Generic Modeling Environment

GME 2000 User’s Manual

Version 2.0
Release 12-18-1
December 2001

Institute for Software Integrated Systems
Vanderbilt University

Generic Modeling Environment

GME
> GME 2000
version 2.0
Copyright @ 2000-2001 Vanderbilt Uiiversity

Thig program iz protected by U.5. and international copyright laws az dezcribed in the About Box.

Copyright © 2000-2001 Vander bilt University
All rightsreserved

http://www.isis.vander bilt.edu

This manual was produced using Doc-To-Help®, by WexTech Systems, Inc.

Contents

What's new in version 2.0 4
1 Koo L= I T o= 1= 4

(O] 2T O o 7= o3 (= oo 15 RSSO 4

N 417 =0 SRS 4

Visual connection preference SPeCifiCationcoeveeveneienenne s 4

Constraint Manager iMPrOVEMENLS.cc.ceiirieeriieestenieeseseee s see e 4

EXIENSIVE TULOMTAI ... et 4

What was new in version 1.2 5
User-defined drawing Capabilitycceoeiierinieniesiseeeee e 5

Modeless dialog for attributes and preferenCes........orienee s 5

Add-on and PlUG-iN SUPPOI.......ceiueiierieerie et be e be e 5

OCL syntax checker for metamodeling.........cccvireeririnnne e 5

Toolbar button/interpreter association capability ..o, 6

Component interface Version ChECKINGcoeorireirineniese e 6

Type iNheritanCe refiNEMENTS ..o e 6

Paste Special COMMANGS.........cooiirieieieese e e s 6

I nstant connections through context MENUS............cccveveeie e 6

Enhanced icon path SPECITiCaIONccooviiiiiiireeee e 6

Updated high-level C++ interpreter interface...... ..o 7

LI 1o - S 7

A sample UML class diagram drawing paradigmc.ccceereenennienieneieneneenienens 7

Java high-level interpreter interface (Alpharel€ase) ... 7

Introduction 8
Modeling Concepts Overview 9
Model-Integrated Program SYNEhESIS ..o e 9

The MUltiGraph ArChItECIUNEoouiiiereeet e 9

The Modeling Paradigm..........coooiiiineee e 10

Metamodels and Modeling Environment Synthesis.........ccooecvvceieevecse e 10

The Generic Modeling Environment 11
GME 2000 Main Editing WINAOW...........cceierireiiseneeeeeesee e ssesseeseesesseessesnessesseesaenenns 11

GIME CONCEPES ...ttt sttt sb et se st sr e b st e b e e e e sn e b sr e r e s bt ebe e e e nennesre 12
Defining the Modeling ParadigMmcoooeiiineeniereeesesee s 12

10T L= £ RSP 13

F N (0] 1 1 PRSP PPPPP 14

MOdel HIEIarChy.........cc.eo it 15

REFEIENCES ...ttt are e 16

COoNNECEIONS AN TINKS.....ccveireeeiiireie et et n e 17
ATITTDULES ...t b et b e r e bt n e e 17

Generic Modeling Environment User's Manual Contents e i

S SRS 19
1= 1= (=001 P 19

Using GME 2000 20
GME 2000 INEEITACES. .. .cuververeiriereeeieeeeiestesestesteeseesee e saes e ssessesseessessessessessessesseesensessessessnnsens 20

THE P BIOWSEecviiieieeeteeeeeestese et s e s e e e see e s testeebe s e eseeaessessesaessesseesenseensensnssnnsensens 21

The AttrIDULE BIrOWSESeceeeeeie e ettt st e e e stesaesresneeneenaenaenaenenas 21

THE MOUE! BIOWSESc.veiviciiieeceeeeesteseste e ste st eesaesee e tesee st s e eseensessessesaessesseeseessenseseessnssnssnns 21

Model BrowSer NAVIGALIONcoereiiriirieisie ettt 23

Model Browser and INteroperation...........cuererererieeeeniieesiereeesee s 24

[0 ot 1 o TS 24

THE MOUE] EQITON.......eeieeieieieeeee ettt b e e bbb it s e e se e b sae 25

The EQItiNg WINCGOWcoiieiecie ettt et e sttt 25

GIME MEBNUSviieiieti ettt sttt ettt ettt e s sa e b e e e sesbeneesensenes 25

F N 410701 1 0] USRS PR PR 28
Creating ANNOLALIONS.cciiiieiie et et e et e e et earesaaesaeesreesreennas 28

Editing ANNOLBLIONS.........civiiiirieiitire st 29

IMPIEMENLALTION ISSUES ..ottt bbb 29

MaNaging ParadigMSceiirieiierieeeree et bbb 30

NEW PIOJECE ...ttt ettt b et b e e bbbt e b b 31

EdItOr OPEIaLiONS.......c.ecvireiieieriiieiesiee ettt bbbttt b bbb bbb 31

EQItiNg MOES ..ot sttt et b et eneesnee 31

MiSCEI|aNEOUS OPEaLiONSeiueieirieeeeee ettt et s 34

HEID SYSIOIM ...t b ettt e b bbb e bt e ae e e et seesbe e e 34

L0001 = o A == T 34

Type Inheritance 36
Type INNErtaNCE CONCEPLSeivireeiirie ittt b bbbt b e st see e 36
Attributes and PreferEnCeS........cooveeierese st nneas 39

REFErENCES AN SELS......coie it 39

Libraries 40
MO [IDFarY SUPPOIT ..ottt bbb s bbb 40
Decorators 42
INEFOTUCTION ...t bbb bbbt e e 42

The IMgaDeCorator iNTEITACE.........ccieiie et re e re s 42
IMQaDECOrator FUNCLIONS.........cccuiiiieieeciee e esteete et e et e e s esre et e ne e e neenreenes 43

Using the Decorator SKEIELONcccccveieiieiee e sieeseeee e st eae e s sneas 45

AsSIgNiNG deCoratorSt0 ODJECES.........uiuiiiirieirierier bbb 45
Metamodeling Environment 46
INEFOTUCTION ...t b ettt st s b et e s 46

Step by step guide to basic MetamOdeling..........cooverere i 46
L= 6 [0 0 RS 46

FOIAEL .. bt e bbbt e e e b e b 46

(0 S 47

N (0] 1 1 PSR PPTPPPRPPT 48

[== 0= 48

L0007 1o o SRS 49

S RSP S 50

Generic Modeling Environment User's Manual Contents e ii

IVIOTEL ...t bbbt b bbbt 51

N T o U1 = R SRORSS 51

1011 oSS 51

AASDECL ...t e E e b bt ae e sh e nb e e s Re e n e e e e eaeenne e 52

CONSITAINTS. ... e.ecvetee ettt r e e 52

CompOoSING MELAMOTELS ..ottt bbb b e bt e e see e e 52

NEW OPEIBLONS.......eeeeeestiestee sttt ettt ettt sae e s re e sreeseesnesaneeneesreanbeenbeennens 52

Generating the Target Modeling Paradigm..........ccoevie e ieese e 54

ASPECE MBPIING ettt ettt sttt be et s e et saesbe s st s st e e e e et seesbesaeeneas 54

F N T o U1 (=X U o L= S 54
Semantics Guide to MetamOdeliNg.......c.eerereiriiee e 60
High-Level Component Interface 62
Introduction to the Component INEEITACE. ..o e 62

What Does the Component INterface DOcoo i e 62
Component INterface ENtry POINEooiiiiieieeee e e e 63
CoMPONENE TNEEITACE ...t bbb et e eae 64
EXBIMPIE ...ttt bbb et b et bt 69
Extending the Component INtEIfaCecovi e e 69
EXBIMPIE ...ttt bbbt b et b e b 71

How to create anew COMPONENE PrOJECT.c.ciuirueeririeirieieesiesie et 72
Appendix A - Database Setup 74
GME 2000 Datalase CONNECTIVILYccceirreirrerreenresieese s 74
Appendix B - MCL 77
The Multigraph Constraint LangUBOGE...........uiveeerireiririeireseeesie e 77

IMCL OPEIELOIS......eeiteeteeiteesieeieeee sttt este et e bt besseesaeesbeesbeesbeesseseesaneeneesreesreanrennrens 79

FUNCEIONSve e st nne e 83

EXAIMPIES ... bbbt r e b 84

Appendix C — References 85
Model Integrated Computing REFEIENCES.........covevirieiirireceerer e 85
Glossary of Terms 86

Generic Modeling Environment User's Manual Contents e iii

What’'s new In version 2.0

Model libraries

Model libraries allow the creation and reuse of model repositories. Any project can
serve asalibrary and can be attached to other projects. Modelsin the library can be
subtyped and instantiated in the dependent projects. Any subsequent changes in the
library will propagate to the projects that useit.

ODBC backend

In addition to the MS Repository and binary file backends, now ODBC is also
supported.

Annotations

Annotations, i.e. textual |abels, can be added to models. Their visibility in different
aspects, aswell as color, size, typeface, etc, can be controlled from a dialog box.

Visual connection preference specification

Autorouter preferences can now be specified on a per connection basis. In
connection mode, the object the cursor moves over is highlighted. When the cursor is
near one side of the object, a connection point appears. If it is clicked, the new
connection will stick to the selected side of the object. This selection can later be
overwritten using the registry editor.

Constraint manager improvements

The constraint manager has be reengineered. There are new functions to access
information about connections. Thereis adialog box that gives context information
for debugging constraints.

Extensive tutorial

There is a new extensive end-to-end tutoria included with this version.

Generic Modeling Environment User's Manual What’s new in version 2.0 « 4

What was new in version 1.2

User-defined drawing capability

How GME 2000 displays model objectsis now decided by external components
called decorators. The previous appearance of boxes for models and icons for other
objectsis preserved as the default visualization (also implemented by decorators
included with the GME release). However, users can write their own decorators. The
only requirement isthat decorators have to implement a COM interface that GME
uses when it needs to display the objects. The new UML class diagram paradigm
sample comes with its own decorator that displays classnames, stereotypes and
attributes inside the classicon and resizes it accordingly. The GME 2000
metamodeling paradigm has a similar decorator aswell. A decorator shell isalso
provided with this release to help you write your own decorators. Note that
connection visualization has not changed and is not customizable.

Modeless dialog for attributes and preferences

The attributes and preferences dial ogs have been merged into one tabbed dialog
window that is always visible and dockable to the main window frame. These
diaogs also display the object name. There are multiple ways to select the object
whose attributes and preferences are shown. All the context menus (even from the
browser now) provide access like before. If anew object isinserted, pasted or
dropped, its attributes and preferences will be immediately shown. Finally, simply
selecting an object by clicking on it, has the same effect. Note that currently the
attributes and preferences dialog does not support multiple object selection.

Add-on and plug-in support

The add-on mechanism has been updated and tested. Whenever a datafile isloaded,
the activated add-ons are also |oaded automatically. Add-ons listen to events; the
event set listened to is specified through the component configurator GUI
(ComponentConfig.exe) . For efficiency reasons, Add-ons cannot be Builder Object
Network components. Plug-ins are now accessible through a separate command in
the File menu.

OCL syntax checker for metamodeling

As a sample add-on, the metamodeling environment now comes with this nice helper
tool. Every time a constraint expression attribute is changed this add-on is activated.
Note that the target paradigm information is not available to this tool, therefore, it
cannot check arguments and parameters, such as kindname. These can only be
checked at constraint evaluation time in your target environment.

Generic Modeling Environment User's Manual What was new in version 1.2 « 5

Toolbar button/interpreter association capability

Interpreters and plug-ins can now register toolbar icons. Anicon is either aresource
in the component itself, or a separate icon file. If aproject isloaded, the registered
toolbar icons of all the active components are displayed in the toolbar, providing a
user friendly way to start components. Theicon information is stored in the registry
under the 'lcon’ field in the components registry node. Its format is either
[<modulename>], <resource key>, or a full pathname of an imagefile.

Component interface version checking

Starting with version 1.2, GME 2000 is very conservative about component interface
versions. First, the components that make up GM E 2000 must always be present and
have identical component interface version numbers. Components are also expected
to be built against the very same interface as the GME 2000 executing them,
although only awarning is displayed when starting incompatible components. There
is no way to change the interface versions of compiled binaries. The only possible
way to update the interface version number is to recompile the components against
the up-to-date interface files.

Type inheritance refinements

The previous restriction, that only root models can be derived from or instantiated,
has been relaxed. Now a model type can be derived or instantiated provided none of
its ancestors or descendants (in the containment hierarchy) have any subtypes or
instances.

Paste Special commands

Objects on the clipboard can now be pasted as references, subtypes or instances
through these commands available through the regular menu and the context menus.
References can also be redirected using the Redirection Paste command in the
context menu. The usua restrictions still apply, i.e. paradigm violations and other
illegal operations are not allowed. Note that the paste special commands only work if
the source of the clipboard data is the same project open in the same GME 2000
instance.

Instant connections through context menus

In the regular edit mode connections can now be made by the Connect command in
the context menu. Selecting this command changes the cursor to the connect cursor.
A connection will be made to the object that is|eft clicked next. (Or by selecting the
Connect command on the destination object as well.) Note that any other operation,
such as mode change, window change, new object creation, cancels the connection
operation.

Enhanced icon path specification

GME icons settings now alow two macros, $PARADIGMDIR and $PROJECTDIR,
that resolve to the directory of the current paradigm definition or project file,
respectively.

Generic Modeling Environment User's Manual What was new in version 1.2 « 6

Updated high-level C++ interpreter interface

(Builder Object Network or BON for short). BON now uses the | MgaComponentEx
COM interface (also new in this version). The biggest change isthat the Invoke
function has been replaced by InvokeEx, which clearly separates the focus object
from the selected objects. (Depending on the invocation method both of these
parameters may be empty.) Components using the old BON will still work, however,
upon invocation awarning is message displayed reminding users to upgrade the
component code to fully comply with the new BON.

Tutorials

Three short, simple tutorials have been prepared on the metamodeling, metamodel
composition and type inheritance.

A sample UML class diagram drawing paradigm

To illustrate the user-defined drawing capabilities of this version, we are including
this simple paradigm as an example. Note that no interpreter isincluded.

Java high-level interpreter interface (alpha release)

We have prepared thisinterface that is very similar to the high-level C++ interface,
the Builder Object Network (BON). Thisis an experimental version, not tested
thoroughly. A fairly severerestriction isthat it is based on Visua J++, because we
have used the Java/lCOM bridge from Microsoft.

Generic Modeling Environment User's Manual What was new in version 1.2 « 7

Introduction

GME

%’ The Generic Modeling
Environment, GME 2000, is
configurable model-
integrated program synthesis
tool.

The Generic Modeling Environment (GME 2000), is a Windows®-based, domain-
specific, model-integrated program synthesis tool for creating and evolving domain-
specific, multi-aspect models of large-scale engineering systems. The GME is
configurable, which means it can be “programmed” to work with vastly different
domains. Another important feature is that GMEs are generated from formal
modeling environment specifications. This alows a particular GME to be efficiently
designed and implemented, and ensures that it can be quickly and safely evolved as
modeling requirements change.

The GME includes severa other relevant features:

* Itisused primarily for model-building. The models take the form of
graphical, multi-aspect, attributed entity-relationship diagrams. The
semantics of amodel is not the concern of GME — that is determined
later during the model interpretation process.

» |t supports various techniques for building large-scale, complex
models. The techniques include: hierarchy, multiple aspects, sets,
references, and explicit constraints. These concepts are discussed later.

* It contains one or more integrated model interpreters that perform
trandation and analysis of models currently under devel opment.

In this document we describe the commonalities of GME that are present in all
manifestations of the system. Hence, we deal with general questions, and not
domain-specific modeling issues. The following sections describe some general
modeling concepts and the various functions of the GME.

Generic Modeling Environment User's Manual Introduction « 8

Modeling Concepts Overview

Model-Integrated Program Synthesis

Model-integrated program
synthesisis one method of
performing model-integrated
computing.

One approach to MIC is model-integrated program synthesis (MIPS). A MIPS
environment operates according to a domain-specific set of requirements that
describe how any system in the domain can be modeled. These modeling
requirements specify the types of entities and relationships that can be modeled; how
to model them; entity and/or relationship attributes; the number and types of aspects
necessary to logically and efficiently partition the design space; how semantic
information isto be represented in, and later extracted from, the models; analysis
requirements; and, in the case of executable models, run-time requirements.

In MIPS, formalized models capture various aspects of a domain-specific system's
desired structure and behavior. Model interpreters are used to perform the
computational transformations necessary to synthesize executable code for use in the
system’ s execution environment—often in conjunction with code libraries and some
form of middleware (e.g. CORBA, the MultiGraph kernel, POSI X) — or to supply
input data streams for use by various GOTS, COTS, or custom software packages
(e.g. spreadsheets, simulation engines) When changesin the overall system require
new application programs, the models are updated to reflect these changes, the
interpretation process is repeated, and the applications and data streams are
automatically regenerated from the models.

Once amodeling paradigm has been established, the MIPS environment itself can be
built. A MIPS environment consists of three main components: (1) adomain aware
model builder used to create and modify models of domain-specific systems, (2) the
models themselves, and (3) one or more model interpreters used to extract and
trandate semantic knowledge from the models.

The MultiGraph Architecture

MultiGraph isa toolset for
creating domain-specific
modeling environments.

The MultiGraph Architecture (MGA) is atoolset for creating M1PS environments.
As mentioned earlier, MIPS environments provide a means for evolving domain-
specific applications through the modification of models and re-synthesis of
applications. We now discuss the creation of a MIPS environment.

Generic Modeling Environment User's Manual Modeling Concepts Overview « 9

Amodeling paradigm

defines the family of models

that can be created using the
resultant MIPS environment.

A metamodel isa
formalized description of a
particular modeling
language, and is used to
synthesize the GME itself.

The Modeling Paradigm

The process begins by formulating the domain’s modeling paradigm. The modeling
paradigm contains all the syntactic, semantic, and presentation information regarding
the domain — which concepts will be used to construct models, what relationships
may exist among those concepts, how the concepts may be organized and viewed by
the modeler, and rules governing the construction of models. The modeling
paradigm defines the family of models that can be created using the resultant MIPS
environment.

Both domain and MGA experts participate in the task of formulating the modeling
paradigm. Experience has shown that the modeling paradigm changes rapidly during
early stages of development, becoming stable only after a significant amount of
testing and use. A contributing factor to this phenomenon is the fact that domain
experts are often unable to initially specify exactly how the modeling environment
should behave. Of course, as the system matures, the modeling paradigm becomes
stable. However, because the system itself must evolve, the modeling paradigm must
change to reflect this evolution. Changes to the paradigm result in new modeling
environments, and new modeling environments require new or migrated models.

Metamodels and Modeling Environment Synthesis

Metamodels are model s of a particular modeling environment. Metamodels contain
descriptions of the entities, attributes, and relationships that are available in the
target modeling environment. Once a metamodel is constructed, it is used to
synthesize the actual GME. This approach allows the modeling environment itself to
be evolved over time as domain modeling requirements change.

Generic Modeling Environment User's Manual Modeling Concepts Overview « 10

The Generic Modeling

Environmen

t

GME 2000 Main Editing Window

The figure below shows various features and components associated with the GME
main editing window.

** GME2000 - SF Example

o =] 3
Titlebar /EHE Edit Wiew MWindow Help
Menubar 7 | v ¢ [HBEX 2 - 4+ s <& PM=M 2 |lcomponents: |
Toolbar *
Y& system o =1E | ——————————————
o Agaregate | nnertance | Meta |
| T Name:[System [Cormpound Aspect [SignalFlowAspect -
Modebar —i=
= 3 SF Example
& 'l & 21 Folder ——~ Browser
4 - Timl 0 = T System
=] Outlx Fral 1 T Postprocessing
am
Preprocessin Processin Postprocessin A
Model P o 9 i o & T Preprocessing
iting A Out
Window CEETTr— - 5 T Pracessing
T Name: [Processing [Compaund Aspect [SignalFlowAspect T Branchl
g - T Branchl
A Fry
aln
Oinp out A Time
Time
Brancho
Branch1 =
7 [Attibutes | Preferences |
[Brancha
o
InputSignals OutputSignals Fiting IFALL Bl
CompoundParts PrimitiveParts —
Sctipt ComputeTime: i
Partbrowser N
1| Attribute
browser
Priarity: 10 r
Statusbar SignalFlowAspect | ParameterAspect
Ready [EDIT [100% |SF2000 08:33 PM
GME 2000 Main Editing Window

The GME main editing window has the following components:

» Titlebar: Indicates the currently loaded project.

* Menubar: Commands for certain operations on the model.

» Toolbar: Icon button shortcuts for several editing functions. Placing the
mouse cursor over atoolbar button briefly displays the name/action of

the button.

Generic Modeling Environment User's Manual

The Generic Modeling Environment ¢ 11

* Mode bar: Buttons for selecting editing modes.

» Editing area: The main model editing area containing the model
editing windows.

» Partbrowser: Showsthe partsthat can be inserted in the current aspect
of the current model.

* Satushar: Theline at the bottom which shows status and error
messages, current edit mode (e.g. EDIT, CONNECT, etc.), zoom
factor, paradigm name (e.g. SF2000), and current time.

e Attribute browser: Shows the attributes and preferences of an object.

» Browser: Shows either the aggregation hierarchy of the project, the
type inheritance hierarchy of amodel, or aquick overview of the
current modeling paradigm.

These features will be described in detail in later sections.

GME Concepts

As mentioned above, the GME is a generic, programmable tool. However, al GME
configurations are the same on a certain level, smply because “only” the domain-
specific modeling concepts and model structures have changed. Before describing
GME operation, we briefly describe the domain-independent modeling concepts
embodied in all GME instances.

Defining the Modeling Paradigm

To properly model any large, complex engineering system, a modeler must be ableto
describe a system’s entities, attributes, and relationshipsin a clear, concise manner.
The modeling environment must constrain the modeler to create syntactically and
semantically correct models, while affording the modeler the flexibility and freedom
to describe a system in sufficient detail to allow meaningful analysis of the models.

I ssues such as what is to be modeled, how the modeling is to be done, and what types
of analyses are to be performed on the constructed models must be formalized before
any system is built. Such design choices are represented by the modeling paradigm.
Therefore, creating the modeling paradigm is the first, and most important, step in
creating aDSME.

A modeling paradigm is defined by the kind of models that can be built using it, how
they are organized, what information is stored in them, etc. When GME istailored
for a particular application domain, the modeling paradigm is determined and the
tool is configured accordingly. Typically the end-users do not change these paradigm
definitions, and they are fixed for a particular instance of GME (of course, they may
change as the design environment evolves).

Examples of modeling paradigms are as follows:

» Paradigms for modeling signal flow graphs and hardware architecture
for high-performance signal processing domains.

» Paradigmsfor process models and equipment models used in chemical
engineering domains.

» Paradigms for modeling the functionality and physical components of
fault-modeling domains.

Generic Modeling Environment User's Manual The Generic Modeling Environment « 12

» Paradigmsthat describe other paradigms. These are referred to as meta
paradigms, and are used to create metamodels. These metamodels are
then used to automatically generate a modeling environment for the
target domain.

Once an initial modeling paradigm has been formulated, an MGA expert constructs a
metamodel. The metamodel isa UML-based, formal description of the modeling
environment’s model construction semantics. The metamodel defines what types of
objects can be used during the modeling process, how those objects will appear on
screen, what attributes will be associated with those objects, and how relationships
between those objects will be represented. The metamodel also contains a
description of any constraints that the modeling environment must enforce at model
creation time. These constraints are expressed using the MultiGraph Constraint
Language (MCL), a predicate logic language based on the Object Constraint
Language (OCL) used with UML. Note that, as mentioned earlier, metamodels are
merely models of modeling environments, and as such can be built using the GME.
A special metamodeling paradigm has been devel oped that allows metamodels to be
constructed using the GME.

Once ametamodel has been created, it is used to automatically generate a domain-
specific GME. The GME is then made available to one or more domain experts who
useit to build domain-specific models. Typically, the domain expert’sinitial
modeling efforts will reveal flaws or inconsistencies in the modeling paradigm. As
the modeling paradigm is refined and improved, the metamodel is updated to reflect
these refinements, and new GMEs are generated.

Once the modeling paradigm is stable (i.e. the MGA and domain experts are satisfied
that the GME allows consistent, valid models to be built), the task of interpreter
writing begins. Interpreters are model trandators designed to work with all models
created using the domain-specific GME for which they were designed. The
translated models are used as sources to analysis programs or are used by an
execution environment.

Once the interpreters are created, environment users can create domain models and
perform analysis on those models. Note, however, that model creation usually begins
much sooner. Modelers typically begin creating models as soon asthe initial GME is
delivered. Astheir understanding of the modeling environment and their own
systems grows, the models naturally become more complete and complex.

We now discuss the modeling components in greater detail.

Models

By model we mean an abstract object that represents something in the world. What a
model represents depends on what domain we are working in. For instance,

» aDataflow Block is the model for an operator in the signal processing
domain,

» aProcess model represents afunctionality in aplant in the chemical
engineering domain,

» aNetwork model represents a hardware interconnection scheme in the
multiprocessor architecture domain.

A model is, in computational terms, an object that can be manipulated. It has state,
identity, and behavior. The purpose of the GME is to create and manipulate these
models. Other components of the MGA deal with interpreting these models and
using them in various contexts (e.g. analysis, software synthesis, etc.).

Generic Modeling Environment User's Manual The Generic Modeling Environment « 13

Some modeling paradigms have several kinds of models. For instance:

* inasigna processing paradigm there can be Primitive Blocks for
simple operators and Compound Blocks (which may contain both
primitive blocks and other compound blocks) for compound operators.

* inamultiprocessor architecture modeling paradigm there can be
models for computational Nodes and models for Networks formed from
those nodes.

A model typically has parts—other objects contained within the model. Parts come
in these varieties:

e aoms (or atomic parts),

» other models,

» references (which can be thought of as pointers to other objects),
» sets(which can contain other parts), and

* connections.

If amodel contains parts, we say that the model isthe parent of its parts. Parts can
have various attributes. A special attribute associated with atomic parts allows them
to be designated as link parts. Link parts act as connection points between models
(usually used to indicate some form of association, relationship, or dataflow between
two or more models). Models that can contain other models as parts are called
compound models. Models that cannot contain other models are called primitive
models. If acompound model can contain other models we have a case of model
hierarchy.

In the GME, each part (atom, model, reference, or set) is represented by an icon.
Parts have a simple, paradigm-defined icon. If no icon is defined for amodd, it is
shown using an automatically generated rectangular icon with a 3D border.

Atoms

Atoms (or atomic parts) are simple modeling objects that do not have internal
structure (i.e. they do not contain other objects), although they can have attributes.
Atoms can be used to represent entities, which are indivisible, and exist in the
context of their parent model.

Examples of atoms are as follows:

* Anoutput data port on a dataflow block in asignal processing
paradigm.

* A connection link on a processor model in a hardware description
paradigm.

* A processvariablein aprocess model in achemical engineering
paradigm.

Generic Modeling Environment User's Manual The Generic Modeling Environment « 14

** GME 2000 - GME2001 [_ (O] =]

File Edit “iew ‘Window Help
| & [B X |2 |+ o 15
’T SubEenelatolC !Em
s T Mame:|SubGeneratorC ICompound .
=
&
. o
i Size
)| > |

Channel Output Signal

Frequency
Ready G

A primitive model SubGener at or C containing four atoms

Model Hierarchy

As mentioned above, models can contain other models as parts—models of the same
or different kind as the parent model. Thisis a case of model hierarchy. The concept
can be explained as follows: models represent the world on different levels of
abstraction. A model that contains other models represents something on a higher
level of abstraction, since many details are not visible. A model that does not contain
other model s represents something on alower level of abstraction. This hierarchical
organization helps in managing complexity by allowing the modeler to present a
larger part of the system, albeit with less detail, by using a higher level of
abstraction. At alower level of abstraction, more detail can be presented, but |ess of
the system can be viewed at one time.

Examples where hierarchy is useful are as follows:
» Hierarchical dataflow diagramsin asignal processing paradigm.
* Process model hierarchy in achemical engineering paradigm.

» Hierarchicaly organized networks of processorsin a paradigm
describing multiprocessors.

Generic Modeling Environment User's Manual The Generic Modeling Environment « 15

+* GME 2000 - GME 2001 M=] E3
Eile Edit View ‘window Help

v i BERX 2o+ 2@ PEMED
L3l (=] SuperGen [_ o]]

T Mame: ISUDBTGEH ICDmpDund .-’-‘n.spect:l SignaIFlowAspej

—

RN

GeneratorA HIn out O

ut

GeneratarB

GeneratarA,

Ready EC 2

Compound model Super Gen containing several Gener at or models

References

References are parts that are similar in concept to pointers found in various
programming languages. When complex models are created (containing many,
different kinds of atomic and hierarchical parts), it is sometimes necessary for one
model to directly access parts contained in another. For example, in one dataflow
diagram a variable may be defined, and in another diagram of the system one may
want to use that variable. In dataflow diagrams, thisis possible only by connecting
that variable via a dataflow arc, “going up” in the hierarchy until alevel isreached
from where one can descend and reach the other diagram (a rather cumbersome
process).

GME offers abetter solution — reference parts. Reference parts are objects that refer
to (i.e. point to) other modeling objects. Thus, areference part can point to a model,
an atomic part of amodel, amodel embedded in another model, or even another
reference part or a set. A reference part can be created only after the referenced part
has been created, and the referenced part cannot be removed until all referencesto it
have been removed. However, it is possible to create null references, i.e. references
that do not refer to any objects. One can think of these as placeholders for future use.
Whether a particular reference can be established (i.e. created) or not depends on the
particular modeling paradigm being used.

Examples of references are as follows:

» Referencesto variablesin remote dataflow diagramsin asignal
processing paradigm.

» Referencesto equipment models in a process model in achemical
engineering paradigm.

* Referencesto nodes of a multiprocessor network in a paradigm
describing hardware/software allocation assignments.

As mentioned above, the icon used to represent the reference part is user-defined.
Model (or model reference) references that do not have their own icon defined have
an appearance similar to the referred-to model, but without 3D borders.

Generic Modeling Environment User's Manual The Generic Modeling Environment « 16

Connections and links

ER N IiEd

GME edit mode bar with the
“ Connections’” mode button
selected.

Merely having partsin amodel is not sufficient for creating meaningful models—
there are rel ationships among those parts that need to be expressed. The GME uses
many different methods for expressing these relationships, the simplest one being the
connection. A connection is aline that connects two parts of a model. Connections
have at |east two attributes. appearance (to aid the modeler in making distinctions
between different types of connections) and directionality (as distinguished by the
presence or absence of an arrow head at the “ destination” end of the line). Additional
connection attributes can be defined in the metamodel, depending on the
requirements of the particular modeling paradigm.

The actual semantics of a connection is determined by the modeling paradigm. When
the connection is being drawn, the GME checks whether the connection islegal or
not. All legal connections are defined in the metamodel. Two checks are made to
determine the legality of a connection. First, a check is made to determine if the two
types of objects are allowed to be connected together. Second, the direction of the
connection needs to be checked.

To make connections, the modeler must place the GME in the “ Add Connections”
mode. Thisis done by clicking on the “Connections’ mode button (see figure to left)
on the edit mode bar. A connection always connects two parts. If the part isanicon
that represents a model, it may have some connection points, or links. Logically, a
link is a port through which the model is connected to another part within the parent
model. Links on amodel icon represent specific parts contained in the model that are
involved in a connection. In these cases, when the connection is established, care
should be taken to build the connection with the right link. The link shows up on the
icon of the model part as a miniature icon with alabel. When the connection is built,
the system uses these miniature icons as sensitive “pads’ where connections may
start or end. Moving the mouse cursor over one of the pads shows the complete
name of the link part. Unlike with earlier version of GME 2000, connections can be
made directly to models, not only its ports (if the modeling paradigm defined by the
metamodel alowsit). Furthermore, not only atoms, but models, sets and references
except for connections can act as a ports. Thisis again anew feature in version 1.1.

Some examples of connections and links are as follows:
» Connections between dataflow blocksin asignal processing paradigm.

» Connections between processes on a process flow sheet of a chemical
engineering paradigm.

» Connections between failure modes (indicating failure propagation) in
afault modeling paradigm.

Connections can be seen between atomic parts and models, asin the case of the

I nput Si gnal atomic part connecting to the ports labeled “Inp” on each of the
Cener at or models shown earlier, and between ports of models, as in the case of
the “Qut ” ports of each Gener at or model connecting to the“l np” port of
another Gener at or model. Notice that, in this paradigm, are directional (used to
indicate information flow between the models).

Attributes

Models, atoms, references, sets and connections can all have attributes. An attribute
isaproperty of an object that is best expressed textually. (Note that we use the word

Generic Modeling Environment User's Manual The Generic Modeling Environment « 17

“text” for anything that is shown as text, including numbers, and a choice from a
finite set of symbolic or numeric constants.)

Typically objects have multiple attributes, which can be set using “non-graphical”
means, such as entry fields, menus, buttons, etc. The attribute values are translated
into object values (e.g. numbers, strings, etc.) and assigned to the objects. The
modeling paradigm defines what attributes are present for what objects, the ranges of
the attribute values, etc. GME does not interpret these values—this task is left to the
model interpreters.

Examples of attributes are as follows:
» Datatype of parametersin asignal processing paradigm.
* Unitsfor process parametersin a chemical engineering paradigm.

* Mean-time-between-failure specifications for componentsin afault
modeling paradigm.

x

Attributes IPreferences

[Pi
Global: v b
DataType: |DDUb|E j e
Walue: |3-1415 b
Size: | .

The attribute box associated with a Par anmet er atomcalled Pi.

An object’s attributes can be accessed by right-clicking on the object and selecting
“Attributes’ from the menu, causing the object’ s attributes box to pop up. (The use
of checkboxes that appear to the right of attribute controlsis related to type
inheritance and will be discussed later.)

Aspects

As mentioned earlier, we use hierarchy to show or hide design detail within our
models. However, large models and/or complex modeling paradigms can lead to
situations where, even within a given level of design hierarchy, there may be too
many parts displayed at once. To aleviate this problem, models can be partitioned
into aspects.

An aspect is defined by the kinds of partsthat are visible in that aspect. Note that
aspects are related to groups of parts. The existence or visibility of a part within a
particular aspect is determined by the modeling paradigm. A given part may also be
visible in more than one aspect. For every kind of part, there are two kinds of
aspects: primary and secondary. Parts can only be added or deleted from the model
from within its primary aspect. Secondary aspects merely inherit parts from the
primary aspects. Of course, different interconnection rules may apply to partsin
different aspects.

Generic Modeling Environment User's Manual The Generic Modeling Environment « 18

When amodel isviewed, it is aways viewed from one particular aspect at atime.
Since some parts may be visible in more than one aspect while others may visible
only in a single aspect, models may have a completely different appearance when
viewed from different aspects (after al, that’ s why aspects exist!)

The following are examples of aspects:
» “Signal Flow” and “ States’ aspects for asignal processing paradigm.

* “Process Flow Sheet” and “Process Finite State Machine” aspectsfor a
chemical engineering paradigm.

e “Component Assignment” and “Failure-Propagation” aspects of afault-
modeling paradigm.

Sets

Models containing objects and connections show a static system. In some cases,
however, it is necessary to have amodel of a dynamic system that has an architecture
that changes over time. From the visual standpoint this means that, depending on
what “state” the system isin, we should see different pictures. These “states’ are not
predefined by the modeling paradigm (in that case they would be aspects), but rather
by the modeler. The different pictures should show the same model, containing the
same kinds of parts, but some of the parts should be “present” while others should be
“missing” in acertain “states.” In other words, the modeler should be able to
construct sets and subsets of particular objects (even connections).

In the GME, each set is represented by an icon (user-defined or default). When a
particular set is activated, only the objects belonging to that set are visible (all other
parts in the model are “dimmed” or “grayed out.”) Parts may belong to a single set,
to more than one set, or to no set at all.

To add or remove parts from sets, the set must first be activated by placing the
graphical editor into Set Mode. Thisis done by clicking the “ Set Mode” button (see
left) on the edit mode bar. Next, a set is activated by right-clicking the mouse on it.
Once the set has been activated, parts (even connections) may be added and/or
removed using the left mouse button. To return to the Edit Mode, click the “Normal
Mode” button on the edit mode bar.

The following examples of using sets:

e State-dependent configuration of processing blocksin asignal
processing paradigm.

BT

GME edit mode bar with the State dependent process configuration in a chemical engineering
“ Set” mode button selected. paradigm.

« State-dependent failure propagation graphsin afault modeling
paradigm.

Preferences

Preferences are paradigm-independent properties of objects. The five
different kinds of first class objects (model, atom, reference, connection,

Generic Modeling Environment User's Manual The Generic Modeling Environment « 19

set) each have a different set of preferences. The most important preference
isthe help URL. Othersinclude color, text color, line type, etc. Preferences
are inherited from the paradigm definition through type inheritance unless
this chain is explicitly broken by overriding an inherited value. For more
details, see the chapter on type inheritance.

Preferences are accessibl e through the context menus and for the current
model through the Edit menu.

Default preferences can be specified in the paradigm definition file (XML).
User settings can be applied to either the current object, or the kind of object
globally in the project. The last item in the preferences dialog box specifies
this scope information. If the global scope is selected, the information is
stored in the compiled, binary paradigm definition file, not in the XML
document. This means that a subsequent parsing of the XML file overwrites
preference settings. This limitation will be eliminated in alater release of
GME 2000.

Even when the global scope is selected, this only appliesto objects that
themselves (or any of their ancestors) have not overridden the given
preference.

Using GME 2000

GME 2000 Interfaces

The GME interacts with the user through two major interfaces:
* theMode Browser, and
» theGraphical Editor.

Models are stored in amodel database and are organized into projects. A project isa
group of models created using a particular modeling paradigm. Within a project, the
models are further organized into modeling folders. Folders themselves and models
in one folder can be organized hierarchically, although standalone models can also
be present.

The Model Browser is used to view or look at the entire project “at aglance.” All
models and folders can be shown, and folders, models and any kind of parts can be
added, moved, and deleted using the Model Browser controls. Thisis described in
more detail below.

Generic Modeling Environment User's Manual Using GME 2000 « 20

The Part Browser

The Part Browser window shows the parts that can be inserted into the current model
in the current aspect. It shows all parts except for connections. At the bottom of the
Part Browser, tabs show the available aspects of the current model. Clicking on atab
will change the aspect of the current model to the selected one. It also attempts to
change the aspect of all the open models. If a particular model does not have the
given aspect, its current aspect remains active.

The Part Browser can be used to drag asingle object at atime and drop it either in
any editor window or in the Model Browser. If areferenceis dragged, anull
reference is created because the target object is unspecified. Remember that
references (null references included) can be redirected at any time by dropping a new
target on top of them (see more detailed discussion where the drag and drop
operations are described).

Note that the Part Browser window, just like the Model Browser window, is
dockable; it can float as an independent window or it can be docked to any side of
the GME 2000 main window.

The Attribute Browser

Attributes and preferences are now available in a modeless dialog box, called the
Attribute Browser. Since thereisno OK button, changes are updated immediately.
More precisely, changes to toggle buttons, combo boxes (i.e. menus) and color
pickers are immediate. Changes to single line edit boxes are updated when either
“Enter” is hit on the keyboard or the edit box loses the input focus, i.e. you click
outside the box. The only difference for multiline edit boxes is that they use the
Enter key for new line insertion, so hitting it does not updated the value.

The object selection for the attribute browser works as follows. The context menu
access to attributes and preferences, now even from the Browser, works.
Furthermore, simply selecting an object or inserting, dropping or pasting it selects
that object for the Attribute browser.

At the top of the dialog there are two tabs, one for the attributes and one for the
preferences. Note that the Attribute Browser window, just like the Model Browser
window, is dockable; it can float as an independent window or it can be docked to
any side of the GME 2000 main window.

The Model Browser

Asmentioned earlier, the GME is a configurable graphical editing environment. It is
configured to work within a particular modeling paradigm via a paradigm definition
file. Paradigm definition files are XML files that use a particular, GME 2000 specific
Document Type Definition (DTD). Models cannot be created and edited until a
paradigm definition file (or its compiled, binary version with .mta extension) has
been opened.

Once a project has been loaded, the GME opens a Model Browser window. The
Model Browser is primarily used to organize the individual models that make up an
overall project, while the graphical editor is used for actually constructing the
project’sindividual models.

Generic Modeling Environment User's Manual Using GME 2000 « 21

Aggregate | Inheritancel Meta I

| [
- %* 5F2k Gen Systems
E-E0 SignalFlow

E- T Generatord,

#- T Generator®
E| T SublGeneratorC
. e & Chanrel
- A Frequency
- B Output Signal
i A Size
BT SuperGen
- T Generatord
- T Generatord
- T GeneratorB
B In

Model Browser showing folders and models.

The most important high-level features of the Browser are accessible through the
three tabs displayed at the top of the Browser. These tabs deal with the Aggregate,
Inheritance, and Meta hierarchies.

The Aggregate tab contains a tree-based containment hierarchy of all folders,

models, and parts from the highest level of the project, the Root Folder. The
aggregate hierarchy isignorant to aspects, and is capable of displaying objects of any
kind. More information on the aggregate hierarchy will be provided shortly.

x = -

Aggregate | \nheritancel Meta I Aggregate Inheritance IMeta | Aggregatal Inheritance. Meta |

Iﬁanalath j I ﬂ I j
E- 3? SF2k Gen Systems = T GeneratoB ase = 5P SF2000

E|] BasicTypes EHE Instances =1 tl SignalFlow
¢ Bl T GeneratorBase - 1 GeneratoB [l M Priritive
. B T SublienBase

- 1T Generatord = M Compound

(- T SuperGen [T SubGenBase - @ InputSignals [InputSignall
=03 SianalFlow EH20 Instances - A DutputSignals [OutputSignal]
[1 Generatard, o I SubGerBase [#- M PrimitiveParts [Primitive)
= 1 GeneratorB [#- M CompoundParts [Compound)
1 CompoundParts [A InputParameters [InputParam]
- T PrimitiveParts [#- A OutputParameters [OutputParam)
Aln - A& Parameters [Param)
-~ A Ou ‘B Global
- 1 SubGenBase - & Size
(- 1 SuperGen o B Initial value

o Data type
- € ParameterConnRole [Parameter]
- G DataflowConnFiole [Signal Flov)

]
[+

=
e}

Mode Browser with each tab selected

The Inheritance tab is used explicitly for visualizing the type inheritance hierarchy
(described in detail later). It is entirely driven by the current model selection within
the aggregate tree. For example, the current selection in the aggregate tree in the
figure above isamodel "GeneratorB". It is actually an instance of the model shown
inthe "BasicTypes' folder in the aggregate tree bearing the name " GeneratorBase".
This type/instance relationship is shown in the Inheritance tab. Tracing up the
hierarchy we have the "GeneratorBase" model. Beneath it we display afolder
containing any instances of this type, and then any derived versions of thistype. The
"GeneratorB" model highlighted in the Aggregate tree that we are referringtois
contained in thisfolder. Alongside that is another instance of the same Generator
type. On the same level asthe Instances folder for the GeneratorBase, we have a
subclass of that, and relevant Instances.

Generic Modeling Environment User's Manual Using GME 2000 « 22

The Meta tab shows the modeling language at a glance: it displays the legally
available array of Folders and objects that can be added at any level within the
aggregate hierarchy. For example, at the "Root Folder" level we can add
"SignalFlow" folders. Within "SignalFlow" folders, we can add models Primitive
and Compound. From these models, more parts can be added.

Model Browser navigation

Arrow keys can navigate the selection in vertical directions. The Delete and
Backspace keys allow for deletion of the current selection. Object name editing is
achieved through delayed clicking on an object's name. Multiple selection is
achieved through <shift> or <control> clicks. Note: parents of parts cannot be
selected simultaneoudly with their children. Smart selection will either avoid the
parent or avoid the parts based on the first selected item in this selection context.
Incremental searching is offered for all three tabs through the text entry field
immediately below the Aggregate, Inheritance, and Metatab selections. The search
islimited to the currently expanded section of the tree to avoid time-consuming
search in a potentially large database. If a global search isdesired, pressing the
Asterisk key when the root folder is selected fully expands the tree and the search
becomes project-wide.

Most hidden functionality offered within the GME 2000 Browser is available
through contextual menus and drag and drop operations. Currently contextual menus
are only offered for selections found within the Aggregate tab. Contextual
information is primarily used for easily inserting new objects based on the current
selection, or for capturing the contents of current selections for Edit functions (Copy,
Paste, Delete, etc.).

Agaregate I |nheritance| Meta I

|GeneratolE j

- %7 5F2k Gen Systems
E|E| BasicTypes
-- BN GeneratoB aze
Sul Properties |
T Su
EEI SignalF | Freert I e Ealder, |
w1 Ger Insert Hew Model 3
EMR R nzert Mew Atom InputSignalz
M- 1| Thserhlew Feference OutputSignals

- TP Imeert Hew Set |nputP arameters
- A OutputParameters
ot 4
; . Parameters
w1 Gut Edt ’
@ I Sy ptions 3
Irterpret
Check
Check Al
Help

Model Browser context menus

Based on the Aggregate tab selection shown above, five different kinds of atoms are
available for insertion (Models can also be inserted, but within this Model we have
specified that the paradigm not allow any References or Sets). Note that connections
cannot be added using the Browser.

Similarly, several Edit options are available in the form of Undo, Redo, Copy, Paste,
etc. Sorting options alow for the all of the objects and their children to be sorted by
a specific style. The Options/Display submenu displays a dialog used for specifying

Generic Modeling Environment User's Manual Using GME 2000 « 23

the types of objects to be displayed in the Aggregate Tab. For example, the user can
choose not to view connections in the browser. Interpreting, Constraint Checking,
and context sensitive Help are also available.

Drag and drop isimplemented in the standard Windows manner. Multiple selection
items may serve as the source for Drag and Drop. Modifiers are important to note
for these operations:

* No modifier: Move operation

e Citrl: Copy (signified by "plus" icon over mouse cursor)

o Ctrl+Shift: Create reference (signified by link icon over mouse cursor)
» Alt: Create Instance (signified by link icon over mouse cursor)

* Alt+Shift: Create Sub Type (signified by link icon over mouse cursor)

If adrop operation fails, then adialog will indicate so. Drop operations can occur
within the Browser itself, allowing this to be an effective means to restructuring a
hierarchy. Drop operations can only be performed onto a Model or a Folder.

Model Browser and Interoperation

Double-clicking on any model in the tree (or pressing the Space Bar or Enter key
when amodel is selected) will open that model for editing in the graphical model
editor. Double-clicking an atom, reference or set, will open up the parent model,
select the given object and scroll the model, so that the object becomes visible.

Locking

Using the M S Repository backend, distributed multi-user accessis allowed to the
same project. To ensure consistency, GME 2000 implements a sophisticated locking
mechanism.

There are four different types of locks from the perspective of auser. An object can
be not locked, read-only locked, write-only locked or exclusively locked. When an
object is read-only locked, then other users may access the same object, but only in
read-only mode. The read-only lock guarantees that all information read from the
object is up-to-date and cannot be modified by other users while the lock is held.
When an object is write-only locked, then others can still access the same object
write-only, but not read-only or exclusively. The write-only lock guarantees that the
object is kept modifiable, while the write-only lock is held. It gives no guarantee,
however, that any information read from the object is up-to-date. Reference objects
are the prime reason for introducing the write-only lock. Multiple users must be
allowed to make references to the same target model. To make matters worse,
different users have different undo queues, possibly containing modificationsto the
same objects. Holding awrite-only lock on the target model and exclusive locks on
the referee objects solves this problem. Finally, an exclusive lock is equivalent to
holding read-only and write-only locks simultaneously.

In summary, an object is either not locked at all, read-only locked by afew users,
write-only locked by a few users, or exclusively locked by asingle user. Note that
the object lock states are visualized in the Model Browser with an additional icon
displayed next to the regular one.

Generic Modeling Environment User's Manual Using GME 2000 « 24

The Model Editor

The Editing Window

When amodel is selected for editing, an editor window opens up to allow editing of
that model. The editor window shows the contents of the selected model in one
aspect at atime.

System 1ol x|
T HName: ISyStem ICompDund Asped:ISignaIFIDwAsped 'l Base: IN.I"A

Properties
Attributes
FPreferences

Registry

Insert New Model »
Insert New Atom 4

oty Oin ‘E:ngi Insernt Mew Feference
4 Insert ew Set

Preprocessing Processing Shiow Basetype
Show Type

Copy
Paste

Faste Special 4
Delete

Interpret

Help

Atypical model editing window with an open context menu.

A typical model editing window is shown above. The status line near the top begins
with anicon indicating whether the current model is atype (T) or instance (1). Next
toitisafield indicating the model’s name — Sy st emin this case. Next to the
model’s name is the kind field, indicating the kind of model (e.g. Connect or ,
Conpound, Net wor k, etc.) being edited. Continuing to the right, the Aspect
field indicates that this model is being viewed in the Si gnal FI owAspect.
Remember, a model’ s appearance, included parts, and connection types can change
as different aspects are selected. Finally, the right side of the status line shows the
base type of thismodel in caseit isamodel type (if it is an archetype, it does not
have a base type, so the field shows N/A), or the type model in case the current
model is an instance.

GME Menus

On the GME Menubar, the following commands are available:
File: Project- and model-related commands.

The File menu is context-sensitive, with choices depending on whether or
not a paradigm definition file and/or project has been loaded and whether
there is at least one model window open. If no model window is open, the
following items show:

Generic Modeling Environment User's Manual Using GME 2000 « 25

New Project: Creates a new, empty project and allows registering a
new modeling paradigm (discussed in detail later).

Open Project: Opens an existing project from either a database or a
binary file with the .mga extension (discussed in detail later).

Close Project: Saves and closes the currently open project (if any).
Save Project: Savesthe current project to disk.
Save Project As: Savesthe current project with a new name.

Abort Project: Abortsall the changes made since last save and closes
project.

Export XML: GME 2000 uses XML (with a specific DTD) asa
export/import file format. This command saves the current project in
XML format.

Import XML: Loads a previoudly exported XML project file. Note that
the file must conform to the DTD specifications in the mga.dtd file. If
no paradigm is loaded, GME 2000 tries to locate and load the
corresponding paradigm definitions.

Update through XML: Allows updating the current model in case of
aparadigm change. If the user has a project open in one GME 2000,
while she modifies the metamodels in another GME 2000 and
regenerates the paradigm, this command allows updating the models by
automatically exporting toXML and importing from it. Note that any
changes that invalidate the existing models, for example deleting a
model kind that has instances in the project, will cause this operation to
fail. However, adding new kinds of objects, attributes, etc, or deleting
unused concepts will work.

Register Paradigms: Registers a new modeling paradigm (discussed
in detail later).

Register Component: Registers an interpreter DLL with the current
paradigm. A dialog box appears that makes it possible to register as
many interpreters as the user wishes.

Check All: Invokes the Constraint Manager to check all constraints
for the entire project.

Settings: Sets GME 2000-specific parameters. Currently, the only
supported option is to set the path where the icon files are located on
the current machine. The user can type in a semicolon separated list of
directories (the order is significant from left to right), or use the add
button in the dialog box to add directories one-by-one utilizing a
standard Windows File Dialog Box. Icon directories can be set for
system-wide use or for the current user only. GME 2000 searches first
in the user directories followed by the system directories.

Exit: Closes GME 2000.

Once amodel window is open, the following additional items become
available:

Run Interpreter: As mentioned earlier, model interpreters are used in
the GME to extract semantic information from the models. This menu

choice invokes the model interpreter registered with the paradigm using
the currently selected model as an argument. Depending on the specific

Generic Modeling Environment User's Manual

Using GME 2000 « 26

paradigm and interpreter, such an argument may or may not be
necessary. A submenu makes it possible to select an interpreter if there
is more than one interpreter available.

* Run Plug-Ins: Plug-ins are paradigm independent interpreters. This
command makes it possible to run the desired one.

» Check: Invokesthe Constraint Manager to check the constraints for
the current model.

* Print: Allowsthe user to print the contents of the currently active
window. It scales the contents to fit on one page.

* Print Setup...: Standard Windows functionality.

After a project has been loaded or created, the following menu items are
active:

Edit: Editing commands.

* Undo, Redo: Thelast ten operations can be undone and redone. These
operations are project-based, not model/window-based! The Browser,
Editor, and interpreters share the same undo/redo queue.

* Clear Undo Queue: Modelsthat can be potentially involved in an
undo/redo operation are locked in the database (in case of a database
backend, as opposed to the binary file format), so that no other user can
have write access to them. This command empties the undo queue and
clears the locks on object that are otherwise not open in the current
GME 2000 instance.

» Project Properties: Thiscommand displays a dialog box that makes
it possible to edit/view the properties of the current project. These
properties include its name, author, creation and last modification date
and time, and notes. The creation and modification time stamps are
read-only and are automatically set by GME 2000.

Items available only when a model window is open:

* Show Parent: Active when the current model is contained inside
another model. Selecting this option opens the parent model in a new
editing window.

* Show Basetype: Active when the current model is atype model but
not an archetype (i.e. it isnot aroot node in the type inheritance
hierarchy). This command opens the base type model of the current
model in an editing window.

* Show Type: Active when the current model is an instance model.
This command opens the type model of the current model in an editing
window.

» Copy, Paste, Delete, Select All: Standard Windows operations.

» Paste Special: A submenu makes it possible to paste the current
clipboard data as a reference, subtype or instance. Paste Special only
works if the data source is the current project and the current GME
2000 instance.

* Cancel: Used to cancel a pending connect/disconnect operation.

» Preferences: Shows the preferences available for the current model
(see detailed discussion in a separate section below).

Generic Modeling Environment User's Manual Using GME 2000 « 27

» Registry: Theregistry is a property extension mechanism: any object
can contain an arbitrarily deep tree structure of simple key-value pairs
of data. Selecting this menu item opens up asimple dialog box where
the current object’ s registry can be edited. Special care must be taken
when editing the registry, sinceit is being used by the GME 2000 GUI
to store visualization information and domain-specific interpreters may
useit too.

* Synch Aspects: The layout of objectsin an aspect isindependent of
other aspects. However, using this functionality, the layout in one
source aspect can be propagated to multiple destination aspects. A
dialog box enables the selection of the source and destination aspects.
The objects that participate in this operation can a so be controlled
here. The default selection is all the visible objectsin the source aspect
if none of them were selected in the editing window, otherwise, only
the selected ones. Two check boxes control the order in which objects
are moved. Thisisimportant in case objects compete for the same real
estate. Priority can be given to the selected objects and within the
selected objects the ones that are visible in the source aspect.

View: Allows the toggling on and off of the Toolbar, the Status Bar (bottom of the
main window), the Browser window, the Attribute Browser, and the Part Browser
window.

Window:

» Cascade, Tile, Arrange Icons: Standard Windows window
management functions.

Help:

e Contents: Accessesthe ISIS web server and shows the contents page
of this document.

* Help: Shows context-sensitive, user-defined help (if available) or
defaults to the appropriate page of this document. See detailsin a
subsequent section.

* About: Standard Windows functionality.

Annotations

GME 2000 provides annotations for attaching notes to your models. These multi-
line textual annotations are paradigm independent and available in al of your
models.

Annotations are not aligned to the model grid (as opposed to real modeling entities),
and they can overlap each other, but they are always lower in the Z-order than
normal objects. Like every model contained artifact, the visibility and position of
annotations are aspect dependent.

Creating Annotations

Y ou can create a new annotation in an opened model from the context menu (* Insert
Annotation’) if you right-click on an empty areain the model. GME generates a
name for your annotation, and normally there is no need to modify this. It also opens
the Annotations dialog where you can customize the text and appearance of your
comment.

Generic Modeling Environment User's Manual Using GME 2000 « 28

Editing Annotations

There are several methods for editing your annotations. Y ou can open the
Annotations dialog from the main menu bar (‘ Edit/Annotations’) or from the context
menu (‘ Annotations’). Y ou can also launch this dialog with double-clicking on one
of your annotations.

Name: |LIML Kind IParadingheet Role: |N£A
Hame | Tent | '~ Annatation
Annotationd On this diagram you can find the defi.. -
Apnatation Wie are using OCL for describing co... Name: [Annotationd
Annotation? ClazzCopies enable ug to descrbe o,
Teut: can find the definitian of

a UML model]

Color: I |
Background: | -

Farlt: |Ana|, 100, Bold _l

"isibiliby
Aszpect |

s [129
DEFAULT |
ClassDiagram e
O wizualization A8 I
[Constraints ™ Default Pos
O attributes

Cancel |

Annotation editor

On the left side of the dialog in the figure above all the annotations in the active
model are available. On the right-hand side panel you can customize the selected
commentary. The Name, Text, Color, Background and Font settings are self-
explanatory. The Visibility sub-panel enables you to fine tune the position and
visibility in an aspect based manner. All the aspects of the active model (and a
special DEFAULT aspect) are listed on the |eft side. The checkboxes represent the
visibility information in the proper aspect (if an annotation isvisiblein the
DEFAULT aspect, it isvisible in al the others, so in this case the other checkboxes
areirrelevant.) Inthe X and Y input boxes you can specify the position of your
annotation in a specific aspect (or the default position.) Y ou can aso clear (and set to
default) the position with setting the Default Pos check-box.

Implementation issues

Annotations are stored in the registry of the model. All the registry keys and
explanation of them can be found in the table below. The visualization of
annotationsis handled by custom decorator COM objects
‘Mga.Decorator.Annotator’), which use the very same infrastructure as other custom
drawing objects.

Generic Modeling Environment User's Manual Using GME 2000 « 29

/annotations Thisistheroot registry key for
annotations
/annotations/<AnnotationName> The value of this key isthe text of the
comment
/annotations/<AnnotationName>/color This key stores the text color of the
comment as a 24 bit hexadecimal
number
/annotations/<AnnotationName>/bgcolor This key stores the background color
of the comment as a 24 bit
hexadecimal number
/annotations/<AnnotationName>/font The encoded form of the specified font
(Win32 LOGFONT structure)
/annotations/<AnnotationName>/aspects The key stores the default position of
the annotation
/annotations/<AnnotationName>/aspects/* | If thiskey is defined the annotation is
visible in all aspects
/annotations/<AnnotationName>/aspects | If defined, the annotationisvisiblein
<AspectName> the specific aspect. If it containsa
position code, thiswill be the position
of your comment in this aspect.

Managing Paradigms

The Register Paradigm item in the File menu displays a dialog box where the user
can add or modify paradigms. This dialog box is also displayed as the first step of the
New Project command (see below).

Like other items recorded in the Windows registry, paradigms can be registered
either in the current user's own registry [HKEY_CURRENT_USER/Software/Mga
2000/Paradigms] or in the common system registry
[HKEY_LOCAL_MACHINE/Software/Mga 2000/Paradigmg]. If aparadigmis
registered in both registries, the per-user registry takes precedence. When changing
the registration of paradigmsit can be specified where the changes are to be
recorded. Non-administrator users on Windows 2000 systems generally do not have
write access to the system registry, so they can only change the per-user registration.

Paradigms are listed by their name, status, connection string and current version ID.
The name iswhat primarily identifies the paradigm. The statusis 'u' (user) or 's
(system) depending where the paradigm is registered. The connection string specifies
the database access information or the file name in case of binary files. Version ID is
the ID of the current generation of the paradigm.

The registry access mode is selectable in the lower right corner of the dialog box.

Pressing the "Add fromfile..." button displays afile dialog where the user can select
compiled binary files (.mta) or XML documents. It is possible to store paradigm
information in MS Repository aswell. The"Add from DB..." is used to specify
paradigms stored in a database, like MS Access.

Generic Modeling Environment User's Manual Using GME 2000 « 30

If the new paradigm specified was not yet registered, it will be added the list of
paradigms. If, however, the paradigm is an update to an existing paradigm, it will
replace the existing one, but the old paradigm is also kept as a previous generation.
(The only exception is when the paradigms are specified in their binary format (i.e.
not XML) and the file or connection name of the new generation corresponds to that
of the previous one.) Thisway existing models can still be opened with the legacy
paradigms they were created with. For new models, however, the current generation
isused always.

Paradigms can be unregistered using the Remove button. Note that the paradigm file
is not deleted.

Different generations of an existing paradigm can be managed using the Purge/Select
button. This brings up another dialog showing all the generations of the selected
paradigm. One option is to set the current generation, the one used for creating new
models. The other option allows unregistering or also physically deleting one or
severa of the previous generations. (Whether the files are deleted is controlled by
the checkbox in the lower right corner.)

IMPORTANT! New paradigm versions are not always compatible with existing
binary models. If amodel is reopened, GME offers the option to upgrade it to the
new paradigm. If the upgrade fails, XML export and re-import is needed (the
previous generation of the paradigm isto be used for export). XML isusualy the
more robust technique for model migration; it only failsif the changesin the
paradigm make the model invalid. In such a situation the paradigm should be
temporarily reverted to support the existing model, edited to eliminate the
inconsistencies, and then reopened with the final version of the paradigm.

New Project

Selecting the New Project item in the file menu displays the dialog box described in
the previous section. All the features mentioned are available, plus an additional
button, 'Create New...", which is used to proceed with the creation of a new project.

Once the desired paradigm is selected, pressing the OK button displays another small
dialog where the user can specify whether to store the new project in MS Repository
or abinary file. Pressing OK creates and opens a new blank project. At this point, the
only object available in the project is the root folder shown in the Model Browser.
Using the context menu (right-clicking the Project Name), the user can add folders
and other objects, as defined in the paradigm. Double-clicking amodel opensit up in
anew editor window.

Editor Operations

Using the editor window the user can edit the models graphically. Menus and editing
operations are context sensitive, preventing illegal model construction operations.
(Note, however, that even asyntactically correct model can be invalid semantically!)
This section gives a brief overview of common editor operations, such as changing
editing modes, creating and destroying models, placing parts, etc.

Editing Modes

The graphical editor has six editing modes — Normal, Add Connection, Delete
Connection, Set Mode, Zoom Mode and Visualization. The Editing Mode Bar,
located (by default) just to the left of the main editing window, is used to change
between these modes.

Generic Modeling Environment User's Manual Using GME 2000 « 31

Morrnal IT
iy | —— Add
Connection
Delete =———
Connection
&' | — Set Maode
Zoorm Fo

Gg” | =—— Yizualization

GME Editing Mode Bar

The figure above indicates the buttons used to select different editing modes. The
Editing Mode Bar is a dockable Windows menu button bar. It can be dragged to
different positions in the editor, floated on top of the editing window, or docked to
the side of the editor.

Normal Mode

Normal mode is used to add/del ete/move/copy parts within editing windows. Models
(from the Model Browser) and parts (from the Part Browser) may be copied by left-
click-dragging the objectsinto the editing window. Standard Windows keyboard
shortcuts (Ctrl-C to Copy, Ctrl-V to Paste) may also be used. A copy operation (the
default when dragging from the Part Browser) isindicated by the small “+” symbol
attached to the mouse cursor during the | eft-click-drag operation.

Parts and models may be moved and/or copied between models, too. Here, the
normal left-click-dragging operation causes a move operation instead of a copy. To
copy parts and models between or within models, hold down the Ctrl key before
dropping.

New parts and models are given a default name (defined in the modeling paradigm).
Right-clicking a part (even connection) brings up a context menu. Choose Properties
to edit/view an object’s properties. Choose Attributes to edit its paradigm-specific
attribute values.

Right-clicking on the background of a model window brings up another context
menu that makes it possible to insert any part that is legal in the current aspect of the
given model.

As mentioned earlier, reference parts act as pointers to objects, providing areference
to that part or model. References are created by holding down Ctrl-Shift while
dropping parts into a new model from another model window or from the Browser.
When dragging areference from the part browser it is not necessary to hold down
any keys because the source already specifiesthat areferenceisto be created. In this
case, however, anull reference is created since there is no target object specified
(similar to using the context menu to insert areference).

References can be redirected, i.e. the object they refer to can be changed. Simply
drop an object on top of an existing reference, and if the object kind matches, the
reference isredirected. Note that the type hierarchy places restrictions on this
operation as well (see later in the Type Inheritance chapter).

Subtypes and instances of models can be created by holding down Alt+Shift and Alt
keys respectively during the drop operation. Type inheritance is described in a
separate chapter.

Parts and models may be removed by left-clicking to highlight them, and either
selecting Delete from the Edit menu, or by pressing the Del keyboard key. Note that

Generic Modeling Environment User's Manual Using GME 2000 « 32

any connections attached to an object will also be deleted when that part or model is
deleted. Also remember that parts can only be deleted after all referencesto them
have already been deleted.

Add Connection Mode

This mode allows connections to be made between modeling objects. Connections
may exist between two atomic parts, between two model ports (think of these as
connection points on models), or between an atomic part and a model port.
Remember, however, that connections are a paradigm-specific notion and will only
be allowed between objects specified by the paradigm definition file as being
alowed to be connected together.

Remember that connections are inherently directional in nature. Connections are
made by first placing the editor in the Add Connection Mode, then left-clicking the
source object, followed by left-clicking on the destination object.

It is not necessary to go to this mode to create a connection. Instead, in Edit mode
right clicking on the desired source of a new connection and selecting Connect in the
context menu changes the cursor to the connect cursor. A connection will be made to
the object that iseft clicked next. (Or by selecting the Connect command on the
destination object aswell.) Note that any other operation, such as mode change,
window change, new object creation, cancels the instant connection operation.

Remove Connection Mode

By placing the graphical editor in the Remove Connection Mode, connections
between objects can be removed by simply left-clicking on the connection itself or
the source and/or destination parts.

Set Mode

Set parts are added to amodel just like any other part. However, their members can
only be specified when the editor isin Set Mode. Once the editor isin this mode,
right-clicking a set will cause all parts (even connections) in the model that are not
part of the given set to be “grayed out.” Left-clicking object toggles their
membership in the set. Asthey are added/removed to the set, they regain/lose their
color and appearance.

Zoom Mode

The Zoom Mode allows the user the view the models at different levels of
magnification. The supported range is between 10% and 300%. Left clicking
anywhere in amodel window zooms in, while right-clicking zooms out. The zoom
level is window-specific.

Visualization Mode

The Visualization Mode alows single objects and collections of objects
(“neighborhoods’ of objects) to be visually highlighted with respect to other
modeling objects. Thisis useful when examining and/or discussing complex models.

To enter the Visualization Mode, select the Visualization Mode button on the GME
editing mode bar (see picture above). Thiswill cause all visible parts and
connections to become “grayed out.” Next, the user may click on objects using either
the left or right mouse buttons to make them fully visible again. Left- and right-
clicking have different effects, as described below.

Generic Modeling Environment User's Manual Using GME 2000 « 33

Left-clicking on any part toggles the visibility of the object. For connections, their
source and destination objects are toggled. The user may continue to select partsin
this manner, highlighting/hiding more and more objects. Right-clicking on a part will
toggle the visibility of the object and the objects at the ends of its connections. Note
that exactly those connections are highlighted at any one time that connect
highlighted objects.

Miscellaneous operations
The following operations are only accessible from the toolbar:

* Toggle grid: At zoom levels 100% or higher a grid can be displayed in
the model editor window. GM E objects always snap to thisfine grid,
whether they are visible or not, to facilitate alignment of the objects.

* Refresh: Clicking the paintbrush button forces GME 2000 to repaint all
the windows.

In the current model editing window there is a selected list of objects highlighted by

little frames. Using the Arrow keys on the keyboard, these objects can be nudged by

one grid cell in the selected direction, provided that there are no collisions. Note that
GME 2000 does not allow overlapping objects.

Connectionsin GME 2000 are automatically routed. The user only needs to specify
the end points of a connection and an appropriate route will be automatically
generated that will avoid all objects and try to provide a visually pleasing connection
layout.

The built-in context-sensitive help functionality is described in the next section.

Help System

GME 2000 provides context-sensitive, user-defined help functionality. Thisis
facilitated by the “Help URL" preference of objects. This preference isinherited
from the paradigm definition and through the type inheritance hierarchy exactly like
any other object preference. For more information on this inheritance, see the
separate chapter on type inheritance.

When the user selects help on a context menu or the Help menu Help item for the
current model (also the F1 key), GME 2000 looks up the most specific help URL
available for the given object. If no help URL isfound, the program defaults to the
appropriate section of the User's Manual located on the |SIS web server.

When the appropriate URL islocated, GME 2000 invokes the default web browser
on the current machine and displays the contents of the URL. If no network
connection is available, the help system will be unable to display the information
unless the web server is running on the current machine or the URL refersto alocal
file

Constraint Manager

GME 2000 includes an integrated Constraint Manager (CM) component. The task of
the CM isto enforce the constraints that the given paradigm contains. All the

Generic Modeling Environment User's Manual Using GME 2000 « 34

constraints are checked when the user initiates constraint checking through the File
menu or the toolbar. The Check item and the checkmark looking toolbar button
checks all the constraint that correspond to the current model (i.e. the one being
shown in the currently active window). The Check All item makes the CM check all
the constraints for all the objectsin the project.

Constraints can also be associated with one or more events, such as Attribute
Change, Close Model etc. When this events occur, the CM checks al the constraints
that are registered for the given event for the object that caused the event.

Each constraint has a priority. The priority controls the order of constraint
evaluation. Higher priority constraints are checked first. The priority also controls
what action istaken if aconstraint is violated. If the priority is the highest (1) then an
error message is displayed and the current transaction is aborted. In other words the
operation that caused the violation is aborted, the models remain consistent with the
constraint. If the priority is smaller (i.e. greater than 1), the user gets awarning
message and she can choose to continue evaluating constraints, skip the remaining
congtraint or abort the transaction.

Constraints are specified as part of the meta representation. The constraint
specification contains the constraint equation written in MCL, alanguage based on
the Object Constraint Language (OCL), the priority, a short description of the
congtraint that is displayed as part of the error/warning message in case of a
violation. For adetailed description of MCL, see Appendix B.

Generic Modeling Environment User's Manual Using GME 2000 « 35

Type Inheritance

Type Inheritance Concepts

The type inheritance concepts in GME 2000 closely resemble those of object-
oriented programming languages. The only significant difference is that in GME,
model types are similar in appearance to model instances; they too are graphical,
have attributes and contain parts. By default, amodel created from scratch isatype.
A subtype of amodel type can be created by dragging the type and dropping it while
pressing the ALT+SHIFT key combination. An instance is created in similar manner,
but only the ALT key needs to be used.

A subtype or an instance of amodel type depends on the type. There isone
significant rule that is different for subtypes and instances. New parts are allowed in
a subtype, but not in an instance. Otherwise, parts can be renamed, set membership
can be changed, and references can be redirected in both subtypes and instances.
Parts cannot be deleted and connections cannot be modified in either subtypes or
instances.

Any modification of partsin atype propagates down the inheritance hierarchy. For
example, if apart is deleted in atype, the same part will be automatically deleted in
all of itsinstances and subtypes and instances of subtypes all the way down the
inheritance hierarchy.

Types can contain other types as well as instances as parts. The mixture of
aggregation and type inheritance introduces another kind of relationship between
objects. Thisis best illustrated through an example. In the figure below, there are two
root type models: the Engine and the Car. The car contains an instance of an engine,
V6, and an ABS type model. V6 is an instance of the Engine; thisrelationship is
indicated by the dash line. Aggregation is depicted by solid lines.

Generic Modeling Environment User's Manual Type Inheritance « 36

Engine “ My Car

ABSX]

Type

ST SubType

I Instance
—> Aggregation
...» Dependency

V6 ABSi

Model Dependency Chains

When we create a subtype of the Car (Cool Car above), we indirectly create another
instance of the Engine (V6) and a subtype of the ABS type. Thisisthe expected
behavior as a subtype without any modification should ook exactly like its base
type. Notice the arrow that points from V6 in Cool Car to V6 in Car. Both of these
are instances, but there is a dependency between the two objects. If we modify V6 in
Car, V6 in Cool Car should also be modified automatically for the same reason: if
we don't modify Cool Car it should always look like Car itself. The same logic
appliesif we create an instance of Cool Car (My Car above). It introduces a
dependency (among others) between V6 in My Car and V6 in Cool Car. Asthe
figure shows, this forms a dependency chain from V6 in My Car through V6 in Cool
car and V6 in Car al the way to the Engine type model.

What happens if we modify V6 in Cool Car by changing an attribute? Should an
attribute change in V6 in Car propagate down to V6 in Cool Car and below? No, that
attribute has been overridden and the dependency chain broken with respect to that
attribute. However, if the same attribute is changed in V6 in Cool Car, that should
propagate down to V6 in My Car unlessit has already been overridden there. The
same logic applies to preferences.

The figure below shows the same set of models, but only from the pure type
inheritance perspective.

Generic Modeling Environment User's Manual Type Inheritance « 37

T
ABS Car

’ ABSXEW ABSi

1
Cool C% A Car

1
T 1
ABSX] My Car

““““ > InstanceOf
—> SubTypeOf

Engine

V6 V6 V6 V6

Type Inheritance Hierarchy

Let's summarize the rules of type inheritance in GME 2000.

Parts cannot be deleted in subtypes or instances.
Parts can be added in subtypes only.

Part changes in atype model propagate down the type inheritance
hierarchy unconditionally.

Aggregation and type inheritance introduce dependency chains between
models.

Attribute and preference changes, set membership modification and
reference redirection propagate down the dependency chain. If a
particular setting has been overridden in a certain model in the
dependency chain, that breaks the chain for that setting. Changesup in
the chain do not propagate to the given model or below.

Therulesfor reference redirection are as follows. A null referencein a
type can be redirected in any way that the paradigm allows down the
dependency chain. A referenceto atype in atype model can only be
redirected to subtypes or instances of the referred-to type or any
instances of any its subtypes. A reference to an instance model in atype
model cannot be redirected at all down the hierarchy. Obviously, a
reference in an archetype can be redirected in any way the paradigm
alows.

To avoid multiple dependency chains between any two objects, in
version 1.1 or older, only root type models could be explicitly derived
or instantiated. This restriction has been relaxed. Now, if none of atype
model’ s descendants and ascendants are derived or instantiated, then
the model can be derived or instantiated. This means, for example, that
amodel, that has nor subtypes or instances itself, can contain a model
type AND itsinstances. This relaxed restriction still does not introduce
multiple dependency chains.

Generic Modeling Environment User's Manual Type Inheritance « 38

Attributes and Preferences

The attributes and the preferences dialog boxes each show a checkbox next to each
attribute or preference. This box controls the propagation of the settings. If the
checkbox is off, the control is read-only and shows the inherited value. If it is on, the
user can type in or select the value for the attribute or preference. Turning the box off
resets the attribute/preference to the inherited value.

References and Sets

As mentioned before, references can be redirected (with some restrictions) and set
membership can be changed in subtypes and instances. The propagation of settings
along the dependency chain is true here too. Instead of an explicit checkbox like with
attributes and preferences, simply changing the settings breaks the dependency chain
for the given object. However, the setting can be easily reset by selecting the Reset
item in the appropriate context menu.

References can also be reset to null by using the Clear item in the context menu.
However, thisisonly allowed if the container model is an archetype or if the
inherited value of the referenceis null itself (otherwise it would violate the rules of
inheritance in GM E 2000).

Generic Modeling Environment User's Manual Type Inheritance « 39

Libraries

Model library support

Starting with v 2.0, GME supports model libraries, an important mechanism for
reusing design artifacts. Libraries are ordinary GME projects; indeed every GME
project (including the ones that import libraries themselves) can be imported in a
project asalibrary. The only prerequisite isthat both the library and the target
project are based on the same version of the same paradigm.

When alibrary isimported, it is copied into the target project in whole, so that the
root folder of the library becomes an ordinary (non-root folder) in the target The
copy isindicated with a special flag that warrants read-only accessto this part of the
target project.

The primary way of using librariesis to create subtypes and instances from the
library objects. It is also possible to refer library objects through references. Apart
from being read-only, objectsimported through the library are equivalent to objects
created from scratch.

Library objects can easily be recognized in the tree browser. The library root is
indicated with a special icon, and if the browser displays accessicons, al library
objects are marked to indicate read-only access.

Toimport alibrary in a project, the 'Attach library...' function of the browser context
menu is used. Evidently, it is possible to attach libraries to folders only. The folder
that receives the library must be alegal container in the root folder according to the
paradigm. Since many paradigms do not allow the root folder to be instantiated at
other pointsin the model tree, the root folder of any project is exempt from thisrule,
i.e. itispossible to attach alibrary to the root folder even if the paradigm does not
alow that.

If the original library project changes, it is not automatically reflected in the projects
that import it. It is possible, however, to refresh the imported library images through
the 'Refresh library...' function in the browser context menu. It is possible to specify
an dternate name for the library, in case it has been moved, for example.

When alibrary is refreshed, changes in the library are propagated to the library
image and to the subtypes and instances created from the library objects. During this
process, complex scenarios can occur. First, objects may have been deleted from the
library, which means that images of these objects and associations (references,
connections) to them need to be deleted. Another typical case is when an association
is changed in the library, which requires changing of the associations that depend on

Generic Modeling Environment User's Manual Libraries « 40

the changed object, and may also require changing other associations (like
connections going through references) as well.

Generally, it isrecommended to carefully check the models after a refresh operation,
especialy if non-trivial changes were applied to the library. Mapping the old and
new library objectsis based on the relative ID-s (RelID-s). Relative | D-s are unique
identifiers of objects belonging to the same parent (i.e. folder or model). When an
object is deleted, its RellD is not reused for along time (until the RellD space of
about 100 million is not running out), so it is practically safe to identify objects by
RellD-s. The identification based on Rell D-s works sufficiently by itself in most
cases. There may be exceptional situations, however, when RellD-s need to be
manually changed to provide a suitable mapping (e.g. when an object is
inadvertently deleted from alibrary, and must be restored manually). The object
'Properties..' dialog boxes (available through the context menu) can be used to
manually change individual object RellD-s. (When changing RellD-s, be aware that
setting RellD-sincorrectly may corrupt awhole project.)

Generic Modeling Environment User's Manual Libraries « 41

Decorators

Introduction

GME 2000 v1.2 and later implements object drawing in a separate plugable COM
module making domain-specific visual representation areality. In earlier versions of
GME one could only specify bitmap files for objects. This method is still supported
by the default decorator component shipped with GME 2000.

Replacing the default implementation basically consists of two steps. First we have
to create a COM based component, which implements the IMgaDecorator COM
interface. Second, we have to assign this decorator to the classes in our metamodel
(or for the objects in our model(s) if we want to override the default decorator
specified in the metamodel).

GME instantiates a separate decorator for each object in each aspect, so we have to
keep our decorator code as compact as possible. Decorator components always have
to be in-process servers. Using C++, ATL or MFC is the recommended way to
develop decorators.

The IMgaDecorator interface

The following diagram shows the method invocation sequence on the
IMgaDecorator interface. Understanding the protocol between GME and the
decorators is the key to developing decorators. All the methods on the decorator
interface are called by GME (there is no callback mechanism). The direction column
in the diagram shows the direction of the information flow.

GME always calls your methodsin aread-only MGA transaction. Y ou must not
initiate new transactions in your decorator. SaveState() method is the only exception
to thisrule. Thismethod is called in a read-write transaction, therefore, thisisthe
only place where you can store decorator specific information in the MGA project.

Generic Modeling Environment User's Manual Decorators « 42

GME | Dir | Decorator

decorator class constructor
GetFeatures([out] features)
SetParam([in] name, [in] value)
GetParam([in] name, [out] value)

!

Initialize([in] mgaproject, [in] mgametapart, [in] mgafco)
GetPreferredSize([out] sizex, [out] sizey)

GetPorts([out] portFCOs)

SetLocation([in] sx, [in] sy, [in] ex, [in] ey)
GetPortLocation([in] fco, [out] sx, [out] sy, [out] ex, [out] ey)
GetLabelLocation([out] sx, [out] sy, [out] ex, [out] ey)
GetLocation([out] sx, [out] sy, [out] ex, [out] ey)
SetActive([in] isActive)

Draw([in] hDC)

SaveState()

Destroy()

U8 R RO U I IR U I I I R

IMgaDecorator Functions
HRESULT GetFeatures([out] feature_code *features)

This method tells GME which features the decorator supports. Available feature
codes are (can be combined using the bitwise-OR operator):

F_RESIZABLE : decorator supports resizable objects
F_MOUSEVENTS : decorator handles mouse events

F HASLABEL : decorator draws labels for objects (outside of the object)
F HASSTATE : decorator wants to save information in the MGA project
F_HASPORTS : decorator supports portsin objects

F_ANIMATION : decorator expects periodic calls of its draw method

HRESULT SetParam([in] BSTR name, [in] VARIANT value)

If there are some parameters specified for this decorator in the meta model, GME
will call this method for each parameter/value pair.

HRESULT GetParam([in] BSTR name, [out] VARIANT *value)

The decorator needs to be able to give back all the parameter/value pairs it got with
the SetParam(...) method.

HRESULT Initialize([in] IMgaProject* project, [in] IMgaMetaPart * meta, [in]
IMgaFCO *obj)

Thisisyour constructor like function. Read all the relevant data from the project and
cache them for later use (it is a better approach than querying the MGA project in

Generic Modeling Environment User's Manual Decorators « 43

your drawing method all thetime). GME will instantiate a new decorator if its MGA
object changes.

HRESULT GetPreferredSize([out] long* sizex, [out] long* sizey)

Y our decorator can give GME a hint about the size of the object to be drawn. You
can compute this information based on the inner structure of the object or based on a
bitmap size, or even you can read these values from the registry of the object.
However, GME may not take this information into account when it calls your

Setl ocation() method. All the size and location parameters are in logical units.

HRESULT GetPorts([out, retval] IMgaFCOs ** portFCOs)

If your decorator supports ports, it should give back a collection of MGA objects that
are drawn as ports inside the decorator. GME uses this method along with successive
calls on GetPortLocation() to figure out where can it find port objects.

HRESULT SetLocation([in] long sx, [in] long sy, [in] long e, [in] long ey)

Y ou have to draw your object exactly to this position in thissize. Thereisno
exemption to this. GME always calls this method before Draw().

HRESULT GetPortLocation([in] IMgaFCO *fco, [out] long *sx, [out] long *sy,
[out] long *ex, [out] long *ey)

See description of GetPorts(). Position coordinates are relative to the parent object.

HRESULT GetL abelLocation([out] long *sx, [out] long *sy, [out] long *ex, [out]
long *ey)

If you support label drawing, you have to specify the location of the textbox of your
label. This can reside outside of the object. GME will call Setlocation() before this
method.

HRESULT GetLocation([out] long *sx, [out] long *sy, [out] long *ex, [out] long
*ey)
Return the coordinates you got in SetLocation().

HRESULT SetActive([in] VARIANT _BOOL isActive)

GME calls this method with VARIANT_FALSE, if your object must be shown in
gray color. (Eg.: GME was switched into “set” mode.) By default the decorator
should paint its object with the active color.

HRESULT Draw([in] HDC hdc)

Y ou have all the required information when this method is called. Because a
Windows HDC is supplied, the decorator has to be an in-process server. Saving and

Generic Modeling Environment User's Manual Decorators « 44

restoring this DC in the beginning and at the end of your Draw() method is highly
recommended.

HRESULT SaveState()

Because thisis the only method your decorator isin read-write transaction mode, it
has to backup all the permanent data here.

HRESULT Destroy()

A destructor like function. Releasing here all your MGA COM pointersis a good
practice.

Using the Decorator skeleton

Y ou can find a decorkit.zip file in the GME 2000 distribution. It contains a skeleton
project for Visual C++ that implements a dumb decorator. Modifying the
DecoratorConfig.h file would be your first step when using the skeleton.

Assigning decorators to objects

Y ou can assign decorators to objects in your meta model or even later in your
model(s). In the MetaGM E2000 environment there is a Decorator attribute for each
non-connection FCO where you can specify a Progl D along with optional
parameter/value pairs for a class. The format of this string is as follows:

Progl D paraml=val uel, paran=val ue2,
eg.

MGA. Decor at or . Met aDecor at or showat t ri but es=f al se,
showabstract =true

In your models all the non-connection FCOs have a preference setting called
Decorator. The format of this string is identical to the one in the meta model.

Generic Modeling Environment User's Manual Decorators « 45

Metamodeling Environment

Introduction

The metamodeling environment has been extended with a new decorator component
inversion 1.2 or later. It displays UML classes including their stereotypes and
attributes. Proxies also show thisinformation It resizes UML classes accordingly.
Note that the figures below show the old appearance of metamodels.

Version 1.2 adds a new MCL syntax checker add-on to the metamodeling
environment. Every time a constraint expression attribute is changed, this add-onis
activated. Note that the target paradigm information is not available to this tool,
therefore, it cannot check arguments and parameters, such as kindname. These can
only be checked at constraint evaluation time in your target environment.

Step by step guide to basic metamodeling

The following sections describe the concepts that are used to model the output
Paradigm.

Paradigm

The Paradigm is represented as the model that containsthe UML class diagram. The
name of the Paradigm model is the name of the paradigm produced by the
interpreter. The attributes of the Paradigm are Author Information and Version

I nfor mation.

Folder

A Folder isrepresented asa UML class of stereotype «folder». Folders may own
other Folders, FCO’s, and Constraints. Once a Folder contains another container, it
by default contains all FCO’s, Folders, and Constraints that are in that container.
Folders are visualized only in the model browser window of GME 2000, and
therefore do not use aspects. A Folder has the Displayed Name, and In Root
Folder attributes.

Generic Modeling Environment User's Manual Metamodeling Environment « 46

How to specify containment for a Folder

Folder containment appliesto Folders and Models that may be contained in a Folder.

In the figure below, the UML diagram outlines the containment scheme of a
paradigm for a sports season. To specify containment for a Folder, follow these

steps.

Create the Folder and item it contains (through insertion, or dragging from the parts
menu)

Connect the item to the Folder

Now, the Folder contains the item.

Baseball Baskethall
<<folder>> - «<folder>>»

+

Game
L<model>>

AllStarGame L Fostseason
«<folder>»> <<folder>>

Example of a Folder containment

FCO

Thisisaclassthat is mandatorily abstract. The purpose of this classisto enable
objects that are inherently different (Atom, Reference, Set, etc.) to be able to inherit
from a common base class.

To avoid confusion with the generalization of modeling concepts (Model, Atom, Set,
Connection, Reference) called collectively an “FCQO”, and thiskind of object in the
metamodeling environment which is called an “FCO”, the metamodeling concept
(that would actually be dragged into a Paradigm model) will be shown in regular
font, while the generalization of typeswill beinitalicsas FCO. An FCO hasthels
Abstract and General Preferences attributes. All FCO-swill also have these
attributes.

How to create an FCO

An FCO (like all FCO-9) is created by dragging in the atom corresponding to its
stereotype, or inserting the atom through the menu.

Generic Modeling Environment User's Manual Metamodeling Environment « 47

How to specify an Attribute for an FCO
Create and configure the Attribute and the FCO.
Connect the Attributeto the FCO

Now, the Attribute belongs to the FCO.

Atom

This class represents an Atom. The Atom is the simplest kind of object in one sense,
because it cannot contain any other parts; but it is complex to define because of the
many different contributionsit can make to aModel, Reference, etc.

An Atom has the | con Name, Port | con Name, and Name Position attributes.

How to set that an Atom is a Port
Configure the Atom to be a member of a M odel

Click on the attributes of the Containment association between the Atom and the
M odel

Assert the Object IsA Port attribute.

Reference

To represent a Reference class, two things must be specified: the FCO to which this
Reference refers, and the Model to which the Reference belongs. A Reference has
the Icon Name and Name Position attributes.

How to specify containment of a Reference in a Model

Connect the Refer ence to the M odel

Resolve the prompt for connection type as “Containment”.

How to specify the FCO to which a Reference refers
Connect the Reference to the FCO.

If the FCO is of type Model, an additional prompt is displayed (exactly the same as
when giving ownership to the Model asin the previous step). Thistime, choose the
“Refer” type of connection. If the FCO isnot of type Model, then no additional
input is necessary.

When specifying the roles to which a Reference may refer (that is, if the referred
FCO may play more than one kind of role in a particular Model), the current solution
isthat it may refer to all roles of that particular kind. However, in the future, thislist
may be modified during paradigm construction through the help of an add-on.

Generic Modeling Environment User's Manual Metamodeling Environment « 48

Do
<<model>>

Fainter
- <<reference>>

o.r

Tree
L{atom>>»

Example implementation of a Reference.

Connection

In order for a Connection to be legal within aModel, it must be contained through
aggregation in that Model. The Connection is another highly configurable concept.
The attributes of a Connection include Name Position, 1% destination label, 2™
destination label, 1% sour ce label, 2™ source label, Color, Linetype, Lineend,
and Line Start.

How to specify a connection between two Atoms

In addition to Atoms, a Reference to an Atom may also be used as an endpoint of the
Connection. Note that Connection is also usable as an endpoint, but there is
currently no visualization for this concept.

Drag in aConnector Atom (the name of the Connector was deleted in the example
figure)

Connect the source Atom to the Connector

Connect the Connector to the destination Atom

Connect the Connector to the Connection. Resolve the Connection type to
“AssociationClass’

The rolenames of the connections (“src” and “dst”) denote which of the Atoms may
participate as the source or destination of the connection. There may be only one
source and one destination connection to the Connector Atom.

Inheritance is a useful method to increase the number of sources and destinations,
since al child classes will also be sources and destinations.

Currently, al possible FCO source/destination combinations will be used in the
production of the metamodel. However, in future revisions of the metamodeling
environment, the list of allowable connections may be modified at model building
time (to eliminate certain possibilities from ever occurring).

Generic Modeling Environment User's Manual Metamodeling Environment < 49

Thing1

£Latom>>

dst

Broom : i
I ' Thing2
<<connection»> L<atma>>

Example of a Connection

Set

The Set isamore general case of the Reference. Sets have the Icon name, and
Name Position attributes.

Figure 4 shows an example implementation of a Set. The members of the Set are
“owned” by the Set through the “ SetMembership” connection kind (when connecting
the Reference to the Set, the user will be prompted to choose between the
“SetMembership” and “ReferTo” connection kinds). Some underlying assumptions
exist here, such as all members of the Set must be members of the Model to which

this set belongs.
Model "
<<model>> *
- Atom
- «€atom>
+
Reference
<<reference>>»
€€gat3>
Model
£<model>>
Set

Example implementation of a Set

How to specify what FCO-s a Set “Owns”

Connect the FCO to the Set Atom. In the event of an ambiguity, resolve it with the
SetM ember ship connection type.

Generic Modeling Environment User's Manual Metamodeling Environment ¢ 50

Make sure to aggregate the Set to the M odel in which it will reside.

Model

The Model may contain (through the “Containment” connection type) any other
FCO, and it associates a role name to each FCO it contains. The Model has the
Name Position and In Root Folder attributes.

How to contain a Model (Model-1) in a Model (Model-0)
Connect Model-1 to Model-0

Note that it is applicable to have a Model contain itself (the previous case where
Model-1 == Model-0).

How to contain an Atom in a Model

In the event that an FCO is used as a superclass for the Model, then FCO may
replace Model in the following sequence. Atom may be replaced by Set, Reference,
or Connection.

Create and configure the Atom and the M odel
Connect the Atom to the M odel

Attributes

Attributes are represented by UML classes in the GME metamodeling environment.
There are three different kinds of Attributes. Enumerated, Field, and Boolean. Once
any of these Attributes are created, they are aggregated to FCO-sin the Attributes
Aspect. The order of attributes an FCO will have is determined by the relative
vertical location of the UML classes representing the attributes.

Inheritance

Inheritance is standard style for UML. Any FCO may inherit from an FCO kind of
class, but an FCO may inherit only from other FCO’s. Kinds may inherit only from
each other (e.g. Model may not inherit from Atom). When the classis declared as
abstract, then it is used during generation, but no output FCO is generated. No class
of kind FCO is ever generated.

When multiple-inheritance is encountered, it will always be treated asiif it were
virtual inheritance. For example, the classic diamond hierarchy will result in only
one grandparent class being created, rather than duplicate classes for each parent.

How to Specify Inheritance

It is assumed that Child and Parent are of the same kind (e.g. Atom, Model). FCOis
used in this example, for brevity, but note that any FCO may participate in the Child
role, if the Parent is of kind FCO. Else, they must match.

Connect the Parent FCO to the I nheritance Atom. This creates a superclass.
Connect the I nheritance atom to the Child FCO. This createsthe child class.

Generic Modeling Environment User's Manual Metamodeling Environment ¢ 51

Aspect

This set defines the visualization that the Models in the destination paradigm will
use. Models may contain Aspects through the “HasAspect” connection kind. Thisis
visualized using the traditional UML composition relation using afilled diamond.
FCOs that need to be shown in the an aspect must be made members of the given
Aspect set.

GME 2000 supports aspect mapping providing precise control over what aspect of a
model is shown in an aspect of the containing model. Thisis advanced rarely-used
usually feature istypically applied in case a container and a contained models have
digoint aspect sets. Specifying aspect mapping would be to cumbersomein a UML-
like graphical language. The metamodeling interpreter allows specifying this
information in a dialog box (described in detail later).

Constraints

Congtraints may be specified as owned by a particular kind of FCO. This means that
thereis a certain amount of scope granted to the checking of the constraint. Any
constraint not owned by a Folder or FCO is attributed to the paradigm.

Congtraints are aggregated to FCO-s and Folders in the Constraints Aspect.

Note that constraint functions are also supported. These represent MCL constraint
equations that can be reused in constraint expressions.

Composing Metamodels

The new composable metamodeling environment released with GME 2000 v1.1,
supports metamodel composition. First, it supports multiple paradigm sheets. Unlike
most UML editors, where boxes representing classes are tied together by name,

GME 2000 uses references. They are called proxies. Any UML class atom can have
multiple proxies referring to it. These references are visualized by a curved arrow
inside the regular UML classicon. The atom and all its proxies represent the same
UML class.

New operators

In addition to improving the usability of the environment and the readability of the
metamodels, the primary motivation behind composable metamodeling is to support
the reuse of existing metamodels and, eventually, to create extensive metamodel
libraries. However, this mandates that existing metamodels remain intact in the
composition, so that changes can propagate to the metamodels where they are used.

The above requirement and limitations of UML made it necessary to develop three
new operators for use in combining metamodels together: an equivalence operator,
an implementation inheritance operator, and an interface inheritance operator.

Equivalence operator

The equivalence operator is used to represent the (full) union between two UML
class objects. The two classes cease to be two separate classes, but form asingle
classinstead. Thus, the union includes al attributes and associations, including
generalization, specialization, and containment, of each individual class. Equivalence
can be thought of as defining the “join points” or “composition points’ of two or
more source metamodels.

Generic Modeling Environment User's Manual Metamodeling Environment ¢ 52

Implementation inheritance operator

The semantics of UML specialization (i.e. inheritance) are straightforward:
specialized (i.e. child) classes contain al the attributes of the general (parent) class,
and can participate in any association the parent can participate in. However, during
metamodel composition, there are cases where finer-grained control over the
inheritance operation is necessary. Therefore, we have introduced two new types of
inheritance operations between class objects—implementation inheritance and
interface inheritance.

In implementation inheritance, the subclass inherits al of the base class' attributes,
but only those containment associations where the base class functions as the
container. No other associations are inherited. |mplementation inheritance is
represented graphically by a UML inheritance icon containing a solid black dot.

This can be seen in the left hand side diagram in the figure below, where
implementation inheritance is used to derive class X1 from class B1. In thiscase, X1
the association allowing objects of type C1 to be contained in objects of type B1. In
other words, X 1-type objects can contain C1-type objects. Because B1-type objects
can contain other B1-type objects, X 1-type objects can contain objects of type B1
but not of type X 1. Note that D1-type objects can contain objects of type B1 but not
objects of type X1.

Interface inheritance operator

Theright side of the figure shows interface inheritance between B2 and X2 (the
unfilled circle inside the inheritance icon denotes interface inheritance). Interface
inheritance alows no attribute inheritance but does alow full association inheritance,
with one exception: containment associations where the base class functions as the
container are not inherited. Therefore, in this example, X 2-type objects can be
contained in objects of type D2 and B2, but no objects can be contained in X2-type
objects, not even other X2-type objects.

The union of implementation inheritance and interface inheritance is the normal
UML inheritance. It should also be noted that these operators could have been
implemented using UML stereotypes. However, interface and implementation
inheritance are semantically much closer to regular inheritance than to associations.
Therefore, the use of association with stereotypes would be misleading.

B1 C1 B2 cZ
<<model>> " <<model>> <<model>> [* <<model>>
m) D2
<<model>> <<model>>
1 w2
<<model>> <<model>>

Implementation and interface inheritance operators

Aspect equivalence

Since classes representing Aspects show up only in the Visualization aspect, another
new operator is used to express the equivalence of aspects, called the SameAspect
operator. While aspects can have proxies as well, they are not sets any more; they are

Generic Modeling Environment User's Manual Metamodeling Environment ¢ 53

references. Hence, they cannot be used to add additional objectsto the aspect. In this
case, a new aspect needs to be created. New members can be added to it, sinceitisa
set. Using the SameAspect operator and typically a proxy of another aspect, the
equivalence of the two aspects can be expressed.

Note that having two aspects with the same name without explicitly expressing the
equivalence of them will result in two different aspect in the target modeling
paradigm.

The name of the final aspect is determined by the following rules. If an equivalence
is expressed between a proxy and a UML class, the name of the classis used. If one
of them is abstract and the other is not, the name of the non-abstract class (or proxy)
isused. If both aspects are proxies (or classes), then the name of the SameAspect
operator is used.

Currently, the order of aspectsin the target paradigm is determined by the relative
vertical position of the aspect set icons in the metamodels.

Folder equivalence
The equivalence of folders can be expressed using the SameFolder operator.

Generating the Target Modeling Paradigm

Once the Paradigm Model is complete, then comes time to interpret the Model.
Interpretation can be initiated from any model. After extensive consistency checking,
the interpreter displays a dialog box where aspect mapping information can be
specified.

Aspect Mapping

The dialog box contains as many tabs as there are distinct aspectsin the target
environment. Under each tab alistbox displays all possible model-role combinations
in the first column. The second column presents the avail able aspects for the given
model and model reference (i.e. in the specified role) in a combo box. The default
selection is the aspect with the same name as the container models aspect. For all
other FCOs (atoms, sets, connections) this files shows N/A.

The third column is used to specify whether the given the aspect is primary or not for
the given FCO (i.e. in the specified role). In a primary aspect, the given FCO can be
added or deleted. In a secondary aspect, it only shows up, but cannot be added or
deleted.

Note that al the information provided by the user through this dialog box is
persistent. It is stored in the metamodel, in the registry of the corresponding objects.
A subsequent invocation of the interpreter will show the dialog box with the
information specified by the user the previous time.

Attribute Guide

Each attribute of any given FCO in the Metamodeling environment has a specific
meaning for the output paradigm. This section describes each attribute, and lists the
FCO(s) in which the attribute resides. Attributes are listed by the text prompted on

Generic Modeling Environment User's Manual Metamodeling Environment 54

the screen for their entry. The section also gives what special instructions (if any)
are necessary for filling out the attribute.

For fields, if the default value of thefield is“”, then no default valueis specified in
the description. All other attributeslist the default value.

1% source label

String value that gives the name of the Attribute class to be displayed there. The
Attribute should also belong (through aggregation) to the Connection. Then, the
value of that Attribute will be displayed in the first position at the end of the source
of the connection.

Contained in — Connection

2" source label

String value that gives the name of the Attribute class to be displayed there. The
Attribute should also belong (through aggregation) to the Connection. Then, the
value of that Attribute will be displayed in the second position at the end of the
source of the connection.

Contained in — Connection

1% destination label

String value that gives the name of the Attribute class to be displayed there. The
Attribute should also belong (through aggregation) to the Connection. Then, the
value of that Attribute will be displayed in the first position at the end of the
destination of the connection.

Contained in — Connection

2" destination label

String value that gives the name of the Attribute class to be displayed there. The
Attribute should also belong (through aggregation) to the Connection. Then, the
value of that Attribute will be displayed in the second position at the end of the
destination of the connection.

Contained in — Connection

Abstract

Boolean checkbox that determines whether or not the FCO in question will actually
be generated in the output paradigm. If the checkbox is checked, then no object will
be created, but al properties of the FCO will be passed down to itsinherited children

(if any).
Default value — Unchecked
Contained in— FCO, Atom, M odel, Set, Connection, Reference

Author information

A text field trandlated into a comment within the paradigm output file.

Contained in — Paradigm
Cardinalit

Text field that gives the cardinality rules of containment for an aggregation.

Generic Modeling Environment User's Manual Metamodeling Environment ¢ 55

Default value—0..*
Contained in — Containment, Folder Containment

Color

String value that gives the default color value of the connection (specified in hex, ex:
0xFF0000).

Default value — 0x000000 (black)
Contained in — Connection

Composition role

Text field that gives the rolename that the FCO will have within the Model.
Contained in — Containment

Constraint Equation

Multiline text field that gives the MCL equation for the constraint.

Contained in — Constraint
Data type

Enumeration that gives the default data type of a FieldAttr. The possible values are
String, Integer, and Double.

Default value — String
Contained in — FieldAttr
Decorator
Test field that specifies the decorator component to be used to display the given
object in the target environment. Example: MGA .Decorator.M etaDecorator
Contained in — Model, Atom, Reference, Set
Default = ‘True’

A boolean checkbox that describes the default value of a BooleanAttr.
Default value — Unchecked
Contained in — BooleanAttr

Default parameters

Text field that gives the default parameters of the constraint.
Contained in— Constraint

Default menu item

Text field that gives the displayed name of the menu item in the M enu items
attribute to be used as the default value of the menu.

Contained in — EnumAttr
Description

Text field that is displayed when the constraint is violated.

Generic Modeling Environment User's Manual Metamodeling Environment ¢ 56

Contained in — Constraint

Displayed name

String value that gives the displayed name of a Folder or Aspect. Thiswill be the
value that is shown in the model browser, or aspect tab (respectively). A blank value
will result in the displayed name being equal to the name of the class.

Contained in— Folder, Aspect
Field default

Text field that gives the default value of the FieldAttr.
Contained in— FieldAttr
General preferences

Text field (multiple lines) that allows a user to enter data to be transferred directly
into the XML file. Thisisahighly specific text area, and is normally not used. The
occasions for using this areais to configure portions of the paradigm that the
Metamodeling environment has not yet been developed to configure.

Contained in— FCO, Atom, M odel, Set, Connection, Reference
Global scope

A boolean checkbox that refers to the definition scope of the attribute. In most cases,
it is sufficient to leave this attribute in its default state (true). The reason for giving
the option of scope isto be able to include attributes with the same namesin
different FCO-s, and have those attributes be different. Inthiscase, it is necessary to
include local scoping (i.e. remove the global scope), or the paradigm file will be
ambiguous.

Default value — Checked
Contained in — EnumAttr, BooleanAttr, FieldAttr
Ilcon

Text field that gives the name of afile to be displayed as the icon for this object.
Contained in— Atom, Set, Reference, M odel

In root folder

Boolean checkbox that determines whether or not this object can belong in the root

folder. Notethat if an object cannot belong to the root folder, then it must belong to

a Folder or Model (somewhere in its containment hierarchy) that can belong to the
root folder.

Default value — Checked

Contained in — Folder, Model, Atom, Set, Reference
Line end
Enumeration of the possible end types of aline. Possible types are Butt (no special
end), Arrow, and Diamond.

Default value — Butt

Contained in — Connection

Generic Modeling Environment User's Manual Metamodeling Environment ¢ 57

Line start

Enumeration of the possible start types of aline. Possible types are Butt (no special
end), Arrow, and Diamond.

Default value — Butt

Contained in — Connection
Line type

Enumeration of the possible types of aline. Possible types are Solid, and Dash.
Default value — Solid
Contained in — Connection

Number of lines

Integer field that gives the number of linesto display for this FieldAttr.
Default value— 1
Contained in — FieldAttr
Menu items
A text field that lists the items in an EnumAttr. There are two modes for this text

field (which can also be called a text box, because it has the ability for multiple
lines).

In basic mode, the field items are separated by carriage returns, in the order in which
they should be listed in the menu. In this case, the text used as the menu will be the
same as value of the menu.

In the expanded mode, it is possible to list the definite values to be used for the menu
elements. Thisisdone by separating the displayed value from the actual value with

acomma.(,).
Example:
i+ Attributes of HamePosition Ed
Global Scope? F m
Wiewable? = r
Prompt: |Name position: I
M eri itermns: Mortheast, 1 I~
Eazt, 2
Southeast, 3
South, 4
Southwest, &
wiest, B
Morthwest, 7
Center, 8
D efaultiderultem ISouth W~
cares_|

Sample enumerated attribute specification

Generic Modeling Environment User's Manual Metamodeling Environment ¢ 58

Note that the displayed and actual value need not be of the same basic type
(character, integer, float, etc.) because it will all be converted to text.

Contained in — EnumA_ttr

Name position

Enumeration that lists the nine places that the name of an FCO can be displayed.
Default value — South
Contained in — Atom, Set, Reference, M odel

Object is a port

Boolean checkbox that determines whether or not the FCO will be viewable as a port
within the model.

Default value — Unchecked

Contained in — Containment
On...
The Constraint has many attributes which are similar, except for the type of event to
which they refer. They are all boolean checkboxes that give the constraint manager
the authority to check this constraint when certain events occur (e.g. Model

creation/del etion, connecting two objects). For more information on the semantics of
these events, please refer to the constraint manager documentation.

* On close model

* Onnew child

*+ Ondeete

* Ondisconnect

* On connect

* Onderive

» On change property
* On change assoc.

* On exclude from set
* Onincludein set

* Onmove

* Oncreate

* On change attribute
* Onlost child

* Onrefer

* Onunrefer

Default value — Unchecked

Contained in — Constraint

Generic Modeling Environment User's Manual Metamodeling Environment ¢ 59

Port icon

Text field that gives the name of afile to be displayed as the port icon for this object.
If no entry is made for thisfield, but the object is a port, then the normal icon will be
scaled to port size.

Contained in — Atom, Set, Reference, M odel
Priority (1=High)

Enumeration of the possible levels of priority of this constraint. For more
information on constraint priority, refer to the constraint manager.

Contained in — Constraint
Prompt

A text field trandlated into the prompt of an attribute. It isin exact WY SIWYG
format (i.e. no‘:" or ‘- is appended to the end).

Contained in — EnumAttr, BooleanAttr, FieldAttr
Rolename
Text field that gives the rolename that the FCO will have in the Connection. There

are two different possible default values, ‘sr¢’ and ‘dst’, depending upon whether the
connection was made from the Connector to the FCO, or the FCO to the Connector.

Default value — src or dst

Contained in — Sour ceT oConnector, Connector ToSour ce

Version information

A text field translated into a comment within the paradigm output file. Theuser is
responsible for updating thisfield.

Contained in — Paradigm

Viewable

A boolean checkbox that decides whether or not to display the attribute in the
paradigm. If the state is unchecked, then the attribute will be defined in the

metamodel, but not viewable in any Aspect (regardless of the properties of the FCO.
Thisisuseful if you want to store attributes outside the user’s knowledge.

Default value — Checked
Contained in — EnumAttr, BooleanAttr, FieldAttr

Semantics Guide to Metamodeling

The following table displays the representation of the concepts of GME 2000, and
how they trandate semantically into core MGA concepts.

Generic Modeling Environment User's Manual Metamodeling Environment ¢ 60

Ster eotype/name Context Semantics[& Implications]

First Class Objects (FCO’s)

«model» A class Theclassisan MGA model

«atomp» A class Theclassisan MGA atom

«connection» A class Theclassisan MGA connection (must be used as an

Association Class

«reference» A class Theclassisan MGA reference

«set» A class Theclassisan MGA set

«FCO» A class (abstract only) The classis a base type of another FCO

Containment An association (with diamond) between | The «model» contains the specified FCO as a part.
a «model» and an FCO

AssociationClass An association between a «connection» | The «connection» contains all of the roles that the
(class) and an Association Connector Association Connection has.
(models the connection join).

ReferTo A directed association between a The instances of the «reference» class will refer to
«reference» and a «model», «atom», or the instances of the «model», «atom», or «reference»
«reference» class.

Association Classes

«connection» An association between a src/dst pair The «connection» class represents the src/dst pair(s)
(or an n-ary connection, in the genera as an MGA connection. [note: the «connection» isan
sense) that is attributed by a FCOJ

«connection» class
Containment

FolderContainment An association (with diamond) between | The «folder» contains 0..n of the associated «folder»
a «folder» and a «folder» as alegal sub-folder

FolderContainment An association (with diamond) between | The «folder» contains 0..n of the associated FCO as a
a «folder» and an FCO legal root-object

Containment An association (with diamond) between | The «model» contains the associated FCO which
a «model» and an FCO plays a specified role

SetMembership An association (with diamond) between | The «set» may contain the associated FCO.
a«set» and an FCO

HasAspect An association between a«model» and | The «model» contains the specified «aspect».
an «aspect»

Cardinalit

(none) An integer attribute for each end of the
association

Yy
Thisend of the association has the cardinality
specified [unspecified cardinality is assumed to be 1]

«@spect» A class The class denotes an MGA aspect
«folder» A class The class denotes an MGA folder
(none) The model represents a Project An MGA Project

(none) UML Inheritance The class inherits from a superclass. An attribute of
the destination is the rolename to be used for the
child class.

Groups of parts

Connector Atom, reference, (port), (reference port) | The part may play arole in a connection

FCO Model, atom, reference, connection, set | The part isafirst class object

Referenceable Model, atom, reference The part may be referenced

Generic Modeling Environment User's Manual Metamodeling Environment « 61

High-Level Component Interface

Introduction to the Component Interface

The process of accessing GME 2000 models and generating useful information, e.g.
configuration files for COT S software, database schema, input for a discrete-event
simulator, or even source code, is called model interpretation. GME provides two
interfaces to support model interpretation. The first oneisa COM interface that lets
the user write these componentsin any language that supports COM, e.g. C++,
Visual Basic or Java. The COM interface provides the means to access and modify
the models, their attributes and connectivity. In short, the user can do everything that
can be done using the GUI of the GME. Thereisahigher-level C++ interface that
takes care of alot of lower level issues and makes component writing much easier.
This high-level C++ component interface is the focus of this chapter.

Interpreters are typical, but not the only components that can be created using this
technology. The other types are plugins, i.e. components that provide some useful
additional functionality to ease working in GME. These components are very similar
to interpreters, though they are paradigm-independent. For example, a plugin can be
developed to search or locate objects based on some user defined criteria, like the
value of an attribute.

What Does the Component Interface Do?

The component interface isimplemented on the top of the COM interface. When the
user initiates model interpretation, the component interface creates the so-called
Builder Object Network (BON). The builder object network mirrors the structure of
the models: each model, atom, reference, connection, etc. has a corresponding
builder object. Thisway the interface shields the user from the lower level details of
the COM interface and provides support for easy traversal of the models along either
the containment hierarchy, the connections, or the references. The builder classes
provide general-purpose functionality. The builder objects are instances of these
predefined paradigm independent classes. For simple paradigm-specific or any kind
of paradigm independent components, they are al the user needs. For more
complicated components, the builder classes can be extended with inheritance. By
using a pair of supplied macros, the user can have the component interface
instantiate these paradigm-specific classesinstead of the built-in ones. The builder
object network will have the functionality provided by the general-purpose interface
extended by the functionality the component writer needs.

Generic Modeling Environment User's Manual High-Level Component Interface ¢ 62

Component Interface Entry Point

The Builder2000.h file in component source package defines the high-level C++
component interface. The entry point of the component is defined in the
Component.h in the appropriate subdirectory of the components directory. Here is
the file at the start of the component writing process:

#i f ndef GVE_| NTERPRETER H
#def i ne GVE_| NTERPRETER_H

#i ncl ude "Bui | der 2000. h"

#def i ne NEW BON_| NVOKE
/1 #def i ne DEPRECATED_BON_| NVOKE_| MPLEMENTED

cl ass CConponent {
publi c:
CConponent () : focusfolder(NULL) { ; }
CBui | der Fol der *focusf ol der;
CBui | der Fol der Li st sel ect edf ol ders;
voi d | nvokeEx(CBui | der &bui | der, CBui | der Obj ect *focus,
CBui | der Onj ect Li st &sel ected, |ong paran;
/1 void | nvoke(CBui |l der &buil der,
CBui | der Obj ect Li st &sel ected, |ong paran);
H

#endif // whole file

Before GME 2000 version 1.2 this used to be simpler, but not as powerful. The
Invoke function of the CComponent class used to be the entry point of the
component. When the user initiates interpretation, first the builder object network is
created then the above function is called. Thefirst two parameters provide two ways
of traversing the builder object network. The user can accessthe list of folders
through the CBuilder instance. Each folder provides alist of builder objects
corresponding to the root models and subfolders. Any builder can then be access
through recursive traversal of the children of model builders.

The CBuilderModelList contains the builders corresponding to the models selected
at the time interpretation was started. If the component was started through the main
window (either through the toolbar or the File menu) then the list contains one model
builder, the one corresponding to the active window. If the interpretation was started
through a context menu (i.e. right click) then the list contains items for al the
selected objectsin the given window. If the interpretation was started through the
context menu of the Model Browser, then the list contains the builders for the
selected modelsin the browser.

Using thislist parameter of the Invoke function makes it possible to start the
interpretation at models the user selects. The long parameter is unused at this point.

In version 1.2, Invoke has been replaced by InvokeEx, which clearly separates the
focus object from the selected objects. (Depending on the invocation method both of
these parameters may be empty.) To maintain compatibility with existing
components, the following preprocessor constants have been designated for inclusion
in the Component.h file:

- NEW_BON_INVOKE: if #defined in Component.h, indicates that the new BON is
being used. If it is not defined (e.g. if the Component.h from an old BON is being
used) the framework works in compatibility mode.

Generic Modeling Environment User's Manual High-Level Component Interface ¢ 63

- DEPRECATED_BON_INVOKE_IMPLEMENTED: In most cases, only the new
CComponent::InvokeEx needs to be implemented by the component programmer,
and the ImgaComponent::Invoke() method of the original COM interface also results
inacall to InvokeEx. If, however the user prefersto leave the existing
Component::Invoke() method to be called in this case, the #define of this constant
enables this mode. InvokeEx() must be implemented anyway (as
NEW_BON_INVOKE isstill defined).

- IMPLEMENT_OLD_INTERFACE_ONLY:: this constant can be included in old
Component.h files only to fully disable support for the new |MgaComponentEx
COM interface (GME invokes to the old interface if the new oneis not supported).
Using this constant is generally not recommended.

If none of the above constants are defined, the BON framework interface is
compatible with the old Ccomponent classes. Censequently, older BON code
(Component.h and Component.cpp) can replace the corresponding skel eton/example
files provided in the new BON. When using such a component, however, awarning
is message is displayed to remind users to upgrade the component code to one fully
compliant with the new BON. Although it is strongly recommended to update the
component code (i.e converting CComponent::Invoke to CComponent::InvokeEx(),
this warning can also be supressed by disabling the new COM component interface
through the inclusion of the #define IMPLEMENT_OLD_INTERFACE_ONLY
definition into the old Component.h file.

Plung-1ns are paradigm-independent components. The example Noname plug-in
displays a message. The implementation isin the component.cpp file shown below:

#i ncl ude "stdaf x. h"
#i ncl ude " Conponent. h"

voi d CConponent:: | nvokeEx(CBuil der &buil der, CBuil der Obj ect *focus,
CBui | der Onj ect Li st &sel ected, |ong paran)

Af xMessageBox(" Pl ug-1n Sanple");
}

The component.h and component.cpp files are the ones that the component writer
needs to expand to implement the desired functionality.

Component Interface

The simple class structure of the component interface is shown below. Note that each
classis aderivative of the standard MFC CObject class.

Generic Modeling Environment User's Manual High-Level Component Interface « 64

Interpreter Interface Classes

CBuilder
CBuilderObject
CBuilderFolder f
|
CBuilderModel CBuilderAtom CBuilderModelReference CBuilderAtomReference
CBuilderConnection CBuilderSet CBuilderReferencePort

As noted before, the single instance of the CBuilder class provides atop level entry
point into the builder object network. It provides access to the model folders and
supplies the name of the current project. The public interface of the CBuilder classis
shown below.

class CBuilder : public Coject {

publi c:
CBui | der Fol der *Get Root Fol der () const;
const CBui | der Fol der Li st *Get Fol ders() const;
CBui | der Fol der *Get Fol der (CStri ng &ane) const;
CString GetProjectNanme() const;

The CBuilderFolder class provides access to the root models of the given folder. It
can also be used to create new root models.

cl ass CBuil derFol der : public Coject {

publi c:
const CString& GetNane() const;
const CBui |l der Mbdel Li st *Get Root Model s() const;
const CBui |l der Fol der Li st *Get SubFol ders() const
CBui | der Model *Get Root Model (CString &iane) const;
CBui | der Model *Creat eNewivbdel (CString ki ndNane) ;

The CBuilderObject is the base class for several other classes. It provides a set of
common functionality for models, atoms, references, sets and connections. Some of
the functions need some explanation.

The GetAttribute() functions return true when their successfully retrieved the value
of attribute whose name was supplied in the name argument. If the type of the val
argument does not match the attribute or the wrong name was provided, the function
return false. For field and page attributes, the type matches that of specified in the
meta, for menus, it isa CString and for toggle switches, it isaboal.

The GetxxxAttributeNames functions return the list of names of attributes the given
object has. This helps writing paradigm-independent components (plug-ins).

The GetReferencedBY function returns the list of references that refer to the given
object (renamed in v1.2 from GetReferences).

Generic Modeling Environment User's Manual High-Level Component Interface ¢ 65

The GetlnConnections (GetOutConnection) functions return the list of incoming
(outgoing) connections from the given object. The string argument specifies the
name of the connection kind as specified by the modeling paradigm. The

GetlnConnectedObj ects (GetOutConnectedObjects) functions return alist of objects

instead. The GetDirectlnConnections (GetDirectOutConnections) build atree. The

root of the tree is the given object, the edges of the tree are the given kind of

connections. The function returns the leaf nodes. Basically these functions find paths
to (from) the given object without the component writer having to write the traversal

code.

The TraverseChildren virtual functions provide aways to traverse the builder object
network along the containment hierarchy. The implementation provided does not do

anything, the component writer can override it to implement the necessary

functionality. Aswelll see later, the CBuilderModel class does override this function.

It enumerates all of its children and calls their Traverse method.

cl ass CBui | der Obj ect public Cbject {
const CString& Get Name();
const bool SetName(CString newnane);
voi d Get NanePat h(CStri ng &anePat h) const;

const CString& GetKi ndName() const;
const CString& GetPartName() const;

const CBui |l der Mbdel *GetParent () const;
CBui | der Fol der* Get Fol der () const;

bool
bool

Get Location(CsString &aspect Nane, CRect &l oc);
Set Locati on(CString aspect Name, CPoi nt | oc);

voi d
voi d
voi d
voi d

Di spl ayError(Cstring & sg) const;
Di spl ayError(char *nsg) const;

Di spl ayWarni ng(CString &sg) const;
Di spl ayWar ni ng(char *nsg) const;

bool
bool
bool
bool
bool
bool

Get Attribute(CStri
Get Attri bute(char
GetAttribute(CStri
Get Attribute(char
Get Attribute(CStri
Get Attri bute(char

ng &nane, CString &val) const;
*name, CString &al) const;

ng &nane,int &val) const;
*nane, int &val) const;

ng &nane, bool &val) const;
*nane, bool &val) const;

bool
bool
bool

Set Attribute(CStri
Set Attribute(CStri
Set Attribute(CStri

ng &ane, CString &val);
ng &ane, int val);
ng &nane, bool val);

voi d
voi d
voi d

GetStrAttri buteNames(CStringlList & ist) const;
GetIntAttributeNanes(CStringList & ist) const;
Get Bool Attri buteNanes(CStringList & ist) const;

voi d Get Ref er encedBy(CBui | der Obj ect Li st & ist) const;

const CBui | der Connecti onLi st

CBui | der Connecti onLi st
CBui | der Connecti onLi st
CBui | der Connecti onLi st

const
const
const

bool

*CGet | nConnecti ons(CString &ane) const;
*CGet | nConnecti ons(char *name) const;
*Get Qut Connecti ons(CStri ng &ane) const;
*CGet Qut Connecti ons(char *nane) const;

Get | nConnect edObj ect s(const CString &nane,

CBui | der Obj ect Li st & ist);

bool

Get | nConnect edMoj ect s(const char *nane,

CBui | der bj ectList & ist);

bool

Get Qut Connect edObj ect s(const CString &nane,

Generic Modeling Environment User's Manual

High-Level Component Interface ¢ 66

CBui | der bj ectList & ist);
bool Get Qut Connect edOhj ect s(const char *nane,
CBui | der Obj ect Li st & ist);

bool GetDirectlnConnections(CString &nane,

CBui | der bj ectList & ist);
bool GetDirectlnConnections(char *nane,

CBui | der Obj ect Li st & ist);
bool GetDirectQut Connections(CString &ane,

CBui | der bj ectList & ist);
bool GetDirect Qut Connecti ons(char *nane,

CBui | der Obj ect Li st & ist);

virtual void TraverseChildren(void *pointer = 0);

}

The CBuilderModel class is the most important class in the component interface,
simply because models are the central objectsin the GME. They contain other
objects, connections, sets, they have aspects etc. The GetChildren function returns a
list of all children, i.e. all objects the model contains (models, atoms, sets, references
and connections). The GetModels method returns the list of contained models. If a
role name is supplied then only the specified part list is returned. The GetAtoms,
GetAtomReferences and GetM odel References, GetSets() functions work the same
way except that a part name must be supplied to them. The GetConnections method
return the list of the kind of connections that was requested. These are the
connections that are visible inside the given model.

The GetAspectNames function return the list of names of aspects the current model
has. This helpsin writing paradigm-independent components.

Children can be created with the appropriate creation functions. Similarly,
connections can be constructed by specifying their kind and the source and
destination objects. Please, see the description of the CBuilderConnection class for a
detailed description of connections.

The TraverseModels function is similar to the TraverseChildren but it only traverses
models.

cl ass CBuil der Model : public CBuil der Object {
publi c:
const CBuil der Obj ectList *GetChildren() const;
const CBui |l der Model Li st *Get Mbdel s() const;

const CBui | der Model Li st *Get Model s(CString partName) const;
const CBuil der Atonli st *Get Atons(CString partNane) const;
const CBui | der Mbdel Ref er encelLi st *Get Model Ref er ences(

CString refPartNanme) const;
const CBui | der At onRef er encelLi st *Get At onRef er ences(

CString refPartNane) const;
const CBui |l der Connecti onLi st *Get Connecti ons(CStri ng nane) const;
const CBuil derSetList *GetSets(CString nane) const;

voi d Get Aspect Nanmes(CStringList &ist);

CBui | der Model *Cr eat eNewibdel (CString part Nane) ;

CBui | der Atom *Creat eNewAt on(CString part Nane);

CBui | der Model Ref erence *Creat eNewivbdel Ref erence(CString ref Part Nane,
CBui | der Ovj ect* refTo);

CBui | der At onRef erence *Cr eat eNewAt onRef erence(CString ref Part Nane,
CBui | der Obj ect* ref To);

CBui | der Set *Creat eNewSet (CStri ng part Nane);

Generic Modeling Environment User's Manual High-Level Component Interface ¢ 67

CBui | der Connecti on *Creat eNewConnecti on(CString connNang,
CBui | der Ohj ect *src,
CBui | der Obj ect *dst);

virtual void TraverseMdel s(void *pointer = 0);
virtual void TraverseChildren(void *pointer = 0);

}

The CBuilderAtom class does not provide any new public methods.

class CBuil derAtom: public CBuil derObject {
publi c:
H

The CBuilderAtomReference class provides the GetReferred function that returns the
atom (or atom reference) referred to by the given reference.

cl ass CBuil der At onRef erence : public CBuil der Obj ect {
const CBuil der Obj ect *Get Referred() const;
H

Even though the GME deals with ports of models (since models cannot be connected
directly, these are the objects that can be), the component interface avoids using
ports for the sake simplicity. However, model references mandate the introduction of
anew kind of object, model reference ports. A model reference contains alist of port
objects. The GetOwner method of the CBuilderReferencePort class return the model
reference containing the given port. The GetAtom method returns the atom that
corresponds to the port of the model that the model reference port represents.

cl ass CBuil der Ref erencePort : public CBuil der Object {
publi c:
const CBui | der Model Ref erence *Get Onner () const;
const CBui |l der At om *Get At om() const;
H

The CBuilderM odel Reference class provides the GetRefered function that returns the
model (or model reference) referred to by the given reference. The GetRefereePorts
return the list of CBuilderReferencePorts.

cl ass CBui | der Model Ref erence : public CBuil der Object {
const CBui | der Ref erencePort Li st &Get Ref ereePorts() const;
const CBuil der Obj ect *Get Referred() const;

H

A CBuilderConnection instance describes a relation among three objects. The owner
isthe model that contains the given connection (i.e. the connection is visible in that
model). The source (destination) is always an atom or areference port. If itisan
atom then it is either contained by the owner, or it corresponds to a port of a model
contained by the owner. So, in case of atoms, either the source (destination) or its
parent isachild of the owner. In case of areference port, its owner must be a child of
the owner of the connection.

cl ass CBuil der Connection : public CBuil der Object {
publi c:

CBui | der Model *Get Omner() const;

CBui | der Obj ect *Get Source() const;

CBui | der Ohj ect *Get Destination() const;
b

Generic Modeling Environment User's Manual High-Level Component Interface ¢ 68

The CBuilderSet class member function provide straightforward access to the
different components of sets.

class CBuilderSet : public CBuil der Object {
publi c:

const CBui |l der Model *Get Omner () const;

const CBuil der bj ect Li st *Get Menbers() const;

bool AddMenber (CBui | der Obj ect *part);
bool RenpbveMenber (CBui | der Obj ect *part);

Example

The following simple paradigm independent interpreter displays a message box for
each model in the project. For the sake of simplicity, it assumes that thereisno
folder hierarchy in the given project. The component.cpp file is shown below.

#i ncl ude "stdaf x. h"
#i ncl ude " Conponent. h"

voi d CConponent:: | nvokeEx(CBuil der &buil der, CBuil der Obj ect *focus,
CBui | der Onj ect Li st &sel ected, |ong paran)
{

const CBui |l der Fol derLi st *folds = buil der. Get Fol ders();
POSI TI ON f Pos = fol ds->Get HeadPosi tion();
whi | e(f Pos) {
CBui | der Fol der *fold = fol ds- >Get Next (f Pos) ;
const CBui | der Model Li st *roots = fol d- >Get Root Model s();
POSI TI ON r oot Pos = root s->Get HeadPosi tion();
whi | e(r oot Pos)
ScanMbdel s(r oot s- >Get Next (r oot Pos), f ol d- >Get Nane()) ;
}
}

voi d CConponent: : ScanMbdel s(CBui | der Model *nodel, CString fNane)
{
Af xMessageBox(nodel - >Get Nane() + " nodel found in the " +
fName + " folder");

const CBui | der Model Li st *nodel s = nodel - >Get Model s() ;
POSI TI ON pos = nodel s->Get HeadPosi tion();
whi | e(pos)

ScanMbdel s(nodel s- >Get Next (pos), f Nane) ;

Extending the Component Interface

The previous example used the build-in classes only. The component writer can
extend the component interface by her own classes. In order for the interface to be
able to create the builder object network instantiating the new added classes before
the user defined interpretation actually begins, apair of macros must be used.

The derived class declaration must use one of the DECLARE macros. The
implementation must include the appropriate IMPLEMENT macro. Thereis apair of
macros for models, atoms, model- and atom references, connections and sets. The
following list describes their generic form.

Generic Modeling Environment User's Manual High-Level Component Interface ¢ 69

DECLARE_CUSTOMVODEL (<CLASS>, <BASE CLASS>)
DECLARE_CUSTOMVODEL REF(<CLASS>, <BASE CLASS>)
DECLARE_CUSTOVATOM <CLASS>, <BASE CLASS>)
DECLARE_CUSTOMATOVREF(<CLASS>, <BASE CLASS>)
DECLARE_CUSTOMCONNECTI ON(<CLASS>, <BASE CLASS>)
DECLARE_CUSTOMBET(<CLASS>, <BASE CLASS>)

| MPLEMENT _CUSTOVMODEL (<CLASS>, <BASE CLASS>, <NAVES>)
| MPLEMENT_CUSTOMMODEL REF(<CLASS>, <BASE CLASS>, <NAMVES>)

| MPLEMENT_CUSTOVATOM <CLASS>, <BASE CLASS>, <NANES>)

| MPLEMENT _CUSTOMATOVREF(<CLASS>, <BASE CLASS>, <NAVES>)

| MPLEMENT _CUSTOVOONNECTI ON(<CLASS>, <BASE CLASS>, <NAMES>)
| MPLEMENT_CUSTOVBET(<CLASS>, <BASE CLASS>, <NAMES>)

Here, the <CLASS> is the name of the new class, while the <BASE_CLASS> isthe
name of one of the appropriate built-in class or a user-derived class. (The user can
create abstract base classes as discussed later.) The <NAMES> argument lists the
names of the kinds of models the given class will be associated with. It can be a
single name or a comma separated list. The whole names string must be
encompassed by double quotes.

For example, if we have a"Compound" model in our paradigm, we can create a
builder classfor it the following way.

/1 Conponent. h
cl ass CConpoundBui | der : public CBuil der Model
DECLARE_CUSTOWMMODEL (CConpoundBui | der, CBui | der Mbdel)
publi c:
virtual void Initialize();
virtual ~CConpoundBuil der();

/1 nore declarations

h
/1 Conponent. cpp
| MPLEMENT _ CUSTOMMODEL (CConpoundBui | der, CBui | der Mbdel , " Conpound")
voi d CConpoundBui l der::Initialize()
/1 code that otherw se would go into a constructor

CBui | der Model :: I nitialize();
}

CConpoundBui | der: : ~CConpoundBui | der ()
{
/1 the destructor

/! nore code

The macros create a constructor and a Create function in order for afactory object to
be able to create instances of the given class. Do not define your own constructors,
use the Initialize() function instead. Y ou have to call the base class implementation.
These macros call the standard MFC DECLARE_DYNCREATE and IMPLEMENT
DYNCREATE macros.

If you want to define abstract base classes that are not associated with any of your
models, use the appropriate macro pair from the list below. Note that the <NAMES>
argument is missing because there is no need for it.

Generic Modeling Environment User's Manual High-Level Component Interface ¢ 70

DECLARE_CUSTOMMODEL BASE(<CLASS>, <BASE CLASS>)
DECLARE_CUSTOMMODEL REFBASE(<CLASS>, <BASE CLASS>)
DECLARE_CUSTOVATOVBASE(<CLASS>, <BASE CLASS>)
DECLARE_CUSTOVATOVREFBASE(<CLASS>, <BASE CLASS>)
DECLARE_CUSTOMCONNECT! ONBASE(<CLASS>, <BASE CLASS>)
DECLARE_CUSTOVBETBASE(<CLASS>, <BASE CLASS>)

| MPLEMENT_CUSTOMMODEL BASE(<CLASS>, <BASE CLASS>)

| MPLEMENT_ CUSTOMMODEL REFBASE(<CLASS>, <BASE CLASS>)

| MPLEMENT_CUSTOVATOVBASE(<CLASS>, <BASE CLASS>)

| MPLEMENT_CUSTOVATOVREFBASE(<CLASS>, <BASE CLASS>)

| MPLEMENT_CUSTOMCONNECT| ONBASE(<CLASS>, <BASE CLASS>)
| MPLEMENT_CUSTOVSETBASE(<CLASS>, <BASE CLASS>)

For casting, usethe BUILDER_CAST(CLASS, PTR) macro for casting a builder
class pointer to its derived custom builder object pointer.

Example

Let's assume that our modeling paradigm has a model kind called Compound. Let's
write a component that implements an algorithm similar to the previous example. In
this case, welll scan only the Compound models. Again, the folder hierarchy is not
considered. Here isthe Component.h file:

#i fndef GVE_| NTERPRETER H
#def i ne GVE_| NTERPRETER H

#i ncl ude "Bui | der 2000. h"

#def i ne NEW BON_| NVOKE
/1 #defi ne DEPRECATED_BON_| NVOKE_| MPLEMENTED

cl ass CConponent {
publi c:
CConponent () : focusfol der(NULL) { ; }
CBui | der Fol der *focusf ol der;
CBui | der Fol der Li st sel ect edf ol ders;
voi d | nvokeEx(CBui | der &bui | der, CBui | der Obj ect *focus,
CBui | der Obj ect Li st &sel ected, |ong paran);
H

cl ass CConpoundBui | der : public CBuil der Model
DEO.ARE_CUSTGVNODEL(CCorrpoundBui | der, CBui | der Model)

pul\jlloli ((:j: Scan(Cstring fol dNane);

H

#endif // whole file

The component.cpp file is shown below.

Generic Modeling Environment User's Manual High-Level Component Interface ¢ 71

#i ncl ude "stdafx.h"
#i ncl ude " Conponent. h"

voi d CConponent: : | nvokeEx(CBui | der &buil der, CBui | der Obj ect *focus,
CBui | der Obj ect Li st &sel ected, |ong paranm
{

const CBui |l der Fol derLi st *folds = buil der. Get Fol ders();
PCsSI TI ON f ol dPos = fol ds- >Get HeadPosi tion();
whi | e(fol dPos) {
CBui | der Fol der *fold = fol ds->Get Next (f ol dPos) ;
const CBui |l der Mbdel Li st *roots = fol d- >Get Root Model s();
PCsSI TI ON r oot Pos = root s->Get HeadPosi tion();
whi | e(root Pos) {
CBui | der Model *root = roots->Get Next (root Pos);
i f(root->lsKi ndOf (RUNTI ME_CLASS(CConpoundBui | der)))
BUI LDER_CAST(CConpoundBui | der, root) - >Scan(f ol d- >Get Nane()) ;
}

}
}

| MPLEMENT _ CUSTOMMODEL (CConpoundBui | der, CBui | der Mbdel , " Conpound")

voi d CConpoundBui | der:: Scan(CString fol dNane)
{
Af xMessageBox(Get Nane() + " nodel found in " + fol dName +
" folder");

const CBui |l der Mbdel Li st *nodel s = Get Model s(" ConpoundParts");
PCsSI TI ON pos = nodel s- >Get HeadPosi tion();
whi | e(pos)
BUI LDER_CAST(CConpoundBui | der, nodel s- >Get Next (pos)) - >
Scan(f ol dNane) ;

How to create a new component project

To create a new component, run CreateNewComponent.exe that comes as part of the

GME distribution. A dialog box (Create New Component) is presented to specify the
target directory and the component technology to be used. To work with the interface
described above, select Builder Object Network.

The second dialog box (Component Configurator) lets you specify the most
important characteristics of the component:

» ltstype: Interpreter, Plugin or AddOn. (AddOns are not available when
using Builder Object Network.)

* The component name

* The name of the paradigm(s) this component is associated with.
Multiple paradigms can be specified in a space-separated list.

* The component proglD
» The component classname and the component type library name
» The UUID-s associated with the component class and its type library

» Thelocation of the GME 2000 interface files (IDL files) this
component isto be compiled to.

Generic Modeling Environment User's Manual High-Level Component Interface ¢ 72

The resulting configuration is a ready-to-compile Visual Studio workspace
(Component.dsw). If the Builder Object Network is selected, asimple
Component.cpp and Component.h files are generated. To user is expected to
implement the component by modifying these two files and adding other filesif
necessary. The other filesin the workspace are normally not modified by the user,
and for this reason they are generated with read-only attribute.

ConfigureComponent.exe, the application that brings up the Component
Configurator dialog box can be run any time to change component attributes. The
output is generated to the file specified by the —-f command-line argument. It defaults
to ComponentConfig.h.

The appendix describes the procedure in detail. After you completed the steps
outlined there, you can build the new component dil. This component dll is
registered and associated with the paradigms you specify. When you edit a model
using one of these paradigms and press the interpret button, you launch this
component (if there are more than one components associated with the given
paradigm, a menu will pop up to choose from). The dll will be located and loaded at
thistime.

Generic Modeling Environment User's Manual High-Level Component Interface ¢ 73

Appendix A - Database Setup

GME 2000 Database Connedctivity

The GME 2000 application provides concurrent access to projects stored in a
database. The underlying database access mechanism is based on the Microsoft
Repository engine to interface with a SQL database server. Currently only Microsoft
SQL Server 7.0 is supported, but other servers, such as Oracle, should work fine.
There are four main installation steps:

» Server sideinstalation (creating databases)

» Client sideinstallation Step #1 (GME 2000 and Microsoft Repository)
» Client sideinstallation Step #2 (setting up ODBC data source names)
» Creation of an empty project (only once for each database)

We will not cover the server side installation in detail because it depends on the
specific environment and SQL server being used. The SQL server administrator
should perform the following steps:

e 1.1. Create an empty dedicated database for each project,
e 1.2, Create (or select) database users,
e 1.3. Give"create" permission(s) to each user.

A copy of GME 2000 should be installed on each client machine along with the
Microsoft Repository engine.

* 2.1 Install GME 2000.

e 22 Indgall the Microsoft Repository engine (version 2.1) by executing
"msr21.exe" included in the GME 2000 release (also available at
http://msdn.microsoft.com/repository/downl oads/engi ne/downl oad.asp)

On each client machine (Windows 95, 98, NT or 2000) the user should set up ODBC
data source names. Open Database Connectivity (ODBC) is a Microsoft Corp.
defined interface for accessing data from database management systems. The client
identifies databases by Data Source Names (DSNs). Each DSN represent an ODBC
connection to a specific database by a specific database user.

e 3.1 Open up the "Control Panel"

Generic Modeling Environment User's Manual Appendix A - Database Setup « 74

3.2. Find the ODBC Data Sources icon (or similar on other variants of
Windows) and double click onit.

3.3. Select the System DSN (or User DSN) tab on the dialog box.
3.4. Click "Add..." and select SQL server driver.

3.5. Now you have to identify the server (ask the SQL server
administrator for help). Give the desired name and description to your
database connection.

3.6. Select the server from the drop down list. If you cannot find it in
thelist, type in the TCP/IP address, like " server.company.com”. Press
"Next..."

3.7. Select the SQL server authentication. Click on "Client
configuration" and select "TCP/IP" (or ask your SQL server
administrator), and press OK.

3.8. You haveto fill inthe Login ID and Password fields. These should
be the database user name and password, and not the name and
password of your local account. Press OK.

3.9. If at this point you cannot continue due to some error, ask your
SQL server administrator for help.

3.10. Set the "default database” to the database containing the project.
Proceed through the next few dialog boxes by accepting the default
options. Test the data source when given the choice and complete the
setup of the data source.

The SQL server administrator should create an empty project for each database. The
Microsoft Repository will install the necessary database schema and create an empty
project in the database.

4.1. Start the GME 2000 application on one of the client machines.
4.2. Fromthe "File" menu select "New Project”.

4.3. Select the paradigm. At this point it iswise to parse the paradigm
from an XML file (select "Add from File" and select the XML file).
The parser will create afile with extension "MTA". Copy thisMTA file
to each client machine and register it using "New Project" and "New
from File".

4.4. Select "Connect to database” and press "Next".
4.5. Find the data source name, select it and press "OK".

4.6. Typein the password, and press "OK".

Once an empty project is created, users should open up the project from their
machine. Here are the steps to access the database.

5.1. Start the GME 2000 application.

5.2. Obtain the generated "M TA" paradigm file (see point 4.3) and
copy it to your machine.

5.3. Try out the paradigm file: Select "New Project” from the "Fil€"
menu, install the paradigm file by selecting "New from File" and press
"OK". Then select "Create project file", and provide afilename. This
will create alocal project on your machine.

Generic Modeling Environment User's Manual

Appendix A - Database Setup ¢ 75

» 5.4. Oncethe paradigm isinstalled, you are ready to open up the empty
project in the database. Select "Open Project" from the "File" menu.

» 5.5, Select "Connect to database”, and locate your DSN. Fill in the
password (if required) and press"OK".

Note

Although Microsoft Repository can work on top of Microsoft Access, we do not
recommend it because of certain limitations of Microsoft Access. However, for small
projects this provides another way to use the multi user environment. Select "New
Project” from the "File" menu, select the desired paradigm and then " Create project
file". Then from the "Files of type" drop down list select "Microsoft Access Files'.

Generic Modeling Environment User's Manual Appendix A - Database Setup ¢ 76

Appendix B - MCL

The Multigraph Constraint Language

The MGA Constraint Language (MCL) is afirst-order predicate language used to
specify invariant expressionsin MGA modeling paradigms. These MCL expressions
(i.e. constraints) are contained within constraint blocks in the XML representation of
an MGA paradigm. MCL isstrongly based on the Unified Modeling Language
(UML) Object Constraint Language (OCL). MCL isasubset of OCL, with some
MGA-specific extensions designed to make MGA constraint specification easier.

Constraints may be checked on demand or may be event-based. The modeler may
check constraints for the currently open model by invoking the “ Check” menu option
or by pressing the Check button on the toolbar. The modeler may check constraints
for al objectsin the project by invoking the “ Check All” menu option. Event-based
constraints provide the additional capability to be checked when the object
associated with a constraint receives an event from the GME.

Any number of constraint blocks may be added to an object block. Constraint blocks
should be placed immediately following the dispname element of the enclosing
object block. If the dispname element is absent, the constraint blocks should be
placed immediately following the opening tag of the enclosing object block. The
syntax of a constraint block is as follows:

<constrai nt nane="cNane” type="cType” event mask="cEvent nask”
dept h="cDepth” priority="cPriority”>

<! [CDATA] cExpression]]>
<di spnanme> descriptionString </di spname>

</ constraint>
cName: a string containing no spaces used to uniquely identify the constraint

cType: one of the following three values:

Generic Modeling Environment User's Manual Appendix B - MCL « 77

eventbased [default] — specifies that the constraint will be evaluated when the object
to which it is attached receives one of the events specified in its eventmask.

ondemand — specifies that the constraint will only be evaluated when the modeler
either invokes the “Check” command on the associated object or invokes the “Check
All” command.

function — specifies that thisis a user-defined constraint hel per function that should
not be evaluated by itself. Refer to the section on functions for further information.

cEventmask: determines which events will cause the evaluation of this constraint.
Eventmask values are listed in Table I. If the eventmask attribute is not specified, it

is given adefault value of zero.

Name Value Description
OBJEVENT_CREATED 0x80000000 | The object has been created
OBJEVENT DESTROYED 0x40000000 | The object has been destroyed
OBJEVENT_ATTR 0x00000001 | Attribute changed
OBJEVENT REGISTRY 0x00000002 | Registry changed
OBJEVENT NEWCHILD 0x00000004 | Child added
OBJEVENT_RELATION 0x00000008 | Reference pointer, set member,

connection endpoint changed
OBJEVENT_PROPERTIES 0x00000010 | Name, etc. changed
OBJEVENT_PARENT 0x00000100 | Object has been moved
OBJEVENT_LOSTCHILD 0x00000200 | Child removed/moved away
OBJEVENT_REFERENCED 0x00000400 | Object has been referenced
OBJEVENT_CONNECTED 0x00000800 | Object has been connected
OBJEVENT_SETINCLUDED | 0x00001000 | Object has been included in set
OBJEVENT_REFRELEASED | 0x00002000 | Object reference has been released
OBJEVENT_DISCONNECTED | 0x00004000 | Object has been disconnected
OBJEVENT_SETEXCLUDED | 0x00008000 | Object has been excluded from set

Tablel

cPriority: determines the order of evaluation among the constraints attached to an
object. Allowable values are the integers between 1 (highest) and 10 (lowest). In
addition, the violation of a constraint with a priority of 1 asaresult of an event-based
evaluation will prevent the current transaction from being committed. The default

priority valueis5.

cDepth: one of the following three values:

0 — evaluate the constraint when its associated object receives an event specified by

the eventmask parameter

1 [default] — evaluate the constraint when its associated object or any of its
immediate children receives an event specified by the eventmask parameter

any — evaluate the constraint when its associated object or any of its descendants
receives an event specified by the eventmask parameter

cExpression: an MCL first-order expression involving the names and types of
various modeling objects, along with various MCL operators listed in the next

section.

descriptionString: a string describing the constraint in natural language. When the
constraint manager is used in interactive mode, this string will appear as part of the
error message when a constraint violation occurs.

Generic Modeling Environment User's Manual Appendix B - MCL « 78

MCL Operators

Arithmetic operators: +, -, %], =, <, >, <=, >=, <>

Logical operators: and, or, xor, not, implies, if, then, else, endif
Collection operator: ->

Property operator:

Functional operators:

where c :collection
str: string
fco: first-class object
fdr : folder
r :reference fco
s :setfco

cpt : connection point

Operations on objects:

{fco,fdr}.name() : string
Returns a string representing the name of the caller.
{fco,fdr}.parent() : fco

s fdr
Returns the parent object of the caller. If caller has no parent, returns null.
{fco,fdr}.kindName() . string
Returns a string representing the kind name of the caller.
fco.roleName() : string
Returns a string representing the role name of the caller.
{fco,cpt,fdr}.isNull() : boolean
Returnstrueif caller is null, false otherwise.
str.intValue() int
Returns the result of parsing the caller as a string representation of an integer.
str.doubleValue() : double

Returns the result of parsing the caller as a string representation of an double.
smember s() : collection of fco's
Returns the collection of fco’s that are members of the calling set object.

fco.connectedFCOS(| cprolename | cprolename, connkindname) : collection of

fco's

Generic Modeling Environment User's Manual

Appendix B - MCL « 79

returns alist of FCOs that are connected to 'fco' (including connections through
references). The following optiona filters can be applied:

- cprolename: the rolename of the connectionpoint (e.g. 'src' or 'dst’) at the target fco
side, (i.e. at the far end as seen from 'fco’)

- connkindname: the kindname of the attaching connection (like 'ParameterConn’)
note: the obsolete keyword connected is equivalent to connectedFCOs

fco.rever seConnectedFCOS(| cprolename | cprolename, connkindname) :
collection of fco's

returns alist of FCOs that are connected to 'fco' (including connections through
references). The following optiona filters can be applied:

- cprolename: the rolename of the connectionpoint (e.g. 'src' or 'dst') at the source fco
side, (i.e. at the near end as seen from 'fco’)

- connkindname: the kindname of the attaching connection (like 'ParameterConn’)
note: the obsolete keyword connectedAs is equivalent to reverseConnectedFCOs

fco.isconnectedTo(fco2 | fco2, cprolename | fco2, cprolename, connkindname) :
boolean

returns true or false based on the existence of a connection between two FCO-s
(including FCO-s through references)

- fco2 isthe peer
- cprolename: the rolename of the connectionpoint attaching at the 'fco2' side

- connkindname: the kindname of the attaching connection (e.g. 'DataConn’)

fco.attachingConnPoints(] cprolename | cprolename, connkindname) : collection
cpt's

returns alist of connection points that connect to 'fco' (including connections through
references). The following optiona filters can be applied:

- cprolename: the rolename of the attaching connectionpoint, (e.g 'src’)
- connkindname: the kindname of the attaching connection (e.g 'ParameterConn’)

fco.attachingConnections(| cprolename | cpr olename, connkindname) :
collection of fco's

returns alist of connection objects that connect to 'fco' (including connections
through references). The following optional filters can be applied:

- cprolename: the rolename of the attaching connectionpoint, e.g 'src'
- connkindname: the kindname of the attaching connection (e.g 'ParameterConn’)
fco.connectionPoints(|cprolename) : collection of cpt's

for connections, the list contains the cp-s of the connection, optionally filetered by
cprolename

for non-connection objects, an empty list is returned
- cprolename: the rolename of the connectionpoints requested (e.g 'src’)
fco.usedByConnPoints(| connkindname) . collection of cpt's

for references, the list contains the connectionpoints of the connections that go
through the reference, optionally filetered by cprolename

Generic Modeling Environment User's Manual Appendix B - MCL « 80

for non-reference objects, an empty list is returned

- connkindname: the kindname of the connections included in the list
fco.refersto() : fco

Returns the fco referred to by caller.

fco.referencedBy() . collection of fco's
Returns the collection of fco’sthat reference the caller.

fco.models(| kindName:string) . collection of fco's
Returns all descendant models of the caller (recursive search).

kindName: filters collection of fco's by kind

fco.atoms(| kindName: string) : collection of fco's
Returns all descendant atoms of the caller (recursive search).

kindName: filters collection of fco's by kind

fco.parts(| roleName:string) . collection of fco's
Returns al child parts (fco’s) of the caller.

roleName: filters collection of fco's by role

fco.modelParts(| roleName:string) : collection of fco's
Returns all child models of the caller.

roleName: filters collection of fco's by role

fco.atomParts(| roleName:string) : collection of fco's
Returns al child atoms of the caller.

roleName: filters collection of fco's by role

fco.referenceParts(| roleName:string) . collection of fco's
Returns all child references of the caler.

roleName: filters collection of fco's by role

fco.connectionParts(| roleName: string) : collection of fco's
Returns all child connections of the caller.

roleName: filters collection of fco's by role

fco.setParts(| roleName:string) : collection of fco's
Returns all child sets of the caller.

roleName: filters collection of fco's by role

fco.member Of Sets(| kindName: string) : collection of fco's
Returns the collection of setsthat include the caller as a member.
roleName: filters collection of fco’'s by kind

fco.subTypes() : collection of fco's
Returns al fco’s that are subtypes of the caller.

fco.instances() : collection of fco's
Returns all fco'sthat are instances of the caller.

Generic Modeling Environment User's Manual Appendix B - MCL « 81

fco.type() . fco
Returns the parent fco of the caller in the type hierarchy.

fco.baseType() . fco
Returns the base fco of the caller in the type hierarchy.
fco.isType() : boolean
Returnstrueif the caller isatype, falseif the caller is an instance.
fco.islnstance() : boolean
Returnstrueif the caller is an instance, falseif the caller isatype.

fco.folder() . fdr
Returns the folder that contains the caller in the object hierarchy.
fco.attribute(attributeName : string) : string

sint

: boolean
Returns the value of the attribute named attributeName associated with the calling
object.
cpt.owner () . fco

returns the connection this cpt belongsto

cpt.cpRoleName() : string

returns the rolename of the cpt (like 'src’)

cpt.target() . fco

returns the fco this cpt is attached to

cpt.usedRefer ences() . collection of fco's

returns alist of references used by the cpt. the list is ordered, the first reference isthe
one farthest from the 'target' FCO

cpt.peer() : cpt

returns the other cpt in binary connections

an error object s returned for non-binary connections

fdr.folders() . collection of fdr's
Returns all descendant folders of the calling folder (recursive).
fdr.childFolder () . collection of fdr's
Returns al child folders of the calling folder.

fdr.rootDescendants() : collection of fco's
Returns al root fco's that are descendants of the calling folder (recursive).
fdr.rootChildren() : collection of fco's
Returns al root fco’ s that are children of the calling folder.
fdr.allDescendants() . collection of fco's
Returns al fco’s that are descendants of the calling folder (recursive).

Generic Modeling Environment User's Manual Appendix B - MCL « 82

Operations on collections of objects:

c->s1z&() :integer
Returns the number of objectsin the collection.
c->for All(x | f(x)) : Boolean
If f(X) istrue for al x in c, returns true; else, returns false.
c->exists(x | f(x)) : Boolean
If f(x) istrue for any x in ¢, returnstrue; else, returns false.
c->select(x | f(x)) : collection
Returns a collection containing &l x in ¢ for which f(x) istrue.
c->includes(inclObject:fco
| inclCpt:cpt | inclFdr:fdr) : Boolean
Returns true if the collection contains the parameter, false otherwise.
c->union(c2:collection) . collection
Returns a collection containing the union of the objectsin c and c2.
c->inter section(c2: collection) . collection
Returns a collection containing the intersection of the objectsin ¢ and c2.
c->theOnly() : fco

: cpt

: fdr

If ¢ contains a single object, returns the object. Otherwise, returns false.

Logical and error handling

true() : boolean
false() : boolean

return boolean constants. (As with other parameterless functions, shortrhands like
‘true’ and ‘false' is also accepted.)

isError(expr) : boolean
returns a boolean value based on the success of the execution of the 'expr' operand

fallBack(expr1, expr2) . typedependson return
from exprlor expr2

returns the return value of 'exprl' if it evaluates without an error, or the return value
of 'expr2' otherwise (expr2 isnot evaluated if exprl has no errors.)

Functions

The modeler may define his’her own functional operators using the built-in operators
defined in this document. Functions are enclosed in constraint blocksin the XML

Generic Modeling Environment User's Manual Appendix B - MCL « 83

representation of the modeling paradigm, but the syntax for denoting these user-
defined functions differs dightly from the syntax for constraints, as shown below.
Function constraint blocks are placed in the root folder of the project and are
accessibleto al constraints within the project.

<constraint type="function”>
<I[CDATA[function funcName ({parNanme: parType}*) fExpression]]>

</ constraint>
funcName: a string containing no spaces used to uniquely identify the function

{parName : parType}* : the formal parameter list of the function, consisting of any
number of parameter name and type pairs. The following parTypes are allowed:
Integer, Double, String, Boolean, Object, ObjectList, ConnPoint, ConnPointList,
Folder, and FolderList.

fExpression: same as cExpression for a constraint.

Examples

The following constraint will be violated if any of the descendant models of the
object to which the constraint is attached have the same name. This constraint hasa
priority of 2 will be evaluated whenever the object or any of itsimmediate children
receive a properties change event or anew child event.

<constrai nt name="Uni queDescendant Nanes" type="event based”
event mask="0x00000014" depth="1" priority="2">

<! [CDATA] nodel s()->forAll (ml, n2 | ml.name = n2.nane inplies ml =
nm)11>

<di spnanme>No descendant npdel s nay have the sanme nane. </ di spnane>

</ constraint>

The following function returns true if the calling object contains N atoms having the
role of Parameters:

<constraint type="function">

<! [CDATA[functi on cont ai nsNPar anet er Atons(N : | nteger)
atonParts("Paranmeters")->size = N]]>

</ constraint>

Generic Modeling Environment User's Manual Appendix B - MCL « 84

Appendix C — References

Model Integrated Computing References

The following references provide detailed information on Model Integrated
Computing technology, development, and application:

S. White, et al.: “Systems Engineering of Computer-Based Systems', |IEEE
Computer, pp. 54-65, November 1993.

J. Sztipanovits, et d.: “MULTIGRAPH: An Architecture for Model-Integrated
Computing,” Proceedings of the IEEE ICECCS 95, pp. 361-368, Nov. 1995.

D. Oliver, T. Kelliher, J. Keegan, Jr., Engineering Complex Systems with
Models and Objects. New Y ork: McGraw-Hill, 1997.

J. Sztipanovits, “Engineering of Computer-Based Systems: An Emerging
Discipline,” Proceedings of the IEEE ECBS 98 Conference, 1998.

Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J., Thomason 1V C.,
Nordstrom G., Sprinkle J., Volgyes P.: The Generic Modeling Environment,
Workshop on Intelligent Signal Processing, accepted, Budapest, Hungary, May
17, 2001

Ledeczi A., Nordstrom G., Karsai G., Volgyesi P., Maroti M.: On Metamodel
Composition, |EEE CCA 2001, CD-Rom, Mexico City, Mexico, September 5,
2001

Ledeczi, et d., “Metaprogrammabl e Toolkit for Model-1ntegrated Computing,”
Proceedings of the IEEE ECBS' 99 Conference, 1999.

Additionally, many other MIC-related journal articles, conferences papers, and other
reference materials are available from the 1SIS web site, accessible via the following
URL:

http://www.isis.vanderbilt.edu/

Generic Modeling Environment User's Manual Appendix C — References « 85

Glossary of Terms

aspects

The parts contained within a GME model are partitioned into viewable groups called
aspects. Parts may be added or deleted only from their primary aspects, but may be
visible in many secondary aspects.

CBS
Computer Based System

Compound model

A model that can contain other objects

connection

A line with a particular appearance and directionality joining two atomic parts or
parts contained in models. In the GME, connections can have domain-specific
attributes (accessed by right-clicking anywhere on the connection).

CORBA
Common Object Request Broker Architecture

COTS
Commercia off-the-shelf software

DSME
Domain Specific MIPS Environment

GME
See Generic Model Environment

GOTS
Government off-the-shelf software

Generic Modeling Environment User's Manual Glossary of Terms « 86

Generic Modeling Environment

A configurable, multi-aspect, graphical modeling environment used in the
MultiGraph Architecture

interpreters
See Modél interpreters

Lin

Link parts

=

Link parts

Atomic parts contained within amodel that are visible, and can participate in
connections, when the container model appears inside other models.

<

CL

MGA constraint language. A subset of OCL, with MGA-specific additions.

Metamodel

A model that contains the specifications of a domain-specific M1PS environment
(DSME). Metamodel s contain syntactic, semantic, and presentation specifications of
the target DSME.

metamodeling environment

A domain-specific MIPS environment (DSME) configured to alow the specification
and synthesis of other DSMEs.

MGA
See MultiGraph Architecture

MGK

MultiGraph Kernel. Middleware designed to support real-time MultiGraph execution
environments

MIC
Model Integrated Computing

MIPS
Model Integrated Program Synthesis

Model interpreters

High-level code associated with a given modeling paradigm, used to trandate
information found in the graphical models into forms (executable code, data streams,
etc.) useful in the domain being modeled.

Generic Modeling Environment User's Manual Glossary of Terms « 87

Model translators
See Model interpreters

modeling paradigm

The syntactic, semantic, and presentation information necessary to create models of
systems within a particular domain.

MultiGraph Architecture

A toolset for creating domain-specific modeling environments.

OCL
Object Constraint Language (a companion language to the UML)

paradigm
See modeling paradigm

POSIX

Portable Operating System Interface, An |EEE standard designed to facilitate
application portability

Primitive model

A mode that cannot contain other models

Reference parts

Objects that refer to (i.e. point to) other objects (atomic parts or models)

References
See Reference parts

Generic Modeling Environment User's Manual Glossary of Terms « 88

