VIEWETccccceveeieiiesecrie s 81
Figure 7-16: Super 10 Properties Dialog: Winbond W83627HFcccccooiiininininnne. 83
Figure 7-17: Memory Configuration Properties Dialogcccocvvveviieii e, 86
Figure 7-18: PCA9548 SMB Configuration Properties Dialog..........ccccccovvencrcnennninnne. 88
Figure 7-19: PCA9556 SMB Configuration Properties Dialog...........cccccveveiiveniiiiesnennn. 89
Figure 7-20: Northbridge Logging Capabilities Properties Dialogccccoeeveiirininnne. 91
Figure 7-21: Northbridge HT Link Configuration Properties Dialog.............cccccvevverueenen. 91
Figure 7-22: Northbridge DDR2 Training Properties Dialog............cccovverencienennnnne. 92
Figure 7-23: USB Properties Dialog (AMD-8111™ Southbridge)ccccoverererererene 95
Figure 7-24: CMOS Properties Dialog (AMD-8111™ Southbridge)c.ccvverervrienne. 96
Figure 7-25: HDD Primary Channel Properties Dialog (AMD-8111 Southbridge)......... 97
Figure 7-26: Device Options Properties Dialog (AMD-8111 chipset)........cccccocevvrvrinne. 98
Figure 7-27: Logging Options Properties Dialog (AMD-8111 chipset).........ccccceevverveenee. 99
Figure 7-28: PCI Bus Properties Dialogccooueieiiieienciiseneeeeeeee e 101
Figure 7-29: AMD-8131™ Device Hot Plug Configuration..............ccccoveviiveineinennenn, 102
Figure 7-30: AMD-8132™ Device Hot Plug Configurationccccceevveniiinnnnnnnns 103
Figure 7-31: AMD-8132 Properties Dialog.........ccccovivieieeiiiie e 104
Figure 7-32: AMD-8151™ Device Properties Dialog...........ccocvrviiiieienenencieseseeens 106
Figure 7-33: SMB Hub Properties Dialogccccoveviiiiiieie e 110
Figure 7-34: AT24C Device Configuration..........ccooeiereninenenisieseeeesee e 111
Figure 7-35: Communication via Mediatorcccoeveiieii i 128
Figure 7-36: Multi-Machine Communication without a Mediatorcccccoevnennnnns 129
Figure 7-37: ViSiDility DIagram.........cccccoueiieiiiie i 133
Figure 7-38: Plug and Play Monitor Device Configuration............ccccceoevereneienennnnnns 135
Figure 7-39: ATI SB600 SATA Configuration Dialogccccceeviiieiieiicie e, 137
Figure 8-1: PCI Configuration VIBWETcccuririeiierieriene s 143
FIQUIE 9-1: MESSAGE LOGeveeieiieiie ettt sttt saa e re e 146
FIQUIE 9-2: ETON LOQ ... tiitiitiiiieiie ettt bbb 147
Figure 9-3: 1/0 Logging Dialog.........coiuieiiiiiieiieiie e 148
Figure 10-1: CPU Debugger WINOWccocuiiiiriieiiiieie s 151
Figure 13-1: DiskT0oOl Shell WINOW.........ccocvoiiiiiiiiii e 169
Figure 13-2: DiSKTOOl GUI WINUOW..........coiiiiiiiiiiiiie e 170
Figure 13-3: DiskTool Drive INfOrmationcccceecvviii e 170
Figure 13-4: DiskT00l Progress WintOWcccceueiereninenesesesieee e 171
Figure 14-1: Memory ConfiQUIatorcccoiiviiie i 174
Figure 14-2: DiagnostiCS DISPIAYcc.oiiiiriiiiiiiieiee e 175
Figure 14-3: Message LOg WINAOWcccoiiiiiiiiiiecic et 176
Figure 15-1: ConS0Ie WINUOW.........ccuoiiiiiiiieiieieeieee s 230

Figures

User Manual November 2010

Figures Xi

User Manual November 2010

Tables

Table 1-1: Feature Overview Public Release versus Full Releaseccccoveviviiennnnne. 2
Table 2-1: Software and Hardware ReqUIrEMENLS..........ccvevveieieeneiiie e 3
Table 3-1: Cheetah_1p.0SA DEVICEScciiuiiiiiiiieieiee e 14
Table 3-2: Device Window - QUICK REFEIENCE.........cveiviiiiiiie e 14
Table 3-3: IMAGE TYPES ..ot b bbb 32
Table 5-1: Command-Ling ArQUMENTS.........ccveoiiieiierie e e se e et ee e sre e sne e e e 40
Table 5-2: Newmachine Command ArgUMENTSccccviierierienieeseenieie e see e see e 46
Table 7-1: SUPPOITEU DEVICES.cveivieieiieite et sre e esreenee s 54
Table 7-2: Supported Standard VESA MOUESccceiiiieiieiiiieseeneeie e sieanee s 67
Table 7-3: Supported Custom VESA MOUES........c.coiveiueiieiieie et 68
Table 7-4: MatroX G400 VESA MOUESccoveuiiieiieieaie e eee e eee e sie e sneesseenees 75
Table 7-5: Supported Resolutions in Power Graphics Mode............ccccoocvvieviiieiiieinenns 75
Table 7-6: Supported Guest Operating SYStEMSccueiveriririrerieieeeee e 76
Table 7-7: Execution Control FIAgS.........cccveiiiiiieiie e 120
Table 7-8: Internal Execution Control FIags ..o 121
Table 7-9: Mediator Command Line SWItCheS........cccoceviiiiiiiiiiicieeee e 131
Table 7-10: MAC Address ASSIGNMENTSeiiriiieieienesie st 132
Table 7-11: Client-Server: SImUlator SEIVETcovieiiiiie i 132
Table 7-12: Client-Server: Simulator CHent L.........cccovvveiiiienene e 132
Table 7-13: Isolated Client-Server: SImulator SEIVErccocvviiiieieiene e 132
Table 7-14: Isolated Client-Server: Simulator Client 1..........cccoovevviiivieienieneee e 133
Table 10-1: Debugger Breakpoint Command EXamples..........cccovvvvieiieiciicce e, 152
Table 10-2: Debugger Memory Dump Command Examples..........ccccovvvevvnieinnininnnee. 153
Table 10-3: Debugger AMD-V™ Memory Dump Command Examples.............c......... 154
Table 10-4: MSR Read EXaMPIES........cccoiiiiiiiiiiiieee e 154
Table 10-5: MSR WIrite EXaMPIeccoooiiiieiccce e 155
Table 10-6: Find Pattern EXAmMPIe ..o 155
Table 10-7: Debugger Commands and Definitionsccccceveeieiieve e 158
Table 15-1: Computer Platform FileS (BSD).......cccooiiiiiieniiiineiieieee e 184
Table 15-2: ProduC FIlES........ociiiiieie e 185
Table 15-3: Hard-DisK IMAGES.......coeiiiiiiiiiiiii e 186
Table 15-4: MemOry SPD FilESccoiiiiiiie et 186
Table 15-5: Supported Guest Operating SYStEMSccvveiiieeiiiiiieiie e 187
Table 15-6: CPUID Standard Feature implementation............cc.ccoovvniiiencnencnenennn 188
Table 15-7: CPUID Extended Feature implementation............c.ccccoovviveeiieiiecvie e, 189
Table 15-8: General-Purpose Instruction Reference...........cccovevveveiieivece e 223
Table 15-9: System Instruction RefErenCe.........ccovvvviiiie i 225
Table 15-10: 3DNow!™ Instruction RefErenceccvvveveiiereeie e 227
Table 15-11: Extension to 3DNow! Instruction Referencecccoccevveviieicnicneenn. 227
Table 15-12: Prescott New Instruction REference.........cccovvveeveeieicieie e 228
Table 15-13: CodeGen Command OVEIVIEWccceieereeieiieniesie e nieeee e 246
Table 15-14: Prefix Sequences (Keyboard.teXt)ccoovrerereninenisieeese e 252

Tables Xiii

User Manual November 2010

Xiv Figures

User Manual November 2010

1 Overview

The AMD SimNow™ simulator is an AMDG64 technology-compatible x86 platform
simulator for AMD's family of processors. It is designed to provide an accurate model of
a computer system from the program, OS, and programmer's point of view. It allows fast
simulation of an entire computer system, plus standard debugging features such as break-
pointing, memory-viewing, and single-stepping. The simulator allows such work as BIOS
and OS development, memory-parameter tuning, and multi-processor system simulation.

Section 2.1, “System Requirements”, on page 3 describes supported host Operating
Systems. Section A.3, “Supported Guest Operating Systems”, on page 186 describes
supported guest Operating Systems.

The simulator has between a 10:1 and 100:1 slowdown rate from the host CPU,
depending on whether the workload is in the CPU core or accessing simulated devices
intensively.

The simulator is designed to create an accurate model of a system from the program’s
view. Device models contain all the program-visible state but the actual functionality is
abstracted. In many cases only the functionality needed to satisfy the software is
implemented. Software may be run on the simulator in an unmodified form. This includes
BIOS, drivers, O/S, and applications.

The simulator has a concept of time, but it is not a cycle-accurate simulator. The basic
timing mechanism is an instruction; all instructions execute in the same amount of time
and are one tick in length. This "tick™ time is scaled and used by the rest of the system.
Long-latency events, like disk or floppy access, have some minimum latency built in
because we found legacy software that relied on the physical latency of these peripherals.

The simulator contains all the classic pieces of a PC system (CPU, memory, Northbridge,
Southbridge, display, IDE drives, floppy, keyboard, and mouse support). Images (hard
disk, DVD/CD-ROM, and floppy) can be created in custom sizes with the DiskTool
program (Section 13, “DiskTool”, on page 167) that is provided with the simulator. A
simulation can be saved at any point in the simulation to a media file, from which the
simulation can be re-run at a later time.

A simple diagnostic port model (known as "Port80" device) displays values written by
the BIOS in a pane of the simulator's main window. Other panes display guest (simulated
machine) and simulator host processor times. The simulator requires several files to be
specified. Binary files containing the BIOS and disk images are stored in the images
directory. The simulator home directory stores “*.bsd” files which contain the
configuration of the system (how models are connected together and their settings) and
the logical state of all the devices in the simulator. When starting a simulation from reset,
the “*.bsd” file is rather small and only contains the configuration information. When the
simulation starts, the simulated memory is allocated. When the simulation is halted and

Chapter 1: Overview 1

User Manual November 2010

saved, the “*.bsd” file will have grown significantly, slightly larger than the size of
simulated memory.

The graphics device supplied with the simulator is a 2D and 3D graphics card with linear
frame buffer and DirectX® 6 support. AMD currently plans to provide a graphics model
with the simulator which will also have modern 3D hardware acceleration, including
Microsoft® DirectX 9/10 support.

The simulator is available in two versions: Public Release and Full Release. Table 1-1
shows the detailed feature matrix:

Feature Public Release | Full Release
DIMM configuration Limited o
Available devices Limited o
Available platform definition files (BSDs) Limited o
Devices can be added and removed from platform definition files o o
Connecting and disconnecting devices L L
Ships with a variety of different CPU cores (Product Files) o o
Full product support Limited o
Analyzer support o o
Support of simulated multi-processor systems (up to 16 CPUs) W o

Table 1-1: Feature Overview Public Release versus Full Release

To get more information about how to obtain the full release version of the simulator
please send an email to simnow@amd.com.

! Support of up to two cores.

2 Chapter 1: Overview

mailto:simnow@amd.com

User Manual November 2010

2 Installation

2.1 System Requirements

The AMD SimNow™ simulator runs on both Linux® 64 for AMD systems and
Windows® for 64-bit AMD systems.

The requirements for each system are as follows:

Linux® 64 for AMD64 Windows® XP 64Bit Edition for
AMDG64

Any of the following 64-Bit | Windows XP x64 Edition or
Linux distributions for AMD64. Windows Server 2003 x64
Edition for AMDG64.

OS Distribution e SuSE 9 Pro and newer
e RedHat 64Bit Enterprise 3
and above
e Fedora Core 2 and newer.
Recommended SuUSE 9.1 or newer for AMD64. Build 1218 or newer.
Approx. 64MB of memory, plus
Memory Approx. 150 MB of memory for each simulated processor, plus the
amount of simulated RAM.
Processor AMD Athlon™ 64 or AMD Opteron™.

1 Gigabyte of free hard disk space for the simulator and devices
plus 3 Gigabytes free space for disk file images.
3.5-inch, 1.44-MB floppy drive.

CD-ROM Drive.

Table 2-1: Software and Hardware Requirements

Hard Disk Space

Other Hardware

Running the simulator on a Linux kernel prior to version 2.6.10 may cause the simulator
to malfunction. The bug is in the 64-bit path only, and the symptom is in signals that are
not associated with "system calls" still being treated as "system calls" as they go back to
user space, i.e. in certain cases it tries to restart the "system call" even when it did not
come from a "system call". Updating the Linux kernel to kernel version 2.6.10 or later
resolves this problem.

The simulator may stress the system more than most applications, including the base
operating system. AMD has received reports that the simulator has caused some systems
to crash, and in general this has been traced to unstable hardware. Hardware instability
can also crash applications or operating systems inside the simulator.

2.2 Installation Procedure

Insert the CD-ROM into your system's CD-ROM drive, or download the simulator
program and its data files from http://developer.amd.com/simnow.aspx. Browse to the
root directory of the CD or to the path where the downloaded simulator is stored, and

Chapter 2: Installation 3

http://developer.amd.com/simnow.aspx

User Manual November 2010

begin the installation, as follows. To install under Windows, double-click on the self-
extracting executable. To install under Linux, extract the zipped tar file as shown below:

tar —xzf Simnow-Linux64-<version>.tar.gz

2.3 Directory Structure and Executable

After the opening screen and license agreement are displayed, you will be prompted to
choose an installation directory. When you select this, the install program will copy the
executable files and device models to the selected directory and setup the registry entries
necessary to run the simulator.

The install program will create the following subdirectories under the install directory:

=1) SirmMow Contains the simulator’s executable, DiskTool, libraries, and BSD files.
o analyzers Contains CPU analyzers.
I devices Contains the simulator's device models."
I doc Contains the latest versions of the simulator documentation.
i help Contains the simulator’s help files.
I icons Contains icons used by the simulator’s GUI components.
o images Contains image files.
= productfile Contains processor-id files.
= reg Contains register script files used to register simulator components.
I devel Contains the Emerald BIOS changes, analyzer header files, and monitor module example.
I radeon Contains the ATl Radeon™ board configuration files.

! Under Windows each model is a Windows DLL. Under Linux each model is a Linux library. Each model has a ".bsl"
extension.

2.4 Setting® up Linux for the Simulator
Make a file: "/etc/sysctl.conf” (or add to the existing one)

This is here to make sure we get enough "mmap"able virtual address
space, in 4K pages. It defaults to 65536, which is generally

too small.

vm.max map_ count = 1048576

This line doesn't need to be here for newer Linux kernels, but some
early AMD64 Linux kernels would log SEGVs even if a process had a

handler for them, which is what SimNow does.

debug.exception-trace = 0

Example 2-1: Setting up Linux for the Simulator

Then run "sysctl -p", or make sure the boot sequence does this if you don't want to run it
at each reboot.

Newer Linux distributions may set a per-process memory limit by default. SimNow
allocates a large amount of memory that is never touched. This untouched memory will
not be backed by DRAM or swap, but Linux counts it against SimNows process memory
limit when it comes to resource limits.

4 Chapter 2: Installation

User Manual November 2010

You can unset the per-process memory limits by running the following commands as
root.

ulimit -m unlimited
ulimit -v unlimited

2.5 Configuration File

The simulator's configuration file is a text file that may be edited and that is stored in
different locations depending on which host OS you are using.

If you are using Windows as host operating system the configuration file is located in:

C:\Documents and Settings\All Users\Application Data\simnowrc

If you are using Linux as host operating system the configuration file is located in:

SHOME/ .gt/simnowrc

Here is an example of the contents of this file, with an explanation:

[General]

[UserKeys]
CTL-ESC=Sends a CTL-ESC to the application,1D 01 81 9D
ALT-F4=Sends an ALT-F4 to the application, 38 3e be b8

[UserBottons]
BUTTONO="MyIconPath\MyIcon.png”, “cpu.name”

The configuration file is divided into sections, with each section title enclosed in square
brackets. This particular example includes three sections, named [General], [UserKeys]
and [UserBottons].

All user key definitions are stored in the [UserKeys] section. Each user key definition is
defined by a single line. This example defines two user keys. The string to the left of the
equal sign is the string that will be placed in the menu. To the right of the equal sign are
two strings, separated by a comma. The first string is the text that is displayed when the
user clicks on the "What's This" help button, and the second string is the list of scan codes
that are sent when this menu item is selected.

The two examples shown can also be generated by the “Generate Key Codes” menu item
on the “Special Keyboard” menu, see Section 5.2.3, “Interaction with the Simulated
Machine ”, on page 45.

All user button definitions are stored in the [UserButtons] section. Each user button
definition is defined by a single line. This example defines one user button (BUTTONO).
The string to the left of the equal sign is the path including the file name of the icon that
will be placed in the toolbar menu. To the right of the equal sign is the string that

Chapter 2: Installation 5

User Manual November 2010

represents the automation command (please refer to Section A.7, “Automation
Commands”, on page 230) that will be executes when the user clicks on the defined user
button.

Note that minimal parsing of the text is done, so it is important that no _spaces exist
around the separating comma.

2.6 Updates and Questions

Please refer to the Release Notes located at "SimNow\docs" to obtain the latest
information about the simulator. If you have any question regarding the simulator please
refer to Section 15, “Frequently Asked Questions (FAQ)”, on page 179 or contact your
AMD account representative.

Appendixes are provided that describe:

Format of Floppy and Hard-Drive Images, page 183
Bill of Material, page 184

Supported Guest Operating Systems, page 186
CPUID, page 188

Known Issues, page 190

Instruction Reference, page 192

Automation Commands, page 230

6 Chapter 2: Installation

User Manual November 2010

3 Graphical User Interface

The simulator has a cross-platform GUI that uses the Qt toolkit. We welcome bug reports
and usability feedback on the simulator.

Menu Bar Main Window Tool Bar Numeric Display
Components

" TH TAMD SimMNow Main Window
File Wiew Special keyboard Help

|2 Hd e A B 27E O @

Graphs & | Murneric Displap(z] =}

T o Bt A || Simulator Stats |DE Primary Display |IDE Secondary Dizplay — Floppy Display [Diagnostic Parts
1.311.61 Host Seconds 134,263,808 master read 0 master read 430 read |00 02 00| 03 83-80

§— 75,76 5im Seconds 22332328 master witen 0 master wittzn 172 witen 0000 |00 |00 87 - 84
M 15.0 Ava MIPS {1 slave read 0 slave read 00 |00 00 |CB e2-el

841 MIPS 0 slave written 0 slave witten
DMAPID mode PIO/PI0 mode
Real MIPS Graph

System Properties

System Restore I Automatic Updates I Remate
General | Computer Mame | Hardware | Advanced

Invalidation Fate Graph

- System:
- Micrasolt Windows <P
I Professional x64 Edition

Wersion 2003
Exception Fiate Graph i 1 Service Pack 1

Registered to:

Sirn o
e Advanced Micro Devices, Inc.
7B588-371-0497215-51703
FIO Rate Graph
Computer:

AMD Engineering Sample 00

802 MHz, 512 MB of Rk
L e

MMID Rate Graph l
Microsoft: ‘ ™

Windows

Professional x64 Edition

) i) Take a tour of Windows %P x
To learn about the exciting new Features in XP now, dick here.,
To take the tour later, click All Programs on the Start menu,
and then click Accessories,
J LN

e —— -
ig.ctart B3 =T % 12:14 M

Stopped \
\1 Simulator status (CsC) Simulation Display
Figure 3-1: Main Window (In Simulation) Area

3.1 Tool Bar Buttons
The Tool Bar shown in Figure 3-1 contains up to eleven control buttons.

The simulation can be started by clicking on the “Play” button (12)).
The simulation can be stopped by clicking on the “Stop” button (\=). To reset the entire

simulator, stop the simulation first by clicking on the “Stop” button and then click on the
“Reset” button (1#).

Chapter 3: Graphical User Interface 7

User Manual November 2010

The power-management “Soft Power” button (&) and “Soft Sleep” button (-J) are
available only on simulated systems that have an Advanced Configuration and Power
Interface (ACPI) BIOS.

Clicking on the “Soft Power” button puts the simulated system in a very low power
consumption mode. The working context can be restored if it is stored on nonvolatile
media. The simulated system appears to be off.

Clicking on the “Soft Sleep” button simulates a power-consumption reduction. The power
consumption is reduced to one of several levels, depending on how the system is to be
used. The lower the level of power consumption, the more time it takes the system to
return to the working state.

To close a previously loaded system simulation definition file click on the “Close BSD”
button (£). This button is only enabled when a system definition file has been loaded or
created earlier. Please make sure you save any changes that you make to the system
configuration before clicking on the “Close BSD” button (2/) to close the system
definition file. Otherwise all changes will be lost.

The “Save BSD” button (&) is only enabled/active when a system definition (BSD file)
has been loaded or created. To save your current system definition click on the “Save
BSD” button (H) or click on the "File" menu item and select "Save BSD".

To open a system definition file (BSD file) click on the “Open BSD” button () and
select the desired BSD file from the Open File Dialog Window. The "Open BSD" button
is only enabled/active when no other system definition file has been open yet.

To create a blank or new system definition file click on the “New BSD” button (). This
button is disabled when a system definition file has been loaded or created earlier. In this
case you must close your current system definition file, click on the “Close BSD” button
(12) or click on the "File” menu item and select "Close BSD". Please make sure you save
any changes that have been made to the system definition file before you click on the
“Close BSD” button (2!). Note, when closing the BSD file all changes will be lost.

If you want to modify the current system definition use the “Show Device Window”
button (ﬁ) to display the current system configuration. The “Show Device Window”
button is disabled when the simulation is currently running. To stop the simulation click
on the “Stop Simulation” button ().

To open the simulator's integrated debugger click on the “Show Debugger” button (5).
The “Show Debugger” button is disabled when the simulation is currently running. To
stop the simulation click on the “Stop Simulation” button (=),

Click on the “Best Fit To Window” button () to reduce or enlarge the size of the
simulated display area so that the entire simulated display area will fit into the simulators

8 Chapter 3: Graphical User Interface

User Manual November 2010

main window. If you hold down the CTRL key when clicking on the “best fit” button, it
“locks” into a state where the simulated display area is resized whenever the simulated
graphics display resolution changes. To clear this locked condition, click on the “best fit”
button again.

3.2 Device Window

The Devices Window, shown in Figure 3-2, is opened by selecting “View—Show
Devices” or clicking on the 2l putton. In this window, you can create a simulated

computer and modify its properties, BIOS images, memory characteristics, and attached
components.

This section describes the main components of the Device Window and shows how to
build up and configure a simulated computer. It explains the interface using some of the
most-often used simulation components. Please also see the walkthrough of building a
single-processor system in Section 6, “Create a Simulated Computer”, on page 49.

Device
Window

Represents
Message Routing

SimNow Device Window:
Drag Icons to insert new devices Shift+drag to 3d

[] Shew Deprecated Devices

BWEE 1408111 140 Hub

AweSimProcessor

£ 4bdD-8132 PCI-% Controller

T AT 240 Device

Debugger =T
Diirm Pank. #2

weSim Processor

ﬁ Dirnm B ank

[EHES 1nteliR) Pro/1000 MT Desktop Network Adapter

AMD-8132 PCIR
Controfer #3

sMbB
SME Hub Devicesi

= 4 System

Emerald Graphics | | =7 £ @ Conﬂguration
USB ‘winbond W'8382?HF #1711 1/0 Hub W
= USE JumpDrive 510 #5] PCIfBus #7 Intel(R] Pra/1000

MT Desktop Netwark
@ Memom Device Adapter #16
w7 PCA3548 Device
FICT:] Emerald Graphicz

@ PCI Bus o 2
x USE JurnpDrive #15

A0 8th Generation Integrated Morthbridge

- e
SM\¥/B SMB Hub Device PCAS543 Device #13 AT24C Device #14
%?Winbond WiE3IE27HF 510 ~
-| < > f/

T T T T T e T g T P T T OO T SrO T TOTC—Cr O TT T TEr Tere o er T OT e FrerrereoTT= Ol

computer systemelsOeleifuneld_As a collection of device models that c'hqmworkamgcmth each
other by exchanging messages. The icons in the workspace represent device models; the
lines connecting the icons represent message routing. You can set up and alter the
simulated computer system by using the workspace popup menu (shown in Figure 3-3).
To open the workspace popup menu, right-click on any icon in the workspace area.

Chapter 3: Graphical User Interface 9

User Manual November 2010

The Device List, located on the left side of the Device Window, describes all devices
available in the simulator along with their configuration options. For further information
please refer to Section 7, “Device Configuration”, on page 53.

The Show Deprecated Devices checkbox is not checked by default. This checkbox gives
the user the opportunity to show or hide deprecated devices. It is not recommended to use
deprecated devices in simulation. To show deprecated devices this checkbox must be
checked. The Show Deprecated Devices checkbox does not disable the ability to connect
or create deprecated devices. Also the automation interface of deprecated devices and
loading BSDs which contain deprecated devices are both unaffected.

3.2.1 Add a New Device

You can add devices to the workspace by dragging a new device from the Device List on
the left side of the workspace window to an appropriate location within the workspace on
the right side.

Some devices produce additional windows or dialogs when you add them to the
workspace. These windows provide an interface to the device during simulation. For
example, adding the Winbond WB83627HF SIO device (see Section 7.5 on page 69) to
the workspace adds the floppy byte counts numeric window to the Main Window screen.

When you add a device to the workspace, the shell sends a reset message to all of the
devices in the workspace. The global reset is equivalent to power-cycling the simulated
computer system.

3.2.2 Workspace Popup Menu

Changing the system configuration of the simulated system can make the simulation
nonfunctional.

Right-clicking on any icon in the workspace produces a popup menu as shown in Figure
3-3.

Configure Device

Add Connection

Disconnect Device
Delete Device
What's This?

Help

Figure 3-3: Workspace Popup Menu

3.2.2.1 Add Connection

You can connect a device to another device by holding Shift, left-click, and drag from
one device to the other. You will draw a line from the first device to the second. Release
the mouse button to create the connection. You can also right-click one device, select

10 Chapter 3: Graphical User Interface

User Manual November 2010

"Add Connection”, and then click on the device to connect to. Then click Finish. The
connection enables simulator-level message exchanges between the connected devices.
All connections enable bidirectional message transfers.

Some devices contain more than one interface to which a connection can be made. A
multi-interface device routes messages out different interfaces, based on the type of
message being sent. When you make a connection with a multi-interface device, an
interface list dialog appears which enables you to select the appropriate interface. You
must choose an interface on either device, even if one or both of the devices has only one
interface type.

Generally, you shouldn't connect different types of interfaces. For example, interface
Type A of Device 1 should only be connected to interface Type A of Device 2.

AMD-8111 /O Hub #4 Properties

Connections 10 Logging Logging Device Options Primary HOD Chann ~ *

Local Connection Paint Remote Device Remate Connection Paint

HyperTranzport Bus O AMD-3151 AGP Tunnel #2 HyperTranzport Bus 1
Intermupt A 10APIC Bus AMD-8151 AGP Tunnel #2 Interupt /A 1OAPIC Bus
LPC Bus

LPC Buz Memomn Device {3 Genenc Buz

LPC Bus Winbond WE3E27HF 510 #7 Generic Bus

PClBus 0 PCl Bus #E PCIBus 0

Syztemn Management Buz 0

Syztemn Management Buz 0 Dimm Bank #5 Genenc Buz

Syztemn Management Bus 1

JSE Part 0

5B Part 1

JSE Part 2

JSE Part 3

IJSE Port 4

JSE Part &

[k.] ’ Help] [Cancel

Figure 3-4: Add Connection Dialog of Device Properties Window

A device's connection appears in the “Connections” tab of the Device Properties window
for each device, as shown in Figure 3-4.

When you add a connection, the simulator shell sends a reset message to all of the
devices in the workspace. The global reset is equivalent to power-cycling the simulated
computer system.

Chapter 3: Graphical User Interface 11

User Manual November 2010

3.2.2.2 Configure Device

Most devices provide configuration options. Selecting “Configure Device” from the
workspace popup menu produces a dialog window containing options for the specified
device.

Selecting the “Connections” tab in the Device Properties window will display a list of all
connections between the specified device and any other devices in the workspace.

3.2.2.3 Disconnect Device

Selecting “Disconnect Device” from the workspace popup menu removes all connections
to the specified device.

3.2.2.4 Delete Device

Selecting Delete Device from the workspace popup menu removes all connections to the
specified device, and removes the device from the workspace.

3.2.3 Example Computer Description

In this section we describe the major components of the computer simulation contained in
the “cheetah_1p.bsd” file.

o
Debugger #8 AweSimProceszor
#0
DimmBank #2 AMD Bth Feneration
|ntegraled o
Morthbridge &1 =
FCI Buz #10
5
SMB Hub Dew =
AbD-a132 PCl-= { ﬁ
Controfer #3
FCI Busz #11
SJE? I. ﬁ LT
Winbond Wa3E27THF - [0 Hub PCIBus #7 Intel(R] Pro/1000
SI0 HE MT Dezkiop Metwork
Adapter #16
Memom Device #4 Emerald Graphics
USB me
ISE JumpDinve #15 —t ﬂ'
PCAS548 Device #13 AT24C Device #14

Figure 3-5: Computer Simulation in “cheetah_1p.bsd” File

12 Chapter 3: Graphical User Interface

User Manual November 2010

This computer is a single-processor AMD 8" Generation machine with 256 MB of
memory, a Southbridge that supports two IDE chains, VGA output, and a SuperlO that
supports a keyboard, mouse, and floppy drive. This computer also comes with a USB
JumpDrive and NIC device.

Right-clicking on any icon brings up a Workspace Popup menu (Figure 3-3) that allows
access to the Device Property window, which includes a list of all components that the
selected component is connected to. An example Device Property window is shown in
Figure 3-4. The right-click Workspace Popup menu also allows you to delete or
disconnect the selected device from all its connections.

Table 3-1 lists each component in the “cheetah_1p.bsd” computer. For more information
about devices and possible device configuration, please refer to Section 7, “Device
Configuration” on page 53.

Symbol | Device Short Description
P | AMD Debugger Standard debugging support.
AweSim Processor Simulated Processor.
DIMM Bank DIMM Memory Modules.
AMD 8™ Generation Integrated | Integrated Northbridge treated as a
Northbridge separate device in simulation.
Southbridge supporting Hard drives,
AMD-8111™ Southbridge DVD-/CD-ROM drives, Floppy drives,

USB ports, CMOS, and POST ports.
The AMD-8132 PCI-X Controller is a
HyperTransport tunnel that provides
AMD-8132™ PCI-X two PCI-X buses and two IOAPICs.
Controller These PCI-X buses may or may not be
configured as hot-plug-capable,
depending on the platform.

Emerald Graphics Device Simulated VGA device.

Matrox G400 Graphics Device | Simulated VGA/SVGA device.

Simulated PCI Bus which can connect

> M8 ® @ 30D

PCI Bus multiple PCI devices (such as bridges
and PCI VGA).
l;:!-j Winbond W83627HE SIO SuperlO Chip with keyboard, mouse

and floppy.
Device that contains a configurable
BIOS ROM image.

Memory Device

L

Chapter 3: Graphical User Interface 13

User Manual

November 2010

Symbol | Device

Short Description

SHB SMB Hub Device

The SMB hub device is used to connect
one SMBus to any of four SMBus
branches.

w™® | PCA9548 Device

The PCA9548 is an 8-channel System
Management Bus (SMB) switch.

= | AT24C Device

The AT24C device is a Serial
EEPROM device.

The JumpDrive device allows easy
import and export of data between a

Uss .
i USB JumpDrive host system and a simulation
environment.
The network adapter device models an
Desktop Network Adapter Intel Pro/1000 MT Desktop Network

Adapter.

Table 3-1: Cheetah_1p.bsd Devices

3.2.4 Device Window — Quick Reference
Table 3-2 lists common tasks that may be done in the Device Window and describes how

to complete them.

Task Where to Find the Properties
Enter the “AweSim properties page— Processor” tab and
Change CPU Type select a CPU type. For more information, please refer to

Section 7.1, “AweSim™ Processor Device, Figure 7-1 ", on
page 56.

Change Memory type or size

Please refer to Section 14.2, “Changing DRAM Size”, on
page 173.

Change a hard drive or DVD-
/CD-ROM image

Go to the Simulation Display Window “File—Set IDE
{Primary, Secondary} {Master, Slave} Image”, as shown in
Figure 7-25, on page 97,

Or

Go to the “Southbridge Properties page—HDD {Primary,
Secondary} Channel”. If using a DVD-/CD-ROM image,
check the DVD-ROM checkbox, as shown in Figure 7-25,
on page 97.

Change a floppy drive image

Go to the Main Window “File Menu—Set Floppy Image”
Or

Go to the “SIO properties page—Super 10” tab (see Figure
7-16 on page 83).

Change a BIOS image

Go to the “System BIOS Properties page—Memory
Configuration” tab (see Figure 7-17, on page 86). Change
the Init File entry.

Table 3-2: Device Window - Quick Reference

14

Chapter 3: Graphical User Interface

User Manual November 2010

3.3 Device Groups

A platform (*.bsd) consists of devices, and each device is an instance of either a device
library (*.bsl or *.s0) or a device group (*.bsg). A device group is an aggregation of
devices into a single composite device that has some customized aspects (includes its
name, icon, ports, initial and default state).

Device groups are a particular class of devices. They have the same properties and
characteristics as traditional devices, but also allow the user to extend and tailor specific
device(s) to meet a particular hardware implementation or configuration. Device groups
provide a method that allows the user to group or collect one or more devices, libraries or
groups into one composite device. To the user, the composite device will look and feel no
different than a normal device library and, for the most part, the two should be
indistinguishable.

A device group can consist of one or more child devices, with some optional initialization
state associated with each child device, and those devices can optionally be connected to
each other. It may be helpful to think of a device group as a BSD within a BSD.
However, a device group also has its own identity as a device, and it can support external
connection ports that allow it be connected to other devices in the same manner as a
traditional device library.

3.3.1 Terms

If any of the language and wording used in these Device Groups sections is unclear, it
may help to refer to this list of terms.

Device: A device library or device group (also, a known device or created device).

Device Library: Contains binary implementation of device functionality; has no child
devices; associated with a “*.bsl” Windows or “*.bsl” Linux file.

Device Group: Grouping of one or more devices (libraries and groups) into a single
device; gets its functionality through aggregation of its children, and from its group-
specific properties/aspects; associated with a “*.bsg” file.

Known Device: A device that the shell knows about (i.e., the shell has all the necessary
information to create an instance of this device). Known devices appear in the left hand
pane of the Device Viewer window; and on the console using shell. KnownDevices.

Created Device: An instantiation of a known device. All devices in a BSD are created
devices. Created devices appear in the right hand pane of the Device Viewer window; and
on the console using “shell.CreatedDevices”.

Device grouping tree node relationships: Because of device grouping, created devices
in a BSD are nodes in a tree, with parents and children, siblings, and end/root tree node
relationships.

Chapter 3: Graphical User Interface 15

User Manual November 2010

Device connection relationships: Because of device connections, a sibling device can be
connected to another sibling device at a connection port of each device.

Machine Device Group: Just a device group, but it is special since it is the root node of
a machine tree (it has no parent, it can't be deleted, it has no ports, and it has no sibling
devices); each machine in a BSD has a single machine created device group.

Archive Data or Device State: A known device group has archive data for its child
devices, which specifies the default and initial state for when a known device group is
instantiated as a created device. A known device library also has default and initial state
for when it is instantiated as a created device. When a BSD is saved, each device's current
state (archive data) (which may be different than the original known device's archive
data) is saved to the “*.bsd” file.

Internal Connection: A connection between two children of a device group

External Connection: A connection between a device's parent group and a sibling of the
parent group. Under-the-hood, a connection to a device group is routed to one of its
children, via an internal-to-external port mapping between the child device's port and the
parent device's port.

3.3.2 Concept Diagrams

A device group is a device with its own identity (name, description, icon, help file, etc).
But it is also like a BSD; in fact, every BSD has a single created device group called the
Machine device. Tthe default user’s view into SimNow is from the context of looking
inside the Machine device. This encapsulation of devices inside device group’s results in
a hierarchy tree, with a Machine device group as the root node. In this way, a device
group tree is like a folder/directory tree (folder is to device group as file is to device
library), as demonstrated in Figure 3-6.

Figure 3-6: Device group: BSD with one machine group and three child devices

Any device can also connect to its sibling devices (Figure 3-6 does not depict any port
connections). Figure 3-7 depicts the same example device tree, but with a different
conceptual view - devices are inside groups; arrows represent possible port connections
between sibling devices:

16 Chapter 3: Graphical User Interface

User Manual November 2010

4

The previous diagrams show child devices inside device groups. On the standard top
level view (the context of inside the machine device), we would more simply just see
three devices, see Figure 3-8 (arrows represent possible port connections between the
devices).

N

Figure 3-7: Device group (different conceptual view — devices are inside groups)

Figure 3-8: Device Group (2 group devices 1 library device)

3.3.3 Working with Device Groups

From the main SimNow window, “View—Show Devices", opens a device viewer GUI
window for the machine device group. We can also open a device viewer GUI window
that views any device group's children. Right-click the device icon and select "Modify
Group (Show Devices)" from the popup menu. If "Modify Group (Show Devices)" is not
present, then the device the user has clicked on is not a group.

ZE Configure Device Ctrl+E
Add Connection

Delete Devicels) Del
Disconnect Devicels)

Group Devices Ctrl+G

What's This?
Help

Figure 3-9: Modify Group

Chapter 3: Graphical User Interface 17

User Manual November 2010

Click on "Modify Group (Show Devices)". This will open a separate show device viewer
window.

AweSim Processor #0 AMD &h Generation AweSim Processor £5
Integrated Morthbridge #&

Figure 3-10: Device Group

If any modifications are done to the device group, then they will be saved with the BSD.
Note that it is possible to modify a device group to a point where its children look
nothing like the original device.

3.3.4 Shell Automation Commands for Device Groups

The shell automation commands that are used for a device also work for a device group.
For example, shell. KnownDevices lists all known devices (both device libraries and
device groups). For example, a device group exposes ports and connections, SO
“shell.AvailablePorts” and “shell.connect” etc. work with a device (regardless of
whether it's a group or a library).

3.3.4.1 Device Tree

You can optionally reference a device in the parent and child grouping device tree, using
the syntax separator " -> " between device parent and child, and "-> Machine #1" as
the root device. Here are some examples, using a machine and platform that just has two
"4 core Node" devices...

1 simnow> shell.createddevices
"4 core Node #0"
"4 core Node #1"

1 simnow> shell.CreatedDevices "-> Machine #1"
"4 core Node #0"
"4 core Node #1"

1 simnow> shell.createddevices "-> Machine #1 -> 4 core Node #0"
Cpu:0 "AweSim Processor #0"

Cpu:1l "AweSim Processor #1"

Cpu:2 "AweSim Processor #2"

Cpu:3 "AweSim Processor #3"

sledgenb:0 "AMD 8th Generation Integrated Northbridge #4"

1 simnow> shell.createddevices "-> Machine #1 -> 4 core Node #1"
Cpu:4 "AweSim Processor #0"

Cpu:5 "AweSim Processor #1"

Cpu:6 "AweSim Processor #2"

Cpu:7 "AweSim Processor #3"

sledgenb:1 "AMD 8th Generation Integrated Northbridge #4"

18 Chapter 3: Graphical User Interface

User Manual

November 2010

1 simnow> shell.modules
xtrsvec:0

shell: 0
Cpu:0

sledgeldt:0

sledgenb:1
sledgenb: 0

Cpu:l
Cpu:2
Cpu:3

sledgeldt:1

Cpu:4
Cpu:5
Cpu: 6
Cpu:7

Notice the “shel1.modules” list is flat, but the devices are in a tree structure that allows
us to have both a "-> Machine #1 -> 4 core Node #0 -> AweSim Processor #0"
and a "-> Machine #1 -> 4 core Node #1 -> AweSim Processor #0". Also notice that our default
view ignores the tree, and just shows us two devices: "4 core Node #0" and "4 core

Node #1".

3.3.4.2 Enabled vs. Disabled vs. Mixed

Shell device commands like “shell.Location” Or “shell.AddDevice” have generic
meanings (regardless of whether the device is a group or library). But some are defined
from an aggregation of the children. For example, “shell.GetFastPath” can return
“Enabled”, “Disabled”, or “Mixed” (means some children are "Enabled" and some are

"Disabled").

1 simnow>

PCI:
I0:

IOfpdis:
MEM:
MEMfpdis:
GETMEMPTR:

1 simnow>
PCI:

I0:
IOfpdis:
MEM :
MEMfpdis:
GETMEMPTR :

1 simnow> shell.GetLogIO "4 core Node #0"

PCI:
I0:

shell.GetLogIO "4 core Node #0 -> AweSim Processor #0"

Disabled
Disabled
Enabled
Disabled
Enabled
Disabled

shell.GetLogIO "4 core Node #0 -> AweSim Processor #1"

Disabled
Disabled
Disabled
Disabled
Disabled
Disabled

Disabled
Disabled

In this example, all other child devices of "4 core Node #0™ are "Disabled"” for all log
options.

Chapter 3: Graphical User Interface

19

User Manual November 2010

IOfpdis: Mixed
MEM : Disabled
MEMfpdis: Mixed
GETMEMPTR: Disabled

1 simnow> shell.GetLogIO "-> Machine #1"

PCI: Disabled
I0: Disabled
IOfpdis: Mixed

MEM : Disabled

MEMfpdis: Mixed
GETMEMPTR: Disabled

3.3.5 Device Group Examples

Device groups can be a powerful building block for SimNow users. These next examples
should help give further understanding about device groups, and demonstrate some
practical uses.

3.3.5.1 Example: 1GB DDR2 memory

When you instantiate a “Dimm Bank” known device into a created device, you get its
default state of 8 empty dimm’s with no configuration. You can then configure the
“Dimm Bank”, such as by opening the device’s GUI configuration properties to specify
general options (such as max number of dimm’s), and to configure each dimm (such as
by importing an SPD). You could configure it, for example, to emulate a dimm bank with
2 DDR2 dimm’s (1GB each).

Device groups offer us a potentially simpler alternative - for the user to instantiate a
preconfigured device group. For example, we could have a device group “Dimm DDR2
1GBx2”, which has (inside it) only one child and default archive data (state) for that
child. The figure below shows that the (theoretical) known device “Dimm DDR2 1GBx2”
has inside it a single child device “Dimm Bank #0” that is configured with two dimm’s
(type DDR2, 1GB each).

ﬁoimm DDR2 1GBs2

Configured as DDR2,
= 2 dimm (1GB each)
Dimm Bank #0

NS -

Figure 3-11: Example DIMM Device Group

When the user instantiates this (theoretical) known device “Dimm DDR2 1GBx2” as a
created device, we get a created device “Dimm DDR2 1GBx2 #0” with a child device
“Dimm Bank #0” that is already configured (as DDR2, 2 dimm, 1GB each). Our resulting
main device GUI would look like this:

20 Chapter 3: Graphical User Interface

User Manual November 2010

] - Machine #1
Drag Icons to insert new devices Shifi+drag to add connections

Show Deprecaied Devices

#Dimm Bank
= =

"'___-_: Dimm DOR2 1GE =2 Diram DOR 2 1GE=2 #0

Figure 3-12: Created DIMM Device Group

The device GUI for the children of “Dimm DDR2 1GBx2 #0” would look like this:

ﬂ -= Machine #1 - = Dirnm DDR2Z 1GE:x2 #0

Drag Icons to insert new devices Shift+rag to add connections

[Show Deprecated Devices

‘ hx A0 8th Generation Integrated Morthbridge Dim Bark #0
]

Figure 3-13: Children of DIMM Device Group

If we looked at the options and configuration of the device library “-> Machine #1 ->
Dimm DDR2 1GBx2 #0 -> Dimm Bank #0” (either from the GUI or from the console),
we would see that it is already configured as DDR2 with 2 dimm slots (1GB each).

This example demonstrates a broad concept. An existing device that has a more generic
and abstract definition (such as a non-configured “Dimm Bank”) can be wrapped in a
device group to give it an identity as a particular hardware implementation (such as an
already configured “Dimm DDR2 1GBx2”). More generally, any device can be wrapped
by a device group, to give an alternate default configuration for the device’s state
(archive data).

3.3.5.2 Example: Quad-Core Node

Next we will consider examples relevant to the ability of a device group to have multiple
child devices, default archive data for each child device, and connections between the
child devices. These next examples are based on a quad-core processor node.

Building a processor node in SimNow has traditionally been a multi-step process. First
the user would add the "AMD 8th Generation Northbridge Device", and then add one
"AweSim Processor” device for each processing core in the node. These devices then
need to be connected together along the respective "CPU Bus" and "Interrupt / IOAPIC"

Chapter 3: Graphical User Interface 21

User Manual November 2010

connection ports. Once the devices are connected, a user would then need to load a
product ID file so that the simulated devices would represent a real and planned piece of
hardware. In summary, building a Quad-core node in SimNow could take as many as 14
individual steps, and these steps would need to be repeated each time a processor node is
to be added.

A device group can both simplify adding a quad-core node, and present the user with a
hierarchical view. So we will give some examples with quad-core processor nodes.

A device group is not required to specify archive data for its child devices. When such a
known device group is instantiated as a created device, it simply lets its children use their
own default and initial configuration state. We can create an abstract or generic “4 core
Node” device group that does not represent a particular hardware implementation (just
like a non-configured “Dimm Bank” does not represent a particular hardware
implementation, until it is configured).

core MNode

AweSim ssn:ur #0 AMD 8th Generation
Imtegrated Morthbridge #4 ,

A device group can optionally specify initial and default archive data (device state) for
each of its child devices. A device group with five children could specify archive data for
0,1, 2, 3,4, or all 5 children. We could have an “AMD 4-core CPU xxxx” that specifies
archive data for all five of its children (configured with the (theoretical) product ID file
“amd-xxxx.id”).

.-i'-.MD A-care CPU wwms

Configured with product
ID file amd-xxxx.id AweSim Processiag

AweSim F‘n:nssu:ur H/ AMD Bth Generation
(tegrated Morthbridge #4

S<

\

This is not the only way we could create a (theoretical) “AMD 4-core CPU xxxx”. A
cleaner idea would be to reuse the non-configured abstract and generic “4 core Node”.

22 Chapter 3: Graphical User Interface

User Manual November 2010

Configured with product
ID file amd-xxxx.id

S e

This device group would (externally) be functionally the same as our previous “AMD 4-
core CPU xxxx” example, although it has the additional layer where it cleanly reuses “4
core Node”. We could also reuse “4 core Node” for other device groups that represent a
particular hardware implementation of a 4-core node, such as the (theoretical) “AMD 4-
core CPU yyyy” configured with the (theoretical) product ID file “amd-yyyy.id”. Or a
“DeerHound RevB QuadCore Socket L1” configured with the product ID file
“Familyl0hDR-L1_BO.id".

3.3.5.3 Example: SuperlO device

For SimNow developers, device groups can be a technique for developing SimNow
devices in a layered manner, promoting optimal code reuse. Before device groups were
available, SuperlO devices were written as device libraries. It is cleaner to implement
SuperlO device models with device groups. Typically, SuperlO devices consist of
multiple functional blocks such as a UART, LPT, PS2 controller, Floppy controller etc.
Device groups provide a way to develop each functional block as discrete devices that
can later be grouped to represent a particular SuperlO controller.

3.3.6 Creating a Device Group (GUI)

From the Device Viewer window, select the devices you want to group then Ctrl + left-
click a device to add or remove it from being selected; left click drag the background for
a rectangle selection. The devices you select will become the children for the device
group. An internal connection (see Section 3.3.1, “Terms”, on page 15) will be saved
inside the group. An external connection (see Section 3.3.1, “Terms”, on page 15) will be
maintained as a connection between the created device group and one of its sibling
devices and result in an internal-to-external port mapping. Next right click one of the
selected devices and choose "Group Devices", see Figure 3-14.

Delete Device(s) Del

Dizconnect Device(s)

Group Device(s) Ctrl+G _

Figure 3-14: Group Devices

This brings up the device group creation wizard. On the first page, you give the group an
identity as a device, by specifying device properties for the device (name, description,

Chapter 3: Graphical User Interface 23

User Manual November 2010

icon file, help file, flags). You specify a file path to save the known device group,
because the wizard will create both a known device group *.bsg file, and an instance of
the known device as a created device inside your current BSD (replacing the devices that
you selected for grouping). The internal preview (left side) shows the child devices inside
the group; the external preview (right side) shows the group as a device. This preview
only shows each device icon, name, number, and internal device connections.

Preview of inside Preview of outside
the device group the device group

4| Create device gruukwizard S — [

set identity \

Identity: Step 1 of\2

Give the device group an Mertity as a known device

A device group is a device ith other devices (device groups and/or device libraries) inside it. I you dont know what
something is, then right-click\ "What's This™ (ar mouse hover) on a particular tem, or check the Heglp/documentation .

| —
Mame : |4 core Node

Description : this is an exampld description of our example "4 caore Node” device
Device

Identity —{| Icon : licons‘awesim png \M
Pronerties . . ———
Help . |help‘main*help htm Browse...
_Flaas : deprecated ot active

Powve Si " Generstion 4 core Node AH
grated MNorthbridge H#4

AweSim Processor H3

Export to file: |devices'd_node_core_example bsg Browse...
Help < Back [MNeat > l | Cancel |

Figure ?

In the second step, we specify options relative to each child device. For each child's
device state, the resulting known device group can either save the child device's current
state, or it can specify no default device state and thus inherit the default device state for
the particular child device. For example, if a child device is an "AweSim Processor", we
can either save the current configuration for that "AweSim Processor™ as the default state
for the known device group we are creating. Or the group's child can just inherit the
defaults of the "AweSim Processor"” known device.

For each child device, we can specify internal to external port mappings. This maps an
internal port name to an external port name (a port for the device group). Since existing
external connections are maintained, we automatically require an internal to external port
mapping for an existing external connection. To finish, the wizard requires that the

24 Chapter 3: Graphical User Interface

User Manual

November 2010

external port names are unique to the device group, since a device must have unique port

names.

Child Device Name |

| External Port Names

lnteg:)?: L HyperTransport Bus 1
Names Memory Bus Memory Bus
1@&’ Bus 1 Memory Bus 1
AweSim Processor #13 Save State
AweSim Processor #14 Save State
AweSim Processor H#15 Add/Remove Ports Save State
| <Back | | Emsh | | Cancel |

ﬁ Create device group v\izard — -

— | © o] |

extemal ports, device state \

|

Internal Devices: Step 2 of 2

known device’s archive dat

* Each intemal device can txpose any of its ports extemally as a port of the devicg group
* Each intemal device has the option of whether to keep the cument archive dats fdevice state) orto default back to its

Save Device State -all Dr\fcﬁ

|

AweSim Processor #3
AMD 8th Generation Integrated Northbridge #33

HyperTransport Bus 0
HyperTransport Bus 1

“Jd/Remove Ports Save State

d!Remmre Ports Save State
HyperTransport Bds 0

The "external ports, device state™ page shows you all the internal to external port
mappings which are currently specified for the device group. You can also click the
"Add/Remove Ports" button for a particular child device, to open a sub-page that allows
you to add and remove particular port mappings for the child device.

In a child device sub-page, each checkbox turns a particular port mapping on or off. If a
checkbox is grayed out, it is because the device has an existing external connection, thus
requiring the port to be mapped for the device group.

Chapter 3:

Graphical User Interface

25

User Manual November 2010

l_| Turn This Row's Port Internal Port Names External Port Names
Mapping On/Off
[ﬁ Adl:;fﬁ.emc:-ve Internal to External%onnection Port Mappings for: "AMD %lh Generation Integr... |i|éf
MulDlBth Generation Irtegﬂﬁ/ﬂmﬂbﬁdge H3i3 /
Eﬁﬁﬁfﬁeﬁ?ﬁ ﬁ?&ﬁﬁ?@ﬂﬁiﬁ?ﬁ el pon fo ot éﬂﬂiﬁﬁ%m e
1 1
HyperTransport Bus 0 H},"DBFTIEHSFID:BLIS]
HyperTransport Bus 1 Hyper Transport Bus 1
Memory Bus Memary Bus
Memaory Bus 1 Memary Bus 1
[] CPUBus4 strExdemal
[CPUBus5 strExtemal
[7] Dieto-Die Communication Link strExtemal E
[7] HyperTransport Bus 0 Sublink 1 strExdemal
[7] HyperTransport Bus 1 Sublink 1 strExtemal
[7] HyperTransport Bus 2 strExtemal
[7] HyperTransport Bus 2 Sublink 1 strExtemal
[7] HyperTransport Bus 3 strExtemal
[7] HyperTransport Bus 3 Sublink 1 strExtemal
Cl ICkIng "0 [T Intemupt / IDAPIC Bus strBdemal
So if you a [MBLA strExtemal
state" page. =T =] trEot s sl -

When you are done defining the device group then simply click the "Finish™ button. This
causes the device group to get created. A known device group file is created using the
*.bsg file you specified for "Export to file", and loaded as a known device. The devices
you grouped are swapped (deleted and replaced) with a created device instance of your
new device group. Its internal connections and device state come from the known device.
External connections from the devices you grouped are recreated as connections to your
new created device group. All of this is done automatically by the wizard when you click
"Finish".

3.3.7 Creating a Device Group (Automation Commands)

Although it is simpler to create a device group in the GUI, it is also possible to create a
device group on the console using shell automation commands. First we group a set of
specified devices into an “Unnamed Group”. Then we can customize our “Unnamed
Group”, by specifying device group options. Next we export it to a file as a known device
with a new identity as a device instead of just the generic “Unnamed Group”. Finally, we
can replace our “Unnamed Group” created device with a created device instance of our
new known device. Here are the details of these commands:

You can specify devices to get grouped into an “Unnamed Group” device:

26 Chapter 3: Graphical User Interface

User Manual November 2010

shell.GroupDevices|[devices]

We can modify an existing created device group’s options:

shell. SetDeviceGroupOption [device group] [ExternalPortMap |
ExportDeviceState] [variable args]

Specifically, we can add, remove, and rename the internal-to-external port mappings
between a device child and its parent device group:

shell.SetDeviceGroupOption [device] ExternalPortMap Add [device
child] [in] [out]

shell.SetDeviceGroupOption [device] ExternalPortMap Delete [out]
shell.SetDeviceGroupOption [device] ExternalPortMap Rename [out]
[out renamed]

And we can specify whether or not to use the created device child’s device state for each
child device (for if/when the group is exported as a known device):

shell.SetDeviceGroupOption [device] ExportDeviceState [optional
child device] [0]1]

There is also a shell command to get the options (ie — to print them to the console/stdout).
This can print the values for either options (ExternalPortMap or ExportDeviceState):

shell.GetDeviceGroupOption [device group] [ExternalPortMap |
ExportDeviceState] [variable args]
shell.GetDeviceGroupOption [device group] ExternalPortMap
[optional: child device]

shell.GetDeviceGroupOption [device group] ExportDeviceState
[optional: child device]

We can export a created device group (including the options we set) to a known device
file. To do this, we also specify values for the known device’s identity as a device:

shell .ExportDeviceGroupToFile [device group] [name] [desc] [icon]
[help] [flags] [bsg file path]

The previous command only exports the created device group to a file as a known device;
it does not change our existing created device group. However, after we export our
created device to a file, we can then replace our created device with an instance of the
device we exported. By doing this, we give our device a new device identity:

shell.SwapDevice [created device] [known device]

3.3.8 Ungrouping a created device group

Since a device group is really just a container for its child device's, with its own identity
as a device, it is simple to ungroup a device group, on either the GUI or the console. In

Chapter 3: Graphical User Interface 27

User Manual November 2010

the show devices GUI, right-click a device group, click “Ungroup Device”. Or, in the
console, execute the command:

shell.UngroupDevice [created device group]

3.4 Main Window

The AMD SimNow™ Main Window, shown in Figure 3-1, is the main application
window. It contains a Menu Bar with a set of pull down menus, and a Tool Bar, both of
which control many aspects of the simulation environment. The console window, shown
in Figure 3-15, provides a textual interface for status information and command-line style
control, see Section A.7, “Automation Commands”, on page 230.

Using image path: “.“Images"
Using library path: "_.“devices"

1 simnow? Opening “C:r/SimMow/cheetah_1ip.hsd"
: creating device #8 “AMD 8th Generation Integrated Morthbridge®
I3 S eatlng device "Dimm Bank"
: creating device "AMD-8111 1.0 Hub"
: creating device "Memory Device"
: creating device "Winhond W83627HF SIO"
: creating device "&MB Hub Device"
: creating device "PCI Bus"
: creating device "Debugger"’
: creating device "AweSim Processor"
: creating device "AMD-8132 PCI-¥ Controller"
: creating device "PCI Bus"'
: creating device "PCI Bus"
: creating device "Emerald Graphics"
allocate map memory
: creating device #13 "PCA?548 Device”
: creating device H#H14 "ATZ24C Device"
: creating device #15 “"USB JumpDrive'
: creating device #16 "Intel(R}» Pro-1888 MT Desktop Metwork Adapter"
BSD Luad completed?

Figure 3-15: Console Window

3.4.1 SimStats and Diagnostic Ports

The SimStats and Diagnostic Ports numeric displays appear in the Main Window when a
Southbridge device is added to the workspace. The SimStats display shows host and
simulation elapsed time and a simulation MIPS counter that is updated as the simulation
runs. The simulator effectively has a built-in POST card output, ports 80h to 87h and eOh
to e3h. You can see these codes on the right upper part of the Main Window in the
"Diagnostic Ports™ section.

28 Chapter 3: Graphical User Interface

User Manual

November 2010

Host Seconds shows
the number of user
and system seconds
of host CPU time the
simulator has uses
since it started.

Sim Seconds is the
number of seconds of
simulated time that
has past since the
simulator started.

MIPS are the total
number of simulated
instructions executed
since the simulator
started, divided by
the Hosts Seconds.

Simulakar Statz Diagnostic Parts
354.00 Hast Seconds 00|02 00 03 83-80
—» E£.70 Sim Seconds 00| 00|00 008734

1D'EE"QM|PS 000000 |Ca ed-el

These three lines of
four bytes each show
the values written to the
diagnostic programmed
I/O ports. Mostly these
ports are written by the
BIOS and low-level
diagnostic software.

/ 371 MIPS

MIPS are the
instantaneous value of
the simulators
performance, its
dimension is millions of
simulated instruction
executed per second of
host user and system

Figure 3-16: Progress Meter and Diagnostic Ports CPU time.

The simulation counter measures the number of microseconds of simulated time.
However, it is not a performance or cycle-based simulator, so the simulated time is
estimated.

3.4.2 CPU-Statistics Graphs

There are several graphs that can be displayed on the left side of the Main Window. These
graphs can be activated by the “View—CPU Graphs” menu selection.

3.4.2.1 Translation Graph

The Translation Graph updates once a second. Full vertical scale means the address-
Translation cache (tcache) is full. Dark color on the bottom of the graph represents
percent of tcache containing valid translations. Lighter color above the dark color
represents percent of tcache containing invalidated translations. Black color growing
from the top represents the meta data that describes the translations.

Meta Data that
describes the
Translations.

Percent of tcache
containing
Invalidated
Translations.

Tranzlation Graph

Percent of tcache
containing Valid
Translations.

= .'H‘H—H ‘H

Figure 3-17: CPU Translation Graph

3.4.2.2 Real MIPS Graph

The Real MIPS Graph updates once a second. If this value exceeds what can be displayed
on this graph, the graph line turns red. It shows the instantaneous MIPS, i.e., how many
millions of instructions per host CPU-second at which the simulator is running. A value
of zero will appear as a one-pixel-high horizontal line. Full scale represents 100 MIPS.

Chapter 3: Graphical User Interface 29

User Manual November 2010

Feal MIPS Graph
Million of

Exceeds 100 —> Instructions per
MIPS. Host CPU second.

Figure 3-18: CPU Real MIPS Graph

3.4.2.3 Invalidation Rate Graph

The Invalidation Rate Graph updates once a second. If this value exceeds what can be
displayed on this graph, the graph line turns red. A rate of zero will appear as a horizontal
line, one pixel high. Full vertical scale represents one invalidatated translation per
thousand simulated instructions. The lower, darker color represents plain invalidations.
The upper, lighter color represents range invalidations. This upper, lighter color is a
minimum of one pixel high, i.e., a value of zero range invalidations still results in a one-
pixel-high line of the lighter color.

Plain

Invalidations Invalidation Fate Graph Range

Invalidations

Exceeds what
can be
displayed.

Figure 3-19: CPU Invalidation Graph

3.4.2.4 Exception Rate Graph

The Exception Rate Graph updates once a second. If this value exceeds what can be
displayed on this graph, the graph line turns red. A rate of zero appears as a horizontal
line one pixel high. Full vertical scale represents a rate of one exception taken by the
simulator per ten simulated instructions. These exceptions may be internal to the
simulator and not turn into exceptions in the simulated machine. The lower, darker color
represents all such exceptions other than segmentation violation (SEGV) exceptions. The
upper, lighter color represents all the SEGV exceptions. This upper, lighter color is a
minimum of a one-pixel-high line, i.e., a value of zero SEGV exceptions still shows a
one-pixel-high line of the lighter color.

Exception R ate Graph All exceptions other

Exceeded than segmentation
whe_u can be violations (SEGV).
displayed.

: T + Segmentation
violations (SEGV).

Figure 3-20: CPU Exception Rate Graph

3.4.2.5 PIO Rate Graph

The P10 Rate Graph updates once a second. If the port 1/0O (P1O) rate exceeds what can
be displayed on this graph, the graph line turns red. A rate of zero will appear as a
horizontal line one pixel high. Full scale represents one PIO per ten simulated
instructions. Darker color on the bottom of the graph represents the read PIO's, the lighter
color represents the write P1O’s.

30 Chapter 3: Graphical User Interface

User Manual November 2010

Write PI1O’s.

Exceeded FIO Rate Graph
what can be
e : | Read PIO’s.

YT B
LI [B B I

Figure 3-21: CPU PIO Rate Graph

3.4.2.6 MMIO Rate Graph

The MMIO Rate Graph updates once a second. If the memory-mapped 1/0 (MMIO) rate
exceeds what can be displayed on this graph, the graph line turns red. A rate of zero will
appear as a horizontal line one pixel high. Full vertical scale represents one MMIO per
ten simulated instructions. Darker color on the bottom of the graph represents the read
MMIQO's, the lighter color represents the write MMIO's.

kMID Fate Graph

Read
Exceeded MMIO’s.
what can be _
diSplayed' 154 |" roro g \ICIIIUItlec),S

Figure 3-22: CPU MMIO Rate Graph

3.4.3 Simulated Video

The simulated video area of the Main Window depicts the VGA output screen that
appears when a VGA device is added to the workspace. When the mouse focus is over
the video area, the simulator captures host keyboard input, enabling you to type most
keyboard entries on your real keyboard. This is a convenience and may not accurately
position the mouse or grab all keys correctly. For more accurate mouse and keyboard
capture, see “Grab the mouse and keyboard” in Section 5.2.3, “Interaction with the
Simulated Machine”, on page 45.

You can also allow the simulator to take complete control of the mouse and keyboard by
selecting “Special Keyboard—Grab Mouse and keyboard”. To return from this mode,
press and hold Ctrl then Alt, and then release them in reverse order.

3.4.4 Hard Disk and Floppy Display

The IDE Primary byte counts, IDE Secondary byte counts, and Floppy disk byte counts
displays appear when a Southbridge device is added to the workspace.

IDE Frimarny Dizplay IDE Secondary Dizplay. - Floppy Dizplay
232,500,096 master read 0 master read 465 read
4 545 B36 maszter written 0 mazter wiitken 165 written
0 slave read 0 slave read
0 slave writhen 0 zlawve wiitken
DMAPIO mode PIO/PIO mode

Figure 3-23: Primary, Secondary, and Floppy Displays
When a disk is accessed in simulation, the status information is updated.

Chapter 3: Graphical User Interface 31

User Manual November 2010

3.4.5 Using Hard Drive, DVD-/CD-ROM and Floppy Images

Section 4 on page 35 describes how to create disk images. To use a disk image created by
DiskTool go to the Main Window File Menu and choose one of the “Set /...] Image”
menu items. This brings up an open-file dialog. Select your drive image and click on
‘Ok’. Standard file extensions for disk images are shown in Table 3-3.

Image Type File Extension
Hard Drive Image *.hdd
Floppy Drive Image *.fdd
DVD-/CD-ROM Image *.1S0
Generic Image *.img

Table 3-3: Image Types

After an image is selected, any changes to the image are stored in journal form in the
“.BSD” file, unless journaling is disabled in the Southbridge (for hard drive images) or
SuperlO (for floppy drive images) device. If journaling is disabled, changes are stored to
the image file, see also Section 5.2.1, “Assigning Disk-Image”, on page 42.

3.4.6 Help, Problems and Bug Reports

The simulator has HTML on-line help and documentation, with "Help™ menu entries or
buttons on the dialogs. In the device view, every device has a context menu (right-click)
with "Help" documentation links and "What's this" floater text.

In addition to any other support channel you may have, we encourage feedback on any
problems encountered. Please send an email to simnow.support@amd.com.

32 Chapter 3: Graphical User Interface

mailto:simnow@amd.com

User Manual November 2010

4 Disk Images

The simulator uses hard-drive images to provide simulated hard disks to the simulated
computer. There are several ways to obtain hard drive-images.

e Install your OS onto a hard drive in a real system, then move it to the secondary
drive in a system and use DiskTool to copy the contents of the drive to an “.hdd”
image file.

e Make a blank hard-drive image and a DVD-/CD-ROM “ISO” image, and install a
fresh operating system onto the hard-drive image. To make the hard drive and
DVD-/CD-ROM images, refer to Section 4.1, "Creating A Blank Hard-Drive
Image" and Section 13, “DiskTool”, on page 167.

e To use a physical DVD-/CD-ROM:

e Click on the I button or select “View—Show Devices” to open the Device
Window (Figure 3-2, on page 9).

e Open the Southbridge's properties window by double-clicking on it, and
choose the “HDD Secondary Channel” tab.

e On a Windows host type “\.\D:” where “D:” is the drive letter for the DVD-
/CD-ROM, and on a Linux host type “/dev/cdrom” in the “Master Drive -
Image Filename” field.

e Check the DVD-ROM check box below the Filename field.

The simulator can access media via the following mechanisms:

e |IDE Hard Disk:
e DiskTool IDE hard-disk image, is a flat file consisting of a 512-byte header
(the IDE probe sector) and a raw image of data from the hard disk (if the raw data
is cut off before the end of the disk, the disk-image from there on will just read as
Zero).

e |IDE DVD-ROM: (The simulator does not simulate DVD-ROM "insert" events)
e DVD-ROM disk image is a flat file of the raw image of a data DVD-/CD-

ROM. These correspond exactly to ISO file images, for example.

e |IDE DVD-ROM direct access

e Floppy Disk:
o Floppy-disk image, a flat file of the raw image of a floppy disk.
e Floppy direct access

Please refer to Section 13, “DiskTool”, on page 167 to find out how to set up a Windows
or Linux hard-drive image for the simulator.

4.1 Creating A Blank Hard-Drive Image

To create a hard-drive image use DiskTool. You can start DiskTool by launching
"disktool.exe” in your install directory. For convenience, you can create a desktop
shortcut to launch DiskTool. When you run DiskTool, you will see the DiskTool dialog

Chapter 4: Disk Images 33

User Manual November 2010

window, as shown in Figure 4-1. It will also open a shell window, as shown in Figure
4-2, that is used to inform the user about all physical drives which DiskTool has detected.

B SimNow DiskTool E]EJ

Phwsical Drives

A Create Disk Image From Host Disk |
H:

PHYSICALDRIVED [C:. G F:)

PHYSICALDRIMET [D:] |
PHYSICALDRIVEZ [E:]

Copy Dizk Image Ta Haost Disk |

Create Blank Dizk Image |

Drrive Information

Floppy Dizk, &; Eraze Host Disk. |

Mo digk prezent

About |

Esit |

Figure 4-1: DiskTool Dialogue Window

For information about supported options and modes that DiskTool supports, please refer
to Section 13, “DiskTool”, on page 167.

Figure 4-2 shows the DiskTool shell window.

C:\simnow\disktool.exe

Disk Device found at SCSI Fort B Bus B Target O LUN 8.
Opening WDC WD12@BEB-BBDAAL as “\.“PHYSICALDRIVEA

Cylinders: 4589

Heads: 255

Sectors: 63

Buytes: 512

Media Type: 12

Completed. Device has heen successfully identified.

Diszk Device found at SC8I Port @ Bus B Target 1 LUN 8.
Opening WDC HDiiEggB—BBDﬂﬂi as “\.S\PHYSICALDRIVE1L

Cylinders:

Heads: 255

Sectors: 63

Bytes: 512

Media Type: 12

Completed. Device has heen successfully identified.

Disk Device found at S8CS8I Port 1 Bus @ Target 1 LUN B.
Opening IC35LAZBAVERB7-8 as “~\.~FHYSICALDRIVEZ

Cylinders: Al

Heads: 255

Sectors: 63

Buytes: 512

Media Type: 12

Completed. Device has bheen successfully identified.

Figure 4-2: DiskTool Shell Window

34 Chapter 4: Disk Images

User Manual November 2010

To create a blank disk image click on the "Create Blank Disk Image" button on the right
side of the DiskTool dialog window (see Figure 4-1). A "Save As" dialog will ask you for
the location and image filename that will be created. Choose the location where you want
to store the blank image file and then enter the image filename. Click on the "Save"
button. An additional dialog, see Figure 4-3, is presented that allows you to select how
large the blank image file should be.

B Hew Image Size E| PX|
Optionz

Entire Drive

Stop after partition 1
Stop after partition 2
Stop after partition 3
Stop after partition 4

{(*) Custom

af Sectors: | 5338603 S

Image Size [MB]. |4095 -

I ok l ’ Cancel]

Figure 4-3: New Image Size

Before you start creating a new blank disk image make sure that the image will be large
enough to install Windows or Linux on it. You can enter the image size in MB or in
number of sectors. We recommend an image size of 4-GB. Increase the value of "Image
Size (MB)" to 4096 and then click on the "OKk" button to create the image file. A progress
bar will inform you of the progress being made (see Figure 4-4).

M Elank Image

C:/en_windows_xp_profeszional_=64.hdd

NEREEEEEEEEEEN NE]

Cancel

Figure 4-4: Create Blank Image

Once the image is created successfully DiskTool will display a message box, as shown in
Figure 4-5. Click on the "Ok™" button.

Chapter 4: Disk Images 35

User Manual November 2010

M Elank Image f‘5__<|

@ Operation Successtul

Figure 4-5: DiskTool Operation Successful

To exit DiskTool click on the "Exit" button on the right side of the DiskTool dialog
window (see Figure 4-1).

36 Chapter 4: Disk Images

User Manual November 2010

5 Running the Simulator

You can start AMD SimNow™ by launching "SimNow.exe" in your install directory. For
convenience, you can create a desktop shortcut to launch the simulator. When you run the
simulator, you will see the simulator's Main Window as shown in Figure 5-1. It will also
open a console window (shown in Figure 3-15) that is used for text interaction.

4 [1] AMD: SimNow: Main Window:
Eile Wiew Special Kevboard Help

J ¥ = ' — S A »] !)|] U

Stopped

Figure 5-1: Main Window (No BSD Loaded)

5.1 Command-Line Arguments

This section describes the command-line arguments supported by the simulator. Table
5-1 shows the command-line arguments.

Argument Description

-I <path> Directory to load devices from. If used, it
must be first.

-f <file> Open the .bsd file <file>.

-e <file> Execute commands in <file> on startup.

-i <path> Image search path for loading image files.

-m <path> Mediator connection string for network
adapters to use.

Chapter 5: Running the Simulator 37

User Manual November 2010

Argument Description
-n --novga Disable VGA Window.

-C --nogui Disable GUI (console mode).
-d Disable mouse and keyboard inputs to
simulator.

-r --register | Register the simulator with the O/S as an
automation server.
-h --help -? Print this help message.

Table 5-1: Command-Line Arguments

For instance, to open the cheetah 1p.bsd when starting the simulator you can enter the
following:

C:\SimNow\simnow —f cheetah lp.bsd

5.1.1 Open a Simulation Definition File

Click on “ and select one of the ".bsd" files located in the “\SimNow” directory. The
".bsd" files contain pre-configured simulation definitions designed to model a specific
AMD processor-based computer system. For this example, load the “cheetah_1p.bsd”
file, from in the SimNow directory. Upon loading the BSD file, the Main Window (shown
in Figure 5-2) will be filled with three sections. The left column contains informational
graphs if selected (see Section 3.4.2, “CPU-Statistics Graphs”, on page 29), the top row
contains numeric displays of simulation statistics and disk-drive access information, and
the remainder contains the Simulation Display Area of the simulated machine. The
Simulation Display Area remains blank until the simulated machine is started.

38 Chapter 5: Running the Simulator

User Manual November 2010

Menu Bar Tool Bar Main Window Numeric Display
Components

"%\ 1] AMD SimMNow Main Window:
File” WYiew Special Keyboard Help

THis aF e BO B
Graphs & | | Mumeric Display(s] =

Tl Gl L Simulator Stats IDE Primary Display IDE Secondary Dizplay. — Diagnostic Ports Floppy Display
0 Host Seconds 0 master read 0 master read 00 00|00 00 &3 -80 0 read
0 Sim Seconds 0 raster wiitten 0 rnaster written |00 |00 |00 00 87 - 84 0 written
0 Awg MIPS 0 slave read 0 slave read 00000000 e3-e0

0 slave written 0 slave written
0 MIPS
mode mode

Fieal MIPS Graph

Inwalidation Rate Graph £

Exception Fate Graph

FIO R ate Graph

10 Rate Graph

GBI 3.

Area

appears

ith.a graphica) repr e@agi@}ﬂhthe simulated machine, as

Area

Chapter 5: Running the Simulator 39

User Manual November 2010

SimNow Device Window,

Drag Icons to insert new devices Shifi+drag to add connections

[] Show Deprecated Devices

£l
U 414D-2111 1/0 Hub

Debugger #8 AweSimProcessor

AMD-8132 PCl-< Contraller

Debugger

Dimm Pank #2 AMD Bth Feneration

AT24C Device Integ@ ed
Morthbrigge #1
AweSim Processar PCI Bus #10
Dirnm Bank SMB Hub Devicests AMD-2132 PCl- @
Cantrol

[EEEU ntel(R) Pro/1000 MT Desktop Network Adapter O] Bus #11

Emerald Grapbics | | E
USH . Winbond Wa3E27HF et 01 -1 @ W
=5 U5B JumpDrive 510 #5 . POfBus #7 Irkel(R] Pro/1000

) MT Desktop Network
@ Memam Device Adapter #18
" il
,ﬂ' PCA3548 Device Memary Device H4
Use Emerald Graphics

@ PCl Bus e #12
x USE JumpDrive #15

A0 Bth Generation Integrated Marthbridge
w\¥/3 SMB Hub Device PCASS4E Device #13 AT24C Device H14
r,_:.i;-gWinbond WEIE2THF 510 w

4 >

Figure 5-3: Device Window

5.2 Installing an Operating System

This section describes the steps that are necessary to install Windows or Linux using the
simulator. Before you can start installing an operating system make sure you have a blank
hard-drive image available. To create a blank hard-drive image with DiskTool please
follow the steps in Section 4.1, "Creating A Blank Hard-Drive Image", on page 35.

5.2.1 Assigning Disk-Images

Assign a blank hard-drive image by selecting “File—Ser IDE Primary Master Image...”.
Open the directory that contains your hard-drive images and choose a blank hard-drive
image that you created earlier (see Section 4.1, "Creating A Blank Hard-Drive Image",
on page 35) or use one of the hard-disk images which come with the simulator (see
Section A.2.4.1, "Hard-Disk Image Files", on page 185) and un-check the "Journal"

check-box (see below "The IDE controller has two important features"), then click on
"Ok".

Assign the first OS installation 1SO image to the IDE Secondary Master Channel of the
hard-disk controller by selecting “File—Set IDE Secondary Master Image...* .

If you don't have access to any ISO images you have two options:

40 Chapter 5: Running the Simulator

User Manual November 2010

e You can download Linux ISO images from fedora.redhat.com. If you are a
MSDN Subscription member you can also download Windows ISO images from
Microsoft's MSDN Subscription Webpage.

e You can assign a physical host DVD-/CD-ROM drive to the simulators IDE
Secondary Master Channel and use your host’s physical DVD-/CD-ROM drive to
install from a CD or DVD media. Section 4, "Disk Images"”, on page 35 describes
how to assign a physical DVD-/CD-ROM drive

When the OS installation prompts you, eject the current 1SO image using "File—Clear
IDE Secondary Master™ and insert the next ISO image using "File—Set IDE Secondary
Master". In case you are using a physical DVD/-CD-ROM drive for the OS installation,
eject the media and insert the next media.

The disk-images are now assigned to the device that is connected to the IDE Primary
Master and IDE Secondary Master connector of the hard disk controller, as shown in
Figure 7-25 on page 97.

The IDE controller has two important features:

e All disk devices (Primary Master, etc.) by default have the disk journaling feature
turned on, which allows simulations to write to the disk image during normal
operation and not affect the contents of the real disk image. This is useful for
being able to kill a simulation in the middle, for multiple copies of the simulator
running at the same time, etc. Journal contents are saved in BSD checkpoint files
but lost if you don't save a checkpoint before exiting. To change journal settings
or commit journal contents to the hard disk image, go to the Device View Window,
then the AMD-8111™ Southbridge, then the configuration for the hard disk in
question on either the Primary or Secondary IDE controller. Here you can either
commit the contents of the journal to the hard-disk image or turn off journaling
for the hard disk image in question. Turning off journaling is recommended
during the installation process for an operating system.

e DVD-ROM support is provided through an option in the BSD platform
checkpoint file. To install a DVD-ROM at any hard disk device location
(Secondary Master, Primary Slave, etc.), turn on the ‘DVD-ROM’ checkbox. By
default, the Secondary Master in all distributed BSDs has ‘DVD-ROM’ checked
and is a DVD-ROM device.

Copying files into the simulator corresponds to putting data into some media on the Host
which will be inserted into the simulation. The choices for doing this are:

e Create an ISO image with the data inside it then get it into your guest OS. Use the
"File—Set IDE Secondary Master Image" item in the Main Window Menu to
insert it into the DVD-ROM simulation, which is by default on the secondary
master position in all BSDs. Finally, mount it in your guest OS.

Chapter 5: Running the Simulator 41

User Manual November 2010

e Use a raw floppy-disk image in a manner similar to the above. It's a lot smaller
and a bit more hassle, so we don't recommend it.

e Mount a hard-disk image on the host. (On a Linux host, you can use the
"loopback device™).

e Use the JumpDrive USB device to copy files into the simulator and out of the
simulator, see. Section A.7.27, “JumpDrive”, on page 251.

Copying files out of the simulator corresponds to putting some data into some media in
the guest which will then be extracted on the host. To do this, mount a hard-drive image
on the host after placing the data on it in the guest. (On a Linux host, you can use the
"loopback device").

5.2.2 Run the Simulation

Once the disk-images are assigned, the simulation may be started by clicking on the Play
button *I on the Main Window’s Tool Bar.

=4 [1] AMD: SimNow: Main Window:
Eile Wiew Special Kevboard Help

H Y 23 N e B 8 @

Mumeric Display(z) =

Simulatar Stats IDE Primary Dizplay IDE Secondary Display — Diagnostic Ports Floppy Dizplay

58.30 Host Seconds 8,704 master read 919,552 master read 00 |02 03 |FF 83-80 1,496 read

1617 Sim Seconds 512 master written 0 master witten |00 |00 |00 |00 87 - 84 801 written

19.9 Avg MIPS 0 slave read 0 dlave read 00 |00 00 |00 &2-e0

0 slave wiitten 0 slave written
0.25 MIPS
PID/FIO made PIO/FIO maode

indows Setup

Press Fb6 if you need to install a third party SCSI or RAID driwver...
Stopped

Figure 5-4: Installing WindowsXP

42 Chapter 5: Running the Simulator

User Manual November 2010

5.2.3 Interaction with the Simulated Machine

The simulator will boot and the simulated output screen appears in the bottom right
portion of the Main Window, which is the Simulation Display Area. When the focus is on
this portion of the window, most keystrokes and mouse operations are passed through to
the simulated machine. When moving the mouse cursor outside of the Simulation Display
area the Main Window returns the mouse cursor and keyboard control to the host
machine. Some keystrokes, such as ALT-combinations, must be entered using the Special
Keyboard Menu. At present we have some predefined keystrokes which can be entered
by the "Special Keyboard—Special Keys Generator” as shown in Figure 5-5. The
simulator superimposes a small square over the screen at the position of the host mouse.
You can also allow the simulator to take complete control of the mouse and keyboard by
selecting “Special Keyboard—Grab Mouse and Keyboard”. To return from this mode,
press and hold Ctrl then Alt, and then release them in reverse order.

E Special Keys Generatar -7 |

enerate Special Key
T - | F1 [~

[Fresz Keyp]

Selected Special Keps [uzed more often]

kD el [

Fresz Keyp |

Mo key pressed

Figure 5-5: Special Keys Generator

5.2.4 Simulation Reset

To reset the entire simulator, stop the simulation with the "Stop™ button (#), then press
the "Reset" button (#), which is to the right of the "Stop" button. At this point, hard-
drive images may be changed as described in 5.2.1 Assigning Disk-Image on page 42.

5.3 Multi-Machine Support

The multiple machine concept allows the simulator to create multiple simulation
machines within the same process space, and to load and execute these machines
independently.

The default shell provided with the simulator includes three new commands that allow
the user access to the multiple machine functionality.

The ‘newmachine’ command creates a new ‘emtpy’ simulation machine. The created new
machine is in no way related to the current machine. Tou can load BSDs, edit device

Chapter 5: Running the Simulator 43

User Manual November 2010

configurations, etc., in the new machine, and they are completely independent of any
other ‘machine’ currently loaded.

The leading number before the prompt identifies which machine is currently the active
machine. All subsequent automation commands typed into the console window are
directed to the current machine.

Table 5-2 describes the arguments provided by the newmachine command.

Argument Description

--nogui Disable Graphical User Interface (GUI).

--gui Enable Graphical User Interface (GUI).

-C Enable console mode.

--novga Disable VGA Window.

--vga Enable VGA Window.

-n Disable VGA Window.

-d Disable mouse and keyboard inputs to
simulator.

+d Enable mouse and keyboard inputs to
simulator.

-i <path> Image search path for loading image files.

-m <path> Mediator connection string for network
adapters to use.

-I <path> Directory to load devices from. If used, it
must be first.

Table 5-2: Newmachine Command Arguments

Usage:

newmachine[[--nogui | -¢ | --gui] [--novga | -n | --vgal]
[-d | +d] [-1 <path>] [-m <path>] [-1 <path>]]

The following command creates a new simulation machine:

1 simnow> newmachine

2 simnow>

The ‘switchmachine n’ command switches the console window to the machine identified
by ‘n’. All subsequent automation commands typed into the console window are directed
to the given machine ‘n’.

2 simnow> switchmachine 1

1 simnow>

The ‘listmachines’ command lists all machines that currently exist.

44 Chapter 5: Running the Simulator

User Manual November 2010

* = Specifies current Machine ID.
+d: Mouse and Keyboard

2 Simnow> listmachines inputs are enabled.
*2 —-gui --vga +d -d: Mouse and keyboard
1 —-gui_--vga gd inputs are disabled.

2 simnow>
VGA Window is enabled.

GUI is enabled (console mode).

See also Section 5.1, “Command-Line Arguments”, on page 39 for further information
regarding available command-line arguments.

To exit a created simulated machine enter ‘exit’, as shown in the following example:

1 simnow> exit

2 simnow>

This example exits the simulated machine ‘1°.

Chapter 5: Running the Simulator 45

User Manual November 2010

This page is intentionally blank.

46 Chapter 5: Running the Simulator

User Manual November 2010

6 Create a Simulated Computer

This section describes how to create a simulated computer from scratch. We will build a
computer identical to the “solo.bsd” computer.

Figure 6-1 shows the layout of the existing “solo.bsd” Device Window. The device
position is not important because the connections between devices are completely
represented by the lines between devices.

O

Debugger #1 AweSim[Processor

Crirnrn B ar AkD Bth Generation -8151 aGP
|ntegrated Tunnel #2
Martkbridge #3

- p
i G
winbond WE3627HF AMD-8111 140 Hub PCI Bus HE
510 #7 #4

femomn Device #8
Figure 6-1: Solo.bsd Configuration

The thickness of the connection between devices represents the number of existing
connections.

6.1 BSD Files

A BSD file contains the configuration of a computer system (how models are connected
together and their settings), sometimes called a "virtual motherboard description™ and a
checkpoint of the state of all devices in the simulator. BSD files are stored in the
simulator’s home directory. For a list of BSD files provided with the simulator, see
Appendix A.2.1 on page 184.

6.2 Device Placement
To place a device into a simulated computer system:

1. Open a new simulator instance by launching "SimNow.exe" in your install
directory.
2. Select “File—New BSD* or click on the ! button to create a new BSD file.

Chapter 6: Create a Simulated Computer 47

User Manual November 2010

Select “View—Show Devices” or click on the 2 button to show the blank Device

Window.

For each item added, click and drag the icon from the device list on the left side
into the workspace area on the right side of the window.

. Add the Debugger device. This device needs no connections drawn.
. Add the AweSim Processor and the AMD 8th Generation Integrated Northbridge.

When you add the AweSim Processor, CPU Simulation Stats are added to the
Main Window.

Connect the AweSim Processor and the AMD 8th Generation Integrated
Northbridge by shift-click-dragging from one to the other. When the
“Connections” tab of Device Properties Window appears (shown in Figure 6-2),
choose the CPU Bus 0 for both devices, and click on Ok. The connection appears
as a line between the two devices on the Device Window. Then create an
additional connection between the two devices using the Interrupt/IOAPIC Bus on
each device. The Device Window shows only one line for the two connections
between these devices. You can view the connections for each device by right-
clicking on the device and looking at the “Connections” tab in the Device
Properties Window.

AMD 8th Generation Integrated Northbridge #3 Proper... @E|

Connections [0 Logging Logaging Configuration

Local Connection Point | Flemaote Device Remote Connection Point
CPU Buz 0 AumeSim Processor #0 CPU Buz 0

CPU Busz 1

CPU Buz 2

CPU Buz 3

HyperT ransport Bus 0 AkD-3151 AGP Tunnel #2 HyperTransport Bus 0
HyperT ransport Bus 1

HyperT ransport Bus 2

HyperT ransport Bus 3

[nterrupt A I0OAFIC Bus

[nterrupt A IOAPIC Buz AweSim Processor #0 Interrupt # I0AFIC Bus
kermony Buz Dhirnrn B ank #5 Genernc Bus

k. l [Help l [Cancel

Figure 6-2: Connections Tab of Device Properties Window

8. Add the DIMM Device. Connect it to the AMD 8th Generation Integrated

Northbridge, using the Northbridge's Memory Bus and the DIMM’s Generic Bus.

9. Add the AMD-8151™ AGP Tunnel. This is a HyperTransport™ tunnel and AGP

bridge. Connect it to the Northbridge using each device's HyperTransport Bus 0.

10. Add the Matrox Millenium G400 Graphics Device. This is the simulated video

device. Connect it to the AMD-8151 AGP Tunnel Device using AMD-8151 AGP
Tunnel AGP Bus and the Graphics Device's AGP or PCI Bus.

48

Chapter 6: Create a Simulated Computer

User Manual November 2010

11. Add the Southbridge Device. Connect it to AMD-8151 AGP Tunnel using AMD-
8151 AGP Tunnel HyperTransport Bus 1 and HyperTransport Bus 0. Also,
connect AMD-8111™ to the DIMM device using AMD-8111 System
Management Bus 0 and DIMM’s Generic Bus.

12. Add the Winbond W83627HF S10 device. This is a Super 10 device that supports
keyboard, mouse, and floppy disk. Connect it to Southbridge using Winbond's
Generic Bus and Southbridge's LPC Bus.

13. Add the PCI Bus. Connect it to AMD-8111 Southbridge using both devices' PCI
Bus 0.

14. Add the Memory Device. This will contain the System BIOS image. Connect it to
AMD-8111 Southbridge device using AMD-8111 LPC Bus and the Memory
Device's Generic Bus.

6.3 Solo.bsd Device Configuration

To configure each device, right-click on the device and choose Configure Device from
the workspace popup menu (see also Section 7, “Device Configuration”, on page 53).

1. Configure the Matrox Millenium G400 Graphics Device.
e Go to its Configuration tab.
e Choose the BIOS file Images/g400_897-21.bin.

2. Configure the Memory device.
e Go to its Memory Configuration tab.
Set the base address to fffc0000.
Set the Size to 8.
Set the Init File to Images/ASLA00-3.BIN.
Check the boxes for Read Only, System BIOS ROM, Memory Address
Masking, Memory is non-cacheable.
e Clear the boxes for “Initialized unwritten memory.

3. Configure the PCI device.
e Go to its PCI Bus Configuration tab.
e For the PCI Slot 1, add device ID 4, set Base IRQ Pin to PCIIRQ A, and check
the Enable Slot box.
e For the next three devices, use Device IDs 5, 6, and 7, with PCIIRQs B, C,
and D, in that order. Check their “Enable Slot” boxes as well.

Chapter 6: Create a Simulated Computer 49

User Manual November 2010

PCl Bus #6 Properties

Conrections | 170 Logging | Pl Bus Configuration
Device D [0-31) Base IRQ Fin Erable Slat
PCISIot1: |4 | |PCIRG A)
PCISlot 2 |5 | [PCIRGE |
PCISIot 3 |5 | [PCIRGC |
PCISlot 4 |7 | [PCIRGD |
PCI It 5 |0 | v O
POl Slot 6 [0 | | v O
| ok || Hep || Cancel

Figure 6-3: PCI Bus Configuration dialog window

4. Configure the DIMM Memory device.
e Go to the Dimm O tab.
e Click Import SPD.
e Open the SPD file Images/simnow_DDR_256M.spd.

5. Configure the AweSim CPU device.
e Go to the Processor Type tab.

e Choose the Ahtlon64-754 SH-CO_(800MHz).id product file, as shown in
Figure 7-1 on page 56.

6.4 Save and Run

The created simulated computer is identical to the “solo.bsd” computer. You can close
the Device Window and save the file from the “File—Save BSD” or by clicking on the oA
button. All that remains is to set up disk images (see Section 4.1, “Creating A Blank
Hard-Drive Image”, on page 35, Section 5.2.1, “Assigning Disk-Images”, on page 42,
and Section 13, “DiskTool”, on page 167) and run the simulation.

50 Chapter 6: Create a Simulated Computer

User Manual November 2010

7 Device Configuration

Each section in this chapter provides a description of how to configure device models in
the simulator’s Device Properties window. These device models include the CPU, CPU
debugger, Northbridge, DIMM memory modules, AMD graphics device, Southbridge,
Super 10, memory device, PCA9548- and PCA9556-SMB, PCI bus, AMD-8131™
PCI-X® device, PCI-X test device, AMD-8132™ PCI-X2 device, Raid device, SMB Hub
device, EXDI server and the USB keyboard and mouse devices. These sections should be
considered as a reference for how to configure a device model and are not intended to
document how to use the model within the simulator.

The full release version of the simulator ships with more devices then the public release
version. Table 7-1 gives an overview of supported devices depending on the simulators
version.

Device Public Release | Full Release
AMD Debugger o o
AweSim Processor o 4
DIMM Device o o’
AMD 8™ Generation Integrated Northbridge o o
AMD-8111™ Southbridge ' o
AMD-8131™ PCI-X® Controller W 4
AMD-8132™ PCI-X Controller o w
AMD-8151™ AGP Bridge Device o o’
Emerald Graphics Device v 4
Matrox® G400/G450 Graphics Device o ®
PCI Bus U U
PCI-X Test Device 3% L4
Winbond W83627HF SIO o 4
Memory Device o o’
SMB Hub Device o o’
PCA9548 Device o w
PCA9556 Device o o
LTC4306 Device 4 4
AT24C Device U L
USB JumpDrive o w
Desktop Network Adapter o o’
EXDI Server 4 L
*® U

Compag SmartArray 5304

Chapter 7: Device Configuration 51

User Manual November 2010

Symbol | Device Public Release | Full Release
ﬁf USB Keyboard 3 w
ﬁf USB Mouse 3 4
A& | XTR Device ® "4
L2 1ITE 8712810 ey o

ATI SB600/RD790 o o
ATI SB700/RS780 o o
ATI SB800/RS880 *® L
ATI SB400/RS480//RD890 #® v
ﬁ ATI Radeon HD 3870 4 W
& :’}MD “Istanbu!:’/AMD “Sao Paulo”/AMD % o
Magny-Cours
@ AMD ‘fDeerHound” revB QuadCore Socket o o
AMD L1 device

Table 7-1: Supported Devices

To open a Device Property dialog window, open the Device View window ““View—Show
Devices” or click on the I button. Then Open the workspace popup menu, right-click on
a device in the workspace area and select “Configure Device”.

52 Chapter 7: Device Configuration

User Manual November 2010

7.1 AweSim ™ Processor Device
The AweSim processor device provides a simulation of an AMD microprocessor.

Interfaces
Three interfaces are used in the AweSim device:

CPU Bus 0. This interface is used to issue memory and 1/O read and write requests, as
well as cache control and input/output signal messages. This interface is generally
connected to the Northbridge device.

Interrupt Bus. This interface is used to communicate interrupt request and acknowledge
messages. This interface is connected to whichever device is used to generate and control
interrupts - typically the Southbridge device.

System Messages Interface. This interface is used by the processor device to output
ASCII and binary log information.

Initialization and Reset State

The processor device's state at initialization is equivalent to an industry-standard x86
processor at initialization. The L1 cache and APIC interfaces are disabled, the debugger
is off, and the L1 cache is configured as two 2-way, 512-line, and 64-byte caches.

When the processor device receives a reset, the device resets its internal state in a manner
consistent with a standard x86 processor. No configuration information is modified.

Contents of a BSD

The BSD file contains the current state of all internal processor registers, state variables,
etc. It also contains all configuration information. Any memory configured locally to the
processor is saved in the BSD.

Configuration Options

The Device Properties Window is used to set various processor identification and
behavior options. Figure 7-1 shows the Processor Type tab for the AweSim processor
device. Here you can specify which member of the AMD microprocessor family should
be simulated. The default is a standard AMD microprocessor. See Section A.2.3, Product
Files (*.ID), on page 184.

Chapter 7: Device Configuration 53

User Manual November 2010

AdweSim Processor #0 Properties

Connections [/0 Logging Logging Processzor Type

Current Product name: "' /productfile/Opteron-L1_JH-FO_[800khz].id"

To change, please choose from the following product files:
Fhuz fraz fhe side-affect of regalfing fine 850

AthlonB4-754_SH-CO_(800MHz)id Athlong4-51_SH-E0_[B00MHz].id ”~
AthlonB4-754_SH-CG_[800MHz]id Opteron-340_JH-E0_[300MHz x2].id
AthlonB4-754_SH-D0_(300MHz).id Opteron-340_SH-B3_[300mMHz).id
AthlonB4-754_SH-EQ_(300MHz)id Opteron-340_SH-CO_[300mMHz).id
&thlonB4-333_JH-EO0_[S00MHz %2).id Opteron-340_SH-CG_(300MHz].id
&thlonB4-333_SH-CG_(800MHz)id Opteron-340_5SH-DO_[300MHz).id
&thlonB4-333_SH-D0_(300MHz).id Opteron-340_SH-EQ_[300MHz).id
&thlonB4-333_SH-EQ_(800MHz)id Opteron-L1_JH-FO_[S00Mhz).id

PN PO IR . I I I Y O ol O o o w1 N P T | | I R, | e I N ot N o T T | PR, |

I] l [Help] ’ Cancel

Figure 7-1: AweSim Processor-Type Properties

Figure 7-2 shows the Logging tab for the AweSim processor device. Here you can
specify the following configuration options:

Check the Log Disassembly check box to log the disassembly of the instructions executed
by the processor model.

Check the Log Register State Changes check box to log all the processor model register
state changes.

Check the Log I/0 Read/Writes check box to log all real 1/0 (not memory 1/O) generated
by the processor model.

Check the Log Linear Memory Accesses check box to log all memory accesses based on
linear memory. This logs all ‘data’ memory accesses generated by the processor model.
This does not log code fetch memory accesses, nor “physical” memory accesses (for
example, page table access-and dirty-bit updates).

Check the Log Exceptions check box to log all exceptions generated by the processor
model.

54 Chapter 7: Device Configuration

User Manual November 2010

AdweSim Processor #0 Properties

Connections | 10 Logging | Logging | Processor Type

Options

Log Dizazzembly

[] Log Register State Changes
[] Log 140 Readwries

[] Log Linear Memory Accesses

[] Log Exceptions

] l [Help] ’ Cancel

Figure 7-2: AweSim Processor Logging Properties Dialog

Log Messages
This device produces log messages to the Message Log Window as specified by the
options in the Message Log Windows (see Section 9 “Logging”, on page 145).

Difference from Real Hardware

While the processor device is a faithful simulation of the software-visible portion of an
AMD microprocessor, it is not a model of the specific AMD microprocessor hardware.
Because of this, the processor device is not equivalent in certain areas. Any issues related
to timing, such as the time to execute a given instruction, will be different. The TLB
models do not exactly match any particular processor, so any software that depends on
exact TLB walking behaviors may not function correctly.

Chapter 7: Device Configuration 55

User Manual November 2010

7.2 Debugger Device

The debugger allows debugging tasks such as break-pointing, single-stepping, and other
standard tasks.

Interfaces
The debugger has no interfaces; the debugger is present if it is in the Device Window. To
add the Debugger Device follow these steps:

1. Select “View—Show Devices”.

2. Click and drag the Debugger Device icon from the device list on the left side
into the workspace area on the right side of the Device Window.

3. Add an additional debugger for each processor you wish to debug.

Initialization and Reset State
The debugger initially is disabled and attached to processor 0.

Configuration Options
In the Main Window, select “View—Show Debugger”. Click the Attach button to
configure which processor is being debugged.

To use the CPU Debugger, please refer to Section 10.1, “Using the CPU Debugger”, on
page 151.

Log Messages
This device does not create log messages.

56 Chapter 7: Device Configuration

User Manual November 2010

7.3 DIMM Device

The DIMM device provides a simulation model of an array of up to four dual-inline-
memory modules (DIMMSs). The model provides RAM storage and serial presence detect
(SPD) ROM access for each DIMM. Bytes 0, 5, 13, and 31 (zero-based) of the SPD data
are used to configure the DIMM model. The remaining SPD entries are available for
BIOS probing, but are not used to configure the DIMM model.

The RAM array for each DIMM is sized based on parameters contained in the SPD array.
SPD array bytes 5 and 31 are used to calculate the size of the DIMM's RAM array. If
byte 0 in the SPD array has a value of zero, then the DIMM device does not respond to
any SMBUS read attempts on the module. This indicates to the reading device that an
SPD ROM is not available on the DIMM module. By appropriately setting bytes 5 and
31, and clearing byte 0, the model simulates a valid DIMM that contains no SPD ROM.

Dual data rate (DDR) DIMMs use bidirectional data strobe signals to latch data on
transfers. The Northbridge device contains Programmable Delay Lines (PDLs) that are
used to delay the Data Qualification Signal (DQS) signals so that the edges are centered
on the valid data window. BIOS algorithms are used to locate the valid data window and
adjust the PDLs accordingly.

Physical DIMMs provide 8 bytes of data per access. On the module, the 8 bytes of data
are stored across several memory devices. The data width of the memory devices on the
DIMM (SPD byte 13) determines how many PDLs are used. DIMMs that use 8-bit or 16-
bit memory devices use one PDL per byte of width (eight total PDLs). DIMMs that use
4-bit devices use one PDL per nibble (16 total PDLS).

The memory controller in the AMD Opteron™ processor includes two DDR channels
that are ganged into a single effective 128-bit interface. Each access to memory hits a pair
of 64-bit DIMMs, where one DIMM supplies the lower 64 bits while the other DIMM
supplies the upper 64 bits. Each DIMM must have the same arrangement in size and
number of banks.

For each valid access to DRAM, the memory controller will assert one of eight bank-
select lines (CS7:0). Each bank-select line selects one “virtual bank.” A virtual bank is
the combination of one bank on the lower DIMM, and the corresponding bank on the
upper DIMM. Row and column addresses select the data offset within the virtual bank.

Chapter 7: Device Configuration 57

User Manual November 2010

DINIIL DIMMII DININS DIMMT

C50 51 OS50 C51))CE0 OS5 C50 C51
. Y . . .

oS0
051
C52
C33
AMD Opteron 0S4
CS5
CS6
C57

b b

v 3 b B T X
C50 51 OS50 C51) |CE0 C51 50 C51

DINNIO DIMRM2 DINDN4 DIMNE

Figure 7-3: AMD Opteron™ Processor Virtual Bank-Select Line Configuration

Memory controllers in AMD Athlon™ 64 provide eight bank select lines. However, in
this case, each bank-select is routed to only one physical DIMM bank, i.e., the banks are
not ganged.

DIMD DIMDMIL DINNIZ DINNS

750 51 250 C51 C30 T51 50 51
CSD T b 3 . . 3
31
C32
C33
AMD Athlonfd [C54
35
CSh
C37

Figure 7-4: AMD Athlon™ 64 Processor Bank-Select Line Configuration

Configuration of the DIMM Device allows the user to specify SPD data for each
simulated DIMM. The number of DIMMs supported in the DIMM Device model is
dependent on the type of CPU used in the system. If the CPU type is an AMD Opteron
processor, then the DIMM Device will assume a 128-bit memory interface and therefore
allow configuration of up to eight individual DIMMs. If the CPU type is something other
than AMD Opteron, then the DIMM device assumes a 64-bit memory interface and
accepts configuration for only four DIMMs. It isn’t until the simulation is started that the
DIMM Device can determine what type of CPU is present. For this reason, the DIMM
Device will initially display configuration tabs for 8 DIMMs even when used with a CPU
that is not based on the AMD Opteron processor. After the simulation is started, the
DIMM device will remove and ignore any configuration of DIMMSs 4-7 if a processor
other than the AMD Opteron is detected.

58 Chapter 7: Device Configuration

User Manual November 2010

Once the simulation is started, the DIMM Device allocates memory arrays to hold the
DRAM data. One array is allocated for each bank or virtual bank. In the case of 64-bit
memory interfaces, memory arrays are allocated to match the size of the physical banks
on each DIMM. If the memory interface is 128 bits, then the memory arrays are sized to
the sum of the physical bank pairs that make up the virtual banks. For example:

Virtual bankO is the combination of physical bankO on DIMMO and physical bankO on
DIMML. If physical bankO on each DIMM is 32MB in size, then the array allocated for
virtual banko is sized at 64MB.

Each virtual bank is handled like it is one large bank, rather than two combined smaller
banks. The model does not distinguish between addresses that hit in the upper physical
bank and addresses that hit in the lower physical bank.

Memory read- and write-messages sent to the DIMM Device use the same structure for
both 128-bit and 64-bit interfaces. Each message includes a bank select field, an address
field, and a data size field. The bank select field implements the CS7:0 lines while the
address field specifies the beginning offset within the bank/virtual bank, and the data size
field specifies the size of the datum.

Interfaces
The DIMM device is implemented as a single-interface device. However, the device
accepts two distinct classes of messages: RAM read/write messages, and SMBUS reads
of SPD data. In most system configurations, the DIMM device is connected to a
Northbridge device's DIMM interface as well as a Southbridge device's SMBUS
interface.

Initialization/Reset State

On creation of the DIMM device, all RAM arrays are set to all ones, and SPD ROM
arrays are cleared. Reset initializes the RAM arrays to all ones, but does not alter the SPD
ROM arrays. Configuration options are not affected by reset.

Contents of a BSD
The RAM arrays, SPD ROM arrays, and all configuration option settings are saved in the
BSD.

Configuration Options

Chapter 7: Device Configuration 59

User Manual November 2010

Dimm Bank #5 Properties

Connections | 1/0 Logging | Option: | Dimm @ || Cvire; 1

FOL Ermar Sirmulation Control

] Enable POL Error Simulation

(%) O«FF
3 Irwvert

Syztem Management Configuration

SkE Baze Address: all

General

b axirium Mumber of Dimms: 2 | Change b axDimms

[k. l [Help] ’ Cancel

Figure 7-5: DIMM-Bank Options Properties Dialog
Figure 7-5 shows the dialog for configuring DIMM-bank options.

The PDL Error Simulation Control section specifies the type of error that the DIMM
device will generate, when a memory read is attempted and when a Northbridge PDL is
set outside the valid response range. These settings apply to all four simulated DIMMs.

If Enable PDL Error Simulation is selected, then the DIMM device monitors PDL
settings for all RAM reads. The OxFF option specifies that the return data should be
forced to all ones. The Invert option specifies that the return data should be a bitwise
inversion of the valid data.

The SMB Base Address entry selects the 8-bit address that this DIMM device responds to.
The SMB address is used for the reading of DIMM SPD data

60 Chapter 7: Device Configuration

User Manual

November 2010

Dimm Bank #5 Properties

Connections | |/0 Logging | Options | Dimm @ | Diiren 1
Froperties
Mermom Type: SDRAM DDR
Total Size: 206
Murber af Banks: 1
Device Data 'Width: 3
Delete DIkM
SPD ROM Contents
Address Wall
0 Mumber of SPD ROM bytes uzed Q=30
1 Total number of SPD RO bytes (=03
2 Memom Type =07
3 Mumber of row addresses Dx0c
4 Murnber of column addresszes Dx0b
8 Mumber of physzical banks on DIMM =1
B Module data width [low] Q=40
7 Module data width [high] Q=00
3 Module volatge interface level Ox04 »
< b3
Impart SPO...] ’ Export SPD...
DDR POL Responze
POLE (0 = high [0-255) |255 Match PDL's
low [0-255] |0 Feset PDL':
I] l [Help] ’ Cancel]

Figure 7-6: DIMM Module Properties Dialog

The two DIMM module configuration dialogs, shown in Figure 7-6, (DIMMO — DIMM1)
provide module-specific setup options for each simulated DIMM. The two DIMM
module configuration dialogs share the same format.

The upper part of the dialog lists some summary information. This information, which is
derived from the SPD data, gives a quick indication of the type of device being

simulated.

Chapter 7: Device Configuration

61

User Manual November 2010

The center section of the dialog lists all 256 bytes of data held in the simulated SPD
ROM. The list box provides a description of each byte index in the ROM. If a description
is selected, the corresponding data byte is displayed in the text box to the right.

The Import SPD and Export SPD buttons provide the option of loading and saving SPD
ROM data. The file format is an unformatted binary image, with an extension of “*.spd”.

The bottom section of the dialog is used to configure DDR PDL Response ranges for the
simulated DIMM. PDL response ranges can be individually set for each of 16 PDLs.
Adjusting the Low and High value modifies the response range for a particular PDL.
When an appropriate response range is set for one PDL, the same range can be applied to
all 16 PDLs by clicking on the Match PDLs button. The Reset PDLs button sets all 16
PDL response ranges to their maximum range (0 - 255).

Log Messages
This device does not produce log messages.

Difference from Real Hardware

The DIMM device does not simulate timing-related issues except for PDL error
simulation. The performance of real DIMM hardware is highly dependent on timing and
loading issues.

ECC simulation is not provided.

62 Chapter 7: Device Configuration

User Manual November 2010

7.4 Emerald Graphics Device

The Emerald graphics device provides an industry-standard PCI/AGP VGA-compatible
video device. The device provides a fully functional set of PCI configuration registers.
The AGP interface is currently somewhat minimal, and is not capable of generating AGP
cycles nor AGP-specific modes at this time.

The Emerald graphics device is comprised of a standard VGA and the Emerald Graphics
sub device. The graphics display engine automatically switches between the Emerald
Graphics sub device and the VGA as necessary to display the selected video modes, with
only one being able to display at a time. The VGA sub device provides an industry-
standard VGA interface used by BIOS and DOS. The Emerald Graphics device provides
an AGP and PCI graphics device interface controllable either by VESA BIOS extensions
or a video driver. In addition to the VGA standard modes, Emerald Graphics supports a
wide range of graphics modes from 320x200 at 16-bit color up to 2048x1536 at 32-bit
color with either the VESA BIOS extensions or a video driver.

Interfaces

The Emerald graphics device has a PCI slot, PCle and an AGP bus connection, only one
of which can be used at any time to connect to PCI slots, PCle or AGP bus ports in other
devices.

Initialization and Reset State

Upon initial creation, this device initializes the internal registers to VGA standard reset
state, and creates a display window that acts as the VGA display. The Configuration
options are initialized to enable both the VGA and Emerald Graphics. The frame-buffer
size is initialized to 16 Mbytes and the Bios File memory area is initialized to all ones.

A reset will re-load the default PCI configuration registers and place default values in the
Chip and FIFO configuration for the Emerald Graphics device.

Contents of a BSD

The data saved in the BSD depends on the mode the graphics controller was in when the
BSD was saved. If the graphics controller was in VGA mode, the BSD file contains the
contents of all VGA registers, a copy of the 256-Kbyte VGA frame buffer, and all
configuration information. If the graphics controller was in a high-resolution mode (non-
VGA in Windows) the frame buffer, Emerald Graphics registers, and PCI configuration
registers are saved in the BSD. When the BSD file is reloaded, all registers and the frame
buffer are restored, and a display image is captured and displayed in the display window.

Configuration Options

VGA Sub Device Configuration

Chapter 7: Device Configuration 63

User Manual November 2010

Emerald Graphics #% Properties

Connections | 1/0 Logging | “GA SubDevice | Framebuffer and &c

BIOS File: Jlmagessemerald_v0 3. rom D

%GA Enabled

] l [Help] ’ Cancel

Figure 7-7: Graphics-Device VGA Sub Device Properties Dialog

In Figure 7-7, the BIOS File option enables you to load different VGA BIOS ROMs into
the device. The VGA ROM is assumed to be a maximum of 32-Kbytes, and is assigned to
ISA bus address 0x000C0000 - 0x000C7FFF, which is the industry-standard location.
This file must be a standard binary file, with the correct header and checksum
information already incorporated.

The VGA enabled checkbox enables or disables the VGA registers. If it is not checked,
the VGA registers are not updated and the display window will not display from the
VGA frame buffer.

Frame Buffer Sub Device Configuration

In Figure 7-8, the Frame Buffer Size (Mbytes) sets the size of the frame-buffer in
megabytes. The value placed in this option is only read at reset. The frame-buffer size
can not be dynamically modified.

The Accelerator Enabled checkbox enables or disables the graphics accelerator. The
accelerator is enabled by default.

The VESA BIOS Extensions Enabled checkbox enables or disables the VESA BIOS
support. The VESA BIOS Extensions are enabled by default.

64 Chapter 7: Device Configuration

User Manual

November 2010

Emerald Graphics #9 Properties

[/0 Logging

WGEA SubDewvice

Framebuffer and Accelerator

IMPORTAMT WARMIMNG: Changes in theze parameters
are generally only looked at during PCI config at

BIOS initialization.

Frame Buffer Size [MBuytez]

Acceleratar Enabled

YESA BIOS Extensions Enabled

16

5|

Help] ’ Cancel

Difference from Real Hardware
The Emerald Graphics device currently does not simulate any specific graphics hardware,
it simulates something functionally “like” a modern graphics adapter, with only 2D
acceleration implemented at this time. Drivers are Windows only at the moment.

Figure 7-8: Graphics Device Frame Buffer SubDevice Properties

When the VGA display window has the focus, any keyboard messages and mouse-click
messages received by the window are routed via a DEVCWINDOWMSG message
through the simulators 1/O subsystem. The keyboard or mouse device accepts these
messages and simulates key-presses and key-releases to match the keys. While certain
key combinations do not result in the generation of keyboard messages by the OS, this
does enable you to use the real keyboard to interact with the simulation in many cases.

Supported VESA BIOS Graphics Modes
Only supports flat and linear frame buffer, with 16-bit/64K (5:6:5) colors and 32-
bit/16.8M (8:8:8:8) colors modes.

Table 7-2 shows the subset of "standard” VESA mode numbers supported.

Mode Number Resolution Color depth
10Eh 320x200 16-bit
111h 640x480 16-bit
114h 800x600 16-bit
117h 1024x768 16-bit
11Ah 1280x1024 16-bit

Table 7-2: Supported Standard VESA Modes

Table 7-3 shows the supported custom VESA mode numbers.

Chapter 7: Device Configuration

65

User Manual November 2010

Mode Number Resolution Color depth
140h 320x200 32-bit
141h 640x480 32-bit
142h 800x600 32-bit
143h 1024x768 32-bit
144h 1280x720 16-bit
145h 1280x720 32-bit
146h 1280x960 16-bit
147h 1280x960 32-bit
148h 1280x1024 32-bit
149h 1600x1200 16-bit
14Ah 1600x1200 32-bit
14Bh 1920x1080 16-bit
14Ch 1920x1080 32-hit
14Dh 1920x1200 16-bit
14Eh 1920x1200 32-hit
14Fh 2048x1536 16-bit
150h 2048x1536 32-hit

Table 7-3: Supported Custom VESA Modes

Improve Graphics Performance

When you run Windows in simulation and you open a menu, list box, tool-tips, or other
screen element, the object may open very slow. To disable this option, use the following
steps:

1. Click Start, point to Settings, and then click Control Panel.

2. Double-click Display.

3. Click Effects, clear the Use the following transition effects for menus and
tooltips check box, click ok, and then close Control Panel.

66 Chapter 7: Device Configuration

User Manual November 2010

7.5 Matrox MGA-G400 PCI/AGP

The Matrox G400 graphics device provides a high performance PCI/AGP VGA-
compatible video device. The device provides a fully functional set of PCI configuration
registers, and a 2D drawing engine. The AGP interface is currently somewhat minimal,
and is not capable of generating neither AGP cycles nor AGP-specific modes at this time.

High performance device drivers are available for most operating systems (Windows,
Linux, and Solaris). The Matrox G400 supports full acceleration of all GDI and
DirectDraw functions.

Figure 7-9 shows the integrated components of the Matrox G400 graphics device.
Features and components which are currently not supported by the Matrox G400 graphics
device model have a © symbol in the following block diagram.

High Resolution Color
Monitor
Up to 2056 x 1536 at
32b
42 ® Not Supported!
A A A
RAMDAC Floating Point VIP/VMI Port

Setup Engine Second CRTC CODEC Port

Primary CRTC

Programmable || CPU Graph Area
Ultra-pipelined

Video Scaling

Unit .

MAFC Port Advanced 3D Texturing and
Rendering Engine

128-bit Frame Buffer Memory PCI or AGP
Interface 2x/4x Interface

A\ 4

16- or 32-Mbytes
SGRAM or SDRAM ram
Interfaces Local Frame Buffer Memorv

Chapter 7: Device Configuration 67

User Manual November 2010

The Matrox G400 graphics device has both a PCI bus and an AGP bus connection, only
one of which can be used at any time to connect to PCI bus or AGP bus ports in other
devices.

Initialization and Reset State

Upon initial creation, this device initializes the internal registers to Matrox G400 standard
reset state, and creates a display window that acts as the VGA display. The Configuration
options are initialized to enable both the VGA and Matrox Power Graphics Mode. The
frame-buffer size is initialized to 32 Mbytes and the Bios File memory area is initialized
to all ones.

A reset will re-load the default PCI configuration registers and place default values in the
Chip and FIFO configuration for the Matrox G400 graphics device.

Contents of a BSD

The data saved in the BSD depends on the mode the graphics controller was in when the
BSD was saved. If the graphics controller was in VGA mode, the BSD file contains the
contents of all VGA registers, a copy of the 256-Kbyte VGA frame buffer, and all
configuration information. If the graphics controller was in Matrox Power Graphics
Mode (non-VGA in Windows) the linear frame buffer, Power Graphics registers, and PCI
configuration registers are saved in the BSD. When the BSD file is reloaded, all registers
and the frame buffer are restored, and a display image is captured and displayed in the
display window.

Configuration Options
Figure 7-10 shows the Information tab. The following information describes the active
configuration of the Matrox G400 graphics device.

The Graphics Hardware Model can be set to one of the following models:

e Matrox Millennium G400 PCI
e Matrox Millennium G400 AGP

Currently there is only support for the Matrox G400 chip with SingleHead feature
support available.

The Graphics BIOS version is the version of the BIOS that is assigned and used by the
graphics device. If you flash the BIOS the version number will change. For more
information about flashing the graphics device BIOS see Figure 7-11.

The Graphics Memory section shows information about the current memory
configuration of the graphics device. Currently supported memory configurations are:

e 32/16 MB SGRAM with 300 MHz RAMDAC
e 32/16 MB SDRAM with 300 MHz RAMDAC

68 Chapter 7: Device Configuration

User Manual

November 2010

MatroxiR) MGA-G400 Graphics Adapter, #% Properties

Connections | /0 Logging | Information | Corfiguration

Graphics Hardware

Model: Matrox Millennium G400 AGP
Graphicz chip: Matrox G400
DualHead suppart; Mo

Senal Mumber: PEI0E413

Graphicsz BIOS: » 2.1 [Build 35]

Graphics Memary

b emon tope: SGERAM
Amount of memany: 32 MB
b aximum BAMDAL speed: 300 MHz

k.] ’ Help] ’ Cancel

Figure 7-10: Matrox G400 Information Property Dialog

The Configuration tab displays details about the active configuration of the Matrox G400
graphics device.

If you want to change the active configuration, click on the Configuration Tab (see

Figure 7-11).

Chapter 7: Device Configuration

69

User Manual November 2010

MatroxiR) MGA-G400 Graphics Adapter, #% Properties @E|

Connections || 1/0 Logging || Information | Configuration
Settingz
BIOS ROM File: |./lmages/gd00_897-21.bin E]

Millerinium G400 Adapters
Millernium G400 b ax, DualHead, 32 MB SGRAM, 360 MHz RabDAC
(%) Millenmium G400, SingleHead, 32 MB SGRAM, 300 MHz RamMDAC
) Millenmium G400, SingleHead, 32 MB SDRAM, 300 MHz RamMDAC
Millennium G400, DualHead, 16 MEB SGRAR, 300 MHz RaMDAC
() Millernium G400, SingleHead, 16 MB SGRAM, 300 MHz RAMDAL
() Millernium G400, SingleHead, 16 MB SDRAM, 300 MHz RAMDAC

Maote: Restart ar rezet your simulation far the settings to take effect!

[k.] ’ Help] ’ Cancel

Figure 7-11: Matrox G400 Configuration Properties

The BIOS ROM File input field gives you the ability to load different Matrox G400 BIOS
ROMs into the device. This is in particular useful if Matrox releases a new BIOS ROM
file which has improvements or bug fixes.

To check for new Matrox BIOS ROM releases go to
http://www.matrox.com/mga/support/drivers/bios/.

The Matrox G400 ROM has a maximum size of 32-Kbytes, and is assigned to ISA bus
address 0x000C0000 - 0x000C7FFF, which is the industry-standard location.

The Configuration tab lets you choose from six different Matrox G400 graphics adapters.
For instance, if you prefer to use a Matrox Millennium G400, SingleHead, 16 Mbytes of
SDRAM, with a 300 MHz RAMDAC, instead of the default adapter then select this
adapter from the Millennium G400 Adapters list. To apply the new configuration, click
on the ‘Ok’ button.

Note if you make any changes in the Configuration tab you must restart or reset your
simulation before the new configuration will take effect!

Difference from Real Hardware

The Matrox G400 graphics device is a faithful simulation of the software-visible portion
of a Matrox G400 adapter; it is not a model of the specific Matrox G400 hardware.
Because of this, the graphics device is not equivalent in certain areas. Any issues related

70 Chapter 7: Device Configuration

http://www.matrox.com/mga/support/drivers/bios/

User Manual November 2010

to timing, such as the vertical retrace time, will be different. Any software that depends

on exact timing behavior may not function correctly.

The following features are only partially implemented. Any software that depends on

these features may not function correctly.

Translucency / Full Alpha-Blending
Full Texture Mapping
Gouraud Shaded Fills (ALPHA, FOG, STENCIL)
Trapezoids functions
Bitblts
a. Color Patterning 8x8
b. Expansion (Character Drawing) 1 bpp Planar
e Lines
a. With Line-style
b. With Depth
c. Polyline/Polysegment using Vector Pseudo-DMA Mode
e Image Load (ILOAD)
a. Linear-Color Expansion (Character Drawing) 1 bpp
b. Loading the Texture Color Palette
Loading any accelerator registers through the Pseudo DMA Window
ZBuffer Direct Access Procedure when ZBuffer is in AGP Space
Table-Fog
Video Scaler
Texture Unit blending
Texture Staging

Supported 2D Features
e Bus-Mastering (PCI/AGP)

e Raster Operations: 0,~(D|S),D&S,D &-~S, ~S, (~-D) &S,~D,D* S, ~(D

&S),D&S,~(D"S),D, D|-S,S,(-D)|S,D|S,1
e Hardware Clipping
e Software-/Hardware-Cursor

a. Three-Color Cursor

b. XGA Cursor

c. X-Windows Cursor

d. 16-Color Palletized Cursor
e Bitblts

a. Two-Operand

b. Transparent Two-Operand

c. With Expansion (Character Drawing) 1bpp
e Image Load (ILOAD)

a. Two-operand

b. With Expansion (Character Drawing) 1bpp
e Rectangles

Chapter 7: Device Configuration

71

User Manual

November 2010

a. Patterned Fills

b. Constant Shaded

c. Gouraud Shaded (partially)
d. Texture Mapping (partially)
Trapezoids

a. Constant Shaded

Lines

a. Auto-Lines (line open/line close)

b. Solid-Lines (line open/line close)

8, 15, 16, 24, and 32 Bits Per Pixel video modes
ILOAD Pseudo- DMA Window Transfers
Programmable, transparent BLTer

Linear packed pixel frame buffer

Supported DirectX 6.1 Features

Alpha Test0

Alpha Blending Functions
a. Normal-Blending

b. Transparency-Blending
c. Additive-Blending

d. Soft-Additive-Blending
e. Multiplicative-Blending

Depth Test (Z-Buffer) 15-bit, 16-bit, 24-bit, and 32-bit

Texel-Width (4-, 8-, 12-, 15-, 16-, and 32-bit
UV Texture Coordinate support
DMA-Vertex Engine

Supported Graphics Modes
The Matrox G400 provides three different display modes: text (VGA or SVGA), VGA
graphics, and SVGA graphics. Table 7-4 list all of the display modes which are available
through BIOS calls.

Mode Number | Type | Organization Resolution | No. of colors | Supported
0x00 VGA | 40x25 Text 360x400 16 o
0x01 VGA | 40x25 Text 360x400 16 o
0x02 VGA | 80x25 Text 720x400 16 o
0x03 VGA | 80x25 Text 720x400 16 o
0x04 VGA | Packed-pixel 2 bpp 320x200 4 o
0x05 VGA | Packed-pixel 2 bpp 320x200 4 o
0x06 VGA | Packed-pixel 1 bpp 640x200 2 o
0x07 VGA | 80x25 Text 720%x400 2 o
0x0D VGA | Multi-plane 4 bpp 320x200 16 o
0x0E VGA | Multi-plane 4 bpp 640x200 16 o
0x0F VGA | Multi-plane 1 bpp 640x350 2 o
0x10 VGA | Multi-plane 4 bpp 640x350 16 o
0x11 VGA | Multi-plane 1 bpp 640x480 2 o
0x12 VGA | Multi-plane 4 bpp 640x480 16 o
0x13 VGA | Packed-pixel 8 bpp 320x200 256 o

72

Chapter 7: Device Configuration

User Manual November 2010
Mode Number | Type | Organization Resolution | No. of colors | Supported
0x0108 VGA | 80x60 Text 640x480 16 3%
0x0109 VGA | 132x25 Text 1056x400 16 3%
0x010A VGA | 132x43 Text 1056x350 16 o
0x010B VGA | 132x50 Text 1056x400 16 3%
0x010C VGA | 132x60 Text 1056x480 16 3%
0x0100 SVGA | Packed-pixel 8 bpp 640x400 256 o
0x0101 | SVGA | Packed-pixel 8 bpp 640x480 256 o
0x0110 SVGA | Packed-pixel 16 bpp 640x480 32K o
0x0111 | SVGA | Packed-pixel 16 bpp 640x480 64K o
0x0112 | SVGA | Packed-pixel 16 bpp 640x480 16M o
0x0102 | SVGA | Multi-plane 4 bpp 800x600 16 3
0x0103 SVGA | Packed-pixel 8 bpp 800x600 256 o
0x0113 SVGA | Packed-pixel 16 bpp 800x600 32K o
0x0114 | SVGA | Packed-pixel 16 bpp 800x600 64K o
0x0115 | SVGA | Packed-pixel 32 bpp 800x600 16M o
0x0105 | SVGA | Packed-pixel 8 bpp 1024x768 256 o
0x0116 | SVGA | Packed-pixel 16 bpp | 1024x768 32K o
0x0117 | SVGA | Packed-pixel 16 bpp | 1024x768 64K o
0x0118 | SVGA | Packed-pixel 32 bpp | 1024x768 16M o
0x0107 | SVGA | Packed-pixel 8 bpp | 1280x1024 256 o
0x0119 | SVGA | Packed-pixel 16 bpp | 1280x1024 32K o
0x011A | SVGA | Packed-pixel 16 bpp | 1280x1024 64K o
0x011B | SVGA | Packed-pixel 32 bpp | 1280x1024 16M o
0x011C | SVGA | Packed-pixel 8 bpp | 1600x1200 256 o
0x011D | SVGA | Packed-pixel 16 bpp | 1600x1200 32K o
0x011E | SVGA | Packed-pixel 16 bpp | 1600x1200 64K o

Memory Interface
The Matrox G400 supports a total of 32 megabytes of SGRAM/SDRAM memory
comprised of one or two banks of 8, 16, or 32 Mbytes each.

Table 7-4: Matrox G400 VESA Modes

In Power Graphics Mode, the resolution depends on the amount of available memory.
Table 7-5 shows the memory configuration for each standard VESA resolution in pixel

depth.
Single Frame Buffer Mode Single Z-Buffer
No Z Z 16 bits Z 32 bits

Resolution | 8-bit | 16-bit | 24-bit | 32-bit | 8-bit | 16-bit | 32-bit | 8-bit | 16-bit | 32-bit

640x480 | 8M 8M 8M 8M 8M 8M 8M 8M 8M 8M

720x480 | 8M 8M 8M 8M 8M 8M 8M 8M 8M 8M

800x600 | 8M 8M 8M 8M 8M 8M 8M 8M 8M 8M

1024x768 | 8M 8M 8M 8M 8M 8M 8M 8M 8M 8M

1152x864 | 8M 8M 8M 8M 8M 8M 8M 8M 8M 8M
1280x1024 | 8M 8M 8M 8M 8M 8M 8M 8M 8M 10M
1600x1200 | 8M 8M 8M 8M 8M 8M 16M 16M 16M 16M
1920x1080 | 8M 8M 8M 8M 8M 8M 16M 16M 16M 16M
1800x1440 | 8M 8M 8M 16M 8M 16M 16M 16M 16M 16M
1920x1200 | 8M 8M 8M 8M 8M 8M 16M 16M 16M 16M
2048x1536 | 8M 8M 16M 16M 16M 16M 32M 16M 32M 32M

Table 7-5: Supported Resolutions in Power Graphics Mode

Chapter 7: Device Configuration

73

User Manual November 2010

Supported Guest Operating Systems
Table 7-6 shows all operating systems which are tested and known to work with the
Matrox G400 graphics device model:

Guest Operating System Device Driver Version Known Issues
MS-DOS™ N/A No known issues.
Windows 2000 5.93.009 No known issues.
Windows XP (32-bit/64-hit) 5.93.009/1.11.00.114SE | No known issues.
Windows Server 2003 (32-hit/64-bit)) 5.93.009/1.11.00.114SE | No known issues.
Windows Vista® (32-bit/64-bit) N/A (VESA only) No known issues.
Linux® (32-bit/64-bit), RedHat/SUSE/SUSE Xen Standard MGA Driver No known issues.
Solaris 10 for AMD64 XF86 MGA Solaris No known issues.

Table 7-6: Supported Guest Operating Systems

Improve Graphics Performance

When you run Windows in simulation and you open a menu, list box, tool-tips, or other
screen element, the object may open slowly. To disable this option, use the following
steps:

1. Click Start, point to Settings, and then click Control Panel.

2. Double-click Display.

3. Click Effects, clear the Use the following transition effects for menus and tool
tips check box, click ok, and then close Control Panel.

Or:

Right click on My Computer and select Properties.

Click on Advanced, Performance, and then on Settings....
Select the Adjust For Best Performance option.

Click on Apply.

Eall el

Also make sure you have installed the Matrox G400 graphics device drivers. You can
download the latest Matrox Millennium G400 graphic device drivers for Windows and
Linux at http://www.matrox.com/mga/support/drivers/latest/home.cfm.

Enabling Graphics Hardware Acceleration on Windows Server Operating Systems
Graphics Hardware Acceleration and DirectX are disabled by default on a Windows
Server configuration to ensure maximum stability and uptime. But if you need to improve
the graphics performance the following steps will guide you through on how you can
enable hardware acceleration.

Right-click the desktop, and then click Properties on the menu.

Click the Settings tab, and then click on Advanced.

Click the Troubleshoot tab.

Move the Hardware Acceleration slider across to full (see Figure 7-12).
Click Ok, and then click Close.

orwdPE

74 Chapter 7: Device Configuration

http://www.matrox.com/mga/support/drivers/latest/home.cfm

User Manual November 2010

Themes | Desktop | Screen Saver || Appearance | Settings

Default Monitor and Matrox Millennium G400 - English ... |E|r>__(|

Informnation O ptions Ii M onitor Settings Calor

General Adapter kd anitar | Troubleshoot | Colar b anagement

. Are you having prablerns with vour graphics hardware? These
zettings can help you roubleshoot dizplay-related problems.

Hardware acceleration

Diizplay: b anually contral the level of acceleration and performance supplied by
Default Maritar o waour graphics hardware. Uze the Display Troublezshooter ta azsist pou in
making the change.

Screen rezolutio

-
Less J_ Hardware acceleration: Mone | 41—3) Full
N el

1024 by All accelerations are enabled. Use thiz zetting if pour computer has no

problemsz. [Recommended]

Enable write combining

(]] [Cancel

Figure 7-12: Enable Full Hardware Acceleration on WindowsXP guest

Enabling Hardware Cursor Support
Please follow the following steps to enable native hardware cursor support on Windows

platforms:

Install latest Matrox G400 drivers.

Reboot computer.

Right click on “My Computer” and select “Properties”.

Click on “Advanced’, “Performance”, and then on “Settings...”.
Uncheck “Show shadows under mouse pointer” checkbox.
Click on “Apply”

oakrwdE

Chapter 7: Device Configuration 75

User Manual November 2010

7.6 ATI Radeon™ HD 3870

The ATI Radeon™ HD 3870 device model provides a simulation of an ATI Radeon HD
3870 GPU and is the foundation for the new graphics architecture Microsoft DirectX®
10.1'. The functionality of this device model supports full OpenGL 2.0, DirectX 9, and
will support all required features of DirectX 10.1.

This device model implements a small subset of 3D features which are used by operating
systems to render graphical user interface components and it does not support enough
features to run most modern 3D applications and games correctly.

Interfaces

The ATI Radeon HD 3870 device has a PCle connection point. The PCle port is used for
connectivity upstream to a compatible Northbridge Device. See Section 7.28, "ATI
RS480/RS780/RD790/RD890 Northbridge Devices", on page 138 for more information

Initialization and Reset State

Upon initial creation, this device initializes the internal GPU state to ATl Radeon HD
3870 standard reset state, and creates a display window that acts as the VGA display. The
board configuration options are loaded and initialized. Frame buffer memory is initialized
to all zeros. Most of the simulated hardware features that are available during simulation
depend on the specific board configuration settings.

A reset will re-load the default GPU and PCI configuration registers. The internal GPU
state will be also set to the ATl Radeon HD 3870 default values.

Contents of a BSD

The data saved in the BSD depends on the mode the graphics controller was in when the
BSD was saved. If the graphics controller was in VGA mode, the BSD file contains a
copy of the 256-Kbyte VGA frame buffer, and all configuration information. If the
graphics controller was in an accelerated graphics mode the entire linear frame buffer, is
saved in the BSD. All modified GPU and PCI configuration registers, and the current
GPU state of all blocks are saved in the BSD. Display device data and display device
connection information are saved as well in the BSD.

When the BSD file is reloaded, the internal GPU state, registers and the frame buffer are
restored, and a display image is captured and displayed in the display window.

1 ATI Radeon HD 3870 device model supports DirectX 9 version (including DirectX 9Ex) and earlier
versions of DirectX. DirectX 10 and DirectX 10.1 are not supported.

76 Chapter 7: Device Configuration

User Manual November 2010

Configuration Options

It is recommended to install the latest available ATl Radeon HD 3870 device drivers if
you want to enable and use full DirectX and OpenGL support. Please refer to
http://wwwe.ati.com/drivers for more information about available device drivers.

In most cases the simulated graphics perfromance can be improved by reducing the
simulated video resolution to 800x600 or 1024x768.

To obtain detailed information about this device model and its hardware configuration,
such as memory size and general BIOS information, please open the GUI device property
dialog and then click on the Information tab (see Figure 7-13).

4] ATI Radeon HD 3870 #14 Properties LD |

Connections | 140 Logging | Configuration | DVID |
Infarmation | PCIR |

Graphics Hardware

ftem Yalue
2 Graphics Chipset ATl Radeon HD 3870
® Device D (<5501
Wendor ID (1002
RADEON

Subsystem D (2542

CRAFHICS Subsystem Vendor 1D (1002

Build #: 14505
(Graphics Bus Capability PC| Express
Madmum Bus Setting PCl Express x16
BIOS Version 010.079.000.005
BIOS Part Mumber 113-B33501-026
BIOS Date 03/11/08
Memary Size 512 MB
Memary Type DDR4
ok || Hep || Ccance

Figure 7-13: ATI Radeon HD 3870 Configuration Information

Figure 7-14 shows detailed information about the connected display device, such as
“Basic Display Parameters”, “Standard Timings”, “Color / Estabilished Timings”, and
“Raw Data” (see Figure 7-15).

Additional display devices can be added and used by importing Extended Display
ldentification Data (EDID). To import EDID open the GUI device property dialog and

Chapter 7: Device Configuration 77

http://www.ati.com/drivers

User Manual November 2010

then click on the “Import EDID” button. Automation commands can be used
alternatively, see section A.7.32, ATl Radeon HD 3870, on page 256. EDID versions up
to version 1.3 are supported. EDID files contain 128 byte of user defined EDID
information in binary format.

Note that SimNow does not provide any tools to create EDID binary files.

The Display Device drop down list can be used to select a different display device. By
default the ATI Radeon HD 3870 is connected to the AMD SimNow Display Device.

4] ATIRadeon HD 3870 #14 Properties 2 [

Connections /0 Logging | Corfiguration | DVID |
General Basic Display Parameters I Standard Timings | Color / Established Timings | Raw Data |
Display Device
Model: [AMD SimNow Display Device AMDOOTW {Flat Panel, TFT. digtal) [=]
Vendor / Product 1D EDID Structure Version EDID Edensions
Vendor 1D: A405 Version: |1 Mumber of extensions: |0
Product 1D: 0001 Revigion: |2

Seral Mumber: |1

Mg Week: 1

EDID Checksum

8bit Checksum: D5
Mg ear: 2009

OK || Hep || Cancel

Figure 7-14: Display Device configuration

78 Chapter 7: Device Configuration

User Manual November 2010

4] ATI Radeon HD 3870 #14 Properties P

Connections | I/0 Logaing | Corfiguration | DVID |
General | Basic Display Parameters | Standard Timings | Color / Established Timings Faw Data |_

Dizplay Device

Madel: |AMD SimMow Display Device AMDO0TW (Fat Panel, TFT, digital) |E| Import EDID...

Bxdended Display |dentification Data (EDID)

00 0 02 03 04 05 06 O7 03 09 OA OB OC OD OE OF
00 FF FF FF FF FF FF 00 05| A4| 01| 00 01 00 00 00
01| 13 01| 03 80| 24 1D/ 78 2&| 16 76 AZ| A 4B 97 24

&| 4F 54| BF EF| 00 45| 40 01| 01 01 01| 01 01 01| 01
01 01 01 01 01 01 &0 OF 20 00| 31| 58 1c| 20 28 80
14 00 00 1E 01 o004 00 1E 00| 00| 00| FF 00 30 30 30
30 30 30 31 oO& o0& oO& OA O& OA| 00, 00 00 FD 00 32
4B 1E 53 0OE 00 o0& 200 20 20| 20| 20| 20 00 00 00 FC
00 41 4D 44 30 30 31 0O& O&| OA| O&a| Of 04 04 00 D5

28888883

ok || Hep || Cancel

Figure 7-15: Extended Display Identification Data Viewer

Difference from Real Hardware

The ATI Radeon HD 3870 device model is a faithful simulation of the software-visible
portion of an ATl Radeon HD 3870 adapter; it is not a model of the specific ATI Radeon
HD 3870 hardware. Because of this, the graphics device model is not equivalent in
certain areas. Any issues related to timing, such as the vertical retrace time, DAC, CRTC
and GPU clock timing, will be different. Any software that depends on exact timing
behavior may not function correctly.

The following features are not supported in this version of the ATl Radeon HD 3870
device model. Any software that depends on these features may not function correctly.

Unsupported Feature List

DirectX 10+ (shader constant buffer, geometry processing, shader import/export from memory, DirectX
10 shader instructions)

Flow control and conditional shader instructions

Texture Filtering, mip mapping, LOD, anti-aliasing, blending weight generation, depth filtering

Line color gradients, wireframe fill mode, Fog

uvD

Dual screen configurations and display hotplug detection

ATI CrossFire™

Chapter 7: Device Configuration 79

User Manual November 2010

7.7 Super 10 Devices: Winbond W83627HF SIO/ITE 8712 SIO
Device models of the Super 10 device contain the keyboard, PS/2 mouse, floppy, COML1,
COM2, LPT], IR, fan, GPIO, MIDI, and joystick devices, as well as PCI support and
control information. The COM1 and COM2 devices create named-pipes "SimNow.Com1"
and "SimNow.Com2” and send all serial communication through these.

Interfaces
The Super 10 device model has a single interface connection, and is connected to the
LPC connection of the Southbridge device.

Initialization and Reset State
The following conditions represent the keyboard and/or mouse during initialization and
reset state:

A20 and reset released.

Mouse scaling set to 1.

Mouse resolution set to 4.

Stream mode off.

Mouse sample rate set to 100.

All sticky keys released.
Keyboard output port set to OXDF.

The floppy is initialized with no drive image present. Reset clears the controller to an idle
state. If an image is loaded, reset does not unload the image.

COML1 and COM2 are initialized with 9600 Baud, no parity, 8-bit words, 1 stop bit, and
interrupts off.

The parallel port initializes with the data and control ports set to zero. Reset clears these
ports to their initial values.

The following devices have no functionality behind them at this time, with the exception
of their configuration registers. These registers are initialized and reset to the values
specified in the Super 1/O specification:

IR
GPIO
MIDI
Joystick
Fan

Contents of a BSD

e Keyboard and Mouse

80 Chapter 7: Device Configuration

User Manual November 2010

e Floppy

e COM1 and COM2
e LPT1

e IR

e GPIO

e MIDI

e Joystick

e Fan

All devices store their current state in the BSD files, as well as any data that may be
buffered at the time of the save. Register content is also saved for all devices.

Configuration Options

The Super 1/Os have the capability of setting device breakpoints on an event basis. In this
case, the event is the sequence of writes to access the Super 1/0's device configuration
registers. Selecting the PNP Lock/Unlock Registers option in Figure 7-16 activates the
breakpoint anytime the lock and unlock sequence is hit. The other option is to set
breakpoints to trigger whenever any of the device configuration registers are accessed.

Winbond W83627HFE 510 #7 Properties

Connections [/0 Logging Super 0

Device Breakpoints
[] PHP Lock/Unlock Registers
[] Read Device Registers

[] wite Device Fegisters

Floppy & Drata File: | ’] [Eject]

Floppy B D ata File: | ’] [Eject]

ok || Hep || cancel |

Figure 7-16: Super 10 Properties Dialog: Winbond W83627HF

Chapter 7: Device Configuration 81

User Manual November 2010

Floppy Configuration Options

The floppy is capable of reading disk images of real floppies created with the DiskTool
Utility, described in Section 13, on page 167. To use an image, first create an image file
with DiskTool and then specify the floppy image file in the Super I/O configuration
dialog page.

Difference from Real Hardware

Keyboard, Mouse, Floppy, COM1 and COM2 differ from real hardware. Baud rate,
parity, and stop bits are ignored. Communication is always available. Baud rate timing is
approximate. Modem status and line status always show the device is ready.

The default values of the control registers are read-writable or read only as defined by the
appropriate Super 10 specification.

82 Chapter 7: Device Configuration

User Manual November 2010

7.8 Memory Device

The memory device enables you to add memory devices to the system. You can
configure the memory device for emulation of ROM or dynamic memory. You specify
the total memory size and the beginning address to which the device should respond.

The memory device can also be configured as a LPC flash device. It currently models
2Mb (SST49LF020A), 4Mb (SST49LF040A), 8Mb (SST49LF080A) and 16Mb
(SST49LF160C) flash memory devices. Note that we support two command sequences
used generally by flash memory - SST and ATMEL. User should configure the flash
memory to the appropriate command sequence to get desired results. The SST49LF160C
device uses the ATMEL command sequence while
SST49LF020A/SST49LF040A/SST49LFO80A use the SST command sequence.

Interfaces

The memory device has a general-purpose interface that you can connect to any other
type of port. No selection is necessary when connecting this memory device to another
device.

Initialization and Reset State

The default state of the device is a RAM memory device that is at a base address of
0x00000000 and a size of 4 Gigabytes. The memory has no default content. When an
initialization file is specified, the memory device's contents contain the data from that
binary file.

After a reset, the memory device reverts back to the initialization file contents.

Contents of a BSD
The contents of memory, as well as all configuration information, are stored in the BSD.

Configuration Options
The first field of the Memory Configuration tab, shown in Figure 7-17, is the base
address of the device in a hexadecimal value.

The second field is the total size of the memory device, given in decimal value for the
number of 32-Kbyte blocks you would like created (32-Kbyte blocks are used because
non-initialized memory is dynamically allocated when addressed in 32-Kbyte chunks).

The third field is the name of the binary file you use to initialize the memory contents.
The device initializes memory for the content length of the file. If you specify a 512-
Kbyte ROM and use a 256-Kbyte image file, the first 256 Kbytes are initialized. The Init
File selection comes with a browse button for easier selection.

Selecting the Read-Only option turns the memory device into a ROM. Writes to the
device are ignored when the Read-Only option is selected.

Chapter 7: Device Configuration 83

User Manual November 2010

Selecting the System BIOS ROM option tells the memory device it is the system BIOS.
The memory device only responds to memory address ranges accompanied by a chip-
select that is generated by the Southbridge device.

Selecting Flash Mode option tells the memory device that it is configured as a flash
memory device. There are two command sequences supported by our flash memory
device - SST and ATMEL, which can be selected by the drop down below.

Selecting the Memory Address Masking option indicates that the address received by the
memory device is masked by a bit mask with the same number of bits as the size of the
memory device (e.g., a 256-Kbyte ROM uses an 18-bit mask, or it is masked by
0x003FFFF). This enables the ROM to be remapped dynamically into different memory
address ranges in conjunction with the aforementioned chip-select.

Selecting the Initialized unwritten memory to (hex): option initializes otherwise not
initialized memory, with a separate field for specifying the byte to use for initialization.

Selecting the Memory is non-cacheable option tells the system if the memory described
by the device is non-cacheable.

ﬂ Memaory Device #7 Properties @'ﬂ_hj

Connections I/0 Logging Memory Configuration

Base Address 00000 32 Migned, in hex

Size 312 32 Blocks, in decimal
Init File /Images/MMKAD3-9 ROM [j

Read-Only
System BIOS ROM

Flash Mode

ST -

Memory Address Masking
[Initiglized urmritten memary to (hex);

Memory is non-cacheable

ok || hHep || Cancel

Figure 7-17: Memory Configuration Properties Dialog

84 Chapter 7: Device Configuration

User Manual November 2010

Difference from Real Hardware
The memory device differs in that it is a generic memory model. When configured as a
BIOS ROM, it does not contain flash-specific information that a modern flash ROM

contains (for programming information purposes).

Chapter 7: Device Configuration 85

User Manual November 2010

7.9 PCA9548 SMB Device
The PCA9548 is an 8-channel System Management Bus (SMB) switch.

Interface
The PCA9548 has one input port and eight output ports, as well as a programmable
interface that directs the switch which output port to forward messages to.

Initialization and Reset State
The PCA9548 has the input value specified in its configuration dialog window.

Contents of a BSD
The PCA9548 saves its SMB base address and input pin value.

Configuration Options

PCAS548 Device #10 Properties

Connections I/0 Logging SMB Config

SMB Baze Address

k. l ’ Help] ’ Cancel

Figure 7-18: PCA9548 SMB Configuration Properties Dialog

The PCA9548 allows you to set its SMB base address.

86 Chapter 7: Device Configuration

User Manual November 2010

7.10PCA9556 SMB Device

The PCA9556 is a registered System Management Bus (SMB) interface. When queried
from its SMB base address, it returns the value of its input pins.

Interfaces
The PCA9556 has one output port.

Initialization and Reset State
The PCA9556 has the input value specified in its configuration dialog window.

Contents of a BSD
The PCA9556 saves its SMB base address and input pin value.

Configuration Options

PCASS56 Device #11 Properties

Connections I/0 Logging SMB Config

SMB Baze Address
[0x30

k. l ’ Help] ’ Cancel

Figure 7-19: PCA9556 SMB Configuration Properties Dialog

The PCA9556 allows you to set its SMB base address and input pin values.

Chapter 7: Device Configuration 87

User Manual November 2010

7.11AMD 8th Generation Integrated Northbridge Device

The AMD 8th Generation Integrated Northbridge device supports the AMD 8th
generation family of processors - AMD Athlon™ 64 and AMD Opteron™ processors.
Although the physical processor chip has a Northbridge built in, for simulation purposes,
the Northbridge is considered as a separate unit. Features include HyperTransport™
technology (for coherent and non-coherent connections) and a memory controller. The
integrated debugging functions of the 8" generation processors are not included.

Interface

The Northbridge device has several connection points. It has multiple HyperTransport
bus ports that connects to the other AMD 8th Generation Integrated Northbridge devices,
or to HyperTransport link-capable devices (e.g., AMD-8131 PCI-X device). These ports
are mutually exclusive, and should be connected to only one other device. The
Northbridge also has a memory bus to the DIMM devices. The CPU bus gives connection
points for the CPU. The final port is a system-message bus port for connection with a
Log device. A 940-pin 8" generation processor part (AMD Opteron) has three
HyperTransport ports; a 754-pin 8" generation processor part (AMD Athlon 64) has one
HyperTransport port.

Initialization and Reset State
When first initialized, the Northbridge device is in the default state. This is described in
detail in the 8™ generation processor PCI register specification.

When reset, the Northbridge device takes on all default register values.

Contents of a BSD

The BSD file contains the contents of all Northbridge registers. It also saves the contents
of any tables and the states of all internal devices (the memory controller,
HyperTransport table contents, etc.). When the BSD file is read in, all tables are filled
with past data, and all states are restored to their saved states.

Configuration Options
Figure 7-20 and Figure 7-21 show configuration options for the Northbridge.

88 Chapter 7: Device Configuration

User Manual

November 2010

Connections

[] Log PCI Configuration Cycles

[] Log HyperTranzport Message Flouting

[/0 Logging | Logging | Configuration

AMD Bth Generation Integrated Northbridge #3 Proper... |E|[z|

|

]|

Help] ’ Cancel

Figure 7-20: Northbridge Logging Capabilities Properties Dialog

If Log PCI Configuration Cycles is selected, the device will produce log messages
whenever PCI configuration registers are accessed.

If Log HyperTransport Message Routing is selected, the device will log HyperTransport

messages.

AMD Bth Generation Integrated Northbridge #3 Proper... |E|[Z|

Connections

[0 Logaging

Logging | Configuration |

DRAM Cortrollsr
Link 0 Enable 16 b Link 0O width
[] Link 1 Enable 16 b Link. 1 width
[] Link 2 Enable [Opteron Only] 16 *| Link2 width
[k. l ’ Help] ’ Cancel

Figure 7-21: Northbridge HT Link Configuration Properties Dialog

If the DDR DRAM Controller is selected, the device will support DDR DRAM. In order
to use DDR2 DRAM select the DDR2 DRAM Controller.

Chapter 7: Device Configuration

89

User Manual November 2010

Each HyperTransport link can be enabled separately. Each link can be 8- or 16-bits wide.
Only the 940-pin AMD Opteron processor can have three links; a 754-pin AMD Athlon
64 has one HyperTransport port.

AMD Bth Generation Integrated Northbridge #1 Properties

Connections | 1/0 Logging | Logging Configuration | DDR2 Traning
Hame Min Max Name Min Max Name Min Max
MaxhsyncLat Qxd Oxf MritelataTiming HiByte 7 |0x0 0xZf PeadDQ3Timing HiByte 7 |0x0 Oxzf
DIl2keceiverEnahle DIMMO Lo |0x0 Oxff WritelbataTiming HiByte & |0x0 0xZE ReadDQ8Timing HiByte & |0x0 0xZf
DSkeceiverEnakle DIMMO Hi|0x0 Oxff WriteDataTiming HiByte & |0x0 0xZf ReadDQE8Timing HiByte 5 |0x0 0xZf
DSkeceiverEnakle DIMM1 Lo |0x0 Oxff WriteDataTiming HiByte 4 |0x0 0xZf ReadDQE8Tining HiByte 4 |0x0 0xZf
D2keceiverEnable DIMM1 Hi |0x0 Oxff WriteDataTiming HiByte 3 |0x0 NxZf ReadDQETiming HiByte 3 |0x0 0xZf
D3ReceiverEnabhle DIMMZ Lo |0x0 Oxff WriteDataTiming HiByte Z |0x0 0xZf ReadDQ3Timing HiByte Z|0x0 OxZf
DQ3ReceiverEnable DIMMZ Hi|0x0 Oxff WritelbataTiming HiByte 1 |0x0 0xZf ReadbQ3Timing HiByte 1 |0x0 OxZf
DQSkeceiverEnable DIMM3 Lo |0x0 Oxff WritelataTiming HiByte 0 |0x0 NxZf ReadbQETiming HiByte 0|0x0 OxEL
DQSRheceiverBnable DIMM3 Hi 0x0 Oxff WritebataTiming LoByte 7 |0x0 OxZf ReadDQSTiming LoByte 7 0x0 Oxzf
WritebataTiming LoByte & |0x0 OxZf ReadbQSTiming LoByte & |0x0 Oxzf
WritebataTiming LoByte & |0x0 OxZf ReadbQSTiming LoByte 5 |0x0 Oxzf
WriteDataTiming LoByte 4 | 0x0 Oxzf ReadD(STiming LoByte 4 0x0 OxZf
WriteDataTiming LoByte 3 |0x0 Oxzf ReadD(S8Timing LoByte 2 0x0 OxZf
MritelataTiming LoByte 2 |0x0 NxZf PeadDQ3Timing LoByte Z|0x0 Oxzf
MritelataTiming LoByte 1 |0x0 NxZf PeadDQ3Timing LoByte 1 |0x0 Oxzf
WritelataTiming LoByte 0 |0x0 NxZf ReadDQ8Timing LoByte 0 |0x0 Oxzf
[ak l [Help] [Cancel

Figure 7-22: Northbridge DDR2 Training Properties Dialog

When the DDR2 DRAM Controller is selected and DDR2 DRAM is being used you can
manually modify these values to verify the correctness of the DDR2 training algorithmn.

The DDR2 Training Properties Dialog contains the lowest and highest values that the
BIOS can program into these registers. While these registers are programmed out of
bounds DRAM access will be corrupted.

Note the DDR2 Training Properties Dialog is only useful for BIOS developer and the
values should only be modified and used by BIOS developers.

Log Messages

If Log PCI Configuration Cycles is selected, the device produces log messages whenever
the PCI configuration data register (OXCFC) is accessed. Log files can get very large.
Reads from this I/0-mapped register produce PCI CONFIG READ messages, and writes
to the register produce PCI CONFIG WRITE messages. The formats of the PCI CONFIG
READ and PCI CONFIG WRITE messages are as follows:

PCI CONFIG READ Bus a, Device b, Function c, Register d, Data e
PCI CONFIG WRITE Bus a, Device b, Function c, Register d, Data e

where a, b, ¢, d, and e are all hexadecimal numbers.

90 Chapter 7: Device Configuration

User Manual November 2010

The data value, e, is always one byte (two hex digits) in width. The device will log
multiple messages for PCI configuration accesses that are greater than one byte in width.
For example, a dword read of 0x11223344 from PCI configuration register 0x40 of
device 7, function 1 on bus 0 would produce the following log messages:

PCI CONFIG READ Bus 0, Device 7, Function 1, Register 40, Data 44
PCI CONFIG READ Bus 0, Device 7, Function 1, Register 41, Data 33
PCI CONFIG READ Bus 0, Device 7, Function 1, Register 42, Data 22
PCI CONFIG READ Bus 0, Device 7, Function 1, Register 43, Data 11

Differences from Real Hardware

The Northbridge device differs from the real hardware in that the simulator does not
support the debug hardware registers. The device also does not support memory-
interleaving by node, though this will change in the near future. The device will differ in
those things that are of a timing-related nature, such as setting of bus speeds. Full probe
transactions are not modeled. Registers that deal with items outside of the testing of
transfer protocols at the register level are not functional (buffer count registers, etc.).
They are present and read/write able, but do not effect the simulation.

Chapter 7: Device Configuration 91

User Manual November 2010

7.12AMD-8111™ Southbridge Devices — 10 Hubs

The Southbridge devices provide the basic I/O Southbridge functionality of the system.
Features include a PIO-mode IDE controller, register set for the USB controller(s), an
LPC/ISA bridge, a system-management bus controller, IOAPIC bus bridge if applicable,
and legacy AT devices (PIC, PIT, CMOS, timer, and DMA controller). The legacies AT
devices have the standard behavior and 10 addresses unless otherwise noted.

Interfaces

The Southbridge devices have several connection points. Possible connection points
include a PCI bus, a SMB bus, a LPC bus, an INT/IOAPIC bus for interrupt signaling,
and ISA and HyperTransport ports depending on the device type. The PCI bus acts as a
host bus (AMD-8111). The SMB connects to devices such as the DIMM or the SMB hub.
The LPC bus provides connectivity to devices such as Super 10's and BIOS ROMs. A
HyperTransport port is used for main connectivity for the AMD-8111 device to the reset
of the system.

Initialization and Reset State
When first initialized, the Southbridge devices are in the default state. This is described in
detail in the respective datasheets. The legacy CMOS sub device initializes to all zeroes.

When reset, a Southbridge device takes on all default register values as above. The
exception to this is that the CMOS contents remain the same.

Contents of a BSD

The BSD file contains the contents of all registers. It also saves the contents of any
buffers, and states of all internal devices (HDD controllers, PIT, PIC, etc.). When the
BSD file is read in, all buffers are filled with past data, and all states are restored to their
saved states.

Common Configuration Options

The USB dialogue window, shown in Figure 7-23, gives the user the ability to enable or
disable USB ports of the USB controller. USB devices which are connected to disabled
USB ports won't be identified and detected by an operating system.

For instance, in Figure 7-23 the USB Port 0 is disabled and USB Port 1 and 2 are
enabled.

92 Chapter 7: Device Configuration

User Manual

November 2010

AMD-8111 /O Hub #4 Properties

Frimary HOD Channel Secondary HDD Channel

CrOS Use0 | USB1 | 4

158 Port Configuration

Fort Mumber Enabled USE Device
Fort 0 "Mone'
Part 1 "Mane'
Part 2 "Mane'"
[k.] ’ Help] [Cancel]

Figure 7-23: USB Properties Dialog (AMD-8111™ Southbridge)

The CMOS dialogue window, shown in Figure 7-24, gives the user the ability to change
the contents of CMOS. When first created, the CMOS contains all zeroes to force a
CMOS checksum error, resulting in the default settings being loaded by BIOS. The
alternative to this is loading a binary file containing the CMOS desired data. The user can
create this file by entering changes and using the save feature to create the binary file.

Chapter 7: Device Configuration

93

User Manual November 2010

AMD-8111 /O Hub #4 Properties

Prirnary HOD Channel | Secondam HDD Channel | CMOS USBO | USB1 | 4

Current Walues

Addrezs | Walue ”
. (013
=00
014
=00
012
=00
(01
w02
005
005
Ox2R

D07

Laoad...] [Save...] [Eleartn:n value] aa

[k.]’ Help][Cancel]

Figure 7-24: CMOS Properties Dialog (AMD-8111™ Southbridge)

The Primary HDD Channel and Secondary HDD Channel tabs, shown in Figure 7-25,
contain the same information for each hard drive channel. The user has two options for
drive simulation: an image of a hard drive created with DiskTool (see Section 13 on page
167), or use of a real hard disk. Using a real drive requires Windows® 2000 and a drive
that is able to be isolated (locked) from the rest of the system. You cannot use the drive(s)
that the OS and/or the simulator reside on. To use a drive image, enter a file name in the
Image Filename field. A browse window is activated by pressing the right-most button.

All disk devices (Primary Master, etc.) by default have the disk journaling feature turned
on, which allows simulations to write to the disk image during normal operation and not
affect the contents of the real disk image. This is useful for being able to kill a simulation
in the middle, for multiple copies of the simulator running at the same time, etc. Journal
contents are saved in BSD checkpoint files but lost if you don't save a checkpoint before
exiting. To change journal settings or commit journal contents to the hard disk image, go
to the Device View Window, then the AMD-8111 Southbridge, then the configuration for
the hard disk in question on either the Primary or Secondary IDE controller. Here you can
either commit the contents of the journal to the hard-disk image or turn off journaling for
the hard disk image in question.

94 Chapter 7: Device Configuration

User Manual November 2010

Turning off journaling is recommended during the installation process for an operating
system.

4] AMD-8111 /O Hub #1 Properties 9l
nnections | 170 Logging Logging Device Options Frimary HDD Channel |4 | *
Connectable
Master Drive
] Image Filename: |C:fen_windows_xp_professional &4 hd B
] DVD-ROM Eject
[#] Joumal impart...] [export...] [commit]
Slave Drive
] Image Filename: C:fen_winl:lDws_mjmfessinnal_xﬁd.isn| B
[¥] Joumal [import...][export...] [commit]
| |
| |

ok || hHep || Cancel |

Figure 7-25: HDD Primary Channel Properties Dialog (AMD-8111 Southbridge)

Device Options
The AMD-8111 device has specific configuration requirements that relate to device
option type and HyperTransport information.

The Default Base Unit ID is a way of telling the device of the strapping option for 1D
selection.

The Generate HT Messages for Interrupts selection specifies whether interrupts go out
the HyperTransport port in a HyperTransport format, or out the INT/IOAPIC bus as a
classic interrupt pin.

Chapter 7: Device Configuration 95

User Manual November 2010

AMD-8111 /O Hub #4 Properties

Connection: | |/0 Logging | Logging | Device Options | Primary HOD Chann - ®

Drefault B aze Lnit (D

® 1D oo
{:} |D |||:|-I||

HuyperTranzport

Generate HyperT ransport bMessages for Intermipts

ok || Hep || Cancel |

Figure 7-26: Device Options Properties Dialog (AMD-8111 chipset)

Log Messages

The AMD-8111 device produces log messages to the Message Log Window as specified
by the options in the Logging Option tab, shown in Figure 7-27. The device can log I/O-
mapped Transactions, Memory-mapped Transactions, and SMI and SCI assertions.

96 Chapter 7: Device Configuration

User Manual November 2010

AMD-8111 /O Hub #4 Properties

Connections [0 Logging Logging Device Optionz Primary HOD Chann © *
Options
[] LogI0-mapped Transactions

] Log Memorn-mapped Tranzactions
[] Log Skl and SC assertions

ok || Hep || Cancel |

Figure 7-27: Logging Options Properties Dialog (AMD-8111 chipset)

Differences from Real Hardware

The AMD-8111 Southbridge device differs from other devices mainly in those items that
deal with real-time operation. Those items cannot be modeled in the current simulator.
The model does not include any of the power-management registers. The functionality of
the USB 2.0 controller is also absent (PCI registers and memory-mapped registers are the
only portion present).

For experimental purposes, the AMD-8111 Southbridge device supports an optional
IOMMU (based on IOMMU spec. 1.2) that can be enabled and disabled via the
automation command "8111.SetlOMMU O0|1". The addition of this block to the device
model does not reflect any real or planned hardware. When enabled, the AMD-8111
device’s IOMMU PCI registers live in a capability block of the PCI Bridge. When
enabled, the AMD-8111 device’s IOMMU delivers interrupts via PCIINTD. The AMD-
8111 device doesn't support PCI Express®. This limits the number of distinct requester
ID's available (Three requester ID's: legacy LPC, legacy PCI, internal IDE controller).
There are no SimNow PCI models that implement MSI. This means the only APIC-style
interrupts the IOMMU can intercept are from a single requester ID, the AMD-8111
device’s internal IOAPIC.

Chapter 7: Device Configuration 97

User Manual November 2010

7.13PCIl BUS Device

The PCI Bus device enables you to add PCI devices to the system. You can configure the
PCI Bus device to provide any number of PCI slots for one to six connections. You
configure each PCI slot on the PCI Bus by setting its device number and base IRQ-
routing pin.

Interfaces

The PCI Bus device has two types of interfaces, a bus interface and one or more slot
interfaces. The bus interface connects to a device that provides a PCI bus, such as a
Northbridge. Each PClI-slot interface is capable of connecting to a PCI device, such as a
PCI video controller.

The PCI bus behaves somewhat differently than other AMD SimNow devices. First, the
connection points are not all centered in the middle of the icon; instead each connection
point has a discrete location around the perimeter of the icon to provide a visual
indication that each PCI device is connected to a different PCI slot. Second, the
connection points are exclusive; that is, only one device can connect to each connection
point on the PCI bus, because in a real system one cannot install two PCI cards into a
single PCI slot. It is planned that these new behaviors will be used in other devices when
required.

Initialization and Reset State

The default state of the device has all slots disabled. This is because each platform
configures its PCI Buses in specific ways that make it impossible to provide a generic
default.

Since the PCI Bus device does not include any state that is altered during the course of a
simulation, after a reset, the PCI Bus device remains unchanged

Contents of a BSD

The configuration of the PCI bus, including which slots are enabled, the device ID for
each slot and the base IRQ-routing pin for each slot, and the connection points, are saved
in the BSD.

Configuration Options
Figure 7-28 shows the PCI-Bus configuration options.

98 Chapter 7: Device Configuration

User Manual November 2010

PCl Bus #6 Properties

Conrections | 170 Logging | Pl Bus Configuration
Device D [0-31) Base IRQ Fin Erable Slat
PCISIot1: |4 | |PCIRG A)
PCISlot 2 |5 | [PCIRGE |
PCISIot 3 |5 | [PCIRGC |
PCISlot 4 |7 | [PCIRGD |
PCI It 5 |0 | v O
POl Slot 6 [0 | | v O
| ok || Hep || Cancel

Figure 7-28: PCI Bus Properties Dialog

The first field is the Device ID of the slot. This value may range from zero to 31. The
second field is the Base IRQ Pin for the slot. You can choose from pin A, B, C, or D.

The third field is an Enable Slot. By default, all slots are disabled. One cannot disable a
slot that has a device connected to it.

Differences from Real Hardware

The PCI Bus device differs from other devices in that it is a generic model. We do not
simulate PCI down to a clock-accurate level, so devices do not arbitrate for bus
ownership or insert wait states, for example.

Chapter 7: Device Configuration 99

User Manual November 2010

7.14AMD-8131™ PCI-X® Controller

The AMD-8131 PCI-X Controller is a HyperTransport tunnel that provides two PCI-X
buses and two IOAPICs. These PCI-X buses may or may not be configured as hot-plug-
capable, depending on the platform.

Interfaces

The AMD-8131 has two types of interfaces, HyperTransport and PCI buses. It has two
HyperTransport links, HTO and HT1, that can connected to other non-coherent
HyperTransport link-capable devices. The PCI bus interfaces in the AMD-8131 must be
connected to a PCI bus device, which provides the Slot interfaces with which to connect
devices for simulation.

Initialization and Reset State

When first initialized, the AMD-8131 tunnel is in its default state. This is described in
detail in the AMD-8131 datasheets. Each bridge defaults with hot-plug functionality
disabled.

When reset, the AMD-8131 takes on all default register values.

Contents of a BSD
The entire configuration of the AMD-8131 device, including all state and registers for its
sub devices, is saved in the BSD.

Configuration Options

The only configuration options for AMD-8131 are to enable or disable hot-plug for each
of its PCI-X bridges, as shown in Figure 7-29. You cannot enable or disable hot-plug
after a simulation has already begun.

AMD-8131 PCI-X Controller #10 Properties ?]X]

Connections I/0 Logging Hot Plug

Hat-Plug Bridge & Enable

[] Hot-Plug Bridge B Enable

| ok || Hep || Cancel

Figure 7-29: AMD-8131™ Device Hot Plug Configuration

Differences from Real Hardware
Clock-sensitive functionality, like setting bus speeds, is not supported. Neither are system
errors or power management.

100 Chapter 7: Device Configuration

User Manual November 2010

7.15 AMD-8132™ PCI-X® Controller

The AMD-8132 PCI-X Controller is a HyperTransport tunnel that provides two PCI-X
buses and two IOAPICs. These PCI-X buses may or may not be configured as hot-plug-
capable, depending on the platform.

Interface

AMD-8132 has two types of interfaces, HyperTransport and PCI buses. It has two
HyperTransport links, HTO and HT1 that can connect to other HyperTransport link-
capable devices. Either HyperTransport link can be set to be the upstream
HyperTransport link. The PCI bus interfaces in the AMD-8132 must be connected to a
PCI Bus device, which provides the Slot interfaces with which to connect devices for
simulation.

Initialization and Reset State
When first initialized, AMD-8132 device is in its default state. This is described in detail
in the AMD-8132 datasheet. Each bridge defaults with hot-plug functionality disabled.

When reset, AMD-8132 takes on all default register values.

Contents of a BSD
The entire configuration of the AMD-8132 chipset, including all state and registers for its
sub devices, is saved in the BSD.

Configuration Options

The Hot Plug tab options for AMD-8132 are to enable or disable hot-plug for each of its
PCI-X bridges, as shown in Figure 7-30. You cannot enable or disable hot-plug after a
simulation has already begun.

AMD-8132 PCI-X Controller #11 Properties ?]X]

Connections 140 Logging Hat Plug HT Link Configuration

[] Hot-Plug Bridge & Enable

[] Hot-Plug Bridge B Enable

| ok || Hep || Cancel

Figure 7-30: AMD-8132™ Device Hot Plug Configuration
Figure 7-31 shows the HT Link Configuration options.

Chapter 7: Device Configuration 101

User Manual November 2010

AMD-8132 PCI-X Controller #11 Properties ?]X]

Connections [/0 Logging Hat Plug | HT Link Configuration |_

IJpztrearn HuperTranzpork Link:
{(#) HyperTransport Buz 0

() HyperTranzport Bus 1

I k.] ’ Help] [Cancel

Figure 7-31: AMD-8132 Properties Dialog

The Upstream HyperTransport Link selection, shown in Figure 7-31, specifies the
HyperTransport Bus that will be used as a upstream link.

Differences from Real Hardware

Clock-sensitive functionality, like setting bus speed, is not supported. Neither are system
errors, nor power management.

102 Chapter 7: Device Configuration

User Manual November 2010

7.16 PCI-X Test Device

This PCI-X Test Device model provides a simulation of a generic PCI-X device. Its main
purpose is to provide BIOS programmers with a tool to test the PCI-X configuration
cycle. This device is implemented as a single-function device.

Interface

The interface varies from system to system. In the AMD Athlon 64 or AMD Opteron
processor-based system configurations, it can be connected to AMD-8131 PCI-X or
AMD-8111 Southbridge devices.

Initialization and Reset State

At creation and reset states, the PCI-X device registers have the default hard-coded
values. By default, the PCI-X device is set to have no I/0O, memory-space and interrupt
capability. The PCI-X device has a default Device ID and Vendor ID. At reset, the device
configuration does not change and the values from the device configuration will be
eventually read into the PCI-X registers when the configured system is restarted.

Contents of a BSD
PCI-X register and interrupt signals are saved in the BSD.

Differences from Real Hardware
This is a generic PCI-X device. It doesn't have real a memory buffer and 1/O buffer. For
memory and 1/O space transaction, if the transaction belongs to this device's memory or
I/0O address range, the PCI-X device simply outputs a message to the Log Window which
identifies its memory or 1/0 cycle.

Interrupt can be de-asserted by doing an I/O transaction. Interrupts can also be de-
asserted manually by using the debugger.

Chapter 7: Device Configuration 103

User Manual November 2010

7.17 AMD-8151™ AGP Bridge Device

The AMD-8151 AGP Bridge Device tunnel is a HyperTransport tunnel that provides an
AGP Dbridge. In general, AMD-8151 would be connected in a non-coherent
HyperTransport chain between the host bridge and the Southbridge.

Interface

The AMD-8151 has three types of interfaces, HyperTransport, AGP, and INT/IOAPIC
buses. The AMD-8151 has two HyperTransport links, HTO and HT1, that can connect to
other non-coherent HyperTransport link-capable devices. HTO should be connected to the
upstream link (the one closest to the host bridge) and HyperTransportl should be
connected to the downstream link. The AGP interface should be connected to an AGP
graphics device. The INT_IOAPIC bus should be connected to the Southbridge; it routes
interrupt signals from the AGP bus to the Southbridge.

Initialization and Reset State
When first initialized or reset, the AMD-8151 registers are set to their default state. This
is described in detail in the AMD-8151 datasheet.

Contents of a BSD
The current state of all PCI configuration registers and any internal state variables are
saved in the BSD.

Configuration Options
The AMD-8151 device allows you to set its Revision number as shown in Figure 7-32.

AMD-B151 AGP Tunnel #2 Properties

Connections I/0 Logging 3151 Rew #

2151 Rew . [18

k. l [Help] ’ Cancel

Figure 7-32: AMD-8151™ Device Properties Dialog

104 Chapter 7: Device Configuration

User Manual November 2010

Differences from Real Hardware
Clock-sensitive functionality, like setting bus speeds, is not supported. The
HyperTransport bus protocol is not simulated.

Chapter 7: Device Configuration 105

User Manual November 2010

7.18 Raid Device: Compaq SmartArray 5304

The RAID device uses disk images, which are accessed as simulated volumes by the
RAID controller. Storage devices like ATA HDD and RAID are implemented with
concepts like disk-block cache, journaling, file, and memory stores. This page describes
journaling in more detail.

A simulated volume in the RAID device is represented by an image file and one or more
optional journals. The combination of an image and zero or more optional journals is
used to hold the contents of a simulated volume. While creating a volume assign a disk-
image file to it (e.g., “raid.image 0 imagefilename). One or more additional journals can
be added to the image file. The image file uses a data block to store the data, and the
journal files use sparse indexing to hold just the blocks that have been changed. Not only
does journaling provide an efficient way to access the data blocks in the simulated
volume, but it also gives the user the flexibility to change the data-block size.

Journals can be created either in-memory or as file, depending on the use of
“addjournal” command. RAID device supports multi-level journaling; i.e., for a created
volume, the user can add multiple journals (however, one cannot add a journal after an
in-memory journal). Conceptually, the disk image is equivalent to the image and fixed-
journal pair.

Journals grow in size as the volumes associated with them are accessed (writes of data-
blocks which haven’t been written before). File-based journals are preferred over in-
memory Journaling if a large number of writes are going to be made to the simulated
volume.

The journal architecture is index-based, consisting of super blocks, index blocks, and data
blocks. This provides a hierarchical indexing mechanism, in which data blocks are
accessed by their LBA (logical block address).

Several performance mechanisms are implemented in the RAID device, including Disk
Block Cache and Last Sector Hit, which can be viewed at any time using the “raid.status
—Vv” command.

AMD tested the RAID device both on SUSE Linux-64 and a 32-bit version of Windows
2003 Enterprise Server, using stock drivers to drive this model. This model emulates
devices at the volume level, so that the files used to represent the data correspond to
logical volumes, not disks. This model associates one logical volume with one image file.
The model does not represent the timing of any real system, because data becomes
available almost immediately.

106 Chapter 7: Device Configuration

User Manual November 2010

7.19SMB Hub Device

The SMB hub device is used to connect one SMBus to any of four SMBus branches. The
device is programmed via read-byte and write-byte commands on the SMBus where the
7-bit address field is 0x18.

The SMB hub device models the combination of two physical devices manufactured by
Philips Semiconductors: the PCA9516 5-channel 1°C hub, and the PCA9556 Octal
SMBus and I°C registered interface. In the simulator’s device model the two devices are
configurable via GPIO x enables segment x, as shown in Figure 7-33.

Interface

The SMB hub has five SMBus interfaces. SMBO0 can be connected within the SMB hub
to any of the four other SMBuses (SMB[1..3]). Typically, SMBO is connected to a
SMBus connection on a Southbridge device, and the other SMBus ports are connected to
other devices in the system.

Initialization and Reset State
When first initialized or reset the SMB hub registers are set to their default state. The
internal registers and their default states are described in the PCA9556 data sheet.

Contents of a BSD
The current state of all internal registers and any internal state variables are saved in the
BSD.

Configuration Options
The SMB Hub device allows you to enable up to eight GPIO segments (GP100 — GP107)
to connect SMB devices to SMB hub device, as shown in Figure 7-33.

Chapter 7: Device Configuration 107

User Manual November 2010

SMB Hub Device #11 Properties

Connectionz | /0 Logging | SMEHub Configuration

GPIO 0 enables segrment |NEI SEGMEMT v|
GFI0 1 enables segment |NEI SEGMEMNT v|
GPIO 2 enables segment |NEI SEGMEMT v|
GFID 3 enables zegment |NEI SEGMENT v|
GPIO 4 enables segment |NEI SEGMEMT v|
GPI0 5 enables segment |NEI SEGMEMT v|
GFI0 B enables zegment |NEI SEGMENT v|
GPIO ¥ enables segment |NEI SEGMEMT v|

I k. l ’ Help] ’ Cancel l

Figure 7-33: SMB Hub Properties Dialog

Differences from Real Hardware

This device model is the combination of two physical devices connected in a specific
way. The model attempts to match the functionality of the physical devices from a
programmer's perspective. The SMBus protocol is not modeled. Also, the SMBus address
of the PCA9556 is programmable based on pin-strapping, whereas this model has a fixed
SMBus base address.

108 Chapter 7: Device Configuration

User Manual November 2010

7.20AT24C Device

The AT24C device is a Serial EEPROM device. It can be configured to store 16, 32, or
64Kb of EEPROM. The device has an SMB bus interface for access to its internal
registers. It is typically used to store platform specific configuration data.

Interface

The AT24C device has a SMB interface. For example, this device can be connected to a
PCA9548 or PCA9556 device (see Section 7.9, "PCA9548 SMB Device", on page 88 or
Section 7.10, "PCA9556 SMB Device", on page 89).

Contents of a BSD
The current state of all internal registers and any internal state variables are saved in the
BSD.

Configuration Options
The AT24C device can be configure to store an AT24C16A (16Kb), AT24C32A (32Kb),
or AT24C64A (64Kb), 2-Wire Bus serial EEPROM.

AT24C Device #10 Properties

Connections [/0 Logging SMEB Config

SME Baze Address
030

Type

() AT24C164A
(O AT24C328
() AT24CEa8

ok || Hep || Cancel

Figure 7-34: AT24C Device Configuration

Chapter 7: Device Configuration 109

User Manual November 2010

7.21 EXDI Server Device

This interface, and the instructions contained herein, applies only to the Windows
operating system-hosted version of the simulator.

The simulator provides a special device known as the EXDI Server Device. This device
can be added to any BSD. When a BSD containing the EXDI Server Device is loaded, the
EXtended Debugging Interface becomes available. This allows client debugging
software, such as CmdeXdi and the Windows kernel debugger, to interact with the
platform being simulated, as if it were a real hardware platform.

The installation of the simulator should provide all the COM registration hooks that are
required. If it does not, here are the steps to manually register the EXDI server:

1. Open a command window (run cmd.exe).

2. Change the current directory to the location where the simulator was installed.

3. Execute the command [Regsvr32 exdi64ps.dll]. You should get a message box
indicating that registration was successful.

4. Execute the command [Regrgs exdiamdserver.rgs MODULE="path and file name
of exdi64ps.dll, usually C:\SimNow\exdi64ps.dll"].

When running the Windows kernel debugger, you must provide command line
information that tells the debugger how to attach to the EXDI Server. The command line
for this is:

kd -kx exdi:clsid={F65E71B3-FEDC-4FA7-A818-5959CD30DD41}

110 Chapter 7: Device Configuration

User Manual November 2010

7.22USB Keyboard and USB Mouse Devices

USB legacy emulation is not yet supported by the simulator model. USB 2.0 support is
very limited, only basic PCI configuration and memory read and write functionality is
available.

By default, the simulator uses the keyboard device model to send user’s keystrokes to the
simulation. For example, when the user presses Enter with the host mouse on the graphics
display window, the simulator sends the internal command, keyboard.key 0x10 0x80, to
its command interpreter. If the user has a USB keyboard or mouse in his simulation, he
can redirect the simulator to use these USB devices for keyboard and mouse input. He
does this by modifying the following simulator registry keys: Gui_Key_ Device=usbkey
and Gui_Mouse_Device=usbmouse (from the top-level View—Registry). With these
changes, when the user presses the Enter key in simulation, the simulator will send the
internal command, usbkey.key 0x10 0x80 to its command interpreter. When the user
moves the mouse around the simulator display, the simulator will send commands, such
as usbmouse.mousemouve 10 10 to the interpreter.

Chapter 7: Device Configuration 111

User Manual November 2010

7.23 XTR Device

XTR is a trace record and playback mechanism that is instrumental for applications that
are not dependent on the specific version of the CPU. An XTR trace contains the
interaction of the processor with the rest of the system in an XML based log file. The
XTR trace file can be played back and could be used to simulate behavior of one or more
devices within a system, which in turn may be used to analyze the CPU's performance or
to perform conformance analysis between various revs and models of the CPU. XTR may
also be used in studies where the behavior of some devices needed but the use of an
actual device or its software model is either difficult of impossible due to various
constraints.

XTR has two files, a binary file which has the memory dump of the system and an XML
based text file which contains the log of the events or messages that go in and out a non-
coherent port of the Northbridge, including the DMA signals from devices on the (host’s)
secondary bus to the DIMM. XTR playback mechanism essentially replaces all the
devices including the Northbridge and downwards and feeds the processor with the data
present in the XTR XML file. The structure of both binary file and XML file is discussed
below.

XTR can be used both in uni-processor (XTR-UP) and multi-processor (XTR-MP)
configurations. However, currently only XTR-UP is supported while XTR-MP is under
development.

There are two modes of XTR, XTR Record and XTR Playback. The simulator supports
both modes and one mode does not necessitate the other. The simulator could be used to
record XTR traces only or playback XTR traces generated from other sources as far as
the XTR specification is followed correctly (see Section 7.23.4, “Limitations”, on page
121).

An XTR XML file contains Initialization Data, Events and Instructions. XTR
Initialization data stores the state of CPU just before XTR recording is initiated. This data
is used to initialize the CPU and memory parameters during Playback (the memory itself
is initialized from the contents of the binary file). Any register that does not have
corresponding initialization data in XTR XML file will be initialized with zero. XTR
events fall into two categories:

e Dormant Events, which record an event occurrence but do not trigger an event
during playback.

e Active events that are recorded in XTR file and are actively triggered during
playback.

IOR, IOW, MEMR, MEMW, RDMSR are examples of dormant events and INTR, APIC,
DMAW, EOT are examples of Active events. XTR Instructions are commands that are
injected in the XTR trace to give special instructions during XTR playback. FIMP (Force
Jump) is an XTR Instruction.

112 Chapter 7: Device Configuration

User Manual November 2010

7.23.1 Using XTR

No special setup for XTR Record is required; XTR can be recorded by using the
appropriate automation commands as described in Section A.7.29, “XTR”, on page 255.

The XTR XML file can easily exceed five Gbytes in size. Please make sure you have
enough physical storage before you start XTR Record.

7.23.1.1 Recoding XTR Trace
To record XTR, please enter the following commands in the simulator’s console window:

1 simnow> xtrsvc.xtrfile <filename.xml>
1 simnow> xtrsvc.xtrenable 1
1 simnow> go [or hit Run on the shell]

7.23.1.2 Stop XTR Record

To stop XTR record, please enter the following commands in the simulator’s console
window:

1 simnow> stop [Stop the simulation]
1 simnow> xtrsvc.xtrenable 0

7.23.1.3 XTR Playback

For XTR Playback, XTR Northbridge (XTRNB) replaces all the devices including any
other Northbridge in the system. Hence for UP-XTR Playback, only AweSim and
XTRNB are required. Please refer to Section 7.23.1.3, “XTR Playback”, on page 115, on
how to connect AweSim and the XTRNB device. It is recommended to also include the
Debugger device for debugging or logging needs.

To playback XTR, please enter the following commands in the simulator’s console
window:

new
adddevice "Debugger"

adddevice "Awesim Processor"

cpu.type K8

cpu.setname Athlon64

cpu.setnumcores 1

cpu. forcefinegrainedevents 1

cpu.SetStartUpFID 12

adddevice xtrnb

connect "Awesim Processor #0" "CPU Bus 0" "xtrnb #2" "CPU Bus 0"
connect "Awesim Processor #0" "Interrupt / IOAPIC Bus" "xtrnb #2"
"Interrupt / IOAPIC Bus"

cpu.type K8

modifyregistry "System Bus Frequency" "100"

xtrnb.xtrfile <filename.xml>

xtrnb.debug 1

xtrnb.xtrlogfile <filename-playback.log>

SetLogFile <filename.log>

SetLogFileEnabled 1

SetErrorLogFile <filename.errlog>

Chapter 7: Device Configuration 113

User Manual November 2010

SetErrorLogFileEnabled 1
go [or hit Run on the shell]

7.23.1.4 Stop XTR Playback

XTR Playback will stop automatically when End Of Trace (EOT) event is reached. It
could also be stopped prematurely by clicking on the stop button or by executing the stop
automation command.

Initialization and Reset State
XTR Record does not have any special Initialization or Reset state.

Init from BSD
The BSD contents of XTRNB are loaded. The XTR XML file is skipped the number of
lines to the last event read and the system prepares itself for playback.

Init from Automation Script

The CPU is initialized from the initialization data in XML and the system prepares itself
for playback. This method does not support persistent storage of XTR state to be replayed
later.

Reset
The XTR file handle is closed. All the queued events are flushed. Simulated DIMM
memory is flushed and unallocated.

Contents of a BSD
XTR Record contains xtrsvc, which is described below, in addition to modules in the
simulation. For XTR Playback, the BSD is composed of following modules:

shell:0 : The shell under which a simulation is executed.

xtrsvc:0 : XTR service which facilitates execution of XTR Playback.
Debug:0 : The SimNow Debugger.

Cpu:0 : AweSim CPU Module. There might be more CPUs for XTR-MP.
xtrnb:0 : XTR Northbridge.

In persisted BSD, XTRNB, which is only used during XTR Playback, saves and restores
events that have been queued but not triggered yet, DIMM image and internal states of
the XTRNB. Complete XTR Playback setup also includes AweSim and optionally the
AMD Debugger. Please refer to the documentation of AweSim and AMD Debugger for
their respective contents in the BSD file.

XTR Record does not store any contents in the persistent BSD file.

Log Messages

Messages are logged only by XTRNB, which is only used during XTR Playback. Some
of the following may only be logged when xtrnb.debug is set to enable. Some of the Log
messages are:

114 Chapter 7: Device Configuration

User Manual November 2010

XTRNB: Attempting to allocate large buffer of size 1074503680
Logged during XTR initialization phase just before XTR tries to allocate memory to
simulate DIMM.

XTRNB: Sending APIC initialization data to CPUO
Logged during XTR initialization phase just before APIC memory is initialized.

XTRNB: Write to TSC ignored. Please use M00000010 for writes to TSC
Logged during XTR initialization phase.

XTRNB: CPUO rejected Initialization SREG XXXXXXXXXX with zeros
Logged during XTR initialization phase and displayed if the initialization data is invalid
for the SREG. This may or may not be an error in the initialization data.

XTRNB: CPUO rejected Initialization of SREG XXXXXXXXX with specific value
Logged during XTR initialization phase

XTRNB: Skipping write to pCode patch MSR C0010020
Logged during XTR initialization phase

XTRNB: Processing GETMEMPTR request for XXXXXXXXXXX:...Denied
Logged during XTR execution phase where XXXXXX is the physical address of page
requested. The request may be denied if it is requested for a MMIO region.

* DEVMC_READMEM [800000007F1CADO00/296]: 55 8B EC 51 56 8B 75 0C
* DEVMC_WRITEMEM [400000007F294FD4/523]: A9 17 53 80

Logged during XTR execution phase. 800000007F1CADOQO is the address 296 is the
instruction count. The data following the ":" is the data that returned and received to and
from the CPU. This message is logged for a READ/WRITE MEMORY request but no
record is present in XTR XML file for this read. The data is hence served and written
from and to backing store (whose contents were originally initialized from the XTR
binary file)

XTRNB: Ir AO3E w/event time = 326, Consume time = 597, CPU ICount = 99: 01 00
XTRNB: Iw AO3E w/event time = 345, Consume time = 616, CPU ICount = 118: 00 00
XTRNB: la D1 w/event time = 326462, Consume time = 326462, CPU ICount = 326235

Logged during XTR execution phase when IOR/IOW message is received by XTRNB.
AO3E is the address of IOR/IOW and the data after the ":" is the data that is returned and
received to and from the CPU. ‘Ia’ is for Interrupt Acknowledgement and D1 is the
vector.

XTRNB: Time Resync - Adjusting time by -271...

Logged during execution when there is a timing discrepancy detected between an event
in XTR XML and that received from the CPU. XTRNB adjusts to this discrepancy. In
ideal environment this should not occur.

XTRNB: Queuing event CPUO[DMAW] for time 8403
Logged during execution when a DMAW event is queued so that it could be triggered at
a later point. 8403 is the time when this event should be triggered.

Chapter 7: Device Configuration 115

User Manual November 2010

XTRNB: Setting event trigger delay for CPUO[DMAW] to 1205
Logged during execution. DMAW event is setup to be triggered at a later point. 1205 is
the difference between NOW and event time.

XTRNB: Processing queued event CPUO[DMAW] ICount=8403 ShelllCount=8403.

Logged during execution. Trigger for event setup earlier is invoked. CPUO and DMAW
could have different values depending on which CPU it is (MP-XTR only) and which
event is processed.

Interfaces

XTRNB has eight CPU interfaces and an 1O Interrupt / APIC interface to connect to the
AweSim’s CPU Bus and IO Interrupt / APIC interface respectively. For XTR-UP, only
one CPU interface may be used.

7.23.2 XTR Structure

7.23.2.1 XML Structure

XTR is a text file that contains XML elements for initialization elements, events and
instructions. The XML schema or DTD is not formally defined. XTR XML contains an
Initialization section followed by events and instruction sections. Last event in the XML
must be an EOT event indicating the end of trace. Some XTR elements are explained
below. Please refer to Section 7.23.5, “Example XTR XML File”, on page 121, or the
exact and complete structure of the XTR XML.

All values in the XML are in hexadecimal except for ICount and Length values which are
always in decimal. Exceptions will be stated as necessary.

<Init Device="DIMM" Type="MEMI" Size="536870912" />

Memory initialization (MEMI) information from and for the DIMM device. The value for
"Size" attribute the size of DIMM in bytes in decimal (base 10). Note that this does not
require that XTR playback to have a DIMM device

<Init Device="MEM" Type="MEMI"
File="c:\simnow\xtr\DivergenceAt324303\test_snapshot_3dmarkwof_0.bin" />
Memory initialization file. File path may be relative to the current path.

<Init Device="CPUOQ" Type="CPU" Item="ICount" Data="227"/>
Initial instruction count in decimal. Different CPUs can have different initial ICounts.

<Init Device="CPUO0" Type="CPU" Item="ModeFlags" Data="00000001"/>
The upper 32 bit of ModeFlags must contain Execution Control flags. Please refer to
Section 7.23.3, “ModeFlags”, on page 120 for more information.

<Init Device="CPUQ" Type="SREG" Item="TSC" Data="0000000000000000" />
The initialization information for MSRs. Note that initialization information for TSC will
be ignored. Please use M00000010 for writes to TSC

<Init Device="CPUO" Type="APIC" Length="1024" >

116 Chapter 7: Device Configuration

User Manual November 2010

</Init>
APIC initialization information.

<INSTR Device="CPUQ" Type="FJMP" ICount="6778" JMP="1" RIP="{86b0619" />
An FIJMP Instruction. RIP is optional and is only used to double check whether if the
FJMP is taken at the correct instruction. JMP attribute can have the following values:

JMP=0: Force Do-not-take-jump for this instruction
JMP=1: Force Take-jump for this instruction

<Event Device="CPUQ" Type="IOW" ICount="6817" Address="a038" Size="2">
<Data Length="2" Value="40af" />
</Event>

Defines an IOR or IOW dormant event.

<Event Device="CPUOQ" Type="DMAW" |ICount="8403" Address="000000000c254340"
Length="64">

<Data Length="64"
Value="6d00005f5e5bc3909ac04600b7c04600d4c04600eec0460008c1460022¢146003cc146
002fc2460067¢c2460085¢24600a3c24600909090909090909090909090" />

</Event>

Defines a DMAW event.

<Event Device="CPUOQ" Type="PIN" ICount="325496" Name="INTR" Level="A" />
Defines an INTR PIN event. Level="A" for Asserted or "D" for Deasserted. Name could
be INTR, RESET, A20M, NMI, PAUSE, SMI, and <Unknown>.

<Event Device="TO_DO_IN_NB" Type="APIC" ICount="325496" Name="EXTINT"
DestinationMode="F" DeliveryMode="07" Level="F" TriggerMode="F" Vector="00"
Destination="00" />

Defines an APIC Event. Name could be EOI, INIT, STARTUP, SMI, NMI, INTR,
REMOTE READ, EXTINT, LPARB, and Unknown. Device can be the name of the
device that issues the interrupt. Current XTR implementation ignores the name of the
device.

<Event Device="CPUO0" Type="INTACK" ICount="325496" Vector="00000000000000d1" />
Defines an INTACK cycle event.

<Event Device="XTR" Type="EOT" ICount="400001" />
Defines an End of Trace (EOT) event.

<Event Device="CPUO0" Type="RDMSR" ICount="1404861740" Address="00000010"
Data="0000000053BC7D2C" />
Defines a RDMSR event.

<Event Device="CPUOQ" Type="MEMR" ICount="3133971257"
Address="00000000000A88B2" Size="1">

<Data Length="1" Value="FF" />
</Event>

Chapter 7: Device Configuration 117

User Manual November 2010

<Event Device="CPUOQ" Type="MEMW" ICount="3133971259"
Address="00000000000A88B2" Size="1">

<Data Length="1" Value="01" />
</Event>

Defines a Memory Read or Memory Write event. MEMR and MEMW are recorded for
MMIO ranges.

7.23.2.2 XTR Binary File Contents

XTR Binary file contains the memory image of the system just before the XTR Record
started. The binary file contains multiple records where each record contains has the
following structure:

Physical Address Of the Page: 8 bytes
Count of Bytes in this Page: 4 Bytes
Data Of the Page: Count of Bytes earlier

Currently XTR only supports page size of 4096 bytes. Both the DIMM and MMIO may
be present in the XTR Binary file. The last record in the binary file must have a count of
zero to indicate end of memory image.

7.23.3 ModeFlags

ModeFlags defines some of the states of the CPU that are important for execution. The
upper 32 bits store the Execution Control flags e.g. HLT and <ignore interrupts for 1
instruction when we change stack segment>. The lower 32 bits is redundant from other
initialization values in the XTR initialization but is there to maintain code consistency.

Table 7-7 shows the Execution Control Flags (upper 32 bit):

Execution Control Flag Value Description
BIUI_LOCK 0x00000001 | Bus is locked
BIUI_RESET 0x00000002 | Processor RESET pin.
BIUI_INIT 0x00000004 INIT pin

BIUI_INTR 0x00000008 | Interrupt

BIUI_NMI 0x00000010 NMI

BIUI_SMI 0x00000020 | SMI

BIUI_IGNNE 0x00000040 | Floating point IGNNE
BIUI_A20M 0x00000080 | A20Mask
BIUI_PAUSE 0x00000100 | PAUSE

BIUI_HOLD 0x00000200 | HOLD
BIUI_UNUSED 0x00000400 | Unused

BIUI_STOP 0x00000800 | Pseudo pin that stops simulation

Table 7-7: Execution Control Flags

Table 7-8 shows other internal execution control flags. Some flags may be AweSim

specific.

Execution Control Flag Value Description
ECF_SMCRESTART 0x00001000 | SMC detected in current translation (restart required).
ECF_GENEXCEPTION 0x00002000 | SVM virtual interrupt pending
ECF_VINTR 0x00004000 | INIT pin
118 Chapter 7: Device Configuration

User Manual November 2010

Execution Control Flag Value Description

ECF_UNUSED 0x00008000 | Unused

ECF_HALT 0x00010000 | Weare ina HALT

ECF_SHUTDOWN 0x00020000 | We are ina SHUTDOWN

ECF_FPUHANG 0x00040000 | FPU freeze

ECF_APICHOLD 0x00080000 | APIC freeze

ECF_IGNOREINTR 0x00100000 Ignore INTR for one instruction

ECF_TRAP 0x00200000 | EFlags.TF bit

ECF EXECBP 0x00400000 | User execution breakpoints exist

ECF_LATCHEDSMI 0x00800000 | A latched SMI was seen

ECF_STACKEDSMI 0x01000000 | A latched SMI from within an SMI

ECF_LATCHEDNMI 0x02000000 | A latched NMI was seen

ECF SMIEDGE 0x04000000 | An SMI edge has been detected

ECF_NMIEDGE 0x08000000 | An NMI edge has been detected

ECF_APICMSGPENDING | 0x10000000 | An APIC message is waiting to be handled

ECF_APICACTPENDING | 0x20000000 | Any other APIC activity is pending

ECF_DR7CODEBREAKS | 0x40000000 | DR7 has code breakpoints enabled

ECF_LASTWASIO 0x80000000 | Set if previous. instruction did 1/0

Table 7-8: Internal Execution Control Flags

7.23.4 Limitations

e Any line in XTR XML file cannot be greater than 255 characters.
Comment start tag "<!--" should start on a new line and end tag "-->" should be

last characters on a line.

The XML attributes are case sensitive but the values are not.
XTR cannot be used to playback BIOS bring-ups.

Currently XTR does not support AMD-V™ platform.

playback environments.

Currently XTR traces recorded off SimNow cannot be played back in other XTR

e Although not needed, XTR traces recorded by SimNow might contain data

written by the CPU, e.g. IOW.

7.23.5 Example XTR XML File

<?xml version="1.0" encoding="utf-8" ?>

<AmdEventTrace version="1.0">

<Init Device="DIMM" Type="MEMI" Size="536870912" />

<Init Device="MEM" Type="MEMI" File="xtr1.bin" />

<Init Device="CPUO0" Type="CPU" Item="ICount" Data="227" />

<Init Device="CPUO" Type="CPU" Item="RIP" Data="0000000082D6A8SE4" />
<Init Device="CPUO0" Type="CPU" Item="RAX" Data="0000000000628E01" />
<Init Device="CPUQO" Type="CPU" Item="RBX" Data="000000000BOBE41C" />
<Init Device="CPUO0" Type="CPU" Item="RCX" Data="000000000B080E20" />
<Init Device="CPUQ" Type="CPU" Item="RDX" Data="0000000000000080" />
<Init Device="CPUO0" Type="CPU" Item="RSI" Data="0000000000C8FA38" />
<Init Device="CPUQ" Type="CPU" Item="RDI" Data="000000000B09A6B8" />
<Init Device="CPUO0" Type="CPU" Item="RBP" Data="000000000BOBEFEQ" />
<Init Device="CPUQO" Type="CPU" Item="RSP" Data="00000000B043ADCC" />
<Init Device="CPUO0" Type="CPU" Item="R8" Data="0000000000000000" />
<Init Device="CPUQO" Type="CPU" Item="R9" Data="0000000000000000" />
<Init Device="CPUO0" Type="CPU" Item="R10" Data="0000000000000000" />
<Init Device="CPUO0" Type="CPU" Item="R11" Data="0000000000000000" />
<Init Device="CPUOQ" Type="CPU" Item="R12" Data="0000000000000000" />
<Init Device="CPUO0" Type="CPU" Item="R13" Data="0000000000000000" />
<Init Device="CPUO0" Type="CPU" Item="R14" Data="0000000000000000" />

Chapter 7: Device Configuration

119

User Manual

November 2010

<Init Device="CPUO" Type="CPU" Item="R15" Data="0000000000000000" />
<Init Device="CPUO0" Type="CPU" Item="ModeFlags" Data="00000001" />

<Init Device="CPUO" Type="CPU" Item="EFlags" Data="0000000000000002" />
<Init Device="CPUOQ" Type="CPU" Item="ES" Data="00000023" />

<Init Device="CPUO" Type="CPU" Item="ESBase" Data="0000000000000000" />
<Init Device="CPUQ" Type="CPU" Item="ESLimit" Data="00000000FFFFFFFF" />
<Init Device="CPUQ" Type="CPU" Item="ESFlags" Data="00000CF3" />

<Init Device="CPUO0" Type="CPU" Item="CS" Data="00000008" />

<Init Device="CPUO" Type="CPU" Item="CSBase" Data="0000000000000000" />
<Init Device="CPUQ" Type="CPU" Item="CSLimit" Data="00000000FFFFFFFF" />
<Init Device="CPUOQ" Type="CPU" Item="CSFlags" Data="00000C9B" />

<Init Device="CPUO0" Type="CPU" Item="SS" Data="00000010" />

<Init Device="CPUO" Type="CPU" Item="SSBase" Data="0000000000000000" />
<Init Device="CPUQ" Type="CPU" Item="SSLimit" Data="00000000FFFFFFFF" />
<Init Device="CPUO0" Type="CPU" Item="SSFlags" Data="00000C93" />

<Init Device="CPUQO" Type="CPU" Item="DS" Data="00000023" />

<Init Device="CPUO" Type="CPU" Item="DSBase" Data="0000000000000000" />
<Init Device="CPUOQ" Type="CPU" Item="DSLimit" Data="00000000FFFFFFFF" />
<Init Device="CPUO" Type="CPU" Item="DSFlags" Data="00000CF3" />

<Init Device="CPUO0" Type="CPU" Item="FS" Data="00000038" />

<Init Device="CPUO" Type="CPU" Item="FSBase" Data="000000007FFDE000" />
<Init Device="CPUQ" Type="CPU" Item="FSLimit" Data="0000000000000FFF" />
<Init Device="CPUO" Type="CPU" Item="FSFlags" Data="000004F3" />

<Init Device="CPUO" Type="CPU" Item="GS" Data="00000000" />

<Init Device="CPUOQ" Type="CPU" Iltem="GSBase" Data="0000000000000000" />
<Init Device="CPUO" Type="CPU" Item="GSLimit" Data="000000000000FFFF" />
<Init Device="CPUOQ" Type="CPU" Item="GSFlags" Data="00000000" />

<Init Device="CPUO" Type="CPU" Item="LDTR" Data="00000000" />

<Init Device="CPUOQ" Type="CPU" Item="LDTBase" Data="0000000000000000" />
<Init Device="CPUO" Type="CPU" Item="LDTLimit" Data="000000000000FFFF" />
<Init Device="CPUO0" Type="CPU" Item="LDTFlags" Data="00000000" />

<Init Device="CPUO" Type="CPU" Item="TR" Data="00000028" />

<Init Device="CPUOQ" Type="CPU" Item="TSSBase" Data="0000000080042000" />
<Init Device="CPUQO" Type="CPU" Item="TSSLimit" Data="00000000000020AB" />
<Init Device="CPUO0" Type="CPU" Item="TSSFlags" Data="00000089" />

<Init Device="CPUO" Type="CPU" Item="IDTBase" Data="000000008003F400" />
<Init Device="CPUO0" Type="CPU" Item="IDTLimit" Data="00000000000007FF" />
<Init Device="CPUO" Type="CPU" Item="GDTBase" Data="000000008003F000" />
<Init Device="CPUO0" Type="CPU" Item="GDTLimit" Data="00000000000003FF" />
<Init Device="CPUO" Type="CPU" Item="DR0" Data="0000000000000000" />
<Init Device="CPUO0" Type="CPU" Item="DR1" Data="0000000000000000" />
<Init Device="CPUO" Type="CPU" Item="DR2" Data="0000000000000000" />
<Init Device="CPUO0" Type="CPU" Item="DR3" Data="0000000000000000" />
<Init Device="CPUO" Type="CPU" Item="DR6" Data="00000000FFFFOFFO" />
<Init Device="CPUO0" Type="CPU" Item="DR7" Data="0000000000000400" />
<Init Device="CPUO" Type="CPU" Item="CR0" Data="0000000080010031" />
<Init Device="CPUO0" Type="CPU" Item="CR2" Data="000000000000000C" />
<Init Device="CPUQ" Type="CPU" Item="CR3" Data="000000000043D000" />
<Init Device="CPUO0" Type="CPU" Item="CR4" Data="00000000000006D9" />
<Init Device="CPUO" Type="CPU" Item="CR8" Data="0000000000000000" />
<Init Device="CPUQ0" Type="SREG" Item="TSC" Data="00000000000000E3" />

<Init Device="CPUO" Type="SREG" Item="M00000010" Data="00000000000000E3" />
<Init Device="CPUO" Type="SREG" Item="MC0010111" Data="0000000001000000" />

<Init Device="CPUO" Type="SREG" Item="MC0000080" Data="00000000" />

<Init Device="CPUO" Type="SREG" Item="MC0000100" Data="000000007FFDE000" />
<Init Device="CPUO" Type="SREG" Item="MC0000101" Data="0000000000000000" />
<Init Device="CPUO" Type="SREG" Item="MC0000102" Data="0000000000000000" />
<Init Device="CPUO" Type="SREG" Item="MC0011004" Data="000000008001350C" />
<Init Device="CPUO" Type="SREG" Item="MO0OO0O0OFE" Data="0000000000000508" />

<Init Device="CPUO" Type="CPU" Item="FCW" Data="0000107F" />
<Init Device="CPUO0" Type="CPU" Item="FSW" Data="00000020" />
<Init Device="CPUOQ" Type="CPU" Item="FTW" Data="0000FFFF" />
<Init Device="CPUOQ" Type="CPU" Item="FDS" Data="00000000" />
<Init Device="CPUO0" Type="CPU" Item="FCS" Data="00000000" />
<Init Device="CPUO0" Type="CPU" Item="FIP" Data="0000000000000000" />
<Init Device="CPUQ" Type="CPU" Item="FOP" Data="00000000" />

120 Chapter 7: Device Configuration

User Manual November 2010

<Init Device="CPUO" Type="CPU" Item="FP0" Data="00000000000000000000" />
<Init Device="CPUO0" Type="CPU" Item="FP1" Data="00000000000000000000" />
<Init Device="CPUO0" Type="CPU" Item="FP2" Data="3ffee6455d0000000000" />

<Init Device="CPUO0" Type="CPU" Item="FP3" Data="3ffdb139430000000000" />

<Init Device="CPUOQ" Type="CPU" Item="FP4" Data="4005c45c6d0000000000" />
<Init Device="CPUOQ" Type="CPU" Item="FP5" Data="4004ccf8aa0000000000" />

<Init Device="CPUOQ" Type="CPU" Item="FP6" Data="40018ac7100000000000" />
<Init Device="CPUO0" Type="CPU" Item="FP7" Data="40068d00470000000000" />
<Init Device="CPUO0" Type="SREG" Item="MC0000081" Data="0000000000000000" />
<Init Device="CPUO0" Type="SREG" Item="MC0000082" Data="0000000000000000" />
<Init Device="CPUO" Type="SREG" Item="MC0000083" Data="0000000000000000" />
<Init Device="CPUO0" Type="SREG" Item="M0000001B" Data="00000000FEE00900" />
<Init Device="CPUO0" Type="SREG" Item="M00000200" Data="0000000000000006" />
<Init Device="CPUO0" Type="SREG" Item="M00000202" Data="0000000000000000" />
<Init Device="CPUO0" Type="SREG" Item="M00000204" Data="0000000000000000" />
<Init Device="CPUO0" Type="SREG" Item="M00000206" Data="0000000000000000" />
<Init Device="CPUO" Type="SREG" Item="M00000208" Data="0000000000000000" />
<Init Device="CPUO0" Type="SREG" Item="M0000020A" Data="0000000000000000" />
<Init Device="CPUO" Type="SREG" Item="M0000020C" Data="0000000000000000" />
<Init Device="CPUO0" Type="SREG" Item="M0000020E" Data="0000000000000000" />
<Init Device="CPUO" Type="SREG" Item="M00000201" Data="000000FF80000800" />
<Init Device="CPUO0" Type="SREG" Item="M00000203" Data="0000000000000000" />
<Init Device="CPUO" Type="SREG" Item="M00000205" Data="0000000000000000" />
<Init Device="CPUO" Type="SREG" Item="M00000207" Data="0000000000000000" />
<Init Device="CPUO0" Type="SREG" Item="M00000209" Data="0000000000000000" />
<Init Device="CPUO" Type="SREG" Item="M0000020B" Data="0000000000000000" />
<Init Device="CPUO0" Type="SREG" Item="M0000020D" Data="0000000000000000" />
<Init Device="CPUO" Type="SREG" Item="M0000020F" Data="0000000000000000" />
<Init Device="CPUO0" Type="SREG" Item="M00000250" Data="1E1E1E1E1E1E1E1E" />
<Init Device="CPUOQ" Type="SREG" Item="M00000258" Data="1E1E1E1E1E1E1E1E" />
<Init Device="CPUO0" Type="SREG" Item="M00000259" Data="0000000000000000" />
<Init Device="CPUO" Type="SREG" Item="M00000268" Data="1515151515151515" />
<Init Device="CPUO0" Type="SREG" Item="M00000269" Data="1010101010101010" />
<Init Device="CPUO" Type="SREG" Item="M0000026A" Data="0000000000000000" />
<Init Device="CPUO0" Type="SREG" Item="M0000026B" Data="0000000000000000" />
<Init Device="CPUO" Type="SREG" Item="M0000026C" Data="0404040404040404" />
<Init Device="CPUO0" Type="SREG" Item="M0000026D" Data="0404040404040404" />
<Init Device="CPUO" Type="SREG" Item="M0000026E" Data="1010101010101010" />
<Init Device="CPUO0" Type="SREG" Item="M0000026F" Data="1010101010101010" />
<Init Device="CPUO" Type="SREG" Item="MO000002FF" Data="0000000000000C00" />
<Init Device="CPUO0" Type="SREG" Item="M00000400" Data="0000000000000000" />
<Init Device="CPUO" Type="SREG" Item="M00000405" Data="0000000000000000" />
<Init Device="CPUO0" Type="SREG" Item="M00000408" Data="0000000000000000" />
<Init Device="CPUO" Type="SREG" Item="M0000040C" Data="0000000000000000" />
<Init Device="CPUO0" Type="SREG" Item="M00000410" Data="0000000000000000" />
<Init Device="CPUO" Type="SREG" Item="M000001D9" Data="0000000000000000" />
<Init Device="CPUO0" Type="SREG" Item="M000001DB" Data="0000000000000000" />
<Init Device="CPUO" Type="SREG" Item="M000001DC" Data="0000000000000000" />
<Init Device="CPUO0" Type="SREG" Item="M000001DD" Data="0000000000000000" />
<Init Device="CPUO" Type="SREG" Item="M000001DE" Data="0000000000000000" />
<Init Device="CPUO0" Type="SREG" Item="M00000277" Data="0007010600070106" />
<Init Device="CPUO0" Type="SREG" Item="M00000174" Data="0000000000000008" />
<Init Device="CPUO0" Type="SREG" Item="M00000175" Data="0000000000000000" />
<Init Device="CPUO" Type="SREG" Item="M00000176" Data="000000008052D480" />
<Init Device="CPUO0" Type="CPU" Item="MXCSR" Data="0000000000001F80" />

<Init Device="CPUO" Type="CPU" Item="XMMO0O0" Data="00000000000000000000000000000000"
/>

<Init Device="CPUO" Type="CPU" Item="XMMO0O0" Data="00000000000000000000000000000000"
/>

<Init Device="CPUO" Type="CPU" Item="XMMO01" Data="00000000000000000000000000000000"
/>

<Init Device="CPUO0" Type="CPU" Item="XMMO02" Data="00000000000000000000000000000000"
/>

<Init Device="CPUO" Type="CPU" Item="XMMO03" Data="00000000000000000000000000000000"
/>

Chapter 7: Device Configuration 121

User Manual November 2010

<Init Device="CPUO0" Type="CPU" Item="XMMO04" Data="00000000000000000000000000000000"
/>

<Init Device="CPU0" Type="CPU" Item="XMMO05" Data="00000000000000000000000000000000"
/>

<Init Device="CPUO0" Type="CPU" Item="XMMO06" Data="00000000000000000000000000000000"
/>

<Init Device="CPU0" Type="CPU" Item="XMMO07" Data="00000000000000000000000000000000"
/>

<Init Device="CPU0" Type="CPU" Item="XMMO08" Data="00000000000000000000000000000000"
/>

<Init Device="CPU0" Type="CPU" Item="XMMO09" Data="00000000000000000000000000000000"
/>

<Init Device="CPUO0" Type="CPU" Item="XMM10" Data="00000000000000000000000000000000"
/>

<Init Device="CPUO0" Type="CPU" Item="XMM11" Data="00000000000000000000000000000000"
/>

<Init Device="CPU0" Type="CPU" Item="XMM12" Data="00000000000000000000000000000000"
/>

<Init Device="CPU0" Type="CPU" Item="XMM13" Data="00000000000000000000000000000000"
/>

<Init Device="CPUO0" Type="CPU" Item="XMM14" Data="00000000000000000000000000000000"
/>

<Init Device="CPUO0" Type="CPU" Item="XMM15" Data="00000000000000000000000000000000"
/>

<Init Device="CPUO0" Type="SREG" Item="MC0010010" Data="0000000000160601" />

<Init Device="CPUO0" Type="SREG" Item="MC0010015" Data="000000000A000000" />

<Init Device="CPUO0" Type="SREG" Item="MC0010016" Data="0000000000000000" />

<Init Device="CPU0" Type="SREG" Item="MC0010017" Data="0000000000000000" />

<Init Device="CPUO0" Type="SREG" Item="MC0010018" Data="0000000000000000" />

<Init Device="CPU0" Type="SREG" Item="MC0010019" Data="0000000000000000" />

<Init Device="CPUO0" Type="SREG" Item="MC001001A" Data="0000000080000000" />

<Init Device="CPUO0" Type="SREG" Item="MC001001D" Data="0000000000000000" />

<Init Device="CPUO0" Type="SREG" Item="MC0010030" Data="0000000000000000" />

<Init Device="CPU0" Type="SREG" Item="MC0010031" Data="0000000000000000" />

<Init Device="CPUO0" Type="SREG" Item="MC0010032" Data="0000000000000000" />

<Init Device="CPU0" Type="SREG" Item="MC0010033" Data="0000000000000000" />

<Init Device="CPUO0" Type="SREG" Item="MC0010034" Data="0000000000000000" />

<Init Device="CPU0" Type="SREG" Item="MC0010035" Data="0000000000000000" />

<Init Device="CPUO0" Type="SREG" Item="MC0010112" Data="0000000000000000" />

<Init Device="CPU0" Type="SREG" Item="MC0010113" Data="0000000000000001" />

<Init Device="CPUO0" Type="SREG" Item="MC0011020" Data="0000000000000000" />

<Init Device="CPU0" Type="SREG" Item="MC0011023" Data="0000000000000000" />

<Init Device="CPUOQ" Type="APIC" Length="1024">

<Data Length="16" Value="00000000000000000000000010000400" />

<Data Length="16" Value="00000000000000000000000000000000" />

<Data Length="16" Value="00000000000000000000000000000000" />

<Data Length="16" Value="0000000000000000ffffffffff000000" />

<Data Length="16" Value="00000000000000000000000000000000" />

<Data Length="16" Value="00000000000000000000000000000000" />

<Data Length="16" Value="00000000000000000000000000000000" />

<Data Length="16" Value="00000000000000000000000000000000" />

<Data Length="16" Value="00000000000000000000000000000000" />

<Data Length="16" Value="00000000000000000000000000000000" />

<Data Length="16" Value="00000000000000000000000000000000" />

<Data Length="16" Value="00000000000000000000000000000000" />

<Data Length="16" Value="00000000000000000000010000000000" />

<Data Length="16" Value="00000100000001000000010000000100" />

<Data Length="16" Value="00000000000000000000000000000000" />

<Data Length="16" Value="00000000000000000000000000000000" />

<Data Length="16" Value="00000100000001000000010000000100" />

<Data Length="16" Value="00000100000001000000010000000100" />

<Data Length="16" Value="00000100000001000000010000000100" />

<Data Length="16" Value="00000100000001000000010000000100" />

<Data Length="16" Value="00000100000001000000010000000100" />

<Data Length="16" Value="00000100000001000000010000000100" />

<Data Length="16" Value="00000100000001000000010000000100" />

122 Chapter 7: Device Configuration

User Manual

November 2010

<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
<Data Length="16" Value="00000100000001000000010000000100" />
</Init>

<lI-- -->

<Event Device="CPUQ" Type="IOR" ICount="326" Address="a03e" Size="2">

<Data Length="2" Value="0100" />
</Event>

<Event Device="CPUO0" Type="IOW" ICount="345" Address="a03c" Size="2">

<Data Length="2" Value="0000" />
</Event>

<Event Device="CPUOQ" Type="IOW" ICount="364" Address="a03e" Size="2">

<Data Length="2" Value="1100" />
</Event>

<Event Device="CPUQ" Type="IOR" ICount="588" Address="a037" Size="1">

<Data Length="1" Value="0c" />
</Event>

<INSTR Device="CPUO0" Type="FIMP" ICount="6778" JMP="1" RIP="f86b0619" />
<INSTR Device="CPUQ" Type="FIMP" ICount="6797" JMP="1" RIP="f86b0619" />
<Event Device="CPUO0" Type="IOW" ICount="6817" Address="a038" Size="2">

<Data Length="2" Value="40af" />
</Event>

<INSTR Device="CPUOQ" Type="FIJMP" ICount="7081" JMP="1" RIP="f86b0317" />
<INSTR Device="CPUO" Type="FIMP" ICount="7099" JMP="1" RIP="f86b0317" />
<Event Device="CPUO0" Type="IOR" ICount="7110" Address="a037" Size="1">

<Data Length="1" Value="0d" />
</Event>

<Event Device="CPUO" Type="IOR" ICount="7121" Address="a037" Size="1">

Chapter 7: Device Configuration

123

User Manual November 2010

<Data Length="1" Value="0d" />
</Event>
<Event Device="CPUOQ" Type="IOR" ICount="7137" Address="a03e" Size="2">
<Data Length="2" Value="0000" />
</Event>
<Event Device="CPUQ" Type="IOW" ICount="7198" Address="a03c" Size="2">
<Data Length="2" Value="5fc0" />
</Event>
<Event Device="CPUO0" Type="DMAW" ICount="8403" Address="000000000c254340" Length="64">
<Data Length="64"
Value="6d00005f5e5bc3909ac04600b7c04600d4c04600eec0460008c1460022c146003cc14600
2fc2460067c2460085c24600a3c24600909090909090909090909090" />
</Event>
<Event Device="CPUQ" Type="DMAW" ICount="18228" Address="000000000e67dc00"
Length="64">
<Data Length="64"
Value="00005f5e5d5b64890d0000000081c414040000c218008bff293b47003b3b47003b3b4700
4d3b47004d3b47004d3b4700568bf18b460c85c0c706f4eb5b007406" />
</Event>
<Event Device="CPUQ" Type="DMAW" ICount="23921" Address="000000000c254340"
Length="64">
<Data Length="64"
Value="6d00005f5e5bc3909ac04600b7c04600d4c04600eec0460008c1460022c146003cc14600
2fc2460067c2460085c24600a3c24600909090909090909090909090" />
</Event>
<Event Device="CPUQ" Type="PIN" ICount="326462" Name="INTR" Level="A" />
<Event Device="TO_DO_IN_NB" Type="APIC" ICount="326462" Name="EXTINT"
DestinationMode="F" DeliveryMode="07" Level="F" TriggerMode="F" Vector="00" Destination="00" />
<Event Device="CPU0" Type="PIN" ICount="326462" Name="INTR" Level="D" />
<Event Device="CPUO0" Type="INTACK" ICount="326462" Vector="00000000000000d1" />
<Event Device="CPUQ" Type="IOW" ICount="326532" Address="70" Size="1">
<Data Length="1" Value="0c" />
</Event>
<Event Device="CPUO0" Type="IOR" ICount="326536" Address="71" Size="1">
<Data Length="1" Value="c0" />
</Event>
<Event Device="CPUQO" Type="IOW" ICount="326541" Address="70" Size="1">
<Data Length="1" Value="0c" />
</Event>
<Event Device="CPUO0" Type="IOR" ICount="326545" Address="71" Size="1">
<Data Length="1" Value="00" />
</Event>
<Event Device="XTR" Type="EOT" ICount="400967" />
</AmdEventTrace>

124 Chapter 7: Device Configuration

User Manual November 2010

7.24JumpDrive Device

The purpose of the JumpDrive device is to allow easy import and export of data between
a host system and a simulation environment. You can import files from the host system
on to the JumpDrive, where they will be accessible by the simulated operating system.
Data can also be exported from the JumpDrive back to the host system after the
simulation ended.

The image file used by the JumpDrive is very different from any other image files that
the simulator supports. The only image files that can be loaded are those image files that
are saved by the JumpDrive itself.

Section A.7.27, “JumpDrive”, on page 251 describes the JumpDrives automation
commands.

Interface
The JumpDrive device has an USB interface that can connect to any USB controller, e.g.,
you can connect the JumpDrive device to the AMD-8111 1/0 Hub.

Initialization and Reset State

The JumpDrives initialized state is all zero. There is no partition table or any other
structure defined. It is totally blank. The default size is 64 Mbytes. The JumpDrive is not
modified after a reset.

Contents of a BSD

The JumpDrive device saves its entire state, including the contents of its memory, to the
BSD. Any data that exists on the JumpDrive device will be restored when the BSD is
reloaded.

Configuration Options

Most of the automation commands will return an error if the JumpDrive is "plugged into"
the simulated computer, i.e., if the JumpDrive device is connected to a USB controller.
The device must be "not connected”, i.e., unplugged, to issue commands that alter the
JumpDrive image.

Chapter 7: Device Configuration 125

User Manual November 2010

7.25 E1000 Network Adapter Device

The network adapter device models an Intel Pro/1000 MT Desktop Network Adapter.
The adapter depends heavily on MAC address assignment in order to determine how
visible it is to real network resources or other simulator network sessions. The adapter
model requires a separate mediator process to bridge access to the real network. This
device provides a list of automation commands that can be used to configure the adapter
model, see Section A.7, “Automation Commands”, on page 230.

To model network workloads the following are typically required:

1. One or more BSDs with a NIC device included in each BSD.
2. A mediator process running remotely or locally.

The mediator is a background daemon task, whose purpose is to bridge the NIC model to
the real network or other SimNow BSDs. The level of network visibility for each
simulator session depends on the format of the MAC address that is used for the
simulated NIC model.

Figure 7-35 shows depicts four simulator sessions communicating via a mediator.

HostName: “'thehost”

Simulator 4
Mediator |__External Network
Host: “theclientl1” Host: “theclient2”
Simulator Simulator
1 3

Simulator
2

Figure 7-35: Communication via Mediator

126 Chapter 7: Device Configuration

User Manual November 2010

Alternatively a multi-machine approach can be used in which multiple BSD’s are loaded
in the same process space. This architecture allows the simulator sessions to pass packets
back and forth without the need for a mediator. Running without a mediator isolates the
simulator sessions from the real network. For more information on running multiple
simulator instances in the same process, see Section 5.3, Multi-Machine Support, on page
45.

Figure 7-36 illustrates multi-machine communication of simulator sessions without a
mediator.

Simulator Process

BSD #2 (Machine 2)
04:00:00:00:0:04

10.0.0.2
BSD #1 (Machine 1) »| BSD #3 (Machine 3)
02:02:02:02:02:02 | 06:00:00:00:00:06
10.0.0.1 b 10.0.0.3

Figure 7-36: Multi-Machine Communication without a Mediator

7.25.1 Simulated Link Negotiation
A link will appear connected in the guest system when one of the following occurs:

e A mediator connection has been established.
e There is at least one other NIC BSD running in the same process, and are aware
of each other.

When a new mediator connection string has been specified, a one-shot link negotiation
will take place within the simulator. Depending on whether a connection was made with
the mediator, the link will appear to be connected or disconnected on the guest. If the
mediator was killed and has since been restarted, then the user will need to perform a
“linkConnect auto”, to restart link negotiation.

Similarly, in a multi-machine setup, the first simulator session will also need to perform a
“linkConnect auto” to ensure that the initial guest sees that other simulator peers have
been connected.

When neither of the above conditions is met, the link appears disconnected in the guest.
It may be necessary to re-start link negotiation via “linkConnect auto”. This will cause

Chapter 7: Device Configuration 127

User Manual November 2010

the NIC model to retry a mediator connection or search for any simulator peers, running
in the same process.

7.25.2 The Mediator Daemon
The mediator provides several services for the simulator session:

e Access to real network resources (DHCP servers, etc.). Note that the mediator
will need to be run with supervisor privileges in order to snoop network traffic on
its host.

e Bridge communication to other simulator sessions.

e Group individual sessions into domains so that identical BSD’s (with identical
MACI/IP pairs) can be run simultaneously in separate domains.

e Provides an optional gateway to block broadcast traffic and to perform Network
Address Translation (NAT) on identical BSD’s in different domains.

The mediator can route traffic to and from the real network. This operation requires low-
level kernel actions, so the mediator must be run by a supervisor with sufficient OS
privileges. Users may want to have one machine on the subnet dedicated to running the
mediator in this mode. Client machines that connect to the mediator will not require
supervisor privileges.

The mediator is capable of grouping certain simulator sessions into domains. Domains
isolate groups of simulator sessions from each other. This can be useful when the user
wants to run replicated groups of BSD’s simultaneously. The user need to ensure that
each group of BSD’s are using unique domains in the mediator by passing an appropriate
connect string to the mediator or supplying it on the command line using the “-m” option,
see Section 5.1, Command-Line Arguments, on page 39.

The mediator can provide one or more gateways to isolate broadcast traffic from your
simulation environment. A gateway will perform NAT in order to ensure that BSD’s in
different domains get their packets routed appropriately. The simulator sessions using the
mediator’s gateway can continue to access network resources, but are essentially hidden
from the real network.

Table 7-9 shows command line switches that the mediator accepts:

Switch Description

-p portNum Dictates what port number the mediator will be listening on for
incoming traffic. It specifies the base port address used by the
mediator, and port usage is based off of this number. The
mediator's listening thread uses portNum + 4.

-l Lists possible host adapters that the mediator can use to snoop real
network traffic.

-S Tells the mediator to snoop real network traffic. Requires
supervisor privileges.
-d DeviceNum Tells the mediator which host adapter to use when snooping real

128 Chapter 7: Device Configuration

User Manual November 2010

network traffic. This device number will need to be one listed
using the “-I” command.

-v[Vv][V] Turns on verbose output. The verbosity level gets noisier with the
number of “v” on the command line.
-m XX:XX Denotes the two high bytes used to classify the simulator’s MAC

addresses. By default these values are FA:CD, but can be
configured to avoid collisions with real hardware.

Table 7-9: Mediator Command Line Switches

7.25.3 MAC Addresses for use with the Adapter

The MAC address that the simulated adapter is using determines the level of visibility
that the model will have with other simulator sessions and with the real network. The
mediator routes packets to simulator sessions that have “FA:CD” in the high two bytes of
the MAC address. The simulator sessions that have anything other than “FA:CD” can
only communicate with other simulator sessions in the same process space using a
“multi-machine” approach.

MAC Address beginning with “FA:CD” and having a third byte between 0x00 and 0x20,
are classified as “absolute”. Simulated adapters using this class of MAC Address are
logically equivalent to plugging a real computer into a real network. These sessions can
see real network traffic and are visible to all simulator sessions running via the mediator.
In addition, all broadcast traffic, including ARP’s are routed to this class of MAC
addresses. Allocations of “absolute” MAC addresses need to be coordinated such that
they are not replicated on the same host subnet.

MAC addresses beginning with “FA:CD” and having a third byte between 0x21 and 0x80
are classified as “fixed”. The simulator adapters using this class of MAC address can
access the real network, but cannot be seen by other simulator sessions outside of its
domain. This class of MAC address allows a user to simultaneously run identical BSD’s
using unique domains. This class of MAC addresses will not receive broadcast traffic
such as ARP’s. Allocations of “fixed” MAC addresses need to be coordinated such that
they are not replicated in the same mediator domain.

7.25.4 Example Configurations

MAC address assignment was designed to satisfy many usability needs. Table 7-10
shows a list of possible usage models for the simulator and MAC Address assignments.

7.25.4.1 Absolute NIC

This configuration mimics plugging in a physical computer into whatever network your
mediator is running on. The user must select a MAC Address that is not duplicated
anywhere else on the mediator’s subnet. All broadcast and targeted network traffic will
be routed to a simulator session using this classification of MAC Address. This provides
maximum visibility for the simulator session.

Example MAC: FA:CD:00:00:00:01
IP Address: Any. Can be a static IP address assigned by your sys admin, or a

Chapter 7: Device Configuration 129

User Manual November 2010

DHCP acquired address.

Visibility: Can be seen by external network and all simulator sessions
running anywhere on the network.

Mediator String: “Hostname”

Table 7-10: MAC Address Assignments

7.25.4.2 Client-Server simulated network

This configuration uses “fixed” MAC addresses to allow this domain to be replicated in
the mediator space, without colliding with one another. To allow real network access, we
will also run the mediator with a gateway at IP address 192.168.0.1.

Example MAC: FA:CD:21:00:00:01

IP Address: Static IP address 192.168.0.2

Visibility: Accesses the real network via the mediator’s gateway. External
network hosts can not directly communicate with this client.

Mediator String: mydomain@hostname

Table 7-11: Client-Server: Simulator Server

Example MAC: FA:CD:22:00:00:02

IP Address: Static IP address 192.168.0.3

Visibility: Accesses the real network via the mediator’s gateway. External
network hosts can not directly communicate with this client.

Mediator String: mydomain@hostname

Table 7-12: Client-Server: Simulator Client 1

The BSD’s that contain the server and client can be run simultaneously on the same
network without any collisions. They will require the user to input different domains in
the mediator connection string, see also Section 5.1, Command-Line Arguments, on page
39 (-m option).

7.25.4.3 lIsolated Client-Server simulated network (Same process)

This type of setup isolates the simulator sessions from the real network, only allowing
visibility to other simulator sessions in the same process. A mediator is not required for
this type of setup.

Example MAC: | 02:00::00:00:00:01

IP Address: Static IP address 192.168.0.1

Visibility: Can only communicate with BSD’s in the same simulator process
using multiple machines.

Mediator String: | N/A

Table 7-13: Isolated Client-Server: Simulator Server

Example MAC: | 02:00::00:00:00:02

IP Address: Static IP address 192.168.0.2

130 Chapter 7: Device Configuration

User Manual November 2010

Visibility: Can only communicate with BSD’s in the same Simulator process
using multiple machines.

Mediator String: | N/A

Table 7-14: Isolated Client-Server: Simulator Client 1

7.25.5 Visibility Diagram

Figure 7-37 depicts the mediator routing packets to and from several simulator sessions
in different domains. The session running BSD #3 is using an absolute MAC address, and
therefore is globally visible. This session is no different than any other machine running
on the external network. All simulator sessions, connected to any mediator, will be able
to see this machine.

Notice also that domains one and two are using identical BSDs that are running
simultaneously. To prevent collisions on the external network, the mediator will not route
broadcast packets to these sessions as they are using a fixed MAC classification. The
gateway will be able to do network address translation (NAT) for each BSD in each
domain to make sure that there are no collisions between the two domains.

External Network

“mediator -s —g 192.168.0.1 -G 163.181.0.14"

Router

Globally wizible

163,181.0.14 } Gateway |Visible to local Dormnain

External network |
‘ accessible

192.168.0.1

Domain 2
Clients using Fixed MACs Domain 3
Sarne as frorn Domain 1

Domain 1
Clients using Fixed MACs

BSD #3 BSD #1
fa:cd:00:00:00:01 farcd:21:00:00:01
rmyhost:8196 2@myhost: 8196

BSD #1
faicd:21:00:00:01
1@myhost: 8196

BSD #2
faicd:21:00:00:02
1@myhost: 8196

BSD #2 BSD #4
faicd:i21:00:00:02 08:00:00:00:00:08
2@myhost: 8196 3@myhost: 8196

Figure 7-37: Visibility Diagram

Chapter 7: Device Configuration 131

User Manual November 2010

7.26 Plug and Play Monitor Device

The Plug and Play Monitor device (PnP Monitor) conforms to the VESA Plug and Play
Monitor specification and therefore supports the DDC2B standard. DDC (Display Data
Channel) is the Plug and Play standard for monitors. DDC monitors are designed to meet
the VESA (Video Electronic Standards Association) standard that defines the DDC
implementation. If the video card also supports the DDC standard it gets from the PnP
monitor device all the information about its features and makes consequently an
automatic configuration for the best refresh values depending on the selected resolution.

The Plug and Play monitor device supports the DDC1 and DDC2B standards. DDCL1 is
primitive and a point to point interface. The monitor is always put at transmit-only mode
(DDC1). The monitor will continuously transmit data until the monitor will be turned off
or switched to the bi-directional mode (DDC2). In DDC2 mode the I°C protocol is being
used for data transfers.

Interface

The Plug and Play Monitor device model has a VGA and DVI interface connection.
Connections can be only made to the VGA or DVI interface. It can be connected to the
VGA or DVI connection of a video card device.

Contents of a BSD
The current state of all internal registers and any internal state variables are saved in the
BSD.

Initialization and Reset State

When first initialized or reset the Plug and Play Monitors DDC registers are set to their
default state. After initialization the monitor device will operate in DDC1 mode. The
device will remain in the DDC1 mode until there is a valid HIGH to LOW transition on
the SCL pin, when it will switch to DDC2B mode.

Differences from Real Hardware

The model attempts to match the functionality of the physical devices from a
programmer's perspective. Upon power-up, a “real” Plug and Play monitor will output
valid data only after it has been initialized. During initialization, data will not be available
until after the first nine clock cycles are sent to the device. This Plug and Play monitor
device model does not simulate this behaviour. It will always output valid data.

The Page Write, Acknowedge Polling, and the Write Protection feature are currently not
supported.

Configuration Options
The Plug and Play Monitor device gives you the opportunity to choose from different
Plug and Play Monitor device models, as shown in Figure 7-38.

132 Chapter 7: Device Configuration

User Manual November 2010

Plug and Play Monitor #10 Properties

Connections || [/0 Logaing General | B azic Digplay Parameters || Standard Timingz || Color /E - *

b aritar

kaodel: |"-.fiew5c'nin::, Prafezsional Senes PE15 (21" CRT] V|

Yendar / Praoduct (D EDID Structure YWersion EDID Extenszions
Yendar [D: Werzion: Murnber af extensions: ICI
Praduct 1D 4F51 Revizion:
Senal Mumber: [39438
crialumber: [39438 | | oo
Mg Wesk

3-bit Checkaum: __EB
Mfg*rear:

k. l ’ Help] ’ Cancel

Figure 7-38: Plug and Play Monitor Device Configuration

Chapter 7: Device Configuration 133

User Manual November 2010

7.27 ATI SB400/SB600/SB700/SB800 Southbridge Devices

The ATI Southbridge devices provide the basic 1/0 Southbridge functionality of the
system. Features include 4 or 6 SATA ports, a PIO-mode IDE controller supporting 1 or
2 channels, fully functinoal USB 1.1 Controller supporting legacy emulation, an
LPC/ISA bridge, an SMB 2.0 compliant controller, an IOAPIC controller, HPET timer,
and legacy AT devices (8259 PIC, 8254 PIT, CMOS, and DMA controller). The legacy
AT devices have the standard behavior and 10 addresses unless otherwise noted.

Interface

The Southbridge devices have several connection points. Possible connection points
include a PCI bus, an SMB bus, an LPC bus, and an upstream PCle link. The PCI bus
acts as a host bus, and should connect to a "PCI Bus Device". The SMB connects to
devices such as the DIMM, an SMB hub device, or another SMB compatible endpoint.
The LPC bus provides connectivity to devices such as Super 10 chips and BIOS ROMs.
The PCle port is used for connectivity upstream to a compatible Northbridge Device. See
Section 7.28, "ATI RS480/RS780/RD790/RD890 Northbridge Devices", on page 138 for
more information.

Initialization and Reset State
When first initialized, the Southbridge devices are in the default state. This is described in
detail in the respective datasheets. The legacy CMOS sub device initializes to all zeroes.

When reset, a Southbridge device takes on all default register values as above. The
exception to this is that the CMOS contents remain the same.

Contents of a BSD

The BSD file contains the contents of all registers. It also saves the contents of any
buffers, and states of all internal devices (HDD controllers, PIT, PIC, etc.). When the
BSD file is read in, all buffers are filled with past data, and all states are restored to their
saved states.

Configuration Options

These Southbridge devices share many configuration properties with the AMD-8111
Southbridge. For more information please refer to Section 7.12, “AMD-8111™
Southbridge Devices — 10 Hubs”, on page 94.

Addittionaly these SouthBridge devices contain a SATA configuration page to attatch
images to the individual SATA ports.

134 Chapter 7: Device Configuration

User Manual November 2010

’ | ATI-SB600 /O Hub #1 Properties B[]
qging Options PCIIRG Mapping Primary HOD Channel SATA Drives WI Al
Drive O
Image Filename: [:]
[C] DVD-ROM Eject =
] Joumal impart .. export... commit

Connectable

Drrive 1
Image Filename: B
] DVD-ROM Eject
[] Joumal impart... export... commit

Connectable

ok || hHep || Cancel

Figure 7-39: ATI SB600 SATA Configuration Dialog

Log Messages

These SouthBridge devices have the ability to log messages to the Message Log Window
as specified by the options in the Logging Option tab. These devices can log I/O-mapped
Transactions, Memory-mapped Transactions, and SMI and SCI assertions.

Difference from Real Hardware

These Southbridge devices differ from other devices mainly in those items that deal with
real-time operation. Those items cannot be modeled in the current simulator. The
functionality of the USB 2.0 controller is also absent (PCI registers and memory-mapped
registers are the only portion present). Hardware supporting HD Audio is also not
modelled in SimNow.

Chapter 7: Device Configuration 135

User Manual November 2010

7.28 ATI RS480/RS780/RD790/RD890 Northbridge Devices

The ATI RS480/RD790/RS780 feature set includes an upstream HyperTransport CPU
interface, a PCle interface, and an A-Link PCle dowstream interface to the SouthBridge.
Depending on the part and the platform, each device may have some number of available
PCle slots to connect with endpoint devices.

Interface

These Northbridge devices provide an upstream HyperTransport interface for
communication with the Host. The Downstream link is a 2x or 4x PCle link used for
communication with a SouthBridge device. Several PCle slot interfaces are also
available. The number of slots varies by part and platform specifications.

Contents of a BSD
The current state of all PCI configuration registers and any internal state variables are
saved in the BSD.

Configuration Options
No configuration options currently.

Log Messages
No logging is provided, other than the global options provided by each device. See
Section 9.3, “I/O Logging”, on page 148 for more information.

Difference from Real Hardware
The ATI RS480 and ATI RS780 device models do not simulate their integrated graphics
processors. The RS780 model does not simulate the integrated HD Audio device.

136 Chapter 7: Device Configuration

User Manual November 2010

7.29 AMD “Istanbul” Device

The AMD "Istnabul” device is a 6 core processor node, suitable for an L1 socket. It
emulates a planned product that derives from a revision of the AMD Family10h product
line. The device iteself is composed of 6 individual AweSim™ Processor Devices that are
connected to a single “AMD 8th Generation Integrated Northbridge Device”.

For more information on Group Devices, see Section 3.3, “Device Groups", on page 3.3.

Interface

AMD “Istanbul” Device has several connection ports. It has 4 HyperTransport links split
to form 8 sub-links. Each sub-link can connect to a coherent HyperTransport device (such
as another AMD “Istanbul” Device) or a non-Coherent HyperTransport device (such as
AMD-8131™ PCI-X® Controller). These ports are mutually exclusive, and should be
connected to only one other device. “Istanbul” also exposes two DRAM channel
interfaces "DCTOQ" and "DCT1" to interface with system memory.

Contents of a BSD
See the following sections:

- Section 7.1, “AweSim™ Processor Device”, on page 55
- Section 7.11, “AMD 8th Generation Integrated Northbridge Device”, on page 90

Configuration Options
See the following sections:

- Section 3.3, "Working with Device Groups"”, on page 17
- Section 7.1, “AweSim™ Processor Device”, on page 55
- Section 7.11, “AMD 8th Generation Integrated Northbridge Device”, on page 90

Log Messages
See the following sections:

- Section 7.1, “AweSim™ Processor Device”, on page 55
- Section 7.11, “AMD 8th Generation Integrated Northbridge Device”, on page 90

Difference from Real Hardware
See the following sections:

- Section 7.1, “AweSim™ Processor Device”, on page 55
- Section 7.11, “AMD 8th Generation Integrated Northbridge Device”, on page 90

Chapter 7: Device Configuration 137

User Manual November 2010

7.30 AMD “Sao Paulo” Device

The AMD "Sao Paulo” device is a 8 core processor node, suitable for a G34 socket. It
emulates a planned product that derives from a revision of the AMD Family10h product
line. The device iteself is composed of 8 individual AweSim™ Processor Devices that are
connected to a single “AMD 8th Generation Integrated Northbridge Device”.

For more information on Group Devices, see Section 3.3, “Device Groups", on page 3.3.

Interface

AMD "Sao Paulo"” has several connection ports. It has 4 HyperTransport links split to
form 8 sub-links. Each sub-link can connect to a coherent HyperTransport device (such
as another AMD “Istanbul” Device) or a non-Coherent HyperTransport device (such as
AMD-8131™ PCI-X® Controller). These ports are mutually exclusive, and should be
connected to only one other device. "Sao Paulo™ also exposes two DRAM channel
interfaces "DCTO0" and "DCT1" to interface with system memory.

Contents of a BSD
See the following sections:

- Section 7.1, “AweSim™ Processor Device”, on page 55
- Section 7.11, “AMD 8th Generation Integrated Northbridge Device”, on page 90

Configuration Options
See the following sections:

- Section 3.3, "Working with Device Groups", on page 17
- Section 7.1, “AweSim™ Processor Device”, on page 55
- Section 7.11, “AMD 8th Generation Integrated Northbridge Device”, on page 90

Log Messages
See the following sections:

- Section 7.1, “AweSim™ Processor Device”, on page 55
- Section 7.11, “AMD 8th Generation Integrated Northbridge Device”, on page 90

Difference from Real Hardware
See the following sections:

- Section 7.1, “AweSim™ Processor Device”, on page 55
- Section 7.11, “AMD 8th Generation Integrated Northbridge Device”, on page 90

138 Chapter 7: Device Configuration

User Manual November 2010

7.31 AMD “Magny-Cours” Device

The AMD "Magny-Cours" device is a 12 core processor node, suitable for a G34 socket.
It emulates a planned product that derives from a revision of the AMD Familyl0h
product line. The device iteself is composed of 12 individual AweSim™ Processor
Devices that are connected to dual AMD 8th Generation Integrated Northbridge Devices.

For more information on Group Devices, see Section 3.3, “Device Groups", on page 3.3.

Interface

AMD "Magny-Cours" has several connection ports. It has 4 HyperTransport links split to
form 8 sub-links. Each sub-link can connect to a coherent HyperTransport device (such
as another AMD “Istanbul” Device) or a non-Coherent HyperTransport device (such as
AMD-8131™ PCI-X® Controller). These ports are mutually exclusive, and should be
connected to only one other device. "Magny-Cours" also exposes four DRAM channel
interfaces "DCTOQ", "DCT1", "DCT2" and "DCT3" to interface with system memory.

Contents of a BSD
See the following sections:

- Section 7.1, “AweSim™ Processor Device”, on page 55
- Section 7.11, “AMD 8th Generation Integrated Northbridge Device”, on page 90

Configuration Options
See the following sections:

- Section 3.3, "Working with Device Groups", on page 17
- Section 7.1, “AweSim™ Processor Device”, on page 55
- Section 7.11, “AMD 8th Generation Integrated Northbridge Device”, on page 90

Log Messages
See the following sections:

- Section 7.1, “AweSim™ Processor Device”, on page 55
- Section 7.11, “AMD 8th Generation Integrated Northbridge Device”, on page 90

Difference from Real Hardware
See the following sections:

- Section 7.1, “AweSim™ Processor Device”, on page 55
- Section 7.11, “AMD 8th Generation Integrated Northbridge Device”, on page 90

Chapter 7: Device Configuration 139

User Manual November 2010

7.32 AMD “DeerHound” Device

The AMD "DeerHound" device is a quad core processor node, suitable for an L1 socket.
It emulates a production product that derives from a revision of the AMD Family10h
product line. The device itself is composed of 4 individual AweSim™ Processor Devices
that are connected to a single “AMD 8th Generation Integrated Northbridge Device”.

For more information on Group Devices, see Section 3.3, “Device Groups", on page 3.3.

Interface

AMD “DeerHound” Device has several connection ports. It has 4 HyperTransport links
split to form 8 sub-links. Each sub-link can connect to a coherent HyperTransport device
(such as another AMD “Istanbul” Device) or a non-Coherent HyperTransport device
(such as AMD-8131™ PCI-X® Controller). These ports are mutually exclusive, and
should be connected to only one other device. "DeerHound" also exposes two DRAM
channel interfaces "DCTO0" and "DCT1" to interface with system memory.

Contents of a BSD
See the following sections:

- Section 7.1, “AweSim™ Processor Device”, on page 55
- Section 7.11, “AMD 8th Generation Integrated Northbridge Device”, on page 90

Configuration Options
See the following sections:

- Section 3.3, "Working with Device Groups", on page 17
- Section 7.1, “AweSim™ Processor Device”, on page 55
- Section 7.11, “AMD 8th Generation Integrated Northbridge Device”, on page 90

Log Messages
See the following sections:

- Section 7.1, “AweSim™ Processor Device”, on page 55
- Section 7.11, “AMD 8th Generation Integrated Northbridge Device”, on page 90

Difference from Real Hardware
See the following sections:

- Section 7.1, “AweSim™ Processor Device”, on page 55
- Section 7.11, “AMD 8th Generation Integrated Northbridge Device”, on page 90

140 Chapter 7: Device Configuration

User Manual

November 2010

8 PCI Configuration Viewer

The PCI Config Viewer can be used to scan PCI buses and report information about the
configuration-space settings for each PCI device.

PCI bus
number
PCI
device /
number
PCI
function /
number
The columns
show the low
nibble (0-Fh)
of the PCI
configuration-
space register

The rows
show the high
nibble (00-
FOoh) of the
PCI

configuration-
space register

8.1 Sc3

To view t
entry from

contains a

8.2 Mo(
To modify|

in the PCI

B | PCI Config Viewer [T | 3]
Bus Dev Fun Mame 4
ARD-3151 System Controller
] 1 n AwD-3111 LPC
0 1 AMD-3111 IDE
0 1 2 AMD-3111 SMBus 2.0
] 1 3 AMD-31171 ACPI =
i 1 il AMD-3111 ACTTF Audio
/D 1 E AMD-3111 MC37 Modem
0 1 7 Simple Cornmunications Cantroller
1] 24 1] k.8 [Athlonsd /O pteron] HyperTranzport Technology Configuration
0 24 1 I8 [AthlonE4/0pteron] Address Map
1] 24 2 k.8 [Athlonsd/Opteron] DRAM Controller A
»00 01 02 03 04 05 06 OF 03 03 04 OB OC 0D OE OF
0o 22 10 54 74 00 00 10 02 12 00 00 06 00 00 0o oo
*'IEI oz 00 oo oo oo 0o o0o oo oo oo 00 0o 0o oo oo oo
20 oo, oo oo oo oo 0o oo oo oo oo 0o 0o oo oo oo oo
a0 oo, oo oo o0 Ao 00 00O oo oo oo 0o 0o 0o oo oo oo
a0 oo, oo oo oo oo 0o oo oo oo oo 0o 0o oo oo oo oo
A0 oo, oo 0o 0o oo oo 00 oo oo oo 0o 0o oo 0o oo oo
B0 oo, oo oo oo oo 0o oo oo oo oo 0o 0o oo oo oo oo
il oo, oo 0o 0o oo oo 00 oo oo oo 0o 0o oo 0o oo oo
a0 oo, oo oo oo oo 0o oo oo oo oo 0o 0o oo oo oo oo
90 oo, oo oo oo oo 0o oo oo oo oo 0o 0o oo oo oo oo
Al oz <0 35 00 7Y 0B OO 1F 00O 0o 00 0ol oo oo oo oo
Bo oo oo oo oo oo OoF 01 oo 0O oo 00O 0o 0o oo oo oo
Cn a5 00 &0 0O 20 00 11 00 20 00 00 00 22 00 35 00
Do oz 00 35 00 0o 00 0o oo oo oo 00O 0o oo oo oo oo
EQ a5 0§ 00 0o 0§ 0§ 00 oo OoF OF 00 00O oo 0o 0o oo
FO oo, oo oo oo oo 0o oo oo oo oo 0o 0o oo oo oo oo

|

Apply Regizter Modifications

]

DwORD PCl Access

>

At

d

L1

configuration re?gisters of the selected device. %o modify a certain byte of a PCI
configuration register, click on the desired hex value and enter a new hex value. To apply
the changes, click on the ‘Apply Register Modifications’ button.

Chapter 8: PCI Configuration Viewer

141

List of all PCI

>

devices

PCI
configuration-
space

User Manual November 2010

Read-only bits cannot be modified using the PCI Config Viewer. Modified values appear
in red in the PCI configuration register list until you click on the ‘Apply Register
Modifications’ button or close the PCI Config Viewer dialog.

To change the byte view of the PCI configuration registers to a dword view, check the
‘DWORD PCI Access’ check box.

142 Chapter 8: PCI Configuration Viewer

User Manual November 2010

9 Logging

The simulator provides support for three types of logging:

e A message log that can provide detailed text data from simulator devices and
modules.

e An error log that provides text messages in response to critical errors or
unexpected conditions.

e /O Logging that provides detailed information about PCI Configuration, 1/0 and
Memory Space accesses.

9.1 Message Log

The simulator shell provides an interface that loaded modules (devices and extensions)
may use to report status and events. The messages may be displayed in a window, written
to a file, or both. The information log may be enabled and disabled on a module-specific
basis.

The informational log is controlled via the "Message Log Window" dialog box. To view
this dialog, select the "View—Message Log" entry from the Main Window shell menu.

A sample of this dialog is shown in Figure 9-1:

Chapter 9: Logging 143

User Manual November 2010

E . [#1]SimNow Message Log

AbAD Bth Generation |ntegrated MNorthbridge 0
AmMD-8111 /0 Hub O L -
og to File
AMD-8151 AGP Tunnel 0
AT24C Device 0
AyeSim Processor 0 I:l Log to Consale

simnow.log

H

Jebugger O
iD Log to window 100 [Buffer Size [# lines)
Fast D& 0
Fast Dbl 1 Dimmdewvice: Bank 0, Simulated Size 10000000
Fast Dhdd, 2 Dimmdewvice: Bank 2, Simulated Size 10000000
Fast DR 3 Connected to S owpipesSimlow. Coml
Fast DA 4 Connected to ~~ospilpesSimbflow. Comz

Fast DMA 5

Fast DM& B

Fast DM 7

IDE Controller

IDE Cortroller 1

IDE Drive O

IDE Dirive 1

IDE Drive 2

IDE Dirive 3

10 Logger AkD 8th Generation Integrated Morthbridge O
10 Logger AkD-8111 1/0 Hub O

10 Logger AMD-8151 AGP Tunnel O

10 Logger AT 24C Device O

10 Logger AwweSim Processor O

10 Logger Dimm Bank 0

10 Logger Matrox(R] kMGA-G400 Graphics Adapter O
10 Logger Memary Device 0

10 Logger PCI Bus 0

10 Logger 'Winbond WE3E27HF 510 0

Journal 0

Journal 1

Journal 2

Journal 3

Keyboard Contraller O

Keyboard Controller S cancode Translator O
Matrox[R] MGA-GA00 Graphics Adapter 0

temary Device O

PCl Bus 0

SubDevata 0

Winbond WE3E27HF 510 0 [Clear Window] [S ave Window Contents. ..

Figure 9-1: Message Log

The left-hand window lists all of the currently loaded modules. The user may individually
enable or disable logging from a given module by using the checkbox next to the
module's name. In addition, the user may configure module-specific logging options by
double-clicking on the module name.

The top-right window contains three checkboxes which allow the user to control whether
messages are displayed in the log window, written to a file, or logged to the AMD
SimNow console. The bottom right window is used to display the informational message
if the "Log to Window" option is selected.

To open the log file the first time a simulation is started, check the "Log To File™ box is
checked. The log file will remain open until one of the following events occurs:

e The BSD is closed or the simulator program terminates.
e The simulation is stared with the "Log To File" box unchecked.
e The simulation is started with a new log-file name specified.

144 Chapter 9: Logging

User Manual November 2010

9.2 Error Log

The simulator provides an interface that loaded modules may use to report critical errors
or unexpected conditions. The messages are always written to a file, and the most-recent
messages may be displayed in a window. The error log may not be disabled.

The most-recent error log entries may be viewed by selecting the "View—Error Log"
entry from the Main Window menu, shown in Figure 9-2.

The error log file is enabled by checking the "Log to File" check box in the Message log
dialog (Figure 9-2) and setting a filename for the error log. This file is created (or
truncated to zero length if it already exists) and opened whenever a BSD file is opened or
a new BSD is created. The error log is closed whenever the BSD is closed.

X [#1]SimMow Error Log

Log to File enar.log [:]

100 Buffer Size in Kbytes

Clsc-Ccpu.chp:
CProcessor: :CenerateEzception():
shutdown due to triple fault.

Fatal error reached, stopping
simulation. Error message(s) follow:

Bailing out
FOTE: Simulation cannot bhe restarted
until a reset is asserted.

Aimulation state CAN he inspected
with the SimMow dehugger.

Clear Window Save Window Contents. ..

Figure 9-2: Error Log

Chapter 9: Logging 145

User Manual November 2010

9.3 1/0O Logging

This is a generic feature available on all devices for logging slave accesses (i.e. accesses
responded to by this device). Several categories of generic 1/0O logging are available.
Logging is performed to the 1/0 loggers (see Section 9.1, "Message Log", on page 145)
of names similar to the device you are enabling the logging for.

Caveat: Currently, devices which route to other devices may appear as if they are
responding to the messages themselves, so bridge devices will likely log
everything that is behind them.

Emerald Graphics #11 Properties

Connections | /0 Logging | %GA SubDevice | Framebuffe -~ *
Options
[] Log PCI Config Space Acoesses
[] Log 140 Space ficcesses
Dizable Fastpath /0 when Logaging
[] Log Memary Space Accesses
Dizable Fastpath Memary when Logging

[] Log Fastpath Memary Fequests when Logging

| ok || Hep || Cancel

Figure 9-3: 1/O Logging Dialog

Log PCI Config Space Accesses
Checking this will log PCI Config Space accesses made to the device.

Log I/0 Space Accesses
Checking this will log 1/0O Space accesses made to the device. These are the accesses
made with the x86 10 read/write instructions.

Disable Fastpath 1/0 when Logging
This item, checked by default, disables the Fastpath 1/O mechanism when 1/O Space
Accesses logging is enabled. If this is unchecked, accesses may not appear in the log.

Log Memory Space Accesses
Checking this will log Memory Space accesses made to the device. These are the
accesses corresponding to standard x86 move, read and write instructions to memory.

Disable Fastpath Memory when Logging

146 Chapter 9: Logging

User Manual November 2010

This item, checked by default, disables the Fastpath Memory mechanism when Memory
Space Accesses logging is enabled. If this is unchecked, accesses may not appear in the
log.

WARNING: Un-checking this item may lead to significantly compromised performance
of SimNow if large numbers of accesses are being made to the device in question. For
example, logging all accesses to the DIMM device would make SimNow extremely slow.

Log Fastpath Memory Requests when Logging
This item, when combined with un-checking Disable Fastpath Memory when Logging,
will log both memory space accesses and Fastpath Memory requests themselves.

What is then logged are slow-path Memory Space Accesses and Fastpath Memory handle
requests. Actual calls to Fastpath Memory, i.e. usage of Fastpath Memory handles, are
not logged.

Chapter 9: Logging 147

User Manual November 2010

This page is intentionally blank.

148 Chapter 9: Logging

User Manual November 2010

10 CPU Debugger

10.1Using the CPU Debugger

The CPU Debugger provides a list of commands and their descriptions when the “?”
command is typed in the bottom line of the debug window, shown in Figure 10-1.

CPU Attach Button

B Debugper, Attached to CPLU#0

ELX=00000000 EBX=00000000 ECE=00000000 EDX=00000F44 - CPU Registers
E=I=00000000 EDI=00000000 ESP=00000000 EEF=00000000
C3=FOO0 D3=0000 ES=0000 FS=0000 GS=0000 S53=0000 EFLLGS=cditszape bi bl
GIF=1 ASID=00000000 HCR3=0000000000000000 15assemboly
VMHSAVEFA=0000000000000000 GuestVHCEPA=000000 Doao
Instruction
- o . oy
FOOO:EQSE ELE0EOOOFD qwp £000:e060 Opcode
FOOD:E060 SEER o
FOOD:EQ62 668ECS
Fooo: cs:[r1lelip
FOOO:
FOOO:
FOOO:
FOOO:) Memory Dump
FOOO:EQEE FC e1d
FOOO=-FOAF S8 R T A A k] W
00000000, F: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 4uuuinnnnnnnnnns Aq—| Memory Dump
00000010,F: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ttvenennrennnenn in ASCII
0000002Z0,F: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF o oeeeeeeenannnn
00000030, P: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF eei.vo..... M 5
00000040,F: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF---%....-... emory bump
00000050, F: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF vveeennannnnnn. Address
00000060, F: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF tevenennrennnenn
00000070,F: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF o oeeeeeeenannnn _
Information
/ and Message
C[RIW] <Bus» <Device# in Hexr <Function» <Register: [Data] Output
//— Command Line
D
dbg> |cpuid 1|

T EE IO T TV T DUt S Ter T e I DU TT VT IOV PP Uppe -
3. The bottom pane in the CPU Debugger Window is the debugger command line.

Enter a BX, BM, BR or Bl on the debugger command line to setup and enable a
breakpoint. The BX, BM, BR and BI commands specify breakpoints on execution,
data access, MSR access or /O access, respectively. Each of these commands
requires an address parameter that specifies a linear address associated with the
breakpoint. An optional parameter can be used to specify the pass count, i.e., the
number of times the breakpoint should be hit before breaking into the debugger.
In addition, the BM, BR and Bl commands accept an optional parameter that
specifies whether to break on a read/input, or write/output transaction to the
specified address. Examples of each command are shown in Table 10-1.

Chapter 10: CPU Debugger 149

User Manual November 2010

4.

After setting up and enabling the breakpoint(s), enter G on the command line to
resume CPU execution. This will execute the debugger's Go command, returning
the CPU to continuous execution. If a breakpoint is hit, the simulation will pause,
and the debugger will gain attention.

Command Description

Break on the next execution of the instruction located
at linear address, 0x1234ABCD.

Break on the third execution of the instruction located
at linear address, 0x1234ABCD.

Break on the fourth read of the memory location,
0xABCD1234 (linear).

Break on the fourth access (read or write) of the
memory location, OXABCD1234 (linear).

BR c001001f r v1 Break on write of value 1 to the MSR C001 001F

BI 80 w 3 Break on the fourth write to 1/O address, 0x80.

Table 10-1: Debugger Breakpoint Command Examples

BX 1234abcd

BX 1234ABCD 2

BM abcdl234 r 3

BM abcdl234 3

10.1.2 Single Stepping the Simulation

1.
2.

3.

Stop the simulation as described in Section 3.1, “Tool Bar Buttons”, on pa% 7.
Open the Debugger Window (“View—Show Debugger”) or click on >*. The
simulation will pause and the Debugger Window will appear. .

The bottom pane in the Debugger Window is the debugger command line. When
the Debugger Window has attention, enter T on the debugger command line. The
debugger Trace command will execute, causing the CPU device to execute one
instruction, and then return attention to the debugger.

The debugger will repeat the last entered command, if you just type Enter on the
command line. So, you can repeatedly step instructions by entering T once, then
repeatedly hitting the Enter key.

The simulation can be returned to continuous execution by entering G). This
executes the debugger's Go command.

10.1.3 Stepping Over an Instruction

1.
2.

3.

Stop the simulation as described in Section 3.1, “Tool Bar Buttons”, on page 7.
Open the Debugger Window (“View—Show Debugger”) or click on >*. The
simulation will pause and the Debugger Window will appear.

When the Debugger Window has attention, enter P on the debugger command
line. The debugger Pretty Trace command will execute, causing the CPU device
to execute up to the next instruction in linear order (i.e., step over calls, interrupts,
repeated instructions, and loops). This is distinguished from the T command,
which will step into calls, interrupts, etc., executing the next instruction regardless
of its type.

The debugger will repeat the last entered command, if you just type Enter in the
command edit window. So, you can repeatedly execute the pretty trace command
by entering P once, then repeatedly hitting the Enter key.

150

Chapter 10: CPU Debugger

User Manual November 2010

5. The simulation can be returned to continuous execution by entering G. This
executes the debugger's Go command.

10.1.4 Skipping an Instruction

1. Stop the simulation as described in Section 3.1, “Tool Bar Buttons”, on page 7.

2. Setup a breakpoint to break at the instruction that you want to step over (see
Section 10.1.1, “Setting a Breakpoint”, on page 151). Execute to the breakpoint.

3. Determine the EIP of the next instruction after the one to be skipped. This can
easily be determined by viewing the disassembly listing in the debugger. The top
line in the disassembly listing is the instruction pointed to by the current EIP (the
instruction that you wish to skip).

4. Use the debugger's R command to change the value in the EIP register. This can
be done by typing R EIP = new_value on the debugger command line. In this
case, new_value is the linear address of the instruction that follows the one that
you want to skip.

5. Enter G on the debugger command line. This will execute the debugger's Go
command. CPU execution will resume.

10.1.5 Viewing a Memory Region

1. Stop the simulation as described in Section 3.1, “Tool Bar Buttons”, on pa% 7.

2. Open the Debugger Window (“View—Show Debugger”) or click on >*. The
simulation will pause and the Debugger Window will appear.

3. When the Debugger Window has attention, use the debugger's DB, DW, DD, or
DQ command to display the contents of a memory region in the debugger. The
second letter of the command specifies the display format for the dump. The DB
command displays byte format, DW displays word format, DD displays dword
format, and DQ displays qword format. Each of these commands requires a
second parameter that specifies the beginning address (in hex) of the memory
dump. A linear address can be specified by adding a ‘,L’ suffix to the address.
Similarly, a physical address can be specified by adding a ,P’ suffix to the
address. Examples of the memory-dump commands are shown in Table 10-2.

4. After the first memory range is displayed, you can repeatedly hit Enter to advance
the display to the next sequential memory block.

Command Description

Dump memory in byte format, starting at physical
address, 0x00000010.

Dump memory in word format, starting at linear
address, 0XABCD1234.

Dump memory in quad word format, starting at linear
address, 0XxCO01CODE.

Table 10-2: Debugger Memory Dump Command Examples

DB 010,p

DW abcdl1234,L

DQ c001cOde, L

When using AMD-V™ Virtualization Technology in simulation, the user can tell the
debugger to access memory for either the guest or the host. If multiple guests are running
under a hypervisor, the debugger will acess memory for the last guest that has run. The

Chapter 10: CPU Debugger 151

User Manual November 2010

user can further qualify an input address using the 'G' (Guest) and 'H' (Host) specifiers.
For example:

Command Description _ _
Dd c001cOde, HL (I)D;Cr%%;f(l:eog\éM host linear m-emory starting at a(-zldress
Dd c001c0de, GL zlicjlaTeZstgiégSgl(S:ggﬂE.gueSt Il-near memory start-lng at
Dd c001cOde, HP inDdudTeF;st(?;Cg(;/ll\éloggs,t physmafl memory starUT\g at
Dd c001cOde, GP ;%Teig(])i gg(t) 1SC\:/()I\S S_ueSt physical memory starting at

Table 10-3: Debugger AMD-V™ Memory Dump Command Examples

If the user omits the 'G' or the 'H' specifier, the debugger will access memory from the
perspective of the attatched CPU's current state.

10.1.6 Reading PCI Configuration Registers

1. Stop the simulation as described in Section 3.1, “Tool Bar Buttons”, on pa% 7.

2. Open the Debugger Window (“View—Show Debugger”) or click on >*. The
simulation will pause and the Debugger Window will appear.

3. Use the debugger's S command to view the PCI configuration register contents for
a particular PCI function. The S command takes three hex parameters: bus,
device, function. If the specified bus, device, and function exist in the simulated
system, the debugger will display all 256 bytes of configuration data.

10.1.7 Reading CPU MSR Contents

1. Stop the simulation as described in Section 3.1, “Tool Bar Buttons”, on page 7.

2. Open the Debugger Window (“View—Show Debugger”) or click on >*. The
simulation will pause and the Debugger Window will appear.

3. Use the debugger's R command to view the contents of an MSR. This can be
accomplished by typing R Maddress on the debugger command line. In this case,
address is the 32-bit address (in hex) of the MSR. All leading zeros must be typed
in the address. Examples of MSR reads are shown in Table 10-4:

Command Description
R M00000250 Displays the contents of the MSR with an address of
0x0250.
Displays the contents of the MSR with an address of
R MCOO1001A O0XCOOL001A.

Table 10-4: MSR Read Examples

4. MSR registers can be modified by adding a "= Value" suffix on the above
command syntax. Value will be assigned to the MSR register only if the value
does not modify any reserved bits in the MSR. If an attempt is made to modify

152 Chapter 10: CPU Debugger

User Manual November 2010

any reserved bits, the MSR write is ignored. An example MSR write is shown in
Table 10-5:

5. This command may not allow access to all MSRs that are supported by the CPU
model. To view a list of all registers supported by the R command, enter R? on the
debugger command line.

Command Description
Assigns a value of
R MCO01001A = 0000000004000000 0x0000000004000000 to the MSR
with an address of 0xC001001A.

Table 10-5: MSR Write Example

10.1.8 Find Pattern in Memory

The find pattern command gl and ga can be used to search for a specific pattern in
memory, The pattern that is searched for can either be an ASCII string or a binary
pattern. If the search is for an ASCII string the noncase option (see Table 10-7,
"Debugger Commands and Definitions”, on page 158) can be used to match any
character.

Command Description
Finds the first occurrence of ASCII
gl 0x1000,L 0x2000 "PCI" pattern "PCI" in the given memory

range, 0x1000 - 0x2000.

Same as above but finds all occurrence
ga noncase 0x1000,L 0x2000 "PCI" of the ASCII pattern "PCI" using the
none case-sensitive search algorithm.
Finds all occurrences of the binary-
pattern 0x55 OXAA in the given memory
range, starting at physical address
0xF0000 and ends at 0xFOO00+0xFFFF.

Table 10-6: Find Pattern Example

ga O0xF0000,P OxXFFFF 0x55 OxAA

10.2Debugger Command Reference

The CPU Debugger Window consists of five areas, as shown in Figure 10-1. The top-
most area displays the current CPU integer registers in 16-, 32-, or 64-bit mode,
depending on the current mode of the CPU. The next area displays a disassembly of the
next six instructions, starting at the current CS:[R|E]IP. The next area displays 128 bytes
of memory, as bytes, words, dwords, or gwords. The address, size, and physical or virtual
attributes are based on the most recent D command. The next area is a general message
window where messages and information are displayed. The bottom area is the command
area, where debugger commands are entered.

Table 10-7 lists the debugger commands and their definitions.

Debugger Command Definition

Chapter 10: CPU Debugger 153

User Manual

November 2010

Debugger Command

Definition

Displays an abbreviated list of the available
commands and their syntax.

<blank line>

Repeat of previous command.

*<automation command>

Execute an automation command.

#P <Path> [;<Path>

Sets the file search path.

#L <Symbol File>
Address]

[Load

Loads the named symbol file, optionally
offsetting each address by the given load offset.
When the load is completed, the module name
attached to this group of symbols is displayed.
Supported symbol file extentsions are "*. TXT",
"* SYMTEXT", and Linux "symbol.map" file
("* MAP").

#M

Displays a list of the symbol modules currently
loaded.

#U <Module Name>

Unloads the named symbol module that had
previously been loaded with the #| command.

#?2 <Symbol>

Displays all symbols that contain the given
string.

#! <Address>

Displays the symbol that most closes matches
the given address.

bec {* | list }

Clears one or all breakpoints.

bd {* | list }

Disables one or all breakpoints.

be {* | list }

Enables one or all breakpoints.

bf <vector> <Pass count>

Creates and enables a breakpoint for the
indicated CPU exception. Sets the pass count to
[count], or O if not specified.

bh <vector> <Pass count>

Creates and enables a breakpoint for the
indicated hardware interrupt. Sets the pass
count to [count], or O if not specified.

bi <address> [r | w] <Pass
count> [v[b|w|d] <data>]

Creates and enables a breakpoint for the
indicated 1/O address. Sets the pass count to
[count], or O if not specified. Defaults to
read/write, but can be set to read-only or write-
only using the [r] or [w] options. [v] enables the
data <data> check capability for [b]yte, [w]ord,
or [d]ouble word I/O accesses. For example, “bi
80 w vb c0” stands for break when byte OxCO is
written to 1/O port 0x80.

br <Address> {r/w}
V<Data>

[pass cnt]

Creates and enables a breakpoint for access to
the given MSR address. Sets optional pass
count to [pass cnt]. User can also specify
conditional break by specifying the data to be
read/written via V<Data>

154

Chapter 10: CPU Debugger

User Manual

November 2010

Debugger Command

Definition

bl [* | list]

Display the settings of one or all breakpoints.

bm <address> [r | w] <Pass
count> [v[b|w|d] <data>]

Creates and enables a breakpoint for the
indicated memory address. Sets the pass count
to [count], or O if not specified. Defaults to read
or write, but can be set to read-only or write-
only using the [r] or [w] options. [v] enables the
data <data> check capability for [b]yte, [w]ord,
or [d]ouble word memory accesses. For
example, “bm 1000 w vb c0” stands for break
when byte 0xCO is written to memory address
0x1000.

bs <Vector> <Pass count>

Creates and enables a breakpoint for the
indicated software interrupt vector. Sets the
pass count to [count], or O if not specified.

bx <address> <Pass count>

Creates and enables a breakpoint for the
indicated code fetch address. Sets the pass
count to [count], or O if not specified. Sets the
pass count to [count], or O if not specified.

c[r|lw] <Bus> <Dev> <Func>
<Off> [data]

Performs a PCI configuration [r]ead or [w]rite.

dlblwldlqg] [,[1lp]

Displays the contents of [p]hysical (default) or
[I]inear memory as [b]ytes, [w]ords, [d]ouble
words, or [qJuad words, or in the previous
format if not specified.

e[blw|d|g] <address> <data
>0 [1p]

Allows the modification of [p]hysical (default)
or [l]inear memory, in [b]ytes, [w]ords,
[d]Jouble words, or [qJuad words, or in the
previous format, if not specified. Data values
are entered immediately after the address,
separated by spaces.

f[blw|d|g] <address range>
<value> [, [1l]p]

Fills the given [p]hysical (default) or [l]inear
memory-range with the indicated value.

g [address]

Begins or will resume CPU execution, setting a
temporary execution breakpoint on the given
address.

h [on | off | clear |
<value>]

Controls history-trace collection. [ON] enables
trace collection and clears the current trace
buffer; [OFF] disables trace collection, and
[CLEAR] clears the current trace buffer.
Specifying no arguments, or a Vvalue,
disassembles the most recent <value>
instructions executed.

i[blw|d] <port>

Input a [b]yte, [w]ord, or [d]ouble word from
the indicated port.

Chapter 10: CPU Debugger

155

User Manual

November 2010

Debugger Command

Definition

o[blw|d] <port> <data>

Output a [b]yte, [w]ord, or [d]ouble word to the
indicated port.

P Similar to the t command, single steps the
simulation one instruction, unless the current
instruction is a call, software interrupt, or
repeated string instruction, in which case this
command sets a temporary execution
breakpoint at the instruction sequentially
following the current instruction, and starts
simulation.

r [regname[= <value>]] Displays, and optionally alters, the contents of
various CPU registers. For a list of register
names that are supported, type R?. Normally,
the display is in the current CPU mode. To
force 16-bit, 32-bit, or 64-bit register display,
type R16, R32, or R64 respectively.

R16 Display 16-bit registers (until the next
instruction).

R32 Display 32-bit registers (until the next
instruction).

R64

Display 64-bit registers (until the next
instruction).

s <Bus> <Device> <Function>

Displays the PCI configuration registers
associated with the given Bus, Device, and
Function number.

t [count]

Executes [count] instructions. The default value
for [count] is 1.

u [address range]

Disassembles instructions starting, at the given
address and continuing for [length] instructions.
Instructions are disassembled using the current
CPU execution mode.

Displays the version number information for the
attached processor device.

g<a|l> [noncase]
<StartAddress>[, [1]|p]]

<[[L]Length] | [EndAddress]>

<Pattern>

Search physical (default) or linear Memory for
pattern and display all or only first
occurrence(s).

Table 10-7: Debugger Commands and Definitions

In general, address and count values can be specified as constants (hex for addresses,
ports, and values; decimal for counts and lengths), or as register names. For addresses,
the CS:, DS;, ES:, FS:, GS:, and SS: prefixes are also allowed.

Address values may be suffixed by ‘,L’ to specify a linear address (the default) or *,P’ to
specify a physical address. Addresses may also be specified by their symbol name.
Precede the symbol name with a # character to distinguish it from a hex constant.

156

Chapter 10: CPU Debugger

User Manual November 2010

11 Debug Interface

The simualtor supports Linux and Windows® based debugging. It is recommended to use
the GDB interface to debug on Linux based hosts. The kernel debugger interface can be
used to debug on Windows based hosts.

11.1Kernel Debugger
This only applies to the Windows® version of the simulator and not to the Linux version.

The simulator can interact with the kernel debugger through:

EXDI interface (see Section 7.21, "EXDI Server Device", on page 112).
e Serial port connection.

The serial ports can be configured so that any data read from or written to the simulated
serial ports is made available to the host machine. The serial ports can each be configured
to do this using either a named-pipe, or the actual serial port hardware.

The automation commands "GetCommPort" and "SetCommPort" are used for this
purpose, see Section A.7.11, “Serial”, on page 240.

Use the serial ports "SetCommPort" command to set the simulated serial port to use a
specific COM port. For example, to set the second serial port in the simulation to use
COMA4 for its communication, you would type

Serial:1.SetCommPort COM4 57600

The simulator will program the appropriate COM port (COM4 in the above example) to
57600 baud, 8 bits, no parity, 1 stop bit, no flow control.

All characters transmitted by the simulation through the serial port (second serial port in
the above example) will be sent out to the given COM port (COM4 in the above
example). In the same manner, all data received by the simulator through the given COM
port (COM4 in the above example) will appear as received data in the simulated COM
port.

To set the simulated serial port (COM1) to use a named-pipe you would type
Serial:1.SetCommPort pipe
The simulator will program the appropriate COM port (COML1 in the above example) to

use the named-pipe “\\.\pipe\SimNow.Com1” on the host to transfer data between host
and the simulated machine.

Chapter 11: Debug Interface 157

User Manual November 2010

The pipe is not created until the first “go” command will be executed. This can be
achieved by clicking on the “go” button followed by a click on the “stop” button. This
command sequence will setup the named-pipe.

If you try to connect the kernel debugger without setting up the named-pipe as described
the kernel debugger will return an error message.

In case you have difficulties to establish a connection, or the connection is unstable, or
KD has difficulties to stay in sync with the simulated OS. You can set a multiplier to
delay the baud rate. The baud rate is normally modeled based on the time elapsed on the
simulated system. The simulated system may be running at 1/100 of normal time which
will give longer time delays than the kernel debugger can tolerate. Consequently we
provide a way to speed up the modeled baud rate by up to 100 times. For example to
delay the baud rate by 1/100th of normal you would use the following automation
command:

Serial:1.SetMultiplier 1

By default, the multiplier is 100 which means the modeled rate is unchanged. The user
may set it in the range 1 to 100. When set to 1, the modeled rate is 100 times faster than
the baud rate, so the system delays will be that much shorter. See also Section A.7.11,
“Serial”, on page 240.

The following command will connect the kernel debugger to the simulator using a pipe as
communication channel:

C:\Program Files\Debugging Tools for Windows 64-bit\kd -k
com:pipe, port=\\.\pipe\SimNow.Coml

We recommend not starting the kernel debugger too early. To achieve best results launch
the kernel debugger after the O/S kernel has loaded and it is trying to establish a
connection with the kernel debugger.

11.2GDB Interface

Getting the gdb interface in the simulator to work involves a sequence of commands in
both the simulator and gdb. The current implementation requires the simulator to be
started and told to be ready for gdb to connect and then having gdb connect. As long as
the gdb command, "target remote ..." is issued last, the interface should be established.

It has been observed that after shutting down the simulator, the port used by the gdb
interface may not become immediately available for reuse. If this happens just shut down
both the simualtor and gdb and start again and the problem should go away.

11.2.1 Simple Approach
This assumes you are running the simulator and gdb on the same machine.

e Start the simualtor

158 Chapter 11: Debug Interface

User Manual November 2010

e Run the following automation command:
1 simnow> shell.gdb <ENTER>

e Start gdb
gdb> set architecture 1386:x86-64 <ENTER>
gdb> target remote:2222 <ENTER>

11.2.2 Alternate Approach
This assumes you are running the simualtor and gdb on the same machine.

e Start the simulator

e Run the following automation command:
1 simnow> shell.gdb <ENTER>

e Add the following to your .gdbinit file
define simnow
set architecture i1386:x86-64

target remote:2222
end

e Startgdb
gdb> simnow <ENTER>

11.2.3 Using Another Port on the Same Machine
The simualtor defaults to using port 2222 but can be directed to use another port.

e Start the simulator

e Run the following automation command:
1 simnow> shell.gdb 2233 <ENTER>

e Startgdb

gdb> set architecture 1386:x86-64 <ENTER>
gdb> target remote:2233 <ENTER>

11.2.4 Using Two Separate Machines

e Start the simualtor on simnow-host

e Run the following automation command:
1 simnow> shell.gdb <ENTER>

e Start gdb on gdb-host
gdb> set architecture 1386:x86-64 <ENTER>
gdb> target remote simnow-host:2222 <ENTER>

11.3Linux® Host Serial Port Communication

When running the simulator on a Linux host, the serial port is able to communicate with
external host applications via either a named-pipe or the host serial port. If the user has
configuired named-pipe communication, the simualtor will set up an input pipe and an

Chapter 11: Debug Interface 159

User Manual November 2010

output pipe at "~./simnow/comX/simnow in" and
"~./simnow/comX/simnow out". External applications should read data from the
simulation using the simnow_out named-pipe. Conversely, external applications should
send serial data to the simulation using the simnow _in pipe.

Note that it is not possible for two simualtor sessions to communicate with each other on
the same host using named-pipes. This is an issue that will be fixed in a future version of
the simulator.

When the simaultor serial port has been configuired to use the host serial port, the
simualtor will open "/dev/ttys0™ or */dev/ttys1"” (depending on wether it is COM1
or COM2). Note that the user will need to be running the simulator with root privelages
to avoid an access denied error when the simualtor attempts to open the device. The
simulator can communicate with external applications, such as a kernel debugger in this
mode.

160 Chapter 11: Debug Interface

User Manual November 2010

12 Command API

The CMDAPI (cmdapi.dll) gives Windows users a way to script the simulator using any
scripting language that can interface with the Microsoft Component Object Model
(COM). It gives you the opportunity to create scripts that instantiate a simulator object.
You can use this instantiated object to execute any of the SimNow™ automation
commands, see Section A.7, “Automation Commands”, on page 230.

CMDAPI is installed and registered whenever a SimNow release package has been
installed successfully.

After instantiating a SimNow.Command object, you can use the following methods to
execute automation commands, and retrieve status.

Exec
The Exec method executes the automation command that argl contains.

bool Exec(argl, arg2);

Parameters
argl
A string that contains the SimNow automation command to execute. For
example, "debug:0.execcmd t".
arg2
An input string buffer in which SimNow is to place the response from the
command in argl.

Return Value
Returns true if command completed successfully; otherwise it returns false.

GetLastError
The GetLastError method returns the last error code. If Exec returns false
you can call GetLastError to retrieve the error code.

void GetLastError (argl) ;

Parameters
argl
An input string buffer, in which SimNow will place the last error that was
recorded from the automation interface.

The Perl code in Example 12-1 shows how to instantiate a SimNow.Command object and
how to interact with the SimNow™ CMDAPI interface.

#lperl -w

Chapter 12: Command API 161

User Manual

November 2010

use Win32::0LE;
use Win32::0LE::Variant;

SWin32::0LE: :Warn = 3;

Scmd = Win32::0LE->new ('SimNow.Command"')
or die "Cannot open SimNow.Command\n";

$MyResponse = Variant (VT _BSTR | VT _BYREF, "");

do {
print "simnow> ";
SCmdLine = <>;
chomp ($CmdLine) ;
if ($CmdLine)
{
if ($cmd->Exec ($CmdLine, $MyResponse))
{
print "$MyResponse\n";
}
else
{
Scmd->GetLastError ($MyResponse) ;
print "Cannot Exec: $MyResponse\n";
}
}
} while ($CmdLine) ;

print "\ndone\n";
Example 12-1: Perl Sample CMDAPI Source Code

162

Chapter 12: Command API

User Manual November 2010

13 DiskTool

Use the DiskTool utility to create hard-disk images. DiskTool copies, byte-for-byte, the
contents of a secondary hard disk into an .hdd file. This .hdd file can be loaded as a disk
image in the simulator.

DiskTool runs in two modes, GUI mode, and command-line mode. Double-clicking on
the DiskTool icon, or running DiskTool from the command line with no command line
options, starts DiskTool in GUI mode. If you run DiskTool from the command line and
include any command-line parameters, DiskTool runs in command line mode. To get a
list of the command-line options, run "DiskTool -help".

13.1Command-Line Mode
The functions recognized by the DiskTool command line include:

Option:
G = Copy a physical device to the given image file.

Syntax:
{/G|-G} <DeviceName> <ImageName> [ImageSize]

[ImageSize] = # of sectors of data to copy from the device to the image file
= All sectors (this is the default value)

= All data to the end of physical partition 1

= All data to the end of physical partition 2

= All data to the end of physical partition 3

= All data to the end of physical partition 4
ny Other Valid Number> = The number of sectors specified

>DhWN RO

<

Example:
disktool —g /dev/hd0 image.hdd 102400

This command reads the first 102400 sectors from device /dev/hd0 and places
them in the image file, image.hdd.

Option:
P = Put the image file <ImageName> to physical device <DeviceName>.

Syntax:
{/P|-P} <DeviceName> <ImageName>

Example:
disktool —p /dev/hd0 image.hdd

This command reads image file image.hdd and writes data to physical device
/dev/hdO.

Chapter 13: DiskTool 163

User Manual November 2010

Option:
E = Erase (Write zeros to all blocks) physical device.

Syntax:
{/E|-E} <DeviceName>

Example:
disktool —e /dev/hd0

This command writes zeros to all sectors on device /dev/hdO.

Option:
N = Create a new blank image file that represents a freshly formatted device.

Syntax:
{/N|]-N} <ImageName> <ImageSize>

Example:
disktool —n image.hdd 102400

This command creates an image file named image.hdd that represents a physical
hard-disk drive containing 102400 sectors (each sector is 512 bytes).

13.2GUI Mode

The DiskTool GUI window is shown in Figure 13-2. DiskTool will only display floppy
drives, and DVD/CD and HDD drives that are connected to either the primary or the
secondary IDE controller. It will not display external USB or firewire drives, drives
attached to SCSI controllers, etc.

DiskTool displays the names of these devices in the Physical Drives list box, using
names appropriate for the host operating system. When running under Windows, the
Physical Drives list box will show you the physical drives, and in parenthesis, the logical
drive letters that are associated with the partitions on that drive. Selecting any of these
physical devices causes DiskTool to display information about that device in the lower
Drive Information list box.

DiskTool also displays information about all identified devices in a shell window. The
DiskTool shell window is shown in Figure 13-1.

164 Chapter 13: DiskTool

User Manual November 2010

e | Cisimnowdisktool.exe

Disk Device found at SCSI Port @ Bus 8@ Target B LUN B.
Opening WDC WD12B8ABEB-BBDAAL as >~ SPHYSICALDRIVE®

Cylinders: 14589

Heads: 255

Sectops: b3

Bytes: Li2

Media Type: 12

Completed. Device has heen successfully identified.

Dizk Device found at SCEI Port B Bus B Target 1 LUN 8.
Opening WDC WD12BABB-BBDAAL as ~~.~PHYSICALDRIUVEL
14589

Cylinders:

L EET E 255

Sectops: [

Bytes: Li2

Hedia Type: 12

Completed. Device has been successfully identified.

Dizk Device found at SCS5I Port 1 Bus B Target 1 LUN B.
Opening IC35LA2BAVERBY-B as “~.~PHYSICALDRIVEZ2

Cylinders: a1

Heads:

Sectors:

Bytes:

Media Type: 12

Completed. Device has bheen successfully identified.

Figure 13-1: DiskTool Shell Window

DiskTool will only copy drives - not partitions, although it does have the ability to stop
copying at the end of a given partition. So, for example, you can copy the contents of a
drive starting at the beginning of the drive and ending at the end of the 2nd partition, but
you can not copy only the 2nd partition.

LINUX Note: The list box always shows /dev/fd0 and /dev/fdl. If you click on one of
these and the physical device does not actually exist, the GUI will hang for a short time,
and will then display information in the lower list box indicating that a 4Kb media is
installed in this device DiskTool only recognizes device names /dev/hda through
/dev/hdz. In addition, it looks for the file /proc/ide/hd?/media, and uses the information in
that file to determine whether the device is a hard drive or a DVD/CD drive. If the file
does not exist, or if its contents cannot be parsed, the device will not be listed.

The buttons on the right side of the DiskTool Window correspond to the four command
line options listed above. In addition, there are About and Exit buttons that perform the
obvious function.

When creating a new blank image, or when getting an image from a physical device to an
image file, an additional dialog is presented that allows you to select how large the new
image file should be. The options in this dialog mirrors the [Image Size] options for the
equivalent command line-commands.

After launching DiskTool, you are presented with the interface, shown in Figure 13-2.

Chapter 13: DiskTool 165

User Manual November 2010

B SimMow DiskTool

Phwszical Drives
_ [Create Disk Image From Host Disk]
PHYSICALDRIVED [C:, G F:) = =
FHYSICALDRIVET [D] I Copy Dizk Image To Host Disk l
PHYSICALDRIMEZ [E:]
[Create Blank Disk Image I
Dirive Information
Floppy Disk 4. Eraze Host Digk
Ma dizk present
[About I
[Exit |

Figure 13-2: DiskTool GUI Window

You may select any physical drive in your system, including floppy drives. Selecting a
drive updates the Drive Information list box as shown in Figure 13-3.

Note: DiskTool does not support Serial ATA (SATA) drives!

B SimMow DiskTool

Phwsical Drives
A [Create Dizk Image From Hozt Disk I
H:
PHYSICALDRIMED [C:. G F:) = =
PHYSICALDRIVET [D] I Copy Dizk Image To Host Disk I
PHYSICALDRIMEZ [E:]
[Create Blank Disk Image I
Drrive Information
Physical Drive 0 - wDC WD1200BB-00DAAT [e |
48Bit LBA:
LEBA Sectors: 234375000
Total Capacity 111.8 GB
[About l
[Exi |

Figure 13-3: DiskTool Drive Information

166 Chapter 13: DiskTool

User Manual November 2010

When a drive is selected, you have the option to get an image from the drive, put an
image onto the drive, or erase the contents of the drive.

If you erase the contents of the drive, a dialog will ask for confirmation that you actually
wish to permanently destroy the contents of that hard disk.

In case DiskTool displays an “Operation failed!” message box, DiskTool was unable to
lock or unlock the drive. This can happen if, for example, any files or explorer windows
are open on any of the partitions on the selected drive.

For example, if the drive that DiskTool is trying to access has partitions for C: and D:,
and an explorer window is open on any path within D:, then DiskTool won’t be able to
lock or unlock that drive, and DiskTool will display an “Operation failed!” message box.

If you put an image onto the drive, a dialog will again ask for confirmation that you
actually wish to permanently destroy the contents of that hard disk. Then a dialog
prompts for the location of the image file that should be placed on that hard disk. A
progress bar (Figure 13-4) will inform you of the progress being made.

If you get an image from a drive, a dialog window will prompt for the path of file that
will store the disk image. A progress bar will inform you of the progress being made.

M Elank Image E| E|

C:/en_windows_®p_profeszsional_x64.hdd

[IIIIIIIIIIIIII %]

Cancel

Figure 13-4: DiskTool Progress Window

Chapter 13: DiskTool 167

User Manual November 2010

This page is intentionally blank.

168 Chapter 13: DiskTool

User Manual November 2010

14 BIOS Developer’s Quick Start Guide

This section provides you with instructions on how to perform common tasks within the
simulation environment. The tasks described in this section are likely to be of particular
interest to BIOS developers. However, developers of other types of software will benefit
as well, especially from tasks like logging CPU cycles and using the debugger.

14.1Loading a BIOS Image

1. Move the BIOS ROM image into your Images directory.

2. Use “View—Show Devices” to show the Devices Window, shown in Figure 3-2
on page 9.

3. Right-click on the system-BIOS memory device icon in the Device Window and

select the “Configure Device” option on the Workspace Popup Menu (Figure 3-3

on page 10).

Choose the “Memory Configuration” tab.

Enter the appropriate base address and size for your BIOS ROM.

Browse for your BIOS ROM image file. The browser will only show files that

have a ROM or BIN filename extension.

7. Select the read-only option, unless the BIOS code will modify its image within
the device.

8. For most BIOS ROM select the system BIOS ROM, memory-address masking,
and memory is non-cacheable options.

9. Click OK to close the configuration dialog and accept the changes.

o oA

14.2Changing DRAM Size

There are two ways to configure the simulated memory size. For generic memory size
configuration in powers of two you can use the Memory Configurator, see Figure 14-1
and for specific or non-symmetric DIMM configurations please follow the steps on page
174.

To open the Memory Configurator dialog click on the main menu item View and then
choose Show Memory Configurator (View—Show Memory Configurator).

The Memory Configurator populates each DIMM device with two DIMMs of all
identical size and type. It accounts for DDR and DDR2 and registered or unregistered
memory types as required. The SPD files are loaded using the default path for SPD files
“ /Images/<spdfile>".

Please be advised that memory configurations that are too large will slow down the
simulation significantly and may also confuse some BIOS's.

Chapter 14: BIOS Developer ’s Quick Start Guide 169

User Manual November 2010

Chooze an available memaory configuration from lizt
belows, then press the "Set Memary Config'' buttan to
perform the change. This iz only for genenc memon
zize configuration in powers af 2.

For specific or non-symmetnc DIMM configurations,
pleaze ga to the DIMM device(z] confiquration page(z]
and load or clear individual SPD BOM filez as necessany.

CAUTION: It iz easy to set memory configurations that
would be far too large to simulate conveniently. The
memory size set here is allocated by SimMow directly in
Host memory. If you lack sufficient memory in your host
then SimHow may hang.

512 Megabytes

Set Memorny Config

Figure 14-1: Memory Configurator

If you want specific or non-symmetric DIMM configurations please follow these steps:

=

w

6.

Use “View—Show Devices” to show the Devices Window.

Right-click on the DIMM-memory device icon in the Device Window and select
the “Configure Device” option on the Workspace Popup Menu (Figure 3-3 on
page 10).

Select the tab for the DIMM slot that you wish to alter.

Click the Import SPD button and browse for an appropriate SPD file. The SPD
files should be stored in the Images directory. The SPD filename should give an
indication of the size of the DIMM that it represents.

A DIMM can be eliminated from the system, by changing the contents of SPD
byte 0 (Number of SPD Bytes Used) to zero.

Click OK to close the configuration property sheet and accept the changes.

14.3Changing SPD Data

Any byte of SPD data can be altered in order to model DIMM configurations that do not
currently exist. The process for modifying a SPD data byte is as follows:

1.
2.

Use “View—Show Devices” to show the Devices Window.

Right-click on the DIMM Memory device icon in the Device Window and select
the “Configure Device” option on the Workspace Popup Menu (Figure 3-3 on
page 10).

Select the tab for the DIMM slot that you wish to alter.

170

Chapter 14: BIOS Developer s Quick Start Guide

User Manual November 2010

4. Select an SPD byte description from the large list box. The corresponding data
byte will be shown as two hex digits in the small edit box to the right of the list
box.

5. Type a new hex value in the edit box.

6. Optionally, the altered SPD data can be saved to a file by clicking the Export SPD
button.

7. Click OK to close the configuration property sheet and accept the changes.

If the contents of SPD byte 0 (Number of SPD Bytes Used) is set to zero, the DIMM wiill
not respond to any SMBUS accesses. This allows simulation of a DIMM module that
does not include an SPD ROM.

14.4Clearing CMOS

View the Devices Window and double-click on the Southbridge. Choose the “CMOS”
tab.

Save the current CMOS to disk and call it “blank.cmos”.

2. Open the file in Notepad and change all the data fields from their current values to
the desired fill pattern (usually 0x00 or OxFF; do not include the h character in the
file). Save the file. These first three steps are needed only once.

Reload the file into the simulator whenever you wish to clear CMOS.

4. View the Diagnostic Port Output in the Main Window, as shown in Figure 14-2.

=

L

Diagnostic Ports

00 0o |00 0083 - 80
00 00|00 00 87 - 84
00 00|00 00 e3 - el

Figure 14-2: Diagnostics Display

The Diagnostic Display displays data written to three I/O address ranges, 0x80-0x83,
0x84-0x87, OXEO-OXE3. Currently, the Diagnostic Display is implemented only for
Southbridge device. If the system configuration includes a Southbridge device, then the
Diagnostic Display will be displayed.

14.5Logging PCI Configuration Cycles

Northbridge devices can be configured to produce PCI configuration-cycle log messages.
Complete the following steps to enable and capture of these log messages.

1. Open the Device Window from the Main Window Menu (“View—Show
Devices). Double-click on the Northbridge device. This will bring up the device
Properties Window. Click on Logging Capabilities that will display the logging
options. Select Log PCI Configuration Cycle to and then click OK to accept the
configuration.

2. Select "View—Log Window" from the Main Window Menu. This will bring up a
Message Log dialog box similar to the one shown in Figure 14-3.

Chapter 14: BIOS Developer ’s Quick Start Guide 171

User Manual November 2010

Log messages will only be captured from devices that have a check beside their
name. If the Northbridge device does not have a check, then check it by clicking
its check box.

Select whether to send log messages to the window, and/or to a file. If logging to
a file, enter a filename for the log file.

Execute the simulation, and the requested information will be logged.

[#1]SimNow Message Log,

Debugger 0

Fast DMAD
Fast DHA 1
Fast DM4 2
Fast DMA 3
Fast DM 4
Fast DMAS
Fast DMAE
Fast DM& 7

A0 Bth Generation Integrated Northbridge 0
AND 1110 Hub O LogtoFie [smmanizg .)

AMD-2151 AGP Tunnel 0
AweSim Processor 0

Dimm Bank 0
Emerald Graphics 0 Log to 'window 100 Butfer Size (# lines)

IDE Controller 0
IDE Cantroller 1

[IDE Drive 0 . Register 78, ByteCount 04, Data 00000000
] IDE Drive 1 PCI CONFIG WRITE Bus 0, Device 18, Function 1, Register 7C, ByteCount 04, Data 00000007
] IDE Drive 2 PCI CONFIG READ Bus 0, Device 18, Function 0, Register 00, ByteCount 04, Data 00000022
[IDE Drive 3 PCI COMFIG READ Bus 0, Device 18, Function 0, Register 60, ByteCount 04, Data 00000000
] 10 Logger AMD 8th Generation Integrated Marthbridge 0 PCI COMFIG WRITE Bus 0, Dewvice 18, Function 3, Register 48, ByteCount 04, Data 00000000
[10 Logger AMD-8111 140 Hub 0 PCI COWFIG WRITE Bus 0, Device 18, Function 3, Register 4C, ByteCount 04, Data 00000000
] 10 Logger AMD-8151 AGP Tunnel 0 PCI CONFIG READ Bus 0, Device 19, Function 0, Register 00, ByteCount 04, Data 00000OFF
¥ 10 Loagsr sweSim Processor 0 PCI COMFIG READ Bus 0, Device 1A, Function 0, Register 00, ByteCount 04, Data 00000O0FF
[10 Loger Dimm Bank 0 PCI COMFIG READ Bus 0. Device 1B, Function 0, Register 00, ByteCount 04, Data 000000FF
1] 10 Logger Emerald Graphics 0 PCI CONFI3 READ Bus 0, Device 1C, Function 0, Register 00, ByteCount 04, Data 000000FF
1 10 Lagger Mermory Device 0 PCI CONFIG READ Bus 0, Device 1D, Function 0, Register 00, ByteCount 04, Data OO0DODOFF
=:gt?g:$1&ﬁjwﬁ5ﬁHFmog PCI COMFIG READ Bus 0. Dev?ce 1E, Function 0O, Register 00, ByteCount 04, Data 00000OFF
= mumgi PCI COMFIG READ Bus 0, Device 1F, Function 0, Register 00, ByteCount 04, Data 000000FF
& Jourall PCI COMFIG READ Bus 0, Device 7, Function 0, Register 43, ByteCount 01, Data 00000030

j;:::ji PCI CONFIG READ Bus O, Device 7, Function 0, Register 43, ByteCount 01, Data 000000BO
¥ Keyboard Contioller 0 PCI COMFIG WRITE Bus 0, Device 7, Function 0, Register 43, ByteCount 01, Data 00000030
] Keyboard Controller Scancode Translator 0 PCI COWFIG READ Bus 0, Device 7, Function 0, Register 43, ByteCount 01, Data 00000030
[Memory Device 0 PCI COMFIG WRITE Bus 0, Device 7, Function 0, Register 43, ByteCount 01, Data 00000030
PCl Bus 0 v

SubDevits
Winbond WE3627HF 510 0 Clear Window] [Sawe Window Contents...

[] Logto Conscle

PCI CONFIG WRITE Bus
PCI COMNFIG WRITE Bus
PCI CONFIG WRITE Bus
PCI CONFIG WRITE Bus
PCI CONFIG WRITE Bus
PCI COMNFIG WRITE Bus
PCI CONFIG WRITE Bus
PCI CONFIG WRITE Bus
PCI CONFIG WRITE Bus

. Deviee 18, Function
. Device 168, Function

e e

1, Register 58, ByteCount 04, Data 00000000
1, Register 5C, ByteCount 04, Data 00000003
. Device 18, Function 1, Register 60, ByteCount 04, Data 00000000
. Device 18, Function 1, Register 64, ByteCount 04, Data 00000004
. Device 18, Function 1, Register 68, ByteCount 04, Data 00000000
. Device 18, Function 1, Register 6C, ByteCount 04, Data 00000005
. Device 18, Function 1
> Device 18, Function 1
. Deviee 168, Function 1
1

» Register 70, ByteCount 04, Data 00000000
» Register 74, ByteCount 04, Data 00000006

Coooooooool

PCI CONFIG WRITE Bus 0, Device 7, Function 0, Register 43, ByteCount 01, Data 000000BD

Figure 14-3: Message Log Window

14.6Logging CPU Cycles

Setting

up the simulator to log CPU cycles requires most of the steps detailed in Section

14.5, “Logging PCI Configuration Cycles”. However, in this case, the messages from the
CPU are captured. The steps are:

1.

Open the Device Window (“View—Show Devices”). Double-click on the CPU
device. This will bring up the device Properties Window that will list available
logging options. Select the desired logging options. Click OK to accept the
configuration. See Section 7.1, “AweSim™ Processor Device”, on page 55 to
obtain detailed information about CPU Logging options.

Select "View—Log Window" from the Main Window Menu. This will bring up a
Message Log dialog box similar to the one shown in Figure 14-3.

Log messages will only be captured from devices that have a check beside their
name. If the CPU device does not have a check, then check it by clicking its check
box.

Repeat the steps here.

172

Chapter 14: BIOS Developer’s Quick Start Guide

User Manual November 2010

14.7 Creating a Floppy-Disk Image

Use the DiskTool utility to create a floppy-disk image file suitable for loading into the
simulator. DiskTool is located in the “SimNow\Tools" directory. To create an image of a
physical floppy disk, see Section 13, “DiskTool”, on page 167.

When the image has been created, it can be loaded into the simulation as described in
Section 5.1.1, “Open a Simulation Definition”, on page 40.

Chapter 14: BIOS Developer ’s Quick Start Guide 173

User Manual November 2010

This page is intentionally blank.

174 Chapter 14: BIOS Developer s Quick Start Guide

User Manual November 2010

15 Frequently Asked Questions (FAQ)

Why is the mouse cursor very difficult to control inside the simulated display area?

The mouse on the Host and in the Guest do not track each other very well in general. We
provide another mouse mode to help with this. Click on the menu item "Special
Keyboard—Grab Mouse and Keyboard”, see Section 5.2.3, “Interaction with the
Simulated Machine ”, on page 45.

Please note that this mode has interaction issues with the Exceed X-server on Windows if
you're running a Linux hosted version of the simulator and displaying it over a network
to a Windows PC desktop.

Why does the on-line help not work on Linux?
Quit any local Mozilla browsers before clicking on the on-line help menu items or
buttons in the simulator.

What is SimNow™ software?
See Section 1, “Overview”, on page 1.

Is SimNow faster than my old Vax 780?
See Section 1, “Overview ”, on page 1.

What is a "BSD" file?
See Section 6.1, “BSD Files”, on page 49.

What do you need to run the simulator?
See Section 2, “Installation ”, on page 3.

What generic BSD files are provided with the simulator?
See Section A.2.1, “Computer Platform Files”, on page 184.

How do I load a BSD file?
See Section 5.1.1, “Open a Simulation Definition File ”, on page 40.

How do I Start, Stop, Reset, Press Soft Sleep, or Press Soft Power for simulations?
See Section 3.1, “Tool Bar Buttons”, on page 7.

What kind of hardware does the simulator require?
See Section 2.1, ““System Requirements”, on page 3.

What host operating systems can the simulator be run on?
See Section 2.1, “System Requirements”, on page 3.

What Guest operating systems are supported?
See Section A.3, “Supported Guest Operating Systems”, on page 186.

Chapter 15: Frequently Asked Questions (FAQ) 175

User Manual November 2010

What devices are supported?
See Section 7, “Device Configuration”, on page 53.

What about graphics/video adapter?
See Section 1, “Overview”, on page 1 and Section 7.4, “Emerald Graphics Device on
page 65.

What about networking?
See Section 7.25, “E1000 Network Adapter Device ”, on page 128.

How does the simulator access media? What are Hard Disk, DVD-/ CD-ROM Disk, or
Floppy Disk images?
See Section 4, “Disk Images”, on page 35.

How do I create Disk images? What is DiskTool?
See Section 4, “Disk Images ”, on page 35.

How do | attach to a Hard Disk, DVD-/CD-ROM Disk, or Floppy Disk image?

All three kinds of images, including blank Hard Disk images of the desired size, can be
created on both Windows 64 Beta and Linux-64 Hosts with our DiskTool program
provided in the simulator release package.

The usage is relatively self-explanatory from its GUI, and it can also be run from the
command-line. Check out the command-line options via "DiskTool -h".

So, this file allows you to save a running simulation to a file. At any later time, you can
open this file in SimNow to restore the simulation to the same point where you left off.

How do I access the integrated Debugger?
See Section 10, “CPU Debugger ”, on page 151.

How do I copy files into the simulator?
See Section 5.2.1, “Assigning Disk-Image ”, on page 42.

How do | copy files out of the simulator?
See Section 5.2.1, “Assigning Disk-Image ”, on page 42.

Where can | find the POST codes/Diagnostic port values of the simulation?
See Section 3.4.1, “SimStats and Diagnostic Ports”, on page 28.

How do | edit device configurations in SimNow?
See Section 3.2, “Device Window ”, on page 9.

How do I change a BIOS in a BSD?
See Section 7.8, “Memory Device - Configuration Options”, on page 85.

176 Chapter 15: Frequently Asked Questions (FAQ)

User Manual November 2010

How do I change the amount of system RAM installed in a BSD?
See Section 7.3, “DIMM Device ”, on page 59.

How do I change the processor type of a processor in a BSD?
See Section 7.1, “AweSim™ Processor Device - Configuration Options”, on page 55.

How do I enable or disable IDE Hard Disk image journaling?
See Section 5.2.1, “Assigning Disk-Image ”, on page 42 or A.7.2 IDE on page 235.

Why does Windows Server 2003 crash?
See Section A.3, “Supported Guest Operating Systems ”, on page 187.

DiskTool displays an “Operation failed!” message box.
See Section 13.2, “GUI Mode ", on page 168.

Why doesn ’t the simulator work on Linux kernels prior to version 2.6.10?
See Section 2.1, “System Requirements”, on page 3.

Why is the graphics performance in simulation so slow?
See Section 7.4, “Emerald Graphics Device - Improve Graphics Performance ”, on page
68.

Why doesn’t the simulated Operating System correctly recognize the DVD/CD after |
changed the DVD/CD image?

When changing DVD/CD images clear the old image, allow the simulation to run for a
couple of seconds, and then set the new image. This gives the Operating System a chance
to see that the DVD-/CD-ROM is "not ready"”, and it more correctly detects that the
DVD/CD image has changed. For example:

<press "Stop" button>
1 simnow>ide:1.image 0 off

<press "go" button>
<wait 5 seconds>

<press "Stop" button>
1 simnow>ide:1l.image 0 c:\fc3-x86 64-disc2.iso

The serial connection to Microsoft’s KLernel Debugger seems to be unstable. What
can | do?
See Section 11.1, "Kernel Debugger", on page 161.

How can | obtain the full release version of the simulator?
See Section 1, “Overview ”, on page 1.

Why doesn’t the OS find a connected USB device?
The USB port may not be soft-enabled. For example to soft-enable USB port:

Chapter 15: Frequently Asked Questions (FAQ) 177

User Manual November 2010

1 simnow> usb:0.Port enable 0

178 Chapter 15: Frequently Asked Questions (FAQ)

User Manual November 2010

A Appendix

A.1 Format of Floppy and Hard-Drive Images

The floppy-disk format assumes a standard 1.44 Mbyte floppy disk, consisting of 80
cylinders, 2 heads, and eighteen 512-byte sectors per head (36 sectors per cylinder). The
image file consists simply of each sector, starting with the first sector of the first cylinder
on the first head, and proceeding sequentially through the last sector of the last cylinder
on the second head. The total size of the image file is identical to the total capacity of a
1.44 Mbyte floppy disk, or 1,474,560 bytes.

The hard-disk image is formatted in a similar fashion, with the exception that the total
number of cylinders, heads, and sectors per head varies. Because of this, the hard-disk
image file contains a 512-byte header before the raw data. This 512-byte header is
identical to the information provided by the drive in response to the ATA command
"IDENTIFY". Following the 512-byte header is the data for each sector from the device.
As with the floppy, the data starts with the first sector of the first cylinder on the first
head. Unlike floppies, however, the image file may end before the last sector of the last
cylinder on the last head. If an attempt is made by the simulator, to access data on the
drive image that is beyond the end of the available data (but still within the bounds
defined by the geometry of the device), the simulator will extend the image file
dynamically.

The BSD file contains the contents of all Viper Plus registers. It also saves the contents of
any buffers and the states of all internal devices (HDD controllers, PIT, PIC, etc.). When
the BSD file is read in, all buffers are filled with past data, and all states are restored to
their saved states.

The symbol files that the debugger uses are in a simple text format. Each line contains an
address, length, and symbol name. Any line that starts with a semicolon is considered a
comment. Following is a sample file:

; SimNow Debugger Symbol File Format

; Address Length Symbolic Name

004011f£0 3f main
00401a3c 0 GetModuleHandleA@4
00401a42 0 _GetCommandLineAQO

The address value may be an absolute address or a module-relative address. For the latter
case, the load address may be specified when the symbols are loaded into the debugger
with the "load_symbols” command (see Section 10.2, “Debugger Command Reference”,
on page 155).

Appendix A 179

User Manual November 2010

A.2 Bill of Material

A.2.1 Computer Platform Files (BSD)

This section gives a brief description of the computer platform description (BSD) files,
devices, and disk- and ROM-image files that come with AMD SimNow™ Platform
Simulator.

#CPU | #PCI Graphic | Public

File name Cores BUSES Southbridge SIO Type Release
Solo? 1 1 AMD-8111 W83627HF AGP
Fuge AMD-8111 W83627HF PCI
Melody 1p AMD-8111 W83627HF PCI
Melody 1p_jh AMD-8111 | W83627HF PCI
Melody 2p AMD-8111 W83627HF PCI
Melody 2p_jh AMD-8111 | W83627HF PCI
Quartet AMD-8111 W83627HF PCI

Serenade_1p-ami AMD-8111 | WB83627HF PCI

Serenade-ami AMD-8111 W83627HF PCI

Family10h_1p AMD-8111 W83627HF PCI
Family10h_2p AMD-8111 W83627HF PCI
Warthog2_Family10h AMD-8111 W83627HF PCI
. SMSC
Cat2_Familyl1lh SB600 KBC1100 PCI
Warthog?2 AMD-8111 W83627HF PCI
Cheetah_1p AMD-8111 W83627HF PCI
Cheetah_1p_jh AMD-8111 | WB83627HF PCI
Cheetah_2p AMD-8111 W83627HF PCI

Cheetah_2p_jh AMD-8111 | W83627HF PCI

Vp_bd_phasel AMD-8111 | WB83627HF PCI

Vp_bd_phase2 AMD-8111 | WB83627HF PCI

I Y N NN NN G RN Y Y N R RN

(@]
NN I IR E S hNHNI—‘#NNI—‘I—‘mI—‘E#
w

QLHHE HLYHHLLLLUUY ¥ | MHLHHLLLULH

PRI P |PRPOWWWW|W[R| P [NMNWWwww(dRDDP(D>

Sahara_Family10h SB400 ITEB712S10 PCI
Shiner_family10h SB700 ITE8712S10 PCI
. SMSC
Guam_family10h SB800 KBC1100 PCle
Dune SB400 ITE8712SIO PCI
Drachma_peso_1p_family10h SB700 W83627HF PCI
ati_mako_hd3870 1 SB600 ITE8712SIO PCle

Table 15-1: Computer Platform Files (BSD)

A.2.2 Device Files (*.BSL)

Please see Section 7, “Device Configuration”, on page 53 for device listings and
descriptions.

A.2.3 Product Files (*.ID)

A product file configures the CPU and Northbridge to represent and behave as an actual
AMD product. A product file will set the CPUID Family Model and Stepping, the
BrandID, the MANID, and fuses.

! This is the recommended default uniprocessor platform.

180 Appendix A

User Manual November 2010
; # CPU AMD Public
AL A SR e Cores PIN s Virtualization | Release

Athlon64-754_SH-C0_(800MHz).id AMD Athlon64 1 754 Cco ® ﬁ
Athlon64-754_SH-CG_(800MHz).id AMD Athlon64 1 754 CG ® @
Athlon64-754_SH-DO0_(800MHz).id AMD Athlon64 1 754 DO ® ﬁ
Athlon64-754_SH-EO_(800MHz).id AMD Athlon64 1 754 EO ® ﬁ
Athlon64-939 JH-EO0_(800MHz x2).id AMD Athlon64 2 939 EO ® ﬁ
Athlon64-939_SH-CG_(800MHz).id AMD Athlon64 1 939 CG ® ﬁ
Athlon64-939_SH-DO0_(800MHz).id AMD Athlon64 1 939 DO ® @
Athlon64-939_SH-EO_(800MHz).id AMD Athlon64 1 939 EO ® ﬁ
Athlon64-AM2_BH-G1B_(800MHz x2).id AMD Athlon64 2 AM2 G1B @ ﬁ
Athlon64-AM2_JH-F2G_(800MHz x2).id AMD Athlon64 2 AM2 F2G o o’
Athlon64-AM2_SH-FO_(800MHz).id AMD Athlon64 1 AM2 FO o o
Athlon64-S1_BH-G1B_(800MHz x2).id AMD Athlon64 2 S1 G1B o o’
Athlon64-S1_JH-F2G_(800MHz x2).id AMD Athlon64 2 S1 F2G o o’
Athlon64-S1_SH-FO_(800MHz).id AMD Athlon64 1 S1 FO o o’
Opteron-940_JH-E0_(800MHz x2).id AMD Opteron 2 940 EO E= 3 o’
Opteron-940_SH-B3_(800MHz).id AMD Opteron 1 940 B3 E= 3 o’
Opteron-940_SH-CO_(800MHz).id AMD Opteron 1 940 Co E= 3 o’
Opteron-940_SH-CG_(800MHz).id AMD Opteron 1 940 CG E= 3 o’
Opteron-940_SH-D0_(800MHz).id AMD Opteron 1 940 DO E= 3 o’
Opteron-940_SH-E0_(800MHz).id AMD Opteron 1 940 EO E= 3 o’
Opteron-L1_JH-FO_(800Mhz x2).id AMD Opteron 2 L1 FO o o’
Opteron-L1_JH-F2G_(800Mhz x2).id AMD Opteron 2 L1 F2G o o
Opteron-L1_SH-FO_(800Mhz).id AMD Opteron 1 L1 FO o o
Familyl0hDR-L1_AO0.id Family 10h 4 L1 A0 W ﬁ
Family10hDR-L1_BO.id Family 10h 4 L1 BO v v
Familyl0hDR-L1_CO0.id Family 10h 4 L1 Co @ @
Familyl0hDR-AM2_B0.id Family 10h 4 AM2 BO ﬁ ﬁ
Familyl0hRB-AM3_CO0.id Family 10h 4 AM3 Co @ ﬁ
Familyl0hBL-AM3_C2A.id Family 10h 4 AM3 C2A ﬁ %
Familyl0hHY-G3M_DOA.id Family 10h 120r8 G34 DOA W %
Familyl0hHY-G3S_DO0A.id Family 10h 6or4 G34 DOA @ =%
Familyl0hHY-L1_DOA.id Family 10h 6 L1 DOA ﬁ %
Family11h-S1_A0.id Family 11h 2 S1 A0 o %
Family11h-S1_BO0.id Family 11h 2 S1 BO o 3

A24

Table 15-2: Product Files

Image Files (*.HDD, *.FDD, *.ROM, *.SPD, *.BIN)

An image file is an exact representation of a media including the contents and the logical

format.

A.2.4.1 Hard-Disk Image Files

Table 15-3 shows hard-disk image files present in the simulator. These images can be
found in the simulators "/image" folder (see Section 2.3, "Directory Structure and

Executable”, on page 4).

File name

Description

Bare-4gig.hdd

4-GB bare hard disk image.

Bare-8gig.hdd

8-GB bare hard disk image.

Appendix A

181

User Manual November 2010

Table 15-3: Hard-Disk Images

A.2.4.2 Memory SPD Files

When a computer is booted (started), serial presence detect (SPD) is information stored in
an electrically erasable programmable read-only memory (EEPROM) chip on memory
module that tells the BIOS the memory module's size, data width, and speed. The BIOS
uses this information to configure the memory properly for maximum reliability and
performance.

File name

Description

simnow_DDR_32M.spd

32MB DDR memory

simnow_DDR_64M.spd

64MB DDR memory

simnow_DDR_128M.spd

128MB DDR memory

simnow_DDR_256M.spd

256MB DDR memory

simnow_DDR_512M.spd

512MB DDR memory

simnow_DDR_1G.spd

1024MB DDR memory

simnow_DDR_2G.spd

2048MB DDR memory

simnow_DDR_4G.spd

4096MB DDR memory

simnow_DDR_32M_Reg.spd

32MB registered DDR memory

simnow_DDR_64M_Reg.spd

64MB registered DDR memory

simnow_DDR_128M_Reg.spd

128MB registered DDR memory

simnow_DDR_256M_Reg.spd

256MB registered DDR memory

simnow_DDR_512M_Reg.spd

512MB registered DDR memory

simnow_DDR_1G_Reg.spd

1024MB registered DDR memory

simnow_DDR_2G_Reg.spd

2048MB registered DDR memory

simnow_DDR_4G_Reg.spd

4096MB registered DDR memory

simnow_DDR2_128M.spd

128MB DDR2 memory

simnow_DDR2_256M.spd

256MB DDR?2 memory

simnow_DDR2_512M.spd

512MB DDR2 memory

simnow_DDR2_1G.spd

1024MB DDR2 memory

simnow_DDR2_2G.spd

2048MB DDR2 memory

simnow_DDR2_4G.spd

4096MB DDR2 memory

simnow_DDR2_8G.spd

8192MB DDR2 memory

simnow_DDR2_16G.spd

16384MB DDR2 memory

simnow_DDR2_128M_Reg.spd

128MB registered DDR2 memory

simnow_DDR2_256M_Reg.spd

256MB registered DDR2 memory

simnow_DDR2_512M_Reg.spd

512MB registered DDR2 memory

simnow_DDR2_1G_Reg.spd

1024MB registered DDR2 memory

simnow_DDR2_2G_Reg.spd

2048MB registered DDR2 memory

simnow_DDR2_4G_Reg.spd

4096MB registered DDR2 memory

simnow_DDR2_8G_Reg.spd

8192MB registered DDR2 memory

simnow_DDR2_16G_Reg.spd

16384MB registered DDR2 memory

IBM_512_ Reg.spd

512MB registered DDR memory

Smart DDR_128 2 133.spd

128MB DDR memory

Table 15-4: Memory SPD Files

In order to use unbuffered DDR/DDR2 memory we recommend using the
“simnow_DDRXx_yyyy .spd” SPD files. To use buffered DDR/DDR2 memory use the
“simnow_DDRXx_yyyy_reg.spd” SPD files (for DDR2 x = 2 and yyyy = size in Mbytes).

182 Appendix A

User Manual November 2010

A.3 Supported Guest Operating Systems
Table 15-5 lists the guest OS compatibility matrix.

Operating System Known Issues

Windows 2000 UP No known issues.

Windows XP (32-Bit) UP No known issues.

Windows XP (32 Bit) MP No known issues.

Windows XP (64-Bit) UP No known issues.

Windows Server 2003 (32-Bit) UP No known issues.

Windows Server 2003 (64-Bit) UP No known issues.

Windows Server 2003 (64-Bit) MP No known issues.

Windows Vista® (32-Bit/64-Bit) UP/MP No known issues.

Windows Server 2008 No known issues.

MS—D@C))STM No known issues.

IljJIS/ul\);P (32-bit/64-bit), RedHat/SuSE, Kernel versions 2.4 and 2.6 are all known to work.
Hangs during PCMCIA probe when the VESA

SUSE LiveCD 9.1 BIOS Extension is enabled and the active VESA
Mode is not 1024x768.

SUSE LiveCD 9.2 No known issues.

SUSE LiveCD 9.3 No suppc_)rt for init@al graphical setup screen. Setup
screen will appear in text mode.

SUSE 10.1 No known issues.

Red Hat Enterprise Linux 4 No known issues.

Solaris x86 No known issues.

Solaris 10 for AMD64 No known issues.

Table 15-5: Supported Guest Operating Systems
The simulator has recently (but not specifically tested for this release):

e Successfully completed a 64-bit SpecJBB run on a simulated 4-processor
machine. The simulator has also successfully completed the entire SPECint®2000
and SPECfp®2000 suite.

e Successfully completed an in-memory run of TPC-C on a simulated multi-
processor system, as well as parts of TPC-C on a simulated RAID device.

e Successfully completed Sysmark® 2004's Office Productivity section and parts of
Internet Content Creation.

Appendix A 183

User Manual November 2010

A.4 CPUID

This section is an overview of the CPUID feature implementation in the AweSim CPU
processor model.

A.4.1 CPUID Standard Feature Support (Standard Function 0x01)

Table 15-6 shows the standard feature bits returned by the AweSim CPU processor
model and which features are fully (¥) or only partially (£) implemented and
supported. A # indicates that the returned feature bit is zero and this feature is not
implemented and not supported.

th th
7" 8" 8" 8" Generation
Feature . Generation Generation
Generation Rev. F
(Base) Pre.-Rev. F

Floating-Point Unit o v W v
Virtual Mode Extensions v w L v
Debugging Extensions” i iy D &
Page-Size Extension v v v Ll
Time Stamp Counter o v W Ll
AMD Model-Specific Registers ¥ % v v
Physical-Address Extensions L v o v
Machine Check Exception o o w o
CMPXCHGB8B Instruction % o v v
APIC o o Ll v
SYSENTER and SYSEXIT o o v v
Memory Type Range Registers o Cad v o
Page Global Extension o W Ll v
Machine Check Architecture Y [L W
Conditional Move Instruction o Cad L W
Page Attribute Table v v v Ll
Page Size Extensions (PSE-36) o o w o
CFLUSH Instruction ® o o v
MMX™ [nstructions L L o v
FXSAVE/FXRSTOR L L v o
SSE o o Ll v
SSE2 o o ol L
Hyper Threading * # 3# #
SSE3/PNI *® 3 * v
Monitor/MWAIT *® # 3# *

Table 15-6: CPUID Standard Feature implementation

A.4.2 CPUID AMD Feature Support (Extended Function 0x80000001)

Table 15-7 shows the extended feature bits returned by the AweSim CPU processor
model and which features are fully (¥) or only partially (£) implemented and

! Only read and write to debug registers is supported, side affects are not implemented.

184 Appendix A

User Manual

November 2010

supported. A # indicates that the returned feature bit is zero and this feature is not
implemented and not supported.

8th 8th 8th
7th . i i
Feature S Generation Generation Generation
(Base) Pre.-Rev. F Rev. F
Floating-Point Unit L v
Virtual Mode Extensions o W

Debugging Extensions”

Page-Size Extension

Time Stamp Counter

AMD Model-Specific Registers

Page Address Extensions

Machine Check Exception

CMPXCHGSB Instruction

APIC

SYSCALL and SYSRET

Memory Type Range Registers

Page Global Extension

Machine Check Architecture

Conditional Move Instruction

Page Attribute Table

Page Size Extensions (PSE-36)

No-execute page protection

SEM?

AMD extensions to MMX™

MMX™

FXSAVE/FXRSTOR

Fast FXSAVE/FXRSTOR

1 GB Paging feature

RDTSCP

Long Mode”

AMD Extensions to 3DNow!™

3DNow! Instructions

Virtualization Technology

HLLHMAXLLLHLCLLLCULLLELLLLHLL

LRI X LUULH LR

HLULLHHHULULH LU

LELYLHEAHAXLLLHLLLLLLLLLLLLLL e

Table 15-7: CPUID Extended Feature implementation

! Only read and write to debug registers is supported, side effects are not implemented.

2 Controlled by FUSE state.

Appendix A

185

User Manual November 2010

A.5 Known Issues

A.5.1 FSAVE/FRSTOR and FSTENV/FLDENV

When the simulator is executing FSAVE/FRSTOR and FSTENV/FLDENV in real-mode
it is using the 16-bit protected-mode memory format.

A.5.2 Triple Faulting

If the processor encounters an exception while trying to invoke the double fault (#DF)
exception handler, a triple fault exception occurs. This can rarely occur, but is possible.
For example, if the invocation of a double fault exception causes the stack to overflow,
then this would cause a triple fault. When this happens, the CPU will triple fault and
cause a shutdown-cycle to occur. This special cycle should be interpreted by the
motherboard hardware, which then pulls RESET, which ultimately resets the CPU and
the computer.

However, the simulator does not simulate triple faults. In case a triple fault occurs, the
simulator stops the simulation. The simulation cannot be restarted until a reset is asserted
but the simulation state can be inspected with the simulator’s debugger.

A.5.3 Performance-Monitoring Counter Extensions

Setting CR4.PCE (bit 8) to 1 allows software running at any privilege level to use the
RDPMC instruction. Software uses the RDPMC instruction to read the four performance-
monitoring MSRs, PerfCTR[3:0]. Clearing PCE to 0 allows only the most-privileged
software (CPL=0) to use the RDPMC instruction.

The simulator does support the RDPMC instruction but there is no logic behind the
simulated performance counter MSRs.

A.5.4 Microcode Patching

Microcode patches do not affect the simulated machine behavior. This may have
unintended consequences.

A.5.5 Instruction Coherency

Instruction coherency does not work when code pages have multiple virtual-mappings.
Here is an example that would not work right:

There is an x86 physical page that has code on it.

This page is mapped by two different virtual addresses, A and B

There is a store to virtual page A

We execute code from page B

We store again to A, modifying some of the x86 code that we executed in step 4
We execute the code from step 4 again

o E

186 Appendix A

User Manual November 2010

The code we execute in step 6 will probably be the old code because our page-based
coherency mechanism depends on the software TLB to write protect pages which have
x86 code that has been translated. However, this mechanism protects physical pages
through the virtual mapping mechanism and this mechanism only knows about one
virtual address mapping, not all possible mappings of any code page.

Appendix A 187

User Manual November 2010

A.6 Instruction Reference

This section specifies the hexadecimal and/or binary encodings for the opcodes that
SimNow does (¥), does not (#) or does partially (£) simulate when simulating an
AMD 8" Generation CPU, Rev. F.

A.6.1 Notation

A.6.1.1 Mnemonic Syntax

Each instruction has a syntax that includes the mnemonic and any operands that the
instruction can take. Figure A-1 shows an example of a syntax in which the instruction
takes two operands. In most instruction that take two operands, the first (left-most)
operand is both a source operand (the first source operand) and the destination operand.
The second (right-most) operand serves only as a source, not a destination.

ADDPD xmml, xmm2/meml28

Mnemonic

First Operand and
Destination Operand

Second Source Operand

Figure A-1: Syntax for Typical Two-Operand Instruction

The following notation is used to denote the size and type of source and destination
operands:

cReg — Control Register.

dReg — Debug register.

imm8 — Byte (8-Bit) immediate.

imm16 — Word (16-Bit) immediate.

imm16/32 — Word (16-bit) or doubleword (32-bit) immediate.

imm32 — Doubleword (32-bit) immediate.

imm32/64 — Doubleword (32-bit) or quadword (64-bit) immediate.
imm64 — Quadword (64-bit) immediate.

mem — An operand of unspecified size in memory.

mem8 — Byte (8-bit) operand in memory.

mem16 — Word (16-bit) operand in memory.

mem16/32 — Word (16-bit) or doubleword (32-bit) operand in memory.
mem32 — Doubleword (32-bit) operand in memory.

mem32/48 — Doubleword (32-bit) or 48-bit operand in memory.
mem48 — 48-bit operand in memory.

mem64 — Quadword (64-bit) operand in memory.

mem16:16 — Two sequential word (16-bit) operands in memory.
mem16:32 — A doubleword (32-bit) operand followed by a word (16-bit) operand
in memory.

mema32real — Single precision (32-bit) floating-point operand in memory.
e mem32int — Doubleword (32-bit) integer operand in memory.

188 Appendix A

User Manual November 2010

e memo64real — Double-precision (64-bit) floating-point operand in memory.
e memo64int — Quadword (64-bit) integer operand in memory.

e mem80real — Double-extended-precision (80-bit) floating-point operand in
memory.

e mem80dec — 80-bit packed BCD operand in memory, containing 18 4-bit BCD
digits.

e memz2env — 16-bit x87 control word or x87 status word.

e meml4/28env — 14-byte or 28-byte x87 environment. The x87 environment
consists of the x87 control word, x87 status word, x87 tag word, last non-control
instruction pointer, last data pointer, and opcode of the last non-control instruction
completed.

e mem94/108env — 94-byte or 108-byte x87 environment and register stack.

e memb512env — 512-byte environment for 128-bit media, 64-bit media, and x87
instructions.

e mmx — Quadword (64-bit) operand in an MMX™ register.

e mmx1l — Quadword (64-bit) operand in an MMX register, specified as the left-
most (first) operand in the instruction syntax.

e mmx2 - Quadword (64-bit) operand in an MMX register, specified as the right-
most (second) operand in the instruction syntax.

e mmx/mem32 — Doubleword (32-bit) operand in an MMX register or memory.

e mmx/mem64 — Quadword (64-bit) operand in an MMX register or memory.

e mmx1l/mem64 - Quadword (64-bit) operand in an MMX register or memory,
specified as the left-most (first) operand in the instruction syntax.

e mmx2/mem64 - Quadword (64-bit) operand in an MMX register or memory,
specified as the right-most (second) operand in the instruction syntax.

e moffset — Memory offset of unspecified size.

e moffset8 — Operand in memory located at the specified byte (8-bit) offset from the
instruction pointer.

e moffsetl6 - Operand in memory located at the specified word (16-bit) offset from
the instruction pointer.

e moffset32 - Operand in memory located at the specified doubleword (32-bit)

offset from the instruction pointer.

pntrl6:16 — Far pointer with 16-bit selector and 16-bit offset.

pntrl6:32 - Far pointer with 16-bit selector and 32-bit offset.

reg — Operand of unspecified size in a GPR register.

reg8 — Byte (8-bit) operand in a GPR register.

regl6 — Word (16-bit) operand in a GPR register.

reg16/32 - Word (16-bit) or doubleword (32-bit) operand in a GPR register.

reg32 — Doubleword (32-bit) operand in a GPR register.

reg64 - Quadword (64-bit) operand in a GPR register.

reg/mem8 — Byte (8-bit) operand in a GPR register or memory.

reg/mem16 — Word (16-bit) operand in a GPR register or memory.

reg/mem32 — Doubleword (32-bit) operand in a GPR register or memory.

reg/mem64 — Quadword (64-bit) operand in a GPR register or memory.

Appendix A 189

User Manual November 2010

rel8off — Relative address in the current code segment, in 8-bit offset range.

rel16o0ff - Relative address in the current code segment, in 16-bit offset range.

rel32off - Relative address in the current code segment, in 32-bit offset range.
segReg or sReg — Word (16-bit) operand in a segment register.

ST(0) — x87 stack register 0.

ST(i) — x87 stack register i, where i is between 0 and 7.

xmm — Double quadword (128-bit) operand in an XMM register.

xmm1 — Double quadword (128-bit) operand in an XMM register, specified as the

left-most (first) operand in the instruction syntax..

e xmm2 — Double quadword (128-bit) operand in an XMM register, specified as the
right-most (second) operand in the instruction syntax.

e xmm/mem64 — Quadword (64-bit) operand in a 128-bit XMM register or memory.

e xmm/mem128 — Double quadword (128-bit) operand in a 128-bit operand in an
XMM register or memory.

e xmml/mem128 — Double quadword (128-bit) operand in a 128-bit operand in an
XMM register or memory, specified as the left-most (first) operand in the
instruction syntax..

e xmm2/mem128 — Double quadword (128-bit) operand in a 128-bit operand in an

XMM register or memory, specified as the right-most (second) operand in the

instruction syntax.

A.6.1.2 Opcode Syntax

In addition to the notation shown in above in “Mnemonic Syntax” on page 192, the
following notation indicates the size and type of operands in the syntax of instruction
syntax.

e /digit — Indicates that the ModRM byte specifies only one register or memory
(r/m) operand. The digit is specified by the ModRM reg field and is used as an
instruction-opcode extension. Valid digit values range from 0 to 7.

e /r — Indicates that the ModRM byte specifies both a register and operand and a
reg/mem (register or memory) operand.

e cb, cw, cd ,cp — Specified a code-offset value and possibly a new code-segment
register value. The value following the opcode is either one byte (cb), two bytes
(cw), four bytes (cd), or six bytes (cp).

e ib, iw, id — Specifies an immediate-operand value. The opcode determines
whether the value is signed or unsigned. The value following the opcode,
ModRM, or SIB byte is either one byte (ib), two bytes (iw), or four bytes (id).
Word and doubleword values start wit the low-order byte.

e +rb, +rw, +rd, +rq — Specifies a register value that is added to the hexadecimal
byte on the left, forming a one-byte opcode. The result is an instruction that
operates on the register specified by the register code. Valid register-code values
are shown in “AMD x86-64 Architecture: Programmer’s Manual, Volume 3.

e m64 — Specifies a quadword (64-bit) operand in memory.

190 Appendix A

User Manual November 2010

e +i — Specifies an x87 floating-point stack operand, ST(i). The value is used only
with x87 floating-point instructions. It is added to the hexadecimal byte on the
left, forming a one-byte opcode. Valid values range from 0 to 7.

A.6.2 General Purpose Instructions

This chapter describes the function, mnemonic syntax, and opcodes that the simulator
simulates. General-purpose instructions are used in basic software execution. Most of
these instructions load, store, or operate on data location in the general-purpose registers
(GPRs), in memory, or in both. The remaining instructions are used to alter the sequential
flow of the program by branching to other locations within the program, or to entirely
different programs.

_ Instruction _ Supported
Mnemonic Opcode Description
AAA 37 Create an unpacked BCD number. @
AAD D5 Adjust two BCD digits in AL and AH. @
ARM D4 (iiieiﬁeare:dp;ﬁ.r of unpacked BCD values #
o T e | o
ADC AL, imm8 14 ib Add imm8 to AL + CF. o
ADC AL, imml6 14 iw Add immlé to AX + CF. o
ADC EAX, imm32 15 id Add imm32 to EAX + CF. o
ADC RAX, imm32 15 id Add sign-ext. imm32 to RAX + CF. 9
ADC reg/mem8, imm8 80 /2 ib Add imm8 to reg/mem8 + CF. #
ADC reg/meml6,imml6 81 /2 iw Add immlé to reg/memlé6 + CF. 9
ADC reg/mem32,imm32 81 /2 id Add imm32 to reg/mem32 + CF. 9
ADC reg/mem64,imm32 81 /2 id Zégd sign-ext. imm32 to reg/memé64 + v
ADC reg/memlé6,imm8 83 /2 ib Add sign-ext. imm8 to reg/memlé6 + CF. 9
ADC reg/mem32,imm8 83 /2 ib Add sign-ext. imm8 to reg/mem32 + CF. 9
ADC reg/memé64, imm8 83 /2 ib Add sign-ext. imm8 to reg/memé64 + CF. 9
ADC reg/mem8,reg8 10 /r Add reg8 to reg/mem8 + CF. 9
ADC reg/memlé6,reglé 11 /r Add reglé to reg/memlé + CF. 9
ADC reg/mem32,reg32 11 /r Add reg32 to reg/mem32 + CF. 9
ADC reg/memé64,reg64 11 /r Add reg64 to reg/memé64 + CF. 9
ADC reg8,reg/mem8 12 /r Add reg/mem8 to reg8 + CF. 9
ADC regl6,reg/memlé 13 /r Add reg/memlé to reglé + CF. 9
ADC reg32,reg/mem32 13 /r Add reg/mem32 to reg32 + CF. 9
ADC reg64,reg/memé64 13 /r Add reg/memé64 to regé64 + CF. 9
ADD AL, imm8 04 ib Add imm8 to AL. o
ADD AX, imml6 05 iw Add imml6 to AX. o
ADD EAX, imm32 05 id ADD imm32 to EAX. 9
ADD RAX, immé64 05 id ADD imm64 to RAX. 9
ADD reg/mem8, imm8 80 /0 ib Add imm8 to reg/mem8. 9
ADD reg/meml6,immlé6 81 /0 iw Add imml6 to reg/memlé6. 9
ADD reg/mem32,imm32 81 /0 id Add imm32 to reg/mem32. 9
ADD reg/mem64,imm32 81 /0 id Add sign-ext. imm32 to reg/memé64. 9
ADD reg/meml6,imm8 83 /0 ib Add sign-ext. imm8 to reg/memlé6. 9
ADD reg/mem32,imm8 83 /0 ib Add sign-ext. imm8 to reg/mem32. 9
ADD reg/memé64,imm8 83 /0 ib Add sign-ext. imm8 to reg/memé64. 9
ADD reg/mem8,reg8 00 /r Add reg8 to reg/mem8. 9
ADD reg/memlé6,reglé6 01 /r Add regl6 to reg/memlé6. 9
ADD reg/mem32,reg32 01 /r Add reg32 to reg/mem32. 9

[y
(]
=y

Appendix A

User Manual November 2010
Instruction Supported
Mnemonic Opcode Description PP
ADD reg/memé64,reg64 01 /r Add reg64 to reg/memé64. ﬁ?
ADD reg8,reg/mem8 02 /r Add reg/mem8 to reg$8. ﬁ?
ADD regl6,reg/meml6 03 /r Add reg/meml6 to reglé. ﬁ?
ADD reg32,reg/mem32 03 /r Add reg/mem32 to reg32. ﬁ?
ADD regé4,reg/memé64 03 /r Add reg/memé64 to regé4. ﬁ?
AND the contents of AL with an
AND AL, imm8 24 ib immediate 8-bit value and store the ﬁ?
result in AL.
AND the contents of AX with an
AND AX, immlé 25 1w immediate 16-bit value and store the ﬁ?
result in AX.
AND the contents of EAX with an
AND EAX, imm32 25 1id immediate 32-bit value and store the ﬁ?
result in EAX.
AND the contents of RAX with a sign-
AND RAX, imm32 25 1id extended immediate 32-bit wvalue and ﬁ?
store the result in RAX.
. , AND the contents of reg/mem8 with
AND reg/mem8, imm8 80 /4 ib i mme.. ﬂ?
, . AND the contents of reg/memlé with
AND reg/memlé6, immlé6 81 /4 iw imml6. @
AND reg/mem32, imm32 81 /4 id ?Eza;he contents of reg/mem32 with W?
. , AND the contents of reg/memé64 with a
AND reg/mem64, imm32 81 /4 id sign-extended imm32. qﬁ
. , AND the contents of reg/meml6 with a
AND reg/meml6, imm§ 83 /4 ib sign-extended 8-bit value. W?
. . AND the contents of reg/mem32 with a
AND reg/mem32, imm8 83 /4 ib sign-extended 8-bit value. @
. , AND the contents of reg/memé64 with a
AND reg/memé64, imm8 83 /4 ib sign-extended 8-bit value. ﬁ?
AND the contents of an 8-bit register
AND reg/mem8, reg8 20 /r or memory location with the contents W?
of an 8-bit register.
AND the contents of a 16-bit register
AND reg/memlé6, reglé6 21 /r or memory location with the contents W?
of a 16-bit register.
AND the contents of a 32-bit register
AND reg/mem32, reg32 21 /r or memory location with the contents 9
of a 32-bit register.
AND the contents of a 16-bit register
AND reg/memé64, reg64 21 /r or memory location with the contents ﬁ?
of a 16-bit register.
AND the contents of an 8-bit register
AND reg8, reg/mem8 22 /r with the contents of an 8-bit memory ﬁ?
location or register.
AND the contents of a 16-bit register
AND reglé6, reg/meml6 23 /r with the contents of a 16-bit memory ﬁ?
location or register.
AND the contents of a 32-bit register
AND reg32, reg/mem32 23 /r with the contents of a 32-bit memory ﬁ?
location or register.
AND the contents of a 64-bit register
AND regé64, reg/memé64 23 /r with the contents of a 64-bit memory ﬁ?
location or register.
Test whether a 16-bit array index is
BOUND regl6,meml6&memlé 62 /r within the bounds specified by the ﬁ?
two 16-bit values in memlé&memlé6.
Test whether a 32-bit array index is
BOUND reg32,mem32&mem32 62 /r within the bounds specified by the 9
two 32-bit values in mem32&mem32.
Bit scan forward on the contents of
BSF regl6, reg/mmemé8 0F BC /r req/memlé. 9
Bit scan forward on the contents of
BSF reg32, reg/mmem32 0OF BC /r req/mem32. ﬂ?
Bit scan forward on the contents of
BSF reg64, reg/mmemé4 0OF BC /r req/mem64. ﬁ?
Bit scan reverse on the contents of
BSR reglé, reg/mmemé8 0F BD /r req/memlé. ﬁ?
Bit scan reverse on the contents of
BSR reg32, reg/mmem32 0F BD /r req/mem32. 9
Bit scan reverse on the contents of
BSR reg64, reg/mmemé4 OF BD /r req/mem64. ﬂ?

192

Appendix A

User Manual November 2010
Instruction Supported
Mnemonic Opcode Description PP
BSWAP reg32 OF C8 +rd Reverse the byte order of reg32. ﬁ?
BSWAP reg64 OF C8 +rd Reverse the byte order of regé4. ﬁ?
Copy the value of the selected bit to
BT reg/memlé6, reglé OF A3 /r the carry flag. 9
Copy the value of the selected bit to
BT reg/mem32, reg32 0F A3 /r the carry flag. ﬁ?
BT reg/mem64, reg64 OF A3 /r Eﬁzycggi v?izz.of the selected bit to W?
BT reg/memlé6, imm8 OF BA /4 ib Eﬁgycggi v?izz.of the selected bit to ﬂ?
. , Copy the value of the selected bit to
BT reg/mem32, imm8 OF BA /4 ib the carry flag. 9
BT reg/memé64, imm8 OF BA /4 ib Eﬁzycsiiyviizz.Of the selected bit to ﬁ?
Copy the value of the selected bit to
BTC mem/memlé6, reglé OF BB /r the carry flag, and then complement w?
the selected bit.
Copy the value of the selected bit to
BTC mem/mem32, reg32 OF BB /r the carry flag, and then complement W?
the selected bit.
Copy the value of the selected bit to
BTC mem/memé64, reg64 OF BB /r the carry flag, and then complement W?
the selected bit.
Copy the value of the selected bit to
BTC reg/memlé, imm8 OF BA /7 ib the carry flag, and then complement 9
the selected bit.
Copy the value of the selected bit to
BTC reg/mem32, imm8 OF BA /7 ib the carry flag, and then complement ﬁ?
the selected bit.
Copy the wvalue of the selected bit to
BTC reg/memé64, imm8 OF BA /7 ib the carry flag, and then complement ﬁ?
the selected bit.
Copy the value of the selected bit to
BTR reg/memlé6, reglé 0F B3 /r the carry flag, and then clear the ﬁ?
selected bit.
Copy the wvalue of the selected bit to
BTR reg/mem32, reg32 OF B3 /r the carry flag, and then clear the ﬁ?
selected bit.
Copy the wvalue of the selected bit to
BTR reg/memé4, reg64 OF B3 /r the carry flag, and then clear the ﬁ?
selected bit.
Copy the wvalue of the selected bit to
BTR reg/meml6, imm8 OF BA /6 ib the carry flag, and then clear the ﬁ?
selected bit.
Copy the wvalue of the selected bit to
BTR reg/mem32, imm8 OF BA /6 ib the carry flag, and then clear the 9
selected bit.
Copy the value of the selected bit to
BTR reg/memé64, immé64 OF BA /6 ib the carry flag, and then clear the #
selected bit.
Copy the value of the selected bit to
BTS reg/memlé6, reglé OF AB /r the carry flag, and then set the ﬂ?
selected bit.
Copy the value of the selected bit to
BTS reg/mem32, reg32 OF AB /r the carry flag, and then set the W?
selected bit.
Copy the value of the selected bit to
BTS reg/memé64, regé64 OF AB /r the carry flag, and then set the W?
selected bit.
Copy the value of the selected bit to
BTS reg/memlé6, imm8 OF BA /5 ib the carry flag, and then set the 9
selected bit.
Copy the value of the selected bit to
BTS reg/mem32,imm8 OF BA /5 ib the carry flag, and then set the ﬁ?
selected bit.
Copy the value of the selected bit to
BTS reg/memé64, imm8 OF BA /5 ib the carry flag, and then set the ﬁ?
selected bit.
, Near call with the target specified
CALL rellboff E8 iw by a 16-bit relative dis%laceﬁent. 9
, Near call with the target specified
CALL rel32off E8 id by a 32-bit relative displacement. W?
CALL reg/memlé FE /2 Near call with the target specified W?

by reg/memlé6.

Appendix A

193

User Manual

November 2010

Instruction

Mnemonic

Opcode

Description

Supported

Near call with the target specified

CALL reg/mem32 FF /2 by req/mem3Z. 9
CALL reg/memé64 FF /2 E\e/aie;?ng_elmgzj:th the target specified @
Far call direct, with the target
CALL FAR pntrl6:16 9A cd specified by a far pointer contained 9
in the instruction.
Far call direct, with the target
CALL FAR pntrl6:32 9A cp specified by a far pointer contained #
in the instruction.
CALL FAR meml6:16 FF /3 z}iécicfaile];i gndirfegrt,povi]i?;r tihne m;i;fget ﬁ
CALL FAR meml6:32 FF /3 gggcicfaileld }i_nd;r?;;,pogjﬁikelr tihne mgrigget 9
CBW 98 Sign-extend AL into AX. o
CWDE 98 Sign-extend AX into EAX. o
CDQE 98 Sign-extend EAX into RAX. @
CWD 99 Sign-extend AX into DX:AX. o’
CDQ 99 Sign-extend EAX into EDX:EAX. @
CQO 99 Sign-extend RAX into RDX:RAX. @
CLC F8 Clear the carry flag (CF) to zero. @
CLD FC Clear the direction flag (DF) to #
zero.
CFLUSH mem8 OF AE /7 Flush cache line containing memS§. ﬁ
CMC F5 Complement the carry flag (CF). @
CMOVO reglé6, reg/memlé OF 40 /r Move if overflow (OF = 1). @
CMOVO reg32, reg/mem32 OF 40 /r Move 1f overflow (OF = 1). ﬁ
CMOVO regé4, reg/memé64 OF 40 /r Move 1f overflow (OF = 1). ﬁ
CMOVNO reglé, reg/memlé OF 41 /r Move 1f not overflow (OF = 0). ﬁ
CMOVNO reg32, reg/mem32 OF 41 /r Move 1f not overflow (OF = 0). ﬁ
CMOVNO reg64, reg/memé64 OF 41 /r Move 1f not overflow (OF = 0). ﬁ
CMOVB reglé6, reg/memlé OF 42 /r Move 1if below (CF = 1) ﬁ
CMOVB reg32, reg/mem32 OF 42 /r Move 1if below (CF = 1) ﬁ
CMOVB regé4, reg/memé64 OF 42 /r Move 1if below (CF = 1). ﬁ
CMOVC reglé6, reg/memlé OF 42 /r Move 1if carry (CF = 1). ﬁ
CMOVC reg32, reg/mem32 0OF 42 /r Move if carry (CF = 1) 9
CMOVC reg64, reg/memé64 0OF 42 /r Move if carry (CF = 1) 9
CMOVNAE reglé6, reg/memlé OF 42 /r Move 1f not above or equal (CF = 1). #
CMOVNAE reg32, reg/mem32 OF 42 /r Move 1f not above or equal (CF = 1). #
CMOVNAE reg64, reg/memé64 OF 42 /r Move 1f not above or equal (CF = 1). #
CMOVNB reglé, reg/memlé OF 43 /r Move 1f not below (CF = 0) #
CMOVNB reg32, reg/mem32 OF 43 /r Move 1f not below (CF = 0) #
CMOVNB regé64, reg/memé64 OF 43 /r Move 1f not below (CF = 0) #
CMOVNC reglé, reg/memlé OF 43 /r Move if not carry (CF = 0) 9
CMOVNC reg32, reg/mem32 OF 43 /r Move if not carry (CF = 0) 9
CMOVNC reg64, reg/memé64 OF 43 /r Move if not carry (CF = 0) 9
CMOVAE reglé, reg/memlé OF 43 /r Move 1if above or equal (CF = 0). #
CMOVAE reg32, reg/mem32 OF 43 /r Move if above or equal (CF = 0). #
CMOVAE reg64, reg/memé64 OF 43 /r Move 1if above or equal (CF = 0). #
CMOVZ reglé, reg/memlé OF 44 /r Move if zero (ZF = 1). 9
CMOVZ reg32, reg/mem32 OF 44 /r Move if zero (ZF = 1). 9
CMOVZ reg64, reg/memé64 OF 44 /r Move if zero (ZF = 1). 9
CMOVE regl6, reg/memlé OF 44 /r Move if equal (ZF = 1). 9
CMOVE reg32, reg/mem32 OF 44 /r Move if equal (ZF = 1). 9
CMOVE reg64, reg/memé64 OF 44 /r Move if equal (ZF = 1). 9
CMOVNZ reglé, reg/memlé OF 45 /r Move if not zero (ZF = 0). 9
CMOVNZ reg32, reg/mem32 0F 45 /r Move if not zero (ZF = 0). #

194

Appendix A

User Manual November 2010
_ Instruction _ Supported
Mnemonic Opcode Description

CMOVNZ regé64, reg/memé64 OF 45 /r Move 1if not zero (ZF = 0). ﬁ
CMOVNE reglé6, reg/memlé OF 45 /r Move 1if not equal (ZF = 0). @
CMOVNE reg32, reg/mem32 OF 45 /r Move 1if not equal (ZF = 0). @
CMOVNE regé64, reg/memé64 OF 45 /r Move 1if not equal (ZF = 0). @
CMOVBE reglé, reg/memlé OF 46 /r P:/JO‘{)e.if below or equal (CF = 1 or ZF 9
CMOVBE reg32, reg/mem32 OF 46 /r D:/Joxlz)e.if below or equal (CF = 1 or zF @
CMOVBE reg64, reg/mem64 0F 46 /r D:/Joxlz)e.if below or equal (CF = 1 or ZF @
CMOVNA reglé, reg/memlé6 OF 46 /r Move if not above (CF = 1 or ZF = 1). @
CMOVNA reg32, reg/mem32 OF 46 /r Move if not above (CF = 1 or ZF = 1). @
CMOVNA reg64, reg/memé64 OF 46 /r Move if not above (CF = 1 or ZF = 1). @
CMOVNBE reglé6, reg/memlé OF 47 /r I\Z/J;vi (i))f.not below or equal (CF = 0 or 9
CMOVNBE reg32, reg/mem32 OF 47 /r Dggvi é)f.not below or equal (CF = 0 or o
CMOVNBE reg64, req/memé4 OF 47 /r g;vi éf.mt below or equal (CF = 0 or o’
CMOVA regl6, reg/meml6 OF 47 /r Move if above (CF = 1 or ZF = 0) 9
CMOVA reg32, reg/mem32 OF 47 /r Move if above (CF = 1 or ZF = 0) 9
CMOVA regé4, reg/memé64 OF 47 /r Move if above (CF = 1 or ZF = 0) 9
CMOVS reglé6, reg/meml6 OF 48 /r Move if sign (SF = 1). 9
CMOVS reg32, reg/mem32 OF 48 /r Move if sign (SF = 1). 9
CMOVS regé4, reg/memé64 OF 48 /r Move if sign (SF = 1). 9
CMOVNS reglé, reg/memlé OF 49 /r Move if not sign (SF = 0) 9
CMOVNS reg32, reg/mem32 OF 49 /r Move if not sign (SF = 0) 9
CMOVNS reg64, reg/memé64 OF 49 /r Move if not sign (SF = 0) 9
CMOVP regl6, reg/meml6 OF 4A /r Move if parity (PF = 1) o
CMOVP reg32, reg/mem32 OF 4A /r Move if parity (PF = 1) 9
CMOVP regé4, reg/memé64 OF 4A /r Move if parity (PF = 1) 9
CMOVPE reglé, reg/memlé OF 4A /r Move if parity even (PF = 1 9
CMOVPE reg32, reg/mem32 OF 4A /r Move if parity even (PF = 1 9
CMOVPE reg64, reg/memé64 OF 4A /r Move if parity even (PF = 1 9
CMOVNP reglé, reg/memlé OF 4B /r Move if not parity (PF = 0) 9
CMOVNP reg32, reg/mem32 OF 4B /r Move if not parity (PF = 0) 9
CMOVNP regé64, reg/memé64 OF 4B /r Move 1if not parity (PF = 0). 9
CMOVPO reglé, reg/memlé OF 4B /r Move 1if parity odd (PF = 0) 9
CMOVPO reg32, reg/mem32 OF 4B /r Move if parity odd (PF = 0). 9
CMOVPO reg64, reg/memé64 OF 4B /r Move if parity odd (PF = 0). 9
CMOVL reglé6, reg/memlé OF 4C /r Move if less (SF <> OF). 9
CMOVL reg32, reg/mem32 OF 4C /r Move if less (SF <> OF). 9
CMOVL reg64, reg/memé64 OF 4C /r Move if less (SF <> OF). 9
CMOVNGE regl6, reg/meml6 0F 4C /r D(;J;x)/e if not greater or equal (SF <> #
CMOVNGE reg32, reg/mem32 OF 4C /r g;‘)’e if not greater or equal (SF <> 4
CMOVNGE reg64, reg/mem64 OF 4C /r D(;J;X)Ie if not greater or equal (SF <> @
CMOVNL reglé, reg/memlé OF 4D /r Move if not less (SF = OF). #
CMOVNL reg32, reg/mem32 OF 4D /r Move if not less (SF = OF). #
CMOVNL reg64, reg/memé64 OF 4D /r Move if not less (SF = OF). #
CMOVGE reglé, reg/memlé OF 4D /r Move if greater or equal (SF = OF). #
CMOVGE reg32, reg/mem32 OF 4D /r Move if greater or equal (SF = OF). #
CMOVGE reg64, reg/memé64 OF 4D /r Move if greater or equal (SF = OF). #
CMOVLE reglé, reg/memlé OF 4E /r ging)i.f less or equal (2F = 1 or SF ﬁ
CMOVLE reg32, reg/mem32 0F 4E /r 1\<4§ng)'1:£ less or equal (ZF = 1 or SF #

Appendix A

195

User Manual November 2010
Instruction Supported
Mnemonic Opcode Description pp
Move if less or equal (ZF = 1 or SF
CMOVLE reg64, reg/memé64 OF 4E /r <> OF) . 9
CMOVNG reglé, reg/memlé6 OF 4E /r Move if less not greater (zF = 1 or ﬁ?
SF <> OF) .
CMOVNG reg32, reg/mem32 0F 4E /r g;vi>1§Ffess not greater (ZF = 1 or W?
CMOVNG reg64, reg/mem64 0F 4E /r Move 1f less not greater (ZF = 1 or W?
SF <> OF) .
Move if not less or equal (ZF = 0 or
CMOVNLE regl6, reg/memlé OF 4F /r SF - OF). 9
CMOVNLE reg32, reg/mem32 OF 4F /r g;vi Sé)nOt less or equal (2F = 0 or ﬁ?
CMOVNLE reg64, reg/memé64 OF 4F /r g;vi SE)?Ot less or equal (2F = 0 or ﬁ?
CMOVG reglé6, reg/memlé OF 4F /r Move 1if greater (ZF = 0 or SF = OF). ﬁ?
CMOVG reg32, reg/mem32 OF 4F /r Move 1if greater (ZF = 0 or SF = OF). ﬁ?
CMOVG regé4, reg/memé64 OF 4F /r Move if greater (ZF = 0 or SF = OF). ﬁ?
. , Compare an 8-bit immediate value with
CMP AL, imm8 3¢ ib thepcontents of the AL register. W?
, , Compare a 16-bit immediate value with
CMP AX, imml6 3D iw the contents of the AX register. 9
. , Compare a 32-bit immediate value with
CMP EAX, imm32 3D id the contents of the EAX register. W?
. , Compare a 32-bit immediate value with
CMP RAX, imm32 3D id thepcontents of the RAX register. W?
Compare an 8-bit wvalue with the
CMP reg/mem8, imm8 80 /7 1ib contents of an 8-bit register or ﬁ?
memory operand.
Compare a 1l6-bit wvalue with the
CMP reg/memlé6, immlé6 81 /7 iw contents of a 1l6-bit register or 9
memory operand.
Compare a 32-bit wvalue with the
CMP reg/mem32, imm32 81 /7 id contents of a 32-bit register or @
memory operand.
Compare a 32-bit signed immediate
CMP reg/memé64, imm32 81 /7 id value with the contents of a 64-bit ﬂ?
register or memory operand.
Compare an 8-bit signed immediate
CMP reg/memlé6, imm8 83 /7 ib value with the contents of a 16-bit W?
register or memory operand.
Compare an 8-bit signed immediate
CMP reg/mem32, imm8 83 /7 id value with the contents of a 32-bit W?
register or memory operand.
Compare an 8-bit signed immediate
CMP reg/memé64, imm8 83 /7 id value with the contents of a 64-bit 9
register or memory operand.
Compare the contents of an 8-bit
CMP reg/mem8, reg8 38 /r register or memory operand with the ﬁ?
contents of an 8-bit register.
Compare the contents of a 16-bit
CMP reg/memlé6, reglé 39 /r register or memory operand with the ﬁ?
contents of a 16-bit register.
Compare the contents of a 32-bit
CMP reg/mem32, reg32 39 /r register or memory operand with the ﬁ?
contents of a 32-bit register.
Compare the contents of a 64-bit
CMP reg/memé64, regé64 39 /r register or memory operand with the ﬁ?
contents of a 64-bit register.
Compare the contents of an 8-bit
CMP reg8, reg/mem8 3A /r register with the contents of an 8- ﬁ?
bit register or memory operand.
Compare the contents of a 16-bit
CMP reglé, reg/memlé6 3B /r register with the contents of a 16- ﬁ?
bit register or memory operand.
Compare the contents of a 32-bit
CMP reg32, reg/mem32 3B /r register with the contents of a 32- 9
bit register or memory operand.
Compare the contents of a 64-bit
CMP reg64, reg/memé64 3B /r register with the contents of a 64- #
bit register or memory operand.
Compare the byte at DS:rSI with the
CMPS mem8, mem8 A6 byte at ES:rDI and then increment or ﬂ?

decrement rSI and rDI.

196

Appendix A

User Manual November 2010
Instruction Supported
Mnemonic Opcode Description pp
Compare the word at DS:rSI with the
CMPS memlé6, meml6 A7 word at ES:rDI and then increment or ﬁ?
decrement rSI and rDI.
Compare the doubleword at DS:rSI with
CMPS mem32, mem32 A7 the doubleword at ES:rDI and then ﬁ?
increment or decrement rSI and rDI.
Compare the quadword at DS:rSI with
CMPS memé64, memé64 A7 the quadword at ES:rDI and then ﬁ?
increment or decrement rSI and rDI.
Compare the byte at DS:rSI with the
CMPSB A6 byte at ES:rDI and then increment or ﬁ?
decrement rSI and rDI.
Compare the word at DS:rSI with the
CMPSW A7 word at ES:rDI and then increment or 9
decrement rSI and rDI.
Compare the doubleword at DS:rSI with
CMPSD A7 the doubleword at ES:rDI and then @
increment or decrement rSI and rDI.
Compare the quadword at DS:rSI with
CMPSQ A7 the quadword at ES:rDI and then w?
increment or decrement rSI and rDI.
Compare AL register with an 8-bit
register or memory location. If
CMPXCHG reg/mem8, reg8 0F BO /r equal, copy the second operand to the ﬁ?
first operand. Otherwise, copy the
first operand to AL.
Compare AX register with a 16-bit
register or memory location. If
CMPXCHG reg/meml6, regl6 0F Bl /r equal, copy the second operand to the W?
first operand. Otherwise, copy the
first operand to AX.
Compare EAX register with a 32-bit
register or memory location. If
CMPXCHG reg/mem32, reg32 OF Bl /r equal, copy the second operand to the @
first operand. Otherwise, copy the
first operand to EAX.
Compare RAX register with a 64-bit
register or memory location. If
CMPXCHG reg/memé64, reg64 OF Bl /r equal, copy the second operand to the ﬁﬁ
first operand. Otherwise, copy the
first operand to RAX.
Compare EDX:EAX register to 64-bit
memory location. If equal, set the
zero flag (ZF) to 1 and copy the
CMPXCHGS8B OF C7 /1 mé64 ECX:EBX register to the memory ﬁ?
location. Otherwise, copy the memory
location to EDX:EAX and clear the
zero flag.
Executes the CPUID function whose
CPUID OF A2 numper is in the EAX register. W?
DAA 27 Decimal adjust AL. #
DAS 2F Decimal adjusts AL after subtraction. #
Decrement the contents of an 8-bit
DEC reg/mem8 FE /1 register or memory location by 1. w?
Decrement the contents of a 16-bit
DEC reg/meml6 FF /1 register or memory location by 1. 9
Decrement the contents of a 32-bit
DEC reg/mem32 FF /1 register or memory location by 1. W?
Decrement the contents of a 64-bit
DEC reg/mem64 FF /1 register or memory location by 1. W?
Decrement the contents of a 16-bit
DEC reglé6 48 +rw register by 1. ﬂ?
Decrement the contents of a 32-bit
DEC reg32 48 +rd register by 1. 9
Perform unsigned division of AX by
the contents of an 8-bit register or
DIV reg/mem8 F6 /6 memory location and store the ﬁﬁ
quotient in AL and the remainder in
AH.
Perform unsigned division of DX:AX by
the contents of a 16-bit register or
DIV reg/memlé6 F7 /6 memory location and store the ﬁ?
quotient in AX and the remainder in
DX.

Appendix A

197

User Manual November 2010
Instruction Supported
Mnemonic Opcode Description PP
Perform unsigned division of EDX:EAX
by the contents of a 32-bit register

DIV reg/mem32 F7 /6 or memory location and store the 9
quotient in EAX and the remainder in
EDX.

Perform unsigned division of RDX:RAX
by the contents of a 64-bit register

DIV reg/memé64 F7 /6 or memory location and store the ﬁ?
quotient in RAX and the remainder in
RDX.

ENTER immlé6,0 CB iw 00 Create a procedure stack frame. ﬂ}

ENTER imml6, 1 CB iw 01 Create a nested stack frame for a i}
procedure.

ENTER imml6, imm8 CB iw ib Create a nested stack frame for a iﬁ
procedure.

Perform signed division of AX by the
contents of an 8-bit register or

IDIV reg/mem8 F6 /7 memory location and store the 9
quotient in AL and the remainder in
AH.

Perform signed division of DX:AX by
the contents of a 16-bit register or

IDIV reg/memlé6 F7 /7 memory location and store the ﬁ?
quotient in AX and the remainder in
DX.

Perform signed division of EDX:EAX by
the contents of a 32-bit register or

IDIV reg/mem32 F7 /7 memory location and store the ﬁ?
quotient in EAX and the remainder in
EDX.

Perform signed division of RDX:RAX by
the contents of a 64-bit register or

IDIV reg/memé64 F7 /7 memory location and store the W?
quotient in RAX and the remainder in
RDX.

Multiply the contents of AL by the
contents of an 8-bit memory or

IMUL reg/mem8 F6 /5 register operand and put the signed w?
result in AX.

Multiply the contents of AX by the

IMUL reg/meml6 F7 /5 contents of a 16-bit memory or W?
register operand and put the signed
result in DX:AX.

Multiply the contents of EAX by the
contents of a 32-bit memory or

IMUL reg/mem32 F7./5 register operand and put the signed w?
result in EDX:EAX.

Multiply the contents of RAX by the
contents of a 64-bit memory or

IMUL reg/memé64 F7./5 register operand and put the signed W?
result in RDX:RAX.

Multiply the contents of a 16-bit
destination register by the contents

IMUL reglé6, reg/memlé6 OF AF /r of a 16-bit register or memory W?
operand and put the signed result the
16-bit destination register.

Multiply the contents of a 32-bit
destination register by the contents

IMUL reg32, reg/mem32 OF AF /r of a 32-bit register or memory 9
operand and put the signed result the
32-bit destination register.

Multiply the contents of a 64-bit
destination register by the contents

IMUL reg64, reg/memé64 OF AF /r of a 64-bit register or memory ﬂ?
operand and put the signed result the
64-bit destination register.

Multiply the contents of a 16-bit
register or memory operand by a sign-

IMUL regl6, reg/memlé, imm8 6B /r ib extended immediate byte and put the ﬁ?
signed result in the l16-bit
destination register.

Multiply the contents of a 32-bit
register or memory operand by a sign-

IMUL reg32, reg/mem32, imm8 6B /r ib extended immediate byte and put the ﬁ?
signed result in the 32-bit
destination register.

198

Appendix A

User Manual November 2010
Instruction Supported
Mnemonic Opcode Description pp
Multiply the contents of a 64-bit
register or memory operand by a sign-

IMUL regé64, reg/memé64, imm8 6B /r ib extended immediate byte and put the 9
signed result in the 64-bit
destination register.

Multiply the contents of a 16-bit
register or memory operand by a sign-

IMUL regl6, reg/meml6, immlé 69 /r iw extended immediate word and put the ﬁ?
signed result in the 16-bit
destination register.

Multiply the contents of a 32-bit
register or memory operand by a sign-

IMUL reg32, reg/mem32, imm32 69 /r id extended immediate double and put the ﬁ?
signed result in the 32-bit
destination register.

Multiply the contents of a 64-bit
register or memory operand by a sign-

IMUL reg64, reg/mem64, imm32 69 /r id extended immediate double and put the
signed result in the 64-bit
destination register.

Input a byte from the port at the

IN AL, imm8 E4 ib address specified by imm8 and put it

into the AL register.

IN AX, imm8

ES5

Input a word from the port at the
ib address specified by imm8 and put it
into the AX register.

Input a doubleword from the port at

IN EAX, imm8 E5 ib the address specified by imm8 and put ﬁ?
it into the EAX register.
Input a byte from the port at the

IN AL,DX EC address specified by the DX register ﬁ?
and put it into the AL register.
Input a word from the port at the

IN AX,DX ED address specified by the DX register 9
and put it into the AX register.
Input a doubleword from the port at
the address specified by the EDX

IN EAX, EDX ED register and put it into the EAX W?
register.
Increment the contents of an 8-bit

INC reg/mem§ FE /0 register or memory location by 1. W?
Increment the contents of a 16-bit

INC reg/meml6 FE /0 register or memory location by 1. W?
Increment the contents of a 32-bit

INC reg/mem32 FE /0 register or memory location by 1. w?
Increment the contents of a 64-bit

INC reg/mem64 FF /0 register or memory location by 1. ﬁ
Increment the contents of a 16-bit

INC reglé6 40 +rw register by 1. ﬁ?
Increment the contents of a 32-bit

+ .

INC reg32 40 +rd register by 1. ﬁ?
Input a byte from the port specified
by DX, put it into the memory

INS mem§, DX 6C location specified in ES:rDI, and W?
then increment or decrement rDI.
Input a word from the port specified
by DX, put it into the memory

INS meml6, DX 6D location specified in ES:rDI, and ﬁ
then increment or decrement rDI.
Input a doubleword from the port
specified by DX, put it into the

INS mem32, DX 6D memory location specified in ES:rDI, ﬁ?
and then increment or decrement rDI.
Input a byte from the port specified
by DX, put it into the memory

INSB 6C location specified in ES:rDI, and W?
then increment or decrement rDI.
Input a word from the port specified
by DX, put it into the memory

INSW 6D location specified in ES:rDI, and w?
then increment or decrement rDI.
Input a doubleword from the port
specified by DX, put it into the

INSD 6D memory location specified in ES:rDI, W?
and then increment or decrement rDI.

INT imm8 cD ib Calls interrupt service routine ﬁ?

specified by interrupt vector imm8.

Appendix A

199

User Manual November 2010
_ Instruction _ Supported
Mnemonic Opcode Description

ce il B
JO rel8off 80 cb Jump if overflow (OF = 1). o
JO rellé6off OF 80 cw Jump if overflow (OF = 1). 9
JO rel32off OF 80 cd Jump if overflow (OF = 1). o
JNO rel8off 71 cb Jump if not overflow (OF = 0) 9
JNO rell6off OF 81 cw Jump if not overflow (OF = 0) 9
JNO rel32o0ff OF 81 cd Jump if not overflow (OF = 0) 9
JB rel8off 72 cb Jump if below (CF = 1) 9
JB rellé6off OF 82 cw Jump if below (CF = 1) 9
JB rel32off OF 82 cd Jump if below (CF = 1) 9
JC rel8off 72 cb Jump if carry (CF =1) 9
JC rellé6off OF 82 cw Jump if carry (CF =1). 9
JC rel32off OF 82 cd Jump if carry (CF =1). o
JNAE rel8off 72 chb Jump if not above or equal (CF =1). #
JNAE rell6off OF 82 cw Jump if not above or equal (CF =1). #
JNAE rel32o0ff OF 82 cd Jump if not above or equal (CF =1). #
JNB rel8off 73 cb Jump if not below (CF = 0). o
JNB rell6off OF 83 cw Jump if not below (CF = 0). #
JNB rel32off OF 83 cd Jump if not below (CF = 0). o
JINC rel8off 73 chb Jump if not carry (CF = 0). #
JINC rell6off OF 83 cw Jump if not carry (CF = 0). #
JINC rel32o0ff OF 83 cd Jump if not carry (CF = 0). #
JAE rel8off 73 chb Jump if above or equal (CF = 0). #
JAE rell6off OF 83 cw Jump if above or equal (CF = 0). #
JAE rel32o0ff OF 83 cd Jump if above or equal (CF = 0). #
J7 rel8off 74 cb Jump if zero (ZF =1). o
JZ rellé6off OF 84 cw Jump if zero (ZF =1). 9
JZ rel32off OF 84 cd Jump if zero (ZF =1). 9
JE rel8off 74 cb Jump if equal (ZF =1). 9
JE rellé6off OF 84 cw Jump if equal (ZF =1). 9
JE rel32o0ff OF 84 cd Jump if equal (ZF =1). 9
JNZ rel8off 75 cb Jump if not zero (ZF = 0). #
JINZ rell6off OF 85 cw Jump if not zero (ZF = 0) o
JNZ rel32o0ff OF 85 cd Jump if not zero (ZF = 0). #
JNE rel8off 75 chb Jump if not equal (ZF = 0) #
JNE rellé6off OF 85 cw Jump if not equal (ZF = 0) #
JNE rel32o0ff OF 85 cd Jump if not equal (ZF = 0). #
JBE relS8off 76 cb iur{l})) if below or equal (CF = 1 or ZF v
JBE rell6off OF 86 cw iurlnl)o:if below or equal (CF = 1 or ZF ﬁ
JBE rel32off OF 86 cd ;Turf[)a.if below or equal (CF = 1 or ZF #
JNA rel8off 76 cb Jump if not above (CF = 1 or ZF = 1). @
JNA rell6off 0F 86 cw Jump if not above (CF = 1 or ZF = 1). o
JINA rel32o0ff OF 86 cd Jump if not above (CF = 1 or ZF = 1). @
INBE rel8off 77 b g;mz é;f.not below or equal (CF = 0 or v
JINBE rell6off 0F 87 cw g;mz é)f.not below or equal (CF = 0 or v
INBE rel32off OF 87 cd g;mz é)f.not below or equal (CF = 0 or ﬁ
JA rel8off 77 cb Jump if above (CF = 0 or ZF = 0) ﬁ
JA rellé6off OF 87 cw Jump if above (CF = 0 or ZF = 0) ﬁ
JA rel32off OF 87 cd Jump if above (CF = 0 or ZF = 0). o’

200

Appendix A

User Manual November 2010
Instruction Supported
Mnemonic Opcode Description pp
JS rel8off 78 cb Jump if sign (SF = 1). o
JS rell6off OF 88 cw Jump if sign (SF = 1). o
JS rel32off OF 88 cd Jump if sign (SF = 1). o
JINS rel8off 79 cb Jump if not sign (SF = 0). @
JNS rell6off 0F 89 cw Jump if not sign (SF = 0). @
JINS rel32off 0F 89 cd Jump if not sign (SF = 0). @
JP rel8off TA cb Jump if parity (PF = 1). ﬁ
JP rellé6off OF 8A cw Jump if parity (PF = 1). ﬁ
JP rel32o0ff OF 8A cd Jump if parity (PF = 1). ﬁ
JPE rel8off TA cb Jump if parity even (PF = 1). ﬁ
JPE rell6off OF 8A cw Jump if parity even (PF = 1). ﬁ
JPE rel32o0ff OF 8A cd Jump if parity even (PF = 1). ﬁ
JINP rel8off 7B chb Jump if not parity (PF = 0) ﬁ
JNP rell6off OF 8B cw Jump if not parity (PF = 0) ﬁ
JNP rel32off OF 8B cd Jump if not parity (PF = 0) o’
JPO rel8off 7B cb Jump if parity odd (PF = 0) o’
JPO rell6off OF 8B cw Jump if parity odd (PF = 0). @
JPO rel32off OF 8B cd Jump if parity odd (PF = 0). o’
JL rel8off 7C cb Jump if less (SF <> OF). o’
JL rell6off OF 8C cw Jump if less (SF <> OF). o’
JL rel32off OF 8C cd Jump if less (SF <> OF). o’
INGE rel8off 7C cb g;r)np if not greater or equal (SF <> @
INGE rellGoff OF 8C cw g;r)np if not greater or equal (SF <> @
INGE rel320ff OF 8C cd glér)np if not greater or equal (SF <> #
JIJNL rel8off 7D cb Jump if not less (SF = OF). ﬁ
JINL rellé6off OF 8D cw Jump if not less (SF = OF). ﬁ
JINL rel32off OF 8D cd Jump if not less (SF = OF). ﬁ
JGE rel8off 7D cb Jump if greater or equal (SF = OF). ﬁ
JGE rell6off 0OF 8D cw Jump if greater or equal (SF = OF). ﬁ
JGE rel32off 0OF 8D cd Jump if greater or equal (SF = OF). ﬁ
Jump if less or equal (ZF = 1 or SF
JLE rel8off 7E cb . o
JLE rell6off OF 8R cw il;lmgF)lf less or equal (ZF = 1 or SF v
Jump if less or equal (ZF = 1 or SF
JLE rel32off 0F 8R cd i o
Jump if not greater (ZF = 1 or SF <>
JNG rel8off 7E cb omy o
ING rell6off OF 8E cw Jump if not greater (ZF = 1 or SF <> #
OF) .
ING rel32off OF 8E cd g;r)ﬂp if not greater (ZF = 1 or SF <> v
INLE rel8off 7F cb g;mz (l)g) not less or equal (ZF = 0 or v
Jump if not less or equal (ZF = 0 or
JNLE rell6off OF 8F cw s oF) | o
Jump if not less or equal (ZF = 0 or
JNLE rel320ff OF 8F cd s oF) | o
JG rel8off TF cb Jump if greater (ZF = 0 or SF = OF). @
JG relléoff OF 8F cw Jump if greater (ZF = 0 or SF = OF). @
JG rel32off OF 8F cd Jump if greater (ZF = 0 or SF = OF). @
Jump short if the 16-bit count
JCXZ rel8off E3 cb register (CX) is zero. @
Jump short if the 32-bit count
JCXZ rell6off E3 cb register (ECX) is zero. @
Jump short if the 32-bit count
JCXZ rel3Zoff E3 cb register (RCX) is zero. ﬁ
Short jump with the target specified
JMP relBoff EB cb by an 8-bit signed displacement. #

Appendix A

201

User Manual November 2010
Instruction Supported
Mnemonic Opcode Description pp
Short jump with the target specified
JMP relléoff E9 cw by a 16-bit signed displacement. 9
Short jump with the target specified
JMP rel32off ES ed by a 32-bit signed displacement.
Near jump with the target specified
JMP reg/memlé6 FF /4 req/mémlé. ﬁ
Near jump with the target specified
JMP reg/mem32 FF /4 req/mem32. 9
Near jump with the target specified
JMP reg/memé64 FF /4 req/mem64. 9
Far Jjump direct, with the target
JMP FAR pntrlé6:16 EA cd specified by a far pointer contained 9
in the instruction.
Far Jjump direct, with the target
JMP FAR pntrlé6:32 EA cp specified by a far pointer contained @
in the instruction.
JMP FAR meml6:16 FF /5 Far Jump indirect, Wlth tlhe target v
specified by a far pointer in memory.
3 Far jump indirect, with the target
JMP FAR meml6:32 FF /5 specified by a far pointer in memor v
Load the SF¥, ZF, AF, PF, and CF flags
LAHF 9F into the AH register. 9
LDS reglé, meml6:16 cs Jr Load DS:regl6 with a far pointer from #
memory.
LDS reg32, meml6:32 cs Jr Load DS:reg32 with a far pointer from @
memory.
LES regl6,memi6:16 ca Jr Load ES:regl6 with a far pointer from @
memor
LES reg32, meml6:32 ca Jr Load ES:reg32 with a far pointer from 9
memory.
LFS reglé, meml6:16 OF B4 /r Load FS:regl6 with a far pointer from #
memory.
LFS reg32, meml6:32 OF B4 /r Load FS:reg32 with a far pointer from @
memory.
LGS regl6, memi6:16 OF BS /r ;ZiirGS:regl6 with a far pointer from @
LGS reg32, meml6:32 0F B5 /r III;Z;?ISKGS:J‘:eng with a far pointer from 9
LSS reglé, meml6:16 OF B2 /r Load SS:regl6 with a far pointer from #
memor
LSS reg32, meml6:32 OF B2 /r rI[.]cef[l];irss:reg32 with a far pointer from @
Store effective address in a 16-bit
LEA regl6,mem 8D /r reqister. ﬁ
Store effective address in a 32-bit
LEA reg32,mem 8D /r register. 9
LEA reg64, mem 8D /r Sto;e effective address in a 64-bit #
register.
Set the stack pointer SP to the wvalue
LEAVE c9 in the BP register and pop BP. &
Set the stack pointer ESP to the
LEAVE Cc9 value 1in the EBP register and pop &
EBP.
Set the stack pointer RSP to the
LEAVE (03] value 1in the RBP register and pop &
RBP.
LFENCE OF AE E8 Force Strong ordering of (serialize) v
load operations.
Load byte at DS:rSI into AL and then
LODS mem8 AC increment or decrement rST. @
Load word at DS:rSI into AX and then
LODS meml6 AD increment or decrement rST. 9
Load doubleword at DS:rSI into EAX
LODS mem32 AD and then increment or decrement rST. ﬁ
Load quadword at DS:rSI into RAX and
LODS mem64 AD then increment or decrement rSI. @
Load byte at DS:rSI into AL and then
LODSB AC increment or decrement rST. @
Load word at DS:rSI into AX and then
LODSW AD increment or decrement rST. 9
Load doubleword at DS:rSI into EAX
LODSD AD and then increment or decrement rST. ﬁ
Load quadword at DS:rSI into RAX and
LODSQ AD then increment or decrement rSI. @
Decrement rCX and then jump short if
LOOP rel8off E2 cb BEab Sy o’

202

Appendix A

User Manual November 2010
Instruction Supported
Mnemonic Opcode Description pp
Decrement rCX and then jump short if
LOOPE rel8off Bl cb rCX is not 0 and ZF is 1. 9
Decrement rCX and then jump short if
LOOPNE rel8off B0 cb rCX is not 0 and ZF is 0.
Decrement rCX and then jump short if
LOOENZ rel8off B0 cb rCX is not 0 and ZF is 0. W?
Decrement rCX and then jump short if
LOOPZ rel8off Bl cb rCX is not 0 and ZF is 1. W?
Force strong ordering of (serialized)
MFENCE OF AE FO load and store operations. 9
Move the contents of an 8-bit
MOV reg/mem8, reg8 88 /r register to an 8-bit destination 9
register or memory operand.
Move the contents of a l6-bit
MOV reg/memlé6, regl6 89 /r register to a 16-bit destination ﬁ?
register or memory operand.
Move the contents of a 32-bit
MOV reg/mem32, reg32 89 /r register to a 32-bit destination ﬁ?
register or memory operand.
Move the contents of a 64-bit
MOV reg/memé64, reg64 89 /r register to a 64-bit destination ﬁ?
register or memory operand.
Move the contents of an 8-bit
MOV reg8, reg/mem8 8A /r register or memory operand to an 8- ﬁ?
bit destination register.
Move the contents of a l16-bit
MOV regl6, reg/memlé 8B /r register or memory operand to a 16— ﬁ?
bit destination register.
Move the contents of a 32-bit
MOV reg32, reg/mem32 8B /r register or memory operand to a 32- ﬁ?
bit destination register.
Move the contents of a 64-bit
MOV reg64, reg/memé64 8B /r register or memory operand to a 64- 9
bit destination register.
Move the contents of a segment
register to a 16-bit, 32-bit, or 64-
MOV regl6/32/64/meml6, segReg 8C /r bit destination register or to a 16- W?
bit memory operand.
Move the contents of a l16-bit
MOV segReg, reg/memlé 8E /r register or memory operand to a ﬁ?
segment register.
Move 8-bit data at a specified memory
MOV AL,moffset§ 20 offset to the AL register. W?
Move 16-bit data at a specified
MOV AX,moffsetl6 Al memory offset to the AX register. W?
Move 32-bit data at a specified
MOV EAX,moffset32 Al memory offset to the EAX register. 9
Move 64-bit data at a specified
MOV RAX,moffset6d Al memory offset to the RAX register. w?
Move the contents of the AL register
MOV moffset§, AL A2 to an 8-bit memory offset. ﬁ?
Move the contents of the AX register
MOV moffsetl6, AX A3 to a 16-bit memory offset. ﬁ?
Move the contents of the EAX register
MOV moffset32, EAX A3 to a 32-bit memory offset. 9
Move the contents of the RAX register
MOV moffset6d, RAX A3 to a 64-bit memory offset. w?
, Move an 8-bit immediate value into an
MOV reg8, imm8 BO +rb 8-bit register. ﬁ?
, Move a 16-bit immediate value into a
MOV reglé6, immlé6 B8 +rw 16-bit register. ﬁ?
, Move a 32-bit immediate value into a
MOV reg32, imm32 B8 +rd 32-bit register. 9
, Move a 64-bit immediate value into a
MOV reg64, immé64 B8 +rg 64-bit register. ﬂ?
, Move an 8-bit immediate wvalue to an
MOV reg/mem8, imm§ c6 /0 8-bit register or memory operand. W?
, Move a 16-bit immediate value to a
MOV reg/meml16, imml6 c7 /0 16-bit register or memory operand. W?
, Move a 32-bit immediate value to a
MOV reg/mem32, imm32 c7 /0 32-bit register or memory operand. 9
, Move a 64-bit immediate wvalue to a
MOV reg/mem64, imm64 c7 /0 64-bit register or memory operand. w?
Move 32-bit wvalue from a general-
MOVD xmm, reg/mem32 66 OF 6E /r purpose register or 32-bit memory ﬁ?
location to an XMM register.

Appendix A

203

User Manual November 2010
Instruction Supported
Mnemonic Opcode Description pp

Move 64-bit wvalue from a general-

MOVD xmm, reg/memé64 66 OF 6E /r purpose register or 64-bit memory W?
location to an XMM register.
Move 32-bit value from an XMM

MOVD reg/mem32, xmm 66 OF 7E /r register to a 32-bit general-purpose ﬁ?
register or memory location.
Move 64-bit value from an XMM

MOVD reg/memé64, xmm 66 OF 7E /r register to a 64-bit general-purpose ﬁ?
register or memory location.
Move 32-bit wvalue from a general-

MOVD mmx, reg/mem32 OF 6E /r purpose register or 32-bit memory ﬁ?
location to an MMX register.
Move 64-bit wvalue from a general-

MOVD mmx, reg/memé4 OF 6E /r purpose register or 64-bit memory 9
location to an MMX register.
Move 32-bit value from an MMX

MOVD reg/mem32, mmx OF 7E /r register to a 32-bit general-purpose @
register or memory location.
Move 64-bit value from an MMX

MOVD reg/memé64, mmx OF 7E /r register to a 64-bit general-purpose w?
register or memory location.
Move sign bits 127 and 63 in an XMM

MOVMSKPD reg32, xmm 66 0F 50 /r register t0 a 32-bit general purpose- W?
register.
Move sign bits 127, 95, 63, 31 in an

MOVMSKPS reg32, xmm OF 50 /r XMM register to a 32-bit general- W?
purpose register.
Stores a 32-bit general-purpose

MOVNTI mem32, reg32 OF C3 /r register value into a 32-bit memory 9
location, minimizing cache pollution.
Stores a 64-bit general-purpose

MOVNTI mem64, reg64 OF C3 /r register value into a 64-bit memory ﬁ?
location, minimizing cache pollution.
Move Dbyte at DS:rSI to ES:rDI, and

MOVS mem8, mem8 A4 then increment or decrement rSI and ﬁ?
rDI.
Move word at DS:rSI to ES:rDI, and

MOVS meml6, meml6 A5 then increment or decrement rSI and ﬁ?
rDI.
Move doubleword at DS:rSI to ES:rDI,

MOVS mem32, mem32 A5 and then increment or decrement rSI ﬁ?
and rDI.
Move quadword at DS:rSI to ES:rDI,

MOVS mem64, memé64 A5 and then increment or decrement rSI ﬁ?
and rDI.
Move Dbyte at DS:rSI to ES:rDI, and

MOVSB Ad then increment or decrement rSI and ﬁ?
rDI.
Move word at DS:rSI to ES:rDI, and

MOVSW A5 then increment or decrement rSI and 9
rDI.
Move doubleword at DS:rSI to ES:rDI,

MOVSD A5 and then increment or decrement rSI #
and rDI.
Move quadword at DS:rSI to ES:rDI,

MOVSQ A5 and then increment or decrement rSI ﬂ?
and rDI.
Move the contents of an 8-bit

MOVSX reglé6, reg/mem8 OF BE /r register or memory location to a 16- W?
bit register with sign extension.
Move the contents of an 8-bit

MOVSX reg32, reg/mem8 OF BE /r register or memory location to a 32- W?
bit register with sign extension.
Move the contents of an 8-bit

MOVSX regé64, reg/mem8 OF BE /r register or memory location to a 64- 9
bit register with sign extension.
Move the contents of a l6-bit

MOVSX reg32, reg/memlé OF BF /r register or memory location to a 32- ﬁ?
bit register with sign extension.
Move the contents of a l16-bit

MOVSX regé64,reg/memlé OF BF /r register or memory location to a 64- ﬁ?
bit register with sign extension.
Move the contents of a 32-bit

MOVSXD regé4, reg/mem32 63 /r register or memory operand to a 64- ﬁ?

bit register with sign extension.

204

Appendix A

User Manual November 2010
Instruction Supported
Mnemonic Opcode Description pp
Move the contents of an 8-bit
MOVZX reglé, reg/mem8 0F B6 /r register or memory operand to a 16- ﬁ?
bit register with zero-extension.
Move the contents of an 8-bit
MOVZX reg32, reg/mem8 OF B6 /r register or memory operand to a 32- ﬁ?
bit register with zero-extension.
Move the contents of an 8-bit
MOVZX reg64, reg/mem8 OF B6 /r register or memory operand to a 64- ﬁ?
bit register with zero-extension.
Move the contents of a l6-bit
MOVZX reg32, reg/memlé6 OF B7 /r register or memory operand to a 32- ﬁ?
bit register with zero-extension.
Move the contents of a l6-bit
MOVZX reg64, reg/memlé6 OF B7 /r register or memory operand to a 64- 9
bit register with zero-extension.
Multiplies an 8-bit register or
memory operand by the contents of the
MUL reg/mems F6 /4 AL reéis%er and,ﬁtores the result in W?
the AX register.
Multiplies a 16-bit register or
memory operand by the contents of the
MUL reg/meml6 F7./4 AX reéisier and 2tores the result in W?
the DX:AX register.
Multiplies a 32-bit register or
memory operand by the contents of the
MUL reg/mem32 F7 /4 EAX register and stores the result in W?
the EDX:EAX register.
Multiplies a 64-bit register or
memory operand by the contents of the
MUL reg/memé64 F7 /4 RAX rggizter andystores the result in 9
the RDX:RAX register.
Performs a tow’s complement negation
NEG reg/mem8 F6 /3 on an 8-bit register or memory ﬁ?
operand.
Performs a tow’s complement negation
NEG reg/memlé F7 /3 on a 16-bit register or memory ﬁ?
operand.
Performs a tow’s complement negation
NEG reg/mem32 F7 /3 on a 32-bit register or memory ﬁ?
operand.
Performs a tow’s complement negation
NEG reg/memé64 F7 /3 on a 64-bit register or memory 9
operand.
NOP 90 Performs no operation. ﬂ?
Complements the Dbits in an 8-bit
NOT reg/mem8 Fe /2 register or memory operand. 9
NOT reg/meml6 F7 /2 Complements the bits 1in a 16-bit W?
register or memory operand.
Complements the bits in a 32-bit
NOT reg/mem32 F7./2 reg?ster or memory operand. W?
Complements the Dbits in a 64-bit
NOT reg/mem64 F7 /2 register or memory operand. W?
, , OR the contents of AL with an
OR AL, imm§ oc ib immediate 8-bit value. 9
, , OR the contents of AX with an
OR AX, imml6 oD iw immediate 16-bit value. w?
, , OR the contents of EAX with an
OR EAX, imm32 oD id immediate 32-bit wvalue. W?
, , OR the contents of RAX with an
OR RAX, imm64 op id immediate 64-bit value. W?
OR the contents of an 8-bit register
OR reg/mem8, imm8 80 /1 ib or memory operand and an immediate 8- #
bit value.
OR the contents of a 16-bit register
OR reg/meml6, imml6 81 /1 iw or memory operand and an immediate ﬂ?
16-bit value.
OR the contents of a 32-bit register
OR reg/mem32, imm32 81 /1 id or memory operand and an immediate W?
32-bit value.
OR the contents of a 64-bit register
OR reg/memé64, imm32 81 /1 id or memory operand and a sign-extended W?
immediate 32-bit wvalue.
OR the contents of a 16-bit register
OR reg/memlé6, imm8 83 /1 ib or memory operand and a sign-extended 9
immediate 8-bit wvalue.

Appendix A

205

User Manual November 2010
Instruction Supported
Mnemonic Opcode Description pp

OR the contents of a 32-bit register

OR reg/mem32, imm8 83 /1 ib or memory operand and a sign-extended ﬁ?
immediate 8-bit wvalue.
OR the contents of a 64-bit register

OR reg/memé64, imm8 83 /1 ib or memory operand and a sign-extended ﬁ?
immediate 8-bit wvalue.
OR the contents of an 8-bit register

OR reg/mem8, reg8 08 /r or memory operand with the contents ﬁ?
of an 8-bit register.
OR the contents of a 16-bit register

OR reg/memlé6, reglé 09 /r or memory operand with the contents ﬁ?
of a 16-bit register.
OR the contents of a 32-bit register

OR reg/mem32, reg32 09 /r or memory operand with the contents 9
of a 32-bit register.
OR the contents of a 64-bit register

OR reg/mem64, reg64 09 /r or memory operand with the contents @
of a 64-bit register.
OR the contents of an 8-bit register

OR reg8, reg/mem8 0A /r with the contents of an 8-bit w?
register or memory operand.
OR the contents of a 16-bit register

OR reglé6, reg/memlé 0B /r with the contents of a 16-bit W?
register or memory operand.
OR the contents of a 32-bit register

OR reg32, reg/mem32 0B /r with the contents of a 32-bit W?
register or memory operand.
OR the contents of a 64-bit register

OR reg64, reg/memé64 0B /r with the contents of a 64-bit 9
register or memory operand.
Output the byte in the AL register to

OUT imm8,AL E6 ib the port specified by an 8-bit ﬁ?
immediate value.
Output the word in the AX register to

OUT imm8,AX E7 ib the port specified by an 8-bit ﬁ?
immediate value.
Output the doubleword in the EAX

OUT imm8,EAX E7 ib register to the port specified by an ﬁ?
8-bit immediate value.
Output the byte in the AL register to

OUT DX, AL EE the output port specified in DX. ﬁ
Output the word in the AX register to

OUT DX, AX EE the output port specified in DX. W?
Output the doubleword in the EAX

OUT DX, EAX EE register to the output port specified W?
in DX.
Output the byte in DS:rSI to the port

OUTS DX, mem8 6E specified in DX, and then increment ﬂ?
or decrement rSI.
Output the word in DS:rSI to the port

OUTS DX, memlé6 oF specified in DX, and then increment 9
or decrement rSI.
Output the doubleword in DS:rSI to

OUTS DX, mem32 6F the port specified in DX, and then ﬁ?
increment or decrement rST.
Output the byte in DS:rSI to the port

OUTSB 6E specified in DX, and then increment ﬁ?
or decrement rSI.
Output the word in DS:rSI to the port

OUTsSwW 6F specified in DX, and then increment q?
or decrement rSI.
Output the doubleword in DS:rSI to

OUTSD oF the port specified in DX, and then ﬁ?
increment or decrement rST.
Pop the top of the stack into a 16-

POP reg/meml6 8F /0 bit register or memory location. w?
Pop the top of the stack into a 32-

POP reg/mem32 8F /0 bit register or memory location. W?
Pop the top of the stack into a 64-

POP reg/mem64 8F /0 bit register or memory location. W?
Pop the top of the stack into a 16-

POP reglé6 58 +rw bit register. 9
Pop the top of the stack into a 32-

POP reg32 58 +rd bit register. ﬂ?

POP reg64 58 +rg igp theltop of the stack into a 64-

it register.

2

06

Appendix A

User Manual November 2010
Instruction Supported
Mnemonic Opcode Description pp
POP DS 1F Pop.the top of the stack into the DS 9
regilster.
POP ES 07 Pop.the top of the stack into the ES @
register.
POP SS 17 Popvthe top of the stack into the SS @
register.
POP FS 0F Al Popvthe top of the stack into the FS #
register.
POP GS OF A9 Pop.the top of the stack into the GS 9
register.
Pop the DI, SI, BP, SP, BX, DX, CX,
POPA 61 and AX registers. @
Pop the EDI, ESI, EBP, ESP, EBX, EDX,
POPAD 61 ECX, and EAX registers. v
Pop a word from the stack into the
POPF 9D FLAGS register. 9
Pop a doubleword from the stack into
POPFD 9D the EFLAGS register. 9
Pop a quadword from the stack into
POPFO 2D the RFLAGS register. @
PREFETCH mem8 OF 0D /0 Prefetch processor cache line into L1 @
data cache.
Prefetch processor cache line into L1
PREFETCHW mem38 OF 0D /1 data cache and mark it modified. 9
Move data <closer to the processor
PREFETCHNTA mem8 0F 18 /0 using the NTA reference. o
Move data <closer to the processor
PREFETCHT0 mem§ 0F 18 /1 using the TO reference. o’
Move data <closer to the processor
PREFETCHT1 mem8 OF 18 /2 ueing the T1 reterence. o’
Move data <closer to the processor
PREFETCHT2 mem8 OF 18 /3 using the T2 reference. W
Push the contents of a l16-bit
PUSH reg/meml6 FF /6 register or memory operand onto the @
stack.
Push the contents of a 32-bit
PUSH reg/mem32 FF /6 register or memory operand onto the ﬁ
stack.
Push the contents of a 64-bit
PUSH reg/memé64 FF /6 register or memory operand onto the ﬁ
stack.
Push the contents of a l16-bit
PUSH regl6 50 +rw register onto the stack. 9
Push the contents of a 32-bit
PUSH reg32 50 +rd register onto the stack. 9
Push the contents of a 64-bit
PUSH reg64 50 4rq register onto the stack. @
Push an 8-bit immediate wvalue (sign-
PUSH imm8 6A extended to 16, 32, or 64 bits) onto 9
the stack.
, Push a 16-=bit immediate value onto
PUSH immlé 68 the stack. ﬁ
, Push the contents of a 32-bit
PUSH imm32 68 register onto the stack. 9
, Push the contents of a 64-bit
PUSH imm64 68 register onto the stack. ﬁ
PUSH CS 0E Push the CS selector onto the stack. #
PUSH SS 16 Push the SS selector onto the stack. #
PUSH DS 1E Push the DS selector onto the stack. #
PUSH ES 06 Push the ES selector onto the stack. #
PUSH FS 0F AQ Push the FS selector onto the stack. #
PUSH GS OF A8 Push the GS selector onto the stack. #
PUSHF 9C Push the FLAGS word onto the stack. #
PUSHFD 9C Push the EFLAGS word onto the stack. #
PUSHFQ 9C Push the RFLAGS word onto the stack. #
Rotate the 9 bits consisting of the
RCL reg/mem8,1 DO /2 carry flag and an 8-bit register or @
memory location left 1 bit.
Rotate the 9 bits consisting of the
carry flag and an 8-bit register or
RCL reg/mems, CL bz /2 memory location left the number of #
bits specified in the CL register.

Appendix A

207

User Manual November 2010
Instruction Supported
Mnemonic Opcode Description PP

Rotate the 9 bits consisting of the
carry flag and an 8-bit register or

RCL reg/mem8, imm8 Cc0 /2 ib memory location left the number of 9
bits specified by an 8-bit immediate
value.
Rotate the 17 bits consisting of the

RCL reg/memlé6,1 D1 /2 carry flag and a 16-bit register or 9
memory location left 1 bit.
Rotate the 17 bits consisting of the
carry flag and a 16-bit register or

RCL reg/meml6,CL b3 /2 memory location left the number of W?
bits specified in the CL register.
Rotate the 17 bits consisting of the
carry flag and a 16-bit register or

RCL reg/memlé6, imm8 cl /2 ib memory location left the number of W?
bits specified by an 8-bit immediate
value.
Rotate the 33 bits consisting of the

RCL reg/mem32,1 D1 /2 carry flag and a 32-bit register or ﬁ?
memory location left 1 bit.
Rotate the 33 bits consisting of the
carry flag and a 32-bit register or

RCL reg/mem32,CL D3 /2 memory location left the number of 9
bits specified in the CL register.
Rotate the 33 bits consisting of the
carry flag and a 32-bit register or

RCL reg/mem32, imm8 Cl /2 ib memory location left the number of ﬁ?
bits specified by an 8-bit immediate
value.
Rotate the 65 bits consisting of the

RCL reg/memé64,1 D1 /2 carry flag and a 64-bit register or ﬁ?
memory location left 1 bit.
Rotate the 65 bits consisting of the
carry flag and a 64-bit register or

RCL reg/memé4, CL D3 /2 memory location left the number of W?
bits specified in the CL register.
Rotate the 65 bits consisting of the
carry flag and a 64-bit register or

RCL reg/memé64, imm8 Cl /2 ib memory location left the number of ﬁﬁ
bits specified by an 8-bit immediate
value.
Rotate the 9 bits consisting of the

RCR reg/mem8,1 DO /3 carry flag and an 8-bit register or ﬂ?
memory location right 1 bit.
Rotate the 9 bits consisting of the
carry flag and an 8-bit register or

RCR reg/mems, CL b2 /3 memory location right the number of W?
bits specified in the CL register.
Rotate the 9 bits consisting of the
carry flag and an 8-bit register or

RCR reg/mem8, imm8 co0 /3 ib memory location right the number of 9
bits specified by an 8-bit immediate
value.
Rotate the 17 bits consisting of the

RCR reg/memlé6,1 D1 /3 carry flag and a 16-bit register or 9
memory location right 1 bit.
Rotate the 17 bits consisting of the
carry flag and a 16-bit register or

RCR reg/meml6,CL b3 /3 memory location right the number of w?
bits specified in the CL register.
Rotate the 17 bits consisting of the
carry flag and a 16-bit register or

RCR reg/memlé6, imm8 cl /3 ib memory location right the number of W?
bits specified by an 8-bit immediate
value.
Rotate the 33 bits consisting of the

RCR reg/mem32,1 D1 /3 carry flag and a 32-bit register or ﬁ?
memory location right 1 bit.
Rotate the 33 bits consisting of the
carry flag and a 32-bit register or

RCR reg/mem32, CL D3 /3 memoﬁr/y lo?:ation right the gumber of 9
bits specified in the CL register.
Rotate the 33 bits consisting of the
carry flag and a 32-bit register or

RCR reg/mem32, imm8 cl /3 ib memory location right the number of ﬁ?
bits specified by an 8-bit immediate
value.

208

Appendix A

User Manual November 2010
Instruction Supported
Mnemonic Opcode Description pp
RCL reg/mem64,1 Rotate the 65 bits consisting of the
D1 /3 carry flag and a 64-bit register or W?
RCR memory location right 1 bit.
Rotate the 65 bits consisting of the
carry flag and a 64-bit register or
RCR reg/mem64, CL b3 /3 memory location right the number of W?
bits specified in the CL register.
Rotate the 65 bits consisting of the
carry flag and a 64-bit register or
RCR reg/memé64, imm8 Cl /3 ib memory location right the number of ﬁ?
bits specified by an 8-bit immediate
value.
RET C3 Near return to the calling procedure. 9
Near return to the calling procedure
RET immlé C2 iw and then pop of the specified number W?
of bytes from the stack.
RETF CB Far return to the calling procedure. #
Far return to the calling procedure
RETF immlé CA iw and then pop of the specified number W?
of bytes from the stack.
. Rotate an 8-bit register or memory
ROL reg/imms, 1 Do /0 operand left 1 bit. W?
Rotate an 8-bit register or memory
ROL reg/mem8,CL D2 /0 operand left the number of bits w?
specified in the CL register.
Rotate an 8-bit register or memory
, , operand left the number of bits
ROL reg/mem8, imm8 co /0 ib specified by an 8-bit immediate W?
value.
, Rotate a 16-bit register or memory
ROL reg/immlé,1 D1 /0 oporand left 1 bit. o
Rotate a 16-bit register or memory
ROL reg/memlé,CL D3 /0 operand left the number of bits 9
specified in the CL register.
Rotate a 16-bit register or memory
, , operand left the number of bits
ROL reg/meml6, imm§ c1 /0 ib specified Dby an 8-bit immediate w?
value.
. Rotate a 32-bit register or memory
ROL reg/imm32,1 D1 /0 operand left 1 bit. ﬂ?
Rotate a 32-bit register or memory
ROL reg/mem32,CL D3 /0 operand left the number of bits ﬁ?
specified in the CL register.
Rotate a 32-bit register or memory
, . operand left the number of bits
ROL reg/mem32, imm8 Cl1 /0 ib specified Dby an 8-bit immediate 9
value.
. Rotate a 64-bit register or memory
ROL reg/immé64,1 D1 /0 operand left 1 bit. ﬁ?
Rotate a 64-bit register or memory
ROL reg/memé64,CL D3 /0 operand left the number of bits ﬁ?
specified in the CL register.
Rotate a 64-bit register or memory
, . operand left the number of bits
ROL reg/mem64, imm§ €1 /0 ib specified Dby an 8-bit immediate W?
value.
. Rotate an 8-bit register or memory
ROR reg/imms§, 1 Do /0 operand right 1 bit. W?
Rotate an 8-bit register or memory
ROR reg/mem8,CL D2 /0 operand right the number of Dbits ﬂ?
specified in the CL register.
Rotate an 8-bit register or memory
. , operand right the number of Dbits
ROR reg/mem§, imm§ co /0 ib specified Dby an 8-bit immediate W?
value.
. Rotate a 16-bit register or memory
ROR reg/imml6, 1 p1 /0 operand left 1 bit. 9
Rotate a 16-bit register or memory
ROR reg/memlé6,CL D3 /0 operand right the number of Dbits 9
specified in the CL register.
Rotate a 16-bit register or memory
. , operand right the number of Dbits
ROR reg/meml6, imm§ €1 /0 ib specified Dby an 8-bit immediate w?
value.

Appendix A

209

User Manual November 2010
Instruction Supported
Mnemonic Opcode Description pp
. Rotate a 32-bit register or memory
ROR reg/imm32,1 Dl /0 oborand left 1 bit. o
Rotate a 32-bit register or memory
ROR reg/mem32,CL D3 /0 operand right the number of bits 9
specified in the CL register.
Rotate a 32-bit register or memory
. , operand right the number of Dbits
ROR reg/mem32, imm§ cl1 /0 ib specified Dby an 8-bit immediate W?
value.
, Rotate a 64-bit register or memory
ROR reg/immé64,1 D1 /0 operand right 1 bit. ﬂ?
Rotate a 64-bit register or memory
ROR reg/memé64,CL D3 /0 operand right the number of bits ﬁ?
specified in the CL register.
Rotate a 64-bit register or memory
, , operand right the number of bits
ROR reg/mem64, imm§ C1 /0 ib specified Dby an 8-bit immediate 9
value.
Loads the sign flag, the zero flag,
the auxiliary flag, the parity flag,
SAHF 9E and the carry flag from the AH ﬁ?
register into the lower 8 bits of the
EFLAGS register.
Shift an 8-bit register or memory
SAL reg/mems, 1 Do /4 location left 1 bit. W?
Shift an 8-bit register or memory
SAL reg/mem8,CL D2 /4 location left the number of bits ﬁ?
specified in the CL register.
Shift an 8-bit register or memory
. , location left the number of bits
SAL reg/mem§, immg co /4 ib specified Dby an 8-bit immediate 9
value.
Shift a 16-bit register or memory
SAL reg/meml6,1 D1 /4 location left 1 bit. W?
Shift a 16-bit register or memory
SAL reg/memlé6,CL D3 /4 location left the number of bits ﬁ?
specified in the CL register.
Shift a 16-bit register or memory
, , location left the number of Dbits
SAL reg/mem16, imm§ Cl1 /4 ib specified by an 8-bit immediate W?
value.
Shift a 32-bit register or memory
SAL reg/mem32, 1 bl /4 location left 1 bit. v
Shift a 32-bit register or memory
SAL reg/mem32,CL D3 /4 location left the number of Dbits ﬂ?
specified in the CL register.
Shift a 32-bit register or memory
, , location left the number of Dbits
SAL reg/mem32,imm§ ClL /4 ib specified by an 8-bit immediate W?
value.
Shift a 64-bit register or memory
SAL reg/mem6d, 1 bl /4 location left 1 bit. v
Shift a 64-bit register or memory
SAL reg/memé4,CL D3 /4 location left the number of bits 9
specified in the CL register.
Shift a 64-bit register or memory
, , location left the number of bits
SAL reg/mem64, imms Cl /4 ib specified Dby an 8-bit immediate w?
value.
Shift an 8-bit register or memory
SHL reg/mems, 1 Do /4 location left 1 bit. w?
Shift an 8-bit register or memory
SHL reg/mem8,CL D2 /4 location left the number of Dbits ﬁ?
specified in the CL register.
Shift an 8-bit register or memory
, , location left the number of Dbits
SHL reg/mem§, imm8 co /4 ib specified Dby an 8-bit immediate 9
value.
Shift a 16-bit register or memory
SHL reg/meml6,1 D1 /4 location left 1 bit. W?
Shift a 16-bit register or memory
SHL reg/memlé6,CL D3 /4 location left the number of bits ﬁﬁ
specified in the CL register.

210

Appendix A

User Manual November 2010
Instruction Supported
Mnemonic Opcode Description pp
Shift a 16-bit register or memory
, , location 1left the number of Dbits
SHL reg/mem16, imm§ Cl1 /4 ib specified Dby an 8-bit immediate W?
value.
Shift a 32-bit register or memory
SHL reg/mem32,1 D1 /4 location left 1 bit.
Shift a 32-bit register or memory
SHL reg/mem32,CL D3 /4 location left the number of bits ﬁ?
specified in the CL register.
Shift a 32-bit register or memory
, , location left the number of Dbits
SHL reg/mem32, imm§ Cl1 /4 ib specified Dby an 8-bit immediate W?
value.
Shift a 64-bit register or memory
SHL reg/mem64,1 bl /4 location left 1 bit. W?
Shift a 64-bit register or memory
SHL reg/mem64,CL D3 /4 location left the number of bits @
specified in the CL register.
Shift a 64-bit register or memory
. , location left the number of Dbits
SHL reg/mem64, imm§ cL /4 ib specified by an 8-bit immediate W?
value.
Shift a signed 8-bit register or
SAR reg/mems, 1 Do /17 memory operand right 1 bit. ﬁ?
Shift a signed 8-bit register or
SAR reg/mem8,CL D2 /7 memory operand right the number of ﬂ?
bits specified in the CL register.
Shift a signed 8-bit register or
, , memory location right the number of
SAR reg/mems§, imm§ co /7 ib bits specified by an 8-bit immediate 9
value.
Shift a signed 16-bit register or
SAR reg/meml6, 1 bl /7 memory operand right 1 bit. W?
Shift a signed 16-bit register or
SAR reg/memlé6,CL D3 /7 memory operand right the number of ﬁ?
bits specified in the CL register.
Shift a signed 16-bit register or
. , memory location right the number of
SAR reg/mem16, imm§ C1 /7 ib bits specified by an 8-bit immediate w?
value.
Shift a signed 32-bit register or
SAR reg/mem32,1 Dl /7 memory location right 1 bit. 9
Shift a signed 32-bit register or
SAR reg/mem32,CL D3 /7 memory operand right the number of ﬁ?
bits specified in the CL register.
Shift a signed 32-bit register or
. . memory operand right the number of
SAR reg/mem32, imm§ C1 /7 ib bits specified by an 8-bit immediate W?
value.
Shift a signed 64-bit register or
SAR reg/mem64,1 Dl /7 memory operand left 1 bit. W?
Shift a signed 64-bit register or
SAR reg/memé64,CL D3 /7 memory operand right the number of #
bits specified in the CL register.
Shift a signed 64-bit register or
, . memory operand right the number of
SAR reg/mem64, imms c1 /7 ib bits specified by an 8-bit immediate W?
value.
, , Subtract an immediate 8-bit value
SBB AL, imm8 ic ib from the AL register with borrow. W?
, , Subtract an immediate 16-bit value
SBB AX, imml6 1D iw from the AX register with borrow. W?
, , Subtract an immediate 32-bit value
SBB EAX, imm32 1D id from the EAX register with borrow. 9
, , Subtract an immediate 32-bit value
SBB RAX, imm32 1D id from the RAX register with borrow. w?
Subtract an immediate 8-bit value
SBB reg/mem8, imm8 80 /3 ib from an 8-bit register or memory q?
location with borrow.
Subtract an immediate 16-bit value
SBB reg/memlé6, immlé 80 /3 iw from a 16-bit register or memory q?
location with borrow.
Subtract an immediate 32-bit value
SBB reg/mem32, imm32 81 /3 id from a 32-bit register or memory ﬁ?

location with borrow.

Appendix A

211

User Manual

November 2010

Instruction

Mnemonic

Opcode

Description

Supported

Subtract a sign-extended immediate

SBB reg/memé64, imm32 81 /3 id 32-bit value from a 64-bit register ﬁ?
or memory location with borrow.
Subtract a sign-extended 8-bit
, , immediate value from a 16-bit
SBB reg/mem16, imm§ 83 /3 ib register or memory location with 9
borrow.
Subtract a sign-extended 8-bit
. , immediate value from a 32-bit
SBB reg/mem32, imm§ 83 /3 ib register or memory location with W?
borrow.
Subtract a sign-extended 8-bit
. , immediate value from a 64-bit
SBB reg/mem64, imm§ 83 /3 ib register or memory location with W?
borrow.
Subtract the contents of an 8-bit
SBB reg/mem8, reg8 18 /r register from an 8-bit register or 9
memory location with borrow.
Subtract the contents of a 16-bit
SBB reg/memlé6, reglé 19 /r register from a 16-bit register or @
memory location with borrow.
Subtract the contents of a 32-bit
SBB reg/mem32, reg32 19 /r register from a 32-bit register or w?
memory location with borrow.
Subtract the contents of a 64-bit
SBB reg/memé4, regé64 19 /r register from a 64-bit register or W?
memory location with borrow.
Subtract the contents of an 8-bit
register or memory location from the
SBB reg8, reg/mems 1a /r cogtents of an 8y—bit register with 9
borrow.
Subtract the contents of a 16-bit
register or memory location from the
SBB regl6, reg/meml6 1B /r cogtents of a l6y—bit register with 9
borrow.
Subtract the contents of a 32-bit
register or memory location from the
SBB reg32, reg/mem32 1B /r cogtents of a 3£Cbit register with W?
borrow.
Subtract the contents of a 64-bit
register or memory location from the
SBB reg64, reg/memé4 1B /r cogtents of a 6£{bit register with w?
borrow.
Compare the contents of the AL
SCAS mem8 AE register with the byte at ES:rDI, and 9
then increment or decrement rDI.
Compare the contents of the AX
SCAS memlé6 AF register with the word at ES:rDI, and #
then increment or decrement rDI.
Compare the contents of the EAX
register with the doubleword at
SCAS mem32 AF ES?rDI, and then increment or ﬁ?
decrement rDI.
Compare the contents of the RAX
SCAS memé64 AF register with the quadword at ES:rDI, ﬁ?
and then increment or decrement rDI.
Compare the contents of the AL
SCASB AE register with the byte at ES:rDI, and ﬁ?
then increment or decrement rDI.
Compare the contents of the AX
SCASW AF register with the word at ES:rDI, and ﬁﬁ
then increment or decrement rDI.
Compare the contents of the EAX
register with the doubleword at
SCASD AF ES?IDI, and then increment or ﬁ?
decrement rDI.
Compare the contents of the RAX
SCASQ AF register with the quadword at ES:rDI, w?
and then increment or decrement rDI.
SETO reg/mem8 0F 90 Set byte if overflow (OF = 1). #
SETNO reg/mem8 OF 91 Set byte if not overflow (OF = 0). o
SETB reg/mem8 OF 92 Set byte if below (CF = 1). o
SETC reg/mem8 O0F 92 Set byte if carry (CF = 1). #
SETNAE reg/mem8 OF 92 Set byte if not above or equal (CF = W?

1).

212

Appendix A

User Manual November 2010
Instruction Supported
Mnemonic Opcode Description pp
SETNB reg/mem8 OF 93 Set byte if not below (CF = 0). o
SETNC reg/mem8 OF 93 Set byte if not carry (CF = 0). ﬁ?
SETAE reg/mem8 0F 93 Set byte if above or equal (CF = 0) ﬁ?
SETZ reg/mem8 OF 94 Set byte if zero (ZF = 1). o
SETE reg/mem8 OF 94 Set byte if equal (ZF = 1). o
SETNZ reg/mem8 0F 95 Set byte if not zero (ZF = 0). ﬁ?
SETNE reg/mem8 0F 95 Set byte if not equal (ZF = 0). ﬁ?
Set byte if below or equal (CF = 1 or
SETBE reg/mem8 OF 96 e =) o
SETNA reg/mem8 OF 96 ??t byte if not above (CF = 1 or ZF = ﬁ?
Set byte if not below or equal (CF =
SETNBE reg/mem8 0F 97 0 and ZF = 0). ﬁ?
SETA reg/mem8 0F 97 STt byte if above (CF = 0 and ZF = W?
SETS reg/mem8 0F 98 Set byte if sign (SF = 1). ﬁ?
SETNS reg/mem8 0OF 99 Set byte if not sign (SF = 0). ﬁ?
SETP reg/mem8 0F 9A Set byte if parity (PF = 1). ﬁ?
SETPE reg/mem8 0F 9A Set byte if parity even (PF = 1). ﬁ?
SETNP reg/mem8 0F 9B Set byte if not parity (PF = 0). ﬁ?
SETPO reg/mem8 OF 9B Set byte if parity odd (PF = 0). o’
SETL reg/mem8 0F 9C Set byte if less (SF <> OF). ﬁ?
SETNGE reg/mem8 OF 9C iitoggte if not greater or equal (SF W?
SETNL reg/mem8 0F 9D Set byte if not less (SF =0F). W?
SETGE reg/mem8 OF 9D g§? byte 1if greater or equal (SF = ﬁ?
Set byte if less or equal (ZF = 1 or
SETLE reg/mem8 OF 9E SF <> OF). #
SETNG reg/mems8 0F 9E iitogfte if not greater (ZF = 1 or SF W?
Set byte if not less or equal (ZF = 0
SETNLE reg/mem8 OF 9F ond sr S oF) . o
SETG reg/mem8 0F 9F g?? byte if greater (ZF = 0 and SF = ﬁ?
SFENCE OF AE F8 Force strongvorderlng of (serialized) ﬁ
store operations.
Shift an 8-bit register or memory
SHL reg/mems, 1 Do /4 location left 1 bit. w?
Shift an 8-bit register or memory
SHL reg/mem8,CL D2 /4 location left the number of bits ﬁ?
specified in the CL register.
Shift an 8-bit register or memory
, . location left the number of Dbits
SHL reg/memé, imm8 co /4 ib specified by an 8-bit immediate 9
value.
Shift a 16-bit register or memory
SHL reg/meml6,1 D1 /4 location left 1 bit. ﬁ
Shift a 16-bit register or memory
SHL reg/memlé6,CL D3 /4 location left the number of bits ﬁ?
specified in the CL register.
Shift a 16-bit register or memory
, . location left the number of Dbits
SHL reg/meml6, imm§ Cl /4 ib specified by an 8-bit immediate W?
value.
Shift a 32-bit register or memory
SHL reg/mem32,1 bl /4 location left 1 bit. W?
Shift a 32-bit register or memory
SHL reg/mem32,CL D3 /4 location left the number of Dbits ﬂ?
specified in the CL register.
Shift a 32-bit register or memory
, , location left the number of Dbits
SHL reg/mem32, imm§ €1 /4 ib specified by an 8-bit immediate W?
value.
Shift a 64-bit register or memory
SHL reg/mem64,1 bl /4 location left 1 bit. W?
Shift a 64-bit register or memory
SHL reg/memé64,CL D3 /4 location 1left the number of Dbits 9
specified in the CL register.

Appendix A

213

User Manual November 2010
Instruction Supported
Mnemonic Opcode Description pp
Shift a 64-bit register or memory
, , location 1left the number of Dbits
SHL reg/mem64, imm§ Cl1 /4 ib specified Dby an 8-bit immediate W?
value.
Shift bits of a 16-bit destination
register or memory operand to the
. , left the number of bits specified in
SHLD reg/memlé6, regl6, immé8 OF A4 /r ib an 8 bit {mmediate value, while @
shifting in bits from the second
operand.
Shift bits of a 16-bit destination
register or memory operand to the
SHLD reg/memlé6, regl6,CL OF A5 /r left the number of bits specified in ﬁ?
the CL register, while shifting in
bits from the second operand.
Shift bits of a 32-bit destination
register or memory operand to the
SHLD reg/mem32, reg32, imm8 oF a4 /r ib | LFF 8t_hbeitnumfjrfec;’ifatzltsv;ffg’lflfq‘iﬁg Y
shifting in bits from the second
operand.
Shift bits of a 32-bit destination
register or memory operand to the
SHLD reg/me326, reg32,CL 0OF A5 /r left the number of bits specified in w?
the CL register, while shifting in
bits from the second operand.
Shift bits of a 64-bit destination
register or memory operand to the
SHLD reg/memé64, reg64, imm8 OF A4 /r ib iift g?ﬁitnunfiiééf;ézltsvjﬁif}fliiiig ﬁ?
shifting in bits from the second
operand.
Shift bits of a 64-bit destination
register or memory operand to the
SHLD reg/memlé6, reglé6,CL OF A5 /r left the number of bits specified in w?
the CL register, while shifting in
bits from the second operand.
Shift an 8-bit register or memory
SHR reg/mems, 1 Do /5 operand right 1 bit. W?
Shift an 8-bit register or memory
SHR reg/mem8,CL D2 /5 operand right the number of bits W?
specified in the CL register.
Shift an 8-bit register or memory
, , operand right the number of bits
SHR reg/mems§, imm§ co /5 ib specified Dby an 8-bit immediate ﬁ
value.
Shift a 16-bit register or memory
SHR reg/meml6,1 D1 /5 operand right 1 bit. ﬂ?
Shift a 16-bit register or memory
SHR reg/memlé6,CL D3 /5 operand right the number of bits ﬁ?
specified in the CL register.
Shift a 16-bit register or memory
. , operand right the number of bits
SHR reg/mem16, imm§ Cl1 /5 ib specified Dby an 8-bit immediate w?
value.
Shift a 32-bit register or memor
SHR reg/mem32,1 D1 /5 operand right 1 bit.g Y 9
Shift a 32-bit register or memory
SHR reg/mem32,CL D3 /5 operand right the number of Dbits ﬁﬁ
specified in the CL register.
Shift a 32-bit register or memory
. , operand right the number of bits
SHR reg/mem32, imm§ c1 /5 ib specified Dby an 8-bit immediate W?
value.
Shift a 64-bit register or memory
SHR reg/memé64,1 D1 /5 operand left 1 bit. ﬁ?
Shift a 64-bit register or memory
SHR reg/memé64,CL D3 /5 operand right the number of Dbits #
specified in the CL register.
Shift a 64-bit register or memory
. , operand right the number of bits
SHR reg/mem64, imms Cl /5 ib specified Dby an 8-bit immediate W?
value.

214

Appendix A

User Manual November 2010

Instruction Supported
Mnemonic Opcode Description pp

Shift bits of a 16-bit destination
register or memory operand to the

, , right the number of bits specified in

SHRD reg/meml6, regl6, imm8 OF AC /r ib an 8-bit immediate value, while ﬁ?

shifting in Dbits from the second
operand.

Shift bits of a 16-bit destination
register or memory operand to the
SHRD reg/memlé6, reglé6,CL OF AD /r right the number of bits specified in @
the CL register, while shifting in
bits from the second operand.

Shift bits of a 32-bit destination
register or memory operand to the

, , right the number of bits specified in
SHRD reg/mem32, reg32, imm8 OF AC /r ib an 8-bit immediate value, while qﬁ
shifting in Dbits from the second
operand.

Shift bits of a 32-bit destination
register or memory operand to the
SHRD reg/me326, reg32,CL OF AD /r right the number of bits specified in ﬁ?
the CL register, while shifting in
bits from the second operand.

Shift bits of a 64-bit destination
register or memory operand to the
right the number of bits specified in

<

SHRD reg/memé64, reg64, imm8 OF AC /r ib

an 8-bit immediate value, while
shifting in bits from the second
operand.

Shift bits of a 64-bit destination
register or memory operand to the
SHRD reg/memlé6, reglé6,CL OF AD /r right the number of bits specified in
the CL register, while shifting in
bits from the second operand.

STC F9 Set the carry flag (CF) to 1.

STD FD Set the direction flag (DF) to 1.
Store the contents of the AL register

STOS reg8 AA to ES:rDI, and then 1increment or

decrement rDI.

Store the contents of the AX register
STOS reglé6 AB to ES:rDI, and then increment or
decrement rDI.

Store the contents of the EAX
STOS reg32 AB register to ES:rDI, and then
increment or decrement rDI.

Store the contents of the RAX
STOS regé64 AB register to ES:rDI, and then
increment or decrement rDI.

Store the contents of the AL register
STOSB AA to ES:rDI, and then increment or
decrement rDI.

Store the contents of the AX register
STOSW AB to ES:rDI, and then increment or
decrement rDI.

Store the contents of the EAX
STOSD AB register to ES:rDI, and then
increment or decrement rDI.

Store the contents of the RAX
STOSQ AB register to ES:rDI, and then
increment or decrement rDI.

Subtract an immediate 8-bit value
SUB AL, imm8 2C ib from the AL register and store the
result in AL.

Subtract an immediate 16-bit wvalue
SUB AX, immlé6 2D iw from the AX register and store the
result in AX.

Subtract an immediate 32-bit value
SUB EAX, imm32 2D id from the EAX register and store the
result in EAX.

Subtract a sign-extended immediate
SUB RAX, imm32 2D id 32-bit wvalue from the RAX register
and store the result in RAX.

Subtract an immediate 8-bit value
SUB reg/mem8, imm8 80 /5 ib from an 8-bit destination register or
memory location.

L% 9999 9 9|9 ¢ 9|9y %

Appendix A 215

User Manual

November 2010

Instruction

Mnemonic

Opcode

Description

Supported

SUB reg/memlé6, immlé6

81

/5

iw

Subtract an immediate 16-bit value
from a 16-bit destination register or
memory location.

L

SUB reg/mem32, imm32

81

/5

id

Subtract an immediate 32-bit value
from a 32-bit destination register or
memory location.

SUB reg/memé64, imm32

81

/5

id

immediate
64-bit
memory

Subtract a sign-extended
32-bit value from a
destination register or
location.

SUB reg/memlé6, imm8

83

/5

ib

Subtract a sign-extended immediate 8-
bit value from a 16-bit register or
memory location.

SUB reg/mem32, imm8

83

/5

ib

Subtract a sign-extended immediate 8-
bit value from a 32-bit register or
memory location.

SUB reg/memé64, imm8

83

/5

ib

Subtract a sign-extended immediate 8-
bit wvalue from a 64-bit register or
memory location.

SUB reg/mem8, reg8

28

/r

Subtract the contents of an 8-bit
register from an 8-bit destination
register or memory location.

SUB reg/memlé6, reglé

29

/r

Subtract the contents of a 16-bit
register from a 16-bit destination
register or memory location.

SUB reg/mem32, reg32

29

/r

Subtract the contents of a 32-bit
register from a 32-bit destination
register or memory location.

SUB reg/memé64, reg64

29

/r

Subtract the contents of a 64-bit
register from a 64-bit destination
register or memory location.

SUB reg8, reg/mem8

2A

/r

Subtract the contents of an 8-bit
register or memory operand from an 8-
bit destination register.

SUB regl6, reg/memlé6

2B

/r

Subtract the contents of a 16-bit
register or memory operand from a 16-
bit destination register.

SUB reg32, reg/mem32

2B

/r

Subtract the contents of a 32-bit
register or memory operand from a 32-
bit destination register.

SUB regé4, reg/memé64

2B

/r

Subtract the contents of a 64-bit
register or memory operand from a 64-
bit destination register.

TEST AL, imm8

AB

ib

AND an immediate 8-bit value with the
contents of the AL register and set
rFLAGS to reflect the result.

TEST AX, immlé

A9

iw

AND an immediate 16-bit wvalue with
the contents of the AX register and
set rFLAGS to reflect the result.

TEST EAX, imm32

A9

id

AND an immediate 32-bit wvalue with
the contents of the EAX register and
set rFLAGS to reflect the result.

TEST RAX, imm32

A9

id

AND a sign-extened immediate 32-bit
value with the contents of the RAX
register and set rFLAGS to reflect
the result.

TEST reg/mem8, imm8

F6

/0

ib

AND an immediate 8-bit value with the
contents of an 8-bit register or
memory operand and set rFLAGS to
reflect the result.

TEST reg/meml6, imml6

F7

/0

iw

AND an immediate 16-bit wvalue with
the contents of a 16-bit register or
memory operand and set rFLAGS to
reflect the result.

TEST reg/mem32, imm32

E7

/0

id

AND an immediate 32-bit wvalue with
the contents of a 32-bit register or
memory operand and set rFLAGS to
reflect the result.

TEST reg/mem64, imm32

F7

/0

id

AND a sign-extened immediate 32-bit
value with the contents of a 64-bit
register or memory operand and set
rFLAGS to reflect the result.

TEST reg/mem8, reg8

84

/r

AND the contents of an 8-bit register
with the contents of an 8-bit
register or memory operand and set
rFLAGS to reflect the result.

A YN Y Y YA YA YA YR YA Y N N N S N S S S S S

216

Appendix A

User Manual November 2010

Instruction Supported
Mnemonic Opcode Description pp

AND the contents of a 16-bit register
with the contents of a l6-bit

TEST reg/meml6,regl6 85 /r register or memory operand and set W?
rFLAGS to reflect the result.
AND the contents of a 32-bit register
with the contents of a 32-bit

TEST reg/mem32, reg32 85 /r register or memory operand and set Wﬂ
rFLAGS to reflect the result.
AND the contents of a 64-bit register
with the contents of a 64-bit

TEST reg/mem6d, reg64 85 /r register or memory operand and set W?
rFLAGS to reflect the result.
Exchange the contents of an 8-bit
register with the contents of 8-bit

XADD reg/mem8, reg8 0F CO /r destination register or memory W?
operand and load their sum into the
destination.
Exchange the contents of a 16-bit
register with the contents of 16-bit

XADD reg/memlé6, reglé OF Cl1 /r destination register or memory 9
operand and load their sum into the
destination.
Exchange the contents of a 32-bit
register with the contents of 32-bit

XADD reg/mem32, reg32 OF C1 /r destination register or memory ﬁ?
operand and load their sum into the
destination.
Exchange the contents of a 64-bit
register with the contents of 64-bit

XADD reg/memé64, reg64 OF C1 /r destination register or memory ﬁ?
operand and load their sum into the
destination.
Exchange the contents of AX register

XCHG AX, reglé6 90 +rw with the contents of a lo-bit ﬁ?
register.
Exchange the contents of a 16-bit

XCHG reglé6,AX 90 +rw register with the contents of the AX 9
register.
Exchange the contents of EAX register

XCHG AX, reg32 90 +rd with the contents of a 32-bit #
register.
Exchange the contents of a 32-bit

XCHG reg32,AX 90 +rd register with the contents of the EAX ﬂ?
register.
Exchange the contents of RAX register

XCHG RAX, reg64 90 +rqg with the contents of a 64-bit W?
register.
Exchange the contents of a 64-bit

XCHG reg64,RAX 90 +rqg register with the contents of the RAX w?
register.
Exchange the contents of an 8-bit

XCHG reg/mem8, reg8 86 /r register with the contents of an 8- 9
bit register or memory operand.
Exchange the contents of an 8-bit

XCHG reg8, reg/mem8 86 /r register or memory operand with the ﬁ?
contents of an 8-bit register.
Exchange the contents of a 16-bit

XCHG reg/memlé6, reglé 87 /r register with the contents of a 16- ﬁ?
bit register or memory operand.
Exchange the contents of a 16-bit

XCHG regl6, reg/memlé 87 /r register or memory operand with the ﬁ?
contents of a 16-bit register.
Exchange the contents of a 32-bit

XCHG reg/mem32, reg32 87 /r register with the contents of a 32- ﬁ?
bit register or memory operand.
Exchange the contents of a 32-bit

XCHG reg32, reg/mem32 87 /r register or memory operand with the ﬁ?
contents of a 32-bit register.
Exchange the contents of a 64-bit

XCHG reg/memé64, regé64 87 /r register with the contents of a 64- ﬁ?
bit register or memory operand.
Exchange the contents of a 64-bit

XCHG reg64, reg/memé4 87 /r register or memory operand with the 9
contents of a 64-bit register.
Set AL to the contents of DS:[rBX +

XLAT mem8 D7 ansianed AL] o

Appendix A 217

User Manual November 2010
Instruction Supported
Mnemonic Opcode Description pp

Set AL to the contents of DS:[rBX +

XLATB D7 unsigned AL]. 9
XOR the contents of AL with an

XOR AL, imm8 34 ib immediate 8-bit operand and store the 9
result in AL.
XOR the contents of AX with an

XOR AX, immlé6 35 iw immediate 16-bit operand and store ﬁ?
the result in AX.
XOR the contents of EAX with an

XOR EAX, imm32 35 id immediate 32-bit operand and store ﬁ?
the result in EAX.
XOR the contents of RAX with a sign-

XOR RAX, imm32 35 id extended immediate 32-bit operand and ﬁ?
store the result in AX.
XOR the contents of an 8-bit
destination register or memory

XOR reg/mem8, imm8 80 /6 ib operand with an 8-bit immediate value @
and store the result in the
destination.
XOR the contents of a l16-bit
destination register or memory

XOR reg/meml6, immlé 81 /6 iw operand with a 16-bit immediate value ﬁ?
and store the result in the
destination.
XOR the contents of a 32-bit
destination register or memory

XOR reg/mem32, imm32 81 /6 id operand with a 32-bit immediate value ﬁ?
and store the result in the
destination.
XOR the contents of a 64-bit
destination register or memory

XOR reg/memé64, imm32 81 /6 id operand with a sign-extended 32-bit W?
immediate value and store the result
in the destination.
XOR the contents of a le6-bit
destination register or memory

XOR reg/meml6, imm8 83 /6 1ib operand with a sign-extended 8-bit @
immediate value and store the result
in the destination.
XOR the contents of a 32-bit
destination register or memory

XOR reg/mem32, imm8 83 /6 1ib operand with a sign-extended 8-bit ﬁ?
immediate value and store the result
in the destination.
XOR the contents of a 64-bit
destination register or memory

XOR reg/memé64, imm8 83 /6 ib operand with a sign-extended 8-bit ﬁ?
immediate value and store the result
in the destination.
XOR the contents of an 8-bit
destination register or memory

XOR reg/mem8, reg8 30 /r operand with the contents of an 8-bit W?
register and store the result in the
destination.
XOR the contents of a l16-bit
destination register or memory

XOR reg/memlé, reglé 31 /r operand with the contents of a 16-bit #
register and store the result in the
destination.
XOR the contents of a 32-bit
destination register or memory

XOR reg/mem32, reg32 31 /r operand with the contents of a 32-bit ﬁ?
register and store the result in the
destination.
XOR the contents of a 64-bit
destination register or memory

XOR reg/memé64, regé64 31 /r operand with the contents of a 64-bit ﬁ?
register and store the result in the
destination.
XOR the contents of an 8-bit
destination register with the

XOR reg8, reg/mem8 32 /r contents of an 8-bit register or W?

memory operand and store the result
in the destination.

218

Appendix A

User Manual November 2010
Instruction Suoported
Mnemonic Opcode Description pp

XOR the contents of a l6-bit
destination register with the

XOR reglé, reg/memlé6 33 /r contents of a 16-bit register 9
memory operand and store the result
in the destination.
XOR the contents of a 32-bit
destination register with the

XOR reg32, reg/mem32 33 /r contents of a 32-bit register ﬁ?
memory operand and store the result
in the destination.
XOR the contents of a 64-bit
destination register with the

XOR reg64, reg/memé64 33 /r contents of a 64-bit register ﬁ?
memory operand and store the result
in the destination.

Table 15-8: General-Purpose Instruction Reference

A.6.3 System Instructions

This chapter describes the function, mnemonic syntax and opcodes that the simulator
simulates. The system instructions are used to establish the operating mode, access
processor resources, handle program and system errors, and manage memory. Many of
these instructions can only be executed by privileged software, such as the operating
system kernel and interrupt handlers, that run at the highest privilege level. Only system
instructions can access certain processor resources, such as the control registers, model-
specific register, and debug registers.

Instruction

: — Supported
Mnemonic Opcode Description pp
Adjust the RPL of a destination segment
selector to a level not less than the RPL of 1
ARPL reg/meml6, reglé 63 /r the segment selector specifies in the 16-bit w?
source register.
CLI FA Clear the interrupt flag (IF) to zero. ﬁ?
CLTS 0F 06 ((Z)lear the task-switched (TS) flag in CRO to #
HLT F4 Halt instruction execution. ﬁ?
INT 3 ccC Trap to debugger at interrupt 3. é}Z
Flush internal caches and trigger external
INVD OF 08 cache flushes. W?
INVLPG mem8 0F 01 /7 Inval}dgte the :QB entry for ﬁhe page ﬁ?
containing a specified memory location.
IRET CF Return from interrupt (16-bit operand size). é}S
IRETD CF Return from interrupt (32-bit operand size). é}S
IRETQ CF Return from interrupt (64-bit operand size). é}S
Reads the GDT/LDT descriptor referenced by
the 16-bit source operand masks the
LAR regl6, reg/meml6 OF 02 /r attributes with FFOOh and saves the result ﬁ?
in the 16-bit destination register.
Reads the GDT/LDT descriptor referenced by
LAR reg32, reg/meml6 0F 02 /r the 16-bit source operand masks the W?

attributes with OOFFFFOOh and saves the
result in the 32-bit destination register.

! In 64-bit mode, this opcode (0x63) is used for the MOVSXD instruction.
? See Section A.6.3.1, “INT — Interrupt to Vector”, on page 225.
¥ See Section A.6.3.2, “IRET — Return from Interrupt”, on page 225.

Appendix A

219

User Manual November 2010
Instruction Supported
Mnemonic Opcode Description pp
Reads the GDT/LDT descriptor referenced by
the 16-bit source operand, masks the
LAR reg64, reg/meml6 OF 02 /r attributes with OOFFFFOOh and saves the W?
result in the 64-bit destination register.
LGDT meml16:32 0F 01 /2 Loads meml6:32 into the global descriptor 9
table register.
3 Loads meml6:64 into the global descriptor
LGDT meml6: 64 OF 01 /2 | {2078 reqister. o
LIDT meml6:32 0F 01 /3 Loads mem;6:32 into the interrupt descriptor W?
table register.
LIDT meml6: 64 0F 01 /3 Loads mem;6:64 into the interrupt descriptor W?
table register.
Load the 16-bit segment selector into the
LLDT reg/memlé6 0F 00 /2 local descriptor table register and load the @
LDT descriptor from the GDT.
Loads the lower 4 bits of the source into
LMSW reg/meml6 OF 01 /6 the lower 4 bits of CRO. W?
Loads a 16-bit general-purpose register with
LSL reglé, reg/memlé6 OF 03 /r the segment limit or a selector specified in ﬁ?
a 16-bit memory or register operand.
Loads a 32-bit general-purpose register with
LSL reg32, reg/memlé6 OF 03 /r the segment limit or a selector specified in 9
a 16-bit memory or register operand.
Loads a 64-bit general-purpose register with
LSL reg64, reg/memlé6 OF 03 /r the segment limit or a selector specified in @
a 16-bit memory or register operand.
Load the 16-bit segment selector into the
LTR reg/memlé6 OF 00 /3 task register and load the TSS descriptor w?
from the GDT.
MOV CRn, reg32 0F 22 /r Move the contents of a 32-bit register to Wﬁ
CRn.
MOV CRn, reg64 0F 22 /r Move the contents of a 64-bit register to #
CRn.
MOV reg32, CRn OF 20 /r Movg the contents of CRn to a 32-bit #
register.
MOV reg64, CRn OF 20 /r Mov; the contents of CRn to a 64-bit W?
register.
Move the contents of a 32-bit register to
MOV DRn, reg32 0F 21 /r DRA. ﬁ?
MOV DRn, reg64 0F 21 /r Move the contents of a 64-bit register to #
DRn.
MOV reg32, DRn OF 23 /r Movg the contents of DRn to a 32-bit #
register.
Move the contents of DRn to a 64-bit
MOV reg64, DRn 0F 23 /r | 27T or. o’
RDMSR 0OF 32 Copy MSR specified by ECX into EDX:EAX. 9
Copy the performance monitor counter
RDPMC oF 33 specified by ECX into EDX:EAX. W?
RDTSC 0F 31 Copy the time-stamp counter into EDX:EAX. ﬁ?
RSM 0F AA Resume operation of an interrupted program. ﬁ?
SGDT meml16:32 0F 01 /0 §Z$£i global descriptor table register to W?
SGDT meml6: 64 OF 01 /0 Store global descriptor table register to #
memory.
SIDT meml6:32 0F 01 /1 i2$gi interrupt descriptor table register to ﬁ?
STIDT memi6:64 0F 01 /1 Store interrupt descriptor table register to ﬁ?
memory.
Store the segment selector from the local
SLDT reglé6 0F 00 /O descriptor table register to a l6-bit 9
register.
Store the segment selector from the 1local
SLDT reg32 0F 00 /0 descriptor table register to a 32-bit #
register.
Store the segment selector from the 1local
SLDT reg64 0F 00 /0 descriptor table register to a 64-bit ﬂ?
register.
Store the segment selector from the 1local
SLDT memlé6 0F 00 /0 descriptor table register to a 16-bit memory w?
location.
SMSW regl6 0F 01 /4 Sto;e the low 16 bits of CRO to a 1l6-bit v
register.
SMSW reg32 0F 01 /4 Stoge the low 32 bits of CRO to a 32-bit 9
register.
220 Appendix A

User Manual November 2010

Instruction Supported
Mnemonic Opcode Description pp

SMSW reg64 OF 01 /4 StOJ.fe the entire 64 bits of CRO to a 64-bit 9
regilster.

SMSW memlé6 0F 01 /4 Store the low 16 bits of CRO to memory. #

STI FB Set interrupt flag (IF) to 1. o
Store the segment selector from the task

STR reglé6 0F 00 /1 register to a l16-bit general-purpose 9
register.
Store the segment selector from the task

STR reg32 0F 00 /1 register to a 32-bit general-purpose @
register.
Store the segment selector from the task

STR reg64 0F 00 /1 register to a 64-bit general-purpose @
register.
Store the segment selector from the task

STR meml6 OF 00 /1 register to a 16-bit memory location. 9

SWAPGS OF 01 F8 Exchange GS base with KernelGSBase MSR. #

SYSCALL OF 05 Call operating system. #

SYSENTER OF 34 Call operating system. #

SYSEXIT OF 35 Return from operating system. #

SYSRET 0OF 07 Return from operating system. #

UD2 OF 08 Raise an invalid opcode exception. #
Set the zero flag (ZF) to 1 if the segment

VERR reg/meml6 OF 00 /4 selected can be read. @
Set the zero flag (ZF) to 1 if the segment

VERW OF 00 /5 selected can be written. v
Write modified cache lines to main memory,

WBINVD 0F 09 invalidate internal caches, and trigger @
external cache flushes.

WRMSR 0OF 30 Write EDX:EAX to the MSR specified by ECX. v

Table 15-9: System Instruction Reference

A.6.3.1 INT = Interrupt to Vector

Opcode Instruction Description

CD INT imm8 Interrupt to Vector.

cc INT 3 Interrupt to Debug Vector.

e Interrupt to task-gate is not implemented. An attempt to execute an interrupt to
task-gate results in a ‘FeatureNotImplemented’ exception and the simulation will
be stopped.

e When delivering an exception in an attempt to deliver a hardware interrupt the
simulation will not push the resume-flag (RF) onto the stack.

e Always clears VM, NT, TF, and RF bits in rFLAGS.

A.6.3.2 IRET — Return from Interrupt
Opcode Instruction Description
IRET, IRETD, :
CF IRETO Return from interrupt

The simulator does not support nested task-switching using the rFLAGS nested-task bit
(NT) and the TSS back-link field. An interrupt return (IRET) to the previous task (nested-
task) will result in a ‘FeatureNotImplemented’ exception and the simulation will be
stopped.

Appendix A 221

User Manual November 2010

A.6.4 Virtualization Instruction Reference

For more information on Virtualization Technology, see AMD Publication #33047,
AMDG64 Virtualization Technology.

Instruction

Mnemonic Opcode Description STz
CLGI OF 01 DD Clear Global Interrupt Flag. q?
Invalidates the TLB mapping for the
INVLPGA OF 01 DF virtual page specified in rAX and the ﬁ?
ASID specified in ECX.
MOV reg32, CR8 FO 20 /r ?é;?gizi? notation for move from CR8 to W?
MOV reg64, CR8 FO 20 /r éég?rnate notation for move register to W?
MOV CR8,reg32 FO 22 /r ii;igi:;? notation for move from CR8 to “?
MOV CR8,reg64 FO 22 /r éig?rnate notation for move register to “?
SKINIT OF 01 DE iiizgiatigiﬁlallzatlon and Jjump, with W?
STGI 0OF 01 DC Set Global Interrupt Flag. q?
VMLOAD 0OF 01 DA Load State from VMCB. w
VMCALL 0F 01 D9 Call VMM. o
VMRUN 0F 01 D8 Run Virtual Machine. o
VMSAVE OF 01 DB Save State to VMCB. w

A.6.5 64-Bit Media Instruction Reference

These instructions described in this section operate on data located in the 64-bit MMX
registers. Most of the instructions operate in parallel on sets of packed elements called
vectors, although some operate on scalars. The instructions define both integer and
floating-point operations, and include the legacy MMX instructions and the AMD
extensions to the MMX instruction set.

Instruction Supported
Mnemonic Opcode Description pp
Converts packed double-precision
floating-point values in an XMM
CVTPD2PI mmx,xmm2/ml128 66 OF 2D /r | register or 128-bit memory location to ﬁ?

packed doubleword integers values in
the destination MMX™ register.

Converts two packed doubleword integer
values 1in a MMX™ register or 64-bit
CVTPI2PD xmm,mmx/mé64 66 OF 2A /r | memory location to two packed double- q?
precision floating-point wvalues in the
destination XMM register.

Converts packed doubleword integer
values in a MMX™ register or 64-bit
CVTPI2PS mmx,xmm2/ml128 OF 2A /r memory location to single-precision W?
floating-point values in the
destination XMM register.

A.6.6 3DNow!™ |nstruction Set

This chapter describes the 3DNow! Instruction Set that the simulator supports and
simulates. 3DNow! Technology is a group of new instructions that opens the traditional
processing bottlenecks for floating-point-intensive and multimedia applications.

Instruction Supported
Mnemonic Opcode Description pp
Fast Enter/Exit of the MMX or
FEMMS OF OF floating-point state. “?

222 Appendix A

User Manual November 2010

Instruction

Mnemonic Opcode Description ST
PAVGUSB mmregl,mmreg2/mé64 OF OF /BF ég?izg? of unsigned packed 8-bit
PF2ID mmregl,mmreg2/mé64 OF OF /1D gggzg;gsor p§?§:§d32—bji}iiﬁi;ﬁ;?Oint
PFACC mmregl,mmreg2/mé64 OF OF /AE | Floating-point accumulate.
PFADD mmregl,mmreg2/mé64 OF OF /9E | Packed, floating-point addition.
PFCMPEQ mmregl,mmreg2/mé64 OF OF /BO ggﬁzfdto.floating—point comparison,

Packed floating-point comparison,
greater than or equal to.
Packed floating-point comparison,

PFCMPPGE mmregl,mmreg2/mé4 OF OF /90

PFCMPGT mmregl,mmreg2/mé64 OF OF /A0 greater than.

PFMAX mmregl,mmreg2/mé64 0F OF /A4 | Packed floating-point maximum.

PFMIN mmregl,mmreg2/mé64 0F OF /94 | Packed floating-point minimum.
Packed floating-point

PFMUL mmregl,mmreg2/mé64 OF OF /B4 multiplication.

PFRCP mmregl,mmreg2/mé64 OF OF /96 | Packed floating-point approximation.

Packed floating-point reciprocal,
first iteration step.

Packed floating-point reciprocal,
second iteration step.

Packed floating-point reciprocal,
square root, first iteration step.
Packed floating-point reciprocal,

PFRCPIT1 mmregl,mmreg2/mé4 OF OF /A6

PFRCPIT2 mmregl,mmreg2/mé4 OF OF /B6

PFRSQIT1 mmregl,mmreg2/mé4 0F OF /A7

ASIA SR SA LA A AN YL A SL L N N A S LA AN

PFRSQRT mmregl,mmreg2/mé64 0F OF /97 Square root approximation.

PFSUB mmregl,mmreg2/mé64 OF OF /9A | Packed, floating-point subtraction.
Packed, floating-point reverse

PFSUBR mmregl,mmreg2/mé4 OF OF /AA subtraction.

PI2FD mmregl,mmreg2/mé64 OF OF /0D Pa;ked 32_bl? integer to floating-
point conversion.
Multiply signed packed 16-bit values

PMULHRW mmregl,mmreg2/mé64 OF OF /B7 | with rounding and store the high 16
bits.

PREFETCH/PREFETCHW OF 0D Prefetch processor cache line into

L1 data cache (Dcache).

Table 15-10: 3DNow!™ [nstruction Reference

A.6.7 Extension to the 3DNow! Instruction Set

This section describes the five new DSP instructions added to the 3DNow! Instruction
set.

Instruction Supported
Mnemonic Opcode Description PP

Packed floating-point to integer

PF2IW mmregl,mmreg2/m64 OF OF /1C word conversion with sign extend. “?

PFNACC mmregl,mmreg2/mé4 OF OF /8A Packed floating-point negative ﬁ?
accumulate.

PFPNACC mmregl,mmreg2/mé64 OF OF /8E Packeq flqatlng—p01nt mixed W?
positive-negative accumulate.

PI2FW mmregl,mmreg2/mé64 OF OF /0C Pagked 16_blt. integer to floating- W
point conversion.

PSWAPD mmregl,mmreg2/mé64 OF OF /BB | Packed swap double word. ﬁ?

Table 15-11: Extension to 3DNow! Instruction Reference

A.6.8 Prescott New Instructions

Prescott New Instruction technology for the x64 architecture is a set of 13 new
instructions that accelerate performance of Streaming SIMD Extension technology,
Streaming SIMD Extension 2 technology, and x87-FP math capabilities. The new
technology is compatible with existing software and should run correctly, without
modification. The thirteen new instructions are summarized in the following section. For
detailed information on each instruction refer to a complete Instruction Set Reference.

Appendix A 223

User Manual November 2010

Instruction

: = Supported
Mnemonic Opcode Description pp
Add/Subtract packed double-precision
ADDSUBPD xmml,xmm2/ml128 66 OF DO /r floating-point number from XMM2/Mem W?
to XMM1.

Add/Subtract packed single-precision
ADDSUBPS xmml,xmm2/ml28 F2 OF DO /r floating-point number from XMM2/Mem

to XMM1.
, Store ST as a signed integer
FISTTP mléint DF /1 (truncate) in mléint and pop ST.
, Store ST as a signed integer
FISTTP m32int DB /1 (truncate) in m32int and pop ST.
FISTTP mé4int DD /1 Store ST as a signed integer

(truncate) in mloint and pop ST.

Add horizontally packed double-
HADDPD xmml ,xmm2/ml128 66 OF 7C /r precision floating-point numbers
from XMM2/Mem to XMMI1.

Add horizontally packed single-
HADDPS xmml,xmm2/ml128 F2 OF 7C /r precision floating-point numbers
from XMM2/Mem to XMM1.

Subtract horizontally packed double-
HSUBPD xmml,xmmZ2/ml128 66 OF 7D /r precision floating-point numbers
from XMM2/Mem to XMM1.

Subtract horizontally packed single-
HSUBPS xmml,xmmZ2/ml128 F2 OF 7D /r precision floating-point numbers
from XMM2/Mem to XMM1.

Load 128 Dbits from Memory to XMM
register.

Sets up a linear address range to be
monitored by hardware and activates
MONITOR EAX,ECX,EDX OF 01 C8 the monitor. The address range
should be of a write-back memory
caching type.

Move 64 bits representing the lower
double-precision data element from

LUL | S L% e S

LDDQU xmm,ml128 F2 OF FO /r

%

MOVDDUP xmml , xmm2/m64 F2 0F 12 /r | oo e o e s register and o
duplicate.
Move 128 Dbits representing packed
single-precision data elements from
MOVSHDUP xmml,xmm2/m128 | F3 OF 16 /r | guud cBEeCtoron (o™ egister and o

duplicate high.

Move 128 Dbits representing packed
Jr single-precision data elements from “?
XMM2 /Mem to XMM1 register and
duplicate low.

A hint that allows the processor to
stop instruction execution and enter
MWAIT EAX,ECX OF 01 C9 an implementation-dependent 3:2
optimized state until occurrence of
a class events.

MOVSLDUP xmml,xmm2/ml128 F3 OF 12

Table 15-12: Prescott New Instruction Reference

A.6.8.1 MONITOR - Setup Monitor Address

Opcode Instruction Description
OF 01 C8 MONITOR Setup Monitor Address.

The simulator does not recognize this instruction. Therefore the simulator generates an
invalid-opcode exception.

! See Section A.6.8.1, “MONITOR — Setup Monitor Address”, on page 228.
? See Section A.6.8.2, “MWAIT — Monitor Wait”, on page 229.

224 Appendix A

User Manual November 2010

A.6.8.2 MWAIT — Monitor Wait

Opcode Instruction Description
OF 01 C9 MWAIT Monitor Wait.

The simulator does not recognize this instruction. Therefore the simulator generates an
invalid-opcode exception.

Appendix A 225

User Manual November 2010

A.7 Automation Commands

The simulator can be controlled externally through a scripting interface by issuing
automation commands. These commands are directed toward either the shell, or toward
any device that is part of the currently loaded BSD. Automation commands are plain
ASCII text, and are sent to the simulator’s automation interface. The method for sending
automation commands to the interface, and for retrieving the response, is host dependent
on the host OS.

Figure 15-1 shows the simulators Console Window. The Console Window is the user
interface to the simulators automation interface. All automation commands can be send
from the Console Window to the simulators automation interface, as explained in the
following sections.

SimNowisimnow. exe

Using image path: “.“Images"
Using library path: "_.“devices"

1 simnow? Opening "C:/8imNow~-solo. hﬂd"
: creating device HB “Debugger'
H c:eatlng device "AweSim Processor"
: creating device "AMD-8151 AGPF Tunnel”
: creating device "AMD 8th Generation Integrated MNorthbridge"
: creating device "AMD-8111 I-0 Hub"
: creating device "Dimm Bank"
: creating device "PCI Bus"
: creating device "Winbond W83627HF SI0"
: creating device "Memory Device"
: creating device "Emerald Graphics"
Could allocate map memory
BED Load completed?

Figure 15-1: Console Window

The automation commands are sent to a specific device by starting the command with the
name of the device, followed by a period. For example, to send the Modules command to
the shell device, you would use:

1 simnow> shell.modules

If more than one device exists in the currently loaded BSD (for example, most BSDs
include two IDE controllers), you identify the specific device by following the device
name with a colon, and then the number of the device you are interested in. For example,
to send the DVDROMStatus command to the second IDE controller, you would use:

1 simnow> ide:1.DVDROMStatus 0

Omitting the colon and the device number causes the simulator to assume device 0. The
following two commands are equivalent:

226 Appendix A

User Manual November 2010

1 simnow> ide:0.DVDROMStatus O
1 simnow> ide.DVDROMStatus 0

In addition to the commands supported by the various devices, detailed below, all devices
support the usage and ausage command. These commands return a brief description of
each of the commands supported by a specific device. For example, to get a non-
alphabetic ordered list of the commands supported by the shell, you could send the
command:

1 simnow> shell.usage

To get an alphabetic ordered list of the commands supported by the shell, please use the
ausage command as shown here:

1 simnow> shell.ausage

To get an overview of all automation commands which are not attached to any specific
device enter:

1 simnow> help

Automation Command Description
exec <file> Execute automation commands in [file].
List shell automation commands, same as
usage (13 29
shell.usage”.
Create a new SimNow machine, and make that
newmachine machine the “current” machine for subsequent
commands.

Switches the “current” machine to the machine

. . <n> . . s
switchmachine <n identified by ‘n’ the given number.

listmachines Lists the SimNow machines that currently exist.
exit Quits the current SimNow machine.
quit Exits the current SimNow machine.

Displays all automation commands which are

l)
' not attached to any specific device.
help The same as ‘?’.

A.7.1 Shell

To list all registered shell commands enter

1 simnow> shell.usage

Automation Command Description
ECHO <Value> Displays value to the standard output device (by
default, the screen).
Closes all open GUI components and exits the
simulator.

Exit

Appendix A 227

User Manual

November 2010

Automation Command Description
Quit See Exit.
Starts the simulation, see also Section 3.1, “Tool
Go »
Bar Buttons”, on page 7.
Stops the simulation, see also Section 3.1, “Tool
Stop Bar Buttons”, on page 7._The $top con_1mand
does not return until the simulation has in fact
stopped or the stop has failed.
Close Closes a BSD file that was previously opened.
Open <FileName> Opens a BSD file.
Modules Lists all loaded modules.
. Shell.running returns ‘No’ if simulation is
Running

currently not running; otherwise it returns ‘Yes’.

Save [<Filename>]

Saves the current system configuration to a file.
Default is “simnow.bsd”

RunTimeDuration <time>

Runs the simualtion for the given number of
microseconds and then stops the simulation.

GetRunTimeDuration

Returns the run time duration in nanoseconds.

ModifyRegistry <key> <value>

ModifyKey modifies and updates the given
registry key with the given value.

LogConsoleEnabled

Shell.LogConsoleEnabled returns ‘disabled’ if
console logging is disabled; otherwise it returns
‘enabled’.

SetLogConsoleEnabled <0|1>

Enables or disables logging.
Shell.SetLogConsoleEnabled 1 enables logging
and Shell.SetLogConsoleEnabled 0 disables

logging.

LogWndEnabled

Returns the Log Window status. The status is
‘enabled’ or ‘disabled’.

SetLogWndEnabled <0|1>

Sets the Log Window status to ‘enabled’ or
‘disabled’.

LogFile

Returns the current Log file name. Default is
‘simnow.log’.

SetLogFile <filename>

Sets the Log file name.

LogFileEnabled

Returns ‘enabled’ if file logging is enabled
otherwise it returns ‘disabled’.

SetLogFileEnabled <0|1>

Enables or disabled file logging. O disables file
logging, 1 enables file logging.

LogDevice <Device Name> <0 | 1>

Enabled (1) or disables (0) device logging for
<device>.

LoggingEnabled <Device Name>

Returns the logging status of device <Device
Name>. This automation command returns
enabled or disabled.

ErrorLogFile

Returns the current Error Log file name. Default
is ‘simnow.errlog’.

SetErrorLogFile <filename>

Sets the Error Log file name.

ErrorLogFileEnabled

Returns ‘enabled’ if error file logging is enabled
otherwise it returns ‘disabled’.

SetErrorLogFileEnabled <0[1>

Enables or disabled error file logging. 0 disables
error file logging; 1 enables error file logging.

228

Appendix A

User Manual

November 2010

Automation Command

Description

Memdump <FileName>

Set the memory dump file name.

Reset

Resets the simulation, see also Section 3.1,
“Tool Bar Buttons”, on page 7.

CreatedDevices

Lists all created devices.

AddDevice <Device Name> [<x> <y>]]

Creates a device and adds the device to the
device window at position (X, y). ‘x’ and ‘y’ are
pixel coordinates inside the device window.

Connections <Device Name>

Lists all connections that a device has.

Connect <Device Namel> [connect pointl]

[Device Name2] [connect point2]

Connects ‘Device Namel’ and ‘Device Name2’
using ‘connect pointl’ and ‘connect point2’.

AvailablePorts <Device Name>

Lists available ports of device ‘Device Name’.

Disconnect <Device Name>

Disconnects all connections of device ‘Device
Name’.

DeleteDevice <Device Name>

Deletes device ‘Device Name’ from simulated
system and removes it from device window.

KnownDevices

Lists all devices that are known by the
simulator. These devices are stored in
‘devices\’.

MoveDevice <Device Name> <x> <y>

Moves the specified device ‘Device Name’ to
xly coordinates in device window. This
command only work when GUI mode is active.

New Creates a new BSD file.
Returns the location/postion (X, y) of the device
<Device Name> in the device window. 'x' and
'y' are pixel coordinates inside the device
Location window. For example, Location "USB

JumpDrive" returns "USB JumpDrive" 152 382
where 152 is the X' coordinate and 382 is the 'y’
coordinate.

DumpRegistry

Displays all information stored in SimNow’s
registry.

SetMPQuantum <time (nanoseconds)>

Sets the time in nanoseconds for a CPU before
switching to next CPU in a MP system.
Modifying the MP Quantum might have a huge
impact on the simulated MP system.

GetMPQuantum

Returns the current MP Quantum value (see also
SetMPQuantum).

GDB -d [[udpltep][::] [<port>]]

Sets up the simulators gdb interface. The default
protocol is tcp and the default port is 2222. If
you don't define any parameters the default
protocol and port will be used. You can override
tcp with udp. The following example shows
how to override the default protocol and port
parameters: "shell.gdb udp::2233".

The host parameter [::] can't be changed it is
always set to localhost. For more information
please refer to Section 11.2, "GDB Interface",
on page 162.

Appendix A

229

User Manual

November 2010

Automation Command

Description

Swap {X86Sim Processor | AweSim
Processor}

Switches CPU model from X86Sim to AweSim
or the other way around.

HasModule <module>

Returns ‘true’ if module is present; otherwise it
returns ‘false’.

GetDisplaylIndex

Returns the 0 based index of which VGA device
is currently being displayed in the GUI. Only
useful if more than one VGA device is active
within a BSD file.

SetDisplayIndex <n>

Sets the 0 based index of which VGA devices
output is to be displayed in the GUI. Only
useful if more than one VGA device is active
within a BSD file.

Wait

Provides a "WAIT UNTIL STOPPED" feature.

NGo

Provides a non-blocking "GO" command.

DisplayScreenShot <index> <filename>
<format>

“DisplayScreenShot” takes a screen shot. This
command supports multiple displays Index is a
number that identifies the desired display. An
Index of 0 means that a screen shot from display
0 will be taken. Filename is the name of the
snapshot file. The file name includes the full
pathname for the file, any valid path drive
names (‘C:’) or server names (\\servername\)
can be used. If a pathname is not given the
current default path is used. Format must be one
of the formats that GetScreenShotFormats
returns (e.g., BMP or PNG).

GetScreenShotFormats

This command gives the list of supported
formats that can be used.

LogConsoleStdErr

“LogConsoleStdErr” reports if stderr logging is
currently enabled.

SetLogConsoleStdErr <0 | 1>

"SetLogConsoleStderr” cause console logging
to go to stderr (1) or stdout (0). The default is
the current behavior of logging to stderr.

ForceSingleStep <0 | 1>

Enabled (1) or disables (0) single stepping.

XTRInstDmpFile <FileName>

Dumps instruction to file <FileName>.

LoglO <device> | <all> <feature> | reset <O
| 1>

Enables (1) or disables (0) 10 logging <feature>
for <device> or <all> devices. Supported 10
logging features are: PCI, 10, 10fpdis, MEM,
MEMfpdis and GETMEMPTR. The reset
options sets the selected <feature> on <device>
or <all> devices to its default value.

230

Appendix A

User Manual

November 2010

Automation Command

Description

GetLoglO <device>

Returns 10 logging status of <device>. For
example, GetLoglO "USB Jumpdrive" returns
the following information:

PCI: Disabled
10: Disabled
10fpdis: Enabled
MEM: Disabled

MEMfpdis: Enabled
GETMEMPTR: Disabled

Fastpath <device> | <all> <i | m>

Enables the 10 <i> or MEM <m> fastpath for
the given <device> or <all> devices.

GetFastpath <device> | all <i | m>

Returns enabled or disabled depending on if
fastpath is enabled or disabled for the given
<device> or all devices. The <i> option returns
the 10 fastpath status. The <m> option returns
the MEM fastpath status.

SetVGAQuantum <time>

Sets the quantum value for the VGA signature
mechanism. If the VGA signature matches with
any of the preset golden VGA signatures the
simulation stops.

GetVGAQuantum

Returns the quantum value for the VGA
signature mechanism.

GenerateVGASignature <index>

Returns the VGA signature for the present
screenshot. It is an MD5 sum generated from
the contes of the present screen.

SetGoldenVGASignature <index>

Sets golden signature(s) needed for comparision
by the VGA signature mechanism.

EnableVGASignature <0 | 1>

Enables (1) or disables (0) the VGA signature
mechansim.

SetSyncQuantum <time (nanoseconds)>

Applies the MP Quantum <time> across all
machines (see also SetMPQuantum).

GetSyncQuantum

Returns the MP Quantum value in nanoseconds
set via SetSyncQuantum (see also
GetMPQuantum).

A.7.2 IDE

1 simnow> ide.usage

Automation Command

Description

Image {master|slave|0|1} <filename>

Creates a volume for the given disk image (For
e.g. ‘ide.image 0i:\c0d0.img’).

Getlmage {master|slave|0|1}

Displays the disk image for the given volume.

Journal {master|slave|0|1} {off|on|O|1}

Turns journaling on or off for specified drive.
For instance, ‘ide.journal master on’ turns on
journaling for master drive.

Appendix A

231

User Manual

November 2010

Automation Command

Description

JournalStatus {master|slave|0|1}

Returns enabled or disabled if journaling is
enabled or disabled for specified drive.

JournalSize {master|slave|0|1}

Returns the journal size for specified dirve.

JournalSave {master|slave|0|1} <filename>

Saves the contents of the primary or slave disk
journal to a file.

JournalLoad {master|slave|0|1} <filename>

Loads the contents of the primary of slave disk
journal from a file.

JournalCommit {master|slave|O|1}

Commits the contents of the disk journal on the
master or slave drive to the disk image that
drive represents.

JournalClear {master|slave|0|1}

Clears the journal - discards any changes made
to the drive.

JournalDebug {master|slave|0|1}

This may no longer do anything - it originally
enabled a debug verification mode.

DVDROMStatus {master|slave|0|1}

Displays the status for the DVD-ROM device or
a particular volume.

SetDVDROM {master|slave|0|1}
{off|on|0|1}

Sets master or slave to DVD-ROM device.

Eject {master|slave|0|1} {off|<filename>}

This command is valid only for drives
configured as ATAPIL. The command will set
the "Media Ejected" flag to true, and will
optionally set a new image file to [File]. Use the
special name "off" (without the quotes) if you
want to leave the drive without an image file
(i.e. empty) after the eject.

DMADelay {master|slave|0|1} <usec delay>

Sets the DMA delay for specified drive (master
or slave) to ‘usec delay’.

Noise {off|on|0]1}

Turn on to print debug messages.

SetlmageType {master|slave|0|1} {ID,
RAW, AUTO}

This command is used to tell SimNow which
type of hard disk image is used. ID indicates
that the hard disk image contains an ID block.
RAW indicates that the hard disk image is a
sector-by-sector copy (identical to the source).
AUTO indicates that SimNow will try to
identify the used type of hard disk image
automatically.

GetlmageType {master|slave|0|1}

Returns the current image type setting, ID,
RAW or AUTO. See SetlmageType.

JournalResize {master|slave|0|1} <Old
Journal> <New Journal>

Migrate journal to a new location

Status {master|slave|0|1}

If connected to a drive image, gives status.
About the disk image: writable, block size. And
about the disk journal: path, size, writable, super
block bits, idx levels, index bits, data bits.

BDROMStatus {master|slave|0|1}

Returns whether the drive is a BD-ROM device

SetBDROM {master|slave|0|1} {offlon|0|1})

Set master or slave to BD-ROM device, Blu-ray

232

Appendix A

User Manual

November 2010

Automation Command

Description

SetConnectable {off|on|0|1}

Sets whether the ide port is available to connect
a drive on the platform. Disable clears the drive
image and prevents executation of other
automation commands. For IDE (aka PATA),
this is for both master and slave drives.

GetConnectable

Returns whether we can connect a drive

A.7.3 SATA

1 simnow> sata.usage

Automation Command

Description

Image <filename>

Creates a volume for the given disk image (For
e.g. ‘sata.image i:\c0d0.img”).

Getlmage

Displays the disk image for the given volume.

Journal {off|on|0|1}

Turns journaling on or off for the drive. SATA
has one drive per channel.

JournalStatus

Returns enabled or disabled if journaling is
enabled or disabled for the drive.

JournalSize

Returns the journal size for the dirve.

JournalSave <filename>

Saves the contents of the disk journal to a file.

JournalLoad <filename>

Loads the contents of the disk journal from a
file.

JournalCommit

Commits the contents of the disk journal on the
drive to the disk image.

JournalClear

Clears the journal - discards any changes made
to the drive.

JournalDebug

This may no longer do anything - it originally
enabled a debug verification mode.

DVDROMStatus

Displays the status for the DVD-ROM device or
a particular volume.

SetDVDROM {off|on|0|1}

Sets the drive to DVD-ROM device.

Eject {off|<filename>}

This command is valid only for drives
configured as ATAPI. The command will set
the "Media Ejected" flag to true, and will
optionally set a new image file to [File]. Use the
special name "off" (without the quotes) if you
want to leave the drive without an image file
(i.e. empty) after the eject.

DMADelay {master|slave|0|1} <usec delay>

Sets the DMA delay for the drive to ‘usec
delay’.

Noise {off|on|0|1}

Turn on to print debug messages.

Appendix A

233

User Manual

November 2010

Automation Command

Description

SetlmageType {ID, RAW, AUTO}

This command is used to tell SimNow which
type of hard disk image is used. ID indicates
that the hard disk image contains an ID block.
RAW indicates that the hard disk image is a
sector-by-sector copy (identical to the source).
AUTO indicates that SimNow will try to
identify the used type of hard disk image
automatically.

GetlmageType

Returns the current image type setting, 1D,
RAW or AUTO. See SetlmageType.

JournalResize <Old Journal> <New
Journal>

Migrate journal to a new location

Status

If connected to a drive image, gives status.
About the disk image: writable, block size. And
about the disk journal: path, size, writable, super
block bits, idx levels, index bits, data bits.

BDROMStatus

Returns whether the drive is a BD-ROM device

SetBDROM {off|on|0|1})

Set master or slave to BD-ROM device, Blu-ray

SetConnectable {off|lon|0|1}

Sets whether the sata port is available to connect
a drive on the platform. Disable clears the drive
image and prevents execution of other
automation commands.

GetConnectable

Returns whether we can connect a drive

A.7.4 USB

1 simnow> usb.usage

Automation Command

Description

log (enable|disable) {mifsopt}

Enables or disables Memory (m), Interrupt (i),
Frame (f), StateChange (s), PCI Config (p),
Transfer (t), or/and 10 (0) logging.

A.7.5 CMOS

1 simnow> cmos.usage

Automation Command

Description

Load <filepath>

Loads CMOS data stored at ‘filepath’. For
example ‘cmos.load c:\cmos.dat’.

Save <filepath>

Saves CMOS data to ‘filepath’, e.g. ‘cmos.save
c:\cmos.dat’

SetTime <seconds> <minutes> <hours>
<days since Sunday> <day of the month>
<months since January> <years since 1900>

Sets CMOS Time to specified time. For instance
‘cmos.SetTime 00 00 12 00 31 12 14’ sets the
CMOS time to Sunday December 31th, 2004, at
12:00:00.

GetByte <addr>

Returns byte in CMOS that is stored at address
‘addr’.

234

Appendix A

User Manual

November 2010

Automation Command Description

SetByte <addr> <data>

Sets byte in CMOS at address ‘addr’ to value
stored in ‘data’.

GetData

Dumps complete CMOS.

GetRamSize

Returns the CMOS RAM size in bytes.

ClearTo <value>

Sets entire CMOS to specified value ‘value’.

A.7.6 ACPI

1 simnow> acpi.usage

Automation Command Description

PowerButton

Triggers PowerButton ACPI message.

SleepButton

Triggers SleepButton ACPI message.

A.7.7 Floppy

1 simnow> floppy.usage

Automation Command Description

SetFloppy <A/B(0|1)> <filename>

Assigns a floppy image file ‘filename’ to drive

‘A’ or ‘B’.
GetFloppy <A/B(0[1)> [R:}li;nfBEhe assigned floppy image file of drive
. The command will set the "Media Ejected" fla
EjectFloppy <A/B(0|1)> of drive ‘A’ or ‘B’ J J
A.7.8 Debug

1 simnow> debug.usage

Automation Command Description

Enables the Debugger and opens a debug dialog window, if GUI
Enable ;

is enabled.
Disable Disables the Debugger and closes debug dialog window, if GUI

is enabled.

Attach <Processor Num>

Attaches debugger to specified processor.

ExecCmd <Command>

Executes the debug command specified in ‘command’, see
Section 10.2, “Debugger Command Reference”, on page 155.

MemDump Dumps 128-bytes of memory.

DisDump Dumps disassembly.

RegDump Dumps all CPU registers.

MsgDump Dumps debug messages.

WhichProc Returns the processor number which the debugger is currently

attached to.

EnableStatus

Returns ‘enabled’ if debugger is enabled, ‘disabled’ if debugger
is disabled.

GetConfig

Displays the current configuration.

Appendix A

235

User Manual November 2010

A.7.9 AMD-8151™ AGP Bridge
1 simnow> amd8151.usage

Automation Command Description

Sets the internal Chip revision number of the AMD-8151 AGP
device, value must be between 1 and 255.

Gets the internal Chip revision number of the AMD-8151 AGP

SetRev <Rev>

GetRev ;

device.
A.7.10 VGA
1 simnow> vga.usage

Automation Command Description

Bios <filename> Loads the specified BIOS file.

GetBios Returns the active BIOS file name.

VGA (0]1) 1 enables the VGA, 0 disables it.

GetVGA Retur_ns current status of the VGA registers, true if enabled and
false if disabled.

GetConfig Displays VGA configuration.

A.7.11 Serial

1 simnow> serial.usage

Previous versions of the simulator always used only the named-pipe format. Because of
this, the named-pipe was created as soon as the BSD was loaded. Because the new
version allows you to dynamically alter the communications method, the transport is not
created until you hit "go" for the first time (or after making any change to the transport
method). What this means is that if you are using a named-pipe, you will have to press
"go" before the named-pipe is actually created

Automation Command Description
SetLoopback (0]1) 0 disables loop back, 1 enables loop back.

Returns ‘true’ if loop back is enabled; otherwise it returns
GetLoopback false’

236 Appendix A

User Manual November 2010

Automation Command Description
Returns information regarding how the simulated serial port is
configured.

The result will be either:

e \\.\pipe\SimNow.COMn
This indicates that data is being transported through a
named-pipe with the given name. The "n" will be either 1

GetCommPort* for the first serial port, or 2 for the second serial port.

e \\.\COMn 57600
This indicates that data is being transported through the
given serial port on the host machine using a baud rate of
57600.

o none
This indicates that data written to the simulated serial port
is discarded, and no data is ever received.

Sets the mode of communication you want to use with the
simulated serial port.

® pipe
Tells the simulator to use a named-pipe as the method of
transport for serial data to/from the simulated machine.
The pipe name will be of the form
"\W\pipe\SimNow.COMnN", where "n" will be 1 for serial
port 1 and 2 for serial port 2. The name is not user
configurable.

e (COMn
Tells the simulator to use one of the host serial ports
SetCommPort" <none | pipe (identified by "n") as the transport for data to and from the
| COMn BAUD> simulated machine. "n" can be any value between 1 and

255, and must be an actual COM port that is present on the
host system. Regardless of the configuration of the
simulated COM port, the host COM ports baud rate is
configured depending on the BAUD parameter, with 8 bit
data, no parity, 1 stop bit. “BAUD” can be one of the
following values (1200, 2400, 4800, 9600, 14400, 38400,
56000, 57600 or 115200). See also Section 11.1, "Kernel
Debugger", on page 161.
° none

Tells the simulator to discard any written data, and always
return "receiver empty" on reads.

! This only applies to the Windows® version of the simulator and not to the Linux version.

Appendix A 237

User Manual

November 2010

Automation Command

Description

Use the SetMultiplier automation command to specify the baud
rate delay time used to make the serial based communication to
Microsoft’s kernel debugger in some cases much more stable. A

SetMultiplier nMultiplier valid nMultiplier value must be in the range of “nMultiplier>=1
and nMultiplier<=100”. For example to delay the baud rate by
1/00th of normal you would enter “SetMultiplier 1”. The default
for nMultiplier is 100.

GetMultiplier Returns the current value of “nMultiplier”.

A.7.12 HyperTransport™ Technology Configuration

1 simnow> sledgeldt.usage

Automation Command

Description

Link (0[1]2) (O[1)

Enables or disables link 0, 1 or 2. For example
‘sledgeldt.link 0 1’ enables link 0 and ‘sledgeldt.link O
0’ disables linkO.

LinkStatus (0[1]2)

Returns the link status of link 0, 1 or 2.

LinkWidth (0[1]2) (8]16)

Sets link width to 8 or 16 bit of link 0, 1 or 2.

GetLinkWidth (0[1[2)

Returns link width in bits of link 0, 1 or 2.

GetConfig Displays LDT configuration.
LogDMA (0]1) Enables (1) or disables (0) DMA logging.
DMALogStatus Returns ‘enabled’ if logging is enabled otherwise it

returns ‘disabled’.

A.7.13 8" Generation Northbridge

1 simnow> sledgenb.usage

Automation Command

Description

LogHT (0]1)

Enables (1) or disables (0) logging.

HTLogStatus

Returns ‘enabled’ if logging is enabled otherwise it
returns ‘disabled’.

LogPClIConfig (0|1)

Enables (1) or disables (0) PCI Config logging.

PCILogStatus

Returns ‘enabled’ if PCI Config logging is enabled
otherwise it returns ‘disabled’.

GetConfig

Displays Northbridge logging configuration.

ProductFile <FileName>

Loads the specified product file “FileName”.

A.7.14 DBC

1 simnow> dbc.usage

Automation Command

Description

GetParam

Returns disk block cache parameters (size, depth and
bits).

SetParam <size> <depth> <bits>

Sets disk block cache parameters.

238

Appendix A

User Manual

November 2010

A.7.15 AMD-8111™ Device

1 simnow> 8111.usage

Automation Command

Description

BaselD (00]01)

This specifies the HyperTransport™ protocol base unit
ID. The IC's logic uses this value to determine the unit
IDs for HyperTransport request and response packets.
The Base 1D must be 00 or O1.

GetBaselD

Returns the HyperTransport base unit ID (BUID).

HtInterrupts (0]1)

Enables (1) or disables (0) HyperTransport interrupts.

HtIntStatus

Returns ‘enabled’ if HyperTransport interrupts are
enabled; otherwise it returns ‘disabled’.

loLog (0]1) Enables (1) or disables (0) 10 logging.
Returns ‘enabled’ if IO Logging is enabled; otherwise it
loLogStatus e ,
returns ‘disabled’.
MemLog (0]1) Enables (1) or disables (0) 10 logging.
MemLogStatus Returns ‘enabled’ if Memory Logging is enabled;

otherwise it returns ‘disabled’.

SmiScilLog (0[1)

Enables (1) or disables (0) 10 logging.

SmiScilLogStatus

Returns ‘enabled’ if SMI SCI Logging is enabled;
otherwise it returns ‘disabled’.

GetConfig

Displays the current AMD-8111 configuration.

A.7.16 EHC

1 simnow> ehc.usage

Automation Command

Description

log (enable | disable) {mp}

Enables or disables Memory (m) and PCI Configuration
(p) logging.

A.7.17 Journal

1 simnow> journal.usage

Automation Command

Description

GetParam

Returns ‘Super Block Size’, ‘Index Block Size’, ‘Index
Levels’, ‘Disk Block Size’ and ‘Maximum Disk Size’.

SetParam <Super Block Size>
<Index Block Size> <Index
Levels> [<Disk Block Size>]

Sets journal parameters.

A.7.18 CPU

1 simnow> cpu.usage

Automation Command

Description

Appendix A

239

User Manual

November 2010

LoadAnalyzer <analyzer_file>
[<args>]

Loads the analyzer
arguments ‘args’).

‘analyzer_file> with specified

ShowAnalyzers

Shows all loaded analyzers.

EnableAnalyzer <num> <0[1>

Enables (1) or disables (0) analyzer specified by ‘num’.

UnloadAnalyzer <num>

Unloads analyzer specified by ‘num’.

MCAFault <bank>
<GenerateMCAFault(0|1)> <Status
Reg> <Address Reg>

Causes a generic MCA fault if GenerateMCAFault is
true (1) at specified Bank, AddressReg and status.

Use product file to set fuses and configure CPU and
Northbridge.

Sets or disables and enables code generator settings and
options. Command must be one of the commands shown
in Table 15-13. Args depends on the command
parameter, see Table 15-13.

This command is limited to showing a profile of blocks,
without symbols, based on the current epoch. For more
information please refer to Section A.7.18.1, “Profiling
in SimNow”.

ProductFile <FileName>

CodeGen <command> <args>

DumpProfile [<blocks-to-dump>]

A.7.18.1 Profiling in SimNow ™ Technology
Here is an example use of the profiling command and its output:

1 simnow> dumpprofile 3
34962861.000000 instructions executed since the last epoch
Executed 3571672 times

CS.D=0 LongBit=0 physical addr=00000000000e4lde eip=00000000000041de

00000000000041de: cmp [04£f0h],aah
00000000000041e3: jnz $-05h
0000000000000000: This block's execution was 20.431234 percent of

the total since the last epoch.

Executed 229430 times

CS.D=0 LongBit=0 physical addr=000000000002£d99 eip=000000000000£d99

000000000000£d99: lodsb ds:[esi]

000000000000£d9%b: add ah,al

000000000000£d9d: loop $-04h

0000000000000020: This block's execution was 1.968632 percent of

the total since the last epoch.

Executed 178599 times

CS.D=0 LongBit=0 physical addr=00000000000274b2 eip=00000000000074b2

00000000000074b2: mov ax, [5724h]

00000000000074b5: cmp ax, [371ah]

00000000000074b9: jbe $+61h

0000000000000040: This block's execution was 1.532475 percent of

the total since the last epoch.

The simulator contains a code profiling facility that is accessed through the dumpprofile
automation command. There is no graphical user interface to the profiling facility at this
time. Profiling in the simulator has some limitations and features not present in most

240 Appendix A

User Manual November 2010

systems. The limitations are that no symbolic information is present in the output and that
only execution since the beginning of the last epoch (see the last paragraph for an
explanation of an epoch) is measured. The feature which is most unusual is that the user
can ask for a profile at any time, there is no profiling mechanism that needs to be enabled
before execution takes place. Another feature is that all code in the system is profiled,
even code executed with interrupts off, and code in all modes (16 bit mode, 32-bit legacy
mode, 32-bit compatibility mode, long mode, SMM mode, etc.) is measured equally.
This profiling mechanism is non-intrusive, no x86 interrupts are taken and profiling does
not affect the target machine's selection of code paths at all.

The dumpprofile command by itself causes all profile blocks to be displayed. This output
can be quite voluminous. The user can select just the most frequently executing blocks by
using an optional numeric argument. For example, "dumpprofile 10" will dump the ten
most frequently executing blocks. Blocks are ordered by their frequency of execution, not
weighted by the number of instructions in a block. Therefore, a short block executing 100
times will be displayed before a long block executing 99 times. In this example, the short
block represents fewer total instructions executed. The sense of time that the simulator
uses is quite simple, each instruction takes one "instruction count”, with REP instructions
taking one extra count per iteration. Therefore, profiles from the simulator can differ
substantially from those obtained from other tools.

The simulator works by translating guest x86 instructions to long-mode user-mode
instructions which it then executes. These translated instructions are grouped into blocks
called translations. These translations exist in a translation buffer, which is typically
about 64 MB. When the translation buffer is full and space for another translation is
needed, the simulator disposes of the contents of the translation buffer and starts a new
epoch. An epoch, in SimNow terms, is the period of execution between the flushing of
the translation cache. It is only the period from the start of the current epoch to the
issuance of the dumpprofile command that the profile will cover.

A.7.18.2 CPU Code Generator Commands
Table 15-13 describes all available Code Generator commands and their arguments.

command args Description
Help None Displays an overview of all available
commands .
Displays the current state of the
param None

configurable code generator parameters.
Displays the current value of <parameter>,
e.g., “cpu.codegen param FastFloat”.

Sets the current value of <parameter> to
param parameter value <value>. For example, Y“cpu.codegen param
FastFloat 0” disables "FastFloat”.

Changes the current value of one boolean

param parameter

enable Boolean Parameter parameter to true. For example,
“cpu.codegen enable FastFloat” enables
“FastFloat”.
Changes the current value of one boolean
. parameter to false. For example,
disable Boolean Parameter “cpu.codegen disable FastFloat” disables
“FastFloat”.

Appendix A 241

User Manual November 2010
command args Description
. Changes several parameters to the
optimize accuracy . .
conservative setting.
. Changes several parameters to the default
optimize speed

aggressive setting.

Table 15-13: CodeGen Command Overview

A.7.19 Emerald Graphics

1 simnow> emerald.usage

Automation Command

Description

FrameBufSize <size>

FrameBufSize sets the size of the frame buffer in
Megabytes. The size must be a power of 2. The value
placed in this option is only read at reset. The frame
buffer size can not be dynamically modified.

FrameBufGetSize

Returns the size of the frame buffer in Megabytes.

Enables (1) or disables (0) the Accelerator used by the

Accel (0[1) Video driver.

GetAccel Returns true if Accelerator is enabled; otherwise it
returns false.

VBE (0]1) Enables (1) or disables (0) VESA BIOS Extensions.

GetVBE Returns true if VESA BIOS Extensions is enabled;

otherwise it returns false.

A.7.20 Matrox MGA-G400 Graphics

1 simnow> mgag400.usage

Automation Command

Description

SetTexmap (0| 1)

Enables (1) or disables (0) the texture units. By default
the texture units are disabled.

SetCardType CARDID

Sets the MGA-G400 type to CARDID. Valid values for
CARDID are: 6648, 888, 6616, and 824.

GetCardType

Returns the current CARDID value.

A.7.21 PCI Bus

1 simnow> pcibus.usage

Automation Command

Description

DevicelD <SlotID> <DevicelD>

Sets the DevicelD to ‘DevicelD’ on slot ‘SlotID’.

GetDevicelD <SlotID>

Returns the DevicelD of specified slot ‘SlotID’.

BaselRQ <SlotID> (alb|c|d)

Sets the Base IRQ of slot ‘SlotID’ to A, B, C or D.

GetBaselRQ <SlotID>

Returns the Base IRQ of slot ‘SlotID’.

Slot <SlotID> (0|1)

Enables (1) or disables (0) slot wit specified ‘SlotID’.

SlotStatus <SlotID>

Returns enabled if slot ‘SlotID’ is enabled, otherwise it
returns disabled.

GetConfig

Displays PCI Bus configuration information.

242

Appendix A

User Manual

November 2010

A.7.22 SIO

1 simnow> sio.usage

Automation Command

Description

The Lock (1) or Unlock (0) Registers option activates

BreakOnLock (0[1) the breakpoint anytime the lock or unlock sequence is
hit.
GetLockStatus Returns enabled if BreakOnLock is enabled; otherwise it

returns disabled.

BreakOnRead (0|1)

Enable (1) or disable (0) breakpoints whenever any of
the device configuration registers is read.

Returns enabled if BreakOnRead is enabled; otherwise it

GetReadStatus returns disabled.

. Enable (1) or disable (0) breakpoints whenever any of
BreakOnWrite (0[1) the device configuration registers is modified.
GetWriteStatus Returns enabled if BreakOnWrite is enabled; otherwise

it returns disabled.
GetConfig Displays SIO configuration information.

A.7.23 Memory Device
1 simnow> memdevice.usage

Automation Command

Description

Save <filename>

Creates file ‘filename’ and saves the contents of the
currently loaded ROM ‘to filename’.

Load <filename>

Loads the specified MemDevice ‘filename’ to defined
address ‘BaseAddress’.

BaseAddress <value>

‘Value’ is the base address of the device in hex.

GetBaseAddress

Returns the base address of the device in hex.

SizelnBlocks <value>

‘Value’ is the total size of the memory device, given in
decimal value for the number of 32-Kbyte blocks (32-
Kbyte blocks are used because not initialized memory is
dynamically allocated when addressed in 32-Kbyte
chunks).

GetSizelnBlocks

Returns the number of 32-Kbyte blocks allocated by this
device.

InitFile <filename>

‘filename’ is the name of the binary file that is used to
initialize the memory contents. Note that the device
initializes memory for the content length of the file. If
you specify a 512-Kbyte ROM and use a 256-Kbyte
image file, the first 256 Kbytes are initialized.

GetlnitFile

Returns the path and name of the init file (see above
InitFile).

ReadOnly <0|1>

Turns (1) the memory device into a ROM. Writes to the
device are ignored when the read-only option is
selected.

Appendix A

243

User Manual

November 2010

Automation Command

Description

GetReadOnly

Returns true if memory is read-only otherwise it returns
false.

SystemBios <0|1>

Tells (1) the memory device that it is the system BIOS.

GetSystemBios

Returns true if memory is used as a System BIOS
otherwise it returns false.

MemAddrMask <0|1>

Enables (1) or disables (0) memory-address masking. If
enabled (1) it indicates that the address received by the
memory device is masked by a bit mask with the same
number of bits as the size of the memory device (e.g., a
256-Kbyte ROM uses an 18-bit mask, or it is masked by
O0x003FFFF). This enables the ROM to be remapped
dynamically into different memory address ranges in
conjunction with the aforementioned chip select.

GetAddrMask

Returns true if memory-address masking is enabled
otherwise it returns false.

InitValEnable <0|1>

Enables (1) or disables (0) the initialized unwritten
memory option. If enabled the memory is initialized
using a specified byte (see below InitVal) otherwise the
memory is not initialized.

InitVal <hex value>

Sets byte initializer for memory that needs to be
initialized.

InitValStatus

Displays information if the initializer is used and if the
memory initialization is activated.

DisableCache <0 |1 >

Sets memory region to cacheable (0) or non-cacheable

().

GetCacheDisabled

Returns true if non-cacheable otherwise it returns false.

GetConfig

Displays Memory configuration information.

FlashMode <0 |1 >

Enables (1) or disables (0) this device to be used as a
flash ROM.

FlashUpdateFile <0 |1 >

Enables (1) or disbales (0) writes to the flash ROM to
update the ROM image.

ncHTMode <0 |1 >

Enables (1) or disables (0) decoding of HyperTransport
messages.

ForcelnitFile <filename>

The ForcelnitFile command allows the user to change
the BIOS ROM path once the simulation has already
started. This is legitimate only when the new BIOS
ROM is a byte-for-byte copy of the initial BIOS ROM
that simulation began with (i.e., same file, different
path).

GetCommandSequence

Prints which of the two command sequences the flash
device is programmed to.

CommandSequence <0 |1 >

0-SST, 1-ATMEL. Allows to set the command sequence
to SST or ATMEL.

GetFlashMode

Tells you if the device is configured to act as a flash
memory.

FlashMode <0 |1 >

Allows the user to set the memory device as flash
memory.

244

Appendix A

User Manual

November 2010

A.7.24 Raid

1 simnow> raid.usage

Automation Command

Description

Noise [{enable|disable}]

Enable to print debug messages; otherwise disable.

RomlImage <File name>

Allows a boot ROM image to be supported - at the
moment the emulation does not work with any known
ROM images.

SetVolume <Vol #> <Image file> [

<Journal file>]

This was the original way to setup the image and journal
files - rather than having two separate commands.

DeleteVVolume <Vol #>

Undoes the Image or Journal commands and puts the
volume back in an unintialized state.

This command flushes the in-memory caches out to the

syne files.
This was supposed to allow support for both the 5304
Type {5304/5312} (default) and 5312 cards - the 5312 support is not well

tested.

Image <Vol #> <Image file>

Creates a volume for the give disk image (For e.g.,
raid.image 0 i:\c0d0.img).

Getlmage <Vol #>

Displays the disk image for the given volume.

Journal <Vol #> {0|1}

Enables (1) or disables journaling for specified volume.

AddJournal <Vol #> [<Journal
file>]

Creates a journal for the given volume number (For file-
based journal: raid.addjournal 0 i:\c0d0jl1.jrn; for in-
memory journal: raid.addjournal 0).

ResizeJournal <Vol #> [<OId
Journal> <New Journal>]

Resizes the journal for the given volume to the new
journal parameters.

Commit <Vol #>

Commit copies back the modified data blocks from the
journal to the disk image and clears the journals.

Clear <Vol #>

Clears the volume - discards any changes made to the
volume.

Flatten <Vol #>

Deletes the journal added last for that particular volume.

Status [<Vol #>] [-v | -r]

Displays the status for the RAID device or a particular
volume. -v option displays details regarding the
statistics of performance meters implemented in the
RAID device, while -r option resets the performance
counters.

SetDBC <Entries> <Depth>
<Block Size>

Set the parameters for disk block cache (For e.g.,
raid.setdbc 32768 5 512.

SetJournalParameters <Super Block
Size> <Index Block Size> <Index

Levels> <DiskBlock Size>

Set the Journal Parameters (For e.g.
raid.setjournalparameters 8192 512 3 512).

GetJournalParameters

Displays the Journal parameters.

A.7.25 DIMM

1 simnow> dimm.usage

Automation Command

Description

Appendix A

245

User Manual

November 2010

Automation Command

Description

PdIErrorSim (0]1)

Enables (1) or disables (0) the PDL Error Simulation. If
enabled then the DIMM device monitors PDL settings
for all RAM reads.

GetPdIErrorSim

Returns enabled if PdIErrorSim is enabled; otherwise it
returns disabled.

OutOfRangeResp (OxFF | invert)

The ‘Out of Range Response’ selection specifies how
the data should be altered if a PDL is out of range. The
OxFF option specifies that the return data should be
forced to all ones. The Invert option specifies that the
return data should be a bitwise inversion of the valid
data.

GetOutOfRangeResp Returns the specified options set by OutOfRangeResp.
The SMB Base Address entry selects the 8-bit address

SMBBaseAddr <addr> that this DIMM device responds to. The SMB address is
used for the reading of DIMM SPD data.

GetSMBBase Returns the specified SMB Base address.

ImportSPD <DimmNo> <fullpath>

ImportSPD provides the option of loading SPD ROM
data to DimmNo from the file specified by “fullpath”.
The file format is an unformatted binary image, with an
extension of ““.spd”.

ExportSPD <DimmNo> <fullpath>

ExportSPD provides the option of saving SPD ROM
data from DimmNo to the file specified by “fullpath”.
The file format is an unformatted binary image, with an
extension of ”.spd”.

ResetPDLs <DimmNo>

ResetPDL sets all 16 PDL response ranges to their
maximum range (0 - 255).

PDLRespRange <DimmNo>
<PDLNo> <High> <Low>

Sets the PDL Response Rage of memory module
‘DimmNo’ and PDL ‘PDLNo’ to ‘High’ and ‘Low’.

GetPDLRespRange <DimmNo>
<PDLNo>

Returns the PDL response range of memory module
‘DimmNo’ and PDL ‘PDLNo’.

GetPDLData <DimmNo>

Lists the PDL data of memory module ‘DimmNo’.

GetConfig

Displays DIMM configuration details, like
‘PdIRespRange’, ‘MBBaseAddr’, ‘OutOfRangeResp’
and ‘PdIErrorSim’.

GetMaxDimms

Returns the maximum number of DIMMSs that can be
simulated.

SetMaxDimms <num>

Sets the maximum number of DIMMs that can be
simulated.

GetDimmDescription <DimmNo>

Returns a short description of the memory module
‘DimmNo’. It displays memory type, total size, number
of banks and device data width in bits.

GetDimmType <DimmNo>

Returns the DIMM type of memory module ‘DimmNo’.

GetDimmSize <DimmNo>

Returns the DIMM size of memory module ‘DimmNo’.

GetDimmBanks <DimmNo>

Returns the DIMM banks of memory module
‘DimmNo’.

GetDimmWidth <DimmNo>

Returns the
‘DimmNo’.

DIMM width of memory module

GetSpdData <DimmNo>

Returns SPD data of memory module ‘DimmNo’.

246

Appendix A

User Manual

November 2010

Automation Command

Description

DeleteDimm <DimmNo>

Deletes memory module ‘DimmNo’ from current

configuration.

GetSpdDataByte <DimmNo>
<Addr>

Returns a specific SPD data byte stored at <Addr> on
Dimm <DimmNo>.

SetSpdDataByte <DimmNo>
<Addr> <Data>

Sets the SPD data byte <Data> at SPD-Address <Addr>
on DIMM <DimmNo>.

A.7.26 Keyboard and Mouse
By default the GUI uses keyboard.key and keyboard.mousemove commands to send input

to the simulator.

These can be overridden using the Gui_Key Device and

Gui_Mouse_Device registry keys. For example, if you connect a USB keyboard device to
the simulation, you can have keystrokes use the USB keyboard rather than the old

keyboard.

1 simnow> keyboard.usage

Automation Command

Description

Key <XX> [XX...]

Forwards the specified key to the simulated system.
E.g., the following command forwards the ENTER
keystroke to the simulated system: keyboard.key 1C.

MouseMove <DeltaX> <DeltaY>

Moves the mouse cursor to relative position DeltaX and
Deltay.

MouseLeftDown Generates a left-mouse-button-down event.
MouseRightDown Generates a right-mouse-button-down event.
MouselLeftUp Generates a left-mouse-button-up event.
MouseRightUp Generates a right-mouse-button-up event.
MouseMoveAbs <X> <Y> Moves the mouse cursor to absolute x-y position.

Log enable|disable id

Enables or disables logging.

Text

This command injects keyboard input from the
command line. It takes basic text such as 'keyboard.text
"dir\r'". This command can handle more complex
sequences with other '\' prefixed strings (see Table
15-14).

Table 15-14 shows the currently defined prefix sequences:

Prefix Action Prefix Action

\r <RETURN> \{f8} <FUNCTION KEY 8>
\t <TAB> \{£f9} <FUNCTION KEY 9>
A\ <BACKSLASH> \{flO} <FUNCTION KEY 10>
\” <DOUBLE QUOTE> \{tab} <TAB>

\’/ <SINGLE QUOTE> \{del} <DELETE>

\{esc} <ESCAPE> \{up} <UP ARROW>

\{f1l} <FUNCTION KEY 1> \ {down} <DOWN ARROW>
\{f2} <FUNCTION KEY 2> \{left} <LEFT ARROW>
\{f3} <FUNCTION KEY 3> \ {right} <RIGHT ARROW>
\{f4} <FUNCTION KEY 4> \{ctrl-m} <CONTROL make>
\{£f5} <FUNCTION KEY 5> \{ctrl-b} <CONTROL BRAKE>

Appendix A

247

User Manual November 2010
Prefix Action Prefix Action
\{f6} <FUNCTION KEY 6> \{alt-m} <ALT MAKE>
\{£7} <FUNCTION KEY 7> \{alt-b} <ALT BRAKE>

Table 15-14: Prefix Sequences (keyboard.text)

A.7.27 JumpDrive
1 simnow> jumpdrive.usage

Automation Command

Description

Loadlmage <HostFileName>

Loads the contents of the specified image
file <HostFileName> to the memory.

Savelmage <HostFileName>

Saves the contents of the memory to an
image file on the host specified by
<HostFileName>.

ImportFile <HostFileName> <ImageFileName>

Imports the requested file into the image
<ImageFileName> using the given host
file name <HostFileName>.

ExportFile <ImageFileName> <HostFileName>

Exports the requested file from the image
<ImageFileName> to the given host file
name <HostFileName>.

Initialize <SizeInMB>

Initialize the jump drive image with a
single partition of the requested size
specified by <SizeInMB>. The JumpDrive
supports image-sizes from 64-Mbytes to
8192-Mbytes (8-Ghytes).

ImportDir <HostPathName> <ImagePathName>

Imports a directory from the host system
into the jump drive. The host path name
<HostPathName> can contain wildcards in
the last element. If the last element of the
<HostPathName> does not contain
wildcards, and points to a directory, then
“*” is assumed. The image path name
<ImagePathName> must be the name of a
directory. If it does not exist, it will be
created.

ExportDir < ImagePathName> <HostPathName>

Exports a directory from the jump drive to
the host system. The image path name
<ImagePathName> can contain wildcards
in the last element. If the last element of
the <ImagePathName> does not contain
wildcards, and points to a directory, then
“*” is assumed. The host path name
<HostPathName> must be the name of a
directory. If it does not exist, it will be
created.

Dir <ImagePathName>

Shows the contents of the directory path
given by <ImagePathName>.

248

Appendix A

User Manual November 2010

Automation Command Description
Shows the amount of free space on the
JumpDrive device.
This command is identical to the Initialize
command, only it does not create a FAT32
partition on the drive. It simply sets the
Size <Size in MB> physical size of the device. Any formatting
or initialization will still need to be done
(presumably by the simulated operating
system).

Free

To initialize the JumpDrive, and copy data to it:

1 simnow>jumpdrive.initialize 64

This creates a 64-Mbyte FAT32 partition on the JumpDrive.

The following example copies the file “C:\test.bin“ to the JumpDrive and places it in the
“Mtmp* directory. If the “\tmp* directory does not exits on the JumpDrive, it is created
automatically.

1 simnow>jumpdrive.importfile c:\test.bin \tmp\test.bin
62.99 Mbytes Available
1 simnow>

This copies all files from “C:\tmp* into the root of the JumpDrive. Any subdirectories are
also copied.

1 simnow>jumpdrive.importdir c:\tmp \
Importing c:\tmp\test.bin ---> \testl.bin
62.89 Mbytes Available

This example shows how to import all “*.exe” files from “C:\tmp” into the root of the
JumpDrive.

1 simnow>jumpdrive.importdir c:\tmp*.exe \
Importing c:\tmp\appl.exe ---> \appl.exe
Importing c:\tmp\app2.exe —---> \app2.exe
62.60 Mbytes Available

This example shows how to export the “appl.exe” file from the root of the JumpDrive
into “C:\tmp” on the host.

1 simnow>jumpdrive.exportfile \appl.exe c:\tmp\
Exporting \appl.exe ---> c:\tmp\appl.exe

To find out what is already stored in the root of the JumpDrive device, enter the
following:

1 simnow> jumpdrive.dir \

Directory of: \

Appendix A 249

User Manual November 2010

<DIR> tmp

103936 test.bin
103936 appl.exe
103936 app2.exe

62.60 Mbytes Available

To get information about how much space is left on the JumpDrive device, enter the
following:

1 simnow>jumpdrive.free
62.60 Mbytes Available

To save the contents of the JumpDrive to the image file “C:\test.img” on the host’s hard-
disk, enter

1 simnow>jumpdrive.saveimage c:\test.img

This example shows how to load the saved JumpDrive image “C:\test.img” from the
host’s hard-disk into the JumpDrive

1 simnow>jumpdrive.loadimage c:\test.img

A.7.28 E1000

The NIC device provides the following automation commands that can be used to
configure the device.

1 simnow> €1000.usage

Automation Command Description
Enables or disables message logging for
PCI Config (c), MMIO (m), 1/0 (o),
Unmasked Interrupts (i), MDI (d), Frame
Transfers (t), or Frame Receptions (r).
logStatus Displays the current log-status.
Sets the mediator connect string. The
domain string and the port number are
setMediatorHost [domain@]hostname[:port] optional. The default domain string is null.
The default port is 8196. The hostname is
the host in which the mediator is running.
Outputs the current mediator connect

log enable|disable cmoidtr

getMediatorHost

string.
setMACAddress XX XX XX XX XXXX ig;i)tte*}e MAC Address to be used by the
getMACAddress Retrieves the MAC Address being used by
the adapter.

Restarts link negotiation (auto) for the

linkConnect autoldown adapter, or forces a link disconnect (down).

250 Appendix A

User Manual

November 2010

Automation Command

Description

tune {intthrtl|rxdelay|txdelay} value

Sets certain synthetic delay- and throttle-
values which gives the user the opportunity
to change the default settings to get
optimal results. intthrt sets the interrupt
throttle rate to value. rxdelay sets the
amount of link idle time required before
generating an rx interrupt to value. txdelay
sets the amount of link idle time required
before generating an tx interrupt to value.

getTuneValues

Displays the values set by using the
automation command tune.

A.7.29 XTR

1 simnow> xtrnb.usage

Automation Command

Description

xtrfile <filename.xml>

Sets XTR-XML file to use during
playback.

debug <0[1>

Enables (1) or Disables (0) extended debug
information for XTR Playback.

xtrlogfile <filename.log>

Sets name of the log file where XTR
messages should be logged. This is
optional and if not used the log is directed
to the simulators log.

status

Displays the status of XTR playback

1 simnow> xtrsvc.usage

Automation Command

Description

xtrenable <0|1>

Enables (1) or Disables (0) XTR Record.
All other values are invalid.

xtrfile <filename.xml>

Sets the XTR-XML file for XTR Record.

XTRMemBits n

Sets number of bits for memory address
bits to scan. n= 16, 32 or 48. Default is 32.

Xtrstatus

Displays the status of XTR Record.

A.7.30 ATI SB400/SB600/SB700/SB800

1 simnow> sb600.usage

Automation Command

Description

HtInterrupts (0]1)

Enables (1) or disables (0) HyperTransport interrupts.

HtintStatus

Returns ‘enabled’ if HyperTransport interrupts are
enabled; otherwise it returns ‘disabled’.

loLog (0]|1)

Enables (1) or disables (0) 10 logging.

loLogStatus

Returns ‘enabled’ if IO Logging is enabled; otherwise it

Appendix A

251

User Manual

November 2010

returns ‘disabled’.

MemLog (0]1)

Enables (1) or disables (0) 10 logging.

MemLogStatus

Returns ‘enabled’ if Memory Logging is enabled;
otherwise it returns ‘disabled’.

SmiScilLog (0]1)

Enables (1) or disables (0) 10 logging.

SmiSciLogStatus

Returns ‘enabled’ if SMI SCI Logging is enabled,;
otherwise it returns ‘disabled’.

Version

Displays the binary revision of the RD790 model.

SetPcilrgMap {BasePcilrg(0-3)}
{ChipPcilrg(0-7)}

Depending on platform configuration, it maps base
PCIIRQ#A/B/C/D (0-3) from PCI bridge to ATI chip
internal PCIIRQ#A/B/C/D/E/FIG/H (0-7).

GetPcilrgMap {BasePcilrg(0-3)}

Returns the ATI chip internal
PCIIRQ#A/B/CID/E/FIG/H (0-7) which the specific
base PCIIRQ#A/B/C/D(0-3) is mapped to.

GetPcilrqTotal

Returns the total number of chip internal PCIIRQs.

A.7.31 ATI RS480

1 simnow> rs780.usage

Automation Command

Description

SetRev <rev >

Sets the internal chip revision number of
RS480 device to <rev>.

GetRev

Displays the internal chip revision number
of the RS480 device.

A.7.32 ATl Radeon HD 3870

1 simnow> rv670.usage

Automation Command

Description

Version

Displays the binary revision of the ATI
Radeon HD 3870 model.

LoadEDID { DVIO | DVI1} <FileName> [Desc]

Loads EDID information <Filename>,
creates a user defined display device
[Desc] and connects it to one of the
specificed DVI connectors.

SetEDID { DVIO | DVI1} <DevicelD>

Sets EDID <DevicelD> and connects it to
one of the specified DVI connectors.

GetEDID { DVIO | DVI1}

Lists all display devices on specified DVI
connector.

DelEDID { DVI | DVI1} <DevicelD>

Deletes previously imported user defined
display device <DevicelD> from specified
DVI connector.

TCache {01}

Disables (0) or enables (1) texture cache.

VCache {01}

Disables (0) or enables (1) vertex cache.

Lt{0]1}

Disables (0) or enables (1) linear transform
and color space conversion engine.

252

Appendix A

User Manual

November 2010

Automation Command

Description

Settings

Displays enabled and disabled settings.

DumpVGA <FileName>

Dumps frame buffer contents to file
<FileName>.

A.7.33 ATI RS780

1 simnow> rs780.usage

Automation Command

Description

SetRev <rev >

Sets the internal chip revision number of
RS780 device to <rev>.

GetRev

Displays the internal chip revision number
of the RS780 device.

Version

Displays the binary revision of the RS780
model.

A.7.34 ATI RD790/RD780/RX780

1 simnow> rd790.usage

Automation Command

Description

SetRev <rev >

Sets the internal chip revision number of
RD790 device to <rev>.

Displays the internal chip revision number

GetRev of the RD790 device.

\ersion Displays the binary revision of the RD790
model.

SetPackageType <RD790 | RX780> Sets package type to RD790 or RX780.

GetPackageType Displays current package type.

A.7.35 ATI RD890S/RD890/RD780S/RX880

1 simnow> rd890.usage

Automation Command

Description

SetRev <rev >

Sets the internal chip revision number to
<rev>.

GetRev

Displays the internal chip revision number.

Version

Displays the binary revision.

SetPackageType <RD890S | RD890 | RD870S |
RX880>

Sets package type to RD890S, RD890,
RD870S, or RX880.

GetPackageType

Displays current package type.

Appendix A

253

User Manual November 2010

254 Appendix A

User Manual November 2010
Index
* View Memory ..., 151
Deprecated DeVICEScccerveirineiciieieeeen, 10
FROM ..ot 183 DEVICE ID ... 99
FLSPD e 184 DEVICE LiSt....cviveviirreiisieereee e 10
Devices WINAOW.........cocevverninencineeeseines 9
A DHCP oo 128
A20 s 80 Diagnostic POrS........ccccvvevieeniriscscsecns 28
ACPL. it 8 DIMM ..ot 57
Address-Translation Cache..........c.cccccovvcvennen. 29 Disable USB POrt...........cccocreiiiiiiiiccicians 92
AGP ... 63, 67 Disk Journaling...........cccooeveunieiicinicicnnnne, 41,94
AMD 3DNow!™ Technology........cccevevennaas 224 DisKT OO0lccvviiiviiicieccii e 165
AMD 8th Generation Integrated Northbridge ..88 Double Fault..........ccoooviiiiiiiiiiiiie, 188
AMD Virtualization™ (AMD-VT™) Technology DVD-/CD-ROM.......coovviiieiiicie e, 33
... 151 E
AMD-8111™ DEVICEvveevveereeiiresreessineannnens 92
AMD-8132™ PCI-X® Controller............ 13,101 ECC o 62
AMD-8151™ DEVICE ..vvvvvrverrieiieesiiiesree s 104 EOT e 114
AT24C DEVICE...ccvvvivtve e 14, 109 Error LOQ cvoovveeiiieiiic e 145
EXDI oot 110
B
Base AdAresscoueiieierenene e 171 F
Baud Rateccocoviriice 82 Fan ..o 80
BIOS ROM......ooviiiiiiiiiiiisc e 171 FAQ .ot 177
BSD fil@...coiiciiciciccc e 38, 47 Flash-ROM ..o, 85
FLDENV ..oooiiiii e 188
c FIOPPY-DiSK...c..cviiirieiiiiciieeeec e, 42
Checkpoint.........cocovev e 47 Frame-Buffer ... 64
Chip-Selectccoovieiieieee e 84 FRSTOR ..ot 188
Clearing CMOS ... 173 FSAVE ..ot 188
CMOS.... 93,173 FSTENV ..o 188
Code Generator..........ccooveeererenenenieeeee e 243 G
(Of0To (ol o= Vo T S 188
COML .ottt 80 GAEWAYS ..., 128
COM2Z.... it 80 GDB...ooi 160
(010] 11111011 P 41, 94 (€12 1 R 80
Configuration File ..o 5 Graphics......ccooeviiniiiie e 2,63, 67
Console WiNAOWc.ccveveierennie e 28 H
CPUID ...t 186
CRAPCE ..ot 188 Host Operating Systemsccocoovvvereinennene 3
Create Device CoNnectioncccocevevveeriennn 10 HyperTransport™ Technology
Creating Floppy-Disk Imagecccccovceruennen 175 CONBIENt.. .o 88
CYCle-ACCUIALE ..o 1 LINK. oo 90
D Link-capable devicescccoceveiiiincnnnnnns 88
MESSAQES ..ottt 89
Debug NON-CONEIENt ..o 88
Find Pattern......c.coeovveveieneneie e 153 TUNNEL .o 13,101
Read/Write MSRS.........ccccooeeviieiieieic, 152 Upstream LinkKccoovevveveerenencnnnneennen, 102
Reading CPU MSRScccocevvivniniinne 152 I
Reading PCI Configuration Registers........ 152
Set Breakpointccccovvvvvviveieieeenenes 149 INSert CD-ROMccooovviieiee e 41
Single-Steppingccocvveviereieiereeseiee 150 INT/IOAPIC ...ttt 92
SKip INStruction........cccccevvvvvvsieieeence 151 IR 80
Stepping OVESccveveveveee e 150 IRQ-ROULING PiN..cvvieieciceeeeee e 98
Index 255

User Manual November 2010
J PS/2 MOUSE ...t 80
JOUraliNgcooviriiiiec s 94, 95 R
JOUMNAIS.....coiiiiiciee e 106
) RAID ..o 106
JOYSHICK . 80 RAM
K Memory DeVICeccovireieiiiciieneeeie 83
SHZE e 172
Kernel Debuggercccocevvvvenieeenienenn 110, 159 RDPMC.... 188
L RESEL .o, 7,43
. ROM ..o 83
Linux
Loopback DeVvice........c.ccoevneniineniiinenne 42 S
Log Scripting 228
CPU CyClES....cvcieice e 174 LA, D
- SEGV ..o 4,30
Dissassemblycccoovevvevieiie e 54
. SEM i 187
EXCEPLIONS ..oovvviiiieeiiie e 54
. Shell..ooeiece e 228
7A@ N oo o |1 1o R SUOS 146 .
/O Read/Writes 54 SIMSEALS ..o, 28
O REAU/WIHES ...oooooo R See Debug
Linear Memory ACCESSESccevverurrnnnnn 54
i SIOWAOWN ...t 1
Register State Changesccccoveveivncriniens 54
;i SMBu..cooiiiiee e 14, 86, 87
LPC/ISA BIAQE ..coeveveieiieiirieree s 92
LPT1 80 HUD o 14, 107
... SMB Base Address......... T e
M SOt POWET <.t 8
MAC AJAIreSS.....ocvrvevererieeierieesesieeere e 129 SOLSIEEP. vttt 8
3 SO10.DSA .. 47
Mediator Daemon..........coccvvvevvciiee i 128
. SPD s 172
Memory Configurator..........c.cccevvviviieviennen, 171
EXPOIt oo 62
MeESSAgE LOG. . ceviviiiiiiiiieiiee st 143
. ; IMPOIT .o 62
Microcode Patching.........ccccvevveviiinccvienn, 188
Mi ft DirectX 9 5 SPD Data......oocvvvieiieeeeeeiieiee e 172
icrosoft DIireCtX 9ococvvvicieciiicee e, SHEPDING OVET oo See Debug
1Y/ 15 1 80
MIPS 29 SEOP e 7
Modify PCI Configuration Space 141 SOP XTR e 113
SUPET 1O 80
MOUSE CUISOE ..vvvveiieeiieciiiiee et 177
Multiole Virtual-Maopi 188 SVGA .o 63, 67
ultiple Virtual-Mappings.........ccccveverenerens SWItching CD IMages ..o 179
N System Requirementscccccevveveeveeiecineennn, 3
Named-Pipe............ 159, 160, 161, 162, 238, 239 T
N (<10 B I) 223 TCache.. .. 29
p TLB e 55
ParTItION ..ottt 167 Ps:gle FAUIL. v ;gg
PCL-X ottt 100
PCI-X Configuration Cycle.........cc.cccoevenennn. 103 U
PDL oo 57
Enable Error Simulationccccccevvvvveeenneen. 60 Biig%gﬁmwyé """""""""""""""""""""""""""" 222
Error Simulation Controlccoceeeveeenneen. 60 T T T T
(L= 62 \
Performance-MONiloring COUNter ... 228 VBA ot 63,67
YSICAl DIIVES ..o Virtual-Address SPace ... 4
PIaY ..o 7
PP MONIOT ..o 132 W
DDC....oieee et 132 Winbond W83627HF 80
VESA ...t 132 Worksnace 9
0 13 S 28 PACE s
Prescott New InStructioncccoeeeevivvevnnns 225
256 Index

User Manual November 2010

X RECOrdiNG.....coveviirieiiiieec e 113
Q1 S 112 XV%‘E RECOMING v é‘él(l;
PlaybacK........cccccovvviiviieie e 113 77T T ’

Index 257

