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Abstract

In�nox is an automated reasoning tool that can disprove the existence of �nite
models of �rst-order theories. It is a tool of both theoretical and practical value
and is especially well suited as a complement to �nite model �nders. The main
idea behind In�nox is to search for function and predicate symbols with certain
properties that imply the non-existence of �nite models. A standard automated
theorem prover is used to check if these properties hold.

We describe the methods used to identify terms that possess the desired
properties, and explain in detail how these can be combined and applied to
concrete problems. Some very promising �rst results are presented; In�nox
has classi�ed a large number of problems from the TPTP problem library as
�nitely unsatis�able. Many of these problems have never before been solved
(nor classi�ed) by an automated system.
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Chapter 1

Introduction

1.1 Automated Reasoning

Automated reasoning deals with the development of computer programs that
can assist in solving problems requiring reasoning. The problems must be
phrased in a language that the reasoning program accepts. A typical language
acceptable to various automated reasoning programs is �rst-order logic (FOL),
which I will assume the reader is familiar with. I will use the notation of [16],
which is a standard book on the topic.

The importance of a formal language Many real world problems in a
multitude of �elds can be formulated in FOL. Such a formulation typically
consists of a statement expressing the question being asked (the conjecture or
conclusion), and a set of statements expressing the available information (the
axioms or assumptions).

A major bene�t of using a formal language to describe a problem is that
there is no ambiguity, as is often the case when using natural language. Take,
for example the sentence �Doctor helps dog bite victim�. -Does the doctor help
the dog or the victim?

In order to avoid ambiguities, we must state the problem in a precise way,
and supply all information explicitly. This has the advantage of exposing ques-
tionable or even incorrect assumptions, and may in itself lead to a deeper un-
derstanding of the problem.

An appropriate formulation of a problem enables the use of a computer
program; an automated theorem prover (ATP system) to attempt to solve it.
An ATP system mechanises di�erent forms of reasoning, while following the
laws of the formal language being used.

Applications Perhaps the most obvious application of ATP systems is to
prove mathematical theorems. In fact, many other �elds can bene�t from ATP
systems' ability to reason �awlessly.
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Some examples are hardware and software veri�cation [7], the identi�cation
of faults in electronic equipment [6], and expert systems that can reason, for
example medical diagnosis systems. [8] Even �elds such as Social Science can
bene�t from the use of ATP systems, by �translating� theories expressed in
natural language to formal logic. [1]

Limitations ATP systems can solve extremely hard problems that are es-
sentially impossible to prove by hand. However, they will sometimes fail to
terminate while searching for a proof. By Church's theorem [2], there is no
general algorithm that can determine whether a �rst-order sentence is univer-
sally valid. If a proof exists, however, it can always be found in �nite time,
since proofs are �nite sequences of formulas. But it is not always possible to
produce a counter model of a problem if a proof does not exist. In other words,
�rst-order logic is semi-decidable.

There will always be problems that cannot be solved by any ATP system,
regardless of future methods and improvements to performance. By Trakht-
enbrot's theorem [21], even the problem of validity in �nite domains is semi-
decidable. This means that there exists no algorithm that, for any given prob-
lem, is able to in �nite time correctly decide whether or not a �nite model
exists. If a problem has a �nite model, it can be found in �nite time by exhaus-
tive search. If, on the other hand, it has no �nite model and no counter proof,
there is no algorithm that is able to determine this and terminate.

Thus, there is a group of problems that cannot be solved. In this thesis, we
show how some of these problems can be classi�ed automatically.

Example Below is an example of a problem formulated in �rst-order logic.

The axioms introduce the constructor functions for lists; the constant nil,
that represents the empty list, and cons, that constructs a new list by adding
an element to the front of a list. The axioms also give a recursive de�nition of
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the member -predicate; an element is a member of a list i� it is either equal to
the head of the list, or it is a member of the tail of the list. Given these axioms,
the problem reads �is there an element X, such that X is a member of itself?�.
To show that a set of axioms implies some conjecture is is a typical task for an
ATP system.

The E Equational Theorem Prover [6] is a standard automated theorem
prover. It was run on the above problem on a 2x Dual Core processor, operating
at 1 GHz, and 4 GB RAM. After about 15 minutes of computation, E ran out
of memory. With more resources, it might be possible to �nd a proof. It could
also be the case that no proof exists. In such a situation, one may consider a
di�erent strategy. If we can �nd a counter-model of the problem, this means
that the negation of the problem is satis�able, and thus that the axioms do not
imply the conjecture.

To see if there is a counter-model, the �nite model �nder Paradox [3] was
run on the same problem. Paradox failed to �nd a counter-model up to size 78
before it gave up.

We were not able to �nd a proof nor a counter-model of this problem with
the given tools and resources. We will discuss ATP systems and their limitations
further in section 2. We can, however, show that if this problem has a counter-
model, then it must be in�nite. Thus, Paradox will never succeed in �nding a
counter-model. We show how this is done in chapters 3 and 4.

1.2 In�nox

In this thesis, we present In�nox ; an automated tool that specialises in disprov-
ing the existence of �nite models (or �nite countermodels). The aim of this tool
is to automatically classify problems as �nitely unsatis�able, i.e. as having no
�nite model. All unsatis�able problems are by de�nition �nitely unsatis�able.

In�nox can be used as a complement to existing automated reasoning soft-
ware, in particular to �nite model �nders. If a problem lacks �nite models, a
�nite model �nder will potentially never terminate in the search for one. This
can be avoided if In�nox can conclude that no �nite model exists.

The main idea behind In�nox is to identify certain properties of the given
problem, which make the existence of a �nite model impossible. The E Equa-
tional Theorem Prover [6] is used to check if these properties hold.

1.3 Thesis outline

The rest of the thesis is organised as follows:
A brief overview of various automated reasoning systems, and how these

relate to In�nox, is given in chapter two.
In chapter three, we present some examples of axiom sets that lack �nite

models, and identify the properties that they have in common.

6



In chapter four, we describe the naive algorithm to prove �nite unsatis�a-
bility of a theory. We show in steps how this algorithm can be generalised to
classify all of the example problems.

In chapter �ve, we present some experimental results, compare the perfor-
mance of the di�erent methods.

Further improvements and future work are discussed in chapter six.
Finally, we present our conclusions and contributions in chapter seven.
A short user manual to In�nox is available in the appendix.
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Chapter 2

Related Work

In this chapter, we give a brief overview of some of the techniques employed by
automated reasoning systems, and discuss their strengths and weaknesses.

2.1 Automated theorem provers

Automated theorem provers typically solve problems through contradiction. By
inferring a contradiction from the negation of a theory, we can draw the con-
clusion that the original theory is valid in all interpretations.

Saturation One of the techniques most widely used by automated theorem
provers is saturation. A saturation-based theorem prover searches for a contra-
diction by saturating the given clause set, i.e. systematically and exhaustively
applying all inference rules. Vampire [12] and SPASS [22] are examples of the-
orem provers based on saturation.

Resolution One of the major theorem proving techniques based on saturation
is resolution. The resolution algorithm was published by J.A. Robinson in 1965
[14], and is based on a single inference rule.

There exist several strategies for reducing the search space of a resolution
system without compromising completeness. One such strategy is uni�cation,
which is used to identify appropriate substitutions for variables. [13]

As a consequence of Herbrand's theorem (1930)[11], resolution is refutation-
complete, which means that if a theory is unsatis�able, then resolution will
always be able to derive a contradiction.

2.2 Finite model �nders

Finite model �nders are often used as a complement to automated theorem
provers. When an automated theorem prover fails to �nd a proof of a theory, a
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�nite model �nder may be used to try to �nd a model of the theory's negation,
and thus show that no proof exists.

SAT-solvers A SAT-solver is a model �nder for propositional logic. It at-
tempts to prove satis�ability of a propositional formula, by checking if there
is an assignment of truth-values of the variables such that the formula evalu-
ates to true under that assignment. Satis�ability is NP-complete, as proved
by Stephen Cook in 1971. [4] However, there exist many algorithms that solve
SAT-problems e�ciently in practice. A successful SAT-solver is MiniSat. [5]

Finite model �nders for �rst-order logic With a �xed domain size n,
initially n = 1, a �nite model �nder decides if there is a consistent interpretation
of the problem with this domain size. If not, we increment n and start over.
Using this technique, we obtain a concrete model of our problem (if one of a
�xed size exists). The two most successful styles of methods of model �nding
are Sem-style, named after Zhang and Zhang's tool Sem [23], and Mace-style,
named after McCune's Mace. [9]

2.3 Limitations

Automated theorem provers typically solve problems through contradiction.
The validity of a theory is shown by proving that the negation of the theory is
unsatis�able, i.e. that it leads to a contradiction. If, on the other hand, the
negation is satis�able, there is a counter-model of the theory.

As explained in section 2.1, if a contradiction exists, it can always be found
in �nite time by an automated theorem prover based on resolution.

If the negation of the theory is satis�able, it has, by de�nition, a model. A
model is either �nite or in�nite.
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If the model is �nite, it can be found in �nite time by a �nite model �nder,
as described in section 2.2. If there are only in�nite models of the theory, a �nite
model �nder will never terminate its search. Theories with only in�nite models
can in some cases be proved to be satis�able by a saturation based theorem
prover, but this is far from always possible. In section 1.1 we saw that many
problems in �rst-order logic are, in fact, not provable.

In the next chapter, we shall take a look at some examples of theories that
lack �nite models, and identify the properties that these theories have in com-
mon.
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Chapter 3

Examples

In this section, we identify the properties that preclude the existence of �nite
models. Furthermore, we illustrate by a number of examples ways in which
these properties can be generalised.

3.1 Injectivity and non-surjectivity

Example Consider the following two axioms for a function symbol suc:

A1. ∀X : suc(X) 6= zero

A2. ∀X, Y : suc(X) = suc(Y ) =⇒ X = Y

In any model with domain D of these axioms, D is in�nitely large.

Proof. From the �rst axiom we know:

• There exists a constant zero.

• For all X in our domain, there exists a successor of X, which is not equal
to zero. Thus, there are at least two elements in D; zero and suc(zero).

Now, assume that
zero, suc(zero), ..., sucn(zero)

are unique in D for some n ≥ 1. We will show that suc(n+1)(zero) is not equal
to any of these. Assume the contrary. We know by A1 that

suc(zero) 6= zero.

Thus, we have, for for some i s.t. 1 ≤ i ≤ n.

suc(n+1)(zero) = suci(zero)
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or, equivalently

suc(sucn(zero)) = suc(suc(i−1)(zero))

By A2, this yields:

sucn(zero) = suc(i−1)(zero)

This contradicts our assumption that the elements zero, .., sucn(zero) are unique
in D. We conclude that every element X in the set gives rise to a new, unique
element suc(X). In other words, only in�nite domains exist for these axioms. �

From this example, we can conclude the following:

Theorem 1 Any domain on which an injective and non-surjective function
operates is in�nite.

Proof. The axioms of the above example state precisely that the successor
function is non-surjective (by A1), and injective (by A2). The proof above can
thus be applied to any function with these properties. This shows that any
domain on which an injective and non-surjective function operates must be in-
�nite. Thus, any set of axioms that implies injectivity and non-surjectivity of a
function must either be unsatis�able, or have only in�nite models. �

3.2 Existential quanti�cation

We consider a set of axioms, which de�ne selection of the �rst and second
elements of a pair. Though not as easily spotted as in the previous example,
these axioms hide an injective and surjective function. This function is not
lexically present in the axioms, however, it can be constructed from the functions
and constants that are given.

Example The following axioms have no �nite model

B1 ∀X, Y : fst(pair(X, Y )) = X

B2 ∀X, Y : snd(pair(X, Y )) = Y

B3 a 6= b

Proof. Axiom B3 states that there are at least two elements in the domain; the
constants a and b. Now, suppose

pair(X, a) = pair(Y, a)

for some X, Y ∈ D. Applying fst to both sides of the equality sign yields

fst(pair(X, a)) = fst(pair(Y, a))
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By B1 this implies X = Y . We have derived

∀X, Y : pair(X, a) = pair(Y, a) =⇒ X = Y

meaning that pair(X, a) is an injective function. Next, we note that, by B2,

∀X : snd(pair(X, a)) = a

and

snd(pair(a, b)) = b

Since, by B3, a 6= b, it must be that

∀X : pair(X, a) 6= pair(a, b)

meaning that pair(X, a) is a non-surjective function. Now, we can simply apply
theorem 1 to conclude that no �nite model for these axioms can exist. �

3.3 Re�exive relations

In this example, we show that it is su�cient that a function is injective and
non-surjective with respect to a re�exive relation.

Example The following axioms have no �nite model

D1 ∀X : lte(X, X)

D2 ∀X : ¬lte(suc(X), zero)

D3 ∀X, Y : lte(suc(X), suc(Y )) =⇒ lte(X, Y )

Remark. Since the relation need not be symmetric, we distinguish between left-
related and right-related; lte(X,Y) means that X is left-related to Y , while Y
is right-related to X, by lte.

Proof. From D1, we know:

D1' X = Y −→ lte(X, Y )

This, in turn, implies that

D1� ¬lte(X, Y ) −→ X 6= Y

From D2, we know:

• There exists a constant zero.
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• For all X in our domain, there exists a successor of X, which is not
left-related to zero by lte. Thus, ¬lte(suc(zero), zero), and by D1�,
suc(zero) 6= zero.

Now, assume that
zero, suc(zero), ..., sucn(zero)

are unique in D for some n > 1. We will show that suc(n+1)(zero) is not
equal to any of these elements. Assume the contrary. We know by D1' that
suc(n+1)(zero) is not equal to zero, since this would, by D1', imply lte(suc(n+1)(zero), zero),
which contradicts axiom D2. Thus, we assume that

suc(n+1)(zero) = suci(zero)

for some i s.t. 0 < i ≤ n. By D1', this implies

lte(suc(n+1)(zero), suci(zero))

which, by applying axiom D3 i times yields

lte(suc(suc
(n−i)(zero), zero))

which contradicts axiom D2. We conclude that every element X in the set gives
rise to a new, unique element suc(X). In other words, only in�nite domains
exist for these axioms. Note that the same reasoning applies if the arguments
to the function in axiom D2 are �ipped. Simply replace � left-related � by �right-
related � in the proof.

Theorem 2 Any domain on which a function f is injective and either left-
or right-non-surjective, with respect to a re�exive relation r, is in�nitely large.

Proof. The axioms of the example above state precisely that the function suc is
injective and non-surjective with respect to the re�exive relation lte. The proof
of the example can thus be applied to any function f and relation r with these
properties. �

3.4 In�nite subdomains

In order to show that a set is in�nite, it is su�cient to show that a subset of the
set is in�nite. Often, a function is injective and non-surjective only on a part of
its domain. In these cases, it is necessary to locate the in�nite subdomain.

Example The following axioms have no �nite model.

E1 nat(zero)

E2 ∀X : nat(X) =⇒ suc(X) 6= zero

14



E3 ∀X : nat(X) =⇒ nat(suc(zero))

E4 ∀X, Y : nat(X) ∧ nat(Y ) =⇒ (X = Y =⇒ suc(x) = suc(Y ))

Proof. The above axioms include a predicate nat, which de�nes a subset of the
domain. When considering the full domain, the axioms do not imply injectivity
and non-surjectivity of the function suc, since they say nothing about the be-
haviour of suc outside the subdomain de�ned by nat. However, by disregarding
any elements X, for which nat(X) = false, we can use the proof of example
1 to show injectivity and non-surjectivity of suc on this subdomain. Since any
domain that contains an in�nite subdomain must be in�nite, it follows that
these axioms cannot have �nite models. �

3.5 Non-injectivity and surjectivity

In this example, we show how non-injectivity and surjectivity of a function
implies in�nity of its domain.

Example The following axioms have no �nite model.

F1 ∀Y : ∃X : f(X) = Y

F2 ∃X, Y : X 6= Y ∧ f(X) = f(Y )

Proof. Suppose there is a model with a �nite domain D, of size n, that satis�es
the above axioms. The axioms describe a mapping f : D 7→ D, that is surjective
and non-injective. F2 states that there are at least two elements in the domain
that map to the same element. Now, take one element in D that is mapped
to by at least two elements. Call these elements e1, .., ek(where k ≥ 2). We
can now construct a new function, f ′, that is exactly the same as f, with the
exception that it is not de�ned for a1, .., ak, and thus f(a1) = ... = f(ak) is not
in its codomain:

f ′ : D \ {a1, .., ak} 7→ D \ {f(a1)}

The surjectivity of f is preserved in f ′; any element in D that was covered by f
is also covered by f ′, with the exception of f(a1), which is not in f ′:s codomain.

However, a mapping from a set of arity (n− k),with k ≥ 2 to a set of arity
(n−1) can, by the pigeonhole principle, clearly not be surjective. It must either
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be that our assumption that f is surjective is false, or that D is in�nitely large.�

Theorem 3 Any domain on which a function that is non-injective and sur-
jective, with respect to equality, is in�nite.

Proof. The axioms of the above example state precisely that the function f
is non-injective and surjective. The proof above can thus be applied to any
function having these properties. �
Remark. Unlike in example 3, we cannot replace equality by a re�exive relation,
as shown by the following counter-example:

F1' ∀X : r(X, X)

F2' ∀Y : ∃X : r(f(X), Y )

F3' ∃X, Y : ¬r(X, Y ) ∧ r(f(X), f(Y ))

The above axioms state that the function f is non-injective and surjective with
respect to the re�exive relation r. These axioms have a �nite model with domain
D = {a, b}, and the following interpretation:

3.6 Robbins Problem

A problem that is not as easy to solve by hand is Robbins problem; �are all
Robbins algebras boolean?�. In 1933, E.V. Huntington presented the following
equations as a basis for Boolean algebra:

Commutativity ∀X, Y : plus(X, Y ) = plus(Y, X)

Associativity ∀X, Y, Z : plus(plus(X, Y ), Z) = plus(X, plus(Y, Z))

Huntington ∀X, Y : neg(plus(neg(plus(X, Y )), neg(plus(X, neg(Y )))) = X
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Shortly thereafter, Huntington's student Herbert Robbins conjectured that the
Huntington equation can be replaced with the following equation:

Robbins ∀X, Y : plus(neg(plus(neg(X), Y ))), neg(plus(neg(X), neg(Y )))) =
X

Neither Huntington nor Robbins was able to �nd a proof or a counter-example.
Several mathematicians, including Alfred Tarski and his students, have since
worked on this problem. Despite their e�orts, it has remained open until 1996,
when EQP, an automated theorem prover for equational logic, found a proof
after eight days of computation [10].

Eventhough Robbins Problem is di�cult to solve, it is easily classi�ed as
�nitely unsatis�able. Given the axioms of boolean algebra and Robbins con-
jecture, In�nox establishes in under 30 seconds that neg(X) is a surjective and
non-injective function, and thus that the problem has no �nite models.

3.7 Summary

We have seen that a theory that contains a function that is either injective and
non-surjective or non-injective and surjective cannot have a �nite domain.

In example 2 we concluded that these properties can be found even in func-
tions that are not lexically present in the axioms. We detect these functions by
instantiating variables with constants.

In example 3, we learned that injectivity and non-surjectivity with respect
to any re�exive relation implies in�nity of the domain.

Example 4 showed how we can consider subdomains to weaken the properties
that imply in�nity of the domain.

In example 5 we saw how non-injectivity and surjectivity of a function implies
that the domain cannot be �nite.

In example 6 we saw how a problem that is di�cult to solve can be easy to
classify using these properties.

In the next chapter, we will see how these methods can be implemented, in
order to classify theories automatically.
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Chapter 4

In�nox

In�nox is an automated tool that is used to prove that no �nite model (or
counter-model) for a given �rst-order theory can exist. In�nox will, given a set
of clauses C, either establish a conclusion of the form �if a model of C exists, then
this model cannot be �nite.�, or simply give up. It thus infers that the theory
is either unsatis�able, or lacks �nite models. We refer to this classi�cation of
theories as �nitely unsatis�able.

In�nox is a useful complement to model �nders. If a theory lacks �nite
models, a �nite model �nder will potentially search for a model until it runs
out of memory. By classifying a theory as �nitely unsatis�able, we know that
searching for a �nite model is pointless.

4.1 The ideas

The ideas behind In�nox are based on the following two facts:

• Any domain on which an injective and non-surjective function operates,
must be in�nite. This is shown in section 3.1.

• Any domain on which a non-injective and surjective function operates,
must be in�nite. This is shown in section 3.5.

Thus, if we can implement an algorithm to detect such terms, this algorithm
could then be used to disprove the existence of �nite models.

4.2 The algorithm

In this section, we describe the algorithm in detail. We begin with a simpler,
naive algorithm, and describe how to make the necessary generalisations to
classify the examples in section 3 as �nitely unsatis�able.
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4.2.1 A �rst attempt

We cannot directly ask a �rst-order logic theorem prover: �Does this axiom set
include injective and non-surjective functions?�. The reason for this is that it
is not possible to quantify over functions in �rst-order logic. What we can do,
however, is to provide the theorem prover with the speci�c functions that we
want to check. A simple automated method to solve the above problem is this:

1. Identify all functions of arity 1 in the problem.

2. For each such function, construct the conjecture that the function is injec-
tive and non-surjective, with respect to equality (�=�). This can be done
automatically.

3. For each conjecture, use an automated theorem prover to check whether
it is a logical consequence of the axioms.

If we succeed for any function, we have shown that the problem does not have
�nite models.

4.2.2 The need for existential quanti�cation

In section 3.2, we saw that terms that are not lexically present in the theory
can still imply in�nity of the theory's model. We found the injective and non-
surjective function pair(X, a) by instantiating the variable Y in pair(X, Y ) with
a constant from the domain.

The same reasoning can be applied to any function f of n ≥ 1 variables.
We view f as a function of one variable, while the remaining (n-1) variables are
instantiated with constants present in the domain. The good news is that we
do not need to provide these constants ourselves. As long as we know that there
exist constants that make our conjecture true, we do not need to know what
these constants are. Since existential quanti�cation is a construct of �rst order
logic, an automated theorem prover can tell us whether such constants exist.

The generalised algorithm using existential quanti�cation

1. Identify all functions of arity n in the theory, for n ≥ 1.

2. For each such function, we create 2n − 1 new functions, by �xing one
variable (that can occur more than once), and existentially quantifying
over the others. For example, from f(X, Y, Z), we create the functions

f(X, ∗, ∗), f(∗, X, ∗), f(∗, ∗, X), f(∗, X,X),

f(X, ∗, X), f(X, X, ∗), f(X, X, X)

where each �*� stands for a di�erent existentially quanti�ed variable (with
a unique name).
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3. For each of these functions, we construct the conjecture of injectivity and
non-surjectivity.

4. An automatic theorem prover is used to check whether any of these con-
jectures is implied by the axioms of the theory.

Since the number of functions generated from a function f is exponential in the
arity of f , it is often not feasible to check all of them. Since we are dealing with
a computationally hard (impossible) problem, this is inevitable. It is, however,
desirable to investigate ways to increase the likelihood of checking the right
functions. One way to do this is to use zooming, which is described in section
4.3.

Example We illustrate how the algorithm can be applied to the example in
section 3.2: In step 1, we identify all the functions of arity greater than zero.
We �nd the functions fst/1, snd/1 and pair/2.

fst and snd are checked as described in 4.2.1. However none of these functions
have the desired properties. Now, let us focus on the function pair(X, Y ). In
step 2, we create the functions pair(X, ∗), pair(∗, X) and pair(X, X), where
∗ represents an existentially quanti�ed variable. In step 3, let us focus on
pair(X, ∗), and create the conjecture for injectivity:

∃C : ∀X, Y : pair(X, C) = pair(Y, C) =⇒ X = Y

the conjecture for non-surjectivity becomes:

∃C, Y : ∀X : pair(X, C) 6= Y

Since it is necessary that it is the same function that is both injective and
non-surjective, the existential quanti�cation must range over both conjectures.
Thus, we merge them into one:

∃C : ((∀X, Y : pair(X, C) = pair(Y, C) =⇒ X = Y ) ∧

(∃Y : ∀X : pair(X, C) 6= Y ))

We showed in section 3.2 that given the axioms B1-B3, this conjecture is true
for C = a and Y = pair(a, b). In step four, we let an automated theorem
prover check that the axioms of the theory do, indeed, imply the conjecture of
injectivity and non-surjectivity of the given function. By the use of existential
quanti�cation, we do not need to specify the constants with which to instantiate
the variables. We simply provide the theorem prover with the given axioms,
together with the conjecture of injectivity and non-surjectivity, and repeat for
each function that we wish to check.
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4.2.3 Generalising equality

In example 3.3, we see that a function that is injective and non-surjective with
respect to any re�exive relation implies in�nity of the functions domain. By
considering all re�exive relations, rather than just equality, as done in the naive
algorithm, we signi�cantly increase the likelihood of �nding an injective and non-
surjective function. Given a relation of arity n ≥ 2, we can construct a number
of new relations of arity 2, by adapting the technique of existential quanti�cation
in example 2. Each of these relations can then be checked for re�exivity, and
used as equality relation in the conjecture of injectivity and non-surjectivity for
each function we check. Naturally, for larger scale problems, this yields a huge
number of test cases, and in practice it is not feasible to go through them all.
We show a way to tackle this problem by the use of zooming, in section 4.3.

The generalised algorithm using re�exive relations

1. Use steps 1 and 2 of the algorithm in section 4.2.2 to generate test func-
tions.

2. Identify all relations of arity n in the problem, for n ≥ 2.

3. For each such relation, we create all of the 2-variable relations obtained
by �xing two variables (each of them can occur more than once), and
existentially quantifying over the others. For example, from r(X, Y, Z),
we obtain the relations

r(X, Y, ∗), r(∗, X, Y ), r(X, ∗, Y )

where each �*� stands for a di�erent existentially quanti�ed variable (with
a unique name).

4. For each of these relations, we check if there is an assignment of constants
to the variables that are represented by a *, that makes the relation re-
�exive. For example, for r(X, Y, ∗),we construct the conjecture

∃C : ∀X : r(X, X, C)

and use a theorem prover to test if this is implied by the axioms.

5. When we �nd a relation that is re�exive for some assignment of con-
stants to the existentially quanti�ed variables, we use this relation in-
stead of equality when constructing the conjecture of injectivity and non-
surjectivity. Note that we in the relation need to use precisely the con-
stants that we proved make it re�exive. Thus, it is necessary to use the
same quanti�cation of this relation in the new conjecture. We need to both
check for re�exivity and injectivity and surjectivity in the same scope:

∃C : (∀X, Y : r(X, X, C) ∧ (r(X, Y,C) =⇒

r(f(X), f(Y ), C)) ∧ (∃Z :qr(f(X), Z, C)))
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It may seem unnecessary to check for re�exivity twice, however, since it
is likely that a relation fails the �rst re�exivity check, we often do not
need to perform the second check, which is a lot more expensive, since it
is repeated once for each function.

6. For each conjecture we construct, we let an automated theorem prover
check whether it follows from the axioms. If we for any conjecture get a
positive answer, this means that there are no �nite models of the given
problem.

4.2.4 Searching for in�nite subdomains

As seen in the example of section 3.4, if a function is injective and non-surjective
on a subdomain, this implies in�nity of the full domain. When looking at
subdomains, we use a predicate to limit the set of elements that we wish to
consider. When doing so, anything that happens outside of this set can be
disregarded. When replacing equality for a re�exive relation, as shown in the
previous section, it does not matter if the relation is not re�exive outside of the
set. Thus, we only need to check for re�exivity on the subset that is limited
by our predicate. Similarly, the desired properties of the functions we check
need not hold outside of the set. By weakening the constraints in this way, we
increase the likelihood of �nding a function that �ts our description.

The predicates used to de�ne such subdomains are taken from those syn-
tactically present in the problem. It is also possible to use the negation of a
predicate in order to de�ne the subset of elements for which the predicate is
false, or to use the conjunction or disjunction of any number of predicates. In
fact, we could create any predicate we want. However, sticking to the predi-
cates that are present in the problem is a good limitation. The number of test
cases is the product of the number of functions, equality predicates and limiting
predicates that we consider.

Intuitively, the domain of an injective and non-surjective function is unlikely
to be random; it seems more probable that the function's domain would consist
of elements satisfying a predicate which occurs syntactically in the axioms.

The generalised algorithm using limiting predicates

1. Use steps 1 and 2 of the algorithm in section 4.2.2 to generate test func-
tions.

2. Generate predicates of arity 1 in the same way as functions are generated
in the previous step.

3. Construct all the possible pairs of functions generated in step 1, and pred-
icates generated in step 2. For each such pair, we use an automated
theorem prover to check if the subset de�ned by the predicate is closed
under the function.
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4. Generate equality relations in the same way as in step 3 of the algorithm
in section 4.2.3. For each limiting predicate that is a member of at least
one pair in step 3, we check if the equality predicate is re�exive under that
limiting predicate.

5. We now have a number of pairs of compatible limiting predicates and
functions, and a number of pairs of compatible limiting predicates and
equality predicates. We merge the pairs of matching limiting predicates
to obtain triples of limiting predicates, equality predicates and functions.

6. For each triple obtained in step 5, we use an automated theorem prover
to check if the function is injective and non-surjective with respect to the
equality predicate and the limiting predicate. It is also necessary to check
again that the equality relation is re�exive with respect to the limiting
predicate, and that the set de�ned by the limiting predicate is closed with
respect to the function. This must be done simultaneously with the testing
of injectivity and non-surjectivity of the function. This is to ensure that
any existentially quanti�ed variable scopes over the entire formula and
thus instantiates to the same value for all clauses. If we �nd any triple,
for which we receive a positive answer, this means that the problem cannot
have �nite models.

4.2.5 Searching for non-injective and surjective functions

As seen in section 3.5, non-injectivity and surjectivity of a function implies in�n-
ity of its domain. To use this fact to show that an axiom set lacks �nite models,
we can apply the algorithm described in section 4.2.2, but replace injectivity
and non-surjectivity by non-injectivity and surjectivity.

Generalising equality, in the way explained in section 4.2.3 cannot be done
to this method, however, as shown by the counter example in section 3.5. When
applying the algorithm of limiting predicates in section 4.2.4, we skip step 4 and
use equality (�=�) as the only relation.

4.3 Zooming

When considering theories that contain a large number of terms and predicates,
it is often not feasible to test all of the combinations for the desired properties.
The use of existential quanti�cation, as described in section 4.4.2, generates
even more combinations, making it impossible to deal with them all, within a
reasonable time limit. We must limit the number of combinations that we check.
The naive algorithm simply checks the terms in the order in which they appear,
and gives up with the time-out.

Given a theory for which no �nite model has been found, we can weaken
the theory by removing some of the axioms. If we cannot �nd a �nite model of
this new theory, we know that the removed axioms were not responsible for the
absence of a �nite model. We can continue removing axioms until we reach the
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smallest axiom set for which a �nite model cannot be found. Now, we check
only the combinations of terms and predicates found in this smaller theory. In
this way, we are able to zoom in on the relevant part of the theory, and, in many
cases, signi�cantly reduce the number of test-cases.

The algorithm

1. The input is a set S of axioms for which no �nite model has been found. We
want to �nd the smallest subset of these axioms that lacks a �nite model.
We split the set of axioms into two halves, A and B. This is simply done
by listing them in the order in which they occur, and splitting the list in
half. Now, run the �nite model �nder Paradox on each of A and B. There
are two possibilities:

2. If, for any half, Paradox is not able to �nd a �nite model within the given
time-out, (we use a time-out of 2 seconds as default), we assume that there
is no �nite model of this subset, and go back to step 1 with this subset as
input.

3. If, on the other hand, Paradox �nds �nite models of both A and B, this
means that we have removed too many axioms. For each half, we put
back half of the removed axioms. We thus split A and B further into four
sets of axioms; A1, A2, B1 and B2, and run Paradox on each of A ∪B1,
A ∪ B2, B ∪ A1 and B ∪ A2. If Paradox is unable to �nd a �nite model
for any one of these axiom sets, use this set as input in step 1. Otherwise,
we continue with step 4.

4. We repeat the procedure of step 3 recursively on each of the subsets for
which we found a �nite model; if the set of removed axioms is non-empty,
we split the set of absent axioms in half and add each of them to the subset,
to produce two larger subsets. If Paradox is unable to �nd a model for
any one of them, we use it as input in step 1. Otherwise we repeat step
4 for these new subsets. If the set of removed axioms is empty, we have
put back all of the axioms and restored the last input to step 1. We have
then obtained an axiom set for which no axioms can be removed without
making the theory �nitely satis�able. This is thus the smallest subset of
the original input, for which no �nite models can be found.

5. Now, we consider the terms (and predicates, where applicable) that occur
in this subtheory only, and choose an algorithm from sections 4.2.2 - 4.2.5
to check the terms for the desired properties.

Complexity The complexity of zooming is in its worst case quadratic in the
number of axioms. The worst case occurs when half of the axioms together
make the model in�nite. Consider the following example: a theory consists of
16 axioms, out of which 8 make the existence of a �nite model impossible. In
the worst case, it takes 8 splits, and 16 runs of Paradox, to gather all of the 8
axioms in the same subset:
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With this, we have reduced the theory by one axiom only. We repeat the
procedure, now with 15 axioms. Again, it takes 8 splits and 16 runs of Paradox
to shrink the theory by one axiom. The procedure is repeated 8 times, shrinking
the theory by one axiom each time, until we have zoomed in on the 8 axioms
with no �nite model.

For a theory of n axioms, it takes in the worst case n2/2 runs of Paradox to
�nd the smallest �nitely unsatis�able subdomain.

The worst case is, however, very unlikely for large n. Typically, only a small
subset of the theory makes the existence of a �nite model impossible. Our tests
(see chapter 5), revealed that many problems, often of over a thousand axioms,
have �nitely unsatis�able subsets of just 2-3 axioms. The probability of these
axioms ending up in the same subset after the �rst split is thus much higher,
which in each step means a reduction by half of the number of axioms. Thus, a
larger n tends to increase the probability of a logarithmic complexity.

We discuss alternative approaches to the implementation of zooming in chap-
ter 6.

4.4 Summary

We have presented a naive algorithm that searches for injective and non-surjective
or non-injective and surjective functions. We have shown how this algorithm
can be further generalised, by the use of existential quanti�cation, re�exive rela-
tions and limiting predicates. Often, these generalisations yield a large number
of test-cases. We resolve this by the use of zooming, which signi�cantly reduces
the number of combinations to check. With the algorithms presented in this
section, we are able to classify all of the example problems of section 3. In the
next chapter, we shall evaluate these algorithms on some standard test problems
for ATP systems.
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Chapter 5

Experimental Results

In�nox has been tested and evaluated using a subset of problems from the TPTP
Problem Library [18], which is a comprehensive collection of test problems for
automated theorem proving systems. In this section, we describe how the test
problems were selected, and compare the performance of the di�erent methods.

5.1 The test problems

The test problems for evaluation of In�nox were selected from the categories of
the problem library that are meaningful for our purpose. This excludes problems
already identi�ed as unsatis�able. Since it has already been shown that these do
not have models, it is unnecessary to show that they lack �nite models. For the
same reason, problems identi�ed as theorems are excluded from the set of test
problems. If a problem has theorem status, it means that a theorem prover has
established that its axioms and negated conjecture are unsatis�able, meaning
that the problem has no countermodel. Thus, it is super�uous to show that they
lack �nite countermodels. We also left out problems identi�ed as satis�able with
known �nite models. Similarly, countersatis�able problems with known �nite
countermodels were disregarded. After eliminating the problems of the above
kinds, we were left with a total of 1272 problems to focus on. These problems
were taken from the following categories, as of April 2008:

Open: The abstract problem has never been solved. (27 problems).

Unknown: The problem has never been solved by an ATP system. (1075
problems).

Satis�able: Some interpretations are models of the axioms. We considered
only problems with no known �nite model. (122 problems)

Countersatis�able: Some interpretations are models of the negation of the
conjecture. We considered only problems with no known �nite counter
model. (48 problems)
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5.2 The results

We tested on a 2x Dual Core processor operating at 1 GHz, with a time-out of
15 minutes per problem, and a time-out of two seconds for each call to E and
Paradox.

In total, In�nox classi�ed 390 out of the 1272 test problems as �nitely unsat-
is�able. Since the actual number of the test problems that are �nitely unsatis�-
able is unknown, this means that we have identi�ed at least 30% of them. The
number of successfully classi�ed problems from each category are as follows:

Unknown: 366 (1075)

Open: 3 (27)

Satis�able: 21 (122)

CounterSatis�able: 0 (48)

It may seem like an astounding result that as many as three open problems
were classi�ed by In�nox. However, the complexity of the problems cannot
be measured in the same way as for traditional theorem provers. Many of
the most di�cult problems trivially have no �nite model. As an example, one
of the classi�ed open problems is Goldbachs conjecture, which is one of the
oldest unsolved problems in number theory. The number-theoretical nature of
this problem directly implies that any model must be in�nite. Despite this,
�nite model �nders have fruitlessly attempted to solve this problem (and many
others), according to the TSTP (Thousands of Solutions from Theorem Provers)
Solution Library [19]. With a tool like In�nox, they no longer need to.

5.3 Evaluation

Since there is no other tool similar to In�nox, it is not an easy task to evaluate
the overall test results. Instead, we compare the performance of the di�erent
methods.

5.3.1 Abbreviations

For the purpose of readability, we introduce the following abbreviations of the
methods:

R Search for injective and non-surjective terms, try all re�exive predicates
found in the problem as equality relation, including �=�. This method
is introduced in section 3.3, and explained in detail in section 4.2.3.

RP Same as R, with the added use of limiting predicates. With the addition
of a predicate P , such that P (X) evaluates to true for all X, the method
RP would subsume the method R. In order to evaluate the bene�ts of
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the use of pure limiting predicates, such a predicate was not added when
performing these tests. This method is introduced in section 3.4, and
explained in detail in section 4.2.4.

SNI Search for surjective and non-injective terms.

The letter �Z� appended to the above codes indicate the added use of zooming
to select test terms an predicates.

5.3.2 Scatterplots

When evaluating a method, we are not only interested in the total number of
successful tests, but also in what the given method contributes to the overall
result. If there are a large number of problems solvable by one method but
not another, and vice versa, this indicates that the use of a combination of
these methods would be bene�cial. We are looking for the State Of The Art
Contributors (SOTAC) [17]; the methods that were able to classify problems
that no other method classi�ed.

To facilitate a clear overview of the results and enable an easy comparison
of the methods, we present the result data as scatterplots.

Each axis represents a method's running time in seconds, using a logarithmic
scale. Each cross represents a problem. Crosses below the diagonal line are
problems where the method represented by the vertical axis performed better,
i.e. it solved the problem in the shortest time. Similarly, crosses above the
diagonal line are problems for which the method represented by the horizontal
line performed the best. Since we used a time-out of 900 seconds when testing,
crosses located along the 900 mark are problems that the corresponding method
was unable to solve. Consequently, since the majority of the problems were not
solved, these are represented by a cross in the upper right corner, meaning that
both methods either timed out or ran out of test terms.

Zooming or no zooming? The scatterplot in �gure 1 below shows that the
use of zooming as a way to select test terms signi�cantly increases the ratio of
classi�ed problems.
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The horizontal axis represents the method R, while the vertical axis corresponds
to its zoomed counterpart, RZ. We note that, while some dozen problems were
solved by both methods, there are a total of 111 problems along the 900 mark
of method R, which were solved by the zoomed version alone. Only 14 problems
were solved by R alone.

The results indicate that it is in most cases preferrable to use the zoom
feature. Only in a few cases did the plain R method succeed when the zoomed
version did not. Still, it may be of value try the plain R method when RZ has
failed. The two methods together classi�ed just over 44% of the total number
of problems that were successfully classi�ed by In�nox.

Limiting predicates or no limiting predicates? In the �gure below, we
see how the use of limiting predicates a�ects the result. The horizontal axis
corresponds to the method RZ, while the vertical axis corresponds to RPZ.
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A number of crosses are gathered around the diagonal line, indicating that the
performances of both methods were very similar on the problems that both
methods were able to solve. Even more interesting are the crosses gathered
along the 900 second mark of both methods. We see that 127 problems were
classi�ed by RZ but not by RPZ, and 216 problems were classi�ed by RPZ but
not RZ. This shows that the two methods complement each other very well and
should ideally be combined. RPZ performed somewhat better, with a total of
235 classi�ed problems, compared to RZ, which classi�ed 146. Together, the
two methods account for almost 93% of the total number of classi�ed problems.

Injective and non-surjective or non-injective and surjective? In the
�gure below, we compare the results of the method that searches for terms that
are injective and non-surjective with the results of the method that searches for
non-injecitve and surjective terms. We look at the zoomed version of both meth-
ods. The horizontal axis corresponds to RZ, while the vertical axis corresponds
to SNIZ.

30



 1

 10

 100

 1000

 1  10  100  1000

S
N

IZ

RZ

140

5

We see that very few problems were solved by SNIZ. One reason for this is
that in RZ, we consider all re�exive predicates as equality relation, while in SNIZ
we are limited to using standard equality (�=�). With fewer test cases, we are
less likely to come across a term that �ts our description. Another reason may
be that the test problems are initially constructed by people. It may be more
intuitive to deal with a certain kind of functions (injective and non-surjective)
rather than the reverse (non-injective and surjective), and thus these functions
occur more frequently.

We conclude by the poor overall results that the SNIZ method is not practical
to use. However, since SNIZ classi�es 5 problems for which all of the other
methods fail, it may be worthwhile to investigate ways in which to improve this
method.

Re�exive predicates The added use of re�exive predicates as equality rela-
tion, as explained in sections 3.3. and 4.2.3, has shown to be a useful generalisa-
tion. It accounts for 41 out of the 146 problems classi�ed by RZ, and 13 out of
the 235 problems classifed by RPZ. However, since regular equality performed
better, it should ideally be tested before any other predicates.

Existentially quanti�ed variables Using existential quanti�cation to gen-
erate terms and predicates has proved to be of major signi�cance to the results.
In 104 out of the 146 problems classi�ed by RZ, and 219 out of the 235 problems
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classi�ed by RPZ, the identi�ed terms and/or predicates include variables that
are existentially quanti�ed.

Term depth Out of all of the 390 classi�ed problems, 100% of the identi�ed
terms and predicates had depth 1. This does not exclude the possibility of there
being terms or predicates of larger depths that possess the desired properties.
These may exist, however they are much more di�cult to �nd.

5.3.3 Time-outs

In�nox has three di�erent time-out settings. The settings that are most suitable
highly depend on the nature of the problem and the global time-out.

The global time-out setting The global time-out should ideally be as long
as possible. In our test results, the majority of the identi�ed terms were found
in the time interval of 100 and 500 seconds, with an E limit of 2 seconds. Thus,
a time-out of at least 10 minutes per method is recommended. This should of
course be adjusted according to the time-out settings of E and Paradox.

E time-out setting Naturally, a longer time-out for E means that it is more
likely to be able to prove our conjectures. However, it may also mean that there
won't be enough time to go through all of the tests. The E time-out should be
set in accordance with the global time-out and the size of the problem.

Paradox time-out setting Using the zoom feature requires a time-out set-
ting for Paradox. In our tests, we used a time-out of 2 seconds, which our results
indicate is a reasonable limit. This is also the time limit used as default. With
a longer limit, we can decrease the risks of the zoomed problem having a �nite
model which was not found by Paradox in the given time limit. However, with a
longer limit, there is the risk of global time-out before the zooming has �nished
and any terms have been tested.

5.3.4 The less successful methods

The four methods R, RZ, RPZ and SNIZ together classify all of the in total
390 problems classi�ed in our tests. A number of variations on these methods
were tested, but these did not add to the overall result. These include the use
of generation of terms and predicates up to a given depth. Our tests indicate
that if there exist terms with the desired properties, these are often syntactically
present in the problem. The generation of terms also yields a large number of
test cases, often too many to process before the time-out.

Another less successful attempt was to combine the limiting predicates by
conjunction, disjunction and negation. For example, the predicates p(X)and
q(X) would yield the new predicates p ∧ q, p ∨ q ,¬p and ¬q. These would then
be used in addition to the plain limiting predicates.
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There are in�nitely many ways to generate terms and predicates to test. If
we haven't found a term with the desired properties at the lower term-depths,
the chances of generating �the right term� - if it exists - are just too slim.

5.4 Testing

During the implementation phase, In�nox was continuously tested on 737 prob-
lems known to be �nitely satis�able to ensure that the program does not wrongly
infer the non-existence of �nite models for these problems. While the correct-
ness of the methods has been proved, the testing helped to locate bugs in the
code, such as misplaced parentheses that changed the intended quanti�cation
scope of variables.
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Chapter 6

Future work

Since we are dealing with a semi-decidable problem, the perfect algorithm for
proving �nite unsatis�ability will never be invented. On the other hand, this
means that there are in�nitely many opportunities to improve the results, either
by enhancing the methods we have, or by inventing new ones.

6.1 Re�ne the methods

Perhaps the simplest way to improve our methods is to re�ne the techniques of
term/predicate selection. The more terms we have to test, the more likely it is
that one of them has the desired property. Since the running time is generally
bounded with a time-out, it is equally important to rule out the terms that for
various reasons are unnecessary to test. The relationship between the size of the
problem and the required global and local time-outs is something that should
be analysed in order to achieve the best possible results.

6.1.1 Selection of terms and predicates

The selection of test terms and predicates is of great importance to the result.
It is thus important to decide what terms are meaningful to test and what
limitations we should make to reduce the search space.

What to include At present, terms and predicates are selected based on
those syntactically present in the problem. This has proved to work well for
many problems, however it may also be of value to introduce new terms. By the
use of skolemization, existential quanti�ers are replaced with skolem functions,
which may be used as new test terms. If we can �nd a function f and a relation
r, such that

∀Y : ∃X : r(f(X), Y )

i.e. f is surjective with respect to r, then we can add the axiom
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∀Y : r(f(g(Y ), Y )

to the theory, for a new function symbol g, and use the method that searches
for injective and non-surjective functions on g.

One may also consider new ways of combining terms and predicates, and
analyse what combinations are meaningful to test. The generation of new lim-
iting predicates by the use of conjunction, disjunction and negation has been
tested without major success. It would be interesting to look into other ways in
which to create limiting predicates. For example, one may introduce a predicate
for each function we test, that is true for an element i� the function is injective
in that element.

What to exclude When considering a problem of larger size, there may not
be enough time to test all the combinations of terms and predicates. The use
of zooming has helped in many of these cases, by focusing on a smaller part
of the problem where a �nite model cannot be found. But, as we have seen,
zooming does not work for all problems. In fact, it never will, since this would
imply the decidability of a semi-decidable problem. Still, further re�nement of
the zooming procedure could lead to even better results. One possible way to
improve the performance of zooming is to remember what axioms cannot be
removed without making the model �nite. For example, if we start with the
axiom set {A,B, C, D} , and �nd that {B,C,D} has a �nite model, then we do
not need to remove A in future steps.

In order to reduce test terms further, it would also be of great value to
investigate what kind of terms are meaningful to test, in terms of term depth and
other attributes. As an example, it is meaningful to test the term f(g(X), h(X))
for injectivity only if both g(X) and h(X) are injective.

6.1.2 Find the perfect time-out

A very important question is how to balance the global and local time-outs.
Ideally, the global time-out would be unlimited, and the local time-outs set to
as long as possible. Since this is generally not practical, we must adjust the
local time-outs to match the size of the problem and the time we are willing to
wait for a result. Finding the best balance requires a lot of experimentation, but
signi�cant improvements to performance can be made by tuning the parameters
correctly.

6.1.3 Other variatons

We have seen how we can weaken the constraints on the terms by the use of lim-
iting predicates. Another alternative is to consider terms that are injective in all
but a limited number of elements, and adjust the constraint of non-surjectivity
accordingly.
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If a function f maps any n elements to k elements and is injective in all other
elements, where n >= k, and at least (n-k) + 1 elements in the codomain are
uncovered by the function, then the domain must be in�nite, as illustrated by
the pictures below.

With four elements that are mapped to two elements, and three elements
not covered by the function, we must introduce a �fth element to the domain,
which must be mapped to a sixth elemement, and so on, given that the function
is injective in all other elements.

Here, three elements are mapped to a single element. With three elements
not covered by the function, we must introduce a fourth element to the domain,
which in turn must be mapped to a �fth element, given that all elements except
the �rst three map to di�erent elements.

6.2 Develop new methods

There are many properties that a problem may possess which imply in�nity of
any of its models. By exploring such properties and �nding ways to express
them in a way that can be understood by a �rst-order theorem prover, we can
extend In�nox with new methods.

An example of a property that can be used to show in�nity of models is this:
�if there for any model of a problem exists a smaller model of the same

problem, then all models must be in�nite�.
The proof is simple. If the problem has �nite models, then there must exist

a smallest model. For this model, the statement is contradictory.
To be able to express this property in �rst-order logic, we need to use some

tricks to avoid quanti�cation over models. A non-surjective function can be
used to �shrink� a model, by applying it to each entry in each function table.
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This particular method has been implemented and evaluated without major
success, which is why it is not yet a part of In�nox. It may, however be worth
looking into alternative ways to implement this method.

Another example is the existence of a relation r, that is irre�exive, transitive
and serial, i.e.

1. ∀X : ¬r(X, X)

2. ∀X, Y : r(X, Y ) ∧ r(Y, Z) =⇒ r(X, Z)

3. ∀X : ∃Y : r(X, Y )

Given that the domain contains at least one element, say a1, these axioms yield
an in�nite sequence of unique elements:

By axiom 3, there exists an element, a2, such that r(a1, a2). In the same way,
there exists an element a(i+1) for every element ai, such that r(ai, a(i+1)). By
axiom 2, we get r(ai, aj), which by axiom 1 implies ai 6= aj for all i, j such that
i < j. This sequence of elements can thus not be �nite: Suppose there is a last
element, ak. By axiom 3, there exists an element a(k+1) such that r(ak, a(k+1)),
and ai 6= a(k+1) for all ai such that 1 ≤ i ≤ k. Thus, every element of the
sequence gives rise to a new, unique element.

This method has been implemented, but not yet evaluated. Evaluation and
investigation of possible generalisations of this method is left as future work.

6.3 Evaluation

A thorough evaluation of the performance of the di�erent methods and time-out
settings is crucial to be able to create improved future versions of In�nox, both
to adjust parameters, and to get an insight in what can be improved upon. A
useful improvement that could be made with this knowledge is to automatically
base the local time-outs on the given global time-out and problem size. The aim
is to let In�nox automatically decide the best approach for a given problem, and
thus save the user having to go through each method one by one.

6.4 Other uses

To simplify the addition of new properties to In�nox is something that should
be considered in future implementations. This could be further generalised to
allow the user to search for terms or predicates with any type of property. One
way to do this could be to provide a speci�c language to let the users program
these properties themselves.
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Chapter 7

Conclusions

We have introduced In�nox, a new tool that can be used to disprove the existence
of �nite models of �rst-order theories. In�nox is especially well suited as a
complement to �nite model �nders; by proving that a �nite model cannot exist,
it is no longer necessary to search for one.

Disproving the existence of �nite models We have demonstrated how
terms that are injective and non-surjective, or non-injective and surjective imply
the non-existence of �nite models. In�nox automates the process of �nding such
terms. In the search for terms with the desired properties, we focus on terms
that are syntactically present in the theory.

Existential quanti�cation to create test terms With the use of existen-
tial quanti�cation, variables are instantiated by a constant in order to create new
test terms of the desired arity. This addition has improved the results consid-
erably. A majority of the identi�ed terms in our test problems are existentially
quanti�ed.

Zooming to reduce test terms By the use of zooming, we focus on a smaller
part of the problem where a �nite model cannot be found, and thus reduce the
number of terms to test. Zooming works very well for a lot of problems, while
it fails miserably for some others. A major reason for this is that there is no
guarantee that we zoom in to the �right� part of the problem. It is possible that
we zoom in to a subproblem for which none of our methods work, while another
part of the problem holds a function of the kind we are looking for. Another
possibility is that we zoom in to a subproblem that does in fact have a �nite
model. The zooming feature relies on the assumption that if no �nite model has
been found within a set time limit, then no �nite model exists.

Generalising the properties By generalising the properties that we look
for, we are able to detect more terms that imply the non-existence of a �nite
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model.
Re�exive relations can be used as a complement to regular equality when

de�ning the property of injectivity and non-surjectivity. For surjectivity and
non-injectivity we need stronger constraints on the relation, which is why only
equality is used for this property at present.

With limiting predicates, we can identify terms for which the given property
is valid on an (in�nite) subset of the domain, as de�ned by the predicate. In
this way we can identify terms that do not have the desired property when the
full domain is considered.

Pros and cons With the above generalisations, we get an increased number
of tests to perform; one for each combination of terms, re�exive predicates and
limiting predicates. More test cases increases the likelihood of a term with the
desired property being among them. When using a global time-out, this can
also be a disadvantage, since there might not be enough time to go through all
combinations. Our results indicate that the use of limiting predicates should
be used as a complement to the general method, since they are both able to
classify some problems that the other method cannot.

The results In�nox has classi�ed over 30% of the standard �rst-order logic
test problems as �nitely unsatis�able. Many of these problems have never before
been solved (nor classi�ed) by an automated system. Since this classi�cation
has never been done automatically before, the new problem status de�nition
�FinitelyUnsatis�able� has been added to the TPTP libary of standard problems
for automated theorem provers.
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Appendix A

Using In�nox

Requirements In�nox requires installations of E [15] and Paradox [3]. These
must either be located in the working directory, or added to the PATH variable.

The problems must be expressed in the TPTP-format [20].

Temporary �les During execution, In�nox creates temporary �les, which are
stored in the temp directory. The temp directory is not removed after execution,
but all of the temporary �les created by that program run are deleted, given
that the program terminates normally.

Example use The following command will run In�nox on the �le problem.tptp,
using re�exive relations and limiting predicates, and 4 seconds time-out for E
and Paradox, and a global time-out of 10 minutes.

in�nox problem.tptp -r -p -elimit=4 -plimit=4 -timeout=600

Output In the case of time-out, or if In�nox runs out of terms to test,

�# RESULT: GaveUp�

is printed to stdout. If a term of the desired property is found,

�#RESULT: FinitelyUnsatis�able�

is printed, together with the found term, and relation and predicate, where
applicable.
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Flags

-v print details of the progress of the program to stdout

-�lelist=<�lename> run program on all problems listed in the given �le

-dir=<directoryname> run program on all problems found in the given di-
rectory

-o=<�lename> print results to the given �le

-elimit=<n> time limit in seconds for each call to E (default=2)

-plimit=<p> time limit in seconds for each call to paradox (default=2)

-timeout=<n> timeout in seconds (default=3600)

-r use all re�exive predicates as equality relation

-p use limiting predicates, can be used in combination with:

-and use pairwise conjunction of limiting predicates

-or use pairwise disjunction of limiting predicates

-not use negation of limiting predicates

-g=<n> generate all terms of depth n from all function symbols present in
the problem

-zoom use zoom feature to select terms

-ino search for injective and non-surjective terms (default)

-oni search for non-injective and surjective terms. NOTE: invalidates the
-r �ag

-m2 �nd a smaller model by applying a non-surjective function

-sr search for a relation that is serial, irre�exive and transitive

-term=<t> test the the term t only
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