Honeywell

PREIMINARY

APT4000 Series 4-Wire Toroidal Conductivity Transmitters User Manual

> 70-82-25-105 EN1I-6260 Revision 1 – 11/00

Copyright, Notices, and Trademarks

© Copyright 2000 by Honeywell Inc. Revision 1 – 11/00

While this information is presented in good faith and believed to be accurate, Honeywell disclaims the implied warranties of merchantability and fitness for a particular purpose and makes no express warranties except as may be stated in its written agreement with and for its customer.

In no event is Honeywell liable to anyone for any indirect, special or consequential damages. The information and specifications in this document are subject to change without notice.

Honeywell Industrial Automation and Control Automation College 1100 Virginia Drive Ft. Washington, PA. 19034 Honeywell S. A. Espace Industriel Nord rue André Durouchez 80084 Amiens Cedex 2 France

Contacts

The following list identifies important contacts within Honeywell.

Organization	Telephone	Address
Honeywell Technical Assistance Center	1-800-423-9883 (USA and Canada)	1100 Virginia Avenue Fort Washington, PA 19034
Honeywell S.A.	33-3-22-54-56-56 (Europe)	80084 Amiens Cedex 2 France

TA-194.310-HWE01 271100

Software release: 1.x

Safety Precautions

Be sure to read and observe the following requirements!

Before connecting the Transmitter to mains, make sure that the mains voltage lies within the range $24-230\ V \approx ac/dc, -15\ \%$ / +10 %.

Opening the Transmitter exposes live parts, it should not be opened in use. Care must be exercised when connecting signal and power supply cables. If a repair should be required, return the Transmitter to our factory.

If opening the Transmitter is inevitable, it shall first be disconnected from all voltage sources. Make sure that the mains supply has been disconnected.

Repair or adjustment of an opened Transmitter under voltage shall be carried out only by a skilled person who is aware of the hazards involved.

Remember that the voltage across accessible parts of the open Transmitter may be dangerous to life.

Whenever it is likely that the protection has been impaired, the Transmitter shall be made inoperative and secured against unintended operation.

The protection is likely to be impaired if, for example:

☐ the Transmitter shows visible damage
☐ the Transmitter fails to perform the intended measurements
☐ after prolonged storage at temperatures above 70 °C
☐ after severe transport stresses
Before recommissioning the Transmitter, a professional routine test in accordance with EN 61010-1 must be

performed. This test should be carried out at our factory.

The Transmitter shall not be used in a manner not specified by this manual.

Information on this Instruction Manual

ITALICS are used for texts which appear in the Transmitter display.

Bold print is used to represent keys, e.g. CAL.

Keys for which the functions are explained are frequently shown in the left-hand column.

Note

Notes provide important information that should be strictly followed when using the Transmitter

Warning

Warning means that the instructions given must always be followed for your own safety. Failure to follow these instructions may result in injuries.

Mode Codes

After pressing **CONF** or **CAL** you can enter one of the following codes to access the designated mode:

CONF, 0000: Error info

CONF, 1200: Configuration mode CONF, 5555: Current source

CAL, 0000: Cal info

CAL, 1001: Zero point calibration
CAL, 1015: Temp probe adjustment
CAL, 1100: Cell factor calibration

CAL, 1125: Input/adjustment of sensor factor

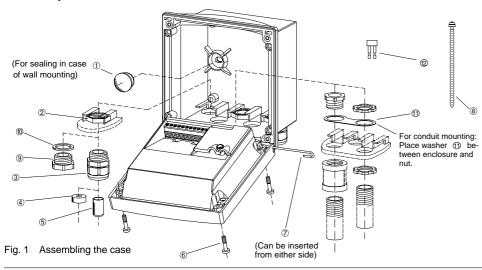
CAL, 2222: Test mode

Contents

Safety Precautions				Keypad	15
Inf	ormation on this Instruction Manual	4		Safety Functions	16
Мс	de Codes	4		Outputs	17
1	Assembly	6		Configuration	18
	Package Contents and Unpacking	6		Calibration	20
	Assembly	6		Measurement	24
2	Installation, Connection	40	4	Diagnostics, Maintenance and Cleaning	25
	and Commissioning	10		Sensoface®, Sensocheck®	25
	Proper Use	10		Error Messages	25
	Overview of the Conductivity Transmitter	10		Diagnostics Functions	27
	Terminal Assignment	11		Maintenance and Cleaning	28
	Installation and Commissioning	11	5	Annex	29
	Protective Wiring of Relay Contacts	12		Product Line	29
	Typical Wirings	13		Specifications	29
3	Operation	14		Calibration Solutions	32
	User Interface	14		Concentration Curves	33
	Display	15	Inde	x	39

1 Assembly

Package Contents and Unpacking


Unpack the unit carefully and check the shipment for transport damage and completeness.

The package contains:

- Front unit of Transmitter
- -Lower case
- Short instruction sheet
- This instruction manual

- Bag containing:2 sealing plugs
 - 5 hexagon nuts
 - 3 3 cable glands 4
- ⑤
- 1 rubber reducer 1 sealing plug 4 enclosure screws
- ② 1 hinge pin
- 3 cable ties
- 3 filler plugs
- 3 gaskets1 washer
- 1 washer 1 jumper

Assembly

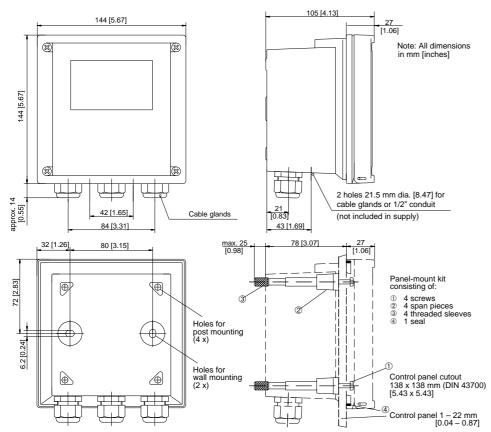


Fig. 2 Dimension drawing for Transmitter, mounting diagram and P/N 51205990-001 panel-mount kit

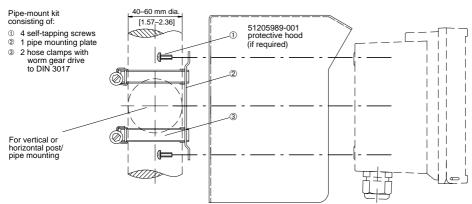


Fig. 3 P/N 51205988-001 pipe-mount kit

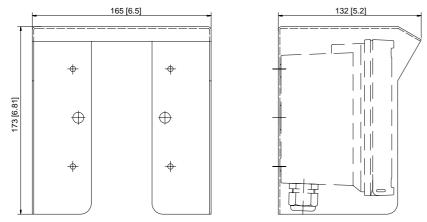


Fig. 4 P/N 51205989-001 protective hood for wall and pipe mounting

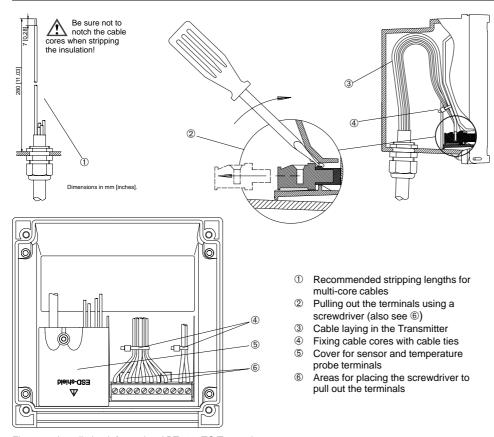


Fig. 5 Installation information APT4000TC Transmitter

2 Installation, Connection and Commissioning

Proper Use

The APT4000TC Transmitter is used for conductivity, concentration and temperature measurement in biotechnology, food processing, pharmaceutical and

chemical industry, water and waste-water treatment. It can either be mounted on site or in a control panel.

Overview of the Conductivity Transmitter

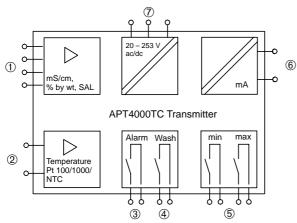


Fig. 6 System functions of Transmitter

- ① Input for toroidal conductivity sensor
- 2 Input for temperature probe
- 3 Alarm contact (closed circuit)
- Wash contact

- ⑤ Limit contacts
- ⑥ Current output 0(4) 20 mA
- ac/dc varying-voltage supply unit
 (24 230 V ac/dc -15 % / +10 %,
 ac: 45 to 65 Hz)

Terminal Assignment

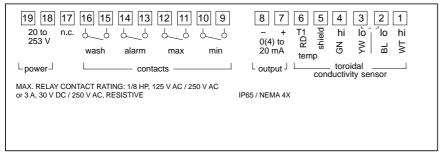


Fig. 7 Terminal assignment of APT4000TC Transmitter

Installation and Commissioning

Warning

Installation and commissioning of the Transmitter may only be carried out in accordance with this instruction manual and per applicable local and national codes. Be sure to observe the technical specifications and input ratings.

Warning

The terminals must be fixed with cable ties as shown on page 9.

Warning

Before connecting the Transmitter to the power supply, make sure that its voltage lies within the range 20 – 253 Vac/dc, ac: 45 – 65 Hz.

Warning

When commissioning, a complete configuration must be carried out.

For easier installation, the terminal strips are of a plug-in design. The terminals are suitable for single wires and flexible leads up to 2.5 mm² (AWG 14) (see Pg. 9)

A connection example is shown on Pg. 13.

Protective Wiring of Relay Contacts

Relay contacts are subjected to electrical erosion. Especially with inductive and capacitive loads, the service life of the contacts will be reduced. For suppression of sparks and arcing, components such as RC combinations, nonlinear resistors, series resistors and diodes are used.

Typical protective wirings

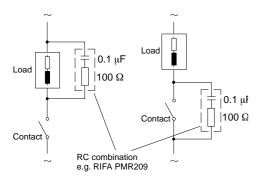


Fig. 8 AC applications with inductive load

Typical RC combination at 230 Vac: Capacitor 0.1 μ F / 630 V Resistor 100 Ω / 1 W

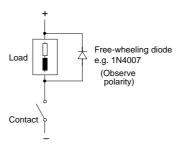


Fig. 9 DC application with inductive load

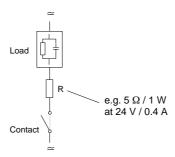
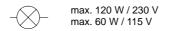



Fig. 10 AC / DC application with capacitive load

Connection of incandescent lamps

Typical Wiring

Conductivity measurement with Honeywell 5000TC toroidal conductivity sensor

The Honeywell 5000TC toroidal conductivity sensor is used to measure low to highest conductivity values. It can be used for measurements in safe areas.

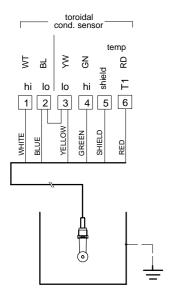


Fig. 11 Conductivity measurement with Honeywell 5000TC toroidal conductivity sensor

Note

For special mounting conditions of the sensor, the cell factor can vary between 4.0 and 4.5. Therefore the user should perform a wet calibration of each new sensor to determine the exact cell factor.

Settings for Honeywell 5000TC toroidal conductivity sensor

	Menu		Setting
Temp probe	conf	1200	Pt 1000
Cell factor	cal	1100	4.44

3 Operation

User Interface

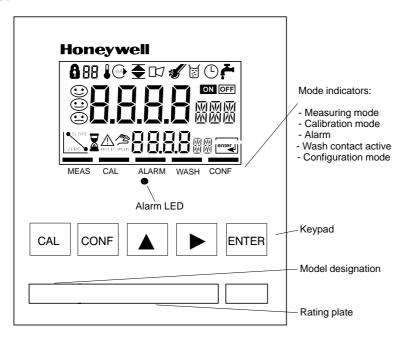


Fig. 12 Front view of Transmitter

Display

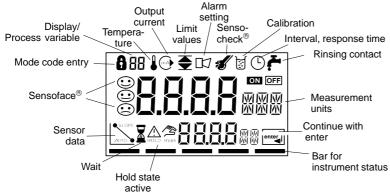
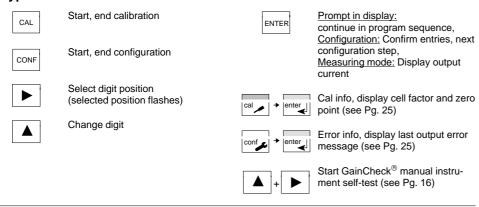



Fig. 13 Transmitter display

Keypad

Safety Functions

Sensoface® sensor monitoring

Sensoface® provides information on the sensor condition. A sad "Smiley" indicates that there is a Sensocheck® message.

Sensocheck® signals a short circuit of the signals as hort circuit of the signals as short circuit of the signal of cuit of the primary coil and its lines as well as an interruption at the secondary coil and its lines. Sensocheck® can be switched off. With Sensocheck® switched off, no friendly Smiley appears.

For more detailed information, see chapter "Diagnostic, Maintenance and Cleaning" (Pg. 26).

GainCheck® manual instrument self-test

Simultaneously pressing ▲ and ▶ starts the manual instrument selftest.

A display test is carried out, the software version is displayed and the memory and measured value transmission are checked.

Automatic instrument self-test

The automatic instrument self-test checks the memory and the measured-value transmission. It runs automatically in the background at fixed intervals.

Outputs

Current output

The current output is controlled by the process vari-

able selected in the configuration.

The current characteristic for conductivity can be configured as linear or logarithmic curve.

The current range can be set to either 0 – 20 mA or 4 – 20 mA. The current beginning and end can be set to any desired value.

If LIN (linear characteristic) is chosen, the minimum span is 5% of the selected process variable / measurement range. If LOG (logarithmic characteristic) is chosen, the minimum span is one decade within the chosen range.

To check connected peripherals (e.g. limit switches, controllers), the output current can be manually specified (see Pg. 28).

Limit contacts

The limit contacts report values below the lower limit and above the upper limit or are used, for example, to actuate valves or pumps (also see Pg. 12). One min and one max contact each can be configured as desired within the measurement range. If a value outside the limits is detected, a or appears in the display.

Alarm contact

The alarm contact is closed during normal operation (closed circuit). It opens in the case of alarm or power outage. As a result, a failure message is provided even in the case of line breakage (also see Pg. 12).

Error messages can also be signaled with a 22 mA signal via the output current (see Configuration, Pg. 19).

Wash contact

With the wash contact the conductivity sensor can be automatically cleaned with a suitable probe. The washing interval and duration can be configured as desired.

Configuration

The instrument arrives from the factory configured and ready to operate as a conductivity transmitter. This section provides detailed procedures for changing operation values for specific applications.

Activate with **CONF** change parameter with ▲ and ▶, confirm/continue with **ENTER**, end configuration with **CONF**

Mode code "1200"

During configuration the Transmitter is in the Hold state, the output current is frozen, and the limit and alarm contacts are inactive.

When the configuration mode is exited, the Transmitter remains in the Hold state for safety reasons. This prevents undesirable reactions of the connected peripherals (e.g. limit switches, controllers) due to incorrect settings. The measured value and *Hold* are displayed alternately. Now you can check whether the measured value is plausible and specifically end the Hold state with **ENTER**. After 20 sec. (measured value stabilization) the Transmitter returns to measuring mode.

Note

The configuration parameters are checked during the input. In the case of an incorrect input "ERR" is displayed for 3 sec. The parameters cannot be stored with **ENTER** until the input has been repeated.

Configuration parameters

Before attempting any changes refer to the parameter setup list shown below. This table presents the possible options and the factory settings.

Picto- graph	Parameter	Choices	Factory setting
88	Process variable / meas. range Selected process variable and measuring range control current output and measured values. Complete configuration required after change.	00.00 mS / 000.0 mS / 0000 mS 000.0 % 000.0 SAL	ooo.o mS
Lonc	Concentration (only for %)	-01- NaCl (0 - 28 % by wt) -02- HCl (0 - 17 % by wt) -03- NaOH (0 - 22 % by wt) -04- H ₂ SO ₄ (0 - 35 % by wt) -05- HNO ₃ (0 - 28 % by wt) -06- H ₂ SO ₄ (95 - 99 % by wt)	-01-

Picto- graph	Parameter	Choices	Factory setting	
	Temperature display	°C °F	°C	
Ĭ	Temperature probe	Pt 100 / Pt 1000 / NTC 100 kΩ	Pt 1000	
) to	Temperature compensation (not with % and SAL)	OFF LIN NLF (natural waters)	OFF	
l to	Temperature coefficient (only with tc LIN)	xx.xx %/K	02.00 %/K	
mA	Output current range	0 – 20 mA / 4 – 20 mA	4 – 20 mA	
mA) Ü	Output current characteristic (not with % and SAL)	LIN LOG	LIN	
mA Light	Current beginning (0 / 4 mA) (only with LIN)	mS/%/SAL	000.0 mS	
nA) [] mf	Current end (20 mA) (only with LIN)	mS/%/SAL	100.0 mS	
mA Lymi	Current beginning (0 / 4 mA) (only with LOG)	mS *	0.1 mS	
mA) ZIImi	Current end (20 mA)	mS *	100.0 mS	
mA Holo	Hold state	Last: Last output current value Fix: Output current specified	Last	
mA) F	Hold value	xx.xx mA	21.00 mA	
1122	22 m A signal for arror massage	ON / OFF	OFF	
•	Limit values min	mS / % / SAL	000.0 mS	
A	Limit values max	mS / % / SAL	100.0 mS	
% (H80	Sensocheck [®]	ON / OFF	OFF	

Picto- graph	Parameter	Choices	Factory setting
	Washing interval	xxx.x hours	000.0 (OFF)
بت	Washing time	xxxx seconds	0000 (OFF)

^{* 0.1 / 1 / 10 / 100 / 1000} mS

Configuration is cyclical. To stop, press ${f CONF}$.

Calibration

In the calibration mode the cell factor can be modified in two ways. If the cell factor of the sensor in use is known under consideration of the installation conditions, it can be entered directly. Furthermore, the cell factor can be determined with a known calibration solution under consideration of the temperature.

Activate with **CAL**, confirm/continue with **ENTER**, abort with **CAL** → **ENTER**

During calibration the Transmitter is in the Hold state. The output current is frozen, limit and alarm contacts are inactive.

When the calibration mode is exited, the Transmitter remains in the Hold state for safety reasons. This prevents undesirable reactions of the connected peripherals (e.g. limit switches, controllers) due to incorrect settings. The measured value and *Hold* are displayed alternately. Now you can check whether the measured value is plausible and specifically end the Hold state with **ENTER** or repeat calibration with **CAL.** If you end the Hold state, the Transmitter will return to measuring mode after 20 sec. (measured value stabilization).

Calibration by input of cell factor (CF) (CAL 1100)

Activate calibration by pressing the **CAL** key.
Using the ▲ , ▶ keys enter mode code "1100" and then press **ENTER**.

Using the \triangle , \blacktriangleright keys enter the cell factor. The lower display shows the conductivity value.

A change in the cell factor also changes the conductivity value.

When there has not been an entry for approx. 6 sec, conductivity and temperature are displayed alternately.

Press **ENTER** to confirm the cell factor.

The Transmitter remains in the Hold state. You can end the Hold state with **ENTER**. After 20 sec (measured value stabilization) the Transmitter returns to measuring mode.

Calibration with calibration solution (CAL 1100)

Press **ENTER** to confirm the cell factor.

Note

Be sure to use known calibration solutions and the respective temperature-corrected table values (see Calibration Solutions, Pg. 33).

Activate calibration by pressing the CAL key.

Using the ▲ , ▶ keys enter mode code "1100" and then press ENTER.

Immerse the sensor in the calibration solution.

After approx. 6 sec the lower display alternately shows the conductivity and temperature values. Read the conductivity value corresponding to the displayed temperature from the table of the used calibration solution (for tables see Pg. 33).

Using the \blacktriangle , \blacktriangleright keys change the cell factor until the display shows the conductivity value from the table.

Make sure that the temperature is stable during the calibration proceHold

The Transmitter remains in the Hold state. You can end the Hold state with ENTER. After 20 sec (measured value stabilization) the Transmitter returns to measuring mode.

Zero point calibration in air (CAL 1001)

Note

Zero point calibration is only required when very low conductivity values are to be measured.

Note

Before you start calibration, remove the sensor from the process, clean it and dry it up.

Activate calibration by pressing the **CAL** key.

Using the ▲, ▶ keys enter mode code "1001" and then press **ENTER**.

Using the \triangle , \triangleright keys modify the zero point until the lower display reads 0 μ S. If required, change the sign of the zero point!

When there has not been an entry for approx. 6 sec, the lower display alternately shows the zero-corrected conductivity value and the temperature value.

Press **ENTER** to confirm the zero point.

The Transmitter remains in the Hold state. You can end the Hold state with **ENTER**. After 20 sec (measured value stabilization) the Transmitter returns to measuring mode.

Input and adjustment of sensor factor (CAL 1125)

Note

This function should only be used by experts. Incorrectly set parameters may go unnoticed, but change the measuring properties.

The Transmitter comes with a preset sensor factor of 24.6 for the 5000TC sensor. Should you use another sensor, you must enter another sensor factor or determine it using a comparison resistor. After that, you can calibrate the sensor (see Pg. 21).

ENTER.

Note

Resistance measurement in test mode can only show the correct value of the test resistor when the sensor factor has been correctly determined.

Activate calibration by pressing the **CAL** key.
Using the ▲ , ▶ keys enter mode code "1125" and then press

24.60sac

Using the ▲, ▶ keys enter the sensor factor of the sensor in the main display.

If you do not know the sensor factor, it can be determined using a comparison resistor (recommended resistance value: $100~\Omega$). The sensor factor must be adjusted until the corresponding resistance value is shown in the lower display.

Hold

Press ENTER to confirm the sen-

sor factor.

The Transmitter remains in the Hold state. You can end the Hold state with ENTER. After 20 sec (measured value stabilization) the Transmitter returns to measuring mode.

Adjustment of temperature probe (CÁL 1015)

Note

Incorrectly set parameters may go unnoticed, yet change the measurement properties. Temperature probe adjustment is particularly useful when using Pt 100 temperature probes. For NTC temperature probes, an adjustment is not required.

Activate calibration by pressing the CAL key. Using the ▲, ▶ keys enter mode code "1015" and then press ENTER.

Measure the temperature of the process medium using an external thermometer.

Using the ${\color{red} \blacktriangle}$, ${\color{red} \blacktriangleright}$ keys enter the determined temperature value in the main display. If you take over the temperature value shown in the lower display, the correction is without effect.

Press ENTER to confirm the temperature value.

The Transmitter remains in the Hold state. You can end the Hold state with ENTER. After 20 sec (measured value stabilization) the Transmitter returns to measuring mode.

Measurement

Measuring mode

In the measuring mode the main display shows the configured process variable and the lower display the temperature.

Cal info

With **CAL** and mode code "0000" you can activate the cal info. Cal info shows the current calibration data for approx. 20 sec. The 20 sec can be reduced by pressing **ENTER**. During cal info the Transmitter is <u>not</u> in Hold state.

Error info

With **CONF** and mode code "0000" you can activate the error info. Error info shows the most recent error message for approx. 20 sec. After that the message will be deleted. The 20 sec can be reduced by pressing **ENTER**. During error info the Transmitter is <u>not</u> in Hold state.

Hold state

The Transmitter will enter the Hold state under the following conditions:

For calibration: Mode code 1001

Mode code 1015 Mode code 1100 Mode code 1125 Mode code 2222

configuration: Mode code 1200

Mode code 5555

The output current is frozen at *Last* or *Fix* (configuration Pg. 19), and the limit and alarm contacts are inactive

If the calibration or configuration mode is exited, the Transmitter remains in the Hold state for safety reasons. This prevents undesirable reactions of the connected peripherals (e.g. limit switches, controllers) due to incorrect settings. The measured value and *Hold* are displayed alternately. Now you can check whether the measured value is plausible and specifically end the Hold state with **ENTER**. After a relax time of 20 sec. (measured value stabilization) the Transmitter returns to measuring mode.

Note

During error conditions the Hold state will not be active.

4 Diagnostics, Maintenance and Cleaning

Sensoface®, Sensocheck®

Sensoface® provides information on the sensor condition. A sad "Smiley" indicates that there is a Sensocheck® message.

Sensocheck[®] signals a short circuit of the primary coil and its lines as well as an interruption at the secondary coil and its lines. Sensocheck[®] can be switched off. With Sensocheck[®] switched off, no friendly Smiley appears.

Error Messages

When one of the following error messages is output, the unit can no longer correctly determine the process variable or output it via the current output.

During an error message the alarm contact is open and the alarm LED flashes. The alarm response time is permanently set to 10 sec.

Error messages can also be signaled with a 22 mA signal via the current output (see Configuration, Pg. 19).

Error info

With **CONF** and mode code "0000" you can activate the error info.
Error info shows the most recent error message for approx. 20 sec.
After that the message will be deleted. The 20 sec can be reduced by pressing **ENTER**. During error info the Transmitter is <u>not</u> in Hold state.

Error number	Display (flashing)	Problem	Possible causes
Err 01		Sensor	- Wrong cell factor - Outside measurement range - SAL > 45 % - Sensor connection or cable defective
Err 02		Sensor	- Unsuitable sensor
Err 03	•	Temperature probe	Outside temp range Outside temp range for TC Outside temp range for SAL Outside temp range for concentration
Err 21 Output current		Output current	Measured value below configured current beginning Wrong configuration for current beginning (see Pg. 19)

Error number	Display (flashing)	Problem	Possible causes
Err 22	(mA)	Output current	- Measured value above configured current end - Wrong configuration for current end (see Pg. 19)
Err 23	(mA)	Output current	- Configured current span too small (Difference between current beginning and end)
Err 33	\$	Sensocheck [®]	- Short circuit in primary coil - Short circuit of cable
Err 34	\$	Sensocheck [®]	- Open circuit in secondary coil - Cable interrupted
Err 98	Conf	System error	Configuration or calibration data defective; completely reconfigure and recalibrate the Transmitter Measured value transmission defective Memory error in Transmitter program (PROM defective)
Err 99	FB !!	Factory settings	- EEPROM or RAM defective - Error in factory settings
	, , , , ,		This error message normally should not occur, as the data are protected from loss by multiple safety functions. Should this error message nevertheless occur, there is no remedy. The Transmitter must be repaired and recalibrated at the factory.

Diagnostics Functions

Cal info

Pressing **CAL** and entering mode code "0000" is going to activate the cal info. Cal info shows the current calibration data for approx. 20 sec. During cal info the Transmitter is <u>not</u> in Hold state.

Test mode

Pressing **CAL** and entering mode code "2222" is going to activate the test mode. In the test mode you can check the measuring equipment with a resistor. Sensoface[®] is disabled.

To do so, a comparison resistor is looped through the sensor. The comparison resistance value is indicated in the main display in $k\Omega.$ When the resistance value exceeds $2~k\Omega,$ the display shows "———".

R: e.g. 100 Ω

Pressing **ENTER** ends the test mode. The Transmitter goes to Hold state.

Error info

Pressing **CONF** and entering mode code "0000" is going to activate the error info. Error info shows the most recent error message for approx. 20 sec. After that the message will be deleted. During error info the Transmitter is <u>not</u> in Hold state.

Display output current

Pressing **ENTER** in measuring mode displays the output current for a few seconds.

Current source

To check the connected peripherals (e.g. limit switches, controllers), the output current can be manually specified.

Warning

In the current source mode the output current no longer follows the measured value! It is manually specified. Limit and alarm contact are disabled.

Therefore, it must be ensured that the connected devices (control room, controllers, indicators) do not interpret the current value as a measured value!

Pressing **CONF** and entering mode code "5555" is going to activate the current source mode. Specify the output current using ▶, ▲ and **ENTER**. The present output current is shown in the lower display. Pressing **CONF** exits the current source mode again.

GainCheck® manual instrument self-test

The manual instrument self-test is started by simultaneously pressing \blacktriangle and \blacktriangleright .

A display test is carried out, the software version is displayed and the memory and measured-value transmission are checked.

Automatic self-test

The automatic self-test checks the memory and the measured-value transmission. It runs automatically in the background at fixed intervals.

Maintenance and Cleaning

Maintenance

The APT4000TC Transmitter contains no user repairable components. If problems persist even after reviewing section 4, please contact the factory.

Cleaning

To remove dust, dirt and spots, the external surfaces of the Transmitter may be wiped with a damp, lint-free cloth. A mild household cleaner may also be used if necessary.

5 Annex

Product Line

Units **Mounting Accessories**

Ref. No.

Toroidal Conductivity Transmitter

APT4000TC-0-00

Ref. No. Pipe-mount kit 51205988-001 51205990-001 Panel-mount kit

Protective hood 51205989-001

Specifications

Cond input Input for Series 5000 toroidal conduc-

tivity sensor

Process vari- 00.00 to 99.99 mS/cm able/range 000.0 to 999.9 mS/cm 0000 to 1999 mS/cm

Concentration 0.0 to 100.0 % by wt.

Salinity 0.0 to 45.0 ‰ (0 to 35 °C)

Accuracy** < 1 % of meas. value \pm 0.02 mS/cm

Sensor

Sensocheck®: monitoring of primary and lines for short circuit and monitormonitoring

ing of secondary for open circuit (can be switched off)

Entry of cell factor with display Sensor stan- dardization* of conductivity and temperature

Zero point adjustment

Temperature probe adjustment

Input of sensor factor

Permissible 0.100 to 19.999

cell factors

Permissible 1.00 to 99.99

sensor factors

Permissible ± 0.5 mS/cm

offset

					Specifications
Temp input	Pt 100 / Pt	1000 / NTC 100 kΩ	Min. span	LIN	5 % of selected range
Ranges	NTCPt	-20.0 to +130.0 °C -4 to +266 °F -20.0 to +150.0 °C	Current source	LOG 0.00 mA to	1 decade 22.00 mA
Resolution Accuracy Temp com-	0.1 °C / 1 ° ± 0.5 K*** LIN	-4 to +302 °F °F 00.00 to 19.99 %/K	Relay contacts [*]	Min. lin	
pensation* (Ref. temp 25 °C)	NLF	Natural waters to EN 27888 (0 to 36 °C)	l a a da h ilitu	Hysteresis 0.2 % of ra	of limit contacts ange****
Concentra-	-01- NaCl	0-28.1 % by wt (100 °C)	Loadability		V / < 3 A / < 750 VA / / < 3 A / < 90 W pad)
mination	-02- HCI	0-17 % by wt (-20 °C) 0-17 % by wt (50 °C) I 0-12 % by wt (0 °C)	Data retention	> 10 years	(EEPROM)
	-04- H ₂ SO	0-22 % by wt (100 °C) 40-25 % by wt (-17 °C) 0-35 % by wt (110 °C) 0-28 % by wt (-20 °C)	Protection Against Electrical Shock	to EN 610	10-1
		0-28 % by wt (50 °C) 4 95-99 % by wt (-10 °C) 95-99 % by wt (110 °C)	EMC	EN 50082	081-1, EN 50 081-2 -1, EN 50 082-2 EN 61326/A1
Display Current	. ,	, alarm LED or 4 to 20 mA,	Power supply		Vac/dc –15 % / +10 %, 5 Hz, approx. 2 VA
output*	max. 10 V,	,	Fuse Protection	160 mA T,	250 V, IEC 127-2/III
Characteris- tic*	Linear or lo	ogarithmic	class Overvoltage	II	
Output cur- rent accuracy		current value ± 0.05 mA	category	2	
Start/End of scale*	As desired mS, %, SA	within ranges for	degree		

Ambient conditions

Max. rel. H

Temperature Operating/environmental temp -20 to +55 °C
Transport and storage temp
-20 to +70 °C

80 % up to 31 °C

decreasing linearly to 50 % at 55 $^{\circ}\text{C}$

Material: thermoplastic polyester, re-inforced (polybutylene terephthalate) Protection: IP 65, NEMA 4X **Enclosure**

Color: bluish gray RAL 7031

Cable glands 3 breakthroughs for included cable

glands 2 breakthroughs for cable glands, NPT 1/2 " or Rigid Metallic Conduit

Dimensions See Dimension drawings, Pg. 7 ff

Weight Approx. 1 kg

^{****} with % by wt fixed at 0.2%, with SAL fixed at 0.2 %

Calibration Solutions

Temperature	onductivity in mS/cn Concentration			Temperature	ductivity in mS/cm Concentration		
[°C]	0.01 mol/l	0.1 mol/l	1 mol/l	[°C]	saturated*	0.1 mol/l**	0.01 mol/l**
0	0.776	7.15	65.41	0	134.5	5.786	0.631
5	0.896	8.22	74.14	1	138.6	5.965	0.651
10	1.020	9.33	83.19	2	142.7	6.145	0.671
15	1.147	10.48	92.52	3	146.9	6.327	0.692
16	1.173	10.72	94.41	4	151.2	6.510	0.712
17	1.199	10.95	96.31	5	155.5	6.695	0.733
18	1.225	11.19	98.22	6	159.9	6.881	0.754
19	1.251	11.43	100.14	7	164.3	7.068	0.775
20	1.278	11.67	102.07	8	168.8	7.257	0.796
21	1.305	11.91	104.00	9	173.4	7.447	0.818
22	1.332	12.15	105.94	10	177.9	7.638	0.839
23	1.359	12.39	107.89	11	182.6	7.831	0.861
24	1.386	12.64	109.84	12	187.2	8.025	0.883
25	1.413	12.88	111.80	13	191.9	8.221	0.905
26	1.441	13.13	113.77	14	196.7	8.418	0.927
27	1.468	13.37	115.74	15	201.5	8.617	0.950
28	1.496	13.62		16	206.3	8.816	0.972
29	1.524	13.87		17	211.2	9.018	0.995
30	1.552	14.12		18	216.1	9.221	1.018
31	1.581	14.37		19	221.0	9.425	1.041
32	1.609	14.62		20	226.0	9.631	1.064
33	1.638	14.88		21	231.0	9.838	1.087
34	1.667	15.13		22	236.1	10.047	1.111
35	1.696	15.39		23	241.1	10.258	1.135
36		15.64		24	246.2	10.469	1.159
2-4	K. H. Hellwege (Edito	II I I D	Diametria, Zeblea	25	251.3	10.683	1.183
	werte und Funktioner			26	256.5	10.898	1.207
	werte und Funktioner	1 Volume 2, P	art. volume 6	27	261.6	11.114	1.232
				28	266.9	11.332	1.256
				29	272.1	11.552	1.281
				30	277.4	11.773	1.306
				31	282.7	11.995	1.331
				32	288.0	12.220	1.357
				33	293.3	12.445	1.382
Data source:	* K. H. Hellwege (Edi	tor). H. Landolt.	R. Börnstein: Zahlen-	34	298.7	12.673	1.408
	werte und Funktioner			35	304.1	12.902	1.434
	** Test solutions calc			36	309.5	13.132	1.460

Concentration Curves

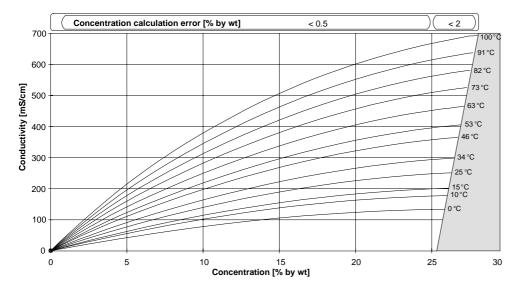


Fig. 14 Concentration curves NaCl (configuration: concentration -01-)

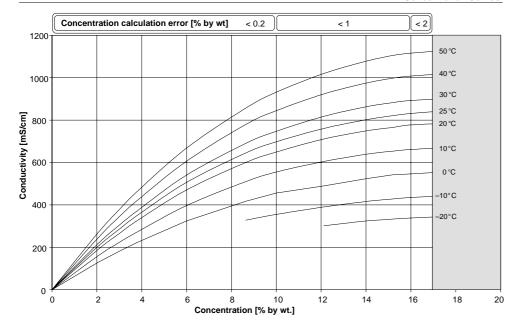


Fig. 15 Concentration curves HCI (configuration: concentration -02-)

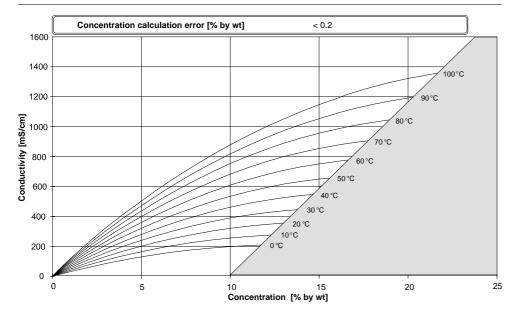


Fig. 16 Concentration curves NaOH (configuration: concentration -03-)

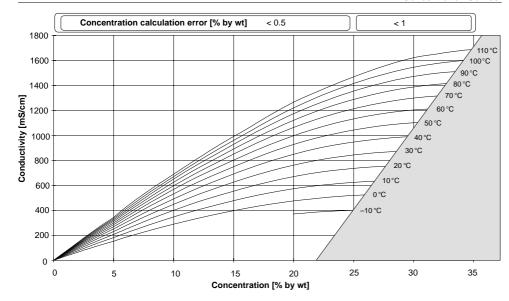


Fig. 17 Concentration curves H_2SO_4 (configuration: concentration -04-)

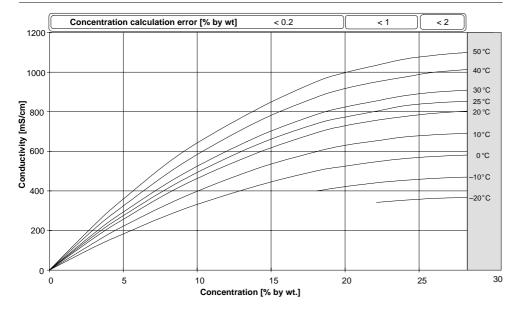


Fig. 18 Concentration curves HNO₃ (configuration: concentration -05-)

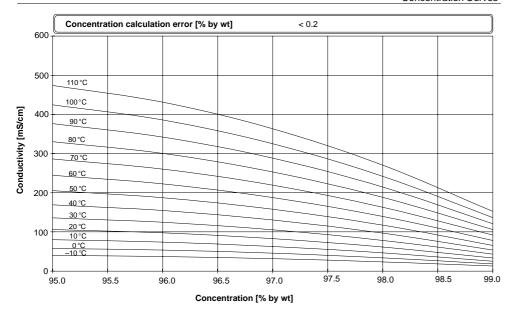


Fig. 19 Concentration curves H_2SO_4 (range 95 to 99 % by wt), (configuration: concentration -06-)

Index

② ②, 26

22 mA signal for alarm, 17, 26 configuring, 19

Alarm, response time, 26

Alarm contact, 17, 26

Alarm LED, 26

Alarm via current output, 17, 26 configuring, 19

Assembly, 6

С

Cal info, 25, 28

Calibration, 21 input of cell factor, 21 sensor factor adjustment, 23 temp probe adjustment, 24 with calibration solution, 22 zero point, in air, 23

Calibration data, display, 28

Calibration solutions, 33

Cell factor, input of, 21

Cleaning, 29

Concentration curves, 34

Conductivity measurement, 25

Configuration, 18

Connecting, lines, 9

Connecting cable, fixing, 9

Contacts inactive, 25 protective wiring, 12

Current characteristic, configur-

ing, 19

Current output, 17 frozen, 25

Current source, 28

D

Diagnostics functions, 28

Dimension drawings, 7

Display, 15

Error info, 25, 26, 28

Error message, last, 25, 26, 28

Error message via current output,

17, 26

configuring, 19

Error messages, 26-29

G

GainCheck, 16, 28

Hold state, 25

Installation, 11

Instrument self-test automatic, 16, 29 manual, 16, 28

Κ

Keypad, 15

Limit contacts, 17

Limit value max, configuring, 19 Limit value min, configuring, 19

М

Maintenance, 29

Measurement, 25

Measuring mode, 25

Messages, Sensoface, 26

Mode code, 4

Mounting diagram, 7

0

Output current configuring, 19 display, instantaneous, 28 Hold state, 19 Hold value, 19

Outputs, 17

Р

Packing list, 6 Pipe-mount kit, 8

Process variable, configuring, 18

Product line, 30 Protective hood, 8

R

Relay contacts, protective wiring,

s

Safety precautions, 3

Salinity, configuring, 18

Self-test automatic, 16, 29 manual, 16, 28

Sensocheck, 26 on or off, 19

Sensoface, 16 diagnostics, 26 messages, 26

Sensor factor, adjustment, 23

Sensor monitoring, Sensoface, 26

Sensors, monitoring, 16

Smiley, 26

Software version, display, 16, 28

Specifications, 30

Stripping lengths, 9

Т

Temp probe adjustment, 24

Terminals, pulling out, 9

Test mode, 28

U

User Interface, 14

Wash contact, 17

Washing interval, configuring, 20 Washing time, configuring, 20

Wiring example, 13

Honeywell

Sensing and Control Honeywell Inc. 11 West Spring Street Freeport, IL 61032 USA

Honeywell S. A. Espace Industriel Nord Rue André Durouchez 80084 Amiens Cedex 2 France