

Software Component Engineering

With Resolve/C++
Volume 2: The Client’s View

Draft of June 5, 2007

Bruce W. Weide
Department of Computer Science and Engineering

The Ohio State University
Columbus

Copyright © 2007 by the author. All rights reserved.

Contents
1 ABSTRACT AND CONCRETE INSTANCES 1

1.1 Resolve/C++ Software Components 1
1.1.1 Subroutine Libraries 1
1.1.2 User-Defined Types 2
1.1.3 Classes 3
1.1.4 Components and Catalogs 3
1.1.5 Component File Naming Conventions 4

1.2 Example: Monte Carlo Estimation of π 4
1.2.1 Bringing a Concrete Instance Into Scope 7
1.2.2 Using the Concrete Instance 8

1.3 Anatomy of a Component Family: Random 8
1.3.1 The Kernel Type, Standard Operations, and Kernel Operations 9
1.3.2 The Extends Relation (Abstract-to-Abstract) 13
1.3.3 Using a Concrete Component 15

1.4 Summary 16

2 ABSTRACT AND CONCRETE TEMPLATES: GENERALIZATION 19
2.1 Parameterized Software Components 19

2.1.1 Resolve/C++ Language Support for Templates 21
2.1.2 Collection Components 22
2.1.3 Template Instantiation 22

2.2 Example: Polynomial Evaluation 23
2.2.1 Bringing a Concrete Template Into Scope 30
2.2.2 Instantiating the Concrete Template to Create a Concrete Instance 31
2.2.3 Using the Resulting Concrete Instance 31

2.3 Anatomy of a Component Family: Sequence 34
2.3.1 The Kernel Type, Standard Operations, and Kernel Operations 34
2.3.2 The Extends Relation (Abstract-to-Abstract) 36
2.3.3 Using a Concrete Component 38

2.4 Summary 38

3 ABSTRACT AND CONCRETE TEMPLATES: DECOUPLING 41
3.1 The Problem of Component Dependence 41

3.1.1 Avoidable Dependence Is Bad 41
3.1.2 Avoidable Concrete-to-Concrete Dependence Is Worse 42

3.2 Decoupling the Checks Relation 44
3.2.1 The Defensiveness Dilemma 47
3.2.2 Example: The Natural Family 51
3.2.3 Checking Components and the Checks Relation 53
3.2.4 Implementing a Checking Component 55

iv SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

3.2.5 Instantiating a Checking Component 57
3.2.6 Combining Generalization and Decoupling: The Specializes Relation 58

3.3 Decoupling the Extends Relation (Concrete-to-Concrete) 62
3.3.1 The Extends Relation (Concrete-to-Concrete): The Layering Approach 63
3.3.2 Instantiating a Concrete Extension 66

3.4 Summary 68

CLIENT-VIEW APPENDICES
Array
Binary_Tree
Id_Name_Table
List
Natural
Partial_Map
Queue
Record
Sequence
Set
Sorting_Machine
Stack
Static_Array
Text
Tree

1 Abstract and Concrete Instances

Suppose your job is to write a Resolve/C++ application program. At first blush, it seems no
more complex than the examples in Volume 1. Yet after thinking about it, you conclude that the
program calls for functionality beyond what is provided directly by the built-in Resolve/C++
types—not just narrow application-specific capabilities but ones that would be useful in many
other situations, too. Some of the required functionality seems so general and valuable that it
probably has been written before! Hoping to do as little work as possible, you imagine you
might be able to acquire significant pieces of the program from a repository of common off-the-
shelf (or COTS) components.
Volume 2 of Software Component Engineering deals with this situation from the perspective of a
client programmer. What’s different from the scenarios in Volume 1? Now you have at your
disposal a significant set of general-purpose software components that far surpass in
functionality the Resolve/C++ built-in types. Each component comes with an interface contract
specification to describe its behavior, and multiple implementations of that behavior with
different performance profiles. This chapter shows you how to use them.

1.1 Resolve/C++ Software Components
The Resolve/C++ taxonomy of software components is this:
• An abstract instance is an interface contract specification: a description of behavior in

“abstract” terms that do not reveal the details of how that behavior is achieved.
• A concrete instance is an implementation of an interface contract: a description of how to

achieve the specified behavior.
• An abstract template is a parameterized interface contract specification: a generator for a

group of similar abstract instances.
• A concrete template is a parameterized implementation of an interface contract: a generator

for a group of similar concrete instances.
Every Resolve/C++ software component, then, is an abstract or concrete instance or template.
This chapter introduces abstract and concrete instances. Chapters 2 and 3 describe how
components that are abstract and concrete templates add substantial generality and power. The
appendices summarize the interface contract specifications for a number of general-purpose
Resolve/C++ components.

1.1.1 Subroutine Libraries
What specifically is the nature of a software component in Resolve/C++? Based on Volume 1,
there is one obvious choice for what an off-the-shelf software component should be: a global
operation. Throughout the early history of computing, this is precisely what off-the-shelf
software components were. A collection of operations that can be used by other (client)
programmers is known as a subroutine library: interface contract specifications are provided to
client programmers, but implementations generally are kept secret because a client programmer
has no reason to see them.

2 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

One of the problems with limiting component collections to being subroutine libraries is that the
types of the parameters are limited to a fixed set of built-in types. In Resolve/C++, for example,
every global operation in a subroutine library would have only parameters of type Boolean,
Character, Integer, Real, Text, Character_IStream, or Character_OStream.
This might not seem too restrictive at first, but it leads to surprisingly difficult design and
maintenance problems. For example, suppose you are dealing with an application program that
involves complex numbers. These are numbers of the form a + b•i where a and b are real
numbers and i2 = –1; notice that i is not a real number. There is a rich mathematical theory of
complex numbers and special notation for dealing with them. How do you make the connection
between your application program’s complex numbers and the operations available in the
subroutine library?
If there are operations in the subroutine library whose abstract descriptions mention complex
numbers, each parameter to these operations must be of one of the built-in types (e.g., Real).
Therefore you, as a client programmer, may not think of a complex number as a single entity.
Every time you want to pass a complex number as an argument, you must pass two real numbers.
Just to make matters a bit worse in this case, there are at least two completely different but
plausible ways that two Real objects can be used to represent a complex number. One is the way
suggested above: the two real numbers are a and b, the “real” and “imaginary” parts of the
complex number. Another method is to consider the two real numbers as the “polar coordinates”
of the complex number. The details of how these representations work and their relative merits
are beyond the scope of this discussion—but they are not the issue. The point is that merely
saying that a complex number is represented by using two Real objects does not pin things down
enough. A client programmer must know which representational scheme is being used by which
operations, and if different representations are used for different operations in the subroutine
library then the client programmer must convert manually between them. In short, this is a mess.
If you could view an object whose value is a complex number as a unit—as a single object with
an abstract state described in terms of the mathematical theory of complex numbers—then you
wouldn’t need to be concerned with such issues.

1.1.2 User-Defined Types
The problem outlined above suggests that a subroutine library might not be the best way of
organizing off-the-shelf software components. Even if it works well enough in limited
application domains, focusing on individual operations generally is not the right way to think
about software components. Experienced software engineers have recognized for decades the
need for a richer set of types than what is built-in to most programming languages. No fixed set
of types, however large or sophisticated, can possibly be just what it takes to develop application
programs that no one has ever thought of before. The requisite level of generality can only be
obtained if a software engineer can design and implement new types and associated operations
that fit the situation at hand, when that is appropriate.
Such a new type—it might be called Complex in the scenario above—is called a user-defined
type, to contrast it with a built-in type. A client programmer developing a new application might
not need to create any new types. Often, he or she can just retrieve types that are generally
useful from a catalog of off-the-shelf software components developed by others.
Recall from Volume 1 that the type of an object determines both the mathematical model of the
object’s value (state) and the operations that a client programmer may call in order to observe

CHAPTER 1 — ABSTRACT AND CONCRETE INSTANCES 3

and to control the value of that object. Given the central role of types, then, it seems natural to
consider a type’s mathematical model and its associated operations to be the basis for a software
component. This is the view taken in object-oriented programming in general, and in the
Resolve/C++ discipline in particular.

1.1.3 Classes
C++ offers a program unit called a class in which you can describe either a type’s mathematical
model and its associated operations (via an interface contract specification), or a method of
achieving that behavior (via implementation code). This unit is introduced with the keyword
class, prefixed in the Resolve/C++ discipline by a qualifying keyword1 to indicate which
category it belongs to in the Resolve/C++ taxonomy of components: abstract_instance,
concrete_instance, abstract_template, or concrete_template. The chapter discusses only
instances; templates are introduced in Chapter 2.

1.1.4 Components and Catalogs
We can now say what a software component actually is. A Resolve/C++ software component is
a C++ class, of any of the four kinds listed above. A component catalog is a collection of
abstract and concrete instances and templates. In practice, each component is stored in a file,
and the files defining the components in a catalog are organized within a directory for that
catalog. The Resolve/C++ Catalog is the primary collection of general-purpose Resolve/C++
components. These are not quite as widely useful as the built-in types and operations, but they
are still valuable in a variety of client programs. There can be other catalogs of special-purpose
components. In fact, you also may set up your own catalogs, but this is not discussed here.

Figure 1-1: A main program file that brings into scope two components
In order to use an off-the-shelf component from one of these catalogs, you first need to bring the
component into scope, or make it visible in your program, so the C++ compiler knows about the
component. To do this, you simply write a #include statement (by convention, in the section of
your program labelled “Global Context”) giving the name of the file containing the component.
This is particularly easy for Resolve/C++ Catalog components. In order to avoid the hassle of
having to learn and write a complete file name—which might involve a long path, the details of
which might vary from system to system—in Resolve/C++ you give the name of a component
file relative to the directory where Resolve/C++ Catalog components reside. For special

1 In C/C++ programs, you would use just the keyword class, whether the component being defined is
an interface contract specification or an implementation, an instance or a template.

Global Context
section

Interface
section

main program file off-the-shelf software components

makes visible

makes visible

4 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

catalogs, you might have to provide the catalog’s directory name, too, or follow other catalog-
specific instructions for how to include its components. On the other hand, as you develop new
components that are not yet ready to be placed in a catalog and to be used by other people in
their programs, you should include them by a path to one of your own private directories.

1.1.5 Component File Naming Conventions
As a client programmer using a catalog of off-the-shelf components, then, you need to know the
names of the files in which the required components are described. The file names within a
catalog directory arise from the following Resolve/C++ conventions, which are based on the
taxonomy of component varieties and on the class names used for particular components:
• Within a catalog directory, a component file resides in one of four subdirectories, based on

whether it is an abstract or concrete instance or template:
• The subdirectory called “AI” contains components that are abstract instances.
• The subdirectory called “CI” contains components that are concrete instances.
• The subdirectory called “AT” contains components that are abstract templatees.
• The subdirectory called “CT” contains components that are concrete templatees.

• Within the component-kind directory, a component file resides in a subdirectory whose name
is that of a component family, i.e., a set of logically related components. For example, for a
component defining a new programming type for complex number objects, this subdirectory
name probably would be “Complex”. All the components in the directory would deal with
such objects and their class names would begin with the prefix Complex_.

• Within the component-family directory, an individual component file has a name that is the
remainder of the class name (i.e., whatever comes after the component family name and the
underscore separator) and a “.h” extension. For example, the abstract instance that defines a
programming type for complex number objects along with the most important operations for
such objects probably would be called Complex_Kernel. As an abstract instance, it would be
in the component file AI/Complex/Kernel.h. One possible concrete instance that implements
Complex_Kernel might be called Complex_Kernel_1 (for implementation #1 of
Complex_Kernel). If so, it would be in the component file CI/Complex/Kernel_1.h.

1.2 Example: Monte Carlo Estimation of π
Let’s look at an example of how you can use an off-the-shelf component to solve an application
problem.
Among the many interesting ways to estimate things is to take a random sample. For instance,
suppose you want predict what fraction of votes will be cast for candidate X in an election. You
don’t want to ask everyone how he/she will vote because that would be much too expensive. An
appropriate approach is to conduct an “opinion poll”, i.e., to select a small (but not too small)
random sample of potential voters, and to use the fraction of the sample respondents who plan to
vote for candidate X as an estimate of the fraction of all voters who plan to vote for candidate X.
The same idea can be used to estimate other things, e.g., the value of π. Figure 1-2 illustrates
this. Suppose you generate random points within a unit square. Then the fraction of those points
that fall within the quarter circle Q can be used to compute an estimate for π. How? The
expected number of points that fall within the unit square that also fall within some region inside

CHAPTER 1 — ABSTRACT AND CONCRETE INSTANCES 5

it is equal to the area of that inner region (divided by the area of the unit square, which is 1). For
example, half the points are expected to lie in the top half of the unit square, half are expected to
lie in the left half of the unit square, and so on.

Figure 1-2: Estimating π
How many points are expected to lie within Q? The area of Q is π/4, so π/4 is the expected
fraction of points in the unit square that are also in Q. This leads to the conclusion that if you
observe that a fraction f of random points lying in the unit square also lie in Q, then 4f is a
reasonable guess2 for the value of π. This is known as a Monte Carlo estimate because it is a lot
like gambling; only here, you rely on randomness to work for you.
The user’s manual for an application program that uses this method might be:

Run the program by typing the command “Monte_Carlo”. The program asks for a
positive integer which is the number of points to use for a Monte Carlo estimate
of π, then reports the resulting estimate of π, and then quits.

There are many ways to estimate π, nearly any of which is a lot more efficient and effective than
this one, if not as much fun. If the end user really just wants you to report an approximate value
for π then there is no reason to prescribe that it should be done this way. Nonetheless, the Monte
Carlo approach is worth knowing (for other applications), and the need for and use of random
numbers are the key features this example is intended to illustrate. Estimating π is just a
particularly simple use of Monte Carlo techniques.
Faced with designing this program, you would no doubt quickly come to wonder whether there is
already a way to generate random numbers. Certainly someone must have encountered this
problem before, and perhaps you can make use of their solution. What you are looking for is a
previous solution that has been captured as a unit, with two separate descriptions:
• an abstract description of behavior that you can consult as a client programmer; and
• a concrete description that you can include in your Resolve/C++ program so the computer

can execute the operations you invoke.
Fortunately, there are indeed off-the-shelf software components to make this application program
fairly straightforward. The program that follows illustrates this. Highlighted code is discussed
in the text.

2 How reasonable the estimate is depends on how many points you use. Careful treatment of this

question is beyond the scope of the current discussion.

0
0 1

1

Q

6 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

// /*--*\
// | Main Program: Monte Carlo estimate of pi
// |*--*|
// | Date: 14 August 1996 (revised 24 November 2006)
// | Author: Bruce W. Weide
// |
// | Brief User's Manual:
// | Asks for a positive integer, which is the number of
// | points to use for a Monte Carlo estimate of pi, then
// | reports the resulting estimate of pi, and then quits.
// |
// *--*/

///---
/// Global Context ---
///---

#include "RESOLVE_Foundation.h"

#include "CI/Random/Uniform_Generator_1.h"

///---
/// Interface --
///---

program_body main ()
{
 object Character_IStream input;
 object Character_OStream output;
 object Random_Uniform_Generator_1 rn;
 object Integer n, pts_in_U, pts_in_Q;
 object Real pi_estimate;

 // Open input and output streams

 input.Open_External ("");
 output.Open_External ("");

 // Ask user for number of points

 output << "Number of points: ";
 input >> n;

 // Create counts for estimate

 while (pts_in_U < n)
 /*!
 preserves n
 alters rn, pts_in_U, pts_in_Q
 maintains
 0 <= pts_in_Q <= pts_in_U <= n and
 pts_in_Q = [number of points that have been
 in the quarter-circle] and
 pts_in_U = [number of points that have been
 in the unit square]
 decreases

CHAPTER 1 — ABSTRACT AND CONCRETE INSTANCES 7

 n - pts_in_U
 !*/
 {
 object Real x, y;

 // Generate a random point in the unit square U

 rn.Generate_Next ();
 x = rn.Uniform_Real (0.0, 1.0);
 rn.Generate_Next ();
 y = rn.Uniform_Real (0.0, 1.0);
 pts_in_U++;

 // Check if point is also in the quarter circle Q

 if (x * x + y * y < 1.0)
 {
 pts_in_Q++;
 }
 }

 // Estimate pi

 pi_estimate = 4.0 * To_Real (pts_in_Q) / To_Real (n);
 output << "pi is about equal to " << pi_estimate << "\n";

 // Close input and output streams

 input.Close_External ();
 output.Close_External ();
}

Figure 1-3: Monte_Carlo.cpp
This program introduces no substantial new features of the Resolve/C++ discipline except how
to make visible, and then how to use, types and operations that are not built-in but rather are
defined by off-the-shelf software components.

1.2.1 Bringing a Concrete Instance Into Scope
The following line:

#include "CI/Random/Uniform_Generator_1.h"

brings into scope the code that implements the operations defined by the concrete instance called
Random_Uniform_Generator_1. As a class name, Random_Uniform_Generator_1 is also the
name of the type defined by this concrete component, so this type name is now in scope.
Furthermore, the names of all the operations provided by this concrete component are in scope.
This means that you may now declare objects of type Random_Uniform_Generator_1 and may
call the operations provided by concrete instance Random_Uniform_Generator_1.
Why do you bring into scope the concrete component, as opposed to the abstract component that
it implements? For human consumption, you could include just the abstract component that
provides the cover story, i.e., the interface contract specification. But you always need to include
the concrete component if you plan to declare objects of the provided type and call provided
operations because the compiler needs this information in order to generate executable program
code.

8 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

In principle, a concrete instance could be stored in a “.cpp” (C++ separately compiled) file,
which could be compiled once into an object code library that is to be linked with your
separately compiled application program. This would save a little compilation time in client
programs that use the component. In practice, however, almost all Resolve/C++ components are
templates rather than instances, and “.h” (C++ header) files are required for templates because
C++ templates are not separately compiled. For uniformity and simplicity, every component
discussed in this book is defined in a “.h” file—whether it is a template or an instance.
When you bring a concrete instance into scope, the abstract instance that contains the interface
contract specification comes along for the ride by transitivity because the concrete component
#includes the abstract component it implements. In fact, by virtue of the Resolve/C++
discipline’s rules for component design and coding, explicitly including a component with
#include automatically brings into scope all the other components—abstract and concrete—on
which it depends either directly or indirectly.

1.2.2 Using the Concrete Instance
How do you use an off-the-shelf component in a client program? There is a simple rule: once
you have brought an off-the-shelf concrete component into scope as described above, you may
use the type and operations exactly as though they were built-in. You may declare objects of the
type provided by the component, and call the operations provided by the component, exactly as
you do with the built-in types and their operations.
To illustrate, Monte_Carlo declares an object rn of type Random_Uniform_Generator_1, and
calls its operations Generate_Next (which generates a new random number held in rn) and
Uniform_Real (which transforms the random number held in rn into a corresponding real
number that lies between this function’s two arguments). If you didn’t know that this type and
these operations were not built-in to Resolve/C++, you could not tell by looking at the code that
uses them. You reason about the behavior of the client program in precisely the same way, too.
Objects of user-defined types are, in every important sense, first-class citizens with the same
status as objects of the built-in types. This property means there is uniformity and consistency of
client code even in very large applications with many user-defined types.

1.3 Anatomy of a Component Family: Random
From a client programmer’s perspective, you are most interested in the abstract instance(es) that
explain each concrete instance used in your program: the interface contract that you need in
order to use a component. This section focuses on the off-the-shelf component
Random_Uniform_Generator_1 used in Monte_Carlo, as an example to illustrate the structure
and meanings of the abstract component(s) that specify the functionality of this concrete
component. Other than its name, there is no need for you as a client programmer to know
anything more than this about the concrete instance that is #included.
The Resolve/C++ discipline advises that you explain the behavior of a possibly complex
concrete instance by dividing the overall abstract description into “bite-sized” abstract instances.
The main abstract instance specifies a new user-defined kernel type, by stating its mathematical
model, along with the standard operations and kernel operations that can be applied to objects
of that type. Other operations called extensions can be added in other abstract instances, the
total behavior being the “sum” or “union” of the behaviors described in these smaller pieces.

CHAPTER 1 — ABSTRACT AND CONCRETE INSTANCES 9

1.3.1 The Kernel Type, Standard Operations, and Kernel Operations
Figure 1-4 shows the entire file contents for the abstract component called Random_Kernel. All
abstract instance files that introduce new kernel types are identical in structure to this one.

// /*---*\
// | Abstract Instance : Random_Kernel
// *---*/

#ifndef AI_RANDOM_KERNEL
#define AI_RANDOM_KERNEL 1

///--
/// Interface ---
///--

abstract_instance
class Random_Kernel
{
public:

 /*!
 math definition LIMIT: integer satisfies restriction
 0 < LIMIT <= MAXIMUM_INTEGER

 math subtype RANDOM_MODEL is integer
 exemplar rn
 constraint
 0 <= rn < LIMIT

 math definition NEXT (
 n: RANDOM_MODEL
): RANDOM_MODEL satisfies restriction
 [successive application of NEXT starting with n
 (i.e., NEXT(n), NEXT(NEXT(n)), and so forth)
 produces a sequence of pseudo-random numbers]
 !*/

 standard_abstract_operations (Random_Kernel);
 /*!
 Random_Kernel is modeled by RANDOM_MODEL
 initialization ensures
 self = 0
 !*/

 procedure Set_Value (
 preserves Integer n
) is_abstract;
 /*!
 ensures
 self = n mod LIMIT
 !*/

 function Integer Value () is_abstract;
 /*!
 ensures
 Value = self

10 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

 !*/

 procedure Generate_Next() is_abstract;
 /*!
 ensures
 self = NEXT (#self)
 !*/

 function Integer Limit () is_abstract;
 /*!
 ensures
 Limit = LIMIT
 !*/

};

#endif // AI_RANDOM_KERNEL

Figure 1-4: AI/Random/Kernel.h
The stylized comment block at the beginning says this file defines an abstract instance whose
name is Random_Kernel. This kind of comment is always the first thing in a Resolve/C++
component. The middle line of the block contains the kind of component, followed by a colon,
followed by the abstract instance name. Having a strict convention about even this aspect of
what the file contains is helpful in two ways:
• It gives a reader of the file some useful overview information in a form that he or she is

familiar with, because all Resolve/C++ components look like this.
• It facilitates building tools that process files containing Resolve/C++ components. (Of

course, the C++ compiler doesn’t care about these comments; we’re talking about other
toolos that might process component files for purposes such as convenient browsing through
a component catalog.)

The two lines that follow the opening comment block (starting with #ifndef and #define), and
the very last line (starting with #endif), are part of a standard “idiom” of C++. One problem
with C++ is that if you include the same file more than once in a single compilation, then you get
errors because the compiler doesn’t like to see the same declarations and definitions more than
once. A single off-the-shelf component might well be included in two or more different and
independent subcomponents of a main program.
To prevent a component from being introduced into your program more than once, you place the
main contents—of each file that might ever be included anywhere—inside a special kind of if-
statement that is a directive to the compiler itself. It introduces a condition to be checked. Only
if that condition holds does the compiler actually include the code between the if-directive and
the corresponding #endif. The if-directive here, #ifndef, asks the compiler to check whether the
global compile-time constant AI_RANDOM_KERNEL is not defined (hence, “ndef”). The name
of this constant is, by convention in Resolve/C++, the kind of component—AI, CI, AT, or CT—
followed by the class name in all upper-case characters; this makes it unique. The first time the
file is included somewhere, this constant is not yet defined, so the compiler includes the rest of
the file through the matching #endif. The directive just after the #ifndef, i.e., #define, defines
the constant (to have the value 1, but this value is immaterial). So, each subsequent time the file
is included during this compilation, the constant AI_RANDOM_KERNEL already has a defined
value, and the compiler ignores everything from #ifndef through the matching #endif. This trick

CHAPTER 1 — ABSTRACT AND CONCRETE INSTANCES 11

makes sure that each included component is (really) included and compiled exactly once, even if
it is (apparently) included in many different places.
The next section of a typical Resolve/C++ file is the global context section, which brings into
scope any other components that this one directly depends on. Here, this section is absent, as it
is for a typical abstract component that describes a kernel type. The abstract instances discussed
later in this section describe additional operations and these always include other components—
the ones they directly depend on—in their global context sections.
By the way, you might be wondering why RESOLVE_Foundation.h is not included here. You
could include it without causing any trouble because it is protected against multiple inclusion by
the above C++ idiom. But including it is not necessary because a “.h” file is not intended to be
compiled separately. You really only need to include RESOLVE_Foundation.h in a program
that can be compiled—e.g., in Monte_Carlo.cpp from Figure 1-3. The simple rule is to include
RESOLVE_Foundation.h in all “.cpp” files, but nowhere else.
Next comes the interface section, which contains the declaration of abstract_instance3 class
Random_Kernel. By convention for an abstract component that introduces a kernel type and its
kernel operations, the class name ends in _Kernel.
Inside the block that follows is the keyword public, which indicates that the declarations that
follow are part of the publicly-accessible interface of the class. In other words, any client of this
class is permitted to use the mathematical and programming entities declared after public. The
first of these entities are the mathematical definitions used to specify the interface contract of the
programming type and operations. Here the mathematics part makes three declarations:
• Math definition LIMIT is a mathematical integer constant whose value is supplied by the

particular concrete instance chosen to implement this abstract instance. As a client of
Random_Kernel, all you know about LIMIT is that it satisfies the restriction that LIMIT is
positive and no larger than the maximum integer representable on this computer. Note that
the latter restriction is important because LIMIT is a mathematical integer, not a
programming Integer, and hence could otherwise be arbitrarily large because mathematical
integers know no bounds.

• Math subtype RANDOM_MODEL is a mathematical integer between 0 and LIMIT.
• Math definition NEXT is a mathematical function from the domain RANDOM_MODEL to

the range RANDOM_MODEL that captures how a particular implementation of
Random_Kernel generates pseudo-random numbers. Pseudo-random numbers are series of
numbers that seem to be random, in the sense that they pass certain statistical tests of
randomness, even though they are generated by a deterministic and hence reproduceable
algorithmic process. It is beyond the scope of this book to describe in a formal way an
interface contract for this component. The key point is that a client of Random_Kernel needs
to know only that NEXT describes this process and the properties those numbers will have,
not the details of exactly what the series of numbers will be.

Next is a declaration that the new kernel type, like all Resolve/C++ types, has the standard
operations:4

3 In C/C++ programs, you would use no keyword at all in place of the Resolve/C++ keyword

abstract_instance.

12 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

• A constructor, which is an operation that is called automatically for each object of this

type—without the client having to write an explicit call—when execution reaches the point
where that object is declared. The purpose of the constructor is to create the representation
of the object and to give it an initial value (in this example, 0). As a client, you don’t need to
know anything about the constructor except the initial value it gives each newly declared
object of the type, which is specified in the formal comment that follows standard_-
abstract_operations.

• A destructor, which is an operation that is called automatically for each object of this type—
without the client writing an explicit call—when execution leaves the block in which that
object is declared. The purpose of the destructor operation is to “destroy” (a better
description would be “reclaim”) the representation of the object. What does this mean? As a
client programmer, you have no need to know this. You do not explicitly call the destructor
anyway, and in general the details of what it does, and how, are of interest only to
implementers.

• A swap operation, which exchanges the values of any two objects of this type using the
operator &=.

• A Clear operation that resets the receiver object’s value to an initial value for this type.
The formal comment that follows says that this new kernel type is modeled by the mathematical
subtype RANDOM_MODEL as defined above, and that every new object of this type has the
initial value 0 when the object is declared.
Notice a very important point: the name of the type described here is the name of the class. This
is potentially confusing but, alas, it is something you have to learn to live with when using C++
and other object-oriented languages.
Next is the header declaration for a procedure operation, Set_Value, introduced with the keyword
procedure.5 At the end of the procedure declaration and before the formal comment containing
its specification is the keyword is_abstract.6 This appears in the declaration of every operation
in an abstract instance or an abstract template. It tells the compiler that there is no body for the
procedure in this abstract component; the body will appear in some concrete component that
implements this abstract component.

4 The standard_abstract_operations declaration replaces what you would otherwise write in C/C++

at this point: individual declarations of the constructor, destructor, and (if you designed the class to
have them) swap operator and Clear operation. It also inhibits the creation of two operations that
C++ would otherwise give you by default: assignment (operator =) and copy constructor. You could
do the same thing in C/C++ by declaring the assignment operator and copy constructor to be private.
This means that if you try to assign something to an object of the new type, or try to pass an object of
the new type as the actual parameter where the associated formal parameter is declared without an
“&”, the compiler will report an error. The default versions of assignment and copy constructor as
created by C++ generally would result in incorrect behavior, so it is helpful that the C++ compiler can
be made to detect these violations of the Resolve/C++ discipline.

5 In C/C++ programs, you would use the keywords virtual void to introduce a method returning no
value, in place of the Resolve/C++ keyword procedure.

6 In C/C++ programs, you would use “= 0” in place of the Resolve/C++ keyword is_abstract.

CHAPTER 1 — ABSTRACT AND CONCRETE INSTANCES 13

Another interesting thing here is self in the ensures clause. Recall that the way you invoke an
operation that is associated with a type (also known in object-oriented programming parlance as
a method) is by saying something like this:

rand.Set_Value (k);

Here, k must be an object of type Integer, and rand must be an object of a type that implements
Random_Kernel, in order for the compiler to consider the call to be valid. By way of contrast, if
Set_Value were a global operation then you would invoke it like this:

Set_Value (rand, k);

In this situation, two formal parameters would be declared in the header of Set_Value so there
would be two names to use in the ensures clause. But with Set_Value being a method for type
Random_Kernel rather than a global operation, there is only one formal parameter and therefore
only one name to use in the ensures clause. In either case, the formal parameter to which k is
bound at the time of the call has a name: n. But what is rand bound to in the interface contract
specification? For this—the implicit name of the formal parameter to which the receiver object
is bound—we use self. What is the mode of self? By default, for any procedure operation, self is
an alters-mode parameter; for any function operation, self is a preserves-mode parameter.
LIMIT is the number of different values that an object of type of Random_Kernel might have; see
the math subtype RANDOM_MODEL. Suppose LIMIT = 19—which is a horribly small value
for a useful random-number generator, but it is technically possible to have a concrete
component that implements Random_Kernel and stipulates that LIMIT = 19. Then a tracing
table for the statement above might look like this:

Statement Object Values

 rand = 13

k = 27

rand.Set_Value (k);

 rand = 8

k = 27

The interface contract specification says that, upon return from Set_Value, we know that self = n
mod LIMIT. It also says that n is preserved. The parameter binding for this call matches rand
with self and k with n. Therefore, we must see the result shown above: rand = 27 mod 19 = 8.
So, suppose you use a concrete component that provides a type whose behavior can be explained
using the abstract instance Random_Kernel. Then any object of that type is considered a unit
whose state space is modeled as a RANDOM_MODEL, and whose associated operations include
the standard operations as well as the kernel operations specified in Random_Kernel.

1.3.2 The Extends Relation (Abstract-to-Abstract)
In addition to a new kernel type and its standard and kernel operations, some clients might want
additional operations that are not essential but rather are merely useful. Figure 1-5 shows an
example. The declaration of Random_Uniform begins:

abstract_instance
class Random_Uniform :
 extends
 abstract_instance Random_Kernel
...

14 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

which states the dependence relationship between the new class Random_Uniform and the
existing class Random_Kernel, namely, Random_Uniform extends Random_Kernel.

// /*---*\
// | Abstract Instance : Random_Uniform
// *---*/

#ifndef AI_RANDOM_UNIFORM
#define AI_RANDOM_UNIFORM 1

///--
/// Global Context --
///--

#include "AI/Random/Kernel.h"

///--
/// Interface ---
///--

abstract_instance
class Random_Uniform :
 extends
 abstract_instance Random_Kernel
{
public:

 function Real Uniform_Real (
 preserves Real a,
 preserves Real b
) is_abstract;
 /*!
 ensures
 Uniform_Real = a + (b - a) * TO_REAL(self) / TO_REAL(LIMIT)
 !*/

 function Integer Uniform_Integer (
 preserves Integer j,
 preserves Integer k
) is_abstract;
 /*!
 ensures
 Uniform_Integer = j + TO_INTEGER (TO_REAL((k - j + 1) *
 TO_REAL(self) / TO_REAL(LIMIT)))
 !*/

};

#endif // AI_RANDOM_UNIFORM

Figure 1-5: AI/Random/Uniform.h

CHAPTER 1 — ABSTRACT AND CONCRETE INSTANCES 15

The meaning of the keyword extends7 here (where it relates two abstract components) is that any
concrete component that claims to implement Random_Uniform must implement the interface
contract specified in Random_Kernel, and in addition it must implement the extra interface
contracts for the new operations specified in Random_Uniform. Phrased another way, the
behavior of any concrete component that can be explained using Random_Uniform can be
(partially) explained using Random_Kernel; Random_Uniform itself contains only the
explanations of two extra operations called Uniform_Real and Uniform_Integer. This style of
organizing interface contract specifications is known as specification by difference, or
incremental specification. Rather than putting all operation specifications in one place, you
separate them into logically cohesive pieces and “assemble” them in mix-and-match fashion.
Figure 1-6 shows how to depict in a component coupling diagram, or CCD, the fact that the
extends relation holds between these two abstract instances. Recall that the only relations
captured in CCDs in Volume 1 were uses and implements. This is a new relation.

Figure 1-6: The extends relation may hold between two abstract instances

The same approach can be used to extend any abstract description with any other, so long as the
functionalities being added together do not conflict. This is always the case if you follow the
Resolve/C++ discipline, although it is not the case if you aren’t careful. For example, C++ will
let you extend abstract instance Random_Kernel by adding an operation called Set_Value with a
single Integer parameter and almost the same specification as above, except that the ensures
clause is different. Using the rules of C++, the new definition would override, or replace, the
original one rather than adding a new operation. There is no reason to do this when extending a
component using the Resolve/C++ discipline, and you must avoid it.

1.3.3 Using a Concrete Component
As a client of the off-the-shelf concrete component used in the Monte_Carlo program, all you
need to know about it is summarized in the CCD in Figure 1-7. The name of the concrete
instance is Random_Uniform_Generator_1, and it implements Random_Uniform and hence also
Random_Kernel. The interface contract specifications in the latter two components explain how
Random_Uniform_Generator_1 objects will behave in the client program: the possible values
those objects can have and the operations that you can call on them. That’s it. As a client, you
do not need to see the code for Random_Uniform_Generator_1.

7 In C/C++ programs, you would use the keywords virtual public in place of the Resolve/C++

keyword extends.

Random_
Kernel

Random_
Uniform extends

16 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Figure 1-7: The implements relation may hold between a concrete and abstract instance

1.4 Summary
There are four kinds of Resolve/C++ software components, each of which is a class in C++:
abstract and concrete instances, and abstract and concrete templates. An abstract instance
defines an interface contract specification, while a concrete instance comprises code that
implements such a contract. (Templates, which are effectively generators for entire families of
instances, are explained in Chapters 2 and 3.)
A kernel abstract instance acts as a centerpiece for a family of related components. It defines the
mathematical model of a new user-defined kernel type—which automatically has the standard
operations: constructor, destructor, swap (operator &=), and Clear—along with the interface
contracts of its kernel operations, or methods. The latter are operations that together are deemed
by the designer to be both necessary and sufficient to perform all useful manipulations of objects
of the new type. Other abstract instances can then be added incrementally to specify interface
contracts for more operations (methods). These abstract instances are said to extend the kernel
abstract instance.
Generally, a kernel abstract instance is self-sufficient, in the sense that it has no dependencies on
other components. An abstract instance that specifies an extension, of course, depends (at least)
on the abstract instance it extends. This dependency is recorded in the code in two places: in a
#include statement that brings the other component into scope so it is visible to the compiler,
and in an abstract_instance class declaration using the keyword extends to indicate the explicit
dependence relation between the new component and the kernel abstract instance. A component
coupling diagram (CCD) depicts this relationship schematically to ease human understanding.
A client program that needs to use some implementation of an abstract instance must bring into
scope the particular concrete instance it wishes to use, not just the abstract instance that explains
its behavior for humans. This allows the compiler to generate executable code for the client
program. However, all the client programmer needs to know in order to do this is the location in
the file system of the appropriate concrete instance; there is no reason to look at the Resolve/C++
code of that instance. The component’s location is determined by a set of Resolve/C++
conventions: it is in a component catalog directory, then down in a component-kind directory (in
this case, “CI” since the component is a concrete instance), then down in a component family
directory (determined by the kernel abstract instance that the concrete instance implements), and
finally in the file in that directory that contains the concrete instance code itself. General-
purpose Resolve/C++ components are located in the Resolve/C++ Catalog—a default starting
point as the compiler searches for components—so #include statements in application programs

Random_
Kernel

Random_
Uniform extends

Random_
Uniform_

Generator_1

implements

CHAPTER 1 — ABSTRACT AND CONCRETE INSTANCES 17

do not include long absolute paths but rather relative paths from this fixed location. Again, a
CCD concisely depicts the fact that a concrete instance implements a particular abstract instance
(and, if that abstract instance specifies an extension, the kernel abstract instance that it extends).
All other components that a concrete instance depends on are automatically brought into scope
by transitivity, making component inclusion in a client program easy to manage.
In a client program that uses a typical concrete instance, the name of that concrete instance (a
class in C++) is also the name of a type. As a client programmer, you may declare objects of
that type and may invoke on them any operations in the abstract instance(s) that are
implemented—subject, of course, to the interface contracts specified for those operations. Once
a concrete instance is brought into scope with its #include statement, the new type is available to
be used just like any built-in type of Resolve/C++.

18 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

2 Abstract and Concrete Templates: Generalization
Most existing software has been designed with software components that are, in the
Resolve/C++ taxonomy, abstract or concrete instances. Yet there are significant advantages to
designing software components that are abstract and concrete templates. Templates serve two
distinct purposes:
• to generalize components that otherwise would be too special-purpose for widespread use in

different application programs; and
• to decouple dependencies between components.
This chapter and the next build upon Chapter 1 by showing you how to use these two slightly
more advanced but very powerful software component engineering techniques. Consider, for
example, the built-in type Text. A Text object is modeled by a mathematical string of characters.
With the kernel operations, you can add, remove, or access a character by its position in the
string, and you can get the length of the string. But what’s so special about characters? Why
can’t you have objects modeled by strings of, say, booleans or integers or reals or anything else,
and do Text-like operations on those objects? You can—and luckily, it’s easy. This chapter
shows you how to do it.

2.1 Parameterized Software Components
Mathematical string theory is a generic, or parameterized, theory: “stringness” is independent of
what kind of entries are in a string. Some other mathematical theories are similar. You can have
a mathematical set of any type of entry, a mathematical function from any type to any type,
tuples of any types, and so on. Objects whose values are modeled as, say, mathematical strings
of booleans are perfectly reasonable. How would you define a new programming object type
with this model? Following the approach in Chapter 1, you would define a new abstract instance
providing a type called, say, Sequence_Of_Boolean whose model would be a string of booleans,
with essentially the same kernel operations as Text. Here’s how you might specify it:

abstract_instance
class Sequence_Of_Boolean
{
public:

 standard_abstract_operations (Sequence_Of_Boolean);
 /*!
 Sequence_Of_Boolean is modeled by string of boolean
 initialization ensures
 self = empty_string
 !*/

 ...

 procedure Remove (
 preserves Integer pos,
 produces Boolean& x
) is_abstract;
 /*!
 requires
 0 <= pos < |self|
 ensures

20 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

 there exists a, b: string of boolean
 (|a| = pos and
 #self = a * <x> * b and
 self = a * b)
 !*/

 ...
};

You could specify the other operations in a similar way, by copying the interface contract
specifications almost directly from the operations of Text.
Then you could do the same thing for a new abstract instance defining a type called, say,
Sequence_Of_Integer whose model would be a string of integers. Sequence_Of_Integer would
have the same kernel operations as Sequence_Of_Boolean except that the entries in an object’s
string model would be of type Integer.
Now if you’re paying attention, you’ll see it would be silly to key in Sequence_Of_Integer from
scratch. Instead, you’d just copy the file for Sequence_Of_Boolean and replace all occurrences
of “Boolean” by “Integer” using a text editor. The places to change are double-underlined below
(shown after the substitutions have been made):

abstract_instance
class Sequence_Of_Integer
{
public:

 standard_abstract_operations (Sequence_Of_Integer);
 /*!
 Sequence_Of_Integer is modeled by string of integer
 initialization ensures
 self = empty_string
 !*/

 ...

 procedure Remove (
 preserves Integer pos,
 produces Integer& x
) is_abstract;
 /*!
 requires
 0 <= pos < |self|
 ensures
 there exists a, b: string of integer
 (|a| = pos and
 #self = a * <x> * b and
 self = a * b)
 !*/

 ...
};

Copying and pasting code like this is generally bad, for three reasons:
• It is tedious.

CHAPTER 2 — ABSTRACT AND CONCRETE TEMPLATES: GENERALIZATION 21

• It is easy to make a mistake with the editor and accidentally mess up parts of the code that
you didn’t intend to change—even parts that you didn’t think you touched. Taking a text
editor to code is a lot like taking a blowtorch to a steel I-beam: once you’ve modified it, all
the good properties you’ve established about it (e.g., the correctness of the code or the
strength of the I-beam) are suddenly in doubt and have to be established again.

• Even if you do the modifications correctly, the result is that you have multiple copies of
essentially the same code. If you need to change the common code later for any reason, you
have to make these changes in multiple places. Software engineers know from experience
that it is far better to have a single point of control over change, a single place where each
non-trivial piece of code resides. This way, if you have to change it, you know the change
needs to occur only there. In fact, if there is only one fundamental principle of software
engineering that you must know, this is the one!

Fortunately, you don’t have to do all this manual copying and pasting. Software components can
have the same flexibility as mathematical theories in the sense of being parameterized. A
parameterized software component is called a template. By using a template instead of an editor
to generalize from Text to Sequence, you avoid the three problems noted above.

2.1.1 Resolve/C++ Language Support for Templates
In Resolve/C++, you declare one formal (template) parameter for each different type name that
needs to be replaced; hence the term “parameterized component”. This formal parameter is
analogous to a formal parameter to an operation. That is, a formal parameter is an arbitrary
name that serves as a placeholder for information to be filled in later. The main differences
between operation parameters and template parameters are summarized in Figure 2-1.

 Parameter to an
operation

Parameter to a
template

What the formal parameter stands for A value of the
(fixed) type of the
parameter

A type

When the actual parameter value is supplied Execution time Compile time

Figure 2-1: Operation parameters vs. template parameters
In Resolve/C++ syntax, here’s how you might use a template parameter to write an abstract
template that serves as an interface contract specification for the generalized Sequence_Kernel
(Section 2.3 gives the details):

abstract_template <
 concrete_instance class Item
 >
class Sequence_Kernel
{
public:

 standard_abstract_operations (Sequence_Kernel);
 /*!
 Sequence_Kernel is modeled by string of Item
 initialization ensures
 self = empty_string

22 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

 !*/

 ...

 procedure Remove (
 preserves Integer pos,
 produces Item& x
) is_abstract;
 /*!
 requires
 0 <= pos < |self|
 ensures
 there exists a, b: string of Item
 (|a| = pos and
 #self = a * <x> * b and
 self = a * b)
 !*/

 ...
};

The list of formal template parameters appears within angle-bracket delimiters <...> wedged
between the keywords abstract_template and class. In this, case there is only one formal
parameter, declared here as concrete_instance class Item, which denotes the type of the entries
in the objects being specified. Other template components might have multiple template
parameters.

2.1.2 Collection Components
In the Sequence family of components, we parameterize each component by the type of entries in
the string to generalize code that otherwise would be far more special-purpose. This use of
templates is therefore called generalization. By far the most common scenario of this kind arises
when designing components whose mathematical models involve parameterized mathematical
theories such as those mentioned at the beginning of this chapter: strings, sets, functions, and
tuples. Such components usually are called collection components because objects of their types
are collections of objects of some other type(s), which is/are the template parameter(s).
The appendices document several families of collection components. Among these are the List,
Queue, Sequence, and Stack families (whose models involve mathematical strings); the Array,
Partial_Map, Set, and Static_Array families (whose models involve mathematical sets); and the
Binary_Tree family (whose model involves mathematical trees).

2.1.3 Template Instantiation
Suppose you are a client programmer writing an application program and you want the formal
parameter Item in Sequence_Kernel to be replaced by, say, Boolean, creating an instance
Sequence_Of_Boolean that is logically identical to the first piece of code in Section 2.1. When
you ask the compiler to instantiate the template by providing this actual template parameter to
bind to the formal template parameter, the C++ compiler automatically replaces all occurrences
of Item by Boolean and treats the resulting code as an abstract instance. Instantiation is
tantamount to “filling in the blanks” in a form. The compiler already knows how to compile the
resulting abstract instance, and the net effect is exactly the same as if the original abstract
instance Sequence_Of_Boolean had been used.

CHAPTER 2 — ABSTRACT AND CONCRETE TEMPLATES: GENERALIZATION 23

As a client programmer, however, you never explicitly instantiate an abstract template. The
reason is that an application program needs to use concrete instances (which contain code that
can be executed), not abstract instances (which contain interface contract specifications for code
that can be executed). Parameterized concrete components—concrete templates—are entirely
parallel to abstract templates in structure and purpose. The difference is that they are concrete,
i.e., they consist of code that describes not what behavior is available but how that behavior is
achieved. Once instantiated, this code can be compiled and executed. As with concrete
instances for kernel components, a client programmer need not see any of the code in the
concrete templates for kernel components being used, but rather only the abstract templates that
specify their interface contracts. The next section illustrates how to develop an application
program that uses a concrete template.

2.2 Example: Polynomial Evaluation
A problem that arises in numerical software is evaluation of a polynomial. For instance, suppose
you have a polynomial:

p(x) = anxn + an–1xn–1 + ... + a1x + a0
that you need to evaluate at a point x. How can you do this? The obvious method is to
repeatedly multiply x by itself to compute xn and multiply that by an to give the first term; then to
compute xn–1 and multiply it by an–1 to give the second term, and add it to the first term; and so
on.
Horner’s rule is a more efficient way to compute the same thing. If you rewrite the polynomial
as follows, this alternative computation almost pops out at you:

p(x) = (...((anx + an–1)x + an–2)x + ... + a1)x + a0
That is, start with an; multiply it by x and add an–1; then multiply that by x and add an–2; and so
on. With a little thought you can deduce that the original approach to the computation uses about
n2/2 multiplications and n additions, where Horner’s rule uses only n multiplications and n
additions. The problem we wish to explore is how much execution speed difference there is
between these two methods, and also between a recursive and an iterative implementation of
Horner’s rule.
The user’s manual for an application program to answer these questions might be:

Run the program by typing the command “Poly_Eval”. It reads from stdin a non-
negative integer which is the degree of the polynomial to be evaluated (i.e., n),
followed by the n+1 real-valued coefficients in the order a0 through an, followed
by the real-valued point at which the polynomial is to be evaluated (i.e., x). Each
number is on its own line of input. The program then prints out the polynomial
followed by the evaluation of the polynomial at the point x and the execution
time, for the obvious method and for Horner’s rule (both iterative and recursive),
and then quits.

The program that follows illustrates a solution, along with many other things.
// /*--*\
// | Main Program: Polynomial evaluation timing comparison
// |*--*|
// | Date: 9 August 1999 (revised 24 November 2006)
// | Author: Bruce W. Weide
// |
// | Brief User's Manual:

24 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

// | Reads from stdin a non-negative integer which is the
// | degree of the polynomial to be evaluated (i.e., n),
// | followed by the n+1 real-valued coefficients in the
// | order a0 through an, followed by the real-valued point
// | at which the polynomial is to be evaluated (i.e., x).
// | Each number is expected to be on its own line of input.
// | The program then prints out the polynomial followed by
// | the evaluation of the polynomial at the point x and the
// | execution time, for the obvious method and for Horner's
// | rule (both iterative and recursive), and then quits.
// |
// *--*/

///---
/// Global Context ---
///---

#include "RESOLVE_Foundation.h"

#include "CT/Sequence/Kernel_1a_C.h"
#include "CI/Timer/1.h"

//--

concrete_instance
class Polynomial_Coefficients :
 instantiates
 Sequence_Kernel_1a_C <Real>
{};

///---
/// Interface --
///---

/*!
 math definition INPUT_ENCODING (
 s: string of real
): string of character satisfies
 if s = empty_string
 then INPUT_ENCODING (s) = empty_string
 else there exists y: real, r: string of real
 (s = <y> * r and
 INPUT_ENCODING (s) = TO_TEXT (y) * "\n" *
 INPUT_ENCODING (r))

 math definition EVAL (
 s: string of real,
 x: real
): real satisfies
 if s = empty_string
 then EVAL (s, x) = 0.0
 else there exists y: real, r: string of real
 (s = <y> * r and
 EVAL (s, x) = x * EVAL (r, x) + y)
!*/

CHAPTER 2 — ABSTRACT AND CONCRETE TEMPLATES: GENERALIZATION 25

//--
//--

global_procedure Read_Polynomial_And_X (
 alters Character_IStream& input,
 produces Polynomial_Coefficients& a,
 produces Real& x
);
/*!
 requires
 input.is_open = TRUE and
 there exists s: string of real, z: real
 (TO_TEXT (|s|) * "\n" * INPUT_ENCODING (s) *
 TO_TEXT (z) * "\n"
 is prefix of input.content)
 ensures
 input.is_open = TRUE and
 input.ext_name = #input.ext_name and
 #input.content = TO_TEXT (|a|) * "\n" *
 INPUT_ENCODING (a) *
 TO_TEXT (x) * "\n" *
 input.content
!*/

//--

global_procedure Write_Polynomial (
 alters Character_OStream& output,
 preserves Polynomial_Coefficients& a
);
/*!
 requires
 output.is_open = TRUE
 ensures
 output.is_open = TRUE and
 output.ext_name = #output.ext_name and
 output.content = #output.content * [display of
 polynomial with coefficients
 that are in a]
!*/

//--

global_function Real Original_Evaluation (
 preserves Polynomial_Coefficients& a,
 preserves Real x
);
/*!
 ensures
 Original_Evaluation = EVAL (a, x)
!*/

//--

global_function Real Horner_Iterative_Evaluation (
 preserves Polynomial_Coefficients& a,
 preserves Real x

26 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

);
/*!
 ensures
 Horner_Iterative_Evaluation = EVAL (a, x)
!*/

//--

global_function Real Horner_Recursive_Evaluation (
 preserves Polynomial_Coefficients& a,
 preserves Real x
);
/*!
 ensures
 Horner_Recursive_Evaluation = EVAL (a, x)
!*/

//--
//--

global_procedure_body Read_Polynomial_And_X (
 alters Character_IStream& input,
 produces Polynomial_Coefficients& a,
 produces Real& x
)
{
 object Integer n, k;

 input >> n;
 a.Clear ();
 while (k <= n)
 {
 object Real coeff;

 input >> coeff;
 a.Add (k, coeff);
 k++;
 }
 input >> x;
}

//--

global_procedure_body Write_Polynomial (
 alters Character_OStream& output,
 preserves Polynomial_Coefficients& a
)
{
 object Integer k;

 output << "p(x) = \n";
 k = a.Length () - 1;
 while (k > 1)
 {
 output << " " << a[k] << " * x^(" << k << ") + \n";
 k--;

CHAPTER 2 — ABSTRACT AND CONCRETE TEMPLATES: GENERALIZATION 27

 }
 if (k == 1)
 {
 output << " " << a[1] << " * x + \n";
 }
 output << " " << a[0] << "\n";
}

//--

global_function_body Real Original_Evaluation (
 preserves Polynomial_Coefficients& a,
 preserves Real x
)
{
 object Real result;
 object Integer k;

 while (k <= a.Length () - 1)
 /*!
 preserves a, x
 alters result, k
 maintains
 there exists s: string of real
 (|s| = k and
 s is prefix of a and
 result = EVAL (s, x))
 decreases
 |a| - k
 !*/
 {
 object Real term = a[k];
 object Integer i;

 // Compute the k-th term = a[k] * x ^ (k)

 while (i < k)
 /*!
 preserves x, k
 alters term, i
 maintains
 i <= k and
 term = #term * x ^ (i)
 decreases
 k - i
 !*/
 {
 term *= x;
 i++;
 }

 // Add this term to total so far

 result += term;
 k++;
 }

28 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

 return result;
}

//--

global_function_body Real Horner_Iterative_Evaluation (
 preserves Polynomial_Coefficients& a,
 preserves Real x
)
{
 object Real result;
 object Integer k = a.Length () - 1;

 while (k >= 0)
 /*!
 preserves a, x
 alters result, k
 maintains
 there exists s: string of real
 (|s| = |a| - (k + 1) and
 s is suffix of a and
 result = EVAL (s, x))
 decreases
 k + 1
 !*/
 {
 result = result * x + a[k];
 k--;
 }

 return result;
}

//--

global_function_body Real Horner_Recursive_Evaluation (
 preserves Polynomial_Coefficients& a,
 preserves Real x
)
{
 object Real result;

 if (a.Length () == 0)
 {
 return 0.0;
 }
 else
 {
 object Real y;

 a.Remove (0, y);
 result = x * Horner_Recursive_Evaluation (a, x) + y;
 a.Add (0, y);
 return result;
 }
}

CHAPTER 2 — ABSTRACT AND CONCRETE TEMPLATES: GENERALIZATION 29

//--
//--

program_body main ()
{
 object Character_IStream input;
 object Character_OStream output;
 object Polynomial_Coefficients a;
 object Real x, evaluation;
 object Integer k, elapsed_time;
 object Timer_1 t;

 // Open input and output streams

 input.Open_External ("");
 output.Open_External ("");

 // Read number of coefficients, coefficients a, and point x

 Read_Polynomial_And_X (input, a, x);

 // Print polynomial, evaluate it, and report timing for each
 // evaluation method

 // ---- Original method ----

 output << "Original method:\n";
 Write_Polynomial (output, a);
 k = 0;
 t.Restart ();
 while (k < 1000)
 {
 evaluation = Original_Evaluation (a, x);
 k++;
 }
 elapsed_time = t.Reading ();
 output << "p(" << x << ") = " << evaluation << "\n"
 << "execution time = " << elapsed_time
 << " usec\n\n";

 // ---- Horner's rule, done iteratively ----

 output << "Horner's rule (iterative):\n";
 Write_Polynomial (output, a);
 k = 0;
 t.Restart ();
 while (k < 1000)
 {
 evaluation = Horner_Iterative_Evaluation (a, x);
 k++;
 }
 elapsed_time = t.Reading ();
 output << "p(" << x << ") = " << evaluation << "\n"
 << "execution time = " << elapsed_time
 << " usec\n\n";

30 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

 // ---- Horner's rule, done recursively ----

 output << "Horner's rule (recursive):\n";
 Write_Polynomial (output, a);
 k = 0;
 t.Restart ();
 while (k < 1000)
 {
 evaluation = Horner_Recursive_Evaluation (a, x);
 k++;
 }
 elapsed_time = t.Reading ();
 output << "p(" << x << ") = " << evaluation << "\n"
 << "execution time = " << elapsed_time
 << " usec\n\n";

 // Close input and output streams

 input.Close_External ();
 output.Close_External ();
}

Figure 2-2: Poly_Eval.cpp
This program introduces only one substantially new feature of Resolve/C++: the use of a
concrete template, Sequence_Kernel_1a_C. Like the abstract template it implements, a concrete
template has formal parameters that must be bound to actual parameters in a client program uses
it. There can be many alternative concrete templates that might implement a given abstract
template. After deciding which of these concrete templates to use in a given situation—a choice
that depends on matching the performance (time and space) characteristics of the candidate
implementations with the application’s performance requirements—the client programmer needs
to do two things in order to use the selected concrete template:
• Bring the desired concrete template into scope in the application program.
• Instantiate it to create a concrete instance.

2.2.1 Bringing a Concrete Template Into Scope
Let’s continue with the Poly_Eval example to see exactly how this works. The appendix for the
Sequence family lists just one implementation of Sequence_Kernel, which is called
Sequence_Kernel_1a_C; so there isn’t much choice here.1 The appendix explains:

To bring this component into scope you write:
#include "CT/Sequence/Kernel_1a_C.h"

Hence, you see this exact statement in the global context section near the beginning of Figure
2-2.

1 In fact, there are other implementations of Sequence_Kernel in the Resolve/C++ Catalog, but we
ignore them here and in the appendix in order to concentrate on how to use a chosen concrete
template.

CHAPTER 2 — ABSTRACT AND CONCRETE TEMPLATES: GENERALIZATION 31

The other component brought into scope at this point in the code is a Timer component (a
concrete instance) that lets you time the execution of any code fragment. Its use is illustrated by
this program but is not further discussed here.
The name “CT/Sequence/Kernel_1a_C.h” derives from the following features, as introduced in
Chapter 1:
• “CT/” means this component is a concrete template;
• “Sequence/” means it is in the Sequence component family;
• “Kernel_1a_C” means it is implementation “1a_C” of Sequence_Kernel (remember there

might be others, and they have different names).
• “.h” means the C++ code is not compiled in advance, but rather will be compiled with the

application program that is including it.
As with a concrete instance, bringing a concrete template into scope automatically brings into
scope the abstract template (in this case, Sequence_Kernel) that specifies the interface contract it
implements.

2.2.2 Instantiating the Concrete Template to Create a Concrete Instance
After a concrete template component is in scope, you need to instantiate it in order to use it. This
step is the only extra one required when using templates as opposed to instances, and fortunately
it is pretty easy. The simple declaration that instantiates Sequence_Kernel_1a_C in
Poly_Eval.cpp comes immediately after all the components to be used are brought into scope. It
uses the keywords concrete_instance class and instantiates2 as follows:

concrete_instance
class Polynomial_Coefficients :
 instantiates
 Sequence_Kernel_1a_C <Real>
{};

In Poly_Eval.cpp, the application programmer has decided that (mathematically speaking) the
coefficients of a polynomial can be treated as a string of real numbers. He/she has consulted the
interface contract specification Sequence_Kernel and has noted that the mathematical model of a
Sequence_Kernel_1a_C object is a string, the type of entries in the string being determined by a
single template parameter. Therefore, it is appropriate to bind the formal parameter Item of
Sequence_Kernel_1a_C to the type Real. The resulting concrete instance is named something
that suggests its intended use in this application program: Polynomial_Coefficients. You don’t
have to name an instance of Sequence_Kernel_1a_C something general like Sequence_Of_Real.

2.2.3 Using the Resulting Concrete Instance
Once an application program instantiates the concrete templates it needs, it uses the resulting
concrete instances just as though they were concrete instances from a component catalog, i.e.,
just as though they were built-in types. Poly_Eval.cpp involves no other new features of
Resolve/C++. Nonetheless, it is worth studying to see how it uses previously-discussed features.

2 In C/C++ programs, you would use the keywords class and virtual public in place of the

Resolve/C++ keywords concrete_instance class and instantiates, respectively.

32 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

For example, the interface section begins with a mathematical definition that is used (in the
specification of Read_Polynomial_And_X) to describe precisely the input format for the
program. The other mathematical definition is used (in the specifications of the three polynomial
evaluation operations) to describe precisely what “polynomial evaluation” means. Both these
definitions are inductive.
In contrast to the formal specifications for the input and computation operations, the
specification of the operation Write_Polynomial is partly informal (see the part of the
postcondition inside square-bracket delimiters [...]). It is unambiguous that the output stream
must be open at the time of the call, and that it remains open and attached to the same “sink” as
when the call was made. But the exact format of the output produced is not completely specified
here. In principle, it could be formally specified just as the input format is formally specified.
Poly_Eval.cpp is the first sample program we’ve seen that illustrates how it is possible to specify
the format of inputs and/or outputs. It also is the first to illustrate that the exhortation to use
formal specifications is not meant to be taken as dogma, but as a practical technique for making
your programs more understandable and more maintainable by others (and by you, in the future,
after you’ve forgotten the details). Indeed there are two other places where the commitment to
formality hasn’t been observed here: the loops in the input and output operations don’t have loop
invariants. At least the input loop probably should have this, because the behavior of
Read_Polynomial_And_X is formally specified.
By the way, we ran this code on one computer with the following input:

13
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
10.0

The program produced the following output:
Original method:
p(x) =
 14.000000 * x^(13) +
 13.000000 * x^(12) +
 12.000000 * x^(11) +
 11.000000 * x^(10) +
 10.000000 * x^(9) +
 9.000000 * x^(8) +
 8.000000 * x^(7) +
 7.000000 * x^(6) +
 6.000000 * x^(5) +
 5.000000 * x^(4) +
 4.000000 * x^(3) +

CHAPTER 2 — ABSTRACT AND CONCRETE TEMPLATES: GENERALIZATION 33

 3.000000 * x^(2) +
 2.000000 * x +
 1.000000
p(10.000000) = 154320987654321.000000
execution time = 350 usec

Horner's rule (iterative):
p(x) =
 14.000000 * x^(13) +
 13.000000 * x^(12) +
 12.000000 * x^(11) +
 11.000000 * x^(10) +
 10.000000 * x^(9) +
 9.000000 * x^(8) +
 8.000000 * x^(7) +
 7.000000 * x^(6) +
 6.000000 * x^(5) +
 5.000000 * x^(4) +
 4.000000 * x^(3) +
 3.000000 * x^(2) +
 2.000000 * x +
 1.000000
p(10.000000) = 154320987654321.000000
execution time = 220 usec

Horner's rule (recursive):
p(x) =
 14.000000 * x^(13) +
 13.000000 * x^(12) +
 12.000000 * x^(11) +
 11.000000 * x^(10) +
 10.000000 * x^(9) +
 9.000000 * x^(8) +
 8.000000 * x^(7) +
 7.000000 * x^(6) +
 6.000000 * x^(5) +
 5.000000 * x^(4) +
 4.000000 * x^(3) +
 3.000000 * x^(2) +
 2.000000 * x +
 1.000000
p(10.000000) = 154320987654321.000000
execution time = 230 usec

Here are a few simple exercises to test your understanding of the code, the problem it addresses,
and this sample test run:
• In the body of Read_Polynomial_And_X, is there really a need to clear object a before

starting the loop? How does the specification of the operation help you decide the answer to
this question?

• In the body of Write_Polynomial, is there really a need for “if (k == 1)” before the output of
the a1x term? How does the specification of the operation help you decide the answer to this
question?

34 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

• Why does the program evaluate the polynomial 1000 times using each method? Is each

reported execution time (given in “usec”, which is supposed to be “µsec”, i.e., microseconds)
the time for one execution of the evaluation operation, or for all 1000 evaluations?

• The times reported include some time for incrementing k and for loop overhead. How would
you determine whether this error is significant, and how would you adjust the times reported
(if necessary)?

• Why does the program output the polynomial before using each evaluation method? (Rather,
why does the requirement for the application state that it should do this?)

• On how many different polynomials would you test the program before you could state
confidently under what conditions Horner’s rule is faster than the obvious method of
evaluation, and by how much? Similarly, what test runs would enable you to assert
confidently whether there is a performance penalty for using the recursive implementation of
Horner’s rule, and if so how much of a penalty?

2.3 Anatomy of a Component Family: Sequence
There is one essential difference between the code for an abstract instance and that for an
abstract template: the latter is parameterized, so there is a list of formal template parameters.
Other than this, the basic structure of a component family is just as explained in Section 1.3.

2.3.1 The Kernel Type, Standard Operations, and Kernel Operations
Figure 2-3 shows the entire file contents for the abstract component called Sequence_Kernel.
Some of this file is so cut-and-dried that all abstract template files that introduce new kernel
types are identical in structure to this one.

// /*--*\
// | Abstract Template : Sequence_Kernel
// *--*/

#ifndef AT_SEQUENCE_KERNEL
#define AT_SEQUENCE_KERNEL 1

///---
/// Interface --
///---

abstract_template <
 concrete_instance class Item
 >
class Sequence_Kernel
{
public:

 standard_abstract_operations (Sequence_Kernel);
 /*!
 Sequence_Kernel is modeled by string of Item
 initialization ensures
 self = empty_string
 !*/

 procedure Add (

CHAPTER 2 — ABSTRACT AND CONCRETE TEMPLATES: GENERALIZATION 35

 preserves Integer pos,
 consumes Item& x
) is_abstract;
 /*!
 requires
 0 <= pos <= |self|
 ensures
 there exists a, b: string of Item
 (|a| = pos and
 #self = a * b and
 self = a * <#x> * b)
 !*/

 procedure Remove (
 preserves Integer pos,
 produces Item& x
) is_abstract;
 /*!
 requires
 0 <= pos < |self|
 ensures
 there exists a, b: string of Item
 (|a| = pos and
 #self = a * <x> * b and
 self = a * b)
 !*/

 function Item& operator [] (
 preserves Integer pos
) is_abstract;
 /*!
 requires
 0 <= pos < |self|
 ensures
 there exists a, b: string of Item
 (|a| = pos and
 #self = a * <self[pos]> * b)
 !*/

 function Integer Length () is_abstract;
 /*!
 ensures
 Length = |self|
 !*/

};

#endif // AT_SEQUENCE_KERNEL

Figure 2-3: AT/Sequence/Kernel.h
The fact that Sequence_Kernel is a template rather than an instance is evident, first, in the
stylized comment at the beginning of this file. The keyword abstract_template3 tells the

3 In C/C++ programs, you would use the keyword template in place of the Resolve/C++ keyword

abstract_template.

36 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

compiler to expect next the angle brackets <...> that surround the list of the formal template
parameters; recall Section 2.1.1. Here, there is one template parameter: a concrete instance class
called Item. A formal parameter name is used only within the template where it is declared. It
has no special status, and may be given any name not already in scope.
As you can readily see, this interface contract specification includes the standard operations and
the other kernel operations, just like the abstract instance Random_Kernel in Chapter 1.

2.3.2 The Extends Relation (Abstract-to-Abstract)
Chapter 1 discusses a second component in the Random family: an abstract instance that adds
interface contract specifications for additional operations to extend Random_Kernel. An
analogous approach applies to templates. Suppose you want to add to Sequence_Kernel an
interface contract for an operation to reverse a sequence. Figure 2-4 shows how to do this.

// /*--*\
// | Abstract Template : Sequence_Reverse
// *--*/

#ifndef AT_SEQUENCE_REVERSE
#define AT_SEQUENCE_REVERSE 1

///---
/// Global Context ---
///---

#include "AT/Sequence/Kernel.h"

///---
/// Interface --
///---

abstract_template <
 concrete_instance class Item
 >
class Sequence_Reverse :
 extends
 abstract_instance Sequence_Kernel <Item>
{
public:

 procedure Reverse () is_abstract;
 /*!
 ensures
 self = reverse (#self)
 !*/

};

#endif // AT_SEQUENCE_REVERSE

Figure 2-4: AT/Sequence/Reverse.h
The formal template parameter of Sequence_Reverse happens to be called Item, as in
Sequence_Kernel. However, these two templates are not connected by this name! The formal

CHAPTER 2 — ABSTRACT AND CONCRETE TEMPLATES: GENERALIZATION 37

parameter names in these two templates could be different from each other. The connection is
made not by the parameter names but rather by this code:

abstract_template <
 concrete_instance class Item
 >
class Sequence_Reverse :
 extends
 abstract_instance Sequence_Kernel <Item>
...

This declaration of Sequence_Reverse means that every instance of the Sequence_Reverse
template extends some (corresponding) instance of the Sequence_Kernel template. In particular,
the abstract instance Sequence_Reverse<Item> extends the abstract instance
Sequence_Kernel<Item>, for any type that a client might choose to provide for Item. For
example, Sequence_Reverse<Integer> extends Sequence_Kernel<Integer>,
Sequence_Reverse<Random_Uniform_1> extends Sequence_Kernel<Random_Uniform_1>, and
so on.
In the postcondition for program operation Reverse, the built-in mathematical function reverse
denotes the string obtained by considering the entries in the string to be in the opposite order.
For example, with strings of integers, the following is true:

reverse (<1, 2, 3>) = <3, 2, 1>

Figure 2-5 shows how to depict in a CCD the fact that the extends relation holds between these
two abstract templates. The difference between this CCD and its counterpart in Chapter 1 is that
the rounded-corner rectangles standing for the two abstract templates have heavy borders. This
is a visual cue used in CCD’s to indicate that components are templates rather than instances.

Figure 2-5: The extends relation may hold between two abstract templates

This CCD raises a second subtle issue. Both Sequence_Kernel and Sequence_Reverse have
template parameters. If a component uses another component that is not built-in, then this
relationship should be shown in the CCD. Why, then, is there nothing in the CCD to indicate
that each of these components uses this other type called Item? Shouldn’t there be another box
in the diagram to stand for Item—because the type a client binds to Item might not be built-in—
along with a uses arrow to it from each of the templates shown above?
No, and here’s why. It is certainly true that the uses relation holds between any template and the
components bound by the client to its template parameter(s). However, the purpose of a CCD is
to show dependencies between components at component design time, i.e., as those components
exist in a component catalog, out of the context of any particular client program in which they
might be used. The bindings of particular values to template parameters arise at instantiation
time, i.e., as components are integrated into a specific client program by template instantiation.
At design time, we know literally nothing about which component Item (in this example) might
be bound to later: it might be any type whatsoever. The template parameter Item therefore
introduces no dependency between Sequence_Kernel or Sequence_Reverse and any other

Sequence_
Kernel

Sequence_
Reverse extends

38 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

component that is known at component design time. So, no box (for Item) or arrow (for uses) is
depicted in the above CCD.
This conclusion is consistent with the intended interpretation of a CCD: in order to understand a
component, you need to understand all—and only—the other components that can be reached
from that component by following arrows out of it in the CCD. To understand Sequence_Kernel,
for example, you don’t need to understand any other component. To understand
Sequence_Reverse, you need to understand Sequence_Kernel. Why? The specification of the
mathematical model for sequence objects is there. The interface contract for the Reverse
operation in Figure 2-4 makes no sense unless you know that self is a string of Items.

2.3.3 Using a Concrete Component
As a client of the off-the-shelf concrete component used in the Poly_Eval program, all you need
to know about it is summarized in the CCD in Figure 2-6. The name of the concrete instance is
Sequence_Kernel_1a_C, and it implements Sequence_Kernel. The interface contract
specification in the latter component explains how Sequence_Kernel_1a_C objects will behave
in the client program: the possible values those objects can have and the operations that you can
call on them. That’s it. As a client, you do not need to see the code for Sequence_Kernel_1a_C.

Figure 2-6: The implements relation may hold between a concrete and abstract template

2.4 Summary
Abstract and concrete templates are parameterized software components that you can instantiate
to create abstract and concrete instances, respectively. One important use of templates is to
generalize component designs. This is typically done with a collection component, i.e., one that
introduces a user-defined type whose mathematical model involves strings, sets, functions,
and/or tuples. In each of these mathematical theories, there is at least one type parameter: the
type of entries for a string or set, the domain and range types for a function, the types of the
fields of a tuple.
Templates in this case address the following problem. Suppose you have a component that
dictates a specific type for a collection’s entries, and you want to make it more general so it
allows the collection’s entries to be any type. If all you have are abstract and concrete instances,
then there is an obvious way to do this: copy and paste code from the instance you have and
make routine replacements in it with a text editor. Unfortunately, copying and pasting code has
severe disadvantages. The most important is the loss of single point of control over change. If

Sequence_
Kernel

Sequence_
Kernel_
1a_C

implements

CHAPTER 2 — ABSTRACT AND CONCRETE TEMPLATES: GENERALIZATION 39

you ever need to change a piece of code that has been copied and pasted, you have to find all the
places where it has been propagated and change it there, too.
The advantage of using templates rather than copy/paste is that the template becomes that single
point of control over change. Instances generated by instantiating the template (i.e., by fixing the
template’s parameters) are not created manually by a software engineer wielding a text editor but
rather by the C++ compiler. Instantiation of a template by a client programmer involves a simple
statement that looks similar to an operation call. However, fixing a template’s parameters
happens at compile-time (not execution-time, as with an operation call) and denotes a textual
substitution that converts the template to an instance. An instance is something that the compiler
already knows how to process.

40 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

3 Abstract and Concrete Templates: Decoupling
In addition to their most obvious use (for generalization), templates can help you design more
elegant and reusable software components in another way. This chapter starts by considering the
problems caused by component-to-component dependence, and considers why concrete-to-
concrete component dependence in particular is a problem—both for human understandability
and for maintainability of software. It then explains how to use templates to avoid concrete-to-
concrete component dependence.

3.1 The Problem of Component Dependence
Component X depends on component Y if you need to know something about Y in order to
understand X. When the code for component X mentions component Y by name, then X directly
depends on Y. Notice that dependence is transitive, i.e., if X depends on Y and Y depends on Z,
then X depends on Z. Every specific dependence relation between components discussed so far,
i.e., extends, implements, and uses, is transitive; but even if a specific dependence relation were
not transitive, the general dependence it introduces would be transitive.
Looking the other direction, if you change Y even slightly then you certainly have to understand
the impact of this change on X, and you might have to change X, too, and then anything that
depends on X. So more dependencies reduce not only the understandability but the
maintainability (ease of change) of software components.

3.1.1 Avoidable Dependence Is Bad
Some dependencies are simply unavoidable. For example, consider the example from Chapter 1
whose CCD is reproduced in Figure 3-1. There is just no way to explain the operation
Uniform_Real (which is in the component Random_Uniform) without talking about the
mathematical model of self (which is in the component Random_Kernel). Of course, you could
try to eliminate the dependence between the two abstract components by combining the
dependent specifications within a single abstract component. But this wouldn’t solve the
problem of limiting what you need to know and understand. It would merely make internal—
and therefore not apparent from a CCD—the inherent dependence of the specification of each
operation on the kernel type’s mathematical model. Since CCDs are intended to show
dependencies, this attempt to mask the problem would be self-defeating.

Figure 3-1: Unavoidable dependence between abstract instances

Figure 3-2 illustrates the kind of situation you really want to avoid: a long dependence chain, or
a long path of arrows in a CCD. Remember, in order to understand a component you need to
understand all the components it depends on, either directly or (by transitivity) indirectly. These
are all the components that are reachable from a component by following arrows out of it in the
CCD. Similarly, if you change a component, you might have to change any or all of the
components from which the changed component is reachable along a dependence chain.

Random_
Kernel

Random_
Uniform extends

42 SOFTWARE COMPONENT ENGINEERING, VOLUME 2

Figure 3-2: A dependence chain

The intuitive objective that you should minimize such dependence chains suggests a general
rule-of-thumb for component design:

Limited Dependence Rule: Design each component so it depends on as few
other components as possible.

Here is an important general consequence of the limited dependence rule that says something
about how to achieve it, i.e., about how to partition information among components:

Least Information Rule: Design each component so it depends only on
components that contain information that is required to understand the new
component.

This design rule is the basis for distinguishing abstract and concrete components: a client
program needs to know only the interface contracts for the components it uses, not the details of
their implementations. In fact, as we will see next, the division of component information into
“what” vs. “how” is arguably the most important idea in component-based software.

3.1.2 Avoidable Concrete-to-Concrete Dependence Is Worse
The ill effects of long dependence chains arise whether the components involved are abstract
components or concrete components. But the effects of dependence chains are more serious
when they involve concrete components because—in the absence of abstract components and the
knowledge of how to take advantage of them—most programmers routinely introduce concrete-
to-concrete dependencies. Without disciplined design, a concrete component depends on another
concrete component, and that depends on yet another concrete component, that on yet another,
and so on: you have a long dependence chain.
In fact, it gets worse. If you don’t consciously limit dependencies between concrete components,
then a typical concrete component depends on more than one other component, so the
dependencies “branch out”. Every time there is a dependence from a concrete component to two
others, there is a doubling of the number of dependence chains. The resulting chains together
form a dependence graph. A component at the root of this graph depends on all the components
in all the dependence chains in the entire graph—and the number of chains in the graph typically
grows very quickly with the lengths of the chains because of the typical branching factor for a
concrete component. Figure 3-3 illustrates how a single concrete component like the one on the
right can depend (directly and indirectly) on a very large number of other components. Imagine
that the same kinds of dependencies continue for another few “levels” of arrows and you can see
that trouble is brewing. Something like Figure 3-2 appears as a single (highlighted) dependence
chain in Figure 3-3—but as you can see, it’s only the tip of the iceberg.

W

X

Y

Z

CHAPTER 3 — ABSTRACT AND CONCRETE TEMPLATES: DECOUPLING 43

Figure 3-3: Dependence chains are part of dependence graphs

How can you avoid this kind of situation? A design-by-contract discipline such as Resolve/C++
makes it possible for a component designer to have each concrete component depend only on the
interface contracts needed to build it, and not on particular concrete components that implement
those contracts. Where there is a dependence on an abstract component, in general this
dependence is to a kernel abstract component or to an extension of it. This dependence chain
from the concrete component can, therefore, go through perhaps two other components; there, it
(usually) stops. This means you can think of a dependence on an abstract component as “killing”
a dependence chain—or at least, as declaring it terminally ill.
This observation leads to another specific consequence of the limited dependence rule:

Concrete Component Dependence Rule: Avoid introducing a dependence on a
concrete component. If the dependence of a concrete component on another
component is required, create that dependence to an abstract component.

It is easy to avoid dependencies from abstract components to concrete components because it is
never necessary to make what something does depend on how something else achieves its
behavior. The problem is in how to avoid dependence of a concrete component on other
concrete components. Specifically, the checks and (concrete-to-concrete) extends relations are
defined later in this chapter as concrete-to-concrete dependencies. The remaining sections of this
chapter explain these dependence relationships, and then describe how to use templates to
decouple, or break, the dependencies in what otherwise could become very long dependence
chains among concrete components. The result of carefully applying these rules is that there are
only two categories of dependencies in well-engineered software component catalogs: abstract-
to-abstract dependencies and concrete-to-abstract dependencies. There are no long dependence
chains or large dependence graphs.

44 SOFTWARE COMPONENT ENGINEERING, VOLUME 2

The design rules above inform the recommended solutions to several problems that arise in
software component engineering—even ones that, on the surface, do not seem directly related to
dependencies. Let’s look at two of them now, along with their template-based solutions.

3.2 Decoupling the Checks Relation
Traditionally, most people have agreed that one of the key features of good software is that it is
“bulletproof”. A proper interpretation of this advice is that the end user of an application
program should not be able to do anything that causes it to crash. If you’ve studied them
carefully (as you should), then you might notice that some of the application program examples
in this book seem to be bulletproof. For example, consider the Euclid program discussed in
Volume 1, and reproduced here for convenience.

// /*--*\
// | Main Program: Euclid's algorithm for GCD
// |*--*|
// | Date: 13 August 1996 (revised 24 November 2006)
// | Author: Bruce W. Weide
// |
// | Brief User's Manual:
// | Asks for two integers, and if both are non-negative
// | and one is positive, reports the GCD of the two, and
// | then quits.
// |
// *--*/

///---
/// Global Context ---
///---

#include "RESOLVE_Foundation.h"

///---
/// Interface --
///---

/*!
 math definition DIVIDES (
 d: integer,
 n: integer
): boolean is
 there exists k: integer (n = k * d)

 math definition IS_GCD (
 gcd: integer,
 m: integer,
 n: integer
): boolean is
 (m /= 0 or n /= 0) and
 DIVIDES (gcd, m) and
 DIVIDES (gcd, n) and
 for all k: integer where (DIVIDES (k, m) and DIVIDES (k, n))
 (k <= gcd))
!*/

CHAPTER 3 — ABSTRACT AND CONCRETE TEMPLATES: DECOUPLING 45

//--

global_function Integer Greatest_Common_Divisor (
 preserves Integer j,
 preserves Integer k
);
/*!
 requires
 0 <= j <= k and
 0 < k
 ensures
 IS_GCD (Greatest_Common_Divisor, j, k)
!*/

//--

global_function_body Integer Greatest_Common_Divisor (
 preserves Integer j,
 preserves Integer k
)
{
 if (j == 0)
 {
 return k;
 }
 else
 {
 return Greatest_Common_Divisor (k mod j, j);
 }
}

//--

program_body main ()
{
 object Character_IStream input;
 object Character_OStream output;
 object Integer small, large;

 // Open input and output streams

 input.Open_External ("");
 output.Open_External ("");

 // Get two integers from user; put them in proper order

 output << "Please input an integer: ";
 input >> small;
 output << "Please input another integer: ";
 input >> large;
 if (small > large)
 {
 small &= large;
 }

 // Compute GCD of small and large

46 SOFTWARE COMPONENT ENGINEERING, VOLUME 2

 if ((small < 0) or (large <= 0)) // Can't find GCD
 {
 output << "\nSorry, both integers must be non-negative, "
 << "and one must be positive";
 }
 else // Compute and report GCD
 {
 object Integer gcd;

 gcd = Greatest_Common_Divisor (small, large);
 output << "\nGCD = " << gcd << "\n";
 }

 // Close input and output streams

 input.Close_External ();
 output.Close_External ();
}

Figure 3-4: Euclid.cpp
This program asks the end user to input two integers. It expects both numbers to be non-negative
and one to be positive, and if this isn’t the case then the program gently reports the error:

Sorry, both integers must be non-negative, and one must be positive.

On the other hand, watch what happens if you respond to the program’s first prompt for an
integer by typing:

an integer?

The program squawks (something like):
===

0: main

1: operator>>(Character_IStream&, Integer&)

2: Integer::Get_From(Character_IStream&)

3: To_Integer(Text)

===

Violated assertion at:

File: /class/sce/rcpp/RESOLVE_Foundation/Conversion_Operations/-
Conversion_Operations.cpp
Line #: 552
Operation: To_Integer

Violated assertion is:
===
<OK_Text> ::= <White_Space> ['+'|'-'] <Digits> <White_Space>
<White_Space> ::= {' ', '\t', '\n'}*
<Digits> ::= {'0','1','2','3','4','5','6','7','8','9'}+

t is in language of OK_Text and

CHAPTER 3 — ABSTRACT AND CONCRETE TEMPLATES: DECOUPLING 47

-2147483648 <= TO_INTEGER(t) <= 2147483647
===

===

Abort

The relatively cryptic “violated assertion” message comes from the operation To_Integer, which
is invoked by the operation Get_From for the built-in type Integer, which is invoked by the >>
operator in the main program of Euclid. The Get_From operation for Integer, it turns out, has a
non-trivial precondition: the next line of characters to be read from the source of characters that
is attached to the Character_IStream object input at this point—normally the keyboard—must be
interpretable as an Integer value. Specifically, the next line must begin with zero or more
whitespace characters followed by at least one decimal digit character followed by zero or more
whitespace characters. The characters you typed in response to the prompt, i.e., "an integer?", do
not meet this condition and cannot be interpreted as an Integer value.
The second error message is a lot less end-user friendly than the first one. But at least you know
something went haywire at the point you typed a response to the prompt. Agreed, it would be
nicer for the program to inform you:

Sorry, you have not typed an integer. Please try again.

It is possible to change the program to do this: rather than reading into an Integer object, you
could read the user’s response into a Text object (which is always legal), then check whether it
can be converted to an Integer. But there are plenty of even less-friendly things the program
could do! For instance, it could forge blithely ahead and keep on computing, apparently happy
as a clam, only to surprise you later with a bizarre result or a terrible death-by-segmentation-fault
or death-by-bus-error1 for which the root cause would be much harder to find.

3.2.1 The Defensiveness Dilemma
You might be tempted to conclude that, because programs should be bulletproof for end users,
the same maxim applies to a software component’s operations whose “users” are client programs
that invoke the services of that component. That is, you might expect that every operation with a
non-trivial precondition—like Get_From for Integer—should always check that precondition to
make sure the client program does not crash. In fact, if you jumped to this conclusion then you
would be in good company. Many programming texts advocate this. But the Euclid program
violates this advice. For example, its Greatest_Common_Divisor operation has a non-trivial
precondition, yet the implementation of the operation does not check that this condition holds.
What are the differences among the various situations in Euclid? Why does one kind of error
lead to an easy-to-understand application-specific error message while the other leads to a
cryptic general-purpose (but still arguably helpful, to the programmer) error message? Why do
some operation implementations check their preconditions while others do not?
The defensiveness dilemma is an important issue faced by an operation’s implementer, including
a client programmer who needs to implement a new operation:

To check or not to check preconditions, that is the question.

1 These are two of the tragedies that can befall a defective program on one system. The catastrophes
on your system may vary.

48 SOFTWARE COMPONENT ENGINEERING, VOLUME 2

The term “defensiveness” comes from the traditional, party line advice—always defend against
client errors in calling your operation by checking its precondition in the operation’s
implementation. A closer analysis of the situation reveals why there seems to be a “dilemma”,
and why the party line is not the right approach.
For any particular call of any particular operation, there are four possible answers to the question
of which person—client programmer or operation implementer—is responsible for establishing
that the precondition of the operation holds at the time of the call:
1. Neither is responsible.
2. Both are responsible.
3. Operation implementer is responsible.
4. Client programmer is responsible.
It is easy to dispense with answers 1 and 2. If an operation has a non-trivial precondition that is
not satisfied at the time of the call, then by definition of the interface contract, the operation is
permitted to do anything. If no one is responsible for seeing to it that this condition holds, then
the operation can, among other things, legitimately:
• Do nothing more, but quietly return to the calling program without doing anything else.
• Continue computing with “garbage” data, and produce any answers it likes.
• Halt the program without further report or further incident.
• Emit an error message.
• Fire a missile toward Michigan.
As the caller of the operation you cannot predict which, if any, of these or many other
possibilities will ensue. So the only reason a rational client programmer would not worry about
whether the precondition holds is that he/she thinks the operation implementer has written code
to check it and to do something tame in response to a violation. And the only reason a rational
operation implementer would not check the precondition is that he/she thinks the client
programmer will check it. If there is no policy that establishes who is responsible then trouble is
inevitable. Answer 1 is, therefore, not a good policy.
So consider answer 2: both parties are responsible for writing code that checks the precondition
of the call. Now there is no problem in principle, but there is a problem in practice because this
approach is needlessly inefficient. Why do the same computation twice when once is always
enough, if only there were some policy to determine who is responsible for performing it?
This leaves two apparently reasonable choices. To embrace answer 3 is to adopt the party line
and make the operation implementer responsible. There are two problems with this approach.
The first problem is that a check inside the operation body is often redundant, even when the
client programmer does not “consciously” check the precondition before making the call.
Consider, for example, the operation Greatest_Common_Divisor in the Euclid example:

global_function Integer Greatest_Common_Divisor (
 preserves Integer j,
 preserves Integer k
);
/*!
 requires
 0 <= j <= k and

CHAPTER 3 — ABSTRACT AND CONCRETE TEMPLATES: DECOUPLING 49

 0 < k
 ensures
 IS_GCD (Greatest_Common_Divisor, j, k)
!*/

global_function_body Integer Greatest_Common_Divisor (
 preserves Integer j,
 preserves Integer k
)
{
 if (j == 0)
 {
 return k;
 }
 else
 {
 return Greatest_Common_Divisor (k mod j, j);
 }
}

The (recursive) call in the body is never made if j = 0, since it occurs in the else block of an if
statement whose condition is “j == 0”. So the calling program does check this part of the
precondition—not because it’s “afraid” to call Greatest_Common_Divisor in that case, but
because it doesn’t have to; this is the base case in the recursion.
The subtle difference in intent for the above case might seem pedantic. So consider the other
part of the requires clause, which says (in part) that the first argument to the operation is no
larger than the second. There is no explicit check for this before the recursive call because the
client programmer can argue that the first actual parameter, k mod j, is no larger than j, even
without checking. This conclusion is based purely on reasoning about the program behavior —
about what mod can return. In other words, if you can establish by a valid argument that a
precondition holds at the time of a call, then there is no reason to have any code to check that the
precondition holds.2
From this example you can see how adding a test at the beginning of the operation body would
only make this program less efficient than it is now, and no safer in terms of precondition
violations. Well, this is not entirely true, because there is one call—from main in this case—that
is not recursive. This is precisely the reason the main program does check the precondition of
Greatest_Common_Divisor before calling it. The manifestation of this is that the end user who
enters two integers that do not satisfy the precondition is informed:

Sorry, both integers must be non-negative, and one must be positive.

And this brings us to the second problem with the party line approach. Suppose
Greatest_Common_Divisor were an operation provided by an off-the-shelf software component.
If the precondition were checked in the body of the operation, the error message could not be
expected to make nearly as much sense to the end user as the one above. Perhaps this is not

2 This example illustrates (albeit unwittingly, as it is tangential to the real point here) something about

recursion. The programmer who implements an operation by writing a recursive body for it is
simultaneously the operation’s implementer and a client programmer calling that operation. This
suggests that you should think of “client programmer” and “operation implementer” not as two
different individuals, but as two different roles. Sometimes, one person plays both roles at the same
time; sometimes different individuals are involved.

50 SOFTWARE COMPONENT ENGINEERING, VOLUME 2

obvious from the present application example because the arguments to Greatest_Common_-
Divisor are just numbers and have no other application-specific meaning. But in another
situation you might like the end user to see a message like this:

Sorry, the number of apples must be non-negative, and the number of
oranges must be positive.

Obviously, the off-the-shelf component has no notion of apples or oranges, only of numbers, and
cannot be expected to emit such a message if its precondition is violated. You can see the effect
of this problem in the second error message from Euclid, which comes from the Get_From
operation for Integer and which is, therefore, a lot less end-user friendly than the first error
message.
This leaves us to examine case 4, which is to make the client programmer responsible for
establishing that the precondition holds before making any call to any operation. The very
presence of a non-trivial precondition in the specification is a direct statement of this
responsibility. It means that the operation is allowed to do anything if that condition is not
satisfied: caveat emptor. Sometimes, the client programmer is able to show by careful reasoning
that the precondition for a call holds and therefore does not need to write code to test it. Other
times, the client programmer is unable to prove that the precondition holds and must write code
to test it, unless he/she is willing to settle for a program that is not really bulletproof. But in any
event it is the client programmer who is responsible for establishing preconditions.
Bertrand Meyer calls this decision design-by-contract—we also use the minor variant
programming-by-contract—because there is an official agreement between the client and the
implementer of a component that lays down precisely which party is responsible for what. The
client is responsible for making sure that the precondition of an operation holds at the time it is
called, and the implementer is responsible for making sure that the postcondition holds at the
time it returns. We state the client programmer’s obligation under this agreement as follows:

Design-by-Contract Rule: Do not call an operation when its precondition is not
satisfied, unless you are willing to accept any behavior whatsoever from that
point onward during execution of the program.

The client programmer of Euclid has used this rule in two ways. He apparently has decided that
it is unacceptable to call Greatest_Common_Divisor with bogus arguments, but that it is
acceptable to call Get_From with an input stream that might not contain characters that can be
interpreted as an Integer value. The program’s reaction to a violation of this second precondition
is whatever the built-in Get_From happens to do, which is to emit the less-friendly error
message. To summarize, Euclid is not bulletproof because there is no guarantee that it won’t
simply crash (or do anything else) if the end user types in the wrong thing in response to a
prompt for an integer value.3

3 All operations for Resolve/C++ bulit-in types check their preconditions in the instructional version,

since efficiency is not nearly as important for student programs as the ability to isolate bugs. The
Resolve/C++ design-by-contract rule is that client programmers are responsible for establishing
preconditions, but students occasionally forget to do so, and automatically catching violated
preconditions makes it easier to debug programs. Professional programmers also can benefit from
using this approach during early software development stages at least.

CHAPTER 3 — ABSTRACT AND CONCRETE TEMPLATES: DECOUPLING 51

There remains one plausible objection to the design-by-contract rule. It would be nice to be able
to catch a client programmer’s mistakes early in the development process—not after delivery of
the program but rather during its development, when some errors are almost inevitable. Can this
be done without proliferating throughout the client program precondition-checking code that
later, according to design-by-contract, should be removed before delivery? Yes, by using
templates.

3.2.2 Example: The Natural Family
The abstract instance Random_Kernel used in the Monte_Carlo example in Chapter 1 is
somewhat unusual in that a client program may invoke any of its operations at any time. In other
words, none of the operations has a requires clause; there is no way for the client of an
implementation of Random_Kernel to violate the interface contract by failing to respect a
precondition! So, let’s look at a different abstract instance to illustrate how to address the
problem of an explosion of precondition-checking code in client programs. This component
allows you to manipulate arbitrarily large natural numbers, and (as is more typical of interface
contracts) one of its operations has a non-trivial precondition, i.e., its interface contract
specification has a requires clause that is not necessarily true at the time of a call.
Objects of the built-in type Integer are limited to a fairly large but, practically-speaking, far from
unlimited range of values: about –2 billion to +2 billion. There are many situations where you
need only non-negative integer-valued objects but where two billion or so is not the largest value
ever encountered. For example, the amount of an electronic bank transaction in U.S. currency
might be recorded in an Integer object—the number of cents being transferred. But then a figure
like the U.S. national debt or even a plausible inter-bank electronic fund transfer is too large to
handle with an Integer object. A family of components in the Resolve/C++ Catalog is available
to help you in this situation. The central abstract component for this family is Natural_Kernel.
There are four kernel operations to manipulate a Natural_Kernel object through the digits of its
radix representation, as explained in the client-view appendix for the Natural family. Several
additional operations are offered through extensions to provide more directly useful operations to
do addition, subtraction, multiplication, etc. Figure 3-5 shows the interface contract specification
of Natural_Kernel.

// /*--*\
// | Abstract Instance : Natural_Kernel
// *--*/

#ifndef AI_NATURAL_KERNEL
#define AI_NATURAL_KERNEL 1

///---
/// Interface --
///---

abstract_instance
class Natural_Kernel
{
public:

 /*!
 math subtype NATURAL_MODEL is integer
 exemplar n
 constraint
 n >= 0

52 SOFTWARE COMPONENT ENGINEERING, VOLUME 2

 math definition RADIX: integer satisfies restriction
 RADIX >= 2
 !*/

 standard_abstract_operations (Natural_Kernel);
 /*!
 Natural_Kernel is modeled by NATURAL_MODEL
 initialization ensures
 self = 0
 !*/

 procedure Multiply_By_Radix (
 preserves Integer k
) is_abstract;
 /*!
 requires
 0 <= k < RADIX
 ensures
 self = #self * RADIX + k
 !*/

 procedure Divide_By_Radix (
 produces Integer& k
) is_abstract;
 /*!
 ensures
 #self = self * RADIX + k and
 0 <= k < RADIX
 !*/

 function Integer Discrete_Log () is_abstract;
 /*!
 ensures
 if self = 0
 then Discrete_Log = 0
 else RADIX^(Discrete_Log - 1) <= self < RADIX^(Discrete_Log)
 !*/

 function Integer Radix () is_abstract;
 /*!
 ensures
 Radix = RADIX
 !*/

};

#endif // AI_NATURAL_KERNEL

Figure 3-5: AI/Natural/Kernel.h
Note that Multiply_By_Radix has a non-trivial precondition. Intuitively, the following call:

n.Multiply_By_Radix (k);

alters n by tacking the digit k onto the right end of the digits of the old n. The precondition is
that k must actually be a “digit” in the radix used for n, i.e., it must be between 0 and RADIX–1,

CHAPTER 3 — ABSTRACT AND CONCRETE TEMPLATES: DECOUPLING 53

inclusive.4 Design-by-contract says it is ultimately the client’s responsibility to make sure k has
a legal value, and that an implementation of Natural_Kernel (say, Natural_Kernel_1) should not
check this condition in the body of Multiply_By_Radix. Natural_Kernel can, therefore, help to
illustrate how to write precondition-checking code for a component operation just once, and
package it into a component so it works for all of the operation’s call sites in all client programs.

3.2.3 Checking Components and the Checks Relation
The recommended approach to catching erroneous calls to component operations during client
program development is to create and use a checking component. A checking component for
Natural_Kernel is a concrete component that “wraps” an implementation of Natural_Kernel
(e.g., Natural_Kernel_1) inside a protective wall and thereby defends that implementation
against a client programmer’s failure to observe the design-by-contract rule. As illustrated in
Figure 3-6, the checking component checks the wrapped implementation by using the following
strategy in the body of Multiply_By_Radix:
• Check the precondition of Multiply_By_Radix.
• Report a violated assertion to the client and halt execution immediately if the precondition is

not satisfied.
• Continue the computation normally by calling Multiply_By_Radix from the wrapped

implementation if the precondition is satisfied.
Since none of the other Natural_Kernel operations has a non-trivial precondition, the checking
component need do nothing special to protect against violations of their requires clauses because
there can’t be any such violations: every call to one of these operations is a good call that goes
through the protective wall without difficulty.

Figure 3-6: Intuitive operation of a checking component

A checking component is a concrete component: it contains code that is executed, not an
interface contract. Specifically, the code for Multiply_By_Radix in the checking component
depicted above might look like this:

4 You will not go wrong by assuming RADIX = 10, in which case you’re dealing with numbers as

represented using the normal decimal digits. With this assumption, if n = 123 and k = 4 at the time of
the call, then n = 1234 and k = 4 after the call.

Natural_
Kernel_1

client call to

Multiply_By_Radix

rejected call to
Multiply_By_Radix

(violated precondition)

good call to
Multiply_By_Radix

checking component

client call to operation
with trivial precondition

54 SOFTWARE COMPONENT ENGINEERING, VOLUME 2

procedure_body Multiply_By_Radix (
 preserves Integer k
)
{
 assert (0 <= k,
 "0 <= k");
 assert (k < self.Radix (),
 "k < RADIX");
 self.Natural_Kernel_1::Multiply_By_Radix (k);
}

A new Resolve/C++ keyword in this code is assert,5 which you can think of as the name of a
built-in global procedure with two arguments. The first argument is a condition that you expect
to be true. If the first argument is true, then the assert statement does nothing and program
execution continues with the next statement. If the first argument is false, then the second
argument (a Text value) is used in an error message that is output to the screen (where the form
of the report is similar to that shown for the violated precondition of To_Integer in Euclid in
Section 3.2.1), after which assert aborts program execution. Since the second argument is
reported as the assertion that has been “violated”, it is phrased as something that should have
been true but surprisingly was not. In the example code, note the subtle difference between the
two arguments: the first is a computation of the value of a mathematical assertion, and the
second is the mathematical assertion itself as a Text value.
You should use assert only where you expect the tested condition to be true under normal
circumstances. It should be used only to signal truly abnormal situations from which the
program cannot recover and for which immediately stopping execution with an error message is
an appropriate response. It normally should be used only to give information to a client
programmer who is still developing and/or testing a program, not to give an error message to the
end user.
The call to the underlying Multiply_By_Radix in the component being checked uses the
following long name:

Natural_Kernel_1::Multiply_By_Radix

This is the fully qualified name for the Multiply_By_Radix operation in the class
Natural_Kernel_1; you may leave whitespace around “::” or omit it. You must use the qualified
name here because the C++ compiler would interpret a call to an unqualified Multiply_By_Radix
as a recursive call to the checking component’s code!
Finally, notice that the receiver object in this call is self6. As you know, C++ uses traditional
object-oriented programming syntax in method calls (not global operation calls). Specifically,
you put the name of the receiver object, or distinguished argument, before a “.” and the name of
the method after it. Recall from Chapter 1 that this syntax causes a problem when writing
specifications: there is no formal parameter associated with the receiver object, hence no

5 C++ compilers support a version of assert with slightly different syntax, with the exact format of the

arguments and the effect when the condition evaluates to false also being somewhat different.
6 In C/C++ programs, you might use “(*this)” in place of the Resolve/C++ keyword self.

Alternatively, in C/C++ you would be allowed to write “this->” in place of “self.”, or simply leave
out the receiver object altogether. In Resolve/C++, the convention is never to call a method without
an explicit receiver object.

CHAPTER 3 — ABSTRACT AND CONCRETE TEMPLATES: DECOUPLING 55

programmer-declared name you can use to refer to it in the operation’s specification. For
specifications we therefore reserve the special name self for this purpose.
Similarly, there is no programmer-declared name to refer to the receiver object in an operation’s
body. So in Resolve/C++, self is the name reserved for the implicit formal parameter that is
bound to the receiver object. If n is an object of type Natural_Kernel_1, then the statement:

n.Multiply_By_Radix (k);

 results in self being bound to n in the operation body. Any changes to self as a result of
executing the body of Multiply_By_Radix are reflected in object n back in the calling program
after the call returns. In other words, self in the checking code above is the direct counterpart of
self in the specification of Multiply_By_Radix.
There is a problem with the above code, though: the checking component in which it appears
introduces a dependence on Natural_Kernel_1, another concrete component. This violates the
concrete component dependence rule. To complete the discussion of checking components, let’s
see how to decouple this dependence using templates.

3.2.4 Implementing a Checking Component
The checking component code actually does not depend in any logical way on
Natural_Kernel_1; the same code would work with any implementation of Natural_Kernel if
that concrete component’s name could be substituted for Natural_Kernel_1 in the fully qualified
name used in the code. No problem! You can parameterize the checking component by the
implementation of Natural_Kernel that it checks. The code for this is shown in Figure 3-7.

// /*--*\
// | Concrete Template : Natural_Kernel_C
// *--*/

#ifndef CT_NATURAL_KERNEL_C
#define CT_NATURAL_KERNEL_C 1

///---
/// Global Context ---
///---

/*!
 #include "AI/Natural/Kernel.h"
!*/

///---
/// Interface --
///---

concrete_template <
 concrete_instance class Natural_Base
 /*!
 implements
 abstract_instance Natural_Kernel
 !*/
 >
class Natural_Kernel_C :
 checks
 concrete_instance Natural_Base

56 SOFTWARE COMPONENT ENGINEERING, VOLUME 2

{
public:

 procedure_body Multiply_By_Radix (
 preserves Integer k
)
 {
 assert (0 <= k,
 "0 <= k");
 assert (k < self.Radix (),
 "k < RADIX");
 self.Natural_Base::Multiply_By_Radix (k);
 }

};

#endif // CT_NATURAL_KERNEL_C

Figure 3-7: CT/Natural/Kernel_C.h
The suffix “_C” in the name of the component is a Resolve/C++ convention indicating that the
component checks the preconditions of calls to all operations that have non-trivial preconditions.
Notice that the #include statement in Figure 3-7 appears in a formal comment. This strange
construction is used when the C++ compiler doesn’t need to include the file in order to compile
this code, but the human reader does need to understand the component whose code is in the
included file. In other words, from the standpoint of the logical dependencies between
components that are recorded in a CCD, Natural_Kernel_C depends on Natural_Kernel.
Because of the way Resolve-style components are encoded in C++, you do not directly express
this dependence in the code needed by the compiler.
The logical dependence on Natural_Kernel appears in the template’s parameter list. The
declaration of the formal parameter Natural_Base is followed by a restriction clause, a formal
comment that says Natural_Base implements Natural_Kernel. In the Sequence example in
Chapter 2, the formal parameter Item was unrestricted: the client programmer may bind any
Resolve/C++ type to Item. Not so here. When instantiating Natural_Kernel_C, the client
programmer must bind to the formal parameter Natural_Base a concrete instance that
implements Natural_Kernel—it may be Natural_Kernel_1, or Natural_Kernel_2, or any other
implementation of Natural_Kernel that exists now or might be developed in the future; but it
may not be, say, Text. Thus, Natural_Kernel_C depends on Natural_Kernel because the client
programmer must know about Natural_Kernel, at least enough to decide whether the concrete
component to be used as the actual parameter claims to implement it.
The other new feature in this code is the declaration of Natural_Kernel_C itself, which says:

class Natural_Kernel_C :
 checks
 concrete_instance Natural_Base

This code—which the C++ compiler does care about—means that every concrete instance
created from concrete template Natural_Kernel_C, by fixing the parameter Natural_Base,
depends on Natural_Base in the stated way, i.e., it checks it. Moreover, it means that operations

CHAPTER 3 — ABSTRACT AND CONCRETE TEMPLATES: DECOUPLING 57

of the checked implementation that have no preconditions are executed directly from that
component with no screening by the checking component.7
Notice that this design succeeds in decoupling Natural_Kernel_C from any particular concrete
component, replacing the concrete-to-concrete dependence in the original code
(Natural_Kernel_1_C on Natural_Kernel_1) with a concrete-to-abstract dependence
(Natural_Kernel_C on Natural_Kernel). The checks relation is a concrete-to-concrete
dependence, but the concrete component at the target of the checks arrow in the CCD for
Natural_Kernel_C in Figure 3-8 is a little black rectangular parameter box. This box stands for
a restricted formal template parameter of the component Natural_Kernel_C, which is depicted
with thick sides because it is a template.

Figure 3-8: CCD for Natural_Kernel_C

This CCD shows that there is still a concrete-to-concrete dependence: Natural_Kernel_C checks
some concrete component (note that the parameter box is shaped like a concrete component to
emphasize that the actual parameter is a concrete instance). But which concrete component is
being checked? You don’t know from the CCD because this decision is not known at design
time. Instead, the choice has been deferred to instantiation time by making the checked
component a template parameter. What you can tell from the CCD, from the arrow out of the
parameter box, is that the component being checked must be some concrete instance that
implements Natural_Kernel.
If a component has a template parameter with no restriction on it, then there is no parameter box
for that formal parameter in the component’s CCD because an unrestricted template parameter
induces no dependencies on any other specific software component. For example, the CCDs for
the Sequence components in Chapter 2 do not have a parameter box for Item because it is an
unrestricted template parameter. Remember, the purpose of the CCD is to show design-time
dependencies, and a parameter box for an unrestricted template parameter would have no arrows
out of it and therefore would introduce and make apparent no dependencies whatsoever; there is
no sense even drawing it.

3.2.5 Instantiating a Checking Component
Now suppose you are a client programmer who wants to use a checked implementation of
Natural_Kernel (say, Natural_Kernel_1) during the software development process. You must,

7 In C/C++ programs, you would use the keywords virtual public in place of the Resolve/C++

keyword checks.

Natural_
Kernel

checks
Natural_
Kernel_C

implements

58 SOFTWARE COMPONENT ENGINEERING, VOLUME 2

as usual, first bring into scope using #include statements the checking component as well as the
implementation to be checked. Then, you simply instantiate the checking component like any
other template:

concrete_instance
class Natural_Kernel_1_C :
 instantiates
 Natural_Kernel_C <Natural_Kernel_1>
{};

Now, you can declare objects of type Natural_Kernel_1_C:
object Natural_Kernel_1_C n, m;

Client calls to Multiply_By_Radix on the objects n and m are now checked for precondition
violations, where they would not have been checked if their type had been Natural_Kernel_1.
Moreover, you can easily make Natural_Kernel_1_C a reusable component and put it into a
shared component catalog where you and others can use it in a variety of application programs
simply by bringing it into scope using #include. This code is illustrated in Figure 3-9; it contains
no new features.

// /*--*\
// | Concrete Instance : Natural_Kernel_1_C
// *--*/

#ifndef CI_NATURAL_KERNEL_1_C
#define CI_NATURAL_KERNEL_1_C 1

///--
/// Global Context --
///--

#include "CI/Natural/Kernel_1.h"
#include "CT/Natural/Kernel_C.h"

///--
/// Interface ---
///--

concrete_instance
class Natural_Kernel_1_C :
 instantiates
 Natural_Kernel_C <Natural_Kernel_1>
{};

//---

#endif // CI_NATURAL_KERNEL_1_C

Figure 3-9: CI/Natural/Kernel_1_C.h

3.2.6 Combining Generalization and Decoupling: The Specializes Relation
Usually, the kernel component being checked is not a concrete instance but rather a concrete
template. Consider a checking component Sequence_Kernel_C for implementations of

CHAPTER 3 — ABSTRACT AND CONCRETE TEMPLATES: DECOUPLING 59

Sequence_Kernel. The difference from Natural_Kernel is that Sequence_Kernel already has a
template parameter for generalization.
Fortunately, it is easy to combine the uses of templates for generalization and decoupling. You
just need to combine into a single formla parameter list the template parameters that are used for
both purposes. The code for Sequence_Kernel_C illustrates this in Figure 3-10.

// /*--*\
// | Concrete Template : Sequence_Kernel_C
// *--*/

#ifndef CT_SEQUENCE_KERNEL_C
#define CT_SEQUENCE_KERNEL_C 1

///--
/// Global Context --
///--

/*!
 #include "AT/Sequence/Kernel.h"
!*/

///--
/// Interface ---
///--

concrete_template <
 concrete_instance class Item,
 concrete_instance class Sequence_Base
 /*!
 implements
 abstract_instance Sequence_Kernel <Item>
 !*/
 >
class Sequence_Kernel_C :
 checks
 concrete_instance Sequence_Base
{
public:

 procedure_body Add (
 preserves Integer pos,
 consumes Item& x
)
 {
 assert (0 <= pos,
 "0 <= pos");
 assert (pos <= self.Length (),
 "pos <= |self|");
 self.Sequence_Base::Add (pos, x);
 }

 procedure_body Remove (
 preserves Integer pos,
 produces Item& x
)
 {

60 SOFTWARE COMPONENT ENGINEERING, VOLUME 2

 assert (0 <= pos,
 "0 <= pos");
 assert (pos < self.Length (),
 "pos < |self|");
 self.Sequence_Base::Remove (pos, x);
 }

 function_body Item& operator [] (
 preserves Integer pos
)
 {
 assert (0 <= pos,
 "0 <= pos");
 assert (pos < self.Length (),
 "pos < |self|");
 return self.Sequence_Base::operator [] (pos);
 }

};

#endif // CT_SEQUENCE_KERNEL_C

Figure 3-10: CT/Sequence/Kernel_C.h
There are two new features in this code. Starting at the end, the fully-qualified name for the
accessor is a bit strange. Technically, operator[] is the name of the accessor operation, but C++
offers special concise syntax for normal use, i.e., s[pos] rather than s.operator[](pos). The
special syntax is not available with the fully-qualified name.
Second, the restriction in the formal parameter list on Sequence_Base (the implementation of
Sequence_Kernel to be checked) indicates that the type Item must be the same when
Sequence_Kernel_C is instantiated as it is when the implementation to be checked is instantiated.
Suppose you need sequences of integers and you want the operations on them to be checked.
Following an analogous approach as with Natural_Kernel_1_C in Section 3.2.5, you can create
two instances in the client program:

concrete_instance
class Sequence_Of_Integer_Base :
 instantiates
 Sequence_Kernel_1a <Integer>
{};

concrete_instance
class Sequence_Of_Integer :
 instantiates
 Sequence_Kernel_C <Integer, Sequence_Of_Integer_Base>
{};

The name of the first concrete intance is immaterial because it is used only as an actual
parameter when creating the second instance. In fact, you could combine these two
instantiations into one and not even bother to give a name to the concrete instance to be checked:

concrete_instance
class Sequence_Of_Integer :
 instantiates
 Sequence_Kernel_C <Integer, Sequence_Kernel_1a <Integer> >
{};

CHAPTER 3 — ABSTRACT AND CONCRETE TEMPLATES: DECOUPLING 61

In this case, the latter looks simpler. But be careful. C++ requires that seemingly innocuous
space between the two '>' characters! The error message from failing to type it is likely to be
very cryptic. Luckily, someone who has done this before has put the code of Figure 3-11 into the
Resolve/C++ Component Catalog. Notice how this code formats the actual parameters one per
line, so the little “gotcha” mentioned above will not arise.

// /*--*\
// | Concrete Template : Sequence_Kernel_1a_C
// *--*/

#ifndef CT_SEQUENCE_KERNEL_1A_C
#define CT_SEQUENCE_KERNEL_1A_C 1

///--
/// Global Context --
///--

#include "CT/Sequence/Kernel_1a.h"
#include "CT/Sequence/Kernel_C.h"

///--
/// Interface ---
///--

concrete_template <
 concrete_instance class Item
 >
class Sequence_Kernel_1a_C :
 specializes
 Sequence_Kernel_C <
 Item,
 Sequence_Kernel_1a <Item>
 >
{};

//---

#endif // CT_SEQUENCE_KERNEL_1A_C

Figure 3-11: CT/Sequence/Kernel_1a_C.h
After bringing this component into scope, you can instantiate it as follows:

concrete_instance
class Sequence_Of_Integer :
 instantiates
 Sequence_Kernel_1a_C <Integer>
{};

Notice also a new component relation in the code of Figure 3-11: specializes. In the analogous
code of Figure 3-9, the program creates a new concrete instance by instantiating a concrete
template. The relation connecting a template and an instance created from it is, appropriately,
called instantiates. The code of Figure 3-11 creates a new concrete template by partially
instantiating another concrete template. That is, the number of template parameters for the client
programmer to provide goes from two (in Sequence_Kernel_C) to one (in
Sequence_Kernel_1a_C)—but the client still has to instantiate the template to use it. The

62 SOFTWARE COMPONENT ENGINEERING, VOLUME 2

relation connecting these two templates is called specializes8 because the all-purpose concrete
template Sequence_Kernel_C has been made less universal—but therefore easier to instantiate—
by fixing one of its template parameters. Figure 3-12 shows this relationship in the CCD for
Sequence_Kernel_1a_C.

Figure 3-12: CCD for Sequence_Kernel_1a_C and the specializes relation

To summarize, then, there is a long and somewhat tortured story here. The defensiveness
dilemma has to be addressed somehow; a case analysis of possible solutions leads to the
selection of design-by-contract as the proper policy; that policy leads to the need for checking
components; checking components introduce concrete-to-concrete dependencies that violate the
concrete component dependence rule. How can you avoid these concrete-to-concrete
dependencies? Use templates to decouple them. Then specialize the all-purpose checking
component if you want to make template instantiation easier for a client programmer.

3.3 Decoupling the Extends Relation (Concrete-to-Concrete)
Now let’s return to Monte_Carlo. It uses concrete instance Random_Uniform_Generator_1,
which implements abstract instance Random_Uniform. Recall that Monte_Carlo uses the
operation Uniform_Real from Random_Uniform_Generator_1. This function takes two Real
numbers a and b and returns a random Real value drawn from a uniform probability distribution
over the interval [a, b).

8 In C/C++ programs, you would use the keywords virtual public in place of the Resolve/C++

keyword specializes.

Sequence_
Kernel

checks
Sequence_
Kernel_C

implements Sequence_
Kernel_1a

implements

Sequence_
Kernel_1a_C

uses specializes

CHAPTER 3 — ABSTRACT AND CONCRETE TEMPLATES: DECOUPLING 63

Figure 3-13: The CCD for an extension implementation
Figure 3-13 shows the CCD for Random_Uniform_Generator_1 used in Chapter 1. The
technique discussed here is how, as the client programmer of Monte_Carlo needing the
functionality of Random_Uniform, you could have created Random_Uniform_Generator_1
yourself, given only an implementation of Random_Kernel from the Resolve/C++ Catalog.

3.3.1 The Extends Relation (Concrete-to-Concrete): The Layering Approach
The computation you need to perform is rather simple. To get a random real number from a
uniform distribution over [0.0, 1.0), you can scale the value of a random integer between 0 and
LIMIT–1 inclusive (i.e., rn.Value ()) into this range by treating it as the numerator of a fraction
whose denominator is LIMIT (i.e., rn.Limit ()). Suppose LIMIT = 10000 for some particular
implementation of Random_Kernel, as it turns out it is for the implementation
Random_Kernel_1. Then if the value of rn is 2500, the expression:

To_Real (rn.Value ()) / To_Real (rn.Limit ())

evaluates to 0.25; if rn = 6978, then the expression evaluates to 0.6978; etc.
More generally, to get a random real number from a uniform distribution over [a, b), the
appropriate translation-and-scaling transformation is:

a + (b - a) * To_Real (rn.Value ()) / To_Real (rn.Limit ())

It is easy to put such code into a component for a shared catalog and make it generally useful
beyond the current application. Just as a checking component can make calls to the underlying
component it checks, a concrete extension can make calls to the underlying component it
extends. (Normally, as in this case, the component being extended is a kernel implementation.)
This technique for adding functionality to a component family is called layering. Calls to
operations of the component being extended simply pass through the concrete extension layer
unscathed, to be handled by the component being extended; while calls to the additional
operations in the concrete extension do their work by calling the operations of the underlying
component.

Random_
Kernel

Random_
Uniform extends

Random_
Uniform_

Generator_1

implements

64 SOFTWARE COMPONENT ENGINEERING, VOLUME 2

Figure 3-14: Intuitive operation of a concrete extension

The first step in the process of implementing Random_Uniform is to create a concrete template
that extends some implementation of Random_Kernel. This concrete-to-concrete extends
relation is entirely parallel in meaning to the abstract-to-abstract extends relation of Chapter 2.
And the way to achieve it is entirely parallel to that used for a checking component: the code for
the new operation Uniform_Real depends only on the interface contract Random_Kernel, not on
any particular implementation of it. The implementation being extended therefore can be made a
template parameter, to decouple what would otherwise be a concrete-to-concrete dependence.

// /*--*\
// | Concrete Template : Random_Uniform_1
// *--*/

#ifndef CT_RANDOM_UNIFORM_1
#define CT_RANDOM_UNIFORM_1 1

///---
/// Global Context ---
///---

#include "AI/Random/Uniform.h"
/*!
 #include "AI/Random/Kernel.h"
!*/

///---
/// Interface --
///---

concrete_template <
 concrete_instance class Random_Base
 /*!
 implements
 abstract_instance Random_Kernel
 !*/
 >
class Random_Uniform_1 :
 implements
 abstract_instance Random_Uniform,
 extends
 concrete_instance Random_Base
{

an implemen-
tation of

Random_
Kernel

client call to
operation from

concrete extension layered code
calling kernel

client call to
kernel operation

concrete extension

CHAPTER 3 — ABSTRACT AND CONCRETE TEMPLATES: DECOUPLING 65

public:

 function_body Real Uniform_Real (
 preserves Real a,
 preserves Real b
)
 {
 return a + (b - a) *
 To_Real (self.Value ()) / To_Real (self.Limit ());
 }

 function_body Integer Uniform_Integer (
 preserves Integer j,
 preserves Integer k
)
 {
 return j + To_Integer (self.Uniform_Real (0.0, To_Real (k+1-j)));
 }

};

#endif // CT_RANDOM_UNIFORM_1

Figure 3-15: CT/Random/Uniform_1.h
In the code in Figure 3-15, the concrete template depicted as the outer shell, or layer, in Figure
3-14 is called Random_Uniform_1, because it is an implementation of the abstract instance
Random_Uniform.
There are a couple new features in this code. First, Random_Uniform_1 takes part in two
specific dependence relations with other components: it implements Random_Uniform, and it
extends Random_Base (a restricted formal template parameter that must implement
Random_Kernel). Notice that Random_Uniform extends Random_Kernel, so any
implementation of Random_Uniform must implement Random_Kernel as well as the two new
operations whose interface contracts are specified in Random_Uniform. The concrete-to-
concrete extends relation makes this happen automatically: the kernel operations come from
Random_Base, the component being extended, and the code for the two additional operations
Uniform_Real and Uniform_Integer is provided here in Random_Uniform_1.
The second new feature is in the code for the new operations. Just as a checking component
calls operations from the component it checks, a layered extension calls the operations from the
component it extends. It does this by using self as the name of the receiver object, exactly as
with a checking component. Notice that the body of an operation in an extension may call not
only the operations from the component it extends, but other operations from the extension, as
seen here in the body of Uniform_Integer.
Figure 3-16 shows the CCD for Random_Uniform_1. This pattern of organizing component
dependencies is the primary technique for adding functionality to a component family. It works
equally well when the components involved also use templates for generalization.

66 SOFTWARE COMPONENT ENGINEERING, VOLUME 2

Figure 3-16: CCD for a typical layered extension

3.3.2 Instantiating a Concrete Extension
As a client programmer, instantiating a concrete extension is nothing new: you simply bring into
scope the component(s) you need and then instantiate them. In this case, you need only
Random_Uniform_1 and some implementation of Random_Kernel. It happens that
Random_Kernel_1 is available; it is a template itself but happens to have no template
parameters9. Here is how you might instantiate Random_Kernel_1 and Random_Uniform_1 to
create a concrete instance class in your client code:

concrete_instance
class Random_Uniform_Generator :
 instantiates
 Random_Uniform_1 <Random_Kernel_1 <> >
{};

Note the formatting of the nested template instantiation with the space between the '>' characters.
It also is possible to make this concrete instance a component in a catalog, as shown in Figure
3-17. You simply #include the components used in the instantiation and instantiate them as
above, giving the new component an appropriate name. In fact, this is the component used in
Monte_Carlo as presented in Chapter 1.

// /*--*\
// | Concrete Instance : Random_Uniform_Generator_1
// *--*/

#ifndef CI_RANDOM_UNIFORM_GENERATOR_1
#define CI_RANDOM_UNIFORM_GENERATOR_1 1

///--

9 How can a template have no parameters? This sometimes arises when implementing kernel

components, and is discussed only in Volume 3 because a client programmer simply has to know that
such things exist and how to instantiate them. What is the difference between a template with no
parameters and an instance? The latter has to be instantiated before it can be used.

Random_
Uniform

Random_
Kernel

extends
Random_
Uniform_1

implements

implements

extends

CHAPTER 3 — ABSTRACT AND CONCRETE TEMPLATES: DECOUPLING 67

/// Global Context --
///--

#include "CT/Random/Kernel_1.h"
#include "CT/Random/Uniform_1.h"

///--
/// Interface ---
///--

concrete_instance
class Random_Uniform_Generator_1 :
 instantiates
 Random_Uniform_1 <
 Random_Kernel_1 <>
 >
{};

//---

#endif // CI_RANDOM_UNIFORM_GENERATOR_1

Figure 3-17: CI/Random/Uniform_Generator_1.h
Finally, Figure 3-18 shows the CCD for Random_Uniform_Generator_1. A comparison with the
CCD in Figure 3-13 is instructive. The simpler CCD shown earlier is all a client of
Random_Uniform_Generator_1 need to know about it: it’s a concrete instance and it implements
Random_Uniform. The more complex CCD shows additional structure that explains how it
implements Random_Uniform: it is an instance of a template, Random_Uniform_1, that
implements Random_Uniform (and it happens to use Random_Kernel_1 for the Random_Kernel
operations).

Figure 3-18: CCD for Random_Uniform_Generator_1

Random_
Uniform

Random_
Kernel

extends
Random_
Uniform_1

implements

Random_
Kernel_1

implements

Random_
Uniform_

Generator_1

uses instantiates

implements

extends

68 SOFTWARE COMPONENT ENGINEERING, VOLUME 2

To summarize, using the same technique that decouples a checking component from the
component it checks, you can decouple a concrete extension from the component it extends.

3.4 Summary
Generalizing collection components to work with arbitrary entry types is the most obvious use
for abstract and concrete templates. Yet it is arguably not the most important one. That honor
goes to decoupling concrete-to-concrete dependencies. Introducing concrete-to-concrete
dependencies in code is as easy as falling off a log—but it leads to software that is needlessly
difficult to understand and to change.
A disciplined software component designer can avoid concrete-to-concrete dependencies by
observing the following principles:

• Limited Dependence Rule: Design each component so it depends on as few other
components as possible.

• Least Information Rule: Design each component so it depends only on components that
contain information that is required to understand the new component.

An important implication of these fundamental design rules is:
• Concrete Component Dependence Rule: Avoid introducing a dependence on a concrete

component. If the dependence of a concrete component on another component is
required, create that dependence to an abstract component.

There is a nice way to satisfy the requirements of the concrete component dependence rule, as
illustrated in this chapter by two important examples of its application: checking components and
concrete extensions. Simply put, in every new component create a formal template parameter (a
concrete instance) for each abstract component whose interface contracts it depends on,
restricting that parameter to be an implementation of the associated interface contract.
Checking components arise from an analysis of the defensiveness dilemma, the policy decision
faced by every software engineer regarding which party to an interface contract is responsible for
checking the preconditions of operations. A careful analysis clearly supports the policy known
as design-by-contract, summarized as follows:

• Design-by-Contract Rule: Do not call an operation when its precondition is not satisfied,
unless you are willing to accept any behavior whatsoever from that point onward during
execution of the program.

This policy is logically sound as the one in force for a final delivered software product. During
the software development process, however, a client programmer (being human) can make a
mistake and inadvertently call an operation whose precondition is not satisfied. Debugging code
with such an error is facilitated when it is detected and reported immediately at the point of
occurrence—which does not happen under a strict interpretation of design-by-contract. Enter
checking components, which are wrappers for components that have been developed using
design-by-contract. The client programmer during the software development process wraps a
checking component around the normal (unchecked) component that will be used in the final
delivered product, substituting for it the original component only after he or she is convinced that
it is being used fully in accordance with the design-by-contract rule.
Concrete extensions arise from the need to add functionality after a kernel component has been
designed and implemented. There is no way a designer can hope to think of every useful

CHAPTER 3 — ABSTRACT AND CONCRETE TEMPLATES: DECOUPLING 69

operation for a component “up front”, before it is released in a shared catalog to be used by
others. The kernel operations must be reasonably powerful but cannot be all-encompassing.
When a component family needs to be supplemented with a new operation, its interface contract
specification can be added by using an abstract extension. The implementation of this new
operation calls for a concrete extension: a component whose code is layered on top of an
implementation of the kernel. The new operation works by calling the kernel operations to do its
job.
In both these situations, there is an underlying concrete component that does the bulk of the
work. Wrapped around it is a thin layer of new code that invokes the operations of the
underlying component. Both the underlying component and the layer around it are concrete
components, and clearly the latter depends on the former. The use of templates to decouple this
concrete-to-concrete dependence is a crucial idea in software component engineering.

70 SOFTWARE COMPONENT ENGINEERING, VOLUME 2

Client-View Appendices
• Array
• Binary_Tree
• Id_Name_Table
• List
• Natural
• Partial_Map
• Queue
• Record
• Sequence
• Set
• Sorting_Machine
• Stack
• Static_Array
• Text
• Tree

CLIENT-VIEW APPENDICES SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Array
Motivation, Applicability, and Indications for Use
The programming type Array allows you to set up and then repeatedly access and update a fixed-
size table of items of an arbitrary type. You “index” into the table using an Integer value that
lies within an interval determined when you set the “bounds” of the Array object. This set-up
occurs after you declare the object and typically is done just once for each object; but you may
reuse the same Array object by resetting its bounds.
For example, suppose you want to record the high temperature for each day of the month. To do
this, you can declare an Array object whose items are of type Real and set it up to be indexed by
the values 1 through 31 (e.g., for January). When you set these bounds, each entry in the table
has an initial value for type Real, i.e., 0.0. You may access and update the value associated with
each day. Once you are done processing data for January, you may use the same Array object to
record the high temperature for each day of February, say: Simply reset the Array’s bounds to be
1 through 28 (or 29) and repeat the process.
The most closely related component is Static_Array, which is nearly identical except in regard to
when the index bounds are fixed. Another closely related component is Sequence. A Sequence
object starts out as an empty string of Item values, so if you want to use it as a table in the
fashion mentioned above you have to add entries to it one by one until the table is populated with
values. A Array object becomes populated with initial values of type Item as soon as you set its
interval bounds. With a Sequence object you can interleave operations that change the size of
the Sequence with operations that access and update existing entries, possibly deferring the
decision to add more entries or to remove some; however, adding and removing changes the
indices of some of the existing entries. With the Array object you can’t change the bounds of the
table without completely wiping out the previous table and starting over with new bounds; you
decide up front on the required size and bounds, and then you access and update table entries
whose indices remained fixed throughout. The Sequence is always indexed starting with 0. The
Array object may be set up to be indexed starting with any Integer value.

Related Components
• Sequence — a type that is similar to Array except that it is incrementally resizable, and that

it is always indexed from 0
• Static_Array — a type that is essentially identical to Array except that the index bounds are

fixed not at run time, but at template instantiation time

Component Family Members

Abstract Components
• Array_Kernel — the programming type of interest, with the operations below

• Set_Bounds
• Accessor
• Lower_Bound

ARRAY-2 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

• Upper_Bound

Concrete Components
• Array_Kernel_1_C — This is a checking implementation of Array_Kernel in which the

execution time for each of the operations constructor, the accessor, Lower_Bound, and
Upper_Bound is constant; the execution time for the destructor is proportional to the length
of the interval between the upper and lower bounds; and the execution time for Set_Bounds is
proportional to the sum of the length of the interval between the current upper and lower
bounds and the length of the interval between the new lower and upper bounds. All objects
of this type have the interface of Array_Kernel, with the concrete template name
Array_Kernel_1_C substituted for the abstract template name Array_Kernel.

 To bring this component into the context you write:
#include "CT/Array/Kernel_1_C.h"

Component Coupling Diagram

 Array_
Kernel

Array_
Kernel_1_C

implements

ARRAY (CLIENT VIEW) ARRAY-3

Descriptions

Array_Kernel Type and Standard Operations

Formal Contract Specification
 /*!
 math subtype INDEXED_TABLE is finite set of (
 i: integer,
 x: Item
)
 exemplar t
 constraint
 for all i1, i2: integer, x1, x2: Item
 where ((i1,x1) is in t and
 (i2,x2) is in t)
 (if i1 = i2 then x1 = x2)

 math subtype ARRAY_MODEL is (
 lb: integer,
 ub: integer,
 table: INDEXED_TABLE
)
 exemplar a
 constraint
 for all i: integer
 (there exists x: Item
 ((i,x) is in a.table)
 iff a.lb <= i <= a.ub)
 !*/

 standard_abstract_operations (Array_Kernel);
 /*!
 Array_Kernel is modeled by ARRAY_MODEL
 initialization ensures
 self = (1, 0, empty_set)
 !*/

Informal Description
The model for Array_Kernel is a three-tuple: an integer which is the lower bound of the interval
of legal indices into a table, an integer which is the upper bound of that interval, and the table
itself: a finite set of ordered pairs of type (integer, Item) that contains exactly one pair for each
integer within the interval from the lower bound to the upper bound, inclusive. Initially the
lower bound is 1 and upper bound is 0. The constraint of the model implies that the set of pairs
is, therefore, initially empty.
Like all Resolve/C++ types, Array_Kernel comes with operator &= and Clear. Notice that the
bounds on the interval of legal indices is part of the model of an individual Array_Kernel object,
so it is perfectly OK to swap two Array_Kernel objects that have different bounds. (Of course,
these two Array_Kernel objects still must have the same Item type, or they are not of the same
type and therefore cannot be swapped with each other.)

ARRAY-4 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Note — The sample traces for this and the other operation descriptions refer to the type
Array_Of_Text, which is the result of the following instantiation:

concrete_instance
class Array_Of_Text :
 instantiates
 Array_Kernel_1_C <Text>
{};

Sample Traces
Statement Object Values

 (a1 is not in scope)

object Array_Of_Text a1;

 a1 = (1, 0, { })

ARRAY (CLIENT VIEW) ARRAY-5

Set_Bounds

Formal Contract Specification
 procedure Set_Bounds (
 preserves Integer lower,
 preserves Integer upper
) is_abstract;
 /*!
 ensures
 self.lb = lower and
 self.ub = upper and
 for all i: integer
 (there exists x: Item
 ((i,x) is in self.table and
 is_initial (x)) iff
 self.lb <= i <= self.ub)
 !*/

Informal Description
Note — This and the other operation descriptions refer to these objects in examples:

object Array_Of_Text a1, a2;
object Text t;
object Integer i1, i2;

A call to the Set_Bounds operation has the form:
a1.Set_Bounds (i1, i2);

This operation sets the lower and upper bounds on the interval of legal indices into a1 to be i1
and i2, respectively. It also makes the value in each position of a1.table an initial value for type
Item.
Because the initial value of a newly declared Array_Type object makes it essentially useless until
the bounds are changed, Set_Bounds is generally the first operation called for a new object of the
type.

Sample Traces
Statement Object Values

 a1 = (7, 9,

 {(7,"abcd"), (8,"XYZ"),

 (9,"bucks")})

i1 = 3

i2 = 4

a1.Set_Bounds (i1, i2);

 a1 = (3, 4, {(3,""), (4,"")})

i1 = 3

i2 = 4

ARRAY-6 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Accessor

Formal Contract Specification
 function Item& operator [] (
 preserves Integer i
) is_abstract;
 /*!
 requires
 self.lb <= i <= self.ub
 ensures
 (i, self[i]) is in self.table
 !*/

Informal Description
A call to the accessor operator [] has the form of an expression:
 ... a1[i1] ...;

This expression acts as the name of an object of type Item (i.e., Text in this case) whose value is
that paired with i1 in a1. You may make this call only if there is a pair in a1.table whose first
component is i1, i.e., only if i1 lies between a1.lb and a1.ub inclusive.
You may use a1[i1] wherever any other object of type Item (i.e., Text in this case) may appear.
The accessor operator [], like all functions, preserves its arguments. But it is important to
realize that the accessor expression a1[i1] does not simply denote the value associated with i1 in
a1, it acts as the name of an object of type Item which you may consider to be in that particular
pair in a1.table. This means that not only may you use the expression a1[i1] as a value of type
Item; you may even change the value of the object called a1[i1]—but remember that this also
changes the value of a1.
The sample traces help illustrate some important points regarding the convenience and danger of
accessor expressions. The first and second sample statements show how an accessor expression
such as a1[i1] acts like an object of type Item whose value may be changed, depending on the
statement in which the expression occurs. The third sample statement’s call to the swap operator
involves other arguments (e.g., a2), but none of the other arguments may be a1 or may involve
an accessor expression for a1 because this would violate the repeated argument rule. So, while
you might be tempted to write something like:

a1[i1] &= a1[i2];

this statement violates the repeated argument rule. Be aware that the C++ compiler will not
report this as an error. You need to avoid the pitfall by personal discipline.

ARRAY (CLIENT VIEW) ARRAY-7

Sample Traces
Statement Object Values

 a1 = (7, 9,

 {(7,"abcd"), (8,"XYZ"),

 (9,"bucks")})

i1 = 8

t = "go"

a1[i1] &= t;

 a1 = (7, 9,

 {(7,"abcd"), (8,"go"),

 (9,"bucks")})

i1 = 8

t = "XYZ"

a1[8] = t;

 a1 = (7, 9,

 {(7,"abcd"), (8,"XYZ"),

 (9,"bucks")})

i1 = 8

t = "XYZ"

...

 a1 = (7, 9,

 {(7,"abcd"), (8,"go"),

 (9,"bucks")})

a2 = (10, 11,

 {(10,""), (11,"cd")})

i1 = 8

i2 = 11

a1[i1] &= a2[i2];

 a1 = (7, 9,

 {(7,"abcd"), (8,"cd"),

 (9,"bucks")})

a2 = (10, 11,

 {(10,""), (11,"go")})

i1 = 8

i2 = 11

ARRAY-8 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Lower_Bound

Formal Contract Specification
 function Integer Lower_Bound () is_abstract;
 /*!
 ensures
 Lower_Bound = self.lb
 !*/

Informal Description
A call to the Lower_Bound operation has the form of an expression:
 ... a1.Lower_Bound () ...;

This operation returns an Integer value which is the lower bound on the interval of legal indices
into a1, i.e., a1.lb.

Sample Traces
Statement Object Values

 a1 = (7, 9,

 {(7,"abcd"), (8,"go"),

 (9,"bucks")})

i1 = -32

i1 = a1.Lower_Bound ();

 a1 = (7, 9,

 {(7,"abcd"), (8,"go"),

 (9,"bucks")})

i1 = 7

ARRAY (CLIENT VIEW) ARRAY-9

Upper_Bound

Formal Contract Specification
 function Integer Upper_Bound () is_abstract;
 /*!
 ensures
 Upper_Bound = self.ub
 !*/

Informal Description
A call to the Upper_Bound operation has the form of an expression:
 ... a1.Upper_Bound () ...;

This operation returns an Integer value which is the upper bound on the interval of legal indices
into a1, i.e., a1.ub.

Sample Traces
Statement Object Values

 a1 = (7, 9,

 {(7,"abcd"), (8,"go"),

 (9,"bucks")})

i1 = -32

i = a1.Upper_Bound ();

 a1 = (7, 9,

 {(7,"abcd"), (8,"go"),

 (9,"bucks")})

i1 = 9

ARRAY-10 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Binary_Tree
Motivation, Applicability, and Indications for Use
The programming type Binary_Tree is ubiquitous in computing. It is commonly used in formal
language processing applications, as the basis for fast searching algorithms (as might be used in
an implementation of Set or Partial_Map), and in many other situations where the problem at
hand has the distinctive recursive structure of divide-and-conquer algorithms.
The mathematics used to model trees requires some explanation. Figure 1 shows a tree called T.
The root of T is d, the item (also called a node) at the top of the tree; d has two children, where a
is the left child and k is the right child. Similarly, a has only a left child h, and h has only a
right child g; while k has two children, with s being the left child and t the right. Since g, s, x,
and y have no children, they are called the leaves of T. All other items in T are interior items.

Figure 1: A binary tree T

Continuing the “family tree” metaphor that gives rise to some (but, as you can see, not all) of the
terms here, k is the parent of both s and t, and s and t are siblings. T is a binary tree since every
item in T has at most two children; that is, every item has 0, 1, or 2 children. The string of items
<g,s,x,y> is the frontier or yield of T: the string of leaves of T from left to right.
There are several subtrees of T. Some of these are pictured in Figure 2.

k

s t

x y

h

g

t

x y

Figure 2: Some subtrees of T

Binary trees have a particular structure or composition. Specifically, every binary tree (except
for the empty binary tree; see below) consists of a root item together with two subtrees, called
the left subtree and right subtree. The tree T consists of the root item d and the left and right
subtrees L and R pictured in Figure 3. Notice that each of the left and right subtrees of T has
exactly the same type of structure as T itself. For example, the right subtree of T, in Figure 3
called R, consists of a root item k and the left and right subtrees L' and R'; and so on for L' and R'.

BINARY_TREE-2 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Figure 3: The abbreviated structure of T and R

The left subtree L' of R is interesting. It appears to consist of only a root item s, and nothing
more. This is not quite right. Actually, it consists of a root item s and left and right subtrees,
each of which is an empty tree. Empty trees are trees containing no items. (Empty trees in tree
theory play the same role as do empty strings in string theory and empty sets in set theory.) So
in fact, every leaf item in tree T is the root of a subtree where both the left and right subtrees are
empty trees. With this in mind, a more accurate depiction of the tree T is given in Figure 4.
Generally, trees are drawn as in Figure 1, omitting the empty trees seen in Figure 4. Even
though they may not be shown, don’t forget that the empty trees are there! Also, note that this
short cut in drawing trees results in some ambiguity. Specifically, when we write s, by itself, it is
ambiguous as to whether we mean the tree with root s and left and right subtrees that are empty,
or just the item s. In most cases, the type and therefore the intention should be clear from
context. When it is not, we’ll try to be careful to say exactly what we mean.

Figure 4: The full structure of T

The size of T, denoted |T|, is the number of items in T; e.g., in Figure 1 as in Figure 4, |T| = 9.
The height of T is the number of items on the longest path from the root to some leaf. (The
height of an empty tree is defined to be 0.) Again referring to Figure 1 or Figure 4, you can see
the height of T is 4 since the path (string of items) <d,k,t,x> has length 4; so do two other paths,
but no path is longer than 4. The notion of a path also gives rise to that of a level. An item

BINARY_TREE (CLIENT VIEW) BINARY_TREE-3

occurs on level k in a tree if the length of the path1 from the root to that item has length k. In T
of Figure 1 and Figure 4, d is on level 1; a and k are on level 2; h, s, and t are on level 3; etc.
Notice that the empty trees shown in the full structure of Figure 4 do not contribute either to the
size or the height of T.
A binary tree is complete if all the leaves occur on at most two different levels and if all the
leaves at the bottom (highest-numbered) level are as far to the left as possible. This means that T
is not a complete binary tree, nor are the first two trees shown in Figure 2. But the third tree in
Figure 2 is complete. The first tree of Figure 2 would be complete if the subtrees whose roots
are s and t were exchanged, and the second tree of Figure 2 would be complete if g were the left
subtree and not the right subtree of h.
We are now ready to define the mathematical idea of “binary trees over a set of items”. That is,
binary tree of A is the name of a mathematical type, and we need to define the set of values
associated with the type, assuming we know the set of values associated with mathematical type
A. In tree theory there is a special mathematical operation (function), the compose function, that
takes as arguments a root item from A, say x, a binary tree of A, say T1, and another binary tree
of A, say T2, and produces a binary tree of A, say T3, with x as the root of T3, with T1 as the left
subtree of T3, and with T2 as the right subtree of T3. This is pictured in Figure 5.

x

T1 T2

Figure 5: The tree T3 = compose (x, T1, T2)

We now define inductively the set of “binary trees over set A” (or binary tree of A, which is the
type name you use when writing the mathematics of trees). This set consists of exactly those
binary trees that can be built up from the empty tree by zero or more applications of the compose
function according to the following cases:
• Base case: The empty tree, denoted empty_tree, is an element of binary trees over set A.
• Inductive case: If T1 and T2 are elements of binary trees over set A and if x is an element of

A, then compose (x, T1, T2) is an element of binary trees over set A.
As an example, here is a complete justification that the leftmost tree pictured in Figure 2 is a
binary tree according to the definition just given:
• compose (s, empty_tree, empty_tree) is a binary tree, say T1.
• compose (x, empty_tree, empty_tree) is a binary tree, say T2.
• compose (y, empty_tree, empty_tree) is a binary tree, say T3.
• compose (t, T2, T3) is a binary tree, say T4.
• compose (k, T1, T4) is a binary tree, the one we’re looking for.

1 Notice that we say the path because there is exactly one path from the root to each item in a tree. This
property is the basis for another way to characterize trees.

BINARY_TREE-4 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Related Components
• None

Component Family Members

Abstract Components
• Binary_Tree_Kernel — the programming type of interest, with the operations below

• Compose
• Decompose
• Accessor
• Height
• Size

Concrete Components
• Binary_Tree_Kernel_1a_C — This is a checking implementation of Binary_Tree_Kernel in

which the execution time for each of the operations constructor, Compose, Decompose,
accessor, and Size is constant, while the execution time for the destructor is proportional to
the size of the tree. All objects of this type have the interface of Binary_Tree_Kernel, with
the concrete template name Binary_Tree_Kernel_1a_C substituted for the abstract template
name Binary_Tree_Kernel.

 To bring this component into the context you write:
#include "CT/Binary_Tree/Kernel_1a_C.h"

Component Coupling Diagram

 Binary_
Tree_
Kernel

Binary_
Tree_

Kernel_1a_C

implements

BINARY_TREE (CLIENT VIEW) BINARY_TREE-5

Descriptions

Binary_Tree_Kernel Type and Standard Operations

Formal Contract Specification
 standard_abstract_operations (Binary_Tree_Kernel);
 /*!
 Binary_Tree_Kernel is modeled by binary tree of Item
 initialization ensures
 self = empty_tree
 !*/

Informal Description
The model for Binary_Tree_Kernel is a binary tree of items which is initially empty. A
Binary_Tree_Kernel object may be arbitrarily large. Like all Resolve/C++ types,
Binary_Tree_Kernel comes with operator &= and Clear.
Note — The sample traces for this and the other operation descriptions refer to the type
Binary_Tree_Of_Integer, which is the result of the following instantiation:

concrete_instance
class Binary_Tree_Of_Integer :
 instantiates
 Binary_Tree_Kernel_1a_C <Integer>
{};

Sample Traces
Statement Object Values

 (t1 is not in scope)

object Binary_Tree_Of_Integer t1;

 t1 =

BINARY_TREE-6 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Compose

Formal Contract Specification
 procedure Compose (
 consumes Item& x,
 consumes Binary_Tree_Kernel& left_subtree,
 consumes Binary_Tree_Kernel& right_subtree
) is_abstract;
 /*!
 produces self
 ensures
 self = compose (#x, #left_subtree, #right_subtree)
 !*/

Informal Description
Note — This and the other operation descriptions refer to these objects in examples:

object Binary_Tree_Of_Integer t1, t2, t3, t4;
object Integer i;

A call to the Compose operation has the form:
t1.Compose (i, t2, t3);

This operation produces as the value of t1 a binary tree whose root value is i, and whose left and
right subtree values are t2 and t3.

BINARY_TREE (CLIENT VIEW) BINARY_TREE-7

Sample Traces
Statement Object Values

 t1 =

t2 =

t3 =

i = 4

t1.Compose (i, t2, t3);

t1 =

t2 =

t3 =

i = 0

...

t1 =

t2 =

t3 =

i = 70

t1.Compose (i, t2, t3);

t1 =

t2 =

t3 =

i = 0

...

BINARY_TREE-8 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

 t1 =

t2 =

t3 =

i = -52

t1.Compose (i, t2, t3);

t1 =

t2 =

t3 =

i = 0

BINARY_TREE (CLIENT VIEW) BINARY_TREE-9

Decompose

Formal Contract Specification
 procedure Decompose (
 produces Item& x,
 produces Binary_Tree_Kernel& left_subtree,
 produces Binary_Tree_Kernel& right_subtree
) is_abstract;
 /*!
 consumes self
 requires
 self /= empty_tree
 ensures
 #self = compose (x, left_subtree, right_subtree)
 !*/

Informal Description
A call to the Decompose operation has the form:
 t1.Decompose (i, t2, t3);

This operation breaks t1 into three pieces: the root, whose value it returns in i, and the left and
right subtrees, whose values it returns in t2 and t3, respectively. You may make this call only if
t1 is not empty.

BINARY_TREE-10 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Sample Traces
Statement Object Values

t1 =

t2 =

t3 =

i = 21

t1.Decompose (i, t2, t3);

 t1 =

t2 =

t3 =

i = -52

t3.Decompose (i, t1, t2);

t1 =

t2 =

t3 =

i = 13

t1.Decompose (i, t2, t3);

 t1 =

t2 =

t3 =

i = 59

BINARY_TREE (CLIENT VIEW) BINARY_TREE-11

Accessor

Formal Contract Specification
 function Item& operator [] (
 preserves Accessor_Position& current
) is_abstract;
 /*!
 requires
 self /= empty_tree
 ensures
 there exists left, right: binary tree of Item
 (self = compose (self[current], left, right))
 !*/

Informal Description
A call to the accessor operator [] has the form of an expression:
 ... t1[current] ...;

This expression acts as the name of an object of type Item whose value is the item at the root of
t1. You may make this call only if t1 is not empty.
The special word current is the only thing that can appear between [] in the accessor. It always
refers to the single item at the root of the tree, which is the one that would be separated from the
two subtrees if you called the Decompose operation at the point where you are using the accessor
operator. You may use t1[current] wherever any other object of type Item may appear.
The accessor operator [], like all functions, preserves its arguments. But it is important to
realize that the accessor expression t1[current] does not simply denote the value of the root item
in t1, it acts as the name of an object of type Item which you may consider to lie at the root of t1.
This means that not only may you use the expression t1[current] as a value of type Item; you
may even change the value of the object called t1[current]—but remember that this also changes
the value of t1.
The sample traces help illustrate some important points regarding the convenience and danger of
accessor expressions. The first and second sample statements show how an accessor expression
such as t1[current] acts like an object of type Item whose value may be changed, depending on
the statement in which the expression occurs. The third sample statement shows that t1[current]
may appear as an argument in a call where an Item is required. This call involves other
arguments (e.g., t2), but none of the other arguments may be t1 or may involve an accessor
expression for t1 because this would violate the repeated argument rule. So, while you might be
tempted to write something like:

t1.Compose (t2[current], t2, t3);

this statement violates the repeated argument rule. Be aware that the C++ compiler will not
report this as an error. You need to avoid the pitfall by personal discipline.
The last statement in the tracing table also illustrates that an accessor expression acts exactly like
an object of type Item. Notice that t1[current], which is being composed as the new root of t2 in
this statement, is consumed (its new value is 0 since Item is Integer here) because Compose
consumes its arguments. So this statement changes both t1 and t2.

BINARY_TREE-12 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Sample Traces
Statement Object Values

t1 =

i = -52

t1[current] &= i;

t1 =

i = 21

t1[current] = i;

t1 =

i = 21

...

BINARY_TREE (CLIENT VIEW) BINARY_TREE-13

t1 =

t2 =

t3 =

t4 =

t2.Compose (t1[current], t3, t4);

t1 =

t2 =

t3 =

t4 =

BINARY_TREE-14 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Height

Formal Contract Specification
 /*!
 math operation HEIGHT (
 t: binary tree of Item
): integer satisfies
 if t = empty_tree
 then HEIGHT(t) = 0
 else there exists x: Item,
 left, right: binary tree of Item
 (t = compose (x, left, right) and
 HEIGHT(t) = 1 + max (HEIGHT(left),
 HEIGHT(right)))
 !*/

 function Integer Height () is_abstract;
 /*!
 ensures
 Height = HEIGHT (self)
 !*/

Informal Description
A call to the Height operation has the form of an expression:
 ... t1.Height () ...;

This operation returns an Integer value which is the height of t1, i.e., the number of items on the
longest path from the root of t1 to any leaf of t1.

BINARY_TREE (CLIENT VIEW) BINARY_TREE-15

Sample Traces
Statement Object Values

t1 =

i = -68

i = t1.Height ();

t1 =

i = 3

...

 t1 =

i = 2

i = t1.Height ();

 t1 =

i = 0

BINARY_TREE-16 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Size

Formal Contract Specification
 function Integer Size () is_abstract;
 /*!
 ensures
 Size = |self|
 !*/

Informal Description
A call to the Size operation has the form of an expression:
 ... t1.Size () ...;

This operation returns an Integer value which is the number of items in the binary tree t1, i.e.,
|t1|.

Sample Traces
Statement Object Values

t1 =

i = -68

i = t1.Size ();

t1 =

i = 4

...

 t1 =

i = 2

i = t1.Size ();

 t1 =

i = 0

Id_Name_Table
Motivation, Applicability, and Indications for Use
The programming type Id_Name_Table allows you to build, query, and dismantle a set of
ordered pairs (2-tuples) whose two components are an integer, called an id, and a string of
characters, called a name. Each id and each name can appear at most once in any given
Id_Name_Table object.
For example, suppose you need to keep a simple database of employee ids and their names
(assuming all employees have unique names). To do this, you can create an Id_Name_Table
object. To enter the name of an employee you simply add to the Id_Name_Table object the pair
consisting of the employee’s id and the employee’s name. Later you can look up the employee’s
name given the employee’s id, and vice versa. Other operations allow you to manipulate and
observe properties of an Id_Name_Table object, such as its size, i.e., the number of pairs it holds.

Related Components
• Partial_Map — a type that is similar to Id_Name_Table except that (a) it is a template, so the

client can select the types of both components of the ordered pairs; and (b) you can look up a
pair based on the value of only the first of its two components, not both.

Component Family Members

Abstract Components
• Id_Name_Table_Kernel — the programming type of interest, with the operations below

• Add_Id_Name_Pair
• Remove_Id_Name_Pair
• Remove_Any_Pair
• Look_Up_Name_Via_Id
• Look_Up_Id_Via_Name
• Id_Is_In_Table
• Name_Is_In_Table
• Size

Concrete Components
• Id_Name_Table_1_C — This is a checking implementation of the abstract instance

Id_Name_Table_Kernel. It is a concrete instance, i.e., you may declare objects of type
Id_Name_Table_1_C. Id_Name_Table_1_C is a checking component, which means that it
checks the preconditions of its operations. So, if you call any of the Id_Name_Table_1_C
operations with a violated precondition then your program will immediately stop and report
the violation.

 To bring this component into the context you write:

ID_NAME_TABLE-2 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

#include "CI/Id_Name_Table/1_C.h"

• Id_Name_Table_1 — This is a non-checking implementation of the abstract instance
Id_Name_Table_Kernel. It is a concrete instance, i.e., you may declare objects of type
Id_Name_Table_1.

 To bring this component into the context you write:
#include "CI/Id_Name_Table/1.h"

Component Coupling Diagram

 Id_Name_
Table_
Kernel

Id_Name_
Table_1

Id_Name_
Table_1_C

implements implements

ID_NAME_TABLE (CLIENT VIEW) ID_NAME_TABLE-3

Descriptions

Id_Name_Table_Kernel Type and Standard Operations

Formal Contract Specification
 /*!
 math subtype ID_NAME_TABLE_MODEL is finite set of (
 id: integer,
 name: string of character
)
 exemplar m
 constraint
 for all id1, id2: integer,
 name1, name2: string of character
 where ((id1,name1) is in m and
 (id2,name2) is in m)
 (id1 = id2 iff name1 = name2)

 math definition ID_IS_DEFINED_IN (
 m: ID_NAME_TABLE_MODEL,
 id: integer
): boolean is
 there exists name: string of character
 ((id,name) is in m)

 math definition NAME_IS_DEFINED_IN (
 m: ID_NAME_TABLE_MODEL,
 name: string of character
): boolea is
 there exists id: integer
 ((id,name) is in m)
 !*/

 standard_abstract_operations (Id_Name_Table_Kernel);
 /*!
 Id_Name_Table_Kernel is modeled by ID_NAME_TABLE_MODEL
 initialization ensures
 self = empty_set
 !*/

Informal Description
The model for a Id_Name_Table_Kernel object is a finite set of ordered pairs, each of which is
an integer and a string of characters. Each integer and each string of characters is unique among
all the pairs in the set.
An Id_Name_Table_Kernel object is initially empty. An Id_Name_Table_Kernel object may be
an arbitrarily large set. Like all Resolve/C++ types, Id_Name_Table_Kernel comes with
operator &= and Clear.

ID_NAME_TABLE-4 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Sample Traces
Statement Object Values

 (t1 is not in scope)

object Id_Name_Table_1_C t1;

 t1 = {}

ID_NAME_TABLE (CLIENT VIEW) ID_NAME_TABLE-5

Add_Id_Name_Pair

Formal Contract Specification
 procedure Add_Id_Name_Pair (
 preserves Integer id,
 consumes Text& name
) is_abstract;
 /*!
 requires
 not ID_IS_DEFINED_IN (self, id) and
 not NAME_IS_DEFINED_IN (self, name)
 ensures
 self = #self union {(id,#name)}
 !*/

Informal Description
Note — This and the other operation descriptions refer to these objects in examples:

object Id_Name_Table_1_C t1, t2;
object Text name1, name2;
object Integer id1, id2, i;
object Boolean b;

A call to the Add_Id_Name_Pair operation has the form:
t1.Add_Id_Name_Pair (id1, name1);

This operation adds the pair whose value is (id1,name1) to the set t1. You may make this call
only if t1 does not contain already a pair whose id component is id1 and if t1 does not contain
already a pair whose name component is name1.

Sample Traces
Statement Object Values

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco")}

id1 = 2

name1 = "Columbus"

t1.Add_Id_Name_Pair (id1, name1);

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco"),

 (2,"Columbus")}

id1 = 2

name1 = ""

ID_NAME_TABLE-6 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Remove_Id_Name_Pair

Formal Contract Specification
 procedure Remove_Id_Name_Pair (
 preserves Integer id,
 preserves Text name,
 produces Integer& id_copy,
 produces Text& name_copy
) is_abstract;
 /*!
 requires
 (id,name) is in self
 ensures
 id_copy = id and
 name_copy = name and
 self = #self - {(id,name)}
 !*/

Informal Description
A call to the Remove_Id_Name_Pair operation has the form:
 t1.Remove_Id_Name_Pair (id1, name1, id2, name2);

This operation removes from t1 the pair whose id component is id1 and whose name component
is name1 and returns its value in (id2, name2). You may make this call only if there is a pair in
t1 whose id component is id1 and whose name component is name1.

ID_NAME_TABLE (CLIENT VIEW) ID_NAME_TABLE-7

Sample Traces
Statement Object Values

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco"),

 (2,"Columbus")}

id1 = 8

name1 = "San Francisco"

id2 = 10047

name2 = "anything"

t1.Remove_Id_Name_Pair (id1, name1, id2, name2);

 t1 = {(3,"Santa Fe"),

 (2,"Columbus")}

id1 = 8

name1 = "San Francisco"

id2 = 8

name2 = "San Francisco"

...

 t1 = {(3,"Santa Fe"),

 (2,"Columbus")}

id2 = -133

name2 = "doesn't matter"

t1.Remove_Id_Name_Pair (2, "Columbus", id2, name2);

 t1 = {(3,"Santa Fe")}

id2 = 2

name2 = "Columbus"

ID_NAME_TABLE-8 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Remove_Any_Pair

Formal Contract Specification
 procedure Remove_Any_Pair (
 produces Integer& id,
 produces Text& name
) is_abstract;
 /*!
 requires
 self /= empty_set
 ensures
 (id,name) is in #self and
 self = #self - {(id,name)}
 !*/

Informal Description
A call to the Remove_Any_Pair operation has the form:
 t1.Remove_Any_Pair (id1, name1);

This operation removes some pair from t1 — any pair — and returns its value in (id1,name1).
You may make this call only if t1 is not empty.
Notice that this operation may remove a different pair from t1 if called twice in identical
situations, as illustrated in the sample tracing table.

ID_NAME_TABLE (CLIENT VIEW) ID_NAME_TABLE-9

Sample Traces
Statement Object Values

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco"),

 (2,"Columbus")}

id1 = 17

name1 = "don't care"

t1.Remove_Any_Pair (id1, name1);

 t1 = {(8,"San Francisco"),

 (2,"Columbus")}

id1 = 3

name1 = "Santa Fe"

...

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco"),

 (2,"Columbus")}

id1 = 17

name1 = "don't care"

t1.Remove_Any_Pair (id1, name1);

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco")}

id1 = 2

name1 = "Columbus"

ID_NAME_TABLE-10 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Look_Up_Name_Via_Id

Formal Contract Specification
 procedure Look_Up_Name_Via_Id (
 preserves Integer id,
 produces Text& name
) is_abstract;
 /*!
 preserves self
 requires
 ID_IS_DEFINED_IN (self, id)
 ensures
 (id,name) is in self
 !*/

Informal Description
A call to the Look_Up_Name_Via_Id operation has the form:
 t1.Look_Up_Name_Via_Id (id1, name1);

This operation finds the pair in t1 with id component id1 and returns a copy of the name
associated with id1 as the value of name1. You may make this call only if there is a pair in t1
whose id component equals id1.

ID_NAME_TABLE (CLIENT VIEW) ID_NAME_TABLE-11

Sample Traces
Statement Object Values

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco"),

 (2,"Columbus")}

id1 = 2

name1 = "don't care"

t1.Look_Up_Name_Via_Id (id1, name1);

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco"),

 (2,"Columbus")}

id1 = 2

name1 = "Columbus"

...

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco"),

 (2,"Columbus")}

name1 = "who cares"

t1.Look_Up_Name_Via_Id (8, name1);

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco"),

 (2,"Columbus")}

name1 = "San Francisco"

ID_NAME_TABLE-12 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Look_Up_Id_Via_Name

Formal Contract Specification
 procedure Look_Up_Id_Via_Name (
 produces Integer& id,
 preserves Text name
) is_abstract;
 /*!
 preserves self
 requires
 NAME_IS_DEFINED_IN (self, name)
 ensures
 (id,name) is in self
 !*/

Informal Description
A call to the Look_Up_Id_Via_Name operation has the form:
 t1.Look_Up_Id_Via_Name (id1, name1);

This operation finds the pair in t1 with name name1 and returns a copy of the id associated with
name1 as the value of id1. You may make this call only if there is a pair in t1 whose name
component equals name1.

ID_NAME_TABLE (CLIENT VIEW) ID_NAME_TABLE-13

Sample Traces
Statement Object Values

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco"),

 (2,"Columbus")}

id1 = 27702

name1 = "Santa Fe"

t1.Look_Up_Id_Via_Name (id1, name1);

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco"),

 (2,"Columbus")}

id1 = 3

name1 = "Santa Fe"

...

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco"),

 (2,"Columbus")}

id1 = 49

t1.Look_Up_Id_Via_Name (id1, "Columbus");

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco"),

 (2,"Columbus")}

id1 = 2

ID_NAME_TABLE-14 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Id_Is_In_Table

Formal Contract Specification
 function Boolean Id_Is_In_Table (
 preserves Integer id
) is_abstract;
 /*!
 ensures
 Id_Is_In_Table = ID_IS_DEFINED_IN (self, id)
 !*/

Informal Description
A call to the Id_Is_In_Table operation has the form of an expression:
 ... t1.Id_Is_In_Table (id1) ...;

This operation returns true if there is a pair in t1 with an id component of id1 and returns false
otherwise.

Sample Traces
Statement Object Values

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco"),

 (2,"Columbus")}

b = true

id1 = 99

b = t1.Id_Is_In_Table (id1);

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco"),

 (2,"Columbus")}

b = false

id1 = 99

...

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco"),

 (2,"Columbus")}

b = false

b = t1.Id_Is_In_Table (2);

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco"),

 (2,"Columbus")}

b = true

ID_NAME_TABLE (CLIENT VIEW) ID_NAME_TABLE-15

Name_Is_In_Table

Formal Contract Specification
 function Boolean Name_Is_In_Table (
 preserves Text name
) is_abstract;
 /*!
 ensures
 Name_Is_In_Table =
 NAME_IS_DEFINED_IN (self, name)
 !*/

Informal Description
A call to the Name_Is_In_Table operation has the form of an expression:
 ... t1.Name_Is_In_Table (name1) ...;

This operation returns true if there is a pair in t1 with a name component of name1 and returns
false otherwise.

Sample Traces
Statement Object Values

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco"),

 (2,"Columbus")}

b = true

name1 = "Cincinnati"

b = t1.Name_Is_In_Table (name1);

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco"),

 (2,"Columbus")}

b = false

name1 = "Cincinnati"

...

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco"),

 (2,"Columbus")}

b = false

b = t1.Name_Is_In_Table ("Columbus");

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco"),

 (2,"Columbus")}

b = true

ID_NAME_TABLE-16 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Size

Formal Contract Specification
 function Integer Size () is_abstract;
 /*!
 ensures
 Size = |self|
 !*/

Informal Description
A call to the Size operation has the form of an expression:
 ... t1.Size () ...;

This operation returns an Integer value which is the size of the set t1, i.e., |t1|.

Sample Traces
Statement Object Values

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco"),

 (2,"Columbus")}

i = -68

i = t1.Size ();

 t1 = {(3,"Santa Fe"),

 (8,"San Francisco"),

 (2,"Columbus")}

i = 3

List
Motivation, Applicability, and Indications for Use
The programming type List allows you to collect and then process items in sequential order. But
unlike its close cousins Queue and Stack it allows you to add and remove items not just from the
ends of a string of items but from anywhere in the middle as well. So wherever you might use a
Queue or Stack object but want a bit more flexibility in terms of which items you may access,
then consider a List object.
On the other hand, a List object does not provide as much flexibility as a Sequence object
because you cannot directly access an item based on its position in a List object. The relative
advantage of using a List object is that there is a very efficient implementation of the List kernel
operations (all can run in constant time) which cannot be matched by any implementation of
Sequence.

Related Components
• Queue — a type that allows you to add items in sequence one at a time, but when you

remove an item it is the first one that was put in
• Stack — a type that allows you to add items in sequence one at a time, but when you remove

an item it is the last (most recent) one that was put in
• Sequence — a type that allows you to add or remove items in sequence one at a time,

accessing an item at any time by “random access” based on its current position

Component Family Members

Abstract Components
• List_Kernel — the programming type of interest, with the operations below

• Move_To_Start
• Move_To_Finish
• Advance
• Add_Right
• Remove_Right
• Accessor
• Left_Length
• Right_Length

Concrete Components
• List_Kernel_1a_C — This is a checking implementation of List_Kernel in which the

execution time for each of the operations constructor, Move_To_Start, Move_To_Finish,
Advance, Add_Right, Remove_Right, the accessor, Left_Length, and Right_Length is
constant, while the execution time for the destructor is proportional to the sum of the lengths

LIST-2 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

of the two strings in the tuple. All objects of this type have the interface of List_Kernel, with
the concrete template name List_Kernel_1a_C substituted for the abstract template name
List_Kernel.

 To bring this component into the context you write:
#include "CT/List/Kernel_1a_C.h"

Component Coupling Diagram

List_

Kernel

List_
Kernel_1a_C

implements

LIST (CLIENT VIEW) LIST-3

Descriptions

List_Kernel Type and Standard Operations

Formal Contract Specification
 /*!
 math subtype LIST_MODEL is (
 left: string of Item
 right: string of Item
)
 !*/

 standard_abstract_operations (List_Kernel);
 /*!
 List_Kernel is modeled by LIST_MODEL
 initialization ensures
 self = (empty_string, empty_string)
 !*/

Informal Description
The model for List_Kernel is a pair of strings of items, each of which is initially empty. The
concatenation of the two strings contains all the items in a List_Kernel object. These strings are
called “left” and “right” to suggest that you should imagine a separator, called “the fence”, to lie
between the two strings: the first string is to the left of the fence and the other string is to the
right of the fence.
A List_Kernel object may be arbitrarily large, i.e., both strings may be arbitrarily long. Like all
Resolve/C++ types, List_Kernel comes with operator &= and Clear.
Note — The sample traces for this and the other operation descriptions refer to the type
List_Of_Integer, which is the result of the following instantiation:

concrete_instance
class List_Of_Integer :
 instantiates
 List_Kernel_1a_C <Integer>
{};

Prototyopical objects of this type in the examples that follow have names beginning with “s”, not
“l”, because it is difficult to visually distinguish the letter “l” from the numeral “1”.

Sample Traces
Statement Object Values

 (s1 is not in scope)

object List_Of_Integer s1;

 s1 = (< >, < >)

LIST-4 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Move_To_Start

Formal Contract Specification
 procedure Move_To_Start () is_abstract;
 /*!
 ensures
 self = (empty_string, #self.left * #self.right)
 !*/

Informal Description
Note — This and the other operation descriptions refer to these objects in examples:

object List_Of_Integer s1, s2;
object Integer i;

A call to the Move_To_Start operation has the form:
s1.Move_To_Start ();

This operation moves the fence to the “start” (left end) of s1 but does not otherwise affect the
items of s1.
The left end is called the start of a List object because, ordinarily, sequential processing of the
items proceeds from left to right using the Advance operation (see below). The Move_To_Start
operation takes you directly to the start by skipping backward over all items in s1.left, thereby
preparing for a typical sequential processing activity.

Sample Traces
Statement Object Values

 s1 = (< 58, 12 >, < 9, 90 >)

s1.Move_To_Start ();

 s1 = (< >, < 58, 12, 9, 90 >)

LIST (CLIENT VIEW) LIST-5

Move_To_Finish

Formal Contract Specification
 procedure Move_To_Finish () is_abstract;
 /*!
 ensures
 self = (#self.left * #self.right, empty_string)
 !*/

Informal Description
A call to the Move_To_Finish operation has the form:

s1.Move_To_Finish ();

This operation moves the fence to the “finish” (right end) of s1 but does not otherwise affect the
items of s1.
The right end is called the finish of a List object because, ordinarily, sequential processing of the
items proceeds from left to right using the Advance operation (see below). The Move_To_Finish
operation takes you directly to the finish by skipping over all items in s1.right.

Sample Traces
Statement Object Values

 s1 = (< 58, 12 >, < 9, 90 >)

s1.Move_To_Finish ();

 s1 = (< 58, 12, 9, 90 >, < >)

LIST-6 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Advance

Formal Contract Specification
 procedure Advance () is_abstract;
 /*!
 requires
 self.right /= empty_string
 ensures
 self.left * self.right = #self.left * #self.right and
 |self.left| = |#self.left| + 1
 !*/

Informal Description
A call to the Advance operation has the form:

s1.Advance ();

This operation moves the fence forward (toward the right) by one position in s1 but does not
otherwise affect the items of s1. You may make this call only if s1.right is not empty.

Sample Traces
Statement Object Values

 s1 = (< 58, 12 >, < 9, 90 >)

s1.Advance ();

 s1 = (< 58, 12, 9 >, < 90 >)

LIST (CLIENT VIEW) LIST-7

Add_Right

Formal Contract Specification
 procedure Add_Right (
 consumes Item& x
) is_abstract;
 /*!
 ensures
 self = (#self.left, <#x> * #self.right)
 !*/

Informal Description
A call to the Add_Right operation has the form:

s1.Add_Right (i);

This operation adds the item whose value is i just to the right of the fence in s1, i.e., it adds it at
the left end of s1.right.

Sample Traces
Statement Object Values

 s1 = (< 58, 12 >, < 9, 90 >)

i = 13

s1.Add_Right (i);

 s1 = (< 58, 12 >, < 13, 9, 90 >)

i = 0

LIST-8 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Remove_Right

Formal Contract Specification
 procedure Remove_Right (
 produces Item& x
) is_abstract;
 /*!
 requires
 self.right /= empty_string
 ensures
 #self = (self.left, <x> * self.right)
 !*/

Informal Description
A call to the Remove_Right operation has the form:
 s1.Remove_Right (i);

This operation removes and returns in i the item just to the right of the fence in s1, i.e., the item
at the left end of s1.right. You may make this call only if s1.right is not empty.

Sample Traces
Statement Object Values

 s1 = (< 58, 12 >, < 13, 9, 90 >)

i = -67

s1.Remove_Right (i);

 s1 = (< 58, 12 >, < 9, 90 >)

i = 13

LIST (CLIENT VIEW) LIST-9

Accessor

Formal Contract Specification
 function Item& operator [] (
 preserves Accessor_Position& current
) is_abstract;
 /*!
 requires
 self.right /= empty_string
 ensures
 there exists a: string of Item
 (self.right = <self[current]> * a)
 !*/

Informal Description
A call to the accessor operator [] has the form of an expression:
 ... s1[current] ...;

This expression acts as the name of an object of type Item whose value is the item at the left end
of s1.right. You may make this call only if s1.right is not empty.
The special word current is the only thing that can appear between [] in the accessor for type
List. It always refers to the single item that you can access directly: the one just to the right of
the fence, which is the one that would be removed if you called the Remove_Right operation at
the point where you are using the accessor operator. You may use s1[current] wherever any
other object of type Item may appear.
The accessor operator [], like all functions, preserves its arguments. But it is important to
realize that the accessor expression s1[current] does not simply denote the value of the current
item in s1, it acts as the name of an object of type Item which you may consider to lie at the left
end of the string s1.right. This means that not only may you use the expression s1[current] as a
value of type Item; you may even change the value of the object called s1[current]—but
remember that this also changes the value of s1.
The sample traces help illustrate some important points regarding the convenience and danger of
accessor expressions. The first and second sample statements show how an accessor expression
such as s1[current] acts like an object of type Item whose value may be changed, depending on
the statement in which the expression occurs. The third sample statement shows that s1[current]
may appear as an argument in a call where an Item is required. This call involves other
arguments (e.g., s2), but none of the other arguments may be s1 or may involve an accessor
expression for s1 because this would violate the repeated argument rule. So, while you might be
tempted to write something like:

s1.Add_Right (s1[current]);

this statement violates the repeated argument rule. Be aware that the C++ compiler will not
report this as an error. You need to avoid the pitfall by personal discipline.
The last statement in the tracing table also illustrates that an accessor expression acts exactly like
an object of type Item. Notice that s1[current], which is being added to s2 in this statement, is
consumed (its new value is 0 since Item is Integer here) because Add_Right consumes its
argument. So this statement changes both s1 and s2.

LIST-10 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Sample Traces
Statement Object Values

 s1 = (< 92, 6 >, < 18, 53 >)

i = 37

s1[current] &= i;

 s1 = (< 92, 6 >, < 37, 53 >)

i = 18

s1[current] = i;

 s1 = (< 92, 6 >, < 18, 53 >)

i = 18

...

 s1 = (< 92, 6 >, < 18, 53 >)

s2 = (< 47 >, < -3 >)

s2.Add_Right (s1[current]);

 s1 = (< 92, 6 >, < 0, 53 >)

s2 = (< 47 >, < 18, -3 >)

LIST (CLIENT VIEW) LIST-11

Left_Length

Formal Contract Specification
 function Integer Left_Length () is_abstract;
 /*!
 ensures
 Left_Length = |self.left|
 !*/

Informal Description
A call to the Left_Length operation has the form of an expression:
 ... s1.Left_Length () ...;

This operation returns an Integer value which is the length of the string s1.left, i.e., |s1.left|.

Sample Traces
Statement Object Values

 s1 = (< 58, 12 >, < 13, 9, 90 >)

i = -37

i = s1.Left_Length ();

 s1 = (< 58, 12 >, < 13, 9, 90 >)

i = 2

LIST-12 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Right_Length

Formal Contract Specification
 function Integer Right_Length () is_abstract;
 /*!
 ensures
 Right_Length = |self.right|
 !*/

Informal Description
A call to the Right_Length operation has the form of an expression:
 ... s1.Right_Length () ...;

This operation returns an Integer value which is the length of the string s1.right, i.e., |s1.right|.

Sample Traces
Statement Object Values

 s1 = (< 58, 12 >, < 13, 9, 90 >)

i = -37

i = s1.Right_Length ();

 s1 = (< 58, 12 >, < 13, 9, 90 >)

i = 3

Natural
Motivation, Applicability, and Indications for Use
RESOLVE/C++ includes the built-in programming type Integer, whose mathematical model is a
mathematical integer lying between two bounds. On most modern computer systems these are –
231 and 231–1 (–2,147,483,648 and +2,147,483,647).
These bounds make the potential Integer values “big enough” for most routine purposes.
However, there are many situations where (non-negative) integer-valued objects are appropriate,
but where two billion or so is not the largest value ever encountered. For example, the amount of
a bank transaction in U.S. currency might be recorded in an Integer object: the number of cents
being transferred. But then a figure like the U.S. national debt or even a plausible inter-bank
electronic fund transfer is too large to handle. If you need to accommodate a larger (arbitrarily
large) non-negative number, then you should use a Natural object, whose mathematical model is
an integer which is bounded below by zero but which is, for practical purposes, not bounded
above.

Related Components
• Integer — the type to use if the numbers in your calculations are always small

Component Family Members

Abstract Components1
• Natural_Kernel — the programming type of interest, with the operations below

• Multiply_By_Radix
• Divide_By_Radix
• Discrete_Log
• Radix

• Natural_Arithmetic — a bundle combining Natural_Kernel and the operations below
• Convert_From_Integer
• Increment
• Decrement
• Compare
• Add
• Subtract

1 This list of abstract components is not entirely accurate for the Natural family, which includes a
number of templates (for technical reasons). But it is equivalent from the standpoint of a client using
any of the concrete components listed next.

NATURAL-2 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

• Multiply
• Divide

• Natural_Number — a bundle combining Natural_Arithmetic and the operations below
• Copy_To
• Get_From (>>)
• Put_To (<<)

Concrete Components
• Natural_1_C — This is a checking implementation of the abstract instance Natural_Kernel,

so it is not very powerful; you probably want Natural_Number_1_C instead. It is a concrete
instance, i.e., you may declare objects of type Natural_1_C. Natural_1_C is a checking
component, which means that it checks the preconditions of its operations. So, if you call
any of the Natural_1_C operations with a violated precondition then your program will
immediately stop and report the violation.

 To bring this component into the context you write:
#include "CI/Natural/1_C.h"

• Natural_1 — This is a non-checking implementation of the abstract instance Natural_Kernel,
so it is not very powerful; you probably want Natural_Number_1 instead. It is a concrete
instance, i.e., you may declare objects of type Natural_1.

 To bring this component into the context you write:
 #include "CI/Natural/1.h"

• Natural_Number_1_C — This is a checking implementation of the abstract instance
Natural_Number. It is a concrete instance, i.e., you may declare objects of type
Natural_Number_1_C. Natural_Number_1_C is a checking component, which means that it
checks the preconditions of its operations. So, if you call any of the Natural_Number_1_C
operations with a violated precondition then your program will immediately stop and report
the violation.

 To bring this component into the context you write:
#include "CI/Natural/Number_1_C.h"

• Natural_Number_1 — This is a non-checking implementation of the abstract instance
Natural_Number. It is a concrete instance, i.e., you may declare objects of type
Natural_Number_1.

 To bring this component into the context you write:
#include "CI/Natural/Number_1.h"

Note — In all of the above concrete components, the implementation-supplied value of the
constant RADIX is 10.

NATURAL (CLIENT VIEW) NATURAL-3

Component Coupling Diagram2

2 This CCD is not the actual CCD for the Natural family, which includes a number of templates (for

technical reasons). But it is equivalent to the true CCD from the standpoint of a client using any of
the concrete components.

Natural_
Kernel

Natural_
Arithmetic

Natural_
Number_1

Natural_
Number

Natural_
Number_1_C

implements implements

Natural_1 Natural_1_C

implements implements

extends

extends

NATURAL-4 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Descriptions

Natural_Kernel Type and Standard Operations

Formal Contract Specification
 /*!
 math subtype NATURAL_MODEL is integer
 exemplar n
 constraint
 n >= 0

 math definition RADIX: integer satisfies restriction
 RADIX >= 2
 !*/

 standard_abstract_operations (Natural_Kernel);
 /*!
 Natural_Kernel is modeled by NATURAL_MODEL
 initialization ensures
 self = 0
 !*/

Informal Description
The model for Natural_Kernel is a mathematical integer which is initially zero. A
Natural_Kernel object may have an arbitrarily large (but always non-negative) value. Like all
Resolve/C++ types, Natural_Kernel comes with operator &= and Clear.

Sample Traces
Statement Object Values

 (n1 is not in scope)

object Natural_Number_1_C n1;

 n1 = 0

NATURAL (CLIENT VIEW) NATURAL-5

Multiply_By_Radix

Formal Contract Specification
 procedure Multiply_By_Radix (
 preserves Integer k
) is_abstract;
 /*!
 requires
 0 <= k < RADIX
 ensures
 self = #self * RADIX + k
 !*/

Informal Description
Note — This and the other operation descriptions that follow refer to these objects in examples:

object Natural_Number_1_C n1, n2, n3;
object Integer i;
object Character_IStream input;
object Character_OStream output;

A call to the Multiply_By_Radix operation has the form:
n1.Multiply_By_Radix (i);

This operation multiplies n1 by RADIX, and then adds i to it. You may make this call only if i
could be a digit in base RADIX, i.e., 0 ≤ i < RADIX.
This operation and three others — Divide_By_Radix, Discrete_Log, and Radix — allow you, as a
client, to think about and manipulate a Natural_Kernel object’s value through a view of its radix
representation in the base RADIX.
The key to understanding Natural_Kernel is to realize that there is a difference among the
following concepts:
a number — an abstract idea,
the way we normally think about that number to perform mathematical calculations, which
involves the radix representation discussed below, and
the way we write that number so we can communicate with each other, also discussed below.
For instance, here are some ways to think about, and write, the single abstract natural number we
usually call “42”:

4•101+2•100, in decimal (base 10), ordinarily written 42 because 10 is the default base in
normal mathematical usage
5•81+2•80, in octal (base 8), often written 528
1•33+1•32+2•31+0•30, in ternary (base 3), often written 11203
1•25+0•24+1•23+0•22+1•21+0•20, in binary (base 2), often written 1010102

The important point is that the same abstract number, i.e., the one we usually call “42”, might be
represented internally in the computer, and displayed externally, in many different ways. The
abstract number is characterized by its mathematical properties; for computational purposes we

NATURAL-6 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

might choose to think of it in binary as 1•25+0•24+1•23+0•22+1•21+0•20; for communication
purposes we might choose to write it in decimal as 42.
These examples suggest that the base must be a small integer. Actually, it can be any value
greater than or equal to 2; an efficient implementation of Natural_Kernel might use a number in
the thousands or more as its value of its base, RADIX. For instance, here is another way to think
of and write the number we call “42”; notice the base is greater than 10:

2•161+10•160, in hexadecimal (base 16), often written 2A16
The digits3 of a number viewed in this way always lie between 0 and RADIX–1, inclusive. For
RADIX > 10, there are not enough numerals to use for some of the digits, so the letters A, B, etc.,
are customarily introduced to stand for 10, 11, etc., when writing a number in a base other than
decimal.
Different implementations of Multiply_By_Radix might, therefore, use different values for
RADIX. The concrete instances Natural_1_C, Natural_1, Natural_Number_1_C, and
Natural_Number_1 all use RADIX = 10, which conveniently matches the way we ordinarily
write numbers. This helps in understanding the sample trace tables that follow.
Stated in these terms, another way to explain the call:

n1.Multiply_By_Radix (i);

is to say that it appends i as the new low-order (rightmost) digit of n1.

Sample Traces
Statement Object Values

 n1 = 45142398

i = 1

n1.Multiply_By_Radix (i);

 n1 = 451423981

i = 1

n1.Multiply_By_Radix (0);

 n1 = 4514239810

i = 1

3 Technically, the word “digit” applies only when RADIX = 10. For RADIX = 2 a digit usually is called

a “bit” (a contraction of “binary digit”). However, it is customary to use “digit” regardless of the
value of RADIX — especially when RADIX is a fixed but unknown constant, as it is here.

NATURAL (CLIENT VIEW) NATURAL-7

Divide_By_Radix

Formal Contract Specification
 procedure Divide_By_Radix (
 produces Integer& k
) is_abstract;
 /*!
 ensures
 #self = self * RADIX + k and
 0 <= k < RADIX
 !*/

Informal Description
A call to the Divide_By_Radix operation has the form:

n1.Divide_By_Radix (i);

This operation divides n1 by RADIX and returns with the remainder in i.
Stated in terms of the radix representation of n1 (see Multiply_By_Radix above), another way to
explain the call:

n1.Divide_By_Radix (i);

is to say that it removes the low-order (rightmost) digit of n1 and returns with that digit as the
value of i.

Sample Traces
Statement Object Values

 n1 = 45142398

i = 1

n1.Divide_By_Radix (i);

 n1 = 4514239

i = 8

NATURAL-8 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Discrete_Log

Formal Contract Specification
 function Integer Discrete_Log () is_abstract;
 /*!
 ensures
 if self = 0
 then Discrete_Log = 0
 else RADIX ^ (Discrete_Log - 1) <=
 self < RADIX ^ (Discrete_Log)
 !*/

Informal Description
A call to the Discrete_Log operation has the form of an expression:
 ... n1.Discrete_Log () ...;

This operation returns an Integer value equal to the discrete logarithm of n1 in base RADIX.
What is the discrete logarithm? Stated in terms of the radix representation of n1 (see
Multiply_By_Radix above), another way to explain the call:
 ... n1.Discrete_Log () ...;

is to say that it returns the number of digits needed to write n1 in base RADIX — except that it
always returns 0 (not 1) in case n1 = 0.

Sample Traces
Statement Object Values

 n1 = 45142398

i = 1

i = n1.Discrete_Log ();

 n1 = 45142398

i = 8

...

 n1 = 0

i = 8

i = n1.Discrete_Log ();

 n1 = 0

i = 0

NATURAL (CLIENT VIEW) NATURAL-9

Radix

Formal Contract Specification
 function Integer Radix () is_abstract;
 /*!
 ensures
 radix = RADIX
 !*/

Informal Description
A call to the Radix operation has the form of an expression:
 ... n1.Radix () ...;

This operation returns an Integer value which is n1’s RADIX.
In order for this operation to be useful, “n1’s RADIX” must have the same value here as it does
for the other operations that involve RADIX (i.e., Multiply_By_Radix, Divide_By_Radix, and
Discrete_Log). This property holds for the concrete instance Natural_Number_1_C used in the
tracing table examples, because it implements all of these operations with RADIX = 10.

Sample Traces
Statement Object Values

 n1 = 45142398

i = 46

i = n1.Radix ();

 n1 = 45142398

i = 10

NATURAL-10 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Convert_From_Integer

Formal Contract Specification
 procedure Convert_From_Integer (
 preserves Integer k
) is_abstract;
 /*!
 produces self
 requires
 k >= 0
 ensures
 self = k
 !*/

Informal Description
A call to the Convert_From_Integer operation has the form:
 n1.Convert_From_Integer (i);

This operation sets n1 equal to i. You may make this call only if i is non-negative.

Sample Traces
Statement Object Values

 n1 = 13

i = 497

n1.Convert_From_Integer (i);

 n1 = 497

i = 497

n1.Convert_From_Integer (78);

 n1 = 78

i = 497

NATURAL (CLIENT VIEW) NATURAL-11

Increment

Formal Contract Specification
 procedure Increment () is_abstract;
 /*!
 ensures
 self = #self + 1
 !*/

Informal Description
A call to the Increment operation has the form:
 n1.Increment ();

This operation adds one to n1.

Sample Traces
Statement Object Values

 n1 = 345475543524

n1.Increment();

 n1 = 345475543525

NATURAL-12 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Decrement

Formal Contract Specification
 procedure Decrement () is_abstract;
 /*!
 requires
 self > 0
 ensures
 self = #self - 1
 !*/

Informal Description
A call to the Decrement operation has the form:
 n1.Decrement ();

This operation subtracts one from n1. You may make this call only if n1 is strictly positive,
since Natural_Type objects always have non-negative values.

Sample Traces
Statement Object Values

 n1 = 68935645902

n1.Decrement();

 n1 = 68935645901

NATURAL (CLIENT VIEW) NATURAL-13

Compare

Formal Contract Specification
 function Integer Compare (
 preserves Natural_Number& n
) is_abstract;
 /*!
 ensures
 if self < n
 then Compare = -1
 else if self = n
 then Compare = 0
 else Compare = 1
 !*/

Informal Description
A call to the Compare operation has the form of an expression:
 ... n1.Compare (n2) ...;

This operation returns an Integer value of –1 if n1 < n2; 0 if n1 = n2; and +1 if n1 > n2.

Sample Traces
Statement Object Values

 n1 = 45142398

n2 = 1996

i = 13

i = n1.Compare (n2);

 n1 = 45142398

n2 = 1996

i = 1

i = n2.Compare (n1);

 n1 = 45142398

n2 = 1996

i = -1

...

 n1 = 1996

n2 = 1996

i = 34

i = n1.Compare (n2);

 n1 = 1996

n2 = 1996

i = 0

NATURAL-14 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Add

Formal Contract Specification
 procedure Add (
 preserves Natural_Number& n
) is_abstract;
 /*!
 ensures
 self = #self + n
 !*/

Informal Description
A call to the Add operation has the form:
 n1.Add (n2);

This operation adds n2 to n1.

Sample Traces
Statement Object Values

 n1 = 26

n2 = 952

n1.Add (n2);

 n1 = 978

n2 = 952

NATURAL (CLIENT VIEW) NATURAL-15

Subtract

Formal Contract Specification
 procedure Subtract (
 preserves Natural_Number& n
) is_abstract;
 /*!
 requires
 self >= n
 ensures
 self = #self - n
 !*/

Informal Description
A call to the Subtract operation has the form:
 n1.Subtract (n2);

This operation subtracts n2 from n1. You may make this call only if n1 is at least as large as n2.

Sample Traces
Statement Object Values

 n1 = 101

n2 = 37

n1.Subtract (n2);

 n1 = 64

n2 = 37

NATURAL-16 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Multiply

Formal Contract Specification
 procedure Multiply (
 preserves Natural_Number& n
) is_abstract;
 /*!
 ensures
 self = #self * n
 !*/

Informal Description
A call to the Multiply operation has the form:
 n1.Multiply (n2);

This operation multiplies n1 by n2.

Sample Traces
Statement Object Values

 n1 = 123

n2 = 94

n1.Multiply (n2);

 n1 = 11562

n2 = 94

NATURAL (CLIENT VIEW) NATURAL-17

Divide

Formal Contract Specification
 procedure Divide (
 preserves Natural_Number& n,
 produces Natural_Number& rem
) is_abstract;
 /*!
 requires
 n > 0
 ensures
 #self = self * n + rem and
 0 <= rem < n
 !*/

Informal Description
A call to the Divide operation has the form:
 n1.Divide (n2, n3);

This operation divides n1 by n2 and returns with the remainder in n3.

Sample Traces
Statement Object Values

 n1 = 647

n2 = 103

n3 = 3243455

n1.Divide (n2, n3);

 n1 = 6

n2 = 103

n3 = 29

NATURAL-18 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Copy_To

Formal Contract Specification
 procedure Copy_To (
 produces Natural_Number& n
) is_abstract;
 /*!
 preserves self
 ensures
 n = self
 !*/

Informal Description
A call to the Copy_To operation has the form:
 n1.Copy_To (n2);

This operation copies n1 to n2.
Note — There is no assignment operator (=) for Natural_Number objects, but the same effect can
be accomplished using Copy_To.

Sample Traces
Statement Object Values

 n1 = 45142398

n2 = 1996

n1.Copy_To (n2);

 n1 = 45142398

n2 = 45142398

NATURAL (CLIENT VIEW) NATURAL-19

Get_From (>>)

Formal Contract Specification
 /*!
 math operation IS_DIGIT (
 c: character
): boolean is
 c is in {'0','1','2','3','4','5','6','7','8','9'}

 math subtype DIGIT is character
 exemplar d
 constraint
 IS_DIGIT (d)

 math operation IS_DIGITS (
 s: string of character
): boolean satisfies
 if s = empty_string
 then IS_DIGITS (s) = true
 else there exists a: string of character,
 c: character
 (s = a * <c> and
 IS_DIGITS (s) =
 (IS_DIGITS (a) and IS_DIGIT (c)))

 math operation INTEGER_VAL (
 s: string of DIGIT
): NATURAL_MODEL satisfies
 if s = empty_string
 then INTEGER_VAL (s) = 0
 else there exists a: string of DIGIT, d: DIGIT
 (s = a * <d> and
 INTEGER_VAL (s) = 10 * INTEGER_VAL (a)
 + TO_INTEGER (d) - TO_INTEGER ('0'))

 math operation IS_SPACES_AND_TABS (
 s: string of character
): boolean is
 elements (s) is subset of {’ ’, ’\t’}

 math operation IS_AN_INPUT_REP (
 s: string of character,
 n: NATURAL_NUMBER
): boolean is
 there exists s1, s2, s3: string of character,
 c character
 (s = s1 * s2 * s3 * "\n" and
 IS_SPACES_AND_TABS (s1) and
 IS_DIGITS (s2) and
 n = INTEGER_VAL (s2) and
 IS_SPACES_AND_TABS (s3))
 !*/

 procedure Get_From (

NATURAL-20 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

 alters Character_IStream& str
) is_abstract;
 /*!
 produces self
 requires
 str.is_open = true and
 there exists x: NATURAL_MODEL,
 s: string of character
 (s is prefix of str.content and
 IS_AN_INPUT_REP (s, x))
 ensures
 str.is_open = true and
 str.ext_name = #str.ext_name and
 there exists s: string of character
 (#str.content = s * str.content and
 IS_AN_INPUT_REP (s, self))
 !*/

Informal Description
A call to the Get_From operation has the form:
 n1.Get_From (input);

This operation reads n1 from the input stream input. It alters input by reading and passing all
characters up to and including the next newline ('\n') character. Before this newline must be only
blanks (' ') or tabs ('\t'), followed by at decimal digits ('0', '1', ... ,9'), followed by only blanks or
tabs. The digits denote the value of n1 in the usual manner of writing decimal numbers —
regardless of the value of RADIX (see Multiply_By_Radix above) — with the additional
provision that an empty string of digits is read as 0. You may make this call only if input is open
and if its content has a prefix that satisfies this requirement.
Along with Get_From comes the shorthand operator >>. The following two statements are
equivalent:
 n1.Get_From (input);
 input >> n1;

NATURAL (CLIENT VIEW) NATURAL-21

Sample Traces
Statement Object Values

 n1 = 45142398

input.is_open = true

input.ext_name = ""

input.content = "13\n 7\n\n5"

n1.Get_From (input);

 n1 = 13

input.is_open = true

input.ext_name = ""

input.content = " 7\n\n5"

input >> n1;

 n1 = 7

input.is_open = true

input.ext_name = ""

input.content = "\n5"

input >> n1;

 n1 = 0

input.is_open = true

input.ext_name = ""

input.content = "5"

NATURAL-22 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Put_To (<<)

Formal Contract Specification
 /*!
 math operation DIGIT_CHARACTER (
 i: integer
): character satisfies
 if 0 <= i < 10
 then DIGIT_CHARACTER (i) =
 TO_CHARACTER (TO_INTEGER ('0') + i)
 else DIGIT_CHARACTER (i) = ’\0’

 math operation POSITIVE_OUTPUT_REP (
 n: NATURAL_MODEL
): string of character satisfies
 if n = 0
 then POSITIVE_OUTPUT_REP (n) = empty_string
 else there exists k, d: integer
 (n = 10 * k + d and
 0 <= d < 10 and
 POSITIVE_OUTPUT_REP (n) =
 POSITIVE_OUTPUT_REP (k) *
 <DIGIT_CHARACTER (d)>)

 math operation OUTPUT_REP (
 n: NATURAL_MODEL
): string of character satisfies
 if n = 0
 then OUTPUT_REP (n) = "0"
 else OUTPUT_REP (n) = POSITIVE_OUTPUT_REP (n)
 !*/

 procedure Put_To (
 alters Character_OStream& str
) is_abstract;
 /*!
 preserves self
 requires
 str.is_open = true
 ensures
 str.is_open = true and
 str.ext_name = #str.ext_name and
 str.content = #str.content * OUTPUT_REP (self)
 !*/

Informal Description
A call to the Put_To operation has the form:
 n1.Put_To (output);

This operation writes the decimal representation of n1 to the (file or text) output stream output —
decimal, regardless of the value of RADIX (see Multiply_By_Radix above). It alters output only
by appending to it all the characters (decimal digits) of the decimal representation of n1. You
may make this call only if output is open.

NATURAL (CLIENT VIEW) NATURAL-23

Along with Put_To comes the shorthand operator <<. The following two statements are
equivalent:
 n1.Put_To (output);
 output << n1;

Values output using operator << may be combined into single values, or may be strung together
using operator << repeatedly, as illustrated in the last sample trace statement.

Sample Traces
Statement Object Values

 n1 = 13

output.is_open = true

output.ext_name = ""

output.content = "x"

n1.Put_To (output);

 n1 = 13

output.is_open = true

output.ext_name = ""

output.content = "x13"

...

 n1 = 0

output.is_open = true

output.ext_name = ""

output.content = "x13"

output << n1;

 n1 = 0

output.is_open = true

output.ext_name = ""

output.content = "x130"

output << "\nn1=" << n1;

 n1 = 0

output.is_open = true

output.ext_name = ""

output.content = "x130\nn1=0"

NATURAL-24 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Partial_Map
Motivation, Applicability, and Indications for Use
The programming type Partial_Map allows you to build, query, and dismantle a set of ordered
pairs (2-tuples) whose two components are of two arbitrary types. Generally, the first
component of each pair, which is considered to be a unique “key”, allows you to lookup the
second component of that pair, which is considered to be information “associated with” the key
value. There can be at most one pair in the set with any given key value.
For example, suppose you need to keep a simple database of employees and their salaries. To do
this, you can create a Partial_Map object whose key type is Text (to store an employee name;
this is also called the domain type, hence its name D_Item) and whose associated information
type is Integer (to store an employee salary; this is also called the range type, hence its name
R_Item). To enter the salary of an employee you simply define into the Partial_Map object the
pair consisting of the employee’s name and the employee’s salary. Later you can lookup the
employee’s salary by using the employee’s name as the key. Other operations allow you to
manipulate and observe properties of a Partial_Map object, such as its size, i.e., the number of
pairs it holds.

Related Components
• None

Component Family Members

Abstract Components
• Partial_Map_Kernel — the programming type of interest, with the operations below

• Define
• Undefine
• Undefine_Any
• Accessor
• Is_Defined
• Size

Concrete Components
• Partial_Map_Kernel_1_C — This is a checking implementation of Partial_Map_Kernel in

which the execution time for each of the operations constructor, Define, Undefine_Any, and
Size is constant, while the execution time for each of the operations destructor, Undefine, the
accessor, and Is_Defined is proportional to the size of the set. All objects of this type have
the interface of Partial_Map_Kernel, with the concrete template name
Partial_Map_Kernel_1_C substituted for the abstract template name Partial_Map_Kernel.

 To bring this component into the context you write:
#include "CT/Partial_Map/Kernel_1_C.h"

PARTIAL_MAP-2 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Component Coupling Diagram

 Partial_Map_
Kernel

Partial_Map_
Kernel_1_C

implements

PARTIAL_MAP (CLIENT VIEW) PARTIAL_MAP-3

Descriptions

Partial_Map_Kernel Type and Standard Operations

Formal Contract Specification
 /*!
 math subtype PARTIAL_FUNCTION is finite set of (
 d: D_Item,
 r: R_Item
)
 exemplar m
 constraint
 for all d1, d2: D_Item, r1, r2: R_Item
 where ((d1,r1) is in m and
 (d2,r2) is in m)
 (if d1 = d2 then r1 = r2)

 math operation IS_DEFINED_IN (
 m: PARTIAL_FUNCTION,
 d: D_Item
): boolean is
 there exists r: R_Item
 ((d,r) is in m)
 !*/

 standard_abstract_operations (Partial_Map_Kernel);
 /*!
 Partial_Map_Kernel is modeled by PARTIAL_FUNCTION
 initialization ensures
 self = empty_set
 !*/

Informal Description
The model for Partial_Map_Kernel is a finite set of ordered pairs of type (D_Item, R_Item)
which is initially empty. A Partial_Map_Kernel object may be arbitrarily large. Like all
Resolve/C++ types, Partial_Map_Kernel comes with operator &= and Clear.
Note — The sample traces for this and the other operation descriptions refer to the type
Partial_Map_Instance, which is the result of the following instantiation:

concrete_instance
class Partial_Map_Instance :
 instantiates
 Partial_Map_Kernel_1_C <Text, Integer>
{};

PARTIAL_MAP-4 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Sample Traces
Statement Object Values

 (m1 is not in scope)

object Partial_Map_Instance m1;

 m1 = { }

PARTIAL_MAP (CLIENT VIEW) PARTIAL_MAP-5

Define

Formal Contract Specification
 procedure Define (
 consumes D_Item& d,
 consumes R_Item& r
) is_abstract;
 /*!
 requires
 not IS_DEFINED_IN (self, d)
 ensures
 self = #self union {(#d,#r)}
 !*/

Informal Description
Note — This and the other operation descriptions refer to these objects in examples:

object Partial_Map_Instance m1, m2;
object Text t1, t2;
object Integer i;
object Boolean b;

A call to the Define operation has the form:
m1.Define (t1, i);

This operation adds the pair whose value is (t1, i) to the set m1. You may make this call only if
m1 does not already contain a pair whose first component is t1.

Sample Traces
Statement Object Values

 m1 = {("you",94), ("me",15)}

t1 = "her"

i = 33

m1.Define (t1, i);

 m1 = {("you",94), ("me",15),

 ("her",33)}

t1 = ""

i = 0

PARTIAL_MAP-6 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Undefine

Formal Contract Specification
 procedure Undefine (
 preserves D_Item& d,
 produces D_Item& d_copy,
 produces R_Item& r
) is_abstract;
 /*!
 requires
 IS_DEFINED_IN (self, d)
 ensures
 d_copy = d and
 (d_copy, r) is in #self and
 self = #self - {(d_copy,r)}
 !*/

Informal Description
A call to the Undefine operation has the form:
 m1.Undefine (t1, t2, i);

This operation removes from m1 the pair whose first component is t1 and returns its value in (t2,
i). You may make this call only if there is a pair in m1 whose first component is t1.

Sample Traces
Statement Object Values

 m1 = {("you",94), ("me",15),

 ("her",33)}

t1 = "me"

t2 = "anything"

i = -47

m1.Undefine (t1, t2, i);

 m1 = {("you",94), ("her",33)}

t1 = "me"

t2 = "me"

i = 15

PARTIAL_MAP (CLIENT VIEW) PARTIAL_MAP-7

Undefine_Any

Formal Contract Specification
 procedure Undefine_Any (
 produces D_Item& d,
 produces R_Item& r
) is_abstract;
 /*!
 requires
 self /= empty_set
 ensures
 (d, r) is in #self and
 self = #self - {(d,r)}
 !*/

Informal Description
A call to the Undefine_Any operation has the form:
 m1.Undefine_Any (t1, i);

This operation removes some pair from m1—any pair—and returns its value in (t1, i). You may
make this call only if m1 is not empty.
Notice that this operation may remove a different pair from m1 if called twice in identical states,
as illustrated in the sample tracing table.

Sample Traces
Statement Object Values

 m1 = {("you",94), ("me",15),

 ("her",33)}

t1 = "who?"

i = -47

m1.Undefine_Any (t1, i);

 m1 = {("you",94), ("her",33)}

t1 = "me"

i = 15

...

 m1 = {("you",94), ("me",15),

 ("her",33)}

t1 = "who?"

i = -47

m1.Undefine_Any (t1, i);

 m1 = {("me",15), ("her",33)}

t1 = "you"

i = 94

PARTIAL_MAP-8 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Accessor

Formal Contract Specification
 function R_Item& operator [] (
 preserves D_Item& d
) is_abstract;
 /*!
 requires
 IS_DEFINED_IN (self, d)
 ensures
 (d, self[d]) is in self
 !*/

Informal Description
A call to the accessor operator [] has the form of an expression:
 ... m1[t1] ...;

This expression acts as the name of an object of type R_Item (i.e., Integer in this example) whose
value is that paired with t1 in m1. You may make this call only if there is a pair in m1 whose
first component is t1.
You may use m1[t1] wherever any other object of type R_Item (i.e., Integer in this case) may
appear.
The accessor operator [], like all functions, preserves its arguments. But it is important to
realize that the accessor expression m1[t1] does not simply denote the value associated with t1 in
m1, it acts as the name of an object of type R_Item which you may consider to be in that
particular pair in m1. This means that not only may you use the expression m1[t1] as a value of
type R_Item; you may even change the value of the object called m1[t1]—but remember that this
also changes the value of m1.
The sample traces help illustrate some important points regarding the convenience and danger of
accessor expressions. The first and second sample statements show how an accessor expression
such as m1[t1] acts like an object of type R_Item whose value may be changed, depending on the
statement in which the expression occurs. The third sample statement shows that m1[t1] may
appear as an argument in a call where an R_Item is required. This call involves other arguments
(e.g., m2), but none of the other arguments may be m1 or may involve an accessor expression for
m1 because this would violate the repeated argument rule. So, while you might be tempted to
write something like:

m1.Define (t1, m1[t2]);

this statement violates the repeated argument rule. Be aware that the C++ compiler will not
report this as an error. You need to avoid the pitfall by personal discipline.
The last statement in the tracing table also illustrates that an accessor expression acts exactly like
an object of type R_Item. Notice that both t1 and m1[t2], which are being Defined into m2 in
this statement, are consumed (their new values are "" and 0, respectively) because Define
consumes its arguments. So this statement changes both m1 and m2. This kind of complicated
call is officially legal but it is not recommended because it is very hard to understand.

PARTIAL_MAP (CLIENT VIEW) PARTIAL_MAP-9

Sample Traces
Statement Object Values

 m1 = {("you",94), ("me",15),

 ("her",33)}

t1 = "her"

i = -47

m1[t1] &= i;

 m1 = {("you",94), ("me",15),

 ("her",-47)}

t1 = "her"

i = 33

m1[t1] = i;

 m1 = {("you",94), ("me",15),

 ("her",33)}

t1 = "her"

i = 33

...

 m1 = {("you",94), ("me",15),

 ("her",-47)}

m2 = {("him",65), ("you",4)}

t1 = "her"

t2 = "you"

m2.Define (t1, m1[t2]);

 m1 = {("you",0), ("me",15),

 ("her",-47)}

m2 = {("him",65), ("you",4),

 ("her",94)}

t1 = ""

t2 = "you"

PARTIAL_MAP-10 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Is_Defined

Formal Contract Specification
 function Boolean Is_Defined (
 preserves D_Item& d
) is_abstract;
 /*!
 ensures
 Is_Defined = IS_DEFINED_IN (self, d)
 !*/

Informal Description
A call to the Is_Defined operation has the form of an expression:
 ... m1.Is_Defined (t1) ...;

This operation returns true iff there is a pair in m1 whose first component is t1.

Sample Traces
Statement Object Values

 m1 = {("you",0), ("me",15),

 ("her",-47)}

t1 = "him"

b = true

b = m1.Is_Defined (t1);

 m1 = {("you",0), ("me",15),

 ("her",-47)}

t1 = "him"

b = false

t1 = "her";

 m1 = {("you",0), ("me",15),

 ("her",-47)}

t1 = "her"

b = false

b = m1.Is_Defined (t1);

 m1 = {("you",0), ("me",15),

 ("her",-47)}

t1 = "her"

b = true

PARTIAL_MAP (CLIENT VIEW) PARTIAL_MAP-11

Size

Formal Contract Specification
 function Integer Size () is_abstract;
 /*!
 ensures
 Size = |self|
 !*/

Informal Description
A call to the Size operation has the form of an expression:
 ... m1.Size () ...;

This operation returns an Integer value which is the size of the set m1, i.e., |m1|.

Sample Traces
Statement Object Values

 m1 = {("you",0), ("me",15),

 ("her",-47)}

i = -68

i = m1.Size ();

 m1 = {("you",0), ("me",15),

 ("her",-47)}

i = 3

PARTIAL_MAP-12 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Queue
Motivation, Applicability, and Indications for Use
The programming type Queue allows you to collect and later process items in first-in-first-out
(“FIFO”) order. For example, suppose you need to keep track of requests for service and to
service them in the order in which they were received. To do this, you can create a Queue object
whose elements are of a type that records the information for a single request, enqueue each
request as it arrives, and dequeue a request whenever you are ready to service the next one.
Other operations allow you to access the front item in a Queue object and to determine its length.

Related Components
• Stack — a type that is similar to Queue except that when you remove an item it is not the first

one that was put in, but rather the last one
• Sorting_Machine — a type that is similar to Queue except that when you remove an item it is

not the first one that was put in, but the next one in “sorted” order according to some
ordering based on the values of the items

Component Family Members

Abstract Components
• Queue_Kernel — the programming type of interest, with the operations below

• Enqueue
• Dequeue
• Accessor
• Length

Concrete Components
• Queue_Kernel_1a_C — This is a checking implementation of Queue_Kernel in which the

execution time for each of the operations constructor, Enqueue, Dequeue, the accessor, and
Length is constant, while the execution time for the destructor is proportional to the length of
the string. All objects of this type have the interface of Queue_Kernel, with the concrete
template name Queue_Kernel_1a_C substituted for the abstract template name
Queue_Kernel.

 To bring this component into the context you write:
#include "CT/Queue/Kernel_1a_C.h"

QUEUE-2 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Component Coupling Diagram

 Queue_

Kernel

Queue_
Kernel_1a_C

implements

QUEUE (CLIENT VIEW) QUEUE-3

Descriptions

Queue_Kernel Type and Standard Operations

Formal Contract Specification
standard_abstract_operations (Queue_Kernel);
/*!
 Queue_Kernel is modeled by string of Item
 initialization ensures
 self = empty_string
!*/

Informal Description
The model for Queue_Kernel is a string of items which is initially empty. A Queue_Kernel
object may be arbitrarily large. Like all Resolve/C++ types, Queue_Kernel comes with operator
&= and Clear.
Note — The sample traces for this and the other operation descriptions refer to the type
Queue_Of_Integer, which is the result of the following instantiation:

concrete_instance
class Queue_Of_Integer :
 instantiates
 Queue_Kernel_1a_C <Integer>
{};

Sample Traces
Statement Object Values

 (q1 is not in scope)

object Queue_Of_Integer q1;

 q1 = < >

QUEUE-4 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Enqueue

Formal Contract Specification
procedure Enqueue (
 consumes Item& x
) is_abstract;
/*!
 ensures
 self = #self * <#x>
!*/

Informal Description
Note — This and the other operation descriptions refer to these objects in examples:

object Queue_Of_Integer q1, q2;
object Integer i;

A call to the Enqueue operation has the form:
q1.Enqueue (i);

This operation adds the item whose value is i to the “rear” (right end) of q1.

Sample Traces
Statement Object Values

 q1 = < 58, 12, 21 >

i = 13

q1.Enqueue (i);

 q1 = < 58, 12, 21, 13 >

i = 0

QUEUE (CLIENT VIEW) QUEUE-5

Dequeue

Formal Contract Specification
procedure Dequeue (
 produces Item& x
) is_abstract;
/*!
 requires
 self /= empty_string
 ensures
 #self = <x> * self
!*/

Informal Description
A call to the Dequeue operation has the form:
 q1.Dequeue (i);

This operation removes the item from the “front” (left end) of q1 and returns its value in i. You
may make this call only if q1 is not empty.

Sample Traces
Statement Object Values

 q1 = < 58, 12, 21, 13 >

i = 92

q1.Dequeue (i);

 q1 = < 12, 21, 13 >

i = 58

QUEUE-6 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Accessor

Formal Contract Specification
function Item& operator [] (
 preserves Accessor_Position& current
) is_abstract;
/*!
 requires
 self /= empty_string
 ensures
 there exists a: string of Item
 (self = <self[current]> * a)
!*/

Informal Description
A call to the accessor operator [] has the form of an expression:
 ... q1[current] ...;

This expression acts as the name of an object of type Item whose value is the item at the front of
q1. You may make this call only if q1 is not empty.
The special word current is the only thing that can appear between [] in the accessor for type
Queue. It always refers to the single item that you can access directly without dequeuing any
others: the front (leftmost) item, which is the one that would be removed if you called the
Dequeue operation at the point where you are using the accessor operator. You may use
q1[current] wherever any other object of type Item may appear.
The accessor operator [], like all functions, preserves its arguments. But it is important to
realize that the accessor expression q1[current] does not simply denote the value of the front
item in q1, it acts as the name of an object of type Item which you may consider to lie at the left
end of the string q1. This means that not only may you use the expression q1[current] as a value
of type Item; you may even change the value of the object called q1[current] — but remember
that this also changes the value of q1.
The sample traces help illustrate some important points regarding the convenience and danger of
accessor expressions. The first and second sample statements show how an accessor expression
such as q1[current] acts like an object of type Item whose value may be changed, depending on
the statement in which the expression occurs. The third sample statement shows that q1[current]
may appear as an argument in a call where an Item is required. This call involves other
arguments (e.g., q2), but none of the other arguments may be q1 or may involve an accessor
expression for q1 because this would violate the repeated argument rule. So, while you might be
tempted to write something like:

q1.Enqueue (q1[current]);

this statement violates the repeated argument rule. Be aware that the C++ compiler will not
report this as an error. You need to avoid the pitfall by personal discipline.
The last statement in the tracing table also illustrates that an accessor expression acts exactly like
an object of type Item. Notice that q1[current], which is being enqueued onto q2 in this
statement, is consumed (its new value is 0 since Item is Integer here) because Enqueue consumes
its argument. So this statement changes both q1 and q2.

QUEUE (CLIENT VIEW) QUEUE-7

Sample Traces
Statement Object Values

 q1 = < 92, 6, 18 >

i = 37

q1[current] &= i;

 q1 = < 37, 6, 18 >

i = 92

q1[current] = i;

 q1 = < 92, 6, 18 >

i = 92

...

 q1 = < 92, 255, 6 >

q2 = < 76, 921, 34, 7 >

q2.Enqueue (q1[current]);

 q1 = < 0, 255, 6 >

q2 = < 76, 921, 34, 7, 92 >

QUEUE-8 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Length

Formal Contract Specification
function Integer Length () is_abstract;
/*!
 ensures
 Length = |self|
!*/

Informal Description
A call to the Length operation has the form of an expression:
 ... q1.Length () ...;

This operation returns an Integer value which is the length of the string q1, i.e., |q1|.

Sample Traces
Statement Object Values

 q1 = < 6, 92, 13, 18 >

i = -68

i = q1.Length ();

 q1 = < 6, 92, 13, 18 >

i = 4

Record
Record is a built-in type in Resolve/C++, which is included when you bring
RESOLVE_Foundation.h into the global context. The name Record is therefore unusual: it is the
name of a concrete template even though it does not end in “_2” or “_1a” or the like.

Motivation, Applicability, and Indications for Use
The programming type Record allows you to set up and access the individual objects in a small,
fixed-size (no larger than ten) collection of objects of various and arbitrary types. You should
consider Record whenever you want to treat such a collection of diverse objects as a single
object for some purposes, and as individual constituent sub-objects for other purposes. The way
you achieve the former behavior is straightforward, since this is what an “object” ordinarily is.
The way you achieve the latter behavior at the same time is to give symbolic names (called field
names) to the sub-objects (also called fields) of a Record object. By using these field names with
accessor operations, you can directly manipulate the fields of a Record object. In fact, this is the
only way to manipulate the sub-objects. The mathematical model of a Record, then, is just a
tuple whose members are the Record fields.
Let’s consider an example. Suppose you want to keep track of the following information for
each employee of a company: first name, middle name, last name, address, and salary. For some
purposes you want all the information about a particular employee to stay together (e.g., perhaps
you want a Sequence whose Items are this Record type; or you want this Record type to be the
R_Item in a Partial_Map, with the employee’s ID number as the D_Item). For other purposes
you want to be able to get to the individual pieces of information about a particular employee
(e.g., perhaps you want to give the employee a raise).
There are several different ways to use Record to do this. Here are two approaches:
• You might instantiate the concrete_template class Record with five fields of the types Text,

Text, Text, Text, and Integer, calling the resulting concrete instance Employee. Then you
might declare Employee’s field names to be first_name, middle_name, last_name, address,
and salary, respectively. Schematically, you could view as follows an object of this type that
contains information about John Q. Doe, an employee who lives at 123 Easy Street and
makes $85,600 per year:

“Employee” field name field value

first_name "John"

middle_name "Q."

last_name "Doe"

address "123 Easy St."

salary 85600

The mathematical model of this value is a five-tuple:
("John", "Q.", "Doe", "123 Easy St.", 85600)

• You might instantiate the concrete_template class Record with three fields of types Text,
Text, and Text, calling the resulting concrete instance Full_Name. The you might declare

RECORD-2 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Full_Name’s field names to be first_name, middle_name, and last_name. Then you might
instantiate the concrete_template class Record again, creating the concrete instance
Employee with three fields of types Full_Name, Text, and Integer, and field names name,
address, and salary. Schematically, you could view the situation like this:

“Full_Name” field name field value

first_name "John"

middle_name "Q."

last_name "Doe"

“Employee” field name field value

name ("John", "Q.", "Doe")

address "123 Easy St."

salary 85600

The mathematical model of this value is a three-tuple whose first component is another three-
tuple:

(("John", "Q.", "Doe"), "123 Easy St.", 85600)

The first approach gives a flat Record with five fields and no further organization. The second
approach—probably the better one from the standpoint of human understanding—gives a more
structured Record, one of whose fields is itself a Record that is meaningful even outside the
context of employee information. In fact, in practice you probably would need more detailed
address information. So you’d also want to subdivide the address into street address, city, etc.,
by making a concrete instance Address as an instance of concrete_template class Record in
much the same fashion as Full_Name above.
On the other hand, suppose you also wanted to keep track of each employee’s birthdate. This
suggests another concrete instance Date—which also would be generally useful outside this
application. The mathematical model of Date probably should be a three-tuple of integers with
some constraints on the values of the fields. However, Date should not simply be a Record
instance because there also are mutual constraints on the values of the fields. That is, the day
must be between 1 and 31 inclusive if the month is 1, but between 1 and 28 inclusive if the
month is 2 (except if the year is a leap year, in which case 1 through 29 is allowed), and so on.
The complication introduced by such a constraint is a clue that it is inappropriate to treat a date
as merely three independent numbers which are placed together for convenience—which is how
you’d be treating it if you made Date an instance of Record.
You can guess from the above description that Record is an unusual template component in the
sense that different instantiations of it involve different numbers of template parameters! Indeed
this is so; here are the Resolve/C++ statements that declare the concrete instances and their field
names for two approaches above:

// First approach: flat record

concrete_instance
class Employee :
 instantiates

RECORD (CLIENT VIEW) RECORD-3

 Record <
 Text,
 Text,
 Text,
 Text,
 Integer
 >
{};

field_name (Employee, 0, Text, first_name);
field_name (Employee, 1, Text, middle_name);
field_name (Employee, 2, Text, last_name);
field_name (Employee, 3, Text, address);
field_name (Employee, 4, Integer, salary);

// Second approach: structured record (alternatively, not in addition)

concrete_instance
class Full_Name :
 instantiates
 Record <
 Text,
 Text,
 Text
 >
{};

field_name (Full_Name, 0, Text, first_name);
field_name (Full_Name, 1, Text, middle_name);
field_name (Full_Name, 2, Text, last_name);

concrete_instance
class Employee :
 instantiates
 Record <
 Full_Name,
 Text,
 Integer
 >
{};

field_name (Employee, 0, Full_Name, name);
field_name (Employee, 1, Text, address);
field_name (Employee, 2, Integer, salary);

A closely related component is Array. The most important difference is that the individual
objects in a Record may be of different types, while all the individual objects in an Array—and
in most other collections of objects—must be of the same type. However, a Record can contain
at most ten fields, and the number of fields is fixed at instantiation time; while an Array may
contain arbitrarily many objects and its size is determined at run-time by calling the Set_Bounds
operation.
One other component is closely related to Record. It is essentially identical to Record—except
that its name is Representation—and it is used for one and only one thing in Resolve/C++
programs: If you are implementing a kernel component, then you always collect together the
individual objects that you are using to represent an object of the new type, and make them fields

RECORD-4 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

of an instance of Representation. Client programmers need to know nothing about Representa-
tion except that (a) it is essentially Record with a different name, and (b) it shouldn’t be used in
ordinary client programs.

Related Components
• Array and Static_Array — types that are similar to Record except that they may contain

objects of only one type; but they may contain far more objects than a Record
• Representation — a type that is virtually identical to Record except that it is used in only

one place: to hold the individual objects that comprise the representation of a kernel
abstraction (and, hence, of no use to client programmers)

Component Family Members

Abstract Components
• Record_Kernel — the programming type of interest, with the operations below

• Accessor — one accessor for each field

Concrete Components
• Record — This is the standard implementation of the abstract template Record_Kernel that

comes built-in to Resolve/C++. It uses a technique called “lazy initialization” so the
constructor is very fast and takes time independent of the number and types of the fields.
You pay the cost of the constructors for the fields only upon the first use of some Record
accessor. The destructor’s execution time is essentially the sum of the execution times of the
destructors for the fields (if the constructors have actually have been invoked). All the
Record accessors take constant time once field construction takes place.

 To bring this component into the context you write:
#include "RESOLVE_Foundation.h"

Component Coupling Diagram

Record_
Kernel

Record

implements

RECORD (CLIENT VIEW) RECORD-5

Descriptions

Record_Kernel Type and Standard Operations

Formal Contract Specification
 standard_abstract_operations (Record_Kernel);
 /*!
 Record_Kernel is modeled by (
 field0: Item0
 field1: Item1
 ...
 field9: Item9
)
 initialization ensures
 is_initial (self.field0) and
 is_initial (self.field1) and
 ... and
 is_initial (self.field9) and
 !*/

Informal Description
Record_Kernel is a special component that can be instantiated with any number of fields, up to
ten. The above formal description, then, is not legitimate C++ code because, in C++, a template
has a fixed and definite number of parameters. The above “schema” describes (with “...”) the
nature of Record_Kernel as a client should view it—but not the exact code used for it. The
intended meaning is that when you instantiate this template with a particular number of fields,
say 3, then the Item types are Item0 through Item2 and the component names in the tuple model
are field0 through field2.
Upon declaration, an object of this type has a value in which all its fields have initial values for
their respective types. Like all Resolve/C++ types, Record_Kernel comes with operator &= and
Clear.
The discussion and sample traces for this and the other operation descriptions refer to the type
Full_Name, which is the result of the following instantiation and field name declarations
(repeated from the example above):

concrete_instance
class Full_Name :
 instantiates
 Record <
 Text,
 Text,
 Text
 >
{};

field_name (Full_Name, 0, Text, first_name);
field_name (Full_Name, 1, Text, middle_name);
field_name (Full_Name, 2, Text, last_name);
...

RECORD-6 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

object Full_Name n1, n2;
object Character c;
object Text t;

The names of the fields are declared separately from the instantiation of the template. Typically,
these declarations appear immediately following the instantiation, but are needed only if the
fields are to be accessed there. This might not be so in all cases; for example, a Record
instantiation might be needed to create a concrete instance to pass as a template parameter in
another instantiation. Perhaps the fields of objects of this type will be accessed only in the
second template, in which case the field names should only be declared there.
The declaration of a field name is not a call to an operation, though it looks like one, e.g.:

field_name (Full_Name, 1, Text, middle_name);

The first argument is the name of the Record instance to which the new field name applies, in
this case Full_Name. The second argument is the field number to which the new field name
refers, in this case the second field (i.e., field number 1). The third argument is the type of the
field being named, in this case Text. The fourth argument is the field name being declared, in
this case middle_name. Notice that a field name must have the syntax of an identifier in C++,
i.e., it must look like the name of an object. Moreover, for all other intents and purposes
middle_name is treated exactly like the name of an object: its scope is identical to that of any
other object declared at this point, and there must be no other object in the current scope with
this name.
Two other possibly surprising facts about field names are:
• You may have two names for the same field of the same Record instance, e.g.:

field_name (Full_Name, 1, Text, middle_name);
field_name (Full_Name, 1, Text, m_name);

Ordinarily you would not make these two declarations in the same scope because it is sure to
be confusing to a reader. But a field name has the same scope as an object declaration made
at the same point. So sometimes you will have different names for the same field because
one field name is declared in one scope and another is declared in a different scope. This
happens, for example, when a Record instance is passed as a template parameter, and there is
nothing wrong with it.

• The first and third arguments to field_name are for human consumption only! Among other
things, this means that the C++ compiler will let you—but you should not—use field names
from one Record instance to access the fields of a different Record instance.

Sample Traces
Statement Object Values

 (n1 is not in scope)

object Full_Name n1;

 n1 = ("", "", "")

RECORD (CLIENT VIEW) RECORD-7

Accessor
Note — There is one accessor operation per field. The description here uses the accessor
operation for the first field (i.e., field0) as a prototype for the others, which work similarly.

Formal Contract Specification
 function Item0& operator [] (
 preserves Accessor0& fn0
) is_abstract;
 /*!
 ensures
 self = (self[fn0], self.field1, ..., self.field9)
 !*/

Informal Description
A call to the accessor operator [] has the form of an expression:

 ... n1[first_name] ...;

This expression acts as the name of an object of type Item0 (i.e., Text in this case) which is the
sub-object in the first field of n1 (i.e., the one whose field name is first_name in this case). You
may use n1[first_name] wherever any other object of type Text may appear.
The accessor operator [], like all functions, preserves its arguments. But it is important to
realize that the accessor expression n1[first_name] does not simply denote the value of the object
in field first_name of n1, it acts as the name of an object of type Text which is the sub-object in
that particular field of n1. This means that not only may you use the expression n1[first_name]
as a value of type Text; you may even change the value of the object called n1[first_name]—but
remember that this also changes the value of n1.
The sample traces help illustrate some important points regarding the accessor expressions. The
first and second sample statements show how an accessor expression such as n1[first_name] acts
like an object of type Text whose value may be changed, depending on the statement in which
the expression occurs. The accessors for Record are different than other accessors in an
important way, however:

It is not a violation of the repeated argument rule to use two or more different fields of the
same Record object in a single call.

You may use the same field of two different Record objects in a single call, e.g., as illustrated in
the tracing table where the first_name fields of n1 and n2 are swapped. This would not be a
repeated argument violation under any circumstances because n1 and n2 are different objects.
What’s different with Record objects is that it is also acceptable to use two different fields of the
same Record, as illustrated in the last tracing table example where the first_name and
middle_name fields of n1 are swapped.
Here’s how to think of it: Record is merely a way to declare a group of objects with names of the
form r[f], where r is the name of the common Record they’re part of (presumably because they
have something in common with each other), and the various f’s allow you distinguish among the
objects in that Record.

RECORD-8 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Sample Traces
Statement Object Values

 n1 = ("John", "Q.", "Doe")

t = "Adams"

n1[last_name] &= t;

 n1 = ("John", "Q.", "Adams")

t = "Doe"

...

 n1 = ("John", "Q.", "Adams")

c = 'x'

n1[first_name].Remove (2, c);

 n1 = ("Jon", "Q.", "Adams")

c = 'h'

...

 n1 = ("Jon", "Q.", "Adams")

n2 = ("J.", "F.", "Kennedy")

n1[middle_name] &= n2[middle_name];

 n1 = ("Jon", "F.", "Adams")

n2 = ("J.", "Q.", "Kennedy")

n1[middle_name] &= n1[first_name];

 n1 = ("F.", "Jon", "Adams")

n2 = ("J.", "Q.", "Kennedy")

Sequence
Motivation, Applicability, and Indications for Use
Occasionally you need something like Text, but with the individual items in the string as
something other than Characters. The interesting functionality of Text is that you can create and
manipulate arbitrarily long strings by adding and/or removing items, and that you can directly
index into a string by position. If you need the generalized (template) version of Text in which
you, as a client programmer, can decide what type the items of the string can be, then you should
use Sequence.

Related Components
• Text — the built-in RESOLVE/C++ type whose generalization is Sequence
• Array — a type that is similar to Sequence in that you can directly index into an Array object

by position, but different in that an Array object always has the same number of items in it
and this number cannot be changed dynamically

Component Family Members

Abstract Components
• Sequence_Kernel — the programming type of interest, with the operations below

• Add
• Remove
• Accessor
• Length

Concrete Components
• Sequence_Kernel_1a_C — This is a checking implementation of Sequence_Kernel in which

the execution time for each of the operations constructor and Length is constant; the
execution time each of the operations Add, Remove, and the accessor is proportional to the
position being indexed; and the execution time for the destructor is proportional to the length
of the string. All objects of this type have the interface of Sequence_Kernel, with the
concrete template name Sequence_Kernel_1a_C substituted for the abstract template name
Sequence_Kernel.

 To bring this component into the context you write:
#include "CT/Sequence/Kernel_1a_C.h"

SEQUENCE-2 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Component Coupling Diagram

Sequence_
Kernel

Sequence_
Kernel_1a_C

implements

SEQUENCE (CLIENT VIEW) SEQUENCE-3

Descriptions

Sequence_Kernel Type and Standard Operations

Formal Contract Specification
standard_abstract_operations (Sequence_Kernel);
/*!
 Sequence_Kernel is modeled by string of Item
 initialization ensures
 self = empty_string
!*/

Informal Description
The model for Sequence_Kernel is a string of items which is initially empty. A
Sequence_Kernel object may be arbitrarily long. Like all Resolve/C++ types, Sequence_Kernel
comes with operator &= and Clear.
Note — The sample traces for this and the other operation descriptions refer to the type
Sequence_Of_Integer, which is the result of the following instantiation:

concrete_instance
class Sequence_Of_Integer :
 instantiates
 Sequence_Kernel_1_C <Integer>
{};

Sample Traces
Statement Object Values

 (s1 is not in scope)

object Sequence_Of_Integer s1;

 s1 = < >

SEQUENCE-4 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Add

Formal Contract Specification
procedure Add (
 preserves Integer pos,
 consumes Item& x
) is_abstract;
/*!
 requires
 0 <= pos <= |self|
 ensures
 there exists a, b: string of Item
 (|a| = pos and
 #self = a * b and
 self = a * <#x> * b)
!*/

Informal Description
Note — This and the other operation descriptions refer to these objects in examples:

object Sequence_Of_Integer s1, s2;
object Integer i, n;

A call to the Add operation has the form:
s1.Add (i, n);

This operation adds n in position i of string s1, i.e., in a position such that the number of items
before the newly added one is equal to i. Notice that the value of n is consumed, so afterward
n = 0. You may make this call only if 0 ≤ i ≤ |s1|.
You can see from this example that the numbering of positions in the string s1 effectively starts
at 0. For instance, to add n at the beginning of s1 (i.e., as the leftmost item of s1) you might
write:

s1.Add (0, n);

SEQUENCE (CLIENT VIEW) SEQUENCE-5

Sample Traces
Statement Object Values

 s1 = < 9 6 90 >

i = 2

n = 13

s1.Add (i, n);

 s1 = < 9 6 13 90 >

i = 2

n = 0

s1.Add (4, n);

 s1 = < 9 6 13 90 0 >

i = 2

n = 0

SEQUENCE-6 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Remove

Formal Contract Specification
procedure Remove (
 preserves Integer pos,
 produces Item& x
) is_abstract;
/*!
 requires
 0 <= pos < |self|
 ensures
 there exists a, b: string of Item
 (|a| = pos and
 #self = a * <x> * b and
 self = a * b)
!*/

Informal Description
A call to the Remove operation has the form:
 s1.Remove (i, n);

This operation removes the item in position i of string s1 and returns it in n. You may make this
call only if 0 ≤ i < |s1|.
The numbering of positions in the string s1 starts at 0. For example, to remove the leftmost item
of s1 and return it in n you might write:
 s1.Remove (0, n);

Sample Traces
Statement Object Values

 s1 = < 9 6 90 13 >

i = 1

n = 279

s1.Remove (i, n);

 s1 = < 9 90 13 >

i = 1

n = 6

s1.Remove (2, n);

 s1 = < 9 90 >

i = 1

n = 13

SEQUENCE (CLIENT VIEW) SEQUENCE-7

Accessor

Formal Contract Specification
function Item& operator [] (
 preserves Integer pos
) is_abstract;
/*!
 requires
 0 <= pos < |self|
 ensures
 there exists a, b: string of Item
 (|a| = pos and
 #self = a * <self[pos]> * b)
!*/

Informal Description
A call to the accessor operator [] has the form of an expression:
 ... s1[i] ...;

This expression acts as the name of an object of type Item whose value is the item in position i of
string s1. You may make this call only if 0 ≤ i < |s1|.
The numbering of positions in the string s1 starts at 0. For example, to set the leftmost item of s1
to 17 you might write (assuming |s1| ≥ 1):
 s1[0] = 17;

Notice that you can do the above assignment only because the assignment operator is defined for
the type Item, in this case Integer. You may do to s1[i] only what you may do to any other
object of type Item.
The accessor operator [], like all functions, preserves its arguments (s1 and i in the example).
But it is important to realize that the accessor expression s1[i] does not simply denote the value
of the item in position i of string s1; it acts as the name of an object of type Item which you may
consider to lie in that position of the string s1. This means that not only may you use the
expression s1[i] as a value of type Item; you may even change the value of the object called s1[i]
— but remember that this also changes the value of s1.
The sample traces help illustrate some important points regarding the convenience and danger of
accessor expressions. The first and second sample statements how an accessor expression such
as s1[i] acts like an object of type Item whose value may be changed, depending on the statement
in which the expression occurs. The third sample statement shows that s1[i] may appear as an
argument in a call where an Item value (object or constant) is required. This call involves other
arguments (e.g., s2), but none of the other arguments may be s1 or may involve an accessor
expression for s1 because this would violate the repeated argument restriction.
So, while you might be tempted to write something like:

s1[i] &= s1[24];

this statement violates the repeated argument restriction for the swap operator. This conclusion
is especially clear if i = 24 at the time the statement is executed, but it is true even if i has some
other value since both swap operator arguments are accessor expressions for the same object,

SEQUENCE-8 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

namely s1. Be aware that the C++ compiler will not report this as an error. You need to avoid
the pitfall by personal discipline.
The last statement in the tracing table again illustrates that an accessor expression acts exactly
like an object of type Item. Notice that s1[i], which is being added to s2 in this statement, is
consumed (its new value is 0 since Item is Integer here) because Add consumes its second
argument. So this statement changes both s1 and s2.

Sample Traces
Statement Object Values

 s1 = < 92 6 18 >

i = 1

n = 255

s1[i] &= n;

 s1 = < 92 255 18 >

i = 1

n = 6

s1[2] = n;

 s1 = < 92 255 6 >

i = 1

n = 6

...

 s1 = < 92 255 6 >

i = 2

s2 = < 76 921 34 7 >

s2.Add (3, s1[i]);

 s1 = < 92 255 0 >

i = 2

s2 = < 76 921 34 6 7 >

SEQUENCE (CLIENT VIEW) SEQUENCE-9

Length

Formal Contract Specification
function Integer Length () is_abstract;
/*!
 ensures
 Length = |self|
!*/

Informal Description
A call to the Length operation has the form of an expression:
 ... s1.Length () ...;

This operation returns an Integer value which is the length of string s1 , i.e., |s1|.

Sample Traces
Statement Object Values

 s1 = < 12 21 58 >

i = 1

i = s1.Length ();

 s1 = < 12 21 58 >

i = 3

SEQUENCE-10 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Set
Motivation, Applicability, and Indications for Use
A programming type Set is the direct counterpart of a mathematical set (which is its
mathematical model). You can create a Set object whose elements are of some particular type,
add and remove elements, check membership of an element, and determine the cardinality (size,
or number of elements) the Set contains.

Related Components
• Partial_Map — a type that is similar to Set except that it is modeled by a set of ordered pairs

that must satisfy the function property (i.e., there must be at most one pair in the set with any
given value of the first component of the pair)

Component Family Members

Abstract Components
• Set_Kernel — the programming type of interest, with the operations below

• Add
• Remove
• Remove_Any
• Is_Member
• Size

Concrete Components
• Set_Kernel_1_C — This is a checking implementation of Set_Kernel in which the execution

time for each of the operations constructor, Remove_Any, and Size is constant, while the
execution time for each of the operations destructor, Add, Remove, and Is_Member is
proportional to the size of the set. All objects of this type have the interface of Set_Kernel,
with the concrete template name Set_Kernel_1_C substituted for the abstract template name
Set_Kernel.

 To bring this component into the context you write:
#include "CT/Set/Kernel_1_C.h"

SET-2 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Component Coupling Diagram

Set_
Kernel

Set_
Kernel_1_C

implements

SET (CLIENT VIEW) SET-3

Descriptions

Set_Kernel Type and Standard Operations

Formal Contract Specification
standard_abstract_operations (Set_Kernel);
/*!
 Set_Kernel is modeled by finite set of Item
 initialization ensures
 self = empty_set
!*/

Informal Description
The model for Set_Kernel is a finite set of items which is initially empty. A Set_Kernel object
may be arbitrarily large (but still finite). Like all Resolve/C++ types, Set_Kernel comes with
operator &= and Clear.
Notice that the properties of mathematical sets include that the elements in a set are unordered,
and that there are no duplicate elements in a set.
Note — The sample traces for this and the other operation descriptions refer to the type
Set_Of_Integer, which is the result of the following instantiation:

concrete_instance
class Set_Of_Integer :
 instantiates
 Set_Kernel_1_C <Integer>
{};

Sample Traces
Statement Object Values

 (s1 is not in scope)

object Set_Of_Integer s1;

 s1 = { }

SET-4 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Add

Formal Contract Specification
procedure Add (
 consumes Item& x
) is_abstract;
/*!
 requires
 x is not in self
 ensures
 self = #self union {#x}
!*/

Informal Description
Note — This and the other operation descriptions refer to these objects in examples:

object Set_Of_Integer s1;
object Boolean b;
object Integer i, n;

A call to the Add operation has the form:
s1.Add (i);

This operation adds the element whose value is i to set s1. You may make this call only if i is
not already in s1.

Sample Traces
Statement Object Values

 s1 = {6, 92, 18}

i = 13

s1.Add (i);

 s1 = {6, 92, 13, 18}

i = 0

SET (CLIENT VIEW) SET-5

Remove

Formal Contract Specification
procedure Remove (
 preserves Item& x,
 produces Item& x_copy
) is_abstract;
/*!
 requires
 x is in self
 ensures
 self = #self - {x} and
 x_copy = x
!*/

Informal Description
A call to the Remove operation has the form:
 s1.Remove (i, n);

This operation removes from set s1 the element whose value is i, and returns with n having that
value as well. You may make this call only if i is in s1.

Sample Traces
Statement Object Values

 s1 = {6, 92, 13, 18}

i = 92

n = 847

s1.Remove (i, n);

 s1 = {6, 13, 18}

i = 92

n = 92

i = 18;

 s1 = {6, 13, 18}

i = 18

n = 92

s1.Remove (i, n);

 s1 = {6, 13}

i = 18

n = 18

SET-6 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Remove_Any

Formal Contract Specification
procedure Remove_Any (
 produces Item& x
) is_abstract;
/*!
 requires
 self /= empty_set
 ensures
 x is in #self and
 self = #self - {x}
!*/

Informal Description
A call to the Remove_Any operation has the form:
 s1.Remove_Any (i);

This operation removes from set s1 some — any — element, and returns with i having that
item’s value. You may make this call only if s1 is non-empty.
Notice that this operation does not have functional (deterministic) behavior, i.e., even if it is
called twice with exactly the same value of s1 it might return with different results, since it is
permitted to remove any element from s. This is illustrated in the tracing table below.

Sample Traces
Statement Object Values

 s1 = {6, 92, 13, 18}

i = -379

s1.Remove_Any (i);

 s1 = {6, 92, 18}

i = 13

...

 s1 = {6, 92, 13, 18}

i = -379

s1.Remove_Any (i);

 s1 = {6, 13, 18}

i = 92

SET (CLIENT VIEW) SET-7

Is_Member

Formal Contract Specification
function Boolean Is_Member (
 preserves Item& x
) is_abstract;
/*!
 ensures
 Is_Member = (x is in self)
!*/

Informal Description
A call to the Is_Member operation has the form of an expression:
 ... s1.Is_Member (i) ...;

This operation returns a Boolean value which is true iff an element with value i is in set s1.

Sample Traces
Statement Object Values

 s1 = {6, 92, 13, 18}

i = 59

b = true

b = s1.Is_Member (i);

 s1 = {6, 92, 13, 18}

i = 59

b = false

b = s1.Is_Member (92);

 s1 = {6, 92, 13, 18}

i = 59

b = true

SET-8 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Size

Formal Contract Specification
function Integer Size () is_abstract;
/*!
 ensures
 Size = |self|
!*/

Informal Description
A call to the Size operation has the form of an expression:
 ... s1.Size () ...;

This operation returns an Integer value which is the size of (cardinality of, or number of
elements in) set s1 , i.e., |s1|.

Sample Traces
Statement Object Values

 s1 = {6, 92, 13, 18}

i = -68

i = s1.Size ();

 s1 = {6, 92, 13, 18}

i = 4

Sorting_Machine
Motivation, Applicability, and Indications for Use
One of the more common requirements of a software system is to process or list some data in
“sorted” order. The data may be of any type (e.g., Text), and the ordering may be anything (e.g.,
reverse alphabetical order).
A typical approach to meeting this requirement is to put the data in some collection object—
perhaps an Array or Queue or Sequence or Static_Array—and then to pass that object to a
procedure operation that rearranges the entries into the desired order. This conventional way of
doing things has at least two serious disadvantages:
• You have to write a different implementation of sorting for each collection type, even if you

can parameterize it by the type of data in the collection and the ordering. This leads to a
proliferation of implementations of the same sorting algorithm, which differ only in how they
access and manipulate the data in the collection. It would be much better if sorting could be
done without regard for the type of collection that holds the data to be sorted.

• The design is inefficient if you don’t really need all the data in sorted order. For instance, if
you need to find the top ten reasons (out of 1000) that software component engineering is
important, then you can do it by sorting all 1000 reasons in decreasing order of importance
and looking at just the first ten. But there is no need to have sorted the last 990 into order,
and all the time spent doing that is simply wasted. It would be much better to be able to pay
only for work actually needed.

The component family Sorting_Machine allows you to collect and later process items in sorted
order. It addresses both problems noted above. A Sorting_Machine object is a collection, just
like a Queue or a Stack. The main difference is that with a Queue you put items in and get them
back in first-in-first-out order; with a Stack you put items in and get them back in last-in-first-out
order; with a Sorting_Machine you put items in and get them back in sorted order. So—no
surprise—there are operations to insert items and remove items as well as to report the number of
items in the object.
An important difference is that Sorting_Machine has “two-phase” behavior. Initially, a
Sorting_Machine object is in the insertion phase, which means it is ready for you to insert some
items. Once you have inserted all the items of interest, you explicitly tell the object to change to
extraction phase. At this point you can remove items as many items as you want, one at a time,
according to the ordering of interest. For completeness, there is also an operation to remove any
(arbitrary) item, which you can invoke in either phase. This operation ignores the ordering
among entries.

Related Components
• Queue — a type that is similar to Sorting_Machine except that when you remove an item it is

not the next one in sorted order, but the first one that was put in (i.e., it observes a temporal,
not a value-based, ordering)

• Stack — a type that is similar to Sorting_Machine except that when you remove an item it is
not the next one in sorted order, but the last one that was put in (i.e., it observes a different
temporal, not a value-based, ordering)

SORTING_MACHINE-2 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Component Family Members

Abstract Components
• Sorting_Machine_Kernel — the programming type of interest, with the operations below

• Insert
• Remove_First
• Remove_Any
• Size
• Change_To_Extraction_Phase
• Is_In_Extraction_Phase

Concrete Components
• Sorting_Machine_Kernel_1_C — This is a checking implementation of Sorting_Machine_-

Kernel in which the execution time for each of the operations constructor, Insert,
Remove_Any, Size, Change_To_Extraction_Phase, and Is_In_Extraction_Phase is constant;
while the execution time for Remove_First and for the destructor are proportional to the
number of items in the object. All objects of this type have the interface of Sorting_-
Machine_Kernel, with the concrete template name Sorting_Machine_Kernel_1_C substituted
for the abstract template name Sorting_Machine_Kernel.

 To bring this component into the context you write:
#include "CT/Sorting_Machine/Kernel_1_C.h"

You also need to have in scope a utility class that implements the abstract template utility
class General_Are_In_Order for the type of Item you want to use, which determines the
sorting order. For example, to sort Text values in non-decreasing lexicographic order, there
is a catalog component already available: Text_Are_In_Order_1. Before instantiating
Sorting_Machine_Kernel_1_C as in the Sorting_Machine_Kernel description below, you
must bring this component into scope as follows:

#include "CI/Text/Are_In_Order_1.h"

There are a few other available components of this kind for the built-in types, but often you’ll
have to build your own utility class for a new type and/or a new ordering, by following these
as examples.

SORTING_MACHINE (CLIENT VIEW) SORTING_MACHINE-3

Component Coupling Diagram

Sorting_
Machine_

Kernel

Sorting_
Machine_

Kernel_1_C

implements

General_
Are_In_
Order

implements

uses

SORTING_MACHINE-4 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Descriptions

Sorting_Machine_Kernel Type and Standard Operations

Formal Contract Specification
 /*!
 math subtype SORTING_MACHINE_MODEL is (
 inserting: boolean
 contents: finite multiset of Item
)
 !*/

 standard_abstract_operations (Sorting_Machine_Kernel);
 /*!
 Sorting_Machine_Kernel is modeled by SORTING_MACHINE_MODEL
 initialization ensures
 self = (true, empty_multiset)
 !*/

Informal Description
The model for Sorting_Machine_Kernel is an ordered pair: a boolean that records the phase of
the object (true if the machine is in insertion phase, false if it is in extraction phase), and a finite
multiset1 of Items. Initially the machine is in insertion phase and the multiset is empty.
A Sorting_Machine_Kernel object may be arbitrarily large. Like all Resolve/C++ types,
Sorting_Machine_Kernel comes with operator &= and Clear.
Note — The sample traces for this and the other operation descriptions refer to the type
Sorting_Machine_Of_Text, which is the result of the following instantiation:

concrete_instance
class Sorting_Machine_Of_Text :
 instantiates
 Sorting_Machine_Kernel_1_C <Text, Text_Are_In_Order_1>
{};

The component Text_Are_In_Order_1 is a concrete instance utility class that implements
General_Are_In_Order <Text>. This means that it exports a Boolean-valued function operation
Are_In_Order which takes two Text objects as arguments and returns true iff the first and second
arguments are in lexicographic order according to ASCII character ordering.
Text_Are_In_Order_1 also gives a realization-supplied mathematical definition for
ARE_IN_ORDER, which formally describes this ordering.
For example, "aardvark" and "zebra" are in order, i.e., ARE_IN_ORDER ("aardvark", "zebra") is
true. This means the call Text_Are_In_Order_1::Are_In_Order ("aardvark", "zebra") returns
true. Similarly, ARE_IN_ORDER ("zebra", "zebras") is true, but not ARE_IN_ORDER ("bird",
"ape"). Note that Text_Are_In_Order_1::ARE_IN_ORDER has the following properties:

1 A multiset is just like a set except that it can have many “copies” of any value.

SORTING_MACHINE (CLIENT VIEW) SORTING_MACHINE-5

• Any string of characters is in order with itself.
• In ASCII, all the upper-case characters come before any of the lower-case characters. This

means, for example, that ARE_IN_ORDER ("ZZZ", "an").
The description of Remove_First explains how the second template parameter of
Sorting_Machine_Kernel_1_C is used.

Sample Traces
Statement Object Values

 (s1 is not in scope)

object Sorting_Machine_Of_Text s1;

 s1 = (true, {})

SORTING_MACHINE-6 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Insert

Formal Contract Specification
 procedure Insert (
 consumes Item& x
) is_abstract;
 /*!
 requires
 self.inserting = true
 ensures
 self = (true, #self.contents union {#x})
 !*/

Informal Description
Note — This and the other operation descriptions refer to these objects in examples:

object Sorting_Machine_Of_Text s1;
object Text t;
object Integer i;
object Boolean b;

A call to the Insert operation has the form:
s1.Insert (t);

This operation adds the item whose value is t to the contents of s1. You may make this call only
if s1 is in insertion phase.

Sample Traces
Statement Object Values

 s1 = (true, {"cse"})

t = "ece"

s1.Insert (t);

 s1 = (true, {"ece", "cse"})

t = ""

SORTING_MACHINE (CLIENT VIEW) SORTING_MACHINE-7

Remove_First

Formal Contract Specification
 /*!
 math operation IS_FIRST (
 s: multiset of Item,
 x: Item
): boolean is
 x is in s and
 for all y: Item where (y is in s)
 (ARE_IN_ORDER (x, y))
 !*/

 procedure Remove_First (
 produces Item& x
) is_abstract;
 /*!
 requires
 self.inserting = false and
 self.contents /= empty_multiset
 ensures
 IS_FIRST (self.contents, x) and
 self = (false, #self.contents - {x})
 !*/

Informal Description
A call to the Remove_First operation has the form:
 s1.Remove_First (t);

This operation removes from s1 a first item (in general, this is not unique, though it is in the
example) according to the ARE_IN_ORDER definition supplied by the utility class
Item_Are_In_Order, and returns its value in t. You may make this call only if s1 is not in
insertion phase and is not empty.

Sample Traces
Statement Object Values

 s1 = (false, {"ece", "cse"})

t = "abracadabra"

s1.Remove_First (t);

 s1 = (false, {"ece"})

t = "cse"

s1.Remove_First (t);

 s1 = (false, {})

t = "ece"

SORTING_MACHINE-8 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Remove_Any

Formal Contract Specification
 procedure Remove_Any (
 produces Item& x
) is_abstract;
 /*!
 requires
 self.contents /= empty_multiset
 ensures
 x is in #self.contents and
 self = (#self.inserting, #self.contents - {x})
 !*/

Informal Description
A call to the Remove_Any operation has the form:
 s1.Remove_Any (t);

This operation removes from s1 some (i.e., any arbitrary) item and returns its value in t. You
may make this call only if s1 is not empty; it doesn’t matter whether s1 is in insertion phase or
extraction phase.
Notice that this operation may remove a different item from s1 if called twice in identical states,
as illustrated in the sample tracing table.

Sample Traces
Statement Object Values

 s1 = (false, {"ece", "cse"})

t = "abracadabra"

s1.Remove_Any (t);

 s1 = (false, {"cse"})

t = "ece"

...

 s1 = (false, {"ece", "cse"})

t = "abracadabra"

s1.Remove_Any (t);

 s1 = (false, {"ece"})

t = "cse"

SORTING_MACHINE (CLIENT VIEW) SORTING_MACHINE-9

Size

Formal Contract Specification
 function Integer Size () is_abstract;
 /*!
 ensures
 Size = |self.contents|
 !*/

Informal Description
A call to the Size operation has the form of an expression:
 ... s1.Size () ...;

This operation returns an Integer value which is the number of elements of the multiset
s1.contents (including copies of a single value as many times as it occurs), i.e., |s1.contents|.

Sample Traces
Statement Object Values

 s1 = (true, {"ece", "cse"})

i = -68

i = s1.Size ();

 s1 = (true, {"ece", "cse"})

i = 2

SORTING_MACHINE-10 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Change_To_Extraction_Phase

Formal Contract Specification
 procedure Change_To_Extraction_Phase () is_abstract;
 /*!
 requires
 self.inserting = true
 ensures
 self = (false, #self.contents)
 !*/

Informal Description
A call to the Change_To_Extraction_Phase operation has the form:
 s1.Change_To_Extraction_Phase ();

This operation changes s1 from insertion phase to extraction phase. You may make this call only
if s1 is in insertion phase.

Sample Traces
Statement Object Values

 s1 = (true, {"ece", "cse"})

s1.Change_To_Extraction_Phase ();

 s1 = (false, {"ece", "cse"})

SORTING_MACHINE (CLIENT VIEW) SORTING_MACHINE-11

Is_In_Extraction_Phase

Formal Contract Specification
 function Boolean Is_In_Extraction_Phase () is_abstract;
 /*!
 ensures
 Is_In_Extraction_Phase = not self.inserting
 !*/

Informal Description
A call to the Is_In_Extraction_Phase operation has the form of an expression:
 ... s1.Is_In_Extraction_Phase () ...;

This operation returns a Boolean value which is true iff s1 is in extraction phase.

Sample Traces
Statement Object Values

 s1 = (true, {"ece", "cse"})

b = true

b = s1.Is_In_Extraction_Phase ();

 s1 = (true, {"ece", "cse"})

b = false

SORTING_MACHINE-12 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Stack
Motivation, Applicability, and Indications for Use
The programming type Stack allows you to collect and later process items in last-in-first-out
(“LIFO”) order. For example, suppose you need to keep track of the locations where a mouse
has been while exploring a maze—sort of like bread crumbs that it leaves on the ground so it can
retrace its path to look for unexplored corridors. To do this, you can create a Stack object whose
elements are of a type that records the location of a single bread crumb. Then you can push its
location whenever the mouse drops a bread crumb, and pop a location to determine where the
mouse should go whenever it wants to back up. Other operations allow you to access the top
item in a Stack object and to determine its length.

Related Components
• Queue — a type that is similar to Stack except that when you remove an item it is not the last

one that was put in, but rather the first one
• Sorting_Machine — a type that is similar to Stack except that when you remove an item it is

not the last one that was put in, but the next one in “sorted” order according to some ordering
based on the values of the items

Component Family Members

Abstract Components
• Stack_Kernel — the programming type of interest, with the operations below

• Push
• Pop
• Accessor
• Length

Concrete Components
• Stack_Kernel_1a_C — This is a checking implementation of Stack_Kernel in which the

execution time for each of the operations constructor, Push, Pop, the accessor, and Length is
constant, while the execution time for the destructor is proportional to the length of the
string. All objects of this type have the interface of Stack_Kernel, with the concrete template
name Stack_Kernel_1a_C substituted for the abstract template name Stack_Kernel.

 To bring this component into the context you write:
#include "CT/Stack/Kernel_1a_C.h"

STACK-2 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Component Coupling Diagram

Stack_
Kernel

Stack_
Kernel_1a_C

implements

STACK (CLIENT VIEW) STACK-3

Descriptions

Stack_Kernel Type and Standard Operations

Formal Contract Specification
 standard_abstract_operations (Stack_Kernel);
 /*!
 Stack_Kernel is modeled by string of Item
 initialization ensures
 self = empty_string
 !*/

Informal Description
The model for Stack_Kernel is a string of items which is initially empty. A Stack_Kernel object
may be arbitrarily large. Like all Resolve/C++ types, Stack_Kernel comes with operator &= and
Clear.
Note — The sample traces for this and the other operation descriptions refer to the type
Stack_Of_Integer, which is the result of the following instantiation:

concrete_instance
class Stack_Of_Integer :
 instantiates
 Stack_Kernel_1a_C <Integer>
{};

Sample Traces
Statement Object Values

 (s1 is not in scope)

object Stack_Of_Integer s1;

 s1 = < >

STACK-4 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Push

Formal Contract Specification
 procedure Push (
 consumes Item& x
) is_abstract;
 /*!
 ensures
 self = <#x> * #self
 !*/

Informal Description
Note — This and the other operation descriptions refer to these objects in examples:

object Stack_Of_Integer s1, s2;
object Integer i;

A call to the Push operation has the form:
s1.Push (i);

This operation adds the item whose value is i to the “top” (left end) of s1.

Sample Traces
Statement Object Values

 s1 = < 58, 12, 21 >

i = 13

s1.Push (i);

 s1 = < 13, 58, 12, 21 >

i = 0

STACK (CLIENT VIEW) STACK-5

Pop

Formal Contract Specification
 procedure Pop (
 produces Item& x
) is_abstract;
 /*!
 requires
 self /= empty_string
 ensures
 #self = <x> * self
 !*/

Informal Description
A call to the Pop operation has the form:
 s1.Pop (i);

This operation removes the item from the “top” (left end) of s1 and returns its value in i. You
may make this call only if s1 is not empty.

Sample Traces
Statement Object Values

 s1 = < 13, 58, 12, 21 >

i = 92

s1.Pop (i);

 s1 = < 58, 12, 21 >

i = 13

STACK-6 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Accessor

Formal Contract Specification
 function Item& operator [] (
 preserves Accessor_Position& current
) is_abstract;
 /*!
 requires
 self /= empty_string
 ensures
 there exists a: string of Item
 (self = <self[current]> * a)
 !*/

Informal Description
A call to the accessor operator [] has the form of an expression:
 ... s1[current] ...;

This expression acts as the name of an object of type Item whose value is the item at the top of
s1. You may make this call only if s1 is not empty.
The special word current is the only thing that can appear between [] in the accessor for type
Stack. It always refers to the single item that you can access directly without popping any others:
the top (leftmost) item, which is the one that would be removed if you called the Pop operation
at the point where you are using the accessor operator. You may use s1[current] wherever any
other object of type Item may appear.
The accessor operator [], like all functions, preserves its arguments. But it is important to
realize that the accessor expression s1[current] does not simply denote the value of the top item
in s1, it acts as the name of an object of type Item which you may consider to lie at the left end of
the string s1. This means that not only may you use the expression s1[current] as a value of type
Item; you may even change the value of the object called s1[current]—but remember that this
also changes the value of s1.
The sample traces help illustrate some important points regarding the convenience and danger of
accessor expressions. The first and second sample statements show how an accessor expression
such as s1[current] acts like an object of type Item whose value may be changed, depending on
the statement in which the expression occurs. The third sample statement shows that s1[current]
may appear as an argument in a call where an Item is required. This call involves other
arguments (e.g., s2), but none of the other arguments may be s1 or may involve an accessor
expression for s1 because this would violate the repeated argument rule. So, while you might be
tempted to write something like:

s1.Push (s1[current]);

this statement violates the repeated argument rule. Be aware that the C++ compiler will not
report this as an error. You need to avoid the pitfall by personal discipline.
The last statement in the tracing table also illustrates that an accessor expression acts exactly like
an object of type Item. Notice that s1[current], which is being pushed onto s2 in this statement,
is consumed (its new value is 0 since Item is Integer here) because Push consumes its argument.
So this statement changes both s1 and s2.

STACK (CLIENT VIEW) STACK-7

Sample Traces
Statement Object Values

 s1 = < 92, 6, 18 >

i = 37

s1[current] &= i;

 s1 = < 37, 6, 18 >

i = 92

s1[current] = i;

 s1 = < 92, 6, 18 >

i = 92

...

 s1 = < 92, 255, 6 >

s2 = < 76, 921, 34, 7 >

s2.Push (s1[current]);

 s1 = < 0, 255, 6 >

s2 = < 92, 76, 921, 34, 7 >

STACK-8 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Length

Formal Contract Specification
function Integer Length () is_abstract;
/*!
 ensures
 Length = |self|
!*/

Informal Description
A call to the Length operation has the form of an expression:
 ... s1.Length () ...;

This operation returns an Integer value which is the length of the string q1, i.e., |q1|.

Sample Traces
Statement Object Values

 s1 = < 6, 92, 13, 18 >

i = -68

i = s1.Length ();

 s1 = < 6, 92, 13, 18 >

i = 4

Static_Array
Motivation, Applicability, and Indications for Use
The programming type Static_Array allows you to repeatedly access and update a fixed-size
table of items of an arbitrary type. You “index” into the table using an Integer value that lies
within an interval determined when you instantiate a concrete template that implements
Static_Array_Kernel.
For example, suppose you want to record the high temperature for each month of the year. To do
this, you can declare an Static_Array object whose items are of type Real and set it up to be
indexed by the values 1 through 12 (for the months of the year). Each entry in the table initially
has an initial value for type Real, i.e., 0.0. You may access and update the value associated with
each month by using that month’s index (an integer between 1 and 12).
The most closely related component is Array, which is nearly identical except in regard to when
the index bounds are fixed. Another closely related component is Sequence. A Sequence object
starts out as an empty string of Item values, so if you want to use it as a table in the fashion
mentioned above you have to add entries to it one by one until the table is populated with values.
A Static_Array object becomes populated with initial values of type Item as soon as you declare
it. With a Sequence object you can interleave operations that change the size of the Sequence
with operations that access and update existing entries, possibly deferring the decision to add
more entries or to remove some; however, adding and removing changes the indices of some of
the existing entries. With the Static_Array object you can’t change the bounds of the table; you
decide up front on the required size and bounds, and then you access and update table entries
whose indices remained fixed throughout. The Sequence is always indexed starting with 0. The
Static_Array object may be set up to be indexed starting with any Integer value.

Related Components
• Array — a type that is essentially identical to Static_Array except that the index bounds are

fixed not at template instantiation time, but at run time
• Sequence — a type that is similar to Static_Array except that it is incrementally resizable,

and that it is always indexed from 0

Component Family Members

Abstract Components
• Static_Array_Kernel — the programming type of interest, with the operations below

• Accessor
• Lower_Bound
• Upper_Bound

Concrete Components
• Static_Array_Kernel_1_C — This is a checking implementation of Static_Array_Kernel in

which the execution time for each of the operations accessor, Lower_Bound, and

STATIC_ARRAY-2 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Upper_Bound is constant; the execution times for the constructor and destructor are
proportional to the length of the interval between the upper and lower bounds. All objects of
this type have the interface of Static_Array_Kernel, with the concrete template name
Static_Array_Kernel_1_C substituted for the abstract template name Static_Array_Kernel.

 To bring this component into the context you write:
#include "CT/Static_Array/Kernel_1_C.h"

Component Coupling Diagram

Static_
Array_
Kernel

Static_
Array_

Kernel_1_C

implements

STATIC_ARRAY (CLIENT VIEW) STATIC_ARRAY-3

Descriptions

Static_Array_Kernel Type and Standard Operations

Formal Contract Specification
 /*!
 math subtype INDEXED_TABLE is finite set of (
 i: integer,
 x: Item
)
 exemplar t
 constraint
 for all i1, i2: integer, x1, x2: Item
 where ((i1,x1) is in t and
 (i2,x2) is in t)
 (if i1 = i2 then x1 = x2)

 math subtype STATIC_ARRAY_MODEL is INDEXED_TABLE
 exemplar a
 constraint
 for all i: integer
 (there exists x: Item
 ((i,x) is in a) iff lower <= i <= upper))
 !*/

 standard_abstract_operations (Static_Array_Kernel);

 /*!
 Static_Array_Kernel is modeled by STATIC_ARRAY_MODEL
 initialization ensures
 self = {i: integer, x: Item
 where (lower <= i <= upper and
 is_initial (x))
 (i,x)}
 !*/

Informal Description
The model for Static_Array_Kernel is a finite set of ordered pairs of type (integer, Item) that
contains exactly one pair for each integer within the interval from lower to upper, inclusive.
These bounds are template parameters that are just ordinary integer constants once
Static_Array_Kernel is instantiated.
Like all Resolve/C++ types, Static_Array_Kernel comes with operator &= and Clear.
Note — The sample traces for this and the other operation descriptions refer to the type
Static_Array_Of_Text, which is the result of the following instantiation:

concrete_instance
class Static_Array_Of_Text :
 instantiates
 Static_Array_Kernel_1_C <Text, 7, 9>
{};

STATIC_ARRAY-4 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Sample Traces
Statement Object Values

 (a1 is not in scope)

object Static_Array_Of_Text a1;

 a1 = {(7,""),(8,""),(9,"")}

STATIC_ARRAY (CLIENT VIEW) STATIC_ARRAY-5

Accessor

Formal Contract Specification
 function Item& operator [] (
 preserves Integer i
) is_abstract;
 /*!
 requires
 lower <= i <= upper
 ensures
 (i, self[i]) is in self
 !*/

Informal Description
Note — This and the other operation descriptions refer to these objects in examples:

object Static_Array_Of_Text a1, a2;
object Text t;
object Integer i1, i2;

A call to the accessor operator [] has the form of an expression:
 ... a1[i1] ...;

This expression acts as the name of an object of type Item (i.e., Text in this case) whose value is
that paired with i1 in a1. You may make this call only if there is a pair in a1 whose first
component is i1, i.e., only if i1 lies between lower and upper inclusive.
You may use a1[i1] wherever any other object of type Item (i.e., Text in this case) may appear.
The accessor operator [], like all functions, preserves its arguments. But it is important to
realize that the accessor expression a1[i1] does not simply denote the value associated with i1 in
a1, it acts as the name of an object of type Item which you may consider to be in that particular
pair in a1. This means that not only may you use the expression a1[i1] as a value of type Item;
you may even change the value of the object called a1[i1]—but remember that this also changes
the value of a1.
The sample traces help illustrate some important points regarding the convenience and danger of
accessor expressions. The first and second sample statements show how an accessor expression
such as a1[i1] acts like an object of type Item whose value may be changed, depending on the
statement in which the expression occurs. The third sample statement’s call to the swap operator
involves other arguments (e.g., a2), but none of the other arguments may be a1 or may involve
an accessor expression for a1 because this would violate the repeated argument rule. So, while
you might be tempted to write something like:

a1[i1] &= a1[i2];

this statement violates the repeated argument rule. Be aware that the C++ compiler will not
report this as an error. You need to avoid the pitfall by personal discipline.

STATIC_ARRAY-6 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Sample Traces
Statement Object Values

 a1 = {(7,"abcd"), (8,"XYZ"),

 (9,"bucks")}

i1 = 8

t = "go"

a1[i1] &= t;

 a1 = {(7,"abcd"), (8,"go"),

 (9,"bucks")}

i1 = 8

t = "XYZ"

a1[8] = t;

 a1 = {(7,"abcd"), (8,"XYZ"),

 (9,"bucks")}

i1 = 8

t = "XYZ"

...

 a1 = {(7,"abcd"), (8,"go"),

 (9,"bucks")}

a2 = {(7,""), (8,"cd"),

 (9,"rom")}

i1 = 8

i2 = 9

a1[i1] &= a2[i2];

 a1 = {(7,"abcd"), (8,"rom"),

 (9,"bucks")}

a2 = {(7,""), (8,"cd"),

 (9,"go")}

i1 = 8

i2 = 9

STATIC_ARRAY (CLIENT VIEW) STATIC_ARRAY-7

Lower_Bound

Formal Contract Specification
 function Integer Lower_Bound () is_abstract;
 /*!
 ensures
 Lower_Bound = lower
 !*/

Informal Description
A call to the Lower_Bound operation has the form of an expression:
 ... a1.Lower_Bound () ...;

This operation returns an Integer value which is the lower bound on the interval of legal indices
into a1, i.e., lower.

Sample Traces
Statement Object Values

 a1 = {(7,"abcd"), (8,"go"),

 (9,"bucks")}

i1 = -32

i1 = a1.Lower_Bound ();

 a1 = {(7,"abcd"), (8,"go"),

 (9,"bucks")}

i1 = 7

STATIC_ARRAY-8 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Upper_Bound

Formal Contract Specification
 function Integer Upper_Bound () is_abstract;
 /*!
 ensures
 Upper_Bound = upper
 !*/

Informal Description
A call to the Upper_Bound operation has the form of an expression:
 ... a1.Upper_Bound () ...;

This operation returns an Integer value which is the upper bound on the interval of legal indices
into a1, i.e., upper.

Sample Traces
Statement Object Values

 a1 = {(7,"abcd"), (8,"go"),

 (9,"bucks")}

i1 = -32

i = a1.Upper_Bound ();

 a1 = {(7,"abcd"), (8,"go"),

 (9,"bucks")}

i1 = 9

Text
Text is a built-in type (concrete instance) in Resolve/C++, which is included when you bring
RESOLVE_Foundation.h into the global context. The name Text is therefore unusual: it is the
name of a concrete template even though it does not end in “_2” or “_1a” or the like.

Motivation, Applicability, and Indications for Use
Resolve/C++ also includes Boolean, Character, Integer, and Real as built-in types. An object of
any of these types has a very simple mathematical model, i.e., a simple mathematical type:
boolean, character, integer, and real, respectively. While Boolean, Integer, and Real objects
clearly are useful in a variety of situations, Character objects usually seem less valuable. The
reason is that normally you want to combine individual Character objects into sequences or
strings of characters. If you need to deal with a sequence of characters as a unit, then you should
use a Text object, whose mathematical model is a string of characters.
RESOLVE/C++ has literals (constants) of the built-in types Boolean, Character, Integer, and
Real — e.g., true, 'a', 13, and 3.14159, respectively. There also are literals of type Text, e.g.,
"hello there". A Text literal comprises zero or more Character literals enclosed in double-
quotes, without single-quotes around the individual Character literals that make it up. You may
use a Text literal any place a Text object is required as an argument to an operation if the
associated formal parameter has preserves mode. This makes Text a very useful type when you
need to prompt a user for input, label an output, construct a menu of choices, etc. Such prompts
and labels may be Text literals in your source code.1

Related Components
• Character — the type of each of the individual items in a Text object
• Sequence — a generalization of Text in which the individual items may be of any type

Component Family Members

Abstract Components
• Text_Kernel — the programming type of interest, with the operations below

• Add
• Remove
• Accessor
• Length

1 For flexibility, you might store such Text literals in “resource files”. This allows a knowledgeable
user to customize certain aspects of an application program (e.g., to adapt it to a foreign language)
without having access to the source code. Resource files are not further discussed here, but they are
conventional features of many programs.

TEXT-2 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Concrete Components
• Text — This is the standard implementation of the abstract instance Text_Kernel that comes

built-in to Resolve/C++. It is a concrete instance, i.e., you may declare objects of type Text.
Text is a checking component, which means that it checks the preconditions of its operations.
So, if you call any of the Text operations with a violated precondition then your program will
immediately stop and report the violation.

 To bring this component into the context you write:
#include "RESOLVE_Foundation.h"

Component Coupling Diagram

Text_
Kernel

Text

implements

TEXT (CLIENT VIEW) TEXT-3

Descriptions

Text_Kernel Type and Standard Operations

Formal Contract Specification
 standard_abstract_operations (Text_Kernel);
 /*!
 Text_Kernel is modeled by string of character
 initialization ensures
 self = empty_string
 !*/

Informal Description
The model for a Text_Kernel object is a string of characters which is initially empty. A
Text_Kernel object may be an arbitrarily long string. Like all Resolve/C++ types, Text_Kernel
comes with operator &= and Clear.

Sample Traces
Statement Object Values

 (t1 is not in scope)

object Text t1;

 t1 = ""

TEXT-4 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Add

Formal Contract Specification
 procedure Add (
 preserves Integer pos,
 preserves Character c
) is_abstract;
 /*!
 requires
 0 <= pos <= |self|
 ensures
 there exists a, b: string of character
 (|a| = pos and
 #self = a * b and
 self = a * <c> * b)
 !*/

Informal Description
Note — This and the other operation descriptions refer to these objects in examples:

object Text t1, t2;
object Boolean b;
object Character c;
object Integer i;
object Character_IStream input;
object Character_OStream output;

A call to the Add operation has the form:
t1.Add (i, c);

This operation adds c in position i of string t1, i.e., in a position such that the number of
characters before the newly added character is equal to i. You may make this call only if 0 ≤ i
≤ |t1|.
You can see from this example that the numbering of positions in the string t1 effectively starts
at 0. For instance, to add 'X' at the beginning of t1 (i.e., as the left-most character of t1) you
might write:

t1.Add (0, 'X');

TEXT (CLIENT VIEW) TEXT-5

Sample Traces
Statement Object Values

 t1 = "Hep"

i = 2

c = 'L'

t1.Add (i, c);

 t1 = "HeLp"

i = 2

c = 'L'

t1.Add (4, '!');

 t1 = "HeLp!"

i = 2

c = 'L'

TEXT-6 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Remove

Formal Contract Specification
 procedure Remove (
 preserves Integer pos,
 produces Character& c
) is_abstract;
 /*!
 requires
 0 <= pos < |self|
 ensures
 there exists a, b: string of character
 (|a| = pos and
 #self = a * <c> * b and
 self = a * b)
 !*/

Informal Description
A call to the Remove operation has the form:

 t1.Remove (i, c);

This operation removes the character in position i of string t1 and returns it in c. You may make
this call only if 0 ≤ i < |t1|.
The numbering of positions in the string t1 starts at 0. For example, to remove the left-most
character of t1 and return it in c you might write:

 t1.Remove (0, c);

Sample Traces
Statement Object Values

 t1 = "HeLp"

i = 2

c = 'z'

t1.Remove (i, c);

 t1 = "Hep"

i = 2

c = 'L'

t1.Remove (2, c);

 t1 = "He"

i = 2

c = 'p'

TEXT (CLIENT VIEW) TEXT-7

Accessor

Formal Contract Specification
 function Character& operator [] (
 preserves Integer pos
) is_abstract;
 /*!
 requires
 0 <= pos < |self|
 ensures
 there exists a, b: string of character
 (|a| = pos and
 #self = a * <self[pos]> * b)
 !*/

Informal Description
A call to the accessor operator [] has the form of an expression:

 ... t1[i] ...;

This expression acts as the name of an object of type Character whose value is the character in
position i of string t1. You may make this call only if 0 ≤ i < |t1|.
The numbering of positions in the string t1 starts at 0. For example, to set the left-most character
of t1 to 'X' you might write (assuming |t1| ≥ 1):

 t1[0] = 'X';

The accessor operator [], like all functions, preserves its arguments (t1 and i in the example).
But it is important to realize that the accessor expression t1[i] does not simply denote the value
of the character in position i of string t1; it acts as the name of a Character object which you may
consider to lie in that position of the string. This means that not only may you use the expression
t1[i] as a value of type Character; you may even change the value of the object called t1[i]—but
remember that this also changes the value of t1.
The sample traces help illustrate some important points regarding the convenience and danger of
accessor expressions. The first and second sample statements how an accessor expression such
as t1[i] acts like an object of type Character whose value may be changed, depending on the
statement in which the expression occurs. The third sample statement shows that t1[i] may
appear as an argument in a call where a Character value (object or constant) is required. This
call involves other arguments (e.g., t2), but none of the other arguments may be t1 or may
involve an accessor expression for t1 because this would violate the repeated argument
restriction.
So, while you might be tempted to write something like:

t1[i] &= t1[24];

this statement violates the repeated argument rule for the swap operator. This conclusion is
especially clear if i = 24 at the time the statement is executed, but it is true even if i has some
other value since both swap operator arguments are accessor expressions for the same object,
namely t1. Be aware that the C++ compiler will not report this as an error. You need to avoid
the pitfall by personal discipline.

TEXT-8 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Sample Traces
Statement Object Values

 t1 = "HpLw"

i = 1

c = 'e'

t1[i] &= c;

 t1 = "HeLw"

i = 1

c = 'p'

t1[3] = c;

 t1 = "HeLp"

i = 1

c = 'p'

...

 t1 = "HeLp"

i = 1

t2 = "MoV"

t2.Add (3, t1[i]);

 t1 = "HeLp"

i = 1

t2 = "MoVe"

TEXT (CLIENT VIEW) TEXT-9

Length

Formal Contract Specification
 function Integer Length () is_abstract;
 /*!
 ensures
 Length = |self|
 !*/

Informal Description
A call to the Length operation has the form of an expression:

 ... t1.Length () ...;

This operation returns an Integer value which is the length of string t1 , i.e., |t1|.

Sample Traces
Statement Object Values

 t1 = "HeLp"

i = 1

i = t1.Length ();

 t1 = "HeLp"

i = 4

TEXT-10 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Tree
Motivation, Applicability, and Indications for Use
The programming type Tree is very common in language processing applications (e.g., parsers,
interpreters, compilers, etc.). The mathematics used to model general trees is similar to that used
to model binary trees (see Binary_Tree). Here we describe only those aspects that differ from
the explanation of binary trees.
The tree in Figure 1 has a root (e), interior items or nodes (h, k, and f), and leaves (c, g, b, a, j, l,
and d), just like a binary tree. But note that item e has three children, and item k has four. This
is what makes this a tree and not a binary tree. In a tree, there is no limitation on the number of
children any given item can have. An item can have 0, 1, 2, 3, ... or any finite number of
children.

Figure 1: A tree T

Another important difference is that there is no empty tree. The smallest tree is a tree of size 1,
i.e., a tree with exactly one item (the root) and no children.
Mathematically, we define “trees over a set of items”. This inductive definition is similar to the
definition of binary trees. The set of “trees over set A” (or tree of A, which is the type name you
use when writing the mathematics of trees) consists exactly of those trees that can be built up
from the items in A by one or more applications of the compose function. The compose function
for trees takes as arguments a root item from A, say x, and a string of k trees of A, say <T1, T2,
..., Tk>, and produces a tree of A, say T, with x as the root of T, and T1, T2, ..., Tk as the subtrees.
This is pictured in Figure 2.

Figure 2: The tree T = compose (x, <T1, T2, ..., Tk>)

And here is the inductive definition of the set “tree over set A”:

TREE-2 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

• Base case: If x in an element of A, then compose (x, empty_string) is an element of trees over
set A.

• Inductive case: If x is an element of A, and for all i: 1 ≤ i ≤ k, Ti is an element of trees over
set A, then compose (x, <T1, T2, ..., Tk>) is an element of trees over set A.

In addition to the type tree and the operation compose, there are three other basic math
operations you need to be familiar with. They are size, root, and children. Consider a tree T.
Then size(T) (also denoted |T|) is the number of items in T, e.g., in Figure 1, size(T) = 11; root(T)
is the root item of T, e.g., in Figure 2, root(T) = x; and children(T) is the string of trees that are
children of the root of T, e.g., in Figure 2, children(T) = <T1, T2, ..., Tk>.

Related Components
• Binary_Tree — a type that is similar to a Tree where each item has at most two children.

Component Family Members

Abstract Components
• Tree_Kernel — the programming type of interest, including the operations below

• Add
• Remove
• Accessor
• Number_Of_Children
• Size

Concrete Components
• Tree_Kernel_1a_C — This is a checking implementation of Tree_Kernel in which the

execution time for each of the operations constructor, Number_Of_Children, Size, and the
accessor is constant, while the execution time for Add and Remove is proportional to the
number of children of the root of the tree, and the execution time for the destructor is
proportional to the size of the tree. All objects of this type have the interface of Tree_Kernel,
with the concrete template name Tree_Kernel_1a_C substituted for the abstract template
name Tree_Kernel.

 To bring this component into the context you write:
#include "CT/Tree/Kernel_1a_C.h"

TREE (CLIENT VIEW) TREE-3

Component Coupling Diagram

Tree_
Kernel

Tree_
Kernel_1a_C

implements

TREE-4 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Descriptions

Tree_Kernel Type and Standard Operations

Formal Contract Specification
 standard_abstract_operations (Tree_Kernel);
 /*!
 Tree_Kernel is modeled by tree of Item
 initialization ensures
 there exists x: Item
 (is_initial (x) and
 self = compose (x, empty_string))
 !*/

Informal Description
The model for Tree_Kernel is a tree of items which initially has size 1. The root is an initial
value for type Item, and the root has no children. A Tree_Kernel object may be arbitrarily large.
Like all RESOLVE/C++ types, Tree_Kernel comes with operator &= and Clear.
Note — The sample traces for this and the other operation descriptions refer to the type
Tree_Of_Integer, which is the result of the following instantiation:

concrete_instance
class Tree_Of_Integer :
 instantiates
 Tree_Kernel_1a_C <Integer>
{};

Sample Traces
Statement Object Values

 (t1 is not in scope)

object Tree_Of_Integer t1;

t1 =

TREE (CLIENT VIEW) TREE-5

Add

Formal Contract Specification
 procedure Add (
 preserves Integer pos,
 consumes Subtree_Type& t
) is_abstract;
 /*!
 requires
 0 <= pos and pos <= |children (self)|
 ensures
 there exists a, b: string of tree of Item
 (|a| = pos and
 children (#self) = a * b and
 self = compose (root (#self), a * <#t> * b))
 !*/

Informal Description
Note — This and the other operation descriptions refer to these objects in examples:

object Tree_Of_Integer t1, t2, t3, t4;
object Integer i, n;

A call to the Add operation has the form:
t1.Add (i, t2);

This operation adds tree t2 in position i of the string of children of the root of t1, i.e., in a
position such that the number of children of the root of t1 before the newly added one is equal to
i. Notice that the value of t2 is consumed, and that you may make this call only if 0 ≤ i ≤
|children (t1)|, i.e., i is a valid position in the string of children of the root of t1.

TREE-6 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Sample Traces
Statement Object Values

t1 =

t2 =

t3 =

i = 1

t1.Add (i, t2);

t1 =

t2 =

t3 =

i = 1

t1.Add (3, t3);

t1 =

t2 =

t3 =

i = 1

TREE (CLIENT VIEW) TREE-7

Remove

Formal Contract Specification
 procedure Remove (
 preserves Integer pos,
 produces Subtree_Type& t
) is_abstract;
 /*!
 requires
 0 <= pos and pos < |children (self)|
 ensures
 there exists a, b: string of tree of Item
 (|a| = pos and
 children (#self) = a * <t> * b and
 self = compose (root (#self), a * b))
 !*/

Informal Description
A call to the Remove operation has the form:

 t1.Remove (i, t2);

This operation removes the tree in position i of the string of children of the root of t1, and returns
it in t2. You may make this call only if 0 ≤ i < |children (t1)|, i.e., i is a valid position in the
string of children of the root of t1.

TREE-8 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Sample Traces
Statement Object Values

t1 =

t2 =

t3 =

i = 0

t1.Remove (i, t2);

t1 =

t2 =

t3 =

i = 0

t1.Remove (1, t3);

t1 =

t2 =

t3 =

i = 0

TREE (CLIENT VIEW) TREE-9

Accessor

Formal Contract Specification
 function Item& operator [] (
 preserves Accessor_Position& current
) is_abstract;
 /*!
 ensures
 self = compose (self[current], children (self))
 !*/

Informal Description
A call to the accessor operator [] has the form of an expression:

 ... t1[current] ...;

This expression acts as the name of an object of type Item whose value is the item at the root of
t1.
The special word current is the only thing that can appear between [] in the accessor for type
Tree. It always refers to the single item at the root. You may use t1[current] wherever any other
object of type Item may appear.
The accessor operator [], like all functions, preserves its arguments. But it is important to
realize that the accessor expression t1[current] does not simply denote the value of the root item
in t1, it acts as the name of an object of type Item which you may consider to lie at the root of the
tree t1. This means that not only may you use the expression t1[current] as a value of type Item;
you may even change the value of the object called t1[current]—but remember that this also
changes the value of t1. Note that using the accessor function is the only way to change the root
in a tree.

TREE-10 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Sample Traces
Statement Object Values

t1 =

i = 7

t1[current] &= i;

t1 =

i = 6

t1[current] = i;

t1 =

i = 6

TREE (CLIENT VIEW) TREE-11

Number_Of_Children

Formal Contract Specification
 function Integer Number_Of_Children () is_abstract;
 /*!
 ensures
 Number_Of_Children = |children (self)|
 !*/

Informal Description
A call to the Number_Of_Children operation has the form of an expression:

 ... t1.Number_Of_Children () ...;

This operation returns an Integer value which is the length of the string of children of the root of
t1.

TREE-12 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Sample Traces
Statement Object Values

t1 =

t2 =

i = 21

i = t1.Number_Of_Children ();

t1 =

t2 =

i = 3

i = t2.Number_Of_Children ();

t1 =

t2 =

i = 1

TREE (CLIENT VIEW) TREE-13

Size

Formal Contract Specification
 function Integer Size () is_abstract;
 /*!
 ensures
 Size = |self|
 !*/

Informal Description
A call to the Size operation has the form of an expression:

 ... t1.Size () ...;

This operation returns an Integer value which is the size of the tree t1, i.e., |t1|.

TREE-14 SOFTWARE COMPONENT ENGINEERING WITH RESOLVE/C++, VOLUME 2

Sample Traces
Statement Object Values

t1 =

t2 =

i = 21

i = t1.Size ();

t1 =

t2 =

i = 6

i = t2.Size ();

t1 =

t2 =

i = 2

	V2 Title 2007-06-05
	V2 Ch1 2006-12-18
	V2 Ch2 2006-12-18
	V2 Ch3 2007-06-05
	V2 Appendices Title 2007-01-04
	Client App Array
	Client App Binary_Tree
	Client App Id_Name_Table
	Client App List
	Client App Natural
	Client App Partial_Map
	Client App Queue
	Client App Record
	Client App Sequence
	Client App Set
	Client App Sorting_Machine
	Client App Stack
	Client App Static_Array
	Client App Text
	Client App Tree

