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TSCGE91E RT Integer Unit

1. Introduction

This document presents the specification of the TSC691E Radiation Tolerant Integer Unit. Itisorganized in threemain
chapters:

e Standard U (T SC691E) Functions (Chapter 3)
e Fault MECHANISM and Test MECHANISM (Chapter 4)
® FElectrical and Mechanical Specification (Chapter 5)

Chapter 3 presents the SPARC RISC USER’S GUIDE from Cypress Semiconductor including some adaptations due
to theintroduction of fault tolerant MECHANISMss, without losing the full binary compatibility with the entire SPARC
V7.0 application software base.

Chapter 4 and Chapter 5 deal with the new added functions introduced in the TSC691E to improve the reliability of
space applications. These new functions also do not impact the SPARC V7.0 compatibility.
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2. TSCB91E Overview

2.1. SPARC RISC STANDARD FUNCTIONS:

Full binary compatibility with entire SPARC V7.0 application software base
Architecture efficiency that sustains 1.25 to 1.5 clocks per instruction

Large windowed register file

Tightly coupled floating-point interface

User/supervisor modes for multitasking

Semaphore instructions and alternate address spaces for multiprocessing

2.2. Fault Tolerant and Test M echanism | mprovements:

Parity checking on 98.7% of the total number of latches with hardware error traps
Parity checking of address, data pads and control pads

Program flow control

Master/Checker operation

|EEE Standard Test Access Port & Boundary-Scan Architecture

Possibility to disable the bus parity checking

Manufactured using Space hardened 0.8 pm SCMOS RT TECHNOLOGY

Part of the ERC32 high performance 32-bit computing core

To support applications requiring an extremely high level of reliability, the following improvements were introduced
in the standard SPARC RISC processor TSC691E:

® Severa independent fault detection MECHANISMsto support the design of fault tolerant systems
Such as odd parity checking, Program Flow Control and Master/Checker operations.

Support of sophisticated PC board level test using the |EEE Standard Test Access Port and
Boundary Scan Architecture

Hardening of the process by construction, applying restricted full static CMOS design rules for

all critical blocks of the circuit such asregister file, PLAs, ROMsetc...

® Hardened device processing using the 0.8 um SCMOS-RT TECHNOLOGY.

Thanks to careful handling of the improvements, the introduced modifications have neither reduced the performance
of the device nor changed the full binary compatibility with the entire SPARC V7.0 application software.

2.3. Presentation of the ERC32 computing core

The TSC691E Integer Unit is, with the TSC692E Floating Point Unit and the TSC693E Memory controller, a part of
the ERC32 computing core.

2.3.1. Concept

The objective of the ERC32 is to provide a high performance 32-bit computing core, with which computers for
on-board embedded real-time applications can be built. The core will be characterized by low circuit complexity and
power consumption. Extensive concurrent error detection and support for fault tolerance and reconsideration will also
be emphasized.

In addition to the main objective the ERC32 core should be possible to use for performance demanding research
applicationsin deep space probes. The radiation tolerance and error masking are therefore important. For the real-time
applications the system might be fail-operational rather than fail-safe. By including support for reconfiguration of the
error-handling the different demands from the applications can be optimized for the best purpose in each case.

2
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The ERC32 will be used as a building block only requiring memory and application specific peripherals to be added
to form a complete on-board computer. All other system support functions are provided by the core.

2.3.2. Functional Description

The ERC32 incorporates the followings functions:

® Processor, which consists of one integer unit (IU-TSC691E) and one floating point unit (FPU-TSC692E). The
processor includes concurrent error detection facilities.

® Memory controller (MEC-TSC693E), which isaunit consisting of all necessary support functions such as memory
control and protection, EDAC, wait state generator, timers, interrupt handler, watch dog, UARTs and test and debug
support. The unit also includes concurrent error detection facilities.

® Oscillator (optional).
e Buffers necessary to interface with memory and peripherals.
Figure 1 schematically showsthe ERC32 architecture and external functions added to form a complete system.

D<—> 1/0 Port
<
Data s >Z<—> Memory Port
: > [ ]
Floating Add
Point Unit = >E| P> Address Port
TSC692E -t —
[ p» Chip Select
L p» WE
L p» /O Select
Memory L p» I/IORW
Integer — > Controller l@— 1/0 Ready
Unit TSC693E @—— IRQ
TSC691E > T RQAK
-g¢——p EDAC checkbit
| / | / ~— Tx/RX
DMA Port

Figure 1. ERC32 Architecture
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3. Standard U Function

3.1. Introduction

This section describes the workings of the TSC691E RT Integer processing Unit (1U), the main computing engine in
the SPARC architecture. The TSC691E is based on the SPARC 32-hit RISC architecture, which defines a processor
capable of execution at a rate approaching one instruction per clock cycle. The TSCE691E supports a tightly-coupled
Floating-Point coprocessor Unit (FPU) and a second, system-specific coprocessor, al three of which may operate
concurrently. The TSC691E executes al instructions except floating-point-operate and coprocessor-operate
instructions.

A block diagram of the TSC691E is shown in Figure 2 . The processor is organized around the ALU and the shift unit.
These are both two-operand units, accepting 32-bit information from either source 1 or source 2 of the register file,
the program counters, or the instruction decoder. ALU or shift unit results may be passed to the register file, address
bus, program counters, control registers, or back to themselves. One of the characteristics of the SPARC load/store
architecture is that neither the ALU nor the shift unit directly pass results to the instruction/data bus. Memory data
movesin and out of the register file through alignment unitsto and from the instruction/data bus. I nstructions are taken
directly from the bus and fed to a four-stage instruction pipeline.

Y

Destination

Register File
136 x 32-hits

Source 1 Source 2

Y v R

Arithmetic i .
& LogicUnit Shift Unit
PC Adder +

L Program >I
Counters Align

Processor State Instruction
WindowInvalid Decode
TrapBase
Multiply Step *
v
Address Instruction/ Data

Figure 2. Integer Unit Block Diagram

The SPARC architecture uses a“windowed” register file model in which the fileis divided up into groups of registers
called windows. This windowed register model simplifies compiler design, speeds procedure calls, and efficiently
supports A/l programming languages such as Prolog, L1SP and Smalltalk.

4
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A unique pair of coprocessor interfaces and a common connection to the system data and virtual address busses form
the physical interface between the 1U, the FPU, and a coprocessor. The coprocessor interfaces provide the
synchronization and error handling that enable all three processors to operate concurrently. A common interface to the
virtual address bus and data bus permits the |U to provide all addresses for floating—point and coprocessor load and
store instructions.

3.2. Description Of Parts

The integer unit TSC691E contains a 136 x 32 register file divided into eight overlapping windows. It is supplied in
256-pins M QFP packages, which allows 32-bit address and data busses, an eight-bit ASI bus, anumber of control lines,
and floating-point—coprocessor, second coprocessor interfaces and 29 signals supporting fault tolerance and test
MECHANISM.

3.3. Programming M odel

This section describes the TSCE91E's register model, register window MECHANISM, processor states,
supervisor/user modes, control/status registers, and data types. The concepts and properties explained here are central
to an understanding of the TSCE91E’s operation.

Theregister set shown in Figure 3 isa snapshot of the registers the TSCE91E sees at any given moment. The working
registers constitute the current window on the register file. Registers within the shaded area are accessible only in the
supervisor mode.

IU REGISTER FPU Registers (optional) Coprocessor Registers (optional)
PROCESSOR STATE REG (PSR FLOATING POINT QUEUE COPROCESSOR QUEUE
| =) (FPQ) (#2) (CPQ)
SUPERVISOR
ONLY | TRAPBASE REG (TBR) |
WINDOW INVALID MASK
(WIM)
MULTIPLY STEP (Y) FLOATINGPOINT STATUS COPROCESSOR STATUS
FSR (CSR)
WORKING OUTS (#8)
REGISTERS INS (#8) FLOATING-POINT REGISTERS COPROCESSOR REGISTERS
Current window LOCALS(#8) #32) (#32)
within set of
_ GLOBALS(#8)
136 Registers -

Figure 3. SPARC Register M odel

Working registers are used for normal operations and are called r registersin the TSC691E, f registersin the FPU, and
C registers in the coprocessor. The various control/status registers keep track of and/or control the state of each
processor.

3.3.1. Register Windows

The 136 r registers of the TSC691E are 32-hits wide and are divided into a set of 128 window registers and a set of
eight global registers. The 128 window registers are grouped into eight sets of 24 r registers called windows.
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Table 1. Register Addressing

Register numbers Name
r[24] to r[31] ins
r[16] to r[23] locals
r[8] to r[15] outs

r[0] tor[7] globals

The SPARC architecture supports a maximum of 32 windows. The currently active window (the window visible to the
programmer) is identified by the Current Window Pointer (CWP), a 5-bit field in the Processor State Register (PSR)
(see Section 3.3.4.2).

At any given time, a program can address 32 active registers: 24 window registers and the eight globals. By software
convention, the window registers are divided into 8 ins, 8 locals, and 8 outs. Registers are addressed as shown in
Tablel.

The current window pointer (CWP) acts as an index pointer within the stack of 128 window registers. Changing the
current window pointer by one offsetsr register addressing by 16. Since 24 r registers can be addressed by asingle CWP
value, incrementing or decrementing the CWP results in an eight register overlap between windows. This overlap of
window registersis used to pass parameters from one window to the next.

3.3.1.1. Windowing

The register file is implemented as a circular stack, with the highest numbered window joined to the lowest. In the
TSC691E, window 7 adjoins window O (see Figure 4).

Figure 4. Circular Stack of Overlapping Windows
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Previous Window (CWP + 1)

r31 Save
ﬁ.
: ins
r24 Restore
r23 -
. locals _
ri16 Current Window (CWP)
ri5 r3i
: outs : ins
rs r24
r23
i locals Next Window (CWP- 1)
r15 r3l
outs NS
r8 ro4
r23
. locals
rl16
ri5
: outs
r8
r7
globals
ro

Figure5. Overlapping Windows

Note that each window sharesitsins and outswith adjacent windows (refer to Figure 5 ). Outs from a previous window
(CWP + 1) are the ins of the current window, and the outs of the current window are the ins of the next window
(CWP - 1). While only adjacent windows share ins and outs, globals are shared by all windows. A window’s locals,
on the other hand, are not shared at all, belonging only to that window.

After power—on reset, the state of the current window pointer and the WIM register (see Section 3.3.4.3) are undefined.
The power—on reset trap routine must initialize the CWP and WIM register for correct operation.

3.3.1.1.1. Parameter Passing

Register window overlap provides an efficient means of passing parameters during procedure calls and returns. One
method of implementing a procedure call that takes advantage of the overlap is to have the calling procedure move
the parameters to be passed into its outs registers, then execute a CALL instruction. A SAVE instruction then
decrements the CWP to activate the next window. The calling procedure’ s outs become the called procedure’'s ins,
making the passed parameters directly accessible.

When a called procedure is ready to return results to the procedure that called it, those results are moved into its ins
registers and it then executes areturn, usually with a IMPL instruction. A RESTORE instruction increments the CWP
to activate the previous window. The called procedure’ s ins are still the calling procedure’ s outs; thus the results are
available to the calling procedure. Note that the terms ins and outs are defined relative to calling, not returning.

If the calling procedure must pass more parameters than can be accommodated by the outs and globals, the additional
parameters must be passed on the memory stack. One method of handling the stack pointer isto dedicate an out register
in the current window to hold the stack pointer (see Figure 6 ). After acall, this pointer (which isnow in an insregister)
can be used asthe frame pointer for the called procedure. The SAVE instruction, in addition to decrementing the CWP,
also performs an ADD using registers from the current window and placing the result in aregister in the next window.
Thisfeature can be used to set anew stack pointer for the called procedure from the old pointer in the calling procedure.
RESTORE also performsan ADD, using registersin the current window and placing the result in the previous window.
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r3l (i7)  return address
r30 (FP)  frame pointer
r29 (i5) incoming param reg 5

in r28 (i4) incoming param reg 4

r27 (i3) incoming param reg 3

r26 (i2) incoming param reg 2

r25 (i1) incoming param reg 1

r24 (i0) incoming param reg O

r23 (17) local 7
r22 (16) local 6
r21 (15) local 5
local r20 (14) local 4
ri9 (13 loca 3
ri8 (12) local 2
r1v (12) local 1
ri6 (10) local 0
r15 (o7) temp

ri4 (SP)  stack pointer
rl3 (05) outgoing param reg 5

out ri2 (04) outgoing param reg 4

ril (03) outgoing param reg 3

r1o (02) outgoing param reg 2

r9 (01) outgoing param reg 1

r8 (00) outgoing param reg 0

r7 (g7 global 7

ré (g6) global 6

r5 (g5) global 5
global r4 (94) global 4

r3 (93) global 3

r2 (92 global 2

rl (g1 global 1

ro (g0) 0

f31 floating—point value
floating :
point

fo floating—point value

Figure 6. Registers as Seen by a Procedure

3.3.1.1.2. Window Overflow and Under flow

No matter how many windows aregister file has, it is possible that at some point the program will try to use more than
are available. Since the register file is a circular stack, something must be done to prevent overwriting the oldest
window as the stack wraps around.

The TSC691E handles this by allowing bits in the Window Invalid Mask (WIM) register to be set, which are used to
mark windows that will trigger an underflow or overflow trap (see Section 3.3.4.3). If a SAVE instruction points the

8
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CWP to a marked window, a window overflow trap is generated. This means that in the TSC691E, only seven of the
eight windows are available for calls, because the last window must be saved for the trap handler. However, since a
typical overflow trap handler would transparently save one or more of the oldest windows to memory, the program sees
an apparently infinite number of windows.

The TSC691E automatically decrements the CWP upon encountering atrap. This happens without generating another
window overflow trap, regardless of the state of the WIM register. By setting at least one window as masked by the
WIM register, the system is assured of at least one window for use by the trap handler.

A RESTORE instruction will cause awindow underflow trap if it attempts to restore to a window invalidated by the
WIM register. Execution of areturn from Trap (RETT) instruction under the same circumstances will also generate
an under trap. SAVE, RESTORE, and RETT aways check the WIM register before completing their actions.

Asan example, in Figure 4 , if the procedure using the window labeled w0 executes a CALL and SAVE sequence, a
window overflow trap will occur (assuming WIM bit 7 is set). The overflow trap handler may safely use only thelocals
of w7, because w7'sinsarew0's outs and w7'souts are w6'sins.

Active window =0 CWP=0

Previous window = 1 CWP+1=1

Next window =7 CWP-1=7

Trap window =7 WIM = 10000000 (pase 2)

Theoverflow trap handler isresponsible for saving one or more of theleast recently used windowsto the memory stack.
Simulations of register file management methods show that saving and restoring one window at atime is the simplest
and most effective algorithm for handling overflow and underflow. The stack pointer to the window-save area must
be aligned to a word boundary in valid memory and, for efficiency, should be doubleword aligned. Thisis because it
isfaster to load and store doublewords than to load and store words.

A linear sequence of doubleword loads and storesis also used to speed up context switches. In a context switch, only
thewindows containing valid data are saved, and on average thisis about half the number of TSC691E windows, minus
one for the reserved trap window.

3.3.1.1.3. Alternate Register Window Usage

Although the windowing layout is particularly well suited to procedure calls and returns, hardware does not force their
usefor that purpose alone. Except for the eight-register overlap and the partial fixing of the function of several registers
by the instruction set (see Section 3.3.1.2), register windows can be viewed and manipulated as needed to fit the
application at hand.

For example, the register set can be treated as a flat register file. Access to any particular register in any window is
obtained by writing its window value into the current window pointer located in the processor state register. Moreover,
windows naturally segment registersinto blocks that could be dedicated to specific purposes and accessed through the
CWP Register saving and parameter passing could be done with a standard push/pop stack in memory, although this
would substantially increase bus traffic.

For real-time and embedded controller systems, where fast context switching may be more important than procedure
calling, the register file can easily be divided into banks of registers separated by trap handling windows set up by the
WIM register (see Section 3.3.4.3). Switching from oneregister bank to another is accomplished by writing to the CWP
field of the processor state register. Figure 7 shows the TSC691E register file divided into four banks, each with its
own trap handler window of eight local registers. Globals are accessible by all processes.

3.3.1.2. Special Registers

In general, the window registers seen at any given time can be used in any manner desired, while keeping in mind that
windows overlap at both ends. However, the instruction set does fix the use of r[0] and partially fixesthe use of r[15].

Global register r[0] always returns the value 0 when read, making the most frequently used constant easily available
at all times. In addition, when addressed as a destination operand, r[0] discards the value written to it.

The CALL instruction writes its own address into register r[15] (out register 7) of the calling procedure’s window. If
a SAVE ingtruction then activates a new window, r[15] of the old window becomes r[31] (in register 7) of the new
window and serves as the return address to the calling procedure. However, if the register is needed for some other
purpose, the return address can be saved to a stack or simply overwritten.
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WIM Register
(™ [ of 2] of ] o 1 o] 1]
124 7 6 5 4 3 2 1 0
Register Bank 3 rz3 The WIM register is used to separate
(Window 7) . the r registers into register banks. Register
ri6 banks are switched by writing into the CWP
r15 r3l field of the processor state register (PSR).
. . RESERVED
\ r8 r24
rz3 Trap registers for bank 3
: (Window 6)
rl6
( r31 ris UNUSED The TSCE91E automatically enters the next window
'2 4 ) 3 (CWP-1) upon encountering atrap, regardless of the state of
r23 " theWIM register. Thisfeatureisused to reservewindowsfor
Register Bank 2 r atrap handler.
Wi ’
(Window 5) 16
ris r3i1
. . RESERVED
\ 8 r24
r23 Trap registers for bank 2
. (Window 4)
rl6
r3l ris
. . UNUSED
r24 8
: r23
I?zglﬁer BBank 1 . The upper eight registers of the trap window are reserved for
(Window 3) 16 parameter passing from the register bank, if desired.
ris r31
. . RESERVED
r8 r24
r23 Trap registers for bank 1
. (Window 2)
ri6
( ra1 r15
. . UNUSED
24 . \ Thelower eight registers of thetrap window are unused, since
) 23 they are shared with the next register bank. These can be used
Register Bank 0 to pass parameters to the next register bank, if desired.
(Window 1) :
rl6
r15 r3l
) . RESERVED
\ r8 124
r23 Trap registers for bank 0
. (Window 0)
rl6
=
r15 UNUSED " GLoBAL
: REGISTERS
8 .
r0
Figure 7. Register Banksfor Fast Context Switching
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Two other registers are a so used by hardware to save information during atrap. Registersr[17] and r[18] (locals 1 and
2) of the trap window (not the trapping procedure’ swindow) are used to save the contents of the program counters (PC
and nPC) at the time the trap is taken. Because the trap window locals are al atrap handler is allowed to use (unless
it saves to the system stack), this limits the trap handler’ s usabl e registers to six.

3.3.2. Processor States

The TSC691E is aways in one of three possible states: execute mode, reset mode, or error mode. Execute modeis the
normal operating mode.

The processor enters error mode (at which point it halts and asserts ERROR) if a synchronous trap is generated while
trapsare disabled (see Section 3.8). The TSCE91E remainsin error mode until the RESET signal isasserted, whereupon
it entersreset mode. The external system isresponsible for asserting RESET whenever the error mode signal, ERROR,
is detected.

Reset mode is entered whenever the RESET signal is asserted (see Section 3.5). The processor remains in that mode
until RESET is deasserted. RESET signal must be asserted nine clocks at |east. Upon deassertion, the processor enters
execute mode, where the first instruction address to be executed is address 0 in the supervisor instruction address space
(see Sections 3.3.3 and 3.4.2.6).

The TSC691E fetches instructions in the execute mode. If the instruction belongs to the floating-point unit or second
coprocessor, execution is directed to the appropriate coprocessor. Otherwise, the instruction is executed by the integer
unit.

3.3.3. Supervisor/User Modes

In support of multitasking, the TSC691E employs a supervisor/user model of operation. The processor isin supervisor
mode when the S hit in the Processor State Register (PSR) is set, and in user mode when Sisreset (see Section 3.3.4.2).
The state of this bit determines which address space is accessed with the ASI bits (see Section 3.4.2.6) and whether
or not privileged instructions may be used. Privileged instructions restrict control register accessto supervisor software,
preventing user programs from accidentally altering the state of the machine.

In non-multitasking situations, such as embedded systems, user (application) code would probably run in supervisor
mode to gain access to the PSR’s CWP field and other control registers. The only way a program running in user mode
may enter supervisor mode is to encounter a software or hardware trap. A return to user mode is accomplished by
executing a Return from Trap (RETT) instruction, which restores the state of the S hit to what it was before the trap
wastaken. A commonly used trap returnisthe IMPL, RETT delayed control transfer couple (refer to Section 3.4.3.4.4).
This restores both the PC and nPC and the previous state of the S bit.

3.3.4. Control/Status Registers

TSCG691E control/status registers are all 32 bits wide. The two program counters can only be read to and written to
indirectly using suchinstructionsasaCALL, JIMPL, softwaretrap (Ticc), and Returnfrom Trap (RETT). The Processor
State Register (PSR), Window Invalid Mask (WIM), Trap Base Register (TBR), and multiply-step register (Y), are al
read/write registers. Read/write instructions that access the PSR, WIM, and TBR are privileged and thus may only be
used in supervisor mode.

Two of these registers, the PSR and TBR, have both read-only status fields and programmabl e read/write mode fields.
In Figure 8 and Figure 10, the read-only statusfields appear in lower caseitalic (for example, impl) whilethewritable
mode fields appear in UPPER CASE (for example, PIL).

3.3.4.1. Program Counters (PC and nPC)

The Program Counter (PC) contains the address of the instruction currently being executed by the TSC691E, and the
next Program Counter (nPC) holds the address (PC + 4) of the next instruction to be executed (assuming there is no
control transfer and a trap does not occur). The nPC is necessary to implement delayed control transfers, wherein the
instruction that immediately follows a control transfer may be executed before control is transferred to the target
address (see Section 3.4.3.4). Having both the PC and nPC available to the trap handler allows atrap handler to choose
between retrying the instruction causing the trap (after the trap condition has been eliminated) or resuming program
execution after the trap causing instruction.
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3.3.4.2. Processor State Register (PSR)

Trep Enable (ET) —
Previous Supervisor Mode (PS)
Supervisor Mode (S)
Enable Floating-Point Unit (EF)
Enable Coprocessor (EC)*

(1S U Integer Processor Current
Implementation Version Condition Interrupt Window
Number Number Codes Level Pointer
(impl) (ver) (ICC) Reserved (PIL) (CWP)
I 1 ‘} 1 I 1 I4 1 I 1 ‘Il 1 I 1 1 I6 1 1 | 1 | l I 1 ? 1 I 1 I 1 I 1 I 1 1 5! 1 I
31 28 27 24 14 13 12 11 8 76 54 0
I I T
23 22 21 20

Figure 8. Processor State Register

Thisisthe TSC691E's key status and control register, containing fields that report the status of processor operations
or control processor operations. Instructions that modify its fields include SAVE, RESTORE, Ticc, RETT, and any
instruction that modifies the condition code field (icc). Any hardware or software action that generates a trap will
modify the S, PS, and ET fields. The PSR may be read or written directly using the privileged instructions RDPSR and
WRPSR. The PSR is made up of the following fields:
impl—Implementation
Bits 28 through 31 contain the processor’s implementation number. The implementation number for the TSCE691E
is 0001y,. Writting PSR (WRPSR) does not modify thisfield.
ver—\Version
Bits 24 through 27 contain the T SC691E’s version number. Writting PSR (WRPSR) does not modify thisfield. The
current version number for the TSC691E is 0001,.
icc—Integer Condition Codes
Bits 20 through 23 hold the integer unit’s condition codes. These bits are modified by arithmetic and logical instruc-
tions whose names end with the letters cc (for example, ANDcc), and can be overwritten by the Writting PSR in-
struction. The Bicc and Ticc instructions base their control transfer on these bits, which are defined as follows:

N—Negative
Bit 23 indicates whether the AL U result was negative for the last icc-modifying instruction.
0 = not negative
1 = negative
Z—Zero
Bit 22 indicates whether the ALU result was zero for the last icc-modifying instruction.
0 = result was nonzero
1 =result was zero
V—Overflow
Bit 21 indicates whether an arithmetic overflow occurred during the last icc-modifying instruction. The

overflow bitisalso set if atagged operation (TADDcc, TSUBcc, etc.) is performed on non—-tagged operands
(refer to Section 3.4.3.2.3). Logical instructions that modify theicc field aways set the overflow bit to O.

0 = arithmetic overflow did not occur
1 = arithmetic overflow did occur
C—Carry
Bit 20 indicateswhether an arithmetic carry out of result bit 31 occurred from the last icc-modifying addition
or if aborrow into bit 31 resulted from the last icc-modifying subtraction. Logical instructions that modify
theicc field always set the carry bit to 0.
0 = acarry/borrow did not occur
1 = acarry/borrow did occur
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Reserved
Bits 14 through 19 are reserved. A WRPSR should write only Osto thisfield.

EC—Coprocessor Enabled
This bit determines whether the optional second coprocessor is enabled or disabled.
0 =disabled
1 =enabled
If the coprocessor is either disabled or enabled but not present, a CPop, CBccc, or coprocessor |oad/store instruction

will cause a coprocessor-disabled trap. When the CP is disabled, it retains that state until it is re—enabled or reset.
Even when disabled, the coprocessor can continue to execute instructions if it contains a queue.

EF—Floating-Point Unit Enabled
Bit 12 determines whether the FPU is enabled or disabled.

0 =disabled
1 =enabled
If the FPU is either disabled or enabled but not present, an FPop, FBfcc, or floating-point load/store instruction will

cause a floating-point-disabled trap. When disabled, the FPU retains that state until it is re—enabled or reset. Even
when disabled, it can continue to execute any instructionsin its queue.

Pl L—Processor Interrupt Level
Bits 8 through 11 identify the processor’s external interrupt priority level. The processor will only accept external
interrupts whose interrupt level is greater than the valuein PIL. Bit 11 of the PIL isthe MSB and bit 8 isthe LSB.

S—Supervisor
Bit 7 determines whether the processor isin supervisor or user mode. Because WRPSR is privileged and only avail-
ablein the supervisor mode, supervisor mode can only be entered by a software or hardware trap.

0 = user mode
1 = supervisor mode

PS—Previous Supervisor
Bit 6 holds the value that was in the S hit at the time the most recent trap was taken.

ET—Enable Traps
Bit 5 determines whether traps are enabled. If traps are disabled, all asynchronous traps are ignored. If a synchro-
nous or floating-point/coprocessor trap occurs while traps are disabled, the TSC691E halts and enters the error
mode (see Section 3.8).

0 =traps disabled
1 = traps enabled

CWP—Current Window Pointer
Bits 0 through 4 contain a pointer to the currently active register file window. CWP is decremented by traps and the
SAVE instruction, and isincremented by RESTORE and RETT instructions.

The Floating-Point Enabled (EF) bit can be used by the programmer to control FPU use when running multiple
processes. By disabling the EF bit while running a process that doesn't require the FPU, software would not have to
save and restore the FPU'’s registers across context switches. If the FPU is not present, as signaled by the input signal,
FP, the EF bit can be used to provoke floating-point instruction set emulation by generating a floating-point-disabled
trap if execution of afloating-point instruction is attempted. This technique may be used with the coprocessor as well.

If itis necessary for the software to manually disable traps, care must be taken when changing the ET bit from enabled
(ET=1) to disabled (ET=0), since the RDPSR, WRPSR instruction sequence is interruptible. One way to handle that
is to write al interrupt trap handlers so that before they return program control to the supervisor software that was
interrupted, they restore the PSR to the value it had before the interrupt was taken. Thiswill guarantee a correct result
whentheinterrupted RDPSR, WRPSR sequence continues. The only PSR bit that cannot be restored isthe PSbit, which
is overwritten when the trap is taken.

An dternative to the RDPSR-WRPSR sequence isto generate a“trap instruction” trap with a Ticc instruction. A taken
trap automatically sets ET to O, disabling further traps.
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3.3.4.3. Window Invalid Mask Register (WIM)
Window 0
Window 1
\(/jVi ndow 2
Window 3
ooz = |

----- Future Expansion for Additional Windows

31 7 6 5 4 3 2 1 0
Figure 9. Window Invalid M ask

This register designates which window(s) will cause generation of an underflow or overflow trap when pointed to by
the CWP astheresult of a SAVE, RESTORE, or RETT instruction.

Each bit in the WIM register (see Figure 9) corresponds to a window; if a bit is set to 1, the window corresponding
tothat bitismarked asinvalid. If aSAVE, RESTORE, or RETT instruction would cause the CWP to point to awindow
whose WIM bit equals 1, awindow overflow (SAVE) or window underflow (RESTORE, RETT) trap isgenerated. The
trap handler uses the local registers of the invalidated window.

A WIM hit is usually set by the operating system software to identify the boundary between the oldest and newest
window. The overflow or underflow trap prevents previous windows from being overwritten or restores previous
windows from memory. WIM can also be used to mark off register banks for fast context switching (see Section
3.3.1.1.3).

WIM isread by the RDWIM instruction, and written by the WRWIM instruction. Bits corresponding to unimplemented

windows read as zeros and are unaffected by writes.
Note:
The WIM register isNOT cleared during reset. It must be initialized by software.

3.3.4.4. Trap Base Register (TBR)

Trap Base Address(TBA) Trap Type (tt)

20 8 0jojojo

31 1211 4 3 21 0

Figure 10. Trap Base Register

When atrap occurs, the program counter (PC) is loaded with the contents of the trap base register. The TBR contains
two fields that together constitute a pointer into the trap table, which in turn contains the trap handler address (see
Figure 10). RDTBR can read the entire register; however, the WRTBR instruction can write only to the Trap Base
Address field. Only hardware can write to the Trap Type field, and bits O through 3 are zeros and are unaffected by
a write. The Trap Type field can be directly manipulated using the Ticc instruction. For more information on trap
operation, see Section 3.8.

TBA—Trap Base Address

Bits 12 through 31 contain the most-significant 20 bits of the trap table address. Thisfield appliesto all trap types except
reset, which forces address 0. The TBA is software controlled.

tt—Trap Type

Bits 4 through 11 comprise the Trap Type field, an eight-bit value that provides an offset into the trap table based on
the type of trap being taken (see Section 3.8.5.3). Thisfield retainsits value until the next trap is taken.
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3.34.5. Y Register

TheY register is used by the multiply step instruction (MUL Scc) to create 64-bit products. This register is read and
written using the non-privileged RDY and WRY instructions.

3.3.5. Data Types

The TSC691E supports ten data types (eleven with extended-precision floating-point, see Section 3.3.5.3). Integer
types include byte, unsigned byte, halfword, unsigned halfword, word, unsigned word, doubleword, and tagged data.
ANSI IEEE 754-1985 floating-point types include single- and double-precision. A byte is 8 bits wide, halfwords are
16 hits, words and single-precision floating-point are 32 bits, doublewords and double-precision floating-point are 64
bits. Table 2 shows the formats for single-precision and double-precision floating—point numbers.

Table 2. Floating—Point Formats

Single-Precision Floating—Point Format

s=sign (1)
e = hiased exponent (8)
f = fraction (23)

normalized number (0 < e< 255): (-1)s* 28127 1 ¢

subnormal (e=0): f=£0 (-1)s* 2-126* o f

zero (e=0): f=£0 (-Ds* 0

signaling NaN: f#£0 s=u; e =255 (max); f =.0uu---uu
(at least one bit must be nonzero)

quiet NaN: f=#£0 s=u; e= 255 (max); f =.1uu---uu

infinity: s=0or 1, depending upon sign;

e =255 (max); f =.00.--00 (all zeros)

Double-Precision Floating—Point Format

s=sign (1)
e = biased exponent (11)
f =fraction (52)

normalized number (0 < e < 2047 ): (-1)s * 261023 * 1 §

subnormal (e=0): f=#0 (-1)s* 2-1022* o f

zero (e=0): f#£0 (-1)s*0

signaling NaN: f=£0 s=u; e=2047 (max); f = .0uu---uu
(at least one bit must be nonzero)

quiet NaN: f#£0 s=u; e= 2047 (max); f = .1uu---uu

infinity: s=0or 1, depending upon sign;

e = 2047 (max); f =.00..-00 (all zeros)

3.3.5.1. Data Organization In Registers
The organization of the ten data types when loaded into registersis shown in Figure 11 .
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BYTE | SSS. i, sss |g] BYTE |
31 876 0
UNSIGNED [ 000................. 000 [ BytE |
31 g 7 0
HALFWORD | SSS .......... sss |s| naLFworD |
31 16 15 14 0
UNSIGNED 000 .......... 000
HALFWORD |31 16' = HALPWORD o|
SIGNED
WoRe [s] WORD 0|
31
UNSIGNED
UNSIG |31 WORD 0|
L WORD | 1A
31 2 10
DOUBLE WORD 0 (MOST SIGNIFICANT WORD) FIN]
WORD WORD 1 (LEAST SIGNIFICANT WORD) F[N+1]
31 0
SINGLE
L N FP |3§i| _ EXPONENT 23| _ FRACTION 0|
DOUBLE- 5| EXPONENT | HIGH-ORDER BITS OF FRACTION | f[N]
PRECISION FP LOW-ORDER BITS OF FRACTION f[N+1]
31 30 20 19 0

Figure 11. Processor Data Types

When moving memory data to or from the registers, byte operands are always loaded to or extracted from the lower
eight bits of aregister. On aload, bits 8 through 31 are sign-extended for a byte or zero-extended for an unsigned byte.
Halfwords are always loaded to or extracted from the lower 16 bits of aregister. Bits 16 through 31 are sign-extended
for ahalfword or zero-extended for an unsigned halfword during aload. All 32 bits of a signed or unsigned word are
loaded from or stored to memory. Stores of byte and halfword data are not sign—extended. Tegged datais handled as
an unsigned word. Doubleword operands load to and store from two contiguous registers, r[n] and r[n+1], with r[n]
containing the most significant word. Figure 12 illustrates the relationship between the way datais stored in memory
and the way it isloaded into registers.

For single-precision, floating-point operands, bit 31 contains the sign hit, bits 23 through 30 contain the eight bits of
exponent, and bits 0 through 22 contain the 23-bit fraction. Double-precision operands require aregister pair, with the
upper-order register r[n] containing the sign bit, 11-bit exponent, and the high-order bits of the fraction. The
|lower-order register r[n+1] contains the low-order bits of the fraction. Total fraction sizeis 52 bits.

When loading doublewords or double-precision operands from memory to the working registers (either r or f), the
destination register must be at an even address or the hardware will force such an address. For example, an attempted
load double to register r[9] would be forced to r[8], so that the most significant word would be loaded in r[8] and the
least significant word in r[9]. A load double to r[0] would result in the loss of the most significant word.
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Address N N+1 N+2 N+3
Memory location [31 24|23 16]15 8|7 0]
Destination Register [31 Zeros or Sign Extension 8|7 0|
Byte Load Example (From Address N+1)
Address N N+1 N+2 N+3
DataBus [31 24|23 16|15 8|7 0]
G e S
Source Register [31 Don't Care 8|7 0]

(*) Theirrelevant bytes of the data bus are filled with the stored data byte (idem for halfword).

Byte Store Example (To Address N+2)

Figure 12. Byte Operand Load and Store

3.3.5.2. Data Organization In Memory

Organization and addressing of datain memory followsthe “Big-Endian” convention wherein lower addresses contain
the higher-order bytes (see Figure 13).

For astored word, address N corresponds to the most significant byte of the word, and address N+3 corresponds to the
least significant byte. The address of a halfword, word, or doubleword is also the address of its most significant byte.
A halfword datum must be located on a halfword boundary (address bit [0] = 0), which is evenly divisible by 2.
Similarly, aword must be located on aword boundary (address bits[1:0] = 0) evenly divisible by 4, and a doubleword
must be located on a doubleword boundary (address bits [2:0] = 0) evenly divisible by 8. Attempting to access
misaligned datawill generate a“memory_address not_aligned” trap.

63 Doubleword 0
31 Word ol 31 Word 0
15 Halfword ol 15 Halfword ol 15 Halfword ol 15 Halfword 0
7 Byte 5|, Byte 4|, Byte 5|, Byte |7 Byte |7 Byte 5|, Byte 7 Byte g
Address N N+1 N+2 N+3 N+4 N+5 N+6 N+7

Figure 13. Data Organization in Memory

3.3.5.3. Extended Precision

The SPARC architecture supports another data type, an ANSI/IEEE 754-1985 extended-precision floating-point type
with awidth of 128 bits (see Table 3 ). When loaded to the working registers, extended-precision operands require a
register quadruple (see Figure 14 ). The upper-order register r[N] contains the sign bit, a 15-bit exponent, and a 16-bit
reserved field. The next register r[N+1] containsthe one-bit integer part and 31 high-order bits of the fraction. The next
register rf[N+2] holds the 32 low-order bits of the fraction. Total fraction size is 63 bits. The fourth extended-precision
register rf[N+3] is reserved. As with double-precision operands, when loading an extended-precision operand, the
destination register must be at an even address or the hardware will force an even address.

The memory address of an extended-precision datum is also the address of its most significant byte (see Figure 15).
An extended-precision datum must be located on an extended-precision boundary (address bits [3:0] = 0), which is
evenly divisible by 16.
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Table 3. Extended—Precision Floating—Point For mat

s=sign (1)

e = biased exponent (15)

j = integer part (1)

f-msb f-Isb = f = fraction (63)

normalized number (0<e<32767;j=1): (-1)S* 216383« j f
subnormal number (e=0;j=0) (f % 0): (-1)S* 2-16382 j f

zero (s=0;e=0)(f#0)(j#0): (-1)s*0

signaling NaN: f##0 s=u; e= 32767 (max); j = u;

f =.0 uu---uu (at least one bit must be
must be nonzero)

quiet NaN: f#£0 s=u; e= 32767 (max); j = u;
f=.1uu--uu
infinity: s=0or 1, depending upon sign;

e= 32767 (max); j = u;
f =.00--- 00 (al zeros)

EXTENDED PRECISIONFP  \ [S EXPONENT RESERVED
e D HIGHORDER BITS OF FRACTION
N+ LOWORDER BITS OF FRACTION
N+ RESERVED
3130 16 15 0

Figure 14. Extended—Precision Data Organization in Registers

128 Extended — Precision Data 0

63 Doubleword 0|63 Doubleword 0

31 Word 0| 31 Word 031 Word 0|31 Word 0
Address N N+4 N+8 N+12

Figure 15. Extended—Precision Data Organization in Memory

3.4. Instruction Set

This section describes the TSC691E instruction set as defined by the SPARC architecture. Included are subsections
on instruction formats, addressing, instruction types, and an op code summary. A specific document, SPARC V7.0
Instruction Set contains a description of the assembly language syntax and a complete set of instruction definitions.

3.4.1. Instruction Formats

There are only three basic instruction formats plus three subformats. Format 1 is used for the CALL instruction, format
2 for the SETHI [1 and Branch instructions, and format 3 for the remaining integer and floating-point/coprocessor
instructions. Figure 16 shows each format with its fields, bit positions, and the instructions that use that format. All
instructions are one word long and aligned on word boundaries in memory. For most instructions, operands are located
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in source registers (represented by rsl and rs2). The remaining instructions use one source register plus adisplacement
or immediate operand contained within the instruction itself.

Note:

See chapter 4.2 for application of thisinstruction in Program Flow Control.

FORMAT 1

FORMAT 2

FORMAT 3

cond
disp22

disp30

imm22

op

op2
op3
opc

opf

rd

CALL
opcosie 30-Bit Displacement (disp30)
31 30 0
- SETHI
op()gg;ie Destination (rd) o OCF;JZ(J)'e 22-Bit Immediate (imm22)
31 30 25 22 0
BRANCH
opele | a| Tescond | e 22-Bit Displacement (disp22)
31 30 29 25 22 0
_ OTHER INTEGER INSTRUCTIONS
o;zgg;je Destination (rd) o Oﬁgge Source 1 (rsl) 0 | Alternate Space (asi) Source 2 (rs2)
or()gg;je Destination (rd) o) o%)?ge Source 1 (rsl) 1 13-Bit Immediate (Ssimm13)
31 30 25 19 14 13 5 0
FLOATING POINT/COPROCESSOR OPERATIONS
opcode P opcode FP Opcode (opf)
(op) Destination (rd) op3) Source 1 (rsl) CP Opoode (0pd) Source 2 (rs2)
= 31 30 25 19 14 5 0

Figure 16. Instruction Format Summary

Thea (annul) bit is used in branch instructions to control the execution of the delay instruction that imme-
diately follows a control transfer instruction (see Section 3.4.3.4.3).

The address space identifier is an eight-bit field used in load/store aternate instructions. See Section
3.4.2.6.

Thisfield identifies the condition code used for a branch instruction.

Thisfield contains the 22-hit displacement value used for PC-relative addressing for a taken branch. It is
sign extended to full-word size when used.

Thisfield contains the 30-bit displacement used for the PC-relative addressing of a CALL instruction.

The i (immediate) bit determines whether the second ALU operand (for non-FPop instructions) will be
r[rs2] (i = 0), or asign-extended simm13 (i = 1).

Thisfield contains the 22-bit constant used by the SETHI instruction. (See Chapter 4.2 for Program Flow
Control)

The op field selects the instruction format as shown in Table 4 .
The op2 field (Table 5) contains the instruction opcode for format 2 instructions (op=0).
The 6-hit op3 field contains the instruction opcode for aformat 3 instruction (op = 2 or 3).

The 9-hit opc identifies a coprocessor—operate (CPop) instruction. The relationship between the opc field
and CPop instructionsis described in Section 3.4.3.6.

The 9-bit opf identifies a floating-point-operate (FPop) instruction. The relationship between the opf field
and FPop instructions is described in Section 3.4.3.6.

Ther register (or r register pair) or f register (or f register pair) specified in therd field serves as the source
during store instructions. For al other instructions, the identified register (register pair) serves as the des-
tination. Note that r[0] as a source supplies the value 0, and as a destination causes the result to be dis-
carded. Note that rd must be ar register for integer instructions and must be af register for floating—point
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instructions.
rsl The 5-bit rsl field identifies the register containing the first source operand. The sourceisar register for
integer instructions, af register for floating—point instructions, or ac register for coprocessor instructions.
rs2 The5-bit rs2 field identifiesthe register containing the second source operand. The sourceisar register for

integer instructions, af register for floating—point instructions, or a c register for coprocessor instructions.

smml13  Thisfield holdsthe 13-bit immediate value used asthe second ALU operand wheni = 1. It issign-extended
to full-word size when used.

Table 4. op field Coding

op Value Instruction
00 Bicc, FBfcc, CBccc, SETHI
01 cal
100r 11 Other

Table 5. op2 Field Coding

op2 Value Instruction
000 Unimplemented
010 Bicc
100 SETHI
110 FBfcc
111 CBccc

Unused (reserved) bit patterns which are used in the op, op2, op3, or i (wrong bit used) fields of instructions will cause
anillegal_instruction trap. Fields that are not used for a particular instruction are ignored and so will not cause atrap,
regardless of the hit pattern placed in that field. Unused or reserved bit patterns used in the opf or opc fields of a
floating—point or coprocessor instruction cause an fp exception or a cp exception.

3.4.2. Addressing

Because it uses a load/store architecture, the TSC691E needs only four address modes. Memory address generation
isdone only for load and store instructions and is byte oriented. Program counter-rel ative addressing is generated only
for calls and branches and is word-boundary oriented because it is addressing instructions. Register-indirect addressing
appliesto jumps, returns, and traps and is also word-boundary oriented. Address generation isillustrated in Figure 17 .

3.4.2.1. Two—-Register

Two-register addressing uses the rsl and rs2 fields (instruction format 3) to specify two source registers whose 32-bit
contents are added together to create a memory address. Thisis aload/store (or register-indirect) addressing mode.

3.4.2.2. Register Plus 13-Bit Immediate

This addressing mode is used where an immediate value is required as one of the sources. The address is generated
by adding the 32-bit source register specified by rsl (format 3) to a 13-bit, sign-extended immediate value contained
in theinstruction. Thisis aload/store (or register-indirect) addressing mode.

3.4.2.3. 13-Bit Immediate

Immediate addressing is a special case of register-plus-immediate addressing. In this case, the rsl-specified register
is r[0] (whose value is 0), which means the address is generated using only the 13-bit immediate value. Use of this
special case alows absolute addressing of the upper and lower 4 kbytes of a memory (or instruction) space with the
13-bit immediate value. Immediate addressing is the simplest method of addressing because no registers need be set
up beforehand.
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31 0
Register Source 1
2 0 Memory Address
- (Program Counter)
Register Source 2
31 0
I Register Source 1
Memory Address
< - - = - - S (Progra%ln Counter)
Sign Extension 13-Bit Immediate
31 13 0
Sign Extension 13-Bit Immediate > Memory Address

(Program Counter)
LOAD/STORE(JMPL, RETT)

31 0
Program Counter +4
31 1 o} Program Counter
r 30-Bit Displacement (0] [0}
CALL
31 0
Program Counter +4

- - 2 1 0} Program Counter

Sign Extension 22-Bit Displacement (0] 0]

BRANCH

Figure 17. Address Generation

34.24. CALL

Address generation for the CALL instruction is program counter-relative, that is, the target address is based on the
program counter. Because the TSC691E is a delayed-control-transfer machine (see Section 3.4.3.4), before the address
is calculated, the PC isreplaced by the nPC, so the calculation is actually done with PC + 4 (see Figure 17).

Anaddressisgenerated by adding this PC + 4 value to the 30-bit word displacement contained inthe CALL instruction.
The displacement is formed by appending two zeros to the 30-bit value from the instruction. This allows control
transfers to any word-boundary location in the virtual memory instruction space. The result of the address generation
becomes the new nPC.

3.4.2.5. Branch

Branch instructions also use PC-relative addressing, but in this case, the value added to PC + 4 isasign-extended 22-bit
word displacement. Again, the displacement is formed by appending two zeros to the 22-hit value contained in the
branch instruction and then sign extending out to 32 bhits. This alows a branching range of 8 Mbytes on word
boundaries. The generated address becomes the new nPC.
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Table 6. ASI Assignments

TSCG691E Address Space | dentifier (ASI) Address Space
00001000 (08 H) User Instruction
00001010 (OA H) User Data
00001001 (09 H) Supervisor Instruction
00001011 (0B H) Supervisor Data

34.2.6. ASl

In addition to the 32 bits of address output by the processor, an additional eight bits of Address Space Identifier (ASI)
is also sent to system memory during a memory access. These ASI bits control access to 256 32-bit address spaces,
which may or may not overlap depending upon the designer’s implementation. The SPARC architecture defines four
ASI values for user instructions, user data, supervisor instructions, and supervisor data (see Table 6 ). These four ASI
values al map to the same 32-hit address space, and are used to implement access-evel protection. AS| values are
commonly used to identify user/supervisor accesses, to identify special protected memory accesses such as boot
PROM, and to access resources such as TSC693E control registers, TLB entries, cache tag entries, etc...

The ASI valueis supplied by the TSCE91E for each instruction fetch and each data access encountered. The TSC690
family assigns a number of these ASl values to the TSCE93E and a number are reserved for future assignment.
Nevertheless, nearly 80 are |eft unassigned for use by the system.

3.4.3. Instruction Types

TSCE91E instructions fall into six functional categories. load/store, arithmetic/logical/shift, control transfer,
read/write control register, floating-point-operate/coprocessor-operate, and miscellaneous. For complete information
on eachinstruction, refer toitsdefinition in SPARC V7.0 Instruction Set.

3.4.3.1. Load/Store

Load and store instructions (see Table 7) move bytes, hafwords, words, and doublewords between the
byte-addressable main memory and a register in either the IU, FPU, or CP. They are the only instructions that access
data memory. For floating-point and coprocessor loads and stores, the TSC691E generates the memory address and
the FPU or CP receives or supplies the data.

The TSC691E implements a hardware-interlocked delay when an instruction immediately following aload triesto read
the register being loaded. The datawill be supplied, but only after a one-cycle delay.

Load and store instructions use two-register, register-plus-immediate, and immediate addressing modes. In addition
to the 32-hit address, the TSC691E also generates an eight-bit address space identifier.

34311 AS

The Address Space ldentifier (ASI) isused by the external system to ascertain which of the 256 available address spaces
to accessfor theload or store being executed. Access to these alternate spaces can be gained directly by using the “load
from alternate space”’ and “store to alternate space” instructions. These instructions use two-register addressing and
theasi field ininstruction format 3. The address space specified in the asi field overrides the automatic ASI assignment
made by the processor, giving accessto such resources as system control registersthat areinvisibleto the user. Because
the ASl isintended for use by the system operating software, the aternate space instructions are privileged and can
only be executed in supervisor mode.
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Table 7. Load/Store | nstructions

Name Operation Cycles
LDSB (LDSBA*) Load Signed Byte (from Alternate Space) 2
LDSH (LDSHA*) Load Signed Halfword (from Alternate Space) 2
LDUB (LDUBA*) Load Unsigned Byte (from Alternate Space) 2
LDUH (LDUHAY) Load Unsigned Halfword (from Alternate Space) 2
LD (LDAY¥) Load Word (from Alternate Space) 2
LDD (LDDA%*) Load Doubleword (from Alternate Space) 3
LDF Load Floating—Point 2
LDDF Load Double Floating—Point 3
LDFSR Load Floating—Point Status 2
LDC Load Coprocessor 2
LDDC Load Double Coprocessor 3
LDCSR Load Coprocessor Status Register 2
STB (STBA¥*) Store Byte (into Alternate Space) 3
STH (STHA*) Store Halfword (into Alternate Space) 3
ST (STA*) Store Word (into Alternate Space) 3
STD (STDAY) Store Doubleword (into Alternate Space) 4
STF Store Floating—Point 3
STDF Store Double Floating—Point 4
STFSR Store Floating—Point Status Register 3
STDFQ* Store Double Floating—Point Queue 4
STC Store Coprocessor 3
STDC Store Double Coprocessor 4
STCSR Store Coprocessor State Register 3
STDCQ* Store Double Coprocessor Queue 4
LDSTUB (LDSTUBAY*) Atomic Load-Store Unsigned Byte (in Alternate Space) 4
SWAP (SWAPA*) Swap r Register with Memory (in Alternate Space) 4

* denotes supervisor instruction

3.4.3.1.2. Multiprocessing I nstructions

In addition to alternate address spaces, the TSC691E provides two uninterruptible instructions, SWAP and LDSTUB
(atomic load and store unsigned byte), to support tightly coupled multiprocessing.

The SWAP instruction exchanges the contents of an r register with a word from a memory location without allowing
asynchronous traps or other memory accesses during the exchange.

The LDSTUB instruction reads a byte from memory into an r register and then overwrites the memory byteto all ones.
Aswith SWAP, LDSTUB prevents asynchronous traps and other memory accesses during its execution. LDSTUB is
used to construct semaphores.
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Multiple processors attempting to simultaneously execute SWAP or LDSTUB to the same memory location are
guaranteed that the competing instructions will executein seria order.

3.4.3.2. Arithmetic/L ogical/Shift

Thisclass of instructions performs acomputation on two source operands and writesthe result into adestination register
r[rd]. One of the source operandsis aways a register, r[rsl], and the other depends on the state of the instruction’s “i”
(immediate) bit. If i = 0, the second operand isregister r[rs2]. If i = 1, the operand isthe 13-bit, sign-extended constant
in the instruction’s smm13 field. SETHI [1] js a special case because it is a single—operand instruction.

Table 8. Arithmetic/L ogical/Shift I nstructions

Name Operation Cycles
ADD (ADDcc) Add (and modify icc) 1
ADDX (ADDXcc) Add with Carry (and modify icc) 1
TADDcc (TADDccTV) Tagged Add and modify icc (and Trap on oVerflow) 1
SUB (SUBcc) Subtract (and modify icc) 1
SUBX (SuBXcc) Subtract with Carry (and modify icc) 1
TSUBcc (TSUBccTV) Tagged Subtract and modify icc (and Trap on oVerflow) 1
MULScc Multiply Step and modify icc 1
AND (ANDcc) And (and modify icc) 1
ANDN (ANDNCcc) And Not (and modify icc) 1
OR (ORcc) Inclusive Or (and modify icc) 1
ORN (ORNCcc) Inclusive Or Not (and modify icc) 1
XOR (XORcc) Exclusive Or (and modify icc) 1
XNOR (XNORcc) Exclusive Nor (and modify icc) 1
SLL Shift Left Logical 1
SRL Shift Right Logical 1
SRA Shift Right Arithmetic 1
SETHI [U Set High 22 Bits of r Register 1

For most arithmetic and logical instructions, there is both a version that modifies the integer condition codes and one
that doesn’t (see Table 8).

Shift instructions shift left or right by a distance specified in either aregister or an immediate value in the instruction.

Themultiply step instruction, MUL Scc, is used to generate the signed or unsigned 64-bit product of two 32-bit integers.
For more information on MUL Sc, refer to its definition in SPARC V7.0 Instruction Set.
Note [1]: See section 4.2 for application of thisinstruction in Program Flow Control.

3.4.3.2.1. Register r[0]

Because register r[0] reads as a 0 and discards any result written to it as a destination, it can be used with some
instructions to create syntactically familiar pseudoinstructions. For example, an integer COMPARE instruction is
created using the SUBcc (subtract and set condition codes) with r[0] as its destination [11. A TEST instruction uses
SUBcc with r[0] as both the destination and one of the sources. A register-to-register MOVE is accomplished using
an ADD or OR instruction with r[0] as one of the source registers. A negation is done with SUB and r[0] as one source.
If the assembler being used supports pseudoinstructions, it translates the pseudoinstruction into the equivalent
instruction in the native assembly language. Refer to your assembly language manual for details.

Note [1]: Refer to Program Flow Control for more information. (see section 4.2)
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3.4.3.2.2. SETHI

SETHI is a specia instruction that can be combined with another arithmetic instruction (such as an OR immediate)
to construct a 32-bit constant. SETHI loads a 22-bit immediate value into the upper 22 bits of the destination register
and clearsthe lower 10 bits. The arithmetic immediate instruction which followsis used to load the lower 10 bits. Note
that the 13-bit immediate value gives a 3 bit overlap with the 22-bit SETHI value. SETHI can aso be combined with
aload or store instruction to construct a 32-bit memory address.

SETHI can also be used in Program Flow Control to compare the precomputed checksum given as a special SETHI
instruction (SETHI 0,%SUM) with the checksum. This special SETHI instruction can be inserted after every branch,
call, and before every branch-in point.

3.4.3.2.3. Tagged Arithmetic

The tagged arithmetic instructions are useful for languages that employ tags, such as LISP, Smalltalk, or Prolog. For
efficient support of such languages, the SPARC architecture definestagged dataas adatatype. Tagged dataare assumed
to be 30 hits wide with the tag hits (the least two significant bits) set to zero (see Figure 18). A tagged add (TADDcc)
or subtract (TSUBcc) will set the overflow bit if either of the operands has anonzero tag or if anormal overflow occurs.

TAGGED | WORD | d o

DATA 31 210

OTHER | WORD | x| x| At least one bit
a1 > 10 must be non—zero.

Figure 18. Tagged Data Example

Tagged add or subtract instructions are normally followed by a conditional branch. If the overflow bit is set during a
tagged add or subtract operation, control is commonly transferred to a routine that checks the operand types. In order
to expedite this software construct, the SPARC architecture provides two trap on overflow instructions: TADDccTV
and TSUBccTV, which automatically trap if the overflow bit is set during their execution.

3.4.3.3. Control Transfer

Control transfer instructions are those that change the values of the PC and nPC. These include conditional branches
(Bicc, FBfcc, CBccc), acal (CALL), ajump (JMPL), conditional traps (Ticc), and a return from trap (RETT). Also
included are the SAVE and RESTORE instructions, which don’t transfer control but are used to save or restore windows
during acall to anew procedure or areturn to acalling procedure (see Table 9).

Table 9. Control Transfer Instructions

Name Operation Cycles
SAVE SAVE caller’s window 1
RESTORE RESTORE caller’s window 1
Bicc Branch on integer condition codes 1*
FBfcc Branch on floating—point condition codes 1*
CBcce Branch on coprocessor condition codes 1*
CALL Call 1*
JMPL JuMP and Link 2*
RETT RETurn from Trap 2%
Ticc Trap on integer condition codes 1 (4if taken)

* assumes delay dot isfilled with auseful instruction
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In the TSCB91E, control transfer is usually delayed so that the instruction immediately following the control-transfer
instruction (called the delay instruction) can be executed before control transfers to the target address. The delay
instruction is always fetched. However, the annul or a bit in conditional branch instructions can cause the instruction
tobeannulled (i.e., prevent execution) if the branch is not taken (or aways annulled in the case of BA, FBA, and CBA).
If a branch is taken, the delay instruction is always executed (except for BA, FBA, and CBA, see Section 3.4.3.4.3).
Table 10 shows the characteristics of each control transfer type.

Table 10. Control Transfer Instruction Characteristics

Instructions Addressing Mode Delayed Annul Bit
Conditional Branch Program Counter Relative yes yes
Cal Program Counter Relative yes yes
Jump Register Indirect yes no
Return Register Indirect yes no
Trap Register Indirect no no

Program Counter Relative

PC-relative addressing computes the target address by adding a displacement to the program counter. See Section
34.2.

Register-Indirect
Register-indirect addressing computes the target address as either r[rsl] + r[rs2] if i =0, or r[rsl] + smm13ifi=1.
See Section 3.4.2.

Delayed

A control-transfer instruction is delayed if it transfers control to the target address after a one-instruction delay. See
Section 3.4.3.4.

Annul Bit
In an instruction with an annul bit, the delay instruction that follows may be annulled. See Section 3.4.3.4.3.

3.4.3.3.1. Branching and the Condition Codes

The condition code bitsin the icc, fcc, and ccc fields, are located (respectively) in the PSR (Processor State Register),
FSR (Floating-point State Register), and CSR (Coprocessor State Register). The integer condition code bits are
modified by arithmetic and logical instructions whose names end with the letters cc, or they may be written directly
with WRPSR. The floating-point condition codes are modified by the floating-point compare instructions, FCMP and
FCMPE, or directly with the STFSR instruction. Modification of the coprocessor condition codes is done directly with
STCSR or by operations defined by the particular coprocessor implementation.

Except for BA (Branch Always) and BN (Branch Never), a Bicc instruction evaluates the integer condition codes as
specified in the cond field. If the tested condition evaluates as true, the branch is taken, causing a PC-relative delayed
transfer to the address [(PC + 4) + sign extnd(disp22)]. If the evaluation result isfalse, the branch is not taken. For BA
and BN, there is no evaluation; the result is ssimply forced to true for BA and false for BN.

If the branch is not taken, then the annul bit is checked. If the “a’ bit is set, the delay instruction is annulled. If “&” is
not set, the delay instruction is executed. If the branch is taken, the annul bit is ignored and the delay instruction is
executed. For more information on delayed control transfer and the annul bit, see Section 3.4.3.4.

BN, of course, never branches, and therefore executes like a NOP (but is not recommended as a NOP instruction).
However, asfar asthe annul bit is concerned, BN acts like anormal branch instruction, annulling the delay instruction
if a=1and executing itif a=0.

BA, on the other hand, always branches, so the annul bit would normally be ignored. But for BA, FBA, and CBA, the
effect of the annul bit is changed. See Section 3.4.3.4.3 for detalls.

Asillustrated in Table 11 , Bicc and Ticc instructions test for the same conditions and use the same cond field codes
during their evaluations.

An FBfcc instruction operates in the same way as a Bicc, except it tests the FCC[1:0] signals output by the
floating—point unit (see Table 12 ). The FCC[1:0] signals are fl oating—point condition codes which are set by executing
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a floating—point compare instruction. A CBccc instruction behaves in the same manner as a FBfcc, except it tests the
CCCJ1:0] signals supplied by the coprocessor (see Table 13). Both FBN and CBN behave in the same way as BN.

Table 11. Bicc and Ticc Condition Codes

Condition Test Condition Test
0000 Never 1000 Always
0001 Equal to 1001 Not equal to
0010 Less than or equal 1010 Greater than
0011 Lessthan 1011 Greater than or equal to
0100 Less than or equal to, unsigned 1100 Greater than, unsigned
0101 Carry set (less than, unsigned) 1101 Carry clear (greater than or equal to, unsigned)
0110 Negative 1110 Positive
0111 Overflow set 1111 Overflow clear

Table 12. FBfcc Condition Codes

Condition Test Condition Test
0000 Never 1000 Always
0001 Not equal to 1001 Equad to
0010 Less than or greater than 1010 Unordered or equal to
0011 Unordered or less than 1011 Greater than or equal to
0100 Lessthan 1100 Unordered or greater than or equal to
0101 Unordered or greater than 1101 Lessthan or equal to
0110 Greater than 1110 Unordered or less than or equal to
0111 Unordered 1111 Ordered

Table 13. CBccc Condition Codes

Opcode Condition CCC[1:0] Test Opcode Condition CCCJ[1:0] Test

CBN 0000 Never CBA 1000 Always

CB123 0001 lor2or3 CBO 1001 0

CB12 0010 lor2 CB03 1010 Oor3

CB13 0011 lor3 CBO2 1011 Oor2
CB1 0100 1 CB023 1100 Oor2or3

CB23 0101 20r3 CB01 1101 Oorl
CB2 0110 2 CBO013 1110 Oorlor3
CB3 0111 3 CBO012 1111 Oorlor2

3.4.3.3.2. Trap Instructions

The“Trap on integer condition codes’ (Ticc) instruction eval uates the condition codes specified by its cond (condition)
field. If the result is true, atrap is immediately taken (no delay instruction). If the condition codes evaluate to false,
Ticc executes asa NOP.

Once the Ticc istaken, it identifies which software trap type caused it by writing its trap number + 128 (the offset for
trap instructions) into the tt field of the Trap Base Register (TBR), asillustrated in Figure 19 . The trap number is the
least significant seven bits of either “r[rsl] + r[rs2]” if thei field is zero, or “r[rsl] + sign extnd(simm13)” if thei field
isone. The processor then disables traps (ET=0), saves the state of Sinto PS, decrements the CWP, saves PC and nPC
into thelocalsr[17] and r[18] (respectively) of the new window, enters supervisor mode (S=1), and writesthe trap base
register to the PC and TBR + 4 to nPC.
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Trap Base Register | Trap Base Address(TBA) | Trap Type(tt) Jo 0 o of

31 12 1 4 3 0

2 22 : 128
WM 7-Bit operand (6:0] [7:0]
m s S (H)LEL Ay -

/ ﬁ/@%«w /%—;it Immediate

bit of Ticc instruction = 1

tt field of Trap Base Register

2 7 A : 128
%WW 7-Bit operand ) _
/7 6 o (+ 6.0l ) L0 tt field of Trap Base Register

| Regiss soirees’ /)| 7-Bit operand

bit of Ticcinstruction=0

Figure 19. Ticc Trap Address Generation

Ticc can be used to implement kernel calls, breakpointing, and tracing. It can also be used for run-time checks, such
as out-of-range array indices, integer overflow, etc.

Return from a trap is accomplished using the delayed control transfer couple, IMPL, RETT. RETT first increments
the CWP by one, calculates the return address (using register-indirect addressing), and then checks for a number of
trap conditionsbeforeit allowsareturn. Anillegal_instruction trap isgenerated if trapsare enabled (ET=1) when RETT
is executed. If ET=0, RETT checks for other trap conditions and will generate a reset trap and enter error mode for
the following conditions: S=0, the new CWP would cause a window underflow, or the return address is not word
aligned. If none of these conditions exist, RETT enables traps (ET=1), restores the previous supervisor state to the S
bit, and writes the target address into the nPC.

3.4.3.3.3. Callsand Returns

Calling a subroutine or procedure can be done in one of two ways. A CALL instruction computes its target address
using a PC-relative displacement of 30-bits. The JuMP and Link (JMPL) instruction uses register-indirect addressing
(the sum of two registers or the sum of aregister and a 13-hit signed immediate value) to compute its target address.
Either instruction allows control transfer to any arbitrary instruction address.

Control transfer to a procedure that requires its own register window is done with either a CALL or IMPL instruction
and a SAVE instruction. A procedure that does not need a new window, aso-called “leaf” routine, isinvoked with only
the CALL or IMPL.

The CALL instruction stores its return address (the current PC) into outs register r[15]. When the new window is
activated, this becomes ins register r[31] (see Figure 5). The IMPL instruction stores its return address (the contents
of PC, whichisthe Link) into the r register specified in the destination field, rd.

The primary purpose of the SAVE instruction isto “save” the caller’s window by decrementing the Current Window
Pointer (CWP) by one, thereby activating the next window and making the current window into the previous window.
SAVE also performs a normal ADD, using source registers from the caller’s window, but writing the result into a
destination register in the new window. This can be used to set a new stack pointer from the previous one (see Section
33.1.1.1).

Return from a procedure requiring its own window is done with aRESTORE and a JMPL instruction. A leaf procedure
returns by executing a IMPL only. The target address for the return is normally that of the instruction following the
CALL's or IMPL’s delay instruction; that is, the return address + 8. The RESTORE instruction restores the caler’'s
window by incrementing the CWP by one, causing the previous window to become the current window. Aswith SAVE,
RESTORE performsan ADD using source registersfrom the called (new) window and writing theresult into the calling
(previous) window.

Both SAVE and RESTORE compare the new CWP against the Window Invalid Mask (WIM) to check for window
overflow or underflow. They may aso be used to atomically change the CWP while establishing a new memory stack
pointer inanr register.
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3.4.3.4. Delayed Control Transfer

Traditiona architectures usually execute the target instruction of a control transfer immediately after the control
transfer instruction. However, in a pipelined RISC architecture, this type of transfer would require flushing the
instruction that follows the control transfer instruction. To avoid creating ahole or bubblein the pipeline, the TSCE91E
delays execution of the target instruction until the instruction following the control transfer instruction is executed. The
instruction in this delay slot is called the delay instruction.

Table 14. Delayed Control Transfer Instruction Example

PC nPC Instruction
8 12 Non-control transfer
12 16 Control transfer (target = 40)
16 40 Non-control transfer (delay instruction)
(Transfers control to 40)
40 a4
Table 15. Effect of Annul Bit Reset (a=0)
PC nPC Instruction Action
8 12 Non-control transfer Executed
12 16 Bicc (a=0) 40 Not Taken
16 20 Delay slot instruction Executed
20 24 Executed
Table 16. Effect of Annul Bit Reset (a=1)
PC nPC Instruction Action
8 12 Non-control transfer Executed
12 16 Bicc (a=1) 40 Not Taken
16 20 Delay slot instruction (annuled) Not Executed
20 24 Executed

3.4.3.4.1. PC and nPC

The Program Counter (PC) contains the address of the instruction currently being executed by the TSC691E, and the
next Program Counter (nPC) holds the address (PC + 4) of the next instruction to be executed (assuming a control
transfer or atrap does not occur).

Most instructions end by copying the contents of the nPC into the PC and then they either increment nPC by four or
write a computed control transfer target address into nPC. At this point, the PC points to the instruction that is about
to begin execution and the nPC points to the instruction that will be executed after that, i.e. the second instruction after
the currently executing instruction. It is the existence of the nPC that allows the execution of the delay instruction
before transfer of control to the target instruction.

3.4.3.4.2. Delay I nstruction

The instruction pointed to by the nPC when the PC is pointing to a delayed-control-transfer instruction is called the
delay instruction. Normally, this is the next sequential instruction in the code stream. However, if the instruction that
preceded the delayed control transfer was itself a delayed control transfer, the target of the preceding control transfer
becomes the delay instruction (that’s where the nPC will point). For more on delayed control transfer couples, see
Section 3.4.3.4.4.

Table 14 shows the order of execution for asimple (not back-to-back) delayed control transfer. The order of execution
is8, 12, 16, 40. If the delayed-control-transfer instruction were not taken, the order would be 8, 12, 16, 20.

3.4.3.4.3. Annul Bit

The a (annul) bit is only available on conditional branch instructions (Bicc, FBfcc, and CBccc), where it changes the
behavior of the delay instruction. If ais set on a conditional branch instruction (except BA, FBA, and CBA) and the
branch is not taken, the delay instruction is annulled (not executed). An annulled instruction has no effect on the state
of the TSC691E nor can atrap occur during an annulled instruction. If the branch istaken, the a bit isignored and the
delay instruction is executed. Table 15 and Table 16 show the effect of the annul bit when it isreset or set.
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The “branch always’ instructions (BA, FBA, and CBA) are a specia case. If the a bit is set in these instructions, the
delay instruction is annulled, even though the branch is taken. Effectively, this gives a “traditiona” non-delayed
branch. When a= 0 in a*“branch always’ instruction, it behaves the same as any other conditional branch; the delay
instruction is executed. Figure 20 displays the effect the a bit has on any branch for either the set or reset state.
Table 17 summarizes the effect the annul bit has on the execution of delay instructions.

Table 17. Effect of Annul Bit on Delay I nstruction

abit Type of branch Delay instruction executed?

Always No

a=1 Conditional, taken Yes

Conditional, not taken No

Always Yes

a=0 Conditional, taken Yes

Conditional, not taken Yes

annul bit=0 annul bit=1
Code Code
Control Transfer Inst. Branch |Contro| Transfer Inst.l Untaken
Always t Conditional
Y =
Taken I Delay Inst. I Taken | Delay Inst. I

Conditional Conditional |
- Untaken -«

Conditional +

Figure 20. Delayed Control Transfer

3.4.3.4.4. Delayed Control Transfer Couples

The occurrence of two back-to-back, delayed control transfer instructions is called a delayed control transfer couple,
which the processor handles differently from a simple control transfer. An instruction sequence containing a delayed
control transfer couple is shown in Table 18 , and the order of execution for the six different cases of back-to-back,
delayed control transfer instructionsis shown in Table 19 .

The delay dot instruction for a delayed control transfer instruction is the instruction fetched after the delayed control
transfer instruction. For most cases, thisinstruction is located immediately in the code listing after the delayed control
transfer instruction. However, in the case of adelayed control transfer couple, the target instruction of the first delayed
control transfer instruction is the delay slot instruction for the second delayed control transfer instruction, since that
target instruction isthe next instruction to be fetched. The delay dot instruction for the second delayed control transfer
instruction is the next instruction loaded into the instruction pipeline after the second delayed control transfer
instruction.

In the following tables, “ delayed control transfer instruction” is abbreviated to “DCTI”. A “Non-DCTI” may be either
a non-control transfer instruction or a control transfer that is not delayed (i.e., a Ticc). Where the annul bit is not
indicated, it may be either O or 1.

Case 1 of Table19 includesthe® IMPL, RETT " couple, which isthe normal method of returning from atrap handler.
The IMPL, RETT couple ensures correct values of PC and nPC are restored upon exiting the trap routine, even in the
case of atrap caused by a delay slot instruction (see Section 3.4.3.4.2). The case of a trap caused by a delay dot
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instruction is one where the nPC will not be PC + 4, thus requiring both PC and nPC to be restored. The IMPL, RETT
couple allows the choice of re—executing the trapped instruction or executing the instruction following the trap
occurrence. Refer to the RETT entry in SPARC V7.0 Instruction Set for further information.

Table 18. Delayed Control Transfer
Couple Instruction Sequence

Address Instruction Target
8: Non DCTI
12: DCTI 40
16: DCTI 60
20: Non DCTI
24
40: Non DCTI
44:
60: Non DCTI
64:

Table 19. Execution of Delayed Control Transfer Couples

Case DCTI at Location 12 DCTI at Location 16 Order of Execution
1 DCTI Unconditional DCTI Taken 12, 16, 40, 60, 64, ...
2 DCTI Unconditional B*cc (a= 0) Untaken 12, 16, 40, 44, ...
3 DCTI Unconditional B*cc (a= 1) Untaken 12, 16, 44, 48, ... (40 annuled)
4 DCTI Unconditional B*A (a=1) 12, 16, 60, 64, ... (40 annuled)
5 B*A (a=1) any CTI 12, 40, 44, ... (40 annuled)
6 B*cc DCTI Not supported
Definitions:
BA, FBA, or CBA
....Bicc, FBicc, or CBicc (except B*A)
CALL, JMPL, RETT, or B*A (a=0)
CALL, JMPL, RETT, B*cc taken, or B*A (a=0)

Cases 1-5 described in Table 19 areillustrated in Figure 21 . In case 1, the first DCTI is fetched at address 0x12 and
the target address is calculated while the delay ot instruction is fetched. The delay slot instruction for the first DCTI
(located at address 0x16) is another DCTI, which also has a delay slot. The target address of the first DCTI has been
calculated by the time the first delay slot instruction has been fetched, and the target instruction is fetched at address
0x40. The target instruction is the instruction located in the instruction pipeline after the second DCTI, and therefore
itisthe delay dot instruction for the second DCTI. Thetarget instruction for the second DCTI (address 0x60) is fetched
after thedelay dlot instruction for the second DCTI (which isalso thetarget addressfor thefirst DCTI) has been fetched.

Case 2 differsfrom case 1 in that the second DCTI is conditional, and is not taken. In case 2, the instruction at address
0x40 (target for DCTI #1) is the delay slot instruction for the second DCTI. Since the second DCTI does not cause a
branch, the instruction fetch continues to address 0x44.

Case3isaninteresting casein which thetarget instruction of thefirst DCTI isannulled by the second DCTI. This causes
the instruction at address 0x40 to be annulled. Since the second DCTI is an untaken conditional branch, instruction
fetch continues after the annulled target instruction (address 0x44).

Case 4 illustrates a DCTI followed by a branch always instruction with the annul bit set. This causes the target
instruction of thefirst DCTI (address 0x40) to be annulled, and program control istransferred to the target of the second
DCTI at address 0x60.

Case 5 illustrates the case where the second DCTI is annulled by the annul bit of the first DCTI. The second DCTI,
sinceit isannulled, has no effect on instruction fetch. This caseisidentical to the case of any other annulled delay slot
instruction.

Case 6 When the first instruction of a delayed control transfer couple is a conditional branch, control transfer is
undefined. If such a couple is executed, the location where execution continues is within the same address space but
is otherwise undefined. Execution of this sequence does not change any other aspect of the processor state.
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Instruction Case 1
Address
0x12 DCT Inst. 1
Delay Slot #1

16 [DCT Inst. 2

Delay Slot #2
ox40 || DCT #1 Target

oxeo | DCT #2 Target

0x64 Next Inst.

Instruction

Case?2
Address

0x12 DCT Inst. 1

[ y Delay Slot#1 |
B*cc (untaken) ||
|

0x16

a=0

Delay Slot #2
ox40 || DCT #1 Target I

0x44| Next Inst. I

Instruction

Case4
Address

ox12 DCT Inst. 1

Delay Slot #1
0x16 B*A (a=1)

Delay Slot #2

0x40 | DCT#1 Targetl

annulled by DCTI #2

oo | DCT #2 Target

0x64 Next Inst.

3.4.3.5. Read/Write Control Registers
This class of instruction reads or writes the contents of the various control registers (see Table 20).

Instruction
Address

Case3

0x12 | DCT Inst. 1 I

[ Delay Slot #1

B*cc (untaken)
a=1

0x16

Delay Slot#2

0x40 | DCT#1 Targetl

annulled by DCTI #2

Ox44 | Next Inst. I

Instruction Case 5
Address
o2 | B*A (a=1)
Delay-Slot.#2

0x16 DCT. st 2

annulled by DCTI #1

ox40 | DCT #1 Target

Ox44 Next Inst.

Figure21. Delayed Control Transfer Couples

Table 20. Read/Write Control Register Instructions

Name Operation Cycles

RDY Read Y Register 1
RDPSR* Read Processor State Register 1
RDWIM* Read Window Invalid Mask 1
RDTBR* Read Trap Base Register 1

WRY Write Y Register 1
WRPSR* Write Processor State Register 1
WRWIM* Write Window Invalid Mask 1
WRTBR* Write Trap Base Register 1

* denotes supervisor instruction
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The source (read) or destination (write) is implied by the instruction name. Read/write instructions are provided for
the PSR, WIM, TBR, FSR, CSR, and the Y register. Reads and writes to the PSR, WIM, and TBR are privileged and
are available in supervisor mode only.

3.4.3.6. Floating-Point-Oper ate and Coprocessor-Oper ate

Floating-point calculations are accomplished with floating-point-operate instructions (FPops), which are
register-to-register instructions that compute some result as a function of one or two source operands (see Table 21).
The result is always placed in a destination register (i.e., source operands are not overwritten). The source and
destination registers are f registers from the FPU’ s register file. If no FPU is present, or if the EF bit of the PSR is not
set, executing a floating—point instruction will generate a FP disabled trap.

Coprocessor-operate instructions (FPops) are executed by the attached coprocessor. Coprocessor instructions use the
c registers located in the coprocessor's register file as source and destination registers. If there is no attached
coprocessor, attempted execution of a coprocessor instruction generates a FP disabled trap.

Floating-point and coprocessor | oad/store instructions are not operate instructions; they fall under the TSC691E’sload
/store instruction category (see Section 3.4.3.1).

Except for op and op3, which specify the particular floating-point-operate or coprocessor-operate instruction to be
executed, the instruction fields of an FPop or CPop are interpreted by the FPU or coprocessor. Floating-point-operate
instructions execute concurrently with TSC691E instructions. FPops can also execute concurrently with both
TSC691E and FPop instructionsif they are designed to do so.

Because the TSC691E and FPU can execute instructions concurrently, when a floating-point exception occurs, the PC
does contain the address of an FPop instruction, but not the one that caused the exception. However, the front entry
of the floating-point queue contains the offending instruction and its address.

If the coprocessor executes instructions concurrently with the TSC691E, the architecture will support a coprocessor
gueue that functions in the same fashion as the floating-point queue.

Table 21. Floating—Point—Oper ate and Coprocessor—Oper ate I nstructions

Name Operation Cycles
FPop Floating—Point Operations 1tolaunch
FPop Coprocessor Operations 1tolaunch

3.4.3.7. Miscellaneous

Instructions in this category handle specia circumstances within the integer unit (see Table 22 ). Execution of the
UNIMP instruction causes an illegal instruction trap, so its execution is normally avoided except as part of a checking
routine. Details of one possible use for UNIMP are given in its definition in SPARC V7.0 Instruction Set.

The IFLUSH instruction is used to flush aword from an internal (to the TSC691E) instruction cache. Current integer
unit implementations (T SC691E) do not incorporate an internal instruction cache, so IFLUSH would normally execute
asaNOP. However, if thereis an external instruction cache, IFLUSH causes anillegal instruction trap if the TFT signal
isLOW (see Section 3.5)

Table 22. Miscellaneous I nstructions

Name Operation Cycles

UNIMP Unimplemented Instruction 1

IFLUSH Instruction Cache Flush 1
3.4.4. Op Codes

This section contains tables that give a complete list of the instruction opcodes, both by functiona groups and in
ascending numeric order.
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3.4.4.1. Load/Store I nstructions

Table 23. Load/Store Instruction Opcodes

. Opcodes with For mat
Mnemonic
31 30 29 25 24 19 18 14 13 12 B 4 0
i =0 ignored rs2
LD 11 rd 000000 rsl
i=1 simm13
LDA 11 rd 010000 rsl i=0 asi rs2
i =0 ignored rs2
LDC 11 rd 110000 rsl
i=1 simm13
i =0 ignored rs2
LDCSR 11 rd 110001 rsl
i=1 simm13
i =0 ignored rs2
LDD 11 rd 000011 rsl
i=1 simm13
LDDA 11 rd 010011 rsl i=0 asi rs2
i =0 ignored rs2
LDDC 11 rd 110011 rsl
i=1 simm13
i =0 ignored rs2
LDDF 11 rd 100011 rsl
i=1 simm13
i =0 ignored rs2
LDF 11 rd 100000 rsl
i=1 simm13
i =0 ignored rs2
LDFSR 11 rd 100001 rsl
i=1 simm13
i =0 ignored rs2
LDSB 11 rd 001001 rsl
i=1 simm13
LDSBA 11 rd 011001 rsl i=0 asi rs2
i =0 ignored rs2
LDSH 11 rd 001010 rsl
i=1 simm13
LDSHA 11 rd 011010 rsl i=0 asi rs2
i =0 ignored rs2
LDSTUB 11 rd 001101 rsl
i=1 simm13
LDSTUBA 11 rd 011101 rsl i=0 asi rs2
i =0 ignored rs2
LDUB 11 rd 000001 rsl
i=1 simm13
LDUBA 11 rd 010001 rsl i=0 asi rs2
i =0 ignored rs2
LDUH 11 rd 000010 rsl
i=1 simm13
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. Opcodes with Format
Mnemonic
31 30 29 25 24 19 18 14 13 12 5 4 0
LDUHA 11 rd 010010 rsl i =0 asi rs2
i =0 ignored rs2
ST 11 rd 000100 rsl
i=1 simm13
STA 11 rd 010100 rsl i=0 asi rs2
i =0 ignored rs2
STB 11 rd 000101 rsl
i=1 simm13
STBA 11 rd 010101 rsl i=0 asi rs2
i= ignored rs2
STC 11 rd 110100 rsl
i=1 smm13
i =0 ignored rs2
STCSR 11 rd 110101 rsl
i=1 simm13
i =0 ignored rs2
STD 11 rd 000111 rsl
i=1 simm13
STDA 11 rd 010111 rsl i=0 asi rs2
i =0 ignored rs2
STDC 11 rd 110111 rsl
i=1 simm13
i =0 ignored rs2
STDCQ 11 rd 110110 rsl
i=1 simm13
i =0 ignored rs2
STDF 11 rd 100111 rsl
i=1 simm13
i =0 ignored rs2
STDFQ 11 rd 100110 rsl
i=1 simm13
i =0 ignored rs2
STF 11 rd 100100 rsl
i=1 simm13
i= ignored rs2
STFSR 11 rd 100101 rsl
i=1 simm13
i =0 ignored rs2
STH 11 rd 000110 rsl
i=1 simm13
STHA 11 rd 010110 rsl i=0 asi rs2
i =0 ignored rs2
SWAP 11 rd 001111 rsl
i=1 simm13
SWAPA 11 rd 011111 rsl i=0 asi rs2
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3.4.4.2. Arithmetic/L ogical/Shift Instructions
Table 24. Arithmetic/L ogical/Shift Instruction Opcodes

. Opcodes with For mat
Mnemonic
31 30 29 25 24 19 18 14 13 12 5 4 0
i=0 ignored rs2
ADD 10 rd 000000 rsl
i=1 simm13
i =0 ignored rs2
ADDcc 10 rd 010000 rsl
i=1 simm13
i =0 ignored rs2
ADDX 10 rd 001000 rsl
i=1 simm13
i =0 ignored rs2
ADDXcc 10 rd 011000 rsl
i=1 simm13
i =0 ignored rs2
AND 10 rd 000001 rsl
i=1 simm13
i =0 ignored rs2
ANDcc 10 rd 010001 rsl
i=1 simm13
i =0 ignored rs2
ANDN 10 rd 000101 rsl
i=1 simm13
i =0 ignored rs2
ANDNcc 10 rd 010101 rsl
i=1 simm13
i =0 ignored rs2
MUL Scc 10 rd 100100 rsl
i=1 simm13
i =0 ignored rs2
OR 10 rd 000010 rsl
i=1 simm13
i =0 ignored rs2
ORcc 10 rd 010010 rsl
i=1 simm13
i= ignored rs2
ORN 10 rd 000110 rsl
i=1 simm13
i =0 ignored rs2
ORNCcc 10 rd 010110 rsl
i=1 simm13
i =0 ignored rs2
SLL 10 rd 100101 rsl
i=1 shent
i =0 ignored rs2
SRA 10 rd 100111 rsl
i=1 shent
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. Opcodes with Format
Mnemonic
31 30 29 25 24 19 18 14 13 12 5 4 0
i =0 ignored rs2
SRL 10 rd 100110 rsl
i=1 shent
i =0 ignored rs2
SUB 10 rd 000100 rsl
i=1 simm13
i =0 ignored rs2
SUBcc 10 rd 010100 rsl
i=1 simm13
i= ignored rs2
SUBX 10 rd 001100 rsl
i=1 simm13
i =0 ignored rs2
SUBXcc 10 rd 011100 rsl
i=1 simm13
i =0 ignored rs2
TADDcc 10 rd 100000 rsl
i=1 simm13
i =0 ignored rs2
TADDccTV 10 rd 100010 rsl
i=1 simm13
i =0 ignored rs2
TSUBcc 10 rd 100001 rsl
i=1 simm13
i =0 ignored rs2
TSUBcCTV 10 rd 100011 rsl
i=1 simm13
i =0 ignored rs2
XNOR 10 rd 000111 rsl
i=1 simm13
i =0 ignored rs2
XNORcc 10 rd 010111 rsl
i=1 simm13
XOR 10 rd 000011 rsl i =0 ignored rs2
XOR 10 rd 000011 rsl i=1 ssmml3
i =0 ignored rs2
XORcc 10 rd 010011 rsl
i=1 simm13
31 30 29 25 24 22 21 0
SETHI 00 rd 100 imm22
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3.4.4.3. Control Transfer Instructions

Table 25. Control Transfer Instruction Opcodes

Mnemonic Opcodes with For mat
31 30 29 25 24 19 18 14 13 12 5 4 0
i=0 ignored rs2
JMPL 10 rd 111000 rsl
i=1 smm13
i=0 ignored rs2
RESTORE 10 rd 111101 rsl
i=1 smm13
i=0 ignored rs2
RETT 10 ignored 111001 rsl
i=1 simm13
i=0 ignored rs2
SAVE 10 rd 111100 rsl
i=1 simm13
31 30 29 28 25 24 22 21 0
Bicc 00 a | cond 010 disp22
CBccc 00 a | cond 111 disp22
FBfcc 00 a | cond 110 disp22
31 30 29 28 25 24 19 18 14 13 12 5 4 0
i=0 ignored rs2
Ticc 10 I* cond 111010 rsl
i=1 smm13
CALL 01 disp30
*| = ignored.

Table 26. Bicc and Ticc Condition Codes

Condition Test
0000 Never
0001 Equad to
0010 Lessthan or equal to
0011 Lessthan
0100 Lessthan or equal to, unsigned
0101 Carry set (less than, unsigned)
0110 Negative
0111 Overflow set
1000 Always
1001 Not equal to
1010 Greater than
1011 Greater than or equal to
1100 Greater than, unsigned
1101 Carry clear (greater than or equal, unsigned)
1110 Positive
11n Overflow clear
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Table 27. FBfcc Condition Codes

Condition Test

0000 Never

0001 Not equal

0010 Less than or greater to

0011 Unordered or less than

0100 Lessthan

0101 Unordered or greater than

0110 Greater than

0111 Unordered

1000 Always

1001 Equa

1010 Unordered or equal

1011 Greater than or equal

1100 Unordered or greater than or equal

1101 Less than or equal

1110 Unordered or less than or equal

1111 Ordered

Table 28. CBccc Condition Codes
Opcode Condition Test

CBN 0000 Never
CB123 0001 lor2or3
CB12 0010 lor2
CB13 0011 lor3

CB1 0100 1

CB23 0101 2o0r3

CB2 0110 2

CB3 0111 3

CBA 1000 Always

CBO 1001 0

CB03 1010 Oor3
CB02 1011 Oor2
CB023 1100 Oor2or3
CB01 1101 Oorl
CB013 1110 Oorlor3
CB012 1111 Oorlor2

3.4.4.4. Read/Write Control Register Instructions

Table 29. Read/Write Control Register I nstruction Opcodes

. Opcodes with For mat
Mnemonic
31 30 29 25 24 19 18 14 13 12 5
RDPSR 10 rd 101001 ignored I* ignored
RDTBR 10 rd 101011 ignored I* ignored
RDWIM 10 rd 101010 ignored I* ignored
RDY 10 rd 101000 ignored I* ignored
i= ignored rs2
WRPSR 10 ignored 110001 rsl - X
i=1 simm13
i= ignored rs2
WRTBR 10 ignored 110011 rsl
i=1 simm13
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. Opcodes with For mat
Mnemonic
31 30 29 25 24 19 18 14 13 12 5 4 0
i=0 ignored rs2
WRWIM 10 ignored 110010 rsl
i=1 simm13
i=0 ignored rs2
WRY 10 ignored 110000 rsl
i=1 simm13
*| = ignored.

3.4.4.5. Floating-Point/Coprocessor Instructions

Table 30. Floating—Point /Coprocessor I nstruction Opcodes

Mnemonic Opcodes with Format
31 30 29 25 24 19 18 14 13 5 4 0
FPOP1 10 rd 110110 rsil OPC rs2
FPOP2 10 rd 110111 rsl OPC rs2
FABSs 10 rd 110100 ignored 000001001 rs2
FADDs 10 rd 110100 rsl 001000001 rs2
FADDd 10 rd 110100 rsl 001000010 rs2
FADDXx 10 rd 110100 rsi 001000011 rs2
FCMPs 10 ignored 110101 rsl 0010100012 rs2
FCMPd 10 ignored 110101 rsl 001010010 rs2
FCMPx 10 ignored 110101 rsl 001010011 rs2
FCMPEs 10 ignored 110101 rsl 001010101 rs2
FCMPEd 10 ignored 110101 rsl 001010110 rs2
FCMPExX 10 ignored 110101 rsl 001010111 rs2
FDIVs 10 rd 110100 rsl 001001101 rs2
FDIVd 10 rd 110100 rsl 001001110 rs2
FDIVx 10 rd 110100 rsl 001001111 rs2
FMOVs 10 rd 110100 ignored 000000001 rs2
FMULs 10 rd 110100 rsl 001001001 rs2
FMULd 10 rd 110100 rsl 001001010 rs2
FMULXx 10 rd 110100 rsi 001001011 rs2
FNEGs 10 rd 110100 ignored 000000101 rs2
FSQRTs 10 rd 110100 ignored 000101001 rs2
FSQRTd 10 rd 110100 ignored 000101010 rs2
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M nemonic Opcodes with For mat

31 30 29 25 24 19 18 14 13 5
FSQRTXx 10 rd 110100 ignored 000101011 rs2
FSUBs 10 rd 110100 rsl 001000101 rs2
FSUBd 10 rd 110100 rsl 001000110 rs2
FSUBXx 10 rd 110100 rsl 001000111 rs2
FdTOI 10 rd 110100 ignored 011010010 rs2
FdTOs 10 rd 110100 ignored 011000110 rs2
FdTOx 10 rd 110100 ignored 011001110 rs2
FiTOd 10 rd 110100 ignored 011001000 rs2
FiTOs 10 rd 110100 ignored 011000100 rs2
FiTOx 10 rd 110100 ignored 011001100 rs2
FsTOd 10 rd 110100 ignored 011001001 rs2
FsTOi 10 rd 110100 ignored 011010001 rs2
FSTOx 10 rd 110100 ignored 011001101 rs2
FXTOi 10 rd 110100 ignored 011010011 rs2
FXTOs 10 rd 110100 ignored 011000111 rs2
FxTOd 10 rd 110100 ignored 011001011 rs2

3.4.4.6. Miscellaneous I nstructions
Table 31. Miscellaneous I nstruction Opcodes
M nemonic Opcodes with For mat
31 30 29 25 24 22 21 19 18 14 13 12 5
i=0 ignored rs2
IFLUSH 10 ignored 111011 rsl
i=1 simm13
UNIMP 00 ignored 000 const22
41
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3.4.4.7. Opcodes I n Ascending Numeric Order

Table 32. Instruction Opcode Numeric Listing

. Opcodes with For mat
Mnemonic
31 30 29 25 24 22 21 19 18 14 13 12 5 4 0
UNIMP 00 ignored 000 const22
Bicc 00 a | cond 010 disp22
SETHI 00 rd 100 imm22
FBfcc 00 a | cond 110 disp22
CBccc 00 a | cond 111 disp22
CALL 01 disp30
i=0 ignored rs2
ADD 10 rd 000000 rsl
i=1 simm13
i=0 ignored rs2
AND 10 rd 000001 rsl
i=1 simm13
i=0 ignored rs2
OR 10 rd 000010 rsl
i=1 simm13
i=0 ignored rs2
XOR 10 rd 000011 rsl
i=1 simm13
i=0 ignored rs2
SUB 10 rd 000100 rsl
i=1 simm13
i=0 ignored rs2
ANDN 10 rd 000101 rsl
i=1 simm13
i=0 ignored rs2
ORN 10 rd 000110 rsl
i=1 simm13
i=0 ignored rs2
XNOR 10 rd 000111 rsl
i=1 simm13
i=0 ignored rs2
ADDX 10 rd 001000 rsl
i=1 smml3
i=0 ignored rs2
SUBX 10 rd 001100 rsl
i=1 smm13
i=0 ignored rs2
ADDcc 10 rd 010000 rsl
i=1 simm13
i=0 ignored rs2
ANDcc 10 rd 010001 rsl
i=1 simm13
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. Opcodes with For mat
Mnemonic
31 30 29 25 24 22 21 19 18 14 13 12 5 4 0
i =0 ignored rs2
ORcc 10 rd 010010 rsl
i=1 simm13
i =0 ignored rs2
XORcc 10 rd 010011 rsl
i=1 simm13
i=0 ignored rs2
SUBcc 10 rd 010100 rsl
i=1 simm13
i=0 ignored rs2
ANDNcc 10 rd 010101 rsl
i=1 smm13
i =0 ignored rs2
ORNcc 10 rd 010110 rsl
i=1 simm13
i=0 ignored rs2
XNORcc 10 rd 010111 rsl
i=1 simm13
i=0 ignored rs2
ADDXcc 10 rd 011000 rsl
i=1 simm13
i=0 ignored rs2
SUBXcc 10 rd 011100 rsl
i=1 simm13
i=0 ignored rs2
TADDcc 10 rd 100000 rsl
i=1 simm13
i =0 ignored rs2
TSUBcc 10 rd 100001 rsl
i=1 simm13
i =0 ignored rs2
TADDccTV 10 rd 100010 rsl
i=1 simm13
i =0 ignored rs2
TSUBcCTV 10 rd 100011 rsl
i=1 simm13
i=0 ignored rs2
MULScc 10 rd 100100 rsl
i=1 simm13
i =0 ignored rs2
SLL 10 rd 100101 rsl
i=1 shent
i=0 ignored rs2
SRL 10 rd 100110 rsl
i=1 shent
i= ignored rs2
SRA 10 rd 100111 rsl
i=1 shent
RDY 10 rd 101000 ignored I* ignored
43
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. Opcodes with For mat
Mnemonic
31 30 29 25 24 22 21 19 18 14 13 12 5 4
RDPSR 10 rd 101001 ignored I* ignored
RDWIM 10 rd 101010 ignored I* ignored
RDTBR 10 rd 101011 ignored I* ignored
i=0 ignored rs2
WRY 10 ignored 110000 rsl
i=1 smm13
i=0 ignored rs2
WRPSR 10 ignored 110001 rsl
i=1 smml3
i=0 ignored rs2
WRWIM 10 ignored 110010 rsl
i=1 smm13
i=0 ignored rs2
WRTBR 10 ignored 110011 rsl
i=1 simm13
FPOP1 10 rd 110100 rsl OPF rs2
FMOVs 10 rd 110100 ignored 0000000012 rs2
FNEGs 10 rd 110100 ignored 000000101 rs2
FABSs 10 rd 110100 ignored 0000010012 rs2
FSQRTs 10 rd 110100 ignored 000101001 rs2
FSQRTd 10 rd 110100 ignored 000101010 rs2
FSQRTX 10 rd 110100 ignored 000101011 rs2
FADDs 10 rd 110100 rsl 001000001 rs2
FADDd 10 rd 110100 rsl 001000010 rs2
FADDx 10 rd 110100 rsl 0010000112 rs2
FSUBs 10 rd 110100 rsl 001000101 rs2
FSUBd 10 rd 110100 rsl 001000110 rs2
FSUBXx 10 rd 110100 rsl 001000111 rs2
FMULs 10 rd 110100 rsl 0010010012 rs2
FMULd 10 rd 110100 rsl 001001010 rs2
FMULX 10 rd 110100 rsl 001001011 rs2
FDIVs 10 rd 110100 rsl 001001101 rs2
FDIVd 10 rd 110100 rsl 001001110 rs2
FDIVX 10 rd 110100 rsl 001001111 rs2
FiTOs 10 rd 110100 ignored 011000100 rs2
FdTOs 10 rd 110100 ignored 011000110 rs2
FXTOs 10 rd 110100 ignored 011000111 rs2
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Opcodes with For mat

Mnemonic
29 25 22 21 18 14 12 5
FiTOd rd 110100 ignored 011001000 rs2
FsTOd rd 110100 ignored 0110010012 rs2
FxTOd rd 110100 ignored 011001011 rs2
FiTOx rd 110100 ignored 011001100 rs2
FSTOx rd 110100 ignored 011001101 rs2
FATOx rd 110100 ignored 011001110 rs2
FsTOI rd 110100 ignored 011010001 rs2
FdTOI rd 110100 ignored 011010010 rs2
FxTOi rd 110100 ignored 011010011 rs2
FPOP2 rd 110101 rsl OPF rs2
FCMPs ignored 110101 rsl 001010001 rs2
FCMPd ignored 110101 rsl 001010010 rs2
FCMPx ignored 110101 rsl 0010100112 rs2
FCMPEs ignored 110101 rsl 001010101 rs2
FCMPEd ignored 110101 rsl 001010110 rs2
FCMPEX ignored 110101 rsl 001010111 rs2
FPOP1 rd 110110 rsl OPC rs2
FPOP2 rd 110111 rsl OPC rs2
ignored rs2
JMPL rd 111000 rsl
simm13
ignored rs2
RETT ignored 111001 rsl
simm13
ignored rs2
Ticc I* cond 111010 rsl
simm13
ignored rs2
IFLUSH ignored 111011 rsl
simm13
ignored rs2
SAVE rd 111100 rsl
simm13
ignored rs2
RESTORE rd 111101 rsl
simm13
ignored rs2
LD rd 000000 rsl
simm13
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. Opcodes with For mat
Mnemonic
31 30 29 25 24 22 21 19 18 14 13 12 5 4 0
i=0 ignored rs2
LDUB 11 rd 000001 rsl
i=1 simm13
i=0 ignored rs2
LDUH 11 rd 000010 rsl
i=1 simm13
i=0 ignored rs2
LDD 11 rd 000011 rsl
i=1 smml3
i=0 ignored rs2
ST 11 rd 000100 rsl
i=1 smm13
i=0 ignored rs2
STB 11 rd 000101 rsl
i=1 simm13
i=0 ignored rs2
STH 11 rd 000110 rsl
i=1 simm13
i=0 ignored rs2
STD 11 rd 000111 rsl
i=1 simm13
i=0 ignored rs2
LDSB 11 rd 001001 rsl
i=1 simm13
i=0 ignored rs2
LDSH 11 001010 rsl
i=1 simm13
i=0 ignored rs2
LDSTUB 11 rd 001101 rsl
i=1 simm13
i=0 ignored rs2
SWAP 11 rd 001111 rsl
i=1 simm13
LDA 11 rd 010000 rsl i=0 as rs2
LDUBA 11 rd 010001 rsl i=0 as rs2
LDUHA 11 rd 010010 rsl i=0 as rs2
LDDA 11 rd 010011 rsl i=0 as rs2
STA 11 rd 010100 rsl i=0 as rs2
STBA 11 rd 010101 rsl i=0 as rs2
STHA 11 rd 010110 rsl i=0 as rs2
STDA 11 rd 010111 rsl i=0 as rs2
LDSBA 11 rd 011001 rsl i=0 as rs2
LDSHA 11 rd 011010 rsl i=0 as rs2
LDSTUBA 11 rd 011101 rsl i=0 as rs2
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. Opcodes with For mat
Mnemonic
31 30 29 25 24 22 21 19 18 14 13 12 5 4 0
SWAPA 11 rd 011111 rsl i=0 as rs2
i=0 ignored rs2
LDF 11 rd 100000 rsl
i=1 simm13
i=0 ignored rs2
LDFSR 11 rd 100001 rsl
i=1 simm13
i=0 ignored rs2
LDDF 11 rd 100011 rsl
i=1 simm13
i=0 ignored rs2
STF 11 100100 rsl
i=1 simm13
i=0 ignored rs2
STFSR 11 rd 100101 rsl
i=1 simm13
i =0 ignored rs2
STDFQ 11 rd 100110 rsl
i=1 simm13
i =0 ignored rs2
STDF 11 rd 100111 rsl
i=1 simm13
i =0 ignored rs2
LDC 11 rd 110000 rsl
i=1 simm13
i=0 ignored rs2
LDCSR 11 rd 110001 rsl
i=1 simm13
i =0 ignored rs2
LDDC 11 rd 110011 rsl
i=1 simm13
i=0 ignored rs2
STC 11 rd 110100 rsl
i=1 simm13
i=0 ignored rs2
STCSR 11 rd 110101 rsl
i=1 simm13
i=0 ignored rs2
STDCQ 11 rd 110110 rsi
i=1 simm13
i= ignored rs2
STDC 11 rd 110111 rsl
i=1 simm13
47
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3.5. Signal Description

This section provides a description of the TSC691E’s external signals. Functionally, the IU’s external signals can be
divided into four categories: memory subsystem interface, floating-point/coprocessor interface, interrupt and control

signals, and power and clock signals.
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Figure 22. TSC691E External Signals

Signals that are active LOW are marked with an overscore; all others are active HIGH. Figure 22 summarizes the
signals described in this section. Table 33 provides a summary of the external signals for the TSC691E.

Note:

In the descriptions below, and in this manual in general, when asignal is asserted it is active, and when it is deasserted it is inactive. When asignal
isHIGH, itisalogica 1; whenitisLOW, itisalogical 0. Thisistrue regardless of whether it is asserted or deasserted.
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Table 33. TSC691E External Signal Summary

Memory Subsystem |nterface Signals:

Signal Name Description Signal Type Active
(Impedance of Three-State Output=20kQ)
A[31:0] Address Bus Three-State Output
APAR Address Bus Parity Three-State Output HIGH
AOCE Address Output Enable Input LOW
ASI[7:0] Address Space Identifier Three-State Output
COE Control Output Enable Input LOW
BHOLD Bus Hold Input LOW
D[31:0] DataBus Three-State BiDir.
DPAR Data Bus Parity Three-State BiDir. HIGH
DOE Data Output Enable Input LOW
DXFER Data Transfer Three-State Output HIGH
IFT Instruction Cache Flush Trap Input LOW
INULL Integer Unit Nullify Cycle Three-State Output HIGH
LDSTO Atomic Load-Store Three-State Output HIGH
LOCK Bus Lock Three-State Output HIGH
MAO Memory Address Output Input HIGH
MDS Memory Data Strobe Input LOW
MEXC Memory Exception Input LOW
MHOLDA Memory Bus Hold A Input LOW
MHOLDB Memory Bus Hold B Input LOW
RD Read Access Three-State Output HIGH
SIZE[1:0] Bus Transaction Size Three-State Output
ASPAR ASl and SIZE Parity Three-State Output HIGH
WE Write Enable Three-State Output LOW
WRT Advanced Write Three-State Output HIGH
IMPAR IU to MEC [1] Control Parity Three-State Output HIGH
Notel:
TSC693E = Memory controller system support circuit which contains fault detection and peripheral control function.
Floating—Point / Coprocessor |nterface Signals:
Signal Name Description Signal Type Active
(Impedance of Three-State Output=20kQ)

CCC[1:0] Coprocessor Condition Codes Input
cccv Coprocessor Condition Codes Valid Input HIGH
CEXC Coprocessor Exception Input LOW
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Floating—Point / Coprocessor |nterface Signals.
Signal Name Description Signal Type Active
(Impedance of Three-State Output=20kQ)

CHOLD Coprocessor Hold Input LOW
CINS1 Coprocessor Instruction in Buffer 1 Three-State Output HIGH
CINS2 Coprocessor Instruction in Buffer 2 Three-State Output HIGH
CP Coprocessor Unit Present Input LOW
CXACK Coprocessor Exception Acknowledge Three-State Output HIGH
FCC[1:0] Floating—Point Condition Codes Input
FCCV Floating—Point Condition Codes Valid Input HIGH
FEXC Floating—Point Exception Input LOwW
FHOLD Floating—Point Hold Input LOW
FIPAR FPU to IU Control Parity Input HIGH
FINS1 Floating—Point Instruction in Buffer 1 Three-State Output HIGH
FINS2 Floating—Point Instruction in Buffer 2 Three-State Output HIGH
FLUSH Floating—Point/Coprocessor Instruction Flush Three-State Output HIGH
FP Floating—Point Unit Present Input LOW
FXACK Floating—Point Exception Acknowledge Three-State Output HIGH
INST Instruction Fetch Three-State Output HIGH
IFPAR IU to FPU Control Pearity Three-State Output HIGH

Interrupt and Controal Signals:

Signal Name Description Signal Type Active

(Impedance of Three-State Output=20kQ)

IRL[3:0] Interrupt Request Level Input
INTACK Interrupt Acknowledge Three-State Output HIGH
RESET Reset Input LOW
ERROR Error State Three-State Output LOW
HWERROR Hardware error Detected Three-State Output LOwW
MCERR Comparison error Three-State Output LOW
FLOW Enable Program Flow Control Input LOW
CMODE Checker Mode Input LOW
601IMODE Normal 601 Mode Input LOW
FPSYN Floating—Point Synonym Mode Input HIGH
TOE Test Mode Output Enable Input LOwW
HALT Halt Mode Input Low
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Test Access Port Signals:

Signal Name Description Signal Type Active
(Impedance of Three-State Output=20kQ)
TCLK Test Clock Input
TRST Test reset Input LOW
T™MS Test Mode Select Input HIGH
TDI Test Data Input Input
TDO Test Data Output Three-State Output

Power and Clock Signals:

Signal Name Description Signal Type
CLK Clock Input
VCCI Main internal VCC Input
VCCO Output driver VCC Input
VCCT Input circuit VCC Input
VSS| Main internal VSS Input
VSSO Output driver VSS Input
VSST Input circuit VSS Input

3.5.1. Memory Subsystem Interface Signals

Memory interface signals consist of the address lines (40 bits), bidirectional data lines (32 bits), transaction size lines
(2 bits), and various control signals.

3.5.1.1. A[31:0]—Address Bus (output)

The 32-bit address bus carries instruction or data addresses during a fetch or load/store operation. Addresses are sent
out unlatched and must be latched external to the TSC691E. Assertion of the MAO signal during a cache miss (which
issignaled by pulling one of the MHOLD lines low) will force the Integer Unit to place the previous (missed) address
on the address bus. The address bus is three-stated (on chip pull_up resistor=20kQ) when the AOE or TOE signal is
deasserted (HIGH).

3.5.1.2. APAR—Address Bus Parity (output)

Thissignal containsthe odd parity over the 32-bit address bus and is asserted simultaneously with the memory address.
It ishigh-Z (on chip pull—up resistor=20kQ) when the AOE or TOE signal is deasserted.

3.5.1.3. AOE—Address Output Enable (input)

Assertion of this signal enables the output drivers for the address bus, A[31:0], and the ASI bus, ASI[7:0], and is the
normal condition. Deassertion of AOE three-states (on chip pull_up resistor=20kQ) the output drivers and should only
be done when the busis granted to another bus master (i.e., when either BHOLD or MHOLDA/B is asserted).

3.5.1.4. ASI[7:0]—Address Space | dentifier (output)

These 8 bits constitute the Address Space Identifier (ASI), which identifies the memory address space to which the
instruction or data access is being directed. The ASI bits are sent out unlatched—simultaneously with the memory
address—and must belatched externally. Assertion of theMA O signal during acachemiss(whichissignaled by pulling
one of the MHOLD lines low) will force the integer unit to place the previous address space identifier on the ASI[7:0]
pins. The ASI pinsarethree-stated (on chip pull_up resistor=20kQ) when the AOE or TOE signal isdeasserted (HIGH).
Encoding of the ASI bitsis shown in Table 34.
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Table 34. ASl Assignments

Address sgai(é?cgiéiiﬁer (ASI) HEGES e
00001000 (0x08) User Instruction
00001010 (0x0a) User Data
00001001 (0x09) Supervisor Instruction
00001011 (OxOb) Supervisor Data
1 2 3 ‘ 4 5 6

CLK
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Figure 23. ASI timing with a WRPSR Instruction

3.5.1.5. ASPAR—ASI and SIZE Parity (output)

Thissignal contains the odd parity over the 8-bit address space identifier and 2 bit Bus Transaction Size. It is asserted
simultaneously with the ASl and SIZE and will be high-Z (on chip pull_up resistor=20kQ) when the AOE, COE or
TOE signal is deasserted.

3.5.1.6. BHOLD—BusHald (input)

BHOLD is asserted when an external bus master wants control of the data bus. Assertion of this signal will freeze the
processor pipeline, so after deassertion of BHOLD, external logic must guarantee that the data at all inputs to the
TSCG691E is the same as it was before BHOLD was asserted. This signal is tested on the falling edge (midpoint) of
acycle and must be valid and stable at the processor for the duration of the specified set—up time prior to the falling
edge of CLK. All HOLD signals are latched in the TSC691E (transparent latch with clock high) before they are used.
Because MDS and MEXC signals are recognized while thisinput is active, BHOLD should only be used for bus access
reguests by an external device. BHOLD should not be asserted when LOCK is asserted.

3.5.1.7. COE—Control Output Enable (input)

Assertion of thissignal enablesthe output driversfor SIZE[1:0], RD, WE, WRT, LOCK, LDSTO, and DXFER outputs,
and isthe normal condition. Deassertion of COE three-states (on chip pull_up resistor=20kQ) these output drivers and
should only be done when the bus is granted to another bus master (i.e., when either BHOLD or MHOLDA/B is
asserted).

3.5.1.8. D[31:0]—Data Bus (bidirectional)

These signals form a 32-bit bidirectional data bus that serves as the interface between the integer unit and memory.
The data bus is only driven by the TSC691E during the execution of integer store instructions and the store cycle of
atomic-load-store instructions. Similarly, the FPU drives the data bus only during the execution of floating-point store
instructions.
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Store datais sent out unlatched and must be latched externally beforeit is used. Once latched, store dataisvalid during
the second data cycle of a store single access, the second and third data cycle of a store double access, and the third
data cycle of an atomic-load-store access.

Alignment for load and storeinstructionsis performed by the processor. Doublewords are aligned on 8-byte boundaries,
words on 4-byte boundaries, and halfwords on 2-byte boundaries. If a doubleword, word, or halfword load or store
instruction generates an improperly aligned address, a memory address not aligned trap will occur. Instructions and
operands are always expected to reside in a 32-bit wide memory. D[31] corresponds to the most significant bit of the
most significant byte of a 32-bit word going to or from memory.

The Data busis three-stated (on chip pull_up resistor=20kQ) when the DOE or TOE signal is deasserted (HIGH)

3.5.1.9.DPAR—Data Bus Parity (bidirectional)
Thissignal contains the odd parity over the 32-bit bidirectional data bus.

In case of store data operations the parity bit is generated and launched in parallel by the IU. In case of load data
operations the parity is checked by the 1U.

Thissigna will be high-Z (on chip pull_up resistor=20kQ) when the DOE or TOE signal is deasserted.

3.5.1.10. DOE—Data Output Enable (input)

Assertion of this signal enables the output drivers for the data bus, D[31:0], and is the normal condition. Deassertion
of DOE three-states (on chip pull_up resistor=20kQ) the data bus output drivers and should only be done when the bus
is granted to another bus master (i.e., when either BHOLD or MHOLDA/B is asserted).

3.5.1.11. DXFER—Data Transfer (output)

DXFER is used to differentiate between the addresses being sent out for instruction fetches and the addresses of data
fetches. DXFER is asserted by the processor during the address cycles of al bus data transfer cycles, including both
cyclesof store singleand all three cycles of store double and atomic load-store. DXFER is sent out unlatched and must
be latched externally beforeit is used.

3.5.1.12. IFT—Instruction Cache Flush Trap (input)

The state of this signal determines whether or not execution of the IFLUSH instruction generates atrap. If IFT=0, then
execution of IFLUSH causes an illegal instruction trap. If TFT=1, then IFLUSH executes like a NOP with no side
effects.

3.5.1.13. INULL—Integer Unit Nullify Cycle (output)

The processor asserts INULL to indicate that the current memory access is being nullified. It is asserted in the same
cycle in which the address being nullified is active (though no longer on the address bus, the address is held in the
external address latches). INULL is used to prevent a cache miss (in systems with cache memory) and to disable
memory exception generation for the current memory access. This meansthat MDS and MEXC should not be asserted
for a memory access in which INULL=1. INULL is a latched output and should not be latched externaly. If a
floating-point unit or coprocessor ispresent in the system, INULL should be Ored withthe FNULL and CNULL signals
to generate afinal NULL signal.

INULL isasserted under the following conditions:

1. During the second data cycle of any storeinstruction (including Atomic L oad-Store) to nullify the second occur-
rence of the store address.

2. Onall traps, to nullify the third instruction fetch after the trapped instruction. For reset, it nullifiesthe error-pro-
ducing address.

3. Onaload in which the hardware interlock is activated.
4, IJMPL and RETT instructions.

3.5.1.14. LDSTO—Atomic L cad—Store (output)

Thissignal is used to identify an atomic load-store to the system and is asserted by the integer unit during all the data
cycles (the load cycle and both store cycles) of atomic load-store instructions. LDSTO is sent out unlatched and must
be latched externally beforeit is used.
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3.5.1.15. LOCK—Bus L ock (output)

LOCK is asserted by the processor when it needs to retain control of the bus (address and data) for multiple cycle
transactions (Load Double, Store Single and Double, Atomic Load-Store). The bus will not be granted to another bus
master aslong asL OCK isasserted. Notethat BHOL D should not be asserted in the processor clock cyclewhichfollows
acycleinwhich LOCK isasserted. LOCK is sent out unlatched and must be latched externally before it is used.

3.5.1.16. MAO—Memory Address Output (input)

This signal is asserted during an MHOLD condition to force the previous (missed) memory access parameters back
on their various busses and control lines. The miss parameters are those that were valid on the rising edge of the clock,
onecyclebeforethe cyclein which MHOLD was asserted. A logic HIGH value at thissignal during acache miss causes
the integer unit to put A[31:0], ASI[7:0], SIZE[1:.0], RD, WE, WRT, LDSTO, LOCK, and DXFER values
corresponding to the missed memory address on the bus.

Normally, MAO iskept at aLOW level, thereby selecting the access parameters for the current memory address. MAO
should not be used for a cache miss during a store cycle, because it would select the wrong value for WE.

MAO must be driven LOW while RESET is LOW.

3.5.1.17. MDS—Memory Data Strobe (input)

MDS is asserted by the memory system to enable the clock to the integer unit's instruction register (during an
instruction fetch) or to the load result register (during a data fetch) while the pipeline is frozen with an MHOLDA/B.
In a system with cache, MDS is used to signal the processor when the missed data (cache miss) is ready on the data
bus. In asystem with slow memories, MDStellsthe processor when the read datais avail able on the bus. During acache
line replacement, MDS may be asserted anywhere within the MHOLD cycle and deasserted before MHOLD is
released. For example, if acache missoccursonword 2 of a4-word cache line, MDS should only be driven active while
word 2 is being replaced in the cache.

MDS is also used to strobe in the MEXC memory exception signal. MDS may only be asserted when the pipeline is
frozen with MHOLDA/B. The TSC691E samples MDS with an on-chip transparent latch before it is used.

3.5.1.18. MEXC—Memory Exception (input)

Assertion of this signal by the memory system initiates an instruction access exception or data access exception trap
and indicates to the TSC691E that the memory system was unable to supply a valid instruction or data. If MEXC is
asserted during an instruction fetch cycle, it generates an instruction access exception trap. If asserted during a data
cycle, it generates a data access exception trap.

MEXC is used as a qualifier for the MDS signal, and must be asserted when both MHOLDA/B and MDS are already
asserted. If MDS is applied without MEXC, the TSC691E accepts the contents of the data bus as valid. If MEXC
accompaniesMDS, an exception is generated and the data bus content isignored.

MEXC is latched in the processor on the rising edge of CLK and is used in the following cycle. MEXC must be
deasserted in the same clock cyclein which MHOLDA/B is deasserted.

3.5.1.19.MHOLD(A/B)—Memory Holds (inputs)

MHOLDA is used to freeze the clock to both the integer and floating-point units during a cache miss (for systemswith
cache memory) or when accessing a slow memory. The processor pipeline is frozen while MHOLDA is asserted and
the TSC691E outputs revert to and maintain the value they had at the rising edge of the clock in the cycle in which
MHOLDA was asserted. This signal is tested on the falling edge (midpoint) of a cycle and must be valid and stable
at the processor for the duration of the specified set—up time prior to the falling edge of CLK.

MHOLDB behavesin the same fashion as MHOLDA, and either can be used to stop the processor during a cache miss
or memory exception. The pipelineis actually frozen by a“final” hold signal that is the logical OR of al hold signals
(MHOLDA, MHOLDB, and BHOLD). All HOLD signals are latched in the TSC691E (transparent latch with clock
high) before they are used.

Note that MHOLD must be driven HIGH while RESET is LOW.

3.5.1.20. RD—Read Access (output)

RD is sent out during the address portion of an access to specify whether the current memory accessisaread (RD=1)
or awrite (RD=0) operation. RD isset to “ 0" only during the address cycles of store instructions. For atomic |oad-store
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instructions, RD is“ 1" during theload addresscycleand “ 0" during the two store address cycles. It is sent out unlatched
by the Integer Unit and must be latched externally beforeit is used.

RD is used in conjunction with SIZE[1:0], ASI[7:0], and LDSTO to determine the type and to check the read/write
accessrights of bustransactions. It may also be used to turn off the output drivers of dataRAMsduring astore operation.

3.5.1.21. SIZE[1:0]—Bus Transaction Size (outputs)

The coding on these pins specifies the size of the data being transferred during an instruction or data fetch. The value
of the size hits during agiven cycle relates only to the memory address which appears on pins A[31:0] simultaneously
with the size outputs. It does not apply to data which may be on the data bus during that same cycle.

Size bits are sent out unlatched and must be latched external to the TSC691E before they are used. SIZE[1:0] remains
valid during the data address cycles of loads, stores, |oad doubles, store doubles, and atomic load-stores. The SIZE[1:0]
pins are three-state (on chip pull_up resistor=20kQ) when the COE or TOE signal is deaserted. Encoding of the size
bits is shown in Table 35. For example, during an instruction fetch, SIZE[1:0] is set to “10”, because al instructions
are 32 bitslong. For doubleword instructions, SIZE[1:0] is“11” for all data address cycles.

Table 35. SIZE Bit Encoding

SIZE[]] SIZE[Q] Data Transfer Type
0 0 Byte
0 1 Halfword
1 0 Word
1 1 Word (L oad/Store Double)

3.5.1.22. WE—Write Enable (output)

WE is asserted by the integer unit during the cycle in which the store data is on the data bus. For a store single
instruction, this is during the second store address cycle; the second and third store address cycles of store double
instructions, and the third load-store address cycle of atomic load-store instructions. It is sent out unlatched and must
be latched externally beforeit is used. To avoid writing to memory during memory exceptions, WE must be externaly
qualified by the MHOLDA/B signals.

3.5.1.23. WRT—Advanced Write (output)

WRT is an early write signal, asserted by the processor during the first store address cycle of integer single or double
store instructions, the first store address cycle of floating-point single or double store instructions, and the second
load-store address cycle of atomic load-store instructions. WRT is sent out unlatched and must be latched externally
beforeit isused.

3.5.1.24. IMPAR—IU to MEC Control Parity (output)

This signal contains the odd parity over the DXFER, LDSTO, LOCK, RD, WE and WRT bits. The parity bit is
generated by the U and will be checked by the MEC.

It will be high-Z (on chip pull_up resistor=20kQ) when the COE or TOE signa is deasserted.

3.5.2. Floating-Point/Coprocessor Interface Signals

The IU incorporates a dedicated group of pins that act as direct-connect interfaces between the integer unit and both
the floating-point unit and the coprocessor. Using these connections, no external circuits are required to interface the
IU to the FPU and coprocessor. The interfaces consist of the following signals:

3.5.2.1. CCC[1:0]—Coprocessor Condition Codes (input)

These lines represent the current condition code bits from the Coprocessor State Register (CSR), qualified by the
CCCV signal. When CCCV=1, these bits are valid. During the execution of a CBccc instruction, the processor uses
CCCJ1:0] to determine whether or not to take the branch. These bits are latched by the processor before they are used.
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3.5.2.2. CCCV—Coprocessor Condition Codes Valid (input)

This signal is a speciaized hold used to synchronize coprocessor compare instructions with coprocessor branch
instructions. It is asserted (the normal condition) whenever the CCC[1:0] bits are valid. A coprocessor would deassert
CCCV (CCCV=0) as soon as a coprocessor compare instruction enters the coprocessor queue, unless an exception is
detected (see Section 3.9). Deasserting CCCV freezes the integer unit pipeline, preventing any further compares from
entering the pipeline. CCCV is reasserted when the compare is completed and the coprocessor condition codes are
valid, thus ensuring that the condition codes match the proper compare instruction. CCCV islatched in the TSC691E
beforeit isused.

3.5.2.3. CEXC—Coprocessor Exception (input)

CEXC is used to signal the integer unit that a coprocessor exception has occurred. CEXC must remain asserted until
the TSC691E takes the trap and acknowledges the coprocessor exception via the CXACK signal. Although
coprocessor exceptions can occur at any time, they aretaken by the TSC691E only during the execution of asubsequent
FPop, a CBfcc instruction, or a coprocessor load or store instruction. A coprocessor implementation should deassert
CHOLD if it detects an exception while CHOLD is asserted. In such acase, CEXC should be asserted one cycle before
CHOLD isdeasserted. CEXC islatched in the TSC691E beforeit is used.

3.5.2.4. CHOL D—Coprocessor Hold (input)

Thissignal is asserted by the coprocessor if a situation arises in which it cannot continue execution. The coprocessor
checks all dependencies in the decode stage of the instruction and asserts CHOLD (if necessary) in the next cycle. If
the integer unit receives a CHOLD, it freezes the instruction pipeline in the same cycle. Once the conditions causing
the CHOLD are resolved, the coprocessor deasserts CHOLD, releasing the instruction pipeline. CHOLD is latched in
the TSC691E beforeit is used.

The conditions under which the coprocessor asserts CHOLD are implementation dependent.

3.5.2.5. CINS1—Coprocessor Instruction in Buffer 1 (output)

CINS1 is asserted by the integer unit during the decode stage of the coprocessor instruction that isin the D1 buffer of
the coprocessor chip. The coprocessor uses this signal to begin decoding and execution of the D1 instruction, and to
latch it into its execute-stage register. CINS1 and CINS2 are never asserted in the same cycle.

3.5.2.6. CINS2—Coprocessor Instruction in Buffer 2 (output)

CINS2 is asserted by the Integer Unit during the decode stage of the coprocessor instruction that is in the D2 buffer
of the coprocessor chip. The Coprocessor uses this signal to begin decoding and execution of the D2 instruction, and
to latch it into its execute-stage register. CINS1 and CINS2 are never asserted in the same cycle.

3.5.2.7. CP—Coprocessor Unit Present (input)

When pulled low, CP indicates that a coprocessor is available to the system. It is normally pulled up to VDD through
aresistor, and then grounded by connection to the coprocessor. Theinteger unit will generate acp disabled trap if CP=1
during the execution of an CPop, CBfcc, or coprocessor load or store instruction.

3.5.2.8. CXACK—Coprocessor Exception Acknowledge (output)

CXACK isasserted by the integer unit to inform the coprocessor that a trap has been taken for the currently asserted
CEXC signal. Receipt of the asserted CXACK causes the coprocessor to deassert CEXC, which in turn causes the to
deassert CXACK. CXACK isalatched output and should not be latched externally.

3.5.2.9. FCC[1.0]—Floating-Point Condition Codes (input)

These lines represent the current condition code bits from the FPU’s Floating-point State Register (FSR), qualified by
the FCCV signal. When FCCV =1, these hits are valid. During the execution of an FBfcc instruction, the processor uses
FCC[1:0] to determine whether or not to take the branch. These bits are latched by the processor before they are used.

3.5.2.10. FCCV—Floating-Point Condition Codes Valid (input)

Thissignal isaspecialized hold used to synchronize FPU compare instructions with floating-point branch instructions.
It isasserted (the normal condition) whenever the FCC[ 1:0] bitsare valid. The FPU deasserts FCCV (FCCV=0) as soon
as a floating-point compare instruction enters the floating-point queue, unless an exception is detected. Deasserting
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FCCV freezestheinteger unit pipeline, preventing any further compares from entering the pipeline. FCCV isreasserted
when the compare is completed and the floating-point condition codes are valid, thus ensuring that the condition codes
match the proper compare instruction. FCCV islatched in the TSC691E before it is used.

3.5.2.11. FEXC—Floating-Point Exception (input)

FEXC is used to signal the integer unit that a floating-point exception has occurred. FEXC must remain asserted until
the TSC691E takes the trap and acknowledges the FPU exception via the FXACK signal. Although floating-point
exceptions can occur at any time, they are taken by the TSC691E only during the execution of a subsequent FPop, an
FBfcc instruction, or a floating-point load or store instruction. The FPU deasserts FHOLD if it detects an exception
while FHOLD is asserted. In such a case, FEXC is asserted one cycle before FHOLD is deasserted. FEXC is latched
in the TSCB91E beforeit is used.

3.5.2.12. FHOL D—Floating-Point Hold (input)

This signal is asserted by the FPU if a situation arises in which the FPU cannot continue execution. The FPU checks
al dependenciesin the decode stage of theinstruction and asserts FHOLD (if necessary) in the next cycle. If theinteger
unit receivesan FHOLD, it freezes the instruction pipeline in the same cycle. Once the conditions causing the FHOLD
are resolved, the FPU deasserts FHOLD, releasing the instruction pipeline. FHOLD islatched in the TSC691E before
itisused.

An FHOLD isasserted if (1) the FPU encounters an STFSR instruction with one or more FPops pending in the queue,
(2) if either aresource or operand dependency exists between the FPop being decoded and any FPops already being
executed, or (3) if the floating-point queueisfull.

3.5.2.13. FIPAR—FPU to IU Control Parity (input)

This signal contains the odd parity over the FCC[1:0], FCCV, FEXC and FHOLD bhits. The parity bit is generated by
the FPU and will be checked by the |U.

3.5.2.14. FINS1—Floating-Point Instruction In Buffer 1 (output)

FINS1 is asserted by the integer unit during the decode stage of the floating-point instruction that isin the D1 buffer
of the floating-point unit. The FPU uses this signal to begin decoding and execution of the D1 instruction, and to latch
it into its execute-stage register. FINSL and FINS2 are never asserted in the same cycle and both are ignored if (1)
FLUSH isasserted, (2) any HOLD isasserted, or (3) if FCCV or CCCV is deasserted.

3.5.2.15. FINS2—Floating-Point Instruction In Buffer 2 (output)

FINS2 is asserted by the integer unit during the decode stage of the floating-point instruction that isin the D2 buffer
of the floating-point unit. The FPU uses this signal to begin decoding and execution of the D2 instruction, and to latch
it into its execute-stage register. FINSL and FINS2 are never asserted in the same cycle and both are ignored if (1)
FLUSH isasserted, (2) any HOLD isasserted, or (3) if FCCV or CCCV is deasserted.

3.5.2.16. FLUSH—Floating-Point/Coprocessor |nstruction Flush (output)

Thissignal is asserted by the integer unit whenever it takes atrap. FLUSH isused by the FPU (or coprocessor) to flush
the instructions in its instruction buffers. These instructions, as well as the instructions annulled in the TSC691E’s
pipeline, are restarted after the trap handler is finished. If the trap was not caused by a floating-point (or coprocessor)
exception, instructions aready in the floating-point (or coprocessor) queue may continue their execution. If the trap
was caused by a floating-point (or coprocessor) exception, the FP (or FP) queue must be emptied before the FPU
(coprocessor) can resume execution.

3.5.2.17. FP—Floating-Point Unit Present (input)

When pulled low, FP indicates that a floating-point unit is available to the system. It is normally pulled up to VDD
through aresistor, and then grounded by connection to the FPU. The integer unit will generate an fp disabled trap if
FP=1 during the execution of an FPop, FBfcc, or floating-point load or store instruction.

3.5.2.18. FXACK—Floating-Point Exception Acknowledge (output)

FXACK is asserted by the integer unit to inform the floating-point unit that a trap has been taken for the currently
asserted FEX C signal. Receipt of the asserted FXACK causes the FPU to deassert FEXC. FXACK isalatched output
and should not be latched externally.
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3.5.2.19. INST—Instruction Fetch (output)

The INST signal is asserted by the integer unit whenever a new instruction is being fetched. It is used by the
floating-point unit or coprocessor to latch the instruction currently on the data bus into an FPU or coprocessor
instruction buffer. SPARC-compatible floating-point units and coprocessors have two instruction buffers (D1 and D2)
to save the last two fetched instructions. When INST is asserted, a new instruction enters buffer D1 and the instruction
that wasin D1 moves to buffer D2. INST isalatched output and should not be latched externaly.

3.5.2.20. IFPAR—IU to FPU Control Parity (output)

Thissignal containsthe odd parity over the FINSL, FINS2, FLUSH, FXACK and INST bits. The parity bit is generated
by the IU and will be checked by the FPU. It will be high-Z (on chip pull_up resistor=20kQ) when the TOE signal is
deasserted.

3.5.3. Interrupt and Control Signals

The following signals are used by the integer unit to control and to receive input from external events.

3.5.3.1. ERROR—Error State (output)

This signal is asserted when the integer unit enters the ‘error mode' state. This happens if a synchronous trap occurs
while traps are disabled (the PSR’s ET bit =0). Before it enters the error mode state, the TSC691E saves the PC and
nPC and sets the trap type (tt) for the trap causing the error mode into the TBR. It then asserts the ERROR signal and
halts. The only way to restart a processor which isin the error mode state is to trigger areset by asserting the RESET
signal.

3.5.3.2. HWERROR—Hardware Error (output)

The HWERROR outputs indicate a parity error occurs, except Master/Checker errors. When asserted low, the [U trap
with Trap Type value depending of the internal parity error (see Table 39, page 109). It is deasserted when the parity
error isremoved (i.e. by resuming thisinstruction), or by areset cycle.

3.5.3.3. FLOW —Enable Flow Contral (input)

Forcing thisinput low will enable the program flow contral. It isastatic signal and shall not change when running.

3.5.3.4. MCERR—Comparison Error (output)

This signal is asserted low in checker mode when a comparison error occurs on the internal output signals vis-a-vis
the output signal (excepted TAP, MCERR, HWERROR and ERROR signals) of the master |U. It is deasserted when
the error disappears. See chapter 4.4 for more information.

Thissignal is also asserted in master mode when the output doesn’t match the value of the pin.
Thisoutput is high-Z (on chip pull_up resistor=20kQ) when the TOE signal is deasserted.

3.5.3.5. 601M ODE—Normal 601 M ode Operation (input)

Forcing this input low will disable the parity checking of all input signals. This means the U will operate with the
standard input signals. Neverthel ess generation and checking of internal parity bit is still active. Parity on the data bus
is generated internally and parity checking on the control busis disabled.

3.5.3.6. CMODE—Checker Mode (input)

Assertion of thissignal will set the IU to act asachecker to support master/checker operation. All output signals except
ERROR, HWERROR, MCERR and TAP signals will be high-Z (on chip pull_up resistor=20kQ). It is a static signal
and shall not change when running. CMODE signal can change when RESET signal is asserted or when the IU isin
halt mode.

3.5.3.7. FPSY N—Floating-Point Synonym M ode (input)

This is a mode signal which will be used to allow execution of additional instructions in future designs. For the
TSC691E, it should be kept grounded.
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3.5.3.8. INTACK—Interrupt Acknowledge (output)

INTACK isalatched output that is asserted by theinteger unit when an external interrupt istaken, not when it is sampled
and latched.

3.5.3.9. IRL[3:0]—Interrupt Request L evel (input)

The state of these pins defines the External Interrupt Level (IRL). IRL[3:0]=0000 indicates that no external interrupts
arepending and isthe normal state of the IRL pins. IRL[3:0]=1111 signifiesanonmaskableinterrupt. All other interrupt
levels are maskable by the Processor Interrupt Level (PIL) field of the Processor State Register (PSR). Theinteger unit
usestwo on-chip synchronizing latchesto samplethese signals, and agiven level must remain valid for two consecutive
cyclesto be recognized. External interrupts should be latched and prioritized by external logic before they are passed
to the TSCB91E. Logic must also keep an interrupt valid until it is taken and acknowledged. External interrupts can
be acknowledged by system software or by the TSC691E’s INTerrupt ACKnowledge (INTACK) signal.

3.5.3.10. RESET—Integer Unit reset (input)

Assertion of this signal will reset the integer unit. RESET must be asserted for a minimum of nine processor clock
cycles. After RESET is deasserted, the integer unit starts fetching from address 0. RESET islatched by the TSC691E
beforeitisused.

The RESET signal input is protected by aglitch removal filter and pulses which are so short that they are detected only
during one clock period are not influencing the IlU. RESET signal is also protected with two-rail coding and an error
detected will lead to error mode.

3.5.3.11. TOE—Test Mode Output Enable (input)

When deasserted, this signal will three-state all integer unit output drivers (on chip pull_up resistor=20kQ). Thus, in
normal operation, this signal should always be asserted (tied to ground). Deassertion of TOE isolates the TSC691E
from the system for debugging purposes.

3.5.3.12. HALT—Halt (input)

When asserted this input will freeze the U pipeline and the clock. All information placed in the registers of the 1U
remains unchanged. By deasserting HALT, execution of the IU will resume. (see timing section 5.2.2.14, page 127)

When the IU isin halt mode, the TAP is still operating.

3.5.4. TAP signals

The following Test Access Port interface (IEEE standard 1149.1-1990) is used to perform boundary scan for test and
debugging purposes.

3.5.4.1. TCLK—Test Clock (input)

Thisclock signal permitstest datato be shifted into or out of theinstruction or test dataregister cellswithout interfering
with the on chip system logic.The |EEE standards requiresthat TCLK can be stopped at 0 indefinitely without causing
any change to the state of the test logic.

3.5.4.2. TRST—TEST Reset (input)
The TAP'stest logic isreset when alogical 0 is applied to this port.

3.5.4.3. TMS—Test Mode Select (input)
The TMS input signal is interpreted by the TAP controller to control the test operations.
Thereceived signal is sampled at the rising edge of the TCLK pulses.

3.5.4.4. TDI—Test Data Input (input)

Serial input data applied to this port is fed either into the instruction register or into a test data register, depending on
the sequence previously applied to the TMSinput.

The received input datais sampled at the rising edge of the TCLK pulse.
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3.5.4.5. TDO—Test Data Output

Depending on the sequence previously applied to the TM S input, the contents of either the instruction register or the
dataregister are serially shifted out toward the TDO.

The data out of the TDO is clocked at the falling edge of the TCLK pulses. TDO should be in the inactive state except
when scanning isin progress. (Use of 3 state driver)

3.5.5. Power and Clock Signals
The signals listed below provide clocking and power to the integer unit.

3.5.5.1. CLK—Clock (input)

CLK isa50%-duty-cycle clock used for clocking the integer unit’s pipeline registers. The rising edge of CLK defines
the beginning of each pipeline stage and a processor cycleis equal to afull clock cycle.

3.5.5.2. VCCO, VCCI, VCCT—Power (inputs)

These pins provide +5V power to various sections of the processor. Power is supplied on three different busses to
provide clean, stable power to each section: output drivers, main internal circuitry, and the input circuits. VCCO pins
supply the output driver bus; VCCI pins supply main internal circuitry bus; and VCCT pins supply the input circuit
bus.

3.5.5.3. VSSO, VSSI, VSST—Ground (inputs)

These pins provide ground return for the power signals. Ground is supplied on three different bussesto match the power
signalsto each section: VSSO pins for the output driver bus; VSSI pins for the main internal circuitry bus; and VSST
pinsfor the input circuit bus.

3.6. Pipeline and Instruction Execution Timing
One of the major contributing factors to the TSCE91E's very high performance is an instruction execution rate

approaching one instruction per clock cycle. To achieve that rate of execution, the TSC691E employs a four-stage
instruction pipeline that permits parallel execution of multiple instructions.

Instruction
from Memory

= -0+~ cwm
N -0 —*—+cm
P00 MmQy
O~ cCcOoO®Xm

I nternally Generated Opcode (10P)

Figure 24. Processor Instruction Pipeline
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3.6.1.Stages

Instruction execution is broken into four stages corresponding to the stages of the pipeline:
2. Fetch—The processor outputs the instruction address to fetch the instruction.

3. Decode—Theinstruction is placed in the instruction register and decoded. The processor reads the operands from
the register file and computes the next instruction address.

4. Execute—The processor executes the instruction and saves the results in temporary registers. Pending traps are
prioritized and internal traps taken during this stage.

5. Write—If notrap is taken, the processor writes the result to the destination register.

All four stages operate in parallel, working on up to four different instructions at a time. A basic “single-cycle”
instruction enters the pipeline and completes in four cycles. By the time it reaches the write stage, three more
instructions have entered and are moving through the pipeline behind it. So, after the first four cycles, a single-cycle
instruction exits the pipeline and a single-cycle instruction enters the pipeline on every cycle (see Figure 25).

Of course, a“single-cycle” instruction actually takes four cyclesto complete, but they are called single cycle because
with this type of instruction the processor can complete one instruction per cycle after the initial four-cycle delay.

Fetch C st ¢ Inst2 ¢ Int3 ¢ Ingtd :

Decode 1 1 Inst 1 1 Inst 2 1 Inst 3 1 Inst 4 l

Execute l Z Z Ingt 1 Z Inst 2 : Inst 3 : Inst 4
Write ! ! ! ! Inst 1 ! Inst 2 ! Inst 3
CLK

wtor A XRRRX 2 XX 2 XK A XXX XXX,
et (R XN X R e XX XXX

Figure 25. Pipelinewith All Single-Cycle Instructions

3.6.1.1. Internal Opcodes

Instructions that require extra cycles automatically insert internal opcodes (10Ps) into the decode stage as they move
into the execute stage. These internal opcodes are unique to the instruction that generates them. They move al the way
through the pipeline, performing functions specific to the instruction that created them. For example, in Figure 26 ,
the data load in cycle four can be thought of as the fetch for the IOP that starts in cycle three; together they make a
complete four-cycle instruction that balances out the pipeline. IMPL and RETT also generate an 0P, but have no
external datacycle.

Multicycleinstructions may generate up to three |OPsto complete execution. Table 36 liststheinstructionsthat require
IOPs and the number generated.

Because instructions continue to be fetched even though |OPs occupy the decode stage, a two-stage prefetch buffer
is used to hold instructions until they can move into the decode stage (see Figure 24). This enables the processor to
fully utilize the data bus bandwidth and still keep the pipeline full. Only two buffers are required because a maximum
of two cycles are available for instruction fetching for any multicycle instruction.
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Table 36. Internally Generated Opcodes

Instruction Number of Internal Opcodes
Single Loads 1
Double Loads 2
Single Store 2
Double Stores 3
Atomic Load-Store 3
Jump 1
Return from Trap 1

3.6.2. Multicycle Instructions

Multicycle instructions are those that take more than four cycles (one bus cycle plus the three pipeline cycles) to
complete. A double-cycleinstruction takesfive cycles (two bus cycles), atriple-cycleinstruction takes six cycles (three
bus cycles), and so on.

In most cases, the extra cycles required by multicycle instructions result from data bus usage (e.g., adataload or store
to memory) that prevents the processor from fetching the next instruction during those cycles. In Figure 26, the fetch
of instruction Inst 3 is delayed by one cycle for the data load, and in Figure 27, the store sequence delays the Inst 3
fetch by two cycles.

Fetch ' Load ' Inst 1 ' Inst 2 ' LoadData ' Inst3 ' Inst4
Decode l l Load l 0P, l Inst1 l Inst2 . Ingt3
Execute ! : : Load : I0P; : Inst 1 : Inst 2
Write ! ! ! ! Load ! 10P, ! Inst1

CLK

A[3LO] 0'0'0'00'0'0'00'0'0'00'0'0'00'0'0'00'0'0'0'
o310 II
nsr | | ./

IOP1: Internal OPcode for Instruction 1

Figure 26. Pipelinewith One Double-Cycle I nstruction (L oad)
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Fetch

Decode

Execute

Write

CLK | | | |

Store : Inst 1

Store

Inst 2
10P;

Store

Tag Check :

I0P,
|0P;

Store

Store Data :
Inst 1
0P,

10P;

Inst 3
Inst 2
Inst 1

10P,

L]

L

arszop ST YXXXOCAL XXX A2 XXX AX XXX AXXXRX A2 XXXXXXXXX
XXX XX |

D[31:0]

RD

WE

DXFER

LOCK

WRT

INULL

INST

XX

XX

IOPx: Internal OPcodefor Instruction “n”

Figure 27. Pipelinewith One Triple-Cycle I nstruction (Store)
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3.6.2.1. Register Interlocks

The pipeline holds several instructions at any giventime, soit is possible that an instruction may try to use the contents
of a particular register which isin the process of being updated by a previous instruction. Specia bypass paths in the
pipeline of the TSC691E make the correct data available to subsequent instructions for all internal register to register
operations, but cannot solve the problem of loads to the registers from external memory. For this case, interlock
hardware prevents an instruction following a load instruction from reading the register being loaded until the load is
complete (see Figure 28). This also appliesto a CALL instruction with adelay slot instruction using r[15] and a JMPL
with a delay dot instruction using the same register specified as the r[rd] of the IMPL. To maximize performance,
compilers and assembly language programmers should avoid loads followed immediately by instructions using the
|oaded register’ s contents.

Fetch ‘ Load E Inst 1 E Inst 2 E Load Data m Inst 3 E Inst 4
Decode Load I0P_ p 10P| . Inst 1 Ingt 2 Inst 3
Execute 3 E E Load E 10P_p E 10Pnt. E Inst 1 E Inst 2

Write Load IOP.p 1OPy. Inst 1

ax LT LI T I I I =

arol {T0 XXXRX AL XKXRX A2 XKXRHD maX KRR A5 XRXRX A5 XRXRH A4 XXX

ots101 LXXCRXRRN =X XXX XN 2X KM o-X KX XXX XX

DXFER l l l 1 1
INULL / 1 \
INST : : : : \ 1 1 / 1

IOPLD: Internal OPcode for Load IOPnt.: Internal OPcode for (hardware) Interlock

Figure 28. Pipelinewith Hardware Interlock (L oad)
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3.6.2.2. Branching

The TSCG691E’s delayed-control-transfer mechanism allows branches (taken or untaken) to occur without creating a
bubblein the pipeline (see Figure 29 ). Special parallel hardware enables the processor to evaluate the condition codes
and calculate the effective branch address during the decode stage rather than the execute stage, so that only one delay
instruction is required between the branch and the target instruction (or the next instruction, if the branch is not taken).
See Section 3.4.3.3.1 for adiscussion on branching.

If the compiler or programmer cannot place an appropriate instruction in the delay instruction slot, the delay instruction
can be annulled by setting the branch instruction’s a bit. The result is shown in Figure 30 .

Fetch Branch Delay Target Inst1 . Inst2 Int3 . Inst4
Decode 3 3 Branch 3 Delay 3 Target 3 Inst 1 3 Inst 2 3 Inst 3
Execute 3 E E Branch E Delay ,  Target E Inst 1 E Inst 2
Write 3 3 3 3 Branch 3 Delay 3 Target 3 Inst 1

o L L LML
wi En YRR X KRR X KRR A XERRX XY = XRRRX 2 XRRR
RN 00000C D 000 D NI L0 G 0 D L0 G

Figure 29. Pipeline During Branch Instruction

Fetch Branch Delay Target Inst 1 Inst 2 Inst 3 Inst 4
Decode Branch Annulled Target Inst 1 Inst 2 Inst 3
Execute : : : Branch : Annulled : Target : Inst 1 : Inst 2

Write : : : : Branch : Annulled : Target : Inst 1

e L L L L L L
At310] (BraaX XXX XD XXXX X XXX A XXXRX A2 XXX 22 XXX A4 XXX
otz [XXXXXCRXE XXX XXX i XX XXX XXX

Figure 30. Branch with Annulled Delay Instruction
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3.6.3. Pipeline Freezes

Whenever the processor receives an externally generated hold input, such as MHOLDA/B or BHOLD, the instruction
pipelineis frozen. How long it is frozen depends on the type of hold and the external hardware generating the hold.
Figure 31 shows the pipeline frozen by a BHOLD as the result of bus arbitration initiated by another bus master in
the system.

Fetch Inst 1 W////AV////A Int2  + Inst3
Decode ! Inst O Inst 1 Inst 1 Inst 1 Inst 1 Inst 1 Inst 2
Execute : : Inst O Inst O : Inst O : Inst O : Inst O : Inst 1
Write ' : ' ‘ Inst O

T e I I e T N
ALBLO) f 3
OO ED XXX XXX KX KX
SFOTS \ f | 1 / |

D[3L:0]

Figure 31. Pipeline Frozen During Bus Arbitration

3.6.4. Traps

Figure 32 shows the pipeline operation when an internally generated trap is taken. Instructions in the pipeline after
detection of the trap are annulled and the first instruction of the trap target routine is executed in the fourth cycle
following detection.
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3.6.5. Traps

Figure 32 shows the pipeline operation when an internally generated trap is taken. Instructions in the pipeline after
detection of the trap are annulled and the first instruction of the trap target routine is executed in the fourth cycle
following detection.

Decode Inst 0 Annulled //////%, Trap 1 Trap 2 Trap 3
Write Annulled Annulled Annulled m Trap 1

CLK

o GOXERR TR, X RE X ER E EXE
ooy (o X0 X0 e 2R T X OCRX e XN o XX
INULL / \

INST \ /

FLUSH / \

Figure 32. Pipeline Operation for Taken Trap (Internal)

3.7. Bus Operation and Timing

This section covers standard and non-standard bus operations. Standard operations include instruction fetch, load
integer, load double integer, load floating-point, load double floating-point, store integer, store double integer, store
floating-point, store double floating-point, atomic load-store unsigned byte, and floating-point operations (FPops).
Non-standard operations include bus arbitration, cache misses, exceptions, and the reset and error conditions.
Coprocessor loads, coprocessor stores, and coprocessor operations are identical in timing to their floating—point
counterpart, and are not repeated as a separate case in this section.

Each of the following sections describes atype of bus transaction along with appropriate timing diagrams. The timing
diagrams show multipleinstructions being fetched for the pipeline. Instruction addresses are sent out in the cycle before
theinstruction fetch. Instruction fetch cycles begin with the instruction address latched by the memory at the beginning
of the fetch cycle and end with the instruction supplied by the memory. Instruction decode begins with the latching
of the instruction at rising clock edge of the cycle after the fetch cycle. If the instruction is multicycle, or execution
requires an interlock, |OPs are inserted into the pipeline at the decode stage and propagate through the pipeline like
afetched instruction.

The cross-hatched areas shown in the traces are periods in which the signal is not guaranteed to be asserted or
deasserted; in other words, undefined.
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Ingeneral, signalsarevalid at the beginning of acycle, i.e., on therising edge of the clock. In support of the TSC691E’s
high-speed operation, many signals are sent out unlatched. Refer to Section 3.5 for further details on TSC691E signals.

The processor automatically aligns byte (and halfword) transfers as previously shown in Figure 12. Firures 33 & 34
show the rel ationship between the data transferred during byte, halfword, and word operations and the pins of the data
bus. For byte and halfword datatransfers, the TSC691E repeats the byte or halfword on each eight—bit or 16-hit section
of the bus. In other words, the undefined portions of the bus illustrated in Figure 33 are actually arepeat of the data
driven onto the bus. However, this feature is not specified in the SPARC Architecture Reference, and may not be
supported on other SPARC processors.

CLK
Ao (X +0 XXKXX X2 KXXXK X+ 2 XXXXAX X +2 XXAX)
Sze(ia
ppa2g  { BYTE0 X XXX BYTE0 X XXX BYTE0 X XXX BYTE0 XXX)
pzz1el - (avres XXXX Bvrer XXX BTEs XXX BYTEL XXK)
D[15:8] (Brre2 X XXX BYme2 X XXX BYme2 X XXX BYTE2 XXX)
ooy evrea XXX BYTES XXX Br7Es XXX BYTE2 XXK)

Byte Data Alignment

X =word boundary address
Note 1: The parity bit of undef data in/out must match with the data
Note 2 : Thisillustration depicts data alignment and isnot intended toillustrateatiming case.

Figure 33. Data Bus Contents During Data Transfers (1 of 2)
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CLK CLK —|_
aiarol - X0 XXX -2 XXX Aol QXXX XXX
szetza (XXX XX00 SZE(10
D31l { HWRDOX XXX HWRDOX X X ) D[31:16] QUAX R X XX)
I T T o S R L0 D 00

Half Word Data Alignment Word Data Alignment

X =word boundary address
Note 1: The parity bit of undef data in/out must match with the data
Note 2 : Thisillustration depictsdata alignment and isnot intended toillustrateatiming case.

Figure 34. Data Bus Contents During Data Transfers (2 of 2)

3.7.1. Instruction Fetch

The instruction fetch cycle is that cycle in which both the instruction address and the data (the instruction itself) are
active on their respective busses (see Figure 35). The instruction address on A[31:0] is actually sent out in the previous
cycle, but is held into the fetch cycle. It should be latched externally. The instruction is returned on the data bus at the
very end of the fetch cycle and is held into the decode cycle. It is latched into the on-chip instruction register at the
beginning of the decode cycle.

[ 1 [ 2 [ 3 l 4 | 5 |

CLK

PN D 0 0100 D WL L0 O 00
CER GO ED Y ED DN CER D

Figure 35. Instruction Fetch
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3.7.2. Load

Figure 36 shows the timing for a load single integer instruction. Because the bus is used for a data fetch in the fifth
cycle, thisis a double-cycle instruction. Note that DXFER is active in the cycle in which the load data address is sent
out, while INST isinactivein the cycle in which the load datais on the data bus.

1 l 2 l 3 l 4

o LML L L L
e s s T/

Figure 36. Load Single Integer Timing

3.7.3. Load with Interlock

In aload with interlock situation, the instruction following the load tries to use the contents of the load’s destination
register before the load datais available. Thisrequirestheinsertion of an OP into the decode stage of the pipeline (see

Section 3.6.5.1) in the fourth cycle, which must be matched by a null bus cycle in the fetch stage to balance the pipeline
(seeFigure 37).

1 } 2 } 3 } 4 l 5 l 6

CLK J_\_ ‘_ | _‘ | ‘_’_
atst) (20 XK AL XXX 2 XXX A=Y XXX A XX~ )
ots1o1 [OCRXOCRKED X RRirs XK 2X XX D XX = XK 3)
DXFER /_—\
\ /T

Figure 37. Load Singlewith Interlock Timing
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3.7.4. Load Double

Thetiming for aload double integer is shown in Figure 38 . The timing is essentially the same as aload single except
for the additional data fetch in the fifth cycle. That makes load double a triple-cycle instruction. The most-significant
word is fetched in cycle four and the least-significant word in cycle five. Note that the size bits are set to 11 during
the address portion of both loads and that the busis locked to allow the completion of both loads without interruption.

Load single and load double floating-point instructions look identical to their integer counterparts except that the
FINSL/FINS2 signal is active for floating-point operations.

1 ! 2 ! 3 ! 4 ! 5 ! 6

S N e Y s I s I e Y N
stzzr (0 XXXXX AL XXX A2 XXX, (0 XXX (B (KKK A5 XXXRH A
SO 0 D L G O I W0 G L D L )
-
ook _ } /T

—

Figure 38. Load Double Integer Timing
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3.7.5. Store

Store transactions involve more bus activity than loads, as shown in the store single integer timing in Figure 39 . Store
singleis atriple-cycle instruction because it includes an extra tag check cyclein which to check an external cache for
the store address. This extra cycle also gives the processor and the memory system time to three-state (on chip pull_up
resistor=20kQ)the data bus and turn it around for the store. The store address is sent out again in the fifth cycle to
complete the data transfer. Note that the store data is generated by the processor off the falling edge of CLK and is
therefore only available at the very end of thefirst data cycle.

Note also that INULL is active during the second application of the store address. If there is a cache miss on the tag
check cycle, INULL prevents an additional miss the second time the address is sent out in the store cycle. Because it
isatriple- cycleinstruction, LOCK is asserted to retain control of the busses.

CLK I l I

2

3 4 5

I I I'_lel_

Al3LO) -00'0'00'0'0'00'0'000'0'0'00'0'0'0“'0'0
D[31:0] '0'“'0'0'0'00'0'“WO'O 0'0'0'0

RD

DXFER

LOCK

WRT

INULL

INST '

Figure 39.

Store Single Integer Timing
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3.7.6. Store Double

Thetiming for a store double integer is shown in Figure 40 . The timing is essentially the same as store single except
for the additional store cyclein the sixth cycle, making it afour-cycle instruction. The most-significant word is stored
in cycle five and the least-significant word in cycle six. Note that the size bits are set to 11 during the address portion
of all three data cycles and that the bus is locked to allow the completion of both stores without interruption. INULL
is not active for the address of the least-significant store because there cannot be a miss on this cycle if there wasn't
one on the tag check cycle, unless the cache lineisless than two words.

Store single and store double floating-point instructions look identical to their integer counterparts except that the
FINSL/FINS2 signal is active for floating-point operations.

‘ 1 2 3 4 5 6

CLK _| | | | | | l_
e (EXERRXEXRRRCZXRR sm@zx FAnERR E TR
oasor (R X YR o Y o )——
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DXFER ‘ ‘ ‘ / 3 3 3 \_;_
ook _ i i i T\ i
wrr 3 T\ | |

INULL 1 l l l l /—\__
o v —————

Figure 40. Store Double Integer Timing
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3.7.7. Atomic L oad-Store

Atomic transactions consist of two or more steps which are indivisible; once the sequence begins in the instruction
pipeling, it cannot be interrupted. Because atomic operations are four-cycle instructions, the TSC691E asserts LOCK
for aslong as necessary to make sure that no interruption occurs on the bus. Figure 41 appliesto the atomic operations
load-store unsigned byte (LDSTUB, LDSTUBA) and word swap (SWAP, SWAPA). Note that, as with any store,
INULL isactive on the second occurrence of the store address.

o LT LT L L L LT
Als10 -0'0'0'00'0'0'00'0'0'0 0'0'0'00'0'0'00'0'0'0
- 'o'o'oowwo'o (R

° 3 T\ Ve 3

=T N
LDSTO / \
DXFER / \
Lock / \
w
INULL / 1 \

| | Figure4i. Atomic Load;StoreTiming | | |
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3.7.8. Floating-Point Operations

The timing for floating-point operations and integer operations is the same except for the addition of the FINS1 and
FINS2 signalsin floating-point operations. In this example, Instruction 1 is afloating-point operation (see Figure 42).
FINSL/2 tell the floating-point unit to move an instruction out of its decode buffer and begin execution. The FPU aso
makes use of the INST signal to latch instructions into its decode buffers.

1 : 2 : 3 : 4

CLK

i XXX YRR XK XRRR )

ASIT0] - (ASIaL XXX XXASA2 XXX XKASAs XXX XK ASAs XXX XKASAs)

N/ \/
/\ ‘ AN
praro) === XK FPor Y OOOK st 2 X XXX st 3 XXX Inst- 4)

szepro] {10 XXXXX 20 XXXXX 20 XXXXX 20 XXXAX 2 )
FINSU/FINS2 / ! \ ‘

Figure 42. Floating—Point Operation Timing
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3.7.9. Bus Arbitration

The T SC691E does not have on-chip busarbitration circuitry becauseit isdesigned to operate asabusslave. Therefore,
external circuitry must arbitrate between external bus requests and the TSC691E. When the TSC691E needsto retain
the busses it asserts the LOCK signal. The arbitration circuitry should assert BHOLD when it needs to keep the
TSCG691E off the busses. When BHOLD is asserted, the processor’ sinstruction pipelineisfrozen until it is deasserted.
The arbitration circuitry should also deassert the DOE, AOE, and COE signals to three-state the TSC691E’ s address
bus (on chip pull_up resistor=20kQ), data bus and control signal output drivers so they may be driven by an external
source (see Figure 43).

1 2 3 4 5 6

CLK __J I I I I I L____J

Ao { AL XXXXX A2 (A‘Z )<XXX>( A3 )

ASI[7:0] OOXXX Asinz ‘ ‘ ‘ D e ED)

plsta] (Inst OXXXXX_tnst 1

szero (GO XXX
o T XR O

WE

LDsTo 00— : : N |
DXFER ' ' '

- XR— f — v

wr |

BHOLD \ /_
DOE / : :
-
-

Figure 43. BusArbitration Timing
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3.7.10. Load with Cache Miss

Figure 44 gives the timing for aload with cache miss. Cache logic must stop the processor by asserting MHOLDA
or MHOLDB in the next cycle. However, the processor stops with the address of the next instruction on the address
bus rather than the instruction that caused the miss. In order to retrieve the proper load data, the memory system needs
the missed address on the bus. To do thisthe memory system must send an MAO signal, forcing the processor to output
the previous address (the address that was on the bus in the cycle before MHOLD was asserted). The MHOLD signal
must be maintained while the missed data is strobed into the processor with the MDS signal (it must be strobed
externally because the internal processor clock is frozen by the MHOLD).

l 1 l 2 l 3 l 4 l 5 l 6 l 7
ST v [ o N N e e
o L XRRRN A XRRRYCE A RRRK s XRRRK o XRRRHGE X RRRK 2 XERR
RIEECRRCET 001 T 000 CT 0000 C 000 CT 000 CT 000 CTD (000
aze10 10 XRRRXC =X KRR o XORRRK oo XRRRNEE s KR o XKDy

WHOLD | : : \ /_

Figure 44. Load with Cache Miss Timing
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3.7.11. Storewith Cache Miss

Thetiming for a store with cache missis similar to the load with cache miss situation, except that MAO and MDS are
not required (see Figures 45 & 46). Because the processor outputs the store address twice, it aready has the proper
address on the bus when it’s stopped by MHOLD. MDS is hot required because nothing needs to be strobed into the

processor.

INULL isasserted for the second occurrence of the store address so that it doesn't trigger the miss circuitry during the
time the cache is processing the miss on the first occurrence of that address.
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owoowwwwu
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; \

\

Figure 45. Storewith Cache Miss Timing (1 of 2)
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Figure 46. Store with Cache Miss Timing (2 of 2)
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3.7.12. Load/Storeinstruction with Trap

Figure 47 givesthetiming for aload instruction with atrap taken. This timing is similar for the load double, for the
|oad-store, for the store and for the swap instructions.

‘ 1 l 2 } 3 } 4 ‘ 5 } 6
cax [ LT 1T 1T 1 L [ 1
arato) {0 AQO0K A2 XXX 22 XXX AadOXX) T s XXX T s XX

o1 [RXRRXXRXEE X RRRX = XA X R X KRR XRRR)
DXFER i 3 i / i \ : ‘
‘ — N

INULL

Figure47.Ld, LdSt, St and Swap Inst with Trap Taken
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3.7.13. Memory Exceptions

Load with memory exception timing is shown in Figures 48 & 49. As with a cache miss, memory logic must stop the
processor by asserting MHOLDA or MHOLDB in the next cycle. The MHOLD signal must be maintained while the
memory exception (MEXC) signal is strobed into the processor with the MDS signal (it must be strobed in externally
because the internal processor clock is frozen by the MHOL D). MEXC must be deasserted in the same clock cyclein
which MHOLD is deasserted. Note that INULL is asserted in the cycle 8 instruction fetch to annul that fetch. Thisis
the same action shown in cycle 2 of Figure 32 for an internal trap. Store with memory exception has the same timing
(see Figures 52 & 53) except INULL is asserted from the second store address through to the annulled cycle 8
instruction fetch.

i e e

wizzo, (XXX XXX AN KR = XX |

PRI G40 G 00 D L0 D L0 TR
opra - (X RRRX XX X R R YRR XRRR]

szerror (0 XXXXX 0 XXXRXD XXX o XXX ™ |
DXFER : : /—3\ : :

1

CLK

MHOLD 1 1 1 1\
INULL 1 1 1 1
MDS 1 1 1 1 1
MEXC l l l l 1
INST \ -/

FLUSH

Figure 48. Load with Memory Exception Timing (1 of 2)
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Figure 49. Load with Memory Exception Timing (2 of 2)
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Figure 50. Instruction Memory Access Exception Timing
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Figure51. Instruction Memory Access Exception Timing (LD in Execute stage)
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Figure 52. Store with Memory Exception Timing (1 of 2)

85
Rev. | — September 23, 1998



TSCG91E

ATMEL

I
WIRELESS & uC

CLK

A[3L0]

ASI[7:0]

D[31:0]

SIZE[1:0]

RD

DXFER

LOCK

WRT

INULL

MHOLD

<
o)
wnl

=
Q
o

INST

FLUSH

ST Add

ASlsT

QXXX A2 XXXXXA™ ROXXAT)

QAKX A X XXX As s XXXXR A )

'/
A
'/
A

:ST Data ' QOO — XXXXXT8 s )

T XXX

' R17 =Add Store |
+R18 =Add Store+ 4

NN N

Figure 53. Store with Memory Exception Timing (2 of 2)
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Figure 54. Store double with Memory Exception on 1st data address (1 of 2)
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Figure 55. Store double with Memory Exception on 1st data address (2 of 2)
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Figure 56. Store double with Memory Exception on 2nd data address (1 of 2)
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Figure57. Store double with Memory Exception on 2nd data address (2 of 2)
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3.7.14. Floating-Point Exceptions

The floating—point unit asserts FEXC to notify the TSC691E that a floating-point exception has occurred and that it
should take a trap on the next floating-point instruction that it encounters in the instruction stream (see Figure 58 ).
The TSCG691E asserts FXACK to signal the FPU that thetrap isbeing taken, and FLUSH to clean out the FPU’ sdecode
buffers. From this point on, the FPU will execute only floating-point store queue instructions until its queue is emptied
by the trap handler.

FEXC is deasserted by the FPU after FXACK is asserted. FXACK is deasserted by the TSC691E after FEXC is
deasserted.

o A L

: | “ | |
ok i YRy A i
| | 7/ | : | |
FLUSH 3 3 3// 3/ 3 \ 3 3
f f 7/ f f f f

Figure 58. Floating—Point Exception Handshake Timing

3.7.15. Interrupts

The asynchronous IRL[3:0] inputs are sampled on the rising edge of every clock. If the interrupt value represented by
those inputsis greater than the masking value in the processor, and no higher priority trap supersedesit, the TSC691E
will take the interrupt. The IRL input level should be held stable until the processor asserts INTACK.When the trap
istaken, IRL lineareignored until ET=0 (until RETT instruction is executed). Figure 59 shows thetiming for the best
case response time where the IRL input value is asserted one clock and a set—up time before the execute stage of a
single-cycle instruction. Refer to Section 3.8.3 for more information on interrupts.
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Figure 59. AsynchronousInterrupt Timing
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3.7.16. Reset Condition

Figure 60 showsthetiming for a power-on reset. RESET must be asserted for at least nine cycles so that the processor
can synchronize the reset input and initialize its internal state. For RESET to be synchronized, the CLK signal must
be active.

During the initialization, the processor disables traps (ET=0), sets the supervisor mode (S=1), and sets the program
counter to location zero (PC=0, nPC=4).
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i s s s e
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Figure 60. Power—On Reset Timing

3.7.17. Error Condition

Error mode is one of the three statesin which the TSC691E can exist. To get into this error mode, a synchronous trap
must occur while traps are disabled (the processor state register’'s ET hit is set to zero). This essentially means that a
trap which cannot be ignored occurs while another trap is being serviced. In order for that synchronous trap to be
serviced, the processor goes through the normal operations of atrap (see Section 3.8), including setting the tt bits to
identify the trap type. It then enters error mode, halts, and asserts the ERROR signal (see Figure 61).

The only way to leave error mode isto receive an external RESET signal, which forces the processor into reset mode.
All information placed in the TSC691E’ s registers from the last execute mode (the trap operation) remains unchanged
and the processor resumes operation at address zero. The reset trap handler can examine the trap type of the
synchronous trap and deal with it accordingly.
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Figure 61. Error/Reset Timing
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3.8. Exception M odel

The TSC691E supports three types of traps: synchronous, floating-point/coprocessor, and asynchronous (also called
interrupts). Synchronous traps are caused by hardware responding to a particular instruction or by the Trap on integer
condition code (Ticc) instructions; they occur during the instruction that caused them.

Floating—point/coprocessor traps caused by a Floating-Point-operate (FPop) or CoProcessor-operate (CPop)
instruction occur before that instruction is complete. However, because floating—point (and coprocessor) exceptions
are pended until the next floating—point (coprocessor) instruction is executed, other non-floating-point (coprocessor)
instructions may have executed before the trap is taken.

Asynchronous traps occur when an external event interrupts the processor. They are not related to any particular
instruction and occur between the execution of instructions. See Section 3.8.3.

3.8.1. Reset

The reset trap is a special case of the external asynchronous trap type. It is asynchronous because it is triggered by
asserting the RESET input signal. But from that point on, itsbehavior isentirely different from that of an asynchronous
interrupt (see Section 3.8.3).

As soon as the TSCB91E recognizes the RESET signal, it enters reset mode and stays there until the RESET line is
deasserted. The processor then enters execute mode and then the execute trap procedure. Here, it deviates from the
normal action of atrap (Section 3.8.5) by modifying the enable traps bit (ET=0), and the supervisor bit (S=1). It then
setsthe PC to O (rather than changing the contents of the TBR), the nPC to 4, and transfers control to location O.

All other PSR fields, and all other registersretain their values from the last execute mode.
Note:
Upon power-up reset the state of all registers other than the PSR are undefined.

If the processor got to reset mode from error mode, then the normal actions of a trap have already been performed,
including setting the tt field to reflect the cause of the error mode. Because this field is not changed by the reset trap,
a post-mortem can be conducted on what caused the error mode. The processor enters error mode whenever a
synchronous trap occurs while traps are disabled.

3.8.2. Synchronous Traps

Synchronous traps are caused by the actions of an instruction, with the trap stimulus occurring either internally to the
TSC691E or from an external signal which was provoked by the instruction. These traps are taken immediately and
the instruction that caused the trap is aborted before it changes any state in the processor.

A new type of trap has been added: Hardware traps. This trap occurs when a hardware error (i.e. SEUI on register)
is detected by the IU. The trap type depends of the internal parity error (see Table 40). In case of hardware traps the
HWERROR signal is asserted low.

The external signalsthat can cause a synchronous trap are listed in Table 37 .
Table 37. Externally Generated Synchronous Exception Traps

Trap Initiating Signal Condition
Data Access Exception MEXC Memory error during data access
Instruction Access Exception MEXC Memory error during instruction access
Floating—Point Exception FEXC Floating—point unit error
Coprocessor Exception CEXC Coprocessor unit error

Note[l]:
SEU = Single Event Upset, aflip of register or memory cells, forced by heavy ions.

3.8.2.1. External Signals

Synchronous traps generated by the input signal MEXC (Memory Exception) occur during the execute phase of an
instruction or occur immediately for data accesses. Traps generated by the FEXC and CEXC signals belong to the
special floating-point/coprocessor category, and may not occur immediately.
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3.8.2.1.1. Hardwareerror
When a hardware error is detected, the trap handling routine saves the error information which the MEC has sampl ed.

Thetrap routine then resumes the instruction by returning from the trap routine. If the cause of the error was atransient
fault, it may be removed by just resuming the instruction. If the error was caused by afault that is not removable by
resuming the instruction, another hardware error trap is generated and the trap handling routine propagates the error
to ahigher level of the application.

If thefaultisin acritical register or latch which the trap handling routine uses, another hardware error trap is generated.
A synchronoustrap during thetimewhen traps are disabled isacritical error and the |U entersthe error mode and halts.
This means that the error detection mechanism hasto detect the error when the faulty instruction isin the execute stage
in order to handle the trap normally, i.e. correct PC for the faulty instruction.

When an error trap occurs, the HWERROR signal is asserted (see Table 40).

3.8.2.1.2. Instruction access exeption

An instruction access exception trap is generated if a memory exception occurs (the MEXC input signal is asserted)
during an instruction fetch.

3.8.2.1.3. Data access exception

A data access exception trap is generated if a memory exception occurs (the MEXC input signal is asserted) during
the data cycle of any instruction that moves datato or from memory.

3.8.2.2. Internal/Software

Synchronous traps generated by internal hardware are associated with an instruction. The trap condition is detected
during the execute stage of the instruction and the trap is taken immediately, before the instruction can complete.
3.8.2.2.1. Illegal instruction

Anillegal instruction trap occurs:

e when the UNIMP instruction is encountered,

e when an unimplemented instruction is encountered (excluding FPops and CPops),

® inany of the situations below where the continued execution of an instruction would result in an illegal processor
state:

1. Writing a value to the PSR's CWP field that is greater than the number of implemented windows (with a
WRPSR)

2. Executing an Alternate Space instruction with itsi bit set to 1
3. Executing aRETT instruction with traps enabled (ET=1)
4. Executing an IFLUSH instruction with TFT=0

Unimplemented floating-point and unimplemented coprocessor instructions do not generate an illegal instruction trap.
They generate fp exception and cp exception traps, respectively.

Floating-point instructions are coded with : op=10 & op3=11010x and coprocessor instructions: op=10 & op3=11011x.
The IU decodes the fields op and op3 and generates FINS's or CINS's even if the instruction is unimplemented.

3.8.2.2.2. Privileged instruction
Thistrap occurs when a privileged instruction is encountered while the PSR’s supervisor bit is reset (S=0).
3.8.2.2.3. Fp disabled

A fp disabled trap is generated when an FPop, FBfcc, or floating-point load/store instruction is encountered while the
PSR’s EF bit =0, or if no FPU is present (FP input signal =1).

3.8.2.2.4. Cp disabled

A cp disabled trap is generated when a CPop, CBccc, or coprocessor |oad/store instruction is encountered while the
PSR’s EC hit =0, or if no coprocessor is present (CP input signal =1).

3.8.2.2.5. Window overflow

This trap occurs when the continued execution of a SAVE instruction would cause the CWP to point to a window
marked invalid in the WIM register.
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3.8.2.2.6. Window under flow

Thistrap occurs when the continued execution of a RESTORE instruction would cause the CWP to point to a window
marked invalid in the WIM register. The window underflow trap type can also be set in the PSR during a RETT
instruction, but the trap taken is a reset. See Section 3.8.1 on reset traps and SPARC V7.0 Instruction Set for the
instruction definition for RETT.

3.8.2.2.7. Memory address not aligned

Memory address not aligned trap occurswhen aload or storeinstruction generatesamemory addressthat isnot properly
aligned for the data type or if a IMPL instruction generates a PC value that is not word aligned (low-order two bits
nonzero).

3.8.2.2.8. Tag overflow

Thistrap occursif execution of aTADDccTV or TSUBccTV instruction causesthe overflow bit of theinteger condition
codes to be set. See the instruction definitions of TADDccTV and TSUBccTV and Section 3.4.3.2.3 for details.

3.8.2.2.9. Trap instruction

Thistrap occurs when a Ticc instruction is executed and the trap conditions are met. There are 128 programmabl e trap
types available within the trap instruction trap (see SPARC V7.0 Instruction Set, Ticc instruction).
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3.8.3. Interrupts (Asynchronous Traps)

Asynchronous traps occur in response to the Interrupt Request Level (IRL[3:Q]) inputs. This type of trap is not
associated with an instruction and is said to happen between instructions. This is because, unlike synchronous traps,
an interrupt allows the instruction in whose execute stage it is prioritized to complete execution (see Figure 62 ). Any
instruction that has entered the pipeline behind the instruction which was alowed to complete is annulled, but can be
restarted again after returning from the trap.

3.8.3.1. Priority

The level, or priority, of the interrupt is determined by the value on the IRL[3:0] pins. For the interrupt to be taken,
the IRL value must be greater than the value in the Processor Interrupt Level (PIL) field of the Processor State Register
(PSR). A value of Oindicatesthat no interrupt isrequested. A value of 15 represents anon-maskableinterrupt. All other
IRL values between 0 and 15 represent interrupt requests which can be masked by the PIL field. The priority and trap
type (tt) for each level isshownin Table 38 .

3.8.3.2. Response Time

The TSC691E samples the IRL inputs at the rising edge of every clock. In order to properly synchronize these
asynchronous inputs, they are put through two synchronizing levels of D-type flip-flops. The outputs of the two levels
must agree before the interrupt can be processed. If the outputs disagree, the interrupt request is ignored. This logic
serves to filter transients on the IRL lines, but it means that the lines must be active for two consecutive clock edges
to be accepted as valid.

Once the IRL input has been accepted, it is prioritized and the appropriate trap is taken during the next execute stage
of the instruction pipeline. Best case interrupt response occurs when the interrupt is applied one clock plus one setup
time before the execute phase of any instruction in the pipeline (see Figure 62 ). In this case, the first instruction of
the interrupt service routineis fetched during the fifth clock following the application of an IRL value greater than the
PIL field of the processor statusregister (PSR). Thisalso holdsfor an IRL value of OF H, which acts asanon-maskable
interrupt.

Theworst caseinterrupt response occurs when the detection of the IRL input just missesthe cutoff point for the execute
stage of afour-cycle instruction, such as a store double or atomic load-store (see Figure 65 ). In this case, the interrupt
input must wait an additional three cycles for the next pipeline execute phase. In addition, if the IRL input just misses
the sampling clock edge, an additional clock delay occurs. As a result, the first instruction of the service routine is
fetched in the eighth clock following the application of IRL.

The best and worst case interrupt timing described above assumes that the processor is not stopped viathe application
of an external hold signal, and that the IRL input is not superceded by the occurrence of a synchronous (internal) trap.

Fetch Inst. 2->r17 Inst. 3->r18 Inst. 4 WA Trap 1 Trap 2
7//////
Decode Inst. 1 Inst. 2 Inst. 3 Annulled Trap 1
7/

Execute Inst. 1 Inst. 2 Annulled Annulled V
Write Inst. 1 Annulled Annulled Annulled
IRL[3:0] A A A
— Taken
— Prioritized
Latched
INTACK — Sampled

Figure 62. Best—Case I nterrupt Response Timing (one cycle instruction)
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Load Tag
Fetch Load Inst 1 Inst 2 Inst 3 Trap 1 Trap2 | Trap3
S r17 > I‘18 Data A, Check
Decode Load 10Py Inst 1 Inst2 | Annulled //A Trap 1 10P; 0P,
Execute Load I0P; Inst1 | Annulled| Annulled % Trap 1 10P;
7
Write Load 10P, Annulled | Annulled |Annulled Trap 1
IRL[3:0] X A T
— . - - - - 1 ]
‘ X Taken
X X Prioritized
X Latched
INTACK ‘Sampled | |
Figure 63. Double Cycles I nstruction Interrupt Response Timing (ex: L oad)
Fetch Inst1 | Inst2 | Teg Store Tag
Sore | 5117 >ri8  Check | paa | ™3 A B D B ="
/
Decode Store | jop IOP, | Inst.1 | Inst.2 | Annulled 0 Trapl | 1OP, | IOP;
IV
v Store 10P; 0P, Inst. 1 | Annulled Annulled% Trap 1 0P,
/.
Write Store 10P, I0P, | Annulled |/Annulled| Annulled 7& Trap 1
IRL[3:0] A A A 4 A A
PR R -1 : '
! X —Prioritized
’ T Latched
INTACK Sampled. | |
Figure 64. Triple-CyclesInstruction Interrupt Response Timing (ex: Store)
Fetch Store | Instl | Inst2 | Tag Store | Store | |ngt. 3 Trapl | Trap2 Trap3 |19
double | ->r17 ->r18| Check | D1 D2 Z ® ® P check
Decode i‘l’ﬁe IoP, | 10P, | 10P; | Ingt. 1| Inst.2 |Annulled Trapl| 10P, | 10P,
Execute iﬁ;e IOP, | 10P, | 10P; | Inst.1 Annulled Annulled Trapl | 10P;
Write Store 11655 | joP, | 10P;  Annulled Annulled Annuiled Trap 1
double 1 2 3 rap
IRL[3:0] A A : A A A A
e R ] P 4 ' '
X X — Taken
' X — Prioritized
. Latched
INTACK L Sampled - --4 I_l
Figure 65. Four-Cycles Instruction Interrupt Response Timing (Store Double)
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When the instruction present in the decode stage during sampling of IRL[3:0] is a CBI, the response time is the same
than described in Figure 62 except when the delay instruction is annulled:

® BA, FBA, and CBA with annul bit =1 (B*A,a)
® Bicc, FBicc, and CBicc not taken with annul bit = 1 (B*cc,aNT)

For those two cases, the INTACK signal and thefirst instruction of the interrupt service routine will be valid one cycle
later (see Figure 66).

Feich Target It 4 7
Delay Inst. >R17 >R18 Inst. 2 / Trap 1 Trap 2
T
Decode CBI Annulled Target Ingt. 1 Annulled Trap 1
0 7/
/
Execute CBI Annulled Target Annulled Annulled

Write CBI Annulled Annulled Annulled Annulled
IRL[3:0] J“ J A
Taken
— Prioritized
Latched
INTACK — Sampled

Figure 66. I nterrupt Response Timing on conditional branch instruction (B*A,a & B*cc,aNT)

3.8.3.3.Interrupt Acknowledge

As shown in Figures 62 to 66, the INTerrupt ACKnowledge (INTACK) output signal is asserted when the interrupt
is taken, not when it is first detected and latched. Because of this delay, if the IRL[3:0] inputs are changed to reflect
another interrupt condition before the corresponding INTACK for the latched condition is received, there could be
some question as to which interrupt the INTACK is responding to. Therefore, external hardware should ensure that
the IRL[3:0] inputs are held stable until an INTACK is received.

When trap is taken the PC and nPC are saved into r[17] and r[18] respectively (see Figures 63 to 66). Care must be
taken in case of Response Timing on conditional branch instruction (B*A,a& B*cc,aNT), the PC value of inst1 instead
of the Delay Instruction is saved in r[17]. If Branch istaken, r[17] and r[18] contain the 2 first addresses of the branch
routine.

For the Best—Case I nterrupt Response Timing (see Figure 66), r[18] contains the value of the first address of the branch
routineif instl if a Branch instruction (different than B*A,a& B*cc,aNT).

3.8.4. Floating-Point/Coprocessor Traps

Floating-point/coprocessor exception traps are considered a separate class of traps because they are both synchronous
and asynchronous. They are asynchronous because they are triggered by an externa signal (FEXC or CEXC), and are
taken sometime after the floating-point or coprocessor instruction that caused the exception. This can happen because
the TSC691E and the FPU (coprocessor) operate concurrently. However, they are also synchronous, because they are
tied to an instruction—the next floating-point or coprocessor instruction encountered in the instruction stream after
the signal isreceived.

When the FPU (coprocessor) recognizes an exception condition, it enters an “exception pending mode” state. It
remainsin this state until the TSC691E signals that it has taken an fp exception (cp exception) trap by sending back
an FXACK (CXACK) signa. The FPU (coprocessor) then enters the “exception mode” state, remaining there until
the floating-point (coprocessor) queue has been emptied by execution of one or more STDFQ (STDCQ) instructions.

Although the PC will always point to a floating-point or coprocessor instruction after an exception trap is taken, it
doesn’'t point to the instruction that caused the exception. However, the instruction that did cause the exception is
aways the front entry in the queue at the time the trap is taken, and the entry includes both the instruction and its
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address. The remaining entries in the queue point to FPops (CPops) that have been started but have not yet completed.
Once the queue has been emptied, these can be re-executed or emulated.

3.8.4.1. Floating-Point Exception

This trap occurs when the FPU is in exception pending mode and an FPop, FBfcc, or floating-point load/store
instruction is encountered. The type of exception is encoded in the tt field of the Floating-point State Register (FSR).

3.8.4.2. Coprocessor Exception

This trap occurs when the Coprocessor is in exception pending mode and a CPop, CBccc, or coprocessor load/store
instruction is encountered. The type of exception should be encoded in the tt field of the Coprocessor State Register
(CSR). The nature of the exception is implementation dependent.

3.8.5. Trap Operation

Once atrap is taken, the following operations take place:

Further traps are disabled (asynchronous traps are ignored; synchronous traps force an error mode).

The Shit of the PSR is copied into the PS bit; the S bit is then set to 1.

The CWP is decremented by one (modulo the number of windows) to activate a trap window.

The PC and nPC are saved into r[17] and r[18], respectively, of the trap window.

Thett field of the TBR is set to the appropriate value.

If thetrap is not areset, the PC is written with the contents of the TBR and the nPC iswritten with TBR + 4. If the
trap isareset, the PC is set to address zero and the nPC to address four.

Unlike many other processors, the SPARC architecture does not automatically save the PSR into memory during atrap.
Instead, it saves the volatile S bit into the PSR itself and the remaining fields are either atered in areversible manner
(ET and CWP), or should not be atered in the trap handler until the PSR has been saved to memory.

3.8.5.1. Recognition

In most cases, traps are recognized in the pipeline’s execute stage. For asynchronoustrap, thetrap criteriaare examined
during the execute stage of an instruction, and the trap is taken immediately, before the write stage of that instruction
takes place. Thisincludesthe fp (cp) disabled trap type. The specia cases occur with those traps generated by external
signals. A memory exception on an instruction fetch is detected at the beginning of the execute stage of instruction
execution. Memory exceptions occurring on data accesses are detected on the rising clock edge of the data cycle.

Because asynchronous traps happen “between” instructions, their timing is dightly different. Aslong asthe ET bit is
set to one, the TSCE91E checks for interrupts. The interrupt is sampled on arising clock edge and latched on the next
rising clock edge. The processor compares the IRL[3:0] input value against the PIL field of the PSR, and if IRL is
greater than PIL, or IRL is 15 (unmaskable), then it is prioritized at the end of the next execute stage of the pipeline.
A trap keyed to the IRL level occurs after the write stage compl etes.

Fl oating-point/coprocessor exception traps are not recognized when the FEXC or CEXC signal is first sampled. The
processor waits until it encounters afloating-point or coprocessor instruction in the instruction stream and then handles
itasif it wereaninterna synchronous trap.

3.8.5.2. Trap Addressing

The Trap Base Register (TBR) is made up of two fields, the Trap Base Address (TBA) and the trap type (tt). The TBA
contains the most-significant 20 address bits of the trap table, which isin external memory. The trap type field, which
was written by the trap, not only uniquely identifiesthetrap, it also serves as an offset into the trap table when the TBR
iswritten to the PC. The TBR address is the first address of the trap handler. However, because the trap addresses are
only separated by four words (the least-significant four bits of TBR are zero), the program must jump from the trap
table to the actual address of the particular trap handler.

Of the 256 trap types allowed by the 8-hit tt field, half are dedicated to hardware traps (0-127), and half are dedicated
to programmer-initiated traps (Ticc). For a Ticc instruction, the processor must calculate the tt value from the fields
givenin theinstruction, while the hardware traps can be set from atable such as the one below. Seethe Ticc instruction
definition for details.
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Thett field remains valid until another trap occurs.

3.8.5.3. Trap Typesand Priority

Each type of trap is assigned a priority (see Table 38 ). When multiple traps occur, the highest priority trap is taken,
and lower priority traps are ignored. In this situation, alower priority trap must either persist or be repeated in order
to be recognized and taken.

Table 38. Trap Typeand Priority Assignments

Trep priority | %" | o Agynehwonous
Reset 1 - Async.
Hardware error 201 97-102 sync.
Instruction Access 31 1 Sync.
Illegal Instruction 401 2 Sync.
Privileged Instruction 51 3 sync.
Floating—Point Disabled 6l 4 Sync.
Coprocessor Disabled 6l1l 36 Sync.
Window Overflow 71 5 Sync.
Window Underflow 7 6 Sync.
Memory Address not Aligned 8 7 Sync.
Floating—Point Exception 9 8 Sync.
Coprocessor Exception 9 40 Sync.
Data Access Exception 10 9 Sync.
Tag Overflow 11 10 Sync.
Trap Instructions (Ticc) 12 128 - 255 Sync.
Interrupt Level 15 13 31 Async.
Interrupt Level 14 14 30 Async.
Interrupt Level 2 26 18 Async.
Interrupt Level 1 27 17 Async.

Note 1:
The priority of those traps have changed in relation to the CY 7C601.

3.8.5.4. Return From Trap

On returning from atrap with the RETT instruction, the following operations take place:
® The CWPisincremented by one (modulo the number of windows) to re-activate the previous window.
® Thereturn addressis calculated

® Trap conditions are checked. If traps have already been enabled (ET=1), anillegal instruction trap istaken. If traps
arestill disabled but S=0, or the new CWP pointsto an invalid window, or the return addressis not properly aligned,
then an error mode/reset trap is taken.

® |f no traps are taken, then traps are re-enabled (ET=1).
The PC iswritten with the contents of the nPC, and the nPC is written with the return address.
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® ThePShitis copied back into the S hit.

The last two instructions of atrap handler should be a IMPL followed by a RETT. This instruction couple causes a
non-delayed control transfer back to the trapped instruction or to the instruction following the trapped instruction,
whichever isdesired. Seethe RETT instruction definition for details.

3.9. Coprocessor Interface

In the SPARC architecture, the integer unit is the basic processing engine, but provision is made for two coprocessor
extensions. The extensions are in the form of instruction set extensions and a pair of identical signal interfaces. In the
TSC691E, one of these instruction and signal interface extensions is dedicated to floating-point operations and the
other isdesignated for a second coprocessor, either user defined or some future device offered by MHS and/or Cypress.
Although signals and instructions have been named to reflect the assumption of how these two extensions will be used,
either instruction set extension/signal interface may be used in any way desired.

In order for the TSCE91E to support a user-defined coprocessor, the coprocessor should contain certain elements
defined by the SPARC architecture. These include an internal register set, a status register, a coprocessor queue, and
a set of compatible interface pins. These elements are identical to the floating—point interface, and it is recommended
that a user desiring to use the coprocessor interface thoroughly study the floating—point interface as an example of a
coprocessor interface application.

3.9.1. Protocol

The coprocessor extensions to the architecture are designed to allow the coprocessor to operate concurrently with the
integer unit and the floating—point unit. To keep operations synchronized, address and data busses are shared. The
initial TSCB91E instruction decode determines which unit should execute the instruction. The TSC691E executes its
own instructions, but signals the coprocessor to continue the decode and execution if it recognizes a coprocessor
instruction. For coprocessor loads and stores, the TSC691E supplies the memory address and the coprocessor receives
or supplies the data. The coprocessor must deal with resource or data dependencies, signaling the problem to the
TSC691E by freezing the instruction pipeline with the CHOLD signal.

The signal interface between the TSC691E and the coprocessor consists of shared address, data, clock, reset, and
control signals, plus a special set of signals that provide synchronization and minimal status information between the
coprocessor and the TSC691E.

3.9.1.1. Coprocessor Interface Signals

The SPARC architecture defines two sets of signals intended for interfacing with two coprocessors. The TSC691E
assignsone set of coprocessor signalsfor specific use by the floating—point unit, and the other set of coprocessor signals
for a user—defined coprocessor. All floating—point interface signal names begin with an F, and all coprocessor interface
signal names begin with a C. Both sets of interface signals share the INST signal, which identifies a TSC691E
instruction fetch. The two groups of signals are symmetric, have identical timing requirements, and are listed in
Table 33.

Instruction fetch is signaled by the TSC691E using the INST signal. The coprocessor uses INST as an input to enable
latching of an instruction on the data bus. The coprocessor latches all instructions fetched by the TSC691E, regardiess
of instruction type. The TSC691E asserts CINS1 or CINS2 at the beginning of the decode stage of instruction execution
of a coprocessor instruction. The CINS1 or CINS2 signals are used to start the execution of a coprocessor instruction
and select which of the two most recently fetched instructions stored in the two—stage instruction buffer is to be
executed by the coprocessor.

The TSC691E requires the CP signal to be driven low in order for the integer unit to recognize the presence of a
coprocessor. Attempting to execute coprocessor instructions with CP high will cause the TSC691E to execute a cp
disabled trap.

Hardware interlocking for coprocessor instruction execution is provided with the CHOLD signal. This signal is
asserted by the coprocessor to freezethe TSC691E. Thissignal is asserted in cases where the TSC691E must be halted
to prevent it from causing a condition from which the coprocessor cannot recover. An example of thiswould befetching
multiple coprocessor instructions that would otherwise overrun the coprocessor queue. The coprocessor would be
expected to assert CHOLD until it could handle additional instructions.
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Coprocessor interrupts are asserted with the CEXC signal. Thissignal is asserted by the coprocessor upon the detection
of an exception case. The TSC691E will continue normal execution until the execution stage of the next coprocessor
instruction. At that time, the TSC691E will acknowledge the interrupt with CXACK, and begin coprocessor trap
execution.

Coprocessor branch on condition code (CBcc) instructions are executed by the TSC691E integer unit based on the
value of the CCC[1:0] signals supplied by the coprocessor. These signals are typically set by the execution of a
coprocessor compare instruction (defined by the designer). The CCCV signal supplied by the coprocessor indicates
whether the state of the CCC[1:0] signalsisvalid. CCCV is normally asserted, but is deasserted when a coprocessor
compare instruction is executed and remains deasserted until that instruction is completed. The deassertion of this
signal causes the TSC691E to halt execution. This interlock prevents the TSC691E from branching on invalid
condition codes. The SPARC architecture requires at least one non—coprocessor instruction between a coprocessor
compare and a coprocessor branch on condition code (CBcc) instruction.

3.9.2. Register Model

The coprocessor register model specified by the SPARC architecture is shown in Figure 67 . The coprocessor has its
own 32 x 32-bit working register file from which all operands for CPop instructions originate and to which all results
return. The contents of these registers are transferred to and from memory under control of the TSC691E, using
coprocessor |oad/store instructions.

32-Word by 32-Bit Register
File

32-Bit Status Register

Address Decode Register 1 Instruction Decode Register 1

Address Decode Register 2 Instruction Decode Regjister 2
Address Queue Register N Instruction Queue Register N
Address Queue Register 1 Instruction Queue Register 1
Address Queue Register 0 Instruction Queue Register 0

Figure 67. Coprocessor Register M odel

The Coprocessor State Register (CSR) containsthe current status of the coprocessor.  The exact nature of the exception
bits and trap types are implementation dependent. The CSR is read and written indirectly through memory using the
LDCSR and STCSR instructions.

The coprocessor queue is necessary to properly handle traps with concurrently operating units. The first-in, first-out
queuerecordsall pending coprocessor instructions and their addresses at the time of a coprocessor exception. The front
entry of the queue contains the unfinished instruction that caused the exception. The rest of the queue contains
unfinished CPops which would be restarted or emulated after the trap handler returns control to the main program.

The address and instruction decode buffers hold instructions and their addresses until the TSC691E determines if they
belong to the coprocessor. If one of the held instructions bel ongsto the coprocessor, the TSC691E sendsthe appropriate
CINS signal to move the instruction into the coprocessor execute stage. The address and a copy of the instruction also
move into the queue at this point and remain there until the instruction completes.
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When atrap istaken, the TSC691E asserts the FLUSH signal, causing the coprocessor to dump any instructionsin the
decode buffers. FLUSH does not affect instructions which are already in the queue.

3.9.3. Exceptions

Exactly what conditions will generate a cp exception trap are implementation dependent. However, most
implementations would probably include Unfinished CPop as a condition that would cause an exception.

An Unfinished CPop trap is generated when the coprocessor cannot compl ete execution because the data has exceeded
the capabilities of the coprocessor and/or has generated an inappropriate result.
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4. Fault Tolerant and Test M echanism

Fault Tolerant M echanism:

Parity checking on 98.7% of the total number of latches with hardware error traps
Parity checking of address, data pads and control pads

Program Flow Control

Master/Checker operation

Interleaving of the register file bits to reduce the risk for one impact to provoke dual (multiple) bit upsets
Manufactured using Space Hardened 0.8 um SCMOS RT TECHNOLOGY

Test Mechanism:

® |EEE Standard Test Access Port & Boundary-Scan Architecture

® Internal Scan Path to test theinternal parity error detection during off-line test

® Possihility to halt the IU by an external signal

Parity *

Control Error Destination

Register File—136 x 32 bits
Source 1 Source 2
Program Flow
Control @ E _ u

- y_ v Y

ch ¢ Arithmeti

; rithmetic . .
Parity & LogicUnit Shift Unit
Checker PC

Adder + +
A Lol TR g
. rogram Gen)
Parity Counters n Gen
Generator @ I_¢J>—>I
i

Processor State Align -
M aster Window|nvalid : ng;;gég)n
— Checker TrapBase
Control Multiply Step A
'\
| Boundary Scan Path - AP |
v Ao Y Y Y
V MCERR CMODE V Address V Control V Instruction/ Data
HWERR APAR CPAR DPAR TAP Control
Figure 68. Fault Tolerant and Test M echanism Block Diagram
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4.1. Fault Tolerant and Test Support signals

Some signals have been added for fault tolerant and test mechanism improvement. These new signals can be classified

asfollows:

4.1.1. Address Parity Generation:

® APAR—Address Bus Parity (output)
® ASPAR—ASI and SIZE Parity (output)

4.1.2. Data Parity Generation/Checking:
® DPAR—DataBus Parity (bidirectional)

4.1.3. MEC control signal Parity Generation:
® |IMPAR—IU to MEC Control Parity (output)

4.1.4. FPU control signal Parity Generation/Checking:

® |FPAR—IU to FPU Control Parity (output)
® FIPAR—FPU to IU Control Parity (input)

4.1.5. Parity Checking Error Output:
e HWERROR—Hardware Error Occurs (outputs)

Odd parity definition: The number of onein aword, including the parity bit, is alway odd.

(e.g. 00000000 --> P=1, 00000001 --> P=0)

4.1.6. Master/Checker Mode:

® CMODE—checker Mode (input)
® MCERR—Comparison Error (output)

4.1.7. Test Access Port:

TCLK—Test Clock (input)
TRST—TEST Reset (input)
TMS—Test Mode Select (input)
TDI—Test Data Input (input)
TDO—Test Data Output

4.1.8. Miscellaneous:

® 601MODE—Normal 601M ode Operation (input)
o HALT—Halt (input)
® FLOW—enable or disable Program Flow Control

A more detailed description of these signalsis provided in Chapter 3.5
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4.2. Program Flow Control

4.2.1. Introduction

A very high proportion of transient faults can cause errors in the program flow (75% in a traditional microprocessor).
Thistype of error is detected by the TSC691E using Embedded Signature-Monitoring (ESM) techniques.

A program using ESM is partitioned in branch free basic blocks and branch instructions. For each executed instruction,
the 1U calculates a checksum of 32 bits of the operation code during the execution. The checksum result consist of the
logic XOR of theinstruction wordswith the previous checksum. The 16 MSB’sare XORed with the 16 L SB’sto provide
asignature word.

This 16-bit signature is compared with the correct value, precomputed by the compiler, whenever a SETHI instruction
(SETHI g0,%PRE_CHECKSUM) is executed. After the comparison, the checksum is reseted to zero.

The 6 MSB’sin the immediate value of the SETHI instruction must be set to “011111".

In case of acomparison error, a hardware trap is taken with Trap Type=0x66 and HWERROR asserted.

There are three cases when the subsequent check is disabled:

1. When atrap istaken.
2. When executing a RETT instruction.

3. When executing a SETHI instruction to R[0] with theimmediate value set to zero. This SETHI instruction does
not perform a comparison but zero the checksum. It is reserved as a NOP instruction.

For these cases the subsequent check is disabled, and will not signal an error, but will enable the checking again with
checksum equal to zero.

The Program Flow Control is enabled by the FLOW signal input. After reset the Program Flow Control is enabled (if
FLOW signal islow), and the checksum is reseted to zero.

4.2.2. Example of Program Flow Control

SETHI(g0,%CH3) SETHI(g0,%CH4) SETHI(g0,%CH7)
_ !
| | |
6 7 1
Pgm start
0,
(add=0) SETHI(g0,%CH1) : . ' SETHI(gO, f)CHG) 11 SETH|(g0,%CHS)
| | [E—— } i |
' 2 '3 "4 TRAP RETT "9 10 13MPL, 14
. . , CALL, RESTORE

Figure 69. Example of Program Flow Control

1- Program starts at address=0x0 with Program Flow Control enabled and Checksum=0.

2- No comparison performed, next checking disabled and Checksum is reseted to zero. (NOP)
3- No comparison performed, next checking enabled and Checksum is reseted to zero.

4- Comparison performed, next checking enabled and Checksum is reseted to zeroomparison.
5- TRAP instruction disables the next checking.

6- No comparison performed, next checking enabled and Checksum is reseted to zero.

7- Comparison performed, next checking enabled and Checksum is reseted to zero.

8- RETT instruction disables the next checking.

9- No comparison performed, next checking enabled and Checksum is reseted to zero.
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10- Comparison performed, next checking enabled and Checksum is reseted to zero.

11- When a CALL instruction is encountered, the delay instruction must be a SETHI instruction to perform a
comparison, enable the next checking and reset the Checksum.

12- Comparison performed, next checking enabled and Checksum is reseted to zero.

13- When the JIMPL instruction is encountered the Program Flow Control is not disabled and next checking is
enable since the delay instruction isa RESTORE.

14- Comparison performed (checksum is calculated from the last SETHI encountered in the subroutine).
Conclusion: In this example, the sequences 3to 4, 6 to 7 and 9 to 14 are checked.

Programming Note:

1- When returning from a CALL routine (13), the delay instruction is a RESTORE so, when encountering the
next SETHI(g0,%CHS) (14), the comparison is performed with a checksum calculated from the last
SETHI(g0,%CHS) of the subroutine (12).

2- All the delay instruction (instruction after a control transfer instruction: Bicc, FBfcc, CBccc, CALL, IMPL,
Ticc or RETT) are added in the checksum even thisinstruction is annuled.

4.3. Parity Checking

4.3.1. Introduction

In the TSCE91E, 98.7% of al registers are protected by a odd parity bit (100% of the register file is protected). The
checking of registers and busses is be performed only if the registers or the busses are used by the current instruction.
With this approach, unused registers/busses will not cause an error and decreasing the uptime of the system will be
limited.

Address bus, Size and ASI busses, Data bus, Control signals of the MEC and of the FPU are also protected with parity
bits.Control signals for coprocessor are not protected by parity bit. The parity checking is disabled during reset. Care
has to be taken not to read aregister before it has been written and its parity bitsinitialized.

When an error occurs, the HWERROR signal is asserted low and a trap is taken depending of the parity error type
(see Table 39).

Definition of odd parity bit: The number of one in aword, including the parity bit, is alway odd.
(e.g. 00000000 --> P=1, 00000001 --> P=0)

4.3.2. Trap handling

When ahardware error is detected the HWERROR signal is asserted then atrap routine is taken depending of the error
type (see Table 39 ). The HWERROR signal is asserted until the error trap is taken.This software routine reviews the
failing instruction. If the cause of the error was a transient fault, it may be removed by just resuming this instruction.
In this case, HWERROR is deasserted (see 5.2.2.2).

If the error was caused by anon removable error, another hardware error trap is generated. Because a synchronous trap
is taken during a time when traps are disabled, the 1U enters the error mode, asserts ERROR signal and halts
(HWERROR will stay asserted until removed by reset).

This means that the error detection mechanism will detect the error when the failing instruction isin the execute stage
in order to handle the trap normally, i.e. correct PC for the failing instruction.

The trap are grouped into the following Error-Type:

1- Restartable, precise error: Errors that can be removed by retrying the instruction and with correctly saved PC
and nPC. These errors can be removed by simply returning from the trap routine.

2- Non-restartable, precise error: Errors that will remain even after an instruction retry, but with correctly saved
PC and nPC. These errors are not removable and the trap routine should not attempt aretry. Since the address
of failing instruction is know, the kernel can attempt alocal clean-up, i.e. not having to restart the application.
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3- Restartable, late error: Errors that can be removed by retrying the instruction but with PC and nPC pointing
to the following instruction (was dataload error). The trap routine can emulate the failing instruction or retry
after the PC and nPC have been adjusted.

4- Non-restartable, imprecise error: Error that can not be associated with a particular instruction and cannot be
removed by instruction retry. These errors are typically quite severe and will require a re-boot.

5- Register file error: Error that occurred in the register file (special case of Non-restartable, precise error)
6- Program flow error: Error detected by the program flow control.

Table 39. Error Type Assignments

Trap Type Error Type Error Signal
0x61 Restartable, precise error HWERROR
0x62 Non-restartable, precise error HWERROR
0x63 Restartable, late error HWERROR
0x64 Non-restartable, imprecise error HWERROR
0x65 Register file error HWERROR
0x66 Program flow error Trap only

Master / Checker error MCERR
Error mode ERROR

4.3.3. Priority within hardwaretrapsfor 1U

When multiple hardware traps occur, the highest priority trap istaken, and lower priority trapsareignored. The priority
applied on the harware traps of the IU are define as follow:

Table 40. Hardware Priority

Trap Type Error Type Error Signal

0x61 Restartable, precise error 5
0x62 Non-restartable, precise error 2
0x63 Restartable, late error 4
0x64 Non-restartable, imprecise error 1
0x65 Register file error 3
0x66 Program flow error 6

IU synchronous traps 7

Remark: Priority 1 is for highest priority and 5 for the lowest priority. All other
synchronous traps (caused by the actions of an instruction) has alower priority.

4.3.4. Parity Checking on Register File and Control/Status Registers

The register file and the control/status registers of the TSC691E are protected by a parity bit. Hardware error on those
registers shall lead to hardware error trap as defined in .
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Table41. Hardwareerror typefor user registers

Location or Register Error type Trap type
Register File Register file error 65H
“Fetch” Parity Check Restartable, precise error 61H
“Decode” Parity Check Non-restartable, precise error 62H
“Execute” Parity Check / “Write” Parity Check | Non-restartable, imprecise error 64H
PSR Non-restartable, imprecise error 64H
WIM Non-restartable, precise error 62H
TBR Non-restartable, precise error 62H
Y Restartable, precise error 61H

4.3.5. Parity Checking on Control Signal for the FPU
The control signals between the U and the FPU are protected by a parity bit.

4.3.5.1. Output control signals

The control bus contains five bits: FINS1, FINS2, FLUSH, FXACK and INST. The parity output for these five signals
isIFPAR (IU to FPU PARIty). This parity bit is generated by the 1U.

Note:
IFPAR is athree-state (on chip pull—-up resistor=20kQ) output controlled by TOE signal.

4.3.5.2. Input control signals

The input control signals are: FCC[1:0], FCCV, FEXC, FHOLD and FP. The parity input for these signalsis FIPAR
(FPU to IU PARIty). Thisparity hit isgenerated by the FPU and checked by the |U when aFBfcc instructionis executed.
FCCV and FHOLD are re-synchronized on the rising edge of the clock to check the parity.

4.3.6. Parity Checking on Control Padsfor the TSC693E (MEC)
The 13 control signals between the IU and the MEC are protected by a parity bit.

4.3.6.1. Output control signals

The output control bus contains six bits: DXFER, LDSTO, LOCK, RD, WE and WRT. The parity output for these five
signalsis IMPAR (IU to MEC PARIty). This parity bit is generated by the [U.

Note:
IMPAR is athree-state (on chip pull—up resistor=20kQ) output controlled by COE or TOE signals.

4.3.6.2. Input control signals
No parity is performed on the input control signals: MAO, MDS, MEXC, MHOLDA/B and BHOLD.

4.3.7. Parity Checking on Control Padsfor the Coprocessor

No parity is performed on the input and output control signals.

4.3.8. Parity Generation on ADDRESS Bus

The 32-hit address bus contains a parity bit calculated by the U and sent out on the APAR pad. The ASI[7:0] and

SIZE[1:0] busses contain also a parity bit called ASPAR which is calculated by the [U.
Note:
APAR and ASPAR are a three-state (on chip pull-up resistor=20kQ) output controlled by AOE or TOE signals.
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4.3.9. Parity Checking on DATA Bus

The DPAR bidirectional signal contains the odd parity over the 32-bit data bus. When the IU receives a data (LOAD)
or an instruction, the parity bit is checked by the IU. In case of a STORE data instruction, the parity bit is generated
and launched in parallédl by the [U.

To be able to use a standard FPU (i.e. TSC692E), parity on the data bus has to be generated internally and parity
checking on the control bus must be turned off.

4.3.10. Non CY7C601 Mode

This feature is controlled by asserting the 601IMODE input signal. This signal is static and shall not change when
running.

4.3.11. Error Typefor external signalsparity errors

Datainputs (Inst. and Load) and FPU to U control signals receive a parity bit which is checked by the IU. If an error
is detected, the 1U takes a trap depending of the error type Table 50 .

Table 42. Hardwareerror typefor external signals

Register Error type Trap type

Data (inst.) Restartable, precise error 0x61

Data (load) Restartable, late error 0x63
FIPAR Floating—Point Disabled [1] 0x04

Note [1]: The parity is only checked when a FBfcc instruction is executed.

4.4. M aster /checker operation

The MHS TSC691E includes comparator circuits at the outputs to support fault detection. Applications requiring a
high level of reliability can use this Master/Checker operation to introduce fault detection on a system level. By
duplication of units without the use of external comparators, 100% of the internal errors can be detected, especially
those errors which are not detected by the internal unit concurrent error detection mechanism.

4.4.1. Basic function

By asserting the signal CMODE the TSC691E can be configured either as master or checker. Thissignal is static and
shall not change when running. Assertion of this signal will set the 1U to act as a checker to support master/checker
operation. All output signals except ERROR,HWERROR, MCERR and TAP signals will be high-Z (on chip pull_up
resistor=20kQ). The master and at least one checker circuit are working in parallel and execute the same program.
When the master isforcing the address and data bus, the checker isin aread and compare mode. This means the output
buffers are disabled and the external busses are compared by the checker with itsinternal results. If a mismatch occurs
on any output, then the MCERR signals are asserted until the mismatch disappears. In this case, the system hardware
and/or software can take appropriate action.

If the master 1U signals an internal error before a comparison error isindicated, it is possible to stop execution of the
two |Us by asserting the HALT signal, disable the master 1U, change the checker U to master 1U and continue
execution. CMODE signal can be changed when RESET signal is asserted or when the 1U isin halt mode.

On a master processor, the three-state control signals (e.g : AOE, COE, DOE, TOE) disable the checker mode of the
three-stated buffers.

An external/internal mismatch can occur for two reasons:

1- In a system with only one master processor, a short or other electrical failure can force the output signal to a
fixed voltage. For example, a bus signal can be shorted to ground. When the circuit drives a high voltage on
the bus, the external signal will be pulled low and a mismatch will occur and he U asserts the
CMPERR signals.
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2- An external/internal mismatch can occur in the master/checker mode. Figure 70 shows a basic master/checker
configuration using two TSC691E devices.

Using the master/checker solution there is a possibility that the system can continue with only the correct remaining
unit, or with both after the restoration of state of the faulty unit. If aninternal error isindicated in the checker, it could
be ignored. The MEC requires error signals from both the master and the checker. In case of corruption, the system
behavior is defined by the MEC.

Control

Data ‘

Address + l

P vy Y
HALT > [€«—— HALT
ERROR <& MASTERIU CHECKER IU » ERROR
HWERROR -€—— ——>» HWERROR
CMODE =1 —>» l««—— CMODE=0
TAP 4_, |—> TAP
MCERR g¢———— L 3 MCERR

Figure 70. Master/Checker Configuration

4.4.1.1. Master/Checker Signal description

4.4.1.1.1. MCERR—Comparison Error (output)

This signal is asserted in the checker mode when a comparison error occurs on the internal output signals (except
ERROR, HWERROR, MCERR and TAP signals) vis-avis the output signa of the master IU. It is deasserted when
the error disappears.

Note:

MCERR is athree-state (on chip pull—up resistor=20kQ) output controlled by TOE signal.

4.4.1.1.2.CMODE—checker Mode (input)

Assertion of thissignal will set the IU to act asachecker to support master/checker operation. All output signals except
ERROR, HWERROR, and TAP signals will be high-Z (on chip pull-up resistor=20kQ). It is a static signal and shall
not change when running. It can change only during reset cycle or halt mode.

4.5. |[EEE Standard Test Access Port & Boundary-Scan Architecture

The U includes a Boundary Scan using a Test Access Port (TAP) interface [| EEE standard 1149.1]. This interface
isused for debugging and test purposes.

Thisinterface provides standardized approachesto :

1- Testing the interconnections between integrated circuits once they have been assembled on a printed circuit
board or other substrate.

2— Support of testing the integrated circuit itself.
3~ Observing or modifying activity during the component’s normal operation.

45.1. TAP

The Test Access Port includes the following connections : TCLK, TMS, TRST, TDI and TDO. Dedicated TAP
connections are required to allow access to the full range of mandatory features of this standard.
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45.1.1. TCLK (input)

The Test Clock Input provides the clock for the test logic defined by this standard. TCK is active high. The IEEE
standards requires that TCLK can be stopped at 0 indefinitely without causing any change to the state of the test logic.
When TCLK isactive, CKL must be held to one.

4.5.1.2. TM S (input)

The signal received by TMS is decoded by the TAP controller to control test operation. TMS is sampled on the rising
edge of TCLK and has to change on the falling edge of TCLK.

45.1.3. TDI (input)

Serial test instructions and data are received by the test logic by TDI. TDI is sampled on the rising edge of TCLK and
has to change on the falling edge of TCLK.

45.1.4. TRST (input)
The TRST input provides for asynchronous initialization of the TAP controller.

4.5.1.5. TDO (output)
TDO isthe serial output for test instructions and data from the test logic defined in the standard.

45.2. TAP Controller

The TAP contraller is a synchronous finite state machine that responds to changes at the TMS and TCLK signal of the
TAP and controls the sequence of operations of the circuit defined by the IEEE standard.

4.5.3. The Instruction Register

The Instruction Register allows an instruction to be shifted into the design. The instruction is used to select the test
to be performed or the test data register to be accessed or both. A number of mandatory and optional instructions are
defined by the standard. The instructions SAMPLE/PRELOAD, INTEST, EXTEST and BY PASS are implemented on
this chip.

The private instruction TESTPAR will be implemented to access the internal scan path registers. These registers are
not publicly accessible and will be used to test the internal parity logic.
4.5.3.1. Design and Construction of theinstruction register

The instruction register is a shift-based design having an optional parallel input. These parallel inputs permit capture
of design-specific information in the Capture-IR state. Figure 71 illustrates an example implementation of an
Instruction Register Cell.

Shift IR ————|G1 1D N Lnftruction
i
Data — | o s > >C1
From last cell ——3] 1
—1R
|—>-> c1
Clock IR »- TOnextcdl
Update IR
Reset

Figure 71. Instruction Register (IR) Cell

45.3.2. BYPASS Instruction

The BYPASS register contains a single shift register stage, used to speed-up shifting at the board level, through
components which are not activated.
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45.3.3. EXTEST Instruction

The EXTEST instruction shall connect the BOUNDARY SCAN register between TDI and TDO. It is used to test
connections between components on the board level. All output signals can be disabled by using the EXTEST
instruction (except TAP).

4.5.3.4. INTEST Instruction

INTEST instruction allows testing of the on-chip system logic while the component is assembled on the board, with
each test pattern and response being shifted through the boundary-scan register.

4.5.3.5. SAMPLE/PRELOAD Instruction

The SAMPLE instruction allows normal operation if the system logic with the ability to sample signals entering and
|eaving the component without affecting circuit operation.

PRELOAD alows avalue to be preloaded on the latched outputs of the boundary scan register. This instruction does
not modify the system behavior.

4.5.4. The Device | dentification Register

The Device |dentification Register is implemented on the chip. It contains the TSCE691E's assigned component
identifier: OxOb6400b1. It is selected by the IDCODE instruction.

455. Internal Scan Path

An Internal Scan Path will beimplemented to provide the off-line test of theinternal parity error detection. ThisInternal
Scan Path will be controlled by the TAP and will force some nodesin the generation circuit of the parity bits. Thiswould
then result in avalue with the wrong parity. When thisvalueis read again an error will be detected if the error detection
works correctly. This chain would have one bit for each parity generator.

4.5.6. Boundary scan test register

The Boundary-scan technique involves the inclusion of a shift register stage (contained in a Boundary-scan cell)
adjacent to each component pin so that signals at component boundaries can be controlled and observed using scan
testing principles.

Figure 72 illustrates an example implementation for a Boundary-scan cell that could be used for an input or output
connection to an integrated circuit. Dependent on the control signals applied to the multiplexers, data can either be
loaded into the scan register from the Signal-in port (e.g. the input pin), or driven from the register through the
Signal-out port of the cell (e.g. into the core of the component design). The second flip-flop (controlled by clock B)
is provided to ensure that the signals driven out of the cell in the latter case are held while new data is shifted into the
cell using clock A.

Mode )-|G1 |

Signal in 7N >
1

—>»—  Signal out

Shift/Load Gl

; I »—  Scanout
o 0
—] 1 ——>1D 1D

Scanin | |—>->c1 D1

Clock A Clock B

Figure 72. Boundary Scan Cell
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4.6. Interleaving register file bits

It is known that the impact from an SEU will flip adjacent bits in a register file. These multiple bit errors might be
impossibleto detect with one parity bit error. Though these cases with multiple bit errors due to SEU are probably more
rare than one bit errors, they cannot be neglected, especially in the register file, which correspondsto 70% of the entire
amount of registersin the [U.

One solutionto thisproblem isto interleave the bits of oneword with the bits of another word. Thisisdoneintheregister
fileand will remove al multiplebit errorsdueto SEU and full error detection is possible with asingle parity bit checker.
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5. Electrical and Mechanical Specification

5.1. Maximum rating and DC Characteristics

5.1.1. Maximum Ratings

Storage TEMPEIAIUrE . . . .. oottt e e e e e e -65°Cto+150° C
Ambient Temperature with Power Applied . ... ... -55°Cto+125°C
Supply Voltagelll . .. -05Vto+7.0 V
INPUEVOITBOE . . ..o e e e -05Vto+7.0V

5.1.2. Operating Range

Range Ambient Temperature (2 Vee

Military -55° Ct0 125° C 5V +- 10%

5.1.3. DC Char acteristiCs over the Operating Range

Parameters Description Test Conditions Min. Max. Units
VoH Output HIGH Voltage Vce=min, log =-2.0mA 2.4 \Y%
VoL Output LOW Voltage Vee=min, loL =+4.0 mA 0.5 \%
ViH Input HIGH Voltage 2.1 Vce \%
VL Input LOW Voltage -0.5 0.8 \%

liz Input Leakage Current Vcec=Max., Vss<Vin<Vce -10 10 HA
lozH Output Leakage Current Vee=Max, Vou = Veo > - MA
lozL Ve =Max., Vour = Vss 50031 | —240(3]

Isc Output Short Circuit Current Vee=Max., Vgt =0V -30 -350 mA
Iccop Supply Current Vce=Max., f =14 MHz - 200 mA
lccso Stand By Current Vce =Max, f =0Mhz - 1 mA

Notes:

1- All power and ground pins must be connected before power is applied.
2— Ambient temperature is defined as the ‘instant on’ case temperature.
3~ On chip pull-up resistor=20kQ

5.1.4. Capacitance Ratings [4 5]

Parameters Description Max. Units
Cin Input Capacitance 10 pF
CouT Output Capacitance 12 pF
Cio Input/Output Bus Capacitance 16 pF
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WIRELESS & uC

TSC691E

5.1.5. AC Test Loads and Waveforms
R1 470Q

5v (o]

OUTPUT O

R2 319 Q

TEST LOAD
Notes:

3V

90%

10%
oV

<3ns

WAVEFORM

4. Tested initially and after any design or process changes that may affect these parameters.

5. Test conditions are: Vcc=5.0V, Ta=25° C, f=1IMHz
6. C =30 pF (for FINS[1:0] signal)

5.2. TSCB691E AC Characteristics

5.2.1. AC Characteristics Over the Operation Rangel!]

Rev. | — September 23, 1998

Par ameter Description RELEFENES || MSCEenS st bila || (o,
Edge Min M ax
1 tey Clock cycle 71 ns
2 tcHL Clock high and low 33 ns
3 tcrF Clock rise and fall 1 Vins
4 taD Address/Control [2] output delay CLK+ 58 ns
5 taH Address/Control [2 output valid CLK+ 7 ns
6 tbop D[31:0] output delay CLK- 35 ns
7 tboH D[31:0] output valid CLK- 4 ns
8 tpis D[31:0] input setup CLK+ 7 ns
9 tDIH D[31:0] input hold CLK+ 9 ns
10 tMES MEXC input setup CLK+ 12 ns
1 tMEH MEXC input hold CLK+ 4 ns
12-1 | tys MHOLDA, B input setup CLK- 7 ns
13-1 | tyn MHOLDA, B input hold CLK- 9 ns
12-2 | tys yHOLD [3] input setup CLK- 10 ns
13-2 | tyn yHOLD [3l input hold CLK- 7 ns
14 tHOD XHOLD [7] to Address/Control output delay XHOLD- 40 ns
15 tHoH XHOLD [7 to Address/Control output valid XHOLD+ 0 ns
16 tog AOE, COE, DOE to output enable delay XOE- [8] 27 ns
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Parameter Description Relfzeéence TSCOIE —14MHz |\
ge Min Max
17 top AOE, COE, DOE to output disable delay xOE+ [8] 27 ns
18 tToE TOE asserted to output enable delay TOE- 38 ns
19 ttop TOE deasserted to output disable delay TOE+ 38 ns
20 tssp INST, FXACK, CXACK, INTACK, ERROR output delay CLK+ 36 ns
21 tssH INST, FXACK, CXACK, INTACK, ERROR output valid CLK+ 3 ns
22 trs RESET input setup CLK+ 27 ns
23 tRH RESET input hold CLK+ 3 ns
24 trD FINS[1:0] output delay CLK+ 29 ns
25 trH FINS[1:0] output valid CLK+ 35 ns
24 trD CINS[1:0] output delay CLK+ 40 ns
25 trH CINS[1:0] output valid CLK+ 35 ns
26 trs FCC[1:0], CCC[1:0] input setup CLK+ 18 ns
27 trIH FCC[1:0], CCC[1:0] input hold CLK+ 4 ns
28 tpxp DXFER output delay CLK+ 57 ns
29 toXH DXFER output valid CLK+ 10 ns
30 tipxp | XHOLD [3] asserted to DXFER output delay XHOLD- 36 ns
31 tipxH | XHOLD [3] deasserted to DXFER output valid XHOLD+ 0 ns
32 tNUD INULL output delay CLK+ 34 ns
33 tNUH INULL output valid CLK+ 7 ns
34 tMDs MDS input setup CLK- 4 ns
35 tMDH MDS input hold CLK- 5 ns
36 tFLs FLUSH output delay CLK+ 30 ns
37 tFLH FLUSH output valid CLK+ 3 ns
38 tcevs FCCV, CCCV input setup CLK- 13 ns
39 tcevH FCCV, CCCV input hold CLK- 5 ns
40 txEs FEXC, CEXC input setup CLK+ 18 ns
41 txEH FEXC, CEXC input hold CLK+ 4 ns
42 tMAD MAO Asserted to Address/Control Output Delay MAO+ 36 ns
43 tMAH MAO Deasserted to Address/Control Output Valid MAO- 2 ns
44 terD HWERROR output delay CLK+ 45 ns
45 tERH HWERROR output valid CLK+ 5 ns
46 trmMs TMS input setup TCLK+ 20 ns
47 tT™MH TMSinput hold TCLK+ 25 ns
48 tTpis TDI input setup TCLK+ 20 ns
49 tTDIH TDI input hold TCLK+ 25 ns
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Par ameter Reference TSC§91E —-14MHz Unit

Edge Min Max
50 tTRs TRST input setup TCLK+ 25 ns
51 tTRH TRST input hold TCLK+ 25 ns
52 tToop TDO output delay TCLK- 45 ns
53 tTDOH TDO output valid TCLK- 5 ns
54 trey TCLK clock cycle 100 1000 ns
55 txapp | XAPARI4 output delay CLK+ 61 ns
56 tyapH | XAPAR[4 output valid CLK+ 7 ns
57 tpPoD DPAR output delay CLK- 45 ns
58 tpPOH DPAR output valid CLK- 4 ns
59 tppis DPAR input setup CLK+ 6 ns
60 tDPIH DPAR input hold CLK+ 4 ns
61 tiFPD IFPAR output delay CLK+ 53 ns
62 tiFPH IFPAR output valid CLK+ 3 ns
63 trps FIPAR input setup CLK+ 18 ns
64 tFIpH FIPAR input hold CLK+ 4 ns
65 timPD IMPAR output delay CLK+ 61 ns
66 tiMPH IMPAR output valid CLK+ 7 ns
67 tmcep | MCERR output delay [5] CLK+ 45 ns
68 tmcev | MCERR output valid [9] CLK+ 5 ns
69 tstats | 60IMODE/FLOW/CMODE/FP input setup (€] CLK+ 18 ns
70 tHAs HALT input setup CLK- 13 ns
71 tHAH HALT input hold CLK- 4 ns
72 tirRLS IRL[3:0] input setup CLK+ 2 ns
73 tiRLH IRL[3:0] input hold CLK+ 6 ns
Notes:

1-Test conditionsassume signal transitiontimes of 3 nsor less, atiming referencelevel of 1.5V, input levelsof 0to 3.0V and output | oading of 50

pF.

2— Address/Control signalsinclude: A[31:0], ASI[7:0], SIZE[1:0], RD, WRT, WE, LOCK, and LDSTO.

3-yHOLD includes BHOLD, FHOLD, and CHOLD.

4—- xAPAR includes APAR and ASPAR.

5-When an error occurs on D[31:0] or DPAR, MCERR may be delayed for 1 cycles depending of frequency.
6— 601M ODE/FL OW/CMODE/FP shall be change to be related to positive clock edge during reset active or HALT active.

7—xHOLD includes BHOLD, MHOLDA, MHOLDB, FHOLD and CHOLD.

8- xOE includes AOE, COE and DOE.
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5.2.2. Waveforms

5.2.2.1. Clock and ERROR / RESET Timing
|

iK _/8_/_\_71_\_
ERROR —@—5]& _’7 28

\\ o
9 CLK Cycles Minimum

CPFP
601MODE ))
FLOW ¢

CMODE

Reset needs to be synchronized with CLK only if the processor must be in step with other devicesin the system.

5.2.2.2. Clock and HWERROR Timing for Parity Error Type

CLK

HWERROR

I N N o
st {20 XIKXX At RRXIK 2 KXXHK T XXX =02 XA

D[31:0]
Parity error
onthisdata | ' .
INULL/FLUSH_ ' V4 v\
1 1 1 )
INST 1 1 1 )
I I "\ /
) ) ) )

Note: The IU check the parity on internal register when the instruction is in the execute stag.
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5.2.2.3. TOE De-assertion /Assertion
o LI LI LIPLT LT L
e COXRREX B D G 11

Hl'gluaggt\;its W W \ Hi-Z: 88 \(XXY

All active

R N W e (s N8 &

. T

5.2.2.4. Load Timing

CLK

“4—@—> | :
(Boas 000 XXX

A S XXX 21 XXX
A9 (ase X050 XXXX)
(7 XXX Y57 XXX

SIZE[1:0]

RD

D[3L:0]

o=
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5.2.2.5. Store Timing
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5.2.2.6. Load with Cache Miss
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5.2.2.7. Memory Exception Timing

B SN
SIZEp )) | MSIZEAWSIZEAM
1 1 1 ‘ \ 1
INULL | 1 )) 1 ‘
: ‘ |
‘ |

MHOLD

ié

5.2.2.8. Bus Arbitration Timing

e [TV L1 I?Q—I JE
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‘ \ ‘ ‘ . : ! :
SRS ISV 88 } Y
ook, B0 NI ey Ve N A

2 2 L
5 s

TOE can replace the combined function of A

S
>
[

8
(@]
mi
8
a
W/
m

124
Rev. | — September 23, 1998



AMEL TSCE91E

5.2.2.9. Floating-Point and Coprocessor Timing
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5.2.2.10. TAP Signals
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5.2.2.11. PARITY Signals
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5.2.2.13. IRL[3:0] Signals
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5.2.2.14. HALT Signal timing
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5.3. Package Description

5.3.1. 256-Pin MQFP_F Package

T

0 _L [
- D1 -
i _[Ej —
T :
EE L ) | i o [-A-] .
NNz
. . . f
N f 2
A 256 r|_AZ_[
INDEX CORNER
N1 _/ -D- Colle
mm mils
Min Max Min Max
A 2.41 3.18 .095 125
c 0.10 0.20 .004 .008
D 53.23 55.74 2.095 2.195
D1 36.83 37.34 1.450 1.470
E 53.23 55.74 2.095 2.195
E1 36.83 37.34 1.450 1.470
e 0.508 BSC .020 BSC
£ 0.15 0.25 .006 .010
Al 2.06 | 2.56 081 | 101
A2 0.05 0.36 .002 014
L 8.20 | 9.20 323 | .362
N1 64 64
N2 64 64
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5.3.2. 256-Pin MQFP_F Pin Assignments

Pin Signal Pin Signal Pin Signal Pin Signal
1 IMPAR 33 AOCE 65 VSSO 97 FLOW
2 VCCO 34 APAR 66 VSSO 98 MCERR
3 COE 35 AO 67 VSS 99 HALT
4 VCCI 36 Al 68 VCCO 100 DPAR
5 DXFER 37 VCCI 69 A16 101 -NC-
6 LOCK 38 A2 70 A15 102 -NC-
7 VSSO 39 -NC- 71 A18 103 DO
8 WRT 40 -NC- 72 Al17 104 VSSO
9 SIZE1 41 VSSO 73 A19 105 D1
10 MAO 42 A3 74 VSSO 106 D2
11 ASPAR 43 -NC- 75 A20 107 -NC-
12 SIZEO 44 -NC- 76 VCCI 108 VSS|
13 VCCO 45 A4 7 VSS| 109 D3
14 HWERROR 46 A5 78 A21 110 VCCO
15 ASI1 47 -NC- 79 VCCO 111 D4
16 ASIO 48 -NC- 80 A22 112 D5
17 VSS| 49 A6 81 A24 113 -NC-
18 ASI2 50 VCCO 82 A23 114 D6
19 ASI3 51 A7 83 A25 115 VCCI

20 VSSO 52 A8 84 A26 116 D8
21 ASl4 53 A9 85 VSSO 117 D7
22 VCCI 54 A10 86 A27 118 -NC-
23 ASI5 55 VSS| 87 A28 119 -NC-
24 ASI6 56 VSSO 88 A29 120 D9
25 ASI7 57 -NC- 89 VSS 121 VCCO
26 VCCO 58 Al12 90 VSST 122 -NC-
27 VSST 59 All 91 A30 123 -NC-
28 CLK 60 Al4 92 VCCO 124 VSS|
29 -NC- 61 A13 93 A3l 125 VCCT
30 VSS 62 VCCI 94 VCCI 126 VSSO
31 -NC- 63 VCCI 95 60IMODE 127 VSSO
32 -NC- 64 VCCO 96 -NC- 128 -NC-

Rev. | — September 23, 1998

129




TSCE91E AMEL

Pin Signal Pin Signal Pin Signal Pin Signal
129 VCCI 161 -NC- 193 VSSO 225 VSST
130 VCCO 162 D24 194 VSSO 226 RESET
131 D11 163 -NC- 195 1FT 227 VSSI
132 VCCO 164 D25 196 VSS 228 CHOLD
133 D12 165 VCCO 197 FLUSH 229 FHOLD
134 D10 166 VCCI 198 IFPAR 230 BHOLD
135 VSSO 167 D26 199 VCCO 231 -NC-
136 D13 168 D27 200 ERROR 232 MHOLDB
137 D15 169 D28 201 CXACK 233 MHOLDA
138 D14 170 VSSO 202 INTACK 234 MDS
139 D16 171 D29 203 FXACK 235 -NC-
140 VSS 172 D30 204 VSSO 236 FP
141 D17 173 VSS| 205 CCC1 237 CEXC
142 VCCO 174 VCCI 206 CCCO 238 MEXC
143 D18 175 D31 207 FPSYN 239 -NC-
144 D19 176 DOE 208 FCC1 240 -NC-
145 -NC- 177 VCCI 209 VSSI 241 FEXC
146 -NC- 178 FINS2 210 FCCO 242 -NC-
147 -NC- 179 FINS1 211 IRL3 243 VSSI
148 -NC- 180 CINS1 212 IRL2 244 VSSO
149 D20 181 VCCO 213 -NC- 245 INST
150 D21 182 TOE 214 -NC- 246 RD
151 VSSO 183 VSSI 215 IRL1 247 VCCI
152 -NC- 184 TRST 216 -NC- 248 LDSTO
153 -NC- 185 CINS2 217 IRLO 249 VCCO
154 VCCI 186 TDI 218 -NC- 250 WE
155 D22 187 TCLK 219 -NC- 251 CP
156 -NC- 188 VSSI 220 cccv 252 VCCT
157 D23 189 T™MS 221 FIPAR 253 INULL
158 VSST 190 VCCI 222 VCCI 254 VSSO
159 -NC- 191 TDO 223 FCCV 255 VSSI
160 VSS| 192 VCCO 224 CMODE 256 VSSO
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