CloudScale Environment

User Guide

¢ (loudScale

Funded by the European Commission’s
Framework Programme Seven (FFT).

@ SINTEF T ERricssoN 2 av=<vas, B

anananananan

Contents

INSEAIIATION ...ttt ettt e et e et eeaneesane e 5
=0 1V 11 a =T 0 1=1 1 RS 5
DOWNIOQ ...ttt 5
INSEANATION & RUN ...ttt 5

1012 = [0 oY £ T=1 ¢ | SRR 6
1Y o =TI Y/l Lo) PSSP 6
ECHIPSE IDEcoooeeeeeeeeeeeeee ettt ettt e e e e e ettt a e e e e s ettt eeaaeeeessesntaneeaaaaeeenaans 6

INEFOQUCTION. ...ttt ettt et e st e st e nnee e 7

ENVIFONMENT PEISPECTIVE ... s s s e s s s s s s s s s s s ssssssssnnnnes 7
CloudScale ENVIrONMEeNt PrOJECTcceeeeueeeeesciieeeeeiiieeeesiteeessiteaessstteaeessssaasessssnaaeanns 7
DASHBOGI.......oooniieeeeeeeee ettt ettt ettt s 8
WWOTKFIOW ...ttt ettt ettt e et e e ettt a e e st a e e s s astsaaeesssnaasenasees 10

TOOIS PEISPECLIVES ..ot e ettt e e et e e e sttt e e e sttt a e e e sstaaassssssaaessssseaesnsssnees 11

o 1 To TV o | o USRI 12

3o T o) (=2 U UPURR 12

SCOIEDL ...ttt ettt sttt ettt sane e 13

OVEBIVIBW ...ttt ettt ettt e bt e s st e e sttt e s s e e e s snsnes 13
REIALION 1O WOIKFIOW ...cceeeeeeeeeeeeee ettt e e ettt a e e e e e e s eataaaaaaeeeeaans 13
FEATUIES .ttt s s ae e e e e s s 13
L] oLV L R O VL o1V | S 14
MiNIMQAT EXQIMNPIEeeeeeeeeeeeeeeee ettt e ettt a e e e e et sttt a e e e e e s s ssssnaaaaaaeeeeaans 14

Extended Palladio Component Model (Extended PCM)..........ccoovecevveeeeeeeeeeeeeciiiveeeeneeenneeans 15
REIALION 1O WOIKFIOW ..ottt ettt e ettt e e e e e e et sssssaenaaeeenenans 15
=07 =P 15
LT oL L7 OV L o1 £ S 15
MINIMQT EXQINIPIE ..ottt et e ettt e e e e e e sssssaeeaaseeeessssssseesssesensnans 15

ArchiteCtural TEMPIALES (ATS)...ueueeee oottt e e e et stttreeea e e e e e sesssbaveeeaseeeessssasseens 17
REIALION 1O WOIKFIOW ..ottt ettt e e ettt a e e e e e et stataaaaaaeeenaans 17

Lo U =2 17

LT oLV L7 OV L o1 [S 17

WAIKEArOURGcoveeeeeeeeeeeee et eeaaa e Error! Bookmark not defined.
USQAGE EVOIULION (UE) ...ttt ettt e et e e et a e et s e e et a e e enssaaaessnsnaas 19
ReIQtiON tO WOIKFIOWeveeeeeeeeeee ettt e et a e e s e e e et a e e etaaaeeanseaaas 19
INPUL & OULPUL .ttt ettt e ettt e e e e e s e sttt e e e e e s ssssastbtaaaaaesssnaans 19
o1 o TV o | PSPPI 19

g oot X o] OO PUPPPTPPPI 24
INEFOQUCTION. ...ttt ettt e st e et eenaneenaanee e 24
ReIAtION 1O WOIKFIOW ...ttt e sttt e e e e e staa e e straasesssaea s 24
PrODICM ...ttt 24
FEATUIES .ttt s s sbas b a s e s ssaes 25

] oLV LR O VL o1V | 25
Y011 < T oIV | IR 25
REFOIENCES ...ttt e ettt e e e et e e e et a e e e st e e e s ettt e e e e e sstseaeeasssaeaeesnsseaaaaas 26

Y Lo 1YY= SRS 27
INEFOQUCTION. ...ttt et e sane e 27
RelAtiON tO WOIKFIOWeveeeeeeeeeeeee ettt e et e et e e e et a e e st aaaaananaaas 27
PrOBIBIM ...t 27
FEATUIES .ottt 28

L] oL L/ OV L o1 £ 28
WAIKERTOUGR .ottt ettt e et e e et e e e e e e e s st sb e aaaeeenssssssreraaaaens 28
) (= =1 Lol =2 PPPPR 29

)Y 0 11 [0l e o o A =] SRR 30
INEFOGUCEION. ...ttt 30
REIALION O WOIKFIOW....coeeeeeeeeeeeeee ettt ettt e e e ettt a e e e e e e st aaaaaeeeeaans 30
PrODBICM ...ttt 30
FOATUIES .ottt ettt ettt e e e ar e ea e s senes 30

L] oLV L /B O VL o1 | S 31
WAIKERITOUGR ...ttt ettt e e e e e e ettt a e e e e e e e e sttt aaaaaeeesssssssenaaaaens 31

1) V750 T 41 [0l o Lo (=1 33

JTa 1420 To [V Lot o] T 33

REFEIrENCE tO WOIKFIOW .coooooeeeeeieeiee ettt ee sttt ee s e e sesssvsseaaaseeeenaaas

Problem....

Features ...

Walkthrough

Installation

I Requirements

® Java 7 (JRE is not yet included)
e Windows, OSX or Linux operating system (32 or 64 bits)
o If 32-bit Java is used on 64-bit OS, 32-bit bundle needs to be downloaded

I Download

o CSE bundles available at http://www.cloudscale-project.eu/results/tools/

o OSis automatically detected
o Choose between Release and Nightly version

I Installation & Run

1. Download bundle
2. Extract/Unzip bundle
3. Open folder and run Environment (eclipse)

http://www.cloudscale-project.eu/results/tools/

Development

Maven (Tycho)

1. Clone the repository.
o S git clone https://github.com/CloudScale-Project/Environment.git
2. Build Cloudscale Environment.
o S mvn package
3. Run Linux,MacOS,Windows distribution.
O Bundle location: plugins/eu.cloudscaleproject.env.master/target/products

Eclipse IDE

1. Download and install Eclipse Luna for RCP and RAP
2. Download and install Eclipse plugin dependencies for CloudScale development
a. Go to Eclipse->Help->Install New Software
b. Add CloudScale Toolchain update site:
http://cloudscale.xlab.si/cse/updatesites/toolchain/nightly/
c. Install Toolchain features (Analyser, Extractor, Static Spotter and Dynamic

Spotter), Dependencies and Sources (sometimes Dependencies needs to be
installed first and after that everything else)
3. Clone repository
a. S git clone https.//qithub.com/CloudScale-Project/Environment.qgit

4. Import CloudScale Environment plugins, under "plugins/" directory, into the
workbench.
5. Run product (eu.cloudscale.env.product)

http://cloudscale.xlab.si/cse/updatesites/toolchain/nightly/
https://github.com/CloudScale-Project/Environment.git

Introduction

The CloudScale Environment (CSE) is an open-source solution oriented to provide an
engineering approach for building scalable cloud applications by enabling analysis of
scalability of basic and composed services in the cloud. It is a desktop application
integrating CloudScale tool-chain, consisting of Dynamic and Static Spotters, the Analyzer
and the Extractor, while driving the user through the flow of the CloudScale Model.
Application can be installed and used in any personal computer running Java 6+, including
Windows, MacOS and Linux.

Environment perspective

Environment perspective is the main perspective in the CSE, responsible to provide all main
functionality of the CloudScale toolchain through unified and well defined components. It
can be accessed through Tools>Environment>Perspective action or through toolbar action
(first button). In this perspective of the tools’ actions and views are hidden since all
functionality is available through integration components. To use Tools in a stand-alone
fashion see ‘Tools perspectives’ section.

CloudScale Environment Project

The initial step in using the CloudScale Environment is creation of a project. A project
represents a system being analyzed by the tool user. As showed in Figure 1, a project initially
contains project specific files, dedicated ScaleDL models folder with automatically generated
ScaleDL Overview model and diagram, and dedicated tool’s folders.

- 5 CloudStore-Environment [CloudScale Project] [Example]
- Analyser
- {4 Input
+ mm Alternative_2015-05-14 05-35-16
+ w Alternative_2015-05-20_01-48-42
+| $¥ Configuration
+| €} Results
+ Dynamic Spotter

+ Extractor

+

Static Spotter
+| $¥ Generated models

+

@ ScaleDL models
~s, method.workflow

<\, project.cse
(77 README.md

Figure 1: CloudScale Environment project

Project specific files are project.cse and method.workflow. First contains general information
about the project (location of files, results, etc.) and is presented through the Project
Dashboard. The method.workflow, on the other hand stores the current state of the project
(models validations, enabled and disabled steps, etc.) which are presented through the
workflow diagram. ScaleDL models folder contains, as name suggests, all ScaleDL models
(Overview, Usage Evolution and Architectural Templates) and corresponding diagrams.
Additionally, all PCM models imported into an Overview model are stored in the “imported”
subfolder. For each integrated tool, corresponding plugin creates folder where it stores all
tool specific information. In general all tools needs input, configuration and results, therefore
these are also present in first level in subfolder. Further down it depends on specific
integration which data is stored and how the data is organized. Nevertheless, users can
always find all tool’s specific information (e.g. models, configurations, results, etc.) inside
these folders.

Dashboard

To provide unified access to all the integrated tools, project Dashboard component has been
developed. In general each integrated tool needs some input, run configuration and at the
end it provides some results. Taking this into account, dashboard contains main user-
interface component for each tool, which is further divided into three sections: input,

configuration, results.

Input section defines what the input is (e.g. complete PCM model for Analyser) and how to
acquire it (e.g. output of the Overview transformation is input into the Analyser). Supporting
different CloudScale Method paths, one can use the tool independently (i.e. define manual
input) or connect other tool’s output to its input. In the current state the integration
mechanism does not yet support alternative inputs, which is planned for the next year.

Configuration section defines what configurations are required and provides option to run
the tool. Since all integrated tools contain theirs own run configuration user interfaces, the
dashboard does not try to duplicate it, however it tries to provide easier access to the
configurations, through pre-configuring what is possible, giving users options to create,
delete and modify configurations and run them.

Results section displays all results from tool runs. Since the tools also provide their own user
interfaces for displaying results, the results component shows which results are available,
status of the run and provide an option to open specific result in dedicated component.
Nevertheless the dashboard is currently used only for integrated tools, it also provides the
extension point, where additional plugins can extend its functionality by providing new tools
and/or operations.

e Analyser
O Input - Input models (PCM) with addition to automatically create new ones or
import existing ones and apply Architectural Templates.
O Run - convenient manipulation of the Experiments model and running
capabilities, supporting Scalability/Capacity and Normal run configurations
O Results - persist entire result sets and shows most important informations
(including charts), with possibility to open dedicated EDP2 views.
® Extractor
o Input - currently not visible, since input can for now only be already imported
Java projects.
O Run - automatically configures Modisco and SoMoX targets based on the
project selected. It also exposes metrics used in extraction.
O Results - all extraction data are persisted in results folder and showed
through this component; extracted PCM models, modisco models, ...
e Static Spotter
o Input - Source Decorator model produced by SoMoX with corresponding PCM
models.
O Run - view and manipulation with Static Spotter catalog. Run static analysis.
O Results - persists and displays all anti-patterns found in the results.
e Dynamic Spotter
O Server - configuration of Spotter server. In CSE user can work with integrated
one or he can configure address of external spotter server.

o Input - Provides Instrumentations and Measurements configurations.

O Run - Provides basic Dynamic Spotter configurations with Workflow and
Hierarchy selection

O Results - all results are persisted in results folder and showed through this
component.

I Workflow

The workflow diagram represents all possible paths that user can take in the CloudScale

Environment to analyse scalability of the system.

Extractor
L]
- k)
@ J/]
Extractor : Choud]
() wn) ,
]
L]
Spotter
[
Static spotter input : ChoudStore
1%
[7 [) L8
Static spotter : CloudStore Dynamic spotter : altemative (1} b
@ (8] !
-
- Y - - v . Results : Simple scalability [04:47:00]
Resuits : CloudStore [07:17:39] Results : akternative [12:56:28] X
= ¢ .
L J . J

Figure 2: Workflow diagram (with successfully validated alternatvies)

The diagram itself is composed of 4 main groups; Analyser, Extractor, Spotter and ScaleDL.
Each group defines a set of states and how they are depended on each other, while external
boxes represents actions (i.e. generate, import, use) that can be executed to connect results
of one tool to the input of another. The tools groups contain three states; input,
configuration and results, and these are analogous with the dashboard sections; which are
displayed by double-clicking on the state. In addition these states also contain a toolbar with
available actions (e.g. wizards, quick run) and a representation of; required resources in an
input state, available run configurations in a run state and available results in a results state.

Workflow diagram has two types of connections; required (solid) and optional (dashed). First
defines that current state is active only when all required states are validated, while the
latter one does not expect the optional state to be validated, however it normally represents
tools interoperability and thus producing required resources quicker. Entry points, where

user can start at the beginning are all the states that does not require another one to be
fulfilled; tools’ input states and all ScaleDL models.

Tools perspectives

Complete CloudScale tool-chain is available in the CloudScale Environment separately
through dedicated tool’s perspectives, which can be accessed through Tools menu or directly
using toolbar buttons. From these perspectives tools can be used separately as a stand-alone
products without the need of using Environment integration functionalities. For instructions
how to use integrated tools separately, please see Tools tutorials.

To open other views (Ul components) that may be missing in the menus, one can access
them through “Tools>Show View” action (Alt+Shift+Q Q).

The CloudScale Environment is designed to be fully extensible, giving the possibility to the
open-source community of improving and adapting it to its own needs. All the integrated
tools (Palladio, SoMox, Reclipse and the SoPeCo) will be available from within the application
through separate perspectives; however the main perspective (CloudScale perspective) will
try to cover as much functionality as needed through dashboard and workflow components
(see 4.2) to achieve a seamless and integrated user experience providing functionalities
described before.

e Analyser (Palladio) - Palladio is a software architecture simulation framework, which
analyses software at the model level for performance bottlenecks, scalability issues
and reliability threats, and allows for a subsequent optimisation. In the CloudScale
Environment mainly the backend engines will be used to analyse the user’s
application. This will be achieved by automatically transforming ScaleDL Overview
models into the Palladio Component Models; structure on which Palladio operates.

e Extractor (SoMoX) - SoMoX provides clustering-based architecture reconstruction to
recover the architecture of a software system from source code. The clustering
mechanism extracts a software architecture based on source code metrics and
construct PCM models to be used by Analyser.

e Dynamic and Static Spotter Spotter is a tool for identifying (“spotting”) scalability
problems in Cloud applications. The tool consists of two main components that are
provided as two separate programs: Static and Dynamic spotters. The Static Spotter
analyses the application code to find scalability anti-patterns. The Dynamic Spotter
analyse the execution of the application (through systematic measurements) to find
scalability anti-patterns in the application’s behaviour. Within this document we will
refer to the pair as Spotter, and to their individual components as either Dynamic or

Static Spotter.

Walkthrough

Below are steps and most basic information needed to start working with the CloudScale
Environment.

1. Start CloudScale Environment
Open Environment perspective (through menu Tools>Environment>Perspective)
3. Create new CloudScale Project
a. File->New->CloudScale Project
b. Click on first toolbar item (‘New CloudScale project’)
4. Go through available components
a. Dashboard accessible through double-clicking ‘project.cse’ file
b. Workflow accessible through double-clicking ‘method.workflow’ file
c. ScaleDL models available under ‘ScaleDL models’ folder
d. Each Tool has has dedicated folder where all configurations and results are
stored
5. Start creating input and run alternatives for the tool of your choice using Dashboard
components. Help with Workflow diagram which highlights steps that are available
and shows validation information (if everything is ok or something needs to be
done/fixed).

Examples
CloudScale Environment integrates many examples and templates including stand-alone

examples for each of the integrated tools. Examples can be accessed through CloudScale
Examples project in New Project wizard.

ScaleDL

The Scalability Description Language (ScaleDL) is a language to characterize cloud-based
systems, with a focus on scalability properties. ScaleDL consists of five sub-languages: three
new languages (ScaleDL Usage Evolution, ScaleDL Architectural Template, and ScaleDL
Overview) and two reused language (Palladio’s PCM extended by SimulLizar’s self-adaption
language and Descrartes Load Intensity Model (DLIM)). In this section for each we describe
how it is used in the CloudScald Evironment.

Overview

The ScaleDL Overview is a meta-model that provides a design-oriented modelling language
for cloud-based system architectures and deployments. It has been designed with the
purpose of modelling cloud based systems from the perspectives of service deployments,
dependencies, performance, costs and usage. It provides the possibility of modelling private,
public and hybrid cloud solutions, as well as systems running on non-elastic infrastructures.

Relation to Workflow

An instance of the Overview model is a part of a ScaleDL instance. It can be generated from
the Extractor result, partial PCM model, or directly by creating a new Overview alternative in
the Dashboard editor. Overview model, when completed, can later be used to produce the
input model for the Analyser (see Extended Palladio Component Model).

Features

An Overview model instance allows software architects to model platform services, software
services, connections between them and deployment in the cloud environment. It includes
hardware specifications for the different cloud providers. Those specifications are designed
in a way to support extending existing cloud specifications, by the use of a system
descriptors.

Overview meta-model can be used as a general structure for describing software
architecture inside cloud environment.

In CloudScale Environment its main purpose is to ease and accelerate the modeling of the
Extended PCM model, by the use of partial PCM to Overview and Overview to Extended PCM
transformations. Software services in Overview model can embed partial PCM models to
describe internal mechanics. When the Overview model is transformed to the Extended PCM,
partial PCM models are combined to form a complete input for the Analyser.

https://sdqweb.ipd.kit.edu/wiki/Palladio_Component_Model

Input & Output

Overview model can be modelled with the Overview diagram editor. Initial configuration can
be made with the import wizard from the Extractor output model, or external partial PCM

model (Repository and System).

The main output of the Overview model is the Extended PCM model, which is used as the
input for the Analyser (see Analyser).

Minimal Example

To create an Overview model instance, user has to create a new Overview alternative. This
can be achieved by double clicking on the Overview section in the Workflow diagram, or by
using the Dashboard editor. In the Dashboard editor, user interface section for manipulating
Overview alternatives is under the Overview tab item. Create button opens up the wizard for
creating an empty Overview alternative, or creating initial model from the Extractor result or
external partial PCM model.

Extended Palladio Component Model (Extended PCM)

Extended PCM allows architects to model the internals of the services: components,
components’ assembly to a system, hardware resources, and components’ allocation to
these resources, the extension allows additionally to model self-adaptation: monitoring
specifications and adaptation rules.

Relation to Workflow

An instance of the Extended Palladio Component Model (Extended PCM) is part of a ScaleDL
instance, the input of the Analyzer (see Workflow).

Features

A PCM instance allows software architects to model the internals of services. The PCM
allows to model components, components’ assembly to a system, hardware resources,
components’ allocation to these resources, and static usage scenarios.

The “extended” refers to additional models added in the CloudScale context. These models
cover monitoring specifications, service level objectives, and self-adaptation rules.
Monitoring specifications allow to mark PCM elements, e.g., an operation of a component,
to be monitored during analysis using a metric such as response time. Service level objectives
specify thresholds for these metrics, allowing software architects to manifest their quality-
related requirements. Self-adaptation rules can react on changes of monitored values. For
example, when a certain response time threshold is exceeded, an adaptation rule could
trigger a scaling out of bottleneck components.

Input & Output

Creating Extended PCM instances is mainly based on the input of the software architects
that create these instances. Software architects can, however, be supported by using
Architectural Templates (see Architectural Templates (ATs)) or by reverse engineering partial
Extended PCM instances from source code (see Extractor).

The main output for specifying an Extended PCM is the Extended PCM instance itself. It can
be used for documenting a system’s architecture and is part of a ScaleDL instance; the
Analyser input (see Analyser).

Minimal Example

To create an Extended PCM instance, software architects conduct the following actions:

1. Switch to the Analyser Perspective (second button of the image below).

5 oy OG- -B RS Y YR e

2. Create an Extended PCM instance by following the Palladio Workshop white paper
and the Analyser screencast series. For example, PCM component repositories are

created via the & button shown in the image above.

Architectural Templates (ATs)

ScaleDL Architectural Template allows architects to model systems based on best practices
as well as to reuse scalability models specified by architectural template engineers.

Relation to Workflow

Architectural Templates (ATs) are part of ScaleDL the input of the Analyzer (see Workflow).
Also the transformation from “Overview model” to “Analyzer input” utilizes ATs to simplify
the transformation specification.

Features

Architectural Templates (ATs) help software architects to specify Extended PCM instances
more efficiently based on reusable ScaleDL templates. We provide the CloudScale AT
catalogue that includes best practice templates for designing and analyzing scalable, elastic,
and cost-efficient SaaS applications. We based this catalogue on common architectural
styles and architectural patterns found in cloud computing environments.

Input & Output

For an AT-based design, software architects need a catalogue of available ATs as an input.
For cloud computing applications, we suggest the CloudScale AT catalogue.

The output of an AT-based design is part of a normal ScaleDL instance. The Analyser fully
supports AT-enabled ScaleDL instances.

Walkthrough

Software architects conduct the following actions for designing ScaleDL instances with ATs:

1. Switch either to the “CloudScale Perspective” or the “Analyser Perspective” using the

<" menu bar buttons.

2. Open an existing PCM system model or created a new one (see Extended Palladio
Component Model (Extended PCM)).

3. Open the system in a tree editor (i.e., double-click the *.system file, not a
*.system_diagram file).

4. Right-click on the “system” element of your system model and choose “MDSD
Profiles... -> Apply Profile”.

5. Inthe new dialog, select the AT you want to apply and apply it. By default, all ATs of
the CloudScale AT catalogue are available. If you want to use third-party AT
catalogues, assure that you installed the respective plugins; included ATs will then
also be shown in this dialog.

6. Assign all AT roles to respective elements of your ScaleDL instance. For example, if an
AT specifies an AT role for PCM’s assembly contexts, right-click this assembly context
within the system model tree editor and select “MDSD Profiles... -> Apply Stereotype”
and apply the role similar to the previous action. Our CloudScale AT catalogue
describes, per AT, which roles have to be assigned.

7. Aseach AT role can have a set parameters, software architects also need to set such
parameters when requested. These parameters can simply be set via the Properties
View for elements that have an AT role assigned.

Usage Evolution (UE)

The purpose of the ScaleDL Usage Evolution is to enable modelling of how the load and work
of a system evolves over time. ScaleDL Usage Evolution provides a thin modelling layer that
expresses how the evolution of a set of variables applies to a usage model expressed in the
Palladio Component Model (PCM). The actual modelling of the evolution of a single variable
(e.g. arrival rates or population in load or average video size in work) is done using the
LIMBO Load Intensity Modelling Tool. The details of using the Palladio and LIMBO are not
covered here, but we refer instead to the PCM chapter of this document, the Usage Evolution

screencast, and to the tutorials and screencasts on the Palladio home pages.

Relation to Workflow

An instance of the Usage Evolution is part of a ScaleDL instance and defined under the
ScaleDL step in the workflow. It is an input of the Analyzer (see Workflow).

Input & Output

Walkthrough

The following is an overview of the steps for creating and running a usage evolution

simulation:

1. Create a Palladio Component Model (PCM) of the system to evolve, including a Usage
model with at least one Usage Scenario.

2. Create LIMBO models for how load and selected work parameters (e.g. amount of
data to process) evolves time.

3. Create a Usage Evolution model that maps how LIMBO models are used to describe
the evolution of load and work parameters from a selected usage scenario.

4. Create a run configuration

5. Run the simulation (see details under the Analyser section).

6. (optional) Adding additional usage and evolution models

Each of the steps are described in more detail in the sub-sections below.

Creating the PCM model

The first step is to create or import a Palladio Component Model (PCM) of the system to
evolve, including a Usage model with at least one Usage Scenario. This task can e.g. be
initialised from the Analyser tab of the Dashboard, where the set of PCM models can be
created or imported by selecting Input, pressing the “Create new...” button and selecting
one of the input alternatives. See the Analyser and PCM chapter for details on this.

http://descartes.tools/limbo

Creating LIMBO models

The next step is to create LIMBO model of how the load and selected work parameters from
the PCM model evolve over time. LIMBO models can be created from the LIMBO tab of the
Dashboard. From the dialog that appears when selecting to create a LIMBO model, it is
possible to create either an empty LIMBO model, a model based on a template, or to select a
more advanced setup through a wizard. Note that the wizard interface cannot be used to

edit the model after it has first been created.

[*Dashboard ... 2 g! pPCM.USAgemo... 8 pcm.reposit... =4 *pcm.system... ™ = 0

Extractor |Analyser | Dynamic Spotter Static Spotter Overview |Limbao

 Alternatives: mm

alternative
Usage evolution arrival rate editor:

¥ 4 Model Sequence Linear trend [Resource: limbo.dlim]
¥ 4 TimeDependentFunctionContainer Container
4 LinearTrend 0.0

29.97

arrival
rates

0~ - {
0 time 600.(

Create Linear trend
Clone o .
"4 Alternative is valid.
Delete
[Properties 53 Validation status & = =0
Property Value
Function Output At End '=30.0
Function Qutput At Start =0.0

The LIMBO tool provides a tree-based editor as shown in the figure. At the root of the model
is a Sequence which typically contains one or more TimeDependentFunctionContainer that
can be regarded as segments of the sequence. Each segment has a duration that adds to the
total duration of the Sequence. When using multiple LIMBO models (to describe work
parameters as well as load) the total duration of each Sequence must be the same.

Each segment contains a single function (e.qg. linear, exponential, logarithmic or sin trend)
describing how the value evolves within that segment, and typically contains a start and end

value (see e.g. properties for LinearTrend in the figure).

Note that the LIMBO tool originally was developed with focus on arrival time, and thus uses
“arrival time” in some of the labels (e.g. the y-axis in the graph). However the same
modeling concept can be use to express the evolution over time of other values such as

population in closed workload or even work parameters such as average data size (e.g. video
or picture size).

See the LIMBO web pages for more documentation on the tool.

Creating a run configuration

The next logical step is to create a usage evolution model, but as this model is initialised
along with the run configuration, we describe creating a run configuration first.

To create a run configuration, open to the Analyser tab of the Dashboard and the Run tab
within it. Click the create button in the “Alternative conf:” column. When no configuration
has been added yet, you can also use the “Create new...” button that will be present in the
main editing area on the middle/right side of the screen.

For the usage evolution, a “Normal” alternative type should be selected in the dialog that
appears. Under basic settings, measurement count stop condition should be unchecked (set
to “-1”). The value of simulation time stop condition should to equal or higher than the Final
Duration of the LIMBO models.

The details of setting up a run configuration is further described in the Analyser chapter.

Creating the Usage Evolution model

The usage evolution model describes how a usage scenario of a usage model evolves over
time, and uses LIMBO models to define the evolution of the individual load and work
parameters.

As described under Creating a run configuration, a usage evolution model is created as part
of a run configuration, and will appear under the subfolder of your selected configuration
alternative for the analyser.

The figure below shows the ScaleDL Usage Evolution tree-based structure editor. At the root
of the model is a single usage evolution element. To add content to the model, select the
root element, and select “New Child / Usage” from the context menu to create a Usage.
Then, select the newly created Usage element - its properties will be shown in the Property
editor tab at the bottom of the screen.

8 0.0 CloudScale o

<5

[Project Explorer 52 = % ¥ = O || *Dashboard (ImageArchiveAnalyser) & *analyser.usageevolution 52

= 8
v <rImageArchiveAnalyser [CloudScale Project] L, Resource Set

v 'Lfs"l""’“lr v [platform: /resource/ImageArchiveAnalyser /%20Analyser/Configuration/Alternati
npu

+ 4 Usage Evolution aName
¥ 4 Usage aName
< Work Parameter Evolution

v i Alternative_2015-07-03_02-25-04
3 default.allocation
(&) default.allocation_diagram
» [default.repository
» &% default.repository_diagram
» [default.system
€4 default.system_diagram
» & My.resourceenvironment
» B My.resourceenvironment_diagram
= prop.alt
» & publishOpen.usagemodel
» ¥ publishOpen.usagemodel_diagran
» i Alternative_2015-07-03_02-45-35
» i Alternative_2015-07-03_02-50-03
» ¥ Configuration
@ Results Selection | Parent | List | Tree | Table | Tree with Columns

; = = =
Project workflow diagram [ImageAr... 33 [Properties 3 | Validation... | #= Arrival Ra... | [4 Simulatio... | & Console [=]
P

A =

Property vaiue

Selected Nothing

To reference elements from the usage model and LIMBO models created in previous steps in
the usage evolution, they must first be imported into the usage evolution editor. This is done
by dragging the files into the editing area of the usage evolution editor (or use “Load
resource...” from the context menu to locate them). The usage model file is found under the
subfolder of your selected input alternative for the analyser, while the LIMBO models are
found under the LIMBO subfolder of the ScaleDL models.

Once the files have been loaded, make sure the Usage element in the editor is selected. Click
on the Load evolution property, and select the sequence from the LIMBO model that appears
in the list. Then, click on the Scenario property and select the usage scenario from Palladio
that appears in the list. The editor should now look similar to what is shown in the next
figure. Remember to save the model once the edits have been completed.

If there is any work parameters in your model that you want to describe evolution of, add
one Work Parameter Evolution childs to the Usage for each of them. From the Evolution
property select the LIMBO sequence that describe the work parameter evolution (remember
that each LIMBO model must first be first be imported into your model). Set the Variable
Characterisation property to point to the variable from the PCM model to evolve.

8 0o CloudScale e

@)
L5 Project Explorer 2 = G:D ¥ =0 [~ *Dashboard (ImageArchiveAnalyser) ¢ *analyser.usageevolution 23 =0
&4 default.system_diagram [Resource Set

» 2 My.resourceenvironment
» EFMy.resourceenvironment_diagram
= prop.alt
» k4! publishOpen.usagemodel
>g!publisthen.usagemadeLdiagran
» i Alternative_2015-07-03_02-45-35
» @ Alternative_2015-07-03_02-50-03
» $¥ Configuration
G)Resulls
» Dynamic Spotter
> Extractor
» Static Spotter
% Generated models
v C4SealeDL models
i Overview
v i Usage Evolution
v @ Alternative_2015-07-03_03-30-30
He limbo.dlim Selection | Parent | List | Tree Table Tree with Columns

= 0

¥ & platform:fresource/ImageArchiveAnalyser /%20Analyser fConfiguration/Alternat
¥ 4 Usage Evolution aName
¥ 4 Usage aName
4 Work Parameter Evolution

b & platferm:fresource/ImageArchiveAnalyser/%20Analyser /%2 0lnput/Alternative_2
b 8 platform:/resource/ImageArchiveAnalyser/ScaleDL%20models/Usage%20Evoluti
b 1 platferm:fresource/ImageArchiveAnalyser/%20Analyser /%2 0Input/Alternative_z
» & platform: fresource/ImageArchiveAnalyser/%20Analyser /%2 0lnput/Alternative_z
¥ & pathmap:/ /PCM_MODELS/PrimitiveTypes.repository

» & pathmap://PCM_MODELS/Palladio.resourcetype

Project workflow diagram [ImageAr... 3 [Properties 5% | Validation... | 3= Arrival Ra... |[d Simulatio... & Console| — &

cAER L R ¥

Property Value
Entity Name '=aName
Id '=_p_Tbh8CGEEeWLbgKyHprDbw
Load Evolution Sequence Sequence
Scenario g!Usage Scenario publishimageOper

Running the simulation

Open the Run tab under the Analyser in the Dashboard. Select the configuration you want to

run, and press the Run button at the bottom right of the screen. To see the result, first check

that you are in the Analyser perspective (click the graph-icon in the top left of the window).

The results of the simulation appears in the Experiments view that is shown in the tab next to

the Project Explorer in the Analyser perspective. See the Analyser section for more details on

running simulations.

Adding additional usage and evolution models

In some cases it is will be useful to create more than one usage scenario and/or usage

evolution description to analyse different uses of the systems or how it will evolve in different

future scenarios. To add this, from the Input tab for the Analyser tab in the dashboard:

Click the create button under the “alternative inputs column” to create an additional
analyser input alternative. In the wizard that appears, import the models with
exception of the usage model from the initial alternative to them.

Create a new usage model by clicking the “Create...” button on the right hand side of
the Analyser tab, and select Usage Model and Usage Evolution Model.

Add a new run configuration, where the Usage Evolution for the alternative will be
located.

Add content to the new models

As required, import or create new Limbo models to describe the evolution of
individual parameters, and refer to these from the usage evolution mode as
described in the previous section.

Extractor

I Introduction

The Extractor is a reverse engineering tool for automatic model extraction. It parses source

code and generates partial ScaleDL models that are further used by the Analyser.

IReIation to Workflow

The Extractor is a reverse engineering tool for automatic model extraction. It parses source

code and generates partial ScaleDL models that are further used by the Analyser and the

Static Spotter.

Extractor

B

,~}|Impor‘t

%ﬂ \

Repository

>I|Import bl

"

T
ScaleDL H
v

Import existing »—=---_

Overview model

J

J—- -—-% Transfo nnatlo> ——————

|
|
)

|Use measureme,> "=~~~

-

Analyser

=)

Analyser

input

Repository

System

Allocation

L7

J
|
|
|
|
|

Resource environment

Usage

Analyser

Measuring points

Monitors

[5

ervice Level Objectives

Results

Usage evolution
— “ihiii—
'. J
i
-
Spotter i EI
]
1
Static spotterinput _'1! Dynamic spotter input
¥ Y
Static spotter Dynamic spotter
¥ N
Results Results
B
I Problem

There are situations for a software system that the original architecture has been lost or

outdated due to further development. The software architect has no detailed picture of what

the software system’s architecture looks like but only the source code. While the software

architect would require the architecture when migrating the software system to a new

environment such as cloud computing environment.

I Features

The Extractor is based on the Archimetrix approach. Archimetrix is a tool-supported
reengineering process that combines different reverse engineering approaches to enable an
iterative recovery and reengineering of component-based software architectures. The
Extractor is focused on parsing and architecture reconstruction. The Extractor parses the
source code, extracts and clusters a component-based software architecture based on source
code metrics.

The software architecture is generated as a partial ScaleDL model.

I Input & Output

As for an input, the Extractor takes Java source code and generates partial ScaleDL model as
an output

I Walkthrough

& CloutScols Fin Edt Tools Siory Dlagram Heln PDREQDW . B3 = B W wEE Weddss O =

1. Click the Extractor on oo ==

=]

2 Projacs Exgrorer B 4% ¥7 0 o Dastiowd ProducarConsumer) — Dasrtsaard {Demo) 5 =a

Dashboard, go to Run e e

7 Derme [ChousdSan Projeet] Exiractor Acalyser Dynar Spotier Statkc Spotier ScaledL
iy

Gurrety rarm e v 1 sesiag Cromes vm s
oo e,

Projuct Werktow sagram 55 Aeval Fate Pict 2

Tl Prcpactien | D Gormoi | Simution Dock s 71 | =

& CloudScale PRGN B8R T MW ™ 0NEE Wed0fdd Q E

2. Click Create, Create a new e

o

configuration ' & onsoe st Fari — o =

G A [HARES PHUER Extractoe Ansiysor Dyvamic Spotier Stati Spotisr SoalsOL
» 3 Aralyoer

BREQRI BRI T Be =™ oomms wotsm O =

3. Select input project, configure R —
the metrics i Troen . B
7 Dema [ClowsSosis el hﬁ-mmmm‘m
28 o st
= e
CaScakOL modess Croae raw.
A preject c30
G e e it sl GH .
=
oo s Conains v it corgeation aiersathon.

Projoct Worklow sagram 5% Acval Fate Pict 71 =8

4. Run

| CLUSTERING

 Clustering Composition Threshold Min (End Value) 25 === e

 Clustering Value) 100 .

_ Clustering Composition 10 =

| MERGING

Clustering Merge Threshold Min (Start Value) 45 om— —

. Clustering Merge Threshold Max (End Value) 100 m—

Clustering Merge Threshold Increment A0 —
mnmhm. Run

Extractor Analyser Dynamic Spotter sm:sm\subu.l

5. Click Results tab under Main

Extracted internal architecture model

<+ Model JavaAppl [Resource: _javaZkdm.xmi |
» 8 Model Repository aName [Resource: internal_architecture_modsl.repository |
» BiModel System SoMoX Reverss Enginesred System [Resource: Intemal_architecture_mod
» + Madel SourceCodeDecoratorRepository | Resource: [nternal_architecture model sourcecod

menu, you can see a bunch of
models have been generated.

I References

Ref. to CS Method

Ref. to Extractor User manual

Analyser

I Introduction

CloudScale's Analyser allows to analyze ScaleDL models regarding scalability, elasticity, and
efficiency of cloud computing applications at design time. For these capabilities, CloudScale
integrated novel metrics for such properties into Analyzer. Analyses are based on analytical
solvers and/or or simulations. Analyzer particularly supports to analyze self-adaptive
systems, e.q., systems that can dynamically scale out and in.

I Relation to Workflow

The Analyser is important for the right-hand side of the Workflow (see image below). It is
capable of providing scalability, elasticity, and cost-efficiency analysis results based on a fully
specified ScaleDL instance. Such analysis results can already be provided before the system is
accordingly implemented, e.g., at early design time or to investigate modification scenarios.

Extractor 0 e E—— — — —

%ﬂ \

’
]
1
1
1
1
]
i

:Ilmpor‘t> N Analyser EIEI
1
] N
H | rt existi ————
ScaleDL H e ng> -\"‘:) Analyser input
1

——————d

4 J
5 Results Overvi del
P |Elsu EI rview mode J__ = Transfnrmatlﬂ> ————— (N [Repository]
- | System |
(mn)e) |~ paposioy) | |
1 — ____.‘;l Resource environment |
J Se measureme,” | Usage I
______ . Usage evolution -
': LJ ; d
! i Analyser
1
Spotter : EI !
i I\\ | Measuring points |
Static spotterinput I Dynamic spotter input -
= | Monitors |
\I/ \I/ | Service Level Objectives |
Static spotter Dynamic spotter
J J
\I/ \If Results
Results Results J
B
k I I S E—

Figure 3: Analyser workflow

I Problem

=

Scalability, elasticity, and cost-efficiency problems are often detected too late, i.e., during
system testing and/or system operation. This approach leads to the risk of SLO-violating
systems and expensive re-implementations. Moreover, different design variants remain
uninvestigated because it would be too extensive to implement and test all potential design
variants.

I Features

CloudScale’s Analyser measures several scalability, elasticity, and cost-efficiency metrics
based on a ScaleDL instance as an input. The metrics of interest can be configured by
software architects.

I Input & Output

As an input, Analyser takes a ScaleDL instance (Extended PCM, Usage Evolution,
Architectural Templates, ScaleDL Overview) and is configuration via an Experiment
Automation instance. The latter is a dedicated configuration model for the Analyser, e.g.,
allowing to configure metric measurements and how often and how long Analyser runs are
conducted.

The output of the Analyser are analysis results. The CloudScale Environment can store, load,
and visualize these results.

I Walkthrough

1. Switch to the CloudScale Perspective
(first button of the image below). s}

™ *Dashboeard (Minimal-Environment) %

2. Load your input ScaleDL instance into

. Extractor Analyser Dynamic Spotter Static Spotter Overview Usage evolution
the Analyser by using the “Create” — e =2 ‘
Wizard in the ”Input” tab YOU can e New input alternative selection page

i i Input Create new input alternative
choose between different input P — NP

ow Analyser ngut

Import existing project
Import Extractor result
Transfrom Overview model

sources for your ScaleDL instance as
shown in the image below.

Create new input alternative with empty PGM models.

Cancel

/ Atternative is valid.

3. Configure an Analyser Run via the = o s S 5
“Run” tab and configure Analyser
parameters. For example, the image
below sets a stop condition for the
Analyser (it stops as soon as 100

measurements have been taken). B emrmen o copcomime [0

[_1

4. Run the Analyser by pressing the
“Run” button and wait for its
completion (the console output states
“Workflow engine completed task”
on completion).

Clustering / Merging |mm!mmwm!

Glustering Composition Threshold Min (End Value) 25 = e
 Clustering Value) 100 :
Glustering 0 =

Clustering Merge Threshold Min (Start Value) 45— .
Clustering Merge Threshold Max (End Value) 100 e
Clustering Merge Threshold Increment 105 o _p—

Alternative is valid. Rur

|:‘Disibnm‘lleinﬂ-Ermmml] b

5. Investigate analysis results via the

‘Results” tab e
e
-
He
I References

The CloudScale Method includes a dedicated step for running the Analyser and for
investigating its analysis results.

Static Spotter

I Introduction

The Static Spotter is a reverse engineering tool based on the Reclipse for automatic detection

of so called search patterns which then are interpreted as a potential scalability anti-

patterns. All scalability anti-patterns are defined in the pattern catalogue. Later on, the

Static Spotter is searching for the anti-patterns according to the pattern catalogue.

I Relation to workflow

Extractor

B

,—>| Import

ﬁu \

>I|Import bl)
1

ScaleDL
'

Import existing »—=---_

Overview model

EI J—--—-% Transfnrmatlo> ------

Architecture templa...

Usage evolution

|Use measureme,> "=~~~

1

-

Analyser

=)

= N Analyser

input

Repository

System

Allocation

Resource environment

oJ
|
|
|
|
|

Usage

3 .
i
I 1
N S E— I i Analyser
Spotter i EI !
d
- I‘\ | Measuring points |
Static spotterinput J<_ I Dynamic spotter input | i I
W
| Senvice Level Objectives |
N Y
Static spotter Dynamic spotter
J J
\I/ \If Results
Results Results J
B
Figure 4: StaticSpotter workflow
I Problem

A software system suffers scalability or performance issues while being development without

consideration of scalability or performance. This would become even worse when being

migrated to the Cloud computing environment. For example, the system gets and pays more

resources from the Cloud providers but does not gain in its performance.

I Features

The Static Spotter exams the ScaleDL model. It uses predefined pattern or anti-pattern
catalogues to detect patterns and anti-patterns automatically.

I Input & Output

The Static Spotter takes ScaleDL models as input. After searching for predefined patterns or
anti-patterns, it generates a list of pattern or anti-pattern candidates. The candidates could
be methods, classes or components.

I Walkthrough

4 Cloudscale BRODN SR T W moomEE Weosm QS

1. Go to Static Spotter Tab, click
input=> create.

2. Select Import Extractor result

Source Code Decorator

» 4 Model SourceCodeDecoratorRepository | Fesource: internal architecture model sourcacode
» & Model Repository aName [Resaurce: internal_architecture_model.repository |
» §Model System SoMoX Reverse Engineered System | Resource: internal_architecture_mode|
» 4 Madel Model PraducerCe [Resource: - java.xmi |

+ Model [Resource: ProducerC ~_java2kdm.xmi |
» 4 Madel Segment [Resource: ProducerConsumer_kdm.xmi |
» 4 Model Java2File | Resource: (default%2520package)._java2kdm.xmi |

4 Model [Resource: i _javazkdm.xmi |
» 4 Madel MetricValuesModel 0.05 | Resource: metricValues2.ecore |

-mmbvﬂ.

Extractor Analyser Dynamic Spotter |Static Spotter ScaleDL

Input: alternative -]
Gatalog st Engine mosels

¥ I Model PSCatalog New Catalog [Resource: catalog.pes |
» # Model EPackage annctations [Resource: catalog.pes.ecore |

3. Click Run => Create. Select Input.

E} Success... See result. Run

4. Run ey —‘

Input: alternative
Gatalog and Engine models

» 31 Model PSCatalog New Catalog [Resource: catalog.pes |
» @ Model EPackage annotations [Resource: catalog.pes.ecors |

Alternative is valid. ~ Fun

Extractor Analyser Dynamic Spotter Mmlswml.‘

5. Go to Results under Main menu and

Aanotation ~ AaWNg Annotated Elements
¥ < FindMethods (4 annotations)

see the results.

* 7 FindMethods 100.... «clipse.gmt, emfin

¥ FindMethads 100.... eclipse.gmt, amtf.in

* FindMethods 100.... «eclipse.gmt. amfin

F * FindMethods 100.... eclipse.gmt modisco java.amt.ir
¥ > FindPrimitiveCompanents (1 annatation)

 FindPrimitiveComponents 100.... kaipd. sdq.pem.re;

Dynamic Spotter

I Introduction

Dynamic Spotter is a framework for measurement-based, automatic detection of software

performance problems in Java-based enterprise software systems. It combines the concepts

of software performance anti-patterns with systematic experimentation.

I Reference to workflow

Extractor

B

—}l Import

Input \
h
Extractor

Repository

>I|Impnrt bl)
1

ScaleDL

b

Import existing »—=---_

Overview model

— -—-% Transfo rmatln> ------

Architecture templa...

| Use measureme,» ~==="

Analyser

=)

Analyser

input

Repository

System

Allocation

Resource environment

J
|
|
|
|
|

Usage

J
______ . Usage evolution -
'. J -, d
i i
- f X Analyser
1
Spotter : EI !
]
1 I‘\ | Measuring points |
Static spotterinput I Dynamic spotter input
= | Monitors |
I<
| Service Level Objectives |
¥ Y
Static spotter Dynamic spotter
J
\I/ \If Results
Results Results J
B
\ N S E—
Figure 5: StaticSpotter workflow
I Problem

A software system suffers scalability or performance issues while being development without

consideration of scalability or performance. This would become even worse when being

migrated to the Cloud computing environment. Although Static Spotter is able to find

potential scalability or performance anti-patterns, it is hard to tell which one is affecting

actually.

I Features

Dynamic Spotter uses systematic experimentation, analyses measurement and detects the
actual affecting anti-patterns in the system.

I Walkthrough

1. Inorder to run Dynamic Spotter, a
running server is needed. Go to
Dynamic Spotter Tab, Click Server
under Main menu, Start Built-in
Spotter server, Click Connect

2. Click Input => Create, add
Instrumentation and Measurement
respectively.

3. Run

server (| External Spotter server

Siop server <Berver is up and runnings
-~ Server Log -

Starting DynamicSpotter server (port=8080)...
Unpacki server to > /Users!.

macosx.cocea.xB6_64 (
Builtin server persisted in :: /Ut

m Jar
[SERVER OUTPUT] 07:14:16.147 [main] INFO org.lpe.commen.utilweb. WebSarver - Web-Server started on port 8080

. Client is connacted 1o localhost:8080. Disconnec

SecABARLT Mo m s o

4 oo n i m_oonoren

4. Click Results, the result is shown as
follows.

