
Atacama
Large
Millimeter
Array

ALMA-SW-NNNN

Revision: 1.8

2010-01-13

ACS Alarm System

Software Architecture and How-to manual

Alessandro Caproni (acaproni@eso.org),
ESO

Bogdan Jeram (bjeram@eso.org)
ESO

Released by:Signature:Institute:Date:

Keywords:

Approved by:Signature:Institute:Date:

Author Signature:Date:

mailto:acaproni@eso.org)
mailto:bjeram@eso.org

ALMA ACS Alarm System

Change Record
REVISION DATE AUTHOR SECTIONS/PAGES AFFECTED

REMARKS
1.0 2006-07-25 Alessandro Caproni All

Created
1.1 2006-09-20 Alessandro Caproni All

Revised after integrating the AS into ACS
1.2 2006-09-26 Alessandro Caproni CDB – Known problems

1.3 2006-10-30 Alessandro Caproni All
Revised for ACS 6.0

1.3.1 2007-11-19 Alessandro Caproni All
Notes from Joe Schwarz

1.4 2007-11-26 Alessandro Caproni All
ACS 7.0

1.5 2008-03-17 Alessandro Caproni CategoryClient, AlarmPanel
ACS 7.0.1

1.6 2009-05-31 Alessandro Caproni All
ACS 8.0

1.7 2009-08-10 Alessandro Caproni All
GUI chaperts updated; a new chapter for sending alarms through IDL

1.8 2010-01-12 Bogdan Jeram BACI property
Added description how FF/FM can be set. Values of FC. Alarm properties
for BACI alarms. ACS-8.1

1.9 2014-01-22 Alessandro Caproni All
Reviewed for the new API

Revision: 1.7 Page 2 of 47

ALMA ACS Alarm System

Table of Contents
1Introduction...4

1.1Glossary..4
1.2References..5

2Installation and test...5

3AS architecture..7

3.1The resource tier...7
3.2Alarm source API..9

3.2.1Extended features of AlarmSource...9
3.3Legacy API..10
3.4The business tier..12
3.5The client tier..14

4CDB configuration...15

4.1AlarmDefinitions..16
4.2Administrative...18
4.3AlarmSystemConfiguration...19
4.4Categories...20
4.5ReductionDefinitions...21

5The alarm GUI..24

5.1 Alarm details..30
5.2Quick search and filtering...30

6The CERN operator GUI..32

7ACS implementation...37

7.1Alarm source client...38
7.2Alarm category client..38
7.3alarmSourcePanel..39
7.4The alarm sender panel..40
7.5Profiling of the alarm system..41

7.5.1Most frequent alarm...42
7.5.2Stale alarms...42
7.5.3Chattering alarms..42
7.5.4Statistics...42
7.5.5Annunciated alarms...42
7.5.6Suppressed alarms..43
7.5.7Lost sources..43
7.5.8Alarms per 10 minutes...43
7.5.9Alarm flood...44

7.6BACI properties..44
7.7Sending of alarms through an IDL CORBA call...46

Revision: 1.7 Page 3 of 47

1 Introduction

The alarm system (AS) is a messaging system: it collects, manages and distributes
information about abnormal situations and shows what's happening to the user.

In a complex environment, a malfunctioning, either in the software or the hardware,
might trigger a chain of malfunctions in other equipment. The main purpose of the alarm
system is to help the user to identify the root cause of a problem in such a way that he can
fix the problem in a short time. This is achieved comparing the alarms active at a given
time against a knowledge base describing the correlation between the alarms.

The alarms are sent by the sources to the Alarm Service Component (ASC) whenever an
abnormal situation is detected. The ASC listens for the alarms and when a new alarm is
received it looks in its knowledge base to see whether a correlation exists between the
new alarm and the other alarms already active. If such a correlation is found then the
ASC could mask/hide some alarms that are not relevant for identifying the root cause of
the malfunction. Finally, the ASC builds a new version of the alarms to send to the
clients. This new version is more complete and human readable than the alarms generated
by the sources.

The AS has a set of clients; one of them is the operator GUI that shows the alarms to the
operator.

In the distribution there are two alarm systems:

1. the LASER Alarm System, the subject of this document.

2. an ACS implementation of the Alarm System that logs a message for each alarm
published

The ACS implementation is used by default: you can see the alarms with jlog or the
loggingClient. To switch to the CERN implementation, the Alarms branch must be
present in the CDB and the Implementation property must be explicitly set to CERN1.

The development of the AS is an ongoing process. The interfaces for the developers
should remain untouched. However the AS is not complete and some part of the system
may not be fully functional or not implemented yet. In particular, the ACS LASER AS
derives from the AS developed at CERN for the Large Hadron Collider (LHC). At the
present, the porting of the original AS is not complete and some parts of the original AS
are missing.

1.1 Glossary

ACS Alma Common Software

ALMA Atacama Large Millimeter Array

AS Alarm System

ASC Alarm Service CORBA servant

CDB Configuration DataBase

1You can find more about the CDB for the alarm system in paragraph 4.

CERN European Organization for Nuclear Research

FC Fault Code

FF Fault Family

FM Fault Member

FS Fault State

GUI Graphical User Interface

JMS Java Message Service

LASER LHC Alarm SERvice

LHC Large Hadron Collider

MR Multiplicity Reduction

NC Notification Channel

NR Node Reduction

RR Reduction Rule

See also:

http://www.alma.nrao.edu/development/computing/docs/joint/draft/Glossary.htm

1.2 References

 ACS documentation:
http://www.eso.org/projects/alma/develop/acs/OnlineDocs/index.html

 LASER project: http://proj-laser.web.cern.ch/proj%2Dlaser/

 LHC control project: http://lhc-cp.web.cern.ch/lhc%2Dcp/

2 Installation and test

The AS is part of the ACS distribution. It is composed of several modules: the modules of
the ACS implementation of the AS, that are built and installed before the containers, and
the CERN implementation of the AS, whose modules are grouped into ACSLaser and
compiled just after ACS.

The AS is in SVN ACS/LGPL/CommonSoftware/ACSLaser. The GUIs are in
ACS/LGPL/CommonSoftware/acsGUIs.

There is a little demo that can be used to test the functioning of the AS. The demo shows
the functioning of the Node Reduction and the Multiplicity Reduction. A complete CDB
is available for this purpose in the demo module.

http://lhc-cp.web.cern.ch/lhc-cp/
http://proj-laser.web.cern.ch/proj-laser/
http://www.eso.org/projects/alma/develop/acs/OnlineDocs/index.html
http://www.alma.nrao.edu/development/computing/docs/joint/draft/Glossary.htm

The NR demo consists of three modules capable of sending alarms:
ALARM_SOURCE_PS, ALARM_SOURCE_MOUNT and
ALARM_SOURCE_ANTENNA. When the power supply fails, it sends an alarm and
triggers a failure of the mount component. In the same way a failure in the mount
components causes the sending of an alarm and the failure of the antenna component.
The purpose of this demo is to show how the alarms are reduced and only the root cause
of the problem (the alarm in PS) is shown in the GUI.

The MR demo consists of a single component, MULTIPLE_FAILURES, sending 5
different alarms when the multiFault IDL method is executed. The threshold for the
MR is set to 3. The purpose of this demo is to show how several alarms of the same kind
are reduced when the number of such active alarms is greater then the threshold.

Follow these steps to check your installation and execute the NR demo:

1. set ACS_CDB to the CDB folder in ACSLaser/demo/test

2. start ACS: it will start the ASC as part of the services

3. start the java container, frodoContainer

4. start the java container javaContainer2

5. start objexp

6. start the ALARM_SOURCE_PS component

7. start the ALARM_SOURCE_MOUNT component (be careful because there are 3 mount
components, one for java, one for C++, called ALARM_SOURCE_MOUNTCPP and
one for python, called ALARM_SOURCE_MOUNTPY)

8. start the ALARM_SOURCE_ANTENNA

9. start the GUI with the command alarmPanel; the panel panel has a green icon in the right
bottom side of the main window meaning that the application is connected to the AS

10. from the objexp, select the PS component and execute its fault function.

The execution of the PS fault_PS IDL method, causes the three components to send a
chain of alarms that appear in the main window of the GUI3. If the reductions are turned
on, you will see only one the alarm generated by the power supply failure i.e. the root
cause of the chain of failures. If the reductions are disabled, all the alarms will appear in
the GUI. A bottom in the toolbar of the panel allows to enable/disable the alarm
reductions in the table.

To execute the MR demo instead of the NR, in step 8 activate MULTIPLE_FAILURES
and execute its fault method.

In both examples, the terminate fault method will set all the alarms from ACTIVE to
TERMINATE. The color of the alarms in the GUI will change to green indicating that the
abnormal situation has been fixed.

2 There are 2 java containers. The power supply and the mount run in frodoContainer; the antenna and
MULTIPLE_FAUILURES components run in javaContainer.
3 To simulate a chain of failure, each component sends an alarm, waits 5 seconds and calls the fault method of the
next component. This means that the fault method of PS needs about 15 secs to terminate. The sleep time of 5
secs between the sending of an alarm and the execution of the IDL method of the next component of the chain has
been introduced to help the user to look at the GUI and see the changes when each new alarms arrive. Objexp has
a timeout of 5sec for each IDL method executed on a component so it will show a dialog saying that the fault
method of PS has caused a timeout: this is not an error. To avoid this notification you should extend the timeout
setting properly the objexp.pool_timeout property as described in the Object Explorer user manual.

The component ALARM_SOURCE_MOUNTCPP is a C++ component running inside
the C++ container bilboContainer. It is there to show how to send alarms using C+
+ API but it is not configured for reduction.

The component ALARM_SOURCE_MOUNTPY is the demo of an alarm generated by a
python component that runs inside a python container named aragornContainer.

The ASC submits a great number of log messages when reading the CDB. These
messages are easy to identify filtering for the source object AlarmService.

3 AS architecture

The AS is a distributed, layered application. Each layer depends on the layer below and
provides a set of services for the layer above. The definition of a clear set of interfaces
drives this hierarchy.

As shown in fig.1, The software is composed of three tiers: the resource tier, containing a
set of sources, to detect malfunctions and send alarms; the business tier, that implements
the system logic and its services, having a knowledge base of the specific domain; the
client tier composed of clients consuming the business services.

3.1 The resource tier

The resource tier is composed of the sources of alarms, i.e. applications that monitor the
hardware and the software to detect malfunctioning. The sources can be written using
different programming languages and run on different platforms.

Figure 1: The architecture of the LASER alarm system

Each alarm is identified by a Fault State (FS). A FS is composed by a triplet and an
actiavation state. The triplet is composed of the Fault Family (FF), the Fault Member
(FM) and the Fault Code (FC).

FS = <FF, FM, FC>

The FF is a string and identifies a set of elements of the same kind, for example the set of
all the power supplies. The Fault Member, again a string, identifies a particular instance
of the elements of the FF, for example PS3 i.e. a power supply, called PS3. The FC is an
integer describing the specific type fault, for example 100 for over current.

Conversely speaking, a triplet is a unique identifier for an alarm. It means that for each
possible alarm that can be generated by each possible source there is one and only one
triplet. And vice versa, to each alarm corresponds one and only one triplet. The triplet
does not say where an alarm happens but it says which alarm is occurring. The
information where must be inserted in the database and we'll talk about that later.

These are examples of valid triplets:

 <MOUNT, MOUNT_1, 100> (ACS component)
 <ANTENNA, ANTENNA7, 200> (Hardware equipment)
 <kernelModule, pcnet32@host, 1> (kernel module)

In the examples, MOUNT_1 is the name of a component. Each component can easily
retrieve its name by calling the getName method of the ContainerServices.
pcnet32 is the name of a kernel module, and host is the name of the host where the
module is running.

The triplet identifies an alarm sent by a source to the ASC. The triplet is also used
internally by the ASC to apply the reduction rules or retrieve more information about a
specific alarm from the database. We can think at each triplet as a unique identifier used
in low level computation. The information sent by the ACS to the clients, the operator
GUI for example, is not a triplet as it has been received by a source but it is a human
readable description of the alarm represented by that triplet.

There are no guidelines yet for the strings and numbers to use to define the triplets but
common sense suggests to use meaningful strings for FFs and FMs and possibly coherent
numbers for failures of the same kind. For example, for a component the FF could be its
IDL interface and the FM could be its name. For a kernel module, the FM could contain
the name of the module and the name of the host where the module is executed.

An FS, i.e. an alarm, has a activation state, active or inactive. When an abnormal situation
occurs, a source sends an active alarm. When the problem has been fixed, the source
sends the same alarm with status inactive to the ASC. When a source is created, there is
no need to send an alarm, even an inactive one; but when an abnormal situation has been
fixed and the alarm does not exist anymore, the source must send an inactive alarm.

An heartbeat mechanism is associated with a source so that in case of a problem so bad
that the source itself crashed before sending an alarm, the ASC is able to detect that
something happened to the source because of the missing receipt of the heartbeat.

3.2 Alarm source API

ACS provides a API for java, C++ and python4 to connect the sources to the business tier
and is very small in order to be as simple as possible for the user. the following shows a
java example to send an alarm.

The following snipped shows hot set and clear an alarm from a java component:

// Set the alarm with FF=PS, FM=PS1, FC=1
m_containerServices.getAlarmSource().raiseAlarm("PS","PS1",1);

// Clear the alarm with FF=PS, FM=PS1, FC=1
m_containerServices.getAlarmSource().clearAlarm("PS",PS1",1);

Setting and clearing a alarm is done getting a
alma.acs.alarmsystem.source.AlarmSource from the ContainerServices and
calling its raiseAlarm and clearAlarm methods. The AlarmSource does more then that
as we will see later.

The following shows how to set and clear the same alarm in C++:

// Set the alarm with FF=PS, FM=PS1, FC=1
getContainerServices()->getAlarmSource()->raiseAlarm("PS","PS1",1);

// Clear the alarm with FF=PS, FM=PS1, FC=1
getContainerServices()->getAlarmSource()->clearAlarm("PS","PS1",1);

The alarms produced by the sources are sent to the ASC (through JMS for java) with a
dedicated notification channel. It is possible to configure the AS in order to use more
channels and it is also possible to define which channel is used by each source to send an
alarm to the ASC5. The ASC receives all the existing alarms listening at all the source
notification channels.

There are two implementations of the alarm system. One uses the CERN implementation
i.e. the sources send alarms to the ASC by means of notification channels. Alternatively,
it is possible to use the ACS implementation i.e. the sources log a message for each alarm
they send. The implementation to use can be chosen by changing a property in the CDB6.
The API is independent of the type of alarm system in use so you can freely switch
between the CERN and the ACS implementation without changing the code. CERN
implementation is meant to be used in production. ACS implementation can be used for
testing.

3.2.1 Extended features of AlarmSource

We showed how to send alarms with the help of the AlarmSource returned by the
ContainerServices. This is the easiest way to set and raise alarms. But the AlarmSource

4 Python API is not as advanced as that of the other languages. You can find a example for setting and clearing
alarms with python in the next chapter.

5In the present version of the AS, all the alarms are published in the same channel named
ALARM_SYSTEM_SOURCES.

6See chapter 6.

does much more then that. The C++ and Java sources of AlarmSource have a detailed
documentation that you should carefully read. There is no AlarmSource available for
python.

To reduce the traffic on the source NC,AlarmSource does not send twice the same alarm
if its activation state did not change. It means that if a piece of code sets (clears) the same
alarm n-tmes then the activation (termination) is published only once in the alarm source
notification channel. In this way there are less useless alarms published in the source NC
and less useless alarms processed by the alarm source. This functionality is embedded in
the raiseAlarm and clearAlarm methods and transparent to the developer.

To damp the effect of oscillation each active alarm is immediately forwarded to the ASC
but the clearing of a alarm is delayed of about one second to catch the case of a
reactivation in that time interval. Also this feature is embedded in the raiseAlarm and
clearAlarm methods.

It happens quite often that devices send spurious alarms during their initialization; this is
usually due to the fact that the values retrieved from the hardware do not reflect the real
state of the device before its initialization completes.
At the end of the initialization the alarms activated by spurious values are cleared by
reading the values from the device. If some alarm is still active after initialization it
means that a real problem has been detected.

The AlarmSource allows to queue all the alarms generated during the initialization phase
of a device7 by calling queueAlarms8 before starting the initialization. The flushAlarm
method must be called when the initialization terminates.
After calling flushAlarms, the AlarmSource does not forward the alarms generated with
raiseAlarm or clearAlarm to the ASC, it, instead, saves them in a internal map together
with their activation state. When flushAlarm runs, then the AlarmSource flushes the
alarm in the queue with their last activation state.

Three more methods are provided by the AlarmSource:

• terminateAllAlarms: terminates all the active alarms

• disableAlarms/enableAlarms: alarms generated after calling disableAlarms
are immediately discarded until enableAlarms has been executed. Those alarms
are not queued and will never arrives to the ASC.

3.3 Legacy API

The API presented in the previous chapter has been written to better integrate the alarm
system into ACS and offers to the developers improved features with a easier syntax
hiding all the details of the alarm system.
This chapter shows the legacy API for historical reasons and because it can still be found
in some of the sources of the ALMA software. Unless you have a compelling reason, this
API should not be used.

The following shows a java example to send an alarm.

import alma.alarmsystem.source.ACSAlarmSystemInterfaceFactory;

7 Actually the initialization of a device is a particular case of the usage of the queuing. The general use case is
whatever phase of a computation that temporarily generates a bounce of alarms that do not reflect a real problem.
8 Two flavors of queueAlarms are available one of which accepts a time interval: when the time is elapsed then
the alarms are flushed without the need of calling flushAlarms. This implementation is useful when the time to
initialize a device in known in advance.

import alma.alarmsystem.source.ACSAlarmSystemInterface;
import alma.alarmsystem.source.ACSFaultState;
...
public void send_alarm(

String faultFamily,
String faultMember,
int faultCode,
boolean active)

{
ACSAlarmSystemInterface alarmSource =

ACSAlarmSystemInterfaceFactory.createSource(this.name());
ACSFaultState fs =

ACSAlarmSystemInterfaceFactory.createFaultState(
faultFamily, faultMember, faultCode);

if (active) {
fs.setDescriptor(ACSFaultState.ACTIVE);

} else {
fs.setDescriptor(ACSFaultState.TERMINATE);

}
fs.setUserTimestamp(new Timestamp(System.currentTimeMillis()));
Properties props = new Properties();
...
props.setProperty(...);
fs.setUserProperties(props);
alarmSource.push(fs);
}

The following shows a C++ example to send an alarm:

#include "ACSAlarmSystemInterfaceFactory.h"
#include "AlarmSystemInterface.h"
#include "FaultState.h"
#include "faultStateConstants.h"
#include "Timestamp.h"
#include "Properties.h"

using namespace acsalarm;
...

// constants we will use when creating the fault
string family = "AlarmSource"; // FF
string member = getComponent()->getName(); // FM, the name of the component
int code = 1; // FC

// Create the AlarmSystemInterface using the factory
auto_ptr<AlarmSystemInterface> alarmSource =

ACSAlarmSystemInterfaceFactory::createSource();

// Create the FaultState using the factory
auto_ptr<acsalarm::ACSFaultState> fltstate =

AlarmSystemInterfaceFactory::createFaultState(family, member, code);

// Set the fault state's descriptor
string stateString = faultState::ACTIVE_STRING;
fltstate->setDescriptor(stateString);

// Create a Timestamp and use it to configure the FaultState
Timestamp * tstampPtr = new Timestamp();
auto_ptr<Timestamp> tstampAutoPtr(tstampPtr);
fltstate->setUserTimestamp(tstampAutoPtr);

// Create a Properties object and configure it, then assign to the FaultState
Properties * propsPtr = new Properties();
propsPtr->setProperty(faultState::ASI_PREFIX_PROPERTY_STRING, "prefix");
propsPtr->setProperty(faultState::ASI_SUFFIX_PROPERTY_STRING, "suffix");

propsPtr->setProperty("TEST_PROPERTY", "TEST_VALUE");
auto_ptr<Properties> propsAutoPtr(propsPtr);
fltstate->setUserProperties(propsAutoPtr);

// Push the FaultState to the alarm server
alarmSource->push(*fltstate);

The following shows a python example to send an alarm.

import Acsalarmpy
import Acsalarmpy.FaultState as FaultState
import Acsalarmpy.Timestamp as Timestamp

Acsalarmpy.AlarmSystemInterfaceFactory.init()

alarmSource=Acsalarmpy.AlarmSystemInterfaceFactory.createSource("ALARM_SYSTEM_S
OURCES")
fltstate=Acsalarmpy.AlarmSystemInterfaceFactory.createFaultState(family,member,
code)

fltstate.descriptor = FaultState.ACTIVE_STRING

fltstate.userTimestamp = Timestamp.Timestamp()
fltstate.userProperties[FaultState.ASI_PREFIX_PROPERTY_STRING] = "prefix"
fltstate.userProperties[FaultState.ASI_SUFFIX_PROPERTY_STRING] = "suffix"
fltstate.userProperties["TEST_PROPERTY"] = "TEST_VALUE"

alarmSource.push(fltstate)

Acsalarmpy.AlarmSystemInterfaceFactory.done()

The sources build a message containing the triplet and an action, like active or terminate.
The API embeds the message in a structure and publishes the message in a notification
channel to the business tier.

To define an alarm as active or inactive, the setDescriptor method must be used
passing the right string. It is important to remember that the descriptor of an alarm is the
status of the alarm itself and not a generic string to describe what’s happening at a certain
instant. In fact, the description of the alarm is stored in the database.
In java, the descriptor of the alarm must be one of the constant String of
alma.alarmsystem.source.ACSFaultState (for example
ACSFaultState.ACTIVE). In C++, the descriptors are defined in
faultStateConstants.h under the faultState namespace (like for example
faultState::ACTIVE_STRING).

It is a common mistake to set the descriptor of an alarm to a user defined string in the
setDescriptor method. In that case the alarm system will ignore the alarm (i.e. the
alarm will be discarded as unrecognized and it will not be processed neither sent to the
clients).

3.4 The business tier

The business tier is the core of the alarm service:

 listens for FS changes and heartbeats from the sources

 reads the further data of a received alarm from the database

 reduces or masks the FS depending on the knowledge of the environment and the current
status of the system

 persists the FS

 traces and archives the changes of the FS

 allows management of the alarm system without stopping the alarm service component

 authenticate users on the client GUIs

All these services are realized by the ASC and the communications between the upper
and the bottom layers happen through a definite API.
The persistence, trace and archiving of FS are not implemented in this version of the AS.

In order to keep the Laser-source API simple, a source sends to the business layer only
the triplet describing the alarm with the time of its creation and its activation state. For
each alarm received, the ASC reads its complete definition from the CDB in order to
present a complete snapshot of the situation, its possible solution and consequences to the
operators. The following table shows some of the information stored in the database for
each alarm9.

Property name Description

system-name The name of the system

identifier The identifier of the system

problem-description The description of the problem

cause he cause of the problem

action The action the operator must follow to fix the problem

consequence A description of the consequences of the alarm

priority The priority of the alarm: there are four priority levels

contact name The name of the responsible person

contact gsm A GSM number to call to notify about the problem

contact email The email address of the responsible person for the problem

help-url An url that point to the documentation of the problem

source-name The name of the source

location The location of the source

One of the most relevant parts of the business tier is the reduction of the alarms. In a
complex environment where a failure can cause a cascade of secondary alarms, it is very
important to show to the operators the root cause of a problem. Operators are also
confused when the operator GUI shows a great number of repeated alarms of the same
type. The alarm reduction mechanism addresses both these problems.

To perform the reduction, the alarm system reads from the database a set of dependency
rules between alarms describing their correlation. Whenever the service receives a FS
change, it applies that set of rules and eventually marks some alarms as reduced.

9 The triplet is the unique identifier to get the informations shown in the table from the database. The data in the
table should be more interesting then the triplet for the operators.

All the alarms, both reduced and not reduced, will be sent to the client because some
clients may be interested in receiving all the alarms regardless of their reduction status: it
is the GUI that hides the reduced alarms to the operators depending on the specific
configuration.

There are two types of reduction rules:

 node reduction: when it is known that a failure in an equipment A triggers a failure also in
the equipment B then the latter alarm is reduced, with the effect that only A, the root
cause of the FS, is shown;

 multiplicity reduction when there is a great number of alarms of the same type 10 then
these alarms are reduced and a new alarm is shown effectively reducing the number of
alarms shown in the client GUI.

Four priority levels (0 to 3) are foreseen for the gravity of the alarms. Different priority
levels are shown with different colors in the operator GUI.

3.5 The client tier

The client tier consists of java applications that consume the data published by the
business tier. The client connects to the business tier by means of the Laser-console API .
The business tier supports both login and configuration facilities11.

Once connected, the clients can access services of the business tier by means of the laser-
client API .The communication between the alarm service and the client applications
happens through JMS whose implementation is based on Notification Channels (NC).

The alarms may be subdivided in categories and to each category corresponds one and
only one NC. When the alarm service receives an alarm, it retrieves the name of its
category together with other information for the operator from the database. The alarm
service checks the alarm against its knowledge base and the state of other alarms
applying the reduction rules and finally sends the alarm to the application of the client
tier.

Three GUIs developed at CERN with Netbeans are part of the client tier: the definition
console, the alarm console and the admin console. The definition console and the admin
console allow the user to define alarms, sources and categories as well as create accounts
and configurations for the operators of the alarm console. In this version of the AS the
only available GUI is the alarm console but it is not used since ACS is providing a swing
based alarmPanel. The source of the original CERN GUI, ported to ACS, is still available
in SVN.

The CERN Netbeans Alarm console shows the alarms to the operators: when the operator
starts the GUI, he has to log into the system, the GUI then loads his specific
configuration and connects to the alarm service. In the configuration it is possible to
select the categories of the alarms to show to the operator, showing him only the alarms
relevant for his area of interest. In the configuration it is also possible to define whether
the operator is interested in receiving all the alarms or only the reduced alarms. An
apposite configuration panel allows the user to change its configuration at run-time.

The alarmPanel is an operator GUI developed in java swing for ACS to replace the Alarm
Console. It shows alarms from all the categories and can be run as a stand alone java

10 The MR is not activated by sending several times the same ACTIVE alarm. The MR is activated when a set of
different alarms are all active at a certain instant of time and their number is greater then a given threshold. The
alarms that must be counted as part of a MR is defined in the CDB.
11 In the actual implementation the only existing user is test and the login is done automatically.

application or as a OMC plugin. After connecting to all the categories, the alarmPanel
presents a view of the active and inactive alarms by means of a table.

4 CDB configuration

Each alarm must be defined in the CDB in order to be recognized and managed by the
ASC. It is possible to define default alarms and categories to shorten the effort of setting
up the CDB. However you should keep in mind that the main purpose of the alarm
system is to present to the operators detailed information abut an alarm in order he/she
can fix the problem very soon. Using default definitions allows to have a shorter CDB
but generic informations are probably not enough to present the operators all they need to
fix a problem. Therefore we suggest to use default values as less as possible and paying
attention that the informations presented by default alarms fit with the real situation.

The definition of each alarm is very important because it contains both the information
for the alarm system engine and those for the client tier applications that should be
complete and clear enough to show to the operators all the information they would need
to fix an abnormal situation.

A misconfiguration of the CDB does not inhibit a source from publishing an alarm as can
be easily verified running the alarmSourcePanel or looking at the logs. A
misconfiguration instead does not allow the ASC to send alarms to operators because
there is no way for the service to know on which category an undefined alarm must be
published.

The definition of the alarms is entirely contained in the Alarms folder in the CDB
having the following structure:

CDB
...
Alarms

Administrative
AlarmSystemConfiguration
Categories
ReductionDefinitions

AlarmDefinitions
FaultFamily_1
FaultFamily_2
...
FaultFamily_n

The schemes defining the content of XML files are in the acsalarmidl module. In
ws/config/CDB/schemas you can find the following files:

 acsalarm­categories.xsd: is the schema for the XML file into
Categories folder

 acsalarm­fault­family.xsd: contains the definition for XML files
called FaultFamily_x in the example upon

 AcsAlarmSystem.xsd: is used by AlarmSystemConfiguration and
ReductionDefinitions

We describe the content of the CDB/Alarms folder in the same order the developers
should follow to populate the database.

The Alarms folder must exist in order to use the CERN alarm system.
Alarm/Administrative/AlarmSystemConfiguration/AlarmSystemCo
nfiguration.xml must also exist and have the “implementation” property set to
CERN. If one of the previous conditions is missing, ACS will not use the CERN AS.
Note that ACS log a message with the alarm system in use to help debugging.

During activation, the ASC logs a large number of debug messages for every piece of
information it reads from the CDB: jlog can be of a great help while setting up the
CDB for the alarms12.

Alarms is composed of two folders:

 Administrative that contains all the administrative informations like the
definition of the reduction rules and the categories to group the alarms;

 AlarmDefinitions with the definition of all the alarms.

Each time a new alarm is created, its definition must be added in AlarmDefinitions.
The alarm system administrator deals with the Administrative part of the CDB
defining how to group alarms into categories and how reduce/mask alarms. The
administrator defines how and to whom the alarms will be shown.

4.1 AlarmDefinitions

The first step while creating alarms is the definition of the triplets. As we said before the
FF is usually the IDL of the components while the FM is the name of a specific
component implementing such interface. The FC represents the specific alarm sent by
such a component. This definition includes dynamic components whose name (and
therefore the FM) is known only at run time.

Referring to the demo example we have PS, Antenna, Mount and MF idl interfaces and a
bounce of components implementing such interfaces.

While creating alarms for a component, the developer must create a folder with the name
of the fault family (i.e. the IDL of the component), having an XML file with the same
name inside:

CDB
Alarms

AlarmDefinitions
Mount

Mount.xml

It means that we have only one folder for each FF, i.e. one folder for each IDL definition.
Inside such folder, there is only one XML file containing the definition of all the fault

12 To use jlog for this purpose you should remember to set the log level to trace and discard level to none.
Filtering by source name (AlarmService) is also suggested.

codes (i.e. the type of alarms sent by the component implementing such interface) and the
definition of all the fault members (i.e. the component names, including dynamic
components).

The definition of the alarms sent by components implementing the Mount IDL interface
is described by Mount.xml:

<?xml version="1.0" encoding="UTF­8"?>
<fault­family name="Mount" ...>
 <alarm­source>ALARM_SYSTEM_SOURCES</alarm­source>
 <help­url>http://tempuri.org</help­url>
 <contact name="Ale"/>
 <fault­code value="1">
 <priority>1</priority>
 <problem­description>Mount test</problem­description>
 </fault­code>
 <fault­member­default>
 </fault­member­default>
 <fault­member name="ALARM_SOURCE_MOUNT">
 </fault­member>
</fault­family>

The document type is fault­family having the attribute name with the name of the fault
family defined by the file13, Mount in our example.

The following table describes the tags of the XML.

XML tag name Tag meaning

alarm­source The name of the NC in use by the sources while sending alarms to the
ACS for the Mount components. This field is fixed and therefore can't be
changed by the developer since in current version of the alarm system
only one channel is supported for all the sources14.

help­url The URL where the operators find detailed information about the alarms
published by the components of the family.
The web page should contain at least a detailed description of all the
alarms and the way to fix problem.

contact Defines the person to contact in case the operator needs more information
to fix the situation.
When an alarm is raised for this family, the contact person should always
be informed of the malfunction.
This tag contains three other tags

 name
 email
 gsm

fault­code The XML contains a non-empty array of fault codes. They are the FCs of
the triplets of the family. All the possible FCs must have an entry of this
type.
The attribute value, is the number of this FC and is mandatory.
fault-code contains the following tags:

 priority is an integer in the interval [0,3]

13 It is the FF of the triplet.
14 In future versions of the alarm system, it will be possible to have more then one channel for different sources.
We therefore preferred to force the definition of the source channel in the XML.

 cause: the cause of the problem

 action: the action to fix the problem

 consequence: possible consequence of the problem

 problem­description: a short description of the problem

fault­member­default The definition of the fault memmebr to use when a fault­member is
not defined for a given triplet.
fault­member­default contains an optional tag location.
When this tag is present and the alarm service receives a triplet for this FF
whose FM is not defined then it generates automatically the data for such
a triplet.

fault­member The file contains an array of fault­member each of which represents a
FM of the triplet.
The tag has a mandatory attribute name that is the FM of the triplet (i.e.
the name of the component sending the alarm).
It is possible to define a location as element of this tag.

fault­member­default is the default member definition used by the ASC when it receives a
triplet whose FM is not describet by any fault­member entry of the family. When a triplet is
received, the ASC reads the default definition to fill the fields of the alarm description, leaving the
FM name as it is in the triplet. It is possible to define a location for a fault­member­
default but it is optional because sometimes it is not possible to define a location (like for
example for dynamic components).

The fault­member­default is normally used for dynamic components whose names (and
therefore their FMs) are unknown before run-time. Another situation where the definition of a
deafult member can be very useful is the definition of BACI properties as described in chapter 7.6.

The demo example shows the usage of fault­member­default for the component
ALARM_SOURCE_MOUNT_CPP.

A location is composed of four string elements:

 building: the building of the failing equipment

 floor: the floor in he building

 room: the room number or name

 mnemonic: a mnemonic to quickly recall the position of the equipment

 position: the exact position in the room

Reassuming, the definition of alarms is done having the fault family in mind. The developers must
define one folder for each fault family containing one XML file with the definitions of all the
members and the codes of the alarms sent by the members of the family. The fault codes describe
the type of the alarms and there must be at least one fault code. Fault members represent the
entities that can produce alarms but in this case it is possible to define a default member avoiding
the repetition of the same definition several time in the file.

4.2 Administrative

This part of the CDB defines how alarms are presented to the operators resembling the
process of creating views by a database administrator.

As we said before, the developer describes the meaning of each alarm by filling the
AlarmDefinitions part of the CDB. Whenever the ASC receives a triplet from a
source, it reads the definition of the alarm from this part of the CDB.

After reading the alarm definition, the ASC starts processing the alarm checking if some
the reduction rules is applicable and eventually publishes the alarm in one or more
categories where the clients listen to alarms. If an alarm is not associated to any of the
existing categories then it will not be published and therefore will not be visible by ASC
clients like the operator GUIs..

Categories represent the mechanism used by the administrator to create different views of
the alarms: he/she decides in which categories an alarm will be published. Users listens to
alarms from the categories they are allowed to connect15.

4.3 AlarmSystemConfiguration

AlarmSystemConfiguration contains AlarmSystemConfiguration.xml:

AlarmSystemConfiguration
AlarmSystemConfiguration.xml

This XML file contains a list of properties common to the whole AS. At the present there
is only one property that can be defined: Implementation.

Property name Property values

Implementation  CERN if the AS uses the CERN implementation
 ACS: if the AS uses the ACS simple implementation i.e. the

sources log a message instead of sending messages to the
ASC

If this property is not found or it has a wrong value, then the ACS
implementation of the alarm system is used.

ACS comes with two implementations of the AS: ACS and CERN. The ACS
implementation logs a message for each published alarm. The message basically consists
of the triplet and the status of the alarm. It is possible to browse the alarms with jlog , or
the loggingClient.

CERN implementation is the subject of this document. The following steps are needed to
activate the CERN implementation of the AS:

• define the Alarms branch of the CDB as described in this chapter

• set the Implementation property of
AlarmSystemConfiguration.xml to CERN

You can switch from one implementation to the other simply changing the
Implementation property of the CDB i.e. you do not need to remove the Alarms
branch if it is present.

15 The CERN operator GUI allows the user to select the categories they want to listen to alarms from. The
alarmPanel instead automatically connects to all available categories.

The format of the XML file is the following:

<?xml version="1.0" encoding="UTF-8"?>
<alarm-system-configuration
 xmlns="urn:schemas-cosylab-com:acsalarm-alarmservice:1.0
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<configuration-property name="Implementation">CERN</configuration-
property>
</alarm-system-configuration>

Each property is defined with the tag configuration_property and the name of
the property is in the attribute name.

4.4 Categories

The Categories folder contains Categories.xml:

Categories
Categories.xml

Here are defined all the categories (and therefore all the notification channels) into which
the alarms are grouped for publishing by the ASC. The categories are used by the
applications of the client tier. For example each user of the operator GUI has a
configuration with the categories he/she is authorized/interested in.

This is the configuration of categories from the demo example:

<categories
xmlns="urn:schemas-cosylab-com:acsalarm-categories:1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <category is-default="true" path="CATEGORY1">
 <description>Test category 1</description>
 <alarms>
 <FaultFamily>PIPELINE</FaultFamily>
 </alarms>
 </category>
</categories>

Categories.xml must have categories has document tag. the document is
composed of an array of category. Each category is as described in the following
table.

category elements Values

description The description of the category

alarms The fault families of the alarms that must be associated to this
category.
It is composed of an array of FaultFamily elements each of
which contains the FF of the triplets of the alarms to be published in
the category

category has 2 mandatory attributes: path and is­default. path represents the
name of the NC used by the category. In the example upon, you can see that
CATEGORY1 is used. Meaningful names should be used for the categories because the
users selects the categories understanding the types of the alarms that the categories will
publish mainly by reading their names.

The boolean attribute is­default is also mandatory. In the definitions of the
categories one category can be set as default. It means that whenever an alarm is received
and it is not associated to any category (i.e. its FF is not present in any of the alarms
element of the categories) then the default category will be used to publish that alarm.
This avoid duplicating information and keeping the definition of categories short.

As we said before, if the ASC can't associate an alarm to one category then the alarm will
not be published to any category and therefore will not by visible by client applications
like the operator GUIs. Forgetting to associate an alarm to a category is a common
mistake: the alarm is sent by a source but lost inside the ASC. By checking the logs you
can easily understand what's going on because the ASC will warn that a log will not be
published in any category16. The definition of a default category avoids losing alarms not
associated to any categories, of course.

As we said for fault­member­default, the usage of a default category is very
helpful avoiding mistakes and taking the definition of the CDB short. But on the other
hand it should avoided because it breaks the concept of categories and the logical
association of alarms to categories that at the end of the process means the creation of
views for different types of alarm system users.

In the example upon, you can see that alarms for the FF PIPELINE are published in
CATEGORY1. But CATEGORY1 is also the default category where all the alarms with a
unknown FF are published.

There are no rules to associate alarms to categories. As a guideline we suggest that each
ALMA subsystem publishes alarms in one category with the name resembling the name
of the subsystem. It will make easier identifying the entity generating the alarm and the
responsible subsystem.

4.5 ReductionDefinitions

The ReductionDefinitions folder contains ReductionDefinitions.xml:

ReductionDefinitions
ReductionDefinitions.xml

The document type of the XML is reduction­definitions and contains 2 sections,
links­to­create with the reduction-link and thresholds with the thresholds for
the multiplicity reduction rules:

<reduction-definitions ...>
<links-to-create>

<reduction link...>

16 The ASC can only log a messages because the lack of association of an alarm to one category can be a desired
behavior. On the other hand it can also be a mistake of the administrator and a presence of a log messages helps
fixing the problem.

...
</reduction-link>
....

</links-to-create>
<thresholds>

<threshold>
...
</threshold>
...

</thresholds>

The configuration file describes the reduction rules (RR) representing the knowledge
base used by the ASC to mask/hide alarms to the operators.

As we said before, there are two kinds of reduction rules, node and multiplicity. Each rule
joins two alarms identified by their triplet. Each RR has a type, NODE or
MULTIPLICITY.

The multiplicity reduction (MR) is used to reduce the number of alarms of the same kind
presented to the operator. When the ASC receives n alarms of the same kind and n is
greater then a given threshold then the ASC masks all the alarms and produce a new
alarm for the user. It is important to remember that the alarm shown to the operator is a
completely new alarm generated by the ASC and not by a source. The new alarm
generated by the ASC must be defined in the CDB in order to present to the operator the
right information.

As we said before, the MR is not activated by sending the same active alarm n times. It is
instead activated when n alarms are active at the same time and such alarms are all part of
the MR described in the database.

The node reduction (NR) aims to mask an alarm when it is known that a failure in a
equipment is always triggered by the failure of another one. In this case the ASC shows
the root cause of the problem, masking the other alarm.

Each RR joins 2 alarms defining their correlation. The ASC in turns joins more RR
building a chain of reduction that culminates showing only the root cause of a cascade of
alarms.

This is an example of an NR:

<reduction-link type="NODE">
<parent>

<alarm-definition fault-family="PS"
fault-member="ALARM_SOURCE_PS" fault-code="1"/>

</parent>
<child>

<alarm-definition fault-family="Mount"
fault-member="ALARM_SOURCE_MOUNT" fault-code="1"/>

</child>
</reduction-link>

As you can see, the type of the reduction is represented by the type attribute of the
reduction­link tag. The RR is composed of a parent alarm and a child alarm. The
meaning of the RR is that every time there is an alarm of type <PS,
ALARM_SOURCE_PS,1> then there is also an alarm of type <Mount,

ALARM_SOURCE_MOUNT,1> (i.e. whenever there is a failure of type 1 of the
ALARM_SOURCE_PS then it triggers a failure of ALARM_SOURCE_MOUNT).

If the PS fails, then the MOUNT fails but the ASC knows that the failure of the MOUNT
is triggered by the PS failure so it masks the second alarm: the operator sees only the
alarm of the PS that is the root cause of this chain of failure.

Let's suppose that the failure of the PS, triggers the failure of the MOUNT that in turn
triggers the failure of the ANTENNA. In this case the root cause of the chain of events is
again the failure of the PS and we have to model the knowledge base of the ASC with
this new correlation. In this case we only need to add the following NR:

<reduction-link type="NODE">
<parent>

<alarm-definition fault-family="Mount"
fault-member="ALARM_SOURCE_MOUNT" fault-code="1"/>

</parent>
<child>

<alarm-definition fault-family="Antenna"
fault-member="ALARM_SOURCE_ANTENNA" fault-code="1"/>

</child>
</reduction-link>

The case of the MR is analogous: the type of the RR must be set to MULTIPLICITY
instead of NODE. The parent alarm is the alarm generated by the ASC when the number
of active alarms is greater then threshold. The child alarm is the alarm generated by a
component.

The thresholds section of the XML defines the thresholds for the MR. Each
threshold is defined by an integer, the threshold, and the triplet of the alarm generated by
the ASC (i.e. the triplet of the parent in the MR).

The alarms that are counted as part of a MR are all the alarms defined in a MR entry
having the same alarm (generated by the ASC) as parent.

In the following example, you can see two alarms that are part of the same MR: <MF,
MULTIPLE_MF_FAILURES, 0> and <MF, MULTIPLE_MF_FAILURES, 1>.
When both of them are active (remember that the threshold is 2), the ASC generates an
alarm of type <MF, ALARM_MULTIPLE_MF_FAILURES, 5>.

The following is an example of a definition of such a MR:

...
<reduction-link type="MULTIPLICITY">

<parent>
<alarm-definition fault-family="MF"

 fault-member="MULTIPLE_MF_FAILURES" fault-code="5"/>
</parent>
<child>

<alarm-definition fault-family="MF"
 fault-member="ALARM_SOURCE_MF" fault-code="0"/>

</child>
</reduction-link>
<reduction-link type="MULTIPLICITY">

<parent>
<alarm-definition fault-family="MF"

 fault-member="MULTIPLE_MF_FAILURES" fault-code="5"/>
</parent>

<child>
<alarm-definition fault-family="AlarmSource"

 fault-member="ALARM_SOURCE_MF" fault-code="1"/>
</child>

</reduction-link>
....
<thresholds>

<threshold value="2">
<alarm-definition

fault-family="MF"
fault-member="MULTIPLE_MF_FAILURES"
fault-code="1"/>

</threshold>
 ...
</thresholds>

The make the MR example short and readable, we have published alarms having the
same FFs and FMs but with different FCs. While defining MR rules you can define
triplets of any kind in the child elements.

The triplet generated by the ASC can also be of any kind but it needs to be defined in the
CDB in order to be visible to the operators (i.e. its definition must be present in
AlarmDefinition, and its family must be associated to a category in
Categories.xml as you can see browsing the CDB of the demo example).

The alarms that are not part of any RR are not masked by the ASC and they will appear in
the operator GUI.

There are no defaults available for the reduction rules definitions: the application of such
rules make some alarms invisible in the operator GUIs and we do not want this happens
without the explicit control of the administrator.

5 The alarm GUI

ACS provide a java SWING GUI showing the alarms in a table. Such a GUI runs as
OMC plugin and as a stand alone application by launching the alarmPanel command.

When the panel connects to the ACS it gets the list of the active alarms from the ASC and
shows them in the table. You can then start the panel at any time and have immediately
visible the active alarms regardless if they have been issued before launching the panel.
Each alarrm has a color depending on the priority of the alarm and its state. If the alarm is
inactive, it is shown in green. If it is active, the color depends on its category: red for very
high priority (priority 0), orange for high (priority 1), yellow for medium (priority 2) and
light yellow for low (priority 3). Inactive alarms are displayed in green but not removed
from the table by default. To remove an alarm the user has to press the right mouse button
over an alarm and select the Acknowledge popup menu item. It is important to remark
that active alarms can't be removed by the table.

The actual version of the panel, automatically connects to all the existing categories
without asking the user for a confirmation.

The panel is divided in four main areas:

 the toolbar in the upper side

 the alarm table in the left center side

 the details table in the right center side

 the status bar at the bottom

The left side of the status area shows 5 colored widgets with a number in the middle.
Each widget shows a summary of the alarms in the table of a given priority, the number is
the number of active alarms of that priority. An alarm has one of the four priorities and
therefore there are four colored widgets from red, top priority to light yellow, lowest
priority. The last widget, the green one, reports the number of inactive alarms in the table.
Those widgets are refreshed approximately every 2 seconds independently of the flow of
the alarms i.e. it may happen that the numbers shown in the widgets and the number of
alarms in the table are misaligned for a short time.

The right side of the status bar shows an icon that is green when the panel is connected to
the ASC and gray when it is trying to connect to the ACS.

The table in the center left side of the GUI shows the alarms, one for each line of the
table. The alarms are colored depending on their priority. Initially the alarms are sorted
by putting a new alarm on top. If an alarm becomes inactive, it appears colored in green
but does not change its position in the table. Vice versa, if an alarm is inactive and
becomes active again, it is moved on top of the table.

The user can change the sorting of the table by pressing the column headers. The table
sorts the alarm by 2 level remembering the two last selected columns. For example if you
want to sort the table by component and then by priority you have to press the priority
header and then the component header. Table columns can be moved by selecting their
header and dragging to the desired position.

A popup menu is shown by pressing over a row with three items:

 Acknowledge: as said before it is used to remove inactive alarms from the table;
this item is disabled if the alarm below the mouse pointer is active

 Save: save a text file containing the alarm below the mouse pointer

 To clipboard: copy the alarm in the clipboard

By default the time, the component, the priority, the description and the cause of each
alarm are displayed. But it is possible to customize the fields of the alarm displayed by
pressing the right mouse button over the table header and selecting the switches to
activate/deactivate as shown by the following picture.

Figure 2: the table of alarms without reduction rules

The figure upon shows the alarms generated by the demo example without activating the
reductuion rules. The first two columns shows is an alarm is involved in a reduction rule.
The first column has a green icon with a plus if a reduction rul that alarm hides another
alarm. The second columns shows a green icon with four little arrows pointing to the
center if the alarm is hided by a reduction rule.

Note that an alarm can cause the hiding of another alarm and been hided at the same time.

If the reduction rules have been configured in the CDB, the alarm system marks the
alarms involved in the reduction rules with a special set of flags. The GUI reads those
flags and is able to hide the uneeded alarms showing only the root cause of a problem.
This is very important because can drammatically reduce the number of alarms in the
table and enhance the readability of the table as well as the understanding of the problem
by the operators.

In the previous example in fact, if we activate the reduction rules we can immediatly see
that the cause of the chain of alarms was a failure in the power supply so we know where
to look to fix the failure.

Figure 3: the panel with the reduction rules activated

It is often very useful to investigate which alarms are involved in a reduction rule. For
example if we have only one alarm visible like in the previous figure it could be useful to
see the full chain of alarms involved by that reduction rule. It can be done by moving the
mouse pointer over the alarm of the table, pressing the right mouse button and select the
show reduction chain item of the popup menu.

The reduction chain of an alarm is shown by means of a dialog that shows the alarm in a
flat view or in a tree view better representing the relationship between involved alarms.

Figure 4: the reduction chain of the PS alarm

The table with the reduction chain is aimed to show the relationship between alarm and is
simpler than the table of alarms in the main window. For example it is not possible to
select the columns to show but it is possible to sort the table by pressing over the column
headers.

Figure 5: the reduction chain of the PS alarm as a tree

The tree view is another way of viewing the same reduction chain that better shows who
is hiding what. As a general suggestion, the tree view fits better for NR and the table view
for MR.

When an alarm becomes inactive, i.e. the failure has been fixed, its color turns to green
but the alarm is not removed from the main table of alarms until the user acknowledge
the alarm buy pressing the right mouse button and selecting the apposite menu item.

The toolbar has a menu to select the auto-acknowledge level (disabled as default). By
setting the auto-acknowledge level all the alarms having the selected priority, or a lower
one, are transparently removed by the table when they become inactive. It is not possible
to set the auto-acknowledge level for priority 0 alarms that must be explicitly
acknowledged by the user by pressing the right mouse button. Auto acknowledgement
allows to reduce the number of visible alarms but does not deletes the hiostory of what
happened to the system and therefore should be avoided or used very carefully.

Note that at the present, the acknowledgemnt of an alarm is done locallly simply
removing the entry from the table. In a furture release the acknowledgment will be
propagated to all the opened panels.

The max number of alarms displayed by the table is limited to 20000. If the table is full
and a new alarm arrives, the the oldest is removed.

The pause button freezes the refresh of the table of alarms enhancing the readability of
the table.

5.1 Alarm details

Selecting an alarm in the table, causes the alarm details table in the right side to be filled
with a detailed description of such an alarm.

The alarm details table shows all the details of an alarm. The table has one entry for each
field of the alarm. Those fileds are the same fields shown in the table of the alarms but
the details table shows also the columns hidden in the alarms table.

As we said before, it is possibble to associate properties to an alarm: each properties has
the form of a name and a value.
The details table shows such couple at the bottom of the details table like for example
[TEST_PROPERTY, TEST_VALUE] in the picture above.

5.2 Quick search and filtering

The toolbar has a widget allowing to quickly search for alarms. It is composed of a text
field and a set of buttons. The buttons are disabled unless the user inserts a string in the
text field.

If the user writes a string in the text field, for example Mount, then all the buttons are
enabled and such a string can be used to scan the table and search for an alarm: the button
with the left arrow look for an alarm before the current select alarm while the right arrow
look for an alarm after the current select entry. When an alarm is found, the roew of the
entry appears in bold and the details of the alarm are shown in the righ table.

Figure 6: The details of an alarm

The two button, Show and Hide allow to quickly filter the table for the given string. By
pressing the show button, the alarm table is filtered in order to show all and only the
alarm containing Mount.

The Hide button works in the other way around: it filter the table by hiding all the alarms
containing “Mount”.

Figure 7: The search for an alarm containing "Mount".

Figure 8: Filter in all the alarms of the table containing "Mount".

Note that when filtering the table, it is not possible to change the string in the text filed:
to change filtering or search for alarms the Hide or Show button must be pressed again.

6 The CERN operator GUI

The CERN alarm system provides a netbeans GUI to show the alarms. Unfortunately
such a GUI does not run inside the OMC and therefore we implemented a SWING GUI,
the alarmPanel. The netbeans GUI is still part of ACS distribution and can be run as a
stand alone application.

The ACS swing panel is the default operator panel and is automaticcaly built by ACS. If
you wish to try the CERN GUI, it must be manually built: it is in the module
ACS/LGPL/CommonSoftware/NetbeansACS.

The CERN operator GUI is started with the acsalarmgui command: a script that
reads the actual configuration and starts the netbeans application. For it to work well you
need ACS correctly installed, and the ASC running.

acsalarmgui is a python script that accepts only one parameter, the corbaloc of the
manager; it sets up all the parameters needed by the GUI before starting it. It looks for
the manager reference from the command line, the MANAGER_REFERENCE
environment variable and the local host. The ACS_INSTANCE is read from the
environment variable or set to 0 if missing.

The script takes care of preparing the classpath, copying and installing the last version of
the jars in the current directories as expected by netbeans. The packages are searched in
the INTROOT, INTLIST and ACSROOT as usual.

The GUI is written in netbeans but a new SWING version is available at CERN and will
be ported as soon as possible into ACS.

Figure 9: Filter out all the alarms containing "Mount".

At the present, the user configurations are not stored on the database so each time the
GUI starts, the user needs to setup the configuration. After login as test (the only
available user), a configuration dialog is shown. The user should select the categories he
wants to listen to. This is done by selecting the ROOT category and the adding all its
subcategories. Another important setting is the activation of the Reduction in the behavior
tab.

When finished setting up the configuration, the user has to approve the changes and
finally close the configuration window.

At this point the GUI is connected to the AS, as shown by the green icon in the right
bottom side of the window.

The main table in the center of the windows shows the incoming alarm.

Each new alarm is shown with a “N” in the left side of the line. When the user selects the
alarm, the N disappear and is replaced by the date when the alarm was received. The
purpose of the N is to show the user that an alarm is new and has not yet been seen
(selected).

If the reduction is disabled, the table will show all the alarms published by the ASC. If
the reduction is active, then only the root cause of a chain of alarms is shown and all the
other alarms are hidden reducing drastically the amount of alarms shown in the table.

The alarms do not disappeared from the GUI even if the abnormal situation has been
fixed. This is to force the user to explicitly acknowledge each alarm by pressing a right
mouse button over the alarm.

We suggest to play a little bit with the GUI to understand its functioning and options.
However, not all the functionalities of the original LASER GUI are available in this
version. No further work is foreseen in this interface because all the efforts will be to
adopt the new SWING version.

The picture above shows a black and white screenshot of the GUI used at CERN. The
inner window is the user configuration dialog.

The left side of the configuration window, shows the user configurations currently
available. The setup is in the center of the window.

In the left side, all the available categories are shown. If you are using the test CDB, you
should see the root category and two subcategories17: current and source. You should
select the ROOT and press the add subcategories button: doing that you will see the
selected categories shown in the right part of the window as shown in the picture below.

17It might be that you have to wait a little bit before seeing the current and source subcategories below root in the
Availbale categories list.

Figure 10: A snapshot of the operator GUI from the LHC control room.

The behavior tab presents more options. The last one, reduction Mask Filtering enables
and disables the reduction of alarms. This dialog is shown below.

Once the configuration is ready, press the apply button and then the close button.

The main window is composed by a central table where all the alarms are shown, one per
line. The picture below shows the GUI without reduction with all the alarms generated by
the demo. The snapshot is taken with the test CDB and without reduction. If the reduction
are active, the PS would be the only alarm shown because it is the root cause of the chain
of alarms as defined in the CDB.

The alarms are shown with different colors depending by their priority.

The green icon in the right bottom shows the status of the connection with the ASC. The
antenna and PS alarms are new in the meaning that the user has not yet selected them.
The Antenna instead has been selected and the N has been replaced by the actual date.

The alarms are all active. If the user executes the terminate method of the PS, all the
alarms become inactive and their color in the GUI switches to green. Inactive alarms are
not removed from the table because the user must explicitly acknowledge the abnormal
situation.

This is done by pressing the right mouse button of the alarm and selecting the
Acknowledge item of the popup menu: a new dialog is shown where the user has to write
his comment into. Only at this point the alarm is removed from the main window.

As we said before, a new version of the GUI, written with java SWING library is ready at
CERN and we do not plan to work further on this version. The look and the feel as well
as the functioning of the two GUIs is very similar.

Not all the functionalities of the original GUI have been ported in ACS so it could happen
that you try to do something not yet implemented or not working. We kindly suggest you
to play with the GUI keeping in mind that every missing functionality or not working
feature can't cause further malfunctioning in the system.

7 ACS implementation

ACS specific code has been developed to adapt CERN alarm system to ACS or to extend
the basic CERN implementation to fit ALMA needs.

To better understand the following discussion, it is better to refer to the following figure.

Black lines and boxes represent the CERN part of the alarm system. The sources
publishes the alarms in the source channel where the ASC listens to. For each received
alarm, the ASC publishes its enriched view in one or more category channel where the
CERN operator GUI listens to alarms to show in the table.

ACS adds the blues lines and boxes, i.e. clients to listens to sources and categories
alarms. The graph shows the different view of the alarms of the two ACS clients18.

ACS source and category clients are in turn used by the alarmSourcePanel and the
alarmPanel to display alarms .

ACS category client is an API to access alarms published by the ASC, i.e. the same
alarms the CERN operator GUI shows in the table. In this context, ACS category client is
an helper class to easily access categories from inside ACS code.

The ACS source client is instead something not present in CERN alarm system where
nobody is allowed to listen to source alarms besides the ASC.

18 Both the clients are in ACSLaser/alarm-clients.

Figure 14: CERN architecture and ACS clients

7.1 Alarm source client

SourceClient is a java alarm source client i.e. it connects the the source channel and listen
to the alarms published by the sources. The client is used by the alarmSourcePanel.

The following example shows the usage of the source client:

private ContainerServices contSvcs;
private SourceClient sourceClient= new SourceClient(contSvcs);
sourceClient.addAlarmListener(this);
sourceClient.connect();
...
public void faultStateReceived(FaultState faultState) {

System.out.println(faultState.getFamily());
}

The client is initialized passing an instance of ContainerServices. The listener to
the alarms must then be added to the source client that will start sending alarms after the
call to connnect().

Alarms are received in the faultStateReceived method of the listener (in the
example above, the name of the family of each received alarm is written in the stdout).

This class can be of help when writing tests of the alarms sent by sources.

7.2 Alarm category client

CategoryClient is a category client allowing to listen to alarms published by the ASC into
categories. This client is used by the alarmPanel.

The following shows the usage of CategoryClient:

import alma.acs.container.ContainerServices;
import alma.alarmsystem.clients.CategoryClient;
import cern.laser.client.data.Alarm;
import cern.laser.client.LaserException.LaserSelectionException;

...
private ContainerServices contSvc;
private CategoryClient categoryClient;
...
categoryClient=new CategoryClient(contSvc);
categoryClient.connect(this);
...
public void onAlarm(Alarm alarm) {

System.out.println(alarm.toString());
}
...
public void onException(LaserSelectionException e) {

...
}

The client is built passing the ContainerServices.

The call to the connect triggers a sequence of actions:

 the client connects to the alarm system and gets the list of all the available
categories

 the listener is connected to the alarm system to be notified about the arrival of
alarms

 the category client gets all the active alarms i.e. all the alarms active, even those
activated before the client connects to the alarm system

 all the active alarms are sent to the listener

A not null listener to receive the alarms published by the ASC must be set as parameter
to the connect. The CategoryClient sends alarms to the listener through onAlarm, as
defined by the AlarmSelectionListener interface.

By default, the client connects to all the available categories, as shown in the example.
However, there is an overloaded connect that accepts an array of Category to connect
to listen to alarms:

public void connect(AlarmSelectionListener listener, Category[] categories)

7.3 alarmSourcePanel

The alarmSourcePanel is a little dialog showing the alarms published by sources i.e.
alarms before they are processed by the ASC.

The panel, that needs to be started against a running ACS session, connects to the source
channel and shows the alarms published by the sources inside a table. The alarms shown
in this table are the same alarms received by the ASC because this panel listens to the
same NC used by sources to send the alarms. Therefore the alarms sent to the alarm
service through a CORBA call will never appear in this table.

Figure 15: A snapshot of the alarm source panel.

This panel is very useful fro debugging: when the user wants to monitor the alarms
published by sources. The table shows the triplet and the activator (the
ACTIVE/INACTIVE status) of each alarm.

The toolbar has two buttons, Clear that clear the table and Compact that cause the table to
show the alarms in a more compact view containing only one column for the triplet and
another for the activation state.

7.4 The alarm sender panel

ACS provide a panel for testing the AS: it allows to send alarms with the desired triplet to
the AS. Theis panel is launched issuing the alarmSenderPanel command:

The panel allows to send alarms with the methods each of which is selected with a radio
button:

• Triplet: the triplet must be written in the text field in the form FF,FM,FC; the
activation state of the alarm to send must then be selected between Activate and
Terminate (the other 2 states Change and Instant are not yet implemented)

• File: the triplets of the alarms to send are written in a text file

• TM/CDB: the definition of the triplets of the alarm to send to the ASC are read
from the CDB. This is probably the most useful modality.

For the File and the TM/CDB methods there i s Cycle button: when it is pressed the panel
randomly activates/terminates alarms to strres the ASC.

In the Alarm clearing area, there is a table with all the alarms that have been activated by
the panel. The user can select which one he wants to terminate or terminate all of the at
once.

7.5 Profiling of the alarm system

ACS provides a way to profile the alarm system and identify problematic area of the
alarm system. The tool is launched issuing the alarmsProfiler. It is a eclipse RCP whose
sources are in acsGUIs/AlarmsProfiler. Note that this application is not built by default
i.e. it is not part of ACS binary distribution.

The application starts profiling the alarm system as soon as the “Connect to ACS” menu
item of the File menu is selected. At that moment, the alarmsProfiler connects to the
categories and to the source notification channels and listens to all the alarms published
by the sources and those sent by the ASC to the clients and elaborate statistics. The
profiling should last a relevant amount of time to let the tool gather enough information.

The panel shows a tab for each different statistic it calculates and shows a graph of the
number of alarm sent to the operator GUI in the last ten minutes.

A ASCII report can be generated by pressing the disk icon in the tool bar: the output of
the ASCII file is formatted to be copied into a twiki page.

7.5.1 Most frequent alarm

It is a ranking of the most frequent to the least frequent alarm during the analysis period.
Often only a few alarms are a significant fraction of the entire system load.

We need to check if those frequent alarm have been designed to show up so frequently.
Working on these alarms can dramatically improve the alarm system.

The tool create the list by listening at alarms produced by the source (i.e. not yet
processed by the alarm service). The table has one row for each alarm identified by its id
(the triplet), its number of activations and deactivation and the last time of each state
change.

7.5.2 Stale alarms

The list of active alarm and how long they are in the activation state. Alarms that are
always active do not provide useful information to the operators.

The tool shows a table associating the ID of the alarm to the time it is in activate state.

7.5.3 Chattering alarms

A list of alarms that change their state from activate to terminate at least 3 times per
minute. Of course these alarms are not been cleared because of an operator action so we
have to fix them.

The tool shows one table with one row per each alarm identified by its triplet. It reports
the number of activations, deactivations, state changes and the peak timestamp of the
event.

7.5.4 Statistics

A useful set of numbers:

• activation alarms sent by sources
• terminated alarms sent by sources
• total number of source events
• activated alarms sent by the alarms service to the clients (i.e. to the alarm panel

and visible to operators)
• activated alarms sent by the alarms service to the clients (i.e. to the alarm panel

and visible to operators)
• suppressed (i.e. reduced) alarms sent by the alarm service to the clients (the

operator can or cannot see these events depending on the setting of the alarm
panel)

• the number of alarms per each priority level

This panel gives the feeling of the load of the system at source level as well as at level of
the alarm clients.

7.5.5 Annunciated alarms

The alarms annunciated to operators i.e. the active alarms that the alarm service sent to
the clients.

The table has one row for each alarm with the number of times it has been sent to the
clients. Given that the alarm service does not send twice the same alarms, it means that
the state of the alarm must have been changed from active to terminate.
This table is correlated to the most frequent alarms of the first tab but the alarms shown
here are the alarms sent by the alarm service to the clients instead of those directly
produced by the source. For example if a source activates 2 times in sequence the same
alarm, it appears with a number of 2 in the most frequent alarm tab but with a number of
1 in this tab because the alarm service does not send the same activate event 2 time.

7.5.6 Suppressed alarms

It is the list of alarms reduced by the alarm service.This tab gives an estimation of how
many alarms are active in the system but hidden to the operator.Actually, the alarm
service sends reduced alarms to the client with a flag and the operator can see in the
alarm panel the reduced alarms by changing the setting of the GUI.

7.5.7 Lost sources

this table identifies the alarms produced by the sources but that do not have any
documentation in the CDB. When the alarm service receives these types of alarms, it
does nothing because it can't find what to do in the database. These alarms never arrive to
the operators that could miss some important notification.

The panel provides a list of alarm IDS that the developer should document as soon as
possible.

7.5.8 Alarms per 10 minutes

It is a graph showing the number of alarms received in the last 10 minutes. This allows to
identify bursts of alarms and to correlate them to a particular activity in the control room.

If the number of alarms per 10 minutes is greater then 10, then there is an alarm flood.
Alarm floods means that the number of presented alarms is too big to be handled
efficiently by the operator. The flood threshold of 10 alarm is the red line in the graph.

7.5.9 Alarm flood

As we said before, an alarm flood happens when the operator receives 10 or more alarms
per minute. Given that an alarm flood is a situation that the operators presumably can't
handle they should never happen or have a very short duration.

The alarm flood tab says if the alarm system is currently in a flood, an information that
can help correlating the actual activity in the control room with the performance of the
alarm system.
it also shows the number of alarms in the actual flood to have an idea on how far is that
number with the ideal of 10.

This panels also reports the total monitoring time i.e. the total time that tool is profiling
the system. It is important to correlate this time with the time spent in flood. ideally, the
time in flood should be around zero.

The total number of flood and the average number of alarms in flood is also presented by
the tool.

7.6 BACI properties

BACI properties have been modified in order to send an alarm when their value becomes
lower than the low limit or higher than the high limit for continues read-only (RO) BACI
property like ROdouble, ROfloat, … Or, when the value (state) is in alarm state for
discrete RO BACI properties like ROpattern, RO<enum>, … The low and high limits, or
alarm states of a property are defined in the CDB.

To enable checking the value of a BACI property for alarms the user has to set the value
of alarm_timer_trig in the CDB entry of the property19 on a value different than 0. The
default value for this field, defined in the schema, is 0 meaning that the checking for
alarms is disabled.

Besides the alarm_timer_trig, the methods startPropertiesMonitoring() and
stopPropertiesMonitoring() of CharacteristicComponentImpl allow
the developers to enable/disable the monitoring of the properties at the API level.

19 Please, refer to the BACI documentation for further details about the CDB entry of a property.

As it is true for other alarms also alarms generated by BACI properties are represented
with triplet: FF, FM and FC. The value of FF/FM of the triplet of an alarm from the
BACI property can be set in several ways:

- default value which is taken if no value is specified by other mean (CDB or API):

o for FF hardcoded string “BACIProperty”

o for FM the name of the BACI property

- value defined in CDB; there are two optional attributes for each read-only property:

o alarm_fault_family for FF

o alarm_fault_member for FM

- set via API: each read-only BACI property, like ROdouble, has two methods:

o setAlarmFaultFamily to set FF

o setAlarmFaultMember to set FM

Setting FF/FM using API has precedence over value read from CDB, which has
precedence over default value.

The current set value of FF/FM can be retrieved at any point using API of read-only
BACI properties: getAlarmFaultFamily, and getAlarmFaultMember,
respectively.

The value of FC is a fixed number that can have different values depending on what kind
of BACI property generated the alarm:

- “1” for discrete RO properties such as ROpattern, or RO<enum>, if the
corresponding alarm indicates that the property value (state) is in an alarm
state.

- “2” for continuous RO properties like ROdouble, ROfloat, if the
corresponding alarm indicates that the value is under the low limit

- “3” for continuous RO properties like ROdouble, ROfloat, if the
corresponding alarm indicates that the value is over the high limit

It is not possible to modify the FC value from the CDB or the baci API.

Each BACI alarm can also have a defined level. The level can be specified in the CDB
where each RO property has an optional attribute: alarm_level. Its default value is 0.
The level value appears in the alarm system as the BACI_Level alarm property.

Besides the triplet (FF, FM and FC) and BACI_Level, BACI alarms can contain several
other alarm properties:

- BACI_Value the value of BACI property that triggered the alarm

- BACI_Property the name of the BACI property

- BACI_Description description of the BACI property read from CDB.

- BACI_Position position of the value in the sequence that triggered the alarm – only
for sequence BACI properties.

- BACI_BitPosition bit position in ROpattern that triggered the alarm – only for
ROpattern

- BACI_BitDescription description of the bit that triggered the alarm
BACI_BitPosition – only for ROpattern

The FS of each BACI property can be ACTIVE or INACTIVE depending on whether its
value is in the proper range or not – exceed low or high limit or not.

As discussed in the CDB section, the sources can publish alarms even if they are not
defined in the database. On the other hand, the ASC discards all the alarms it receives that
do not match with an entry in the CDB.

In other words, it means that there is nothing to configure in order for a BACI property to
send alarms when its value is out of the allowed range. However you must configure the
Alarms branch of the CDB if you want to have these alarms processed by the ASC and
visible in the GUI, that is normally the desired behavior. Usage of default members is
very helpful defining the CDB for BACI properties.

7.7 Sending of alarms through an IDL CORBA call

The IDL of the alarm service, contains a method to directly send alarms to the ACS i.e.
without passing through the notification channel:

...
interface CERNAlarmService: AlarmService {
 ...
 void submitAlarm(

in alarmsystem::Triplet triplet,
in boolean active,
in string sourceHostName,
in string sourceName,
in alarmsystem::Timestamp sourceTimestamp,
in CosPropertyService::Properties alarmProperties)
 raises

(ACSErrTypeCommon::BadParameterEx,
ACSErrTypeCommon::UnexpectedExceptionEx);

};
...

The following java example shows how to send an alarm through a CORBA call:

1 CernAlarmServiceUtils utils = new CernAlarmServiceUtils(contSvcs);
2 CERNAlarmService alarmService =
3 CERNAlarmServiceHelper.narrow(utils.getAlarmService());
4 Triplet triplet = new Triplet(IDLTestFF, IDLTestFM, IDLTestFC);
5 Timestamp timestamp = new Timestamp(System.currentTimeMillis(), 0);
6 org.omg.CosPropertyService.Property[] props =
7 new org.omg.CosPropertyService.Property[0];
8 alarmService.submitAlarm(

9 triplet,
10 true,
11 "ThisHostName",
12 this.getClass().getName(),
13 timestamp,
14 props);

To send alarms with a CORBA call, the software has to get a CORBA reference to the
alarm service (lines 1-3). The triplet of the alarm must be built by passing the fault
family, member and code (line 4).
Optionally, a set of user properties can be associated to the alarm (lines 6-7).
Finally the IDL method can be invoked (lines 8-14).

To keep the example short, we do not get the real name of the host wher ethe software is
running.

Sending alarms with this method must be avoided: it is intended to be used only when the
notification channel is not available or for very special cases like for example by ACS daemons.

	1 Introduction
	1.1 Glossary
	1.2 References

	2 Installation and test
	3 AS architecture
	3.1 The resource tier
	3.2 Alarm source API
	3.2.1 Extended features of AlarmSource

	3.3 Legacy API
	3.4 The business tier
	3.5 The client tier

	4 CDB configuration
	4.1 AlarmDefinitions
	4.2 Administrative
	4.3 AlarmSystemConfiguration
	4.4 Categories
	4.5 ReductionDefinitions

	5 The alarm GUI
	5.1 Alarm details
	5.2 Quick search and filtering

	6 The CERN operator GUI
	7 ACS implementation
	7.1 Alarm source client
	7.2 Alarm category client
	7.3 alarmSourcePanel
	7.4 The alarm sender panel
	7.5 Profiling of the alarm system
	7.5.1 Most frequent alarm
	7.5.2 Stale alarms
	7.5.3 Chattering alarms
	7.5.4 Statistics
	7.5.5 Annunciated alarms
	7.5.6 Suppressed alarms
	7.5.7 Lost sources
	7.5.8 Alarms per 10 minutes
	7.5.9 Alarm flood

	7.6 BACI properties
	7.7 Sending of alarms through an IDL CORBA call

