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Abstract

Threads provide a simple and familiar sequential model for programmers. How-
ever, when it comes to highly concurrent applications like web servers, using
a thread for every connection can prove prohibitive due to overhead of thread
switching and scheduling. In these areas event polling solution are often used in-
stead — with a single thread dealing with hundreds or thousands of connections.
This model can prove difficult to program however, and we lose the locality of
threads. I develop and benchmark a lightweight user-level threading library,
which attempts to provide the benefits of the sequential threaded programming
model, with performance close to that of an event-based system.
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Chapter 1

Introduction

An interesting problem in computer science is that of developing highly con-
current I/O-bound applications like servers. It is necessary to carefully select a
granularity of concurrency and a programming model to balance scalability and
performance with the ease of development.

Traditionally I/O bound server applications (e.g. the Apache web server’s
worker and prefork models[9]) used a thread-per-request or process-per-request
model. The server listens continuously on a socket and when a new connection
arrives, it forks a new process or creates a new thread to deal with that connec-
tion. All I/O operations performed are synchronous, with the operating system
blocking the calling thread until the request completes or an error occurs.

The other option on UNIX-like systems of the 1990s was non-blocking I/O
with event-based readiness notifications. Sockets are placed in non-blocking
mode and function calls that would normally block, like send (for sending data
on a socket) and recv (for receiving data from a socket), instead return an
error code indicating that the operation could not be performed immediately.
The application then uses a event notification interface, such as the select

or poll system calls, to wait until the socket becomes readable or writable.
These interfaces have some scalability issues however. Due to their stateless
nature, every call to poll or select requires the entire set of file descriptors
being monitored to be passed in and checked, making the calls O(N) in the
number of descriptors. select is particularly egregious, as it uses an array
indexed by file descriptor number, requiring a large fixed-size array that has to
be copied between user and kernel space on every call, and also limiting the
highest-numbered file descriptor that may be waited on.

The limitations of these interfaces were addressed by Banga, Mogul and
Druschel in 1999[3], who proposed a new stateful interface, where the application
declared interest in specific file descriptors and would make a call to retrieve
any events — or wait for one — at a later point. The kernel would maintain a
queue of events that had occurred on the file descriptors, and deliver these to
the application when requested. The complexity of the wait call was therefore
O(N) in the number of events, rather than the number of descriptors. In the
network stack, each socket would have a list of the threads interested in it and
dispatch events to each of them. The authors implemented the interface for
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Digital UNIX V4.0D, and showed significant scalability improvements over the
existing APIs. The benchmark measured request throughput with increasing
numbers of inactive connections (i.e. connections that were being monitored for
events). The new interface maintained a consistent request throughput, while
select performance got worse with more inactive connections to monitor.

The results inspired the creation of similar APIs for other operating systems.
In 2000, Jonathan Lemon developed an interface called kqueue for FreeBSD[15].
Lemon extended the idea to allow monitoring more than just file descriptor
events; kqueue could also wait on file system events, AIO completions, and
process start/termination events. The event queue was no longer coupled to
individual threads; it was now created with a separate system call and referred
to using a file descriptor of its own, allowing more than one queue per thread,
and allowing the queue itself to be monitored as part of another kqueue. The
new interface also offered a selection between edge-triggered (where an event is
returned once — e.g. when a file descriptor first becomes readable) and level-
triggered (where an event will continue to be raised while its condition holds true
— e.g. while a file descriptor remains readable) event notification. While the
Linux developers viewed kqueue as an over-engineered solution, they developed
their own analogue called epoll, introduced in Linux kernel 2.5.44 — providing
file descriptor monitoring only[8].

It is interesting to note that Microsoft preempted all these interfaces by
quite a few years with their ‘I/O completion ports’, introduced in Windows NT
3.5[22]. I/O completion ports deliver notifications of I/O completion, with the
actual I/O operation being performed by the kernel. This is in contrast to epoll

and kqueue, which simply notify the user application that the file descriptor is
now ready — that the application may now perform the I/O operation without
blocking. Naturally this requires more complicated buffer management than
epoll and kqueue, as the Windows kernel must take control of the buffer being
used for I/O until the operation completes.

There was interest in these new event notification interfaces, particularly due
to the C10K problem (the problem of developing a server capable of serving ten-
thousand concurrent requests, documented very thoroughly by Dan Kegel[13]).
The new interfaces made their way into web servers, such as Igor Sysoev’s nginx
in 2002 and Jan Kneschke’s lighttpd in 2003. Benchmarks showed improve-
ment over the old select and poll interfaces, and considerable improvement
over the forking and threaded models of web servers like Apache[14].

These servers were programmed as state machines. Each connection had a
state associated with it, and this state in conjunction with I/O readiness notifi-
cations would determine what actions would be taken next. Another abstraction
for implementing such servers is through the use of callbacks. An asynchronous
I/O request is issued along with a function to be called when the operation
completes. The called function examines some piece of state and determines
what to do next. While the performance of such techniques is good, the control
flow is convoluted.

There have been numerous attempts to marry the performance of these
event-based interfaces — epoll, kqueue and completion ports — with the con-
venience and familiarity of multithreading. One approach is to schedule threads
and perform context switches purely in userspace. This way it may be possible
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to avoid some of the overheads of kernel threading — the cost of mode switch-
ing, scheduling and resource allocation for stacks, thread-local storage (TLS)
and kernel data structures. Placing thread scheduling within the application’s
control may also allow the application to make better scheduling choices, as the
kernel is generally unaware of the intentions of the user application.

The goal of this project is to produce a user-level threading library, broadly
aimed at highly concurrent I/O bound applications like servers. The library
will be written in C, allowing for direct interfacing with the highest-performing
system primitives — like futexes (for developing fast synchronisation primitives)
and epoll — and allowing for careful optimisation of the critical paths like
context switching. There is also a relative paucity of user-level threading C
libraries, particularly ones that are also multithreaded — perhaps because they
are hard to do right, or perhaps because there is more interest in developing
lightweight threading as part of a runtime for a higher level language.

The next section explores previous work on threading libraries — user-level
and otherwise.
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Chapter 2

Context Survey

2.1 Operating system threading models

A thread generally consists of a thread execution state — the current set of
registers and stack state — and some amount of kernel state — a thread ID, a
signal mask (the set of signals the thread may receive), a scheduling priority and
so on. An interesting question for operating system developers is what portion
of thread scheduling to manage in kernel space, and what portion to entrust to
user level. At one extreme of the spectrum, thread management can be done
purely in a user space library, creating thread contexts and switching between
all within the context of one kernel thread. At the other end of the spectrum, all
management of threads is done through the kernel, and the kernel keeps track
of all threads present in the system.

2.1.1 1:1 user/kernel thread model

This is the model used in most modern operating systems — Linux, Windows,
Solaris and the BSDs. One user-level thread is mapped onto one kernel-level
thread. Under this model, thread scheduling is preemptive and performed by
the kernel. A timer interrupt causes a trap into the kernel, and the kernel
makes a decision about whether to preempt the currently running user thread
and replace it with another. When threads perform blocking operations, for
example, reading from a socket, they are placed on a wait queue for that socket in
the kernel and the kernel reschedules to some other thread. Eventually network
stack code, on receiving some data for that socket, will wake the waiting threads,
enqueueing them for scheduling.

This model easily takes advantage of multicore and multiprocessor architec-
tures, as the kernel has a complete view of the CPUs available for it to schedule
on. Modern operating systems have highly optimised scheduling algorithms —
for example, Ingo Molnár’s O(1) scheduling for Linux[1].
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2.1.2 N:1 user-level thread model

This model is used by early threading implementations (e.g. FreeBSD 4’s
pthreads implementation, GNU Pth) and is implemented entirely in user space.
All threads are mapped onto a single kernel-level entity. Thread scheduling
might be preemptive or cooperative. Thread switching is very fast as it is done
entirely in user space and doesn’t involve a system call. Where possible, block-
ing system calls are replaced with non-blocking equivalents (perhaps using one
of the event notification mechanisms previously discussed). Since every thread
maps to the same kernel-level entity, however, this model cannot take advantage
of multiprocessor systems. Additionally, operations that cannot be replaced
with non-blocking equivalents will end up blocking the entire process. Since
the kernel is completely unaware of the existence of multiple threads, it cannot
schedule another in place of the blocked one, which limits the effectiveness of
this model considerably.

Such implementations, which included FreeBSD’s libpthread, and early
versions of the Sun JVM, fell out of favour and have been superseded by 1:1
threading.

2.1.3 M:N hybrid thread model

Multiple user level threads are mapped onto a smaller number of kernel threads.
This scheme tries to retain the advantages of the above two models without the
disadvantages. Previous attempts (e.g. NetBSD’s scheduler activations, and
FreeBSD’s kernel scheduled entities, both from the early 90s) have attempted
to put scheduling control into the user application’s hands through use of ‘up-
calls’[2]. Under this model, whenever some scheduling event occurs — e.g. a
thread blocks or becomes runnable — the kernel makes a call into some des-
ignated user code (a ‘scheduler activation’ in NetBSD parlance) which then
makes some scheduling decision and performs a context-switch itself. The user
application makes system calls to keep the kernel updated with the number of
user-level threads currently in existence.

Like the pure user-level threading approach, this model also fell out of favour
on the major operating systems. NetBSD’s implementation had difficulty scaling
on multicore systems, and was replaced with a 1:1 threading model in NetBSD
5.0[17]. FreeBSD switched to a 1:1 threading model for FreeBSD 7.0. Julian
Elischer, a developer of FreeBSD’s M:N threading library, said that “many of
the promissed [sic] advantages [of M:N threading] turn out to be phantoms due
to the complexities of actually implementing it.”[7]

There has been some recent interest in a scheduler activation-like approach
for threading with the rise of ‘library’ operating systems. Barrelfish — a research
OS aimed at multicore and many-core machines — uses a form of scheduler
activations[4]. The kernel calls upon a user-level ‘dispatcher’ to schedule its
own threads or tasks. There is a library that provides a familiar pthread-style
library on top of this.

Google have also proposed a set of system calls for providing user-level
scheduling, while maintaining the individuality of threads from the perspective
of the kernel[19]. The core of the idea is the switchto switch(pid t thread)
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system call, which atomically switches to the specified thread, leaving the cur-
rent one unscheduled. From the kernel point of view, the first thread yields its
timeslice to the second. With this system call, the individuality of threads in
the kernel is maintained, allowing TLS, thread IDs and debuggers to continue to
work as expected, while the cost of scheduling in the kernel is avoided. Blocking
system calls are handled with a ‘delegate’ thread, which is switched to when-
ever current thread blocks. It is not clear exactly how user code is notified of
threads becoming unblocked, as documentation is limited and Google have not
made any of the code available.

2.2 Threading in programming language run-
times

Some programming language runtimes implement a M:N or N:1 thread schedul-
ing model on top of the operating system’s native thread functionality. They
typically use an event notification mechanism as discussed above to avoid block-
ing kernel threads when user-level threads need to perform I/O.

2.2.1 Go’s ‘goroutines’

Go performs cooperative scheduling of its own user-level threads (goroutines)
onto a few kernel threads[6]. When a goroutine performs a system call, its kernel
thread will become blocked, so a new kernel thread is spawned to serve any
goroutines that are still runnable. In the worst case, as many kernel threads
as goroutines could be required. The runtime is generally quite successful in
avoiding this, by using non-blocking operations and avoiding additional system
calls wherever possible.

However, even system calls that are traditionally thought of as non-blocking
can cause more native threads to be spawned if they are called frequently — the
runtime does not distinguish between blocking and non-blocking system calls
when it decides whether to spawn a new thread. One such example is the ioctl
issued after accepting a new connection to make the socket non-blocking. In
intensive applications, users of Go found the runtime creating many hundreds of
native threads as many were engaged in ioctl calls[21]. This was solved using
accept4 to set the accepted socket to non-blocking straight away, and to mark
certain system calls as ‘short’, so their execution wouldn’t cause more threads
to be spawned.

Outside of system calls however, the number of kernel threads allowed to run
at once is limited by default to 1 — although this can be configured with the
GOMAXPROCS environment variable. Since Go 1.2, the runtime implements a
simple form of preemptive scheduling. Upon function entry a call is made to the
scheduler to check if the goroutine should be preempted. If a long-running loop
does not make any function calls however, it will block all other goroutines.
Naturally this kind of preemption is only possible with cooperation from the
entire toolchain — the compiler needs to insert calls at function entry to check
for preemption. This technique is therefore impossible to achieve at the library
level; and even with a compiler extension, any calls into foreign libraries will be
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non-preemptible.

Go also uses segmented stacks to reduce the memory overhead of each gorou-
tine. Stacks consist of multiple linked segments. On function entry, the runtime
checks if there is enough space for the stack frame in the current stack segment.
If not, a new segment is allocated and linked into the stack. This means that
goroutines only allocate stack space as it is needed. For C code, operating sys-
tems and C libraries will often allocate a large stack area upfront, as it cannot
predict how much will be needed. It is possible, with the use of guard pages,
to implement an expanding stack for C programs. The kernel responds to page
faults on the guard pages by expanding the stack. However, such stack expan-
sion may be limited due to address space collisions, a limitation not present in
the Go runtime’s linked-list of stack segments approach.

2.2.2 Erlang’s processes

Erlang, like Go, has lightweight green threads, which it calls processes[16]. The
virtual machine spawns a native thread for each real processor, and each of these
native threads runs a scheduler. Each scheduler has its own run queue from
which it takes and executes process jobs. Like in Go, non-blocking operations
are used to avoid blocking on a system call. File I/O, and other operations that
cannot be made non-blocking are farmed out to a threadpool.

Preemption is accomplished in the scheduler by way of allowing each process
a ‘reduction budget’. A process spends its reductions by calling functions, send-
ing and receiving messages and so on. The scheduler switches out the process
after it either spends its budget or needs to wait (e.g. for a message). Since
Erlang is an interpreted language, such a preemption check can be trivially
implemented as part of the interpretation process, coming basically for free,
while in a compiled language like Go this is more difficult, as inserting preemp-
tion checks at arbitrary points in the code could have a significant performance
impact, growing loop bodies and trashing the cache.
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Chapter 3

Design and Implementation

3.1 Goals

The primary objective of the project is to implement user-level threading in the
form of a C library. The library should provide lightweight threads with context
switching performed in userspace. The library should provide lightweight-thread
compatible replacements for blocking functions (e.g. send, recv, sleep etc.)
that will block only the current lightweight thread and reschedule to another
one behind the scenes, without blocking the kernel thread.

The library should be multithreaded, allowing it to take advantage of multi-
ple logical processors for scheduling lightweight threads on. Additionally, while
the primary development environment and target will be Linux and x86-64, the
library should be portable to other operating systems and architectures and not
be excessively tied to specific operating system features.

3.2 Design

I envisioned the core of the library being the scheduler, a per-CPU entity that
would be responsible scheduling the lightweight threads, maintaining run queues
and keeping track of blocked lightweight threads. Users of the library would in-
teract with the scheduler through the asynchronous I/O routines, which have a
similar interface to the regular synchronous I/O system calls. The user should
never interact with the scheduler directly, and its initialisation should be invis-
ible to the user.

At the core of each scheduler would be an event loop. The event loop would
query an event notification mechanism for events and schedule any lightweight
threads as appropriate — i.e. enqueue them on them on the scheduler’s run
queue. The event loop would then take the first lightweight thread and exe-
cute it. With preemptive scheduling enabled, the currently running lightweight
thread should be preempted at some interval. The scheduler should then save
the thread’s state and enqueue it to the back of the run queue, and execute the
next one from the head of the queue.
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3.3 Implementation

3.3.1 Context switching

For the first steps of implementation I started with the very basics: context
switching. The most obvious functions providing this functionality are the
setjmp and longjmp functions, which are part of the C standard[11]. Un-
fortunately however they lack the ability to easily create new contexts (on a
new stack and with a new initial stack frame) to jump to. The POSIX stan-
dard provides a family of functions for switching user contexts called ucontext.
Despite this interface now being deprecated (due to it using a language fea-
ture marked obsolescent in C99[18]) it is widely supported among UNIX-like
operating systems.

The ucontext t structure provides storage for the architecture-specific thread
state, along with the signal mask and stack information. The makecontext func-
tion can be used to create a new context for a lightweight thread, given a region
of memory for the stack and an initial function to execute. The swapcontext

function performs the context switch — writing the current context into the
first ucontext t parameter, and switching to the second ucontext t parame-
ter. The function effectively does not ‘return’ until the first context is switched
back to. These routines provided the basic building blocks for implementing
thread switching.

From reading of others’ experiences with these functions, I was aware of ma-
jor drawback: they required a system call on every context switch in order to
store and restore the signal mask (which was part of each ucontext t). There-
fore I wrapped up the ucontext code behind a small abstraction of my own,
so I could swap it out easily at a later point in time if I found the performance
poor. This was a good idea, as later on I found myself needing far more control
than the ucontext routines allowed for.

To verify the basic context switching worked as expected, I created a simple
API for creating threads and switching between them — essentially a coopera-
tive threading API. This initial implementation used mmap to allocate memory
for the 16KB thread stacks — as it seemed more appropriate for the large, page-
aligned allocations than malloc — however this was also noted as another area
for potential optimisation later on down the line.

3.3.2 Event loops and asynchronous I/O

The next step was to replace the blocking I/O routines with ones that would
only block the current lightweight thread. The routines were designed to be
used with sockets that are in non-blocking mode. The routines operate by
executing the usual system call — e.g. recv or send. If the call succeeds
then the lightweight thread can just continue with execution as normal. If the
system call returns either EAGAIN or EWOULDBLOCK however, this signals that the
I/O operation would have blocked. The lightweight thread registers itself with
the event loop to be awoken when the right event occurs (e.g. when the file
descriptor becomes readable or writable) and then switches to the event loop
lightweight thread.
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Registration involves creating a small ‘waiter structure’ on the stack, storing
a reference to the lightweight thread to be resumed, and the file descriptor and
events that are being waited on. The file descriptor is then added along with the
waiter structure to the underlying event notification mechanism — e.g. the epoll
or kqueue descriptor. The thread then context switches to the event loop thread.
When the event occurs and the lightweight thread is awoken by the event loop,
it reattempts the I/O operation. This can potentially race with other threads
reading and writing the same file descriptor, and the I/O operation can fail
again with EAGAIN or EWOULDBLOCK. Therefore it is necessary to perform this in
a loop. See listing 1 for the implementation of async write.

ssize_t async_write(int fd, void* buffer, size_t length) {

while (true) {

ssize_t num_written = write(fd, buffer, length);

if (num_written >= 0) {

return num_written;

}

if (errno == EAGAIN || errno == EWOULDBLOCK) {

event_loop_wait(fd, WRITABLE);

} else {

return -1;

}

}

}

Listing 1: Implementation of async write

The event loop thread consists of a simple loop which polls on the event
notification mechanism, and then schedules any lightweight threads that are
now able to continue with I/O operations. The event loop maintains a linked
list of runnable lightweight threads, and these are scheduled in FIFO order. If
this list is non-empty, the event loop polls the event notification mechanism in
a non-blocking manner — picking up any pending events but without waiting if
there aren’t any. It then enqueues any unblocked threads to the back of the list,
and switches to the thread at the head of the list. If the runnable list is empty,
the event loop will block indefinitely on the event notification mechanism until
some thread becomes ready.

To verify that these basic I/O routines worked correctly, I created a simple
TCP echo server which runs a server and a number of clients which send a series
of messages to the server and read them back.

3.3.3 Timers and sleeping

Another basic blocking operation that needed to become lightweight thread
aware was timed sleeps, which are useful for implementing any timed operations.
One can of course use signal-based timers, which will continue to work normally
in the presence of lightweight threading, and file descriptor-based timers (i.e.
Linux’s timerfd create API), which can be integrated easily with the event

13



notification mechanism used for the asynchronous I/O routines. But also of
interest is a lighter weight mechanism for sleeping a lightweight thread. To
accomplish this I added timers to the event loop API.

The event loop was extended to maintain a list of timer structures in a binary
heap structure, indexed by their absolute expiration time. The timer structures
record their expiration time, and the lightweight thread that should be woken
up when they expire. This allows insertion and removal of timers in O(log n)
time (in the number of timers), and O(1) time finding the next timer that will
expire. The event loop then uses the timer at the top of the heap to determine
what timeout it should use when waiting on the event notification mechanism.
Every time round the loop, the timers at the top of the heap are checked and
expired if necessary, rescheduling any lightweight threads.

There are better performing timer algorithms, such as the O(1) timer wheels
described by Varghese and Lauck[20], where timers are stored in a hierarchical
set of bucket arrays indexed by millisecond, second, minute and so on. However
I did not pursue this implementation, as it was not particularly important to
the benchmarks I was planning to run.

3.3.4 Preemptive scheduling

I was also interested in providing optional preemptive scheduling of lightweight
threads. Mechanisms used by managed languages, such as preempting lightweight
threads upon function entry or some common operation like memory allocation,
are not possible for a C library. The main problem is to interrupt execution of
some code over which we have no control. One obvious mechanism to accomplish
this is signals — available on all UNIX-like operating systems.

Signals require cooperation from the kernel to operate. The kernel maintains
a queue of signals for each process — which can be delivered to any of the pro-
cess’s threads — and a queue of signals for each individual thread. Eventually
a user thread has to give up control to the kernel, either to make a system call,
or as a result of some interrupt (including timer interrupts for kernel schedul-
ing). When the kernel prepares to return to user mode, it checks the thread for
any pending signals. If there are any, the registered signal handler is executed
on the stack of the interrupted thread. After execution of the signal handler,
the original thread state is restored and control is returned to the instruction
previously interrupted.

Therefore, to implement preemption on UNIX-like systems I chose to use
signals. There are a number of timer functions that can be used to send a
signal on expiry — setitimer, alarm and the newer POSIX timer functions
(timer create, etc). From the signal handler, it is then possible to ‘jump out’,
context switching to another lightweight thread. The in-progress execution of
the signal handler is stored in the context of the old, interrupted thread. When
this context is resumed (i.e. when the original lightweight thread is switched
back to) the signal handler will complete execution and resume execution of the
interrupted thread.

Documentation is quick to point out the dangers of calling non-signal safe
functions in signal handler context, which is essentially what is done here, as
the lightweight thread switched to from the signal handler can execute anything.
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The danger of deadlock is avoided here however, because if a lightweight thread
tries to take a lock held by some other lightweight thread, the timer signal will
eventually be sent, and the lightweight thread holding the lock will eventually
be rescheduled and complete the critical section.

This situation does raise some performance questions however. Consider for
example, lightweight thread 1 holds some futex-based lock and is interrupted.
LW thread 2 is scheduled in its place, and tries to acquire the lock. Finding
it contended, LW thread 2 makes a FUTEX WAIT system call and is enqueued
on the futex’s wait queue. The underlying kernel thread is now blocked on the
futex, despite there being a runnable lightweight thread. Eventually the wait
will be interrupted by the timer signal, interrupting LW thread 2 and allowing
LW thread 1 to run once more.

As we can see, implementing preemptive scheduling purely as a library —
while possible — may have some performance issues, particularly when calling
into foreign code which is unaware of the lightweight threading. To avoid this
issue, lightweight thread aware locks and synchronisation mechanisms would be
necessary, and it would be necessary to modify all user-level code, from the
C library up, to make use of them. The preemption feature thus remains an
optional part of the library, disabled by default.

While I did not have time to implement a Windows port, I wanted to check
that it is indeed possible to implement this on Windows. To accomplish user-
level preemptive scheduling on Windows, a slightly different technique is neces-
sary, as Windows does not provide signals. Using a second interrupt thread, it
is possible to suspend the main thread. From there, using the Windows debug-
ging API, the context of the suspended thread can be captured and saved, and
a new context can be set.

3.3.5 Multithreaded scheduling

Another goal of the library is to take advantage of multiple logical processors.
For server-type programs, where the amount of data shared between threads
is minimal, this is easy to achieve using a multiprocess architecture. Multiple
processes can listen on the same server socket and each deal with their own set
of clients using lightweight threading. However this solution is insufficient for
applications that require a shared memory architecture; for this it is necessary
to add multithreading capabilities to the library itself.

To enable this, I extended the threading library to start a new pthread every
time a new lightweight thread was spawned, up to the limit of the number of
logical processors on the system. Each of these native threads has an associ-
ated ‘local scheduler’ structure, which is responsible for scheduling lightweight
threads to run on it. Each local scheduler has its own run queue of lightweight
threads, and an event loop thread to run when its run queue is empty. A pro-
cess wide ‘global scheduler’ remains. It manages the global event notification
mechanism, the heap of timers, and keeps track of how many local schedulers
have been initialised.

Each local scheduler polls the event notification mechanism, and schedules
now-runnable lightweight threads on its own run queue. It locks the global
scheduler and checks its timer heap for any expired timers, enqueueing cor-
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responding lightweight threads on its run queue if necessary. If there are no
runnable lightweight threads then the local scheduler performs a blocking wait
on the event notification mechanism. Clearly this is suboptimal if there are
lightweight threads waiting on the run queues of other schedulers. Some form of
work stealing could be implemented[5], so local schedulers without work would
remove lightweight threads from the run queue of another scheduler. Such a
scheme would maintain work locality as far as possible, with threads only being
redistributed when absolutely necessary — when a scheduler is out of work. The
present queue data structure — a doubly-linked list — is not amenable to doing
this in a lock-free fashion however. Because work-stealing is not necessary for
the I/O driven benchmarks, I have not implemented it.

With a server-like workload, where individual threads execute for short time
periods before blocking on I/O, the event notification mechanism effectively
handles the distribution of threads to schedulers, as it will return events to
any scheduler thread currently polling. This could have consequences for cache
locality, as lightweight threads may not be rescheduled to the same logical pro-
cessor originally running them. This may be improved with some cooperation
from the kernel — for example, having epoll prefer to return an event to the
same thread that originally registered the file descriptor. At the same time, for
a very high throughput server this may have little benefit due to a large number
of connections polluting the cache in the meantime.

3.3.6 Race conditions and locking

The implementation of multithreaded scheduling uncovered an interesting race
condition that only presents with multiple threads. The problem is the non-
atomic nature of suspending a lightweight thread to wait for some event. A
number of things need to be accomplished when doing this:

1. Saving the lightweight thread’s context to be restored later.

2. Registering the lightweight thread with some event notification or timer
mechanism to be resumed later.

3. Rescheduling and context switching to a different lightweight thread.

It is only after step 3 that it is safe to resume the lightweight thread, as its
stack is no longer in use. It is possible however after step 2 for some other sched-
uler thread to pick up the thread (which is still in the process of suspending)
from an event notification, or from the timer heap. If the other scheduler were
to switch to the thread at this point, it would execute with the thread itself
on the same stack, corrupting its data. One obvious solution to this is to give
each lightweight thread its own spinlock. Any scheduler suspending a thread or
resuming a thread would then have to take this spinlock before doing so. On
context switch, the switched-to thread would have to do the job of releasing the
spinlock of the switched-from thread. This is the strategy used in the scheduler
of most modern operating system kernels.

Given that our needs are simpler than that of a kernel thread scheduler —
with its larger amount of state and scheduling complexity for each thread — we
can do better than this, and avoid using locks altogether. Using some atomic
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operations, the process of putting a lightweight thread to sleep can be split into
four steps:

1. Preparing to sleep. This atomically sets a status flag indicating that the
lightweight thread is BLOCKING.

2. Registering the lightweight thread with the event notification mechanism
or timer heap.

3. Saving the lightweight thread’s context.

4. Sleeping, if no race occurred. This atomically changes the status from
BLOCKING to BLOCKED, only if it wasn’t changed back to RUNNING in the
meantime.

When another scheduler wants to wake up a sleeping thread, it uses an
atomic fetch-and-set to set the thread’s status to RUNNING. If the operation
reveals that the status was BLOCKED before the fetch-and-set, then that means
the thread in question has already completed step 4 and can be safely resumed.
If the previous status was BLOCKING, then the waking scheduler does nothing; it
leaves the status as RUNNING and does not reschedule the thread. The thread,
which is in the process of going to sleep, will notice at step 4 that is has been
resumed. At this point it reverts its actions, and resumes executing the thread.
Thus we have race-free multithreaded scheduling without any locking.

This work necessitated replacing the context switching solution I had used
so far — POSIX ucontext — with a solution written in assembly. For step 4 of
the sleep procedure, it is necessary to perform the compare-and-set of the thread
status and the context switch to the next thread without touching the stack,
because at any point after the compare-and-set it is possible for the thread to
be awoken. The assembly implementation — currently implemented for x86
and x86-64 (see listing 2) — accomplishes this. The assembly implementation
also avoids any potential performance problems with ucontext; it saves as little
state as necessary and does not make system calls for saving/restoring the signal
mask.

3.3.7 Thread death

Handling thread death poses an interesting problem: who exactly should free
the resources (i.e. stack and thread control block) of the thread which has just
completed? The thread cannot free these itself, as it needs a stack on which to
execute the code to free the stack. One solution is to make this the responsibility
of the thread that is switched to after the current one exits. The switched-to
thread could, upon exit from the context-switching function check for any dead
threads that need to be cleaned up. This solution does introduce some overhead
to the critical path — the check must be made on every context switch.

Observing that only one lightweight thread can terminate at a time on each
scheduler, each local scheduler can be given its own utility stack (one page in
the current implementation). This utility stack can be set up with a small
temporary context to execute — i.e. a stack frame pointing to a function to
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context_save:

# Save all callee-saves into the context

movq %rbx, 0(%rdi)

movq %rbp, 8(%rdi)

movq %rsp, 16(%rdi)

movq %r12, 24(%rdi)

movq %r13, 32(%rdi)

movq %r14, 40(%rdi)

movq %r15, 48(%rdi)

movq 0(%rsp), %rax

movq %rax, 56(%rdi)

xorl %eax, %eax

ret

context_cmpxchg_restore:

# Compare and set the value at the address

movl %edx, %eax

lock cmpxchg %ecx, 0(%rsi)

jz .L1

# If the value at the address was not what we expected, return

ret

.L1:

# Restore all the callee-saved registers

movq 0(%rdi), %rbx

movq 8(%rdi), %rbp

movq 16(%rdi), %rsp

movq 24(%rdi), %r12

movq 32(%rdi), %r13

movq 40(%rdi), %r14

movq 48(%rdi), %r15

# Place the PC in our return address

movq 56(%rdi), %rax

movq %rax, 0(%rsp)

movl \$1, %eax

ret

Listing 2: Atomic thread suspend-and-switch implementation

free the resources of the terminated thread — and then reschedule to the next
thread.

I noticed that this technique could also be useful for other synchronisation
needs, in particular it could also be used to solve the atomic thread suspen-
sion problem discussed in the previous section. The thread suspending itself
would save its context, and make a context switch to a temporary context on
the utility stack. This temporary context could then proceed to do the work
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of marking the suspending thread as blocked, and registering it with the event
notification mechanism or timer heap. This solves the race conditions experi-
enced previously, as the suspending thread is now perfectly save to resume as
soon as it has context switched to the utility context. This removes the need
to use costly atomic operations during thread suspension. However it does in-
troduce the need to one extra context switch per thread suspension (although
this could be optimised somewhat — essentially all we are doing is changing the
stack pointer and executing a function). Regardless, while I did not have time
to implement this alternative thread-suspension mechanism, it would have been
interesting to see if this offers any performance improvements.

3.3.8 Compiler optimisation issues and TLS

Thread-local storage raises a problem for a user-level threading library; natu-
rally, since a lightweight thread can migrate between different native threads,
any TLS support provided by the C library or operating system (for example,
any of the pthread key * functions) will be unusable. Any ‘blocking call’ —
which under the hood context switches to the event loop — can potentially
cause migration to another native thread. With preemption enabled, migration
can occur at literally any point in the user’s code. Proper thread local storage
support for lightweight threads would require a specialised set of lightweight
threading-aware TLS functions, and every piece of code that needed TLS would
need to make use of them. Since TLS was not a requirement of any of the
benchmarks I was planning to run, I did not implement any such functions.

Any foreign libraries (including the C library) that make use of TLS will
face potential problems. One of the primary uses of TLS in a UNIX-like system
is to store the errno — a number set by library functions on error to indicate
what error occurred. The lightweight thread library therefore stores and restores
errno when switching between lightweight threads, in an effort to mitigate this
problem.

Compiler optimisations can complicate the picture further, particularly if
errno is implemented as using a compiler extension such as GCC’s thread

storage specifier, or Clang and MSVC’s declspec(thread). In such a case,
the compiler may chose to keep a reference to the storage location for errno in a
register or on the stack, even though it may become invalid. Under glibc, errno
is defined as a macro that expands to the value pointed by address returned by
the function errno. One may think this avoids compiler optimisation problems
— under the C standard the compiler can’t cache the address returned by
errno location. However, the function is marked with the const attribute,

which allows the compiler to violate this.

extern int __errno_location() __attribute__((const));

#define errno (*__errno_location())

Listing 3: Effective errno definition in glibc

The obvious (and hacky) solution I have used is to hide access to errno

with another macro, with expands to a call to a non-const function. Clearly
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this requires all users to make use of this new macro, which is problematic for
any calls into foreign code, which is unaware of lightweight threading and the
volatility of the address of errno. Thus use of TLS raises serious problems for
the threading library.

3.3.9 Optimisation

When I started developing and running early versions of the benchmarks, I took
the opportunity to use gprof, a Linux call graph profiler, to determine what
the costliest functions were — both in terms of their inherent cost, and in how
frequently they were called. A clear culprit was the mmap call for allocating
thread stacks. Replacing it with a call to malloc — which does not (usually)
require a system call, and does not require manipulating address space structures
— improved the situation considerably. Further gains could be made here —
for example, caching the thread stacks and data structures of exited threads for
reuse — but the malloc call was not particularly costly.

To guard critical sections of scheduler code, I had used a flag set on the local
scheduler to temporarily disable preemption (the preemption signal handler
would notice the flag and return straight away). I had used a full memory
barrier for the flag, which turned out to be expensive, given that the flag is set
on every context switch and scheduler action. I realised that the full memory
barrier is not necessary at all, as the preemption signal handler is always going
to interrupt execution of the scheduler code, never run concurrently with it.
Therefore all that is required is a compiler barrier (which has no cost in itself)
to prevent the compiler from reordering operations on the preemption flag with
other operations.

After these optimisations no parts of the threading library were jumping
out as particularly costly; most of the CPU time was now spent in the HTTP
parser or polling for events in the event loop. I also noticed that sched init

— a one-time initialisation function which sets up the global scheduler — was
being called very frequently. The function returns immediately if the scheduler
is already initialised, but I had expected the compiler to inline that check into
the callers of sched init, so they could avoid the function call. Despite giving
GCC some hints with expect built-ins, it would not do what I wanted.
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Chapter 4

Benchmarking

4.1 Web Server

The web server benchmark represents the ideal use-case for this user space
threading library: a highly I/O driven application, a large number of threads
and minimal inter-thread communication, with simple scheduling needs.

Three versions of the benchmarks have been developed: one using the lightweight
threading library, another using pthreads, and a third purely event-driven ver-
sion using a callback-based abstraction over epoll. The two threaded versions
share much of the same code. They spawn a thread (lightweight or pthread)
to service every request to the server. The web servers implement a mini-
mal amount of HTTP/1.1, using an MIT-licensed HTTP-parser from Joyent[12]
(also used by Node.js).

Originally I did not implement keep-alive connections, forcing the clients to
use a new TCP connection for every HTTP request. This proved problematic
however, as when the server closed the TCP connection (as per the HTTP
specification) the socket would be left in the TIME WAIT state for 60 seconds.
Due to the high frequency of connections, these TIME WAIT sockets would build
up and eventually prevent creation of any new sockets. To solve this issue, keep-
alive connections are now used instead — with the clients using a single TCP
connection for all their requests, and avoiding any bottlenecks in the network
stack.

The hard limits on open files and maximum threads in Linux had to be lifted
beyond their default 4096 to 65536, for testing the higher numbers of simulta-
neous clients. Furthermore, in order to avoid limits in network bandwidth it
was necessary to limit the CPU of the server processes to around 25% (using
a cgroup CPU quota) — ensuring that the limiting factor was the CPU, and
that the components being tested were the programming model and threading
libraries, and not the network stack, network bandwidth or anything else.
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4.1.1 Event-based web server

The event-driven version creates a thread for every logical processor on the
system, each of which polls for events on an epoll file descriptor. Each epoll
event has a callback and some data associated with it, which is then called when
the event fires. The callback mechanism incurs some overhead compared to a
pure state-machine based implementation, but the abstraction is widely used in
production asynchronous I/O systems (for example, libev, Node.js, Boost ASIO
and others) because it eases the burden on the programmer considerably.

The server is split into a library that provides generic routines for asyn-
chronous I/O (async read, async write, and so on) and event loops, and the
HTTP server logic in its own files. I have tried to keep allocations to a minimum,
with the only one dynamic allocation for each connection, which should allow
the event-based model to show its advantages. Reading the source code for the
event-based web server should show that while it is not impossible to under-
stand, the code is quite convoluted due to the inversion of control necessitated
by the event-based model. As illustrated by the numbering in listing 4, control
passes through functions in sometimes unexpected orders, and functions pass
around pointers to other functions that will essentially ‘continue’ their work at
a later time.

static ssize_t sendf(write_cb on_done, ...) {

...

return async_send(..., on_done); (3)

}

static ssize_t send_http_headers(..., write_cb on_done) {

...

return sendf(on_done, ...); (2)

}

static void send_http_response_helper(...) {

...

async_send(request->data, ..., request->on_response_done); (4)

}

static void send_http_response(void* data, ..., write_cb on_done) {

request->data = data;

request->on_response_done = on_done;

...

send_http_headers(..., send_http_response_helper); (1)

}

Listing 4: Convoluted control flow in event-based web server code

These disadvantages can be mitigated somewhat by use of closures and
anonymous functions in languages that support them (see for example Node.js
code) — easing the storing and restoring of state between callbacks (i.e. ‘stack
ripping’) — but standard C has no such support.
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4.1.2 Thread-based web server

The pthread and lightweight-thread based web servers share much of the same
code, with some #ifdefs for thread creation and I/O routines. The structure
of the code is simple: one thread continually calls accept on a listening socket,
spawning a new thread (lightweight or pthread) to handle the connection. In an
effort to provide a fair comparison with the event-based version, the threaded
versions also avoid dynamic allocations and allocate only on the stack. The
code is simpler due to the synchronous nature, as seen below.

The thread-based web servers differ slightly from the event-based one in
how they handle new clients. In the event-based web server, events occurring
on the listening socket can be served by any of the handling threads (one per
CPU), allowing connections to be set up and resources allocated for multiple new
connections simultaneously. On the thread-based web servers, only one thread
is dedicated to accepting new connections on the listening socket and setting
up resources for them. The amount of operations involved in setting up a new
connection are few however, so I doubt this will be particularly problematic.

static int sendf(int sock, ...) {

...

return send_all(sock, buffer, length); (3)

}

static void send_http_headers(int sock, ...) {

...

int result = sendf(sock, ...); (2)

}

static void send_http_response(int sock, void* data, ...) {

send_http_headers(sock, ...); (1)

int result = send_all(sock, data, ...); (4)

}

Listing 5: Sequential threaded web server code

4.2 Benchmarking clients

For the benchmarking clients I decided to use the wrk tool developed by Will
Glozer[10]. It performs significantly better with large numbers of clients than
the traditional Apache ab benchmark tool because of its use of scalable event
polling mechanisms (epoll, kqueue) and its support for multithreading. I also
considered ‘gobench’, written in Go, but it was less useful as it did not record
any latency statistics. The wrk tool can be run independently on a number of
machines to put load on the server without the client machines becoming the
bottleneck.
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4.3 Measurements

The measurements of particular interest are:

• Throughput (requests per second), which, when compared between each
of the web servers, will give a good indication of the overhead of each of
the threading libraries and programming models (assuming other bottle-
necks are eliminated). Throughput is be reported by each of the client
benchmark instances and then summed.

• Latency (milliseconds) — mean, maximum and standard deviation. This
is interesting to compare to compare between the different programming
models because of their differing modes of execution. The event-based
server, and the lightweight-threads implementation with preemption dis-
abled, will deal with a request until it is forced to switch to another due
to I/O. With preemptive threading however, a request can be preempted
by another at any point, as is the case with the pthreads implementation.

• Timeout rate (as a percentage of all requests attempted). Ideally no errors
should occur, but with a large amount of contention between clients time-
outs are possible so it is interesting to compare the servers’ performance
on this front.

4.4 Results

The server process, as previously mentioned, was limited to 10% CPU time to
avoid ‘chasing the bottleneck’ — 10% CPU usage per core on the 4 core machine.
The server ran on a virtual machine with the following specifications:

• Scientific Linux 7 (kernel 3.10.0-123.x86 64)

• Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz — 4 cores, no SMT

• 8GB RAM

The virtual machine ran on a Microsoft hypervisor, on a machine with the
following specifications:

• Microsoft Windows Server 2012

• 2x Intel Xeon E5-2620 — 6 cores (2 hardware threads each)

• 128GB DDR3 RAM

I have run the benchmarks with varying numbers of concurrent clients to
see how each solution deals with increasing load. The benchmark clients were
distributed over 4 different machines.

24



1000 2000 4000 8000 16000
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

Number of clients

R
eq

u
es

ts
p

er
se

co
n

d

Server throughput

Lightweight

Event

Pthreads

The number of requests per second is fairly constant across each number
of concurrent clients. This is as I expected for the event-based server and, to
a degree, the lightweight thread based server; however I expected the pthread
based server to drop off in throughput due to the overhead of managing many
thousands of threads. To give a more complete picture, let us examine request
latency.
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Investigating latency, however, reveals that the event-based and lightweight-
thread models have a considerable advantage when it comes to request latency.
At 16000 concurrent clients, the pthread-based server took on average more than
25 seconds to reply to requests. The event-based and lightweight-thread servers
took around 5 seconds by comparison. The event-based server, as expected has
lower overhead than the lightweight-thread solution, and so overtakes it at the
higher client counts.
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The benchmarking clients calculate timeouts based on requests that take
longer than a fixed time to complete (in this case 20 seconds). This reveals that
the pthreads-based server also has considerably higher variability in its latency
than the other solutions. At 4000 clients, for example, the pthread-based server
has an average latency similar to (and actually slightly lower) than the other
two servers, but as the timeouts graph shows, the response time is less consistent
than the other servers, with 7.5% of its requests taking 20 seconds or more to
return.

Another interesting aspect to investigate is how the different threading li-
braries scale with additional cores. Since the server process is running on a
virtual machine I have some reservations about the results, as they may not
represent how a server would scale running on physical hardware. However,
since a large number of infrastructure-as-a-service providers use virtual ma-
chines to provide their hosting, such a set up is not necessarily too far removed
from a ‘real-world’ environment.
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All the servers exhibit a similar pattern of scaling, with the lightweight
threaded server falling behind at higher core counts. The request throughput
does not increase linearly with the core count; doubling the number of cores does
not double the throughput. It would be interesting to repeat this benchmark
on a server with more cores available and see if, and when, the scaling begins
to taper off.
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Again we see that request latency for the pthreads suffers greatly compared
to the other two servers when the number of concurrent clients is high compared
to the CPU resources it has available. With more CPU resources available
however its average latency improves considerably.
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Interestingly the timeouts of the pthread-based server do not improve moving
from 3 processors to 4. Despite the mean request latency being very similar for
the three servers when run on 3 and 4 processors, the pthread server still shows
a problem with timeouts, indicating a high variability of latency.
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Chapter 5

Future Work and
Improvements

Numerous directions for future improvements to the library have been noted
throughout the report. I summarise them, and a few more ideas, here.

5.1 Portability

Currently the library runs on Linux only, as it makes use some Linux-specific
features such as epoll. As noted in other sections of the report however, all the
features of the library are possible to implement on other operating systems.
FreeBSD would be interesting for its kqueue event notification API, which pro-
vides richer functionality than epoll. Beyond this, the differences between the
two operating systems, and indeed other UNIX-like operating systems, from
the library’s point of view are minor, and porting would not be difficult. The
other BSD operating systems also provide kqueue, and Solaris provides a system
called ‘event ports’.

Windows is a bigger challenge as its model for scalable I/O, as mentioned in
the introduction, is completion-based rather than readiness-based. This would
necessitate considerable changes to the asynchronous I/O routines to support,
and some changes in the scheduler too. Windows would also need an alternative
implementation for preemptive scheduling, as discussed in the implementation
section.

5.2 Extended non-blocking operation support

While the library provides asynchronous replacements for the common I/O and
socket functions, there are more non-blocking operations that could be inte-
grated into the event loop too. Both Linux and FreeBSD provide support
for monitoring file system operations — file creation, modification, renaming
and so on. Both Linux and FreeBSD also provide the aio interface, which is
a completion-based I/O interface which also allows asynchronous I/O on files
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(which readiness notifications do not, as files are always considered ‘ready’ for
I/O), which could expand the range of operations available to perform asyn-
chronously.

Another interesting possibility would be a function for performing and wait-
ing on multiple asynchronous operations at the same time — perhaps for situa-
tions where the work being done does not justify creation of multiple lightweight
threads, or perhaps to express more complicated communication patterns, e.g.
waiting for a message on one of two channels, while also waiting for a timeout
if nothing arrives.

5.3 Thread synchronisation and communication

I did not get around to implementing any thread synchronisation primitives, as
they were not needed by the web server benchmark. Many applications have
more complicated interthread communication needs however, and providing a
basic set of primitives for communication and synchronisation is a must for
them. A wait queue with a double-checked wait could provide a basic building
block for other mechanisms, like mutexes and condition variables. As an alter-
native mechanism, message queues could be provided too, allowing threads to
synchronise and communicate with each other by way of message passing.

30



Chapter 6

Conclusion

Implementing a user-level threading library has been an interesting experience,
particularly in solving some of the trickier concurrency and synchronisation
issues with the multithreaded scheduler. Some of the implementation issues
— especially regarding TLS and preemptive scheduling — show that there are
serious limitations to the approach of implementing threads purely in library
form at user-level, without the kernel and system libraries being aware of it.
These limitations might become even more apparent were the library to be used
in a more complicated system, along with more complex foreign libraries that
make assumptions about how threading is implemented. For this reason I more
promise in the approach taken by others — such as Google’s kernel-friendly
user-level threads, and Barrelfish’s scheduler activations — which attempt to
cooperate more with the kernel, while still retaining the performance benefits
of user-level scheduling.

The benchmarks did not give exactly the results I was expecting; I was
expecting the pthread-based server’s throughput to decrease under increasing
numbers of concurrent clients due to overhead of scheduling very large numbers
of threads. I was surprised to see that the throughput remained consistent.
However, when examining the other factors — latency and timeout rate —
the limitations of the pthreads scalability become apparent and the lightweight
threading library shows its strengths, performing close to the event-based solu-
tion. Overall the benchmarks show that the library is effective for implementing
simple highly concurrent server applications.
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Appendix A

User Manual

A.1 Building

The code can be checked out from the GitHub repository (currently private):

git clone https://github.com/hamishm/shproject.git

cd shproject

# Checks out http-parser repository used by web server benchmark

git submodule update --init --recursive

If building from the included source code, it will be necessary to check out the
http-parser repository manually. From the root of the project source directory,
run:

git clone https://github.com/joyent/http-parser.git bench/http-parser

In case of an API change in a later version of http-parser that breaks the
build, a known working revision is 53063b7.

The code can be built using make. There are a couple of optional features
that can be enabled with environment variables:

# Build non-debug and without preemption

make

# Build with preemption enabled

make PREEMPTION=1

# Build as a shared library (will force PIC)

make SHARED=1

# Build with debugging information

make DEBUG=1
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This will produce a static library liblwthread.a, and optionally a shared
library liblwthread.so, with which you can link your program. On Linux if
you use the static library you must also link with librt, and build using the
-pthread option. For example:

gcc mycode.c -llwthread -lrt -pthread
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A.2 API

/*

* Create a new lightweight thread which will execute the given function, and

* pass the given argument as its first parameter.

* Returns a pointer to the new thread on success, or NULL on error.

* The lightweight thread will be automatically deallocated when it exits.

*/

struct coroutine* sched_new_coroutine(void* (*start)(void*), void* arg);

/*

* Read up to length bytes from the file descriptor into the given buffer.

*

* Returns the number of bytes read, or -1 if an error occurred.

* Consult sched_errno for the error.

*/

ssize_t async_read(int fd, void* buf, size_t length);

/*

* Write up to length bytes to the file descriptor from the given buffer.

*

* Returns the number of bytes written, or -1 if an error occurred.

* Consult sched_errno for the error.

*/

ssize_t async_write(int fd, void* buf, size_t length);

/*

* Accept a pending connection from the given listening socket. If address and

* length are non-NULL, they will be filled in the with the peer’s address.

*

* Returns the file descriptor of the accepted socket on success, or -1 if

* an error occurred. Consult sched_errno for the error.

*/

int async_accept(int socket, struct sockaddr* address, socklen_t* length);

/*

* Connect the given socket to the given address.

* Returns 0 on success and -1 on error. Consult sched_errno for the error.

*/

int async_connect(int socket, const struct sockaddr* address, socklen_t length);
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/*

* Sends up to length bytes from the given buffer to the given socket.

* The flags argument is passed to the operating system’s send call. Consult

* your operating system’s documentation for possible values.

*

* Returns the number of bytes sent on success, or -1 if an error occurred.

* Consult sched_errno for the error.

*/

ssize_t async_send(int socket, const void* buffer, size_t length, int flags);

/*

* Receive up to length bytes into the given buffer from the given socket.

* The flags argument is passed to the operating system’s send call. Consult

* your operating systems’ documentation for possible values.

*

* Returns the number of bytes received on success, or -1 if an error occurred.

* Consult sched_errno for the error.

*/

ssize_t async_recv(int socket, void* buffer, size_t length, int flags);

/*

* Sleep the current lightweight thread for the given number of milliseconds.

*/

void async_sleep_relative(long millisecs);

/*

* Sleep until the given absolute time. The timespec struct is defined in the

* POSIX standard.

*/

void async_sleep_absolute(const struct timespec* time);
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