
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

Send comments about this document to: docfeedback@sun.com

C++ Library Reference

Sun WorkShop 6

Part No. 806-3569-10
May 2000, Revision A

Please
Recycle

Copyright © 2000 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 USA. All rights reserved.

This product or document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or

document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party

software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape™, Netscape Navigator™, and the Netscape

Communications Corporation logo™, the following notice applies: Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook2, Solaris, SunOS, JavaScript, SunExpress, Sun WorkShop, Sun WorkShop

Professional, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, and Forte are trademarks, registered trademarks,

or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or

registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an

architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

Sun f90/f95 is derived from Cray CF90™, a product of Silicon Graphics, Inc.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2000 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la décompilation. Aucune

partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et

écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de

caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable à

Netscape™, Netscape Navigator™, et the Netscape Communications Corporation logo™: Copyright 1995 Netscape Communications

Corporation. Tous droits réservés.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook2, Solaris, SunOS, JavaScript, SunExpress, Sun WorkShop, Sun WorkShop

Professional, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, et Forte sont des marques de fabrique ou des

marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont

utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres

pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

Sun f90/f95 est derivé de CRAY CF90™, un produit de Silicon Graphics, Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Important Note on New Product
Names

As part of Sun’s new developer product strategy, we have changed the names of our

development tools from Sun WorkShop™ to Forte™ Developer products. The

products, as you can see, are the same high-quality products you have come to

expect from Sun; the only thing that has changed is the name.

We believe that the Forte™ name blends the traditional quality and focus of Sun’s

core programming tools with the multi-platform, business application deployment

focus of the Forte tools, such as Forte Fusion™ and Forte™ for Java™. The new

Forte organization delivers a complete array of tools for end-to-end application

development and deployment.

For users of the Sun WorkShop tools, the following is a simple mapping of the old

product names in WorkShop 5.0 to the new names in Forte Developer 6.

In addition to the name changes, there have been major changes to two of the

products.

■ Forte for High Performance Computing contains all the tools formerly found in

Sun Performance WorkShop Fortran and now includes the C++ compiler, so High

Performance Computing users need to purchase only one product for all their

development needs.

■ Forte Fortran Desktop Edition is identical to the former Sun Performance

WorkShop Personal Edition, except that the Fortran compilers in that product no

longer support the creation of automatically parallelized or explicit, directive-

based parallel code. This capability is still supported in the Fortran compilers in

Forte for High Performance Computing.

We appreciate your continued use of our development products and hope that we

can continue to fulfill your needs into the future.

Old Product Name New Product Name

Sun Visual WorkShop™ C++ Forte™ C++ Enterprise Edition 6

Sun Visual WorkShop™ C++ Personal

Edition

Forte™ C++ Personal Edition 6

Sun Performance WorkShop™ Fortran Forte™ for High Performance Computing 6

Sun Performance WorkShop™ Fortran

Personal Edition

Forte™ Fortran Desktop Edition 6

Sun WorkShop Professional™ C Forte™ C 6

Sun WorkShop™ University Edition Forte™ Developer University Edition 6

Contents

Preface P-1

1. Introduction to C++ Libraries 1-1

1.1 Man Pages 1-1

1.2 Other Libraries 1-2

1.2.1 Tools.h++ Library 1-2

1.2.2 Sun WorkShop Memory Monitor 1-2

2. The Complex Arithmetic Library 2-1

2.1 The Complex Library 2-1

2.1.1 Using the Complex Library 2-2

2.2 Type complex 2-2

2.2.1 Constructors of Class complex 2-2

2.2.2 Arithmetic Operators 2-3

2.3 Mathematical Functions 2-4

2.4 Error Handling 2-6

2.5 Input and Output 2-7

2.6 Mixed-Mode Arithmetic 2-8

2.7 Efficiency 2-9

2.8 Complex Man Pages 2-10
Contents v

3. The Classic iostream Library 3-1

3.1 Predefined iostreams 3-1

3.2 Basic Structure of iostream Interaction 3-2

3.3 Using the Classic iostream Library 3-3

3.3.1 Output Using iostream 3-4

3.3.2 Input Using iostream 3-7

3.3.3 Defining Your Own Extraction Operators 3-7

3.3.4 Using the char* Extractor 3-8

3.3.5 Reading Any Single Character 3-9

3.3.6 Binary Input 3-9

3.3.7 Peeking at Input 3-9

3.3.8 Extracting Whitespace 3-10

3.3.9 Handling Input Errors 3-10

3.3.10 Using iostreams with stdio 3-11

3.4 Creating iostreams 3-11

3.4.1 Dealing with Files Using Class fstream 3-11

3.5 Assignment of iostreams 3-15

3.6 Format Control 3-15

3.7 Manipulators 3-15

3.7.1 Using Plain Manipulators 3-17

3.7.2 Parameterized Manipulators 3-18

3.8 Strstreams : iostreams for Arrays 3-20

3.9 Stdiobufs : iostreams for stdio Files 3-20

3.10 Streambufs 3-20

3.10.1 Working with Streambufs 3-20

3.10.2 Using Streambufs 3-21

3.11 iostream Man Pages 3-22

3.12 iostream Terminology 3-24
vi C++ Library Reference • May 2000

4. Using Classic iostreams in a Multithreading Environment 4-1

4.1 Multithreading 4-1

4.2 Organization of the MT-Safe iostream Library 4-2

4.2.1 Public Conversion Routines 4-3

4.2.2 Compiling and Linking with the MT-Safe libC Library 4-4

4.2.3 MT-Safe iostream Restrictions 4-5

4.2.4 Performance 4-7

4.3 Interface Changes to the iostream Library 4-9

4.3.1 New Classes 4-9

4.3.2 New Class Hierarchy 4-10

4.3.3 New Functions 4-10

4.4 Global and Static Data 4-12

4.5 Sequence Execution 4-13

4.6 Object Locks 4-13

4.6.1 Class stream_locker 4-14

4.7 MT-Safe Classes 4-15

4.8 Object Destruction 4-16

4.9 An Example Application 4-17

5. The C++ Standard Library 5-1

5.1 C++ Standard Library Header Files 5-2

5.2 C++ Standard Library Man Pages 5-3

Index Index-1
Contents vii

viii C++ Library Reference • May 2000

Tables

TABLE P-1 Typographic Conventions P-3

TABLE P-2 Shell Prompts P-4

TABLE P-3 Related Sun WorkShop 6 Documentation by Document Collection P-5

TABLE P-4 Related Solaris Documentation P-8

TABLE P-5 Man Pages Related to C++ P-9

TABLE 1-1 Man Pages for Sun WorkShop Memory Monitor 1-3

TABLE 2-1 Complex Arithmetic Library Functions 2-4

TABLE 2-2 Complex Mathematical and Trigonometric Functions 2-5

TABLE 2-3 Complex Arithmetic Library Functions 2-7

TABLE 2-4 Man Pages for Type complex 2-10

TABLE 3-1 iostream Routine Header Files 3-3

TABLE 3-2 iostream Predefined Manipulators 3-16

TABLE 3-3 iostream Man Pages Overview 3-22

TABLE 3-4 iostream Terminology 3-24

TABLE 4-1 Core Classes 4-2

TABLE 4-2 Reentrant Public Functions 4-3

TABLE 5-1 C++ Standard Library Header Files 5-2

TABLE 5-2 Man Pages for C++ Standard Library 5-3
ix

x C++ Library Reference • May 2000

Preface

The C++ Library Reference describes the C++ libraries, including:

■ Tools.h++ Class Library

■ Sun WorkShop Memory Monitor

■ Complex

Multiplatform Release

This Sun WorkShop release supports versions 2.6, 7, and 8 of the Solaris™ SPARC™
Platform Edition and Solaris Intel Platform Edition Operating Environments.

Note – In this document, the term “IA” refers to the Intel 32-bit processor

architecture, which includes the Pentium, Pentium Pro, and Pentium II, Pentium II

Xeon, Celeron, Pentium III, and Pentium III Xeon processors and compatible

microprocessor chips made by AMD and Cyrix.

Access to Sun WorkShop Development

Tools

Because Sun WorkShop product components and man pages do not install into the

standard /usr/bin/ and /usr/share/man directories, you must change your

PATHand MANPATHenvironment variables to enable access to Sun WorkShop

compilers and tools.
P-1

To determine if you need to set your PATHenvironment variable:

1. Display the current value of the PATHvariable by typing:

% echo $PATH

2. Review the output for a string of paths containing /opt/SUNWspro/bin/ .

If you find the paths, your PATHvariable is already set to access Sun WorkShop

development tools. If you do not find the paths, set your PATHenvironment variable

by following the instructions in this section.

To determine if you need to set your MANPATHenvironment variable:

1. Request the workshop man page by typing:

% man workshop

2. Review the output, if any.

If the workshop (1) man page cannot be found or if the man page displayed is not

for the current version of the software installed, follow the instructions in this

section for setting your MANPATHenvironment variable.

Note – The information in this section assumes that your Sun WorkShop 6 products

were installed in the /opt directory. If your Sun WorkShop software is not installed

in the /opt directory, ask your system administrator for the equivalent path on your

system.

The PATHand MANPATHvariables should be set in your home .cshrc file if you are

using the C shell or in your home .profile file if you are using the Bourne or Korn

shells:

■ To use Sun WorkShop commands, add the following to your PATHvariable:

/opt/SUNWspro/bin

■ To access Sun WorkShop man pages with the mancommand, add the following to

your MANPATHvariable:

/opt/SUNWspro/man

For more information about the PATHvariable, see the csh (1), sh (1), and ksh (1)

man pages. For more information about the MANPATHvariable, see the man(1) man

page. For more information about setting your PATHand MANPATHvariables to

access this release, see the Sun WorkShop 6 Installation Guide or your system

administrator.
P-2 C++ Library Reference • May 2000

How This Book Is Organized

This book contains the following chapters:

Chapter 1, “Introduction to C++ Libraries,” gives an overview of the C++ libraries.

Chapter 2, “The Complex Arithmetic Library,” explains the arithmetic operators and

mathematical functions in the library.

Chapter 3, “The Classic iostream Library,” discusses the classic implementation of

of the input and output facility used in C++.

Chapter 4, “Using Classic iostreams in a Multithreading Environment,” details

how to use the classic iostream library for input and output in a multithreaded

environment.

Chapter 5, “The C++ Standard Library,” gives a brief overview of the standard

library.

Typographic Conventions

TABLE P-1 shows the typographic conventions that are used in Sun WorkShop

documentation.

TABLE P-1 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when

contrasted with on-screen

computer output

% su
Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

AaBbCc123 Command-line placeholder text;

replace with a real name or

value

To delete a file, type rm filename.
Preface P-3

Shell Prompts

TABLE P-2 shows the default system prompt and superuser prompt for the C shell,

Bourne shell, and Korn shell.

Related Documentation

You can access documentation related to the subject matter of this book in the

following ways:

[] Square brackets contain

arguments that are optional

–compat[= n]

() Parentheses contain a set of

choices for a required option

–d(y|n)

| The “pipe” or “bar” symbol

separates arguments, only one

of which may be used at one

time

–d(y|n)

... The ellipsis indicates omission

in a series

–features= a1[, ...an]

% The percent sign indicates the

word has a special meaning

–ftrap=%all,no%division

TABLE P-2 Shell Prompts

Shell Prompt

C shell %

Bourne shell and Korn shell $

C shell, Bourne shell, and Korn shell superuser #

TABLE P-1 Typographic Conventions (Continued)

Typeface Meaning Examples
P-4 C++ Library Reference • May 2000

■ Through the Internet at the docs.sun.com sm Web site. You can search for a

specific book title or you can browse by subject, document collection, or product

at the following Web site:

http://docs.sun.com

■ Through the installed Sun WorkShop products on your local system or
network. Sun WorkShop 6 HTML documents (manuals, online help, man pages,

component readme files, and release notes) are available with your installed Sun

WorkShop 6 products. To access the HTML documentation, do one of the

following:

■ In any Sun WorkShop or Sun WorkShop™ TeamWare window, choose

Help ➤ About Documentation.

■ In your Netscape™ Communicator 4.0 or compatible version browser, open the

following file:

/opt/SUNWspro/docs/index.html

(If your Sun WorkShop software is not installed in the /opt directory, ask your

system administrator for the equivalent path on your system.) Your browser

displays an index of Sun WorkShop 6 HTML documents. To open a document in

the index, click the document’s title.
Preface P-5

Document Collections

TABLE P-3 lists related Sun WorkShop 6 manuals by document collection.

TABLE P-3 Related Sun WorkShop 6 Documentation by Document Collection

Document Collection Document Title Description

Forte™ Developer 6 /

Sun WorkShop 6 Release

Documents

About Sun WorkShop 6
Documentation

Describes the documentation

available with this Sun

WorkShop release and how to

access it.

What’s New in Sun
WorkShop 6

Provides information about the

new features in the current and

previous release of Sun

WorkShop.

Sun WorkShop 6 Release
Notes

Contains installation details

and other information that was

not available until immediately

before the final release of Sun

WorkShop 6. This document

complements the information

that is available in the

component readme files.

Forte Developer 6 /

Sun WorkShop 6

Analyzing Program
Performance With Sun
WorkShop 6

Explains how to use the new

Sampling Collector and

Sampling Analyzer (with

examples and a discussion of

advanced profiling topics) and

includes information about the

command-line analysis tool

er_print , the LoopTool and

LoopReport utilities, and UNIX

profiling tools prof , gprof ,

and tcov .

Debugging a Program With
dbx

Provides information on using

dbx commands to debug a

program with references to

how the same debugging

operations can be performed

using the Sun WorkShop

Debugging window.

Introduction to Sun
WorkShop

Acquaints you with the basic

program development features

of the Sun WorkShop

integrated programming

environment.
P-6 C++ Library Reference • May 2000

Forte™ C 6 /

Sun WorkShop 6 Compilers

C

C User’s Guide Describes the C compiler

options, Sun-specific

capabilities such as pragmas,

the lint tool, parallelization,

migration to a 64-bit operating

system, and ANSI/ISO-

compliant C.

Forte™ C++ 6 /

Sun WorkShop 6 Compilers

C++

C++ Library Reference Describes the C++ libraries,

including C++ Standard

Library, Tools.h++ class library,

Sun WorkShop Memory

Monitor, Iostream, and

Complex.

C++ Migration Guide Provides guidance on

migrating code to this version

of the Sun WorkShop C++

compiler.

C++ Programming Guide Explains how to use the new

features to write more efficient

programs and covers

templates, exception handling,

runtime type identification,

cast operations, performance,

and multithreaded programs.

C++ User’s Guide Provides information on

command-line options and

how to use the compiler.

Sun WorkShop Memory
Monitor User’s Manual

Describes how the Sun

WorkShop Memory Monitor

solves the problems of memory

management in C and C++.

This manual is only available

through your installed product

(see /opt/SUNWspro/docs/
index.html) and not at the

docs.sun.com Web site.

Forte™ for High

Performance Computing 6 /

Sun WorkShop 6 Compilers

Fortran 77/95

Fortran Library Reference Provides details about the

library routines supplied with

the Fortran compiler.

TABLE P-3 Related Sun WorkShop 6 Documentation by Document Collection (Continued)

Document Collection Document Title Description
Preface P-7

Fortran Programming Guide Discusses issues relating to

input/output, libraries,

program analysis, debugging,

and performance.

Fortran User’s Guide Provides information on

command-line options and

how to use the compilers.

FORTRAN 77 Language
Reference

Provides a complete language

reference.

Interval Arithmetic
Programming Reference

Describes the intrinsic

INTERVAL data type supported

by the Fortran 95 compiler.

Forte™ TeamWare 6 /

Sun WorkShop TeamWare 6

Sun WorkShop TeamWare 6
User’s Guide

Describes how to use the Sun

WorkShop TeamWare code

management tools.

Forte Developer 6/

Sun WorkShop Visual 6

Sun WorkShop Visual User’s
Guide

Describes how to use Visual to

create C++ and Java™

graphical user interfaces.

Forte™ / Sun Performance

Library 6

Sun Performance Library
Reference

Discusses the optimized library

of subroutines and functions

used to perform computational

linear algebra and fast Fourier

transforms.

Sun Performance Library
User’s Guide

Describes how to use the Sun-

specific features of the Sun

Performance Library, which is

a collection of subroutines and

functions used to solve linear

algebra problems.

Numerical Computation

Guide

Numerical Computation
Guide

Describes issues regarding the

numerical accuracy of floating-

point computations.

Standard Library 2 Standard C++ Class Library
Reference

Provides details on the

Standard C++ Library.

Standard C++ Library
User’s Guide

Describes how to use the

Standard C++ Library.

Tools.h++ 7 Tools.h++ Class Library
Reference

Provides details on the

Tools.h++ class library.

Tools.h++ User’s Guide Discusses use of the C++

classes for enhancing the

efficiency of your programs.

TABLE P-3 Related Sun WorkShop 6 Documentation by Document Collection (Continued)

Document Collection Document Title Description
P-8 C++ Library Reference • May 2000

TABLE P-4 describes related Solaris documentation available through the

docs.sun.com Web site.

Man Pages

The C++ Library Reference lists the man pages that are available for the C++ libraries.

TABLE P-5 lists other man pages that are related to C++.

TABLE P-4 Related Solaris Documentation

Document Collection Document Title Description

Solaris Software Developer Linker and Libraries Guide Describes the operations of the

Solaris link-editor and runtime

linker and the objects on which

they operate.

Programming Utilities Guide Provides information for

developers about the special

built-in programming tools

that are available in the Solaris

operating environment.

TABLE P-5 Man Pages Related to C++

Title Description

c++filt Copies each file name in sequence and writes it in the standard

output after decoding symbols that look like C++ demangled

names.

dem Demangles one or more C++ names that you specify

fbe Creates object files from assembly language source files.

fpversion Prints information about the system CPU and FPU

gprof Produces execution profile of a program

ild Links incrementally, allowing insertion of modified object code into

a previously built executable

inline Expands assembler inline procedure calls

lex Generates lexical analysis programs

rpcgen Generates C/C++ code to implement an RPC protocol

sigfpe Allows signal handling for specific SIGFPE codes

stdarg Handles variable argument list
Preface P-9

READMEFile

The READMEfile highlights important information about the compiler, including:

■ New and changed features

■ Software incompatibilities

■ Current software bugs

■ Information discovered after the manuals were printed

To view the text version of the C++ compiler READMEfile, type the following at a

command prompt:

To access the HTML version of the README, in your Netscape Communicator 4.0 or

compatible version browser, open the following file:

/opt/SUNWspro/docs/index.html

(If your Sun WorkShop software is not installed in the /opt directory, ask your

system administrator for the equivalent path on your system.) Your browser

displays an index of Sun WorkShop 6 HTML documents. To open the README,find

its entry in the index, then click the title.

Commercially Available Books

The following is a partial list of available books on the C++ language.

The C++ Standard Library, Nicolai Josuttis (Addison-Wesley, 1999).

Generic Programming and the STL, Matthew Austern, (Addison-Wesley, 1999).

varargs Handles variable argument list

version Displays version identification of object file or binary

yacc Converts a context-free grammar into a set of tables for a simple

automaton that executes an LALR(1) parsing algorithm

example% CC -xhelp=readme

TABLE P-5 Man Pages Related to C++ (Continued)

Title Description
P-10 C++ Library Reference • May 2000

Standard C++ IOStreams and Locales, Angelika Langer and Klaus Kreft (Addison-

Wesley, 2000).

Thinking in C++, Volume 1, Second Edition, Bruce Eckel (Prentice Hall, 2000).

The Annotated C++ Reference Manual, Margaret A. Ellis and Bjarne Stroustrup

(Addison-Wesley, 1990).

Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma, Richard

Helm, Ralph Johnson and John Vlissides, (Addison-Wesley, 1995).

C++ Primer, Third Edition, Stanley B. Lippman and Josee Lajoie (Addison-Wesley,

1998).

Effective C++—50 Ways to Improve Your Programs and Designs, Second Edition, Scott

Meyers (Addison-Wesley, 1998).

More Effective C++—35 Ways to Improve Your Programs and Designs, Scott Meyers

(Addison-Wesley, 1996).
Preface P-11

P-12 C++ Library Reference • May 2000

CHAPTER 1

Introduction to C++ Libraries

The C++ class libraries are modular components of reusable code. Using class

libraries, you can integrate blocks of code that have been previously built and tested.

A C++ library consists of one or more header files and an object library. The header

files provide class and other definitions needed to access the library functions. The

object library provides compiled functions and data that are linked with your

program to produce an executable program.

This manual describes three class libraries provided with the C++ compiler:

■ Complex numbers, described in Chapter 2

■ iostreams , described in Chapter 3

■ C++ standard library, described in Chapter 5

For a discussion of building shared and static libraries, and using libraries, see the

C++ User’s Guide.

1.1 Man Pages
The man pages associated with the libraries described in this manual are located in:

install-directory/SUNWspro/man/man3

install-directory/SUNWspro/man/man3 CC4

install-directory/SUNWspro/man/man3c++

where the default install-directory is /opt.

To access these man pages, ensure that your MANPATHincludes install-directory/
SUNWspro/man. For instructions on setting your MANPATH, see “Access to Sun

WorkShop Development Tools” in the preface.
1-1

To access man pages for the Sun WorkShop Compilers C++ libraries, type:

To access man pages for the compatibility mode libraries of the Sun WorkShop C++

compiler, type:

You can also access the man pages by pointing your browser to:

where the default install-directory is /opt.

1.2 Other Libraries
In addition to the complex , iostreams , and C++ standard libraries, this release

provides the Tools.h++ library and the Sun WorkShop Memory Monitor library.

1.2.1 Tools.h++ Library

Tools.h++ is a C++ foundation class library from RogueWave. Version 7 of this

library is provided with this release. For further information about this library, see:

■ C++ Users Guide
■ Tools.h++ User’s Guide (Version 7)

■ Tools.h++ Class Library Reference (Version 7)

1.2.2 Sun WorkShop Memory Monitor

The Sun WorkShop Memory Monitor provides facilities to automatically report and

fix memory leaks, memory fragmentation, and premature frees. It has three modes of

operation:

■ Debugging

■ Deployment

example% man library-name

example% man -s 3CC4 library-name

file: install-directory/SUNWspro/docs/index.html
1-2 C++ Library Reference • May 2000

■ Garbage collection

These modes are dependent on the library you link your application with.

The components of the Sun WorkShop Memory Monitor are:

■ libgc —the library used in garbage collection and deployment modes

■ libgc_dbg —the library used in memory debugging mode

■ gcmonitor —the daemon used in memory debugging mode

For complete documentation on the Sun WorkShop Memory Monitor, launch the

Memory Monitor or point your browser at the following file:

Replace install-directory with the path to your Sun WorkShop installation directory.

In a default installation, install-directory is /opt .

Man pages for the Sun WorkShop Memory Monitor are located in:

install-directory/SUNWspro/man/man1

install-directory/SUNWspro/man/man3

where the default install-directory is /opt.

file: install-directory/SUNWspro/docs/index.html

TABLE 1-1 Man Pages for Sun WorkShop Memory Monitor

Man Page Overview

gcmonitor Web interface for Sun WorkShop Memory Monitor

gcFixPrematureFrees Enable and disable fixing of premature frees by the Sun

WorkShop Memory Monitor

gcInitialize Configure Sun WorkShop Memory Monitor at startup
Chapter 1 Introduction to C++ Libraries 1-3

1-4 C++ Library Reference • May 2000

CHAPTER 2

The Complex Arithmetic Library

Complex numbers are numbers made up of a real and an imaginary part. For

example:

In the degenerate case, 0 + 3i is an entirely imaginary number generally written as

3i , and 5 + 0i is an entirely real number generally written as 5. You can represent

complex numbers using the complex data type.

Note – The complex arithmetic library (libcomplex) is available only for

compatibility mode (-compat [=4]). In standard mode (the default mode), complex

number classes with similar functionality are included with the C++ Standard

Library libCstd .

2.1 The Complex Library
The complex arithmetic library implements a complex number data type as a new

data type and provides:

■ Operators

■ Mathematical functions (defined for the built-in numerical types)

■ Extensions (for iostreams that allow input and output of complex numbers)

■ Error handling mechanisms

3.2 + 4i
1 + 3i
1 + 2.3i
2-1

Complex numbers can also be represented as an absolute value (or magnitude) and an

argument (or angle). The library provides functions to convert between the real and

imaginary (Cartesian) representation and the magnitude and angle (polar)

representation.

The complex conjugate of a number has the opposite sign in its imaginary part.

2.1.1 Using the Complex Library

To use the complex library, include the header file complex.h in your program, and

compile and link with the -library=complex option.

2.2 Type complex
The complex arithmetic library defines one class: class complex . An object of class

complex can hold a single complex number. The complex number is constructed of

two parts:

■ The real part

■ The imaginary part

The numerical values of each part are held in fields of type double . Here is the

relevant part of the definition of complex :

The value of an object of class complex is a pair of double values. The first value

represents the real part; the second value represents the imaginary part.

2.2.1 Constructors of Class complex

There are two constructors for complex . Their definitions are:

class complex {
 double re, im;
};

complex::complex(){ re=0.0; im=0.0; }
complex::complex(double r, double i = 0.0) { re=r; im=i; }
2-2 C++ Library Reference • May 2000

If you declare a complex variable without parameters, the first constructor is used

and the variable is initialized, so that both parts are 0. The following example creates

a complex variable whose real and imaginary parts are both 0:

You can give either one or two parameters. In either case, the second constructor is

used. When you give only one parameter, it is taken as the value for the real part

and the imaginary part is set to 0. For example:

creates a complex variable with the value:

If you give two values, the first is taken as the value of the real part and the second

as the value of the imaginary part. For example:

creates a complex variable with the value:

You can also create a complex number using the polar function, which is provided

in the complex arithmetic library (see Section 2.3 “Mathematical Functions”). The

polar function creates a complex value given a pair of polar coordinates,

magnitude and angle.

There is no destructor for type complex .

2.2.2 Arithmetic Operators

The complex arithmetic library defines all the basic arithmetic operators. Specifically,

the following operators work in the usual way and with the usual precedence:

+ - / * =

complex aComp;

complex aComp(4.533);

4.533 + 0i

complex aComp(8.999, 2.333);

8.999 + 2.333i
Chapter 2 The Complex Arithmetic Library 2-3

The operator - has its usual binary and unary meanings.

In addition, you can use the following operators in the usual way:

+= -= *= /=

However, these last four operators do not produce values that you can use in

expressions. For example, the following does not work:

You can also use the following equality operators in their regular meaning:

== !=

When you mix real and complex numbers in an arithmetic expression, C++ uses the

complex operator function and converts the real values to complex values.

2.3 Mathematical Functions
The complex arithmetic library provides a number of mathematical functions. Some

are peculiar to complex numbers; the rest are complex-number versions of functions

in the standard C mathematical library.

All of these functions produce a result for every possible argument. If a function

cannot produce a mathematically acceptable result, it calls complex_error and

returns some suitable value. In particular, the functions try to avoid actual overflow

and call complex_error with a message instead. The following tables describe the

remainder of the complex arithmetic library functions.

complex a, b;
...
if ((a+=2)==0) {...}; // illegal
b = a *= b; // illegal

TABLE 2-1 Complex Arithmetic Library Functions

Complex Arithmetic Library Function Description

double abs(const complex) Returns the magnitude of a

complex number.

double ang(const complex) Returns the angle of a complex

number.

complex conj(const complex) Returns the complex conjugate of

its argument.
2-4 C++ Library Reference • May 2000

double imag(const complex&) Returns the imaginary part of a

complex number.

double norm(const complex) Returns the square of the

magnitude of its argument. Faster

than abs , but more likely to cause

an overflow. For comparing

magnitudes.

complex polar(double mag, double ang=0.0) Takes a pair of polar coordinates

that represent the magnitude and

angle of a complex number and

returns the corresponding complex

number.

double real(const complex&) Returns the real part of a complex

number.

TABLE 2-2 Complex Mathematical and Trigonometric Functions

Complex Arithmetic Library Function Description

complex acos(const complex) Returns the angle whose cosine is

its argument.

complex asin(const complex) Returns the angle whose sine is its

argument.

complex atan(const complex) Returns the angle whose tangent is

its argument.

complex cos(const complex) Returns the cosine of its argument.

complex cosh(const complex) Returns the hyperbolic cosine of its

argument.

complex exp(const complex) Computes e**x , where e is the

base of the natural logarithms, and

x is the argument given to exp .

complex log(const complex) Returns the natural logarithm of its

argument.

complex log10(const complex) Returns the common logarithm of

its argument.

complex pow(double b, const complex exp)
complex pow(const complex b, int exp)
complex pow(const complex b, double exp)
complex pow(const complex b, const

complex exp)

Takes two arguments: pow(b, exp) .

It raises b to the power of exp.

TABLE 2-1 Complex Arithmetic Library Functions (Continued)

Complex Arithmetic Library Function Description
Chapter 2 The Complex Arithmetic Library 2-5

2.4 Error Handling
The complex library has these definitions for error handling:

The external variable errno is the global error state from the C library. errno can

take on the values listed in the standard header errno.h (see the man page

perror (3)). No function sets errno to zero, but many functions set it to other

values.

To determine whether a particular operation fails:

1. Set errno to zero before the operation.

2. Test the operation.

The function complex_error takes a reference to type c_exception and is called

by the following complex arithmetic library functions:

■ exp
■ log
■ log10
■ sinh
■ cosh

complex sin(const complex) Returns the sine of its argument.

complex sinh(const complex) Returns the hyperbolic sine of its

argument.

complex sqrt(const complex) Returns the square root of its

argument.

complex tan(const complex) Returns the tangent of its argument.

complex tanh(const complex) Returns the hyperbolic tangent of

its argument.

extern int errno;
class c_exception { ... };
int complex_error(c_exception&);

TABLE 2-2 Complex Mathematical and Trigonometric Functions (Continued)

Complex Arithmetic Library Function Description
2-6 C++ Library Reference • May 2000

The default version of complex_error returns zero. This return of zero means that

the default error handling takes place. You can provide your own replacement

function complex_error that performs other error handling. Error handling is

described in the man page cplxerr (3CC4).

Default error handling is described in the man pages cplxtrig (3CC4) and

cplxexp (3CC4) It is also summarized in the following table.

2.5 Input and Output
The complex arithmetic library provides default extractors and inserters for complex

numbers, as shown in the following example:

For basic information on extractors and inserters, see Section 3.2 “Basic Structure of

iostream Interaction” and Section 3.3.1 “Output Using iostream ”.

For input, the complex extractor >> extracts a pair of numbers (surrounded by

parentheses and separated by a comma) from the input stream and reads them into

a complex object. The first number is taken as the value of the real part; the second

as the value of the imaginary part. For example, given the declaration and input

statement:

TABLE 2-3 Complex Arithmetic Library Functions

Complex Arithmetic Library
Function Default Error Handling Summary

exp If overflow occurs, sets errno to ERANGEand returns a huge

complex number.

log, log10 If the argument is zero, sets errno to EDOMand returns a huge

complex number.

sinh, cosh If the imaginary part of the argument causes overflow, returns a

complex zero. If the real part causes overflow, returns a huge

complex number. In either case, sets errno to ERANGE.

ostream& operator<<(ostream&, const complex&); //inserter
istream& operator>>(istream&, complex&); //extractor

complex x;
cin >> x;
Chapter 2 The Complex Arithmetic Library 2-7

and the input (3.45, 5) , the value of x is equivalent to 3.45 + 5.0i . The reverse

is true for inserters. Given complex x(3.45, 5) , cout<<x prints (3.45, 5) .

The input usually consists of a pair of numbers in parentheses separated by a

comma; white space is optional. If you provide a single number, with or without

parentheses and white space, the extractor sets the imaginary part of the number to

zero. Do not include the symbol i in the input text.

The inserter inserts the values of the real and imaginary parts enclosed in

parentheses and separated by a comma. It does not include the symbol i . The two

values are treated as double s.

2.6 Mixed-Mode Arithmetic
Type complex is designed to fit in with the built-in arithmetic types in mixed-mode

expressions. Arithmetic types are silently converted to type complex , and there are

complex versions of the arithmetic operators and most mathematical functions. For

example:

The expression b+i is mixed-mode. Integer i is converted to type complex via the

constructor complex::complex(double,double=0) , the integer first being

converted to type double . The result is to be divided by y, a double , so y is also

converted to complex and the complex divide operation is used. The quotient is

thus type complex , so the complex sine routine is called, yielding another complex
result, and so on.

Not all arithmetic operations and conversions are implicit, or even defined, however.

For example, complex numbers are not well-ordered, mathematically speaking, and

complex numbers can be compared for equality only.

int i, j;
double x, y;
complex a, b;
a = sin((b+i)/y) + x/j;

complex a, b;
a == b; // OK
a != b; // OK
a < b; // error: operator < cannot be applied to type complex
a >= b; // error: operator >= cannot be applied to type complex
2-8 C++ Library Reference • May 2000

Similarly, there is no automatic conversion from type complex to any other type,

because the concept is not well-defined. You can specify whether you want the real

part, imaginary part, or magnitude, for example.

2.7 Efficiency
The design of the complex class addresses efficiency concerns.

The simplest functions are declared inline to eliminate function call overhead.

Several overloaded versions of functions are provided when that makes a difference.

For example, the pow function has versions that take exponents of type double and

int as well as complex , since the computations for the former are much simpler.

The standard C math library header math.h is included automatically when you

include complex.h . The C++ overloading rules then result in efficient evaluation of

expressions like this:

In this example, the standard math function sqrt(double) is called, and the result

is converted to type complex , rather than converting to type complex first and then

calling sqrt(complex) . This result falls right out of the overload resolution rules,

and is precisely the result you want.

complex a;
double f(double);
f(abs(a)); // OK
f(a); // error: no match for f(complex)

double x;
complex x = sqrt(x);
Chapter 2 The Complex Arithmetic Library 2-9

2.8 Complex Man Pages
The remaining documentation of the complex arithmetic library consists of the man

pages listed in the following table.

TABLE 2-4 Man Pages for Type complex

Man Page Overview

cplx.intro(3CC4) General introduction to the complex arithmetic library

cartpol(3CC4) Cartesian and polar functions

cplxerr(3CC4) Error-handling functions

cplxexp(3CC4) Exponential, log, and square root functions

cplxops(3CC4) Arithmetic operator functions

cplxtrig(3CC4) Trigonometric functions
2-10 C++ Library Reference • May 2000

CHAPTER 3

The Classic iostream Library

C++, like C, has no built-in input or output statements. Instead, I/O facilities are

provided by a library. The Sun WorkShop 6 C++ compiler provides both the classic

implementation and the ISO standard implementation of the iostream classes.

■ In compatibility mode (-compat[=4]), the classic iostream classes are

contained in libC .

■ In standard mode (default mode), the classic iostream classes are contained in

libiostream . Use libiostream when you have source code that uses the

classic iostream classes and you want to compile the source in standard mode.

To use the classic iostream facilities in standard mode, include the iostream.h
header file and compile using the -library=iostream option.

■ The standard iostream classes are available only in standard mode, and are

contained in the C++ standard library, libCstd .

This chapter provides an introduction to the classic iostream library and provides

examples of its use. This chapter does not provide a complete description of the

iostream library. See the iostream library man pages for more details. To access

the classic iostream man pages type:

3.1 Predefined iostreams
There are four predefined iostreams :

■ cin , connected to standard input

■ cout , connected to standard output

■ cerr , connected to standard error

■ clog , connected to standard error

example% man -s 3CC4 name
3-1

The predefined iostreams are fully buffered, except for cerr . See Section 3.3.1

“Output Using iostream ” and Section 3.3.2 “Input Using iostream ”.

3.2 Basic Structure of iostream Interaction
By including the iostream library, a program can use any number of input or

output streams. Each stream has some source or sink, which may be one of the

following:

■ Standard input

■ Standard output

■ Standard error

■ A file

■ An array of characters

A stream can be restricted to input or output, or a single stream can allow both input

and output. The iostream library implements these streams using two processing

layers.

■ The lower layer implements sequences, which are simply streams of characters.

These sequences are implemented by the streambuf class, or by classes derived

from it.

■ The upper layer performs formatting operations on sequences. These formatting

operations are implemented by the istream and ostream classes, which have as

a member an object of a type derived from class streambuf . An additional class,

iostream , is for streams on which both input and output can be performed.

Standard input, output, and error are handled by special class objects derived from

class istream or ostream .

The ifstream , ofstream , and fstream classes, which are derived from istream ,

ostream , and iostream respectively, handle input and output with files.

The istrstream , ostrstream , and strstream classes, which are derived from

istream , ostream , and iostream respectively, handle input and output to and

from arrays of characters.

When you open an input or output stream, you create an object of one of these

types, and associate the streambuf member of the stream with a device or file. You

generally do this association through the stream constructor, so you don’t work with

the streambuf directly. The iostream library predefines stream objects for the

standard input, standard output, and error output, so you don’t have to create your

own objects for those streams.
3-2 C++ Library Reference • May 2000

You use operators or iostream member functions to insert data into a stream

(output) or extract data from a stream (input), and to control the format of data that

you insert or extract.

When you want to insert and extract a new data type—one of your classes—you

generally overload the insertion and extraction operators.

3.3 Using the Classic iostream Library
To use routines from the classic iostream library, you must include the header files

for the part of the library you need. The header files are described in the following

table.

You usually do not need all of these header files in your program. Include only the

ones that contain the declarations you need. In compatibility mode (-compat[=4]),

the classic iostream library is part of libC , and is linked automatically by the CC
driver. In standard mode (the default), libiostream contains the classic iostream
library.

TABLE 3-1 iostream Routine Header Files

Header File Description

iostream.h Declares basic features of iostream library.

fstream.h Declares iostreams and streambufs specialized to files.

Includes iostream.h .

strstream.h Declares iostreams and streambufs specialized to character

arrays. Includes iostream.h .

iomanip.h Declares manipulators: values you insert into or extract from

iostreams to have different effects. Includes iostream.h .

stdiostream.h (obsolete) Declares iostreams and streambufs specialized to

use stdio FILEs. Includes iostream.h.

stream.h (obsolete) Includes iostream.h , fstream.h , iomanip.h , and

stdiostream.h . For compatibility with old-style streams from

C++ version 1.2.
Chapter 3 The Classic iostream Library 3-3

3.3.1 Output Using iostream

Output using iostream usually relies on the overloaded left-shift operator (<<)

which, in the context of iostream , is called the insertion operator. To output a value

to standard output, you insert the value in the predefined output stream cout . For

example, given a value someValue , you send it to standard output with a statement

like:

The insertion operator is overloaded for all built-in types, and the value represented

by someValue is converted to its proper output representation. If, for example,

someValue is a float value, the << operator converts the value to the proper

sequence of digits with a decimal point. Where it inserts float values on the output

stream, << is called the float inserter. In general, given a type X, << is called the X
inserter. The format of output and how you can control it is discussed in the

ios (3CC4) man page.

The iostream library does not support user-defined types. If you define types that

you want to output in your own way, you must define an inserter (that is, overload

the << operator) to handle them correctly.

The << operator can be applied repetitively. To insert two values on cout , you can

use a statement like the one in the following example:

The output from the above example will show no space between the two values. So

you may want to write the code this way:

The << operator has the precedence of the left shift operator (its built-in meaning).

As with other operators, you can always use parentheses to specify the order of

action. It is often a good idea to use parentheses to avoid problems of precedence. Of

the following four statements, the first two are equivalent, but the last two are not.

cout << someValue;

cout << someValue << anotherValue;

cout << someValue << " " << anotherValue;

cout << a+b; // + has higher precedence than <<
cout << (a+b);
cout << (a&y);// << has precedence higher than &
cout << a&y;// probably an error: (cout << a) & y
3-4 C++ Library Reference • May 2000

3.3.1.1 Defining Your Own Insertion Operator

The following example defines a string class:

The insertion and extraction operators must in this case be defined as friends

because the data part of the string class is private .

Here is the definition of operator<< overloaded for use with string s.

operator<< takes ostream& (that is, a reference to an ostream) as its first

argument and returns the same ostream , making it possible to combine insertions

in one statement.

3.3.1.2 Handling Output Errors

Generally, you don’t have to check for errors when you overload operator<<
because the iostream library is arranged to propagate errors.

When an error occurs, the iostream where it occurred enters an error state. Bits in

the iostream ’s state are set according to the general category of the error. The

inserters defined in iostream ignore attempts to insert data into any stream that is

in an error state, so such attempts do not change the iostream ’s state.

#include <stdlib.h>
#include <iostream.h>

class string {
private:

char* data;
size_t size;

public:
// (functions not relevant here)

friend ostream& operator<<(ostream&, const string&);
friend istream& operator>>(istream&, string&);

};

ostream& operator<< (ostream& ostr, const string& output)
{ return ostr << output.data; }

cout << string1 << string2;
Chapter 3 The Classic iostream Library 3-5

In general, the recommended way to handle errors is to periodically check the state

of the output stream in some central place. If there is an error, you should handle it

in some way. This chapter assumes that you define a function error , which takes a

string and aborts the program. error is not a predefined function. See Section 3.3.9

“Handling Input Errors” for an example of an error function. You can examine the

state of an iostream with the operator !, which returns a nonzero value if the

iostream is in an error state. For example:

There is another way to test for errors. The ios class defines operator void *(),
so it returns a NULL pointer when there is an error. You can use a statement like:

You can also use the function good , a member of ios :

The error bits are declared in the enum:

For details on the error functions, see the iostream man pages.

3.3.1.3 Flushing

As with most I/O libraries, iostream often accumulates output and sends it on in

larger and generally more efficient chunks. If you want to flush the buffer, you

simply insert the special value flush . For example:

flush is an example of a kind of object known as a manipulator, which is a value that

can be inserted into an iostream to have some effect other than causing output of

its value. It is really a function that takes an ostream& or istream& argument and

returns its argument after performing some actions on it (see Section 3.7

“Manipulators”).

if (!cout) error("output error");

if (cout << x) return ; // return if successful

if (cout.good()) return ; // return if successful

enum io_state { goodbit=0, eofbit=1, failbit=2,
 badbit=4, hardfail=0x80} ;

cout << "This needs to get out immediately." << flush ;
3-6 C++ Library Reference • May 2000

3.3.1.4 Binary Output

To obtain output in the raw binary form of a value, use the member function write
as shown in the following example. This example shows the output in the raw

binary form of x .

The previous example violates type discipline by converting &x to char* . Doing so

is normally harmless, but if the type of x is a class with pointers, virtual member

functions, or one that requires nontrivial constructor actions, the value written by

the above example cannot be read back in properly.

3.3.2 Input Using iostream

Input using iostream is similar to output. You use the extraction operator >> and

you can string together extractions the way you can with insertions. For example:

This statement gets two values from standard input. As with other overloaded

operators, the extractors used depend on the types of a and b (and two different

extractors are used if a and b have different types). The format of input and how

you can control it is discussed in some detail in the ios (3CC4) man page. In general,

leading whitespace characters (spaces, newlines, tabs, form-feeds, and so on) are

ignored.

3.3.3 Defining Your Own Extraction Operators

When you want input for a new type, you overload the extraction operator for it,

just as you overload the insertion operator for output.

Class string defines its extraction operator in the following code example:

cout.write((char*)&x, sizeof(x));

cin >> a >> b ;

CODE EXAMPLE 3-1 string Extraction Operator

istream& operator>> (istream& istr, string& input)

{

 const int maxline = 256;

 char holder[maxline];
Chapter 3 The Classic iostream Library 3-7

The get function reads characters from the input stream istr and stores them in

holder until maxline-1 characters have been read, or a new line is encountered, or

EOF, whichever happens first. The data in holder is then null-terminated. Finally,

the characters in holder are copied into the target string.

By convention, an extractor converts characters from its first argument (in this case,

istream& istr), stores them in its second argument, which is always a reference,

and returns its first argument. The second argument must be a reference because an

extractor is meant to store the input value in its second argument.

3.3.4 Using the char* Extractor

This predefined extractor is mentioned here because it can cause problems. Use it

like this:

This extractor skips leading whitespace and extracts characters and copies them to x
until it reaches another whitespace character. It then completes the string with a

terminating null (0) character. Be careful, because input can overflow the given array.

You must also be sure the pointer points to allocated storage. For example, here is a

common error:

There is no telling where the input data will be stored, and it may cause your

program to abort.

 istr.get(holder, maxline, ‘\n’);

 input = holder;

 return istr;

}

char x[50];
cin >> x;

char * p; // not initialized
cin >> p;

CODE EXAMPLE 3-1 string Extraction Operator (Continued)
3-8 C++ Library Reference • May 2000

3.3.5 Reading Any Single Character

In addition to using the char extractor, you can get a single character with either

form of the get member function. For example:

Note – Unlike the other extractors, the char extractor does not skip leading

whitespace.

Here is a way to skip only blanks, stopping on a tab, newline, or any other character:

3.3.6 Binary Input

If you need to read binary values (such as those written with the member function

write), you can use the read member function. The following example shows how

to input the raw binary form of x using the read member function, and is the

inverse of the earlier example that uses write .

3.3.7 Peeking at Input

You can use the peek member function to look at the next character in the stream

without extracting it. For example:

char c;
cin.get(c); // leaves c unchanged if input fails

int b;
b = cin.get(); // sets b to EOF if input fails

int a;
do {
 a = cin.get();
 }
while(a == ’ ’);

cin.read((char*)&x, sizeof(x));

if (cin.peek() != c) return 0;
Chapter 3 The Classic iostream Library 3-9

3.3.8 Extracting Whitespace

By default, the iostream extractors skip leading whitespace. You can turn off the

skip flag to prevent this from happening. The following example turns off whitespace

skipping from cin , then turns it back on:

You can use the iostream manipulator ws to remove leading whitespace from the

iostream , whether or not skipping is enabled. The following example shows how

to remove the leading whitespace from iostream istr :

3.3.9 Handling Input Errors

By convention, an extractor whose first argument has a nonzero error state should

not extract anything from the input stream and should not clear any error bits. An

extractor that fails should set at least one error bit.

As with output errors, you should check the error state periodically and take some

action, such as aborting, when you find a nonzero state. The ! operator tests the

error state of an iostream . For example, the following code produces an input error

if you type alphabetic characters for input:

cin.unsetf(ios::skipws); // turn off whitespace skipping
. . .
cin.setf(ios::skipws); // turn it on again

istr >> ws;

#include <unistd.h>
#include <iostream.h>
void error (const char* message) {

 cerr << message << "\n" ;
 exit(1);

}
int main() {

 cout << "Enter some characters: ";
 int bad;
 cin >> bad;
 if (!cin) error("aborted due to input error");
 cout << "If you see this, not an error." << "\n";
 return 0;

}

3-10 C++ Library Reference • May 2000

Class ios has member functions that you can use for error handling. See the man

pages for details.

3.3.10 Using iostreams with stdio

You can use stdio with C++ programs, but problems can occur when you mix

iostreams and stdio in the same standard stream within a program. For example,

if you write to both stdout and cout , independent buffering occurs and produces

unexpected results. The problem is worse if you input from both stdin and cin ,

since independent buffering may turn the input into trash.

To eliminate this problem with standard input, standard output and standard error,

use the following instruction before performing any input or output. It connects all

the predefined iostreams with the corresponding predefined stdio FILE s.

Such a connection is not the default because there is a significant performance

penalty when the predefined streams are made unbuffered as part of the connection.

You can use both stdio and iostreams in the same program applied to different

files. That is, you can write to stdout using stdio routines and write to other files

attached to iostreams . You can open stdio FILE s for input and also read from

cin so long as you don’t also try to read from stdin .

3.4 Creating iostreams
To read or write a stream other than the predefined iostreams , you need to create

your own iostream . In general, that means creating objects of types defined in the

iostream library. This section discusses the various types available.

3.4.1 Dealing with Files Using Class fstream

Dealing with files is similar to dealing with standard input and standard output;

classes ifstream , ofstream , and fstream are derived from classes istream ,

ostream , and iostream , respectively. As derived classes, they inherit the insertion

and extraction operations (along with the other member functions) and also have

members and constructors for use with files.

ios::sync_with_stdio();
Chapter 3 The Classic iostream Library 3-11

Include the file fstream.h to use any of the fstreams . Use an ifstream when

you only want to perform input, an ofstream for output only, and an fstream for

a stream on which you want to perform both input and output. Use the name of the

file as the constructor argument.

For example, copy the file thisFile to the file thatFile as in the following

example:

This code:

■ Creates an ifstream object called fromFile with a default mode of ios::in
and connects it to thisFile . It opens thisFile .

■ Checks the error state of the new ifstream object and, if it is in a failed state,

calls the error function, which must be defined elsewhere in the program.

■ Creates an ofstream object called toFile with a default mode of ios::out and

connects it to thatFile .

■ Checks the error state of toFile as above.

■ Creates a char variable to hold the data while it is passed.

■ Copies the contents of fromFile to toFile one character at a time.

Note – It is, of course, undesirable to copy a file this way, one character at a time.

This code is provided just as an example of using fstreams . You should instead

insert the streambuf associated with the input stream into the output stream. See

Section 3.10 “Streambufs ”, and the man page sbufpub (3CC4).

3.4.1.1 Open Mode

The mode is constructed by or -ing bits from the enumerated type open_mode ,

which is a public type of class ios and has the definition:

ifstream fromFile("thisFile");
if (!fromFile)

error("unable to open ’thisFile’ for input");
ofstream toFile ("thatFile");
if (!toFile)

error("unable to open ’thatFile’ for output");
char c ;
while (toFile && fromFile.get(c)) toFile.put(c);

enum open_mode {binary=0, in=1, out=2, ate=4, app=8, trunc=0x10,
 nocreate=0x20, noreplace=0x40};
3-12 C++ Library Reference • May 2000

Note – The binary flag is not needed on Unix, but is provided for compatibility

with systems that do need it. Portable code should use the binary flag when

opening binary files.

You can open a file for both input and output. For example, the following code

opens file someNamefor both input and output, attaching it to the fstream variable

inoutFile .

3.4.1.2 Declaring an fstream Without Specifying a File

You can declare an fstream without specifying a file and open the file later. For

example, the following creates the ofstream toFile for writing.

3.4.1.3 Opening and Closing Files

You can close the fstream and then open it with another file. For example, to

process a list of files provided on the command line:

3.4.1.4 Opening a File Using a File Descriptor

If you know a file descriptor, such as the integer 1 for standard output, you can open

it like this:

fstream inoutFile("someName", ios::in|ios::out);

ofstream toFile;
toFile.open(argv[1], ios::out);

ifstream infile;
for (char** f = &argv[1]; *f; ++f) {
 infile.open(*f, ios::in);
 ...;
 infile.close();
}

ofstream outfile;
outfile.attach(1);
Chapter 3 The Classic iostream Library 3-13

When you open a file by providing its name to one of the fstream constructors or

by using the open function, the file is automatically closed when the fstream is

destroyed (by a delete or when it goes out of scope). When you attach a file to an

fstream , it is not automatically closed.

3.4.1.5 Repositioning within a File

You can alter the reading and writing position in a file. Several tools are supplied for

this purpose.

■ streampos is a type that can record a position in an iostream.

■ tellg (tellp) is an istream (ostream) member function that reports the file

position. Since istream and ostream are the parent classes of fstream , tellg
and tellp can also be invoked as a member function of the fstream class.

■ seekg (seekp) is an istream (ostream) member function that finds a given

position.

■ The seek_dir enum specifies relative positions for use with seek .

For example, given an fstream aFile :

seekg (seekp) can take one or two parameters. When it has two parameters, the

first is a position relative to the position indicated by the seek_dir value given as

the second parameter. For example:

moves to 10 bytes from the end while

moves to 10 bytes forward from the current position.

enum seek_dir { beg=0, cur=1, end=2 }

streampos original = aFile.tellp(); //save current position
aFile.seekp(0, ios::end); //reposition to end of file
aFile << x; //write a value to file
aFile.seekp(original); //return to original position

aFile.seekp(-10, ios::end);

aFile.seekp(10, ios::cur);
3-14 C++ Library Reference • May 2000

Note – Arbitrary seeks on text streams are not portable, but you can always return

to a previously saved streampos value.

3.5 Assignment of iostreams
iostreams does not allow assignment of one stream to another.

The problem with copying a stream object is that there are then two versions of the

state information, such as a pointer to the current write position within an output

file, which can be changed independently. As a result, problems could occur.

3.6 Format Control
Format control is discussed in detail in the in the man page ios (3CC4).

3.7 Manipulators
Manipulators are values that you can insert into or extract from iostreams to have

special effects.

Parameterized manipulators are manipulators that take one or more parameters.

Because manipulators are ordinary identifiers, and therefore use up possible names,

iostream doesn’t define them for every possible function. A number of

manipulators are discussed with member functions in other parts of this chapter.

There are 13 predefined manipulators, as described in TABLE 3-2. When using that

table, assume the following:

■ i has type long .

■ n has type int .

■ c has type char .

■ istr is an input stream.
Chapter 3 The Classic iostream Library 3-15

■ ostr is an output stream.

To use predefined manipulators, you must include the file iomanip.h in your

program.

You can define your own manipulators. There are two basic types of manipulator:

■ Plain manipulator—Takes an istream& , ostream& , or ios& argument, operates

on the stream, and then returns its argument.

■ Parameterized manipulator—Takes an istream& , ostream& , or ios& argument,

one additional argument (the parameter), operates on the stream, and then

returns its stream argument.

TABLE 3-2 iostream Predefined Manipulators

Predefined Manipulator Description

1 ostr << dec, istr >> dec Makes the integer conversion base 10.

2 ostr << endl Inserts a newline character ('\n ') and

invokes ostream::flush() .

3 ostr << ends Inserts a null (0) character. Useful

when dealing with strstream s.

4 ostr << flush Invokes ostream::flush() .

5 ostr << hex, istr >> hex Makes the integer conversion base 16.

6 ostr << oct, istr >> oct Make the integer conversion base 8.

7 istr >> ws Extracts whitespace characters (skips

whitespace) until a non-whitespace

character is found (which is left in

istr).

8 ostr << setbase(n),
istr >> setbase(n)

Sets the conversion base to n (0, 8, 10,

16 only).

9 ostr << setw(n), istr >> setw(n) Invokes ios::width(n) . Sets the

field width to n.

10 ostr << resetiosflags(i),
istr >> resetiosflags(i)

Clears the flags bitvector according to

the bits set in i .

11 ostr << setiosflags(i),
istr >> setiosflags(i)

Sets the flags bitvector according to the

bits set in i .

12 ostr << setfill(c),
istr >> setfill(c)

Sets the fill character (for padding a

field) to c .

13 ostr << setprecision(n),
istr >> setprecision(n)

Sets the floating-point precision to n
digits.
3-16 C++ Library Reference • May 2000

3.7.1 Using Plain Manipulators

A plain manipulator is a function that:

■ Takes a reference to a stream

■ Operates on it in some way

■ Returns its argument

The shift operators taking (a pointer to) such a function are predefined for

iostreams , so the function can be put in a sequence of input or output operators.

The shift operator calls the function rather than trying to read or write a value. An

example of a tab manipulator that inserts a tab in an ostream is:

This is an elaborate way to achieve the following:

ostream& tab(ostream& os) {
 return os << ’\t’ ;
 }

...
cout << x << tab << y ;

const char tab = '\t';
...
cout << x << tab << y;
Chapter 3 The Classic iostream Library 3-17

Here is another example, which cannot be accomplished with a simple constant.

Suppose you want to turn whitespace skipping on and off for an input stream. You

can use separate calls to ios::setf and ios::unsetf to turn the skipws flag on

and off, or you could define two manipulators:

3.7.2 Parameterized Manipulators

One of the parameterized manipulators that is included in iomanip.h is setfill .

setfill sets the character that is used to fill out field widths. It is implemented as

shown in the following example:

A parameterized manipulator is implemented in two parts:

#include <iostream.h>
#include <iomanip.h>
istream& skipon(istream &is) {

is.setf(ios::skipws, ios::skipws);
return is;

}
istream& skipoff(istream& is) {

is.unsetf(ios::skipws);
return is;

}
...
int main ()
{

int x,y;
cin >> skipon >> x >> skipoff >> y;
return 1;

}

//file setfill.cc
#include<iostream.h>
#include<iomanip.h>

//the private manipulator
static ios& sfill(ios& i, int f) {
 i.fill(f);
 return i;
}
//the public applicator
smanip_int setfill(int f) {
 return smanip_int(sfill, f);
}

3-18 C++ Library Reference • May 2000

■ The manipulator. It takes an extra parameter. In the previous code example, it takes

an extra int parameter. You cannot place this manipulator function in a sequence

of input or output operations, since there is no shift operator defined for it.

Instead, you must use an auxiliary function, the applicator.

■ The applicator. It calls the manipulator. The applicator is a global function, and

you make a prototype for it available in a header file. Usually the manipulator is

a static function in the file containing the source code for the applicator. The

manipulator is called only by the applicator, and if you make it static, you keep

its name out of the global address space.

Several classes are defined in the header file iomanip.h . Each class holds the

address of a manipulator function and the value of one parameter. The iomanip
classes are described in the man page manip (3CC4). The previous example uses the

smanip_int class, which works with an ios . Because it works with an ios , it also

works with an istream and an ostream . The previous example also uses a second

parameter of type int .

The applicator creates and returns a class object. In the previous code example the

class object is an smanip_int , and it contains the manipulator and the int
argument to the applicator. The iomanip.h header file defines the shift operators

for this class. When the applicator function setfill appears in a sequence of input

or output operations, the applicator function is called, and it returns a class. The

shift operator acts on the class to call the manipulator function with its parameter

value, which is stored in the class.

In the following example, the manipulator print_hex :

■ Puts the output stream into the hex mode.

■ Inserts a long value into the stream.

■ Restores the conversion mode of the stream.

The class omanip_long is used because this code example is for output only, and it

operates on a long rather than an int :

#include <iostream.h>
#include <iomanip.h>
static ostream& xfield(ostream& os, long v) {
 long save = os.setf(ios::hex, ios::basefield);
 os << v;
 os.setf(save, ios::basefield);
 return os;
 }
omanip_long print_hex(long v) {
 return omanip_long(xfield, v);
 }
Chapter 3 The Classic iostream Library 3-19

3.8 Strstreams : iostreams for Arrays
See the strstream (3CC4) man page.

3.9 Stdiobufs : iostreams for stdio Files
See the stdiobuf (3CC4) man page.

3.10 Streambufs
iostreams are the formatting part of a two-part (input or output) system. The other

part of the system is made up of streambuf s, which deal in input or output of

unformatted streams of characters.

You usually use streambuf s through iostreams , so you don’t have to worry

about the details of streambuf s. You can use streambuf s directly if you choose to,

for example, if you need to improve efficiency or to get around the error handling or

formatting built into iostreams .

3.10.1 Working with Streambufs

A streambuf consists of a stream or sequence of characters and one or two pointers

into that sequence. Each pointer points between two characters. (Pointers cannot

actually point between characters, but it is helpful to think of them that way.) There

are two kinds of streambuf pointers:

■ A put pointer, which points just before the position where the next character will

be stored

■ A get pointer, which points just before the next character to be fetched

A streambuf can have one or both of these pointers.
3-20 C++ Library Reference • May 2000

3.10.1.1 Position of Pointers

The positions of the pointers and the contents of the sequences can be manipulated

in various ways. Whether or not both pointers move when manipulated depends on

the kind of streambuf used. Generally, with queue-like streambuf s, the get and

put pointers move independently; with file-like streambuf s the get and put

pointers always move together. A strstream is an example of a queue-like stream;

an fstream is an example of a file-like stream.

3.10.2 Using Streambufs

You never create an actual streambuf object, but only objects of classes derived

from class streambuf . Examples are filebuf and strstreambuf , which are

described in man pages filebuf (3CC4) and ssbuf (3), respectively. Advanced users

may want to derive their own classes from streambuf to provide an interface to a

special device or to provide other than basic buffering. Man pages sbufpub (3CC4)

and sbufprot (3CC4) discuss how to do this.

Apart from creating your own special kind of streambuf , you may want to access

the streambuf associated with an iostream to access the public member

functions, as described in the man pages referenced above. In addition, each

iostream has a defined inserter and extractor which takes a streambuf pointer.

When a streambuf is inserted or extracted, the entire stream is copied.

Here is another way to do the file copy discussed earlier, with the error checking

omitted for clarity:

We open the input and output files as before. Every iostream class has a member

function rdbuf that returns a pointer to the streambuf object associated with it. In

the case of an fstream , the streambuf object is type filebuf . The entire file

associated with fromFile is copied (inserted into) the file associated with toFile .

The last line could also be written like this:

The source file is then extracted into the destination. The two methods are entirely

equivalent.

ifstream fromFile("thisFile");
ofstream toFile ("thatFile");
toFile << fromFile.rdbuf();

fromFile >> toFile.rdbuf();
Chapter 3 The Classic iostream Library 3-21

3.11 iostream Man Pages
A number of C++ man pages give details of the iostream library. The following

table gives an overview of what is in each man page.

To access a classic iostream library man page, type:

example% man -s 3CC4 name

TABLE 3-3 iostream Man Pages Overview

Man Page Overview

filebuf Details the public interface for the class filebuf , which is derived from

streambuf and is specialized for use with files. See the sbufpub (3CC4)

and sbufprot (3CC4) man pages for details of features inherited from class

streambuf . Use the filebuf class through class fstream .

fstream Details specialized member functions of classes ifstream , ofstream , and

fstream , which are specialized versions of istream , ostream , and

iostream for use with files.

ios Details parts of class ios , which functions as a base class for iostreams . It

contains state data common to all streams.

ios.intro Gives an introduction to and overview of iostreams .

istream Details the following:

• Member functions for class istream , which supports interpretation of

characters fetched from a streambuf
• Input formatting

• Positioning functions described as part of class ostream .

• Some related functions

• Related manipulators

manip Describes the input and output manipulators defined in the iostream
library.

ostream Details the following:

• Member functions for class ostream , which supports interpretation of

characters written to a streambuf
• Output formatting

• Positioning functions described as part of class ostream
• Some related functions

• Related manipulators
3-22 C++ Library Reference • May 2000

sbufprot Describes the interface needed by programmers who are coding a class

derived from class streambuf . Also refer to the sbufpub (3CC4) man page

because some public functions are not discussed in the sbufprot (3CC4)

man page.

sbufpub Details the public interface of class streambuf , in particular, the public

member functions of streambuf . This man page contains the information

needed to manipulate a streambuf -type object directly, or to find out

about functions that classes derived from streambuf inherit from it. If you

want to derive a class from streambuf , also see the sbufprot (3CC4) man

page.

ssbuf Details the specialized public interface of class strstreambuf , which is

derived from streambuf and specialized for dealing with arrays of

characters. See the sbufpub (3CC4) man page for details of features

inherited from class streambuf .

stdiobuf Contains a minimal description of class stdiobuf , which is derived from

streambuf and specialized for dealing with stdio FILE s. See the

sbufpub (3CC4) man page for details of features inherited from class

streambuf .

strstream Details the specialized member functions of strstream s, which are

implemented by a set of classes derived from the iostream classes and

specialized for dealing with arrays of characters.

TABLE 3-3 iostream Man Pages Overview (Continued)

Man Page Overview
Chapter 3 The Classic iostream Library 3-23

3.12 iostream Terminology
The iostream library descriptions often use terms similar to terms from general

programming, but with specialized meanings. The following table defines these

terms as they are used in discussing the iostream library.

TABLE 3-4 iostream Terminology

iostream Term Definition

Buffer A word with two meanings, one specific to the iostream package and one

more generally applied to input and output.

When referring specifically to the iostream library, a buffer is an object of

the type defined by the class streambuf .

A buffer, generally, is a block of memory used to make efficient transfer of

characters for input of output. With buffered I/O, the actual transfer of

characters is delayed until the buffer is full or forcibly flushed.

An unbuffered buffer refers to a streambuf where there is no buffer in the

general sense defined above. This chapter avoids use of the term buffer to

refer to streambuf s. However, the man pages and other C++

documentation do use the term buffer to mean streambuf s.

Extraction The process of taking input from an iostream .

Fstream An input or output stream specialized for use with files. Refers specifically

to a class derived from class iostream when printed in courier font.

Insertion The process of sending output into an iostream .

iostream Generally, an input or output stream.

iostream
library

The library implemented by the include files iostream.h , fstream.h ,

strstream.h , iomanip.h , and stdiostream.h . Because iostream is

an object-oriented library, you should extend it. So, some of what you can

do with the iostream library is not implemented.

Stream An iostream , fstream , strstream , or user-defined stream in general.

Streambuf A buffer that contains a sequence of characters with a put or get pointer, or

both. When printed in courier font, it means the particular class.

Otherwise, it refers generally to any object of class streambuf or a class

derived from streambuf . Any stream object contains an object, or a

pointer to an object, of a type derived from streambuf .

Strstream An iostream specialized for use with character arrays. It refers to the

specific class when printed in courier font.
3-24 C++ Library Reference • May 2000

CHAPTER 4

Using Classic iostreams in a
Multithreading Environment

This chapter describes how to use the iostream classes of the libC and

libiostream libraries for input-output (I/O) in a multithreaded environment. It

also provides examples of how to extend functionality of the library by deriving

from the iostream classes. This chapter is not a guide for writing multithreaded

code in C++, however.

The discussion here applies only to the old iostreams (libC and libiostream) and

does not apply to libCstd , the new iostream that is part of the C++ Standard

Library.

4.1 Multithreading
Multithreading (MT) is a powerful facility that can speed up applications on

multiprocessors; it can also simplify the structuring of applications on both

multiprocessors and uniprocessors. The iostream library has been modified to

allow its interfaces to be used by applications in a multithreaded environment by

programs that utilize the multithreading capabilities when running Solaris version

2.6, 7, or 8 of the Solaris operating environment. Applications that utilize the single-

threaded capabilities of previous versions of the library are not affected by the

behavior of the modified iostream interfaces.

A library is defined to be MT-safe if it works correctly in an environment with

threads. Generally, this “correctness” means that all of its public functions are

reentrant. The iostream library provides protection against multiple threads that

attempt to modify the state of objects (that is, instances of a C++ class) shared by

more than one thread. However, the scope of MT-safety for an iostream object is

confined to the period in which the object’s public member function is executing.
4-1

Caution – An application is not automatically guaranteed to be MT-safe because it

uses MT-safe objects from the libC library. An application is defined to be MT-safe

only when it executes as expected in a multithreaded environment.

4.2 Organization of the MT-Safe iostream
Library
The organization of the MT-safe iostream library is slightly different from other

versions of the iostream library. The exported interface of the library refers to the

public and protected member functions of the iostream classes and the set of base

classes available, and is consistent with other versions; however, the class hierarchy

is different. See Section 4.3 “Interface Changes to the iostream Library” for details.

The original core classes have been renamed with the prefix unsafe_ . TABLE 4-1 lists

the classes that are the core of the iostream package.

Each MT-safe class is derived from the base class stream_MT . Each MT-safe class,

except streambuf , is also derived from the existing unsafe_ base class. Here are

some examples:

TABLE 4-1 Core Classes

Class Description

stream_MT The base class for MT-safe classes.

streambuf The base class for buffers.

unsafe_ios A class that contains state variables that are common to the

various stream classes; for example, error and formatting state.

unsafe_istream A class that supports formatted and unformatted conversion

from sequences of characters retrieved from the streambuf s.

unsafe_ostream A class that supports formatted and unformatted conversion to

sequences of characters stored into the streambuf s.

unsafe_iostream A class that combines unsafe_istream and unsafe_ostream
classes for bidirectional operations.

class streambuf: public stream_MT { ... };
class ios: virtual public unsafe_ios, public stream_MT { ... };
class istream: virtual public ios, public unsafe_istream { ... };
4-2 C++ Library Reference • May 2000

The class stream_MT provides the mutual exclusion (mutex) locks required to make

each iostream class MT-safe; it also provides a facility that dynamically enables

and disables the locks so that the MT-safe property can be dynamically changed. The

basic functionality for I/O conversion and buffer management are organized into

the unsafe_ classes; the MT-safe additions to the library are confined to the derived

classes. The MT-safe version of each class contains the same protected and public

member functions as the unsafe_ base class. Each member function in the

MT-safe version class acts as a wrapper that locks the object, calls the same function

in the unsafe_ base class, and unlocks the object.

Note – The class streambuf is not derived from an unsafe class. The public and

protected member functions of class streambuf are reentrant by locking. Unlocked

versions, suffixed with _unlocked , are also provided.

4.2.1 Public Conversion Routines

A set of reentrant public functions that are MT-safe have been added to the

iostream interface. A user-specified buffer is an additional argument to each

function. These functions are described as follows.

TABLE 4-2 Reentrant Public Functions

Function Description

char *oct_r (char *buf,
int buflen,
long num,
int width)

Returns a pointer to the ASCII string that represents the

number in octal. A width of nonzero is assumed to be

the field width for formatting. The returned value is not

guaranteed to point to the beginning of the user-

provided buffer.

char *hex_r (char *buf,
int buflen,
long num,
int width)

Returns a pointer to the ASCII string that represents the

number in hexadecimal. A width of nonzero is assumed

to be the field width for formatting. The returned value

is not guaranteed to point to the beginning of the user-

provided buffer.
Chapter 4 Using Classic iostreams in a Multithreading Environment 4-3

Caution – The public conversion routines of the iostream library (oct , hex , dec ,

chr , and form) that are present to ensure compatibility with an earlier version of

libC are not MT-safe.

4.2.2 Compiling and Linking with the MT-Safe libC
Library

When you build an application that uses the iostream classes of the libC library to

run in a multithreaded environment, compile and link the source code of the

application using the -mt option. This option passes -D_REENTRANTto the

preprocessor and -lthread to the linker.

Note – Use -mt (rather than -lthread) to link with libC and libthread . This

option ensures proper linking order of the libraries. Using -lthread improperly

could cause your application to work incorrectly.

Single-threaded applications that use iostream classes do not require special

compiler or linker options. By default, the compiler links with the libC library.

char *dec_r (char *buf,
int buflen,
long num,
int width)

Returns a pointer to the ASCII string that represents the

number in decimal. A width of nonzero is assumed to

be the field width for formatting. The returned value is

not guaranteed to point to the beginning of the user-

provided buffer.

char *chr_r (char *buf,
int buflen,
long num,
int width)

Returns a pointer to the ASCII string that contains

character chr . If the width is nonzero, the string

contains width blanks followed by chr . The returned

value is not guaranteed to point to the beginning of the

user-provided buffer.

char *form_r (char *buf,
int buflen,
long num,
int width)

Returns a pointer of the string formatted by sprintf ,

using the format string format and any remaining

arguments. The buffer must have sufficient space to

contain the formatted string.

TABLE 4-2 Reentrant Public Functions (Continued)

Function Description
4-4 C++ Library Reference • May 2000

4.2.3 MT-Safe iostream Restrictions

The restricted definition of MT-safety for the iostream library means that a number

of programming idioms used with iostream are unsafe in a multithreaded

environment using shared iostream objects.

4.2.3.1 Checking Error State

To be MT-safe, error checking must occur in a critical region with the I/O operation

that causes the error. The following example illustrates how to check for errors:

In this example, the constructor of the stream_locker object sl locks the istream
object istr . The destructor of sl , called at the termination of read_number ,

unlocks istr .

CODE EXAMPLE 4-1 Checking Error State

#include <iostream.h>
enum iostate { IOok, IOeof, IOfail };

iostate read_number(istream& istr, int& num)
{

stream_locker sl(istr, stream_locker::lock_now);

istr >> num;

if (istr.eof()) return IOeof;
if (istr.fail()) return IOfail;
return IOok;

}

Chapter 4 Using Classic iostreams in a Multithreading Environment 4-5

4.2.3.2 Obtaining Characters Extracted by Last Unformatted Input
Operation

To be MT-safe, the gcount function must be called within a thread that has

exclusive use of the istream object for the period that includes the execution of the

last input operation and gcount call. The following example shows a call to

gcount :

In this example, the lock and unlock member functions of class stream_locker
define a mutual exclusion region in the program.

4.2.3.3 User-Defined I/O Operations

To be MT-safe, I/O operations defined for a user-defined type that involve a specific

ordering of separate operations must be locked to define a critical region. The

following example shows a user-defined I/O operation:

CODE EXAMPLE 4-2 Calling gcount

#include <iostream.h>
#include <rlocks.h>
void fetch_line(istream& istr, char* line, int& linecount)
{

stream_locker sl(istr, stream_locker::lock_defer);

sl.lock(); // lock the stream istr
istr >> line;
linecount = istr.gcount();
sl.unlock(); // unlock istr
...

}

CODE EXAMPLE 4-3 User-Defined I/O Operations

#include <rlocks.h>
#include <iostream.h>
class mystream: public istream {

// other definitions...
int getRecord(char* name, int& id, float& gpa);

};
4-6 C++ Library Reference • May 2000

4.2.4 Performance

Using the MT-safe classes in this version of the libC library results in some amount

of performance overhead, even in a single-threaded application; however, if you use

the unsafe_ classes of libC , this overhead can be avoided.

The scope resolution operator can be used to execute member functions of the base

unsafe_ classes; for example:

Note – The unsafe_ classes cannot be safely used in multithreaded applications.

int mystream::getRecord(char* name, int& id, float& gpa)
{

stream_locker sl(this, stream_locker::lock_now);

*this >> name;
*this >> id;
*this >> gpa;

return this->fail() == 0;
}

cout.unsafe_ostream::put('4');

cin.unsafe_istream::read(buf, len);

CODE EXAMPLE 4-3 User-Defined I/O Operations (Continued)

#include <rlocks.h>
#include <iostream.h>
Chapter 4 Using Classic iostreams in a Multithreading Environment 4-7

Instead of using unsafe_ classes, you can make the cout and cin objects unsafe
and then use the normal operations. A slight performance deterioration results. The

following example shows how to use unsafe cout and cin :

When an iostream object is MT-safe, mutex locking is provided to protect the

object's member variables. This locking adds unnecessary overhead to an application

that only executes in a single-threaded environment. To improve performance, you

can dynamically switch an iostream object to and from MT-safety. The following

example makes an iostream object MT-unsafe:

You can safely use an MT-unsafe stream in code where an iostream is not shared by

threads; for example, in a program that has only one thread, or in a program where

each iostream is private to a thread.

If you explicitly insert synchronization into the program, you can also safely use

MT-unsafe iostreams in an environment where an iostream is shared by threads.

The following example illustrates the technique:

CODE EXAMPLE 4-4 Disabling MT-Safety

#include <iostream.h>
//disable mt-safety
cout.set_safe_flag(stream_MT::unsafe_object);
//disable mt-safety
cin.set_safe_flag(stream_MT::unsafe_object);
cout.put(‘4’);
cin.read(buf, len);

CODE EXAMPLE 4-5 Switching to MT-Unsafe

fs.set_safe_flag(stream_MT::unsafe_object);// disable MT-safety
.... do various i/o operations

CODE EXAMPLE 4-6 Using Synchronization with MT-Unsafe Objects

generic_lock() ;
fs.set_safe_flag(stream_MT::unsafe_object) ;
... do various i/o operations
generic_unlock() ;
4-8 C++ Library Reference • May 2000

where the generic_lock and generic_unlock functions can be any

synchronization mechanism that uses such primitives as mutex, semaphores, or

reader/writer locks.

Note – The stream_locker class provided by the libC library is the preferred

mechanism for this purpose.

See Section 4.6 “Object Locks” for more information.

4.3 Interface Changes to the iostream
Library
This section describes the interface changes made to the iostream library to make it

MT-Safe.

4.3.1 New Classes

The following table lists the new classes added to the libC interfaces.

CODE EXAMPLE 4-7 New Classes

stream_MT
stream_locker
unsafe_ios
unsafe_istream
unsafe_ostream
unsafe_iostream
unsafe_fstreambase
unsafe_strstreambase
Chapter 4 Using Classic iostreams in a Multithreading Environment 4-9

4.3.2 New Class Hierarchy

The following table lists the new class hierarchy added to the iostream interfaces.

4.3.3 New Functions

The following table lists the new functions added to the iostream interfaces.

CODE EXAMPLE 4-8 New Class Hierarchy

class streambuf : public stream_MT { ... };
class unsafe_ios { ... };
class ios : virtual public unsafe_ios, public stream_MT { ... };
class unsafe_fstreambase : virtual public unsafe_ios { ... };
class fstreambase : virtual public ios, public unsafe_fstreambase
 { ... };
class unsafe_strstreambase : virtual public unsafe_ios { ... };
class strstreambase : virtual public ios, public
unsafe_strstreambase { ... };
class unsafe_istream : virtual public unsafe_ios { ... };
class unsafe_ostream : virtual public unsafe_ios { ... };
class istream : virtual public ios, public unsafe_istream { ... };
class ostream : virtual public ios, public unsafe_ostream { ... };
class unsafe_iostream : public unsafe_istream, public unsafe_ostream
{ ... };

CODE EXAMPLE 4-9 New Functions

 class streambuf {
 public:
 int sgetc_unlocked();
 void sgetn_unlocked(char *, int);
 int snextc_unlocked();
 int sbumpc_unlocked();
 void stossc_unlocked();
 int in_avail_unlocked();
 int sputbackc_unlocked(char);
 int sputc_unlocked(int);
 int sputn_unlocked(const char *, int);
 int out_waiting_unlocked();
4-10 C++ Library Reference • May 2000

 protected:
 char* base_unlocked();
 char* ebuf_unlocked();
 int blen_unlocked();
 char* pbase_unlocked();
 char* eback_unlocked();
 char* gptr_unlocked();
 char* egptr_unlocked();
 char* pptr_unlocked();
 void setp_unlocked(char*, char*);
 void setg_unlocked(char*, char*, char*);
 void pbump_unlocked(int);
 void gbump_unlocked(int);
 void setb_unlocked(char*, char*, int);
 int unbuffered_unlocked();
 char *epptr_unlocked();
 void unbuffered_unlocked(int);
 int allocate_unlocked(int);
 };

 class filebuf : public streambuf {
 public:
 int is_open_unlocked();
 filebuf* close_unlocked();
 filebuf* open_unlocked(const char*, int, int =
 filebuf::openprot);

 filebuf* attach_unlocked(int);
 };

 class strstreambuf : public streambuf {
 public:
 int freeze_unlocked();
 char* str_unlocked();
 };

 unsafe_ostream& endl(unsafe_ostream&);
 unsafe_ostream& ends(unsafe_ostream&);
 unsafe_ostream& flush(unsafe_ostream&);
 unsafe_istream& ws(unsafe_istream&);
 unsafe_ios& dec(unsafe_ios&);
 unsafe_ios& hex(unsafe_ios&);
 unsafe_ios& oct(unsafe_ios&);

 char* dec_r (char* buf, int buflen, long num, int width)

CODE EXAMPLE 4-9 New Functions (Continued)
Chapter 4 Using Classic iostreams in a Multithreading Environment 4-11

4.4 Global and Static Data
Global and static data in a multithreaded application are not safely shared among

threads. Although threads execute independently, they share access to global and

static objects within the process. If one thread modifies such a shared object, all the

other threads within the process observe the change, making it difficult to maintain

state over time. In C++, class objects (instances of a class) maintain state by the

values in their member variables. If a class object is shared, it is vulnerable to

changes made by other threads.

When a multithreaded application uses the iostream library and includes

iostream.h , the standard streams—cout , cin , cerr , and clog — are, by default,

defined as global shared objects. Since the iostream library is MT-safe, it protects

the state of its shared objects from access or change by another thread while a

member function of an iostream object is executing. However, the scope of

MT-safety for an object is confined to the period in which the object’s public member

function is executing. For example,

gets the next character in the get buffer and updates the buffer pointer in ThreadA.

However, if the next instruction in ThreadA is another get call, the libC library does

not guarantee to return the next character in the sequence. It is not guaranteed

because, for example, ThreadB may have also executed the get call in the intervening

period between the two get calls made in ThreadA.

See Section 4.6 “Object Locks” for strategies for dealing with the problems of shared

objects and multithreading.

 char* hex_r (char* buf, int buflen, long num, int width)
 char* oct_r (char* buf, int buflen, long num, int width)
 char* chr_r (char* buf, int buflen, long chr, int width)
char* str_r (char* buf, int buflen, const char* format, int width

 = 0);
 char* form_r (char* buf, int buflen, const char* format, ...)

int c;
cin.get(c);

CODE EXAMPLE 4-9 New Functions (Continued)
4-12 C++ Library Reference • May 2000

4.5 Sequence Execution
Frequently, when iostream objects are used, a sequence of I/O operations must be

MT-safe. For example, the code:

involves the execution of three member functions of the cout stream object. Since

cout is a shared object, the sequence must be executed atomically as a critical

section to work correctly in a multithreaded environment. To perform a sequence of

operations on an iostream class object atomically, you must use some form of

locking.

The libC library now provides the stream_locker class for locking operations on

an iostream object. See Section 4.6 “Object Locks” for information about the

stream_locker class.

4.6 Object Locks
The simplest strategy for dealing with the problems of shared objects and

multithreading is to avoid the issue by ensuring that iostream objects are local to a

thread. For example,

■ Declare objects locally within a thread’s entry function.

■ Declare objects in thread-specific data. (For information on how to use thread

specific data, see the thr_keycreate (3T) man page.)

■ Dedicate a stream object to a particular thread. The object thread is private by

convention.

However, in many cases, such as default shared standard stream objects, it is not

possible to make the objects local to a thread, and an alternative strategy is required.

To perform a sequence of operations on an iostream class object atomically, you

must use some form of locking. Locking adds some overhead even to a

single-threaded application. The decision whether to add locking or make

iostream objects private to a thread depends on the thread model chosen for the

application: Are the threads to be independent or cooperating?

■ If each independent thread is to produce or consume data using its own

iostream object, the iostream objects are private to their respective threads

and locking is not required.

cout << " Error message:" << errstring[err_number] << "\n";
Chapter 4 Using Classic iostreams in a Multithreading Environment 4-13

■ If the threads are to cooperate (that is, they are to share the same iostream
object), then access to the shared object must be synchronized and some form of

locking must be used to make sequential operations atomic.

4.6.1 Class stream_locker

The iostream library provides the stream_locker class for locking a series of

operations on an iostream object. You can, therefore, minimize the performance

overhead incurred by dynamically enabling or disabling locking in iostream
objects.

Objects of class stream_locker can be used to make a sequence of operations on a

stream object atomic. For example, the code shown in the example below seeks to

find a position in a file and reads the next block of data.

In this example, the constructor for the stream_locker object defines the

beginning of a mutual exclusion region in which only one thread can execute at a

time. The destructor, called after the return from the function, defines the end of the

mutual exclusion region. The stream_locker object ensures that both the seek to a

particular offset in a file and the read from the file are performed together,

atomically, and that ThreadB cannot change the file offset before the original ThreadA
reads the file.

CODE EXAMPLE 4-10 Example of Using Locking Operations

#include <fstream.h>
#include <rlocks.h>

void lock_example (fstream& fs)
{
 const int len = 128;
 char buf[len];
 int offset = 48;

stream_locker s_lock(fs, stream_locker::lock_now);
.// open file
fs.seekg(offset, ios::beg);
fs.read(buf, len);

}

4-14 C++ Library Reference • May 2000

An alternative way to use a stream_locker object is to explicitly define the mutual

exclusion region. In the following example, to make the I/O operation and

subsequent error checking atomic, lock and unlock member function calls of a

vbstream_locker object are used.

For more information, see the stream_locker (3CC4) man page.

4.7 MT-Safe Classes
You can extend or specialize the functionality of the iostream classes by deriving

new classes. If objects instantiated from the derived classes will be used in a

multithreaded environment, the classes must be MT-safe.

Considerations when deriving MT-safe classes include:

■ Making a class object MT-safe by protecting the internal state of the object from

multiple-thread modification. To do this, serialize access to member variables in

public and protected member functions with mutex locks.

■ Making a sequence of calls to member functions of an MT-safe base class atomic,

using a stream_locker object.

■ Avoiding locking overhead by using the _unlocked member functions of

streambuf within critical regions defined by stream_locker objects.

■ Locking the public virtual functions of class streambuf in case the functions are

called directly by an application. These functions are: xsgetn , underflow ,

pbackfail , xsputn , overflow , seekoff , and seekpos .

CODE EXAMPLE 4-11 Making I/O Operation and Error Checking Atomic

{
...
stream_locker file_lck(openfile_stream,
 stream_locker::lock_defer);
....
file_lck.lock(); // lock openfile_stream
openfile_stream << "Value: " << int_value << "\n";
if(!openfile_stream) {

file_error("Output of value failed\n");
return;

}
file_lck.unlock(); // unlock openfile_stream

}

Chapter 4 Using Classic iostreams in a Multithreading Environment 4-15

■ Extending the formatting state of an ios object by using the member functions

iword and pword in class ios . However, a problem can occur if more than one

thread is sharing the same index to an iword or pword function. To make the

threads MT-safe, use an appropriate locking scheme.

■ Locking member functions that return the value of a member variable greater in

size than a char .

4.8 Object Destruction
Before an iostream object that is shared by several threads is deleted, the main

thread must verify that the subthreads are finished with the shared object. The

following example shows how to safely destroy a shared object.

CODE EXAMPLE 4-12 Destroying a Shared Object

#include <fstream.h>
#include <thread.h>
fstream* fp;

void *process_rtn(void*)
{

// body of sub-threads which uses fp...
}

multi_process(const char* filename, int numthreads)
{

fp = new fstream(filename, ios::in); // create fstream object
// before creating threads.

// create threads
for (int i=0; i<numthreads; i++)

thr_create(0, STACKSIZE, process_rtn, 0, 0, 0);

...
// wait for threads to finish
for (int i=0; i<numthreads; i++)

thr_join(0, 0, 0);

delete fp; // delete fstream object after
fp = NULL; // all threads have completed.

}

4-16 C++ Library Reference • May 2000

4.9 An Example Application
The following code provides an example of a multiply-threaded application that

uses iostream objects from the libC library in an MT-safe way.

The example application creates up to 255 threads. Each thread reads a different

input file, one line at a time, and outputs the line to an output file, using the

standard output stream, cout . The output file, which is shared by all threads, is

tagged with a value that indicates which thread performed the output operation.

CODE EXAMPLE 4-13 Using iostream Objects in an MT-Safe Way

// create tagged thread data
// the output file is of the form:
// <tag><string of data>\n
// where tag is an integer value in a unsigned char.
// Allows up to 255 threads to be run in this application
// <string of data> is any printable characters
// Because tag is an integer value written as char,
// you need to use od to look at the output file, suggest:
// od -c out.file |more

#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
#include <thread.h>

struct thread_args {
 char* filename;
 int thread_tag;
};

const int thread_bufsize = 256;

// entry routine for each thread
void* ThreadDuties(void* v) {
// obtain arguments for this thread
 thread_args* tt = (thread_args*)v;
 char ibuf[thread_bufsize];
 // open thread input file
 ifstream instr(tt->filename);
 stream_locker lockout(cout, stream_locker::lock_defer);
 while(1) {
Chapter 4 Using Classic iostreams in a Multithreading Environment 4-17

 // read a line at a time
 instr.getline(ibuf, thread_bufsize - 1, ’\n’);
 if(instr.eof())
 break;
 // lock cout stream so the i/o operation is atomic
 lockout.lock();
 // tag line and send to cout
 cout << (unsigned char)tt->thread_tag << ibuf << "\n";
 lockout.unlock();
 }
 return 0;
}

int main(int argc, char** argv) {
 // argv: 1+ list of filenames per thread
 if(argc < 2) {
 cout << “usage: " << argv[0] << " <files..>\n";
 exit(1);
 }
 int num_threads = argc - 1;
 int total_tags = 0;

// array of thread_ids
 thread_t created_threads[thread_bufsize];
// array of arguments to thread entry routine
 thread_args thr_args[thread_bufsize];
 int i;
 for(i = 0; i < num_threads; i++) {
 thr_args[i].filename = argv[1 + i];
// assign a tag to a thread - a value less than 256
 thr_args[i].thread_tag = total_tags++;
// create threads
 thr_create(0, 0, ThreadDuties, &thr_args[i],

 THR_SUSPENDED, &created_threads[i]);
 }

 for(i = 0; i < num_threads; i++) {
 thr_continue(created_threads[i]);
 }
 for(i = 0; i < num_threads; i++) {
 thr_join(created_threads[i], 0, 0);
 }
 return 0;
}

CODE EXAMPLE 4-13 Using iostream Objects in an MT-Safe Way (Continued)
4-18 C++ Library Reference • May 2000

CHAPTER 5

The C++ Standard Library

When compiling in default (standard) mode, the compiler has access to the complete

library specified by the C++ standard. The library components include what is

informally known as the Standard Template Library (STL), as well as the following

components.

■ string classes

■ numeric classes

■ the standard version of stream I/O classes

■ basic memory allocation

■ exception classes

■ run-time type information

The term STL does not have a formal definition, but is usually understood to include

containers, iterators, and algorithms. The following subset of the standard library

headers can be thought of as comprising the STL.

■ <algorithm>
■ <deque>
■ <iterator>
■ <list>
■ <map>
■ <memory>
■ <queue>
■ <set>
■ <stack>
■ <utility>
■ <vector>

The C++ standard library (libCstd) is based on the RogueWave™ Standard C++

Library, Version 2. This library is available only for the default mode (-compat=5) of

the compiler and is not supported with use of the -compat or -compat=4 options.
5-1

If you need to use your own version of the C++ standard library instead of the

version that is supplied with the compiler, you can do so by specifying the

-library=no%Cstd option. Replacing the standard library that is distributed with

the compiler is risky, and good results are not guaranteed. For more information, see

the chapter on using libraries in the C++ User’s Guide.

For details about the standard library, see the Standard C++ Library User’s Guide and

the Standard C++ Class Library Reference. The “Related Documentation” section in the

preface contains information about accessing this documentation. For a list of

available books about the C++ standard library see “Commercially Available Books”

in the preface.

5.1 C++ Standard Library Header Files
TABLE 5-1 lists the headers for the complete standard library along with a brief

description of each.

TABLE 5-1 C++ Standard Library Header Files

Header File Description

<algorithm> Standard algorithms that operate on containers

<bitset> Fixed-size sequences of bits

<complex> The numeric type representing complex numbers

<deque> Sequences supporting addition and removal at each end

<exception> Predefined exception classes

<fstream> Stream I/O on files

<functional> Function objects

<iomanip> iostream manipulators

<ios> iostream base classes

<iosfwd> Forward declarations of iostream classes

<iostream> Basic stream I/O functionality

<istream> Input I/O streams

<iterator> Class for traversing a sequence

<limits> Properties of numeric types

<list> Ordered sequences

<locale> Support for internationalization
5-2 C++ Library Reference • May 2000

5.2 C++ Standard Library Man Pages
TABLE 5-2 lists the documentation available for each of the components of the

standard library.

<map> Associative containers with key/value pairs

<memory> Special memory allocators

<new> Basic memory allocation and deallocation

<numeric> Generalized numeric operations

<ostream> Output I/O streams

<queue> Sequences supporting addition at the head and removal at the tail

<set> Associative container with unique keys

<sstream> Stream I/O using an in-memory string as source or sink

<stack> Sequences supporting addition and removal at the head

<stdexcept> Additional standard exception classes

<streambuf> Buffer classes for iostreams

<string> Sequences of characters

<typeinfo> Run-time type identification

<utility> Comparison operators

<valarray> Value arrays useful for numeric programming

<vector> Sequences supporting random access

TABLE 5-2 Man Pages for C++ Standard Library

Man Page Overview

Algorithms Generic algorithms for performing various operations

on containers and sequences

Associative_Containers Ordered containers

Bidirectional_Iterators An iterator that can both read and write and can

traverse a container in both directions

Containers A standard template library (STL) collection

TABLE 5-1 C++ Standard Library Header Files (Continued)

Header File Description
Chapter 5 The C++ Standard Library 5-3

Forward_Iterators A forward-moving iterator that can both read and

write

Function_Objects Object with an operator() defined

Heap_Operations See entries for make_heap , pop_heap , push_heap
and sort_heap

Input_Iterators A read-only, forward moving iterator

Insert_Iterators An iterator adaptor that allows an iterator to insert

into a container rather than overwrite elements in the

container

Iterators Pointer generalizations for traversal and modification

of collections

Negators Function adaptors and function objects used to reverse

the sense of predicate function objects

Operators Operators for the C++ Standard Template Library

Output

Output_Iterators A write-only, forward moving iterator

Predicates A function or a function object that returns a boolean

(true/false) value or an integer value

Random_Access_Iterators An iterator that reads, writes, and allows random

access to a container

Sequences A container that organizes a set of sequences

Stream_Iterators Includes iterator capabilities for ostreams and istreams

that allow generic algorithms to be used directly on

streams

__distance_type Determines the type of distance used by an iterator—

obsolete

__iterator_category Determines the category to which an iterator belongs—

obsolete

__reverse_bi_iterator An iterator that traverses a collection backwards

accumulate Accumulates all elements within a range into a single

value

adjacent_difference Outputs a sequence of the differences between each

adjacent pair of elements in a range

adjacent_find Find the first adjacent pair of elements in a sequence

that are equivalent

advance Moves an iterator forward or backward (if available)

by a certain distance

TABLE 5-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
5-4 C++ Library Reference • May 2000

allocator The default allocator object for storage management in

Standard Library containers

auto_ptr A simple, smart pointer class

back_insert_iterator An insert iterator used to insert items at the end of a

collection

back_inserter An insert iterator used to insert items at the end of a

collection

basic_filebuf Class that associates the input or output sequence with

a file

basic_fstream Supports reading and writing of named files or devices

associated with a file descriptor

basic_ifstream Supports reading from named files or other devices

associated with a file descriptor

basic_ios A base class that includes the common functions

required by all streams

basic_iostream Assists in formatting and interpreting sequences of

characters controlled by a stream buffer

basic_istream Assists in reading and interpreting input from

sequences controlled by a stream buffer

basic_istringstream Supports reading objects of class

basic_string<charT,traits,Allocator> from

an array in memory

basic_ofstream Supports writing into named files or other devices

associated with a file descriptor

basic_ostream Assists in formatting and writing output to sequences

controlled by a stream buffer

basic_ostringstream Supports writing objects of class

basic_string<charT,traits,Allocator>

basic_streambuf Abstract base class for deriving various stream buffers

to facilitate control of character sequences

basic_string A templatized class for handling sequences of

character-like entities

basic_stringbuf Associates the input or output sequence with a

sequence of arbitrary characters

basic_stringstream Supports writing and reading objects of class

basic_string<charT,traits,Alocator> to or

from an array in memory

TABLE 5-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
Chapter 5 The C++ Standard Library 5-5

binary_function Base class for creating binary function objects

binary_negate A function object that returns the complement of the

result of its binary predicate

binary_search Performs a binary search for a value on a container

bind1st Templatized utilities to bind values to function objects.

bind2nd Templatized utilities to bind values to function objects.

binder1st Templatized utilities to bind values to function objects

binder2nd Templatized utilities to bind values to function objects

bitset A template class and related functions for storing and

manipulating fixed-size sequences of bits

cerr Controls output to an unbuffered stream buffer

associated with the object stderr declared in <cstdio>

char_traits A traits class with types and operations for the

basic_string container and iostream classes

cin Controls input from a stream buffer associated with

the object stdin declared in <cstdio>

clog Controls output to a stream buffer associated with the

object stderr declared in <cstdio>

codecvt A code conversion facet

codecvt_byname A facet that includes code set conversion classification

facilities based on the named locales

collate A string collation, comparison, and hashing facet

collate_byname A string collation, comparison, and hashing facet

compare A binary function or a function object that returns true

or false

complex C++ complex number library

copy Copies a range of elements

copy_backward Copies a range of elements

count Count the number of elements in a container that

satisfy a given condition

count_if Count the number of elements in a container that

satisfy a given condition

cout Controls output to a stream buffer associated with the

object stdout declared in <cstdio>

TABLE 5-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
5-6 C++ Library Reference • May 2000

ctype A facet that includes character classification facilities

ctype_byname A facet that includes character classification facilities

based on the named locales

deque A sequence that supports random access iterators and

efficient insertion/deletion at both beginning and end

distance Computes the distance between two iterators

divides Returns the result of dividing its first argument by its

second

equal Compares two ranges for equality

equal_range Finds the largest subrange in a collection into which a

given value can be inserted without violating the

ordering of the collection

equal_to A binary function object that returns true if its first

argument equals its second

exception A class that supports logic and runtime errors

facets A family of classes used to encapsulate categories of

locale functionality

filebuf Class that associates the input or output sequence with

a file

fill Initializes a range with a given value

fill_n Initializes a range with a given value

find Finds an occurrence of value in a sequence

find_end Finds the last occurrence of a sub-sequence in a

sequence

find_first_of Finds the first occurrence of any value from one

sequence in another sequence

find_if Finds an occurrence of a value in a sequence that

satisfies a specified predicate

for_each Applies a function to each element in a range

fpos Maintains position information for the iostream classes

front_insert_iterator An insert iterator used to insert items at the beginning

of a collection

front_inserter An insert iterator used to insert items at the beginning

of a collection

TABLE 5-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
Chapter 5 The C++ Standard Library 5-7

fstream Supports reading and writing of named files or devices

associated with a file descriptor

generate Initialize a container with values produced by a value-

generator class

generate_n Initialize a container with values produced by a value-

generator class

get_temporary_buffer Pointer based primitive for handling memory

greater A binary function object that returns true if its first

argument is greater than its second

greater_equal A binary function object that returns true if its first

argument is greater than or equal to its second

gslice A numeric array class used to represent a generalized

slice from an array

gslice_array A numeric array class used to represent a BLAS-like

slice from a valarray

has_facet A function template used to determine if a locale has a

given facet

ifstream Supports reading from named files or other devices

associated with a file descriptor

includes A basic set of operation for sorted sequences

indirect_array A numeric array class used to represent elements

selected from a valarray

inner_product Computes the inner product A X B of two ranges A

and B

inplace_merge Merges two sorted sequences into one

insert_iterator An insert iterator used to insert items into a collection

rather than overwrite the collection

inserter An insert iterator used to insert items into a collection

rather than overwrite the collection

ios A base class that includes the common functions

required by all streams

ios_base Defines member types and maintains data for classes

that inherit from it

iosfwd Declares the input/output library template classes and

specializes them for wide and tiny characters

isalnum Determines if a character is alphabetic or numeric

TABLE 5-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
5-8 C++ Library Reference • May 2000

isalpha Determines if a character is alphabetic

iscntrl Determines if a character is a control character

isdigit Determines if a character is a decimal digit

isgraph Determines if a character is a graphic character

islower Determines whether a character is lower case

isprint Determines if a character is printable

ispunct Determines if a character is punctuation

isspace Determines if a character is a space

istream Assists in reading and interpreting input from

sequences controlled by a stream buffer

istream_iterator A stream iterator that has iterator capabilities for

istreams

istreambuf_iterator Reads successive characters from the stream buffer for

which it was constructed

istringstream Supports reading objects of class

basic_string<charT,traits,Alocator>
from an array in memory

istrstream Reads characters from an array in memory

isupper Determines whether a character is upper case

isxdigit Determines whether a character is a hexadecimal digit

iter_swap Exchanges values in two locations

iterator A base iterator class

iterator_traits Returns basic information about an iterator

less A binary function object that returns true if tis first

argument is less than its second

less_equal A binary function object that returns true if its first

argument is less than or equal to its second

lexicographical_compare Compares two ranges lexicographically

limits Refer to numeric_limits

list A sequence that supports bidirectional iterators

locale A localization class containing a polymorphic set of

facets

logical_and A binary function object that returns true if both of its

arguments are true

TABLE 5-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
Chapter 5 The C++ Standard Library 5-9

logical_not A unary function object that returns true if its

argument is false

logical_or A binary function object that returns true if either of its

arguments are true

lower_bound Determines the first valid position for an element in a

sorted container

make_heap Creates a heap

map An associative container with access to non-key values

using unique keys

mask_array A numeric array class that gives a masked view of a

valarray

max Finds and returns the maximum of a pair of values

max_element Finds the maximum value in a range

mem_fun Function objects that adapt a pointer to a member

function, to take the place of a global function

mem_fun1 Function objects that adapt a pointer to a member

function, to take the place of a global function

mem_fun_ref Function objects that adapt a pointer to a member

function, to take the place of a global function

mem_fun_ref1 Function objects that adapt a pointer to a member

function, to take the place of a global function

merge Merges two sorted sequences into a third sequence

messages Messaging facets

messages_byname Messaging facets

min Finds and returns the minimum of a pair of values

min_element Finds the minimum value in a range

minus Returns the result of subtracting its second argument

from its first

mismatch Compares elements from two sequences and returns

the first two elements that don't match each other

modulus Returns the remainder obtained by dividing the first

argument by the second argument

money_get Monetary formatting facet for input

money_put Monetary formatting facet for output

moneypunct Monetary punctuation facets

TABLE 5-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
5-10 C++ Library Reference • May 2000

moneypunct_byname Monetary punctuation facets

multimap An associative container that gives access to non-key

values using keys

multiplies A binary function object that returns the result of

multiplying its first and second arguments

multiset An associative container that allows fast access to

stored key values

negate Unary function object that returns the negation of its

argument

next_permutation Generates successive permutations of a sequence based

on an ordering function

not1 A function adaptor used to reverse the sense of a

unary predicate function object

not2 A function adaptor used to reverse the sense of a

binary predicate function object

not_equal_to A binary function object that returns true if its first

argument is not equal to its second

nth_element Rearranges a collection so that all elements lower in

sorted order than the nth element come before it and

all elements higher in sorter order than the nth element

come after it

num_get A numeric formatting facet for input

num_put A numeric formatting facet for output

numeric_limits A class for representing information about scalar types

numpunct A numeric punctuation facet

numpunct_byname A numeric punctuation facet

ofstream Supports writing into named files or other devices

associated with a file descriptor

ostream Assists in formatting and writing output to sequences

controlled by a stream buffer

ostream_iterator Stream iterators allow for use of iterators with

ostreams and istreams

ostreambuf_iterator Writes successive characters onto the stream buffer

object from which it was constructed

ostringstream Supports writing objects of class

basic_string<charT,traits,Allocator>

TABLE 5-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
Chapter 5 The C++ Standard Library 5-11

ostrstream Writes to an array in memory

pair A template for heterogeneous pairs of values

partial_sort Templatized algorithm for sorting collections of

entities

partial_sort_copy Templatized algorithm for sorting collections of

entities

partial_sum Calculates successive partial sums of a range of values

partition Places all of the entities that satisfy the given predicate

before all of the entities that do not

permutation Generates successive permutations of a sequence based

on an ordering function

plus A binary function object that returns the result of

adding its first and second arguments

pointer_to_binary_function A function object that adapts a pointer to a binary

function, to take the place of a binary_function

pointer_to_unary_function A function object class that adapts a pointer to a

function, to take the place of a unary_function

pop_heap Moves the largest element off the heap

prev_permutation Generates successive permutations of a sequence based

on an ordering function

priority_queue A container adapter that behaves like a priority queue

ptr_fun A function that is overloaded to adapt a pointer to a

function, to take the place of a function

push_heap Places a new element into a heap

queue A container adaptor that behaves like a queue (first in,

first out)

random_shuffle Randomly shuffles elements of a collection

raw_storage_iterator Enables iterator-based algorithms to store results into

uninitialized memory

remove Moves desired elements to the front of a container, and

returns an iterator that describes where the sequence of

desired elements ends

remove_copy Moves desired elements to the front of a container, and

returns an iterator that describes where the sequence of

desired elements ends

TABLE 5-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
5-12 C++ Library Reference • May 2000

remove_copy_if Moves desired elements to the front of a container, and

returns an iterator that describes where the sequence of

desired elements ends

remove_if Moves desired elements to the front of a container, and

returns an iterator that describes where the sequence of

desired elements ends

replace Substitutes elements in a collection with new values

replace_copy Substitutes elements in a collection with new values,

and moves the revised sequence into result

replace_copy_if Substitutes elements in a collection with new values,

and moves the revised sequence into result

replace_if Substitutes elements in a collection with new values

return_temporary_buffer A pointer-based primitive for handling memory

reverse Reverses the order of elements in a collection

reverse_copy Reverses the order of elements in a collection while

copying them to a new collection

reverse_iterator An iterator that traverses a collection backwards

rotate Swaps the segment that contains elements from first

through middle-1 with the segment that contains the

elements from middle through last

rotate_copy Swaps the segment that contains elements from first

through middle-1 with the segment that contains the

elements from middle through last

search Finds a sub-sequence within a sequence of values that

is element-wise equal to the values in an indicated

range

search_n Finds a sub-sequence within a sequence of values that

is element-wise equal to the values in an indicated

range

set An associative container that supports unique keys

set_difference A basic set operation for constructing a sorted

difference

set_intersection A basic set operation for constructing a sorted

intersection

set_symmetric_difference A basic set operation for constructing a sorted

symmetric difference

set_union A basic set operation for constructing a sorted union

TABLE 5-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
Chapter 5 The C++ Standard Library 5-13

slice A numeric array class for representing a BLAS-like

slice from an array

slice_array A numeric array class for representing a BLAS-like

slice from a valarray

smanip Helper classes used to implement parameterized

manipulators

smanip_fill Helper classes used to implement parameterized

manipulators

sort A templatized algorithm for sorting collections of

entities

sort_heap Converts a heap into a sorted collection

stable_partition Places all of the entities that satisfy the given predicate

before all of the entities that do not, while maintaining

the relative order of elements in each group

stable_sort A templatized algorithm for sorting collections of

entities

stack A container adapter that behaves like a stack (last in,

first out)

streambuf Abstract base class for deriving various stream buffers

to facilitate control of character sequences

string A typedef for basic_string<char ,

char_traits<char> , allocator<char>>

stringbuf Associates the input or output sequence with a

sequence of arbitrary characters

stringstream Supports writing and reading objects of class

basic_string<charT,traits,Alocator>
to/from an array in memory

strstream Reads and writes to an array in memory

strstreambuf Associates either the input sequence or the output

sequence with a tiny character array whose elements

store arbitrary values

swap Exchanges values

swap_ranges Exchanges a range of values in one location with those

in anothe

time_get A time formatting facet for input

time_get_byname A time formatting facet for input, based on the named

locales

TABLE 5-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
5-14 C++ Library Reference • May 2000

time_put A time formatting facet for output

time_put_byname A time formatting facet for output, based on the

named locales

tolower Converts a character to lower case.

toupper Converts a character to upper case

transform Applies an operation to a range of values in a

collection and stores the result

unary_function A base class for creating unary function objects

unary_negate A function object that returns the complement of the

result of its unary predicate

uninitialized_copy An algorithm that uses construct to copy values from

one range to another location

uninitialized_fill An algorithm that uses the construct algorithm for

setting values in a collection

uninitialized_fill_n An algorithm that uses the construct algorithm for

setting values in a collection

unique Removes consecutive duplicates from a range of values

and places the resulting unique values into the result

unique_copy Removes consecutive duplicates from a range of values

and places the resulting unique values into the result

upper_bound Determines the last valid position for a value in a

sorted container

use_facet A template function used to obtain a facet

valarray An optimized array class for numeric operations

vector A sequence that supports random access iterators

wcerr Controls output to an unbuffered stream buffer

associated with the object stderr declared in <cstdio>

wcin Controls input from a stream buffer associated with

the object stdin declared in <cstdio>

wclog Controls output to a stream buffer associated with the

object stderr declared in <cstdio>

wcout Controls output to a stream buffer associated with the

object stdout declared in <cstdio>

wfilebuf Class that associates the input or output sequence with

a file

TABLE 5-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
Chapter 5 The C++ Standard Library 5-15

wfstream Supports reading and writing of named files or devices

associated with a file descriptor

wifstream Supports reading from named files or other devices

associated with a file descriptor

wios A base class that includes the common functions

required by all streams

wistream Assists in reading and interpreting input from

sequences controlled by a stream buffer

wistringstream Supports reading objects of class

basic_string<charT,traits,Allocator>
from an array in memory

wofstream Supports writing into named files or other devices

associated with a file descriptor

wostream Assists in formatting and writing output to sequences

controlled by a stream buffer

wostringstream Supports writing objects of class

basic_string<charT,traits,Allocator>

wstreambuf Abstract base class for deriving various stream buffers

to facilitate control of character sequences

wstring A typedef for basic_string<wchar_t,
char_traits<wchar_t> , allocator<wchar_t>>

wstringbuf Associates the input or output sequence with a

sequence of arbitrary characters

TABLE 5-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
5-16 C++ Library Reference • May 2000

Index
SYMBOLS
! operator, ios:: , 3-6, 3-10

() parentheses, iostream , 3-4

<< insertion operator

complex , 2-7

iostream:: , 3-4, 3-5

>> extractor operator

complex , 2-7

iostream:: , 3-7

A
abs , complex:: , 2-4

absolute value, complex numbers, 2-2

accumulate , man pages, 5-4

acos , complex:: , 2-5

adjacent_difference , man pages, 5-4

adjacent_find , man pages, 5-4

advance , man pages, 5-4

<algorithm> , header file, 5-2

Algorithms , man pages, 5-3

allocator , man pages, 5-5

ang , complex:: , 2-4

angle, complex numbers, 2-2

app , ios:: , 3-12

applications

linking, 4-4

MT-safe, 4-2

using MT-safe iostream objects, 4-17 to 4-18

applicator, parametized manipulators, 3-19

arithmetic library, complex, 2-1 to 2-10

asin , complex:: , 2-5

assignment, iostream , 3-15

Associative_Containers , man pages, 5-3

atan , complex:: , 2-5

ate , ios:: , 3-12

attach , fstream:: , 3-13

auto_ptr , man pages, 5-5

B
back_insert_iterator , man pages, 5-5

back_inserter , man pages, 5-5

badbit , ios:: , 3-6

basic_filebuf , man pages, 5-5

basic_fstream , man pages, 5-5

basic_ifstream , man pages, 5-5

basic_ios , man pages, 5-5

basic_iostream , man pages, 5-5

basic_istream , man pages, 5-5

basic_istringstream , man pages, 5-5

basic_ofstream , man pages, 5-5

basic_ostream , man pages, 5-5

basic_ostringstream , man pages, 5-5

basic_streambuf , man pages, 5-5

basic_string , man pages, 5-5

basic_stringbuf , man pages, 5-5

basic_stringstream , man pages, 5-5

beg , ios:: , 3-14

Bidirectional_Iterators , man pages, 5-3

binary input, reading, 3-9

binary , ios:: , 3-13

binary_function , man pages, 5-6

binary_negate , man pages, 5-6

binary_search , man pages, 5-6

bind1st , man pages, 5-6
Index-1

bind2nd , man pages, 5-6

binder1st , man pages, 5-6

binder2nd , man pages, 5-6

<bitset> , header file, 5-2

bitset , man pages, 5-6

buffer

defined, 3-24

flushing output, 3-6

C
c (char) , iostream manipulator, 3-15

C++ Standard Library

components, 5-1 to 5-16

RogueWave, 5-1

c_exception , definition, 2-6

cartpol , complex man pages, 2-10

cerr
iostream:: , 3-1, 4-12

man pages, 5-6

char* , extractor, 3-8 to 3-9

char , extractor, 3-9

char_traits , man pages, 5-6

characters, reading single, 3-9

chr , iostream:: , 4-4

chr_r , iostream:: , 4-4

cin
iostream:: , 3-1, 4-12

man pages, 5-6

clog
iostream:: , 4-12

man pages, 5-6

predefined iostreams , 3-1

close , fstream:: , 3-13

codecvt , man pages, 5-6

codecvt_byname , man pages, 5-6

collate , man pages, 5-6

collate_byname , man pages, 5-6

compare , man pages, 5-6

compatibility mode

libC , 3-1, 3-3

libcomplex , 2-1

compiling, MT-safe libC library, 4-4

complex
complex library, 2-1 to 2-2

constructors, 2-2 to 2-3

efficiency, 2-9

error handling, 2-6 to 2-7

input/output, 2-7 to 2-8

man pages, 2-10, 5-6

mathematical functions, 2-4 to 2-6

mixed-mode, 2-8 to 2-9

operators, 2-3 to 2-4

trigonometric functions, 2-5 to 2-6

type complex , 2-2

complex() , constructor, 2-2 to 2-3

<complex> , header file, 5-2

complex.h , complex header files, 2-2

complex_error
definition, 2-6

message, 2-4

conj , complex:: , 2-4

conjugate, of a number, 2-2

constructors

complex , 2-2 to 2-3

iostream , 3-2

Containers , man pages, 5-3

copy , man pages, 5-6

copy_backward , man pages, 5-6

copying

files, 3-21

stream objects, 3-15

core classes, LibC , 4-2

cos , complex:: , 2-5

cosh , complex:: , 2-5, 2-7

count , man pages, 5-6

count_if , man pages, 5-6

cout
iostream:: , 3-1, 3-4, 4-12

man pages, 5-6

cplx.intro , complex man pages, 2-10

cplxerr , complex man pages, 2-10

cplxexp , complex man pages, 2-10

cplxops , complex man pages, 2-10

cplxtrig , complex man pages, 2-10

ctype , man pages, 5-7

ctype_byname , man pages, 5-7

cur , ios:: , 3-14

D
data types, complex number, 2-1 to 2-2

dec
iostream manipulator, 3-16

iostream:: , 4-4

dec_r , iostream:: , 4-4
Index-2 C++ Library Reference • May 2000

<deque> , header file, 5-2

deque , man pages, 5-7

destruction, of shared objects, 4-16

distance , man pages, 5-7

_distance_type , man pages, 5-4

divides , man pages, 5-7

double , complex value, 2-2

E
EDOM, errno setting, 2-7

end , ios:: , 3-14

endl , iostream manipulator, 3-16

ends , iostream manipulator, 3-16

environment

multithreading, 4-1 to 4-18

eofbit , ios:: , 3-6

equal , man pages, 5-7

equal_range , man pages, 5-7

equal_to , man pages, 5-7

ERANGE, errno setting, 2-7

errno , definition, 2-6 to 2-7

error bits, 3-6

error checking, MT-safety, 4-5

error handling

complex , 2-6 to 2-7

input, 3-10 to 3-11

error messages, complex_error , 2-4

error state, iostreams , 3-5

error , iostream:: , 3-6

<exception> , header file, 5-2

exception , man pages, 5-7

exp , complex:: , 2-5 to 2-7

extraction

defined, 3-24

operators, 3-7

extractor

char , 3-9

char* , 3-8 to 3-9

user-defined iostream , 3-7 to 3-8

whitespace, 3-10

F
facets , man pages, 5-7

failbit , ios:: , 3-6

file descriptors, using, 3-13 to 3-14

filebuf
man pages, 3-22, 5-7

streambuf:: , 4-11

files

copying, 3-12, 3-21

opening and closing, 3-13

repositioning, 3-14

using fstreams with, 3-11

fill , man pages, 5-7

fill_n , man pages, 5-7

find , man pages, 5-7

find_end , man pages, 5-7

find_first_of , man pages, 5-7

find_if , man pages, 5-7

float inserter, iostream output, 3-4

flush , iostream manipulator, 3-6, 3-16

for_each , man pages, 5-7

form , iostream:: , 4-4

form_r , iostream:: , 4-4

format control, iostreams , 3-15

Forward_Iterators , man pages, 5-4

fpos , man pages, 5-7

front_insert_iterator , man pages, 5-7

front_inserter , man pages, 5-7

fstream
defined, 3-24

iostream:: , 3-2, 3-11 to 3-15

man pages, 3-22, 5-8

<fstream> , header file, 5-2

fstream.h
iostream header file, 3-3

using, 3-12

Function_Objects , man pages, 5-4

<functional> , header file, 5-2

functions

MT-safe public, 4-3

streambuf public virtual, 4-15

G
gcFixPrematureFrees , man pages, 1-3

gcInitialize , man pages, 1-3

gcmonitor
man pages, 1-3

Sun WorkShop Memory Monitor daemon, 1-3

gcount , istream:: , 4-6

generate , man pages, 5-8

generate_n , man pages, 5-8
Index-3

get pointer, 3-20

get , char extractor, 3-9

get_temporary_buffer , man pages, 5-8

global data, in a multithreaded application, 4-12

global shared objects, default, 4-12

good , ios:: , 3-6

goodbit , ios:: , 3-6

greater , man pages, 5-8

greater_equal , man pages, 5-8

gslice , man pages, 5-8

gslice_array , man pages, 5-8

H
hardfail , ios:: , 3-6

has_facet , man pages, 5-8

header files

complex , 2-2, 2-9

function of, 1-1

iostream , 3-3, 3-16, 4-12

Standard Library, 5-2 to 5-3

Heap_Operations , man pages, 5-4

hex
iostream manipulator, 3-16

iostream:: , 4-4

hex_r , iostream:: , 4-3

hierarchy, new iostream class, 4-10

HTML, accessing man pages formatted in, 1-2

I
i (long) , iostream manipulator, 3-15

I/O library, 3-1

ifstream
iostream:: , 3-2, 3-11

istream:: , 3-11

man pages, 5-8

imag , complex:: , 2-5

in , ios:: , 3-12

includes , man pages, 5-8

indirect_array , man pages, 5-8

inner_product , man pages, 5-8

inplace_merge , man pages, 5-8

input

binary, 3-9

error handling, 3-10 to 3-11

iostream , 3-7

peeking, 3-9

input/output, complex , 2-7 to 2-8, 3-1

Input_Iterators , man pages, 5-4

insert_iterator , man pages, 5-8

Insert_Iterators , man pages, 5-4

inserter , man pages, 5-8

insertion

defined, 3-24

operator, 3-4 to 3-5

instr , iostream manipulator, 3-15

interface, new iostream functions, 4-10 to 4-12

io_state , ios:: , 3-6

<iomanip> , header file, 5-2

iomanip , man page, 3-19

iomanip.h , iostream header files, 3-3, 3-16

<ios> , header file, 5-2

ios , man pages, 3-15, 3-22, 5-8

ios.intro , man pages, 3-22

ios_base , man pages, 5-8

<iosfwd> , header file, 5-2

iosfwd , man pages, 5-8

iostream
constructors, 3-2

copying, 3-15

creating, 3-11 to 3-15

defined, 3-24

error bits, 3-6

error handling, 3-10

extending functionality of classes, 4-15

flushing, 3-6

formats, 3-15

header files, 3-3

input, 3-7

iostream:: , 3-2

library public conversion routines, 4-4

man pages, 3-1

manipulators, 3-15

MT-safe interface changes, 4-9

MT-safe restrictions, 4-5

new class hierarchy, 4-10

new interface functions, 4-10 to 4-12

output errors, 3-5 to 3-6

output to, 3-4

predefined, 3-1 to 3-2

public conversion routines, 4-4

single-threaded applications, 4-4

stdio , 3-11, 3-20

stream assignment, 3-15
Index-4 C++ Library Reference • May 2000

structure, 3-2 to 3-3

terminology, 3-24

using, 3-3

<iostream> , header file, 5-2

iostream.h , iostream header file, 3-3, 4-12

isalnum , man pages, 5-8

isalpha , man pages, 5-9

iscntrl , man pages, 5-9

isdigit , man pages, 5-9

isgraph , man pages, 5-9

islower , man pages, 5-9

isprint , man pages, 5-9

ispunct , man pages, 5-9

isspace , man pages, 5-9

istream
iostream:: , 3-2

man pages, 3-22, 5-9

<istream> , header file, 5-2

istream_iterator , man pages, 5-9

istreambuf_iterator , man pages, 5-9

istringstream , man pages, 5-9

istrstream
iostream:: , 3-2

man pages, 5-9

isupper , man pages, 5-9

isxdigit , man pages, 5-9

iter_swap , man pages, 5-9

<iterator> , header file, 5-2

iterator , man pages, 5-9

_iterator_category , man pages, 5-4

iterator_traits , man pages, 5-9

Iterators , man pages, 5-4

iword , ios:: , 4-16

L
left-shift operator

complex , 2-7

iostream , 3-4

less , man pages, 5-9

less_equal , man pages, 5-9

lexicographical_compare , man pages, 5-9

libC
compability mode, 3-1, 3-3

compiling and linking MT-safety, 4-4

core classes, 4-2

multithreading environment library, 4-1

new classes, 4-9

libcomplex , compatibility mode, 2-1

libCstd , standard mode, 2-1, 3-1

libgc , Sun WorkShop Memory Monitor

library, 1-3

libgc_dbg , Sun WorkShop Memory Monitor

library, 1-3

libiostream
multithreading environment library, 4-1

standard mode, 3-1, 3-3

libraries

C++ Standard, 5-1 to 5-16

classic iostream , 3-1 to 3-24

complex arithmetic, 2-1 to 2-10

contents of a C++, 1-1

libC , 4-1

libiostream multithreading environment, 4-1

Sun Workshop Memory Monitor, 1-3

Tools.h++, 1-2

<limits> , header file, 5-2

limits , man pages, 5-9

linking

-mt option, 4-4

MT-safe libC library, 4-4

<list> , header file, 5-2

list , man pages, 5-9

<locale> , header file, 5-2

locale , man pages, 5-9

locking

See also stream_locker
mutex, 4-8, 4-15

object, 4-13 to 4-15

streambuf , 4-3

log , complex:: , 2-5 to 2-7

log10 , complex:: , 2-5 to 2-7

logical_and , man pages, 5-9

logical_not , man pages, 5-10

logical_or , man pages, 5-10

lower_bound , man pages, 5-10

-lthread , linking applications, 4-4

M
magnitude, complex numbers, 2-2

make_heap , man pages, 5-10

man pages

accessing, 1-1 to 1-3

C++ Standard Library, 5-3 to 5-16

complex , 2-10
Index-5

iostream , 3-1, 3-12, 3-15, 3-19 to 3-23

Memory Monitor, 1-3

manip
ios:: , 3-19

man pages, 3-22

manipulators

iostreams , 3-15 to 3-19

plain, 3-17

predefined, 3-16

<map>, header file, 5-3

map, man pages, 5-10

mask_array , man pages, 5-10

math.h , complex header files, 2-9

mathematical functions, complex arithmetic

library, 2-4 to 2-6

max, man pages, 5-10

max_element , man pages, 5-10

mem_fun, man pages, 5-10

mem_fun1 , man pages, 5-10

mem_fun_ref , man pages, 5-10

mem_fun_ref1 , man pages, 5-10

Memory Monitor, components, 1-2

<memory>, header file, 5-3

merge , man pages, 5-10

messages , man pages, 5-10

messages_byname , man pages, 5-10

min , man pages, 5-10

min_element , man pages, 5-10

minus , man pages, 5-10

mismatch , man pages, 5-10

mixed-mode, complex arithmetic library, 2-8 to 2-9

modifications, iostream library, 4-1

modulus , man pages, 5-10

money_get , man pages, 5-10

money_put , man pages, 5-10

moneypunct , man pages, 5-10

moneypunct_byname , man pages, 5-11

-mt , iostream:: , 4-4

MT-safe

applications, 4-2

classes, considerations for deriving, 4-15

library, 4-1

object, 4-2

performance overhead, 4-7 to 4-9

public functions, 4-3

multimap , man pages, 5-11

multiplies , man pages, 5-11

multiset , man pages, 5-11

multithreading, environment, 4-1 to 4-18

mutex locks, MT-safe classes, 4-8, 4-15

mutual exclusion region, defining a, 4-15

N
n (int) , iostream manipulator, 3-15

negate , man pages, 5-11

Negators , man pages, 5-4

<new>, header file, 5-3

next_permutation , man pages, 5-11

nocreate , ios:: , 3-12

noreplace , ios:: , 3-12

norm , complex:: , 2-5

not_equal_to , man pages, 5-11

not1 , man pages, 5-11

not2 , man pages, 5-11

nth_element , man pages, 5-11

num_get , man pages, 5-11

num_put , man pages, 5-11

numbers, complex, 2-1 to 2-4

<numeric> , header file, 5-3

numeric_limits , man pages, 5-11

numpunct , man pages, 5-11

numpunct_byname , man pages, 5-11

O
object library, function of, 1-1

object thread, private , 4-13

objects

destruction of shared, 4-16

global shared, 4-12

strategies for dealing with shared, 4-13

stream_locker , 4-15

oct
iostream manipulator, 3-16

iostream:: , 4-4

oct_r , iostream:: , 4-3

ofstream
iostream:: , 3-2

man pages, 5-11

ostream:: , 3-11

omanip_long , iostream:: , 3-19

open , fstream:: , 3-13

open_mode , ios:: , 3-12 to 3-13

operations, performing a sequence of, 4-13
Index-6 C++ Library Reference • May 2000

operators

basic arithmetic, 2-3 to 2-4

complex , 2-7

iostream , 3-4, 3-5, 3-7 to 3-8

scope resolution, 4-7

Operators , man pages, 5-4

ostream
iostream:: , 3-2

man pages, 3-22, 5-11

<ostream> , header file, 5-3

ostream_iterator , man pages, 5-11

ostreambuf_iterator , man pages, 5-11

ostringstream , man pages, 5-11

ostrstream
iostream:: , 3-2

man pages, 5-12

out , ios:: , 3-12

output, 3-1

binary, 3-7

buffer flushing, 3-6

cout , 3-4

flushing, 3-6

handling errors, 3-5

string , 3-5 to 3-8

Output_Iterators , man pages, 5-4

overflow , streambuf:: , 4-15

overhead, MT-safe class performance, 4-7 to 4-9

overloading, rules, 2-9

P
pair , man pages, 5-12

parameterized manipulators, iostreams , 3-15,

3-18 to 3-19

partial_sort , man pages, 5-12

partial_sort_copy , man pages, 5-12

partial_sum , man pages, 5-12

partition , man pages, 5-12

pbackfail , streambuf:: , 4-15

peek , istream:: , 3-9

peeking at input, 3-9

performance, overhead of MT-safe classes, 4-7 to

4-9

permutation , man pages, 5-12

plain manipulators, iostreams , 3-17 to 3-18

plus , man pages, 5-12

pointer_to_binary_function , man

pages, 5-12

pointer_to_unary_function , man pages, 5-12

polar, complex number, 2-2

polar , complex:: , 2-3, 2-5

pop_heap , man pages, 5-12

pow, complex:: , 2-5

precedence, problems of, 3-4

predefined manipulators, iomanip.h , 3-16

Predicates , man pages, 5-4

prev_permutation , man pages, 5-12

priority_queue , man pages, 5-12

private , object thread, 4-13

ptr_fun , man pages, 5-12

public functions, MT-safe, 4-3

push_heap , man pages, 5-12

put pointer, streambuf , 3-20

pword , ios:: , 4-16

Q
<queue> , header file, 5-3

queue , man pages, 5-12

R
Random_Access_Iterators , man pages, 5-4

random_shuffle , man pages, 5-12

raw_storage_iterator , man pages, 5-12

rdbuf , iostream:: , 3-21

read , istream:: , 3-9

real numbers, complex, 2-1, 2-4

real , complex:: , 2-5

references

C++, 5-2

Tools.h++, 1-2

remove , man pages, 5-12

remove_copy , man pages, 5-12

remove_copy_if , man pages, 5-13

remove_if , man pages, 5-13

replace , man pages, 5-13

replace_copy , man pages, 5-13

replace_copy_if , man pages, 5-13

replace_if , man pages, 5-13

repositioning, within a file, 3-14 to 3-15

resetiosflags , iostream manipulator, 3-16

restrictions, MT-safe iostream , 4-5

return_temporary_buffer , man pages, 5-13

reverse , man pages, 5-13
Index-7

_reverse_bi_iterator , man pages, 5-4

reverse_copy , man pages, 5-13

reverse_iterator , man pages, 5-13

right-shift operator

complex , 2-7

iostream , 3-7

RogueWave

C++ Standard Library, 5-1

Tools.h++ library, 1-2

rotate , man pages, 5-13

rotate_copy , man pages, 5-13

routines, iostream public conversion, 4-4

rules, overloading, 2-9

S
sbufprot , man pages, 3-21, 3-23

sbufpub , man pages, 3-12, 3-21, 3-23

scope resolution operator, unsafe_ classes, 4-7

search , man pages, 5-13

search_n , man pages, 5-13

seek_dir , ios:: , 3-14

seekg , istream:: , 3-14

seekoff , streambuf:: , 4-15

seekp , ostream:: , 3-14

seekpos , streambuf:: , 4-15

Sequences , man pages, 5-4

sequences, MT-safe execution of I/O

operations, 4-13

<set> , header file, 5-3

set , man pages, 5-13

set_difference , man pages, 5-13

set_intersection , man pages, 5-13

set_symmetric_difference , man pages, 5-13

set_union , man pages, 5-13

setbase , iostream manipulator, 3-16

setfill
iostream manipulator, 3-16

iostream:: , 3-18

setioflags , iostream manipulator, 3-16

setprecision , iostream manipulator, 3-16

setw , iostream manipulator, 3-16

shared objects, strategies for dealing with, 4-13

shift operators, iostreams , 3-17

sin , complex:: , 2-6

sinh , complex:: , 2-6 to 2-7

skip flag, iostream , 3-10

slice , man pages, 5-14

slice_array , man pages, 5-14

smanip_fill , man pages, 5-14

smanip_int , , iostream:: , 3-19

snamip , man pages, 5-14

Solaris versions supported, P-1

sort , man pages, 5-14

sort_heap , man pages, 5-14

sqrt , complex:: , 2-6

ssbuf , man pages, 3-21, 3-23

<sstream> , header file, 5-3

stable_partition , man pages, 5-14

stable_sort , man pages, 5-14

<stack> , header file, 5-3

stack , man pages, 5-14

Standard C++ Class Library Reference, 5-2

Standard C++ Library User’s Guide, 5-2

standard error, iostreams , 3-1

standard input, iostreams , 3-1

standard iostream classes, 3-1

standard mode

iostream , 3-1

libCstd , 2-1

libiostream , 3-1, 3-3

standard output, iostreams , 3-1

standard streams, iostream.h , 4-12

Standard Template Library (STL), components, 5-1

static data, in a multithreaded application, 4-12

<stdexcept> , header file, 5-3

stdio
stdiobuf man pages, 3-20

with iostreams , 3-11

stdio FILE s, ios:: , 3-11

stdiobuf
iostream:: , 3-20

man pages, 3-23

stdiostream.h , iostream header file, 3-3

STL (Standard Template Library), components, 5-1

stream, defined, 3-24

stream.h , iostream header file, 3-3

Stream_Iterators , man pages, 5-4

stream_locker
iostream:: , 4-9, 4-13 to 4-15

man pages, 4-15

synchronization with MT-safe objects, 4-9

stream_MT , iostream:: , 4-2 to 4-3, 4-9

streambuf
defined, 3-20, 3-24

file-like, 3-21

get pointer, 3-20
Index-8 C++ Library Reference • May 2000

iostream:: , 3-2, 3-20, 4-2

locking, 4-3

man pages, 5-14

new functions, ?? to 4-11

public virtual functions, 4-15

put pointer, 3-20

queue-like, 3-21

using, 3-21

<streambuf> , header file, 5-3

streampos , 3-14

string
iostream:: , 3-5 to 3-8

man pages, 5-14

<string> , header file, 5-3

stringbuf , man pages, 5-14

stringstream , man pages, 5-14

strstream
defined, 3-24

iostream:: , 3-2, 3-20

man pages, 3-23, 5-14

strstream.h , iostream header file, 3-3

strstreambuf
man pages, 5-14

streambuf:: , 4-11

swap, man pages, 5-14

swap_ranges , man pages, 5-14

sync_with_stdio , ios:: , 3-11

T
tan , complex:: , 2-6

tanh , complex:: , 2-6

tellg , istream:: , 3-14

tellp , ostream:: , 3-14

templates, Standard Template Library (STL), 5-1

thr_keycreate , man pages, 4-13

time_get , man pages, 5-14

time_get_byname , man pages, 5-14

time_put , man pages, 5-15

time_put_byname , man pages, 5-15

tolower , man pages, 5-15

Tools.h++ library, RogueWave, 1-2

toupper , man pages, 5-15

transform , man pages, 5-15

trigonometric functions, complex arithmetic

library, 2-5 to 2-6

trunc , ios:: , 3-12

<typeinfo> , header file, 5-3

U
unary_function , man pages, 5-15

unary_negate , man pages, 5-15

underflow , streambuf:: , 4-15

uninitialized_copy , man pages, 5-15

uninitialized_fill , man pages, 5-15

uninitialized_fill_n , man pages, 5-15

unique , man pages, 5-15

unique_copy , man pages, 5-15

unsafe_fstream , iostream:: , 4-9

unsafe_ios , iostream:: , 4-2, 4-9

unsafe_iostream , iostream:: , 4-2, 4-9

unsafe_istream , istream:: , 4-2, 4-9

unsafe_ostream , ostream:: , 4-2, 4-9

unsafe_strstreambase , iostream:: , 4-9

upper_bound , man pages, 5-15

use_facet , man pages, 5-15

user-defined types

iostream , 3-4

MT-safe, 4-6 to 4-7

<utility> , header file, 5-3

V
<valarray> , header file, 5-3

valarray , man pages, 5-15

values

double , 2-2

float , 3-4

flush , 3-6

inserting on cout , 3-4

long , 3-19

manipulator, 3-3, 3-15, 3-19

<vector> , header file, 5-3

vector , man pages, 5-15

void *() , ios:: , 3-6

W
wcerr , man pages, 5-15

wcin , man pages, 5-15

wclog , man pages, 5-15

wcout , man pages, 5-15

wfilebuf , man pages, 5-15

whitespace

extractors, 3-10
Index-9

leading, 3-9

skipping, 3-10, 3-18

wifstream , man pages, 5-16

wios , man pages, 5-16

wistream , man pages, 5-16

wistringstream , man pages, 5-16

wofstream , man pages, 5-16

wostream , man pages, 5-16

wostringstream , man pages, 5-16

write , ostream:: , 3-7

ws, iostream manipulator, 3-10, 3-16

wstream , man pages, 5-16

wstreambuf , man pages, 5-16

wstring , man pages, 5-16

wstringbuf , man pages, 5-16

X
X inserter, iostream , 3-4

xsgetn, streambuf:: , 4-15

xsputn , streambuf:: , 4-15
Index-10 C++ Library Reference • May 2000

	C++ Library Reference
	Contents
	Tables
	Preface
	Multiplatform Release
	Access to Sun WorkShop Development Tools
	How This Book Is Organized
	Typographic Conventions
	Shell Prompts
	Related Documentation
	Document Collections
	Man Pages
	README File

	Commercially Available Books

	Introduction to C++ Libraries
	1.1 Man Pages
	1.2 Other Libraries
	1.2.1 Tools.h++ Library
	1.2.2 Sun WorkShop Memory Monitor

	The Complex Arithmetic Library
	2.1 The Complex Library
	2.1.1 Using the Complex Library

	2.2 Type complex
	2.2.1 Constructors of Class complex
	2.2.2 Arithmetic Operators

	2.3 Mathematical Functions
	2.4 Error Handling
	2.5 Input and Output
	2.6 Mixed-Mode Arithmetic
	2.7 Efficiency
	2.8 Complex Man Pages

	The Classic iostream Library
	3.1 Predefined iostreams
	3.2 Basic Structure of iostream Interaction
	3.3 Using the Classic iostream Library
	3.3.1 Output Using iostream
	3.3.1.1 Defining Your Own Insertion Operator
	3.3.1.2 Handling Output Errors
	3.3.1.3 Flushing
	3.3.1.4 Binary Output

	3.3.2 Input Using iostream
	3.3.3 Defining Your Own Extraction Operators
	3.3.4 Using the char* Extractor
	3.3.5 Reading Any Single Character
	3.3.6 Binary Input
	3.3.7 Peeking at Input
	3.3.8 Extracting Whitespace
	3.3.9 Handling Input Errors
	3.3.10 Using iostreams with stdio

	3.4 Creating iostreams
	3.4.1 Dealing with Files Using Class fstream
	3.4.1.1 Open Mode
	3.4.1.2 Declaring an fstream Without Specifying a File
	3.4.1.3 Opening and Closing Files
	3.4.1.4 Opening a File Using a File Descriptor
	3.4.1.5 Repositioning within a File

	3.5 Assignment of iostreams
	3.6 Format Control
	3.7 Manipulators
	3.7.1 Using Plain Manipulators
	3.7.2 Parameterized Manipulators

	3.8 Strstreams: iostreams for Arrays
	3.9 Stdiobufs: iostreams for stdio Files
	3.10 Streambufs
	3.10.1 Working with Streambufs
	3.10.1.1 Position of Pointers

	3.10.2 Using Streambufs

	3.11 iostream Man Pages
	3.12 iostream Terminology

	Using Classic iostreams in a Multithreading Environment
	4.1 Multithreading
	4.2 Organization of the MT�Safe iostream Library
	4.2.1 Public Conversion Routines
	4.2.2 Compiling and Linking with the MT�Safe libC Library
	4.2.3 MT�Safe iostream Restrictions
	4.2.3.1 Checking Error State
	4.2.3.2 Obtaining Characters Extracted by Last Unformatted Input Operation
	4.2.3.3 User-Defined I/O Operations

	4.2.4 Performance

	4.3 Interface Changes to the iostream Library
	4.3.1 New Classes
	4.3.2 New Class Hierarchy
	4.3.3 New Functions

	4.4 Global and Static Data
	4.5 Sequence Execution
	4.6 Object Locks
	4.6.1 Class stream_locker

	4.7 MT-Safe Classes
	4.8 Object Destruction
	4.9 An Example Application

	The C++ Standard Library
	5.1 C++ Standard Library Header Files
	5.2 C++ Standard Library Man Pages

	Index

