
RHODOS September 8, 1994

Research into the Development of the
RHODOS Multi-threaded Microkernel*

G. Wickham, M. Hobbs, A. Goscinski

{gjw, mick, ang}@deakin.edu.au

School of Computing and Mathematics
Deakin University, Geelong

Victoria 3217, Australia.

Abstract
An important factor contributing to an operating systems’ performance is the design and efficiency of the

kernel code. This is especially true for microkernel based operating systems where the microkernel and kernel
provides support for system servers. RHODOS is a microkernel based distributed operating system designed as a
testbed for the study of the numerous research topics available in this area. The current version of RHODOS uses a
single threaded microkernel, which fulfilled our requirements of providing a stable platform. A significant drawback
of a single threaded architecture is the difficulty with which paging can be implemented. This report details the
current state of the RHODOS single threaded microkernel and provides justification for the implementation of a multi
threaded microkernel.

*This work was partly supported by Australian Research Council under Grants A48831034 and A49232429,
and the Deakin University Research Grant 0504010151.

RHODOS September 8, 1994

ii

INDEX

1 Introduction ...3

2 The Nucleus ..4
2.1 Changing Mode..4

2.2 Limitation of the Single-threaded Microkernel ...5

2.3 Overheads on System Calls..6

2.4 User and System Stacks ...7

3 Design Requirements of a Multi-threaded Microkernel ..8
3.1 Basic Problems...9

3.2 Manipulation of the Internal Microkernel Data Structures10

4 Conclusion ..10

5 References...11

RHODOS September 8, 1994

Introduction Page 3

1 Introduction
The desire to improve the performance, efficiency and utilisation of current computer sys-

tems has resulted in a shift in research effort, with a greater concentration being made within the

area of distributed systems. A specific field of distributed systems that is proving to be a dynamic

area is with that of distributed operating systems. One such system is RHODOS, a high perfor-

mance distributed operating system designed to act as a test bed for studying the many compo-

nents which go to form a distributed operating system [Gerrity et al. 91]. A current trend in

modern operating system design is to build the system as a set of cooperating kernel server pro-

cesses supported by a lightweight kernel, commonly known as a microkernel. RHODOS has been

designed with the microkernel architecture forming an abstract machine on which kernel and sys-

tem servers provide the bulk of the services and facilities expected from any operating system

[Toomey et al. 92], [De Paoli et al. 94]. Other systems based on the microkernel approach include

MACH [Accetta et al. 86], QNX [Hilderbrand 92] and Chorus [Rozier et al. 88].

The current implementation of the RHODOS microkernel has a simple restriction that pro-

cess scheduling cannot be performed whilst executing any system calls within the microkernel.

This mode of operation is termed ‘single-threaded’. Only when in user mode can a process be

scheduled out and a new one scheduled in.

To improve the performance characteristics and overall flexibility of the RHODOS microker-

nel it has become important that the present single-threaded microkernel be modified to accom-

modate multi-threading of both synchronous and asynchronous events. The primary objectives

obtained from this change will be:

• The ability to perform demand paging, and hence implement a richer virtual memory sys-

tem; and

• The implementation of pre-emptive scheduling. This means that a process can always be re-

scheduled whenever a context switch clock tick (interrupt) occurs. This is in stark contrast

to an implementation of a single-threaded microkernel where pre-emption cannot occur if a

system call or hardware interrupt handler is executing.

A multi-threaded microkernel is one that supports multiple threads of execution within

microkernel code itself. Explained more simply, it permits a system call to be at any time during

the call, suspended and to remain suspended while another process is given execution time.

The transformation of RHODOS from a single-threaded to a multi-threaded microkernel will

occur in two parts. The first being the implementation of separate system call stacks for each pro-

RHODOS September 8, 1994

The Nucleus Page 4

cess, and the second being a protection mechanism for data structures used within the microker-

nel.

In this report, firstly the Nucleus — RHODOS Microkernel is characterised (Section 2); with

emphasis placed on the limitation of the single-threaded architecture. The design requirements of

a multi-threaded architecture are presented in Section 3. In particular, the stacks which form the

basis of the multi-threaded microkernel are discussed. The manipulation of the internal data struc-

tures of the Nucleus are presented. The conclusion shows the design and implementation steps to

be performed in order to build a multi-threaded microkernel.

2 The Nucleus
The Nucleus, which is the current implementation of the RHODOS microkernel, only sup-

ports pre-emptive scheduling when the currently executing process is in user mode. With the sin-

gle-threaded paradigm it is impossible to perform a context switch if the context switching routine

is invoked before a system call is completed. However a mechanism has been implemented where

the process can invoke the scheduling algorithm directly at the very end of a system call if a con-

text switch has occurred. This method only works because the system call can run to completion

and hence leaving the Nucleus in a restartable state.

2.1 Changing Mode

A hardware technique often employed to support protection and to ensure integrity of operat-

ing system code is through the use of privilege modes. A simple implementation of privilege

modes would include two levels (as is used with the RHODOS implementation platform

[Motorola 85]), generally known as User and Supervisor modes. Where the User mode is the gen-

eral working mode used by normal user and server processes, whilst the Supervisor mode is the

higher privileged mode that allows access to privileged memory locations and instructions.

In RHODOS (as with most operating systems) there are three methods by which a process

can change mode from that of a user process to that of the microkernel. These include:

• System Calls — A process may request services or resources from the microkernel via a

‘trap’ into the Nucleus;

• Exceptions — If a running process causes an error (i.e., divide by zero, page fault, invalid

address, etc.) the Nucleus forwards a message detailing this event onto the respective kernel

server process; and

• Hardware Interrupts — While a user process is running, hardware devices may cause asyn-

RHODOS September 8, 1994

The Nucleus Page 5

chronous interrupts indicating that they require attention. The processor is placed in supervi-

sor mode and an interrupt frame is placed on the interrupt stack. This frame contains the

details of the interrupt, which the interrupt handler uses to correctly process the event.

The three events that change the processor from user mode to supervisor mode are shown in

Figure 1. System calls and exceptions are synchronous events in the respect that they are gener-

ated directly from the actions of a process running in user mode, whilst the hardware interrupt is

an asynchronous event in that its behavior is stochastic.

Figure 1: User to Supervisor mode events.

2.2 Limitation of the Single-threaded Microkernel

The RHODOS microkernel (or Nucleus) presently allows only one system call to be active at

any instant in time and prohibits a context switch from occurring during the execution of a system

call. This means that when an event such as a page fault is produced and in turn this interrupts a

system call, the microkernel must handle the event fully itself and then return to complete the

offending system call before any context switch can occur.

In line with the microkernel paradigm, the kernel servers and system servers should handle

most events in a hardware independent manner, with the microkernel providing the interface

between the servers and the hardware. This presents a problem in that a server may need to be

scheduled in to resolve an event, which is impossible if the original process is suspended during a

system call. Hence, system calls must run their full cycle, or be able to be placed into a state that

can be restarted at a later time. Both of these solutions involve an unjustifiable overhead in pre-

serving the state of the original process.

An example of a solution that is currently implemented is that of the page management

scheme ‘Copy-on-Write’ (COW). When a page protected by COW is written to, the microkernel

User Process
User Mode

µ-kernel
Supervisor Mode

Change of mode from User to Supervisor
mode can occur by:

1 A Hardware interrupt: (Asynchronous)

i.e., serial device
2 An exception (Synchronous)

i.e., a page fault
3 A system call (Synchronous)

i.e., a ‘send’
Time

RHODOS September 8, 1994

The Nucleus Page 6

will: acquire a page from the free page list; duplicate the offending page; and then restart the pro-

cess. Currently, this is perfectly acceptable and works well, however serious problems may occur

if there is a shortage of free pages. If there is no free page available then this will cause a serious

error within the microkernel, and possibly an ungraceful halt of the operating system.

 Demand paging, as would be used to implement virtual memory, is a veritable nightmare to

implement with a single-threaded microkernel. In theory a page fault can occur at any time,

whether in a system call or user space. Suspension of a process in user space presents no difficul-

ties. However, with respect to a previously mentioned point, if a page fault occurs within a system

call then the complexity of the handling is significantly increased.

To be able to handle page faults from within a system call it is necessary to construct them in

a re-entrant fashion. This means that if a system call cannot complete a task then it must check-

point the location where it was up to and then invoke the context switching algorithm. When the

process can be re-scheduled the system call must be re-invoked from its beginning, and check to

see if any checkpoint was set. If so, the process needs to jump to that location and then continue

execution. However, building a greater awareness and intelligence into the RHODOS system call

is an overhead that cannot be warranted within the microkernel paradigm.

2.3 Overheads on System Calls

The microkernel paradigm implies an image of a very lean kernel that is used extensively for

communication between servers and user processes. As the microkernel itself is completely

unaware of any services offered to users at the application layer the microkernel does not need to

offer many system calls. All communication between user processes and the system and kernel

servers occurs via the use of remote procedure calls (RPCs). As every system call at the applica-

tion layer requires communication with a server and this is achieved via RPCs, it is obvious that

the communication primitives provided by the Nucleus will be used heavily. To ensure that the

operating system operates as efficiently as possible, it is important that the microkernel is very

lean to accomplish this.

However, as the RHODOS Nucleus is a single-threaded microkernel it requires system calls

be written to stringent guidelines which impair their simplicity and efficiency. The basic guide-

lines followed in writing system calls in the current version of the Nucleus include:

• Before a system call attempts access to any page within the users virtual address space, it

must determine that the page is currently mapped in.

• If at any stage the system call cannot continue because of a missing resource (page) then it

RHODOS September 8, 1994

The Nucleus Page 7

must: inform the appropriate manager for request of the resource; checkpoint the current

position within the system call; and then set the system call restart flag and terminate the

system call (this will re-start the system call the next time this process is scheduled).

The above two points presents a severe performance impairment of the single-threaded

microkernel. As most system calls access user space for either reading or writing, each structure

that is accessed must be verified by interrogating the internal memory maps.

A simpler solution would allow page faults to be generated by the memory management unit

(as with any other exception or event), with notification issued to the appropriate servers by the

microkernel. However, this simpler solution is impossible with the current version of the Nucleus.

2.4 User and System Stacks

An executing process requires an area in which to store temporary and transient data. This

area is called a ‘stack’ and is directly supported in hardware by most, if not all, processor architec-

tures. Each process is allocated its own private stack which is termed a ‘user stack’. While on pro-

cessors with hardware support for more than one level of privilege there is usually support for

multiple stacks.

RHODOS is currently being implemented on a Sun 3/50 which uses a Motorola 68020

[Motorola 85] as a central processing unit. This processor supports three separate stacks, which

are the: user stack, interrupt stack and master stack. Whenever the processor is in the lower privi-

lege mode it uses the ‘user stack’. When the hardware privilege flag is enabled the processor uses

the ‘interrupt stack’ or the ‘master stack’ depending on the setting of an additional flag in the sta-

tus register.

Currently within RHODOS, as shown in Figure 2, there is a separate user stack for each pro-

cess, one interrupt stack and one master stack. The master stack is not purposely used by RHO-

DOS but must be defined, whilst the interrupt stack is used for all system calls, exceptions and

interrupts.

RHODOS September 8, 1994

Design Requirements of a Multi-threaded Microkernel Page 8

Figure 2: Current RHODOS Stack Implementation.

The reason why RHODOS is currently termed a single-threaded microkernel is that with

only one stack being used for the hardware privilege level, that is the interrupt stack, it is impossi-

ble to perform a context switch if this stack is not empty. This is due to the fact that it is impossi-

ble to guarantee the order in which the suspended processes will be restarted. The order is

determined by the scheduling policies and external events that are affecting the system at that

instance.

3 Design Requirements of a Multi-threaded Microkernel
The intrinsic benefit of a multi-threaded microkernel is the ability to suspend a process when

it has not completed a system call and to perform a context switch, thus permitting another pro-

cess to execute. To achieve this goal it is necessary for each process to have its own private privi-

lege stack, which is called a ‘master stack’ on the M68020 [Motorola 85]. This concept is shown

in Figure 3.

The separate system stack for each process will be used only for the processing of system

calls (software traps) invoked from a user process. If a hardware exception or an interrupt occurs,

it will be processed in the environment of the interrupt stack thus separating interrupts and hard-

ware exceptions from software traps. This separation will permit a context switch to occur when-

µ-kernel
Space

U
ser P

rocesses
A

rea

TEXT

DATA

STACK

TEXT

DATA

STACK

TEXT

DATA

STACK

Interrupt
STACK

Master
STACK

NUCLEUS CODE

Common
System Stacks

Independent
User Stacks

RHODOS September 8, 1994

Design Requirements of a Multi-threaded Microkernel Page 9

ever the context switch algorithm is invoked the interrupt (driven by a periodic timer).

Figure 3: Proposed RHODOS Stacks Usage.

Likewise, any hardware exceptions generated by the memory management unit will be pro-

cessed on the interrupt stack, thus isolating the offending process from the underlying mecha-

nisms of kernel server notification and scheduling.

3.1 Basic Problems

With a multi-threaded microkernel system calls can operate in a non-contiguous (or atomic)

way. It is possible for a system call to be suspended during execution and to be resumed after

many other processes have had the chance to execute. For example, a process may be part way

through a system call when the scheduler is invoked. Another process may then issue a ‘kill’ to

the first process that results in the original process being terminated before the system call can

complete.

An implementation of a multi-threaded microkernel needs to be able to guarantee that this

type of situation (although pathological in nature) will not adversely affect the performance or

stability of the operating system and therefore requires careful thought and design.

µ-kernel
Space

U
ser P

rocesses
A

rea

TEXT

DATA

STACK

TEXT

DATA

STACK

TEXT

DATA

STACK

Master
STACK

Interrupt
STACK

NUCLEUS CODE

Common
Interrupt Stack

Independent
User & Master

Master

STACK

Master
STACK

Stacks

RHODOS September 8, 1994

Conclusion Page 10

3.2 Manipulation of the Internal Microkernel Data Structures

The microkernel uses many data structures to store internal information and user data as it

flows from process to process. All of these structures are implemented using linked list techniques

which present special problems for the multi-threaded microkernel engineers.

To maintain microkernel integrity throughout its operation it is necessary to ensure that the

following condition of implementation is always adhered to:

Any data structure that is maintained by the microkernel and manipulated by a

system call must always be attached to a known linked list while outside of the atomic

locking mechanisms.

This statement stresses two main points. The first is that all linked list manipulations must be

protected by a locking mechanism. It is possible to disable and enable processor interrupts on the

Sun 3/50 through the use of a hardware register. Before linked lists are manipulated it is necessary

to disable interrupts, perform the manipulation and then re-enable interrupts.

Whilst interrupts are disabled, they are not passed to the processor but are left in a pending

state. The interrupts are forwarded as soon the hardware flag is re-enabled, thus ensuring that vir-

tually no interrupts are left unprocessed.

The second point is that the system call must ensure that data structures donated by the

microkernel must be attached to known list locations during the period in which interrupt locking

is enabled. This feature will ensure that if the process is terminated at any time then the microker-

nel can reclaim data structures that are on loan to the user process.

4 Conclusion
The main disadvantage that has resulted from use of a single-threaded microkernel is that it is

impossible to perform a context switch when a system call is active. This has resulted in the

inability to implement a virtual memory page management technique whilst adhering to the

microkernel design paradigm. A paradigm which requires only the bare minimum number of ser-

vices and functions, thus providing an abstracted hardware foundation that supports an extremely

flexible and modular system.

The major benefits of an upgrade to a multi-threaded microkernel is the ability of closer con-

formance for the RHODOS Nucleus to the microkernel paradigm, and also provide support for

virtual memory. To perform the upgrade, the differences and requirements to transform RHODOS

from a single-threaded to a multi-threaded microkernel architecture have been researched. This

RHODOS September 8, 1994

References Page 11

resulted in two main areas requiring development and modification. The first, is the use of multi-

ple stacks for each process so that system calls can be suspended part way through execution. The

second is that of resource protection and reclamation within the system calls that are used by pro-

cesses. These areas are detailed and include a general synopsis of a technique which could be

used in relation to the current implementation platform of a Sun 3/50.

5 References
[Accetta et al. 86] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian and M.

Young. “Mach: A New Kernel Foundation For UNIX Development.” Summer

USENIX Conference, Atlanta, 1986.

[De Paoli et al. 94] D. De Paoli, A. Goscinski, M. Hobbs and G. Wickham. “RHODOS — A

Microkernel based Distributed Operating System: An Overview of the 1993 Version”.

Technical Report TR C94/, School of Computing and Mathematics, Deakin University,

Geelong, (in preparation).

[Gerrity et al. 91] G. Gerrity, A. Goscinski, J. Indulska, W. Toomey and Z. Zhu. “RHODOS — A

Test Bed for the Studying Design Issues in Distributed Operating Systems”.

Proceedings of the 2nd Singapore International Conference on Networks

(SINCON’91). September 1991.

[Hilderbrand 92] D. Hildebrand. “An Architectural Overview of QNX”. Proceedings of

Workshop on Microkernel and other Kernel Architectures. April 1992.

[Motorola 85] “MC68020 32—Bit Microprocessor User’s Manual”. Second Edition. Prentice

Hall, Inc., Englewood Cliffs, N.J. 07632.

[Rozier et al. 88] M. Rozier, V. Abrossimov, F. Armand, M. Gien, M. Guillemont, F. Hermann

and C. Kaiser “Overview of the Chorus Distributed Operating System”. Montigny-le-

Bretonneux (France), June 1988.

[Toomey et al. 92] W. Toomey, A. Goscinski and G. Gerrity. “The Nucleus — Microkernel for

the RHODOS Distributed Operating System”. Proceedings of the 1992 IEEE

Conference in Computers, Communications and Automation Towards the 21st Century

— TENCON’92.

[Wickham et al. 94] G. Wickham, D. De Paoli, M. Hobbs. “Implementation of the RHODOS

Space Manager”. Technical Report TR C94/, School of Computing and Mathematics,

Deakin University, Geelong, (in preparation).

