
Perl Extension Building with SWIG

David M. Beazley
Dept. of Computer Science

University of Chicago
Chicago, IL 60637

David Fletcher
Fusion MicroMedia, Corp.

Longmont, CO 80501

Dominique Dumont
Hewlett Packard

Lab TID
5 Ave Raymond Chanas
38053 Grenoble cedex 9

France

Abstract

SWIG (Simplified Wrapper and Interface Generator)
is a freely available tool that integrates Perl, Python,
Tcl, and other scripting languages with programs writ-
ten in C, C++, and Objective-C. This paper provides an
introduction to SWIG and shows how it can be used to
construct Perl extension modules. In addition, a num-
ber of applications in which SWIG has been utilized are
described. While SWIG is similar to other Perl exten-
sion building tools such as xsubpp and h2xs, SWIG has
a number of unique features that help simplify the task
of creating Perl extension modules. Many of these fea-
tures are described as well as limitations and future di-
rections. This paper is primarily intended for developers
who are interested in combining Perl with applications
written in C or C++ as well as current SWIG users who
are interested in learning more about some of SWIG’s
advanced features.

1 Introduction

One of Perl’s greatest strengths is its ability to sim-
plify hard programming tasks as well as being able to
solve the odd and varied computing problems that oc-
cur on a day-to-day basis. While it would be nice to
use Perl (or other high-level languages) for everything,
this is simply not practical for many applications. In
fact, performance critical tasks, low-level systems pro-
gramming, and complex data structures are likely to be
implemented in a compiled language such as C or C++
(and may be easier to manage in such languages). Fur-
thermore, developers often need to work with a wide va-
riety of existing applications and “legacy” systems that
are written in such languages.

The integration of Perl and code written in compiled
languages has a number of practical benefits. First, it al-
lows existing C/C++ applications to be incorporated into
a high-level interpreted environment. This environment

provides greater flexibility and often simplifies develop-
ment since debugging and testing can be performed us-
ing Perl scripts. Second, Perl can serve as a powerful
user interface. In other words, rather than writing a user
interface from scratch, it is possible to use a Perl inter-
preter instead. This also allows other for other possibil-
ities such as graphical user interface development with
Perl/Tk. Finally, Perl provides developers with a mech-
anism for assembling and controlling software compo-
nents. Rather than creating a huge monolithic package,
C/C++ programs can be packaged as collections of Perl
extension modules. As a result, programs become more
modular and easier to maintain. Furthermore, it is even
possible to combine entirely different programs together
within a shared Perl interpreter.

This paper provides an introduction and overview of
SWIG, a tool designed to integrate C code with a variety
of scripting languages including Perl, Python, and Tcl.
Currently, SWIG can construct Perl extension modules
on Unix and Windows-NT systems. It also supports the
ActiveState Perl for Windows and Perl4. SWIG has been
freely available since February, 1996 and has been pre-
viously described inAdvanced Perl Programming, The
Perl Journal, andDr. Dobb’s Journal[1, 2, 3]. In ad-
dition, SWIG is packaged with a 300 page user manual
describing its use [4]. The goal of this paper is not to
repeat all of this information, but to provide an overview
of SWIG, demonstrate the use of some of its more ad-
vanced features, and describe some of the ways that it is
currently being used. The authors include the developer
of SWIG and two of SWIG’s foremost Perl experts who
have made substantial contributions to SWIG’s develop-
ment.

2 Perl Extension Building

To interface Perl with code written in C or C++, it is
necessary to write wrappers that serve as a glue layer
between the Perl interpreter and the underlying C code.

These wrappers are responsible for converting data be-
tween Perl and C, reporting errors, and other tasks. Perl
is packaged with several tools for creating these wrap-
pers. One such tool isxsubpp , a compiler that takes
interface definitions written in a special language known
as XS and converts them into wrappers. For example,
suppose that you had the following C function:

int fact(int n);

To wrap this function into a Perl module withxsubpp ,
you would write the following XS file:

/* file : example.xs */
extern int fact(int n);
MODULE = Example PACKAGE = Example
int
fact(n)

int n

When processed withxsubpp , the following wrapper
file is produced

#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"
extern int fact(int n);

XS(XS_Example_fact)
{

dXSARGS;
if (items != 1)

croak("Usage: Example::fact(n)");
{

int n = (int)SvIV(ST(0));
int RETVAL;
RETVAL = fact(n);
ST(0) = sv_newmortal();
sv_setiv(ST(0), (IV)RETVAL);

}
XSRETURN(1);

}

XS(boot_Example)
{

dXSARGS;
char* file = __FILE__;
XS_VERSION_BOOTCHECK ;
newXS("Example::fact",

XS_Example_fact, file);
ST(0) = &sv_yes;
XSRETURN(1);

}

To use the module, the wrapper code must be com-
piled and linked into a shared library that can be dynam-
ically loaded into the Perl interpreter. The easiest way to
do this is with the MakeMaker utility by writing a script
as follows:

file : Makefile.PL
use ExtUtils::MakeMaker;
WriteMakefile(

’NAME’ => ’Example’,
’OBJECT’ => ’example.o fact.o’

);

This script is then used to create a Makefile and module
as follows:

unix > perl Makefile.PL
unix > make
unix > make install

Finally, in addition to creating the C component of the
extension module, it is necessary to write a.pm file that
is used to load and initialize the module. For example,

file : Example.pm
package Example;
require Exporter;
require DynaLoader;
@ISA = qw(Exporter DynaLoader);
bootstrap Example;
1;

At this point, you should have a working Perl exten-
sion module. In principle, building a Perl extension re-
quires an XS specification for every C function that is to
be accessed. To simplify the process of creating these
specifications, Perl includesh2xs , a tool that converts
C header files to XS descriptions. While useful,h2xs
is somewhat limited in its ability to handle global vari-
ables, structures, classes, and more advanced C/C++ fea-
tures. As a result,h2xs can be somewhat difficult to use
with more complex applications.

3 SWIG Overview

In a nutshell, SWIG is a specialized compiler that
transforms ANSI C/C++ declarations into scripting lan-
guage extension wrappers. While somewhat similar to
h2xs , SWIG has a number of notable differences. First,
SWIG is much less internals oriented than XS. In other
words, SWIG interfaces can usually be constructed with-
out any knowledge of Perl’s internal operation. Second,
SWIG is designed to be extensible and general purpose.
Currently, wrappers can be generated for Perl, Python,
Tcl, and Guile. In addition, experimental modules for
MATLAB and Java have been developed. Finally, SWIG
supports a larger subset of C and C++ including struc-
tures, classes, global variables, and inheritance. This
section provides a tour of SWIG and describes many of
its interesting features.

3.1 A Small Taste

As a first example, suppose that you wanted to build a
Perl interface to Thomas Boutell’s gd graphics library.1

Since gd is a C library, images are normally created by
writing C code such as follows:

#include "gd.h"
int main() {

gdImagePtr im;
FILE *out;
int blk,wht;

/* Create an image */
im=gdImageCreate(200,200);

/* Allocate some colors */
b=gdImageColorAllocate(im,0,0,0);
w=gdImageColorAllocate(im,255,255,255);

/* Draw a line */
gdImageLine(im,20,50,180,140,w);

/* Output the image */
out=fopen("test.gif","wb");
gdImageGif(im,out);
fclose(out);

/* Clean up */
gdImageDestroy(im);

}

By building a Perl interface to gd, our goal is to write
similar code in Perl. Thus, the functionality of the gd
library must be exposed to the Perl interpreter. To do
this, a SWIG interface file can be written as follows:

// File : gd.i
%module gd
%{
#include "gd.h"
%}

typedef gdImage *gdImagePtr;

gdImagePtr gdImageCreate(int sx, int sy);
void gdImageDestroy(gdImagePtr im);
void gdImageLine(gdImagePtr im,

int x1, int y1,
int x2, int y2,
int color);

int gdImageColorAllocate(gdImagePtr im,
int r, int g, int b);

void gdImageGif(gdImagePtr im, FILE *o);

1gd is a freely available graphics library for producing GIF images
and can be obtained atwww.boutell.com/gd/gd.html . A Perl
module to gd, developed by Lincoln Stein, is also available on CPAN
so interested readers are encouraged to compare the results of using
SWIG against an existing Perl extension.

// File I/O (explained shortly)
FILE *fopen(char *name, char *mode);
void fclose(FILE *);

In this file, the ANSI C prototypes for every func-
tion that we would like to access from Perl are listed.
In addition, a number of SWIG directives (which are
always preceded by a “%”) appear. The%module di-
rective specifies the name of the extension module. The
%f, %g block is used to insert literal code into the out-
put wrapper file.2 In this case, we simply include the
“gd.h ” header file. Finally, a few file I/O functions also
appear. While not part of gd, these functions are needed
to manufacture file handles used by several gd functions.

To run SWIG, the following command is executed:

unix > swig -perl5 gd.i
Generating wrappers for Perl 5

This produces two files,gd wrap.c andgd.pm . The
first file contains C wrapper functions that appear sim-
ilar to the output that would have been generated by
xsubpp. The .pm file contains supporting Perl code
needed to load and use the module.

To build the module, the wrapper file is compiled and
linked into a shared library. This process varies on every
machine (consult the man pages), but the following steps
are performed on Linux:

% gcc -fpic -c gd_wrap.c \
-Dbool=char \
-I/usr/lib/perl5/i586-linux/5.004/CORE

% gcc -shared gd_wrap.o -lgd -o gd.so

At this point, the module is ready to use. For example,
the earlier C program can be directly translated into the
following Perl script:

#!/usr/bin/perl
use gd;

Create an image
$im = gd::gdImageCreate(200,200);

Allocate some colors
$b=gd::gdImageColorAllocate($im,0,0,0);
$w=gd::gdImageColorAllocate($im,255,

255,255);

Draw a line
gd::gdImageLine($im,20,50,180,140,$w);

Output the image
$out=gd::fopen("test.gif","wb");
gd::gdImageGif($im,$out);

2This syntax is derived from lex and yacc.

gd::fclose($out);

Clean up
gd::gdImageDestroy($im);

3.2 Input Files

In the gd example, SWIG was given a special interface
file containing a list of the C declarations to be included
in the Perl module. When working with a large C library,
interface files can often be constructed by copying an
existing header file and modifying it slightly. However,
in some cases, it is possible to include a header file as
follows:

%module
%{
#include "gd.h"
%}

// Grab the declarations from gd.h
%include "gd.h"

// Some file I/O functions
FILE *fopen(char *name, char *mode);
void fclose(FILE *);

The%include directive tells SWIG to include a file
and parse all of the declarations it contains. In this case,
the interface would now wrap every function in the gd
library as opposed to the half-dozen functions listed in
the first example.

SWIG also includes a C preprocessor that can be used
for macro expansion and conditional compilation. If a
new application is being written with SWIG in mind,
header files can be written as follows:

#ifdef SWIG
%module gd
%{
#include "gd.h"
%}
#endif

/* C declarations */
...

With this approach, the file can serve as both a valid C
header file and as an interface specification. TheSWIG
symbol is only defined when SWIG is parsing so special
directives can be easily hidden from the C compiler as
needed.

Finally, for the truly lazy, SWIG can sometimes be
run directly on C header and source files. For example,

% swig -perl5 -module gd gd.h
% swig -perl5 -module example example.c

Most users, however, use a mix of dedicated interface
files and header files.

3.3 Data Model

The most critical part of interfacing Perl to C pro-
grams is the management of data. Since Perl and C uti-
lize a different set of internal datatypes, wrapper gener-
ators are responsible for producing code that marshals
data and objects between languages. For fundamental
types such asint and double the conversion pro-
cess is straightforward. However, pointers, arrays, struc-
tures, and objects complicate the process. Furthermore,
since most C/C++ programs make extensive use of these
datatypes, it is important for wrapper generators to sup-
port as many of these datatypes as possible.

3.3.1 Pointers

SWIG maps C pointers and C++ references into Perl
blessed references. These references contain both the
value of the pointer itself, plus a type-signature. In the
gd example, pointers were used to manage both images
and files. If one were to print out the value a pointer, it
would appear as follows:

gdImagePtr=SCALAR(0x80b9914)

SWIG uses the type-signature to perform run-time
checking of all pointer values. These checks emulate
many of the checks that would have been performed by
a C compiler. When an invalid Perl datatype or pointer
of invalid type is used, a run-time error is generated. For
example,

% perl
use gd;
$f = gd::fopen("test.gif","w");
gd::gdImageLine($f,20,50,180,140,0);
Type error in argument 1 of gdImageLine.
Expected gdImagePtr. at - line 3.

Type-checking is based on the name of each datatype.
However, the type-checker also keeps track of C++ in-
heritance hierarchies andtypedef definitions. Thus,
an acceptable pointer type includes any alternate names
that might have been created with atypedef declara-
tion as well as any derived datatypes in C++.

When pointers are manipulated in Perl, they are
opaque values. That is, pointers can be created and
passed around to other C functions, but they can not
be dereferenced directly. Thus, in the example, it is
difficult (or impractical) for a user to directly manip-
ulate the internal representation of an image from the
Perl interpreter. Furthermore, SWIG, by default, han-
dles all pointers in a uniform manner. Thus, datatypes
such asFILE * are represented as blessed references
even though such types may appear remarkably similar
to other Perl datatypes such as file handles.

3.3.2 Arrays

SWIG maps all arrays into pointers where the “value” of
an array is simply a pointer to the first element in the ar-
ray. This is the same model used by C compilers and like
C, SWIG performs no bounds or size checking. Thus, a
function such as

void foo(double a[4][4]);

would acceptany object of typedouble * . It is up
to the user to ensure that the pointer is valid and that it
points to memory that has been properly allocated.

3.3.3 Structures and Objects

Finally, all structures and objects are represented as
pointers. This includes cases where objects are manipu-
lated by value. For example, the functions

double dot_product(Vector a, Vector b);
Vector cross_product(Vector a, Vector b);

are transformed by SWIG into the following wrappers:3

double
wrap_dot_product(Vector *a,Vector *b)
{

return dot_product(*a,*b);
}
Vector *
wrap_cross_product(Vector *a,Vector *b)
{

Vector *r;
r=(Vector *) malloc(sizeof(Vector));
*r=cross_product(*a,*b);
return r;

}

The representation of objects by reference avoids the
problem of marshaling objects between a C and Perl
representation–a process that would be extremely dif-
ficult for very complicated C datatypes. It also pro-
vides better performance since manipulating references
is more efficient than copying object data back and forth
between languages. Finally, the use of references closely
matches the way in which most C/C++ programs already
handle objects.

The downside to this approach is that objects are
opaque in Perl. This prevents users from examining their
contents directly. In addition, SWIG wrappers occa-
sionally need to perform implicit memory allocations as
shown above. It is up the user to free the resources used
by such functions (or learn to live with a memory leak).
Of course, this naturally brings us to the next topic.

3When C++ is used, SWIG uses the default copy constructor in-
stead ofmalloc .

3.3.4 Memory Management

SWIG maintains a strict separation between the manage-
ment of Perl and C objects. While Perl uses reference
counting to keep track of its own objects, this scheme is
not extended to C/C++ extensions created with SWIG.
Thus, when Perl destroys a blessed reference containing
the value of a C pointer, only the pointer value disap-
pears, not the underlying C data that it points to.

From a user standpoint, SWIG generated C/C++ ex-
tensions follow the same memory management rules as
the underlying application. Thus, if a program relies on
malloc and free to allocate and deallocate objects,
these will also be used from the Perl interpreter. Like-
wise, a C++ extension typically requires explicit invo-
cation of constructors and destructors. Furthermore, for
functions that implicitly allocate memory as in the pre-
vious section, it is up to the user to explicitly destroy the
result usingfree or a C++ destructor. While such a
scheme may seem problematic, it is no less problematic
than memory management in C (which may or may not
be a good thing depending on your point of view). Even
if it were possible to have Perl automatically manage
C/C++ objects, this would be an inherently dangerous
affair–especially since Perl has no way to know how an
underlying C application really operates. Furthermore,
it would be a fatal error for Perl to deallocate objects
that were still in use. Therefore, SWIG leaves memory
management largely up the user.

3.3.5 Pointers, Arrays, and Perl

A common confusion among some novice users is
the difference between C datatypes and similar Perl
datatypes. In particular, Perl references are not the same
as a C pointers and Perl arrays are not the same as C ar-
rays. Differences also apply to other datatypes such as
files (this is the reason that the simple example included
prototypes forfopen andfclose). The primary rea-
son for these differences is that objects in Perl have a
different internal representation than objects in C. For
example, a Perl array is represented as a collection of
references to Perl objects which may be of mixed types.
The internal representation of this array is entirely dif-
ferent than what would be used for a normal C array.
Therefore, it is impossible to take a Perl array and pass
it in unmodified form to an arbitrary C function.

The difference between Perl and C datatypes often
arises with C functions such as the following:

/* Plot some points */
void
plotpts(gdImagePtr im, int x[], int y[],

int npts, int c)
{

for (int i = 0; i < npts; i++) {
gdImageSetPixel(im,x[i],y[i],c);

}
}

Ideally, a user might want to pass Perl arrays as argu-
ments as follows:

@a = (10,20,30,40);
@b = (50,70,60,200);
gd::plotpts($im,\@a,\@b,4,1); # Error!

However, this script generates a type error instead of
acting as one might expect. While such behavior may
seem restrictive or bizarre, SWIG has been deliberately
designed to operate in this manner. In fact, there are
even benefits to this approach. If Perl arrays were to
be used as C arrays, a copy would be made, verified
for type-correctness, and deallocated every time an array
was passed to a C function. For large arrays, this would
introduce a substantial performance overhead. Space re-
quirements are also a concern for some C programs. For
example, a numerical application might manipulate ar-
rays with millions of elements. Converting such arrays
to and from a Perl representation would clearly introduce
substantial memory and performance overhead. In con-
trast, manipulating pointers to such arrays is easy and
efficient.

It should also be noted that SWIG provides a variety
of customization options that can be used to change its
behavior. In fact, one can even make SWIG map Perl
arrays into C arrays if desired. Therefore, most restric-
tions can be eliminated with a little extra work. Some of
these customization techniques are described shortly.

3.4 Helper Functions

Sometimes the Perl interface constructed by SWIG is
lacking in functionality or is difficult to use. For exam-
ple, in the previous section, a function operating on C
arrays was presented. To construct C arrays from Perl,
it is necessary to add some additional functions to the
SWIG interface. This can be done using the%inline
directive as follows:

// Add some helper functions for C arrays
%inline %{
int *int_array(int size) {

return (int *)
malloc(sizeof(int)*size);

}
void int_destroy(int *a) {

free(a);
}
void int_set(int *a, int i, int val) {

a[i] = val;
}

int int_get(int *a, int i) {
return a[i];

}
%}

When SWIG builds the scripting interface, these func-
tions become part of the extension module and can be
used as follows:

Convert a Perl array into a C int array
sub create_array {

$len = scalar(@_);
$ia = gd::int_array($len);
for ($i = 0; $i < $len; $i++) {

val = shift;
gd::int_set($ia,$i,$val);

}
return $ia;

}

@a = (10,20,30,40);
@b = (50,70,60,200);
$ia = create_array(@a);# Create C arrays
$ib = create_array(@b);
gd::plotpts($im,$ia,$ib,4,1);
...
gd::int_destroy($ia);
gd::int_destroy($ib);

3.5 Classes and Structures

While SWIG represents all objects as opaque point-
ers, the contents of an object can be examined and mod-
ified through the use of accessor functions as follows:

/* Extract data from an object */
double Point_x_get(Point *p) {

return p->x;
}
/* Invoke a C++ member function */
int Foo_bar(Foo *f) {

return f->bar();
}

From a Perl script, a user simply passes an object pointer
to accessor functions to extract internal information or
invoke member functions.

While it is possible to write accessor functions manu-
ally, SWIG automatically creates them when it is given
structure and class definitions. For example, in the gd
library, the following structure is used to contain image
information:

typedef struct gdImageStruct {
unsigned char ** pixels;
int sx;
int sy;
int colorsTotal;

...
} gdImage;

If this structure definition were placed in the SWIG
interface file, accessor functions would automatically be
created. These could then be used to extract information
about images as follows:

#!/usr/bin/perl
use gd;
$im = gd::gdImageCreate(400,300);
Print out the image width
print gd::gdImage_sx_get($im), "\n";

Accessor functions are also created for C++ classes
and Objective-C interfaces. For example, the class defi-
nition

class List {
public:

List();
˜List();

void insert(Object *);
Object *get(int i);
int length();
...

};

is translated into the following accessor functions:

List *new_List() {
return new List;

}
void delete_List(List *l) {

delete l;
}
void List_insert(List *l, Object *o) {

l->insert(o);
}
...

3.6 Shadow Classes and Perl Objects

As an optional feature, the accessor functions created
by SWIG can be used to write Perl wrapper classes (this
is enabled by running SWIG with the-shadow option).
While all the gory details can be found in the SWIG
Users Manual, the general idea is that the accessor func-
tions can be encapsulated in a Perl class that mimics the
behavior of the underlying object. For example,

package List;
@ISA = qw(example);
sub new {

my $self = shift;
my @args = @_;
$self = new_List(@args);
return undef if (!defined($self));
bless $self, "List";
my %retval;

tie %retval, "List", $self;
return bless \%retval,"List";

}
sub DESTROY {

delete_List(@_);
}
sub insert {

return $result = List_insert(@_);
}
...

This class provides a wrapper around the underly-
ing object and is said to “shadow” the original object.
Shadow classes allow C and C++ objects to be used from
Perl in a natural manner. For example,

$l = new List;
$l->insert($o);
...
$l->DESTROY();

For C structures, access to various attributes are pro-
vided through tied hash tables. For the gd library, mem-
bers of the image data structure could be accessed as
follows:

$im = gd::gdImageCreate(400,400);
$width = $im->{sx};
$height = $im->{sy};
...

The other significant aspect of shadow classes is that
they allow Perl to perform a limited form of automatic
memory management for C/C++ objects. If an object is
created from Perl using a shadow class, theDESTROY
method of that class automatically invokes the C++ de-
structor when the object is destroyed. As a result, C/C++
objects wrapped by shadow classes can be managed us-
ing the same reference counting scheme utilized by other
Perl datatypes.

3.7 Class Extension

When building object-oriented Perl interfaces, it is
sometimes useful to modify or extend objects with new
capabilities. For example, the gd library defines the fol-
lowing data structure for defining points:

typedef struct {
int x,y;

} gdPoint;

To make this structure more useful, we can add construc-
tors, destructors, and various methods to it (regardless of
whether it is implemented in C or C++). To do this, the
SWIG%addmethods directive can be used as follows:

/* Add some methods to points */
%addmethods gdPoint {
/* Create a point or array of points */
gdPoint(int npts = 1) {

return (gdPoint *)
malloc(sizeof(gdPoint)*npts);

}
/* Destroy a point */
˜gdPoint() {

free(self);
}
/* Array indexing */
gdPoint *get(int i) {

return self+i;
}
/* A debugging function */
void output() {

printf("(%d,%d)\n",self->x,self->y);
}
};

Now, in the Perl interfacegdPoint will appear just
like a class with constructors, destructors, and methods.
For example,

Create a point
$pt = new gdPoint;
$pt->{x} = 20;
$pt->{y} = 50;
$pt->output();

Create an array of points
$pts = new gdPoint(10);
for ($i = 0; $i < 10; $i++) {

$p = $pts->get($i);
$p->{x} = $i;
$p->{y} = 10*$i;

}

Pass the points to a function
gd::gdImagePolygon($im,$pts,10,1);
...

The class extension mechanism is also a powerful way
to repackage existing functionality. For example, the
gdImage structure and various functions in the gd li-
brary could be combined into a Perl class as follows:

%addmethods gdImage {
gdImage(int w, int h) {

return gdImageCreate(w,h);
}
˜gdImage() {

gdImageDestroy(self);
}
int
colorAllocate(int r, int g, int b) {

return
gdImageColorAllocate(self,r,g,b);

}
void
line(int x1,int y1,int x2,int y2,int c){

gdImageLine(self,x1,y1,x2,y2,c);
}
...
};

Users can now write scripts as follows:

#!/usr/bin/perl
use gd;
$im=new gdImage(400,400);
$black=$im->colorAllocate(0,0,0);
$white=$im->colorAllocate(255,255,255);
$im->line(20,50,180,140,$white);
...

With these simple modifications, our interface is al-
ready looking remarkably similar to that used in the GD
module on CPAN. However, more improvements will be
described shortly.

3.8 Access Control and Naming

In certain instances, it may be useful to restrict access
to certain variables and class members. Hiding objects
is easy–simply remove them from the interface file. Pro-
viding read-only access can be accomplished using the
%readonly and%readwrite directives. For exam-
ple,

// Create read-only variables
%readonly
int foo; // Read-only
double bar; // Read-only
%readwrite

// Create read-only class members
class List {
...
%readonly

int length; // Read-only member
%readwrite
...
}

When read-only mode is used, attempts to modify a
value from Perl result in a run-time error.

Another common problem is changing the name of
various C declarations. For example, a C function name
may conflict with an existing Perl keyword or subrou-
tine. To fix this problem, the%namedirective can be
used. For example,

%name(cpack) void pack(Object *);

creates a new command “cpack.” If name conflicts oc-
cur repeatedly, the%rename directive can be used to
change all future occurrences of a particular identifier as
follows:

%rename pack cpack;

The renaming operations can also be applied to
C/C++ class and structure names as needed. For exam-
ple,

%name(Image) class gdImage {
...
}

3.9 Exception handling

To catch errors, SWIG allows users to create user-
defined exception handlers using the%except direc-
tive. These handlers are responsible for catching and
converting C/C++ runtime errors into Perl errors. As
an example, the following error handler can be used to
catch errors in the standard C library:

%except(perl5) {
errno = 0;
$function
if (errno) {

die(strerror(errno));
}

}

When defined, the exception handling code is placed
into all of the wrapper functions. In the process, the
$function token is replaced by the actual C function
call. For the example shown, the exception handler re-
sets theerrno variable and calls the C function. If the
value oferrno is modified to a non-zero value, an er-
ror message is extracted from the C library and reported
back to Perl.

While catching errors in the C library has been illus-
trated, exception handlers can also be written to catch
C++ exceptions or to use any special purpose error han-
dling code that might be present in an application.

3.10 Typemaps

Typemaps are one of SWIG’s most powerful features
and the primary means of customization. Simply stated,
a typemap is a small bit of C code that can be given
to SWIG to modify the way that it processes specific
datatypes. For instance, Perl arrays can be converted into
C arrays, Perl references can be substituted for pointers,
and so forth. This section briefly introduces typemaps
and their use. However, typemaps are a complicated
topic so it is impossible to cover all of the details here
and interested readers are strongly advised to consult the
SWIG documentation.

3.10.1 Example: Output Values

As a first typemap example, consider a function that re-
turns values through its parameters as follows:

void
imagesize(gdImagePtr im,int *w,int *h) {

*w = gdImageSX(im);
*h = gdImageSY(im);

}

As is, this function would be difficult to use because
the user must write helper functions to manufacture,
dereference, and destroy integer pointers. These func-
tions might be used as follows:

$wptr = new_integer();# Create an ’int *’
$hptr = new_integer();
imagesize($im, $wptr, $hptr);
$w = integer_value($wptr);# Dereference
$h = integer_value($hptr);
delete_integer($wptr); # Clean up
delete_integer($hptr);

A more elegant solution is to use the SWIG typemap
library in the interface file as follows:

%include typemaps.i
void
imagesize(gdImagePtr im, int *OUTPUT,

int *OUTPUT);

Now, in the Perl script, it is possible to do this:

($w,$h) = imagesize($im);

In a similar spirit, it is also possible to use Perl refer-
ences. For example:

%include typemaps.i
void
imagesize(gdImagePtr im, int *REFERENCE,

int *REFERENCE);

Now in Perl:

Return values in $w and $h
imagesize($im,\$w,\$h);

To implement this behavior, the filetypemaps.i
defines a collection of typemap “rules” that are attached
to specific datatypes such asint *OUTPUT and int
*REFERENCE. The creation of these rules is now dis-
cussed.

3.10.2 Creating New Typemaps

All wrapper functions perform a common sequence of
internal “operations.” For example, arguments must be
converted from Perl into a C representation, a function’s
return value must be converted back into Perl, argument
values might be checked, and so forth. SWIG gives
each of these operations a unique name such as “in” for
input parameter processing, “out” for returning values,
“check” for checking values, and so forth. Typemaps al-
low a user to re-implement these operations for specific
datatypes by supplying small fragments of C code that
SWIG inserts into the resulting wrapper code.

To illustrate, consider the gd example. In the origi-
nal interface file, two functions were included to open
and close files. These were required because SWIG nor-
mally maps all pointers (including files) into blessed ref-
erences. Since a blessed reference is not the same as a
Perl file handle, it is not possible to pass Perl files to
functions expecting aFILE * . However, this is easily
changed with a typemap as follows:

%typemap(perl5,in) FILE * {
$target = IoIFP(sv_2io($source));

}

This declaration tells SWIG that whenever aFILE *
appears as a function parameter, it should be converted
using the supplied C code. When generating wrap-
pers, the typemap code is inserted into all wrapper func-
tions where aFILE * is involved. In the process the
$source and $target tokens are replaced by the
names of C local variables corresponding to the Perl and
C representations of an object respectively. As a result,
this typemap allows Perl files to be used in a natural
manner. For example,

open(OUT,">test.gif") || die "error!\n";

Much better than before
gd::gdImageGif($im,*OUT);

Certain operations, such as output values, are imple-
mented using a combination of typemaps as follows:

%typemap(perl5,ignore)
int *OUTPUT(int temp) {

$target = &temp;
}
%typemap(perl5,argout) int *OUTPUT {

if (argvi >= items) {
EXTEND(sp,1);

}
$target = sv_newmortal();
sv_setiv($target,(IV) *($source));
argvi++;

}

In this case, the “ignore” typemap tells SWIG that a
parameter is going to be ignored and that the Perl in-
terpreter will not be supplying a value. Since the un-
derlying C function still needs a value, the typemap sets
the value of the parameter to point to a temporary vari-
able temp . The “argout” typemap is used to return a
value held in one of the function arguments. In this
case, the typemap extends the Perl stack (if needed), and
creates a new return value. Theargvi variable is a
SWIG-specific variable containing the number of values
returned to the Perl interpreter (so it is incremented for
each return value).

The C code supplied in each typemap is placed in a
private scope that is not visible to any other typemaps
or other parts of a wrapper function. This allows differ-
ent typemaps to be used simultaneously–even if they de-
fine variables with the same names. This also allows the
same typemap to be used more once in the same wrap-
per function. For example, the previous section used
theint *OUTPUT typemap twice in the same function
without any adverse side-effects.

3.10.3 Typemap Libraries

Writing new typemaps is a somewhat magical art that
requires knowledge of Perl’s internal operation, SWIG,
and the underlying application. Books such asAdvanced
Perl Programmingand the man pages on extending and
embedding the Perl interpreter will prove to be quite
useful. However, since writing typemaps from scratch
is difficult, SWIG provides a way for typemaps to be
placed in a library and utilized without knowing their in-
ternal implementation details. To illustrate, suppose that
you wanted to write some generic typemaps for check-
ing the value of various input parameters. This could be
done as follows:

// check.i
// typemaps for checking argument values
%typemap(perl5,check) Number POSITIVE {

if ($target <= 0)
croak("Expected a positive value");

}

%typemap(perl5,check) Pointer *NONNULL {
if ($target == NULL)

croak("Received a NULL pointer!");
}

To use these typemaps, a user could include the file
check.i and use the%apply directive. The%apply
directive simply takes existing typemaps and makes
them work with new datatypes. For example:

%include check.i

// Force ’double px’ to be positive
%apply Number Positive { double px };

// Force these pointers to be NON-NULL
%apply Pointer NONNULL { FILE *,

Vector *,
Matrix *,
gdImage * };

// Now some functions
double log(double px);// ’px’ positive
double dot_product(Vector *, Vector *);
...

In this case, the typemaps we defined for checking
different values have been applied to a variety of new
datatypes. This has been done without having to exam-
ine the implementation of those typemaps or having to
look at any Perl internals. Currently, SWIG includes a
number of libraries that operate in this manner.

3.11 Other SWIG Features

SWIG has a number of other features that have not
been discussed. In addition to producing wrapper code,
SWIG also produces simple documentation files. These
describe the contents of a module. In addition, C com-
ments can be used to provide descriptive text in the doc-
umentation file. SWIG is also packaged with a library
of useful modules that include typemaps and interfaces
to common libraries. These libraries can simplify the
construction of scripting interfaces.

3.12 Putting it All Together

In the first part of this section, a minimal interface to
the gd library was presented. Now, let’s take a look at a
more substantial version of that interface.

// gd.i
%module gd
%{
#include "gd.h"
%}

// Make FILE * work
%typemap(perl5,in) FILE * {

$target = IoIFP(sv_2io($source));
}

// Grab the gd.h header file
%include "gd.h"

// Extend the interface a little bit
%addmethods gdImage {

gdImage(int w, int h) {
return gdImageCreate(w,h);

}
˜gdImage() {

gdImageDestroy(self);
}
... etc ...
};

%addmethods gdPoint {
... etc ...
}

// Wrap the fonts (readonly variables)
%readonly
%include "gdfontt.h"
%include "gdfonts.h"
%include "gdfontmb.h"
%include "gdfontl.h"
%include "gdfontg.h"
%readwrite

Finally, here is a simple script that uses the module.
Aside from a few minor differences, the script is remark-
ably similar to the first example given in the standard GD
module documentation.

use gd;

$im = new gdImage(100,100);
$white= $im->colorAllocate(255,255,255);
$black= $im->colorAllocate(0,0,0);
$red= $im->colorAllocate(255,0,0);
$blue= $im->colorAllocate(0,0,255);
$im->transparentcolor($white);
$im->interlaced(1);
$im->rectangle(0,0,99,99,$white);
$im->arc(50,50,95,75,0,360,$blue);
$im->fill(50,50,$red);
open(IMG, ">test.gif");
$im->gif(*IMG);
close(IMG);

4 Interface Building Strategies

SWIG simplifies the construction of Perl extensions
because it hides Perl-specific implementation details and
allows programmers to incorporate C/C++ applications
into a Perl environment using familiar ANSI C/C++ syn-
tax rules. In addition, SWIG interfaces are generally
specified in a less formal manner than that found in XS
or component architectures such as CORBA and COM.
As a result, many users are surprised to find out how
rapidly they can create Perl interfaces to their C/C++ ap-
plications. However, it is a misperception to think that
SWIG can magically take an arbitrary C/C++ header file

and instantly turn it into a useful Perl module. This sec-
tion describes some of the issues and solution strategies
for effectively using SWIG.

4.1 Wrapping an Existing Program

Building a Perl interface to an existing application
generally involves the following steps :

1. Locate header files and other sources of C declara-
tions.

2. Copy header files to interface files.

3. Edit the interface file and add SWIG directives.

4. Remove or rewrite the application’smain() func-
tion if necessary.

5. Run SWIG, compile, and link into a Perl extension
module.

While it is theoretically possible to run SWIG directly
on a C header file, this rarely results in the best scripting
interface. First, a raw header file may contain problem-
atic declarations that SWIG doesn’t understand. Second,
it is usually unnecessary to wrap every function and vari-
able in a large library. More often than not, there are in-
ternal functions that make little sense to use from Perl.
By copying header files to a separate interface file, it is
possible to eliminate these functions and clean things up
with a little editing.4 Finally, the underlying application
may require a few slight modifications. For example,
Perl supplies its ownmain() function so if an applica-
tion also containsmain() , it will have to be removed,
rewritten, or not linked into the extension module.

4.2 Evolutionary Interface Building

After a Perl interface is first built, its use will ex-
pose any problems and limitations. These problems in-
clude functions that are awkward to use, poor integration
with Perl datatypes, missing functionality, and so forth.
To fix these problems, interface files can be enhanced
with helper functions, typemaps, exception handlers,
and other declarations. Since interfaces are easily re-
generated, making such changes is a relatively straight-
forward process. However, as a result, SWIG interfaces
tend to be built in an evolutionary and iterative manner
rather than being formally specified in advance.

4An alternative approach to copying header files is to modify the
header files using conditional compilation to add SWIG directives or
to remove unnecessary functions.

4.3 Traps and Pitfalls

Finally, there are a number of subtle problems that
sometimes arise when transforming a C/C++ program
into a Perl extension module. One of these problems is
the issue of implicit execution order dependencies and
reentrant functions. From the Perl interpreter, users will
be able to execute functions at any time and in any order.
However, in many C programs, execution is precisely
defined. For example, a precise sequence of function
calls might be performed to properly initialize program
data. Likewise, it may only be valid to call certain func-
tions once during a single execution. From Perl, it is
easy for a user to violate these constraints–resulting in
a potential program crash or incorrect behavior. To fix
these problems, applications can sometimes be modified
by introducing additional state variables. For example,
to prevent repeated execution, a function can be modi-
fied as follows:

void foo() {
static int called = 0;
if (called) return;
...
called = 1;

}

It is also possible to catch such behavior using exception
handlers. For example,

%except(perl5) {
static int called = 0;
if (called)

croak("Already executed!\n");
$function
called = 1;

}
// List all non-reentrant functions
void foo();
...
// Clear the exception handler
%except(perl5);

Another common problem is that of improper mem-
ory management. As previously mentioned, SWIG ex-
tensions use the same memory management techniques
as C. Therefore, careless use may result in memory
leaks, dangling pointers, and so forth. A somewhat more
obscure memory related problem is caused when a C
program overwrites Perl data. This can be caused by
a function such as the following:

void geterror(char *msg) {
strcpy(msg,strerror(errno));

}

This function copies a string into memory pointed to
by msg. However, in the wrapper function, the value of

msg is really a pointer to data buried deep inside a Perl
scalar value. When the function overwrites the value, it
corrupts the value of the Perl scalar value and can cause
the Perl interpreter to crash with a memory addressing
error or obscure run-time error. Again, this sort of prob-
lem can usually be fixed with the use of typemaps. For
example, it is possible to turn themsgparameter into an
output value as follows :

// Use a temporary array for the result
%typemap(perl5,ignore)
char *msg (char temp[512]) {

$target = temp;
}
// Copy output into a new Perl scalar
%typemap(perl5,argout) char *msg {

if (argvi >= items) {
EXTEND(sp,1);

}
$target = sv_newmortal();
sv_setpv($target,$source);
argvi++;

}

5 Applications

SWIG is currently being used in an increasing vari-
ety of applications. This section describes some of the
ways in which has been used. A number of advanced
SWIG/Perl interfacing techniques such as typemaps and
callback functions are also described.

5.1 Electronic CAD

SWIG plays a pivotal role in the development process
of BADGER, an electronic computer-aided design sys-
tem, being developed by Fusion MicroMedia, used in the
design of integrated circuits and other electronic compo-
nents. BADGER is a fully object-oriented, modular, and
highly extensible system, running under various flavors
of the UNIX operating system as well as Windows-NT.

The core components in BADGER are constructed in
C++ and are delivered as a set of shared (dynamically
loaded) libraries. The libraries arenot directly linked
into an executable program. Instead, each library comes
with an extension language (EL) interface that is gener-
ated by SWIG, allowing the library to be used within a
Perl program.5 The combination of a powerful EL and
well-tuned, application-specific software results in a sys-
tem that is potent, flexible, and easy to use.

For the most part, SWIG is used in a “normal” fash-
ion: a description of the classes contained within a li-

5For now, Perl is the only supported extension language. Tcl and
Java will be supported in the future.

brary is presented to SWIG, and it generates an EL in-
terface that allows the code within that library to be ac-
cessed from an EL. There are two interesting facets to
the use of SWIG within BADGER: the use of “smart ref-
erences,” and the use of callbacks from C++ to the EL,

5.1.1 Smart References

Suppose a Perl program calls a function defined by
BADGER (and wrapped with SWIG) in order to create
and return some object. Any Perl variable used to refer
to that object really holds ahandle to the object, im-
plemented as a blessed reference containing the object’s
type and its memory address. Although the implementa-
tion is a bit more involved, the handle, in effect, acts like
a pointer in C. Now, suppose another function within
BADGER is called that causes the original object to be
destroyed. Severe problems will occur if the Perl vari-
able is supplied to another BADGER function, because
the variable refers to a non-existent object. The reason
for the difficulty is that the extension language expects
to have control over the lifetime of the object, but the ex-
ternal system (BADGER) cannot meet this expectation.

It is possible to design BADGER so that the extension
language has complete control over the lifetime of all
the objects within the system. Unfortunately, this ap-
proach results in a system that is too closely tied to the
implementation of a particular language, and adding a
new extension language to the mix is difficult. An alter-
nate solution that is simple to implement and is portable,
is to introduce “smart references” (also calledproxies)
into the design [5, pg. 207]. In effect, a smart refer-
ence is an object that has the same set of operations as a
“real” object, but the smart reference’s implementation
consists solely of a single pointer to a “real” object of
the appropriate type.

The extension language interfaces within BADGER

have been crafted so that the extension language manip-
ulates smart references and that the lifetime of a smart
reference is completely under the control of the exten-
sion language. Under most circumstances, the extension
language performs an operation on the smart reference,
and the smart reference then attempts to transfer the op-
eration to the real object. If the real object has been de-
stroyed then the smart reference will have been invali-
dated (it points tonil). In this case, the operation is
aborted and, if possible, an exception is raised in the ex-
tension language. BADGER contains the necessary ma-
chinery to invalidate any smart references that point to
an object being destroyed.

Modern C++ compilers, with their support for tem-
plates, run-time type identification, and so forth, pro-
vide the means to automatically construct smart refer-
ence classes. For a variety of reasons, we are not able to

always utilize modern compilers. Hence, we have cre-
ated the implementations of the smart references man-
ually, which is a tedious process. Fortunately, this task
can be mostly automated by creating our own code gen-
erator as part of SWIG. This is a simple matter, as SWIG
is a modular software system.

5.1.2 Callbacks

The extension language interface produced by SWIG al-
lows functions defined in the external system to be called
from within an extension language. Unfortunately, the
interface produced by SWIG does not support the call-
ing of extension language functions within C, C++, or
Objective-C. The ability to invoke functions bidirection-
ally is needed by BADGER, so support for callbacks from
C++ to Perl has been developed.6 The basic approach is
this:

� Define a function.

� Register the function.

� Perform some operation that causes the registered
function to be invoked.

To make this work, BADGER provides an abstract
base class in C++ calledTrigger , so called because a
function associated with objects of this class is invoked
when an event of some kind occurs. BADGER also pro-
vides the machinery to associateTrigger objects with
an event name and with one or more objects internal to
the system. When an internal object “receives” an event,
it examines the set of registered functions looking for a
match. If a match is found then theTrigger object is
invoked, and the name of the event and the object that
received the event are supplied as arguments.

BADGER provides a number of classes derived from
Trigger that specialize its behavior for certain exten-
sion languages, for C++, or for an object request bro-
ker. For example, thePerl5Trigger class is derived
from Trigger and it specializes its base class by stor-
ing a pointer to a Perl function reference (anSV*), and
by providing the machinery needed to invoke that Perl
function.

For example, consider the following Perl fragment:

sub MyFcn {
my $EventName = shift;
my $Object = shift;
... rest of function here.

}
my $Object = BadgerFunction(....);
my $Name = "Can’t find file";

6For now, callbacks only work with Perl. Support for callbacks
with Tcl and Java will be added later.

Badger::RegisterByObject($Name,
$Object, \&MyFcn);

$Object->ReadFile("Bogus name");

The MyFcn() Perl function is the callback (trig-
ger) function, and it is registered with$Object using
the event name called “Can’t find file ”. Now,
suppose that the$Object->ReadFile() operation
fails. Internally, BADGER will note the failure, deter-
mine the appropriate event name, attempt to find a Trig-
ger object associated with that event, and if found, will
“invoke the Trigger” by calling the appropriate member
function. For the example above, this means that the
MyFcn() function will be called with$Object and
“Can’t find file ” supplied as arguments. The
function may require more information such as the file
name (that could not be opened), and it might find this
information by “pulling” data from the external library
using the functions wrapped by SWIG.

The RegisterByObject() function is respon-
sible for creating an object of thePerl5Trigger
class, and for creating the association between the
Perl5Trigger , the event name, and the object re-
ceiving the event. There is a bit of typemap trickery
involved when intercepting the arguments from Perl:

%typemap(perl5,in) SV* pFcn {
if (!SvROK($source))

croak("Expected a reference.\n");
$target = SvRV($source);

}
void
RegisterByObject(

const char* pcEventName,
Ref* pRef, SV* pFcn);

The final portion of the system left to describe is the
implementation of thePerl5Trigger::Invoke()
member function, which is responsible for calling the
Perl function from the C++ side of the world. The im-
plementation of this, taken nearly verbatim from the Ad-
vanced Perl Programming book ([1, pg. 353]), looks like
this:

bool
Perl5Trigger::
Invoke(const char* pcEventName,

void* pObject,
const char* pcTypeName) {

dSP;
ENTER;
SAVETMPS;
PUSHMARK(sp);
SV* pSV = sv_newmortal();
sv_setpv(pSV, (char*) pcEventName);
XPUSHs(pSV);
pSV = sv_newmortal();

sv_setref_pv(pSV,(char*)pcTypeName,
pObject);

XPUSHs(pSV);
pSV = sv_newmortal();
sv_setpv(pSV,(char*)pcTypeName);
XPUSHs(pSV);
PUTBACK;
int n = perl_call_sv(

this->pPerl5Fcn,
G_SCALAR);

SPAGAIN;
if (n == 1)

n = POPi;
PUTBACK;
FREETMPS;
LEAVE;
return n == 0 ? false : true;

}

5.1.3 Benefits And Limitations

The benefits that SWIG provides to BADGER are enor-
mous:

� Not counting custom code (e.g., language-specific
callbacks), an extension language interface can be
developed in a day, compared with weeks for a
hand-crafted approach.

� SWIG supports the use of multiple extension lan-
guages with ease.

� The resulting solution is flexible, and the results can
be tailored to meet the needs of complex applica-
tions (e.g., callbacks, smart references, and so on).

SWIG does have limitations, but so far, none of these
limitations has proven to be a real impediment. It also
appears that most of these limitations will be eradicated,
once SWIG has its own extension language interface
(see Section 7).

5.2 TCAP and SCCP from HP OpenCall

One of the well known pitfalls of systematic library
testing is the creation of a huge number of small C
programs–each designed to perform a single test. More
often than not, these C programs have a lot of common
code that is copied from one test case to the other. Test-
ing is further complicated by the tedious process of edit-
ing, compiling, and executing each of these programs.

To solve this problem, SWIG can be used to incor-
porate libraries into Perl extension modules where test
cases can be implemented as Perl scripts. As a result,
the compile-execute cycle is no longer a problem and
Perl scripts can be used to implement common parts of
various test cases.

This section describes the integration of Perl with an
API that is part of a HP OpenCall telecom product de-
veloped at HP Grenoble. The API provides access to the
TCAP and SCCP layers of the SS7 protocol and con-
sists of about 20 function and 60 structure declarations.
Furthermore, most function parameters are pointers to
deeply nested structures such as follows:

typedef enum {
...

} tc_address_nature;

typedef struct {
...
tc_address_nature nature;
...

} tc_global_title;

typedef struct tc_address_struct {
...
tc_global_title gt;
...

} tc_address;

From a Perl users’ point of view, the functionality of-
fered by the SWIG generated module must be not be
very different from the underlying C API. Otherwise,
test writers may be confused by the Perl API and testing
will be unnecessarily complicated. Fortunately, SWIG
addresses this problem because Perl interfaces are spec-
ified using C syntax and the resulting interface closely
resembles the original API.

5.2.1 Creating the SWIG Interface

To wrap the C API, there were three choices: copy and
modify the header files into a SWIG interface file, feed
the header files directly to SWIG, or write an interface
file that includes some parts of the header files. The first
choice requires the duplication of C definitions–a task
that is difficult to manage as the API evolves (since it is
hard to maintain consistency between the interface file
and header files). The second choice may work if the
header files are written in a very clean way. However,
it can break down if header files are too complicated.
Therefore, a mix of header files and interfaces was uti-
lized.

As part of the interface building process, header files
were to be included directly into interface files. This is
easily done using the%include directive, but a num-
ber of problematic nested structure declarations had to
be fixed. For example,

struct tcStat {
...
union {

...

struct stat_p_abort {
int value;
tc_p_abort_cause p_abort;

} abort;
...

} p;
} tc_stat;

To make this structure more manageable in SWIG, it
can be split into smaller pieces and rewritten as follows:

typedef struct {
int value;
tc_p_abort_cause p_abort;

} tc_stat_abort;

struct TcStat {
...
tc_stat_abort abort;
...

};

Such changes have no impact on user code, but they
simplify the use of SWIG.

In addition to splitting, a number of structures in the
header files were to be hidden from the SWIG com-
piler. While this could be done using a simple#ifndef
SWIGin the code, this could potentially result in a huge
customer problem if they also defined aSWIGmacro in
their compilation process. Therefore, conditional com-
pilation was implemented using some clever C com-
ments that were parsed by vpp (See the Text::Vpp mod-
ule) during the build of the SWIG interface. For exam-
ple,

/*
HP reserved comment
@if not $_hp_reserved_t
*/
typedef struct {

int length;
unsigned char datas[MAX_ABORT_LEN];

} tc_u_abort;
/*
@endif

*/

5.2.2 Shadow Classes

By default, SWIG converts structure definitions into ac-
cessor functions such as

tc_global_title *
tc_address_gt_get(tc_address *);

tc_address_nature
tc_global_title_nature_set(

tc_global_title *t,
tc_address_nature val);

Unfortunately, using such functions is somewhat un-
friendly from Perl. For example, to set a single value, it
would be necessary to write the following:

$param = new_tc_address();
tc_global_title_nature_set(

tc_address_gt_get($param),
$value);

Fortunately, shadow classes solve this problem by
providing object-oriented access to the underlying C
structures. As a result, it is possible to rewrite the above
Perl code as follows:

$parm = new tc_address;
$param->{gt}{nature} = $value;

Needless to say, this approach is much easier for users
to grasp.

5.2.3 Customization With Typemaps

To improve the Perl interface, a number of typemaps
were defined for various parts of the interface. One use
of typemaps was in structures such as the following:

typedef struct {
...
tc_u_abort abort_reason;
...

} tc_dialog_portion;

Sincetc u abort is defined by the structure shown
earlier, SWIG normally tries to manipulate it through
pointers. However, a typemap can be defined to change
this behavior. In particular, it was decided that testers
should be able to set and get this value using BCD en-
coded strings such as follows:

my $dialog = new tc_dialog_portion;
$dialog->{abort_reason} = ’0f456A’;

Or
print "User abort reason is \
$dialog->{abort_reason} \n";

To do this, a typemap for converting BCD Perl strings
into an appropriate byte sequence were developed. In
addition, the typemap performs a few sanity checks to
prevent invalid values.

%typemap (perl5,in) tc_u_abort *
($basetype temp)
{

int i;
STRLEN len;
short tmp;
char *str;

$target = &temp;

/* convert scalar to char* */
str = SvPV($source,len);
/* check if even # of char */
if ((len % 2) != 0) {

croak("Uneven # of char");
}
/* set length field */
$target->length = (len/2);
if ((len/2) > (sizeof($basetype)-1))
{

croak("Too many bytes\n");
}
for (i=0; i < $target->length; i++)
{

if (sscanf(str,"%2hx",&tmp) != 1)
croak("sscanf failed on %s, \

is it hexa ?\n",str);
$target->datas[i] = tmp;
str+=2;

}
}

To return the byte buffer back to Perl as a string, a
somewhat simpler typemap is used:

%typemap (perl5,out) tc_u_abort *
{

int i;
$target=newSVpvf("%x",

$source->datas[0]);

for (i=1; i<$source->length; i++) {
sv_catpvf($target,"%x",

$source->datas[i]);
}
argvi++;

}

SWIG typemaps were also used to fix a few other
functions. For example, some functions required an ad-
dress parameter encoded as a two-element array. By de-
fault, SWIG wraps this parameter as a pointer, but this
leaves the Perl writer with the painful tasks of creat-
ing and filling a C array with sensible values using the
SWIG pointer library or helper functions. Fortunately,
with typemaps, it was possible to create and set this pa-
rameter using Perl hashes as follows:

$address is an ordinary perl hash
$address will be used as an array
$address->{pc} = 10;
$address->{ssn}= 12;
...
SCCP_oamcmd($cnxId, $time, undef,

$address, $command, $cmd_parms);

The typemap implementing this behavior is as fol-
lows:

%typemap (perl5,in) SccpOamAddress*
{

HV* passedHash;
SV** valuePP;
SccpOamAddress tempAddress;
if (!SvOK($source)) {

/* we were passed undef */
tempAddress[0] = 0;
tempAddress[1] = 0;

} else {
if (!SvROK($source))

croak("Not a reference\n");
if (SvTYPE(SvRV($source))!=SVt_PVHV)

croak("Not a hash ref\n");

passedHash=(HV*)SvRV($source);
valuePP =

hv_fetch(passedHash,"ssn",3,0);

if (*valuePP == NULL)
croak("Missing ’ssn’ key\n");

tempAddress[1] = SvIV(*valuePP);
valuePP =

hv_fetch(passedHash,"pc",2,0);
if (*valuePP == NULL)

croak("Missing ’pc’ key\n");
tempAddress[0] = SvIV(*valuePP);

}
$target = &tempAddress;

}

/* SccpOamAddress is returned as
{’ssn’=>ssn_value, ’pc’=>pc_value} */
%typemap (perl5,out) SccpOamAddress*
{

HV* passedHash;
SV* theSsn;
SV* thePc;

thePc = newSViv((*$source)[0]);
theSsn = newSViv((*$source)[1]);
passedHash = newHV();
hv_store(passedHash,"ssn",3,theSsn,0);
hv_store(passedHash,"pc",2,thePc,0);
$target = newRV_noinc((SV*)passedHash);
argvi ++;

}

5.2.4 Statistics

Table 1 shows the amount of code associated with.i
files and header files as well as the amount of code gen-
erated by SWIG (.C and.pm files). While it was nec-
essary to write a few.i files, the size of these files is
small in comparsion to the generated output files.

Table 1: TCAP and SCPP Modules
.i files .h files .C files .pm files

TCAP 434 977 16098 3561
SCPP 364 494 13060 2246

5.2.5 Results

Overall, SWIG saved time when providing Perl access
to the TCAP and SCCP libraries. While it took some
time and hard work to write the typemaps, the SWIG
approach has several advantages compared to XS or the
pure C approach:

� The interface files are quite short so if they are well
documented, a new SWIG user should not have any
major problems maintaining them.

� A new version of the API is wrapped with a ’make’
command, so there is no need to edit any file. In
most cases the interface files can remain unmodi-
fied, provided there are no weird constructs intro-
duced in the new version of the API.

� New comments added in the header files will be au-
tomatically added in the documentation files gener-
ated by SWIG.

� If necessary, new helper functions may be added
in the .i files without impacting other parts of the
code or typemaps. This allows a new user to do it
without reading the whole SWIG manual.

� Typemaps that deal with basic types or simple
structures are reusable and can be used with other
APIs.

For those who are considering SWIG’s advanced fea-
tures, the learning curve is a little steep at first, but the
rewards are great because SWIG advanced features will
enable you to provide an improved interface to the Perl
user.

6 Limitations

Currently, SWIG is being used by hundreds of users
in conjunction with a variety of applications. However,
the current implementation of SWIG has a number of
limitations. Some of these limitations are due to the fact
that SWIG is not a full C/C++ parser. In particular, the
following features are not currently supported:

� Variable length arguments (...)

� Pointers to functions.

� Templates.

� Overloaded functions and operators.

� C++ Namespaces.

� Nested class definitions.

When these features appear in a SWIG input file, a
syntax error or warning message is generated. To elim-
inate these warnings, problematic declarations can ei-
ther be removed from the interface, hidden with condi-
tional compilation, or wrapped using helper functions
and other SWIG directives.

A closely related problem is that certain C/C++ pro-
grams are not easily scripted. For example, programs
that make extensive use of advanced C++ features such
as templates, smart pointers, and overloaded operators
can be extremely troublesome to incorporate into Perl.
This is especially the case for C++ programs that over-
ride the standard behavior of pointers and deferenc-
ing operations—operations that are used extensively by
SWIG generated wrapper code.

In addition, SWIG does not provide quite as much
flexibility as xsubpp and other Perl specific extension
building tools. In order to be general purpose, SWIG
hides many of the internal implementation details of
each scripting language. As a result, it can be difficult
to accomplish certain tasks. For example, one such sit-
uation is the handling of functions where arguments are
implicitly related to each other as follows:

void foo(char *str, int len) {
// str = string data
// len = length of string data
...

}

Ideally, it might be desirable to pass a single Perl
string to such a function and have it expanded into a
data and length component. Unfortunately, SWIG has
no way to know that the arguments are related to each
other in this manner. Furthermore, the current typemap
mechanism only applies to single arguments so it can
not be used to combine arguments in this manner. XS,
on the other hand, is more closely tied to the Perl inter-
preter and consequently provides more power in the way
that arguments can be converted and passed to C func-
tions.

Finally, SWIG is still somewhat immature with re-
spect to its overall integration with Perl. For example,
SWIG does not fully support Perl’s package and mod-
ule naming system. In other words, SWIG can create
a module “Foo”, but can’t create a module “Foo::Bar.”
Likewise, SWIG does not currently utilize MakeMaker
and other utilities (although users have successfully used

SWIG with such tools). In addition, some users have
reported occasional problems when SWIG modules are
used with the Perl debugger and other tools.

7 Future Directions

Future development of SWIG is focused on three pri-
mary areas. First, improved parsing and support for
more advanced C++ are being added. These addi-
tions include support for overloaded functions and C++
namespaces. Limited support for wrapping C++ tem-
plates may also be added. Second, SWIG’s code gen-
eration abilities are being improved. Additions include
more flexible typemaps and better access to scripting-
language specific features. Finally, an extension API
is being added to the SWIG compiler. This API will
allow various parts of the SWIG compiler such as the
preprocessor, parser, and code generators to be accessed
through a scripting language interface. In fact, this inter-
face will even allow new parsers and code generators to
be implemented entirely in Perl.

8 Acknowledgments

SWIG would not be possible without the feedback
and contributions of its users. While it is impossible to
acknowledge everyone individually, a number of peo-
ple have been instrumental in promoting and improving
SWIG’s Perl support. In particular, Gary Holt provided
many of the ideas used in the shadow class mechanism.
We would also like to thank John Buckman, Scott Bolte,
and Sriram Srinivasan, for their support of SWIG. We
also thank the University of Utah and Los Alamos Na-
tional Laboratory for their continued support.

9 Availability

SWIG is freely available on CPAN at

www.perl.com/CPAN/authors/Dave Beazley

Additional information is also available on the SWIG
homepage atwww.swig.org . An active mailing list
of several hundred subscribers is also available.

References

[1] Sriram Srinivasan. Advanced Perl Programming.
O’Reilly and Associates, 1997.

[2] Scott Bolte. SWIG.The Perl Journal, 2(4):26–31,
Winter 1997.

[3] D.M. Beazley. SWIG and automated C/C++ script-
ing extensions.Dr. Dobb’s Journal, (282):30–36,
Feb 1998.

[4] D.M. Beazley. SWIG users manual. Technical Re-
port UUCS-98-012, University of Utah, 1998.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison-Wesley, 1995.

