
www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

fm JWBS038-Iyengar September 3, 2010 10:37 Printer: Yet to come

FUNDAMENTALS OF
SENSOR NETWORK
PROGRAMMING

i

www.finebook.ir

http://www.finebook.ir/../

www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

fm JWBS038-Iyengar September 3, 2010 10:37 Printer: Yet to come

FUNDAMENTALS OF
SENSOR NETWORK
PROGRAMMING

Applications and Technology

S. Sitharama Iyengar
Nandan Parameshwaran
Vir V. Phoha
N. Balakrishnan
Chuka D. Okoye

A John Wiley & Sons, Inc., Publication

iii

www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

fm JWBS038-Iyengar September 3, 2010 10:37 Printer: Yet to come

Copyright C© 2011 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,
NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

ISBN 978-0470-87614-5

Printed in Singapore

10 9 8 7 6 5 4 3 2 1

iv

www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

fm JWBS038-Iyengar September 3, 2010 10:37 Printer: Yet to come

This book is dedicated to Professor Donald E. Knuth (Professor Emeritus at Stan-
ford University) for his fundamental contributions to the programming in Computer
Science.

Professors Daniel Siewiorek (Carnegie Mellon), John Hopcroft (Cornell University),
Juris Hartmanis (Cornell University), Thomas Kailath (Stanford University), and K.
Mani Chandy (Cal-Tech) have all inspired the authors for coming up with the first
book on sensor programming.

Also, Dr. S.S. Iyengar would also like to dedicate this book to all his former and
current Ph.D. students, his son Vijeth Iyengar and finally, grandson, Ranvir Iyengar.
Professor Phoha would like to dedicate this book to Shiela, Rekha, Krishan, and Vivek.

—S.S. Iyengar
N. Parameshwaran

Vir Phoha
N. Balakrishanan

Chucka Okaye

v

www.finebook.ir

http://www.finebook.ir/../

www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

fm JWBS038-Iyengar September 3, 2010 10:37 Printer: Yet to come

Contents

PREFACE xiii

FOREWORD xvii

ACKNOWLEDGMENTS xix

ABOUT THE AUTHORS xxi

NOTATIONS AND ABBREVIATIONS xxv

I OVERVIEW

1 Introduction 3

1.1 Some Foundational Information 3
1.2 Next-Generation Sensor Networked Tiny Devices 5
1.3 Sensor Network Software 6
1.4 Performance-Driven Network Software Programming 8
1.5 Unique Characteristics of Programming Environments for

Sensor Networks 10
1.6 Goals of the Book 10
1.7 Why TinyOS and NesC 10
1.8 Organization of the Book 10
1.9 Future Demands on Sensor-Based Software 12
Problems 12
References 14

2 Wireless Sensor Networks 15

2.1 Sensor Network Applications 17
2.2 Characteristics of Sensor Networks 20
2.3 Nature of Data in Sensor Networks 24
Problems 24
References 25

3 Sensor Technology 27

3.1 Sensor Level 27
3.2 Server Level 33

vii

www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

fm JWBS038-Iyengar September 3, 2010 10:37 Printer: Yet to come

viii CONTENTS

3.3 Client Level 36
3.4 Programming Tools 36
Problems 37
References 38

II BACKGROUND

4 Data Structures for Sensor Computing 41

4.1 Introduction to Sensor Computing 43
4.2 Communication Capabilities 46
4.3 General Structure of Programming 48
4.4 Details on Embedded Data Structures 51
4.5 Linked List 53
4.6 Importance of Graph Concepts in Sensor Programming 57
4.7 Graph and Trees 61
4.8 Trees 66
4.9 Graph Traversal 75
4.10 Connectivity 76
4.11 Planar Graphs 81
4.12 Coloring and Independence 83
4.13 Clique Covering 84
4.14 Intersection Graph 85
4.15 Defining Data Structure of Spanning Tree Protocols 86
Problems 90
References 91

5 Tiny Operating System (TinyOS) 92

5.1 Components of TinyOS 93
5.2 An Introduction to NesC 93
5.3 Event-Driven Programming 96
Problems 97
References 97

6 Programming in NesC 99

6.1 NesC Programming 99
6.2 A Simple Program 99
Problems 108
References 109

III SENSOR NETWORK IMPLEMENTATION

7 Sensor Programming 113

7.1 Programming Challenges in Wireless Sensor Networks 113

www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

fm JWBS038-Iyengar September 3, 2010 10:37 Printer: Yet to come

CONTENTS ix

7.2 Sensing the World 119
7.3 Applications Using the Interface SplitControl 122
Problems 129
References 130

8 Algorithms for Wireless Sensor Networks 131

8.1 Structural Characteristics of Sensor Nodes 132
8.2 Distinctive Properties of Wireless Sensor Networks 134
8.3 Sensor Network Stack 135
8.4 Synchronization in Wireless Sensor Networks 138
8.5 Collision Avoidance: Token-Based Approach 144
8.6 Carrier Sensing Versus Decoding 148
Problems 153
References 154

9 Techniques for Protocol Programming 155

9.1 The Mediation Device Protocol 156
9.2 Contention-Based Protocols 158
9.3 Programming with Link-Layer Protocols 161
9.4 Automatic Repeat Request (ARQ) Protocol 161
9.5 Transmitter Role 161
9.6 Alternating-Bit-Based ARQ Protocols 163
9.7 Selective Repeat/Selective Reject 168
9.8 Naming and Addressing 170
9.9 Distributed Assignment of Networkwide Addresses 170
9.10 Improved Algorithms 177
9.11 Content-Based Addressing 179
9.12 Flooding 181
9.13 Rumor Routing 184
9.14 Tracking 188
9.15 Querying in Rumor Routing 189
Problems 194
References 194

IV REAL-WORLD SCENARIOS

10 Sensor Deployment Abstraction 197

10.1 Sensor Network Abstraction 197
10.2 Data Aggregation 198
10.3 Collaboration Group Abstractions 202
10.4 Programming Beyond Individual Nodes 205
Problems 205
References 206

www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

fm JWBS038-Iyengar September 3, 2010 10:37 Printer: Yet to come

x CONTENTS

11 Standards for Building Wireless Sensor Network Applications 207

11.1 802.XX Industry Frequency and Data Rates 207
11.2 ZigBee Devices and Components 208
11.3 ZigBee Application Development 210
11.4 Dissemination and Evaluation 212
Problems 212
References 214

12 INSPIRE: Innovation in Sensor Programming Implementation
for Real-Time Environment 215

12.1 Motivation and Background 215
12.2 Software Microframework Requirements 236
References 237

13 Performance Analysis of Power-Aware Algorithms 239

13.1 Introduction 239
13.2 Service Architecture 242
13.3 Approaches To WSN Programmability 248
13.4 Simulation Capabilities 249
13.5 Benchmarking 251
13.6 Conclusion 251
Problems 252
References 252

14 Modeling Sensor Networks Through Design and Simulation 253

14.1 Introduction 254
14.2 Why a New Simulator 254
14.3 Currently Available Simulators 255
14.4 Simulation Design 257
14.5 Implementation Details 261
14.6 Experimental Results 265
14.7 Final Comments 271
Appendix 272
Acknowledgments 275
Problems 275
References 275

15 MATLAB Simulation of Airport Baggage-Handling System 277

15.1 Introduction 277
15.2 Background 277
15.3 Proposed Architecture 283

www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

fm JWBS038-Iyengar September 3, 2010 10:37 Printer: Yet to come

CONTENTS xi

15.4 Simulation Results and Discussion 283
15.5 Source Code 286
Problems 295
References 296

16 Security in Sensor Networks 297

16.1 Introduction 297
16.2 Security Constraints 297
16.3 Denial-of-Service Attacks in Multiple Layers 298
16.4 Some Well-Known Algorithms for Security Problems 302
16.5 Secure Information Routing 302
16.6 Security Protocols for Sensor Networks 303
16.7 Final Comments 303
Problems 303
References 304

17 Closing Comments 305

Bibliography 307

Index 313

www.finebook.ir

http://www.finebook.ir/../

www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

fm JWBS038-Iyengar September 3, 2010 10:37 Printer: Yet to come

Preface

The price of greatness is responsibility.
—Winston Churchill

Sensor processing is a central and an important problem in aerospace/defense, au-
tomation, medical imaging, and robotics, to name only a few areas. A surveillance
system used in aerospace and defense is an example of a sensor processing system.
It uses devices such as infrared sensors, microwave radars, and laser radars that are
capable of detecting and tracking flying objects in their observational space. A sensor
processing system may employ intelligent and disparate sensors that are distributed
logically, spatially, and even geographically. It is then referred to as a distributed
sensor network (DSN). The sensor may measure scalar values (e.g., temperature) or
vector values (e.g., position in three-dimensional space). The measurements are gen-
erally a function of time and/or space. Because of variation in operating environments
or other factors, such as aging and communication delays, the measurements may
appear contradictory. Although combining the numerous sensor measurements may
appear contradictory, it minimizes the uncertainty of measurements and improves
reliability and fault tolerance.

There is a wide body of literature on sensor networks and on design, analysis,
protocols, and other research-related issues in sensor networks. However, the issues
of software development, in particular pedagogical material related to software de-
velopment in sensor networks, has been left mostly untouched. We present this book
to focus on software development in sensor networks. This book provides the basics
needed to develop sensor network software and supplements it with many case studies
covering network applications. We also examine how to develop onboard applications
on individual sensors, how to interconnect these sensors, and how to form networks
of sensors, although the major aim of this book is to provide foundational principles
of developing sensor networking software and to critically examine sensor network
applications.

Courses in sensor networks do not provide direct access to sensor networking
equipment and software. However, the need for hands-on experience is essential
for a high-quality education. We have structured the examples in the book, in such
a way that a teacher can demonstrate the material on a small network of four (or
more) sensor nodes and a laptop, all of which can be hand-carried to any room and
set up on a teacher’s desk. It is our hope to impart to students and by extension
any reader of this book an understanding of sensor network programming based on
general principles with an aim to develop actual software. Thus, in Part II we provide

xiii

www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

fm JWBS038-Iyengar September 3, 2010 10:37 Printer: Yet to come

xiv PREFACE

implementations of various algorithms ranging from very simple to more elaborate in
complexity.

Features

This is a practical book. The book contains many figures, pseudocode, and actual
code tested in a laboratory environment to explain the concepts. Most of the code is
written and tested by N. Paramesh and our student Chuka Okoye, and some examples
have been adopted and modified from nesC and TinyOS manuals. The programs were
tested on various network configurations consisting of six TelosB sensor motes and
a laptop. Currently, there exist several platforms designed to run programs written
for TinyOS such as Mica, Telos, and Intel X-scale family of motes. Each of these
motes has a unique functionality that differentiates it from others. While several of
the programs that have been written to illustrate concepts in this book are platform-
independent, most have been tested primarily on TelosB, a Telos family suite of
sensors. TelosB motes are IEEE 802.15.4–compliant devices having an integrated
onboard antenna and a range of sensing devices (light, temperature, and humidity
sensors). They are characterized by their USB (universal serial bus) programmability;
hence programs can be written on a computer and transferred to the device for testing.
TelosB sensors have an already implemented 802.15.4 physical layer and a software
MAC (media access control) layer that ensures that sensors can communicate with
each other using the onboard antennas and existing radio drivers. Programs written in
the TinyOS environment can be checked for program correctness either by running
them in the TinyOS simulator (TOSSIM) or by using the integrated LEDs (light-
emitting diodes) on the sensors for debugging. TOSSIM allows detailed simulation
of TinyOS network stacks at the bit level, therefore allowing both low- and high-level
applications that require fine-grained controls to be simulated. TinyViz, a graphical
user interface (GUI) for TOSSIM, can be used to visualize and interact with running
TOSSIM simulations. The TOSSIM simulator can mimic thousands of nodes and
also has the ability to print debug information such as variables.

We make no pretense of providing in this book a reference manual for nesC or
of TinyOS, and students writing more than trivial programs will do well to avail
themselves of specific reference sources on nesC and TinyOS.

Audience

The book is suitable for upper-division (junior or senior) undergraduate-level or first-
year graduate-level students. We have presented the material in this book assuming
that the reader is knwoledegeable in some conventional programming language and
has basic familiarity with an operating system. Although the programming language
used in examples is nesC running under the TinyOS operating system, in some cases,
particularly in Part III of the book, further knowledge of sensors and networks will be
helpful. We have tried to arrange the material in an order that will facilitate following
the chapters linearly. However, readers who are confident in the programming, data
structures, have a basic understanding of sensors, and want to focus more on software

www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

fm JWBS038-Iyengar September 3, 2010 10:37 Printer: Yet to come

PREFACE xv

development may skip to Chapter 7, Sensor Programming. In conjunction with the
material in the book, readers are encouraged to work on moderate-sized projects
taken from the book.

S. S. Iyengar
Louisiana State University, Baton Rouge (USA)

N. Parameshwaran
University of New South Wales (Sydney, Australia)

V. V. Phoha
Louisiana Tech University, Ruston (USA)

N. Balakrishnan
Indian Institute of Science, Bangalore (India)

C. D. Okoye
Louisiana Tech University, Ruston (USA)

January 28, 2010

www.finebook.ir

http://www.finebook.ir/../

www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

fm JWBS038-Iyengar September 3, 2010 10:37 Printer: Yet to come

Foreword

Dr. Iyengar et al. have written an excellent piece of senior undergraduate or first year
graduate level text for sensor or sensor network programming. The book contains
numerous practical examples of real or pseudocode and will be extremely beneficial
for both students and teachers. It will also be useful for working engineers writing
code for sensor based complex or simple systems. Lately the use of sensors to measure
space or temperature has grown exponentially from freeways to airports to medical
devices to smartphones. Dr. Iyengar et al.’s book will have a positive impact to the
industry in general.

Arup Gupta
Director Wireless Platform Technologies

Ultra Mobile Group
Intel Corp

xvii

www.finebook.ir

http://www.finebook.ir/../

www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

fm JWBS038-Iyengar September 3, 2010 10:37 Printer: Yet to come

Acknowledgments

This book started out with a series of discussions in 2008, and evolved from various
research projects on sensor networks. It was contributed to and improved on by many
individuals, and was funded by several federal agencies. The culmination of this
work done by the LSU sensor network research group and others is recorded here.
Sensor programming is very different from traditional programming. The authors
have made an attempt to present the programming structure and implementation
aspects of sensors under the framework of the nesC language.

Many researchers, friends, students, and faculty contributed to this work. We
would like to acknowledge their contributions. This work has been supported in part
by the DoD DEPSCoR grant by the Office of Naval Research and by a PKSFI grant,
LEQSF (2007-12)-ENH-PKSFI-PRS-03, from the Louisiana Board of Regents. The
authors would also like to thank the Indian Institute of Science for their travel support
to the 100th Centenary Conference. Countless people have provided assistance; we
have benefited from discussions with many of our colleagues around the country
while working on this project. We are grateful to them all and sorry that we cannot
list all by name, but a few need to be mentioned. We would like to thank V. Iyer
for his several vital contributions to this work, including working with LaTex and
general proofreading.We would like to thank Professor Ramamurthy and Professor
M. B. Srinivas of the International Institute of Information Technology, Hyderabad,
India for being co-authors of many previous publications that helped us put together
this book for FARM (fusionable ambient renewable access control) applications.

We would like to thank the graduate students involved in proofreading/editing,
including Robert, Rajesh, Srivathsan Srinivasagopalan, and many others. The authors
would like to hear from any readers with comments, suggestions, or bug reports.
In writing a book of this proportion, it goes without saying that many people have
contributed both directly and indirectly to the inception, development, and completion
of this project.

This endeavour would not have been achieved if not for the many hours toiled
by both my present and former students. For this, thanks goes to Professors N.S.V.
Rao (Oak-Ridge National Lab), Richard Brooks (Clemson), Mengxia Zhu (SIU-
Carbondale), and Qishi Wu (U. Memphis) and current PhD students Robert Dibiano,
Srivathsan Srinivasagopalan, Vasanth Iyer, J. Kim. Further, I want to thank the faculty
at KAIST – S. Korea, specifically Dr. Song and his collaborators who participated in
the early discussions of this project.

I want to thank all of my research collaborators, specifically, Krishnendu
Chakrabarty (Duke), Sartaj Sahni (Florida), Bhaskar Krishnamachari (Southern Cal),

xix

www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

fm JWBS038-Iyengar September 3, 2010 10:37 Printer: Yet to come

xx ACKNOWLEDGMENTS

and at Louisiana State University (Professors S. Mukhopadhyay, R. Kannan, C.
Busch, J. Zhang, H. Wu, X. Li). Moreover, We, (Iyengar and Phoha) would like to
thank various funding agencies, specifically DARPA, ONR, NSF, Army Research
Office, Air Force (AFRL) and the Indian Institute of Science – Bangalore. Dr.
Parameshwaran acknowledges the support and assistance needed from University
of New South Wales, Sydney, Australia during his sabbatical at LSU. The authors
also acknowledge Prof. Balakrishnan’s research group at Indian Institure of Science,
Bangalore, during the preparation of this manuscript. Prof. Phoha acknowledges the
support of LaTech researchers and many of his graduate students: Kiran Balagani,
Chuka Okoye, Sunil Babu, and colleagues Enam Karim and Rastko Selmic from
Louisiana Tech University.

We would also like to thank Prof. Holger Karl and Dr. Adreas Willig, the authors
of the book Protocols and Architectures for Wireless Sensor Networks (John Wiley &
Sons, 2005) which was instrumental in providing the intial impetus for writing a book
at a level with more programming details using nesC upon TinyOS.

Perhaps, most importantly, I would like to thank Dean Kevin Carman, for his con-
tinued support and mentorship in my research activities at Louisiana State University.

www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

fm JWBS038-Iyengar September 3, 2010 10:37 Printer: Yet to come

About the Authors

Each of the five authors has teaching and research interests in sensor networks. A
brief biographies of these five authors follow.

Dr. S. S. Iyengar

S. S. Iyengar is currently the Roy Paul Daniels Professor and Chairman of the
Computer Science Department at Louisiana State University. He heads the Wireless
Sensor Networks Laboratory and the Robotics Research Laboratory at LSU. He has
been involved with research in high-performance algorithms, data structures, sensor
fusion, data mining, and intelligent systems. Since receiving his Ph.D. degree in
1974 from Mississippi State University (MSU), USA. He has directed over 40 Ph.D.
students and 100 master’s students, many of whom are faculty at major universities
worldwide or scientists or engineers at national laboratories or industries around
the world. He has published more than 380 research papers and has authored or
coauthored six books and edited seven books, published by John Wiley&Sons,
CRC Press, Prentice-Hall, Springer Verlag, and IEEE Computer Society Press, and
other publishers. One of his books, titled Introduction to Parallel Algorithms, has
been translated into Chinese. His research has been funded by the National Science
Foundation (NSF), Defense Advanced Research Projects Agency (DARPA), Multi-
University Research Initiative (MURI Program), Office of Naval Research (ONR),
Department of Energy/Oak Ridge National Laboratory (DOE/ORNL), Naval Re-
search Laboratory (NRL), National Aeronautics and Space Administration (NASA),
US Army Research Office (URO), and various state agencies and companies. He
has served on the US National Science Foundation and National Institute of Health
panels to review proposals in various aspects of computational science and has been
involved as an the external evaluator (ABET-accreditation) for several computer sci-
ence and engineering departments. He is a fellow of (1) the Institute of Electrical and
Electronics Engineers (IEEE), (2) Association for Computing Machinary (ACM),
(3) American Association for the Advancement of Science (AAAS), and (4) Society
of Design and Process Science (SDPS) and a member of the European Academy
of Sciences. He has won many best-paper awards and IEEE Computer Society awards.

Dr. N. Parameshwaran

Nandan Parameshwaran is a senior lecturer in the School of Computer Science
and Engineering, University of New South Wales, Sydney, Australia. He obtained
his Ph.D. from the Indian Institute of Science, Bangalore, India. His research

xxi

www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

fm JWBS038-Iyengar September 3, 2010 10:37 Printer: Yet to come

xxii ABOUT THE AUTHORS

interests include multiagent system models, ontology-driven techniques for concept
mappings, robust rule-based systems, and network management. He has been
applying agent-based techniques for real-world applications, including social
systems such as road traffic simulations, and fireworld scenarios. He teaches courses
in Internet programming, functional programming, data structures and algorithms,
and artificial intelligence. Dr. Parameshwaran has served as a member in the Florida
Artificial Intelligence Research Society (FLAIRS) and the International Conference
on Semantic Computing (ICSC) programming committees, and is a former member
of both the IEEE Computer Society and the American Association for Artificial
Intelligence (AAAI).

Dr. Vir V. Phoha

Vir V. Phoha is a professor of computer science in the College of Engineering and
Science at Louisiana Tech University (USA). He holds the W. W. Chew Endowed
Professorship at Louisiana Tech and directs the Center for Secure Cyberspace. He
has won various distinctions, including ACM Distinguished Scientist, 2008; research
commemoration awards at Louisiana Tech University (2002, 2006, 2007, 2008);
outstanding research faculty and faculty Circle of Excellence Award at Northeastern
State University, Oklahoma, and as a student was awarded the President’s Gold medal
for Academic Distinction. Professor Phoha holds an M.S. and a Ph.D. in Computer
Science from Texas Tech University.

He has done fundamental and applied work in anomaly detection in network
systems, in particular in the detection of rare events. His current research interests
include autonomy and security issues in sensor networks. He has eight patent
applications and many reports of inventions. He is author of over 90 publications
and author/editor of three books: Internet Security Dictionary, Springer-Verlag
(2002); Foundations of Wavelet Networks and Applications, CRC Press/Chapman
Hall (2002); Quantitative Measure for Discrete Event Supervisory Control, Springer
(2005).

Dr. N. Balakrishnan

N. Balakrishnan is a scientist of high international repute and is well decorated with
prestigious awards. He received his B.E. (Hons.) in Electronics and Communication
from the University of Madras in 1972 and Ph.D. from the Indian Institute of Science
in 1979. He then joined the Department of Aerospace Engineering as an assistant
professor. He is currently the associate director of the Indian Institute of Science and
a Professor at the Department of Aerospace Engineering and at the Supercomputer
Education and Research Centre. He played a crucial role in building India’s first
Supercomputer Centre and the National Centre for Science Information at the Indian
Institute of Science.

His areas of research, in which he has published over 200 papers in international
journals and for presentation at international conferences, include numerical electro-
magnetics, high-performance computing and networks, polarimetric radars and
aerospace electronic systems, information security, digital libraries, and speech

www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

fm JWBS038-Iyengar September 3, 2010 10:37 Printer: Yet to come

ABOUT THE AUTHORS xxiii

processing. He has received many awards, including the Padmashree, Homi J. Bhabha
Award, the JC Bose National Fellowship, the Alumni Award for Excellence in Re-
search for Science & Engineering at the Institute, the Millennium Medal of the Indian
National Science Congress in 2000, Ph.D. (Honoris Causa) from Punjab Technical
University in 2003, and the CDAC-ACS Foundation Lecture Award. He was the
NRC Senior Resident Research Associate at the National Severe Storms Laboratory,
Norman, Oklahoma (USA) from 1987 to 1989. He was a visiting research scientist
at the University of Oklahoma in 1990, Colorado State University in 1991 and has
been a visiting professor at Carnegie Mellon University since 2000. He is an hon-
orary professor in the Jawaharlal Nehru Centre for Advanced Scientific Research
(JNCASR).

He is a fellow of the Academy of Sciences for the Developing World (TWAS),
Indian National Science Academy (currently the vice president), Indian Academy of
Sciences, Indian National Academy of Engineering, National Academy of Sciences,
and Institution of Electronics & Telecommunication Engineers. He is currently a
member of the National Security Advisory Board, part-time member of the Telecom
Regulatory Authority of India, and member of the Board of Governors of IIT
Chennai. He is a directors of (1) Bharat Electronics Limited (BEL), (2) Data Security
Council of India, and (3) CDOT-Alcatel Research Centre at Chennai; he is a member
of the Council of CDAC and the council of many universities and CSIR laboratories.
He is Editor of the International Journal on Distributed Sensor Networks. He was
a member of the Scientific Advisory Committee to the Cabinet (SAC-C), a member
of the Board of Governors, IIT Delhi; Chairman, All India Board of Information
Technology Education of AICTE; and Editor of Electromagnetics and International
Journal of Computational Science and Engineering until recently.

Chuka D. Okoye

Chuka D. Okoye is an undergraduate student majoring in computer science in his
senior year at Louisiana Tech University. He has been named to the President’s and
Dean’s lists multiple times for academic distinction and most recently nominated as
the most outstanding computer science senior. During his 4 years at Louisiana Tech,
he held various leadership positions, including the most coveted vice president of the
local ACM chapter, president of the Robotics Club, and Louisiana Tech Program-
ming Team Czar. His research interests include high-performance computing (HPC),
machine learning, and wireless sensor networks. Having done exemplary work in the
design and implementation of high-availability tools for clusters, he was charged with
the development of a high-availability solution for the renowned Louisiana Optical
Network Initiative (LONI). After being accepted in the Google Summer of Code
Program under the mentorship of researchers from Oak Ridge National Laboratory,
he greatly enhanced the widely popular OSCAR software stack for HPC clusters.
Currently, he works as an undergraduate student researcher for the Center for Secure
Cyberspace under the supervision and mentorship of the well-accomplished Dr. Vir
V. Phoha in the Sensors and Machine Learning Group.

www.finebook.ir

http://www.finebook.ir/../

www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

fm JWBS038-Iyengar September 3, 2010 10:37 Printer: Yet to come

Notations and Abbreviations

Clarity of presentation is critical to effectively communicate knowledge.
—S. S. Iyengar

ACRONYMS*

AG acquaintance group
API application program interface
ARQ automatic repeat request
ATR atomic target recognition
BC block-cut (e.g., block-cut tree)
BFS/DFS breadth-first/depth-first search
BHS baggage-handling system
CAN controller area network
CBS checked-baggage screening
CHAMP caching and multipath (routing)
DIFS distributed interframe space
DSN distributed sensor network
DVS dynamic voltage scaling
EEPROM electrically erasable read-only memory
ESM electronic support measure
FARM fusionable ambient renewable MAC
FDMA/TDMA frequency-/time-division multiple access
FFD full-function device
FIFO first-in/first-out
FSM finite-state machine
GEAR geographic and energy-aware routing
GHT geographic hashing table
GPSR greedy perimeter stateless routing
GSN Global Sensor Network
GUI graphical user interface
HAL hardware abstraction layer

*Proprietary organization abbreviations (IEEE, etc.) and very common acronyms (e.g., CPU, GPS, IR,
PC, UV) omitted from this list.

xxv

www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

fm JWBS038-Iyengar September 3, 2010 10:37 Printer: Yet to come

xxvi NOTATIONS AND ABBREVIATIONS

HBA hub-based architecture
HNG hop neighborhood group
HPC high-performance computing
HSR hierarchical state routing
IFF IR (infrared) identification–friend/foe (sensor)
INSPIRE innovation in sensor programming implementation for real-time

environment
IPC interprocess (or intermediate-performance) communication
ISR intelligence–surveillance–reconnaissance
LEACH low-energy adaptive clustering hierarchy
LPL low-power listening
MAC media access layer
MAS multiagent system
MCU multipoint control unit
MEMS microelectromechanical system
MOP maximal outer planar (graph)
OMNeT objective modular network testbed
PLC product lifecycle or public limited company
PSG publish/subscribe group
QoS quality of service
RAM/ROM random-access memory/read-only memory
RFD reduced-function device
RFID radiofrequency identification (tag; as in, e.g., airport security)
RSA random structures and algorithms
RSS reallly simple syndication
RTC run to completion
RTOS real-time OS (operating system)
RTS ready (or request) to send
SCP scheduled channel polling
SHIMMER sensing health with intelligence, modularity, mobility,

and experimental reusability
SIFS short interframe space
SMS security management system
SPEED systems planning, engineering, and evaluation device
TCP/IP Transmission Control Protocol/Internet Protocol
TOSSIM TinyOS simulator
UML Unified Modeling Language
USB Universal Serial Bus
UTC Universal Time, Coordinated
WASN wireless ad hoc sensor network
WSN wireless sensor network

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

PART I
Overview

1

www.finebook.ir

http://www.finebook.ir/../

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

1 Introduction

The creation of genuinely new software has far more in common with developing a new
theory of physics than it does with producing cars or watches on an assembly line.

—T. Bollinger

Software that drives the operations of sensors and communication among sensors is
basic to any meaningful application of sensor networks. The goal of this book is to
provide an understanding of how this software functions; how it allows the sensors
to gather information, process it, and interact with each other in networks; and how
these networks interact with the physical world. One aim of this book is to provide
fundamental information necessary to write efficient sensor network software. A
second aim is to provide a balance between theory and applications, so that the
subject matter is complete (self-contained).

Wireless sensor network (WSN) applications may consist of diverse sensors with
varying capabilities. For example, sensors may range from an extremely constrained
8-bit “mote” to less resource-constrained 32-bit “microservers.” These sensors may
be organized in different network configurations, which use different communication
and data dissemination protocols, most software development platforms consist of
libraries that implement message-passing interprocess communication (IPC) primi-
tives, tools to support simulation, emulation, and visualization of networked systems,
and services that support networking, sensing, and time synchronization. Given all of
this diversity, there is an underlying theme of software development and deployment
that cuts across platforms.

1.1 SOME FOUNDATIONAL INFORMATION

This section provides some basic information necessary for understanding the sensors
and sensor networks.

1.1.1 Sensors

Typically a sensor is composed of components that sense the environment, process the
data, and communicate with other sensors/computers. A sensor responds to a physical
stimulus, such as heat, light, sound, or pressure, and produces a measurable electrical

Fundamentals of Sensor Network Programming: Applications and Technology, By S. S. Iyengar, N. Parameshwaran,
V. V. Phoha, N. Balakrishnan, and C. D. Okoye Copyright C© 2011 John Wiley & Sons, Inc.

3

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

4 INTRODUCTION

Data Sinks

Sensing
Nodes

FIGURE 1.1 Networking structure of a distributed sensor network.

signal. Thus a sensor with its own sensing device, a memory, and a processor can
typically be programmed with a high-level programming language, such as CorJava.
The sensing devices can range from nanosensors to micro- and megasensors. In the
remainder of this book when we refer to a sensor, we refer to a whole system such
as a mote, which may have more than one physical sensor, its memory, processor,
and other associated circuitry. Figure 1.1 shows a distributed sensor architecture and
various components.

1.1.2 Sensor Networks

A distributed sensor network (DSN) is a collection of sensors distributed logically or
geographically over an environment in order to collect data. Distributed computing
and distributed problem solving are commonly used in DSN in order to abstract
relevant information from the data gathered and derive appropriate inferences. This
kind of data fusion can be used to compensate for the shortcomings of the in-
dividual sensor in real-world enviornments. For more details on sensor networks,
see Refs. 1–3.

Most references to the term sensor network can denote multiple sensing configura-
tions to be used in multiple contexts. Sensor networks typically consist of numerous
sensing devices that may communicate over wired or wireless media, and may have as
intrinsic properties limitations in computational capability, communication, or energy
reserve. This does not imply that all sensor deployments consist of severely resource-
constrained devices; for example, radar, closed-circuit cameras, and other wireline
devices are commonly used in sensor network experimentations in academia and
military research. These sensing devices possess reasonable computational capabil-
ity and more importantly, may not have limited energy or constrained communication

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

NEXT-GENERATION SENSOR NETWORKED TINY DEVICES 5

abilities. The main crux of this book is focused on the class of sensors having severely
constrained computation, communication, and energy resources. These devices range
from penny to matchbox in size and are deployed in an ad hoc and nonplanned (ran-
dom) fashion. Examples of such devices include the mote platforms commonly used
in academia.

1.2 NEXT-GENERATION SENSOR NETWORKED TINY DEVICES

1.2.1 Domain-Specific Challenges

Development of software in wireless sensor networks draws on experiences across
several domains in computer science and some engineering disciplines such as

1. Networking. Networking knowledge is critical in sensor networks, providing
information on how large-scale mobile ad hoc wireless networks can be created
and managed efficiently.

2. Power Systems. Sensor networks, also rely on information from computer
science and electrical and nanosystems engineering, in the creation of energy
efficient software and hardware components, resulting in improved life of
sensor networks.

3. Data Management. Experience in large-scale data management and data mining
techniques is required in sensor networks since huge heterogenous datastreams
are generated from these ubiquitous sensing devices.

4. Data Fusion. Since most devices have basic sensing capabilities, the need to
create software systems capable of combining data from multiple sources to
create more complex representation of the world is necessary; hence the need
for data fusion. Fusion systems draw on advances in artificial intelligence,
statistical analysis, and distributed systems.

1.2.2 Technology-Driven Methods

A few examples of technology driven methods in sensor networks follow.

1. Flooding, such as broadcast of packets in a synchronized network from source
to destination until the path is formed to find the topology

2. Clustering, including K-means clustering to find K centers and form a cluster
to minimize the distance between nodes in a dense region and efficiently form
a topology

3. Short-path algorithms for data aggregation, such as data aggregation trees to
form wireless spanners to efficiently collect data periodically

4. Distributed algorithms for energy and reusability loading and fault tolerance
in large sensor networks

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

6 INTRODUCTION

1.2.3 Wireless Sensor Network Environment

Sensor Network make it possible to monitor, instruct, or control various domains
such as homes, buildings, warzones, cities, and forests. Sensor networks can ob-
serve the sensing environment at a close range and thus have many advantages,
such as ability to monitor smallest details, proximity to places which are difficult
to reach by humans, for example difficult terrain or hazardous environment. The
major limitations of sensors are their limited power supply, limited communica-
tion bandwidth and range, and limited computation ability and memory capacity.
Data transmission consumes a large percentage of energy; reducing the amount of
data transmitted is the primary focus of data processing. The small bandwidth of
the wireless links represents a challenge for data processing. Because of the lim-
ited communication radius of a sensor node, data may have to go through multiple
hops to reach the final destination. This leads to extra power consumption in sen-
sor nodes on the relay path. Limited processing and memory capacities restrict the
complexity of data processing algorithms running at the sensor nodes. The inter-
mediate results and other data are also burdensome to store in the node because
of limited memory size. Sensor data are a stream: a real-time, continuous, ordered
sequence with limited control over the order in which items arrive and the limita-
tions of low battery life, low bandwidth, and low processing power and operating
memory present programming challenges that are unique to the sensor network
environment.

1.3 SENSOR NETWORK SOFTWARE

A network architecture and protocols are essential foundations for building software
applications.

Developing computational/communication systems for deployment and applica-
tion for wireless sensor networks has been a challenge since the mid-1990s. More
Specifically, wireless ad hoc sensor networks have been largely designed with static
and custom architectures for specific tasks, thus providing inflexible operation and
interaction capabilities. WSN applications need to be programmed with constrained
memory and process-centric resource requirements in mind, in order to write com-
munication code with real-time sensing deadlines, which are critical to a dedicated
scheduled measuring task. In short, the problem is the choice of abstraction for
the sensor node runtime environment. Our computational framework or paradigm
called INSPIRE, defines and supports nanofootprint and real-time deadlines, sched-
uled tasks for computing, and allows communication and sensing resources at the
sensor nodes to be efficiently harnessed in high density event driven application-
sensing fashion, through the use of an object oriented framework. A key feature of
the runtime abstraction is that all the infrastructure used by the kernel is simulated to
provide wireless communications using renewable energy resources with its unique
extended lifetime model. This allows it to scale all the code to any processor. The
implementation of INSPIRE on a target prototype node occupies less than 10–40 kB

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

SENSOR NETWORK SOFTWARE 7

(kilobytes) of code memory; for details, refer to Chapter 10. The distributed source
coding implementation is used to measure the sensing activity and memory overheads
using traditional sensor applications without constraints, but more importantly, we
highlight the reliability of the transmitted data from the measuring applications.

1.3.1 Technology-Driven Software

Individual updates of software are impractical because of the large number of nodes
and the relative inaccessibility of deployed nodes. One solution for updating software
in sensor nodes is the deployment of a support network of small, mobile, temporarily
attachable nodes with virtual connections from a host PC to individual nodes. This
scheme allows the use of standard tools to update the software in the individual sensor
nodes. For many sensor networks in field applications, such as sensors deployed in
unreachable places such as in water or trees, it is desirable to remotely update the
software on the sensor nodes.

The following are a few issues to be considered when updating the nodes with
software updates:

� Updates need to be planned. The items included in planning are tradeoffs of
different updates relative to energy costs, the injection strategy for network
configuration, and size reduction techniques that result in quick updates.

� Injection strategies of software. The strategies could include updating individual
nodes, or sending updates to a base station or to a number of select nodes that
may then disseminate the updates to other nodes.

� How software would be activated. Software may be either automatically acti-
vated or based on a set of rules, or manual activation may be required. To meet
the requirements for backward/forward version compatibility, control over the
order of node activation may be needed.

� Checking the downloaded software for integrity, version mismatch, and platform
mismatch, and dynamically checking the operation of the downloaded software
after it has been activated.

� Monitoring of update-related faults.
� Security-related issues, such as key distribution, authentication, secrecy, in-

tegrity, and authorization.
� Problems related to very small nodes, such as limited code memory, and almost

no RAM or EEPROM (random-access or electrically erasable programmable
read-only memory) for storing new code. Techniques may need to be developed
for incremental building of new code into code memory (usually flash-RAM).

� Version control, that is, prevention version mismatch.
� Heterogeneity of sensor nodes. There can be various forms of heterogeneity; for

example, there may be a mix of platforms, or a network may consist of a small
number of “spine”/data backbone (shown to be optimal for data delivery) and
a large number of lower-power nodes (for data collection). Here the backbone

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

8 INTRODUCTION

nodes will have to handle different versions of their code base as well as different
codebases.

� Performance. The time required to update nodes as well as tradeoffs between
time and energy need to be considered.

� Provisions to recover from faulty updates, with mechanisms to verify the new
software both before and during execution.

1.4 PERFORMANCE-DRIVEN NETWORK
SOFTWARE PROGRAMMING

There are four basic issues here:

1. Quality of Service. In sensor networks quality of service is an important metric
to analyze the performance and reliability of different WSN routing algorithms.
As the sensor nodes use fixed batteries to sense and communicate, it is neces-
sary to collaboratively use the network resources to minimize power usage and
when idling, conserve power by using ultra-low-duty cycling. The communica-
tion module of a sensor mote uses a software “stack” and a radio to receive and
transmit information. The network stack has many layers, spanning from phys-
ical layer to network layer; with various functionalities. By design, a running
stack needs to use a small footprint and be power-aware, avoiding unnecessary
overheads at every layer. The QoS can be defined as how the stack performs load
balancing (reusability index), power-aware sleep scheduling (due to network
density), and the reliability of sending sensed data wirelessly (at the datalink
layer).

2. Reusability Index. This performance-based index can described as the number
of times that a given node has been used as a clusterhead to communicate to a
base station or a sink during its lifetime. As many of the clusterhead selection
algorithms are distributed in nature, they will not overuse a specific node more
than the critical number of times. If all nodes are used evenly, then the reliability
of the network increases during the entire lifetime of the node.

3. Sleep Scheduling. Most of the deployed sensor network applications are dense
because of the limited radio transmission range, so even when not transmitting,
data nodes are subjected to overhearing and collision. These factors severely
impact the total power consumed. So, in a dense deployment if a sufficient
number of nodes are awake to receive the multihop traffic, then other nodes can
shut off their radios after exchanging the next polling time, to minimize idling.
By activating only a subset of nodes and scheduling timeslots for nodes to be
active, sleep scheduling saves on power and avoids dropped packets. The end
goal of each of these methods is to continue reciving data from the network for
as long as possible.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

PERFORMANCE-DRIVEN NETWORK SOFTWARE PROGRAMMING 9

4. Datalink Reliability. Data must be not only available but also accurate. In wire-
less sensor networks a node needs to not only communicate with its neighbors
also forward the periodic sensed data over the network. Many of the MAC
protocols are designed for efficient ad hoc communications but not for reliable
data sensing as the radio does not have a way to filter floor noise or a new
sensed value in harsh environments. For this reason, a twoway handshake is
necessary between the MAC and the datalink layer, which allows them to re-
liably capture the new data everytime a data aggregation is performed. With
this reliable datalink mechanism the clusterhead can further fuse the data from
neighboring sensors and discard any false values.

1.4.1 Routing

In a sensor network stack the network layer is solely responsible for route planning
and maintenance. Most of the energy used by the network is due to its routing activity.
In implementing routing there are two methods, one at the network layer, which is
controlled by distributed algorithms to form clusters and uses efficient clusterhead
selection, and another at the MAC layer, which uses multihop routing to forward data
at the lower layers by using best-effort QoS.

1.4.2 Data Aggregation

In a large sensor network deployment many parameters are sensed over a wide area
and are periodically sent to the central coordinator. As the sensed parameters are the
same at every node (similar sensor types are attached), WSN data aggregation allows
reduction of the redundancy in a transmission by statistically evaluating the frequency
of occurring samples and the trend direction that they have during its lifetime. When
sensor nodes sample individually, only the aggregated data are transmitted, thus
increasing the local processing and decreasing the radio usage per aggregation cycle.
A simple example is using data compression at the nodes to send fewer bits during
each transmission.

1.4.3 Security

Security is a constant threat to outdoor wireless environments; thus it is prudent
to have an encryption algorithm that allows encryption and decryption of wireless
communications. One novel way to implement a security algorithm is to have a
oneway function which is NP-complete at the predeployment stage and cannot be
decrypted with limited resources in a deployed site of operation. This method is more
suitable in other applications of networks; in the case of WSN networks, because
of the nature of their distribution one can design a network polynomial key that is
not a local function. The broadcast message cannot be decrypted when a few nodes
are compromised as it needs to have other parameters that are well distributed and
concealed from the intruder.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

10 INTRODUCTION

1.5 UNIQUE CHARACTERISTICS OF PROGRAMMING
ENVIRONMENTS FOR SENSOR NETWORKS

Sensor networks differ from both wired and wireless computer networks in many
ways. The topology of sensor networks can change rapidly and frequently. The
nodes in a sensor network do not have a global identifier such as an IP (Internet
Protocol) address, and the number of sensor nodes in a sensor network may be an
order of magnitude greater than that in a typical computer network. The memory and
the processing capabilities of sensor nodes are limited in comparison to nodes in a
computer network. These characteristics lead to a programming environment that is
unique. Thus, the programs need to be short and efficient, providing capabilities of
interfaces and links of components and modules to each other. Additionally, to save
battery power, the nodes may need to have aggressive power management capabilities;
thus the programming environment needs to provide mechanisms such as split phase,
the nonblocking equivalent of common power-saving techniques such as the sleep
command.

1.6 GOALS OF THE BOOK

The goals of this book are to develop programming methodologies unique to sensor
networks, and present in an organized fashion techniques for programming of sen-
sors to enable them to work effectively as a group. Thus, although the focus is on
programming of the individual sensor, the goal is to enable the sensor to work within
a collaborative environment.

1.7 WHY TinyOS AND NesC

TinyOS is an emerging platform that provides a framework for the most common type
of sensor application programming. Thus we have a tool that can be implemented on
small Crossbow sensors and a wireless sensor network that can be ported to different
classrooms and laboratories. NesC provides a C-type, component-based language.

In NesC a module is the lowest level of component abstraction that implements
any commands provided in its interface. It may directly address a particular hardware
component such as a light sensor, providing methods that abstract the actual operation
of that particular hardware component. Several modules may be grouped together
using a configuration to form a larger component.

1.8 ORGANIZATION OF THE BOOK

The book is organized as follows. In Part I, we present an overview of the subject of
sensor network programming, beginning with a general introduction in the remainder
of this chapter (Chapter 1). Chapter 2 gives a general description of the wireless

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

ORGANIZATION OF THE BOOK 11

sensors. It explains the basic components of a sensor, its sensing environment, and the
various roles that a sensor can play in a wireless sensor network. Chapter 3 discusses
current sensor technology, including the major families and types of sensors currently
in use, including the Mica, Telos, Tmote Sky families, and others.

Part II provides a general background for sensor network (SN) programming,
beginning with discussions on data structures for sensor computing programming in
Chapter 4. Sensor computing programming of individual sensors in a SN environment
requires an understanding of data structures, such as arrays, queues, stacks, and lists,
which are essential to programming. For network implementation, an understanding
of graphs is useful to appreciate routing and message passing. Thus, Chapter 4
explains those data structures, which are essential for programming in a wireless
sensor network environment. Chapter 5 explains the tiny operating system (TinyOS)
environment, and is essential to understanding the subsequent chapters. It presents
the structure of application programming interfaces (APIs) built using a nesC like
structure, which facilitates the readability of the examples given in the rest of that
chapter. For the sake of completeness and continuity, Chapter 5 also includes a
bare-minimum description of nesC programming language. In Chapter 6, on nesC
programming, the nesC language is formally introduced and some major concepts in
the language are discussed.

Part III discusses and presents examples of sensor network implementation. Chap-
ter 7 provides a basic introduction to sensor programming. It discusses some of the
challenges encountered when programming large numbers of sensors and some inter-
faces provided by TinyOS to alleviate these programming challenges. Chapter 8, on
algorithms for wireless sensor networks, is the core and the major focus of the book.
It gives detailed descriptions of various algorithms and their implementation in nesC.
In Chapter 9, on techniques for protocol programming, we discuss several protocols
used in most wireless sensor networks and provide accompanying pseudocode to
explain the concepts.

Part IV presents real-world scenarios in sensor network programming. In Chap-
ter 10 we discuss some programming abstractions that simplify the development
and deployment of sensors. Chapter 11 presents standards for building WSN ap-
plications, with a brief overview of the ZigBee networking standard. Chapter 12
discusses an active sensor approach to distributed algorithms, widely known as
INSPIRE (innovation in sensor programming implementation for real-time envi-
ronments). Chapter 13 explores the performance analysis of networks in some detail
with respect to power-aware algorithms. Chapter 14 describes sensor network mod-
eling through design and simulation. This chapter presents an architecture of a sensor
simulator and a sensor node that is used in the simulator, and further elaborates that
OMNeT++ is a viable discrete-event simulation framework for studying both the
networking aspects and the distributed computing aspects of sensor networks. We
present the architecture of a sensor node that is used in the simulator and the general
architecture of the simulator. Chapter 15 presents a MATLAB implementation of
simple data processing and decisionmaking logic to be used to detect and respond
to events in an airport baggage-handling system. Chapter 16 consists of closing
comments.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

12 INTRODUCTION

1.9 FUTURE DEMANDS ON SENSOR-BASED SOFTWARE

In the future, advances in microelectromechanical systems (MEMSs) will lead to
miniature sensing devices of about 20 (�m micrometers) to a millimeter in length.
These devices will be self-powered, allowing even more collaboration with other
devices. In regard to software, more standards specifying how data can be exported
between different sensor networks will be established, allowing a more enriched and
integrated sensing experience such as

� Real-time collaboration between navigation systems and traffic monitoring sen-
sors

� Current information about seat availability at local restaurants or physicians
offices

� Real-time environmental awareness by a wide range of applications and devices
leading to better management of scarce resources, such as smart energy-saving
homes.

In this regard, the principles addressed in this book will serve as building blocks for
developing large-scale, longlived systems requiring self-organization and adaptivity.

PROBLEMS

1.1 Define the following:
(a) Sensor

(b) Ad hoc network

(c) Distributed sensor network

(d) Wireless sensor network

(e) Reusability index

1.2 Discuss some of the design challenges that set wireless sensor networks apart
from conventional networks.

1.3 Crossbow Technology Inc.’s MTS400 multisensor board is one of the most
popular multipurpose heterogeneous sensing devices available on the market.
Research and prepare a two-page report discussing the specifications and
functionality of the MTS400 multisensor board.

1.4 Write a one-page summary of the article by Akyildiz et al. [4].

1.5 Other than those discussed in this introductory chapter, list three advantages
and three disadvantages of sensor networks.

1.6 Crossbow Technology Inc.’s MICAz mote and Europe’s Smart-Its platform are
two popular sensor platforms. Research and contrast the features of MICAz
with smart-Its (in terms of size, weight, battery life, onboard sensors, memory,
CPU, operating system, processing limits, radio range, etc.).

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

PROBLEMS 13

1.7 What are the unique characteristics of programming environments for sensor
network software?

1.8 Other than sleep scheduling, give two techniques to conserve the battery life
(energy) of nodes in a sensor network.

1.9 State the issues to be considered when updating computation/communication
software in a sensor network.

1.10 Does the data aggregation strategy adopted by a sensor network application
affect its operational integrity and security? If “Yes,” explain how and if “No,”
explain why.

1.11 In about five paragraphs discuss any three of your favorite real-world sensor
network applications.

1.12 Sensors mounted on moving objects can open many interesting real-world
applications. For example, sensors are already mounted on devices such as
mobile phones to sense temperature, motion, and other parameters. Sug-
gest some applications where mounting sensors on mobile objects will be
useful.

1.13 Interesting scenarios are created when sensors are made much smaller in size
and are programmed to become more autonomous. “Smart dust” refers to tiny
devices that are capable of limited sensing, computations, and commmications
capabilities, with short lifetime. Suggest some applications where one or many
”bags” of smart dust can be used.

1.14 When wireless sensors become tiny and are deployed in very large number
(such as in several bags of smart dust), interestingly, the overall behavior
of such a system will in some way behave like social systems, exhibiting
autonomy, self control, limited lifetime, and intracommunications. Identify
the management challenges in such a social system. Consider an example
application, and propose specific management solutions appropriate for this
application.

1.15 Traditional programming views programs as a mapping from input values
to output values. Suggest some characteristics of programs written for the
wireless devices. [Hint: A sensor program spends a considerable amount of
time in communication, and thus must be sufficiently ingenious to manage
its resources (such as data and power), and cooperate with other sensors to
achieve the overall behavior as required by the application.]

1.16 In a computer network, each node communicates with the other nodes using
a set of protocols. What will be the limitations of this model when applied
to wireless sensor networks? Suppose that we augment the protocols with
flexible dialog features where each sensor node engages “intelligently” with
the other sensor nodes. What will be the advantages? Discuss the resulting
overhead.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

14 INTRODUCTION

1.17 Suppose that we view a WSN as a multiagent system (MAS). Suggest an
application where this view will be appropriate. What will be the undesirable
aspects inherent in such a MAS model?

1.18 Traditional network systems are designed to satisfy strict specifications. Be-
cause of the dynamic and uncertain environments in which WSN is employed,
traditional approaches may not be appropriate. Investigate why this may be
the case. If self-autonomy is one possible solution, how can it help the sensor
network in satisfying the application requierements? What additional compli-
cations will this solution create for the application?

1.19 Indentify some aspects of security issues that are unique to WSN but may not
be present in the traditional computer network systems.

REFERENCES

1. R. R. Brooks and S .S. Iyengar, Multi-Sensor Fusion, Prentice-Hall, Englewood Cliffs, NJ
1997.

2. K. Chakrabarty and S. S. Iyengar, Scalable Infrastructure for Distributed Sensor Networks,
Springer-Verlag, 2005.

3. S. S. Iyengar and R. R. Brooks, eds., Distributed Sensor Networks, CRC Press, Dec. 2004.

4. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, A survey of sensor networks,
IEEE Commun. Mag. 40(8):102–114 (Aug. 2002).

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c02 JWBS038-Iyengar August 31, 2010 10:51 Printer: Yet to come

2 Wireless Sensor Networks

The Eight Fallacies of Distributed Computing—“Essentially everyone, when they first
build a distributed application, makes the following eight assumptions. All prove to be
false in the long run and all cause big trouble and painful learning experiences.”

1. The network is reliable

2. Latency is zero

3. Bandwidth is infinite

4. The network is secure

5. Topology doesn’t change

6. There is one administrator

7. Transport cost is zero

8. The network is homogeneous

—Peter Deutsch

A sensor is a device that responds to a physical stimulus (heat, light, sound, pressure,
etc.) and produces a corresponding measurable electrical signal. Sensor systems have
been used in military, industrial, and medical applications for many years. In military
applications, sensor systems are employed for tasks such as ocean surveillance and in
air-to-air defense which detect, track and identify the targets and events. These defense
systems use sensors such as radar, passive electronic support measures (ESMs),
infrared identification-friend foe (IFF) sensors, and electrooptic image sensors. In
nonmilitary areas sensor systems are widely used in applications such as robotics,
automated control of industrial manufacturing systems, smart buildings, traffic control
and management, monitoring organs of the human body, and surveillance of natural
disasters.

More recent advances in micromechatronics systems and microfabrication tech-
nology have led to the availability of low-cost, low-power, multifunctional modern
sensors. A modern sensor consists of a sensing device(s), micro-controller, onboard
memory, and a transceiver. The structure of a sensor node is dependent on the ap-
plication. In general, a sensor node consists of four basic components: sensor unit,
processing unit, transceiver unit, and power unit. A sensing unit is usually composed
of sensors and analog-to-digital converters (ADCs). The analog signals are produced

Fundamentals of Sensor Network Programming: Applications and Technology, By S. S. Iyengar, N. Parameshwaran,
V. V. Phoha, N. Balakrishnan, and C. D. Okoye Copyright C© 2011 John Wiley & Sons, Inc.

15

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c02 JWBS038-Iyengar August 31, 2010 10:51 Printer: Yet to come

16 WIRELESS SENSOR NETWORKS

by the sensors that observe the phenomenon. These signals are converted to digital
signals by the ADC, and then sent into the processing unit. The processing unit in-
structs the sensor node to carry out the assigned sensing tasks and manages the sensor
node’s collaboration with the other nodes. A processing unit has enough storage for
the real-time operating system, protocols, and other application-specific algorithms.
The transceiver unit connects the node to the network. The power unit supplies the
energy for the sensor node, which may be batteries (coincell, lithium, etc.) or solar
cells. According to the design purpose, sensor nodes can be divided into three cat-
egories: augmented general-purpose computers, dedicated embedded sensor nodes,
and system-on-chip nodes. A sensor node of the first type normally has a higher
volume than do the other two types, and relatively higher processing and memory
capabilities. Off-the-shelf operating systems such as Linux and Win CE are run in
real time, and standard wireless communication protocols such as IEEE 802.11 or
Bluetooth are used in the node. A wide range of sensors from simple microphones to
sophisticated videocameras can be accommodated on the node. Examples of this type
of nodes include Sensoria WINS sGate nodes and various personal digital assistant
(PDA) devices.

Dedicated embedded sensor nodes have a low compact volume as one of the
design objectives. They have limited processing and memory capacities. Thus, special
operating systems such as TinyOS and companion programming languages have been
developed. Sensor nodes of this type include the Berkeley mote family and SunSPOT.
Because of the low-cost and low-volume features, the future widespread use of such
nodes is expected.

A system-on-chip node appears to be the direction of future sensor nodes, where
extremely low power and small size are achieved. Such types of nodes will enable new
applications to wireless sensor networks. It is envisaged that, for example, the tiny
nodes can be mixed in the paint material and painted on the surface of a bridge
to monitor the safety of the bridge. The design of such nodes needs to find a new
way to integrate MEMS, complementary metal oxide semiconductor (CMOS) and
radiofrequency (RF) technologies. Researchers at University of California, Berkeley
have developed a prototype of system-on-chip node, called Spec Mote. The mote
combines ultra-low-power computation, communication, and sensing into a small
[only 5 mm2 (2 × 2.5 mm)] single chip.

Networked sensors broaden our capability to observe the physical world. Sensor
networks enable us to observe objects at close range and provide the possibility of
monitoring previously unobservable phenomena. Satellites and radars are large and
powerful sensors that have been widely used. This type of sensor has long-range
sensing ability, and a single sensor can detect or monitor a large area. However, such
sensors are not suitable for an environment where the line-of-sight paths are very
short, for example, detecting individual animals in a forest, or monitoring a patient
in a hospital. Small sensors can be used in such situations. Since each sensor node
has a short sensing–transmitting range and limited processing ability, a number of
nodes are networked to accomplish complicated tasks. As the sensor nodes can be
placed close to or in the objects, greater informational accuracy is achieved and some
previously unknown phenomena may be discovered. Additionally, large numbers

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c02 JWBS038-Iyengar August 31, 2010 10:51 Printer: Yet to come

SENSOR NETWORK APPLICATIONS 17

of networked sensors can improve the reliability of sensing tasks. It is possible to
densely deploy sensors because of their small size and low cost. If a sensor node fails,
other sensors close to it can accomplish its task by working collaboratively. This is
especially useful in environments where it is impossible to replace sensors. Sensors
working collaboratively can also benefit resource conservation in sensor networks.

Sensors can be networked through physical connections or wirelessly. In early
sensor systems, few sensors were deployed closely, such as in industrial control
or medical monitoring, and were connected through wires to a control unit. With
low-volume, low-cost, and wireless communication, the sensors can be deployed in
a large area. Even in densely deployed systems, wireless communication reduces
the complexity of wiring. Thus, wireless sensor networks have emerged as a new
information-gathering paradigm with large numbers of sensors collaborating. We
next describe sensor network applications briefly, followed by the characteristics of
sensor networks. As our focus is on data-processing issues, the nature of sensor data
is examined in this section.

2.1 SENSOR NETWORK APPLICATIONS

Sensor networks are deployed for collecting information on entities of interest. The
availability of low-cost, low-power, and multifunctional intelligent sensors enables
military applications such as battlefield surveillance; nuclear, biological, and chemical
attack detection; and civilian applications such as habitat monitoring, environment
observation and forecasting, health applications, vehicle traffic management, and
smart environments.

2.1.1 Sensors

Habitat monitoring is regarded as a driver application of wireless sensor networks,
and benefits the scientific community and facilitates ecological protection. The use of
sensor networks eliminates the potential impact of human presence, and enables data
collection at scales and resolutions that are difficult to achieve through traditional
instrumentation. A notable research project is monitoring seabirds on Great Duck
Island (in Frenchboro, Maine), a project conducted by the researchers from the
University of California, Intel Research (Fig. 2.1).

The UC Berkeley Mica motes are deployed to collect data for studying seabird
behavior during breeding seasons, effects on the environment of nesting seabirds,
and related phenomena. Research on tracking and controlling animals has also been
conducted. Wireless sensor networks have also been introduced for monitoring plants.
PODS is a research project at the University of Hawaii to test ecological environments
with rare and endangered species. The puspose of this research is to determine why
endangered species of plants grow in one place but not in neighboring areas. Instead
of managing sensor networks in untraversed places remotely, researchers from Intel
Research deployed sensors in a vineyard and explored the future usage of sensor
networks in agriculture. They investigated sensor network design while considering

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c02 JWBS038-Iyengar August 31, 2010 10:51 Printer: Yet to come

18 WIRELESS SENSOR NETWORKS

FIGURE 2.1 On Great Duck Island in Maine, wireless sensors at 1 and 2 pass data to a
gateway node shown at 3. It is then passed to the base station at 4, and potentially sent over
the Internet via the satellite dish at 5.

the structure of work activities in agricultural production environments. As a result,
some activities can be completed much more efficiently. For example, a vineyard can
be sprayed only in places where there is a risk of powdery mildew. Grape Networks
has transferred such research achievements into commercial products. Using Internet
and mobile wireless mesh sensor networks, farmers can monitor and receive alerts
with a PC, PDA, or mobile phone on the environmental information such as soil
moisture, microclimates, and diseases in vineyards or open fields.

2.1.2 Sensor Networks

Developments in geographical information system (GIS), satellite remote sensing,
and global position satellite/system (GPS) technologies helps people receive disaster-
alert information more rapidly and accurately. These techniques have disadvantages
such as low resolution and weather interference because of long distances. With the
use of small and low-cost sensors, a large number of sensors can be spread in situ.
Various environmental data can be collected in real time, and monitoring resolution
can be greatly improved. Research on the use of wireless sensor networks for forest fire
detection has attracted considerable attention from the research community. Firebug
is a small, wireless sensor for collecting real-time data in forested areas developed
by UC Berkeley. Equipped with a position system device, this sensor can collect
data such as relative humidity, temperature, and pressure in situ and communicate
with the remote data server through base stations. Thus, users can use the Internet to
monitor the corresponding area. The relative risk of forest fire danger with respect
to sensor measurement data such as smoke, windspeed, and light level has been

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c02 JWBS038-Iyengar August 31, 2010 10:51 Printer: Yet to come

SENSOR NETWORK APPLICATIONS 19

investigated. Flood detection is another application in environment observation. An
alert system is used to evaluate the possibility of potential fooding. This system is
equipped with wind, temperature, and water-level sensors, and is able to provide
real-time water-level and rainfall information. Wireless sensor networks also can be
used for atmosphere pollution monitoring and detection of other natural disasters
such as earthquakes and tsunamis.

2.1.3 Health Applications

Hospital and medical facilities can be improved by smart sensors. For example,
patients with sensors on their bodies can be monitored and tracked inside a hospital
or be talemonitored in their homes. Medical applications have unique demands such
as extreme robustness, very dense networks, and preserving the privacy of medical
data; research has been conducted specically for this type of application. CodeBlue
is a project at Harvard University to explore wireless sensor network technology in
a range of medical applications, such as disaster response, prehospitalization and in-
hospital emergency care, and stroke patient rehabilitation. In this project, a software
infrastructure was developed to provide routing, discovery, and security for wireless
medical sensors, PCs, PDAs, and other devices, so that patients can be monitored and
treated in a wide range of medical settings.

2.1.4 Vehicle Management

Inexpensive wireless sensor networks enable many applications in vehicle manage-
ment such as traffic control, vehicle tracking and detection, monitoring car theft, and
parking management. The current vehicle traffic – monitoring systems (e.g., see Fig.
2.2) use some buried sensors, cameras, and an associated communication network,
which are expensive and generally limited to a few critical points. In the future, cheap
sensors with networking capability can be attached on/in vehicles and deployed at
every road intersection. Thus, traffic information such as the speed and density of
traffic and the location of traffic jams, may not only be obtained by the traffic control
center but also exchanged among vehicles passing each other. Further, sensors in-
stalled in a vehicle and communicating with those in other vehicles can help reduce
the likelihood of vehicle collision. Deploying sensors in the pavement can assist with
traffic control of pedestrians and vehicles.

2.1.5 Smart Environments

Deploying sensor networks in indoor environments such as buildings, homes, offices,
and laboratories can make the environment seem “alive.” Such smart environments
can track and record the activity of people in that area or actively react and interact
with people. Examples of research conducted in this area include home automation,
residential laboratory building environmental control, interactive museum, and smart
kindergarten applications. Embedding smartsensors in structures such as bridges can
monitor the usage status and infrastructure security.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c02 JWBS038-Iyengar August 31, 2010 10:51 Printer: Yet to come

20 WIRELESS SENSOR NETWORKS

FIGURE 2.2 Traffic-monitoring sensor network on Microsoft SensorWeb.

2.2 CHARACTERISTICS OF SENSOR NETWORKS

Wireless sensor networks are capable of observing the enviornment, transferring
data among their nodes, and making decisions on the basis of these observations.
These networks are important for a number of applications—most notably for target
detection and localization, surveillance, and enviornmental monitoring. Advances
in miniaturization of microelectronic and mechanical structures have given rise to
many battery-powered sensor nodes that have sensing, communication, and process-
ing capabilities. These sensor nodes can be networked in an ad hoc structure to form
distributed sensor networks for sensor processing in a distributed manner. Such net-
works have greater fault tolerance and sensing accuracy, and are less expensive than
are traditional networks. Another interesting property of wireless sensor networks is
that nodes can be deployed in hostile environments to provide continuous monitoring
and processing capabilities for a broad variety of applications. More importantly,
a sensor node integrates hardware and software for sensing, data processing, and
communication. For more details on sensor integration, see an earlier text by the
author [3]. Furthermore, these nodes can be deployed in large numbers in unstruc-
tured environments; the nodes in these networks rely on wireless channels for the
transmission and receipt of data from other nodes. Communication among nodes
can be characterized by the type of sensors that make them up; for example, RF
sensors used in Berkeley motes have a maximum operation range of around 100 ft.
One interesting property of wireless sensor networks is a parameter termed sensing
area, which depends significantly on the physical types of sensors being used. For
example, a range sensor, such as a range-polarized 6500 ultrasonic ranging module
used in many robotics applications can detect a target from as close as 6 inches (in.)

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c02 JWBS038-Iyengar August 31, 2010 10:51 Printer: Yet to come

CHARACTERISTICS OF SENSOR NETWORKS 21

away up to a maximum distance of 35 ft. Figure 2.2 shows an example of a distributed
sensor network.

Wireless sensor networks are a subtype of ad hoc networks, which are well stud-
ied. However, from a design standpoint, wireless sensor networks are very unique
compared to standard networks. The nodes are potentially mobile and/or unreliable,
and we need to approach these networks from a totally fresh viewpoint in order to
analyze them. Akyildiz et al. [1] highlighted some of the main differences between
wireless and traditional ad hoc networks in a list similar to the following:

� The number of nodes in a WSN may be several orders of magnitude higher than
in traditional networks.

� Sensor nodes are prone to failure.
� Sensor nodes are limited in energy, computational capacities, and memory.

Consequently WSNs cannot afford table-driven MATNET protocols requiring
too much memory to store routing tables.

� As opposed to the one-to-many broadcast model common in ad hoc networks,
WSNs often use a many-to-one communication model with the topology of the
reverse multicast tree.

� Sensor nodes are densely deployed.
� The topology of a WSN changes frequently.
� Sensor nodes may lack global ID.

Because of these differences, studies on WSN have developed into a seperate and
distinct domain from conventional network development.

WSN Protocol Stack Akyildiz et al. presented a protocol stack for WSN [1], which
they modeled after the ISO OSI (International Organization for Standardization open
system interconnection) model. It has five layers: physical, datalink, network, trans-
port, and application, and three planes: energy management, mobility management,
and task management as shown in Fig. 2.3. In this model, a stack would be main-
tained across multiple nodes on the network, with sinks/clusterheads/elected leaders
implementing the lions share of the stack.

The physical layer deals with A/D–D/A conversion, modulation/demodulation,
and transciever techniques such as RF carrying. The datalink layer is concerned
mainly with media access control and error recovery. The network layer deals with
routing; because of the one-to-many and many-to-one data transmissions that are
so common in a WSN, standard routing protocols are not very useful here. On top
of this, network protocols seldom consider power usage and its effect on network
lifetime, both critical factors in WSN design. Because of power and processing
limitations, WSN cannot afford to implement standard routing tables and generally
must adopt some lightweight alternative. The transport layer provides ports or
transport interfaces to various applications just as in the ISO OSI model. Finally, the
application layer decomposes and implements application-specific tasks by utilizing
the lower layers.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c02 JWBS038-Iyengar August 31, 2010 10:51 Printer: Yet to come

22 WIRELESS SENSOR NETWORKS

Application Layer

Transport Layer

Network and Routing Layer

Datalink (MAC) Layer

Physical Layer

Task Management Plane

Mobility Management Plane

Energy Management Plane

FIGURE 2.3 WSN protocol stack.

This protocol stack is just a simple model to allow us to analyze the problem of
WSN design from a new paradigm; the proper relationship among the management
planes and between management planes and network layers is undoubtedly more
complicated. Nevertheless, this model is a useful design tool.

The energy management plane covers network wide energy conservation, and is
reponsible for energy-saving decisions and tactics to increase network lifetime. The
mobility management plane is responsible for keeping track of the physical location
of network nodes, and responding to changes in this layout. The task management
plane schedules and manages tasks. For more details on this topic, see the text by
Chakrabarty and Iyengar [2].

Resource-Constrained Computing Environment Small size and low cost enable
sensors to be deployed in a large number in various applications. Such features lead
to the following resource constraints:

� Energy. The power supply of a sensor node is from batteries such as AA, coin
cell, and lithium batteries. Thus the energy supply to sensor nodes is limited.

� Communication. sensor nodes communicate over wireless links with limited
bandwidth, which is of the order of a few hundred kilobits per second (kbps).

� Computation. Sensor nodes operate with limited processing ability and memory
capacity. For instance, the processor speed of a Mica mote is only 4 MHz and
its random-access memory (RAM) is 4 kB.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c02 JWBS038-Iyengar August 31, 2010 10:51 Printer: Yet to come

CHARACTERISTICS OF SENSOR NETWORKS 23

Dynamic Topology Although a sensor network is usually deployed with stationary
sensor nodes, the network topology is prone to frequent changes. This may be caused
by the failure of nodes or links, power running out, or sometimes the mobility of
nodes. New nodes may be added or old nodes removed from the sensor networks. As
a result, techniques such as dynamic route changing are needed to adapt to network
topology change.

Unpredictability Unpredictability in sensor networks refers to the uncertainty in
the correctness (accuracy) of sensor data, the reliability of communication links,
and the connectivity of networks. Sensor networks are subject to such uncertainty
from many sources. The correctness of sensor data can be affected by the node sta-
tus and transmission situations. Sensor nodes may fail because of lack of power or
may be damaged by the uncontrollable events in the natural world, such as fire and
earthquakes. Some types of sensors may need to be recalibrated after running for
a certain period of time. Environmental interference can also cause unpredictable
readings from sensors. The nature of sensor signal propagation and the environment
for the signal propagation such as the surface roughness and the presence of reacting
and obstructing objects influence data communication in wireless sensor networks.
The wireless communication links shared by densely deployed or high-traffic-density
nodes are subject to heavy congestion and jamming. High bit error ratio, low band-
width, and asymmetric channels make communication unpredictable. Because of
the continual possibilty of loss of nodes and links due to power constraints, dam-
age, or eventual failure, the connectivity and routing structures of the network will
change dynamially. This unpredictability represents many challenges for sensor net-
works, including the design of communication protocols, and development of data
management techniques.

Heterogeneity Early research in wireless sensor networks focused on homogeneous
architecture, in which all sensor nodes possess identical software and hardware. This
architecture is resilient to individual failures. More recently, particularly in real-world
deployments, heterogeneous sensor networks have become popular because of the
advantage of increasing network lifetime and reliability. Heterogeneity in sensor
networks can be grouped into three categories: computational heterogeneity, where
nodes have different computational power; link heterogeneity, where some nodes have
long-distance, highly reliable communication links; and energy heterogeneity, where
some nodes may have unlimited energy resource such as being connected to a wall
outlet. The network architecture of heterogeneous sensor networks likely has several
tiers of nodes with different performance characteristics. Heterogenous networks
pose challenges to data-processing techniques due to different data semantics and
volumes, to communication protocols due to various links, and to security control
due to different computational purposes of sensor nodes.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c02 JWBS038-Iyengar August 31, 2010 10:51 Printer: Yet to come

24 WIRELESS SENSOR NETWORKS

2.3 NATURE OF DATA IN SENSOR NETWORKS

The data produced by sensors in sensor networks have unique characteristics because
of the goal of recording changes or rare events in many applications, the nature of
sensor nodes, and the deployment of networks.

Streaming Sensor nodes produce data continuously. A temperature sensor may
produce data every second, and can be represented as a tuple: < time; sensor ID;
value >. This amounts to over 2 million tuples per month. For a large network of
sensors, the total data will be in the order of terabytes per month, too much to store.
This streaming nature raises several requirements for data processing. Sensor data
must be processed online, and in-network processing is necessary. Further, sensor
data should be appropriately precomputed and stored in a convenient format for later
queries.

Correlation Spatiotemporal correlation exists among sensor observations. Because
of the limited communication range of a sensor node, a wireless sensor network
requires a spatially dense deployment of sensors to achieve satisfactory coverage.
As a result, the sensor observations about a single event from multiple sensors are
spatially proximal, and thus are spatially correlated.

Uncertainty The unpredictability of sensor nodes and links in sensor networks
leads to sensor data uncertainty. Sensor data might not be delivered at reliable rates,
the data may be incorrect as a result of sensor node damage, incomplete because of
packet loss, or inaccurate owing to environmental interference. Techniques have been
developed to derive proper information from the data obtained with uncertainty.

Heterogeneous Sources Data from heterogeneous information sources pose chal-
lenges to data processing techniques in wireless sensor networks. In practice, different
sensors will be deployed to obtain information from different sources, so different
data formats and semantics should be considered in data processing. Data from static
data sources may be used along with sensor data for answering queries.

PROBLEMS

2.1 List and discuss some WSN applications

2.2 Briefly discuss the three types of sensor nodes.

2.3 Explain how you would set up a real wireless sensor network to monitor the
temperatures in four corners of a room. List the equipment (sensor boards,
base stations, interfaces, etc.) that you would use and detail the steps you
would follow to set up the sensor network.

2.4 Write a one-page summary of the article by Szewczyk et al. [4].

2.5 Prepare a one-page summary of the article by Lorincz et al. [5].

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c02 JWBS038-Iyengar August 31, 2010 10:51 Printer: Yet to come

REFERENCES 25

2.6 Write a two-paragraph (∼500-word) summary of the article by Essa [6].

2.7 Discuss the characteristics of sensor networks. Contrast them with the char-
acteristics of computer networks (e.g., the Internet).

2.8 Choose your favorite real-world wireless sensor network application and list
five causes/sources of its unpredictability.

2.9 Research and prepare a two-page report describing a dynamic routing strategy
for a wireless sensor network. Discuss its strengths and weaknesses in detail.

2.10 Describe a real-world heterogeneous wireless sensor network application.

2.11 Discuss the data management issues in wireless sensor networks.

2.12 Consider the habitat-monitoring application discussed in the text (see also
Fig 2.1). For this application, consider the scenario where the sensors are
dropped from an aircraft over a large area on the ground periodically. An
important aspect in such scenarios relates to the management of the sensors
and the resulting network. Compare the resulting network characteristics with
the standard computer network characteristics, particularly with respect to the
following attributes (discussed in Section 2.2).

(a) The number of nodes in the network

(b) Node failure

(c) Communication across nodes

(d) Density of deployment

(e) Topology

(f) Node IDs

2.13 An interesting situation arises when sensors are mounted on tiny moving
objects such as robots, obviously increasing the cost of the network. For the
habitat-monitoring application mentioned above, comment on the network
characteristics with respect to the following issues:

(a) Can you still drop the sensors from the aircraft?

(b) What can you do when a sensor is not able to communicate with its
neighbor?

(c) How does it affect the density of deployment?

(d) What can you say about the topology of the network?

(e) How important is the node ID for a node in this situation?

REFERENCES

1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, Wireless sensor networks:
A survey, Comput. Networks 38:393–422 (2002).

2. K. Chakrabarty and S. S. Iyengar, Scalable Infrastructure for Distributed Sensor Networks,
Springer-Verlag, 2005.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c02 JWBS038-Iyengar August 31, 2010 10:51 Printer: Yet to come

26 WIRELESS SENSOR NETWORKS

3. S. S. Iyengar, L. Prasad, and H. Min, Advances in Distributed Sensor Integration: Applica-
tion and Theory, Prentice-Hall, Englewood Cliffs, NJ, 1995.

4. R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and D. Estrin, Habitat
monitoring with sensor networks, Commun. ACM 47(6):3440 (June 2004).

5. K. Lorincz, D. J. Malan, T. R. F. Fulford-Jones, A. Nawoj, A. Clavel, V. Shnayder, Sensor
networks for emergency response: Challenges and opportunities, G. Mainland, M. Welsh,
and S. Moulton, IEEE Pervasive Comput. 3(4):1623 (Oct.–Dec. 2004).

6. I. A. Essa, Ubiquitous sensing for smart and aware environments, IEEE Personal Commun.
7(5): 4749 (Oct. 2000).

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c03 JWBS038-Iyengar August 31, 2010 10:52 Printer: Yet to come

3 Sensor Technology

Never before in history has innovation offered promise of so much to so many in so
short a time.

—Bill Gates

A typical wireless sensor network consists of spatially distributed sensors that co-
operatively monitor some physical phenomena. This network formed by the sensors
could contain nodes with varying capabilities and sometimes completely different
underlying platforms, which must collaborate and communicate with each other.
There are several advanced research platforms for wireless sensor networks in use
by researchers globally with each platform offering unique differentiators such as
sensor size, power consumption, nature of operating system, or basic sensing abili-
ties [10,9]. In this chapter, we examine some sensor platforms and their associated
software tools commonly in use today. Most tools used in the management of wireless
sensor networks can be classified into three distinct categories (see also Fig. 3.1):

� Sensor level
� Server level
� Client level

3.1 SENSOR LEVEL

This level consists of devices that measure some physical phenomena or quantity such
as sound, motion, light intensity, or temperature and convert it into some quantifiable
form that can then be read by devices or human observers. Each sensor’s mote
contains an onboard sensing, communication, power, and processing module that
allows it to perform sensing tasks. In the following sections we discuss some of the
most commonly used sensor platforms and their features that make them unique.

3.1.1 The Mica Family

The Mica family of sensors is one of the most common sensing platforms in use; it is
supported by numerous operating systems and sensing modules, including TinyOS,

Fundamentals of Sensor Network Programming: Applications and Technology, By S. S. Iyengar, N. Parameshwaran,
V. V. Phoha, N. Balakrishnan, and C. D. Okoye Copyright C© 2011 John Wiley & Sons, Inc.

27

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c03 JWBS038-Iyengar August 31, 2010 10:52 Printer: Yet to come

28 SENSOR TECHNOLOGY

Sensor Mesh Network

MOTE LAYER
(XMesh, Sensor Apps)

SERVER LAYER
(Database, Logger)

CLINET LAYER
(Visualization, Analysis Tool)

PC Terminal
MoteView as localhost

PC MoteView
Client

PC MoteView
Client

Mirror Local Server
(Stargate)

Remote Server
(Stargate)

FIGURE 3.1 An illustation of the various distinct categories of sensor tools.

Mantis OS, and Contiki. It includes the MicaZ (Fig. 3.2), Mica2(Cricket) (Fig. 3.3),
and Mica2Dot (Fig. 3.4) series of sensors.

Each of these motes has unique physical and functional capabilities, which
serve as a key differentiator. Table 3.1 summarizes their similarities and differences
effectively.

To extend the functionality of these motes, additional sensor data acquisition
boards can be attached using the expansion connector provided on the Mica motes

FIGURE 3.2 A MicaZ sensor.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c03 JWBS038-Iyengar August 31, 2010 10:52 Printer: Yet to come

SENSOR LEVEL 29

FIGURE 3.3 A Mica2 sensor board.

FIGURE 3.4 A Mica2Dot sensor.

TABLE 3.1 Mica Family of Sensors

Property MicaZ Mica2 Mica2Dot

Flash memory, kB 128 128 128
Measurement memory, kB 512 512 512
EEPROM, kB 4 4 4
A/D channels 10 bits (8) 10 bits (8) 10 bits (8)
Frequency, MHz 1400–2483.5 433/868/916 433/868/916
Data rate, kbps 250 19.2 19.2
Outdoor range, m 100 300 300
Size 6×3×1 cm 6×3×1 cm 2.5×0.6 cm

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c03 JWBS038-Iyengar August 31, 2010 10:52 Printer: Yet to come

30 SENSOR TECHNOLOGY

FIGURE 3.5 MTS300 data aquisition board.

and a general-purpose interface on the Mica2Dot motes. Figure 3.5 shows a typical
sensor data acquisition board. Some other acquisition boards include the MTS300,
MTS310 (Fig. 3.6), MTS101, and MDA500.

3.1.2 The Telos–Tmote Sky Family

The Telos family of sensors consists of TelosA and TelosB motes [5]. They are a
newer generation of motes when compared with the Mica family, as they have a
universal serial bus (USB) interface for data collection and programming.

In a similar design, the Tmote sky sensors contain a USB port to facilitate pro-
gramming and are an exact replica of the TelosB suite of sensors. These features
make them well suited for wireless sensor network experimentation in the research
community. Figures 3.7 and 3.8 show the TelosB and Tmote sky sensors.

FIGURE 3.6 MTS310 data aquisition board.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c03 JWBS038-Iyengar August 31, 2010 10:52 Printer: Yet to come

SENSOR LEVEL 31

jtag

LEDs

USB-serial
reset support

(bottom)
TI MSP430 F1611

ST M25P80 flash
serial ID

CC2420
IEEE 802.15.4 radio

user button
reset button

TSR photodiode
PAR photodiode

SHT11 humidity/temp
6 pin expansion

10 pin expansion

PIFA Antenna

FIGURE 3.7 A TelosB sensor [8].

The functional and physical characteristics of both platforms are compared in
Table 3.2.

As in the Mica family of sensors, additional data acquisition boards can be attached
to these motes to allow for a more diverse sensing ability. One such example is the
bumblebee radar board (Fig. 3.9), which provides a pulsed Doppler radar for TelosB
and Tmote sky sensors.

3.1.3 Imote2

The Imote2 is a sensor platform built around the Intel PXA271 Xscale processor with
a built-in 2.4-GHz antenna [1]. It is a powerful platform supporting computationally
intensive tasks such as digital image processing, due mostly to the scaling capabilities

FIGURE 3.8 A Tmote sky sensor.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c03 JWBS038-Iyengar August 31, 2010 10:52 Printer: Yet to come

32 SENSOR TECHNOLOGY

TABLE 3.2 Telos–Tmote Properties

Specifications Telos Platform Tmote Sky

Program flash memory, kB 48 48
RAM, kB 10 10
ROM, kB 16 16
A/D converter, bits 12 12
Frequency band, MHz 2400–2483.5 2400–2483.5
Data transmit rate, kbps 250 250
Outdoor range, m 75–100 50–125
Size, mm 65×31×6 65×31×6
Light-sensing range, nm 320–720 320–720
Temperature range, ◦C −40–123.8 −40–123.8
Humidity range, % RHa 0–100 0–100

aPercent relative humidity.

of its processor, ranging from 13 to ∼416 MHz. It has ∼32 MB of memory and
supports data rates of ≤250 kbps. It is currently supported by TinyOS and some Linux
variants and can be ordered with the Microsoft.net microframework preinstalled.
Figure 3.10 and Table 3.3 provide more information about the functional and physical
characteristics of the sensor platform.

3.1.4 SHIMMER

SHIMMER, which represents sensing health with intelligence, modularity, mobility,
and experimental reusability, is a sensor platform for health-related technologies. It

FIGURE 3.9 A TelosB sensor attached to the bumblebee radar board [7].

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c03 JWBS038-Iyengar August 31, 2010 10:52 Printer: Yet to come

SERVER LEVEL 33

FIGURE 3.10 An Imote2 sensor.

supports wearable applications such as capture of real-time kinematic motion and
physiological sensing. SHIMMER motes are driven by TinyOS and support up to
2 GB (gigabytes) of data storage for offline data capture (microSD storage). Some
applications of this platform include sleep studies, cognitive awareness, vital signs
monitoring, and chronic disease management. (see Table 3.4 and Fig. 3.11.)

Apart from the few platforms briefly covered in this chapter, there exist several
equally important sensor platforms not covered in this book such as CSIRO’s fleck
platform for environmental monitoring, SNoW5 platform, and many others.

3.2 SERVER LEVEL

Gateways and programming boards that handle the buffering of data from the wire-
less network constitutes most devices at this level. Most programming boards are
dual-purpose devices allowing direct access to motes for in-system programming
and at the same time serve as gateways for communication with an existing sensor

TABLE 3.3 Imote2 Specifications

SDRAM memory 32 MB
Flash memory 32 MB
Frequency band 2400–2483.5 MHz
Data rate 250 kbps
Range of sight 30 m
I/O ports 3 UART, 2 SPI, SDIO, GPIO
Size 36 × 48 × 9 mm
Operating systems TinyOS, Microsoft.net Framework

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c03 JWBS038-Iyengar August 31, 2010 10:52 Printer: Yet to come

34 SENSOR TECHNOLOGY

TABLE 3.4 SHIMMER Properties

Memory 10 kB RAM, 48 kB ROM
A/D converter 12 bits
Storage 2 GB microSD
Communication CC2420 radio and class 2 Bluetooth
Sensors MEMS accelerometer
Operating life Deep-sleep life > 1 year
Form factor 1.75 × 0.8 × 0.5 in.

network. These devices may support remote access to a sensor network as in the
case of Crossbow’s MIB600 Ethernet interface board or basic base stations relaying
data from the sensor network to computer over their USB connectivity. The pur-
pose of gateway devices is to connect sensor nodes to existing Ethernet networks.
Table 3.5 summarizes the features of two popular interface boards—MIB520 (Fig.
3.12) and MIB600 (Fig. 3.13)—and a fully configured gateway device, Stargate
network [2,4].

Unlike the software that runs on devices in the sensor level, all programs running
on the server class of devices are in an always-on mode, which ensures the timely
translation, processing, and buffering of data that emanate from the wireless network.
These programs form the link between isolated sensing motes and the traditional
Ethernet network running on an Internet client. One such example is Crossbow’s

FIGURE 3.11 The SHIMMER platform.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c03 JWBS038-Iyengar August 31, 2010 10:52 Printer: Yet to come

SERVER LEVEL 35

TABLE 3.5 Gateway Device Properties

Feature Stargate net-bridge MIB520 MIB600

Program flash 8 MB — —
RAM 32 MB — —
I/O
Extra features 1 × RJ45 and 2 × USB 2.0 USB interface RJ45

USB flash disk 2 GB,
onboard server

JTag interface for
debugging

POE, ARP, DHCP,
Telnet

Size 130 × 21 × 91 mm 4.63 × 2.29 × 1 in.

FIGURE 3.12 The MIB520 programming board.

FIGURE 3.13 The MIB600 programming board.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c03 JWBS038-Iyengar August 31, 2010 10:52 Printer: Yet to come

36 SENSOR TECHNOLOGY

XServe [3] software from their Moteworks development suite of applications based
on TinyOS. XServe acts as a primary server running on a PC or gateway device from
which the data gathered from the sensor network are interpreted. Other examples
include the Global Sensor Network (GSN) middleware [6].

3.3 CLIENT LEVEL

The client level consists of all publishing, visualization, and monitoring applications.
A number of powerful platforms exist today that support advanced publishing of
sensor data. Global Sensor Network middleware supports publishing sensor streams
to RSS feeds, security management system (SMS) text updates, Web publishing, and
several other applications. Other examples include the Mote View from Crossbow [3].

3.4 PROGRAMMING TOOLS

Setting up and configuring your sensor programming environment can be a daunting
task if there is in adequate knowledge of available resources. It is for this reason that
we discuss how a TinyOS-based programming environment can be set up for both
Linux and Windows operating systems.

3.4.1 Installing TinyOS in Linux

Using the very popular Ubuntu operating system, these guidelines explain how
TinyOS can be installed and configured in a minimal number of steps. In admin-
istrator mode, perform the following steps:

1. In your fresh installation of Ubuntu, open the file sources.list located in
/etc/apt/ with your favorite text editor.

2. Add the TinyOS repository to your sources.list file

deb http://tinyos.stanford.edu/tinyos/dists/ubuntu

hardy main

3. Run the aptitude package management program to update local repositories:

sudo apt-get update

4. Ensure that all necessary tools required are already installed

sudo apt-get install build-essential

5. Install TinyOS:

sudo apt-get install tinyos-2.1.0

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c03 JWBS038-Iyengar August 31, 2010 10:52 Printer: Yet to come

PROBLEMS 37

6. On installing TinyOS, a few environment-ralated variables have to be set. In a
Final step, edit your .bashrc file stored in your home directory and add the
following lines:

export TOSROOT=/opt/tinyos −2.1.0
export TOSDIR=$TOSROOT/tos

export CLASSPATH=$TOSROOT/support/sdk/java/tinyos.jar

export MAKERULES=$TOSROOT/support/make/Makerules

export PATH=/opt/msp430/bin:$PATH

Your TinyOS installation and configuration are now complete. You can run the
check-env command to view system sanity information.

3.4.2 Installing TinyOS in Windows

TinyOS is supported on the Windows platform through the use of Unix emulation
software Cygwin. The following steps describe how TinyOS libraries can be installed
on a Windows workstation:

1. Install the Java JDK. The latest version can be downloaded from the Sun Java
Website

2. Download and install Cygwin from http://www.cygwin.com.

3. Install native compilers for sensor motes. The MSP430 toolchain for the Telos–
Tmote family of motes or the AVR tool chain for the Mica family can be
downloaded from http://www.tinyos.net/dist-2.0.0/tools/windows.

4. Install the nesC compiler from the TinyOS Website.

5. Finally, install the TinyOS source tree that will enable you to compile and
install TinyOS programs. It can also be installed from the repository listed in
step 4.

An alternative Windows installation method is to install the MoteWorks package
provided free from Crossbow. Some more resources on Tinyos.net (available at
http://www.tinyos.net/dist-2.1.0/tools/windows/) describe how TinyOS can be in-
stalled and configured in Redhat, Windows, and other Debian-based Linux distribu-
tions.

PROBLEMS

3.1 What are the three distinct categories of tools used for managing wireless sensor
deployments?

3.2 Using the procedures outlined in the programming tools, install and configure
your TinyOS programming environment.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c03 JWBS038-Iyengar August 31, 2010 10:52 Printer: Yet to come

38 SENSOR TECHNOLOGY

3.3 What does the term middleware refer to?

3.4 Using the Global Sensor Network (GSN) reference provided, install and con-
figure the GSN middleware.

3.5 What is the primary difference between server-tier tools and client-tier tools?

3.6 List three other examples of data-aggregating platforms such as GSN.

REFERENCES

1. Crossbow Imote2 Datasheet, courtesy Crossbow Inc.

2. Crossbow MIB520 Datasheet, Courtesy Crossbow Inc.

3. Crossbow Moteworks Software Reference Manual, courtesy Crossbow Inc.

4. Crossbow Product Feature Reference Manual, courtesy Crossbow Inc.

5. Crossbow TelosB Datasheet, courtesy Crossbow Inc.

6. Global Sensor Networks, GSNTeam.

7. http://blog.xbow.com/xblog/sensorboards.

8. http://inst.eecs.berkeley.edu/cs194-5/sp08/lab1/index.html.

9. Research Integration: Platform Survey, Embedded WiSeNts consortium.

10. M. Ruiz-Sandoval, T. Nagayama, and B. F. Spencer, Sensor development using Berkeley
mote platform, J. Earthquake Eng. 10:289–309 (2006).

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

PART II
Background

39

www.finebook.ir

http://www.finebook.ir/../

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

4 Data Structures for Sensor
Computing*

Understanding the fundementals of data structures is essential to writing efficient code.
—S. S. Iyengar

Sensor computing consists simply in manipulation of sensor data in a suitably chosen
data structure for event/data-driven sensor computing applications [5]. It can also refer
to the design and analysis of sensor data abstractions. An in-depth understanding of
the structural properties of certain data structures will yield very efficient algorithms
for several important classes of problem. Because of the crucial importance of sensor
data organization, this chapter deals with various data structures used in the design
and analysis of sensor-based algorithms.

One of the basic facts that we need to understand is that sensor programming is
different from traditional programming. The high-level coding in sensor programming
is typical for any active object-oriented framework. Furthermore, the design is layered
with a tiny operating system, the foundation for preemptive and roundrobin kernel,
and other basic services such as event-driven and CPU pools. Figure 4.1 is essentially a
design-based schematic diagram of program flow. Figure 4.1a is a schematic flowchart
of a quickstart application, while Fig. 4.1b is a flowchart of an event-driven sensor
application running on top of a cooperative vanilla kernel. At the highest level, the
flowcharts are similar in that they both consist of a main loop surrounding various
programming constructs. But the internal structure of the main loop is very different
in the two cases. As indicated by the heavy lines in the flowcharts, the “quickstart”
application spends most of its time in the tight “event loops” designed to busy–wait
for receiving events, such as communication update events. In contrast, the “event-
driven” application spends most of its time right in the main loop. The wireless
sensor framework dispatches any available event to the appropriate state machine that
handles the event and returns quickly to the main loop without ever waiting for events
internally. A variation of event-driven programming is shown in Fig. 4.1c for battery-
operated constrained wireless sensors. Here the data are transmitted periodically to
a sensor’s neighbors whenever new data become available and the battery level is

∗Portions of this chapter are adopted from two earlier books by the author [2,7].

Fundamentals of Sensor Network Programming: Applications and Technology, By S. S. Iyengar, N. Parameshwaran,
V. V. Phoha, N. Balakrishnan, and C. D. Okoye Copyright C© 2011 John Wiley & Sons, Inc.

41

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

42 DATA STRUCTURES FOR SENSOR COMPUTING

V

V

V

V

VV
V

V
V

V

V

V

V

V
V

V

V

Yes

No

MainScreen()

ScreenSaver();

start();

ScreenSaver();

onIdle();

Busy-wait
for screen
update event

event
available

no
event

Busy-wait
for screen
update event

V

V

V

V

(a)

(b)

(c)

FIGURE 4.1 Control flow in (a) traditional, (b) event driven, and (c) wireless platforms.

above a given safety threshold. These broadcasted messages are received and queued
by neighboring sensors and forwarded to the destination.

As a result of hardware constraints in sensor motes, we have presented the mi-
croframework memory usage in Table 4.1 (Table 4.1 shows the memory footprint of
the components various settings for the configuration macros). The major difference
between a fully functional node and a standalone node is that the latter does not have
a kernel and acts like a data-sensing unit, whereas the fully functional node has a
kernel and can route and receive messages efficiently. Therefore, a fully functional
node has more RAM and ROM space.

TABLE 4.1 Resource Requirements For Target

Property MicaZ Mica2 Mica2Dot

Flash memory, kB 128 128 128
Measurement memory, kB 512 512 512
EEPROM, kB 4 4 4
A/D channels 10 bits (8) 10 bits (8) 10 bits (8)
Frequency, MHz 1400–2483.5 433/868/916 433/868/916
Data rate, kbps 250 19.2 19.2
Outdoor range, m 100 300 300
Size 6 × 3 × 1 cm 6 × 3 × 1 cm 2.5 × 0.6 cm

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

INTRODUCTION TO SENSOR COMPUTING 43

The application of all of these concepts of sensing/computing and communications
are folded into a new sensor-based programming paradigm, which is the topic of the
next section of this book.

4.1 INTRODUCTION TO SENSOR COMPUTING

The availability of effective communications, coupled with the computational capa-
bility of sensors, makes it feasible to host various tasks in sensors. As shown in Fig.
4.2, the four primary functions are the algorithm processing, process diagnostics,
data management, and system interfaces. Algorithm Processing involves tasks that
are performed in a sensor node. Specialized algorithms are required to condition
signals, encrypt data, and process data in the node. Depending on the overall design
of the distributed sensor network (DSN), the nodes may implement components of a
distributed algorithm. The operating environment of a node is responsible for ensur-
ing that these algorithms are executed fairly and effectively. Process diagnostics are
additional computations that are performed at the sensor or cluster levels to augment
the processing function of the input subsystem. Various techniques for automatically
embedding code in the algorithms are being investigated (for diagnostics, monitoring,
or distributed services). For example, such embedded code could provide status in-
formation and alarm data to operator monitoring stations. Some diagnostic strategies
require temporal information in addition to the input data.

Data management is another function that is becoming increasingly important
for DSNs. Because of the size of contemporary systems, the data gathered by the
collection of sensors is immense. Typically, it is not feasible to associate mass stor-
age devices at the level of a sensor, and the amount of memory available in a
resource-constrained sensor is limited. Thus, it is necessary to manage the data in a
DSN and effectively synthesize information that is useful for decisionmaking. Data
management considerations for periodic systems are more critical because of issues
of data freshness. The computing subsystem must support multiple system inter-
faces to effectively integrate with other systems. For the interface with the physical
environment, it is necessary to interface to proprietary and open sensor interface
standards. For example, several sensors interface with Ethernet or SERCOS. To al-
low users to work with emerging pervasive devices or to incorporate the DSN as
an infrastructure for a smart space for automation [4], the DSN must support open
interfaces that are based on XML (eXtensible Markup Language) or such other
technologies.

The implementation of these functions is discussed under the categories of process-
ing architecture, distributed services, and sensor operating systems [7,2]. Distributed
services facilitate the coding and operation of a DSN and are provided by a dis-
tributed operating system that is represented by the collection of operating systems
on each sensor. Transparency refers to the ability to regard the distributed system
as a single computer. Tannenbaum [6] defines several forms of transparency for
distributed systems: (1) data or program location, (2) data or process replication,
(3) process migration, (4) concurrency, and (5) parallelism. For our purposes in a

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

D
SN

In
pu

t
C

om
pu

tin
g

C
om

m
un

ic
at

io
ns

Pr
og

ra
m

m
in

g
Sy

st
em

 A
tt

rib
ut

es

Im
pl

em
en

ta
tio

n
Fu

nc
tio

n

A
lg

or
ith

m
 P

ro
ce

ss
in

g

Pr
oc

es
s

D
ia

gn
os

tic
s

Sy
st

em
 In

te
rf

ac
es

D
at

a
M

an
ag

em
en

t

M
ul

ti
Le

ve
l

Si
ng

le
 L

ev
el

Se
ns

or
 O

pe
ra

tin
g

Sy
st

em

R
ea

lti
m

e
N

on
 R

ea
lti

m
e

Ta
sk

Sc
an

ne
d

Pr
ee

m
pt

iv
e

Sh
ar

ed
R

es
ou

rc
es

T
im

e
Ev

en
t

H
ie

ra
rc

hi
ca

l Fe
de

ra
te

d

C
lie

nt
/S

er
ve

r
Pe

er
 t

o
Pe

er

Tr
an

sp
ar

en
cy

A
to

m
ic

ity

Sy
nc

hr
on

iz
at

io
n

C
lo

ck
 T

im
e

M
as

te
r/

Sl
av

e

Lo
gi

ca
l T

im
e

M
ut

al
ly

Sy
nc

hr
on

iz
ed

Pr
oc

es
sin

g
A

rc
hi

te
ct

ur
e

D
ist

rib
ut

ed
Se

rv
ic

es

O
bj

ec
t

na
m

in
g

&
 S

to
ra

ge

R
em

ot
e

R
ro

gr
am

s

N
on

-P
re

em
pt

iv
e

F
IG

U
R

E
4.

2
Ta

xo
no

m
y

of
a

di
st

ri
bu

te
d

se
ns

or
co

m
pu

tin
g

fr
am

ew
or

k.

44

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

INTRODUCTION TO SENSOR COMPUTING 45

DSN, transparency concerns the object naming–storage service, which provides the
ability to access system objects without regard to their physical location, and remote
program services, which provide the ability to create, place, execute, or delete a
program without regard to the sensor. Typically, servers are necessary to perform the
registration and lookup functions to provide these services. The atomicity service
is used to increase the reliability of the system by ensuring that certain operations
(called transactions) occur in their entirety, or not at all. Various forms of recov-
ery mechanism can be implemented to checkpoint and restore the component state
should the atomic operation fail. Typically, atomicity is more important at the level
of information-based transactions and less important at the level of periodic data
gathering.

The order in which data from various sensors are gathered and the nature of in-
teractions among the multiple sensors depends on the synchronization method. The
event service allows a sensor to register an interest in particular events and to be
notified when they occur. The time service is used to provide a systemwide notion of
time. An important application of system time is in the diagnostic function, where it
is used to establish event causality. Two forms of time are possible: clock time and
logical time. Providing a systemwide clock time that is globally known within a spec-
ified accuracy to all the controllers in a distributed system can be difficult. Clock time
can represent a standard Coordinated Universal Time (UTC), or it can be a common
time local to the system. Two common techniques are (1) to provide a hierarchical
master–slave system, in which the time in the “master” sensor device is transmitted to
the other “slave” sensors; or (2) use a peer-to-peer distributed mechanism to exchange
local times among various sensors. For certain applications, where affordable, it is
possible to use global positioning system devices as master clocks (at the master sen-
sor devices) to synchronize multiple controllers (at the slave devices) with the UTC.
Logical time provides only the relative order of events in the system, not their absolute
clock time. For many applications, exact time may not be as important as ensuring
that actions occur in the correct sequence, or with in certain relative time intervals
between events. Many algorithms can be rewritten to use logical time instead of clock
time to perform their function. Providing logical clocks in a distributed system may
be more cost-effective if the applications can be restructured. The management of
shared resources across the network is supported through mechanisms that implement
mutual-exclusion schemes for concurrent access to resources. All tasks in a sensor
execute in an environment provided by the sensor operating system. This operating
system provides services to manage resources, handle interrupts, and schedule tasks
for execution. The operating system is said to provide real-time services if the length
of time required for performing tasks is bounded and predictable. The operating sys-
tem is said to be non-real-time if such services are not supported. Real-time services
are supported by providing either a periodic execution model or a real-time scheduler
(e.g., rate monotonic scheduling). These schedulers are priority-based and can be pre-
emptive (interruptible) or not. Preemptive scheduling can provide the fastest response
times, but there is an additional context swap overhead. Depending on the way in
which the scheduler operates, the methods used to code computing, and the interac-
tion with the communication interfaces, the execution in a sensor can be deterministic,

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

46 DATA STRUCTURES FOR SENSOR COMPUTING

quasideterministic, or nondeterministic. One of the main challenges in DSN research
is to design efficient deterministic and quasideterministic sensor nodes.

4.2 COMMUNICATION CAPABILITIES

The communication subsystem is the primary infrastructure on which the DSN is
constructed, and hence design choices made in this subsystem strongly affect the
other capabilities of the DSN. Figure 4.3 presents a taxonomy of this subsystem.
The primary functions in this aspect are data transport and bridging. We distin-
guish between three types of data, each having different characteristics. Input data
gathered by sensors are typically limited to a few bytes and need guaranteed, de-
terministic message delivery to maintain integrity. Sensors communicate primarily
to synchronize and to recover from failures. Thus, intersensor traffic is likely to
be sporadic, contain more information (aggregated data), and be more suitable to
quasideterministic or nondeterministic delivery mechanisms. System data refers to
all the other data delivery needs that may or may not have hard real-time require-
ments. For example, data required for system monitoring and status alarms may
be critical and real-time, whereas data used by Internet-based supervisory systems
may not. Non-real-time system data, such as downloads, can typically be handled
in a background mode using a “best effort” protocol. The bridging function, which
transports data between multiple networks, is important in contemporary distributed
systems such as DSNs that are likely to be integrated into existing engineering
systems. Bridging refers to tasks performed on interface devices that connect two
(or more) networks. The protocol used on the networks may or may not be the
same. These intelligent devices provide services such as data filtering, data fusion,
alternate routing, and broadcasting and serve to partition the system into logical
subsets.

A communication protocol definition, such as that in the open systems intercon-
nection (OSI), is designed as layers of services from low-level physical implementa-
tion, to media access, through networking, up to the application layer. Such layered
communication protocols are unlikely to be implemented in resource constrained
sensor nodes. For this taxonomy, we focus only on the media access communication
(MAC) layer since it appears to be the layer where most variations occur. Under
the MAC protocol implementation attributes we consider two attributes: the address-
ing scheme and the access mechanism. The method of addressing messages, called
the addressing scheme, can be source-based, in which only the producing device’s
address is used in messages versus using the destination address to route the mes-
sage. Source-based schemes can be extended to use content-based addressing, in
which codes are used to identify the type of data within the message. Source- or
content-based schemes are typically used on a broadcast bus, a ring, a data server, or
when routing schemes can be a priori specified. Destination-based schemes are used
when there is usually one destination or when the routing is constructed dynamically.
The capability to provide deterministic service is strongly affected by the access
method that establishes the rules for sharing the common communication medium.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

D
at

a T
ra

ns
po

rt
Br

id
gi

ng
M

A
C

 P
ro

to
co

l
D

at
a T

yp
es

In
te

rf
ac

e
Pa

ck
ag

in
g

Ph
ys

ic
al

 T
op

ol
og

y

In
te

r
Se

ns
or

Sy
st

em
A

dd
re

ss
in

g
A

cc
es

s
M

et
ho

d D
isc

re
te

C
on

tin
uo

us

Se
ns

or
 C

om
m

s
IF

s
Br

id
ge Bu

s
Po

in
t-

to
-P

oi
nt

M
ix

ed

So
ur

ce
 B

as
ed

D
es

tin
at

io
n

Ba
se

d
C

on
te

nt
 B

as
ed

Ba
ck

-p
la

n
Se

ria
l B

ro
ad

ca
st

R
in

g
Sw

itc
he

d

Se
ria

l
Pa

ra
lle

l

Po
lle

d
To

ke
n

R
an

do
m

A
dd

re
ss

T
D

M
A

D
SN

In
pu

t
C

om
pu

tin
g

C
om

m
un

ic
at

io
ns

Pr
og

ra
m

m
in

g
Sy

st
em

 A
tt

rib
ut

es

Im
pl

em
en

ta
tio

n
Fu

nc
tio

n

F
IG

U
R

E
4.

3
A

ta
xo

no
m

y
of

a
di

st
ri

bu
te

d
se

ns
or

co
m

m
un

ic
at

io
ns

fr
am

ew
or

k.

47

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

48 DATA STRUCTURES FOR SENSOR COMPUTING

Polled, token-based, and time-division multiple access (TDMA) schemes that use
a fixed timeslot allocation are deterministic. Token schemes, which allow nodes to
skip their timeslot when they have nothing to transmit, have quasideterministic be-
havior. Random-access schemes, such as Ethernet, result in nondeterministic perfor-
mance, and a priority bus scheme [e.g., controller area network (CAN)] can be made
quasideterministic.

4.3 GENERAL STRUCTURE OF PROGRAMMING

This aspect has been largely ignored in the DSN literature. It must cover a range
of activities, including designing, developing, debugging, and maintaining programs
that perform computing, input, and communication tasks at the sensor level. Pro-
grams must also be developed to support distributed services that are essential for
proper functioning of the DSN. In addition, activities such as abnormal-state re-
covery, alarming, and diagnostics must be supported. Figure 4.4 shows the primary
functions of the programming category: support for coding of the algorithm, system
testing, diagnostics, exception handling, data management, documentation, and syn-
chronization. A key component of each function is the differences that are imposed
by having to run in a distributed environment and which services are provided by
the programming language and operating system. For example, the algorithm at a
given sensor may require data from another sensor. An issue is whether the data are
easily available (transparent services) or whether the programmer must provide code
for accessing the remote data explicitly. System testing, diagnostics, and exception
handling are complicated by the fact that data are distributed and determination of
the true system state is difficult. Documentation includes the program source code
and details of system operation. Questions of where programs and documents re-
side in the distributed system arise, as do issues in version control and concurrent
access. Finally, the degree of transparency in synchronization that is provided by
the languages and environment is a key to simplifying distributed programming.
The language chosen in a DSN to implement the algorithm affects the services and
tools that must provide support (e.g., operating system, compilers, partitioning, per-
formance estimation). The IEC 1131 programming standards for digital controllers
and the more recent IEC 61499 extensions that define an event-driven execution
model are interesting considerations for programming DSNs. Ladder logic is rel-
atively simple to learn, is easy to use, and provides a low-level ability to react to
process changes. Sequential function charts, Petri nets, and finite-state machines
(FSMs) are examples of state-based languages. An FSM model is intuitively simple,
but the size of the model grows rapidly as the size of the control system increases.
Hierarchical representation methods, such as hierarchical FSMs, have been used to
cope with the large size of state-based models. While such hierarchical methods
were well suited for hardware design, their use in software design is still an ongo-
ing research issue. Function blocks are designed as a replacement for ladder logic
programming in an industrial environment. They provide a graphical, software-IC
(integrated-circuit)-style language that is simple to use and understand. Function

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

D
SN

In
pu

t
C

om
pu

tin
g

C
om

m
un

ic
at

io
ns

Pr
og

ra
m

m
in

g
Sy

st
em

 A
tt

rib
ut

es Im
pl

em
en

ta
tio

n
Fu

nc
tio

n

A
lg

or
ith

m
Te

st
in

g
D

ia
gn

os
tic

s
Ex

ce
pt

io
n

H
an

di
ng

D
at

a
M

an
ag

em
en

t
D

oc
um

en
ta

tio
n

Sy
nc

hr
on

iz
in

g

La
ng

ua
ge

To
ol

s
V

ie
w

po
in

t

IE
C

 1
13

1
IE

C
 6

14
99

G
en

er
al

D
om

ai
n

Sp
ec

ifi
c

A
lg

or
ith

m
ic

O
bj

ec
t

or
ie

nt
ed

D
ev

el
op

m
en

t
an

d
de

bu
g

en
vi

ro
m

en
ts

C
od

e
an

al
ys

is
&

ge
ne

ra
tio

n

C
on

tr
ol

ap
pl

ic
at

io
n

ce

nt
ric

 v
ie

w
C

on
tr

ol
le

r
ce

nt
ric

 v
ie

w

Si
ng

le
 v

ie
w

po
in

t
M

ul
tip

le
vi

ew
po

in
ts

F
IG

U
R

E
4.

4
A

ta
xo

no
m

y
of

a
di

st
ri

bu
te

d
se

ns
or

pr
og

ra
m

m
in

g
fr

am
ew

or
k.

49

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

50 DATA STRUCTURES FOR SENSOR COMPUTING

blocks are modular software units, can contain internal states, and represent the
inputs and outputs of the function. Libraries of common blocks are provided for
building control programs. General-purpose languages, such as FORTRAN or C,
are employed to specify the processing in sensors. More recently, object-oriented
languages have been used to program controllers. Domain-specific languages, with
extensions to specify data fusion functions tailored to the needs of particular ap-
plications, are likely to be useful. Development and debugging environments for a
DSN should support modular, independent programming of different sensors. Key
distributed programming constructs can be provided to the programmer by distributed
system services, or they can be embedded in the language and implemented by its
compiler/linker. For example, a name server can provide the location transparently,
or it can be a remote procedure call generated by the compiler. In addition, the
programmer must be able to debug and maintain the system by viewing and manip-
ulating the code in many sensors simultaneously. Formal models and theory help in
simplifying this complex task. Because of the immense scale of DSNs, techniques
that support the automatic generation and analysis of software are important. In an
automated code generation system, the responsibility for managing and maintain-
ing all the interactions between the sensors (by message passing, shared memory,
or sharing I/O status) is handled automatically. Formal models and theory, such as
Petri nets or compiler transformation theory, facilitate the task of software synthesis
(and integration) by exploiting the underlying mathematical structure. The user is
responsible only for providing a high-level specification of the application needs. In
addition, the formal models and theory are also useful for introducing new function-
ality, such as abnormal-state recovery, alarming, and diagnostics. The viewpoint is
another important issue in the programming aspect. Most of the current programming
environments support a sensor-centric view. In this view, the needs of the control ap-
plication must be expressed in terms of the capabilities of the sensor that is used in
the DSN.

When dealing with large applications, managing such programs is a cumbersome
activity. In an application-centric view, users express data fusion and integration needs
by describing relationships among objects in the domain of the control application.
Application-centric views can be supported with any level of abstraction (i.e., low,
medium, or high). However, wireless sensor applications viewed with low-level
abstraction tend to be more conducive to a collaborative approach (due to resource
constraints) than would a traditional software program. In event-driven programming
you deal with concepts such as inversion of control, blocking versus nonblocking
code, and run-to-completion (RTC) execution semantics. Polling data are generated
by the microframework, which allows global tracking of the current hardware clock.
Once the poll is active, the sensor object changes states; if idle, it will accept the poll
and initialize itself with a predetermined timeout. The timeout event is handled and
the measured value from the sensor is read accurately and processed. If there is a
threshold set for this particular process, then an alarm will be enabled according to the
current read value. This alarm event will be broadcasted to reach its destination using
source destination pairs. The “on idle” event can support the low-power features of
the target hardware, enabling further energy savings.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

DETAILS ON EMBEDDED DATA STRUCTURES 51

4.4 DETAILS ON EMBEDDED DATA STRUCTURES

We now introduce the concept of developing active objects using a reusable in-
frastructure for specific domains such as sensor nodes and real-time systems. The
infrastructure, an example of an application framework that is referred to as mi-
croframework, is a set of cooperating classes that makes up a reusable design. The
microframework captures the overall architecture for executing concurrent sensor
nodes in the embedded real-time environment.

The main element of decomposition of the microframework is an active object.
An active object is a state machine that executes concurrently with other objects
and communicates with them by sending and receiving events. This framework is
typically compiled into the ROM of a senor node. The nodes have reprogrammable
RAM area that the application uses for running and for storage.

Event queues and event pools are the necessary burden you need to accept when
you work with active objects. The main problem with event queues and event pools is
that they consume sensor nodes’ precious memory. In order to minimize that memory
usage, you need to size them appropriately. In this respect, event queues and pools
are no different from execution stacks—these data structures all trade some memory
for convenience of programming.

The correct sizing of event queues and event pools is especially important in
microframework applications because the microframework offers no built-in handling
for over flow or under flow of events in an event pool. These situations are both
treated as bugs, no different from running out of execution stack space, with potential
consequences that are just as disastrous.

Because of the crucial importance of data structures, this entire chapter deals with
various data structures used in the design and analysis. For completeness, all the data
structures are discussed. Those who are already familiar with the data structures may
skip these topics.

An array usually represents a collection of homogeneous data items. An array is
also a list. For example, the messages of a given sensor node are usually represented
in the form of an array as shown in Table 4.2.

In the design and analysis of algorithms, we frequently come across two special
types of arrays: stack and queue.

4.4.1 Stack

A stack is a one-dimensional data array in which addition and deletion take place from
one end. Suppose that a stackcontains five data items. Then a designated variable top
= 5 denotes that there are five items, where item 5 is the topmost entity. If anything

TABLE 4.2 Stack Items

Node ID 1 2 3 4 5 6 7 8 9 10
Received Messages 2 1 4 6 3 4 2 0 1 5

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

52 DATA STRUCTURES FOR SENSOR COMPUTING

Stack Top

Stack Rear

FIGURE 4.5 A stack with five entities.

new has to be added to the stack, it can be added as the sixth item, and the top will
now become item 6. From a stack with five entities (see Fig. 4.5), if we want to delete
one entity, we can remove only the topmost entity. The simple procedure for adding
a new entity to a stack is shown below:

Procedure STACK-ADD(S(l:n), Top, item)

BEGIN

IF top = n then

call STACK-FULL

ELSE

top <-top+l

S(top) <-item;

Endif

END

Procedure STACK-DEL(S(l:n), top, item)

BEGIN

IF top = 0 then

call STACK-EMPTY

ELSE

item S(top)

top <-top-l

Endif

END

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

LINKED LIST 53

Queue Front

Queue Rear

FIGURE 4.6 A queue.

In this procedure it is assumed that the maximum capacity of the stack is n. If
the stack is already full, we cannot insert a new item in the stack. So, if top = n we
call a procedure “stack full,” which (we assume) will eliminate the need for further
processing. In a similar way we can write a procedure for deleting one item from the
stack. If top = 0, we assume that the stack is already empty. In this case we cannot
delete anything from the stack.

The stack data structure has numerous applications in algorithms—both sequential
and parallel. The prefix/postfix/infix representation of arithmetic expressions, recur-
sive procedures, scheduling, and polynomial evaluation are some important areas of
application of the stack data structure.

4.4.2 Queue

The queue (see Fig. 4.6) is an array in which the additions take place through one end,
called rear, and deletions take place through the other end, called front. In order to
make the queue a convenient data structure for designing algorithms, it is represented
in the form of a circular array. We assume that the queue is empty if and only if rear =
front. It is easy to design procedures for insertion and deletions in a queue, and so it
is left to the reader as an exercise.

4.5 LINKED LIST

The abstract data type called a list is a sequential collection of data items, called
atoms, along with operations to work with the collection. If a1, a2, . . . , an are the
atoms in a list, then we write the list as (a1, a2, an). A list differs from a set in that
(1) there is an order to the items and (2) an item may appear more than once, if this
is desirable in a given application.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

54 DATA STRUCTURES FOR SENSOR COMPUTING

TABLE 4.3 Linked List Data Structure

Name Size

List 1 4 A, B, C, D
List 2 3 M, N, O
List 3 4 W, X, Y, Z

The common operations that one can perform on a list are

1. Find (item)—check whether the item is in the list and if so, indicate its position
in the list.

2. Insert (item)—insert an item in the list (usually in a particular location).

3. Delete (item)—delete first (or possibly all) occurrences of the item.

The flexibility in the operation definitions is intended to accommodate different
environments. If there is a way of comparing items ai , and a j , to say that ai < a j ,
or ai > a j , or ai = a j , then we may define sorted lists. An ascending sorted list is
one where ai < ai+1 for all i . If a list is implemented by keeping the list atoms in an
array, then we have a linear list. A typical linear list representation is in the form of an
array A(0:N), where A(0) holds the number of items in the list. Such a representation
requires limiting the number of entries to N and is clearly wasteful in the sense that
A(A(0) + 1), . . . , A(N) are unused. To keep a collection of several linear lists is
awkward. Say, for example, that the lists (A,B,C ,D), (M ,N ,O), and (W ,X ,Y ,Z) are
to be kept and the lists are allowed to grow to hold as many as 10 entries each. The
lists may be regarded as a two-dimensional array A(0:3,0:10). Table 4.3 describes
the data structure of the lists described above.

Now consider holding all three lists in one array with an array of pointers into the
array, shown in Table 4.4.

TABLE 4.4 Array of Three Linked Lists

Position Data Link

1 A 5
2 X 11
3 M 8
4 W 2
5 B 9
6 O 0
7 D 0
8 N 6
9 C 7
10 Z 0
11 Y 10

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

LINKED LIST 55

FIGURE 4.7 An event pool.

The array of pointers is called an index. This has the advantage of removing
the upper bound on the list length; the only requirement is that the lists do not
have a total length greater than the array size. Each list occupies only the space
it needs and new lists may be easily added at the end (see Fig. 4.7). The problem
here is, however, in inserting an item into the lists. The room to insert E in list 1 to
make (A,B,C ,D,E) can be obtained only by moving the rest of the data items in
the list by appropriately changing the pointers. Another problem is that of deleting
lists. It is awkward to keep track of free space within this large array. Thus an
effective implementation for the maintenance of several lists is not to be found using
linear lists.

4.5.1 Examples of Linked Lists

An alternative data structure to linear lists that allows for a greater amount of flexibility
is the linked list. List elements are called nodes. A node consists of data and a link to
another node in the list. The beginning of the list is indicated by a pointer. The name
of the list is actually a pointer to the first element in the list. A linked list structure
for our previous example is given in Table 4.6.

The pointer is set to 0 if it would take any value that cannot be used as a link, or
if no link exists. If we extract the first, second, and third lists, we could draw it as
shown in Fig. 4.8. The name of the list structure is one. In particular, the lists can
grow to arbitrary length. We may be able to keep several lists simultaneously in one
area of storage with the only space restriction that their total storage utilization will
be less than or equal to the area available.

There is an obvious disadvantage to linked lists in terms of searching. If a linear
list is kept in sorted order, then it may be searched with a binary search. Consider

TABLE 4.5 Linked List Data Structure

Name Pointer

One 1
Two 5
Three 8

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

56 DATA STRUCTURES FOR SENSOR COMPUTING

TABLE 4.6 Linked List Data Structure

Name Pointer

One 1
Two 6
Three 9

the linear list T shown in Fig. 4.9a and the equivalent representation in linked lists
shown in Fig. 4.9b. The binary search functions (see Table 4.7) can be obtained by
computing midpoints of the list. The following discussion describes the binary search
process. The midpoint between array elements 1 and 5 in the linear list given above
is array element 3. But in the linked list there is no way to find the node midway
between two other nodes, so a binary search is impossible.

The most obvious reason to use a linked list framework data structure such as
the one described above is the ability to insert or delete dynamic events during the
event detection process of a sensor network. This framework also frees application
programmers from dealing with buffer-related communication issues and allows them
to concentrate on robust methodologies for complex applications.

4.5.2 Circular Lists

In circular lists the pointer cell of the last node is not null. It points the first node.
This is shown in Fig. 4.10a.

4.5.3 Doubly Linked List

The basic difficulty of a linked list or circular list is that we may move in only one
direction. To move in both directions we introduce the concept of a doubly linked
list. The nodes in a doubly linked list have two links—LLINK for the left link and
RLINK for the right link—and every list has pointers to the left end and right end.
Thus a typical doubly linked list resembles the structure shown in Fig. 4.10b. Note
that there is one linked list found by following RLINK to a node and another list can
be found by following LLINK to a node. It is particularly easy to delete a node in a
linked list. The links allow you to find all different nodes. Suppose that a node X has
left and right adjacent nodes.

1

A B C D M N O W

2 3 4 5 6 7 8

FIGURE 4.8 Continuous list.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

IMPORTANCE OF GRAPH CONCEPTS IN SENSOR PROGRAMMING 57

TABLE 4.7 Binary Search Example

A B C D E M N O W X Y Z
1 2 3 4 5 6 7 8 9 10 11 12

Node X may be deleted by applying the following instructions:

RLINK(LLINK (X)->RLINK(X)

LLINK (RLINK(X)) = LLINK (X)

This is seen to produce the following doubly linked list structure, which effectively
bypasses X. The two lists in the doubly linked list may themselves be circular (see
Fig. 4.11). To insert a node containing a desired data item, we first must acquire an
unused node. For this purpose we keep a special linked list called the free list, which
holds nodes that are not currently used. Such a list may be initialized when memory
is first allocated for nodes.

4.6 IMPORTANCE OF GRAPH CONCEPTS IN
SENSOR PROGRAMMING

Knowledge and understanding of the fundamental properties of graphs is critical in
distributed sensor programming. In this section we examine some of the ways in
which knowledge of graphs greatly simplifies the task of sensor programming.

4.6.1 Network Localization

Sensors are typically deployed in an area to measure spatial and temporal characteris-
tics of events of particular interest. This implies that these sensors need to convey data

A(a)

(b)

(c)

M

W X Y Z 0

N 0 0

B C D 0

FIGURE 4.9 Three linked lists.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

58 DATA STRUCTURES FOR SENSOR COMPUTING

2 8 10 12 15 null

2

(b)

(a) 8 10 12 15 null

FIGURE 4.10 (a) A list; (b) a linked list.

about the event and also to relay information about the location of where that event
occurred before any useful task can be done with that data. In network localization,
knowledge of graphs can be useful in certain scenarios to provide an estimate of the
distance between nodes in a network. Several node localization algorithms have been
published that make use of concepts in graph theory.

4.6.2 Data Aggregation

The ability to aggregate data from distant nodes for more efficient transmission is an
important data-processing primitive for sensor networks, particularly since it results
in huge energy savings, extending the life of a deployed sensor network. For data
aggregation to be successful, routing algorithms have to make intelligent decisions
when choosing nodes to partake in data transmission from the source node to the
data sink or otherwise risk depleting the energy of nodes in most frequent use. The
most natural data structure that comes to mind when routing information based on
associated costs and other parameters is a connected graph. It is for this reason
that several tree-based data aggregation algorithms exist such as the collection tree
protocol (CTP) in TinyOS.

Events Events

Multiple Producers, Single Consumer
Timer Tasks

FIGURE 4.11 Circular linked list; doubly linked list.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

IMPORTANCE OF GRAPH CONCEPTS IN SENSOR PROGRAMMING 59

4.6.3 Collaborative Processing

In most sensing tasks, sensors rarely rely solely on their own sensing abilities but
rather distribute a sensing task among a subgroup of sensors and collaborate on that
task. One example that comes to mind is any tracking task. Most entities being tracked
are mobile in nature and for this reason, relevant sensors around the region of interest
have to be selected dynamically for collaboration with other sensors on the basis of
location and other factors. The task of choosing an appropriate sensor can be greatly
simplified by applying concepts from graphs.

4.6.4 Planarity Testing

In graphs, the edges between nodes may intersect. This could be due to either of
two factors: (1) the graph is nonplanar or (2) a planar graph is not drawn properly to
exhibit its planar structure.

To ensure that a given graph is planar, a well-known computer science problem,
several well-known practical algorithms have been proposed in the literature that run
in O(n) time where n is the number of vertices. One of them is Kuratowski’s theorem,
which states that a finite graph is planar if and only if it doesn’t have a K5 or K3,3 as
its subgraph.

Planarity testing is widely used in wireless sensor networks for problems as-
sociated with coverage, localization, routing, topology control, and detection of
holes.

4.6.5 Graph-Coloring Concepts in MAC-Layer Protocols

The minimal graph-coloring problem is defined as the minimum number of dif-
ferent colors that are required to color the vertices of a graph such that no two
adjacent vertices share the same color. This fundamental graph-theoretic problem
is widely used in sensor networks for various applications. Ranging from design-
ing efficient interference-free MAC-layer protocols service discovery, data aggre-
gation (Fig. 4.13), TDMA slot assignments, and other scheduling assignments are
approached using the graph-coloring problem. For example, in scheduling for wire-
less sensor networks, the individual nodes must be scheduled in such a manner that

1
1

1

1

2

2

2

2

22

FIGURE 4.12 A simple illustration of node localization.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

60 DATA STRUCTURES FOR SENSOR COMPUTING

event

event

event

FIGURE 4.13 A simple illustration of data aggregation.

nearby nodes do not attempt to transmit data at the same time or should be scheduled
in such a way that the nearby nodes use different frequency/channels for trans-
mitting to avoid cochannel interference. By efficiently scheduling the nodes using
graph coloring, one can minimize the energy consumption and latency in a given
topology.

4.6.6 Isomorphism Applications in Sensor Deployment

In graph theory, two graphs G and H are said to be isomorphic to each other if there
is a bijection between the vertex sets of G and H. In other words, although G and
H may look different when drawn, they are essentially the same graph. One of these
graphs (say, H) can be redrawn in such a way that it looks identical to G.

Inpractice, it is very difficult to identify isomorphism among given graphs. Many
ad hoc deployments of sensor networks need localization techniques to discover
and form a network. Several algorithms exist for efficient topology control and
localization techniques for known types and structures of graphs. To identify or to
restructure the deployment toplogy to a known structure, graph isomorphism will
be useful.

In nesC programming, knowledge of fundamental data structures that preserves
certain contexts also becomes necessary as real-world applications get written. For
example, a queue or linked list can be implemented to store notifications or events
in the order in which they occur. The importance of data structures cannot be over
emphasized since efficiency and effective usage of resources are synonymous with
sensor network applications. The use of inappropriate data structures can only lead to
the rapid demise of existing sensor deployments, and for this reason, the next several
sections will delve into the details of graphs.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

GRAPH AND TREES 61

FIGURE 4.14 A simple illustration of collaborative processing among nodes.

4.7 GRAPH AND TREES

One of the most powerful ways to foster dynamical event-tracking applications is to
use an embedded data structure such as a universal data structure. This data structure
helps in developing a source of conceptual integrity from a programming perspective.
This captures the dynamic connectivity of the sensor network at each node (see Fig.
4.14). As each node can be added to or deleted from the network in real time, it would
need to have to have a unique address and information on its relative position. This
mechanism allows us to dynamically maintain the node addresses consistently over
time. This section introduces an important data structure, the graph model [3,1], and
explains various types of graphs and some properties that are used in later chapters.

4.7.1 Preliminaries

Let V be any set. Let be a subset of V × V . The pair (V, E) is called a graph. We
denote G = (V, E). V is called the vertex set and E the edge set. The element of V
are called vertices and the elements of E are called edges. Let V = a,b,c,d,e, f and
E = (a,b),(b,c),(c,d),(c,e),(a,d),(b,d). The graph G = (V, E) can be represented by
Fig. 4.15. If e = (v1, v2) is an edge, then we say that e incidents on v and vi . In such
case vi and V2 are said to be adjacent vertices. An edge (v, v) is called a self-edge. If
e1 = (v1, v2) and e2 = (v1, v2), then ei and e j are said to be parallel edges. A graph
having no parallel edge and no self-edge is called a simple graph. If the vertex set
is an infinite set, then the graph is called an infinite graph. Otherwise the graph is
said to be a finite graph. A graph may have its edge set to be empty. Such a graph is

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

62 DATA STRUCTURES FOR SENSOR COMPUTING

a

b

d

c

f

e

FIGURE 4.15 A graph.

called a null graph. A vertex in which no edge incidents is called an isolated vertex.
The number of edges incident on a vertex v is called the degree of v. In the graph
represented in Fig. 4.15, f is an isolated vertex.

The degrees of the vertices are given below. A vertex whose degree is 1 is called
a pendant vertex. In our

Vertex a b c d e f

Degree 2 3 3 3 1 0

graph e is a pendant vertex. We usually denote the number of vertices and the number
of edges by n and m, respectively. We are interested in the sum of the degrees of
all the vertices. Each edge incidents on two vertices; so the presence of each edge
contributes 2 to sum of the degrees. Hence we have the following observations:

1. The sum of the degrees of all the vertices is 2m.

2. The number of vertices of odd degree is alway seven.

4.7.2 Regular and Complete Graphs

A graph in which all the vertices are of equal degree is called a regular graph. If a
simple graph has n vertices, at the most n(n − l)/2 edges are possible. A graph with
all possible edges is called a complete graph. Let K denote a complete graph with n
vertices [and n(n − l)/2 edges]. Note that K is a regular graph of degree n − 1. This
is illustrated in Figs. 4.16 and 4.17.

4.7.3 Walk, Path, Cycle

Let G = (V, E) be a simple graph. Let v1, v2, v3, v4 . . . , vk be some vertices of G,
and let vi , be adjacent to vi + 1(l = i = k). We say that this sequence v, v2, . . . , vi is
a walk from vi to vk if no edge appears more than once in the sequence. v is called
the starting point and u∗ is called the terminus. In the preceding definition of a walk,
some vi and Vj may be the same for distinct i and j. Consider a walk v1, v2, . . . , vk .
We say that the walk starts from v, travels through v1, v2, . . . , vk , and finally reaches
vk . If v1 = vk , the walk is called a closed walk. A walk that is not closed is said to be
open. A walk in which no vertex appears more than once is called a path. A closed

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

GRAPH AND TREES 63

FIGURE 4.16 A regular graph of degree 2.

walk in which no vertex appears more than once is called a cycle or circuit. In other
words, a circuit is a closed path.

In Fig. 4.18, a,b,c,d,b,e, f , is a walk. It is not a path because b is repeated; a,b,c,d,
is a path from a to d. Also note that c,b,e,p,h,e,b,d is neither a path nor a walk. It is
not a walk because the edge (b,e) appears twice in the sequence: once from b to e and
then from e to b. The sequence a,b,e, f ,g, a is a cycle. In a cycle an edge joining two
nonconsecutive vertices is called a chord. In the cycle a,b,e, f ,a, in Fig. 4.18, (b,f) is
a chord of the cycle a,b,e, f ,g,a.

4.7.4 Subgraph

Let G = (V, E) be a graph. Let V ′ be a subset of V and E′ a subset of E such that
all the edges in E′ incident only on vertices of V . G′ = (V ′,E′) is called a subset
of G. The graph shown in Fig. 4.19b is a subgraph of the graph in Fig. 4.19a. In a
graph G, for any two vertices u and v, if there is a path from u to v, the graph G is
called a connected graph. In a disconnected graph, a maximal connected subgraph
is called a connected component or simply a component. Let V be a subset of V .
Let be the collection of all edges of G, which have both end vertices in V . Then

K3

K4 K5

FIGURE 4.17 Some completed graphs.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

64 DATA STRUCTURES FOR SENSOR COMPUTING

b

c

a

d

g

e

h

p
f

FIGURE 4.18 A graph illustrating paths and walks.

G ′ = (V, G) is called the induced subgraph of G induced by V . The graph in Fig.
4.19b is not an induced subgraph of Fig. 4.19a. The graphs in Figs. 4.19c and 4.19d
are induced subgraph, induced by 1,5,4 and 2,3,4, respectively. Two subgraphs are
said to be edge-disjoint if they have no common edge. The graphs shown in Figs.

 1 2

5 4

3

(a)

 1
2

3

(b)

(c) (d)

 1 2

4

4

3

5
4

FIGURE 4.19 (a) A graph G; (b) a subgraph G; (c) subgraph induced by 1,4,5; subgraph
induced by 2,3,4.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

GRAPH AND TREES 65

4.19c and 4.19d are edge-disjoint subgraphs of Fig. 4.19a. The following observations
can now be made:

1. Any graph G is a subgraph of G itself.

2. Any vertex in the graph can be considered as an induced subgraph of the graph
with one vertex.

3. Any edge (u, v) can be considered as an induced subgraph induced by u, v.

4. The relation subgraph of is reflexive, antisymmetric, and transitive.

Unlike simulated conditions of sensor deployments, which typically assume ideal
conditions for sensors, real-world deployments are usually faced with a barrage of
issues stemming from unanticipated scenarios such as the effects of the environment/
landscape on sensor communication, or even interference by other RF-emitting de-
vices. To handle such issues, communication routines in sensor networks must possess
dynamic capabilities, computing alternative communication routes when disruptions
occur, and as such, rely on critical concepts discussed in the following sections.
Sections 4.7.5 and 4.7.6 introduce the topics of homeomorphism and isomorphism
in terms of localization and routing in sensor networks.

4.7.5 Homeomorphism

Let G be a graph. Let v1, v2, v j , be a path and let the degree of U2 be 2 in G. The
pairs (v1, v2) and (v2, v3) are called series edges. The operation of replacing the two
edges (v1, v2), and (v2, v3), by a single edge (v1, v3) and removing the vertex V2 is
called the merging of series edges. If (u, v) is an edge, the operation of introducing a
new vertex w and making it adjacent to both u and v and then removing the original
edge (u, v) is called insertion of a vertex of degree 2. Two graphs, G1 and G2, are
said to be homeomorphic if one can be obtained from the other using a finite number
of operations merging of series edges and/or insertion of a vertex of degree 2. A
complete subgraph is called a clique. A clique that is not a subgraph of any other
clique is called a maximal clique. Consider the graph shown in Fig. 4.20a. Its maximal
clique is shown in Fig. 4.20b.

4.7.6 Isomorphism

Two graphs G ′ = (V ′, E ′) and G ′ = (V, G) are said to be isomorphic if there is a
bijection between V and V ′ in such away that two vertices of V are adjacent if and only
if the corresponding vertices in V ′ are adjacent. If two graphs are isomorphic to each
other, then they have an equal number of (1) vertices, (2) edges, and (3) vertices with
the given degree. Note that these three conditions are necessary but not sufficient.
It is an interesting research problem to find a simple and efficient criterion to check
whether two given graphs are isomorphic. This problem is called the isomorphism
problem.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

66 DATA STRUCTURES FOR SENSOR COMPUTING

3

1 2

5

4

(a)

 1

5

3

2 2

4

2

4
4

3

(b)

7

7

7

6

6

8

8

9

9

 1

FIGURE 4.20 (a) A graph G; (b) maximal cliques of G.

4.8 TREES

A connected graph having no cycles is called a tree. The following statements are
equivalent:

1. G is a tree.

2. There is exactly one path between any two vertices of G.

3. G is connected and contains n vertices and n − 1 edges.

4. G is minimally connected.

5. G has no cycles and G has n vertices and n − 1 edges.

Any tree has at least two pendant vertices. The length of a path is the number of edges
that it has. The length of the longest path from a vertex v to any other vertex is called
the eccentricity or diameter of v and is denoted by E(v).

E(v) = max d(v, u)/u ∈ V, (4.1)

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

TREES 67

4

9

7 8
5

 1

2

3

6

 10

1 2 3 4 5 6 7 8 9 10

5 4 3 4 3 4 4 5 5 4

Vertices

Eccentricity

(a)

(b)

Vertices

2

2

 1, 1 3

3

4

4, 5

6,7, 10

8,9

0

2

 1

5

10

9

4

3

7

8

6

Level Number

FIGURE 4.21 (a) Tree with radius = 3 and diameter = 5; (b) a rooted tree.

where d(v, u) represents the length of the path from v to u. In a tree T , the vertex
having minimum eccentricity is called a “v to u center of the tree.” A tree contains
one or two centers. In Fig. 4.21, the eccentricities of all the vertices are given. Points
3 and 5 are the vertices that have the minimum eccentricity. So, this graph has two
centers, 3 and 5. The eccentricity of the center is called the radius of the tree. The
length of the longest path in the tree is called the diameter of the tree. For the tree
given in Fig. 4.21a, the radius is 3 and the diameter is 5. We can designate a vertex
of the tree as its root. If a vertex is designated as the root of the tree, the tree is called
a rooted tree.

Consider the tree given in Fig. 4.21a. If we designate 2 as the root of the tree, the
tree can be redrawn, as in Fig. 4.21b. For a rooted tree, level numbers can be defined
to each of the vertices as follows: The root is assigned level number 0. The vertices
adjacent to the root are called the “children” of the root, and they are assigned the
level number 1. The root is called the “parent” of its children.

In our tree 1 and 3 are the children of 2. If a vertex v is at level i, then any other
adjacent vertex u that is not the parent of v is assigned level i + 1. Such a node
will be called a “child” of v. If the maximum level number of a rooted tree is k,
then its height or depth is defined as k + 1. The tree in Fig. 4.21b is of height 5. A
connected subgraph of a tree is called a subtree. Figure 4.22 shows a tree and some of
its subtrees. A rooted tree is usually represented by its parent relation. If T = (V, E)

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

68 DATA STRUCTURES FOR SENSOR COMPUTING

8

7

 10

9

5
6

2

 1

4

3

4

4

4

3

3

T3

1

 1

 11

5

7

6

2

12

T2

 10
 11

 Tree T
 Subtree T1

 Subtree

 Subtree
 10 5

FIGURE 4.22 A tree and someof its subtrees.

is a rooted tree with root r, it is represented by the array parent (1 : n) (where n is the
number of vertices) defined by

PARENT(i) = the parent of i, if i is not the root.

PARENT(r) = r, where, r is the root.

In some cases the parent of the root is defined as −1. A tree and its parent
representation are shown in Fig. 4.23.

4.8.1 Binary Trees

A rooted tree in which every vertex has at most two children is called a binary tree.
Binary trees are widely used in computer science applications. The two children of a

3 3 4 4 2 4 4 7 7

i

PARENT (i)

1 2 3 4 5 6 7 8 9

21

5

9

4

3 7

8

6

FIGURE 4.23 A root of a tree and its parent representation.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

TREES 69

Left skewed
Binary tree

2

 1

5

4

3

6

2

 1

5

4

3

Right skewed
Binary tree

FIGURE 4.24 Skewed binary trees.

node are usually called the left child and the right child. A binary tree in which no
vertex has a left child is said to be right-skewed. We define a left-skewed binary tree
similarly. Figure 4.24 shows left-skewed and right-skewed binary tree. Consider the
binary tree shown in Fig. 4.25. At level 0, the root alone is there. At level 1, there are
two vertices. At level 2 there are four vertices, and at level 3 there are eight vertices.
This observation leads to the following theorem.

Theorem 4.1

1. In a binary tree there are at the most two vertices at level i.

2. The maximum number of vertices in a tree of height k is 2k−1.

Proof The proof of condition 1 (in Theorem 4.1) is on induction on the level
number and the result is true for i = 0. If the result is true for a level i, there are at
most 2i vertices at level i. Each of those vertices can produce at the most two children
for level i + 1. So, the maximum number of vertices at level i + 1 is 2i + 1. Hence
the result of condition 1 follows by induction on i. The proof of condition 2 is based

2

 1

 109

4

3

7

8 11 12 13 14 15

5 6

FIGURE 4.25 A full binary tree.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

70 DATA STRUCTURES FOR SENSOR COMPUTING

on the following numerical result:

20 + 21 + 22 + · · · + 2k−1 = 2k − 1 (4.2)

A tree of height k with all the 2k − 1 nodes is called a full binary tree. In a full
binary tree nodes can be numbered serially as follows: The root is assigned the serial
number 1. The nodes at level 1 are numbered as 2 and 3 from left to right. After
assignment of serial numbers for all the nodes at level −1, the consecutive numbers
are assigned for all the nodes at level i from left to right. In Fig. 4.25, a full binary tree
of height 3 and the serial numbering of its vertices are given. The following theorem
can be easily verified for any full binary tree.

Theorem 4.2

In a full binary tree that is serially numbered

1. The left child of node i is 2i.

2. The right child of node i is 2i + 1.

3. The parent of i is [i/2].

In a full binary tree, if some highest-numbered vertices are removed, it is called a
complete binary tree. Figure 4.26a shows a complete binary tree; Fig. 4.26b, a full
binary tree; and Fig. 4.26c, an incomplete binary tree. In a complete binary tree the
numbering is continuous and coincides with the numbering of the full binary tree of
the same height. Theorem 4.2. holds for any complete binary tree. Consider a binary
tree in which every pendant vertex is assigned a positive weight. Let v and w denote
the level number and weight of a pendant vertex, respectively. Consider the sum v1, v2,
where the sum is taken over all pendant vertices. This sum is called the weighted
pathlength. For example, consider the binary tree shown in Fig. 4.27. It has six pendant
vertices: d,q,g,p,r , f . They are given weights 5,10,7,3,4,8, respectively. The weights
and the level numbers are shown in Table 4.8. Given n pendant vertices and their
weights, construction of a binary tree that minimizes the weighted pathlength is an
interesting problem. It has applications in decision tree and optimal code construction
problems. Some binary trees and their weighted pathlengths are shown in Fig. 4.28.

4.8.2 Spanning Trees

Let G = (V, E) be a connected simple graph. A cycle-free, connected subgraph
T = (V), with all the vertices of G, is called a spanning tree. A graph G and some of
its spanning trees are shown in Figs. 4.29a–4.29d.

Consider six cities, shown in Fig. 4.30a. The distance between the cities are
represented by the weight of the edges. If a communication network has to be
installed among the cities, it is sufficient if we establish the link along the edges of
the spanning tree shown in Fig. 4.30b. The cost of installation of the communication

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

TREES 71

4

7

5

2 3

6

5

5

6

6

3

3

4

4

2

2

 1

 1

 1

(a)

(b)

(c)

FIGURE 4.26 (a) A complete binary tree; (b) a full binary tree; (c) an incomplete binary
tree.

a

b

d
5

10 q

c

8 fe

g
7

h

3 p 4
r

FIGURE 4.27 A tree with weighted pathlength = 95.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

72 DATA STRUCTURES FOR SENSOR COMPUTING

TABLE 4.8 Binary Tree Weights and Level Numbers

Pendant Vertex Weight Level li wi

d 5 2 10
q 10 2 20
g 7 3 21
p 3 4 12
r 4 4 16
f 8 2 16∑

li wi 95

wires between two cities is proportional to the cost of the distance between them
and, hence, the cost of the edge in the graph. Thus the total cost of installation is
proportional to the sum of the weights of the edges. So we must find the spanning
tree that has its sum of the weights of the edges’ minimum. We define the weight
of the spanning tree as the sum of the weights of its edges. Given an undirected
graph, finding the minimum-weight spanning tree is a very interesting problem. The
minimum-weight spanning tree is also called the minimum-cost spanning tree or
shortest spanning tree. Every connected graph has a spanning tree of G. This tree, T ,
has n − l edges. These n − 1 edges of the tree are called the branches. The nonfree
edges are called the chords. If G is a disconnected graph (Fig. 4.31), it has more than
one component. In this case, we can find one spanning subtree for each component,
and the collection of such spanning subtrees is called the spanning forest of G. Figure
4.32 shows a spanning forest of the disconnected graph given in Fig. 4.31.

Let G be a graph with n vertices, m edges, and c components. The spanning forest
of G contains n − c branches, and there are m − n + c chords. We define the rank of

5

7

 10

8

8

d

d

5

7

 10

8 d

aa

a

b b

b c

c c

 10 5 7

FIGURE 4.28 Some binary trees and their weighted pathlengths.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

TREES 73

5 6

3 4

2 1

7

8

(a)

5 6

3 4

2 1

7

8

(b)

5 6

3 4

2

 1

7

8

(d)

5 6

3 4

2
 1

7

8

(c)

FIGURE 4.29 (a) A graph G; (b) spanning tree T; (c) spanning tree Ti; (d) spanning tree
T3.

the graph as the number of branches and the nullity of the graph as the number of
chords. For the graph shown in Fig. 4.31a, n = 15, m = 18, c = 3, and

Rank = n − c = 15 − 3 = 12 (4.3)

Nullity = m − n + c = 18 − 15 + 3 = 6. (4.4)

10a

8
3

b

5

d 6 e9
c

11
f

4

10a

3

b

5

d 6 ec

f

4

(a)

(b)

FIGURE 4.30 (a) Cities and their distances; (b) communication links for six cities.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

74 DATA STRUCTURES FOR SENSOR COMPUTING

21

7 14

8 6 12

10

9 5

3
4

15

13

11

FIGURE 4.31 A disconnected graph G.

Notice that rank + nullity = number of edges. Also observe that for a connected
graph, n − 1 is the rank and m − n + l is the nullity. Moreover, let us consider a
connected graph along with a spanning tree T with “e” being a chord. If we include
e in T , it will create a cycle. Here b1, b2, . . . , bt are branches and e alone is the
chord. This cycle is called a fundamental cycle. There are m − n + 1 fundamental
cycles. It is also interesting to count the number of spanning trees of a graph. Let
G be a graph and T be its spanning tree. Let e be a chord and let e(b1, b2, . . . , bt)
be its fundamental cycle. By including e with T and removing from T any bi , we
obtain a different spanning tree [denoted as Ti (e)]. For every chord e, we can find
these spanning trees Ti (e), i = 1, 2, . . . ,. We observe that any spanning tree can be
obtained by repeating this operation on the given spanning tree T . A graph G and all
its spanning trees are given in Figs. 4.33a–4.33c. The operation, including a chord to
the spanning tree and deleting a branch from its fundamental circuit, is called cycle
interchange. It is noted that, given any two spanning trees T and T2 of the same graph
G, the value of one spanning tree can be obtained from those of the other one by
a finite number of cycle interchanges. The number of cycle interchanges needed to
obtain one spanning tree value from those the other of one is equal to the number of
edges in one spanning tree that are not in the other. We define d(T1, T2) = number
of cycle interchanges needed to get T2 from T1 = number of edges in T1 that are
not in T2.

21

7 14

8 6
12

10

9

5

3

4

15

13

11

FIGURE 4.32 A spanning forest of G.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

GRAPH TRAVERSAL 75

(a)

(b) (c)

FIGURE 4.33 (a) A graph G; (b) some spanning trees of G; (c) some more spanning trees
of G.

We can also observe that d(T1, T2) satisfies the following properties for a metric:

1. d(J,T2) > Q and d(Tx,T2) = 0 if and only if T = T2.

2. d(TuT2) = d(T2,T0).

3. d(TuT2) < d(T ,T3) + d(T3 + T2) for any spanning tree T3 other than Tx or T2.

Also, d(T, T2) cannot exceed the rank or nullity of the graph. Let G be a connected
graph and T be the collection of all the spanning trees of G. A graph can be formulate
dusing J as a vertex set. Let the graph be denoted by GT = (T, ET), where two
vertices T1 and T2 are joined by an edge and only if d(T1, T2) = 11. The graph GT is
called the tree graph of G.

4.9 GRAPH TRAVERSAL

In order to visit all the vertices of a graph, there must be some systematic way
to ensure that no vertex is left unvisited. There are two methods for traversing the
vertices: (1) Breadth-First Search (BFS) and (2) Depth-First Search (DFS).

Let v be the starting vertex for traversing the graph G. The BFS starts by visiting
the vertex v. After visiting v, all its adjacent vertices are visited in some defined order.
Let the adjacent vertices of v, be v, v2, . . . , vd . After visiting these vertices, we must

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

76 DATA STRUCTURES FOR SENSOR COMPUTING

a

b
d

c

f

eg

h

k

j

i

FIGURE 4.34 A graph.

visit all the unvisited vertices that are adjacent to these vertices. The procedure is
repeated until all the vertices of the graph are visited.

In the DFS technique, we start from v. Then we visit an adjacent vertex v1 of v. Now
we visit an unvisited vertex adjacent to v1. At some stage, if u has no unvisited vertex
adjacent to it, we backtrack and come to Vi−1 and visit an unvisited vertex adjacent
to it. The procedure is repeated until we backtrack to v and visit all its adjacent
vertices. The traversal forms a spanning tree for G. A graph G, its BFS spanning tree,
and its DFS spanning trees are shown in Figs. 4.34 and 4.35. In the BFS spanning
tree the dashed lines represent the chords and the solid lines, the branches. In the
BFS spanning tree note that every chord joins vertices either at the same level or at
consecutive levels. This property can be effectively used to solve several problems in
graph theory.

4.10 CONNECTIVITY

If G = (V ,E) is a graph and v ∈ V , G − v represents the graph induced by V − v. This
is illustrated in Fig. 4.36. Let G = (V, E) be a graph with k components, a ∈ V . If
G − a has more than k components, a is called an articulation point. In a connected
graph a vertex whose removal disconnects the graph is also called an articulation
point. In the graph shown in Fig. 4.36a, vertices 4 and 7 are the two articulation points.
A connected graph that has no articulation point is called a biconnected graph. Any
cycle is biconnected. Let G = (V ,E) be a graph and u, v be nonadjacent vertices of
the same component of G. A subset S of V is called a u–v separator if the removal
of S from G results in u and v lying on different components. In other words, S is a
u–v separator if there is no path from u to v without passing through the vertices of
S. A u–v separator that does not contain any other u–v separator is called a minimal
u–v separator. A u–v separator having a minimum number of vertices is called a
minimum u–v separator.

Let S1 = {1 ,2 ,3 ,4} S2 = {1 ,2 ,4} S3 = {2,4}
S4 = {2 ,4 ,8} S5 = {8} S6 = {5}

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

CONNECTIVITY 77

a

a

i

i

f

f

c

c

b

b

d

d

e

e

g

g

h

h

j

j

k

k

l

l

(b)

(a)

FIGURE 4.35 (a) The BFS spanning tree; (b) the DFS spanning tree.

Each term S1,S2,S3,S4,S5,S6 is a 7–6 separator in the graph G of Fig. 4.37.
However, S3 is a minimal 7–6 separator. Similarly, S5 and S6 are also minimal 7–6
separators. S5 = 8 and S6 = 5 are two minimum 7–6 separators.

Let G = (V, E) be a connected graph and let S be a subset of V . If G − S
is disconnected, S is called a separator of G. A separator S is called a minimal
separator if, whenever S′ is a subset of S, S′ is not a separator. A minimal separator of
minimum cardinality is called a minimum separator. The cardinality of a minimum
separator is defined as the vertex connectivity of the graph. In other words, the vertex
connectivity of a connected graph is the minimum number of vertices to be removed
from the graph, in order to make the remaining graph disconnected. Note that if a

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

78 DATA STRUCTURES FOR SENSOR COMPUTING

2

7

7

7

6

6

6

5

5

5

4

4

3

3

3

2

2

2

1

1 8

8

(a)

(b)

(c)

FIGURE 4.36 (a) Graph G; (b) graph G − 4; (c) graph G − l.

graph has an articulation point, the vertex connectivity of the graph is 1. A graph with
vertex connectivity 1 is called a separable graph. A nonseparable graph is also called
a biconnected graph. For a biconnected graph the vertex connectivity is at least 2. A
connected graph with vertex connectivity of at least 3 is called a triconnected graph.
In other words, a triconnected graph is a connected graph in which the removal of

2

8

7 10

6

9

5

43

1

FIGURE 4.37 A graph.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

CONNECTIVITY 79

2

6

8
5

3

1

4

7

FIGURE 4.38 A triconnected graph.

any one or two vertices does not make it disconnected. Observe that any triconnected
graph is biconnected and a biconnected graph is connected. A connected graph with
vertex connectivity of at least k is said to be k-connected (where k is a positive
integer). The following results immediately ensure:

1. A connected graph is biconnected if and only if for any two vertices u and v
there are at least two edge-disjoint paths from u to v.

2. A connected graph is triconnected if and only if for two vertices u and v there
are at least three edge-disjoint paths from u to v.

3. A connected graph is k-connected if and only if for any two vertices u and v
there are at least k edge-disjoint paths from u to v.

The graphs shown in Fig. 4.36a and 4.37 are connected, but not biconnected. Any
cycle Cn is biconnected. Figure 4.38 shows a triconnected graph. If d denotes the
minimum degree of graph G, vertex connectivity of G is at most d.

We have already seen that a disconnected graph has more than one connected
component (a connected component is a maximal connected subgraph). Similarly,
we are defining the biconnected component as a maximal biconnected subgraph of
the graph. If the graph itself is biconnected, there is only one biconnected component.
Otherwise, the biconnected components can be found. Figure 4.39b shows the bicon-
nected components of the graph shown in Fig. 4.39a. The biconnected components
are also called blocks. A graph G in which every block is a complete subgraph is
called a block graph. Figure 4.40a shows a block graph. The biconnected components
of a graph G can be found by the following operation:

1. If G has no articulation point, G itself is the only biconnected component.

2. For every articulation point as V, let V1, V2, V3, . . . , Vs denote the sets of
vertices in the different components of G − a.

3. Let G = graph induced by V , U a (i = 1, 2, 3, . . . , s).

These definitions and procedures can be generalized for connected components
(k > 2). A block graph can be represented by its block-cut vertex tree representation
(BC-tree). For example, consider the block graph shown in Fig. 4.40a. Its blocks

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

80 DATA STRUCTURES FOR SENSOR COMPUTING

2

2

11

11

10

10

9

9
9

8

8

8

6

6

7

7

(a)

(b)

5

5

4

4

1

1

3

33

FIGURE 4.39 (a) A graph G that is connected but not biconnected; (b) biconnected com-
ponents of G.

are B1 = 1,2; B2 = 2,3,4,5; B3 − 5,6,7; B4 = 5,9; B5 = 5,8; B6 = 8,10; B7 =
10,11; B8 = 10,12,13; B9 = 4,14. The cut vertices are 2,4,5,8,10. The vertex set
of the BC-tree consists of the blocks and the cut vertices. A block and a cut vertex
are joined by an edge only when the vertex is contained in the block. The BC-tree of
the block graph depicted in Fig. 4.40a is given in Fig. 4.40b.

5
10

8

B8

B6

B5

B3

B9

B2

B4

B1

B74

2

2

3

5
9

8
10

1312

11
7

6
4

14

(a)

(b)

1

FIGURE 4.40 (a) Block graph; (b) the BC-tree of a block graph.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

PLANAR GRAPHS 81

4.11 PLANAR GRAPHS

In this section, we define the graph G as a pair of two sets V and E, where V is
any (nonempty) set and V is a subset of V × V . Any graph can be schematically
represented in more than one way. Figure 4.41 is a representation of the graph
G = (V, E), where

V= {a, b, c, d, e, f, g, h}
E = {{a, b), (b, c), (c, d),

(d, a), (e, f (/, g),

(g, h), (h, e), (a, e),

(b, f), (c, g), (d, h)}

It is preferable to draw a graph on the two-dimensional (2D) plane so that no two
edges intersect each other. It is evident that we cannot draw all the graphs in the
plane in such a way that no two edges intersect. A graph is said to be planar if it
can be drawn in a 2D plane without its edges intersecting. Figure 4.42 shows some
simple examples of planar graphs. A graph G = (V, E) is said to be bipartite if V
can be partitioned into V1 and V2, such that every edge of G joins a vertex of Vi and a

h

d c

g

a b

e f

e

f

h
g

d
c

b

a

h

f

g

d

c

a

b

e

FIGURE 4.41 Same graph, different schematic representation.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

82 DATA STRUCTURES FOR SENSOR COMPUTING

K3
C4

K4

4

1 3

6

2

6

1

2

3

4

5

FIGURE 4.42 Some planar graphs.

vertex of V2. Note that a bipartite graph contains no cycle of odd length. A complete
bipartite graph is a bipartite graph in which every vertex of V is adjacent to all the
vertices of V2. A complete bipartite graph with m vertices in V1 and n vertices in
V2 is denoted by Kmn . Note that Kmn has m + n vertices and mn edges. The Polish
mathematician Kazimierz Kuwatowski (1896–1980) proved that the following two
graphs (see also Fig. 4.43) are nonplanar:

1. The complete graph with five vertices is given by K5.

2. The complete bipartite graph K3,3

Observe that both Kuratowski graphs are regular and nonplanar. Also note that they
are minimal nonplanar graphs with respect to the number of vertices, as well as the
number of edges.

Consider the planar graph G drawn in a plane (without its edges intersecting). The
graph divides the plane into several regions. Figure 4.44 shows a planar graph and
the region Ri , R2, . . . , Re. It is easy to observe the following results:

1. Any simple planar graph can be embedded in a plane such that every edge is
drawn as a straight-line segment.

a. A planar graph can be embedded in a plane such that any specified region
can be made the infinite region.

1

1 a

5

4

3

3 c

2
2 b

K5 K3,3

FIGURE 4.43 Kuratowski’s graphs.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

COLORING AND INDEPENDENCE 83

4 5

2

3

6

R1

R2

R3 R4 R5 R6

1

9
8

7

12

10

11

13

FIGURE 4.44 A planar graph with six regions.

b. Any planar graph can be embedded in a sphere, and any graph that can be
embedded in a sphere is a planar graph.

2. If G is a connected planar graph with n vertices and m edges, it then would
generate m − n + 2 regions. For example, in Fig. 4.44, n = 13, m = 17, and
the number of regions is m − n + 2 − 17 − 13 + 2 = 6.

Also, we can prove that, for a planar graph, m = 3n − 6. This is a necessary but not
sufficient, condition. Kuratowski’s second graph is a nonplanar graph, satisfying this
condition. A necessary and sufficient condition for a graph G to be planar is that G
does not contain either of Kuratowski’s two graphs or any other graph homeomorphic
to either of them. An outer planar graph is a planar graph that has a planar embedding
in which all the vertices of the graph lie on the exterior region (infinite region). A
maximal outer planar (MOP) graph is an outer planar graph in which the addition
of an edge between any pair of nonadjacent vertices will resultina non-outer-planar
graph. A MOP graph is Hamiltonian.

Several applications of the concepts discussed in this section exist in sensor net-
works. Some examples of these include the location of holes in sensor network
coverage and optimum deployment of sensors with the lowest number of nodes.

4.12 COLORING AND INDEPENDENCE

By coloring a graph, we mean assigning colors to each vertex of the graph. Some
authors have studied the problem of coloring the edges of the graph. They call it
edge coloring. Coloring the vertices is said to be vertex coloring. We restrict our
discussion to vertex coloring and so, using the term coloring, we mean only vertex
coloring. A “perfect” coloring is to assign colors to each of the vertices, such that
any two adjacent vertices get different colors.

Figure 4.45 shows a graph G and three different perfect colorings for G. The main
interest here is to color the graph using a minimum number of colors. Such a coloring
is called a perfect minimum coloring, and the number of colors used for minimum
coloring is called the chromatic number.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

84 DATA STRUCTURES FOR SENSOR COMPUTING

W = White

B = Blue

R = Red

Y = Yellow

BK = Black

BN = Brown

V = Violet

P = Pink

B

BN

BK
B

B G

V

B

Y

Y

R

R

R

Y
R

YW

Y

RY

RG

R

W

FIGURE 4.45 A graph with three perfect colorings.

The chromatic numbers of some well-known graphs are listed in the following
table:

Sensor Number Graph Chromatic Number

1 Kn n
2 Tree 2
3 A graph with no edge 1
4 A cycle of even length 2
5 A cycle of odd length 3
6 Bipartite graph 2

A complete subgraph is called a clique. A clique C with r vertices, is called an
r-clique. A clique C is said to be maximal if there exists no other clique that properly
contains C. The maximal clique of the greatest cardinality is called the maximum
clique. The number of vertices in the maximum clique is called the clique number. In
order to color an r clique, we need r colors. So, chromatic number = clique number.

4.13 CLIQUE COVERING

A clique cover of a graph G = (V, E) is produced by partioning V into V1, V2, . . . , Vk ,
such that each V , is a clique. In Table 4.9 we show two different clique coverings of
the graph G shown in Fig. 4.46.

The size of a clique cover Vi , V2, . . . , V refers to the number of partitioned sets
k. The clique cover of minimum size is called the minimum clique cover. A set of
vertices X of a graph G = (V, E) is called an independent set if any two vertices
of X are not adjacent in G. Independent sets are also called stable sets. A maximal

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

INTERSECTION GRAPH 85

TABLE 4.9 Clique Coverings for graph G in Fig. 4.46

Clique Covering 1 Clique Covering 2

V1 = 1 V1 = 1, 2
V2 = 10 V2 = 3, 4, 5
V3 = 2, 8, 9 V3 = 6, 7, 8
V4 = 6, 7 V4 = 9, 10
V5 = 3, 4, 5

independent an V set is an independent set X, where X ∈ vis not an independent set
for any vertex v not in X. The maximal independent set of largest cardinality is called
the maximum independent set. For the graph shown in Fig. 4.46, some independent
sets are shown below:

X1 = {1,4,8,10}, X2 = {1,10,6,3}, X3 = {8,4}, X4 = {1,7,10}

Among these, X1 and X2 are maximum independent sets. All the vertices of an
independent set can be colored with the same color. Each vertex of a clique needs to
be colored with a distinct color.

4.14 INTERSECTION GRAPH

A number of data structures, graphs, and trees that have been discussed previously
must also address a different need—integrating distributed data structures over sensor
networks. However, for many deeply embedded systems we need a standard definition
for a universal data structure that integrates various sensor network components
efficiently into a single address space. That is the topic in the next section of the
chapter.

Let F be a family of subsets. From the family F, we construct a graph G = (V, E)
as follows. The vertex set V has one–one (one-to-one) correspondence with F.

1

8

7

10

9

2

3
4

5

6

FIGURE 4.46 A graph with clique covering 1,2,3,4,5,6,7,8,9,10.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

86 DATA STRUCTURES FOR SENSOR COMPUTING

Two vertices of V are adjacent if and only if the corresponding subsets in F
have a nonempty intersection. The graph G constructed P in this manner from is
called the intersection graph of F. Let F = P1,P2,P3,P4,P5, where P = 1,2,3;
P2 = 2,3,4,5,6; P3 = 5,6; P4 = 6,7,8,9; P5 = 4,10. Let (v1, v2, . . . , v) be a cy-
cle of a graph. Any edge joining two nonconsecutive vertices V1 and V2 is called
a chord.

4.15 DEFINING DATA STRUCTURE OF SPANNING TREE PROTOCOLS

In the following paragraphs we define a new characterization of the data structure
focusing on the programming aspects of sensor networks. To do this, we define
flooding, replicated packet arrivals, and neighboring nodes all in the context of
spanning tree data structures:

� Flooding. In its simplest definition, floading refers to a situation in which a
networking device is overwhelmed with packets to such an extent that its pro-
cessing capabilities are severely degraded. Most devices facing such a situation
simply drop packets.

� Neighboring Nodes. The term neighboring nodes refers to sensor nodes in the
same proximity as another node. Typically sensors collaborate with neighbroring
nodes in processing tasks ranging from intermediate routing to computational
tasks with their direct neighbors.

More details on these networking concepts are provided in the chapters on wireless
sensor programming (e.g., Chapter 7).

4.15.1 Flooding

Owing to the broadcast nature of wireless sensor networks, messages can be easily
send to a node’s neighbors; then the neighboring nodes rebroadcast the packets to
their neighbors within range. Flooding generates replicated packet arrivals to each
node.

4.15.2 General Structure

The high-level structure uses a framework that has the capacity to send and receive
messages. Each node has a unique (ID) that is used to initiate each broadcast. Because
it is a broadcast, the destination is set as “FF,” which allows the receiving node to
rebroadcast the message untill all the nodes have received the messages from all other
nodes. This creates numerous duplicates and chains in the network path. The type of
data structure that is needed to store and optimize the minimal spanning tree would
need to have a unique node ID, a parent ID, and two lists, one of which keep strack of
new neighbors and another one that lists members of other, already existing, parents.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

DEFINING DATA STRUCTURE OF SPANNING TREE PROTOCOLS 87

FIGURE 4.47 Flooding from source to destination.

If the totals of both the lists are counted, the sum will be equal to the number of edges
in the network discovered. If all the edges equal maximum edges, then the program
can stop.

4.15.3 Programming Problem

Formulating a flooding based protocol for tree construction can be a basis to prove
that a general structure of message passing protocol in sensor networks can be used to
discover a general topology for generic sensor networks. Proving the above assertion
for a protocol programming, we would then eliminate cycles in the network and
ultimately make it possible to achieve a pathway from source to destination (Fig. 4.47).

We need to specify the protocol for nodes 0 · · · N . Initially all nodes are reset and
node 0 is initialized with an ID of 0 and root (r). Then the parent is set to root and
it broadcasts messages to all nodes 0 · · · N . Once the messages are received by other
nodes on the network that are currenly reset, it checks whether it has any parent ID;
if not, it will reply ACK only to its new parent as a subscribed neighbor. If a node
downstream has already been assigned, then it is a duplicate message and the node
sends a NAK to its requesting parent. All initialized parents will receive and send
ACK and will add the new neighbor to their lists. The protocol stops as soon as the
number of neighbors is fully discovered. The spanning tree is shown in Fig. 4.48.

4.15.4 Pseudocode

� Messages types

M: request message

Pi → Pj, valid parent: Pj is the parent of Pi

Pi → Pj, invalid parent: Pi has already been selected as parent node

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

88 DATA STRUCTURES FOR SENSOR COMPUTING

FIGURE 4.48 Spanning tree before (a) nonoptimal (b) optimal with no chains.

� Local data structure

Neighbors: set of process IDs

Children

Node ID

� Event and actions

This pseudocode describes a simple way of embedding a basic concept of spanning
tree data structure, (which was discussed in the data structures section.) Furthermore
the structure explained in this example allows to explore a combination of simulation
methodology and a code for a specific hardware driven topology of an actual sensor
network using the idea of flooding.

{
INITIALLY:

i: my own id;

r: root node id;

neighbors: Set of neighbors of i in the network;

parent: NIL;

children: empty set {0};
others: 0;

START:

if i = r and parent = NIL then

Send M to all neighbors;

parent = i;

OnReceive (Message M)

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

DEFINING DATA STRUCTURE OF SPANNING TREE PROTOCOLS 89

switch (M->type)

{
case: NEIGHBORS

if parent is NIL then

Send <parent> to pj

parent = pj

else

Send <reject> to pj

break;

case: PARENT

Add Pj to children

if children UNION others contains

all neighbors except parent

then terminate.

break;

case: REJECT:

Add Pj to others

if children UNION others contains

all neighbors except parent

then terminate.

break;

}
}

4.15.5 Model Approach

We need to consider the case of synchronous versus asynchronous networks. In a
synchronous nework the fooding message always starts from the root and foods to the
destination nodes. The longest path on the network is also called the diameter D. In
a asynchronous network the fooding messages can be initiated simultaneously from
each and every node and reach neighbors that are within range. This is sometimes
called on-demand fooding, where any node that needs to send data starts fooding to
find its destination on the network.

4.15.6 Complexity

This allows us to compare the performance of both types of fooding protocol in terms
of collision and maintenance of messages.

Message Overhead Message overhead complexity for both synchronous and asyn-
chronous operations is

Messages = 2 × E × number of message types (4.5)

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

90 DATA STRUCTURES FOR SENSOR COMPUTING

where E is the number of edges in the network. This is similar for both types of
network.

For the synchronous protocol model, time is measured as

Messages = O(D) (4.6)

where D is the diameter. For a synchronous model

Messages = O(N) (4.7)

where N is the total number of nodes in the network. In the worst-case scenario an
async protocol may construct a chain. The synchronous network is more optimal as
the diameter is always less than or equal to the total number of nodes.

PROBLEMS

4.1 What are some of the properties of data structures that enhance sensor pro-
gramming in the context of distributed sensor networks?

4.2 Define a few efficient data structures for spanning-tree protocols.

4.3 Explain in your own words the concept of homeomorphism.

4.4 Illustrate using examples the concept of isomorphism.

4.5 What is the fundamental difference between a graph and a tree?

4.6 Consider the abstract data type stack. Specify clearly the interface operations
for this data type. Make sure that you have accounted for all the exceptions
that may occur.

4.7 Repeat Problem 4.1 for the data type tree. Choose any type of tree.

4.8 Consider two sensor nodes located adjacent to each other. We would like to
build an abstract data type called binary tree, where the actual tree implemen-
tation may be distributed between the nodes. Give an interface specification
for one such tree. Explain how you will implement the operations.

4.9 Consider a small network N1 of wireless sensors. Draw the network as a graph
G1. Let n1 be the node that acts as the manager node for N1. Now consider
several such networks N2, N3, . . . , each represented by a graph G2, G3, . . .

with their manager nodes n2, n3, We want to manage the entire set of
networks by organizing hierarchically all their managers. Show a simple man-
agement organization of the managers n1, n2, . . . that represents a hierarchy.
In this hierarchy, how will you incorporate the other nodes in each network?
Show the resulting data structure for a simple example.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c04 JWBS038-Iyengar August 31, 2010 11:7 Printer: Yet to come

REFERENCES 91

REFERENCES

1. N. Chandrasekharan and S. Iyengar, NC algorithms for recognizing chordal graphs and
k-trees, IEEE Trans. Comput. 37:10 (1988).

2. S. S. Iyengar and R. Brooks, eds., Distributed Sensor Networks, CRC Press, (1995).

3. P. N. Klein, Efficient Parallel Algorithms for Planar, Chordal and Interval Graphs, Ph.D.
Thesis, MIT, Cambridge, MA, 1988.

4. P. N. Klein, Efficient parallel algorithms for chordal graphs, Proc. 29th IEEE Symp. Foun-
dation of Computer Section, Proc. 29th 1988, pp. 150–161.

5. S. Sastry and S. S. Iyengar, Distributed Sensor Networks, CRC Press, 2005.

6. A. S. Tanenbaum, Computer Networks, CRC Press, 2002.

7. C. Xavier and S. S. Iyengar, Introduction to Parallel Algorithms, Wiley, 1998.

www.finebook.ir

http://www.finebook.ir/../

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c05 JWBS038-Iyengar August 31, 2010 10:54 Printer: Yet to come

5 Tiny Operating System (TinyOS)

Simple things should be simple, complex things should be possible.
—Alan Kay

An operating system (OS) can be defined as the master program existing between
the computer hardware and the user. Its main purpose is the management and coor-
dination of various system resources, which may include hardware resources such as
hard disk, memory, peripheral device management, or nonhardware resources such
as managing processor timeslots. It provides equal access to these resources through
numerous system interfaces. Also, included in its role as a master program, an oper-
ating system can act as a host on which other programs can be executed, providing
systemwide services by which these programs can access shared resources. Typical
services provided by operating systems include networking services, file I/O, data
security, and provision of user interfaces. There are several types of operating system,
each differing only in its intended environment for use. Some common examples of
operating systems include real-time, embedded, single-user, and multiuser operat-
ing systems. In most wireless sensor networks, sensors implement a basic operating
system containing the minimum functions necessary to execute their tasks. This min-
imalist approach is of great importance because of the highly resource-constrained
nature of these sensing devices; operating system code and application code must re-
side in devices having much less than one megabyte (1 MB) of memory. Sensor-based
operating systems typically provide two basic services: a hardware abstraction layer
for accessing the various sensing devices and a network interface for communication.
There are several sensor-based OSes in use today; some of these are TinyOS, Contiki,
Mantis OS, BTnut, and Nano-RK. In the following sections we discuss TinyOS and
its associated programming language (nesC) in detail [1].

TinyOS, as its name implies, can be described as a miniature framework designed
for embedded systems that require very aggressive resource management due to the
highly constrained nature of their resources such as power and available memory
[3]. It implements the hardware abstraction layer and scheduler of a conventional
operating system, allowing generic programs that may have no knowledge of the
intricate details of the operations supported by the underlying hardware components
(such as sensors) to use well-defined interfaces to interact with these components.
Its C-language-like framework provides an interface to core system components,

Fundamentals of Sensor Network Programming: Applications and Technology, By S. S. Iyengar, N. Parameshwaran,
V. V. Phoha, N. Balakrishnan, and C. D. Okoye Copyright C© 2011 John Wiley & Sons, Inc.

92

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c05 JWBS038-Iyengar August 31, 2010 10:54 Printer: Yet to come

AN INTRODUCTION TO NesC 93

allowing a programmer to manage various services of the system. The two basic
software components/abstractions that constitute TinyOS are described below.

5.1 COMPONENTS OF TinyOS

TinyOS provides software abstraction for hardware components such as its commu-
nication, routing, sensing, and storage subsystems. Software components in TinyOS
refer to abstractions of specific services either provided by either another software
component or a hardware component. A software component consists of any number
of the following:

� Modules
� Configurations

5.1.1 Modules

Modules are the lowest form of abstraction provided by the TinyOS operating system.
They implement program logic that directly addresses a software component and can
also provide a particular set of services, thereby enabling the reuse of software
components. Other software components can interact with a module through its
defined interface, which specifies a set of operations/services that a particular module
implementation provides [3].

5.1.2 Configurations

On the other hand, abstractions of multiple modules and other configurations grouped
together form a newly abstracted component referred to as a configuration. A config-
uration can be visualized as a supercomponent consisting of several subcomponents
to provide a single unified interface. Configurations wire a set of components de-
fined in a component signature—this is the set of interfaces that a component uses
and provides to another component—thereby allowing two or more components to
communicate with each other [3].

5.2 AN INTRODUCTION TO NesC

In TinyOS the software component abstractions (modules and configurations) [3] are
written in a dialect of the C language called nesC. NesC contains a subset of features
of the standard C libraries and syntax with some extensions such as commands, and
events added to accommodate its event-driven approach to programming rather than
the traditional imperative style of many C-based languages. Due to the resource-
constrained environments typical of most sensors, these additional features in nesC
help improve the efficiency of programs written in the language. These new constructs
are outlined in Figs. 5.1–5.3.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c05 JWBS038-Iyengar August 31, 2010 10:54 Printer: Yet to come

94 TINY OPERATING SYSTEM (TinyOS)

TinyOS

Communication
Subsystem

Sensing
Subsystem

Storage
Subsystem

Power
Subsystem

FRAMEWORK

FIGURE 5.1 TinyOS system services.

Tire Module Engine Module Car Lighting
Module

Tire Color
Tire Pressure

TireType

Engine Temp
Engine Torfue
Engine Type

Light on
Light off

Tire Interface Engine Interface Light Interface

FIGURE 5.2 Three sample modules and their associated interfaces.

Tire Module Engine Module
Car Lighting

Module

Car
Configuration

Car speed
Car distance

Car Interface

FIGURE 5.3 Acar configuration consisting of multiple modules.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c05 JWBS038-Iyengar August 31, 2010 10:54 Printer: Yet to come

AN INTRODUCTION TO NesC 95

5.2.1 Split-Phase Operations: Commands and Events

In addition to the standard C-function declaration, functions can be declared as
commands, events or tasks.

command <return type> <command name> (<input parameters>)

command error t readSensor ()

event void <event name> (<returned messages and errors>)

event void readDone (error t result, uint16 t value)

Commands are functions already implemented by the called software component
in which its invocation and completion paths have been disassociated. In other words,
most commands when called return immediately without completion, and if any errors
or messages result at the end of its computation, a callback function is signaled. The
notion of having a separate callback function signaled after the completion of a
command is called split-phase. This is particularly useful since TinyOS contains no
blocking operations; therefore any long-running operation can immediately return
control to the calling program, and on completion a callback (signaling the event
associated with the command) function is signaled.

A command and Its Associated Callback Function Events are triggered in response
to some action; this may be after the execution of a command or in response to
messages from the environment. For example, the reception of a packet triggers an
event receive. Typically, events are not implemented by the called component but
rather are functions whose implementation details are left to the calling software
component. Simply put, events are methods that must be overridden by the caller. All
callback functions signaled after the termination of a command are events, in which
case their role would be to process the result of the terminated command.

Code Sample Illustrating the Split-Phase Concept In the blocking portion of the
code presented above, the program does not increment the SendCount variable
until the Read operation has completed and the conditional statement evaluated.
This program’s semantics are very different in the split-phase version of the code, in
which the Read command is called but does not halt the program flow. When the
reading operation is finalized, the event ReadDone is signaled with the value of the
reading and a message indicating whether the reading is a success or failure.

5.2.2 Tasks

Finally, a task function represents the TinyOS notion of concurrency. It allows a
function call to be deferred for a later time when the scheduler can process less
important tasks. Multiple tasks can be queued up in the task queue, which is a FIFO
(First-in/First-out) data structure. Unlike commands and events, a running task can
be preempted by the system when an interrupt occurs.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c05 JWBS038-Iyengar August 31, 2010 10:54 Printer: Yet to come

96 TINY OPERATING SYSTEM (TinyOS)

// Blocking Non Split-Phase
if (Read () == SUCCESS)

{
SendCount++;

}
//NonBlocking Split-Phase
//Start Phase
Sensor.Read ();

//Complete phase
event void ReadDone(error t err, uint16 value)

{
if (err == SUCCESS)

{
printf("Value read by sensor is \%d", value);

}
}

Syntax of a Task Function
task <return type> <task name> (<input param>)

task void computation (void)

5.3 EVENT-DRIVEN PROGRAMMING

Event-driven programming (or event-based programming) refers to a programming
paradigm in which program flow is determined by events [2, 3]. In wireless sensor
networks, where conservation of computational and energy resources is paramount,
event-based programming is very critical. In the absence of an event-driven approach,
programs running on these sensing devices would have to continuously poll the
system, checking for the occurence of certain events. This approach would be both
wasteful of system resources and highly ineffective in larger sensor networks, causing
program degradation. In TinyOS the event-driven programming approach allows for
fine-grained control over power usage while maintaining the scheduling flexibility
required in sensor networks due to their unpredictable nature. The following code
snippet shows how events can be triggered and handled in a nesC program:

if (call AMSend. send (packet, sizeof (Data)))

{
busy = TRUE;

}
event message t* Receive.receive (message t* msg, void* pay-

load, uint8 t len)

{ call Leds.led0Toggle;

busy = FALSE

}

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c05 JWBS038-Iyengar August 31, 2010 10:54 Printer: Yet to come

REFERENCES 97

In this code, a node sends a data packet using its radio and the send interface while
setting the busy flag to true. The data sent by node 1 triggers a corresponding receive
operation on all nodes within the transmission radius of the first node without the
need for continuous polling.

For a more complete description of TinyOS programming, the text by Levis and
Gay see [3].

PROBLEMS

5.1 Briefly explain the components of TinyOS.

5.2 Distinguish between modules and configuration.

5.3 For the car example illustrated in Figs. 5.2 and 5.3, give nesC code to specify
the “car” interface, “car” configuration, “tire” module, “engine” module, and
“car lighting” module.

5.4 Extend the nesC code in problem 5.3 by adding “brake” and “engine” modules
to the “car” configuration and by adding the “driver” configuration to the “car”
interface.

5.5 Explain the split-phase concept with an example.

5.6 Explain the task function with an example.

5.7 What is event-driven programming, and why is it critical for sensor network
programming?

5.8 Briefly discuss the following topics pertaining to nesC:

(a) Concurrency

(b) Synchronous code

(c) Asynchronous code

5.9 Specify a nesC interface for the following data types: stack, queue, singly
linked list, and binary tree.

5.10 Consider a data stucture composed of a stack and queue, and assume that
we want to build a datatype capable of manipulating the stack and queue
individually. Propose a nesC interface for this data structure.

REFERENCES

1. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, System architecture
directions for networked sensors, In In Architectural Support for Programming Languages
and Operating Systems, 2000, pp. 93–104.

2. R. Kumar and V. Garg, Modeling and Control Logical Discrete Event Systems, Kluwer
Academic Press, 1995.

3. P. Levis and D. Gay, TinyOs Programming, Cambridge Univ. Press, 2009.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c06 JWBS038-Iyengar August 31, 2010 10:54 Printer: Yet to come

6 Programming in NesC

Low-level programming is good for the programmer’s soul.
—John Carmack

6.1 NesC PROGRAMMING

Because of the highly resource-constrained nature and unpredictability associated
with wireless sensor networks, traditional programming techniques cannot be used in
the development of programs intended for use in these networks. Unlike conventional
programming techniques in which most resources are available locally and remote
resources could be accessed through persistent connections, sensor applications have
to contend with several factors that may lead to degradation in performance of the
sensor network, ranging from energy depletion, to limited or no connectivity, to
physical damage of the sensor hardware in hostile environments. In TinyOS-based
sensor networks a C-based language called nesC has been developed with several
constructs built in to mitigate some of these undesirable properties of sensor networks.
NesC shares a similar syntax with C but runs only on the TinyOS operating system.
The language is simple so that it can be used for programming embedded systems,
wireless sensor nodes, and similar applications, where efficiency in terms of speed
and memory is of utmost importance. The nesC language has features borrowed
from computer hardware such as the notion of components and subcomponents, each
interacting with the other via clearly defined interfaces, and the concept of split-phase
operation. We will present concepts in the nesC language using a sequence of simple
examples where we will attempt to explain one chosen concept at a time.

6.2 A SIMPLE PROGRAM

A typical nesC program (henceforth referred to as a component) consists of an inter-
face, a module, or several modules and a configuration file showing the connections
between the various components of the modules. An interface consists of a set of
clearly defined commands and event signatures that represent how interactions can

Fundamentals of Sensor Network Programming: Applications and Technology, By S. S. Iyengar, N. Parameshwaran,
V. V. Phoha, N. Balakrishnan, and C. D. Okoye Copyright C© 2011 John Wiley & Sons, Inc.

99

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c06 JWBS038-Iyengar August 31, 2010 10:54 Printer: Yet to come

100 PROGRAMMING IN NesC

occur between multiple modules [1]. An example showing how a simple PrintMes-
sage interface is implemented is shown below.

PrintMessage.nc. This interface, called PrintMessage, consists of a command
send and an associated event send-Done. Any component making use of this
interface can call the command send with the appropriate parameters and expect
the corresponding sendDone event to be signaled if there are no errors during
execution. The actual implementation of the command send is specified in the
PrintMessageC module shown below. By design, commands are implemented
in the “called” components while the “caller” handles the implementation of
the events.

interface PrintMessage

{
command error t send (char msg[20], uint8 t len);

event void sendDone (char msg[20], error t err);

}

PrintMessageC.nc. In terms of code, this is a version of the “HelloWorld” program
for sensor networks. When the send command is called from another compo-
nent, a message passed to the send command is printed on the screen using the
built-in debug function. Note that this message can been seen only when run in
a simulator since sensor nodes are devoid of any output except for some debug
LEDs. On printing, the sendDone event is signaled to indicate completion of
the command. This is another illustration of the callback function discussed
in the preceding chapter. As stated before, events are handled by the calling
program, in this case PrintClientC below, which “calls” the PrintMessageC
component. The rationale for the implementation of events in the caller is be-
cause a module making use of an interface provided by another component
is in a better position to deal with events generated due to the execution of
a command. Thus it can be said that PrintClientC makes use of the interface
PrintMessage and a particular implementation of PrintMessage is provided by
the component PrintMessageC.

module PrintMessageC

{
}
implementation

{
command error t PrintMessage.send (char msg[20],

uint8 t len)

error t err;

if(strlen (msg) < 20 && len < 20)

{
dbg("STD", "Message was \%s\n" ,msg);

err = SUCCESS;

signal PrintMessage.sendDone (msg, err);

}

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c06 JWBS038-Iyengar August 31, 2010 10:54 Printer: Yet to come

A SIMPLE PROGRAM 101

else

{
err = FAIL;

signal PrintMessage.sendDone (msg, err);

}
}

PrintClientC. This is a client module that uses a set of interfaces to print a Hello
World message. In this case, it uses two interfaces Boot and PrintMes-
sage and thus provides implementation for all the events defined in these two
interfaces. The nesC code for the Boot interface is shown below.

interface Boot {
event void booted ();

}

The Boot interface is synonymous with the main function in traditional C
programs providing a point from which program execution starts, that is, by
first initializing all components necessary for successful program execution.

module PrintClientC

{
uses interface Boot;

uses interface PrintMessage;

}
implementation

{
event void Boot.booted ()

{
call PrintMessage.send ("Hello World", 11);

}

event void PrintMessage.sendDone (char msg[20], error t err)

{
if (err == SUCCESS)

{
dbg ("std", "SendDone signalled with no errors \n");

}
else

{
dbg ("std", "SendDone signalled with an error \n");

}
}

}

So far we have defined an interface and implemented all our commands in one
module and the events in another module. Although our program (consisting
of two interfaces and two modules) is logically ready to run, there is one

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c06 JWBS038-Iyengar August 31, 2010 10:54 Printer: Yet to come

102 PROGRAMMING IN NesC

more issue that must be resolved before the program can execute successfully.
The PrintClientC module uses two interfaces (Boot, PrintMessage); therefore,
we must specify which components provide the particular implementation of
these interfaces since any of these interfaces could be provided by multiple
components. Which interface is implemented by which component is spec-
ified by wiring [1]. Each component contains a configuration file in which
the wiring details are specified. An example of a typical wiring is shown
below:

PrintClientC.PrintMessage → PrintMessageC.PrintMessage.

PrintClientC. PrintMessage is said to have been wired to PrintMessageC.
PrintMessage. It signifies the fact that the interface PrintMessage used in
the application PrintClientC uses the implementation of this interface pro-
vided by the module PrintMessageC. Similarly, the wiring statement Print-
ClientC.Boot → MainC.Boot shows that the Boot interface used by Print-
ClientC is provided by Boot in MainC, where MainC is the system component.
This wiring is indicated in a module called the configuration module, described
below.

PrintClientAppC.nc. The configuration module first lists all the components whose
names appear in this module and then gives the wiring connections (as we
discussed above). Wiring is discussed in more detail in Section 6.2.5.

With this our application code is complete, and we are now ready to execute
the program. By convention, the TinyOS system invokes a command some-
where, which results in the invocation of the event booted implemented in the
module PrintClientC. Thus the system starts executing the event booted, which
is where our program execution begins as far our program is concerned. Once
the execution of booted is started, we call PrintMessage.send, which
prints the message “Hello World.” After printing, this command signals back
to invoke the event PrintMessage.sendDone to indicate whether the command
was executed correctly, and prints a message appropriate for the error reported
by the command. We can now show the overall structure of our program (rather,
component) using the component diagram in Fig 6.1.

configuration PrintClientAppC

{
}
implementation

{
components MainC;

components PrintMessageC;

components PrintClientC;

PrintClientC.Boot -> MainC;

PrintClientC.PrintMessage -> PrintMessageC;

}

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c06 JWBS038-Iyengar August 31, 2010 10:54 Printer: Yet to come

A SIMPLE PROGRAM 103

PrintClientAppC

PrintClientC

PrintMessage

PrintMessage

sendDone

sendPrintMessageC

Init

init
Init

MainC
Boot Boot

booted

FIGURE 6.1 Component architecture for PrintClientAppC.

Although this program is a simple one, it illustrates several issues that one
has to deal with while writing a nesC program, which can be summarized as
follows:

Define an interface I.
Provide implementation for the commands from the interface in a module M1.
Provide implementation for the event from the interface in a module M2 that

invokes the commands.
Provide a configuration module showing the wiring details.

It is now easy to modify our initial implementation and interface built for
PrintMessage to perform more complex tasks. The interface PrintMessage-
multi shown below adds a new sending command (send2) and its associated
event send2-Done.

PrintMessage-multi.nc. Implementing this new interface requires the addition
of one new command in our PrintMessage implementation in which the event
send2-Done will be signaled. By now, the role of events should be more apparent
in interface declarations. The notion of commands is fairly easy to understand.
Commands are functions that a component C calls in order to achieve some
result. Execution of a command might produce the desired result in addition
to other exceptions. What to do with the result and the exceptions is not the
command executor’s job; rather, it is the caller C’s responsibility, and what
exactly C would like to do with the results and the exceptions should be defined
in the component C. In the current example, we can imagine that the event
send1-Done corresponds to the command send1, and the event send2-Done
corresponds to the command send2.

interface PrintMessage-multi{
command error t send1(char msg[20]> uint8 t len);

command error t send2(char msg[20]> uint8 t len);

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c06 JWBS038-Iyengar August 31, 2010 10:54 Printer: Yet to come

104 PROGRAMMING IN NesC

event void send1-Done(char msg[20]> error t err);

event void send2-Done(char msg[20]> error t err);

}

6.2.1 Tasks

As we have seen before, the completion of an operation, in the split-phase strategy,
is signaled by invoking a corresponding event. Initially, it might seem harmless to
signal an event from a different component at the end of the code that implements the
operation (this is what we have done in PrintMessageC.nc above). Serious problems
can sometimes arise with this approach. For example, if the code for a command C
makes a direct call to its corresponding event, and the event in turn makes a call to the
command C, then this might cause a potentially long loop, causing the system stack
to overflow. We can avoid this by using a task, which is a deferred procedure call
[1]. The command C, instead of signaling its corresponding event e immediately, can
create a task that signals the invocation of the event e, and then post it on the system
queue. The task will eventually be executed, thus potentially avoiding the creation of
a long loop. PrintMEssageC below shows how to implement sendDone as a task.

module PrintMessageC {
provides interface PrintMessage;

}
implementation {
command error t PrintMessage.send (char msg[20], uint8 t len)

{
error t err;

if (strlen(msg)< 20 && len < 20)

{
dbg("std","Message was %s\n",msg);
err = SUCCESS;

post sendDoneTask(msg, err);

return err;

}
else {
err = FAIL;

post sendDoneTask (msg,err);

return err;

} // end commad

} // end implementation

task void sendDoneTask (char msg[20], err) {
signal PrintMessage.sendDone(msg, err);

}

PrintMessageC Implementation A task when posted goes into the queue and waits
in the queue until it is dequeued and serviced by the system. Long-running tasks

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c06 JWBS038-Iyengar August 31, 2010 10:54 Printer: Yet to come

A SIMPLE PROGRAM 105

can be broken down into chunks and reposted on the queue. Tasks are defined to
be non-preemptive with respect to one another. In other words, if a task is running,
then any other tasks ready to run will have to wait until the currently running task
is completed. So, if there were any shared variables, their values will be protected
from any other tasks changing it. For this reason, it is often advisable that tasks be
reasonably small so that they can run to completion quickly in order to allow the
waiting tasks to start running.

6.2.2 Asynchronous Commands and Events

The commands in an interface can be classified into two types:

� Asynchronous
� Synchronous

The async keyword preceding a command name denotes a command that may
run in asynchronous context. By default, all command declarations in TinyOS are
synchronous [1]:

interface PrintMessage-multi<val t>

{
async command error t send1(char msg[20], <val t> len);

async command error t send2(char msg[20], <val t> len);

async event void send1-Done(char msg[20], error t err);

async event void send2-Done(char msg[20], error t err);

}

This code redefines our earlier interface PrintMessage-multi making each
command and event asynchronous. An async command or event runs preemptively
in the sense that it can be preempted before completion. All async elements can
only interact with other async components. For example, an asynchronous command
can only call other asynchronous commands. When a need to signal an event
arises (signaling is synchronous in nature), the asynchronous command can post a
task (asynchronous in nature), which then signals the event. By default, all code
written in nesC is synchronous, but the addition of the keyword async denotes it as
being asynchronous. Asynchronous operations usually have short execution cycles.
Some examples of asynchronous elements in TinyOS are interrupt handlers. In the
following sections, we discuss the main drawback of having asynchronous elements
and ways to mitigate it.

6.2.3 Preemption Problems

One issue with async functions is that when an async function is preempted by
another function modifying the same shared variables, it can affect the underlying
computation, producing erroneous results. Consider the following example.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c06 JWBS038-Iyengar August 31, 2010 10:54 Printer: Yet to come

106 PROGRAMMING IN NesC

int x = 1;

async command int add() {
x = x +1;

// interrupt at this line #1.

if (x % 2 == 0) return TRUE;

else return! FALSE;

}

When this function runs without interruption for the first time, it returns TRUE.
Suppose that it is preempted at line 1 by itself; then the new call of the function will
increment the value of x again, making it 3, and the new call will return FALSE. After
this, when the previous call continues, it will find the value of x to be 3 (erroneous)
and the function will return FALSE instead of TRUE. One traditional solution to
this problem is to make sure that when variables such as those stated above are
shared across multiple processes, they must be protected, and this is done in nesC by
declaring “atomic” blocks of code.

6.2.4 Atomic Block

An atomic block of statements is a sequence of statements that are executed to
completion without preemption (being interrupted) by the TinyOS system. When
async functions are used, we need to be careful about variables shared among multiple
components. In such situations, atomic blocks of statements are useful. On the other
hand, excessive use of atomic blocks of statements can degrade the performance of
the TinyOS system. Finally, care must be taken to ensure that cyclic dependences do
not occur in atomic code since they lead to deadlocks in the system. Thus, programs
using async commands must make use of atomic blocks only when shared variables
are used. An example of an atomic statement is presented below.

int x = 1;

async command int add()

{
atomic

{
x = x+1;
if ((x % 2) == 0) return TRUE;

else return FALSE;

}
}

In this example, multiple invocation of the async command share the values of the
variable x. However, for a given invocation, the atomic block is not preemptable, and
thus we will clearly know what result this function is returning. Note that atomicity
does not necessarily mean total absence of preemption.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c06 JWBS038-Iyengar August 31, 2010 10:54 Printer: Yet to come

A SIMPLE PROGRAM 107

6.2.5 Wiring

In our earlier example we explained how to perform wiring so that module commands
and events can be appropriately called during execution. There are a few more special
cases that still need discussion.

configuration CC2420TransmitC

{
provides interface Init;

}
implementation

{
components Alarm, CC2420TransmitP;

Init = Alarm;

Init = CC2420TransmitP;

}

Fanout In Fig 6.2, we have shown four components, CC2420TransmitC,
CC2420TransmitP, Init, Alarm, and TransmitApp corresponding to configu-
ration CC2420TransmitC shown (using nesC code) above. The Transmit-
App component makes use of the Init interface provided by CC2420TransmitC.

TransmitApp

Init

CC2420TransmitC Configuration

CC2420TransmitP Alarm

FIGURE 6.2 Flowchart illustrating the concept of fanout wiring.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c06 JWBS038-Iyengar August 31, 2010 10:54 Printer: Yet to come

108 PROGRAMMING IN NesC

This Init interface is wired to the interfaces provided by components Alarm and
CC2420TransmitP. Therefore, when a command is called from TransmitApp to the
Init interface, it fires the respective commands in both Alarm and CC2420TransmitP
components. This multiple wiring from one component to multiple components is
called Fanout wiring. Correspondingly, there is the opposite situation where multiple
callers are calling one callee as in the example below, which is known as fanin wiring.

Fanin Suppose that a command c is invoked from component A and component
B, where c is implemented in an interface implemented in another component C.
(See code below.) This is an example of fanin. When C issues a corresponding
event signal indicating the completion of the execution of the command c, the event-
handling functions of both A and B are invoked, and as before, the order in which
they are invoked is unknown. An

{
components A, B, C;

A. IF -> C. IF;

B. IF -> C. IF;

}

interface may be used by more than one user(fan in). Similarly, an interface may be
provided by more than one provider(fan out).

PROBLEMS

6.1 Explain the concepts of fanin and fanout.

6.2 Summarize the notion that tasks represent in TinyOS.

6.3 What is an asynchronous command?

6.4 What issues arise when atomic blocks are improperly used?

6.5 Write a simple application to continually increment a counter value and send
to another mote where the process is repeated.

6.6 Refer to the interface folder in theTinyOS system: tos/interfaces.

6.7 Examine the interface Leds.nc, and find out what each command does.

6.8 Consider the interface Boot.nc. Why does it have only one event function?

6.9 Consider the interfaces StdControl.nc and SplitControl.nc. What difference
do you find between these two interfaces?

6.10 Provide a complete implementation for the data type stack, and show its wiring
diagram.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c06 JWBS038-Iyengar August 31, 2010 10:54 Printer: Yet to come

REFERENCE 109

6.11 Consider a simple monitoring application where we use two nodes n1 and n2.
Each node (e.g., n1) when sensing an object within its range raises an alarm
(by turning its red light on), and at the same time sends an alert message to
the other node (n2), which turns its green light on. We need to implement this
in nesC. Give the interface descriptions, and show the implementation of each
interface function. Also, show the final overall wiring diagram.

REFERENCE

1. P. Levis and D. Gay, TinyOs Programming, Cambridge Univ. Press, 2009.

www.finebook.ir

http://www.finebook.ir/../

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c07 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

PART III
Sensor Network Implementation

111

www.finebook.ir

http://www.finebook.ir/../

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c07 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

7 Sensor Programming

Programming is an artform that fights back.
—Chad Z. Hower

As sensing devices become more complex, applications are being developed that
exploit the increased power these devices provide. Traditional programming models
and abstractions only inadequately capture these newly found evices, and thus there
is a need to develop different types of techniques that naturally exploit the power
of these sensing devices. Sensor programming models should essentially support
abstractions over collections of sensor devices, heterogeneous data emanating from
these devices, and their data storage capabilities. A sensor network can be viewed
from several angles. Our view is committed to a programmer’s perspective where a
programmer would like to program the nodes in the network at a fairly detailed level,
and at the same time is interested in programming the network at the abstract group
(cluster) level. At the node level, a sensor can be viewed as a sensing device that
senses the environment measuring, for example, temperature, pressure, and smoke
intensity. At the higher level, we view a collection of nodes as a distributed source of
data streams.

7.1 PROGRAMMING CHALLENGES IN WIRELESS
SENSOR NETWORKS

One of the main challenges in wireless sensor programming involves updating and
managing several resource-constrained nodes that interact in real time with the phys-
ical world, where these nodes cannot be easily accessed. We first discuss some of the
system interfaces available in TinyOS [2].

7.1.1 System Interfaces

In the examples in earlier chapters, we defined our own interfaces, provided im-
plementation modules, and wired configurations. The nesC [2] language is meant
primarily for programming embedded systems such as motes (tiny devices) in wire-
less sensor network applications. The PrintMessage program we wrote in Chapter 6
is hardly useful in nesC applications, since such programs could be written much

Fundamentals of Sensor Network Programming: Applications and Technology, By S. S. Iyengar, N. Parameshwaran,
V. V. Phoha, N. Balakrishnan, and C. D. Okoye Copyright C© 2011 John Wiley & Sons, Inc.

113

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c07 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

114 SENSOR PROGRAMMING

more comfortably in C. So, if we want to use the sensing and the wireless trans-
mission capability of the motes, we need to get acquainted with the rich collection
of built-in interfaces, library of modules, prewired configurations, and predefined
types supported in nesC. In order to acquaint ourselves with some of the simple
interfaces, modules, and configurations, let us begin with an example provided in the
TinyOS package, called PowerUp. This program uses two interfaces, Boot and Leds,
which are already provided in the system, and does not seem to require any other
interfaces.

PowerupC.nc
module PowerupC

{
uses inter face Boot;

uses interface Leds;

}
implementation

{
event void Boot.booted()

{
call Leds.led0On ();

}
}

PowerupAppC
configuration PowerupAppC{}
implementation

{
components MainC;

components LedsC;

components PowerupC;

/*The following statements denote the fact that

the interfaces Boot and Leds used in PowerupC are

provided(implemented) in the components MainC and LedsC

respectively, provided in the system. */

PowerupC.Boot -> MainC;

PowerupC.Leds -> LedsC;

}

Thus, note that there are no interface declarations in this example. We are already
familiar with the Boot interface. What is more interesting is the interface Leds, which
specifies commands for controlling the LEDs (light-emitting diodes) mounted on the
motes by the manufacturer.

The Telosb mote supplied byCrossbowTechnology supports three LEDs of colors
red, green, and blue [1]. The interface Leds (see code below) provides commands for
controlling each LED. Additionally, it provides commands for obtaining and setting
the mask bits that are used to control the three LEDs. Since the module PowerupC (see

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c07 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

PROGRAMMING CHALLENGES IN WIRELESS SENSOR NETWORKS 115

PowerupAppC

PowerupC

MainC

LedsC

Provides

Uses

FIGURE 7.1 Component architecture for PowerupAppC.

also Fig 7.1) uses the interfaces Boot and Leds, we need to provide implementation
for both of them.

// Courtesy of TinyOS

//authors : Philip Levis and Joe Polastre

//description : TinyOS Interface Leds

interface Leds {

// Turn on and off individual LEDs

async command void led0On();

async command void led0Off();

async command void led0Toggle();

async command void led1On();

async command void led1Off();

async command void led1Toggle();

async command void led2On();

async command void led2Off();

async command void led2Toggle();

// Get the mask bits for the LEDs.

async command uint8 t get();

// Set the mask bits for the LEDs.

async command void set(uint8 t val);

}

In order to provide implementation for these interfaces, we browse through
the modules and configurations provided in the TinyOS system, and we find that
the configuration MainC provides an implementation for the interface Boot and the
configuration LedsC provides an implementation for the interface Leds. We specify
this implementation of the interfaces by the following wiring statements:

PowerUpC.Boot → MainC

PowerUpC.Leds → LedsC (can also be written as LedsC ← PowerupC.Leds)

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c07 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

116 SENSOR PROGRAMMING

The code below shows how TinyOS has implemented the interface Leds.

//Courtesy of TinyOS

//authors: Phil Buonadonna, David Gay, Philip Levis, and Joe Polastre

//description: TinyOS Configuration File LedsC

configuration LedsC {
provides interface Leds;

}
implementation {
components LedsP, PlatformLedsC;

Leds = LedsP;

LedsP.Init <- PlatformLedsC.Init;

LedsP.Led0 -> PlatformLedsC.Led0;

LedsP.Led1 -> PlatformLedsC.Led1;

LedsP.Led2 -> PlatformLedsC.Led2;

}

We can now draw the component architecture for PowerupAppC, which contains
three subcomponents, two of which were provided by the system facilitating our task
of building our component PowerupAppC.

Note that the configuration LedsC provides an implementation for the interface
Leds by further wiring Leds to LedsP using the statement

Leds = LedsP

and the interfaces of LedsP to the interfaces of PlatformLedsC, which is defined
elsewhere in the system. If we really want to understand how the interface Leds
is actully implemented, we need to explore the system further for explanations of
PlatformLedsC, which we will not do. In order to run our program, all we need
is an implementation of the interface Leds, and we have found one, namely, the
configuration LedsC, which provides interface Leds. We can now run the program
PowerupC. As we discussed in the previous example, when a program is run, the
event booted is invoked (which we have given in PowerupC), which calls led0On()
to turn the red LED on. Before we close the discussion on this example, let us revisit
the wiring concept again. The wiring

A · X → B · Y

means that the interface X used in component A is provided by interface Y in com-
ponent B. The wiring

B · Y ← A · X

also means the same thing. Sometimes we also use the operator = as shown below
in a configuration component C.

X = Y

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c07 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

PROGRAMMING CHALLENGES IN WIRELESS SENSOR NETWORKS 117

This means that component C provides interface X by exporting Y , where Y is the
component that it uses. Now that we have seen some system interfaces and their
implementations as provided by the system, we take this opportunity to look at some
more interfaces and get acquainted with them as they often may be useful in the
applications that we want to develop.

7.1.2 The Timer Interface

One important interface that we will often need in our implementations is Timer.

// Courtesy of TinyOS

// authors: Cory Sharp

// description: TinyOS Timer Interface

interface Timer<precision tag>

{
command void startPeriodic(uint32 t dt);

command void startOneShot(uint32 t dt);

command void stop();

event void fired();

command bool isRunning();

command bool isOneShot();

command void startPeriodicAt(uint32 t t0, uint32 t dt);

command void startOneShotAt(uint32 t t0, uint32 t dt);

command void command uint32 t getNow();

command void command uint32 t get t0();

command void command uint32 t getdt();

}

This is particularly useful in the context of wireless sensor programming, where we
have to be aware of time, and this is achieved by starting a clock at the beginning
and managing it from then on. Since batteries have limited lifetime, we need to save
energy by avoiding unnecessary transmissions, particularly when other nodes are not
listening. Thus, there is a need to go into sleep mode as often as possible, and when the
sensor node wants to go into sleep mode, it has to make sure that other nodes are not
trying to interact with it by, for example, trying to send some data or waiting for data to
be sent. This requires planning activities well in advance so that everything is sched-
uled and executed in the planned way, and we need a timer for this. In fact, there are two
important resources that a node must share with the other nodes: time and the medium.
The Timer interface provides all basic operations that we need to manage the time
within a node. The Timer is also an example of parameterized interfaces. In the Timer
interface declaration precision tag is a type parameter that can be instantiated to give
the timer the required precision. For example, TinyOS defines the following types:

typedef struct { int notUsed; } TMilli;

typedef struct { int notUsed; } T32khz;

typedef struct { int notUsed; } TMicro;

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c07 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

118 SENSOR PROGRAMMING

These types define the precision of a clock that we want. TMilli refers to a
precision of one millisecond (1-kHz clock), T32khz refers to a 32-kHz clock, and
TMicro refers to a microsecond clock.

Sometimes in our programs we will need a regular clock that, when execution
starts, begins running as any real world clock would do. Such clocks are im-
plemented using the startPeriodic command. Suppose that we have an interface
Timer<TMilli>, then startPeriodic(250) of this timer will start a 250-
kHz clock that fires 250 × 1023 pulses every second starting from now until this
timer is stopped, where as startOneShot(250) fires only one pulse after 250
milliseconds, starting from now, and then stops.

An operation that is important to sensor programming is provided by the event
fired(). Whenever a timer fires a pulse, the TinyOS system invokes the event
fired() to signify the fact that time has advanced by a unit of time. We will be using
this feature often whenever we use the Timer interface. This also, of course, means
that we need to implement the event function fired() since we use the interface.
Sometimes it is useful to start the timer after some delay, and we can do this using
the command, for example, startPeriodicAt(5,250) which starts a periodic
timer with a precision of 250 milli-seconds beginning 5 milli-seconds from now. Other
commands are described in the system, and we will illustrate how to use some of
them in the examples below. Fortunately, the Timer interface is already implemented,
so it will suffice if we learn how to call its various commands and the event.

Given below is a simple application where we have used one command function
and the event function from the interface Timer. As we know by now, an applica-
tion will consist of interface definitions, their implementations using modules, and
configurations showing how the components are wired together. In this example we
use three interfaces Timer, Leds and Boot, and all these interfaces have already been
implemented in the system, so our only task is to implement only the events defined
in these interfaces.

module TwinkleC {
uses interface Timer<TMilli> as MyTimer;

uses interface Leds;

uses interface Boot;

}
implementation {
event void Boot.booted() {
call MyTimer.startPeriodic(200);

}
event void MyTimer.fired() {
call Leds.led0Toggle();

}
}

This program describes a module Twinkle, where we have shown an implementa-
tion for the event function booted() from the interface Boot, and the event function

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c07 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

SENSING THE WORLD 119

FIGURE 7.2 An illustration of where Timer drives led0.

fired() from the interface Timer, and have inserted calls to commands that toggle
the red LED. Let us now explain how the control flow occurs in this code. To begin
with, note that we have chosen a time of millisecond precision and renamed it as
MyTimer. When we run this application, the TinyOS system will begin its execution
by calling the event function booted(). Inside booted(), we call the command
function from the interface MyTimerstartPeriodic(200), which starts a clock
that fires a pulse every 200 milli-seconds. Thus the control flow of execution that
started with booted() has jumped to startPeriodic(200). As we have said
before, whenever a clock pulse is fired, the event function fired() from Timer is
called, and thus the control has flown now to the event functionMyTimer.fired(),
where we call the command function led0Toggle(), which toggles the red LED.
When the clock fires its next pulse after another 200 milli-seconds, the red LED
toggles again. This continues indefinitely, as we have illustrated in Fig 7.2. We now
can complete the application by specifying the components that provide the inter-
faces that we have used in the module TwinkleC, and this is done in TwinkleAppC
which shows the required wiring. As we know, LedsC provides (the implementation
for) the interface Leds, and MainC provides the interface Boot. We should now also
remember that TimeMilliC provides an implementation for the Timer interface. Note
that this has been renamed as SystemTimer0.

configuration TwinkleAppC {
components MainC, TwinkleC, LedsC;

components new TimerMilliC() as SystemTimer0;

TwinkleC.Boot -> MainC.Boot;

TwinkleC.Timer0 -> SystemTimer0;

TwinkleC.Leds -> LedsC;

}

7.2 SENSING THE WORLD

We will now look at one application where we sense the world using the sensor
mounted on the mote, and turn on the LED if the data we read have a 1 as the

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c07 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

120 SENSOR PROGRAMMING

least significant digit. This contains a module SenseC, an interface Read, and a
configuration SenseAppC.

// Courtesy of TinyOS
// authors: Jan Hauer
// description: Sense Application \label{prog7}
module SenseC

{
uses

{
interface Boot;

interface Leds;

interface Timer<TMilli>;

interface Read<uint16 t>;

}
}
implementation

{
event void Boot.booted() {
call Timer.startPeriodic(10);

}
event void Timer.fired()

{
call Read.read();

}
event void Read.readDone(errort result, uint16 t data)

{
if (result == SUCCESS)

{
if (data & 0x0001)

call Leds.led0On();

else

call Leds.led0Off();

}
}

SenseC This module uses four interfaces, three of which we have already seen:
Boot, Leds, and Timer. (See code above.) The fourth interface, Read is described
below.

Read This interface provides one command function and one event function to read
the sensor and return the value read.

interface Read<val t> {
command error t read(); {

event void readDone(error t result, val t val);

}

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c07 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

SENSING THE WORLD 121

The commandread() is invoked for the read operation. We can access the results
of the read command by calling the event function readDone(result,val).
When we call as readDone(result,val), we can retrieve the value of the data
read in the parameter val if the result of reading was successful, i.e., if result =
SUCCESS. Otherwise, parameter val may contain arbitrary values.

It is now easy to understand the SenseC module, and we now specify the wiring.
We need to know that Read is implemented in DemoSensorC (providedbyTinyOS),
an instance of which has been renamed as Sensor.

SenseAppC This is the configuration that shows the wiring required. As we did
before, the interface Boot is implemented by MainC, Leds by LedsC, Timer by
TimerMilliC, and Read by Sensor.

// Courtesy of TinyOS
// authors : Jan Hauer
// description : Sense Application Configuration
configuration SenseAppC {
}
implementation {
components SenseC, MainC , LedsC, new TimerMilliC(),

new DemoSensorC() as Sensor;

SenseC.Boot -> MainC;

SenseC.Leds -> LedsC;

SenseC.Timer -> TimerMilliC;

SenseC.Read -> Sensor;

}

The StdControl interface (defined in TinyOS as shown in StdControl code below)
is an important interface that can be used to turn on and off a component C that
provides (an implementation of) this interface. The start command can be used to
turn on the component C and the stop command to turn it off.

Finally, we have shown in Figure 7.3 the flow of control in the nesC program
execution as the application executes. The TinyOS system invokes the even booted()
which calls the command StartPeriodic(). The StartPeriodic command invokes the
event fired() which calls the command read () implemented in the Read module of the
System. When the data is read by the read() command, readDone() event is invoked
which calls the command leld0on() to turn the light on.

// Courtesy of TinyOS
// authors: Kevin Klues and Joe Polastre
// description: TinyOS StdControl Interface
interface StdControl {
command error t start(); {
command error t stop();

}

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c07 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

122 SENSOR PROGRAMMING

FIGURE 7.3 Control flow shown using an and-or graph.

7.3 APPLICATIONS USING THE INTERFACE SplitControl

SplitControl is an interesting interface that provides an opportunity for the program-
mer to write programs in an embedded system where a physical hardware system and
its equivalent software-simulated system can be used interchangeably. Accordingly,
SplitControl can also be viewed as an extended concept of StdControl and as the
split-phase counterpart to the StdContol interface. The TinyOS programming manual
[3] delves into more details.

//Courtesy of TinyOS
//authors: Kevin Klues and Joe Polastre
//description: TinyOS SplitControl Interface
interface SplitControl

{
command error t start();

event void star tDone(error t error);

command error t stop();

event void stopDone(error t error);

event void stopDone(error t error);

}

7.3.1 Sensing the Temperature

In this application, we show how we can read the temperature using a sensor node
(mote) and turn an LED on.

SightC The module SightC uses five interfaces, and thus it needs to provide im-
plementations for all the events that are declared in those interfaces. Every function
defined in this module implements an event except the last function, errorReporter,

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c07 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

APPLICATIONS USING THE INTERFACE SplitControl 123

which is called locally to turn the red LED on/off. We need to find an implemen-
tation for each one of these interfaces. We already know which system components
provide implementations for Boot, Timer, and Leds. Reading the temperature sensor
will require device-dependent command functions, so let us commit ourselves to the
TelosB mote (Crossbow Technology). The TinyOS system provides a component
named Msp430InternalTemperatureC(), which provides an implementa-
tion for the Read interface. We can directly wire to this component, but for the sake
of readability let us define a configuration called TemperatureC to provide the inter-
face Read. This is done simply by exporting Msp430InternalTemperatureC.
Read as Read using the = wiring operator. Note that Read is declared in the statement
provides in TemperatureC.

generic configuration TemperatureC() {
provides interface Read<uint16 t>;

}
implementation {
components new Msp430InternalTemperatureC();

Read = Msp430InternalTemperatureC.Read;

}

We now provide the code for the module SighC.

module SightC

{
uses

{
interface Boot;

interface SplitControl as SightControl;

interface Timer<TMilli>;

interface Read<uint16 t>;

interface Leds;

}
implementation

{
void errorReporter(int error);

uint16 t sensor value = 0;

event void Boot.booted()

{
errorReporter(1);

if((call SightControl.start()) != SUCCESS)

errorReporter(1);

}
event void SightControl.startDone(error t err)

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c07 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

124 SENSOR PROGRAMMING

{
if(err == SUCCESS) ({
{
errorReporter(0);

call Timer.startPeriodic(TIMER FREQUENCY);

}
else

{
errorReporter(1);

}
}
event void SightControl.stopDone(error t err) { }
event void Timer.fired()

{
call Leds.led2Toggle();

if((call Read.read()) != SUCCESS)

errorReporter(1);

}
event void Read.readDone(errort result , uint16 t val)

{
if(result == SUCCESS) {

sensor value = val;

call Leds.led1Toggle();

}
else

{
errorReporter(1);

}
}
void errorReporter(int error) {
if(error == 1) {

call Leds.led0On();

}
else {
call Leds.led0Off();

}
}

}

Finally the following code for the configuration shows how wiring is done.

configuration SightAppC { }
implementation

{

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c07 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

APPLICATIONS USING THE INTERFACE SplitControl 125

components MainC;

components ActiveMessageC;

components new TimerMilliC() as Timer0;

components new TemperatureC() as Sensor;

components SightC;

components LedsC;

SightC.Boot->MainC;

SightC.SightControl->ActiveMessageC;

SightC.Timer->Timer0;

SightC.Read->Sensor;

SightC.Leds->LedsC;

}

7.3.2 PacketSender

This is a simple example where we send a packet of data from one mote (sensor node)
to another mote and also illustrate how to use the three intrfaces Packet, AMsend,
and Receive. This is the first example where we attempt communication from one
node to another. Fig 7.4 shows node A transmitting a packet of data to node B. In the
program we discuss below one node creates a packet consisting of an integer number,
sends it to a neighboring node and waits for a message from it. (We load a copy of
this application program in each node.) It uses the LEDs to display the intermediate
states of execution indicating the end of subtasks that are achieved successfully as
the application continues to run.

It should by now have become clear to us that we will be needing the following
interfaces: Boot to boot (start) application, Leds to display the intermediate states
of the execution (LEDs are the only output devices we have for the human to look
at and understand what is happening inside the sensor nodes), and Timer to run
a clock that can generate clock pulses to fire events. We will also need interfaces
for communication purposes. The interface AMSend can be used for sending and
Receive for receiving packets of messages. We need one interface that can be used
to manipulate with packets, and this can be done using the interface Packet. We
would also like to have the turn on and turn off control on the transmission/receiving
hardware components, so we will employ the interface SplitControl for this purpose.
Module PacketSenderC shows nesC code that implements the packet sender. Note
that SplitControl has been renamed as PSControl.

FIGURE 7.4 Node A sending a packet to Node B.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c07 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

126 SENSOR PROGRAMMING

FIGURE 7.5 Control flow PacketSenderC.

The module shows the list of interfaces used, a few global variables declarations,
and the prototypes of the functions that are defined in the module. In order to
understand how the module works, let us trace the control flow of execution starting
from the event function booted() from the interface Boot. See Fig 7.5 where we have
depicted the call sequence of the command and even functions as the module starts
execution.

Solid arrows show one thread of control and the dotted arrow the other. Let us
start with the top most node in the graph, namely, booted. As we may recall, the
TinyOS system begins its execution at the event function Booted.booted (). (As we
trace down in the figure, the reader may also want to verify the control flow in the
program module.)

Boot.booted() invokes PSControl.start() to turn on the transmission/receiver hard-
ware component which attempts to turn on the component and returns the results
in the parameters of the event function PSControl.startDone(). The event function
startDone() checks to see if there has been any error in starting the device. If there
was any error, we go back and call the start() function again. However, if the starting
of the device was successful(that is, error=success), we start the clock by calling

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c07 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

APPLICATIONS USING THE INTERFACE SplitControl 127

Timer0.startPeriodic() which invokes the event function Timer0.fired(). (See imple-
mentation for event PSControl.startDone() below.) As soon as this happens in the
function fired(), we turn the LEDs (by setting the bits to 0011) on showing that we
were able to successfully start the transmission device. (See left branch in Fig 7.5.)
Then we proceed to send a packet (calling sendPacket()) by first constructing the
packet (calling Packet.getpayload()), and then sending it by calling AMSend.send().
The command send() upon completion of its task invokes the event function
AMSend.sendDone which verifies if the packet was successfully sent. (See code
for event void AMSend.sendDone() below.) We then go back and turn on the LEDs
to indicate that the packet was successfully sent. (See middle branch under the node
labeled booted.) Also, note that this part of the code appears in the event function
Boot.booted().) In the meantime, if the node had received any packets, the event
function Receive.receive() is invoked where we turn the LEDs on (setting the bits to
ox7) to indicate that a packet has been received successfully.

module PacketSenderC

{
uses interface Boot;

uses interface Leds;

uses interface Timer<TMilli> as Timer0;

uses interface AMSend;

uses interface Receive;

uses interface SplitControl as PSControl;

uses interface Packet;

}

implementation {
uint16 t counter =0;

message t pkt;

bool busy = FALSE;

error t err;

void setLedBits(uint8 t state);

void sendPacket();

/**

Bit mask corresponding to status of LEDs.

0001 - Booted.

0011 - Trying to send Packet.

0101 - Sent Packet.

0111 - Received Packet.

**/

We have used a set of mask bits to choose which LEDs to turn on to signify the
intermediate states of the PacketSender program. Thus, after booting, we turn on the
LED (mask bits are 0001), then turn on led0 and led1 (mask bits are 0011) to signify

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c07 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

128 SENSOR PROGRAMMING

the fact that we are trying to send a packet, and so on. The timer is set to a predefined
value TIMER FREQ.

// module PacketSenderC (continued)

event void Boot.booted() {
call PSControl.start();

setLedBits(0x1); // Packet was sent successfully.

}

event void PSControl.startDone(error t error) {
if(error == SUCCESS) {

call Timer0.startPeriodic(TIMER FREQ);

}
else {

call PSControl.start();

}
}

event void Timer0.fired() {
dbg("x", "Timer Fired\n");
setLedBits(0x5); // 0x5 = 0011

sendPacket();

}

void setLedBits(uint8 t state) {
call Leds.set(state);

}

void sendPacket() {
BlinkData* myBD;

counter++;

//create a packet, then send it

myBD = (BlinkData*)(call Packet.getPayload(&pkt, NULL));

myBD->count = counter;

if((err =

(call AMSend.send(AM BROADCAST ADDR,&pkt,

sizeof(BlinkData)))))

{
dbg("x", "AMSend reports success\n");
busy = TRUE;

}
else if(err == FAIL)

{
dbg("x", "Error Could not send packet\n");

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c07 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

PROBLEMS 129

}
}
event void PSControl.stopDone(error t error)

{//does nothing for now

}

We have not had any opportunity to invoke PSControl.stop(), so in this imple-
mentation there was no need to invoke the event function PSControl.stopDone(). A
counter, initialised to 0, has been used to provide the data in the packet being sent.
The dbg function prints messages on the command window if the program is run
on the TOSSIM similator. When we run this program on the sensor nodes, the dbg
output is ignored. The boolean variable busy is to indicate whether the sender is busy
or not.

// module PacketSenderC (continued)

event void AMSend.sendDone(message t* msg, error t error) {
if((&pkt == msg) && (error== SUCCESS))

{
dbg("x","Packet was sent successfully\n");
busy = TRUE;

}
else

{
dbg("x", "Packet was not sent\n");

}
}

event message t* Receive.receive(message t* msg,

void* payload, uint8 t len) {
setLedBits(0x7); // received data successfully.

dbg("x", "Received a packet\n");
return msg;

}
}

PROBLEMS

7.1 What is the role of timers in wireless sensor applications?

7.2 In every TinyOS-based application, what interface is responsible for system
initialization?

7.3 What are some of the challenges of writing wireless sensor applications?

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c07 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

130 SENSOR PROGRAMMING

7.4 What role does the SplitControl interface play in TinyOS?

7.5 List the differences between SplitControl and StdControl interfaces.

REFERENCES

1. Crossbow Telosb Datasheet, Courtesy Crossbow Inc.

2. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, System architecture
directions for networked sensors, in In Architectural Support for Programming Languages
and Operating Systems, 2000, pp. 93–104.

3. P. Levis and D. Gay, TinyOs Programming, Cambridge Univ. Press, 2009.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

8 Algorithms for Wireless
Sensor Networks

Talk is cheap. Show me the code.
—Linus Torvalds

An algorithm can be defined as a logical sequence of instructions for solving a
problem in a finite sequence of steps. In wireless sensor networks, the design of algo-
rithms becomes an important issue as energy and computational resources are scarce
and therefore must be effectively put to good use. With the limited computational
ability of each individual node, multiple sensors nodes collaborate to solve tasks us-
ing complex parallel processing techniques. These parallel processing techniques rely
on efficient parallel algorithms to achieve collaboration. Therefore, in this context,
a parallel algorithm can be defined as an algorithm in which several computations
are carried on simultaneously across multiple processing units. In order to extend
the life of a sensor network, these parallel algorithms have to be developed to be
efficient in network resource usage; hence, the need for energy-aware networking
algorithms [7,10,9]. There are numerous networked computing devices of all shapes
and sizes from handheld computers such as personal digital assistants and mobile
phones, to more powerful systems such as laptops, desktop workstations, and super-
computers. Most of these devices communicate over traditional IP-based networks
supporting huge data transfer rates due to rapidly increasing band width and faster
processing capabilities. These networks, being highly scalable and structured, may
consist of several routers, switches, and bridges interconnecting millions of nodes and
may use complex routing schemes to transfer data from one end device to another.
With energy and computational resource usage being of no consequence (energy can
be replenished for most devices), communication between multiple devices is very
cheap and reliable. It is in this respect that wireless sensor networks chiefly differ
from conventional networks. With nonrenewable sources of power and very little on-
board power, computation and communication come at a very high price. As wireless
sensors become more pervasive because of their lower cost, we can expect the pro-
liferation of sensors to exceed those of traditional computing devices. Hence, there
is a need to develop new energy-aware routing algorithms and aggressive power

Fundamentals of Sensor Network Programming: Applications and Technology, By S. S. Iyengar, N. Parameshwaran,
V. V. Phoha, N. Balakrishnan, and C. D. Okoye Copyright C© 2011 John Wiley & Sons, Inc.

131

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

132 ALGORITHMS FOR WIRELESS SENSOR NETWORKS

management schemes for this newly emergent class of computing devices [4]. In
this chapter, we will discuss several concepts, challenges, properties, and algorithms
unique to wireless sensor networks, such as

� Communication patterns prevalent in sensor networks
� Physical components of sensor nodes
� Properties of wireless sensor networks
� Networking layers
� Routing

Also, we will show how some of these concepts can be implemented using nesC
code and pseudocode.

8.1 STRUCTURAL CHARACTERISTICS OF SENSOR NODES

The term sensor nodes (also called motes) refers to a sensing device that belongs to a
wireless sensor network that is capable of processing, gathering, and communicating
sensory information with other devices in the network. The architecture of a typical
mote is shown in Fig. 8.1.

With advances in microelectromechanical systems (MEMSs) and low-power wire-
less technology, the major components of sensors as shown in Fig. 8.1 have been
miniaturized over the years. However, the processing and storage capabilities of sen-
sors have not developed in accordance with Moore’s law. In the following section, we
compare the properties of some of these components (microcontroller, transceiver,
memory, power unit, and sensors) with their traditional counterparts.

Global Positioning Systems

Sensing
Device

Analog to
Digital

Converter

Processor

Storage

Power Unit

Transceiver

Power
Generator

(Future Vision
of Energy

Scavenging)

Future Robotic Sensors

FIGURE 8.1 Structure of sensor nodes.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

STRUCTURAL CHARACTERISTICS OF SENSOR NODES 133

8.1.1 Microcontroller

The microcontroller is one of the most important components in a sensor.It is respon-
sible for data processing, memory management, interrupt handling, and the control of
other components on the sensor to minimize energy usage and increase the lifespan of
the motes. Unlike the microcontrollers present in traditional computers, most sensors
operate on less than a watt of power, giving them a lifespan of several months to a
year. This power conservation is achievable because of the ability of microcontrollers
to enter low-power states when idling. These microcontrollers have frequencies be-
tween a few kilohertz and several megahertz, allowing for the most basic tasks such
as sensing and intermediate routing of data from other sensors.

8.1.2 Transceiver

Currently, information can be transmitted in wireless sensor networks through three
types of media:

� Optical communication (laser)
� Infrared (IR) communication
� Radio frequency (RF)

Although both optical and IR communications have the advantage of requiring less
energy to transmit data, they both suffer from major drawbacks. For instance, optics-
based communications require both communicating nodes to be properly aligned in
direct line of sight. Conversely, IR communications have very short ranges. Other
issues include sensitivity to atmospheric conditions in optical communications and
unidirectional communication for both systems. It is for these reasons that RF is more
prevalent in sensor networks.

8.1.3 Memory

As noted in earlier chapters, memory is a scarce resource on sensor nodes. Therefore,
applications must be efficient in terms of not only energy but also the amount of
memory they use. For instance, a mica2 mote contains 644 kb of memory that must
be used by the TinyOS operating system and applications built on the platform [1].

8.1.4 Power Unit

Most power consumption in sensor nodes is primarily for data processing, sensing,
or communication operations. Of these operations, communication activities exert
the most toll on the battery life of the sensor. It is for this reason that new low-
power components are being created and power-saving policies, such as dynamic
power management (DPM) and dynamic voltage scaling (DVS), are continually
being refined to provide ever-increasing energy savings. A typical sensor node is
shown in Fig. 8.2.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

134 ALGORITHMS FOR WIRELESS SENSOR NETWORKS

Atmel®ATMega128

External power
connector

On/Off Switch

51-pin Hirose connector
(male)

MMCX connector
(female)

FIGURE 8.2 A typical sensor node (mote).

8.2 DISTINCTIVE PROPERTIES OF WIRELESS SENSOR NETWORKS

With the unpredictable nature and unsuitability of traditional routing algorithms in
wireless sensor networks, newer, more efficient, and more reliable algorithms have
been developed. These algorithms were developed to address the challenges posed by
the volatile wireless communication in sensor networks. These challenges stem from
the ubiquitous and heterogeneous nature of WSNs, making central management of
individual sensor nodes nearly impossible. As a result, intelligent features such as self-
configuration, healing, dynamic routing, and multihop communication abilities have
been suggested to improve the reliability and management tasks in these networks.
In the following section, we discuss each of these attributes and how they enhance
communication in wireless sensor networks.

8.2.1 Self-Configuration

Wireless sensor networks are usually composed of thousands of nodes randomly
deployed and organized in order to achieve similar objectives (see Fig. 8.3 for an
example). These objectives are to retrieve certain data about an entity being monitored
and transmit results to a remote destination serving as a data sink. The random
deployment of sensors and the volatile nature of the network (usually due to node
failure) warrant the development of self-configuration mechanisms to prevent network
degradation and efficient transmission of information.

8.2.2 Self-Healing

Despite measures taken to ensure durable sensor networks, several factors still exist
that can result in a breakdown in communication. These factors include energy
depletion in some key routing nodes, (un)intentional damage by humans or other
animals, or even the addition of new nodes resulting in a highly dynamic network. It

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

SENSOR NETWORK STACK 135

Intermediate
Sensor
Node

Leader
Node Data Sink Events

FIGURE 8.3 Dataflow in a sensor network.

is for this reason that the networking stack on sensors be impervious to node additions
and deletions without requiring a complete reset of the whole network.

8.2.3 Dynamic Routing

Communication in sensor networks can be very expensive, and sensor nodes can
be added and removed on the fly. The need for an adaptive routing scheme based
on network conditions such as link quality, hop count, and gradients has led to the
development of several new on-demand routing algorithms. These make use of lower
band width for control packets, resulting in less need to food the network for periodic
updates. This, in turn, results in energy savings for sensor nodes, extending the life
of a wireless sensor network considerably. Examples of dynamic routing in wireless
sensor networks include caching and multipath (CHAMP) routing and hierarchical
state routing (HSR).

We have now examined the structural characteristics of sensors and some of the
unique properties of wireless sensor networks. In the following section we will discuss
the components forming the network stackin wireless sensor networks.

8.3 SENSOR NETWORK STACK

Communication, routing, and data transfer in sensor networks is possible between dif-
fering node types because of well-established standards and specifications providing
low-level implementation details on how data can be exchanged in sensor networks.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

136 ALGORITHMS FOR WIRELESS SENSOR NETWORKS

Application Layer, Services, Objects

Vendor Defined Area

Network Layer

Medium Access Control

IEEE 802.15.4

Physical Layers

FIGURE 8.4 Sensor network stack architecture.

The IEEE 802.15.4 is the standard specifying details on data exchange in the physi-
cal and medium access control (MAC) layers for low-rate wireless networks. When
sensor network–based applications are written, most interactions with the IEEE-
specified layers are usually through abstract libraries implemented by independent
vendors and offered through specific sensor operating systems (e.g., TinyOS). These
libraries automatically transform application data into a form in conformance with
IEEE specifications. These vendor-provided libraries providing software abstraction
for the MAC and physical layers are referred to as the network layer. In this section,
the several components that form the networking stack in wireless sensor networks
are examined (see also Fig. 8.4).

8.3.1 Physical Layer

The physical layer is the first and lowest layer consisting of basic hardware transmis-
sion technologies of a network. It is responsible for several functions, including

� Provision of a data transmission service.
� Management of RF transceiver.
� Channel selection.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

SENSOR NETWORK STACK 137

Energy and signal management functions. For wireless sensor networks, the phys-
ical layer transmits in one of three unlicensed frequency bands. In North America the
most common is the 915-MHz ISM (instrument–scientific–medical) band. Among
the main functions of the physical layer is the detection and correction of transmission
errors. These errors could stem from several factors, such as

Attenuation—a decrease in intensity of electromagnetic energy at receiver due to
long distance.

Doppler shift—a change in frequency of a wave caused by the relative velocities
of the transmitter and receiver (common for mobile agents).

Hidden-terminal problem—a scenario in which the medium around the source
node is free but busy around the destination node.

Exposed-terminal problem—in this case, the medium around the destination node
is free but engaged at the source node.

8.3.2 Medium Access Control (MAC) Layer

The MAC layer is the second lowest layer, offering a management interface for the
physical channel. It is responsible for frame validation, timeslot allocation, synchro-
nization, and node associations in a network. There are several other implementations
of the MAC Layer for sensor networks, such as S-MAC, B-MAC, and C-MAC, all
of which have different strengths ranging from energy conservation to routing speed
gains. References 8, 6, and 11 provide more information on MAC implementations
in wireless sensor networks.

8.3.3 Network Layer

Although there is no defined standard for the network layer in sensor networks,
several differing implementations exist today, the most common of which is the
Zigbee specification. Details on the Zigbee network and application layer are covered
in Chapter 10.

8.3.4 Full-Function Device (FFD)

Full-function devices are nodes having a general model of communication allowing
them to “talk” with any other device. Also, such a device can be assigned the role of
coordinator of a personal area network.

8.3.5 Reduced-Function Device (RFD)

Reduced-function devices are more restricted in their functions. They are usually
very simple devices with low resource and communication requirements. It is for this
reason that they can communicate only with FFDs and can never become network
coordinators.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

138 ALGORITHMS FOR WIRELESS SENSOR NETWORKS

t2∆ ∆

∆

B

A

Equations

t2 = t1 + delta + (propagation_delay)
t4 = t3 + delta + (propagation_delay)

t3

t3

t1

t4

FIGURE 8.5 Receiver–receiver synchronization.

8.4 SYNCHRONIZATION IN WIRELESS SENSOR NETWORKS

Time synchronization refers to a method of timekeeping requiring the coordination
of multiple events to operate a system in unison. It is particularly important in
computing because of its critical role in communication. Distributed systems rely
on several synchronization mechanisms to ensure proper operation without which
severe degradation in performance can occur [5, 2, 3]. In data aggregation and event
monitoring sensor networks, the need for a flexible and robust time synchronization
mechanism is more apparent since collaboration among nodes is critical to data
reduction and the energy efficiency of sensor networks. Also, sensor usually monitor
highly dynamic environments that change with time. For this reason, time is a basic
requirement for nodes to correlate events that occur in the network with events in the
physical world. Failure to synchronize sensor nodes in a sensor network would render
measurements useless since synchronization is essential for both temporal and spatial
analysis of events (most tasks fall into these two categories, such as node localization,
and target tracking). Several methods exist to synchronize nodes in a network, the
most basic of which is sender–receiver or receiver–receiver synchronization. In this
approach, peers in a network conduct time synchronization using timestamps in data
packets as a reference. A visual representation of the algorithm and the accompanying
equations are shown in Fig. 8.5.

Some drawbacks exist with this basic method of synchronization. Most notable
are the four different types of delays involved:

� Send time—time spent in building the packet for transmission and delays inher-
ent in the protocol stack

� Access time—time spent waiting for the medium to become free

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

SYNCHRONIZATION IN WIRELESS SENSOR NETWORKS 139

� Propagation time—time taken for the packet to reach the destination
� Receive time—time spent by the receiver processing the packet before it is

timestamped

Although send and access time delays can be eliminated with the use of reference
broadcast synchronization, some newer approaches exist that are less error-prone.

We will now discuss the programming challenges involved in implementing a few
basic algorithms [4] from the WSN area. First, the beaconing behavior of surrounding
nodes is examined.

8.4.1 Beaconing

Beaconing refers to the continuous transmission of small control packets that notify
neighboring nodes about the presence of the transmitter. The pseudocode describing
how beaconing works is presented below.

begin:

while (true):

broadcast (address, random time);

sleep (random time);

end

As we did before, we assume that the node has the three basic capabilities (sense,
broadcast and sleep) as enumerated above. In this example, we use a procedural style
of code

Procedural Beaconing
begin:

senseMedium(signal):

if(signal equals absent):

return ’no signal’

elif(signal equals weak):

return ’medium busy or no data’

elif(signal equals collision):

return ’collision’

elif(signal equals strong):

return ’strong’

end

Sometimes certain routing schemes may employ the use of lists to keep track of their
nearest neighbors. A sample pseudocode and associated nesC configuration showing
how a neighborhood table construction can be done is shown below.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

140 ALGORITHMS FOR WIRELESS SENSOR NETWORKS

{
initialize-table(table); i =0; t1 = time-now();

while (i < n){
data-packet = sense-data();

address = address-of (data-packet);

if not-present(address, table)

{add(address, table); i ++}
if (time-now() > t1 +

max-time) break;

}
}

}
}

#define MOTE AM ID 10

configuration algorithm2AppC { }
implementation

{
components MainC;

components RandomC;

components LedsC;

components new AMSenderC(MOTE AM ID);

components new AMReceiverC(MOTE AM ID);

ActiveMessageAddressC

components ActiveMessageAddressC;

components algorithm2C;

components ActiveMessageC;

components new TimerMilliC();

algorithm2C.Boot->MainC. Boot;

algorithm2C.Random->RandomC;

algorithm2C.Leds->LedsC;

algorithm2C.AMPacket->AMSenderC;

algorithm2C.AMSend->AMSenderC;

algorithm2C.AMA->ActiveMessageAddressC;

algorithm2C.PacketAcknowledgements->AMSenderC;

algorithm2C.Receive->AMReceiverC;

algorithm2C.RadioControl->ActiveMessageC;

}

8.4.2 Neighborhood Table Construction

In this application we use the standard interfaces shown in the program above.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

SYNCHRONIZATION IN WIRELESS SENSOR NETWORKS 141

Wiring for Neighborhood Table Construction The interfaces are implemented
using the system-provided components shown above. The implementation details are
discussed below.

implementation

{
void sendSensorInformation (uint 16 t);

void populateSensorTable (uint 16 t, uint 32 t);

int NO OF MOTES = 30

sensorInfo* sensor;

am addr t sensoraddress = 0;

uint32 t sensormac = 0x001EDD32;

//Pre-determined mac address of current sensor
am group t sensorgroup = 1;

sensorData table [NO OF MOTES];

int index = 0;

event void Boot.booted()

{
call RadioControl.start();

}
}

{
event void RadioControl.startDone(error t err)

{
call AMA.setAddress(sensorgroup, sensoraddress);

call Timer0.startOneShot(6000);

}
event void Timer0.fired ()

{
message t msg;

sensor = (sensor Info*) call

AMSend. getPayload (&msg);

sensor->id = sensoraddress ;

call AMSend. send (AM BROADCAST ADDR, &msg,

sizeof (sensorData));

call Leds.led0Toggle();

}
}

We will assume that there are no more than 30 motes in the neighborhood at
any given time. The mote address of the given node (where we want to build the
neighborhood table) is 0, its MAC address is 0x001EDD32, and the identity of
the group (which consists of the current node and all its neighbors) is 1. We begin
the table construction by starting the radio.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

142 ALGORITHMS FOR WIRELESS SENSOR NETWORKS

Starting the Radio Component We set the group address to 1 and the current
node address to 0, and then start a monoshot clock that invokes the event function
Timer0.fired(), where we broadcast our node address to all neighbors and wait
for their replies.

8.4.3 Implementation

Implementation Details of the Receive Method As soon as we receive a message
from any neighbor, say P, we check whether it is a reply to the message that we sent,
and if it is, we store P’s ID in our table. However, if the message is a request asking
us to send our ID, we then send our ID to node P. To achieve these operations, we
use the following functions: sendSensorInformation and populateSen-
sorTable.

event message t* Receive.receive (message t* msg, void*

payload, uint8 t len)

{
sensorInfo* myInfo; //Specified in header file

myInfo = (sensorInfo*)payload;

if (myInfo->requestCode == 0x1)

{
call Leds.led2Toggle(); //Toggle Led 3 to

indicate info received

populateSensorTable (myInfo->id , myInfo-

>macAddress);

}
else if (myInfo->requestCode == 0x0) //Send my info to some

other mote

{
sendSensorInformation (myInfo->id);

call Leds.led1Toggle(); //Toggle Led 2 to indicate

request received

}
return msg;

}

void sendSensorInformation (uint16 t receiver)

{
message t msg;

sensor = (sensorInfo*) call AMSend. getPayload (&msg);

sensor->id = sensoraddress;

sensor->macAddress = sensormac;

call AMSend. send (receiver, &msg, sizeof(sensorData));

}

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

SYNCHRONIZATION IN WIRELESS SENSOR NETWORKS 143

void populateSensorTable (uint16 t id, uint32 t mac)

{
int i = 0;

//Simple check if current mac already exists in table

while (i <= index && table [i].macAddress != mac)

{
i ++;

}
if (table[i].macAddress == mac)

{
table [i].moteID = id;

}
else

{
table [++i].moteID = i d;

table [i].macAddress = mac;

}
}

Implementation Details of sendSensorInformation and populateSen-
sorTable Additionally, we need to provide implementations for the events in our
program, which are invoked when we call AMA.setAddress, AMSend.send,
and RadioControl.stop. In sendDone, when we fail to send a message, we
turn on an LED and then do nothing.

stopDone, sendDone, and Changed Implementations In wireless sensor net-
works, concurrent transmission by multiple nodes could result in transmission errors
due to packet corruption. An example of such a scenario would be the widely studied
hidden-terminal problem. As a result of this, steps have to be taken to reduce or elim-
inate the occurrence of errors. The collision avoidance algorithm presented below
suggests a way to avoid such errors.

event void AMSend. sendDone (message t msg, error t err)

{
if (err == FAIL)

{
call Leds.led0Toggle ();

}
}
async event void AMA. changed ()

{}
event void RadioControl.stopDone (error t err)

{}

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

144 ALGORITHMS FOR WIRELESS SENSOR NETWORKS

8.5 COLLISION AVOIDANCE: TOKEN-BASED APPROACH

8.5.1 Token-Based Approach

The approach can be described very briefly using the following four abstract steps.

1. Create a token and pass it to a node.

2. If a node has the token, it transmits the data that it wants to transmit.

3. The node then transmits the token to its neighbor.

4. Use this idea to count the number of nodes in the network.

The state diagram in Fig. 8.6 captures the abstract behavior of each node in
the token-based approach for collision avoidance. We implement this algorithm by
building a component for it, starting with its interface.

module CollisionAvoidance tokenBased

{
uses interface Boot;

uses interface LowPowerListening;

interface Timer<TMilli> as Timer0;

uses uses interface Send;

uses interface AMSend;

uses interface Receive;

uses interface PacketAcknowledgement;

}

E

A

F

B

C

D

FIGURE 8.6 State diagram for token-based approach for collision avoidance.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

COLLISION AVOIDANCE: TOKEN-BASED APPROACH 145

Component Interface Definition The following program shows the wiring called
CollisionAvoidance tokenBased. We need to build our component boot for booting the
component, LowPowerListening for minimizing power consumption, Timer0
to run a clock with millisecond precision, send to send packets (of messages),
AMSend to send packets to intended destinations, Receive to receive packets
from other nodes, and finally, PacketAcknowledgement to indicate whether the
packet sent is to be acknowledged. For these interfaces, we choose the following
implementations (as they are already provided in the TinyOS system).

configuration transmitAppC()

{}
implementation

{
components MainC;

components Collision as AppC;

components CC2420ActiveMessageC;

components AMSenderC();

components new AMReceiverC();

components Timer<TMilli> as Timer0;

AppC. Boot->MainC;

AppC. Packet->AMSenderC;

AppC. Send->AMSenderC; //Wrong component??

AppC. PackageAcknowledgement->AMSenderC;

AppC. Receive->AMReceiverC;

AppC. Timer0->Timer0;

AppC. LowPowerListening->CC2420ActiveMessageC;

}

Pseudocode Implementation

{
event void Boot.booted()

{
//Start one shot timer of Timer0 using

Timer0.startOneShot (t1)

//where t1 is sometime point in future when the

clock fires once.

}
event void Timer0.fired()

{
configure the LowPower Listening cycle of mote

}
event void Receive.received()

{
configure the LowPower Listening cycle of mote

send acknowledgement to sender;

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

146 ALGORITHMS FOR WIRELESS SENSOR NETWORKS

extract token from packet;

transmit any data you need to

send any node;

relinquish the token (by sending to another node)

}
}

transmitAppC For low-power listening, we wire our components to the modules
that implements the CC2420 radiochip functionalities. For simplicity, we provide the
implementation of our component in pseudocode.

Transmit Application Configuration File When the monoshot timer triggers have
fired(), we put our component into low-power listening mode, and then wait for
someone to send us a token. When we receive a token, we send back an acknowledg-
ment, perform any activities that we want to perform (sending messages to any node,
etc.), and once finished, we hand over the token to a neighboring node.

8.5.2 Schedule-Based Communication

In order to minimize collision and save energy, we need to follow a systematic way
of transmitting and sensing behavior at each node. In this section, we write programs
that follow a schedule so that the transmitter transmits only when the listener is
listening, and the listener is listening only when the transmitter is transmitting. There
are two ways a schedule can be embedded at each node: explicit and implicit. In the
explicit embedding, the schedule can be described using a data structure such as a
list implemented using an array. In the implicit embedding, the schedule is implied
in the sequence of operations that the node executes. In this example, we follow the
implicit style.

We can build in the schedule implicitly at each node in its program as follows. Let
A:(0.B); mean at time t=0, A can transmit a packet to B. Thus, [[A:(0,B);B :(10,C);
C:(20,D);D :(30,nil);E :(40,,A);F :(50,E)] can be a schedule. Total period T = 60
time units assuming that F:(50,E)] takes 10 units of time. The schedule will repeat
periodically with a period T of 60 time units.

We further illustrate in this example how we can specify the behavior of the
node abstractly using rules. The value of the timer, as specified by the time globally,
schedules the operations so that at each node’s operations are executed as per the
intended schedule.

{
A: t =0 transmit data packet to B.

B: t =10 transmit data packet to C.

C: t =20 transmit data packet to D.

D: NULL.

E: t =40 transmit data packet to A.

F: t =50 transmit data packet to E.

}

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

COLLISION AVOIDANCE: TOKEN-BASED APPROACH 147

8.5.3 Pseudocode at Each Node

Let t stand for the timer value. (We can implement this by building a counter that
goes through states triggered by a clock.)

module transmitC

{
uses interface Timer<TMilli> as Timer0;

uses interface Send;

uses interface Receive;

uses interface AMSend;

uses interface Receive;

}
configuration transmitAppC

{}
implementation

{
components MainC;

components transmitC as AppC;

components ActiveMessageC;

components AMSenderC();

components Timer<TMilli> as Timer0;

AppC. Boot -> MainC;

AppC. Packet -> AMSenderC;

AppC.AMSend -> AMSenderC;

AppC. Send -> AMSenderC;

AppC. Receive -> AMReceiverC;

AppC. Timer0 -> Timer0;

}

Pseudocode Implementation

{
event void Boot.booted()

{
mode = initialize();

c = 0;

Timer0.startPeriodic();

}
event void Timer0.fired()

{
if (mode = = transmit & counter = = 0)

{
AMsend(to node B, data);

c = c+10;

}

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

148 ALGORITHMS FOR WIRELESS SENSOR NETWORKS

if (mode == transmit & counter = = 10)

{
AMsend(to node C, data);

c = c +10;

}
}
event void Receive()

{
if (mode==receive)

data = packet;

}
}

States of Transmit The concept described above can be used to avoid collisions, as
we discuss below:

� Divide time into slots.
� Insert permitted transitions at each slot. For example, the time axis is divided

into intervals of period T . Each period T is divided into n slots. Thus, T = [slot
1, slot 2, . . . , slot n].

� Indicate the possible transmissions in each slot. For example, [slot 1: A→B,
C→D; slot 2:E→F; slot 3:G→H, I→J; etc.].

� Assign to each node.

The list of interfaces we used in developing this application component are shown
in the program above, along with the components that we selected for their imple-
mentation.

Schedule-Based Transmission In order to implement the schedule, we use a small
counter that tells us when to transmit a packet. This counter is incremented every time
a periodic clock fires. (Assume that clocks are synchronized for this implementation.)

8.6 CARRIER SENSING VERSUS DECODING

In Fig. 8.7, the green circle shows the decode range and the yellow circle shows the
carrier sense. (Note that these circles are part of the manufacturer’s specs.) To decode,
the signal must be strong; that is, the signal-to-noise ratio (SNR) must be high. To
carrier sense, the signal can be weak; that is, SNR can below.

We will now write programs for nodes B, C, D, E, F and measure the relative
signal strengths.Verify with the manufacturer’s specs—that is yellow circle and green
circle.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

CARRIER SENSING VERSUS DECODING 149

A

E

B

C
D

F

FIGURE 8.7 Illustration of carrier sensing versus of decoding.

begin:

if (senseCarrier() equals ‘NIL’):

print ‘‘Medium is carrier-free’’

elif (senseCarrier() equals ‘‘WEAK’’)

print ‘‘Medium is carrier-sense’’

elif (senseCarrier() equals ‘‘STRONG’’)

print ‘‘Medium is carrier-decode’’

end If

8.6.1 RTS/CTS Handshake

Ready-to-send (RTS) and clear-to-send (CTS) messages are broadcast control bytes
that are exchanged between the transmitter and the receiver to coordinate the trans-
mission of data between them. A typical handshake protocol that uses this is shown
in Fig. 8.8. In this example, we also show how to convert a timing diagram into
programs. Node B wants to transmit a data packet to node C. (Also worthy of
note is the fact that RTS and CTS will have the MAC addresses of the sender
and the receiver. Further, RTS, CTS, and the data packets will all have the dura-
tion T that it will take for the complete transaction. Similarly, a frame will indicate
whether the transmission is unicast or broadcast.) The handshake protocol proceeds as
follows:

1. Node B senses the medium, and goes to the next step when the medium is free.

2. Node B broadcasts an RTS. (Note that it is a broadcast, and not a unicast. Also,
RTS contains the MAC addresses of B and C.)

3. Nodes C and A hear it. The RTS contains the total duration d1 up to B receiving
an acknowledgment.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

150 ALGORITHMS FOR WIRELESS SENSOR NETWORKS

D

A

B

C

FIGURE 8.8 RTS/CTS handshake configuration.

4. Node C realizes that the RTS is for itself, senses the channel, acquires it, and
broadcasts a CTS. This also contains the duration d2. Concurrently, when A
hears the RTS, it realizes that it is not for itself, but it will set the NAV flag on
(to indicate that the medium is busy) for the duration d1.

5. When the CTS from C reaches B, B unicasts one packet of data to C. (Note:
This unicast frame will contain the sender’s and receiver’s addresses, and also
a flat stating that the frame is a unicast frame.) Concurrently, when D hears the
CTS broadcast from C, it will set its NAV flag on for the duration d2.

6. Node C receives the data from B, and then sends a unicast acknowledgment
to B.

We now give the pseudocode for the protocol above.

Node B:

begin:

//Broadcast RTS to C: First Acquire Medium
while (true): //Infinite loop

if (senseMedium() not ‘BUSY’):

break

endIf

endLoop

//Listen for CTS from C
while (true):

packet <- listen()

if (packet equals ‘CTS’):

break

endIf

endLoop

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

CARRIER SENSING VERSUS DECODING 151

//Send Data to C
while (true):

if (senseMedium() not ‘BUSY’):

break;

endIf

endLoop

destination <-| C

unicast(data, destination)

//Wait for Acknowledgement from C
while (true):

packet <-| listen()

if (packet equals ‘CTS’)

break

endIf

endLoop

end

Node C:

begin:

//Listen for RTS from B
while (true):

packet <-| listen()

if (packet equals ‘RTS’):

break

endIf

endLoop

//Broadcast CTS to B
while (true):

if (senseMedium() not ‘BUSY’):

break;

endIf

endLoop

//CTS Broadcast to B
while (true):

packet <-’ listen()

if (packet equals ‘DATA’):

break

endIf

endLoop

print ‘‘Data received from B’’

//Broadcast ACK to B

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

152 ALGORITHMS FOR WIRELESS SENSOR NETWORKS

while (true):

if (senseMedium() not ‘BUSY’):

break

endIf

endLoop

acknowledgeBroadcast(B)

end

Node A:

begin:

while (true):

packet <-| listen()

if (packet equals ‘RTS’):

break

endIf

endLoop

//B is going to send data to C, Must send A to sleep
by setting

//NVA Variable
duration <-| extractDuration (packet)

NVA <-| currentTime + duration

sleepUntil (NVA)

print ‘‘Woken up after sleeping!’’

end

Node D:

begin:

while (true):

packet <-| listen()

if (packet equals ‘RTS’):

break

endIf

endLoop

//B is going to send data to C, Must send D to sleep
by setting

//NVA Variable
duration <-| extract Duration (packet)

NVA = currentTime + duration

sleepUntil (NVA)

print ‘‘Woken up after sleeping!’’

end

Broadcast RTS To keep the illustration simple, we have provided pseudocode for
only one role at each node. The nesC pseudocode is given below.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

PROBLEMS 153

Theme: Simulation of RTS/CTS Handshake In this chapter, we have illustrated
several protocols and shown how they can be coded in the nesC language. We observed
that coding the protocols themselves was fairly straightforward.

Node B:

booted():

send (RTS to C);

receive():

if (CTS is received)

transmit data;

if (ACK is received)

do nothing;

Node C

booted()

{NIL}
receive():

if (RTS received)

send (CTS);

if (data received)

store (data);

if (end of data received)

send (ACK);

Node A

booted():

{NIL}
receive():

if (RTS received) then

extract duration d1 from the packet;

lowPowerSleep(for duration d1);

//that is , set NAV = busy;
Node D

booted():

{NIL}
receive():

if (CTS is received) then

extract duration d2 from the packet;

lowPowerSleep(for duration d2);

% //that is, set NAV = busy;

PROBLEMS

8.1 How does the S-MAC differ from traditional wireless MAC?

8.2 What are the modes of operation of S-MAC?

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c08 JWBS038-Iyengar August 31, 2010 10:55 Printer: Yet to come

154 ALGORITHMS FOR WIRELESS SENSOR NETWORKS

8.3 What is idle listening?

8.4 What are the sources of energy drain in a sensor node?

8.5 What is synchronization? Show an implementation in which five nodes syn-
chronize with each other.

8.6 Describe the major contents of a routing table and give an example of nodes
in a network slowly building their routing neighborhood routing table.

8.7 Provide an example where data are routed using the previous routing table and
describe how a routing table changes over time.

8.8 Describe the CSMA-CA mechanism.

8.9 Describe the TDMA mechanism and its advantages and disadvantages for
sensor network applications.

REFERENCES

1. Crossbow Reference Manual, Courtesy Crossbow Inc.

2. J. Agre, L. Clare, and S. Sastry, A taxonomy for distributed real-time control systems,
Adv. Comput. 49:303–352 (1999).

3. K. Chakrabarty, and S. S. Iyengar, Scalable Infrastructure for Distributed Sensor Net-
works, Springer-Verlag, 2005.

4. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, System architecture
directions for networked sensors, in In Architectural Support for Programming Languages
and Operating Systems, 2000, pp. 93–104.

5. S. S. Iyengar, R. L. Kayshyap, and R. N. Madan, Distributed sensor networks, IEEE Trans.
Syst. Man, and Cybernet. 21(5):1027–1031 (1991).

6. V. Iyer, S. S. Iyengar, N. Balakrishnan, V. Phoha, and M. B. Srinivas, Farms: Fusionable
ambient renewable MACs, Proc. Sensor Application Symp. Feb. 2009.

7. A. Moitra, and S. S. Iyengar, Parallel algorithms for some computational problems, Adv.
Comput. 26:93–153 (1987).

8. J. Polastre, J. Hill, D. Culler, Versatile low power media acess for wireless sensor networks,
Proc. 2nd Int. Conf. Embedded Networked Sensor Systems, SenSys ’04, ACM, New York,
2004, pp. 95–107.

9. I. Rhee, A. Warrier, M. Aia, J. Min, and M. L. Sichitiu, Z-mac: A Hybrid MAC for Wireless
Sensor Networks, IEEE Press, Piscataway, NJ, 2008, vol. 16, pp. 511–524.

10. C. Xavier, and S. S. Iyengar, Introduction to Parallel Algorithms, Wiley, 1998.

11. W. Ye, F. Silva, and J. Heidemann, Ultra-low duty cycle MAC with scheduled channel
polling, Proc. 4th Int. Conf. Embedded Networked Sensor Systems, SenSys ‘06, ACM,
New York, 2006, pp. 321–334.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

9 Techniques for Protocol
Programming

The function of good software is to make the complex appear to be simple.
—Grady Booch

Wireless sensor networks are made up primarily of spatially distributed autonomous
devices that use sensors to cooperatively monitor certain physical entitle such as
temperature, sound, vibration, and pressure at different locations. Most sensor nodes
are used in one of two contexts: as distributed databases or for event detection [2].
Irrespective of the roles employed in a sensor network, communication plays a critical
role in determining life span, routing speed, and ultimately the nature of data that
can be communicated in wireless sensor networks. It is for this main reason that
we discuss some of the available protocols and features supported by most MAC
implementations [4,1].

The S-MAC is a medium access control protocol for wireless sensor networks.
It has been optimized for wireless sensor networks offering some advantages of
802.11-based MAC implementations such as reduced energy consumption and sup-
port for self-configuration. In its development, three sources of energy waste were
identified and improved, resulting in energy savings of 2–6 times over those of tra-
ditional 802.11-like MACs. Two of the three areas of improvement are discussed
below:

� Collision. When two or more nodes try to transmit packets at the same time,
collisions may occur, resulting in packet corruption. Over a period of time these
collisions represent a significant source of energy drain due to the retransmis-
sions necessary after packet loss.

� Overhearing. In the case of over hearing, nodes listening to a channel
pick up packets not intended for themselves, thus consuming more energy.
With the S-MAC implementation, neighboring nodes form virtual clusters
and autosynchronize on sleeping schedules, thus reducing occurences of
overhearing.

Fundamentals of Sensor Network Programming: Applications and Technology, By S. S. Iyengar, N. Parameshwaran,
V. V. Phoha, N. Balakrishnan, and C. D. Okoye Copyright C© 2011 John Wiley & Sons, Inc.

155

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

156 TECHNIQUES FOR PROTOCOL PROGRAMMING

In the following sections we discuss the programming challenges involved in
implementing a few basic protocols from the WSN [3] area.

9.1 THE MEDIATION DEVICE PROTOCOL

We now consider a well-known protocol called the mediation device protocol. In this
protocol, node A wants to transmit a packet to node B:

1. Node A announces this to the mediation device by periodically sending a
request-to-send (RTS) packets, which the mediation device captures. Node A
sends its RTS packets instead of its query beacons (and thus they have the same
period).

2. Node A then goes to receive mode (listens).

3. The mediation device waits for B’s query, and replies to B with a query response
packet, indicating A’s address and a timing offset.

4. Node B now knows when A will be listening again, and sends a CTS to A.
(Now, B also knows A’s period, and thus knows at what time t′ A’s transmit
mode will occur again.)

5. Node B waits at t′ to receive data from A.

6. At t′′ B will send its acknowledgment packet. (B knows t′′ since it knows A’s
period.)

7. After the transaction has finished, A restores its periodic wakeup cycle and
starts to emit query beacons again.

8. Node B also restores its own periodic cycle and thus decouples from A’s period.

In the simple protocol shown above, we have assigned a single role to each node.
Under each synchronous operation we have used a simple collection of rules that fire
at appropriate instances. We use a periodic clock to send the RTS and to send the data.
When a reply is received, we set a flag that selects which send operation should be
executed next when the command fired() is executed. The details in pseudocode
is given below.

Node A:

begin:

Sensor.boot()

StartTimer (Timer0,10 khz)

//FLAGS
sendRTS

�→

1

receiveRTS

�→

0

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

THE MEDIATION DEVICE PROTOCOL 157

sendData

�→

0

receiveACK

�→

0

receiveCTS

�→

0

if (Timer.Fired() equals ’TRUE’):

if (sendRTS equals 1):

send (RTS, MediationDevice)

endIf

setLowPowerListeningCycle(10%)

receiveCTS

�→

1

if (sendData equals 1):

send (Data)

sendData

�→

0

receiveACK = 1

endIf

endIf

if (Receive.receivedData() equals ’TRUE’):

if (receiveRTS equals 1):

if (receiveCTS equals 1):

receiveRTS

�→

0

sendRTS

�→
0

sendData
�→

1

endIf

endIf

if (receiveACK equals 1):

sendRTS

�→

1

endIf

endIf

end

Node B:

begin:

Sensor.boot()

query(MediationDevice)

//FLAGS
receiveResponse

�→

1

queryResponse

�→

FALSE

receive.receivedData():

if (queryResponse equals ’TRUE’):

time1

�→

extractTime (CTS PACKET)

wait()

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

158 TECHNIQUES FOR PROTOCOL PROGRAMMING

send (CTS PACKET)

receiveResponse

�→

0

receiveData

�→

1

endIf

if (receiveData equals 1):

processData()

time2

�→

extractTime (ACK PACKET)

wait()

send (ACK PACKET)

receiveData

�→

0

endIf

end

9.2 CONTENTION-BASED PROTOCOLS

Contention-based protocols refer to a class of communication protocols that govern
how multiple transmitters (devices) can make use of the same channel while avoiding
collisions that may occur. This is achieved by specifying a set of rules by which each
transmitting device must abide.

9.2.1 Carrier Sense Multiple Access Protocol

The carrier sense multiple access (CSMA) protocol belongs to the class of contention-
based protocols in which, before any information is transmitted, a transmitting node
verifies that no other concurrent transmissions are taking place on the shared medium.
The operation of a variant of the CSMA protocol with collision detection is illustrated
by the state diagram in Fig. 9.1.

The pseudocode accompanying Fig. 9.1 is provided below.

begin:

// FLAGS
idle

�→

1

randomDelay

�→

0

Listen

�→

0

AwaitCTS

�→

0

AwaitACK

�→

0

Backoff

�→

0

if (idle equals 1):

numtrials

�→

0

randomDelay

�→

1

idle

�→

0

endIf

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

CONTENTION-BASED PROTOCOLS 159

No

No

No

Yes

Start

Assemble a Frame

Attempt-1

Yes

Yes

Recovered

Not Recovered

Is some other
station transmitting?

Transmit 1 bit of the Frame

Collision Detected

Transmission Finished?

End End

Collision Recovery Subalgorithm

Transmit next bit of Frame

FIGURE 9.1 Carrier sense multiple access protocol.

if (randomDelay equals 1):

Listen

�→

1

randomDelay

�→

0

endIf

if (Listen equals 1 & mediumBusy equals ’True’ &

numTrials equals... maxTrials):

Listen

�→

0

Failure

�→

’TRUE’

idle

�→

1

endIf

if (Listen equals 1 & mediumBusy equals ’TRUE’ &

numTrials < maxTrials):

Listen

�→

0

numTrials++

Backoff

�→

1

setTimer()

endIf

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

160 TECHNIQUES FOR PROTOCOL PROGRAMMING

if (Listen equals 1 & idle equals 1):

send (RTS)

AwaitCTS

�→

1

Listen equals 0

endIf

if (BackOff equals 1 & timeout equals 1):

BackOff

�→

0

Listen

�→

1

endIf

if (AwaitCTS equals 1 & numTrials equals maxTrials):

AwaitCTS

�→

0

Failure

�→

’TRUE’

idle

�→

1

endIf

if (AwaitCTS equals 1 & numTrials equals MaxTrials):

AwaitCTS

�→

0

numTrials++

setTimer()

Backoff

�→
1

endIf

if (AwaitCTS equals 1 & got (CTS) equals ’TRUE’):

AwaitCTS

�→

0

send (Data)

AwaitACK

�→

1

endIf

if (AwaitACK equals 1 & acknowledgement()

equals ’FALSE’ &...numTrials equals maxTrials):

AwaitACK

�→

0

Failure

�→

’TRUE’

idle

�→

1

endIf

if (AwaitACK equals 1 & acknowledgement()

equals ’FALSE’ &...numTrials < maxTrials):

numTrials++

setTimer()

BackOff

�→

1

endIf

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

TRANSMITTER ROLE 161

if (AwaitACK equals 1 & acknowledgement()

equals ’TRUE’):

AwaitACK

�→

0

Success

�→

’TRUE’

idle

�→

1

endIf

end

9.3 PROGRAMMING WITH LINK-LAYER PROTOCOLS

In this section, we look at the programming challenges posed by the protocols at the
link layer, and we start with the ARQ (automatic repeat request) technique. These
protocols strive to send a packet more reliably using acknowledgments and resending.

9.4 AUTOMATIC REPEAT REQUEST (ARQ) PROTOCOL

The basic idea of ARQ protocols can be described as follows. The transmitting node’s
link-layer protocol accepts a data packet, creates a new packet by adding to it a header
and a check sum, and transmits this packet to the receiver. The receiver verifies the
checksum and accepts the packet if the checksum verification was successful, and
sends a positive acknowledgment to the sender. If the check sum verification is not
successful, a negative acknowledgment is sent. The transmitter, on receiving the
positive acknowledgment, will know that the message was received successfully. If,
on the other hand, the sender received a negative acknowledgment, it resends the
packet.

9.5 TRANSMITTER ROLE

Note that the sender times out and exits to go to sleep if the negative acknowl-
edgment is not received within a reasonable time. Furthermore, the sender keeps
sending the message indefinitely as long as the receiver keeps sending it negative
acknowledgments.

{
//Let p be a data packet coming from the MAC layer.

frame = Header++data packet p++check sequence (FCS);

// Construct the link layer packet

repeat forever

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

162 TECHNIQUES FOR PROTOCOL PROGRAMMING

{
transmit (frame, to receiver node j);

// Can be done using Receive.receive().
parallel

{
P1: {wait-for (ack);

if (ack == positive) exit repeat loop;

else

continue; // it is negative ack
// waited long enough.

P2: {if time-out() exit repeat loop; }
} // end of parallel

} // end of repeat;
sleep() until woken-up();

}

{
Receiver

node

j

{
repeat for ever

{
// Can be done using Receive.receive ().

p = receive-packet();

result = checksum-test (p);

if (result == success)

{send ("success"); exit repeat loop;}
else send ("failure");

} // end of repeat loop
sleep () until woken-up();

}
}

The receiver node sends a positive acknowledgment and goes to sleep if it receives
uncorrupted data. Otherwise, the receiver, after sending a negative acknowledgment,
waits for a retransmission of the data.

{
TRANSMITTER(ARQ)

FSM Model

Transmitter:

s0: frame = getFrame ();

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

ALTERNATING-BIT-BASED ARQ PROTOCOLS 163

transmit (frame);

go to s1;

s1:

receive();

if acktype = +ve then {frame = getFrame();

transmit (frame)}
else

{ transmit (frame);}
upon ack go to s1;

// Use Receive.receive() for this.

global: frame, acktype = +ve;

booted():

frame = getFrame(); transmit (frame)

receive():

actype = extract ack type();

if acktype = + ve then {frame = getFrame();

transmit (frame)}
else

{ transmit (frame); }
}

{
RECEIVER

fired():

{NULL}

receive():

if checksum is valid then

send +ve ack else send -ve ack;

}

If the negative acknowledgment was lost and the sender had timeout, then the
receiver will end up waiting forever executing the receive-packet() statement.
(See code for receiver node j above.) Excessive waiting results in battery power
wastage.

9.6 ALTERNATING-BIT-BASED ARQ PROTOCOLS

A slight variation of the protocol above is the alternating-bit-based protocol, which
attempts to transmit a packet to its neighbor. In this protocol, the transmitter uses a

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

164 TECHNIQUES FOR PROTOCOL PROGRAMMING

bit, called the control bit, which is set to 0 and 1 alternately. To start with, in order
to transmit a packet p1, the transmitter transmits prepends a 0 to P1, producing a
new packet 0:p1 and then transmits it to the receiver, sets it s timer, and waits for an
acknowledgment (ACK). If timeout occurs before receipt of an ACK, the transmitter
resends 0:p1, so that the receiver knows that the same data are being retransmitted.
When the ACK is received from the receiver, the transmitter transmits the next packet
p2 prepending it with a control bit as 1:p2. If this is acknowledged, the transmitter
transmits 0:p3,and so on. Thus, this protocol manages to transmit the data even when
the ACK is lost.

{
Transmitter i Control bit b = 0;

REPEAT: repeat for ever

{
read-packet-to-send (p);

RESEND: transmit (b:p);

PARALLEL:

P1: { wait-for-ack();

p = p+1 mod 2;}
// Receive.receive();
no clock necessary .

P2: { time-out();

goto RESEND;

}
}

{
Receiver j

Control bit b = 0;

repeat for ever

{
receive-packet (p);

// Receive.receive();
is adequate to handle this situation.

b1 = extract-control-bit (p);

d = extract-data (p);

if (b1 = b) && checksum-valid (p) then

{send-ack(); b = b+1 mod 2;};
// No -ve ack is sent.
// Go back and wait for the
// next transmission of the same data.

}
}

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

ALTERNATING-BIT-BASED ARQ PROTOCOLS 165

{
TRANSMITTER � alternating bit

FSM Model

Transmitter

s0: bit =1; c bit = 1;

frame = getFrame();

transmit (frame);

// c bit is control bit (sent by receiver)
go to s1;

s1: receive();

if c bit == bit

{ bit = bit + 1 mod 2; frame = bit: packet };
transmit (frame); upon ack: goto s1;

Pseudo code for nesC:

global: bit = 1, c bit = 1;

booted():

frame = getFrame(); transmit (frame)

receive():

actype = extract acktype();

if acktype = + ve then

{frame = getFrame(); transmit (frame)}
else { transmit (frame);}

}

{
Receiver � alternating bit

s0: control bit = 0; goto s1;

s1: receive();

b1 = extract-control-bit (p);

d = extract-data (p);

if (b1 = b) & checksum-valid (p) then

{send-ack(); b = b+1 mod 2;};
// No -ve ack is sent.

}

9.6.1 A Generalized Version of the Previous Protocol

We can generalize the above protocol presented above by going back by n transmission
steps and starting to retransmit them. We will illustrate this with an example below.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

166 TECHNIQUES FOR PROTOCOL PROGRAMMING

9.6.2 Example

Let N = e4. Let us use a buffer to store the packets. To start with, fill the buffer
with eight packets, prepending each packet with a control byte, so that the content of
the buffer buff will be buff = 0:p0,1:p1,2p2,3p3,4p3,5p4,6p5,7p6. Start sending each
packet from the left onward: 0:p0,1:p1,2:p2, (one at a time) while simultaneously
receiving the acknowledgments and processing them. Let b be the control byte of the
last packet that was sent. The recipient is assumed to send a positive acknowledgment
(+ACK) whenever the packet has been received correctly. Negative acknowledgments
(indicating that the packet was not received successfully) are not sent by the recipient.

When the sender receives a +ACK, it first extracts the control byte, say, 0, from
+ACK. It then can conclude that the packet 0:p0 has been successfully received.
Suppose that it next receives a +ACK for which the control byte is 4. It then concludes
that the packets 1:p1, 2:p2, and 3:p3 have not been received correctly. It thus sets the
value of b to 1, and the packets are sent starting from the new value of b, rather than
from it sold value.

The code below shows the generalized version of the ARQ protocol. Because
of the multiple threads of reasoning involved, the control flow in the program is
somewhat involved.

{
transmitter
A
{

// Let Nmax = 4.
repeat forever{
load buffer [0:7] = 0: packet0: 1: packet1:.. .: 7: packet7;
i = -1; // j is number of packets for which acks received.
go = 1;
PAR

P1: while (i < 7)
{

shared:
if (go) i = i +1;
send (i: packet);
go = 1;

if (i ==7) wait();
}

P2:
wait-for-ack();

// Receive.receive(); should solve this problem.
j = extract-control-digit (ack);
delete j: packet j from the buffer;

shared: { i = j +1; go = 0}

} // for ever;
}

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

ALTERNATING-BIT-BASED ARQ PROTOCOLS 167

{
receiver B

while (1) {
receive (from node a, packet p); // Receive.receive().
contorl-digit j = extract-control-digit (from packet p);

send-ack (control-digit);

data = extract-data (from packet p);

process (data);

}
}

{
Transmitter � GENERALIZED VERSION

Transmitter:

s0: c=0, k=0; goto s1;

s1: while (k < 7) { send a[k]; k ++; };

s2: receive();

cbit = extract cbit();

if (cbit == c) then (c=c+1 mod 8)

else k = c; go to s1;

nesC code

booted()

c=0; k =0;

transmit();

transmit():

while (k < 7) {send a [k]; k ++; };

receive():

cbit = extract cbit();

if (cbit == c) then (c=c+1 mod 8) else k = c;

call transmit();

}

{
Receiver � GENERALIZED VERSION

s0: receive (from node a, packet p);

contorl-digit j = extract-control-digit (from packet p);

send-ack (control-digit);

data = extract-data (from packet p);

process (data);

}

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

168 TECHNIQUES FOR PROTOCOL PROGRAMMING

9.7 SELECTIVE REPEAT/SELECTIVE REJECT

The following program is somewhat simpler than the preceding one. In this, both
the transmitter and the receiver have buffers. The transmitter keeps sending its data
packets, while the receiver continues to receive them even if they are out of sequence.
The receivers ends +ACK for received packets, and −ACK for missing packets. The
transmitter then resends those packets for which −ve ACKs were received. While this
protocol is more efficient than the ones above, the buffers that it uses will consume
more memory in the sensor nodes.

Transmitter A
{

bufer1 [0 .. 7] = 0: p0 ++ 1: p1 ++ 2:
p2 ++ ... ++ 7: p7;

send-now [0 .. 7] = 0, 1 ,.., 7;
send-next [0 .. 7] = non empty junk;

j = -1; end =0;
// initially start sending from buffer1 [].
while (send-next [] != empty)
{

PARALLEL:
{
PAR1:{

for (i = 0, i < size; i ++)
{
i1 = send-now[i];
send (to node B, buffer1 [i1]); }
end = 1;

}
PAR2:{

while (end != 1)
{
wait-for (ack, from node B);
packet-id pid =

extract-control-byte (ack);
ack-type = extract-ack-type (ack);

if (ack-type = negative)
{ send-next [++ j] = pid; }

} // end while
send-now [] = send-next [];

size = size of send-next [];
} // end PAR2

} // end PARALLEL.
} // end while.
}

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

SELECTIVE REPEAT/SELECTIVE REJECT 169

{
receiver B

buffer [0 .. 7] = empty;

i = 0;

while (i < 7)

{
receive (packet p, from node A);

packet-id = get-packet-id (packet p);

data = get-data (packet p);

if (packet-id == i)

{ buffer [i] = data; i = i + 1; send (+ve ack)}
else

send (-ve ack, i);

}
}

{
Transmitter-Selective

Repeat/Selective Reject

s0: k = 0;

s1: while (k < 7) send (a [k]); goto s2;

s2: receive();

c = control bit();

if ack-for (c) is -ve then send a [c];

}

{
Receiver-Selective Repeat/Selective Reject

s0: i =0;

while (i < 7)

{
receive (packet p, from node A);

packet-id = get-packet-id (packet p);

data = get-data (packet p);

if (packet-id == i)

{
buffer [i] = data;

i = i +1;

send (+ve ack)

}
else

send (-ve ack, i);

}

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

170 TECHNIQUES FOR PROTOCOL PROGRAMMING

nesC code:

booted():

i = 0;

receive():

}

In some applications in the real world, it is more convenient to refer to the nodes
using their network wide unique address than according to their location or data.
In the following paragraphs, we briefiy discuss the need for address management in
wireless sensor networks.

9.8 NAMING AND ADDRESSING

A sensor network is fragile, and the sensors can malfunction at any time. Thus,
the nodes in a WSN must have the capability to allocate unique addresses to each
individual node, and manage these addresses when new situations arise. Consider,
for example, a node which acts as a bridge between two subnetworks, this node fails
for some reason, the two subnetworks will lose connectivity, and for a node on one
subnet, many nodes on the other sub node may become unreachable. While address
management is a difficult problem, we will discuss a few simple techniques and their
programming issues.

9.9 DISTRIBUTED ASSIGNMENT OF NETWORKWIDE ADDRESSES

This is a simple technique for assigning addresses to each node, but the technique is
expensive, involving too many send operations. In this technique, each node generates
a random address, sets it as its own address, and broadcasts to its neighbors to check
whether it “clashes with any of its neighbours”. If anyone reports address collision,
the node again tries with another random address, and broadcasts to its neighbors
again. This continues until no clashes occur.

module algorithm2C

{
uses interface Boot;

uses interface Random;

uses interface Leds;

uses interface AMPacket;

uses interface Packet;

uses interface AMSend;

uses interface ActiveMessageAddress as AMA;

uses interface PacketAcknowledgements;

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

DISTRIBUTED ASSIGNMENT OF NETWORKWIDE ADDRESSES 171

uses interface Receive;

uses interface SplitControl as RadioCont rol;

uses interface Timer <TMilli> as Timer0;

}
implementation

{
void generateAddress();

void broadcastAddress();

am group t my group = 1;

am addr t my address;

bool conflict;

event void Boot.booted()

{
call RadioControl.start();

}

/**

Compute global addresss for each specific node and
test if the address is in use
**/

event void RadioCont rol.startDone (error t err)

{
// First we generate the address of the mote
generateAddress();

// The initial address broadcast
call Timer0.startOneShot (6000);

// At this point, we can set the generated address
call AMA. setAddress (my group, my address);

}

event void AMSend.sendDone (message t* msg, error t err)

{
if (err == FAIL)

{
call Leds.led0On();

}
}

event void Timer0.fired()

{
message t msg;

am addr t* temp;

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

172 TECHNIQUES FOR PROTOCOL PROGRAMMING

temp = (am addr t*) call AMSend.getPayload (&msg);

temp = &my address;

call AMSend.send (0 x ffff, &msg, sizeof (am addr t));

}

/**

A simple function that randomly generates an address
for a mote
**/

void generateAddress()

{
call Leds.set (0);

my address = (31071334523 % (call Random.rand16()));

}
void broadcastAddress()

{
message t msg;

am addr t* temp;

temp = (am addr t*) (call AMSend.getPayload (&msg));

*temp = call AMA.amAddress();

call AMSend. send (0 x ffff,&msg, sizeof (am addr t));

}
async event void AMA.changed()

{
}

event void RadioControl.stopDone (error t err)

{
}

event message t* Receive.receive (message t *msg,

void* payload,... uint8 t len)

{
am addr t broadcasted addr;

broadcasted addr = (am addr t*) payload;

call Leds.set (0); // Clear debug leds
if (*broadcasted addr ==

(call AMA.amAddress())) // Generate a new
// addr
{

call Leds.led0On();

// A collision has occured
generateAddress();

call AMA.setAddress

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

DISTRIBUTED ASSIGNMENT OF NETWORKWIDE ADDRESSES 173

(my group, my address);

broadcastAddress();

// Only broadcast new address
// after a collision

}
else

{
call Leds.led1On(); // No collison yet

}
return msg;

}
}

In implementing this scheme, we use, as shown in the program presented above,
a set of interfaces to achieve booting of the component, random-number genera-
tion, sending and receiving messages with the neighbors, and a timer to initiate
the first broadcasting of a randomly generated address. We have also shown above
which implementation has been chosen for each interface. In particular, the interface
RadioControl (i.e., SplitControl) has been implemented using the ActiveMessageC
component.

#define MOTE AM ID 10

configuration algorithm2AppC { }

implementation

{
components MainC;

components RandomC;

components LedsC;

components new AMSenderC(MOTE AM ID);

components new AMReceiverC(MOTE AM ID);

components ActiveMessageAddressC;

components algorithm2C;

components ActiveMessageC;

components new TimerMilliC();

algorithm2C.Boot->MainC. Boot;

algorithm2C.Random->RandomC;

algorithm2C.Leds->LedsC;

algorithm2C.AMPacket->AMSenderC;

algorithm2C.Packet->AMSenderC;

algorithm2C.AMSend->AMSenderC;

algorithm2C.AMA->ActiveMessageAddressC;

algorithm2C.PacketAcknowledgements->AMSenderC;

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

174 TECHNIQUES FOR PROTOCOL PROGRAMMING

algorithm2C.Receive->AMReceiverC;

algorithm2C.RadioControl->ActiveMessageC;

algorithm2C.Timer0->TimerMilliC;

}

void generateAddress()

{
call Leds.set (0);

my address = (31071334523 % (c a l l Random. rand16()));

}
void broadcastAddress()

{
message t msg;

am addr t* temp;

temp = (am addr t*) (call AMSend. getPayload (&msg));

*temp = call AMA. amAddress();

call AMSend. send (0 x ffff,&msg, sizeof (am addr t));

}

In addition to the commands and events from the interfaces, we also use two more
local functions for generating random addresses, and broadcasting the addresses to
neighboring nodes:

event void Boot.booted()

{
call RadioCont rol.start();

}
event void RadioCont rol.startDone (error t err)

{
// puts the address in my address.
generateAddress();

// The initial address broadcast
call Timer0.startOneShot (6000);

// Check once if any one else has my address.
// If not, at this point, we can set the
generated address
call AMA.setAddress (my group, my address);

}

The variable my address is a global variable in the implementation section of the
component where the randomly generated address is stored before being broadcast
to the neighbors.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

DISTRIBUTED ASSIGNMENT OF NETWORKWIDE ADDRESSES 175

As soon as the component is booted, the component is “turned on” by
RadioControl.start(), where we perform the following tasks. We first gen-
erate a random address, and then place it in the global variable my address, so that it
can be used by other functions in the component. We then check whether any other
node has the same address as ours (address collision), and this is done by initiating a
one-shot (monoshot) timer that fires after some delay(6000 ms) in our program. If no
such collision is observed, we set the generated address as our address, and we are
done. Our remaining task is only to reply to others’ queries regarding whether there
are any address clashes.

event void Timer0.fired()

{
message t msg;

am addr t *temp;

temp = (am addr t *) call AMSend. getPayload (&msg);

// storing the address of my address in temp.
*temp = my address;

call AMSend.send (0 x ffff, &msg, sizeof (am addr t));

}
event void AMSend. sendDone (message t *msg, error t err)

{
if(err == FAIL)

{
// If send fails, switch on red led
call Leds.led0On();

}
}

event message t *Receive.receive(message t* msg, void*

payload, uint8 t len)

{
am addr t* broadcasted addr;

broadcasted addr = (am addr t*)payload;

call Leds.set (0); // Clear debug leds
if(*broadcasted addr == (call AMA.amAddress()))

// Generate a new addr
{

call Leds.led0On(); // A collision has occured
generateAddress();

call AMA.setAddress (my group, my address);

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

176 TECHNIQUES FOR PROTOCOL PROGRAMMING

broadcastAddress(); // Only broadcast
new address after// a collision

}
else

{
call Leds.led1On(); // No collison yet

}
return msg;

}

The monoshot time pulse triggers the event fired(), where we send the packet
to the neighboring nodes. This is done by constructing the payload and storing my
address as part of the packet, and then sending the packet. After sending the packet,
if there are any errors reported in the send operation, we turn an LED on. After this
we make no further attempts to send our address.

Whenever we receive a message from any node, we extract the sender’s address,
and compare it with ours to see if an address collision has occurred. If no collision was
detected, then we have managed to find an address for our selves and remember this
fact by setting the flag. (From this point onward, we only need to respond to others’
messages by sending our address, without changing our address. This is achieved
by setting the flag address Found to TRUE.) However, if we noticed a collision, we
generate another address, set it as our own address, and broadcast it to all neighbors,
and then wait to receive their replies. This continues until we find an address for
ourselves.

Before we complete our task, we need to add some more functions, shown below.

void generateAddress()

{
call Leds. set (0);

my address = (31071334523 \% (call Random. rand16()));

}

async event void AMA.changed() { }

event void RadioControl.stopDone (error t err) { }

We generate a function using a large random number to minimize address colli-
sions, and quick and definite convergence. We also note that we have nothing to do
when ever the events AMA.changed() and RadioControl.stopDone(...)
are invoked. Note that whenever the command AMA.changed(..) is called,
AMA.changed(..) event is signaled. Similarly, RadioControl.stop() sig-
nals RadioControl.stopDone(..). [Where is RadioControl.stop()
called?]

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

IMPROVED ALGORITHMS 177

9.10 IMPROVED ALGORITHMS

We will now discuss a couple of solutions that address the problems that we mentioned
above.

9.10.1 Perkin’s Solution

We will illustrate this solution with an example in which we are given a simple
network with only a few nodes labeled. To start with, no nodes have any addresses
assigned to them. Consider node A, which wants an address for itself. It generates
a pair of random numbers < t, f >, where t is the temporary address, and f is
the fixed address, and floods the network with this pair. Each node will receive a
copy of this pair. When, for example, node B receives this pair, it checks whether
if it already has an address that is the same as the number f . Since node B does
not have any address to itself as yet, it sends a negative ACK message to node
A using the temporary address t. Similarly, other nodes also send negative ACK
messages to A using t. Node A waits for a sufficiently long time to receive these
ACK messages, and finally chooses f as its address. Similarly, node B generates
a pair of random numbers < t1, f 1> and floods the network. Now, node A will
check whether f 1 is the same as its address 1; if it is, it sends a positive acknowl-
edgment, otherwise it sends a negative acknowledgment. Other nodes send positive
acknowledgments. If node A has sent a negative acknowledgment, then node B,
on receiving this acknowledgment, will generate a new pair of random numbers
< t1, f 1 > and flood the network. Ultimately, node B finds an address, for ex-
ample, 5, for itself. This process continues until all nodes find unique addresses
for themselves. Of course, one problem with this algorithm is that the nodes
do not know how long each of them should wait for the acknowledgments.
Further, the random-number collisions can further delay the convergence of the
algorithm.

The pseudocode for this algorithm is given below. If we generate the addresses
from large address spaces, the collisions will be minimal. We also assume that each
node knows the total number of nodes present in the network.

assert f as own address.:

{
Node P

temp-address-pool T= { some addresses };
fixed-address-pool F = {ome-addresses };
have-address = NO; kmax = 10;

While (! have-address or k < kmax)

// Get address for self.
{

t = randomly-select-an-address-from (T);

f = randomly-select-an-address-from (F);

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

178 TECHNIQUES FOR PROTOCOL PROGRAMMING

// Announce: If any one has f
// as his address, message me at
flood (t, f);

// address t;
wait (ack, delta-t);

// for delta-t units of time.
if (ack = "Yes I have !")

k++; // and continue.
else

{ my-address = f; have-address = YES;}
}

// I have an address now.
// My job from now on is to reply to
// other’s queries.
for (i = 1; i < m; i ++)

{ // forward m times. How to choose m?
receive-requests-from-other-nodes (packet p);

t = extract-temporary-address-from (p);

f = extract-fixed-address-from (p);

if (f == my-address)

send (to address t, my-address);

}
}
--

{
PERKINS SOLUTION

Assume: n total number of nodes .

s0: generate the pair <t, f >;

send to all neighbours; goto s1;

s1: receive();

receive all acks; if all are -ve,

assert f as own address .;

if any is +ve,

goto s0;

if it is a request for verifying

some other node’s request,

then

extract <f, t> par t, and check if f

it clashes with its own address;

if it does send +ve ack to t;

if it doesn;t send -ve ack to t;

nesC code:

// total number of nodes;

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

CONTENT-BASED ADDRESSING 179

// T [] array of address.
global: n, T [];

booted ():

call generate ();

generate ():

generate <t, f >; send to all neighbours;

receive():

check if all acks are received

// and stay in this state.
and if a l l are -ve,

assert f as own address.;
if any is +ve,

call generate();

if it is a request for

verifying some other node’s request,

then

extract <f, t> part,

and check if fit clashes

with its own address;

if it does send +ve ack to t;

if it doesn’t send -ve ack to t;

}

9.11 CONTENT-BASED ADDRESSING

Often in applications, a node may be interested in knowing about events that other
nodes may have detected. It is possible that more than one node may have detected
the nodes’ events and stored the data in their memory. We now discuss a simple
protocol where a node can query regarding an event to an unknown node. The node
that is interested in the event (called the sink node) generates a query, and this is
passed on to all nodes in the network. The node that can produce an answer to the
query (called the source) responds to this by generating data packets and forwards
them to the sink. The intermediate node, in addition to forwarding the data to the sink
node, also stores the data along with the query in its cache, which it use later for any
similar queries from future sink nodes.

Consider, for example, the network shown in Fig. 9.2, where node j (green) has
detected an event E, and node c (yellow) is interested in knowing about this event, but
it does not know about node j. Node c then sends a query along with its address, which
is passed on to other nodes in the network. A node such as B will attempt to answer
this query, but in this case, since B has no knowledge of the event, it passes the query
to its neighbors. Eventually, the query reaches node j, which generates an answer to

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

180 TECHNIQUES FOR PROTOCOL PROGRAMMING

Source Node

Destination Node

Intermediate Node

FIGURE 9.2 Flooding dataflow.

the query, and sends it to its neighbor, node k, for example, with a request to forward it
to node c. Now, node k will store (i.e., cache) a copy of the reply, and forward it to one
of its neighbors. This process continues until the reply reaches node c. If this query
is initiated at any time in the future, the intermediate nodes that previously cached a
copy of node j’s reply in their local memory can generate a reply to the query initiator.

{
CONTENT BASED ADDRESSING self = initial Value();

Sink

-role:

if self = = sink then

flood network with request,

establishing path to sink;

if self = = sink & reply received

then accept it

;

source

role:

if self == source then send reply along path

;

intermediate

role:

if self

== intermediate node on the path &

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

FLOODING 181

have not already forwarded the

request then forward the request

and record the path

;

if self

== intermediate node on the path &

have not already forwarded the

answer then forward the answer

and store the answer

;

==

booted():

self = initialValue();

if self = = sink then

flood network with request

, establishing path to sink;

receive()

:

if self == sink & reply received then accept it;

if self

== intermediate node on the path &

have not already forwarded the

request then forward the request

and record the path

;

if self

== intermediate node on the path &

have not already forwarded the

answer then forward the

answer and store the answer

;

}

We have thus far introduced several basic protocols and discussed their implementa-
tion details. We are now ready to design some real-world applications where we can
use the techniques that we have learned so far, and we will be discussing some of
them in the following chapter.

9.12 FLOODING

In WSN applications, sending data from one point (node) to all nodes in the network
is one of the necessary basic behaviors. This happens in situations such as event

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

182 TECHNIQUES FOR PROTOCOL PROGRAMMING

monitoring, where a node wants to inform some other node (called the sink node) in
the network about the event that it has detected but has no knowledge of. One solution
to this problem is that node A can choose to flood the network with the data that it has
at hand. In flooding, node A transmits its data to all its neighbors, with a request that
each of its neighbors should forward the data to their neighbors with a similar request
to forward. This continues until all the nodes in the network have received the data
and have forwarded them with their requests to all their neighbors. Obviously, this
way of passing data from a source node to a sink node is expensive, but sometimes
this may be the only way to send data. In the following text, we first present the
pseudocode for flooding, and then discuss the nesC programming challenges that we
face while implementing it.

{
// Node A, the source node |

// This node initiates the flooding.
{

// from sensor or user.
// Higher level behavior.
sense-data (packet p);

Data d = <packet p, command "forward">

build-neighbourhood-table (table T);

for each node k in the t able T

// Or broadcast to every one?
send-by-unicast (data d, to node k);

sleep() until woken-up();

}
// Node i, where i is any node except node A.
{

build-neighborhood-table (T);

wait-for (Data d);

// Higher level behavior.
for each node k in the table T

// Or broadcast to every one?
send-by-unicast (data d, to node k);

sleep() until woken-up();

}
}

In the pseudocode above, we have used two higher-level behaviors in the imple-
mentation of our solution to flooding: sense-data(packetp) and sleep()
untilwoken-up(). Both these behaviors are implemented using the S-MAC
schedule based listening and sleeping behaviors.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

FLOODING 183

floodC

Boot

Mainc

Initialize Read Receive

FIGURE 9.3 Flooding protocol architecture.

{
interface initialize;

command initialize();

interface table:

command build();

event buildDone (err);

module floodC

uses interfaces: initialize, read, flood, table;

booted():

FLOODING

Pseudo code

source role:

read data and flood the network;

sink role:

reveive data;

process;

intermediate node role:

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

184 TECHNIQUES FOR PROTOCOL PROGRAMMING

if (received first time)

flood the network;

--

pseudo nesC Components:

Assume: Let T be the neighborhood table;

booted():

self = initialize role();

firstTime = true;

if self = = source then read (x)

;

readDone():

d = data from read operation;

flood the network;

receive():

if self == sink then extract packet and process;

if self == intermediate & firstTime then

{
extract data;

flood the network;

firstTime = false;

}
}

In this example, we illustrate how we write pseudocode specifying the behavior
of the roles that each node plays during execution of this protocol from algorithmic
description. We then convert this into another pseudocode, that is suitable for nesC
programming. In the source role, the node reads the data and forwards them to every
neighboring node. In the intermediate node role, any data received are forwarded to
all neighboring nodes. In the sink node role, the data received are processed and stored
for future use. Now, from the behavior observed in these individual roles, we can
build the pseudocode for nesC programming. This basically involves distributing the
role behaviors across the commands booted(), readDone(), and receive(),
where a node chooses a role initially to guide the execution of the nesC (pseudo)code.

9.13 RUMOR ROUTING

In rumor routing, which is somewhat similar to flooding, a node X has an event
e in which other sensors may be interested. In order to achieve this goal, X lets

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

RUMOR ROUTING 185

some of its neighbors A know about the event. (Note: In flooding, all neighbors are
informed about the event.) Now node K forwards the data about the event to some
of its neighbors, but at the same time records in its memory that X is its neighbor
from where event e originated. This information is necessary if some node wants to
reach X later. In the Fig 9.3, we thus see that X chooses to inform its neighbors A and
E about the event, ignoring other neighbors. At this point, some of the nodes at hop
distance 1 know about the event and that there is a route to the node X. The routing
thus continues for some further hop distance, and terminates in this example at hop
distance 4, where nodes D and G also know about the event at X.

9.13.1 Example

In the pseudocode below, each node chooses a few nodes randomly from its neighbors.
We have assumed that the node X goes to sleep after transmitting its data, whereas
the other nodes are still a wake, performing other activities.

Unlike in the scenario flooding, rumor routing is followed by the next phase where
other nodes want to send queries to node X to learn more about the event. The program
below shows what the node should do depending on what its role is. A node can play
any of the three roles shown in the pseudocode presented below:

{
source role:

{
Program Code:

Node

X // Rumour initiator, wants to report an event e to
another node Z.

{
build-neighbourhood-table (T);

for each node k from T

{
d = randomly decide to send ();

if (d == yes) send (to node k, own address, event e);

} // end for loop
sleep() until woken-up();

}
Other intermediate nodes Y

{
(flag = 0); build-neighbourhood-table (T);

if (flag == 1)

display ("I was selected once before,

and I forwarded the packet!");

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

186 TECHNIQUES FOR PROTOCOL PROGRAMMING

else

{
for each node k from T

{
d = randomly decide to send ();

if (d == yes)

send-packet (to node k, own

address, event e);

}
flag = 1;

}
}

}
read data and perform rumour routing

sink role:

receive and process data

intermediate node role:

if (received first time)

flood the network;

}

{
Assume: Let T be the neighborhood table;

int self, first Time;

am addr t sensoraddress = 2;

// Pre-determined address of current sensor
am group t sensorgroup = 1;

RoutingData table [NO OF MOTES];

// Assume we already have this table.

booted()

:

self = initialize Role();

firstTime = true;

call RadioCont rol.start();

event void RadioControl.startDone (error t err)

{
// First we set the current address of this mote
call AMA.setAddress (sensorgroup, sensoraddress);

if self = = source then read (x)

;

}

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

RUMOR ROUTING 187

readDone()

: // Note: This is executed only by source node.
if self == source then

{
d = data from read operation;

for each randomly selected neighbour k,

send (to node k, data d);

}
event void AMSend.sendDone (message t *msg, error t err)

{
if (err == FAIL)

{
call Leds.led0On();

}
}

receive()

:

if self = = sink then e

xtract packet and process;

if self = = intermediate &firstTime then

{
firstTime = false;

extract data;

for each randomly selected neighbour k,

send (to node k, data d);

}

event void AMSend.sendDone (message t* msg, error t err)

{
if (err == FAIL)

{
call Leds.led0On();

}
}

async event void AMA.changed() { }
event void RadioControl.stopDone (error t err) { }
}

module Tracking

{
uses interface Boot;

uses interface ReadStream as Temperature;

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

188 TECHNIQUES FOR PROTOCOL PROGRAMMING

uses interface Timer<TMilli> as Timer0;

uses interface Timer<TMilli> as Timer1;

}

9.14 TRACKING

In this section we show how as imple program-tracking utility can be written for a
sensor network. In this example, it tracks the changes in temperature over time.

We now build the component for tracking by using the interfaces as shown.

{
configuration TrackingAppC

{
}

implementation

{
components TrackingC as App;

components MainC;

components new TimerMilliC() as Timer0

components new TelosbSensorC()

App.Boot �→ MainC;

App.Timer0 �→ Timer0;

App.ReadStream �→ TelosbSensorC

}
}

Read Stream is needed to read the temperature from the environment, and
timers are needed for sampling. We first read the initial values to store them in a
vector. Later, during tracking, we sample and read the sensor values, and compare
the new values with the values in the vector, and look for significant changes in the
values. The implementations of interfaces are shown below.

We have chosen the ReadStream implementation for the TelosB mote. Using
these implementations of the interfaces, we implement our component as follows.
First, We start the two timers, one single shot and the other periodic. When the single
shot fires, we sense the initial temperature and store it as the reference value. The
periodic clock is used to sample the environment periodically and check whether the
temperature has changed significantly.

{
implementation

{
define #threshold 0.5

int temp1, temp2;

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

QUERYING IN RUMOR ROUTING 189

P

Q

R

C
D

B

A

X

F

G

O

V

FIGURE 9.4 Querying in rumor routing.

event void Boot.booted()

{
initialize two timers as

Timer0.startOneShot (100) and

Timer1.startPeriodic (2000);

}
event void Timer0.fired()

{
temp1 = Temperature.read();

}

event void Timer1.fired()

{
temp2 = Temperature.read();

if (abs (temp1-temp2) > threshold)

call led0Toggle();

}
}

9.15 QUERYING IN RUMOR ROUTING

For example, in Fig. 9.4, node P wants to know the event that occurred at node X,
and sends a query. The sequence of events that take place are as follows:

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

190 TECHNIQUES FOR PROTOCOL PROGRAMMING

1. Node P randomly chooses Q, and sends the query.

2. Since Q doesn’t know the answer, it forwards it to R.

3. Node R forwards it to C.

4. Node C replies with the details of event e, as well as the path to the sensor X.

The program below classifies the nodes into four types: the querying node (P),
the destination node (X), the node that has a path to the destination node (C), and
the node that does not know about the destination node (Q). Note that this type of
classification is implicit rather than explicit by virtue of the code that each node
executes in the network. Each node executes its function in the protocol, and all the
nodes cooperatively execute the overall protocol scheme, where we have used the
following programming abstractions:

{
wait

-for(), receive-from-neighbour(),

and send-request() .

Node P |originator of query to node X;

P does not know the id of X.

// A node P wants to know about the event e.
{
Table T = build |neighbourhoodtable();

a = randomly |choose |a |neighbour (from T);

packet p = query q++event e;

send |request (own |address, to a, packet p);

// programming abstraction
wait

-for (reply r, from node a);

event E = extract (r);

display (message m);

}
}

{
wait

-for(), receive-from-neighbour(),

and send-request().

Node P |originator of query to node X;

P does not know the id of X.

// A node P wants to know about the event e.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

QUERYING IN RUMOR ROUTING 191

{
Table T = build |neighbourhoodtable();

a = randomly |choose |a |neighbour (from T);

packet p = query q++event e;

send |(own |address, to a, packet p);

// programming abstraction
wait

-for (reply r, from node a);

event E = extract (r);

display (message m);

}

Node Q
| a node that does not know anything about X,

so only forwards the request

to a random neighbour like

node R.

{
flag = 0;

Table T = build |neighbourhoodtable();

if (flag == 1)

display ("Already forwarded");

else

{
// programming abstraction

receive |from |neighbour (query packet p);

sender P = extract |id |of |sender (p);

event E = extract |event (p);

a = randomly |choose |a |

neighbour (from T) such that

the neighbour is not

the sender node P;

// programming abstraction
send |request (own |address, to a, event E);

// wait for reply.// programming abstraction
wait

-for (packet p, from node a);

send |reply (to P, packet p);

flag = 1;

}
}

Node C

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

192 TECHNIQUES FOR PROTOCOL PROGRAMMING

| a node that knows about the

event node X via a neighbour.

{
// I have not forwarded this message before.
flag = 0;

Table T = build |neighbourhoodtable();

if (flag == 1)

display ("Already forwarded");

else

{
receive |from |neighbour (query packet p);

sender P = extract |id |of |sender (p);

// I already have a pointer to B.
neighbour B = lookup |local |memory();

send (packet p, to node B);

wait

-for-reply (from node B, reply packet q);

send |received |reply (to P, reply packet q);

}
}

Node D

// Destination node D that reports event e
{
receive |from |neighbour (query packet p);

sender P = extract |id |of |sender (p);

extract |original |

sender (node S, from packet p);

new packet p = sender S++event e

send (packet p, to P);

}
}

Each abstraction specifies an elementary behavior that we find useful in our
sensor programming experience. All these abstractions will be implemented using the
S-MAC schedule-based listening and sleeping.

Thus far we have been looking at examples where nodes have to transmit and
receive data in a general setting. Nodes do not know about each other. However,
in many real-world situations, nodes have partial knowledge about the each other.
The following code illustrates one such technique where nodes exchange information
more efficiently under certain assumptions.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

QUERYING IN RUMOR ROUTING 193

The program above shows the code for each node involved the querying operations
for rumor routing. For compactness, the roles performed by each of these nodes as
specified in the code can be merged together and installed on each node.2

{
role - query generator (like P):

fired():

for each randomly generated neighbour q,

{
store q ’s id; send (query to q);

}
sendDone(): { NIL }

receive():

if packet received from one of the

neighbours previously randomly neighbour,

then extract the answer; halt.

role - out side rumor domain (like Q):

fired():

NIL.

receive():

if query received from a node p then

{
store address of p;

for each randomly generated neighbour q,

{ store q’

s id;

send (query to q);

}
}
if packet received from one of the

neighbours previously randomly chosen neighbour,

then extract the answer;

send the answer to node p;

role | inside rumor domain (like C):

fired():

NIL

receive():

if query received from any node r then

{
obtain answer to query from the local memory;

also obtain address of a node (like B)

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c09 JWBS038-Iyengar August 31, 2010 10:56 Printer: Yet to come

194 TECHNIQUES FOR PROTOCOL PROGRAMMING

which has path to the event node like E;

send <answer, address> to node r;

}
}

PROBLEMS

9.1 In your own words, describe the role of the mediation device protocol.

9.2 Write a simple program to automatically assign random node identification
numbers to sensor motes.

9.3 Explain the function of the alternating-bit-based ARQ protocol.

9.4 What is querying? Give an example of a real-world case.

9.5 What are the programming challenges at the link layer? Explain why.

9.6 Implement a 100 random uniform distribution of nodes that are assigned dif-
ferent addresses.

9.7 Describe content-based addressing. Explain with examples how and where this
addressing scheme would be useful.

9.8 What is flooding? Describe its use and drawbacks in the context of sensor
networks.

9.9 What are some of the improvements over fooding? Explain any two.

REFERENCES

1. V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, Macaw: A media access protocol
for wireless LANs, Proc. ACM SIGCOMM 1994, 1994.

2. C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems, Kluwer Aca-
demic, Jan. 1999.

3. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, System architecture
directions for networked sensors, in In Architectural Support for Programming Languages
and Operating Systems, 2000, pp. 93–104.

4. W. Ye, F. Silva, and J. Heidemann, Ultra-low duty cycle MAC with scheduled channel
polling, SenSys ’06: Proc. 4th Int. Conf. Embedded Networked Sensor Systems, ACM,
New York, 2006, pp. 321–334.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c10 JWBS038-Iyengar August 31, 2010 10:57 Printer: Yet to come

PART IV
Real-World Scenarios

195

www.finebook.ir

http://www.finebook.ir/../

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c10 JWBS038-Iyengar August 31, 2010 10:57 Printer: Yet to come

10 Sensor Deployment Abstraction

Simplicity and elegance are unpopular because they require hard work and discipline to
achieve and education to be appreciated.

—Edsger Dijkstra

As we move into the future, the effects of Moore’s law will progessively make
the unit cost of sensor devices more and more negligible. Indoor and even outdoor
environments with access to the existing power grid will be fertile environments for
large number of low-impact sensors. Similarly motor vehicles, which already use
large number of microprocessors in their existing systems, will be able to easily
evolve to include sensors and wireless communication devices as standard hardware.
The effect of this will be a potentially information-dense environment, with over-
whelming amounts of data available from anywhere inhabited by humans. In the long
term, the greatest cost and the challenge involved in building sensor networks will
rest not in the hardware, but in the software. In order to deal with large numbers of
nodes measuring large amounts of data, whole new paradigms in data aggregation
and network architecture will be needed. Networks on this scale will resemble a living
system more than a series of traditional computer networks, and our approach to them
must vary accordingly. The deployment of sensors often necessitates an understanding
of certain requirements such as sensor coverage, redundancy, and network architecture
providing the essence of sensing physical space. Applications such as multiple target
tracking, environmental monitoring, health monitoring, energy usage monitoring,
or other general security monitoring require varying degrees of sensor coverage.
Certain networking abstractions must be created to ensure easy management of
sensors irrespective of the coverage type (dense Vs. less dense networks). In the
following sections we discuss some of the common abstractions used to facilitate the
deployment and management of sensors.

10.1 SENSOR NETWORK ABSTRACTION

Sensor networks should have the following properties:

� Self-configuration—formation of networks with no human intervention
� Self-healing—automatic deletion/addition of nodes without resetting the entire

network

Fundamentals of Sensor Network Programming: Applications and Technology, By S. S. Iyengar, N. Parameshwaran,
V. V. Phoha, N. Balakrishnan, and C. D. Okoye Copyright C© 2011 John Wiley & Sons, Inc.

197

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c10 JWBS038-Iyengar August 31, 2010 10:57 Printer: Yet to come

198 SENSOR DEPLOYMENT ABSTRACTION

event

event

event

FIGURE 10.1 Data aggregation flow diagram.

� Dynamic routing—adapting routing schemes on the fly on the basis of network
conditions such as link quality, hop count, and gradient

� Multihop communication—improving the scalability of the network by sending
messages on a peer-to-peer basis to a base station

In order to support these functionalities at the large network level, programming
design patterns and abstractions are essential. We will now present a few of them.

10.2 DATA AGGREGATION

In-network aggregation of data (see Fig. 10.1) is one of the fundamental data-
processing techniques commonly used in sensor networks. This is because significant
energy savings can be accrued over time as nodes collectively collaborate to forward
data toward a data sink rather than having each node perform this task single-handedly.
In TinyOS, some networking components having data aggregation capabilities have
been provided such as the collection tree protocol and dissemination protocols.

10.2.1 TinyOS Data Aggregation Illustration

We present the following code to illustrate TinyOS data aggregation:

module AdvancedSendC

{
uses interface Boot;

uses interface Send as LeafSend;

uses interface AMSend as SerialSend;

uses interface StdControl as RoutingControl;

uses interface SplitControl as RadioControl;

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c10 JWBS038-Iyengar August 31, 2010 10:57 Printer: Yet to come

DATA AGGREGATION 199

uses interface SplitControl as SerialControl;

uses interface Receive;

uses interface Leds;

uses interface Read<uint16 t>;

uses interface RootControl;

uses interface ActiveMessageAddress as AMA;

uses interface Timer<TMilli> as Timer0;

uses interface Queue<message t*> as SerialQueue;

uses interface Pool<message t> as SerialPool;

}

implementation

{
//Global Function Definitions

void error (); //Called whenever an error occurs in our code

void serialSuccess (); //Called whenever we send a serial packet

// successfully

void radioSuccess (); //Called whenever we send a radio packet

// successfully

task void sendSerialData (); //Actual task to send data to computer

//Global Variables Declaration

am addr t addr = 1;

am group t group = 1;

uint16 t periodic = 2000;

uint16 t sensor value;

message t buffer;

bool serial busy = FALSE;

//Initialize some of our other components

event void Boot.booted ()

{
call AMA.setAddress(group, addr);

if(call RoutingControl.start()!= SUCCESS)

error ();

if(call RadioControl.start() != SUCCESS)

error();

if(call AMA.amAddress() == 1)

{
call RootControl.setRoot(); // If your ID is 1,

// you are root

if(call SerialControl.start() != SUCCESS)

error();

}
else

{
call Timer0.startPeriodic(periodic);

}
}

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c10 JWBS038-Iyengar August 31, 2010 10:57 Printer: Yet to come

200 SENSOR DEPLOYMENT ABSTRACTION

event void SerialControl.startDone(error t err)

{}

event void RadioControl.startDone(error t err)

{}

event void SerialControl.stopDone(error t err)

{}

event void RadioControl.stopDone(error t err)

{}

event void LeafSend.sendDone (message t* msg, error t err)

{}

async event void AMA.changed()

{}

event void Read.readDone(error t err, uint16 t val)

{
if(err != FAIL)

{
sensor value = val;

}
else

{
error();

}
}

//Timer will only be fired on leaf nodes,

//When it happens, we send a reading.

event void Timer0 . fired ()

{
uint16 t* data;

if(call Read.read() == FAIL)

error();

data = (uint16 t*)call LeafSend.getPayload(&buffer);

*data = sensor value;

if(call LeafSend.send(&buffer,sizeof(uint16 t))== SUCCESS)

radioSuccess{};
}

//This receive method is only signalled on the root node. When it

//receives a packet, it tries to send it to the serial interface.

event message t* Receive.receive(message t* msg, void* payload,...

uint8 t len)

{
message t* serial packet;

// First we check serial bus:

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c10 JWBS038-Iyengar August 31, 2010 10:57 Printer: Yet to come

DATA AGGREGATION 201

if(serial busy == FALSE)

{
serial packet = call SerialPool.get();

if(serial packet == NULL) // Out of memory, so

// drop all packets.

{
error();

return msg;

}
else //Prepare packet for sending operation

{
uint16 t* sense value = (uint16 t*) call...

SerialSend.getPayload(serial packet);

memcpy(sense value, (uint16 t*) payload, len);

if (call SerialQueue.enqueue(serial packet)...

== FAIL)

{
error();

}
else

{
serialSuccess();

serial busy == TRUE;

post sendSerialData();

}
}

}
else //If serial bus is busy we enqueue for now

{
serial packet = call SerialPool.get();

if(serial packet == NULL) //Out of memory, drop

//all packets

{
error();

return msg;

}
else

{
uint16 t* queue value =(uint16 t*) call...

SerialSend.getPayload(serial packet);

memcpy(queue value, (uint16 t*) payload, len);

if (call SerialQueue.enqueue (serial packet)...

== FAIL)

error();

}

}
return msg;

}

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c10 JWBS038-Iyengar August 31, 2010 10:57 Printer: Yet to come

202 SENSOR DEPLOYMENT ABSTRACTION

event void SerialSend.sendDone (message t* msg, error t err)

{
serial busy = FALSE;

if (call SerialQueue.empty() == FALSE)

{
serial busy = TRUE;

post sendSerialData();

}
}

task void sendSerialData()

{
buffer = *(call SerialQueue.dequeue());

if(call SerialSend.send(0xffff,& buffer, sizeof(message t)...

== FAIL))

error();

serial busy = TRUE;

}

void error()

{
call Leds.led0Toggle();

}
void serialSuccess()

{
call Leds.led1Toggle();

}
void radioSuccess()

{
call Leds.led2Toggle();

}
}

In this illustration of the collection tree protocol, every node in the network plays
the role of either a leaf node or a root node. Roots advertise themselves throughout
the network while leafs create routes to these roots using a routing gradient. The
interface RootControl (we use in Section 10.2.1) provides the necessary functions to
select roots and a special implementation of the AMSend interface allows leaf nodes
to forward data to these root nodes.

10.3 COLLABORATION GROUP ABSTRACTIONS

We can view a collection of sensor nodes as a three-tuple <S,R,M> where S is
the set of nodes, R is a relation among the nodes, and M is the set of functions
that the node performs. Each component of the tuple can be dynamically modified;
that is, the set of nodes can vary as old nodes crash and new nodes are added, the
relationship amongst them can be modified according to new situations, and new

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c10 JWBS038-Iyengar August 31, 2010 10:57 Printer: Yet to come

COLLABORATION GROUP ABSTRACTIONS 203

a4

a2

a5

a1

a3

a6 a7

FIGURE 10.2 Typical operation of a node in this hierarchy.

functionalities may be added to the nodes. Abstract communities can be defined, and
abstract routing protocols may be implemented using node level protocols. This also
makes programming easier as the programmer at any time only needs to deal with
abstract groups. By having more than one group of nodes perform the same set of
functions, robustness may be improved.

10.3.1 Example

While the architecture of the group can be modeled as a directed acyclic graph, in this
example we will assume that a hierarchical tree structure exists among the agents.
Each node has a parent node (except the root node), and a set of child nodes (see
Fig. 10.2). The overall task of a subgroup (formed by the nodes of a subtree) is broken
down into subtasks by the node at the root of the subtree, distributed to the children,
the results from the children are then aggregated, and finally sent to the parent.

// Typical operation of a node in this hierarchy.

// Given task T - e.g, measure temperature and brightness.

while (1)

{
decompose task T into subtasks T1,T2,...,Tn. //

Assume n children.

distribute subtasks to children (c1 ,..., cn);

sense (x);

r = receive results from children;

q = compute (function f(x, r));

communicate result q to parent;

}

10.3.2 Types of Group Abstractions

Abstractions using nodes can be defined based on geographical distribution of nodes,
tasks assigned to each node and specific types of capabilities that may exist across
the nodes. For example, in abstractions determined by geographically constrained
group (GCG) of nodes, the nodes are placed within a chosen geographic area. The
role chosen for each node will depend on relationship between the nodes and the

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c10 JWBS038-Iyengar August 31, 2010 10:57 Printer: Yet to come

204 SENSOR DEPLOYMENT ABSTRACTION

Application

Collaboration groups

OS OSOS

Networking

Processor ProcessorProcessor

Sensors UISensors UI Sensors UI

FIGURE 10.3 Nodes organized using geographically constrained group abstraction.

application. This abstraction will be useful when we want all the agents sensing the
same environment. The exact relation between the nodes may be a tree or a directed
acyclic graph.

10.3.3 Application of GCG Abstraction

Consider a task where we want to perform fusion of data collected over a specific ge-
ometric area. We can employ the GCG group abstraction as a solution to this problem
[2,1]. In addition to low-level exceptions, there can be other types of exceptions such
as communication holes arising in the geographic region. Various types of protocol
supports can then be used to solve this problem. For example, one may choose to
food all nodes in the entire geographic area (geocast strategy), route into the region
and food (GEAR strategy; that is, geographic and energy-aware routing), food along
the perimeter to route to a geographic location (GPSR strategy—greedy perimeter
stateless routing), or food even with existence of holes (mobicast—mobile multicast).

10.3.4 n-Hop Neighborhood Group (n-HNG)

The n-HNG concept can be viewed as a notion capturing the idea of “reaching all
nodes that can possibly be reached within a certain time.” As before, the relation
between the nodes may be hierarchical (a tree like structure). The advantage of this
pattern is that it does not require the location of the nodes in order to be implemented.
This pattern can also be used for local sensor selection. Exceptions can occur when
communications fail, causing instability in hop counts. Solutions to this problem can
include fooding, or ad hoc routing tree (explicit or implicit).

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c10 JWBS038-Iyengar August 31, 2010 10:57 Printer: Yet to come

PROBLEMS 205

10.3.5 Publish/Subscribe Group (PSG) Pattern

This pattern is useful in situations where nodes of shared interests come together to
perform a common task. For example, this works when all agents that provide certain
data work together in data fusion and forward the results to an application. This
pattern can be used in applications such as data/service discovery and pursuer/evader
games. However, exceptional situations can arise when multiple nodes with shared
interest food the network. Protocol support such as directed diffusion (which does
not need geographic information), GHT (geographic hashing table: hashing data into
geographic locations), and multirendezvous regions (replication of GHT in a region)
may alleviate this problem.

10.3.6 Acquaintance Group (AG) Pattern

This pattern defines a group of nodes that “used to know each other.” This captures
the notion that “all nodes that share some state with each other” can fruitfully form
a group. This is particularly suitable for nodes that are mobile. They may have
peer-to-peer or leader–follower structure, and group membership can be historical or
logical. The challenge in applying this pattern to real-word scenarios is to maintain
connectivity among nodes, particularly when they are mobile.

With one or more fixed nodes and leader–follower structures, publish/subscribe
protocols, and georouting (geographic routing) may be used. When all nodes are
mobile and if the structure is peer-to-peer, structures such as Minimum Steiner Tree,
Approximated Minimum Steiner Tree, or RoamHBA (roaming-hub-based architec-
ture: maintaining a roaming backbone) may be used.

10.4 PROGRAMMING BEYOND INDIVIDUAL NODES

For large applications, we need to combine the techniques mentioned above and write
programs building abstractions on top of the patterns of collaboration discussed above.
This style of programming is not only scalable but also provides structural abstractions
where each structure can be built, designed, implemented, and maintained separately
(just as modular systems, or object-oriented systems).

PROBLEMS

10.1 List and explain some of the characteristics of wireless sensor networks.

10.2 Describe data aggregation and the concept of tree data structure.

10.3 Describe and list real-life examples of publish subscribe systems and how the
mechanism can be adapted to sensor networks.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c10 JWBS038-Iyengar August 31, 2010 10:57 Printer: Yet to come

206 SENSOR DEPLOYMENT ABSTRACTION

REFERENCES

1. V. Iyer, S. S. Iyengar, N. Balakrishnan, V. Phoha, and M. B. Srinivas, Farms: Fusionable
ambient renewable MACs, Proc. IEEE Sensors Applications Symp. SAS 2009, Feb. 17–19,
2009, pp. 169–174.

2. M. B. Srinivas, V. Iyer, G. Rama Murthy, and B. Hochet, C-error simulator for development
for sensor and location aware sensing applications, Proc. 3rd Int. Conf. Sensing Technology,
Taichung, Taiwan, 2002, pp. 799–804.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c11 JWBS038-Iyengar August 31, 2010 10:57 Printer: Yet to come

11 Standards for Building Wireless
Sensor Network Applications

Good design adds value faster than it adds cost.
—Thomas C. Gale

11.1 802.XX INDUSTRY FREQUENCY AND DATA RATES

The IEEE 802.15.4 is a standard that specifies the implementation details of medium
access control (MAC) and the physicallayer (PHY) for low-rate wireless networks.
It provides the fundamental lower network layers of a wireless network focusing on
low cost and low speed typically associated with wireless sensor networks. Currently,
it has been implemented by several networking solutions such as ZigBee, Wireless
HART, and MiWi, which provide higher-level communication protocols in addition to
the 802.15.4 standard. In this chapter, most of the focus will be on the ZigBee standard,
due to its popularity among wireless networking vendors. A simple comparison of
some wireless standards is shown in Fig. 11.1.

The ZigBee standard defines the security, networking, and application frameworks
for an IEEE 802.15.4–based system. It creates a self-forming, self-healing mesh
network capable of supporting thousands of wireless devices on a single network
[1–3]. The ZigBee stack architecture is divided into five parts:

� Security service provider
� Application layer (support sublayer, framework, ZigBee device object)
� Network layer
� Datalink layer
� Physical layer

Most sensor applications based on ZigBee specifications typically interact with the
application and network layers specified by ZigBee. The network layer provides
necessary abstractions for managing multihop communication between the various
nodes while the application support layer manages communication between the var-
ious application objects. Also, the ZigBee alliance makes provisions for security

Fundamentals of Sensor Network Programming: Applications and Technology, By S. S. Iyengar, N. Parameshwaran,
V. V. Phoha, N. Balakrishnan, and C. D. Okoye Copyright C© 2011 John Wiley & Sons, Inc.

207

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c11 JWBS038-Iyengar August 31, 2010 10:57 Printer: Yet to come

208 STANDARDS FOR BUILDING WIRELESS SENSOR NETWORK APPLICATIONS

IEEE 802.20

WiMax IEEE 802.16

WiFi 802.11

802.15.3
802.15.3a
802.15.3cBluetooth 802.15.1

Zigbee
802.15.4

WWAN

WMAN

WLAN

R
an

ge

WPAN

0.01 0.1 1 10 100 1000

Data Rate (Mbps)

IEEE 802.22

FIGURE 11.1 Comparison of IEEE 802.11 standards.

services, device management, and the ability to extend the application framework
with vendor-specific services. The full architecture of the ZigBee stack is shown
in Fig. 11.2.

11.2 ZigBee DEVICES AND COMPONENTS

The maintenance of the 802.15.4 sensor network is the backbone of the easily pro-
grammable model of the network stack design. As by design, they are self-organizing
and easy to maintain using a hierarchical addressing scheme. ZigBee devices are
divided into three major classes:

1. ZigBee network coordinator

2. ZigBee router

3. ZigBee end devices

Type 1 devices are typically addressed as node 0, acting as a communication gateway
and control node. There is usually only one such node in a given cluster-based
topology, and it can centrally address up to 216 nodes, which have sufficient resources
in terms of memory and data-handling capability. As it is the first full-function device

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c11 JWBS038-Iyengar August 31, 2010 10:57 Printer: Yet to come

ZigBee DEVICES AND COMPONENTS 209

Application Framework

Security Service
Provider

Application Support Sub-Layer

Network Layer

Medium Access Layer

Physical Layer

Zigbee Device
ObjectApplication

Object
Application

Object

FIGURE 11.2 ZigBee architecture.

set up on the network, node 0 is responsible for topology discovery and initial
assignment of addresses and identifying specific nodes as intermediate routers or
end nodes to initialize the sensor network. Type 2 nodes are routers whose primary
capability is to forward multihop communication from the data nodes to the central
coordinator gateway. These nodes need to have a routing stack so that they may
effectively participate in routing of the measured data from their next-hop neighbors.
Type 3 nodes are the most adaptive as these are remotely placed on a long-term basis.
They are equipped with physical sensors to accurately measure environmental values
and transmit only when queried or when an event has triggered idling for most of its
lifetime. The 802.15.4 stack code is designed as a state machine that allows a reentrant
API library for sending nonblocking messages. The programming APIs cover each
network layer individually such that it is documented as a library function; these APIs
are compiled into native target processors with hardware-specific optimizations.

11.2.1 Application Layer

The application layer is defined by the ZigBee specification but is implemented by
manufacturers. It consists of three critical components:

� Application support sublayer
� Applicationframework
� Application object
� ZigBee device object

The application support sublayer manages communication between the various ap-
plication objects. Each application object provides specific sensing functionality for

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c11 JWBS038-Iyengar August 31, 2010 10:57 Printer: Yet to come

210 STANDARDS FOR BUILDING WIRELESS SENSOR NETWORK APPLICATIONS

the ZigBee device. The ZigBee device object defines the role of each device in the
network as an end device or a network coordinator and also is responsible for the
discovery of new devices and their offered services. In any network, there can be only
one ZigBee network coordinator but multiple intermediate routers and end devices.

11.2.2 Network Layer

The network layer houses mesh network abstractions allowing ZigBee devices to
form resilient networks by using a mesh routing architecture. Other functions of the
network layer are to enable proper use of the underlying MAC layer by providing
a suitable interface to other upper layers. The routing protocol in use in a ZigBee
network chooses the lowest-cost (energywise) route to the intended destination. The
following factor is used:

Global = total collaborative resource needed

resource available in individual sensor

This factor is calculated on routing or completing a sensor network task without
having a single failure, keeping cross-layer energy consumption to a minimum.

11.2.3 Datalink Layer

The low-level layers deal with radios and a suitable MAC that allows for communi-
cation with its neighbors without any central coordination. The datalink layer is also
responsible for aggregating data from all its neighbors and sending an acknowledg-
ment when it receives sufficiently reliable data to higher network layers.

11.2.4 Physical Layer

This layer consists of the actual radio and is IEEE 802.15.4–compliant.

11.3 ZigBee APPLICATION DEVELOPMENT

ZigBee basically uses digital radios to allow devices to communicate with one another.
A typical ZigBee network consists of several types of devices. A network coordinator
is a device that sets up the network, is aware of all the nodes within its network, and
manages the information about each node as well as the information that is being
transmitted/received within the network [2]. Every ZigBee network must contain a
network coordinator. Other full-function devices (FFDs) may be found in the network,
and these devices support all of the 802.15.4 functions. They can serve as network
coordinators, network routers, or devices that interact with the physical world. The
final device found in these networks is the reduced-function device (RFD), which
usually serves only as a device that interacts with the physical world. An example

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c11 JWBS038-Iyengar August 31, 2010 10:57 Printer: Yet to come

ZigBee APPLICATION DEVELOPMENT 211

Mesh Network

Star Network Topology

Intermediate Router (FFD)

Zigbee End Device

Zigbee Coordinator

FIGURE 11.3 A typical ZigBee network.

of a ZigBee network is shown in Fig. 11.3. The components needed to develop a
real-time automation application are

1. Coordinator node with network configuration and application

2. Routers that are in the form of clusterheads and allow multihopping

3. End devices connected to sensors

The ZigBee PAN coordinator which is currently the most powerful node on the net-
work is normally 1-hop. Furthermore, the Wireless Sensor Network (WSN) commu-
nicates to a fixed Local Area Network (LAN) which has a gateway Internet Protocol
(IP) address to transfer data serially or by built-in ethernet ports in some models of
ZigBee.

Sometimes a Sniffer program from an IP can be used to monitor the unknown
topology of a WSN network. Programming in the air can be used to correct some
on-going problems, which may need reconfiguration through the use of low-level
sensor programming. The coordinator node synchronizes all the member nodes and
provides them the flexibility to communicate data in either in their assigned time-slots
or by re-calculating a different slot. Moreover, the coordinator node acts as a router to
route all data from its domain to coordinators in other domain (peer-to-peer structure)
or to a higher-level coordinator (if it has a hierarchical topology).

The router nodes act like clusterhead and allow all their children to directly
interface to enable routing. The main function of these router nodes is to provide
reliable multihop paths in the event of a failure on the network.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c11 JWBS038-Iyengar August 31, 2010 10:57 Printer: Yet to come

212 STANDARDS FOR BUILDING WIRELESS SENSOR NETWORK APPLICATIONS

The end devices are mostly sensors connected to physical devices and have very
little memory requirements. They are mainly designed to be compatible with different
manufacturers’ specifications. This makes it possible to mix and match different
sensors without any cross-compatibility issues.

The ZigBee Alliance provides a number of profiles that provide a framework as
shown in Fig. 11.2 in which related applications can work simultaneously. In this
way, end devices from different vendors can interoperate as long as they adhere to the
given profile. One of these profiles is the “home control, lighting profile.” This profile
focuses on sensing and controlling light levels in the home environment. The profile
defines different device descriptions that belong to the profile, including “light sensor
monochromatic,” “switch remote control,” “switching load controller,” and “dimmer
remote control.” A profile can consist of 216 device descriptors and can hold up
to 256 clusters. Each cluster can contain up to 216 attributes. A device description
contains a set of mandatory and optional input and output clusters from the profile.
Input clusters consist of attributes that can be set by other devices; for example,
the light sensor has an attribute called ReportTime, which controls the time interval
between light readings. Output clusters consist of attributes that supply data to other
devices; for instance, the “light sensor monochromatic” (LSM) has one attribute in
its output cluster, named CurrentLevel, which holds the current light sensor reading
measured in 6 lux. Mandatory clusters (including every attribute within these) must be
implemented by the appropriate end devices. Optional clusters may be implemented,
but if a device supports an optional cluster, it must implement every attribute within
that cluster.

11.4 DISSEMINATION AND EVALUATION

As this research is a multidisciplinary effort, the programming of the sensor networks
will be evaluated on the types of real-time and energy constraint needs, which have
been addressed at the processing nodes and also how this stream of live data is been
aggregated on the servers to archive and interface to standard IP-based networks
or online queryable geographic information systems (GISs). Wireless ad hoc sensor
networks (WASNs) have attracted much attention in recent years from a diverse set
of research communities. Researchers have been concerned mostly with exploring
applications scenarios, investing new routing and access control protocols, proposing
new energy-saving algorithmic techniques, and developing hardware prototypes of
sensor nodes.

PROBLEMS

11.1 Contrast the features of ZigBee standard with Bluetooth wireless protocol.

11.2 In three paragraphs (about 600 words), describe the application layer in
ZigBee stack architecture.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c11 JWBS038-Iyengar August 31, 2010 10:57 Printer: Yet to come

PROBLEMS 213

11.3 What methods does ZigBee utilize for device discovery?

11.4 Describe the network layer in ZigBee stack architecture.

11.5 Describe the topologies supported by ZigBee.

11.6 Write short notes on the following ZigBee devices and components:

(a) ZigBee network coordinator

(b) ZigBee router

(c) ZigBee end devices

11.7 In about 500 words, explain the ZigBee “profile.”

11.8 Write short notes (about 600 words) on the ZigBee cluster library, ZigBee
binding, and ZigBee binding table.

11.9 Briefly describe the “lighting” profile in the ZigBee home control environ-
ment.

11.10 Research and prepare short notes on “switch” profile in the ZigBee home
automation environment.

11.11 Figure 11.4 shows a room layout with two doors and four lights. Lights L1,
L2, L3, and L4 are controlled by ZigBee enable switches S1, S2, S3, and S4,
respectively.

L1
DOOR 2

D
O

O
R

 1

S
w

it
ch

es

S
1

S
2

S
3

S
4

Desk

L2

L3 L4

FIGURE 11.4 Problem 11.11

11.12 Design a ZigBee home automation application to perform the following
tasks:

(a) Lights L1 and L4 should be switched on when a person enters through
door 1.

(b) Lights L2 and L4 should be switched on when a person enters through
door 2.

(c) Lights should continue to be on when a person is present in the room.

(d) All lights should be switched off when a person leaves the room.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c11 JWBS038-Iyengar August 31, 2010 10:57 Printer: Yet to come

214 STANDARDS FOR BUILDING WIRELESS SENSOR NETWORK APPLICATIONS

11.13 Discuss the equipment required (e.g., ZigBee enabled occupancy sensors,
switches, controllers, gateways), and placement of the sensors, and explain
in detail how you would implement the application.

11.14 Describe “Cyclic” and “Pin” sleep modes in ZigBee.

11.15 How do you create and maintain a list of active devices that are connected to
a ZigBee network?

11.16 Discuss MessageFreshener timers in ZigBee.

11.17 How does ZigBee achieve low power consumption?

REFERENCES

1. ZigBee Alliance Overview, ZigBee Alliance.

2. ZigBee Wireless Networking, Newnes Publications, 2008.

3. D. Gislason, ZigBee Resource Guide, Webcom Communication Corp., 2008.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

12 INSPIRE: Innovation in Sensor
Programming Implementation
for Real-time Environment*

The bottleneck in writing code isn’t in the writing of the code, it’s in understanding and
conceptualising what needs to be done.

—Shane Legg

Wireless ad hoc sensor networks (WASNs) have drawn much attention in recent years
from a diverse set of research communities. Researchers have been concerned mostly
with exploring application scenarios, investing new routing and access control proto-
cols, proposing new energy-saving algorithmic techniques, and developing hardware
prototypes of sensor nodes.

This is described in the context of programmers and code base. Typically traditional
programmers use lots of inefficient techniques, which need more computation. As in
the context of event-driven programming it encapsulated as an even-handler. Making
any unexpected loops to be present in the actual deployment.

Little attention has been devoted to actually measuring the lifetime of sensor net-
works. Lifetime is defined as the useful time during which the sensor networks provide
live datastreams before sensor faults occur or a percentage of sensors completely cease
to function. Since the normal sensor system’s lifetime is in the order of many months
to years, especially in the case of ultra-low-duty-cycling applications, it is difficult to
deploy and predict the lifetime of applications. In this section we will use a software
simulator that allows us to deploy a large sensor network. This will enable us to accu-
rately measure lifetime in real-time clocks, sensor errors, and radio profiling during
radio idle, receiving, and transmissions. As the practicality of the sensor network is
based on limited power resources, we extend this power model by using renewable
energy resources and its effects on the performance levels of different algorithms.

12.1 MOTIVATION AND BACKGROUND

A WASN is an ad hoc network of resource-limited, static, wireless, sensor nodes
that are used to monitor dynamic physical processes. Typically a user queries the

* Portions of this chapter were contributed from various sources by V. Iyer [4,5].

Fundamentals of Sensor Network Programming: Applications and Technology, By S. S. Iyengar, N. Parameshwaran,
V. V. Phoha, N. Balakrishnan, and C. D. Okoye Copyright C© 2011 John Wiley & Sons, Inc.

215

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

216 INSPIRE

network, the query triggers some reaction from the network, and as a result the user
receives the information needed. The reaction to the query can vary from a simple
return of sensor value, to a complex unfolding of a distributed algorithm among some
of all of the sensor nodes, such as a collaborative signal processing algorithm, a
distributed estimation algorithm, or an actuator control algorithm. Furthermore, there
are multiple users who are transiently connected to the network, each having different
needs in requested information.

These systems are quite different from traditional networks: (1) they have severe
energy, computation, storage, and bandwidth constraints; and (2) their overall usage
scenario is quite different from that of traditional networks. There is not a mere
exchange of two specific nodes. The user will be interested in some parameters of
a dynamic physical process. To efficiently achieve this, the nodes have to form an
application-specific distributed system to provide the user with the answers. More-
over, simulation results show that the local computation takes a fraction of the energy
when compared to data transmission. So the design uses fixed resources such as
a battery to do only sensing and local computations and uses a renewable energy
resource to transmit data. The nodes that are involved in the process of providing
data information are constantly changing as the physical phenomenon is changing.
Therefore the user interacts with the system as a whole, which provides sufficient
information without loosing its usefulness (drain due to power). The WASN is not
there to be queried but instead provides information in an efficient, reliable, and
collaborative mode wirelessely.

Advancements in wireless technologies have made it possible to integrate with
radios that are capable of self-organizing and communicating in an ad hoc config-
uration with minimal infrastructure. Our system “INSPIRE” maintains a real-time
network and periodically senses data from the onboard analog sensors, which collec-
tively aggregate the sensed data by collaborative processing with other nodes. The
technique employed is the divide-and-conquer technology in order to provide a robust
network reliability for hazardous applications. In the following sections we provide a
structured approach in terms of describing the new computational system INSPIRE
in detail.

12.1.1 INSPIRE: An Introduction

Our system, INSPIRE (innovation in sensor programming implementation for real-
time environments) adopts an active sensor approach to allow any distributed algo-
rithm to be executed in the network. Energy is a critical resource in sensor networks.
MAC protocols such as S-MAC and TMAC [6] coordinate sleep schedules to reduce
energy consumption. More recently, low-power listening (LPL) approaches such as
WiseMAC and B-MAC exploit very brief polling of channel activity combined with
long preambles before each transmission, saving energy, particularly during low net-
work utilization. Synchronization cost, either explicitly in scheduling, or implicitly
in long preambles, limits all these protocols to duty cycles of 1–2%. We demon-
strate ultralow duty cycles of 0.1% with the use of a mathematical model [5] for
lifetime, and also support it with simulation results [4] that highlight the power sav-
ings due to overhearing and node density radio interference when idling. We use the

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

MOTIVATION AND BACKGROUND 217

extended work of a new MAC protocol called scheduled channel polling (SCP) [8].
This work prompts three new research directions that highlight the power savings for
ultra-low-duty cycling and also concludes that the power consumption of SCP de-
creases with faster radios, but that of LPL increases. As in energy-harvesting appli-
cations during data forwarding, it may not be able to find forwarding nodes as they
may be out of current radio range or might not be able to respond because the radio
is disabled or battery is recharging. Therefore, we need to provide queuing of data
messages carrying payloads, be able to build new neighborhood lists proactively ac-
cording to the rechargeable time window, and be able to sequence the data values and
timestamp from individual nodes so that the values can be aggregated as they arrive
in the same sequence from source to sink. A service-based architecture is used that
makes writing applications transparent to the data delivery mechanism in high-traffic
or adaptive burst wireless traffic conditions.

12.1.2 RTOS Abstraction Layer

Whenever your application handles a variety of activities or manages multiple devices,
a real-time operating system (RTOS) can help you simplify the code by separating
different tasks. An RTOS is thus an important tool that allows you to “divide and
conquer.”

At its simplest level, an RTOS is just a context switcher plus a mechanism for han-
dling some intertask synchronization (see RTOS module configuration in Table 12.1).
The context switcher allocates the CPU to various tasks according to a scheduling
algorithm. The tasks can therefore advance at different paces, depending on how
many CPU cycles they obtain. An RTOS also provides mechanisms that allow the
tasks to synchronize their activities. Examples of such mechanisms include various
types of semaphores, mailboxes, and message queues. Although the basic services
provided by RTOSs are very much the same, they are accessible through significantly
different APIs. This poses a serious problem for many companies that want to deploy
shared application code on different operating systems or that don’t want to lock their
strategic application into a particular operating system.

An active object-based framework such as the INSPIRE offers a more elegant
solution.

12.1.3 Minimal Application

How software is implemented in sensor networks is essential to understanding sensor
networks. A network architecture and protocols are essential foundations for building
software applications. Active objects in microframework are encapsulated tasks (each
embedding a state machine and an event queue) that communicate with one another

TABLE 12.1 Real-Time OS Module Configuration

Coresident OS Tasks Priority Number of Control Points

Kernel Control Highest 6 digital I/O ports
Kernel Scan Baud-rate sensitive Read only

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

218 INSPIRE

asynchronously by sending and receiving events. Within an active object, events are
processed sequentially in a run-to-completion (RTC) fashion, while the scheduler
encapsulates all the details of thread-safe event exchange and queuing.

As sensor programming is network-centric, we need to combine a reliable micro-
kernel OS to build a framework for network-embedded OS. The main design goals
are to design an adaptive MAC layer that needs to be interfaceable to many radio
stacks and have dedicated tasks that sense periodic data from physical sensors in the
background. Thus we design a sensor mote with two microcontroller units (MCUs).
Dividing the functionality of sensing and communication can be accomplished with
its own control. The requirements are easy programmability of the sensors and its
control for any deployment. To have a microframework, we design a state machine
object that allows the creation of active objects that can then send messages without
blocking using a priority queue. This microframework can be extended to support mi-
crosecond accuracy using specific hardware abstraction layers (HALs) for available
manufacturer sensor boards. There are several choices for programming the Texas
Instruments (TI) MSP430. Here we try to abstract the TI architecture using a coresi-
dent small-footprint OS that allows the kernel booting into a mode f to have complete
real-time control and at the same time be compatible with all the sensor interfaces that
the MCU can control and configure. This allows the writing of sensing applications
by creating tasks and timers and scheduling individual tasks on the part of the kernel.

The scheduler can be configured to have nonpreemptive/preemptive mode. Non-
preemptive scheduling is when an intelligence surveillance reconnaissance (ISR)
device is serviced and then the current task is run to completion. In the case of pre-
emptive scheduling, the current task is rescheduled according to the priority after the
ISR has completed, which might yield to another task already queued for processing.

12.1.4 MCU I Framework Specifications

MicroFrameWork (Table 12.2) is an event-driven C++ framework with its own
multitasking kernel as shown in Fig. 12.1 aimed at the mote-class sensor networks.
Its primary advantage over TinyOS [6] is that it allows modules to be easily ported
into any processor that the sensor platform uses. Application-level software can be
easily developed using a Unified Modeling Language (UML) diagram and the states
as shown in Fig. 12.2, which represents emulation of an event model paradigm (see
also Fig. 12.3).

Input: BatteryCapacity

Output: Residual Capacity

foreachEver do

Sensor-ctor();

SensorHardware-Init();

/* initialize the board */

MF-run();

/* transfer control to MicroFrameWork*/

end

Return Data

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

FIGURE 12.1 Stack architecture.

TABLE 12.2 Resource Requirements for Target

Software Platforms ROM (kB) RAM

DotNetMicroFrameWork 10 1 MB
Zotta OS 15 100 MB
MicroFrameWork 2 100 B
802.14.4 Network Stack 30–50 —

FIGURE 12.2 Active-object frame work for sensor communications.

219

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

220 INSPIRE

FIGURE 12.3 Total RAM and ROM size required for microframework, small RTOS, and
other popular RTOSs and OSs.

12.1.5 MCU II Framework Specifications

In a sensor network stack (see Table 12.3), the network layer is solely responsible for
route planning and maintenance. Most of the energy used by the network is due to its
routing activity. Two methods are used in routing implementation: one at the network
layer that is controlled by distributed algorithms to form clusters and uses efficient
clusterhead selection and the other at the MAC layer that uses multihop routing to
forward data at the lower layers by using best-effort quality of service (QoS).

As there are many different radios available, the need to make them work within a
given framework is an integral part of the basic modular design. As the requirement

TABLE 12.3 STACK APIs

Protocol Stack Fully Functional Routing Stack Monitoring Only

Layers Stack — Stack
Application Form Network() Do Routing() Join
Network Create Zones() Elect

ClusterHeads()
Measure API()

Datalink CRF() CRF() CRF()
Physical IEEE Standard IEEE Standard IEEE Standard
OS scheduler Create HostComm Compress Create

SenseTask()
Microframework — — Create

SenseTask 2

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

MOTIVATION AND BACKGROUND 221

is to develop a servicelike application that can control the MAC, we design all the
core services needed to make it protocol-efficient. Any built-in features refer to
“Optimized for power-aware OS.” This is the case as the ultimate goal of the overall
system in which any application is deployed is to have a longer lifetime.

void main(void)

{

//Coordinator Program

//this initialization set

//our SADDR to OxFFFF,

//PANID to the default PANID

//Hallnit, evblnit will have

//to be called by the user

hallnit();

evblnit();

apllnit(); //init the stack

conPrintConfig();

ENABLE GLOBAL INTERRUPT(); //enable interrupts

test number = 0;

//debug level = 10;

EVB LED1 OFF();

EVB LED2 OFF();

//get this for reference, will use the

//LSB as srcEP for indirect message

halGetProcessorIEEEAddress(&myLongAddress[0]);

#ifdef LRWPAN COORDINATOR

aplFormNetwork();

//wait for finish

while(apsBusy())

{
apsFSM();

}
EVB LED1 ON();

conPrintROMString("Nwk formed\n");

#else

do

{

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

222 INSPIRE

aplJoinNetwork();

while(apsBusy())

{
apsFSM();

} //wait for finish

if(aplGetStatus() == LRWPAN STATUS SUCCESS)

{
EVB LED1 ON();

conPrintROMString("Network

Join succeeded!\n");
conPrintROMString("My

ShortAddress is: ");

conPrintUINT16(aplGetMyShortAddress());

conPCRLF();

conPrintROMString("Parent LADDR: ")

conPrintLADDR(aplGetParentLongAddress());

conPrintROMString(", Parent SADDR: ");

conPrintUINT16(aplGetParentShortAddress());

conPCRLF();

break;

}
else

{
conPrintROMString("Network Join FAILED!

Waiting,then trying again\n");
my timer = halGetMACTimer();

//wait for 2 seconds

while((halMACTimerNowDelta(my timer))

< MSECS TO MACTICKS(2 * 1000));

}
} while(1);

#endif

#ifdef LRWPAN RFD

//announce ourselves to the coordinator

//so that we can test indirect messaging

//this is only necessary if there are routers

// between us and the coordinator,

//but since don’t know the network topology,

//do it always if RFD.

do

{
//send to coordinator as it resolves bindings

aplSendEndDeviceAnnounce(0);

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

MOTIVATION AND BACKGROUND 223

//wait for finish

while(apsBusy())

{
apsFSM();

}

if(aplGetStatus() == LRWPAN STATUS SUCCESS)

{
conPrintROMString("End Device

Announc succeeded!\n");
break;

}
else

{
conPrintROMString("End Device

Announce FAILED!

Waiting, then trying again\n");
my timer = halGetMACTimer();

//wait for 2 seconds

while((halMACTimerNowDelta(my timer))

< MSECS TO MACTICKS(2 * 1000));

}
} while(1);

#endif

#if defined(LRWPAN RFD) || defined(LRWPAN COORDINATOR)

//now send packets

while(1)

{
packet test();

while(apsBusy())

{
apsFSM();

} //wait for finish

}
#endif

#ifdef LRWPAN ROUTER

//router does nothing, just routes

conPrintROMString("Router,

doing its thing.!\n");

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

224 INSPIRE

while(1)

{
apsFSM();

}
#endif

}

void main(void)

{

//STACK API Program

//this initializations

// et our SADDR to OxFFFF,

//PANID to the default PANID

//Hallnit, evblnit will

//have to be called by the user

hallnit();

evblnit();

apllnit();//init the stack

conPrintConfig();

ENABLE GLOBAL INTERRUPT();

//enable interrupts

test number = 0;

//debug level = 10;

#ifdef LRWPAN COORDINATOR

aplFormNetwork();

while(apsBusy())

{
apsFSM();

} //wait for finish

conPrintROMString("Nwk formed,

waiting for join and reception\n");

while(1)

{
apsFSM();

}

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

MOTIVATION AND BACKGROUND 225

#else

do

{
aplJoinNetwork();

while(apsBusy())

{
apsFSM();

} //wait for finish

if (aplGetStatus() ==

LRWPAN STATUS SUCCESS)

{
conPrintROMString("Network

Join succeeded!\n");
conPrintROMString("My

ShortAddress is: ");

conPrintUINT16(aplGetMyShortAddress());

conPCRLF();

conPrintROMString("Parent LADDR: ")

conPrintLADDR(aplGetParentLongAddress());

conPrintROMString(", Parent SADDR: ");

conPrintUINT16(aplGetParentShortAddress());

conPCRLF();

break;

}
else

{
conPrintROMString("Network Join

FAILED! Waiting, then trying again\n");
my timer = halGetMACTimer();

//wait for 2 seconds

while((halMACTimerNowDelta(my timer))

< MSECS TO MACTICKS(2 * 1000));

}
} while(1);

#ifdef LRWPAN RFD

//now send packets

while(1)

{
packet test();

//wait for finish

while(apsBusy())

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

226 INSPIRE

{
apsFSM();

}
}

#endif

#ifdef LRWPAN ROUTER

//router does nothing, just routes

DEBUG PRINTNEIGHBORS(DBG INFO);

conPrintROMString("Router,

doing its thing.!\n");

while(1)

{
apsFSM();

}

#endif

#endif

}

12.1.6 WSN Sensing Applications

Sensing applications are defined with unique data sampling needs. To achieve this in
a power-aware manner, a distributed WSN algorithm at the network layer is used to
manage data routing from individual nodes to a central coordinator.

12.1.7 Data Routing

This category of routing does not have any application control at higher levels. As
soon as the data are sampled, they are forwarded to the nearest forward node for
delivery to the destination. The performance of such an application is based on more
efficiently forwarding the data toward the destination.

void main(void){

// Sensing device with reduced functions

UINT32 my timer;

UINT8 failures, ping cnt;

//Hallnit, evblnit will

//have to be called by the user

hallnit();

evblnit();

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

MOTIVATION AND BACKGROUND 227

apllnit(); //init the stack

conPrintConfig();

ENABLE GLOBAL INTERRUPT();

//enable interrupts

EVB LED1 OFF();

EVB LED2 OFF();

//debug, level = 10;

#ifdef LRWPAN ROUTER

routerState =

ROUTER STATE JOIN NETWORK;

while(1)

{
apsFSM();

switch(routerState)

{
case ROUTER STATE JOIN NETWORK:

aplJoinNetwork();

routerState = ROUTER STATE JOIN WAIT;

break;

case ROUTER STATE JOIN WAIT:

if(apsBusy()) break;

if(aplGetStatus() == LRWPAN STATUS SUCCESS)

{
conPrintROMString("Network...

Join succeeded!\n");
printJoin Info();

my timer = halGetMACTimer();

routerState = ROUTER STATE NORMAL;

ping cnt = 0;

failures = 0;

EVB LED1 ON();

}
else

{
conPrintROMString("Network...

Join FAILED! Waiting,...

then trying again\n");
my timer= halGetMACTimer();

//wait for 2 seconds

while((halMACTimerNowDelta(my timer))...

< MSECS TO MACTICKS(2*1000));

routerState = ROUTER STATE JOIN NETWORK;

}
break;

case ROUTER STATE NORMAL:

//check ping timeout

if(halMACTimerNowDelta(my timer)

> MSECS TO MACTICKS(1000))

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

228 INSPIRE

{
//reset timer

my timer= halGetMACTimer();

//long timeouts are done in

//segments of short intervals as

//the maximum timeout on the HAL

//MAC timer is platform dependent

ping cnt++;

if(ping cnt == PING TIMEOUT)

{
ping cnt = 0;

//send a ping

routerState= ROUTER STATE DO PING;

}
}
break;

case ROUTER STATE DO PING:

conPrintROMString("Sending Ping !\n");
//aplPingParent uses an APS ack in

//order to ensure that this

//node is still associated with the parent

aplPingParent();

routerState= ROUTER STATE WAIT FOR PING;

break;

case ROUTER STATE WAIT FOR PING:

if(apsBusy()) break;

if(aplGetStatus() == LRWPAN STATUS SUCCESS)

{
//all is well

failures = 0;

my timer = halGetMACTimer();

routerState= ROUTERSTATE NORMAL;

}else
{

failures++;

conPrintROMString("Ping failed!\n");
if(failures == MAX PING FAILURES)

{
failures = 0;

routerState =

ROUTER STATE REJOIN NETWORK;

}
break;

case ROUTER STATE REJOIN NETWORK:

//A rejoin takes less

//time than a join , and does

//not erase the neighbor table.

//A join erases

//the neighbor table, forcing

//all of the router’s

//childen to re-issue joins.

EVB LED1 OFF();

//not connected to a network

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

MOTIVATION AND BACKGROUND 229

aplRejoinNetwork();

routerState= ROUTER STATE REJOIN WAIT;

break;

case ROUTER STATE REJOIN WAIT:

if(apsBusy()) break;

if(aplGetStatus() ==

LRWPAN STATUS SUCCESS)

{
my timer = halGetMACTimer();

routerState = ROUTER STATE NORMAL;

ping cnt = 0;

failures = 0;

EVB LED1 ON();

conPrintROMString("Network

Rejoin succeeded!\n");
printJoin Info();

routerState = ROUTER STATE NORMAL;

}
else

{
failures++;

if(failures == MAX REJOIN FAILURES)

{
conPrintROMString("Network Rejoin...

max tries exceeded. Trying a join.");

routerState = ROUTER STATE JOIN NETWORK ;

}
else

{
conPrintROMString("Network ReJoin FAILED!...

Waiting, then trying again\n");
my timer= halGetMACTimer();

//wait for 2 seconds

while((halMACTimerNowDelta(my timer))...

< MSECS TO MACTICKS(2*1000));

routerState = ROUTER STATE REJOIN NETWORK;

break;

}
}
break;

default:

routerState = ROUTER STATE JOIN NETWORK;

}
}

} //end while(1)

#else

conPrintROMString("This application

is intended for a router!\n");
conPrintROMString("Entering infinite

loop, doing nothing.\n");
while(1);

#endif

}

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

230 INSPIRE

12.1.8 Application with Sensing

This category of applications pools the sensors on a periodic basis, which allows
average values to be accumulated over time. With this facility, the application can
control the service usage, which further allows the service to adapt to predetermined
data-sensing requests and also to redundant traffic.

void main(void)

{
#ifndef LRWPAN COORDINATOR

UINT8 count;

BOOL aps ack;

UINT8 failures;

UINT32 my timer;

#endif

//Hallnit, evblnit will

//have to be called by the user

hallnit();

evblnit();

apllnit(); //init the stack

conPrintConfig();

ENABLE GLOBAL INTERRUPT();

//enable interrupts

EVB LED1 OFF();

EVB LED2 OFF();

//debug, level = 10;

#ifdef LRWPAN RFD

rfdState = RFD STATE JOIN NETWORK;

while(1)

{
apsFSM();

switch(rfdState)

{
case RFD STATE JOIN NETWORK:

EVB LED1 OFF();

//not connected to a network

aplJoinNetwork();

rfdState = RFD STATE JOIN WAIT;

break;

case RFD STATE JOIN WAIT:

if(apsBusy())

break;

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

MOTIVATION AND BACKGROUND 231

if(aplGetStatus() == LRWPAN STATUS SUCCESS)

{
conPrintROMString("Network

Join succeeded!\n");
printJoinInfo();

rfdState = RFD STATE NORMAL;

ping cnt = 0;

count = 0;

aps ack = FALSE;

EVB LED1 ON();

}
else

{
conPrintROMString("Network

Join FAILED! ");

conPrintROMString("Error: ");

conPrintUINT8(aplGetStatus());

conPrintROMString(", Waiting ,

then trying again\n");
my timer = halGetMACTimer();

//wait for 2 seconds

while((halMACTimerNowDelta(my timer))

< MSECS TO MACTICKS(2 * 1000));

rfdState = RFD STATE JOIN NETWORK;

}
break;

case RFD STATE NORMAL:

//send to some target in the tree.

dstADDR.saddr = PING DST SADDR;

//send a message, then sleep

//increment ping counter

ping cnt++;

count++;

//every so often, send an APS ack

// request to ensure that we are

//still actually associated with

// our parent and that the packet

//actually reached the coordinator.

// APS acks require

//more waiting time and overhead,

// so only use them when necessary.

//A MAC ack is always requested for

// a data packet, but this only

//ensures that the packet was

// received by the radio of our parent

//(ie, we have the correct short

// address/panid of the parent).

//if the parent has dropped us from its

// neighbor table for some

//reason, then the packet is rejected

// at at the nwk level.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

232 INSPIRE

//Also, if we are going through a

//router(s) to the coordinator,

//then the MAC ack is only good for

//the first hop to our parent.

If(count == 4)

{
conPrintROMString("Requesting

APS ack\n");
aps ack = TRUE;

count = 0;

}
else

{
aps ack = FALSE;

}
payload[0] = (BYTE)ping cnt;

payload[1] = (BYTE)(ping cnt >> 8);

//This uses an APS ACK so that

//know if the message

//was delivered. If it fails ,

//then we assume that

//we have lost connection, and

//we issue a join

aplSendMSG(APS DSTMODE SHORT,

&dstADDR, 2, //dst EP

O,//cluster is ignored for direct message

1,//src EP

&payload[0], 2, //msg length

apsGenTSN(), aps ack);

rfdState = RFD STATE WAIT FOR ACK;

break;

case RFD STATE WAIT FOR ACK:

if(apsBusy())

break;

if((aplGetStatus() ==

LRWPAN STATUS SUCCESS) || ! aps ack)

{
//all is well

rfdState = RFD STATE SLEEP;

}
else

{
//only try a rejoin if the aps ack failed.

//if mac ack failed, we will keep

//trying until the aps ack fails.

//we assume that we have been disconnected.

//Try rejoining first , then a join.

failures = 0;

rfdState = RFD STATE REJOIN NETWORK;

}
break;

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

MOTIVATION AND BACKGROUND 233

case RFD STATE SLEEP:

conPrintROMString("Going to sleep...\n");
//This does a disable global interrupt!

aplShutdown();

halWaitMs(IO);

//Going to sleep is

// platform/application dependent.

//the halSleep function is

// only intended for example purposes

// the msecs argument in halSleep

// may be ignored by the HAL layer

//as how sleep is implemented is

// target dependent.

halSleep(4000);

conPrintROMString("Woke up!\n");
aplWarmstart();

ENABLE GLOBAL INTERRUPT();

rfdState = RFD STATE NORMAL;

break;

#ifndef LRWPAN COORDINATOR

case RFD STATE REJOIN NETWORK:

conPrintROMString("Trying to

rejoin network!\n");
aplRejoinNetwork();

rfdState = RFD STATE REJOIN WAIT;

break;

case RFD STATE REJOIN WAIT:

// if stack is busy, continue

if(apsBusy())

break;

if(aplGetStatus() ==

LRWPAN STATUS SUCCESS)

{
failures = 0;

EVB LED1 ON();

conPrintROMString("Network

Rejoin succeeded!\n"};
printJoinInfo();

rfdState = RFD STATE NORMAL;

}
else

{
failures++;

if(failures ==

MAX REJOIN FAILURES)

{
//this starts everything over

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

234 INSPIRE

conPrintROMString("Max Rejoins

failed, trying to join \n"};
rfdState = RFD STATE JOIN NETWORK;

}
else

{
//else, wait to try again

conPrintROMString("Network

Rejoin FAILED!

Waiting, then trying again\n");
//most apps probably

// do not need to

//wait before retrying

//rejoin, this is included

// just for visibility

//purposes in reading the output

my timer = halGetMACTimer();

//wait for 2 seconds

while((halMACTimerNowDelta(my timer))

< MSECS TO MACTICKS(2 * 1000));

rfdState = RFD STATE REJOIN NETWORK;

}
}
break;

#endif

default:

rfdState = RFD STATE JOIN NETWORK;

}
}

#else

aplFormNetwork();

//wait for finish

while(apsBusy())

{
apsFSM();

}
conPrintROMString("Network formed,

waiting for RX\n");
EVB LED1 NO;

//coordinator or router just runs the stack

while(1)

{
apsFSM();

}

#endif

}

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

MOTIVATION AND BACKGROUND 235

12.1.9 Ultralow Duty Cycling Using FARMS

When energy resources are abundant, due to the availability of renewable energy
resources, the running harvesting application is sensitive to the recharge rate. Since
this allows the transmission of data to a forwarding node, the communication need
not be synchronized. The duty cycle still needs to periodically poll the channel to
check for any activity. For reliable delivery, a sufficient number of receivers should
be active to ensure that no forwarded packets are dropped. This feature needs to be
scheduled since receiving and idling can drain all the nodes in a given area if they
are not periodically scheduled.

12.1.10 Real-Time System Components

To build a predictable system, all of its wireless sensor network components, hardware
and software, plus a good design, contribute to this long-term predictability. Having
both good sensor hardware and a good networkable RTOS is a minimal but insufficient
requirement for building a correct reactive sensor system. An improperly designed
testbed system with excellent hardware and software building blocks may still lead to
disaster. This section deals with sensor testbed microframework. In general, a good
microframework can be defined as one that has a bounded (predictable) behavior
under all system load scenarios [1]. The current architecture uses a more fiexible
design with two microcontrollers as discussed before, one dedicated to transmission
and the other to data sensing. As a scheduler is more dependent on sensing, a real-time
framework is used to create specific sensing tasks that allow for the isolation of error
during sensing and transmission.

12.1.11 Complexity

Wireless sensor systems are dedicated and unattended for most of their lifetimes,
so the complexity of the design needs to address the time (scheduling, polling, syn-
chronization) local, global, and communication overhead to generate the datastream
(real-time sensor data). We use specific MAC-level protocols such as Berkeley MAC
(B-MAC) [4] used by TOSSIM, carrier sense multiple access (CSMA), and the gen-
eral IEEE 802.11 wireless predecessor without RTS/CTS. These are implemented
using the GlomoSIM routing layer.

12.1.12 Event-Driven System

Wireless sensor systems are dedicated and event-driven [1,2]. We use a common
platform that allows modules to be programmed with events. A simple sensor cluster
is implemented in Fig. 12.2 that has five states for performing a useful task.

Poll is generated by the microframework, which allows tracking of the current
hardware clock. Once the poll is active, the sensor object changes states. If it is idle,
then it will accept the poll and initialize itself with a predetermined timeout. The
timeout event is handled, and the measured value from the sensor is read accurately

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

236 INSPIRE

CLUSTER HEAD SENSOR

START LIFE TIME

END LIFE TIME

CH Establishes
and request

joining message

CH adds it to its
neighborhood list

Sensor in the
neighbor
responds to join

Sensor responds
to beacon
schedule and
refreshes new
reading

CH aggregates
new value from

sensor

MULTI-HOP
CH1

MULTI-HOP
CHN

HOP1 (m)

HOP (N)

(2
0%

 M
A

X
)

(8
0%

 M
IN

)

HOP2 (m)

HOP3 (m)

HOP (m)

FIGURE 12.4 Timing diagram for a hardware mote.

and processed. If there is a threshold set for this particular process, then an alarm
will be enabled according to the current read value. The on-idle event can support the
low-power features of the target hardware, enabling further energy savings. Features
of poll and on-idle events are presented in Table 12.4. Both poll and on-idle events
are characterized.

12.2 SOFTWARE MICROFRAMEWORK REQUIREMENTS

The heart of the design is the event-driven microframework, which allows the building
of robust, reliable, and resilient sensor motes. Here the framework uses well-defined

TABLE 12.4 Sensor-Processing Events

Poll Initialize Process
On-idle Timeout Event/alarm

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

REFERENCES 237

object-oriented techniques, which are easy to maintain, and also enables modeling
state machines. These machines are predictable and have deterministic state transition
during their entire lifetime execution.

12.2.1 State Machine

If you have seen existing design and codes that are designed for various parts of the
network stack, you may have observed that they are riddled with a disproportion-
ate number of convoluted conditional execution branches (deeply nested if–else or
switch-case statement in C/C++). This highly conditional code is a testament to the
basic characteristics of reactive systems. If a redesign could eliminate a fraction of
these conditional branches, the code would be much easier to understand and test,
and the sheer number of convoluted execution paths through the code would drop
radically, perhaps by orders of magnitude. Techniques based on state machines are
capable of achieving exactly this dramatic reduction of the different paths through
the code and simplification of the condition tested at each branching point [3,7].
The state machines described in the cluster timing UML specification represent the
current state of the art in the long evolution of these techniques.

12.2.2 Sensor State Machine/UML Diagram (Algorithm)

A system exhibits state behavior when it operates differently during different periods,
and its behavior can be partitioned into finite, nonoverlapping chunks called states.
For example, basic mathematical functions, such as sin(x), return the same result
for a given input x regardless of the history of previous inputs xi . A common,
straightforward way of modeling state behavior is through a Finite State Machine
(FSM). Using FSMs is an efficient way to specify constraints of the overall behavior
of a system. Being in a state where the system responds to only a subset of all
allowed inputs produces only a subset of possible responses and changes state directly
to only a subset of all possible states. Figure 12.2 shows the active objects that
constitute a networked sensor embedded system. Active objects in a micro framework
are encapsulated tasks (each embedding a state machine and an event queue) that
communicate with one another asynchronously by sending and receiving events.
For active objects within the framework, events are processed sequentially in a run-
to-completion (RTC) fashion, while the scheduler encapsulates all the details of
thread-safe event exchange and queuing.

REFERENCES

1. C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems, Kluwer Aca-
demic, Jan. 1999.

2. G. S. Fishman, Principles of Discrete Event Simulation, Wiley, 1978.

3. K. Ilgun, R. A. Kemmerer, and P. A. Porras, State transition analysis: A rule-based intrusion
detection approach, IEEE Trans. Software Eng. 21(3):151–180 (March 1995).

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c12 JWBS038-Iyengar August 31, 2010 11:43 Printer: Yet to come

238 INSPIRE

4. V. Iyer, R. M. Garimella, and M. B. Srinivas, Min loading max reusability fusion classi-
fiers for sensor data model, Proc. 2nd Int. Conf. Sensor Technologies and Applications,
SENSORCOMM ’08, Aug. 25–31, 2008, pp. 480–485.

5. V. Iyer, G. Rama Murthy, and M. B. Srinivas, Training data compression algorithms and
reliability in large wireless sensor networks, Proc. IEEE Int. Conf. Sensor Networks, Ubiq-
uitous, and Trustworthy Computing, 2008, pp. 480–485.

6. J. Polastre, J. Hill, and D. Culler, Versatile low power media access for wireless sensor
networks, Proc. 2nd Int. Conf. Embedded Networked Sensor Systems, SenSys ’04, ACM,
New York, 2004, pp. 95–107.

7. M. G. Schultz, E. Eskin, et al., Data mining methods for detection of new malicious
executables, Proc. IEEE Symp. Security and Privacy, May 2001.

8. W. Ye, F. Silva, and J. Heidemann, Ultra-low duty cycle MAC with scheduled channel
polling, Proc. 4th Int. Conf. Embedded Networked Sensor Systems, SenSys ‘06, ACM, New
York, 2006, pp. 321–334.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c13 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

13 Performance Analysis of
Power-Aware Algorithms*

Efficiency and quality are of equal importance!! Both come from experience, not from
study. Study as you go, don’t assume that you’re ready for the real world because you
studied first.

—Jon Davis

13.1 INTRODUCTION

In the previous chapter most of the application development framework was been
discussed for specific deployment, such as the IEEE 802.15.4 ZigBee Alliance.
These frameworks make application development and deployment very transparent
to developers that hide some of the unique performance characterstics of sensor
networks. In this chapter, we will use some of the parameters that are needed for
scalable applications such as node counts in the neighborhood of 100 and power
dissipation and loading of traffic at each node for different algorithms. This treats the
large network as a testbed with standard metrics used by life time and standard AA
cells. The testbed simulator allows us to compare the performance characteristics of
different hardware, MAC protocols, and their energy requirements.

13.1.1 Performance Metrics

We can define lifetime of sensor networks as

Node lifetime = Cbatt × V × 60 × 60

ETx + Rx + idle + Lis
× 100% (13.1)

where C = power consumption, E = energy, V = voltage, Rx/Tx = receving/
transmitting, and Lispassive.

Idle power consumption is defined as the time elapsed between request and receipt
of information over the wireless channel. This is increasing at an alarming rate, due

*Portions of this chapter were contributed from various sources by V. Iyer [1–4].

Fundamentals of Sensor Network Programming: Applications and Technology, By S. S. Iyengar, N. Parameshwaran,
V. V. Phoha, N. Balakrishnan, and C. D. Okoye Copyright C© 2011 John Wiley & Sons, Inc.

239

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c13 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

240 PERFORMANCE ANALYSIS OF POWER-AWARE ALGORITHMS

78.75

IDLE Rx

0.4

Tx

0.09

Sen

0.03

Radio

Energy Wastage of 100 nodes with 2 packets/sec
(sec)

B-MAC

FIGURE 13.1 Energy wastage due to radio using Eq. (13.1).

to exponential growth of idling. Figure 13.1 illustrates the simple WSN application
that aggregates data with 100 nodes that must run the radio of all the nodes all the
time to establish the network path. Along that path are numerous router nodes and
clusterheads. Each of these nodes helps manage wireless traffic to piggyback the
data to the destination, creating a multihop page between the data source and the
destination node. When a new data update is requested, all of its neighboring nodes
participate to enable the data to travel separately through this maze of the networked
nodes. Each “hop” along the way is an opportunity to introduce power savings and
thus add to optimizing the overall power consumption of the sensor network.

While manyfactors contribute to energy wastage, unscheduled overhearing and
channel polling represent the largest and fastest-growing portion of total energy
wastage. In fact, studies [1] have shown that 80% of the time nodes in a dense sensor
network are affected by local ambient conditions such as collision, overhearing, and
control packets.

The example shown in Fig. 13.2 illustrates the harmful effect of even a small degree
of energy wastage during idling under ideal conditions. When lifetime decreases,
such as during transmittance or when packet loss rates increase, performance can
significantly deteriorate. In fact, studies have shown that it is more efficient for
a routing algorithm to use a minimal number of nodes such as cluster heads or
multihop leader nodes to schedule its data delivery.

One way to avoid the negative effects of “(idle wastage) × (number of nodes)”
on life time performance is to have receiver-centric duty cycling for the majority of
the nodes, thereby minimizing the number of active required nodes in the connected
network. That is precisely how the INSPIRE runtime framework process works, as
shown in the Eq. (13.2), with the duty cycle as shown in Fig. 13.2.

Node lifetime = Cbatt × V × 60 × 60

ETx + Rx + idle + Lis
× duty cycle (13.2)

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c13 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

INTRODUCTION 241

0

R
ad

io
 p

ow
er

 A
m

ps
 c

on
su

m
ed

 a
fte

r
20

,0
00

si
m

ul
at

io
n

se
co

nd
s

Routing rounds completed during lifetime of the

20

40

60

80

100

120

140

160

180

200

Tx Rx with Sleep Idle

FIGURE 13.2 Unbalanced energy power resource allocations due to radio using Eq. (13.2).

The INSPIRE process utilizes several innovative technologies to extend the life-
time of WSN applications. One advantage of these techniques that specifically ad-
dresses unbalanced resource allocation for a proactive application is that it is very
sensitive to Tx energy cost. As noted in Fig. 13.1, the Tx peaks during the application
lifetime. This runtime environment (FARMS) uses a renewable energy model that
attempts to average the resource allocation over the entire lifetime for ultra-low-duty-
cycle applications, so we rewrite Eq. (13.2) to use ultralow duty cycling as shown
in Eq. (13.3) and add a rechargeable cycle to renew ambient energy as given in
Eq. (13.4), thus making new applications significantly longer to enable continuous
collection of data:

Node lifetime = Cbatt × V × 60 × 60

ETx + Rx + idle + Lis
× 0.01% (13.3)

Node lifetime for renewable
energy routing nodes

= recharge rate (mAh)

Fixed Tx cost (mAh)
(13.4)

These services share the resources of a node found among many fusionable ambient
renewable MACS(FARMS) [1] deployed to route the data with the available software,
hardware, and compatible radios as shown in Fig. 13.3. In particular, FARMS provides
an innovative way to describe the reactive properties of the sensor network when
sensing in a real-time environment. Evolution of the INSPIRE framework allows
us to port distributed algorithms with a transparent power-aware service meant for
sensing applications.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c13 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

242 PERFORMANCE ANALYSIS OF POWER-AWARE ALGORITHMS

FIGURE 13.3 Comparison of traditional, reactive, and renewable programming models
using compatible wireless radios.

13.2 SERVICE ARCHITECTURE

Stack architecture, service architecture, stack and service implementations, and re-
lated details are shown in Figs. 13.4–13.11.

As in the previous work, most of the simulation [3] has been done using a program-
ming stack model, and here, in this architecture, as compared in Fig. 13.3, a multihop

FIGURE 13.4 Stack architecture.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c13 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

SERVICE ARCHITECTURE 243

FIGURE 13.5 Service architecture.

data-forwarding service is emphasized. Also, from the traditional distributed model,
which calculates lifetime using fixed resources, we extend the constrained resources
by providing a dynamic renewable energy resources model. We essentially refer to
this process as “adapting to the ground truth of an ambient wireless phenomenon.” In
addition, the stack model supports the Rx, idle, recharge cycle, and energy wastage

FIGURE 13.6 Traditional opaque layering in stack model.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c13 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

244 PERFORMANCE ANALYSIS OF POWER-AWARE ALGORITHMS

FIGURE 13.7 Translucent layering in service implementation.

Sampling Protocol Slotted Protocol

FIGURE 13.8 Clustering data aggregation.

FIGURE 13.9 GlomoSIM architecture.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c13 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

SERVICE ARCHITECTURE 245

FIGURE 13.10 Application code development cycle.

due to the node deployment density ratio. The key elements of the service protocol
design are listed in Tables 13.1 and 13.2.

13.2.1 Reliability

The traditional concept of link abstraction does not hold true for WSN as it not
only communicates wirelessly but also performs data sensing, which is prone to
outside (spurious) noise and channel interference. Due to this design constraint, the
link quality is defined to detect good data from occurring noise levels. This helps
application developers rely on the data being measured and validates the significance
of the data to the deployed application when running unattended.

Application Mica2

A node in GlomoSIM

Sensor

Battery

Transport

Network

MAC

Physical

FIGURE 13.11 Simulator framework.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c13 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

246 PERFORMANCE ANALYSIS OF POWER-AWARE ALGORITHMS

TABLE 13.1 Data-Gathering
Reliability for Large Sensor Network

Sensing Reliability

Acknowledgments/ARQ
RTS/CTS
Priority
Congestion control
Fragmentation
Link quality estimation

13.2.2 Communication Transparency

The basic internode–intercluster communication paradigm needs to be very efficient
in terms of network latency and power savings, and be able to adapt to traffic changes.
These parameters, which are at the runtime framework level and independent of the
application, are listed in Table 13.2. A simple implementation uses leveled priority
or standard queue to manage message pools. As this subtopic is sensitive to node
placement and harsh deployment conditions, we assume a clusterlike topology of
physical nodes that are balanced using a neighborhood table to schedule the message
to forward clusters by minimizing communication overheads. Refer to Figs. 13.12b
and 13.12c for multihop and single-hop performance during application lifetime. The
service framework power savings optimization with deployment of node density in
lifetime is shown in Fig. 13.12d.

A service-driven architecture approach defines the minimal set of abstraction prim-
itives that are based on distributed WSN runtime conditions that make it transparent to
the programmer. Given the increasing importance of optimal quality of service in en-
hancing the lifetime of sensor networks, the converse problem of energy equivalence
in routing is equally significant and not yet addressed in the literature in a quantifiable
manner. We address both of these issues (QoS) by modeling a fixed-lifetime resource
model (related work) and a renewable energy model. In particular, we extend the
common QoS parameters, which are uniquely interdependent in both the models, to

TABLE 13.2 Wireless Communication Dependences

Data Reception Data Transmission Neighbor Management

Message arrives from link Abstracted link control
parameters

Cooperatively managed

Service dispatches Abstracted link feedback data Service mediates
interaction using table

Network protocols establish References to packets
associated with this message

No policy on admission/
eviction by HP

Naming/addressing — Link Power Scheduling
information

Filtering — —

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c13 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

(a
)

(b
)

(c
)

(d
)23

%

5%

72
%

F
IG

U
R

E
13

.1
2

M
A

C
pe

rf
or

m
an

ce
co

m
pa

ri
so

n
fo

r
no

rm
al

an
d

re
ne

w
ab

le
lif

et
im

es
:

(a
)

M
A

C
pe

rf
or

m
an

ce
w

ith
da

ta
fo

rw
ar

di
ng

;
(b

)
M

A
C

pe
rf

or
m

an
ce

w
ith

20
%

no
de

s
as

cl
us

te
rh

ea
ds

w
ith

ap
pl

ic
at

io
n

co
nt

ro
l;

(c
)

FA
R

M
S

ap
pl

ic
at

io
n

sh
ow

in
g

lo
w

er
tr

an
st

io
n

of
da

ta
in

M
A

C
L

ay
er

;
(d

)
se

ns
or

ta
sk

ov
er

he
ad

br
ea

kd
ow

n
fo

r
ne

tw
or

k
an

d
M

A
C

la
ye

rs
co

m
bi

ne
d.

247

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c13 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

248 PERFORMANCE ANALYSIS OF POWER-AWARE ALGORITHMS

study the effects of ultra-low-duty cycling applications. The QoS application of the
service can use the predefined data delivery.

13.2.3 Minimal Application

How to implement software in sensor networks is essential to understanding sensor
networks. A network architecture and protocols are essential foundations for building
software applications.

13.2.4 Data Routing

This category of routing does not have any application control at the higher level.
As soon as the data are sampled, they are forwarded to the nearest forward node to
be delivered to the destination. The performance of such an application is based on
more efficiently forwarding the data toward their destination.

13.2.5 Application with Sensing

This category of applications pools the sensors on a periodic basis, which then
allows average values to be accumulated over time. As a result of this feature, the
application can control the service usage, which further allows the service to adapt
to a predetermined data-sensing request and adapt to redundant traffic.

13.2.6 Ultra-Low-Duty Cycling Using FARMS

When energy resources are abundant owing to renewable energy resources, the run-
ning harvesting application is sensitive to the recharge rate. As this allows it to
transmit data to a forwarding node, the communication need not be coordinated;
however, this feature enables the application to ensure that the channel is available.
For reliable delivery there should be a sufficient number of receivers active so that no
forwarded packets are dropped. This needs to be scheduled as receiving and idling
can drain all the nodes in a given area if they are not actively scheduled.

This development framework allows us to implement a very optimized version of
routing techniques with specific data sensing needs and allows the framework to be
transparent to the developer. For details on the performance comparison of the power
consumption for each application category, see Figs. 13.12–13.14.

13.3 APPROACHES TO WSN PROGRAMMABILITY

13.3.1 GlomoSIM

GlomoSIM, a commercially available networks imulator, combines the simulation
kernel, which can be run on a dual-core PC. GlomoSIM scales well with the number
of nodes. We have tested between 100 and 500 nodes set up randomly in a 420 ×
420-m grid. Its strength lies in this scalability as well as its exceptional radio prop-
agation model. GlomoSIM was chosen as the base simulator because its framework

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c13 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

SIMULATION CAPABILITIES 249

FIGURE 13.13 Scheduling idle with sleep and low-power listening increases lifetime by
2 times.

is superior to that of NS-2 and other network simulators. GlomoSIM allows new
models to be added to any layer with ease as shown in Fig. 13.9. The basic means of
communication for multihop or internode communication is their message-passing
APIs. An application generates a message to be sent out of the radio using the same
API as it uses to set a timer for itself. This independence of the message-passing API
from the simulation leads to simpler programming.

The strength of Glomo SIM is its scalability and exceptional propagation models.
This is important because of two factors:

1. Scalability. When simulating sensor networks, it is not uncommon to simulate
tens of thousands of nodes. While a traditional network might be simulated with
only 100s of nodes, a sensor network is inherently larger in size. A simulator
that is designed for use as a sensor network simulator must be able to simulate
the larger number of nodes.

2. Propagation models. When the user simulates a large sensor network, the
topology used might be that of an actual deployment. It is, therefore, very
important that the wireless channel be modeled accurately. The simulation can
then be used to detect connectivity and other such problems.

13.4 SIMULATION CAPABILITIES

13.4.1 Unmodified Code Simulation

One primary focus of this implementation is to allow FARMS applications to be
simulated inside GlomoSIM. Forcing the programmer to make GlomoSIM-specific
[3] modifications in the code decreases from the ease of use of the simulator as shown

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c13 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

(a
)

(b
)

(c
)

F
IG

U
R

E
13

.1
4

M
A

C
pe

rf
or

m
an

ce
co

m
pa

ri
so

n
fo

r
da

ta
ag

gr
eg

at
io

n
an

d
m

ul
tih

op
al

go
ri

th
m

s
us

in
g

SP
E

E
D

(s
ys

te
m

s
pl

an
ni

ng
,e

ng
in

ee
ri

ng
,a

nd
ev

al
ua

tio
n

de
vi

ce
),

di
re

ct
ed

di
ff

us
io

n,
an

d
L

E
A

C
H

(l
ow

-e
ne

rg
y

ad
ap

tiv
e

cl
us

te
ri

ng
hi

er
ar

ch
y)

:
(a

)
lo

ca
l

da
ta

ag
gr

eg
at

io
n

pr
ot

oc
ol

pe
rf

or
m

an
ce

at
cl

us
te

rh
ea

d;
(b

)
m

ul
tih

op
pr

ot
oc

ol
pe

rf
or

m
an

ce
fr

om
so

ur
ce

to
si

nk
;

(c
)

M
A

C
pe

rf
or

m
an

ce
fo

r
sp

ar
se

,m
ed

iu
m

,a
nd

hi
gh

-d
en

si
ty

de
pl

oy
m

en
t

w
ith

co
ns

ta
nt

ra
di

o
ra

ng
e.

250

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c13 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

CONCLUSION 251

TABLE 13.3 Time Scheduled by MAC During Useful Network Lifetime

Power-Aware MAC Tx Rx Idle QoS

CSMA 1% 80% 19% Implemented by nonsensor
network simulators

B-MAC 2% 65% 33% TinyOS (without real-time clock)
Application control

single-hop MAC
6% 45% 49% Our study and first adaptation of

power-aware QoS
Time scheduling FARMS

multihop MAC
72% 5% 23% Extended version tunable close

to design constraint at idle
(≤ 1 µAh)

in Fig. 13.11. Therefore, all necessary code porting is performed via a parser/code
generator and script files. That the programming language is C allows for a much
simpler code generator.

13.4.2 Sensor Stack

The sensor stack [4] can be simulated on the real node as shown in Fig. 13.12,
thus allowing for real data to be generated. This can be used for various purposes,
including verification of a sensor model. One caveat is that an application that requires
strict timing for its data would not be accurate with this mode of simulation. This
mode is designed for applications that process sensor data with lax timing. One such
application is data gathering. Most applications generate data until their buffer is filled
and only then do they transmit the data. This mode can also work if the application
requires samples at a fairly low rate, such as 10 samples per second (sps).

13.4.3 Channel Emulation

The MAC and radio layer use the modified version of the GlomoSIM radio. This
is very useful as it combines the best of simulations with the best of the real-world
test bed.

13.5 BENCHMARKING

Table 13.3 and Figures 13.13 and 13.14 present a detailed result of programmable
simulations of cross-layer structures of sensor networks; more specifically, the results
highlight the time scheduled by MAC during useful network lifetime. For more details
on implementation, refer to Ref. 1.

For futher details on benchmarking, refer to Refs. 1 and 2.

13.6 CONCLUSION

The fundamental contribution of this chapter is in providing a reprogrammable
structure in developing energy-aware routing for scalable sensor networks (see also

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c13 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

252 PERFORMANCE ANALYSIS OF POWER-AWARE ALGORITHMS

Figs. 13.13 and 13.14). Computational/networking characteristics of INSPIRE in-
clude effective link abstraction; sensor service, allowing network protocols to run
efficiently on varying power management schemes; power savings greater; simpler
code; multiple network protocols that benefit from coexistence, coordination, and co-
operation; effective separation of mechanism and policy; building blocks for a sensor
network architecture; and potential application to internet architecture and 802.11.

PROBLEMS

13.1 List and explain in your own words four factors that degrade the performance
of a wireless sensor network.

13.2 List three ways in which the factors explained above can be improved to extend
the life of a sensor network.

13.3 List some advantages that the INSPIRE framework provides to existing sensor
networks.

13.4 How much of a performance hit is taken when power-aware routing protocols
are employed in sensor networks?

13.5 Compare two (2) other network simulators with GlomoSIM discussed in this
chapter.

REFERENCES

1. V. Iyer, S. S. Iyengar, N. Balakrishnan, V. Phoha, and M. B. Srinivas, Farms: Fusionable
ambient renewable MACs, Proc. IEEE Sensors Applications Symp. SAS 2009, Feb. 17–19,
2009, pp. 169–174.

2. V. Iyer, S. S. Iyengar, G. Rama Murthy, M. B. Srinivas, and B. Hochet, Multi-hop scheduling
and local data link aggregation dependent qos in modeling and simulation of power-aware
wireless sensor networks, ACM. IWCMC, June 21–24, 2009, Leipzig, Germany.

3. V. Iyer, G. Rama Murthy, M. B. Srinivas, and B. Hochet, C-error simulator for development
for sensor and location aware sensing applications, Proc. 3rd Int. Conf. Sensing Technology,
ICST 2008, Nov. 30–Dec. 3, 2008, pp. 192–199.

4. V. Iyer, G. Rama Murthy, and M. B. Srinivas, Environmental measurement os for a tiny
CRF-stack used in wireless network, Modern Sensing Technol. (special issue) pp. 72–86,
(2008). ISSN 1726-5479 copyright 2006 by IFSA.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

14 Modeling Sensor Networks
Through Design and Simulation*

Design and programming problems are inherent to the understanding of the technology
of sensor networks.

—S. S. Iyengar

Wireless sensor networks have the potential to become significant subsystems of en-
gineering applications. Before relegating important and safety-critical tasks to such
subsystems, it is necessary to understand the dynamic behavior of these subsystems
in simulation environments. There is an urgent need to develop simulation plat-
forms that are useful for exploring both the networking issues and the distributed
computing aspects of wireless sensor networks. Current efforts to simulate wire-
less sensor networks focus largely on the networking issues. These approaches use
well-known network simulation tools that are dificult to extend to explore distributed
computing issues.

This chapter presents an architecture of a sensor simulator, and a sensor node that
is used in the simulator. This chapter further emphasizes that OMNeT++ is a viable
discrete-event simulation framework for studying both the networking aspects and
the distributed computing aspects of sensor networks. We present the architecture of a
sensor node that is used in the simulator and the general architecture of the simulator.

On the basis of our studies with the IEEE 802.11 MAC and directed diffusion in-
tegrated with GEAR, we conclude that our simulator is at least an order of magnitude
faster than ns-2 and uses memory more eficiently than ns2. The modular structure of
compound modules and the ease of configuring simulation scenarios via an initializa-
tion file offers us a tremendous amount of flexibility to model and study the dynamic
behaviors of both the sensor network and the application environment in which such
networks are expected to operate.

Discrete-event simulation is a trusted platform for modeling and simulating a va-
riety of systems. We discuss results obtained from a simulator for wireless sensor
networks that is based on the discrete-event simulation framework called OMNeT++.

∗ The authors would like to acknowledge the contributions of the former graduate students C. Mallanda,
A. Suri, and V. Kunchakarra, and of Drs. R. Kannan, A. Durresi, and S. Sastry. This work was supported
in part by NSF-ITR under IIS-0312632 and IIS-0329738 and DARPA/AFRL grant #F30602-02-1-0198.

Fundamentals of Sensor Network Programming: Applications and Technology, By S. S. Iyengar, N. Parameshwaran,
V. V. Phoha, N. Balakrishnan, and C. D. Okoye Copyright C© 2011 John Wiley & Sons, Inc.

253

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

254 MODELING SENSOR NETWORKS THROUGH DESIGN AND SIMULATION

This framework develops simulations for the 802.11 MAC and the well-known sen-
sor network protocol called directed diffusion. The performance of the simulator is
deomnstrated by comparing its performance to that of the well-known simulator ns-2.
Results indicate that the OMNeT++ simulator executes at least an order of magni-
tude faster than ns-2 and makes more efficient use of the available memory. The ease
of modifying the sensor network and scalability, which is defined as the number of
nodes that can be simulated, are two distinguishing features of this simulator.

14.1 INTRODUCTION

Wireless sensor networks (WSN) [5] consist of numerous tiny sensors that are de-
ployed in spatially distributed terrain. These sensors are endowed with a small amount
of computing and communication capability and can be deployed in ways that wired
sensor systems cannot. For example, sensors can be deployed in environments that
are in accessible for humans, or sensor networks can be deployed in environments
that are changing such as a chemical cloud. Despite the prolific conceptualization of
sensor networks as being useful for large-scale military applications, the reality is that
the best migration path for sensor networks research into nonacademic applications
is via integration with existing engineering application infrastructure. For example,
sensor networks have the potential to offer fresh solutions to fault diagnosis, health
monitoring, and innovative human–machine interaction paradigms [4,20,13,19].

Before emerging technologies such as sensor networks and the underlying node-
level architectures such as the event-driven architecture of Tiny OS [11] can be
incorporated as subsystems in mainstream engineering applications, it is necessary
to demonstrate the efficiency and robustness of these subsystems through compre-
hensive simulations that involve the dynamics of both the application and the sensor
network. Such simulation studies must explore the effects of scale, density, node-
level architecture, energy efficiency, communication architecture, failure modes at
node and communication media levels, system architecture, algorithms, protocols,
and configuration, among other issues. Unlike traditional computer systems, it is not
sufficient to simulate the behavior of the sensor network in isolation because of the
tight and ubiquitous coupling between the sensor network and its application.

14.2 WHY A NEW SIMULATOR

In a recent report [1] the following paragraph summarizes the need for a new simulator.

ns2, perhaps the most widely used network simulator, has been extended to include
some basic facilities to simulate Sensor Networks. However, one of the problems of
ns2 is its object-oriented design that introduces much unnecessary interdependency
between modules. Such interdependency sometimes makes the addition of new protocol
models extremely difficult, only mastered by those who have intimate familiarity with
the simulator. Being difficult to extend is not a major problem for simulators targeted
at traditional networks, for there the set of popular protocols is relatively small. For

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

CURRENTLY AVAILABLE SIMULATORS 255

example, Ethernet is widely used for wired LAN, IEEE 802.11 for wireless LAN,
TCP for reliable transmission over unreliable media. For sensor networks, however, the
situation is quite different. There are no such dominant protocols or algorithms and
there will unlikely be any, because a sensor network is often tailored for a particular
application with specific features, and it is unlikely that a single algorithm can always
be the optimal one under various circumstances.

Many other publicly available network simulators, such as JavaSims, SSFNet, and
Global Mobile Information System Simulator (GloMoSim) and its descendant Quaint,
attempted to address problems that were left unsolved by ns2. Among them, JavaSIM
developers realized the drawback of object-oriented design and tried to attack this
problem by building a component-oriented architecture. However, they chose Java
as the simulation language, inevitably sacrificing the efficiency of the simulation.
SSFNet and GloMoSim designers were more concerned about parallel simulation,
with the latter more focused on wireless networks. They are not superior to ns2 in
terms of design and extensibility.

The design of wireless sensor networks requires us to simultaneously consider the
effects of several factors such as energy efficiency, fault tolerance, QoS demands,
synchronization, scheduling strategies, system topology, communication, and coor-
dination protocols. This chapter presents the structural design of a new simulator
for wireless sensor networks that is based on the discrete-event simulation [9,16]
framework OMNeT++ and results that demonstrate that the new simulator executes
at least an order of magnitude faster than ns2 while using memory more efficiently.
While the design we present is general, the simulations focus on an implementation
of the IEEE 802.11 MAC layer and directed diffusion integrated with the GEAR
(geographic and energy aware routing) protocol.

The remainder of this chapter is organized as follows: Section 14.3 describes the
background for simulating sensor networks. Section 14.4 describes the simulation
problem. Section 14.5 describes the implementation details of the new simulator, and
Section 14.6 discusses the performance of the simulator.

14.3 CURRENTLY AVAILABLE SIMULATORS

ns2 is a well-established discrete-event simulator that provides extensive support for
simulating TCP/IP, routing, and multicast protocols over wired and wireless networks
[8]. A radio propagation model based on two-ray ground reflection approximation
and a shared media model in the physical layer, an IEEE 802.11 MAC protocol in the
link layer, and an implementation of dynamic source routing for the network layer
were developed in the Monarch project [14].

SensorSIM builds on ns2 and claims to include models for energy and the sensor
channel [18]. At each node, energy consumers are said to operate in multiple modes
and consume different amounts of energy in each mode. The sensor channel models
the dynamic interaction between the physical environment and the sensor nodes. This
simulator is no longer being developed and is not available.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

256 MODELING SENSOR NETWORKS THROUGH DESIGN AND SIMULATION

OPNET Modeler is a commercial platform for simulating communication net-
works [17]. Conceptually, the OPNET model comprises processes that are based on
finite-state machines, and these processes communicate as specified in the top-level
model. The wireless model is based on a pipelined architecture to determine con-
nectivity and propagation among nodes. Users can specify frequency, bandwidth,
and power among other characteristics, including antenna gain patterns and terrain
models.

J-Sim is another object-oriented, component-based, discrete-event, network sim-
ulation framework written in Java [21]. Modules can be added and deleted in a plug-
and-play manner, and J-Sims is useful for both network simulation and emulation by
incorporating one or more real sensor devices. This framework provides support for
target, sensor and sink nodes, sensor channels and wireless communication channels,
physical media such as seismic channels, power models, and energy models.

GloMoSim is a collection of library modules, each of which simulated a specific
wireless communication protocol in the protocol stack [25]. It is used to simulate
ad hoc and mobile wireless networks.

14.3.1 The OMNeT++ Framework

Objective Mocular Network Testbed in C++ (OMNeT++) is a public-domain,
component-based, modular simulation framework [23]. It is has been used to simu-
late communication networks and other distributed systems. The OMNeT++ model
is a collection of hierarchically nested modules as shown in Fig. 14.1. The top-level
module is also called the system module or network. This module contains one or
more submodules, each of which could contain other submodules. The modules can
be nested to any depth, and hence it is possible to capture complex system models
in OMNeT++. Modules are distinguished as being either simple or compound. A
simple module is associated with a C++ file that supplies the desired behaviors
that encapsulate algorithms. Simple modules form the lowest level of the module
hierarchy. Users implement simple modules in C++ using the OMNeT++ simula-
tion class library. Compound modules are aggregates of simple modules and are not
directly associated with a C++ file that supplies behaviors. Modules communicate
by exchanging messages. Each message may be a complex data structure. Messages
may be exchanged directly between simple modules (on the basis of their unique ID)

FIGURE 14.1 Simple and compound modules in OMNeT++.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

SIMULATION DESIGN 257

or via a series of gates and connections. Messages represent frames or packets in
a computer network. The local simulation time advances when a module receives
messages from another module or from itself. Self-messages are used by a module to
schedule events at a later time. The structure and interface of the modules are specified
using a network description language. They implement the underlying behaviors of
simple modules. Simulation executions are easily configured via initialization files.
They track the events generated and ensure that messages are delivered to the right
modules at the right time.

To take advantage of these features of OMNeT++, we have chosen it as the
framework for sensor network simulations. Its salient features include the following:

� OMNeT++ allows the design of modular simulation models, which can be
combined and reused flexibly.

� It is possible to compose models with any granular hierarchy.
� The object-oriented approach of OMNeT++ allows the flexible extension of

the base classes provided in the simulation kernel.
� Model components are compiled and linked with the simulation library, and

with one of the user interface libraries to form an executable program. One user
interface library is optimized for command-line and batch-oriented execution,
while the other employs a graphical user interface (GUI) that can be used to
trace and debug the simulation.

� OMNeT++ offers an extensive simulation library that includes support for
input/output, statistics, data collection, graphical presentation of simulation data,
random-number generators, and data structures.

� OMNeT++ simulation kernel uses C++, which makes it possible to embed it
in larger applications

� OMNeT++ models are built with NEtwork Description (NED) and omnetpp.ini
and do not use scripts, which makes it easier for various simulations to be
configured.

The following sections give the detailed implementation of our simulation scenario
on OMNeT++.

14.4 SIMULATION DESIGN

This section presents the architecture of a sensor node and the overall design of our
new simulator [6,10,15]. The topology of the sensor network field in our simula-
tions is derived from the simple and compound module concept of the OMNeT++
framework. As shown in Fig. 14.1, layers of a node behave as simple modules and
a sensor node behaves as a compound module, and all these sensor nodes constitute
the sensor network depicted as a system module. The architecture of a sensor node is
depicted in Fig. 14.2. Each layer of the sensor node is represented a simple module of
OMNeT++. The layers communicate with each other through gates, and each layers
has a reference to the coordinator. The structure of a layer is represented in Fig. 14.3.
These simple modules are connected according to the layered architecture of a sensor

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

258 MODELING SENSOR NETWORKS THROUGH DESIGN AND SIMULATION

FIGURE 14.2 Basic structure of the sensor node in our simulator structure.

node. The different layers of the sensor node have gates to the other layers of the sensor
node to form the sensor node stack. A simple module with wireless channel function-
ality is used to communicate with these compound modules (sensor nodes) through
multiple gates. The functionalities provided by each module are described below with
radio, CPU, and battery module forming the hardware model of the sensor node.

Layer ProtocolFrom CoOrdinator

From
Upper
Layer

To
Upper
Layer

To CoOrdinator

From
Bottom
Layer

To
Bottom
Layer

FIGURE 14.3 Representation of a layer in sensor node.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

SIMULATION DESIGN 259

14.4.1 Coordinator Module

The coordinator (formal proprietary name: CoOrdinator) module has the functional-
ities that coordinate the activities of the hardware and the software modules of the
sensor node. It is basically used for interlayer communication. This module needs
to be extended, and functionality has to be added for access to properties of new
hardware or consumers added. As shown in the Fig. 14.3, the CoOrdinator class has
reference to all layers in the sensor node, and all layers in the sensor node may access
the CoOrdinator class implementation. Thus, through the coordinator module, any
layer may access and update the properties of the other layer. For example, the battery
module needs to be informed on transmission or receipt of the packets by the physical
module so that the energy consumption is updated at the node accordingly. During
simulation the CoOrdinator class is responsible for registering the sensor node to the
sensor network. Registering of the sensor node is an indication that the sensor node
is up and functioning. When the available energy is completely depleted, the node is
deregistered from the sensor network.

14.4.2 Hardware Model

1. Battery Model. This module is an essential component of the sensor node,
which supplies the necessary energy to the CPU module, radio module, and
the sensors used to sense the environment. Hence the battery is connected to
all the hardware components of the node and its energy resource decreases
depending on the power drawn by all the components. At regular intervals,
the module updates its remaining energy depending on the type of battery
model used. Various models such as the linear battery model and discharge-
rate-dependent model are being implemented. When all the hardware devices
report their power consumption, the current discharge of the battery and hence
the estimated duration T (in hours), which indicates how long the battery is
expected to last, is determined as T = C/I, where C is the remaining capacity
of the battery in ampere-hours and I is the total current drawn by the sensor
node in amperes. The remaining capacity in the battery can be estimated by
assuming either a linear model or a discharge-rate-dependent model. In the
linear discharge model, the remaining capacity is

C = Cin −
∫

�t
I (t)�t

where Cin is the initial capacity of the battery and I (t) is the current drawn
by the sensor node in duration �t. This model assumes that there are no self-
discharges and that the battery does not deteriorate with age. The discharge-
rate-dependent model assumes that higher discharge rates effectively reduce the
remaining capacity of the battery. To allow various models to be implemented
with the type of application, we have a basic battery module, BatteryBase,
which forms the abstract class for the different battery models. BatteryLinear

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

260 MODELING SENSOR NETWORKS THROUGH DESIGN AND SIMULATION

is a subclass of BatteryBase and updates the energy depending on the number
of consumers and the state of activity of the consumers. BatteryDischargeRate
is a subclass of BatteryBase, and the energy consumption is a linear function
of current.

2. CPU Model. The nodes in a sensor network are usually equipped with very low-
end processors or microcontrollers. The power consumption for performing
various operations should be very low, and we have used a standard set of
parameters for energy consumption by the processor model. The processor
needs different levels of energy consumption in the idle, sleep, and active states.
The processor power consumption model is very important, and ignoring it will
lead to incorrect trends in power consumption in the network. New processor
models with enhanced features and improved energy consumption levels can
be incorporated in this module for testing various kinds of applications. The
CPU Base abstract class forms the basis for different CPU models and defines
the interfaces of this module with the coordinator and the battery. CPU Simple
implements the power consumption of the CPU in different states: idle, sleep,
and active.

3. Radio Model. This model is used to characterize the antenna property of a
node. RadioBase is an abstract class for the different radio models. Radio-
Simple, a subclass of RadioBase, updates the energy of the battery depending
on the state of the radio: idle, sleep, transmit, and receive. The values for the
different properties of the hardware and consumers may be provided through
the configuration file.

14.4.3 Wireless Channel Model

The wireless channel module controls and maintains all potential connections
between the sensor nodes. These static connections are provided from all the nodes
to the wireless channel module and from the module to all the nodes in the NED
file. These connections enable sensor nodes to exchange data and communicate with
each other. Any message from a node is sent to all the neighbors within its trans-
mission region with a delay d, where d is (distance between communicating sensor
nodes)/speed of light.

Various radio propagation models are used to predict the received signal power of
each packet. These models affect the communicating region between any two nodes
and are derived by the wireless channel.

1. Free-Space Propagation Model. The free-space propagation model assumes
the ideal propagation condition that there is only one clear line-of-sight path
between the transmitter and the receiver. H.T. The received signal power in free
space at distance d from the transmitter is estimated as [2]

Pr = Pt ∗ Gt ∗ Gr ∗ �2

(4�)2 ∗ d2 ∗ L2

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

IMPLEMENTATION DETAILS 261

where Pt is the transmitted signal power; Pr is the received signal power; Gt,
Gr are the antenna gains of the transmitter and the receiver, respectively; L is
the system loss; and � is the wavelength.

2. Two-Ray Ground Reflection Model. A single line-of-sight path between two
mobile nodes is seldom the only means of propagation. The two-ray ground
reflection model considers both the direct path and aground reflection path.
This model gives more accurate prediction at a long distance than the free
space model. The received power at distance d is predicted by:

Pr = Pt ∗ Gt ∗ Gr ∗ h2
t ∗ h2

r

d4 ∗ L

where ht and hr are heights of transmit and receive antennas, respectively.

This last equation shows a power loss more rapid than that for the free-space-model
as distance increases.

14.4.4 Sensor Node Stack

The simple module at the highest level of the hierarchy of the sensor node, namely,
AppLayerSimple, simulates the behavior of the application layer. This module com-
municates with the NetLayerBase Module through gates to schedule any messages.
New applications can be incorporated to this module. The functionality of this module
is described in greater detail for the directed diffusion implementation.

The simple network module simulates the packets sent and received by the nodes
in the network. The network module initially receives application-layer messages
from the AppLayer module and adds the network header to it. The particular features
of this layer depend on the protocol implementation. Directed diffusion with GEAR
is implemented at the network layer as described in the next section. The packet
structure of the network layer sent to the MAC layer has the next hop in the route.
The MAC layer provides the interface between the physical layer and the routing
layer. It has the basic functionality of media access; the functionality of this module
is described in greater detail for the 802.11b implementation.

Such a modular structure of entities simulated with OMNeT++ makes our simu-
lation more flexible than ns2.

14.5 IMPLEMENTATION DETAILS

Using the above mentioned design for the simulator, we implemented directed diffu-
sion at the network layer and compared the performance with the existing simulator
ns2. MAC 802.11b is also implemented at the MAC Layer, and the performance is
compared with ns2 with directed diffusion at the network layer. The implementation
is described with a block diagram in Fig. 14.4. The implementation used a simple pass

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

262 MODELING SENSOR NETWORKS THROUGH DESIGN AND SIMULATION

FIGURE 14.4 Implementation scenario.

through the physical layer, a simple wireless channel module with the application
layer generating query packets, and forwarding to the network layer.

14.5.1 Directed Diffusion with GEAR

We have implemented directed diffusion [12] along with geographic routing. The
application layer generates interests that specify the region, the kind of data required,
and rate of delivery of data. Nodes that initiate the interest are called subscribers. On
receiving the interest message, the network layer broadcasts beacon messages in the
network. The immediate neighbors of the node, on receiving beacon messages, reply

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

IMPLEMENTATION DETAILS 263

FIGURE 14.5 Structure of a query.

back with a beacon-reply-type message that contains their geographic location and
the energy left in them. On receiving the beacon reply messages, the neighbor table
of the node that sent the beacon is updated. The node waits for a fixed duration of
time to receive the beacon reply from all the neighbors. The interest message is then
forwarded to the node that has a lower estimated cost to the region as calculated by
the GEAR protocol [24]. The next node follows the same procedure and forwards
the message toward the region by geographic routing. If a node in the path does not
have any neighbors or all its neighbors are away from the region, then it sends a
message to its parent node that it is a deadend. The parent node, on updating the cost
of the unreachable node, forwards the query (see Fig. 14.5 for query structure) in an
alternate route toward the region. In the target region, the interest is disseminated by
using recursive flooding. The interest cache is maintained at each node in the path
with its gradient of interest to each neighbor. The nodes in the region that have the
specified properties of the interest send out data. Nodes that send data out are referred
to as publishers.

The data are marked as exploratory to reinforce the path that was taken by the
interest. On receipt of the data marked as exploratory by the subscriber, a positive
reinforcement message is sent out by the subscriber node. Each node on the path
forwards this message, thus reinforcing the path to the region. When a node reinforces
a path, its cost to the region is known and this cost is sent back to its source node,
which updates the cost information of that node to the particular region of interest.
Thus the path with the lowest cost is always maintained, reinforcing the route.

The data from the region follow the path established by the reinforced messages.
The nodes in the region send out data at the rate that is specified in the query. Data
caching is implemented in intermediate nodes, and so the data requested by different
subscribers from the same region can be satisfied by the common node in the path, thus
reducing the traffic and redundant messages. The data marked as exploratory are sent
to identify better paths and reinforce at regular intervals. Also, the neighbor-updating
procedure is carried out; specifically, at regular intervals the beacon messages are
broadcast and beacon reply messages are sent by neighbors, thus maintaining the
latest neighbor information.

14.5.2 802.11 MAC

The MAC layer places the network packet on the wireless channel. The network
packet may be a broadcast or unicest packet to a specific node (sink node). Any

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

264 MODELING SENSOR NETWORKS THROUGH DESIGN AND SIMULATION

network-layer packet received by the MAC-802-11 [7,22,3] module is encapsulated
into the MAC frame with the MAC header added to it. The network-layer packets
have information on whether the packet has to be broadcast or unicast. The broadcast
packet is encapsulated into the broadcast MAC frame with the appropriate MAC
header and is inserted into the messages queue of the MAC layer. If the network
packet is for a particular destination, an RTS frame is created and is inserted in the
messages queue of MAC layer. If the network packet length is more than that of the
MAC frame, it is fragmented and the fragments for that network packet are created
with MAC headers and are inserted into the fragments queue.

The MAC layer then waits for the channel to be idle to send its frame from the
messages queue. The MAC layer has a NAV timer, which specifies the busy/idle state
of the medium. The NAV timer set for a node implies that the channel is busy. When
the NAV timer expires, the MAC layer waits for the channel to be free for DIFS
time and if the channel is still idle after DIFS timer has expired, it then goes into
exponential backoff. It then waits for a random time set by the backoff timer. The
backoff timer decrements its value during the idle period of channel. The node whose
backoff timer expires earlier will get the chance to transmit its next frame. All the
intermediate nodes receive this frame and set their NAV timers to the values obtained
from the header field of the received frame. Then the backoff timer of the intermediate
nodes is stopped from decrementing. Once the channel becomes idle (when the NAV
timer expires), all the nodes start decrementing their backoff timers. The node whose
backoff timer expired earlier and got the channel will send the first message from the
messages queue. If it is a broadcast message, then all the nodes in its region receive
it and the MAC layers of those nodes encapsulate the network packet and send it
to the network layer. If it is a RTS frame, the destination node checks whether its
NAV timer is set (whether its transmission region is busy) and then responds to it by
sending CTS. All the other intermediate nodes receiving this RTS update their NAV
timers to the CTS+DATA+ACK duration, which implies that the channel is busy
for that duration, and hence they refrain from transmitting during this interval. If the
destination node receives more than two RTS requests within a given time interval,
then collision occurs and the destination node does not respond (send CTS) to any
of these RTS requests. The source nodes that are sending RTS have an RTSExpired
timer set for RTS frames, when they are sent to the destination node. This timer is
scheduled to expire after RTS+CTS duration. If the source node does not receive
CTS within this duration, RTSExpired timer expireds and the retry counter of that
RTS frame is incremented. If the retry counter is less than ShortRetieLimit (as per
the specification), then the contention window is doubled and the random time set
by the backoff timer is chosen between 1 and the contention window size. If the
retry counter reaches ShortRetryLimit, then the message (RTS and corresponding
fragment) is dropped by the MAC.

If the destination node responds to RTS by sending back the CTS, the intermediate
nodes for CTS will update their NAV timers obtained from the header field of the
CTS frame (DATA + ACK duration) and hence refrain from transmitting during
this interval. Once the source node gets the CTS, it will send the corresponding
fragment of the network packet to the destination and wait for an acknowledgment.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

EXPERIMENTAL RESULTS 265

TABLE 14.1 Parameters Used for
Our 802.11 MAC Implementation

Property Value

SIFSa 10 µs
DIFSb 28 µs
Slot time 20 µs
Data rate 1 Mbps
RTS length 44 bytes
CTS length 38 bytes
ACK length 38 bytes
DATA length Variable

aShort interframe space.
bDistributed interframe space.

The destination node, on receiving the data frame, extracts the network packet, sends
it to the network layer, and sends back the acknowledgment to the source node. Once
the source node gets the acknowledgment, it sends any other fragments that are to be
sent to this node without any additional RTS frames. Table 14.1 shows the standard
parameters used for our implementation.

14.6 EXPERIMENTAL RESULTS

In this section, we present results from three different studies. First, we establish
that the directed diffusion simulation in our work is consistent with the diffusion
implementation in ns2. Next, we compare the performance, with respect to execution
time and memory used, between our simulation and that of ns2.

14.6.1 Validating Directed Diffusion Implementation

In this experiment, we considered sensor networks with different numbers of nodes
between 5 and 200. For each sensor network, we identified the maximum size of the
sensor field (with respect to grid coordinates). Then, we identified a fixed number
of query-generating nodes and distributed these nodes randomly in the sensor field.
Next, we determined a target region and specified the boundary of the region in terms
of the grid coordinate and the number of sensor nodes in the region. We then executed
the simulation for a specified duration and observed the ratio of the number of packets
generated in the region to the number of packets received by the query-generating
nodes. The IEEE 802-11 MAC was considered at the MAC layer with a simple pass
through the physical layer for these simulations. The results for 5-2000 nodes, shown
in Fig. 14.6 for SensorSimulator and ns-2, indicates that for a similar topology and
simulation environment, the delivery ratio is comparable with ns2.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

266 MODELING SENSOR NETWORKS THROUGH DESIGN AND SIMULATION

FIGURE 14.6 Comparison of delivery ratio.

We also executed the simulations to verify the directed diffusion implementation
on our sensor simulator by observing the changes in delivery ratio of data packets by
region, by varying the number of queries as shown in Fig. 14.7.

� Number of nodes = 500
� Simulation time = 300 seconds
� Network size = 500×500 Meter square area
� Number of nodes in region = at least 10 non-faulty nodes per cluster

14.6.2 Directed Diffusion with Simple MAC

Assume that N sensor nodes are randomly placed in a grid of size MP. Randomly few
nodes send queries toward a region of interest. The path taken by queries is decided by
first sending interests. We implemented an attribute list to define the type of interest
or data message. When a node receives an interest message, it first checks wheather
it has the property list of its neighbors. The property list that the node maintains is
the distance from the neighboring node to the final destination and the energy levels
of the neighboring nodes. If the node has this neighbor list, it checks the last updated
time of the neighbor list. If this time is within the permissible limit, this information

FIGURE 14.7 Delivery ratio of sensor simulator.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

EXPERIMENTAL RESULTS 267

is used to decide the next-hop neighbor. If the neighbor list does not exist or the last
updated time is more than the desired time limit, then beacon messages are sent out.
All the neighboring nodes receive this beacon message. The neighboring nodes then
send back beacon reply messages, which update these properties in the neighbor list.
The nex-hop neighbor decision is based on the GEAR protocol. We give equal weight
age to distance and energy factors. After the query reaches the region of interest, it is
flooded to all the nodes in the region. A visited node list is maintained to avoid going
into a loop. When a node in the region of interest receives an interest, it sends back an
exploratory message to the source of the interest. The exploratory message follows
the reverse path taken by the interest message. It gets the reverse path information
from the nodes. When this exploratory message reaches the source node, the source
node reinforces the path by sending back reinforcements. The reinforcements might
or might not follow the same path as the initial interest message. On arrival of the
reinforcements, the nodes in the region of interest start sending back data messages at
the rate specified in the interest. At regular intervals these data messages are marked
as exploratory. When the source receives a data message marked as exploratory, it
sends reinforcements to rebuild the path. This would repair any holes that might have
formed in the path.

In order to test the performance of the simulation we ran the setup with queries
generated by 10 nodes at random locations in the network. A similar test was per-
formed with 100 nodes generating queries. The queries follow a multihop route to
the region following the procedure mentioned above. Once the query reaches the
region, the data are sent back once every 5 s for the complete simulation time by all
the nodes in the region. The objective of this kind of setup is able to check whether
the simulation framework can handle the traffic generated and run to completion as
well as to check the amount of time required to run the simulation. Figures 14.8
and 14.9 show the performance of the two simulators (ns2 vs. our simulation) for
the setup with 10 nodes and 100 nodes generating queries. For these experiments a
pass through simple MAC and a simple physical layer are being considered. It is can
be observed that the performance of both the simulators ns2 and SensorSimulator
showed similar results with fewer nodes in the network. As the number of nodes in

FIGURE 14.8 Execution time for 10 queries: results for SensorSimulator versus ns2.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

268 MODELING SENSOR NETWORKS THROUGH DESIGN AND SIMULATION

FIGURE 14.9 Execution time for 100 queries: results for SensorSimulator versus ns2.

the network increases, SensorSimulator is able to handle the traffic and the events
generated in a better fashion so as to complete the simulation in a reasonable time
faster than ns2. It has been observed that ns2 ran out of memory for networks above
2000 nodes. It can be also observed in the figures that the execution time for the
simulation run on SensorSimulator is less than that for ns2 for the same simulation
results obtained on both the simulators. During the simulation runs, we measured
the memory allocated before the start of the simulation, that is, giving the memory
usage for the initialization and the setup of the objects of the simulation. The memory
usage during the simulation was also measured. The results for the memory usage are
as shown in Fig. 14.10 and in Fig. 14.11 for 10 nodes sending queries; Figs. 14.12
and 14.13 show the performance of the simulators for 100 nodes sending queries
to the region. This shows that the data structures used for the simulation are used
in a scalable manner to represent the different classes and the interaction with the
framework. It can also be observed that the rate of memory usage increases at a rate
that is, faster for ns2 than for SensorSimulator, thus allowing for large simulation
setup and more scalability in SensorSimulator than in ns2.

600000

500000

400000

300000

200000

M
em

or
y

(K
by

t)

Number of Nodes

SensorSimulator

ns2

100000

50
00

20
00

10
0050
0

20
0

10
0

0

FIGURE 14.10 Memory consumption before simulation starts: 10 queries.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

EXPERIMENTAL RESULTS 269

600000

500000

400000

300000

200000

M
em

or
y

(K
by

t)

Number of Nodes

SensorSimulator
ns2

100000
10

0
20

0

30
0

50
0

10
00

20
00

0

FIGURE 14.11 Memory consumption after simulation ends: 10 queries.

900000
800000
700000
600000
500000
400000
300000
200000
100000

M
em

or
y

(K
by

te
s)

Number of Nodes

SensorSimulator
ns2

20001000500300200100
0

FIGURE 14.12 Memory consumption before simulation starts: 100 queries.

14.6.3 Directed Diffusion with IEEE 802.11 MAC

This series of experiments use MAC 802.11b at the MAC layer and compare the
performance of sensor simulator with that of ns2. A simple pass through the physical
layer is considered. The simulation is run for 100, 500, 1000, and 2000 nodes. The

600000

500000

400000

300000

200000

M
em

or
y

(K
by

t)

SensorSimulator

ns2

100000

0

Number of Nodes

10
0

20
0

30
0

50
0

10
00

20
00

FIGURE 14.13 Memory consumption after simulation ends: 100 queries.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

270 MODELING SENSOR NETWORKS THROUGH DESIGN AND SIMULATION

3000

2500

2000

1500

1000T
im

e(
se

c)

Number of Nodes

SensorSimulator

ns2

500

20001000500100
0

FIGURE 14.14 Comparison with ns2 execution time.

nodes in the sensor network are deployed randomly in various locations with the
network size being configurable in the omnetpp.ini file. Figure 14.14 shows the
relative performance. The setup for the nodes is as follows:

� Number of queries: 10
� Simulation time: 300 s
� Network dimension: varies with the number of nodes
� Number of nodes in region: 10

A similar scenario was developed in ns2, and the performance of the simulation, that
is, the time taken by the simulator to complete the application, was compared in both
of them. The results show that SensorSimulator takes less time than ns2 even when
the numbers of nodes are increased to 2000. The results were validated by confirming
that the query nodes are getting back the appropriate data from the region. The next
simulations are carried out for high-traffic scenarios. The number of nodes are varied
from 500 to 2000 with 100 nodes generating queries at random intervals. This result,
as seen in Fig. 14.15, shows that SensorSimulator is able to perform better than ns2
even for high-traffic networks.

� Number of queries: 100
� Simulation time: 250 s
� Network dimension: varies with the number of nodes
� Number of nodes in region: 15

The memory used was also compared for both simulators, and our observations show
that SensorSimulator consumes less space than does ns2. These results, presented
in Fig. 14.16, show that the data structures employed for the simulation are used
in a scalable manner to represent the different classes and the interaction with the
OMNeT++ framework. It can also be observed that the rate of memory usage

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

FINAL COMMENTS 271

FIGURE 14.15 Comparison of execution time with 100 queries.

increases at a faster rate for ns2 than for SensorSimulator, thus allowing for large
simulation setup and more scalability in SensorSimulator than in ns2.

� Number of queries: 10
� Simulation time: 300 s
� Network dimension: varies with the number of nodes
� Number of nodes in region: 5

14.7 FINAL COMMENTS

On the basis of our studies with the IEEE 802.11 MAC and the Directed Diffusion
model integrated with GEAR, we conclude that our simulator is at least an order
of magnitude faster than ns2 and uses memory more efficiently than does ns2. The
modular structure of compound modules and the ease of configuring simulation

FIGURE 14.16 Comparison of memory consumption.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

272 MODELING SENSOR NETWORKS THROUGH DESIGN AND SIMULATION

scenarios via an initialization file offers us a tremendous amount of flexibility to
model and study the dynamic behaviors of both the sensor network and the application
environment in which such networks are expected to operate.

APPENDIX

This section provides practical guidelines for SensorSimulator software, the source
code for which can be found at http://csc.lsu.edu/sensor web/.

What is SensorSimulator?

As discussed in the main text of this chapter, SensorSimulator is a framework devel-
oped on OMNeT++, intended mainly to support sensor network simulations. The
framework provides basic modules that can be derived in order to implement the
users’ own modules. With this concept programmers can easily develop their own
protocol implementations for the SensorSimulator framework without having to deal
with the necessary interface and interoperability issues.

Overview of Framework

The section gives the basic framework of SensorSimulator on OMNeT++. The
user needs to know about programming in OMNeT++. If not, you should read
the OMNeT++ manual (available at http://www.omnetpp.org/). The manual then
explains how to install SensorSimulator on OMNeT++.

Installation You need a running OMNeT++ version 2.3 to use the LSU Sensor-
Simulator with all of its functionality. This is available from the omnetpp.org Website.
The user needs to go through the user manual of OMNeT++ to run simulations on
our simulator. After downloading the most recent version of the SensorSimulator
from the download area of the LSU Website, copy the file to the desired directory.
cd to this directory and then perform the following steps:

1. Extract the LSU-SensorSimulator.tgz file. It creates a LSU-
SensorSimulator folder.

2. Append the path -LSU-SensorSimulator/src to $LD LIBRARY
PATH;

3. Run “make” in LSU-SensorSimulator/samples.

4. You can run the simulation by executing ./Simulation.

Directory Structure Our directory structure is divided as follows:

LSU-SensorSimulator/inc/ This has the header files of base classes
src/. This has the base classes for all the layers: CoordinatorBase, LayerBase,
PhyLayerBase, MacLayerBase, and NetLayerBase.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

APPENDIX 273

AppLayerBase

RadioBase

BatteryBase

CPUBase

WirelessChannelBase

TargetNodeBase

cConsumer

samples/ This has the simple classes derived from base classes; it also
includes implementation of directed diffusion with GEAR and MAC 802.11:

phy layer/ mac layer/ netw layer/ app layer/

hwmodels layer/ wireless ch/ common/

Each subdirectory has implementations of that layer.

� Hardware models include battery, CPU, and radio modules. These include
simple hardware models.

� The common directory has CoOrdinator, packet structures for network and MAC
layers and other constants and attributes used for simulation. This directory is
derived by all other directories of the sample folder.

� The wireless channel subdirectory has a simple wireless channel that introduces
a delay.

Delay D is calculated as follows:

D = distance between 2 communicating nodes

speed of light

The class name has to be specified in the omnetpp.ini file if the user wants to try the
other implementations specified above.

To try a new implementation, the following steps are recommended:

1. Files. Each layer has three basic files: .cc, .hand, and .nedfiles. The user needs
all three of these files for the implementation. We are providing these three files
for every layer with minimum functionality. You can add your own code and
just do “make” and run the simulation by changing the necessary configurable
parameters in the omnetpp.ini file in the samples directory.

2. Procedure. Move into samples directory. This directory has subdirectories for
each layer. Each directory has examples of various implementations at each
layer. Also, you can see the files New* Layer.cc, New*Layer.h, and
New*LayerModuleDefined.ned for a new user to start using the simu-
lator. You can add the various parameters of a module that you will be using in
your implementation in the .need file. After adding the code or making changes

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

274 MODELING SENSOR NETWORKS THROUGH DESIGN AND SIMULATION

for the existing implementation, do make and then go back to the samples
directory. The class name of this new implementation has to be speci-
fied in omnetpp.ini so that the simulation considers your implementation
for execution. (e.g.,sensorNetwork.Nodes[*].strMACLayerType=
"MAC 802 11") With this functionality, the user can just add his/her protocol
at that particular layer with all other protocol layers being the same.

3. Building Simulations. This section explains the basic concepts behind the Sen-
sorSimulator. The class hierarchy is explained and all relevant functions of the
base modules are introduced. Detailed description is also available in the API
reference.

4. Running the Simulation. We can run the simulation after all the layers are
defined by configuring the parameters in the omnetpp.ini file. After writing
your code at various layers, do “make” in that corresponding subdirectory.
After “make” is done successfully, return to the samples directory and change
the parameters in the omentpp.ini file. The topology, simulation time, and other
properties can be varied in this file. These sections are clearly explained in the
OMNeT++ manual. Change the class name of the module you created (as
discussed in Section 14.3) and run the simulation. You can redirect the out put
to another text file.

Base-Layer Concept. The functionality of any layer of a node is defined in the Layer
Base file. This itself gets its properties from the SimpleModule of OMNeT++. All
the base classes of the node are derived from LayerBase. This is defined in the .src
directory.

Base Modules. We provide base modules for each layer, which inherits its properties
from Layer Base. It is implemented primarily to clearly define the interface that can
be understood easily and that can be extended if necessary. It implies that these
source code files handle the basic functionalities of that layer and the user need not
go through all this for the implementation. Users only need to derive their class from
these base modules. These modules have header files in the.inc directory. The .ned
files and the source code files are available in the src directory.

Simple Modules. A simple functionality of each layer is defined here. These are
derived from base modules. Users must implement their protocols at this level. These
are available in the samples directory. The simple source code files for each layer
are available in each subdirectory of the samples directory with respect to that layer.
The .ned files for these simple source files are available in the src directory. The .ned
files for new implementations are available in the subdirectories itself (see item 4 in
list preceding “Base-Layer Concept” heading).

Conclusion

We conducted various experiments to verify the data received by the subscribers
from publishers. This delivery ratio is 100% for smaller networks. The delivery ratio
decreases for larger networks according to directed diffusion.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

REFERENCES 275

The user can run directed diffusion with 802.11 by including the class filename
in the omnetpp.ini file. The topology, number of queries, number of nodes in the
region, the region size, and the simulation time are configurable in the omnetpp.ini.
File. The user can also run various simulations using different seeds as described in
the OMNeT++ manual.

ACKNOWLEDGMENTS

The authors acknowledge the assistance of students and faculty in the Sensor Network
Group for their contributions toward the development of SensorSimulator. The authors
also acknowledge the CCT for providing infrastructure facilities for the development
of the Sensor Network Laboratory.

PROBLEMS

14.1 Provide a two-page essay on how much realism can be achieved in a network
simulator.

14.2 Compare the features of J-Sim, GloMoSim, and OMNet++.

14.3 Why are traditional methods of network simulation inadequate for sensor
network simulation?

14.4 Provide a brief write up describing the distinguishing features of the network
simulator discussed in this chapter.

REFERENCES

1. http://www.cs.rpi.edu/cheng3/sense/.

2. http://www.isi.edu/nsnam/ns/ns-documentation.html.

3. Anonymous, Information Technology-Telecommunication and Information Exchange be-
tween Systems-Local and Metropolitan Area Networks Specific Requirements—Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,
Technical Report, IEEE Standard, 1999.

4. J. Agre, L. Clare, and S. Sastry, A taxonomy for distributed real-time control systems,
Adv. Comput. 49:303–352 (1999).

5. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, Wireless sensor networks:
A survey, Comput. Networks 38:393–422 (2002).

6. S. Basavaraju, Sensim: A Wireless Sensor Network Simulation Template, M.S. Project,
Dept. Computer Science, Louisiana State University, Baton Rouge.

7. V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, Macaw: Amedia access protocol
for wireless lans, InACM SIGCOMM 1994, 1994.

8. K. Fall and K. Varadhan, Ns-2 Network Simulator, Technical Report, Univ. California,
Berkeley, 2004.

9. G. S. Fishman, Principles of Discrete-Event Simulation, Wiley, 1978.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c14 JWBS038-Iyengar August 31, 2010 10:59 Printer: Yet to come

276 MODELING SENSOR NETWORKS THROUGH DESIGN AND SIMULATION

10. LSU Research Group, LSU SensorSimulator (LSU Sensim, version 1, Jan. 2005) User
Manual, Dept. Computer Science, Louisiana State University, Baton Rouge.

11. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, System architecture
directions for networked sensors, ACM Sigplan Notices 35:93–104 (2000).

12. C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, Directed diffusion
for wireless sensor networking, IEEE/ACM Trans. Networking 11(1):216 (Feb. 2003).

13. S. S. Iyengar and R. R. Brooks, eds., Distributed Sensor Networks, CRC Press Dec. 2004.

14. D. B. Johnson, The Rice University Monarch Project, Technical Report, Rice Univ., 2004.

15. C. Mallanda, SensorSimulator: A Simulation Framework for Sensor Networks, Master’s
thesis, Dept. Computer Science, Louisiana State University, Baton Rouge.

16. J. Misra, Distributed discrete-event simulation, ACM Comput. Surveys 18(1):39–65
(March 1986).

17. OPNET Technologies Inc., Opnet Modeler. www.opnet.com

18. S. Park, A. Savvides, and M. B. Srivastava, Sensorsim: A simulation framework for sensor
networks, Proc. 3rd ACM Int. DRAFT Workshop on Modeling, Analysis and Simulation
of Wireless and Mobile Systems, 2000, pp. 104–111.

19. S. Sastry, Smart space for automation, Assembly Autom. 24(2):201–209 (2004).

20. S. Sastry, S. S. Iyengar, and N. Balakrishnan, Sensor technologies for future automation
systems, Sensor Lett. 2(1):9–17 (2004).

21. A. Sobieh and J. C. Hou, A similation Framework for Sensor Networks in j-sim,
Technical Report UIUCDCS-R2003-2386, Dept. Computer Science, Univ. Illinois,
Urbana–Champaign, Nov. 2003.

22. A. Tannenbaum, Computer Networks, Prentice-Hall, 2002.

23. A. Vargas, Omnet++ Discrete Event Simulation System, version 2.3, 2003.

24. Y. Yu, R. Govindan, and D. Estrin, Geographial and Energy Aware Routing: A Recursive
Data Dissemination Protocol for Wireless Sensor Networks, Technical Report, Aug. 2001.

25. X. Zeng, R. Bagrodia, and M. Gerla, Glomosim: A library for parallel simulation of large-
scale wireless networks, Proc. Workshop on Parallel and Distributed Simulation, 1998,
pp. 154–161.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c15 JWBS038-Iyengar August 31, 2010 11:0 Printer: Yet to come

15 MATLAB Simulation of Airport
Baggage-Handling System

If we want users to like our software, we should design it to behave like a likeable
person.

—Alan Cooper

15.1 INTRODUCTION

This section discusses a simple implementation of an intelligent baggage-handling
system in MATLAB. Airport baggage-handling systems (BHSs) fall under the broad
umbrella of material-handling systems that automate the process of moving mate-
rials. Current BHS controllers are based on standard industrial techniques, namely,
Programmable Logic Controllers (PLCs). Distributed techniques consist of either
separate but interdependent parts or autonomous agents that can share information.
IEC 61499 is a standard for distributed systems.

15.2 BACKGROUND

Sensing devices are central to the functioning of airport baggage-handling systems
(BHSs). Almost all airport BHSs employ the following sensors/sensing devices:

� Radar/transponder
� Camera
� Smart cards
� Radiofrequency identification (RFID)
� Motion sensor
� Automatic target recognition (ATR)
� X-ray scanner

Hence, the sensor network is heterogeneous. The area of data fusion deals with com-
bining data from different kinds of sensors. There are two approaches to processing

Fundamentals of Sensor Network Programming: Applications and Technology, By S. S. Iyengar, N. Parameshwaran,
V. V. Phoha, N. Balakrishnan, and C. D. Okoye Copyright C© 2011 John Wiley & Sons, Inc.

277

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c15 JWBS038-Iyengar August 31, 2010 11:0 Printer: Yet to come

278 MATLAB SIMULATION OF AIRPORT BAGGAGE-HANDLING SYSTEM

Data

Fusion

Center
Source (H1, HO)

sensor n

sensor 2

sensor 1

FIGURE 15.1 Flowchart showing sensors processing data.

signals when employing multiple sensors [1]. In the first case, the raw data can be
transmitted to a central processor. This approach requires low-latency transmissions
and considerably high bandwidth. In the second case, some or the entire signal pro-
cessing is performed by sensors. This approach addresses latency and bandwidth
issues encountered in the first case. In Fig. 15.1 the sensors process the data and
relay these intermediate results to the data fusion center, which in turn processes
the incoming information. The global results are finally available at the data fusion
center. In energy- and processing-rich environment like an airport, the first approach
is appropriate.

The baggage is checked in at any of the desks labeled desk 1, desk 2, and desk 3
in Fig. 15.2. During checkin RFID tags are attached to them. After checkin, they are
placed on the respective conveyer belts and introduced into the BHS. The scanner
that is in close proximity to the location where the bags are introduced reads the
RFID tags attached to the bag and energizes the corresponding diverter to feed it to
the input of an X-ray scanning machine. If the X-ray scanning machines are currently
occupied, the bag’s RFID will be saved in a local queue, and the bag will have to
follow the loop until it is scanned again by the abovementioned scanner. After the
X-ray machine, the state of the bag will be any one of the following:

� The bag passed X-ray scan and deemed eligible for transportation to the aircraft.
� The bag was identified for further manual inspection (level 4 inspection).
� The bag was not able to make its way through the X-ray machine or it was not

recorded.

The other scanner placed on the loop with the help of diverters dispatches bags for
further inspection or diverts them to a channel that leads to the aircraft. The other
scanner placed on the loop with the help of diverters dispatches bags for further
inspection or diverts them to a channel that leads to the aircraft [2].

Leone et al. emphasize the importance of relying on computer-based models to
simulate the impact of integrating explosive detection devices (at checkin terminals in
airports) on the overall operation. To better understand the influence of the checked-
baggage screening (CBS) process on the overall operation, a five-stage model is

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c15 JWBS038-Iyengar August 31, 2010 11:0 Printer: Yet to come

BACKGROUND 279

Waiting Aircraft

Sorting

Induction into
BHS

= Diverter

Desk 2Desk 2Desk 1

XRAYXRAY

Level 4
Inspection

Scanner

Scanner

Scanner

FIGURE 15.2 Baggage checkin.

proposed as shown in Fig. 15.3. This logical view along with other parameters that
govern operation (e.g., ticket counter checkin processing time) will serve as input in
developing a model to study demand and capacity requirements [4].

Le et al. are concerned mainly with finding the optimal input conditions to ensure
optimal throughput performance. Their paper presents an empirical study of a mul-
tiobjective problem within a BHS with a goal of estimating the near-optimal input
conditions, such that no blockage occurs at checkin stations, while minimizing the
baggage travel time and maximizing the throughput performance measures. They
provide a practical hybrid simulation and binary search technique for determining a
near-optimal-input throughput operating conditions [3]. Our work can be extended
to provide a type of simulation similar to this one.

The process of transporting baggage between the aircraft and the terminal that is
currently employed is labor-intensive and inefficient [5]. The current transportation
scheme is shown in Fig. 15.4. The authors propose an architecture that addresses slow
baggage-processing speed, congestion on airport airside roads, inflexibility, and other
problems. The proposed architecture is shown in Fig. 15.5. The baggage truck shown
in the proposed architecture facilitates temporary storage and automated transfer at
the terminal and the aircraft.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c15 JWBS038-Iyengar August 31, 2010 11:0 Printer: Yet to come

P
as

se
ng

er
 a

nd
B

ag
ga

ge
 D

em
an

d
C

he
ck

-in
 Q

ue
ui

ng

F
un

ct
io

ns

G
oa

ls

•
P

ea
k

pe
rio

d

•
N

um
be

r
of

 p
as

se
ng

er
s

•
N

um
be

r
of

 b
ag

s

•
E

ar
lin

es
s

of
 a

rr
iv

al
 to

sa

ir
po

rt

•
P

as
se

ng
er

 in
te

r
ar

riv
al

ra

te
 to

 c
he

ck
-in

 q
ue

ue

D
et

er
m

in
e

th
e

pe
ak

ho
ur

 a
nd

 d
ai

ly
pa

ss
en

ge
r

an
d

ba
gg

ag
e

de
m

an
d

le
ve

ls

U
nd

er
st

an
d

im
pa

ct
 o

f
pe

ak
 h

ou
r

de
m

an
d

an
d

tic
ke

t c
ou

nt
er

 s
er

vi
ce

ra
te

s
on

 c
he

ck
-in

qu
eu

es

D
et

er
m

in
e

ke
y

de
si

gn
pa

ra
m

et
er

s
an

d
ca

pa
ci

ty
 o

f t
he

 s
ys

te
m

U
nd

er
st

an
d

im
pa

ct
 o

f
al

ar
m

 r
es

ol
ut

io
n

pr
ot

oc
ol

s
on

 c
ap

ac
ity

an
d

th
ro

ug
hp

ut
 o

f
sy

st
em

U
nd

er
st

an
d

im
pa

ct
 o

f
di

ffe
re

nt
 s

er
vi

ce
 r

at
es

on
 s

ys
te

m
 a

nd
 o

pt
im

al
so

lu
tio

n

C
rit

ic
al

M
et

ric
s

S
ec

ur
ity

 S
cr

ee
ni

ng
A

la
rm

 R
es

ol
ut

io
n

S
or

ta
tio

n

•
N

um
be

r
of

 p
as

se
ng

er
s

 i
n

qu
eu

e

•
A

vg
 q

ue
ue

 w
ai

t t
im

e

•
M

ax
 q

ue
ue

 w
ai

t t
im

e

•
N

um
be

r
of

 ti
ck

et
 c

ou
nt

er
s

•
T

ic
ke

t c
ou

nt
er

 s
er

vi
ce

ra

te

•
N

um
be

r
of

 E
D

S
 m

ac
hi

ne
s

•
N

um
be

r
of

 b
ag

s
 s

cr
ee

ne
d

by
 E

D
S

•
N

um
be

r
of

 b
ag

s
th

at
 a

la
rm

 E
D

S

•
A

vg
 tr

av
el

 ti
m

e
fr

om
 c

he
ck

-in
 to

 s
or

ta
tio

n
•

M
ax

 tr
av

el
 ti

m
e

fr
om

 c
he

ck
-in

 to
 s

or
ta

tio
n

•
E

D
S

 m
ac

hi
ne

 t
hr

ou
gh

pu
t

•
N

um
be

r
of

 E
T

D
 m

ac
hi

ne
s

•
P

hy
si

ca
l s

ea
rc

h
 s

cr
ee

ni
ng

 th
ro

ug
hp

ut
•

O
n-

sc
re

en
/n

o
on

-
 s

cr
ee

n
re

so
lu

tio
n

•
N

um
be

r
of

 d
el

ay
ed

 b
ag

s
•

%
 o

f b
ag

s
sc

re
en

ed
 in

 x
 m

in
ut

es
•

E
T

D
 s

cr
ee

ni
ng

 t
hr

ou
gh

pu
t

F
IG

U
R

E
15

.3
Sc

re
en

in
g

of
ch

ec
ke

d
ba

gg
ag

e.

280

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c15 JWBS038-Iyengar August 31, 2010 11:0 Printer: Yet to come

A
R

R
IV

A
L

10
 c

ol
/m

in

Tr
an

sf
er

O
&

D

S
ho

C
on

10
 c

ol
/m

in

C
he

ck
-in

S
o

rt
in

g
 S

ys
te

m
D

E
PA

R
T

U
R

E

20
 c

ol
/m

in

20
 c

ol
/m

in

v m
ax

 =
 1

5
km

/h
v m

ax
 =

 1
5

km
/h

v m
ax

 =
 2

5
km

/h

ba
gg

ag
e

flo
w

ve
hi

cl
e

m
ov

em
en

t

F
IG

U
R

E
15

.4
B

ag
ga

ge
tr

an
sp

or
tb

et
w

ee
n

ai
rp

or
tt

er
m

in
al

an
d

ai
rc

ra
ft

.

281

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c15 JWBS038-Iyengar August 31, 2010 11:0 Printer: Yet to come

A
R

R
IV

A
L

20
 c

ol
/m

in

O
&

D

S
ho

C
on

20
 c

ol
/m

in

C
he

ck
-in

S
o

rt
in

g
 S

ys
te

m
D

E
PA

R
T

U
R

E

36
 c

ol
/m

in
36

 c
ol

/m
in

v m
ax

 =
 8

0
km

/h
v m

ax
 =

 8
0

km
/h

v m
ax

 =
 8

0
km

/h

ba
gg

ag
e

flo
w

ve
hi

cl
e

m
ov

em
en

t

Tr
an

sf
er

F
IG

U
R

E
15

.5
Pr

op
os

ed
ar

ch
ite

ct
ur

e
fo

r
ex

pe
di

tin
g

th
e

ba
gg

ag
e-

ha
nd

lin
g

pr
oc

es
s.

282

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c15 JWBS038-Iyengar August 31, 2010 11:0 Printer: Yet to come

SIMULATION RESULTS AND DISCUSSION 283

Local DB
Local DB

Local DB
Local DB

Global DB

FIGURE 15.6 Detailed flowchart of BHS architecture shown in Fig. 15.5.

15.3 PROPOSED ARCHITECTURE

After reviewing the literature we have adopted the architecture shown in Fig. 15.6.
The architecture shows local databases that store relevant transactions at the airport.
Data are transferred to and from the global database. For example, when a fight leaves
an airport, the pertinent information in the local database is transferred to the global
database.

15.4 SIMULATION RESULTS AND DISCUSSION

Our simulation consists of a preexisting data file as shown in Table 15.1. The data
file represents data collected from an array of virtual sensors.

The simulation engine is shown in Fig. 15.7. An event handler is required to
respond to these events and to firsthand visualization. When an event occurs, control
is transferred to the event handler. The event handler executes an order and a message
is printed on the console.

Rough pseudocode for the event handler’s internal logic is shown in Table 15.2.
If the event needs to be visualized firsthand, a procedure is invoked. The visualiza-
tion currently displays only sensor events that occur at the current timestamp. The
MATLAB code for our simulation can be found in Section 15.5. A snapshot of
visualization is shown in Fig. 15.8.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c15 JWBS038-Iyengar August 31, 2010 11:0 Printer: Yet to come

284 MATLAB SIMULATION OF AIRPORT BAGGAGE-HANDLING SYSTEM

TABLE 15.1 Preexisting Data File in BHS Simulation

Event Type Description Col2 Col4 Col5

01 Checkin Bag ID Flight ID —
02 Weighin Bag ID Weight (lb) —
03 Security scan Bag ID 0/1 (success/fail) —
04 In/out of storage Bag ID Airport/storage area ID —
05 In transfer van Bag ID Van ID —
06 In plane Bag ID Flight ID —
07 Flight departs — Flight ID —
08 Flight arrives — Flight ID —
09 Checkout Bag ID Airport ID Carrier
10 In/out of lost baggage Bag ID Airport ID Carrier

Our simulation computes the following performance metrics of the BHS:

� Percentage bags that missed fiight
� Average bag time to storage
� Average bag time on loop (i.e., time in queue)

The performance metrics obtained for the test data file are shown in Table 15.3.

Event

Visualization

t = t + 1

t = 0

Event Handler

Vis?

FIGURE 15.7 Simulation engine.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c15 JWBS038-Iyengar August 31, 2010 11:0 Printer: Yet to come

T
A

B
L

E
15

.2
P

se
ud

oc
od

e
fo

r
E

ve
nt

H
an

dl
er

’s
In

te
rn

al
L

og
ic

E
ve

nt
D

es
cr

ip
tio

n
Q

ue
ry

A
ct

io
n

01
C

he
ck

in
A

lw
ay

s
tr

ue
Ph

ot
og

ra
ph

pe
rs

on
w

ho
ar

ri
ve

d
w

ith
ba

g
02

W
ei

gh
in

l
o
c
a
l
d
a
t
a
(
4
)

>
T
h
r
e
s
h
o
l
d

A
le

rt
pe

rs
on

at
de

sk
03

Se
cu

ri
ty

sc
an

f
i
e
l
d
(
4
)
!
=
0

R
ed

ir
ec

tb
ag

to
le

ve
l4

in
sp

ec
tio

n
04

B
ag

.w
en

ti
nt

o
st

or
ag

e
#
r
e
s
u
l
t
s
(
b
a
g
=
=
l
o
c
a
l
d
a
t
a
(
2
)
&
&
d
a
t
a
t
y
p
e
=
=
0
4
)

i
s
o
d
d

Se
ts

ta
te

to
“i

n
st

or
ag

e”

04
B

ag
.w

en
to

ut
of

st
or

ag
e

#
r
e
s
u
l
t
s
(
b
a
g
=
=
l
o
c
a
l
d
a
t
a
(
2
)
&
&
d
a
t
a
t
y
p
e
=
=
0
4
)

i
s
e
v
e
n

Se
ts

ta
te

to
“n

ot
in

st
or

ag
e”

05
In

tr
an

sf
er

va
n

—
—

06
In

pl
an

e
#
r
e
s
u
l
t
s
(
b
a
g
=
=
l
o
c
a
l
d
a
t
a
(
2
)
&
&
d
a
t
a
t
y
p
e
=
=
0
3
&
&

f
i
e
l
d
4
=
=
0
)
=
=
0

R
E

D
A

L
E

R
T

!
U

na
ut

ho
ri

ze
d

lu
gg

ag
e!

07
Fl

ig
ht

de
pa

rt
s

#
r
e
s
u
l
t
s
(
(
f
i
e
l
d
4
=
=
l
o
c
a
l
d
a
t
a
(
4
)
)
&
&
f
i
e
l
d
3
=
=
0
1
)

-
(
f
i
e
l
d
4
=
=
l
o
c
a
l
d
a
t
a
(
4
)
)
&
&
f
i
e
l
d
3
=
=
0
6
)
)
>
0

Pa
ss

re
su

lts
of

qu
er

y
to

ba
gg

ag
e

gu
y,

an
d

lo
g

th
em

so
m

ew
he

re
;s

et
st

at
e

of
ba

g
to

“l
os

t”
07

Fl
ig

ht
de

pa
rt

s
(
f
i
e
l
d
4
=
=
l
o
c
a
l
d
a
t
a
(
4
)
)
&
&
f
i
e
l
d
3
=
=
0
6
)

(
f
i
e
l
d
(
2
)
=
=
a
n
y
R
E
S
U
L
T
(
2
)
)

C
ut

an
d

pa
st

e
re

su
lts

of
qu

er
y

to
gl

ob
al

da
ta

ba
se

;c
ut

an
d

pa
st

e
lo

ca
ld

at
a

to
da

ta
ba

se
08

Fl
ig

ht
ar

ri
ve

s
(
f
i
e
l
d
4
=
=
l
o
c
a
l
d
a
t
a
(
4
)
)
&
&
f
i
e
l
d
3
=
=
0
6
)

f
i
e
l
d
(
2
)
=
=
a
n
y
v
a
l
u
e
i
n
R
E
S
U
L
T
(
2
)
)

C
ut

an
d

pa
st

e
re

su
lts

of
qu

er
y

to
lo

ca
l

da
ta

ba
se

09
C

he
ck

ou
t

T
ru

e
Ta

ke
ph

ot
o

09
C

he
ck

ou
t

(
f
i
e
l
d
2
=
=
l
o
c
a
l
d
a
t
a
(
2
)
)

C
ut

an
d

pa
st

e
re

su
lts

of
qu

er
y

to
gl

ob
al

da
ta

ba
se

10
In

/o
ut

of
lo

st
ba

gg
ag

e
—

—

285

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c15 JWBS038-Iyengar August 31, 2010 11:0 Printer: Yet to come

286 MATLAB SIMULATION OF AIRPORT BAGGAGE-HANDLING SYSTEM

Desk 1 Desk 2 Desk 2

Induction into
BHS

07-May-2009 07:14:00

WARNING ! Bag #007 loaded onto flight #752 never passed
security inspection!

007

011
016

Sorting
= Diverter

XRay XRay

Scanner

Level &
Inspection

Sensor

Scanner

FIGURE 15.8 BHS flowchart showing potential security breach.

15.5 SOURCE CODE

The MATLAB source code for the baggage-handling system is shown below. This
program describes a unique way to detect and respond to various combination of
events and conditions. Synthetic input data could be generated by hand or by another
program (they were generated by hand for testing/metrics). The BHS structure con-
sists of a main loop, an event-handling layer, and an display layer. The main loop
continually scans for events and passes them to the event handler, as well as being
responsible for computing matrics. The event handler contains the internal logic to
actually generate and handle events on the basis of the input data. The display layer
is responsible for displaying current events visually.

TABLE 15.3 Performance Metrics for Test
Data File

Percentage bags that missed flight 11.1111
Average bag time to storage 15.3333 min
Average bag time on loop 9.5000 min

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c15 JWBS038-Iyengar August 31, 2010 11:0 Printer: Yet to come

SOURCE CODE 287

snproj.m

clear all;

close all; clc;

global time

global tmp2

global bags checked in for flights

global bags missed flights

global times from check in to storage

global times waiting for scan

global weightthreshold

weightthreshold=50;

A=textread (’final log.txt’, ’%s’);

startdate=date;

startdate=datenum(startdate);

time=startdate;

currentline=1;

tmp=datevec (getdata (currentline,1,A));

tmp2=datevec(date);

tmp2=tmp2 (1:3);

bags checked in for flights=0;

bags missed flights=0;

times from check into storage=[];

times waiting for scan=[];

while ˜strcmp(getdata (currentline,1,A), ’\0\0’)
%while time<startdate+1

disp (datestr (time));

vis was called=0;

if ((datenum([tmp2 tmp(4:6)])<=time && ˜strcmp (getdata ...

(currentline,1 ,A), ’\0\0’)))
sensor visualization clear ();

vis was called=1;

end

while (datenum ([tmp2 tmp (4:6)]) <= time && ˜strcmp (getdata ...

(currentline,1 ,A), ’\0\0’))
%disp ([’handle (’num2str (currentline)’)’]);

handle sensor event (currentline ,A);

%truesize;

currentline=currentline+1;
tmp=datevec (getdata (currentline ,1 ,A));

end

if vis was called

pause (5);

% F=getframe; %This line and next line meant for saving frames ...

% in file

% imwrite (F.cdata, [’.\frames\frame ’ regexprep(datestr (time), ’:’, ...

% ’-’) ’.png’]);

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c15 JWBS038-Iyengar August 31, 2010 11:0 Printer: Yet to come

288 MATLAB SIMULATION OF AIRPORT BAGGAGE-HANDLING SYSTEM

end % or pause (3) or some kind of check against current time

time=time+1/24/60;
end

percent bags missed flight=100*bags missed flights/bags checked in for flights

avg time to storage=mean(times from check in to storage*24*60)

avg time in loop=mean(times waiting for scan*24*60)

getdata.m

function s=getdata (line, col, file)

x=5*(line-1)+ col;

if (x>size (file, 1))

s{1}= ’\0\0’;
else

s=file{x};
end

handle sensor event.m

function handle sensor event (line, file)

global time

global tmp2

global weightthreshold

global bags checked in for flights

global bags missed flights

global times from checkin to storage

global times waiting for scan

event type=str2num(getdata (line,3, file));

switch event type

%---

case 01 % photograph person who arrived with bag

disp ([’ Photo taken for owner of bag #’ getdata (line,2, file)]);

sensor visualization (1, getdata (line,2, file),0, ’\0\0’, event type);

%---

case 02 % check if bag is over weight

if str2num(getdata (line,4, file))> weightthreshold

disp ([’Bag #’ getdata (line,2, file) ’ overweight’]);

sensor visualization (1, getdata (line,2, file), str2num(getdata ...

(line, 4, file)), ’ overweight ’, event type);

% pass bag overweight event to visualization

else

disp ([’Bag # ’ getdata (line,2, file) ’ weighed in at ’ getdata ...

(line, 4, file) ’ lbs’]);

sensor visualization (1, getdata (line,2, file), str2num(getdata ...

(line, 4, file)), ’ok’, event type);

end

%---

case 03

disp ([’Bag # ’ getdata (line,2, file) ’ scanned, error=’ getdata ...

(line, 4, file)]);

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c15 JWBS038-Iyengar August 31, 2010 11:0 Printer: Yet to come

SOURCE CODE 289

sensor visualization (8, getdata (line,2, file),0, getdata ...

(line,4, file), event type);

time introduced to bhs=time; % random default; have not handled ...

% case where bag was never checked in

for x=1: line

if strcmp (getdata (x,2, file), getdata (line,2, file)) ...

&& strcmp (getdata (x,3, file), ’02’)

tmp=datevec (getdata (x,1, file));

time introduced to bhs=datenum ([tmp2 tmp (4:6)]);

end

end

times waiting for scan=...

[times waiting for scan time----time introduced to bhs];

% bags that were rescanned are currently averaged in twice.

% possibly give 2nd scan different event id, otherwise need more logic

%---

case 04 % check if bag went in/out of storage

results=0;

for x=1:line

if strcmp (getdata (x,2, file), getdata (line,2, file)) && strcmp (...

getdata (x,3, file), ’04’)

results=results+1;
end

end

sensor visualization (10, getdata (line,2, file),0, ’\0\0’, event type);

if mod(results ,2)

disp ([’Bag # ’ getdata (line,2, file) ’ went into temp storage’]);

% into storage

time checked in=time; % random default; have not handled ...

% case where bag was never checked in

for x=1: line

if strcmp (getdata (x,2, file), getdata (line,2, file)) && strcmp (...

getdata (x,3, file), ’01’)

tmp=datevec (getdata (x,1, file));

time checked in=datenum ([tmp2 tmp (4:6)]);

end

end

times from checkin to storage=...

[times from checkin to storage time-time checked in];

else

disp ([’Bag # ’ getdata (line,2, file) ’ went out of temp storage’]);

% out of storage

end

%---

case 05

disp ([’Bag #’ getdata (line,2, file) ’ loaded on van # ’ getdata ...

(line, 4, file)]);

sensor visualization (13, getdata (line,2, file),0, getdata ...

(line,4, file), event type);

%---

case 06 % check if bag that failed security scan was put on plane

results=0;

for x=1:line

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c15 JWBS038-Iyengar August 31, 2010 11:0 Printer: Yet to come

290 MATLAB SIMULATION OF AIRPORT BAGGAGE-HANDLING SYSTEM

if strcmp (getdata (x,2, file), getdata (line,2, file)) && strcmp (...

getdata (x,3, file), ’03’) && ...

strcmp (getdata (x,4, file), ’0’)

results=results+1;
end

end

if results>0

disp ([’Bag #’ getdata (line,2, file) ’ loaded onto flight #’ ...

getdata (line,4, file)]);

sensor visualization (11, getdata (line,2, file),0, ’ \0\0’, ...

event type);

else

disp ([’WARNING!’ 10 ’Bag #’ getdata (line,2, file) ...

’ loaded onto flight #’ getdata (line,4, file) ...

’ never passed security inspection!’]);

sensor visualization (11, getdata (line,2, file), str2num(getdata ...

(line,4, file)), ’NOT SCANNED’, event type);

end

%---

case 07 %flight left

% query:#results ((field4==localdata(4)) && field3==01)-...

% (field4==localdata(4)) && field3==06))>0

bags checked for current flight=[];

bags loaded on current flight=[];

bags lost=[];

for x=1:line

if strcmp (getdata (x,4, file), getdata (line,4, file)) && strcmp (...

getdata (x,3, file), ’ 01 ’)

bags checked for current flight=...

[bags checked for current flight str2num(getdata (x,2, file))];

end

if strcmp (getdata (x,4, file), getdata (line,4, file)) && strcmp (...

getdata (x,3, file), ’06’)

bags loaded on current flight=[bags loaded on current flight...

str2num(getdata (x,2, file))];

end

end

bags lost=intersect (setxor (bags checked for current flight, ...

bags loaded on current flight), ...

bags checked for current flight);

bags checked in for flights=bags checked in for flights+size (...

bags checked for current flight, 2);

bags missed flights=bags missed flights+size(bags lost, 2);

if size (bags lost,2)>0

disp ([’WARNING! ’10 ’Bag(s) #’ num2str (bags lost)...

’ not loaded onto flight #’ getdata (line,4, file)]);

for x=1:size (bags lost,2)

sensor visualization (12,num2str (bags lost (1, x)), 1, ...

getdata (line,4, file), event type);

end

end

disp ([’Flight #’ getdata (line,4, file) ’ departed.’]);

%write to global db (’Bag#’, ’flight#’, ’BagAttribute’);

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c15 JWBS038-Iyengar August 31, 2010 11:0 Printer: Yet to come

SOURCE CODE 291

%---

case 08 %flight arrived

disp ([’Flight #’ getdata (line,4, file) ’ arrived.’]);

%sensor visualization (11, ’\0\0’,0, getdata (line,4, file), event type);

%download from global db (’Bag#’, ’flight#’, ’ BagAttribute’);

%---

case 09 %Photograph taken

disp ([’RFID for Bag #’ getdata (line,2, file) ...

’ returned, photo captured ’]);

sensor visualization (14,getdata (line,2, file),0, ’\0\0 ’, event type);

% capture photo here

% remove refrences to bag getdata (line,2, file) from local db,...

% save in natl db

%---

case 10 %Transfer red to Lost Baggage area

results=0;

for x=1:line

if strcmp (getdata (x,2, file), getdata (line,2, file)) && strcmp (...

getdata (x,3, file), ’10’)

results=results+1;
end

end

sensor visualization (15, getdata (line,2, file),0, ’\0\0’, event type);

if mod(results, 2)

disp ([’Bag #’ getdata (line,2, file) ’ went into lost baggage area’]);

% into lost baggage area

else

disp ([’Bag #’ getdata (line,2, file) ’ went out of lost baggage area’]);

% out of lost baggage area

end

%---

otherwise

disp ([’ERROR INVALID EVENT ON LINE ’ num2str(line)]);

end

sensor visualization.m

function sensor visualization (LOCATION,BAGID, number, special, event type)

global DISPIMG

global viz bag loc data;

global Environment

global time

Environment=imread (’maindiagram.jpg’, ’jpg’);

Environment=rgb2gray (Environment);

%Init coordinates

Desk1=[21 240]; % 1

Desk2= [21 338];% 2

Desk3= [21 440];% 3

Scanner1=[326 157]; % 4

Scanner2=[299 533]; % 5

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c15 JWBS038-Iyengar August 31, 2010 11:0 Printer: Yet to come

292 MATLAB SIMULATION OF AIRPORT BAGGAGE-HANDLING SYSTEM

Scanner3=[440 631]; % 6

XRAY1=[218 257];%7

XRAY2=[218 322];%8

LEVEL4INS=[173 659];%9

STORAGE=[480 590]; %10

PLANE=[540 100]; %11

LOSTAREA=[577 728]; %12

VANLOC=[550 300]; %13

PICKUPAREA=[150 690]; %14

LOSTBAGGAREA=[465 690]; %15

%Initializing coordinates

%LOCATION=4;

%BAGID=006;

if ˜exist(’DISPIMG ’)

DISPIMG=[];

DISPIMG=Environment;

end

if ˜exist (’viz bag loc data’)

viz bag loc data=[];

end

viz bag loc data {size(viz bag loc data,1)+1,1}=LOCATION;
viz bag loc data {size(viz bag loc data,1),2}=BAGID;
viz bag loc data {size(viz bag loc data,1),3}= number;

viz bag loc data {size(viz bag loc data,1),4}= special;

viz bag loc data {size(viz bag loc data,1),5}= event type;

switch LOCATION

case 1

DISPLOC=Desk1;

case 2

DISPLOC=Desk2;

case 3

DISPLOC=Desk3;

case 4

DISPLOC=Scanner1;

case 5

DISPLOC=Scanner2;

case 6

DISPLOC=Scanner3;

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c15 JWBS038-Iyengar August 31, 2010 11:0 Printer: Yet to come

SOURCE CODE 293

case 7

DISPLOC=XRAY1;

case 8

DISPLOC=XRAY2;

case 9

DISPLOC=LEVEL4INS;

case 10

DISPLOC=STORAGE;

case 11

DISPLOC=PLANE;

case 12

DISPLOC=LOSTAREA;

case 13

DISPLOC=VANLOC;

case 14

DISPLOC=PICKUPAREA;

case 15

DISPLOC=LOSTBAGGAREA;

otherwise

null;

end

for i=(DISPLOC(1) −5):1:(DISPLOC(1)+5)
for j=(DISPLOC(2) −5):1:(DISPLOC(2)+5)

DISPIMG(i, j)=0;

end

end

warning off;

imshow(DISPIMG);

%truesize;

warning on;

for i=1:1:size(viz bag loc data, 1)

LOCATION=viz bag loc data{i,1};

switch LOCATION

case 1

DISPLOC=Desk1;

case 2

DISPLOC=Desk2;

case 3

DISPLOC=Desk3;

case 4

DISPLOC=Scanner1;

case 5

DISPLOC=Scanner2;

case 6

DISPLOC=Scanner3;

case 7

DISPLOC=XRAY1;

case 8

DISPLOC=XRAY2;

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c15 JWBS038-Iyengar August 31, 2010 11:0 Printer: Yet to come

294 MATLAB SIMULATION OF AIRPORT BAGGAGE-HANDLING SYSTEM

case 9

DISPLOC=LEVEL4INS;

case 10

DISPLOC=STORAGE;

case 11

DISPLOC=PLANE;

case 12

DISPLOC=LOSTAREA;

case 13

DISPLOC=VANLOC;

case 14

DISPLOC=PICKUPAREA;

case 15

DISPLOC=LOSTBAGGAREA;

otherwise

null;

end

offset=length (find (cell2mat (viz bag loc data (1:i,1))==LOCATION))−1;
text (DISPLOC(2)+10,DISPLOC(1)+6+18*offset, viz bag loc data{i,2},...
’fontsize’ , 10);

text (600,10,datestr(time), ’fontsize’, 10);

%--------------------------------

if viz bag loc data{i,5}==2
text (DISPLOC(2)+50,DISPLOC(1)+6+18*offset,[num2str(...
viz bag loc data{i,3}) ’lbs.’], ’fontsize’, 10);

if strcmp (viz bag loc data{i,4}, ’overweight’)

text (DISPLOC(2)+100,DISPLOC(1)+6+18*offset, ’OVERWEIGHT’,...

’fontsize’ ,10);

end

end

%--------------------------------

if viz bag loc data{i,5}==3
if strcmp (viz bag loc data{i,4}, ’1’)

text (DISPLOC(2)+50,DISPLOC(1)+6+18*offset, ’FAILED’,...

’fontsize’, 10);

else

text (DISPLOC(2)+50,DISPLOC(1)+6+18*offset, ’PASSED’,...

’fontsize’, 10);

end

end

%--------------------------------

if viz bag loc data{i,5}==6
if strcmp (viz bag loc data{i,4}, ’NOT SCANNED’)

text (DISPLOC(2)+50,DISPLOC(1)+6+18*offset, [’WARNING ! ’...

’Bag #’ viz bag loc data{i,2} ’...

loaded onto flight #’ ...

num2str (viz bag loc data{i,3}) ’ ...

never passed security inspection!’], ’fontsize’, 10);

for tmp=1:3

pause (.2);

beep;

end

else

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c15 JWBS038-Iyengar August 31, 2010 11:0 Printer: Yet to come

PROBLEMS 295

%text (DISPLOC(2)+50,DISPLOC(1)+6+18*offset, ’PASSED’,...

%’fontsize’, 10);

end

end

%--------------------------------

if viz bag loc data{i,5}==7
text (DISPLOC(2)+10,DISPLOC(1)-20,[’flight #’...

viz bag loc data{i, 4}], ’fontsize’, 10);

end %---------------------------------

if viz bag loc data{i,5}==8
%not visualizing right now

end

end

sensor visualization clear.m

function sensor visualization clear ();

global DISPIMG

global viz bag loc data;

global Environment

if ˜size (DISPIMG, 1)

Environment=imread (’maindiagram.jpg ’,’ jpg’);

Environment=rgb2gray (Environment);

end

DISPIMG=Environment;

viz bag loc data=[];

PROBLEMS

15.1 Design an event generator that generates synthetic testing data for the BHS.

15.2 Propose a sensor network configuration applicable to geoscience prob-
lems that can also be extended to the social sciences or people-centric
situations.

15.3 Describe an example integrating sensor networks and social networks.

15.4 Design a sensor-based tsunami warning system for tracking weather events in
an unstructured enviornment.

15.5 Describe how to use sensor networks to implement monitoring of a costal
erosion problem.

15.6 Apart from “Monitoring” activities, list three other important applications of
sensor networks.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC

c15 JWBS038-Iyengar August 31, 2010 11:0 Printer: Yet to come

296 MATLAB SIMULATION OF AIRPORT BAGGAGE-HANDLING SYSTEM

REFERENCES

1. Anonymous, Optimal data fusion in multiple sensor detection systems, IEEE Trans.
Aerospace Electron. Syst. AES-22:98–101 (1988).

2. G. Black and V. Vyatkin, Intelligent component based automation of baggage handling
systems with IEC 61499, IEEE Trans. Autom. Sci. Eng. 6 (2009).

3. V. T. Le, D. Creighton, and S. Nahavandi, Simulation-based input loading condition optimi-
sation of airport baggage handling systems, Proc. IEEE Intelligent Transportation Systems
Conf., Seattle, WA, 2007.

4. K. Leone and R. Liu, The key design parameters of checked baggage security screening
systems in airports, J. Air Transport Mgmt. 11:69–78 (2005).

5. J. C. Rijsenbrij and J. A. Ottjes, New developments in airport baggage handling systems,
Transport. Plann. Technol. 30:417–430 (2007).

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c16 JWBS038-Iyengar August 31, 2010 11:1 Printer: Yet to come

16 Security in Sensor Networks

If you spend more on coffee than on IT security, you will be hacked. What’s more, you
deserve to be hacked.

—White House Cybersecurity Advisor, Richard Clarke

16.1 INTRODUCTION

For the sake of completeness in the context of programming, this chapter provides a
cursory view of security attacks and concerns in sensor network. For more details on
algorithms and architecture, readers are advised to refer to some of the papers listed
at the end of this chapter, as well as the rich literature listed in the Bibliography and
available elsewhere.

16.2 SECURITY CONSTRAINTS

The fundamental constraints under which sensor networks operate prohibits them
from using public-key encryption systems and third-party authentication systems.
These constraints are described in the following subsections.

16.2.1 Resource Constraints

Resource constraints drive every aspect of sensor programming. As noted, the low
power and processing capabilities of sensors are the most significant factors in sensor
security. A typical sensor node might have a maximum of around 20–30 J (joules) of
energy. For example, a Berkeley mote has an 8-bit, 4-MHz processor, which supports a
minimal reduced instruction set computer (RISC)-like instruction set without support
for multiplication or other costly operations. Perrig et al. [1, 2] showed that a simple
random structures–algorithms (RSA) operation takes on the order oftens of seconds
on this processor. After a mote is loaded with the requisite os and communications
software, it has less than 4 kB of free space. With space at such a high premium, it is
not possible to store too many long keys, or even long algorithms.

Fundamentals of Sensor Network Programming: Applications and Technology, By S. S. Iyengar, N. Parameshwaran,
V. V. Phoha, N. Balakrishnan, and C. D. Okoye Copyright C© 2011 John Wiley & Sons, Inc.

297

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c16 JWBS038-Iyengar August 31, 2010 11:1 Printer: Yet to come

298 SECURITY IN SENSOR NETWORKS

16.2.2 Communication Issues

Standard sensor nodes equipped with low-power radio transmitters commonly have a
range of under 20 m. In order for these nodes to communicate with a base station any
significant distance away, they need to use multihop routing. Because the base station
doesn’t communicate directly with most of the nodes in its WSN, it cannot efficiently
manage key distribution for its nodes because of the high overhead that this would
require. Also, security in traditional networks depends on well-established protocols
that assume that a reliable media exists for any kind of authentication to take place.
In sensor networks, issues of latency, conflicts, and unreliability of the underlying
media arise, rendering most authentication schemes suboptimal for these classes of
network.

16.2.3 Hostile Environments

Distributed sensor networks (DSNs) that are deployed in hostile environments must
account for the fact that individual nodes can be easily captured. A captured public-key
server could potentially be used to disclose a large number of keys, compromising the
network. Finally, the intrinsic properties of sensor networks (distributed in nature and
avoiding central management) makes it challenging to adopt authentication schemes
developed for more conventional networks.

16.2.4 Conclusion

For a broader treatment of these subjects, refer to the article by Kalindi et al. [3].

16.3 DENIAL-OF-SERVICE ATTACKS IN MULTIPLE LAYERS

Sensor networks could be subjected to several kinds of attacks not limited to denial-of-
service attacks, node takeovers, routing attacks, and possibly attacks on the physical
security of nodes. This section provides an overview of potential denial-of-service
attacks that can take place at different layers of the sensor network. It is important to
note that in each layer of the sensor network architecture, the denial-of-service attack
is of a different nature (see Fig. 16.1).

16.3.1 Physical Layer

Two types of denial-of-service attacks take place at the physical layer: jamming and
tampering.

Jamming Jamming refers to the transmission of radio signals that interfere with the
communication operations of the nodes in a sensor network. Jamming is a simple and
effective method of disrupting communications. Generating a significant amount of
noise on a narrow band of frequences will disrupt the communications that use those

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c16 JWBS038-Iyengar August 31, 2010 11:1 Printer: Yet to come

DENIAL-OF-SERVICE ATTACKS IN MULTIPLE LAYERS 299

Application Layer

Transport Layer

Network and Routing Layer

Data Link (MAC) Layer

Physical Layer

Taking advantage of programming
flaws - by hacking the sytem

Flooding, Desynchronizing

Neglect/Greed, Homing, Misdirection,
Black Holes

Collision, Exhaustion, Unfairness

Jamming, Tampering

Task Management Plane

Mobility Management Plane

Energy Management Plane

FIGURE 16.1 An illustration showing possible attack types on each layer.

frequences. Jamming can be eliminated by changing frequencies, or by using a wide
band of frequencies via modern spread-spectrum techniques. Figure 16.2 illustrates
how a jammer could operate in a wireless sensor network.

Tampering Tampering is when the network hardware is physically attacked, dam-
aged, or otherwise compromised. The best defense against tampering is hiding the
nodes, or making them physically resistant to attack.

16.3.2 Datalink Layer

A collision occurs when two packets are sent on the same channel at the same time,
corrupting the recieved data. Because radio is inherently a half-duplex system, a node
cannot easily receive during transmission in order to check for collisions. Further-
more, even if this were possible, the signal received at a node’s neighbors would be
significantly different from that at point-blank range. So in wireless communications,

Jammer

FIGURE 16.2 An illustration of a jammer in a sensor network.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c16 JWBS038-Iyengar August 31, 2010 11:1 Printer: Yet to come

300 SECURITY IN SENSOR NETWORKS

a collision appears for all intents and purposes as corrupted data at the reciever’s
end. Unfortunately, if the attacker has already compromised one or more nodes and
is able to send malicious packets onto the network at will, there is no fully effec-
tive solution. If the collisions are corrupting only a portion of the sent data packets,
this issue can be mitigated by using error-correcting codes. Some form of collision
detection at the receiver could be used to detect such attacks, if not to completely
mitigate them.

An exhaustion attack is similar to a collision attack, but the aim of the attack
is to use up the power of network nodes and render them inoperative. One way to
accomplish this is to purposely cause repeated collisions and retransmissions. Another
way is to have a compromised node continually query other nodes for information.
Limiting the maximum amount of reponses that a node is allowed to make in a given
time period can mitigate this problem.

Network delays and unreliability can be caused by the intermittent application of
the abovementioned attacks. In an “unfairness” attack, malicious users transmit an
unusually large number of packets if the medium is free, causing other nodes to delay
sending their packets. This type of attack relies on abusing the cooperative priority
scheme used by the MAC layer. One way to mitigate this type of attack is to use small
frames, causing nodes to give up control of the channel after only a short time. This
does have overhead, however, and furthermore, a node that cheats by vying for the
channel immediately while other nodes delay randomly can still capture the channel
repeatedly.

16.3.3 Network Layer

A neglectful node will sometimes arbitrarily fail to forward data to the next node along
the routing path. A compromised node could even falsely acknowledge successful
transmission to the sender of the dropped packet. A “greedy” node gives higher
priority to its own messages, causing a hit to network performance if a high volume
of network traffic passes through it. One way around this is to use data redundancy,
or better, muliple routing paths.

A “homing” attack is an attack where adversaries attempt to discover and focus
on nodes that are particularly crucial or important, such as local clusterheads and,
key managers. This type of attack can be foiled if packet headers are encrypted,
preventing adversaries from easily finding the source or destination of a given packet.

A “misdirection” attack involves routing data along the wrong path, possi-
bly by advertising false routing information. As a result, data could be routed
away from a specific node, or sent toward the malicious node instead of their
intended destination. In a “smurf” attack, a large amount of data is mistak-
enly routed toward the node being attacked, overloading its network connection.
An approach similar to egress filtering can be used to defend against this type
of attack.

A “black hole” is a node that falsely advertises zero-cost routes to all other nodes,
causing all nearby nodes to forward packets to it, and to incorrectly update their
own route costs to be erroneously low, causing nodes in a continually expanding

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c16 JWBS038-Iyengar August 31, 2010 11:1 Printer: Yet to come

DENIAL-OF-SERVICE ATTACKS IN MULTIPLE LAYERS 301

Black Hole

1

5

4

2

3

FIGURE 16.3 Packets being routedtoa black hole.

radius to route their data toward the black hole (see Fig.16.3). This attack can be
detected by looking for suspicious routing cost claims, and if detected, is fairly easy
to defend against. However, if not detected, it can be extremely disruptive. Having
nodes monitor their neighbors provides a good defense against this type of attack,
although with overhead. Occasional network probing can also be used to locate
blackout areas, and distributed probing schemes are possible. It is important that a
probe be indistinguishable from ordinary traffic, or a malicious node could appear
benign during probing.

“Flooding” is when many packets are sent to a node in an attempt to overload it.
One example of this is the SYN flood, where an attacker sends a large number of
requests for connections, binding up all the target’s resources on pending transac-
tions. Similar types of attack are possible on WSNs, where an adversary can waste
a node’s resources by sending many connection requests. Limiting the number of
incoming connections will save resources, but service of legitimate connection re-
quests will still be slow at best. A better option is to make it computationally costly
for a node to make a connection establishment request. “Client puzzles” are simple
mathematical puzzles that a client needs to solve before asking to establish a con-
nection. In this way, a node is prevented from generating many extraneous requests
at once.

16.3.4 Transport Layer

A desynchronization attack occurs when a malicious attacker uses falsified messages
to cause two nodes to believe that they are out of sync, and repeatedly run a syn-
chronization recovery protocol. If the packets being received at the endpoints can be
authenticated, this attack will not work.

16.3.5 Application Layer

Attacks at this layer attempt to disrupt or crash individual services running on the
target computer, denying service in that way. Many traditional hacking methods rely
on exploiting software vulner abilities in this manner.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c16 JWBS038-Iyengar August 31, 2010 11:1 Printer: Yet to come

302 SECURITY IN SENSOR NETWORKS

16.3.6 Conclusion

Many of the aformentioned attacks could be prevented by using encryption to authen-
ticate data packets. Unfortunately, the limitations of small sensor nodes, and those
of ad hoc sensor networks in general, make such approaches largely unfeasible. As
in most programming problems, security threats to sensor networks can be handled
most efficiently if they are considered during design, so security-aware design is very
important.

16.4 SOME WELL-KNOWN ALGORITHMS
FOR SECURITY PROBLEMS

The following paragraph describes an overview of some of the known algorithms in
the security aspects of sensor networks. For the purpose of generality, we are providing
only an overview of these security algorithms. For more details and information on
related projects, refer to the references listed at the end of this chapter.

16.4.1 KKID: Sub-Grid-Based Key Vector Assignment:
A Key Predistribution Scheme for Sensor Networks

In general, a secure sensor network framework is of utmost importance as these
vary sensors are placed in environments that pose a high risk of sensor capture and
perhaps, destruction. In addressing this issue, the employment of certain preventive
mechanisms such as trusted third-party authentication and public-key systems render
useless as these mechanisms oftentimes exhibit sub-optimal resource requirements.
Key predistribution was introduced in 2003 [2] to solve this problem. Our scheme
achieves connectivity identical to that of random key predistribution [2] but fewer
using preloaded keys in each sensor node. The design of our scheme is motivated
by the observation that at present most key predistribution schemes employ random
mechanisms that use a large number of keys and are unsuitable for sensor networks.
In this algorithm we extend the deterministic key predistribution scheme that we
proposed in our earlierwork [3], which is based on assigning keys to sensors by
placing them on a grid. This approach has been further modified to use multiple
mappings of keys to nodes. In each mapping every node receives a distinct set of
keys that it shares with different nodes. The key assignment is done such that there
will be keys in common between nodes in different subgrids. After being randomly
deployed, the nodes discover common keys, authenticate, and communicate securely.
The analysis and simulation results show that this scheme is able to achieve better
security compared to the random schemes.

For a full treatment on this topic, refer to the article by Kalindi et al. [3].

16.5 SECURE INFORMATION ROUTING

Nodes deployed in hostile environments are prone to capture. Capture of a single
node discloses all the information about the keys that they contain. More specifically,

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c16 JWBS038-Iyengar August 31, 2010 11:1 Printer: Yet to come

PROBLEMS 303

an adversary can capture multiple nodes by eavesdropping on radio transmissions,
injecting bits into the channel, and repeating previously heard packets. Adversary
nodes can be about as powerful as existing nodes, or significantly more powerful.
The paper by Karlof and Wagner [4] presents a threat model based on two classes
of attacker: mote class attacker, where the attacker has access to a few sensor nodes
similar to legitimate nodes, and laptop class attacker, where adversaries have access to
more powerful computational power, more battery power, and a high-powered radio
transmitter. This algorithm presents a secure routing protcol that guarantees protection
against eavesdropping, integrity, authenticity, and availability of messages. For more
details, refer to Ref. [4].

16.6 SECURITY PROTOCOLS FOR SENSOR NETWORKS

This particular algorithm has many features, such as data confidentiality, which
includes encryption data with shared key, data authentication, and integrity. This
scheme allows the receiver to verify whether the data were sent by the client sender,
and also guarantees that messages are not altered in transit by hostile attackers. One
unique point of this algorithm is data freshness, which guarantees that no adversaries
replayed old sensor readings. It also has a certain amount of odering of the sensor
data due to data esimation. A good mathematical theory has been developed for this
sensor network encryption protocol for authenticated broadcast of network data. For
a broader treatment on this algorithm, the reader can refer to the article by Perrig
et al. [5].

16.7 FINAL COMMENTS

Security in sensor networks is very critical to enhancing the long-term usefulness
of sensor networks for various applications. This chapter has given a brief overview
of the security aspects of these networks. By no means is this a complete treatment of
the subject matter. Furthermore, sensor networks is an area of national importance
for many defense and civilian applications, and cannot be considered deployable
without sufficient protection from denial-of-service and other major attacks. Consid-
eration of sensor network security in the design phase of the network can certainly
ensure successful network deployment down the line, and head off problems before
they occur.

PROBLEMS

16.1 Develop a protocol by formulating a deterministic key predistribution scheme
proposed by the KKID algorithm [3] that is based on assigning keys to sensors
by placing them on a grid.

16.2 Develop a programming tool by using a cryptographic authentication mecha-
nism, by attempting to add denial-of-service resistance to existing protocols.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c16 JWBS038-Iyengar August 31, 2010 11:1 Printer: Yet to come

304 SECURITY IN SENSOR NETWORKS

16.3 What are the programming constraints in developing a secure sensor network
to be deployed in a hostile environment that is prone to malicous attacks?

16.4 Why is effective collision detection problematic in wireless networks?

16.5 Give an example of a problem/algorithm that could be used as a client puzzle,
and implement it in a program.

REFERENCES

1. J. Stankovic, A. Perrig, and D. Wagner, Security in wireless sensor networks, Commun.
ACM 47:53–57 (2004).

2. H. Chan, A. Perrig, and D. Song, Random key predistribution schemes for sensor networks,
Proc. IEEE Security and Privacy Symp. 2003 (May 2003).

3. R. Kalindi, R. Kannan, S. S. Iyengar, and A. Durresi, Sub-grid based key vector assign-
ment: A key pre-distribution scheme for distributed sensor networks, J. Pervasive Comput.
Commun. 2(1):35–43 (March 2006).

4. C. Karlof and D. Wagner, Secure routing in wireless sensor networks: Attacks and coun-
termeasures, Proc. 1st Int. IEEE Workshop on Sensor Network Protocols and Applications,
Univ. California, Berkeley, 2003.

5. A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar, Spins: Security protocols for
sensor networks, Wireless Networks 8(5):521–534 (2002).

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
c17 JWBS038-Iyengar August 31, 2010 11:2 Printer: Yet to come

17 Closing Comments

A successful application of sensor networks is to prevent possible future disasters by
analyzing the sensor-based data collected over long periods of time. A case in point is
tsunami warnings. Tsunamis can be described as very long-wavelength waves of water
caused by a sudden displacement of the ocean bed. The rate at which a wave loses
energy is inversely related to its wavelength and its velocity, and directly proportional
to water depth. Most tsunamis are caused by undersea earthquakes, volcanic eruptions,
landslides, or meteor impacts, and are usually preceded by seismic disturbances. In
case of inland seismic events, there exists a worldwide network of sensors. A similar
network is conspicuously absent for events originating at sea. Sensor-based tsunami
warning systems have proved to be effective in Japan and the United States. The
currently operational system for tsunami detection, called “deep-ocean assessment
and reporting of tsunami” (DART) is very useful for the tracking of tsunami warnings.
The distributed sensor network will certainly advance the state of the art in wireless
tsunami-based sensor networks by designing in expensive, expendable, and massively
deployable innovative sensors.

It would be very interesting to integrate these types of sensor networks with
social networks where cellular sensors can infiltrate people’s everyday lives, thereby
providing real-time information about their surroundings. Thus, online sensor-based
networks will have tremendous future in many of these applications.

Fundamentals of Sensor Network Programming: Applications and Technology, By S. S. Iyengar, N. Parameshwaran,
V. V. Phoha, N. Balakrishnan, and C. D. Okoye Copyright C© 2011 John Wiley & Sons, Inc.

305

www.finebook.ir

http://www.finebook.ir/../

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
bib JWBS038-Iyengar August 31, 2010 11:47 Printer: Yet to come

Bibliography

Agre, J., L. Clare, and S. Sastry, A taxonomy for distributed real-time control systems, Adv.
Computer. 49:303–352 (1999).

Akyildiz, I. F., W. Su, E. Cayirici, and Y. Sankarasubramaniam, A survey of sensor networks,
IEEE Commun. Mag., 8:102–114 (2002).

Akyildiz, I. F., W. Su , Y. Sankarasubramaniam, and E. Cayirci, Wireless sensor networks: A
survey, Comput. Networks 38:393–422 (2002).

P802.11k (C/LM) Amendment to STANDARD [FOR]. Information Technology—
Telecommunication and Information Exchange between Systems—Local and Metropoli-
tan Area Networks Specific Requirements—Part 11: Wireless LAN medium access control
(MAC) and Physical Layer (PHY) Specifications, Radio Resource Measurement of Wireless
LANs, 1999.

Anonymous, Optimal data fusion in multiple sensor detection systems, IEEE Trans. Aerospace
Electro. Syst., AES-22:98–101 (1988).

Basavaraju, S., Sensim: A Wireless Sensor Network Simulation Template, M.S. Project, Dept.
Computer Science, Louisiana State Univ. Baton Rouge.

Bharghavan, V., A. Demers, S. Shenker, and L. Zhang, Macaw: A media access protocol for
wireless LANS, Proc. ACM SIGCOMM 1994, 1994.

Black, G. and V. Vyatkin, Intelligent component based automation of baggage handling systems
with IEC 61499, IEEE Trans. Autom. Sci. Eng. 6(2009).

Bondy, J. A. and U. S. R. Murty, Graph Theory with Applications, North Holland, NewYork,
1976.

Brooks, R. R. and S. S. Iyengar, Multi-Sensor Fusion, Prentice-Hall, Englewood Cliff, NJ,
1997.

Cassandras, C. G. and S. Lafortune, Introduction to Discrete Event Systems, Kluwer Academic,
Jan. 1999.

Chakrabarty, K. and S. S. Iyengar, Scalable Infrastructure for Distributed Sensor Networks,
Springer-Verlag, 2005.

Chan, H., A. Perrig, and D. Song, Random key predistribution schemes for sensor networks,
Proc. IEEE Security and Privacy Symp. 2003, May 2003.

Chandrasekharan, N. and S. Iyengar, NC algorithms for recognizing chordal graphs and k-trees,
IEEE Trans. Comput. 37:10 (1988).

Crossbow Imote2 Datasheet, courtesy Crossbow Technologies.

Crossbow MIB520 Datasheet, courtesy Crossbow Technologies.

Fundamentals of Sensor Network Programming: Applications and Technology, By S. S. Iyengar, N. Parameshwaran,
V. V. Phoha, N. Balakrishnan, and C. D. Okoye Copyright C© 2011 John Wiley & Sons, Inc.

307

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
bib JWBS038-Iyengar August 31, 2010 11:47 Printer: Yet to come

308 BIBLIOGRAPHY

Crossbow Moteworks Software Reference Manual, courtesy Crossbow Technologies.

Crossbow Product Feature Reference Manual, courtesy Crossbow Technologies.

Crossbow Reference Manual, courtesy Crossbow Technologies.

Crossbow Telosb Datasheet, courtesy Crossbow Technologies.

Eckmann, S. T., G. Vigna, and R. A. Kemmerer, Statl: An attack language for state-based
intrusion detection, Proc. ACM Workshop on Intrusion Detection, Nov. 2000.

Eschenauer, L. and V. D. Gligor, A key management scheme for distributed sensor
networks, Proc. 9th ACM Conf. Computer and Communication Security, Nov. 2002,
pp. 41–47.

Eskin, E. and W. Lee, Modeling system calls for intrusion detection with dynamic window
sizes, Proc. DISCEX II, 2001.

Fall, K. and Varadhan, Ns-2 Network Simulator, Technical Report, Univ. California, Berkeley,
2004.

Fishman, G. S., Principles of Discrete Event Simulation, Wiley, 1978.

Forrest, S., C. Warrender, and B. Pearlmutter, Detecting intrusions using system calls: Alter-
native data models, Proc. 1999 IEEE Symp. Security and Privacy, IEEE Computer Society,
1999, pp. 133–145.

Gislason, D., ZigBee Resource Guide, Webcom Communication Corpo., 2008.

Global Sensor Networks, GSNTeam. http://sourceforge.net/projects/gsn/

Hill, J., R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, System architecture directions
for networked sensors. ACM Sigplan Notices, 35:93–104 (2000).

Hill, J., R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, System architecture directions
for networked sensors. In Architectural Support for Programming Languages and Operating
Systems, 2000, pp. 93–104.

Hofmeyr, S. A., S. Forrest, and A. Somayaji, Intrusion detection using sequences of system
calls, J. Comput. Security, 6(3):151–180 (1988).

Hopcraft, J. E., R. Motwani, and J. D. Ullman, Introduction to Automata Theory, Languages,
and Computation, 2nd ed., Addison-Wesley Nov. 2001.

http://blog.xbow.com/xblog/sensorboards.

http://inst.eecs.berkeley.edu/cs194-5/sp08/lab1/index.html.

http://www.cs.rpi.edu/cheng3/sense/.

http://www.isi.edu/nsnam/ns/ns-documentation.html.

IEEE Standard Dictionary of Electrical and ElectronicTerms, 6th ed., IEEE, 1997.

Ilgun, K., R. A. Kemmerer, and P. A. Porras, State transition analysis: A rule-based intrusion
detection approach, IEEE Trans. Software Eng. 21(3):151–180 (March 1995).

Intanagonwiwat, C., R. Govindan, D. Estrin, J. Heidemann, and F. Silva, Directed diffusion
for wireless sensor networking, IEEE/ACM Trans. Networking 11(1):216 (Feb. 2003).

Iyengar, S. S. and R. R. Brooks, eds., Distributed Sensor Networks, 2nd ed., CRC Press,
Dec. 2004.

Iyengar, S. S. and R. Brooks, eds., Distributed Sensor Networks, CRC Press, 1995.

Iyengar, S. S., R. L. Kayshyap, and R. N. Madan, Distributed sensor networks, IEEE Trans.
Syst. Man Cyber. 21(5):1027–1031 (1991).

Iyengar, S. S., L. Prasad, and H. Min, Advances in Distributed Sensor Integration: Application
and Theory, Prentice-Hall, 1995.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
bib JWBS038-Iyengar August 31, 2010 11:47 Printer: Yet to come

BIBLIOGRAPHY 309

Iyer, V., R. M. Garimella, Rama Murthy, and M. B. Srinivas, Min loading max reusability
fusion classifiers for sensor data model, Proc. 2nd Int. Conf. Sensor Technologies and
Applications, SENSORCOMM ’08, Aug. 25–31, 2008, pp. 480–485.

Iyer, V., S. S. Iyengar, N. Balakrishnan, V. Phoha, and M. B. Srinivas, FARMs: Fusionable
ambient renewable MACs. Proc. IEEE Sensors Applications Symp. SAS 2009, Feb. 17–19,
2009, pp. 169–174.

Iyer, V., S. S. Iyengar, G. Rama Murthy, M. B. Srinivas, and B. Hochet, Multi-hop scheduling
and local datalink aggregation dependent qos in modeling and simulation of power-aware
wireless sensor networks, Proceedings of 2009. ACM-IWCMC, Leipzig, Germany, 2009;
pp. 844–848.

Iyer, V., G. Rama Murthy, M. B. Srinivas, and B. Hochet, C-error simulator for development
for sensor and location-aware sensing applications, Proc. 3rd Int. Conf. Sensing Technology,
ICST 2008, Nov. 30–Dec. 3, 2008, pp. 192–199.

Iyer, V., R. Murthy, M. B. Srivinas, and B. Hochet, Training data compression algorithms and
reliability in large wireless sensor networks, SUTC Proc. IEEE Int. Conf. Sensor Networks,
Ubiquitous and Trustworthy Computing, June 2008, pp. 480–485.

Iyer, V., G. Rama Murthy, and M. B. Srinivas, Training data compression algorithms and relia-
bility in large wireless sensor networks, Proc. IEEE Int. Conf. Sensor Networks, Ubiquitous
and Trustworthy Computing, June 2008, pp. 480–485.

Iyer, V., G. Rama Murthy, and M. B. Srinivas, Environmental measurement OS for a tiny
CRF-stack used in wireless network, Modern Sensing Technol. (special issue) 90:72–86
(2008).

Johnson, D. B., The Rice University Monarch Project, Technical Report, Rice Univ., 2004.

Johnson, D. S., The NP-completeness column: An outgoing guide, J. Algorithms, 6:434–451
(1985).

Kalidindi, R., V. Parachuri, S. Basavaraju, C. Mallanda, A. Kulshrestha, L. Ray, R. Kannan,
and A. Durresi, Sub-grid based key vector assignment: A key pre-distribution scheme for
distributed sensor networks, ICWN, 2004.

Kalidindi, R., R. Kannan, S. S. Iyengar, and A. Durresi, Sub-grid based key vector assign-
ment: A key pre-distribution scheme for distributed sensor networks, J. Pervasive Comput.
Communi. 2(1):35–43 (March 2006).

Karl, H. and A. Willig, Protocols and Architectures for Wireless Sensor Networks, John
Wiley & Sons, Inc., 2005.

Karlof, C. and D. Wagner, Secure routing in wireless sensor networks: Attacks and counter-
measures, Proc. 1st Int. IEEE Workshop on Sensor Network Protocols and Applications,
Univ. California, Berkeley, 2003.

Karsai, G., A. Ledeczi, J. Sztipanovits, G. Peceli, G. Simon, and T. Kovacshazy, An approach
to self adaptive software based on supervisory control, Proc. Int. Workshop on Self Adaptive
Software, 2001.

Klein, P. N., Efficient Parallel Algorithms for Planar, Chordal and Interval Graphs, Ph.D.
thesis, MIT, Cambridge, MA, 1988.

Klein, P. N., Efficient parallel algorithms for chordal graphs, Proc. IEEE 29th Symp. Foundation
of Computer Section 1988, pp. 150–161.

Kumar, R. and M. Fabian, Supervisory control of partial specification arising in protocol
conversion, Proc. 35th Allerton Conf. Communication, Control and Computing, 1997,
pp. 543–552.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
bib JWBS038-Iyengar August 31, 2010 11:47 Printer: Yet to come

310 BIBLIOGRAPHY

Kumar, R. and V. Garg, Modeling and Control Logical Discrete Event Systems, Kluwer
Academic, 1995.

Kumar, S. and E. H. Spafford, A generic virus scanner in C++, Proc. 8th Computer Security
Applications Conf., 1992.

Le, V. T., D. Creighton, and S. Nahavandi, Simulation-based input loading condition optimi-
sation of airport baggage handling systems, Proc. IEEE Intelligent Transportation Systems
Conf., Seattle, WA 2007.

LeCharlier, B. and M. Swimmer, Dynamic detection and classification of computer viruses
using general behavior patterns, Proceedings of 5th Int. Virus Bulletin Conf. Sept. 1995,
p. 75.

Lee, W. and S. J. Stolfo, Data mining approaches for intrusion detection, Proc. 7th USENIX
Security Symp. SECURITY ’98, Jan. 1998.

Leone, K. and R. Liu, The key design parameters of checked baggage security screening
systems in airports, J. Air Transport Mgmt. 11:69–78 (2005).

Levin, R. B., The Computer Virus Handbook, Osborne/McGraw-Hill, 1990.

Levis, P. and D. Gay, TinyOs Programming, Cambridge Univ. Press, 2009.

Linz, P., An Introduction to Formal Languages and Automata, 3rd ed., Jones & Barlett,
Oct. 2000.

LSU Research Group, LSU Sensor Simulator (LSU SenSim, version 1, Jan. 2005) User Manual,
Dept. Computer Science, Louisiana State University, Baton Rouge.

Mallanda, C., Sensor Simulator: A Simulation Framework for Sensor Networks, master’s thesis,
Dept. of Computer Science, Louisiana State Univ., Baton Rouge.

Michael, C. and A. Ghosh, Using finite automata to mine execution data for intrusion detection:
A preliminary report, Lect Notes Comput Sci, 1907/2000:66–79(2000).

Misra, J., Distributed discrete-event simulation, ACM Comput. Surveys 18(1):39–65
(March 1986).

Moitra, A. and S. S. Iyengar, Parallel algorithms for some computational problems, Adv.
Comput. 26:93–153 (1987).

Nuansri, N., S. Singh, and T. S. Dillon, A process state-transition analysis and its application
to intrusion detection, Proc. ACSAC1999, 1999, pp. 378–388.

OPNET Technolgies, Inc., Opnet Modeler. www.opnet.com

Park, S., A. Savvides, and M. B. Srivastava, Sensorsim: A simulation framework for sensor
networks, Proc. 3rd ACM Int. DRAFT Workshop on Modeling, Analysis and Simulation of
Wireless and Mobile Systems, 2000, pp. 104–111.

Perrig, A., R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar, Spins: Security protocols for
sensor networks, Wireless Networks 8(5):521–534 (2002).

Polastre, J., J. Hill, and D. Culler, Versatile low power media access for wireless sensor
networks, Proc. 2nd Int. Conf. Embedded Networked Sensor Systems, SenSys ’04, ACM,
New York, 2004, pp. 95–107.

Ramadge, P. J. and W. M. Wonham, Supervisory control of a class of discrete event processes,
SIAM J. Control and Optim., 25(3):206–230 (1987).

Research Integration: Platform Survey, embedded WiSeNts consortium.

Rhee I., A. Warrier, M. Aia, J. Min, and M. L. Sichitiu, Z-mac: A Hybrid MAC for Wireless
Sensor Networks, 2008, IEEE Press, Piscataway, NJ, vol. 16, pp. 511–524.

www.finebook.ir

http://www.finebook.ir/../

P1: OTA/XYZ P2: ABC
bib JWBS038-Iyengar August 31, 2010 11:47 Printer: Yet to come

BIBLIOGRAPHY 311

Rijsenbrij, J. C. and J. A. Ottjes, New developments in airport baggage handling systems,
Transport. Plann. Technol. 30:417–430 (2007).

Ruiz-Sandoval, M., T. Nagayama, and B. F. Spencer, Sensor development using Berkeley mote
platform, J. Earthquake Eng., 10:289–309 (2006).

Sastry, S., Smart space for automation, Assembly Autom., 24(2):201–209 (2004).

Sastry, S., S. S. Iyengarand, and N. Balakrishnan, Sensor technologies for future automation
systems, Sensor Lett. 2(1):9–17 (2004).

Sastry, S. and S. S. Iyengar, Distributed Sensor Networks, CRC Press, 2005.

Sastry, S. and S. S. Iyengar, A Taxonomy of Distributed Sensor Networks, CRC Press, 1995.

Schultz, M. G. and E. Eskin, et al., Data mining methods for detection of new malicious
executables, Proc. IEEE Symp. Security and Privacy, May 2001.

Sobieh, A. and J. C. Hou, A Simulation Framework for Sensor Networks in j-sim, Technical Re-
port UIUCDCS-R2003-2386, Dept. Computer Science, Univ. Illinois, Urbana–Champaign,
Nov. 2003.

Solomon, A. and T. Kay, Dr. Solomon’s PC Anti-virus Book, Newtech, 1994.

Spinellis, D., Trace: A tool for logging operating system call transaction, Operating Syst. Rev.
28(4):56–63 (Oct. 1994).

Srinivas, M. B., V. Iyer, G. Rama Murthy, and B. Hochet, C-error simulator for development
for sensor and location aware sensing applications, Proc. 3rd Int. Conf. Sensing Technology,
Taichung, Taiwan, 2002, pp. 799–804.

Stankovic J., A. Perrig, and D. Wagner, Security in wireless sensor networks, Commun. ACM
47:53–57 (2004).

Tannenbaum, A. S., Computer Networks, Prentice-Hall, 2002.

Vargas, A., Omnet++ Discrete Event Simulation System, version 2.3, 2003.

Vieira, M. A. M., D. C. da Silva Jr., C. N. Coelho Jr., and J. M. da Mata, Survey on wireless
sensor network devices, Proc. IEEE Conf. Emerging Technologies and Factory Automation,
ETFA03, 2003, p. 1.

Wallace, C., P. Jensen, and N. Soparkar, Supervisory control of workflow scheduling, Proc.
Int. Workshop on Advanced Transaction Models and Architectures, 1996.

Wood, A. and J. A. Stankovic, Denial of service in sensor networks, IEEE Comput.
35(10):54–62 (Oct. 2002).

Xavier, C. and S. S. Iyengar, Introduction to Parallel Algorithms, Wiley, 1998.

Ye, W., F. Silva, and J. Heidemann, Ultra-low duty cycle MAC with scheduled channel polling,
SenSys ’06, Proc. 4th Int. Conf. Embedded Networked Sensor Systems, ACM, NewYork,
2006, pp. 321–334.

Yu, Y., R. Govindan, and D. Estrin, Geographical and Energy Aware Routing: A Recursive
Data Dissemination Protocol for Wireless Sensor Networks, Technical Report, Aug. 2001.

Zeng, X., R. Bagrodia, and M. Gerla, Glomosim: A library for parallel simulation of large-
scale wireless networks, Proc. Workshop on Parallel and Distributed Simulation, 1998,
pp. 154–161.

ZigBee Wireless Networking, Newnes Publications, 2008.

www.finebook.ir

http://www.finebook.ir/../

www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

ind JWBS038-Iyengar August 31, 2010 11:52 Printer: Yet to come

Index

Acquaintance Group Pattern, 3, 15, 17
Active Object, 4, 17
Addressing Scheme, 4
Algorithm, 5
Alternate Bit Based ARQ Protocols, 6
Application Layer, 8
Application With Sensing, 8
Asynchronous Commands, 8
Atomicity Service, 9
Automatic Repeat Request Protocol,

9

Beaconing, 9
Biconnected Graph, 9
Binary Trees, 12
Block, 15
Block Graph, 15

Carrier Sense Multiple Access Protocol,
15

Chord, 17
Circular List, 21
Client Level, 21, 139
Clique, 21, 140
Clique Covering, 22
Collaborative Processing, 22
Collection Tree Protocol (CTP), 22
Collision, 23
Coloring, 23
Complete Binary Tree, 23
Complete Graph, 24
Connected Graph, 24
Connectivity, 24
Content Based Addressing, 24
Contention Based Protocols, 27

Correlation, 27
Cycle, 27

Data Aggregation, 30, 31
Data Routing, 32
Datalink Reliability, 33
Disconnect Graph, 34
Distributed Sensor Network (DSN),

35
Doubly Linked List, 36
Dynamic Routing, 36
Dynamic Topology, 37

Event Driven Programming, 41
Explicit Embedding, 45

Fanin Wiring, 45
Fanout Wiring, 46
Flooding, 51
Free List, 51
Full Binary Tree, 51
Full Function Device, 53

Gateway Device Properties, 53
GlomoSIM, 56
Graph, 56
Graph Traversal, 57

Heterogeneity, 57
Heterogeneous Sources, 58,

203
Homeomorphism, 58

Imote2, 59
Implicit Embedding, 59

Fundamentals of Sensor Network Programming: Applications and Technology, By S. S. Iyengar, N. Parameshwaran,
V. V. Phoha, N. Balakrishnan, and C. D. Okoye Copyright C© 2011 John Wiley & Sons, Inc.

313

www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

ind JWBS038-Iyengar August 31, 2010 11:52 Printer: Yet to come

314 INDEX

Induced Subgraph, 59
Installing TinyOS in Linux, 60
Installing TinyOS inWindows, 61
Intelligent Sensor, 61, 66
Intersection Graph, 62
Isomorphism, 62
Isomorphism Applications In Sensor

Deployment, 62

Kuratowski’s Theorem, 62

Link Layer Protocols, 62
Linked List, 63

Maximal Clique, 63
Maximal Outer Planar (MOP), 63
Medication Device Protocol, 63
Medium Access Control Layer, 64
Memory, 65
Mica Family, 65
Microcontroller, 65
Microelectromechanical Systems (MEMS),

65
Microframework, 65
Minimum Cost Spanning Tree, 67
Minimum Separator, 67

Neighboring Nodes, 68
NesC Programming, 70
Network Layer, 70
Network Localization, 70
n-Hop Neighborhood Group, 72

Object Naming Storage Service, 72
Operating System, 75
Outer Planar Graph, 76
Overhearing, 77

Parallel Algorithm, 78
Path, 78
Perkins’s Solution, 79
Physical Layer, 79
Planar Graphs, 81
Planarity Testing, 83
Power Unit, 83
Protocol Programming, 83
Publish/Subscribe Group Pattern,

84

Quality Of Service, 85
Queue, 86, 185

Reduced Function Device, 86
Regular Graph, 92
Resource-Constrained Computing

Environment, 93, 99
Reusability Index, 95
Rooted Tree, 96
Routing, 105
RTOS Abstraction Layer, 107
RTS/CTS Handshake, 108
Rumor Routing, 108

Schedule Based Communication,
113

Security, 134
Sensor computing, 134
Sensor Level, 135
Sensor Network Applications,

136
Sensor Network Software,

136
Sensor Network Stack, 136
Sensor Networks, 136
Sensor Node, 138
Sensor Programming, 140
Sensor Technology, 140
Sensors, 140
Separable Graph, 141
Series Edges, 142
Server Level, 147
Shimmer, 150
Shimmer Properties, 150
Shortest Spanning Tree, 150
Sleep Sheduling, 153
Spanning Trees, 159
Split Phase, 159
Stack, 159
Streaming, 160
Subgraph, 162
Subtree, 162

Telos–Tmote Sky Family, 165
Time Synchronization, 165
Token Based Approach, 165
Tracking, 167
Transceiver, 181

www.finebook.ir

http://www.finebook.ir/../

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

ind JWBS038-Iyengar August 31, 2010 11:52 Printer: Yet to come

INDEX 315

Transmitter Role, 183
Transport Layer, 188
Trees, 192

Uncertainty, 209
Unpredictability, 209

Walk, 209

Wireless Channel Model, 212
Wireless Sensor Network Topologies, 214
Wireless Sensor Networks (WSN), 221
Wiring, 230
WSN Protocol Stack, 234

ZigBee Application Development, 252
ZigBee Devices, 264

www.finebook.ir

http://www.finebook.ir/../

	Applications and Technology
	Contents
	Preface
	Foreword
	Acknowledgments
	About the Authors
	Notations and Abbreviations
	PART I Overview
	1 Introduction
	1.1 SOME FOUNDATIONAL INFORMATION
	1.1.1 Sensors
	1.1.2 Sensor Networks
	1.2 NEXT-GENERATION SENSOR NETWORKED TINY DEVICES 1.2.1 Domain-Specifi Challenges
	1.2.2 Technology-Driven Methods
	1.2.3 Wireless Sensor Network Environment
	1.3 SENSOR NETWORK SOFTWARE
	1.3.1 Technology-Driven Software
	1.4 PERFORMANCE-DRIVEN NETWORK SOFTWARE PROGRAMMING
	1.4.1 Routing
	1.4.2 Data Aggregation
	1.4.3 Security
	1.5 UNIQUE CHARACTERISTICS OF PROGRAMMING ENVIRONMENTS FOR SENSOR NETWORKS
	1.6 GOALS OF THE BOOK
	1.7 WHY TinyOS AND NesC
	1.8 ORGANIZATION OF THE BOOK
	1.9 FUTURE DEMANDS ON SENSOR-BASED SOFTWARE
	1.2
	1.3
	1.4
	1.5
	1.6
	1.7
	1.8
	1.9
	1.10
	1.11
	1.12
	1.13
	1.14
	1.15
	1.16
	1.17
	1.18
	1.19

	2 Wireless Sensor Networks
	2.1 SENSOR NETWORK APPLICATIONS
	2.1.1 Sensors
	2.1.2 Sensor Networks
	2.1.3 Health Applications
	2.1.4 Vehicle Management
	2.1.5 Smart Environments
	2.2 CHARACTERISTICS OF SENSOR NETWORKS
	2.3 NATURE OF DATA IN SENSOR NETWORKS
	2.2
	2.3
	2.4
	2.5
	2.6
	2.7
	2.8
	2.9
	2.10
	2.11
	2.12
	2.13

	3 Sensor Technology
	3.1 SENSOR LEVEL
	3.1.1 The Mica Family
	3.1.2 The Telos–Tmote Sky Family
	3.1.3 Imote2
	3.1.4 SHIMMER
	3.2 SERVER LEVEL
	3.3 CLIENT LEVEL
	3.4 PROGRAMMING TOOLS
	3.4.1 Installing TinyOS in Linux
	3.4.2 Installing TinyOS in Windows
	3.2
	3.3
	3.4
	3.5
	3.6

	PART II Background
	4 Data Structures for Sensor Computing
	4.1 INTRODUCTION TO SENSOR COMPUTING
	4.2 COMMUNICATION CAPABILITIES
	4.3 GENERAL STRUCTURE OF PROGRAMMING
	4.4 DETAILS ON EMBEDDED DATA STRUCTURES
	4.4.1 Stack
	4.4.2 Queue
	4.5 LINKED LIST
	4.5.1 Examples of Linked Lists
	4.5.2 Circular Lists
	4.5.3 Doubly Linked List
	4.6 IMPORTANCE OF GRAPH CONCEPTS IN SENSOR PROGRAMMING
	4.6.1 Network Localization
	4.6.2 Data Aggregation
	4.6.3 Collaborative Processing
	4.6.4 Planarity Testing
	4.6.5 Graph-Coloring Concepts in MAC-Layer Protocols
	4.6.6 Isomorphism Applications in Sensor Deployment
	4.7 GRAPH AND TREES
	4.7.1 Preliminaries
	4.7.2 Regular and Complete Graphs
	4.7.3 Walk, Path, Cycle
	4.7.4 Subgraph
	4.7.5 Homeomorphism
	4.7.6 Isomorphism
	4.8 TREES
	4.8.1 Binary Trees
	4.8.2 Spanning Trees
	4.9 GRAPH TRAVERSAL
	4.10 CONNECTIVITY
	4.11 PLANAR GRAPHS
	4.12 COLORING AND INDEPENDENCE
	4.13 CLIQUE COVERING
	4.14 INTERSECTION GRAPH
	4.15 DEFINING DATA STRUCTURE OF SPANNING TREE PROTOCOLS
	4.15.1 Flooding
	4.15.2 General Structure
	4.15.3 Programming Problem
	4.15.4 Pseudocode
	4.15.5 Model Approach
	4.15.6 Complexity
	4.2
	4.3
	4.4
	4.5
	4.6
	4.7
	4.8
	4.9

	5 Tiny Operating System (TinyOS)
	5.1 COMPONENTS OF TinyOS
	5.1.1 Modules
	5.1.2 Configuration
	5.2 AN INTRODUCTION TO NesC
	5.2.1 Split-Phase Operations: Commands and Events
	5.2.2 Tasks
	5.3 EVENT-DRIVEN PROGRAMMING
	5.2
	5.3
	5.4
	5.5
	5.6
	5.7
	5.8
	5.9
	5.10

	6 Programming in NesC
	6.1 NesC PROGRAMMING
	6.2 A SIMPLE PROGRAM
	6.2.1 Tasks
	6.2.2 Asynchronous Commands and Events
	6.2.3 Preemption Problems
	6.2.4 Atomic Block
	6.2.5 Wiring
	6.2
	6.3
	6.4
	6.5
	6.6
	6.7
	6.8
	6.9
	6.10
	6.11

	PART III Sensor Network Implementation
	7 Sensor Programming
	7.1 PROGRAMMING CHALLENGES IN WIRELESS SENSOR NETWORKS
	7.1.1 System Interfaces
	7.1.2 The Timer Interface
	7.2 SENSING THE WORLD
	7.3 APPLICATIONS USING THE INTERFACE SplitControl
	7.3.1 Sensing the Temperature
	7.3.2 PacketSender
	7.2
	7.3
	7.4
	7.5

	8 Algorithms for Wireless Sensor Networks
	8.1 STRUCTURAL CHARACTERISTICS OF SENSOR NODES
	8.1.1 Microcontroller
	8.1.2 Transceiver
	8.1.3 Memory
	8.1.4 Power Unit
	8.2 DISTINCTIVE PROPERTIES OF WIRELESS SENSOR NETWORKS
	8.2.1 Self-Configuratio
	8.2.2 Self-Healing
	8.2.3 Dynamic Routing
	8.3 SENSOR NETWORK STACK
	8.3.1 Physical Layer
	8.3.2 Medium Access Control (MAC) Layer
	8.3.3 Network Layer
	8.3.4 Full-Function Device (FFD)
	8.3.5 Reduced-Function Device (RFD)
	8.4 SYNCHRONIZATION IN WIRELESS SENSOR NETWORKS
	8.4.1 Beaconing
	8.4.2 Neighborhood Table Construction
	8.4.3 Implementation
	8.5 COLLISION AVOIDANCE: TOKEN-BASED APPROACH 8.5.1 Token-Based Approach
	8.5.2 Schedule-Based Communication
	8.5.3 Pseudocode at Each Node
	8.6 CARRIER SENSING VERSUS DECODING
	8.6.1 RTS/CTS Handshake
	8.2
	8.3
	8.4
	8.5
	8.6
	8.7
	8.8
	8.9

	9 Techniques for Protocol Programming
	9.1 THE MEDIATION DEVICE PROTOCOL
	9.2 CONTENTION-BASED PROTOCOLS
	9.2.1 Carrier Sense Multiple Access Protocol
	9.3 PROGRAMMING WITH LINK-LAYER PROTOCOLS
	9.4 AUTOMATIC REPEAT REQUEST (ARQ) PROTOCOL
	9.5 TRANSMITTER ROLE
	9.6 ALTERNATING-BIT-BASED ARQ PROTOCOLS
	9.6.1 A Generalized Version of the Previous Protocol
	9.6.2 Example
	9.7 SELECTIVE REPEAT/SELECTIVE REJECT
	9.8 NAMING AND ADDRESSING
	9.9 DISTRIBUTED ASSIGNMENT OF NETWORKWIDE ADDRESSES
	9.10 IMPROVED ALGORITHMS
	9.10.1 Perkin’s Solution
	9.11 CONTENT-BASED ADDRESSING
	9.12 FLOODING
	9.13 RUMOR ROUTING
	9.13.1 Example
	9.14 TRACKING
	9.15 QUERYING IN RUMOR ROUTING
	9.2
	9.3
	9.4
	9.5
	9.6
	9.7
	9.8
	9.9

	PART IV Real-World Scenarios
	10 Sensor Deployment Abstraction
	10.1 SENSOR NETWORK ABSTRACTION
	10.2 DATA AGGREGATION
	10.2.1 TinyOS Data Aggregation Illustration
	10.3 COLLABORATION GROUP ABSTRACTIONS
	10.3.1 Example
	10.3.2 Types of Group Abstractions
	10.3.3 Application of GCG Abstraction
	10.3.4
	10.3.5 Publish/Subscribe Group (PSG) Pattern
	10.3.6 Acquaintance Group (AG) Pattern
	10.4 PROGRAMMING BEYOND INDIVIDUAL NODES
	10.2
	10.3

	11 Standards for Building Wireless Sensor Network Applications
	11.1 802.XX INDUSTRY FREQUENCY AND DATA RATES
	11.2 ZigBee DEVICES AND COMPONENTS
	11.2.1 Application Layer
	11.2.2 Network Layer
	11.2.3 Datalink Layer
	11.2.4 Physical Layer
	11.3 ZigBee APPLICATION DEVELOPMENT
	11.4 DISSEMINATION AND EVALUATION
	11.2
	11.3
	11.4
	11.5
	11.6
	11.7
	11.8
	11.9
	11.10
	11.11
	11.12
	11.13
	11.14
	11.15
	11.16
	11.17

	12 INSPIRE: Innovation in Sensor Programming Implementation for Real-time Environment*
	12.1 MOTIVATION AND BACKGROUND
	12.1.1 INSPIRE: An Introduction
	12.1.2 RTOS Abstraction Layer
	12.1.3 Minimal Application
	12.1.4 MCU I Framework Specification
	12.1.5 MCU II Framework Specification
	12.1.6 WSN Sensing Applications
	12.1.7 Data Routing
	12.1.8 Application with Sensing
	12.1.9 Ultralow Duty Cycling Using FARMS
	12.1.10 Real-Time System Components
	12.1.11 Complexity
	12.1.12 Event-Driven System
	12.2 SOFTWARE MICROFRAMEWORK REQUIREMENTS
	12.2.1 State Machine
	12.2.2 Sensor State Machine/UML Diagram (Algorithm)

	13 Performance Analysis of Power-Aware Algorithms
	13.1 INTRODUCTION
	13.1.1 Performance Metrics
	13.2 SERVICE ARCHITECTURE
	13.2.1 Reliability
	13.2.2 Communication Transparency
	13.2.3 Minimal Application
	13.2.4 Data Routing
	13.2.5 Application with Sensing
	13.2.6 Ultra-Low-Duty Cycling Using FARMS
	13.3 APPROACHES TO WSN PROGRAMMABILITY 13.3.1 GlomoSIM
	13.4 SIMULATION CAPABILITIES 13.4.1 Unmodifie Code Simulation
	13.4.2 Sensor Stack
	13.4.3 Channel Emulation
	13.5 BENCHMARKING
	13.6 CONCLUSION
	13.2
	13.3
	13.4
	13.5

	14 Modeling Sensor Networks Through Design and Simulation
	14.1 INTRODUCTION
	14.2 WHY A NEW SIMULATOR
	14.3 CURRENTLY AVAILABLE SIMULATORS
	14.3.1 The OMNeT
	14.4 SIMULATION DESIGN
	14.4.1 Coordinator Module
	14.4.2 Hardware Model
	14.4.3 Wireless Channel Model
	14.4.4 Sensor Node Stack
	14.5 IMPLEMENTATION DETAILS
	14.5.1 Directed Diffusion with GEAR
	14.5.2 802.11 MAC
	14.6 EXPERIMENTAL RESULTS
	14.6.1 Validating Directed Diffusion Implementation
	14.6.2 Directed Diffusion with Simple MAC
	14.6.3 Directed Diffusion with IEEE 802.11 MAC
	14.7 FINAL COMMENTS
	14.2
	14.3
	14.4

	15 MATLAB Simulation of Airport Baggage-Handling System
	15.1 INTRODUCTION
	15.2 BACKGROUND
	15.3 PROPOSED ARCHITECTURE
	15.4 SIMULATION RESULTS AND DISCUSSION
	15.5 SOURCE CODE
	15.2
	15.3
	15.4
	15.5
	15.6

	16 Security in Sensor Networks
	16.1 INTRODUCTION
	16.2 SECURITY CONSTRAINTS
	16.2.1 Resource Constraints
	16.2.2 Communication Issues
	16.2.3 Hostile Environments
	16.2.4 Conclusion
	16.3 DENIAL-OF-SERVICE ATTACKS IN MULTIPLE LAYERS
	16.3.1 Physical Layer
	16.3.2 Datalink Layer
	16.3.3 Network Layer
	16.3.4 Transport Layer
	16.3.5 Application Layer
	16.3.6 Conclusion
	16.4 SOME WELL-KNOWN ALGORITHMS FOR SECURITY PROBLEMS
	16.4.1 KKID: Sub-Grid-Based Key Vector Assignment: A Key Predistribution Scheme for Sensor Networks
	16.5 SECURE INFORMATION ROUTING
	16.6 SECURITY PROTOCOLS FOR SENSOR NETWORKS
	16.7 FINAL COMMENTS
	16.2
	16.3
	16.4
	16.5

	17Closing Comments

	Bibliography
	Index
	Blank Page
	Blank Page

