KGG: A systematic biological <u>K</u>nowledge-based mining system for <u>G</u>enomewide <u>G</u>enetic studies (Version 3.5)

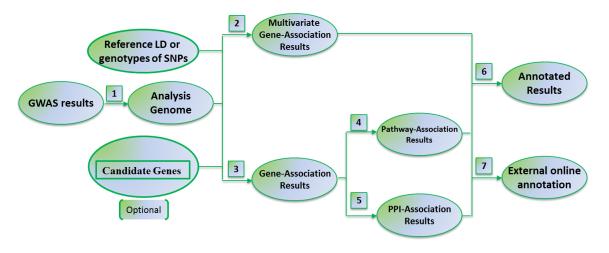
User Manual

Miao-Xin Li, Jiang Li

Department of Psychiatry Centre for Genomic Sciences Department of Biochemistry The University of Hong Kong Pokfulam, Hong Kong SAR, China

Content

1. Introduction and general pipeline	2
References	3
2. Installation	4
2.1 Installation of Java Runtime Environment (JRE)	4
2.2 Installation of KGG	4
3. Interface and functions	4
3.1 Project	5
3.2 Data	5
3.4 Gene	5
3.5 Module	6
3.5 Tools	6
3.6 Window	6
4. Input files	6
4.1 Input file 1 (GWAS results)	6
4.2 Input file 2 (Candidate Gene list)	
5. Set-based association analysis tutorial	7
6. Power estimation of set-based tests by SPS	. 14
7. Update from KGG 3.0 to KGG 3.5.	. 20


Hints for large GWAS dataset (around or over 2.5 million SNPs)

Set or change large memory for KGG3 say, 2000MB, by *Tools->Set System Memory*.

1. Introduction and general pipeline

KGG (<u>K</u>nowledge-based mining system for <u>G</u>enome-wide <u>G</u>enetic studies) is a software tool to perform knowledge-based analysis for genome-wide association studies (GWAS). At present, the version 3 has been equipped with main functions to conduct multivariate/univariate gene-based association tests using SNP p-values from GWAS^[1,2,3] and to carry out advanced univariate biological module-based association analysis (pathway enrichment and protein-protein interaction (PPI) network association) by a set-based test ^[2]. In addition, KGG has provided direct hyperlinks to several useful bioinformatics annotation databases on sequence variants

(<u>http://jjwanglab.org/gwasrap</u>), genes (GeneCards, <u>http://www.genecards.org/</u>) and pathways (MsigDB, <u>http://www.broadinstitute.org/gsea/msigdb</u>). A number of functions to model emerging epigenomic regulatory data for prioritizing association signals are still under development.

Figure 1.1 Pipeline chart of KGG analysis (version 3)

Notes: Circle nodes stand for data and files (input, output); single directional arrows stand for analytical procedures involved.

Main steps involved:

- 1) Build an **Analysis Genome**: generate an intermediate dataset which integrates original GWAS p-values, SNP annotation and gene annotation, and LD between SNPs WITIN genes together. It is a unified dataset which will be used for all kinds of analyses on KGG.
- 2) Conduct a **multivariate gene-based association test**: calculate gene-based p-values of multiple phenotypes by a method ^[3].
- 3) Conduct **gene-based association test**: calculate gene-based p-values of a single phenotype by GATES^[1] or HYST^[2].
- 4) Explore significantly associated pathways by HYST ^[2] and enriched with susceptibility genes by hypergeometric distribution test. One can use either the integrated pathways (gene sets) from MsigDB (<u>http://www.broadinstitute.org/gsea/msigdb</u>) or his or her self-customized pathways on KGG.
- 5) Explore statistically significant **associated PPI pairs** by HYST ^[2] which may work together to contribute to the development of the disease or traits. Again, one can use either the integrated PPI pairs from the STRING PPI (<u>http://string-db.org/</u>) or his or her self-customized PPI pairs on KGG.
- 6) Annotate and export significant SNPs, genes, pathways and PPIs.
- 7) View **external bioinformatics annotation results** of statistically significant SNPs, genes and pathways.

Other plug-in:

1) SPS: a simulation tool for **calculating power of set-based** genetic association tests.

References

- 1. Li MX, Gui HS, Kwan JS, Sham PC. GATES: A rapid and powerful gene-based association test using extended Simes procedure. Am J Hum Genet. 2011 Mar 11;88(3):283-293.
- 2. Li MX*, Kwan JS*, Sham PC. HYST: A hybrid set-based test for genome-wide association

studies, with application to protein-protein interaction-based association analysis. Am J Hum Genet. 2012 Sep 7;91(3):478-88.

3. Sluis et al. MGAS: a powerful tool for multivariate gene-based genome-wide association analysis. Bioinformatics (In press)

2. Installation

2.1 Installation of Java Runtime Environment (JRE)

The Java Runtime Environment (JRE) v1.7 (or higher version) is required to run KGG3 on any operating systems (OS). It can be downloaded from <u>http://java.sun.com/javase/downloads/index.jsp</u> for free. Installing the JRE is very easy in Windows OS and Mac OS X.

In Linux, you have more work to do. Details of the installation can be found at <u>http://www.java.com/en/download/help/linux_install.xml</u>.

In Ubuntu, if you have an error message like: "Exception in thread "AWT-EventQueue-0" java.awt.HeadlessException ...", then please installs the Sun Java Running Environment (JRE) first.

To install the Sun JRE on Ubuntu(10.04), please use the following commands: sudo add-apt-repository "deb http://archive.canonical.com/ lucid partner" sudo apt-get update sudo apt-get install sun-java7-jre sun-java7-plugin sun-java7-fonts

Detailed explanation of above commands can be found at <u>http://www.ubuntugeek.com/how-install-sun-java-runtime-environment-jre-in-ubuntu-10-04-lucid-lynx.html</u>.

Note: After completing Java installation please make sure that not only the java is executable but the extracted jre/bin directory is added to the PATH, otherwise KGG3 would not start properly. This is easily achievable by executing the following command on the terminal:

echo 'export PATH=/path/to/installed/jre/bin:\$PATH' >> ~/.bashrc && source ~/.bashrc

Thanks Attila Pulay for the suggestion!

2.2 Installation of KGG

To simplify the installation, we still keep KGG as a green tool (i.e., no formal installation procedure guided by an installation wizard). After decompressing the kgg3.zip file, you will see a "bin" folder where there are 3 script files to initiate KGG3. On Microsoft Windows, please double click kgg3.exe or kgg364.exe file. On Linux, Mac OS X and Solaris, please type the kgg3 in a Command-line Terminal.

3. Interface and functions

Figure 3.1 shows a typical interface of KGG with an active project.

ect Window Resource Window 🖃		ResultViewer	r 🕫 📘 PassedResul	tViewer 🔉 🎹 Tabl	eViewer Window	- 88 <	View genes	🕫 🌄 ShowP	athways 🛚 🛛 🙆	Show PPIs 88				4 >
rohnDisease	Gene Info						SNP Info					Search gene:	TTN, CD27	
P-value Files:	Symbol	NominalP	Correct Chromo.	Start_P Lengt	h Group		SNP	Position	Gene Feat	META-P		Multiple Tes		
GrohnDiseaseSNP.txt	MIER1	2.53E-34	5.58264 1	67390577 23347	protein-c		rs6664119	67367916	intronic	9.63E-8		Method:	·	iochberg (1995)
Candi. Gene Files:	CBLN1	2.73E-31	3.02141 16	49311828 3915	protein-c		rs10889656	67306580	intronic	5.65E-2		Method:	benjamini o n	iocuperg (1995)
andidategeneset_crohn	WDR78						rs2064689	67365031	intronic	1.90E-15		Error Rate	: 0.05	Apply
Genome: genome_crohn	INPP 5D	1.04E-19	5.73825 2	233924676 19187	4 protein-c		rs11209018	67379312	intronic	6.41E-12	=			
Source : CrohnDiseaseSNP.txt	SLC35D1	3.70E-16	1.63478 1	67465014 55067	protein-c		rs17375018	67367168	intronic	2.39E-15				
Version : ho 19	LCORL	8.94E-14	3.29436 4	17882217 14126			rs2863202	67296356	intronic	7.53E-2		Export Setti	ng	
Gene database : RefGene	IGSF3	5.99E-12	1.89059 1	117117019 93359	protein-c		rs1884444	67345833	intronic	5.25E-7		Content:	Variants inside	genes 🗸
Used columns : [META-P]		5 3.61E-10	9.98602 10	64099346 35541	unknown	_	rs7515029	67308393	intronic	3.65E-17		-	-	
Gene 5' extension : 5.0	LINC01475		1.11609 10	101286106 4829	non-codi	·	rs7539795	67321467	intronic	4.63E-7		Format:	Excel(.xlsx)	 Export
Gene 3' extension : 5.0	ZNF300P1	6.80E-10 1.57E-9	1.50364 5 3.15590 18	150309997 16150	pseudog	· .	rs4655684	67323793	intronic	9.13E-13		Gene p val	ues <= 5E-2	
SNP LD : 1KG Haplotypes VCF	PTPN2 RFTN1	1.5/E-9 2.94E-9	3.15590 18 5.41875 3	12785476 98859 16357351 19787	protein-c		rs6701962	67276878	downstream	4.51E-2				
	NKX2-3	2.94E-9 5.95E-9	1.01148 10	101292689 3592	2 protein-c protein-c		rs1004819	67382234 67323820	intronic	7.66E-24		Variants p	values <= 5E-2	
🖌 🖌 🖌 🖌 🖌 🖌 🖌 🖌 🖌 🖌 🖌 🖌 🖌							rs6588245	67323820	intronic downstream	3.73E-7	-			
	CMIM2													
Gene Scan: genescan_crohn	SMIM3	2.61E-8	3.86757 5	150157507 18792	protein-c	_	rs2863200	167276641	inownstream	2.72F-1				
Genome : genome_arohn			3.86757 5	150157507 18792	protein-c	_	rs2863200	167276641	nownstream	12.72F-1				
Genome : genome_crohn Multivariate Test : No	SMIM3 Genome B		3.86757 5	150157507 18792	protein-c	2								
Genome : genome_crohn Multivariate Test : No P value sources : [META-P]			3.86757 5	150157507 18792	protein-c	_			(3.68E-26					
Genome : genome_crohn Multivariate Test : No P value sources : [META-P] Test : GATES	Genome B	rowser	(0.2-0.4) • (0.4-0			2	Gene:				TR-UpDownSt	ream 🔶 ncRt	VA 🔺 InterGe	ne 🔻 Others
Genome : genome_crohn Multivariate Test : No P value sources : [META-P]	Genome B	rowser				2	Gene:)	TR-UpDownSt	ream 🔶 ncRt	NA 🔺 InterGe	ne 🔻 Others
Genome : genome_crohn Multivariate Test : No P value sources : [META-P] Test : GATES	Genome B	rowser (0.0-0.2)				2	Gene:)	TR-UpDownSt	ream 🔶 ncRt	NA 🔺 InterGe	ne 🔻 Others
Cenome : genome _crohn Hultivariate Test : No Value sources : [META-P] Cest : GATES Show : Detailed Results	Genome B	rowser [0.0-0.2]				2	Gene:)	TR-UpDownSt	ream 🔶 ncRł	VA 🔺 InterGe	ne 🔻 Others
Genome : genome_crohn Hultivariate Test : No P value sources : [NETA-P] Test : GATES Show : Detailed Results Gene-pair Scan: PPIBasedAssociationScan_c	Genome B	(0.0-0.2)				2	Gene:)	TR-UpDownSt	ream 🔶 ncRł	VA 🔺 InterGe	ne V Others
Genome : genome_grohn Multivariate Test: 1:10 Value sources : [NETA-P] Test: GATES Show: Detailed Results Gene-pair Scan: PPIBasedAssociationScan (Gene-scan: grohn	Genome B 27. 26. 22.	(0.0-0.2)				2	Gene:)	TR-UpDownSt	ream 🔶 ncRł	_	ne V Others
Genome:genome_crohn Hultivariate Test: No Paulae sources: (NETA-P) Test: CATES Geno-pair Scale Results Geno-pair Scale PBBaedAssociatorScale Gene-sata: pPBBaedAssociatorScale Paulae sources: (NETA-P) Test: No weights	Genome B 27. 28. 22. (2) 20. (2) 20.	(0.0-0.2)			0.8-1.0) • 1.1	2	Gene:)	TR-UpDownSt	ream 🔶 ncRt	_	ne V Others
Genome: genome_grafm Intitivariate Test: I/b Paules cource: I/ETA #] Test: CATES Show: Detailed Reads: Cene: pair Scan: PPBased AssociatorScan_G Paules cources: I/ETA #] Gene: scan: generaci_grafm Paules cources: I/ETA #] Test: I/o weight Gene: pair: STRINPPPVoS.bt.gz	Genome B 27. 28. 22. 9 20. 5 17.	(0.0-0.2) (5				2	Gene:)	TR-UpDownSt	ream \blacklozenge ncRt	_	ne V Others
Genome : genome _ strin Hultivanist Text: No Hultivanist Text: No P value sources : (NETA-P) Text : CATES Show : Dealed Results Gene scal: geneclan_strin P value sources : (NETA-P) Center scal: geneclan_strin P value sources : (NETA-P) Text: No works Text: No works Confidence: 0.6	Genome B 27. 28. 22. 9 20. 5 17.	(0.0-0.2) (5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			0.8-1.0) • 1.1	2 0 • r	Gene:)	TR-UpDownSt	ream \blacklozenge ncR!	_	ne V Others
Genome:growne.growne with variate Test:H0 what variate Test:H0 Prate source:HETAP] Test:ATE5 Show:Dealed Reads Gene source:[METAP] Test:H0 weights Gene source:[METAP] Test:H0 weights Gene source:LBNAPPHADS.txt.gr Geneface:L6 Show:Dealed Reads	Genome B 27. 28. 22. (a) 20. 17. 26. 21. 26. 21. 21. 26. 21. 26. 21. 26. 21. 21. 26. 21. 26. 21. 21. 21. 21. 22. 21. 22. 21. 22. 22	(0.0-0.2) (5			0.8-1.0) • 1.1	2 0 • r	Gene:)	TR-UpDownSt	ream \blacklozenge ncRt	_	ne 🔻 Others
Consume : genome _ grinn Hollkomate Test: No Hollkomate Test: No Hollkomate Test: No Test: CATE Show : Detailed Results Gene san : geneclar_grinn Publes sources : [META*] Gene san : geneclar_grinn Publes sources : [META*] Gene san : GENE(SATE) Confidence : 0.6 Show : Detailed Results Publes/Geneted San: Pathway/Geneted San: Path	Genome B 27. 28. 29. 29. 20. 39. 20. 39. 20. 39. 20. 20. 21. 23. 24. 20. 20. 20. 20. 20. 20. 20. 20	(0.0-0.2) (5 5 5 6 6 6 6 0 0			0.8-1.0) • 1.1	2 0 • r	Gene:)	TR-UpDownSt	ream \blacklozenge ncRt	_	ne V Others
Genome sprome_ordin Hultivariate Test: IIIo Paulae sources: [HETA+7] Test: CATE5 Test: CATE5 Show: Detailed Reads Gene scar: operscan.ordin Paulae sources: [HETA+7] Cates scarces: [HETA+7] Gene scarces: [HETA+7] Gene scarces: [HETA+7] Gene scarces: [HETA+7] Gene scarces: [HETA+7] Show: Detailed Reads Gene scarces: [HETA+7] Gondience: 1.0 Show: Detailed Reads Pathway/GeneSet Scarce/PathwayGeneSet Genes carce/PathwayGeneSet Gene scarce/PathwayGeneSet	Genome B Genome B 22. (a) 20. (b) 20. (c) 27. 28. 22. (c) 20. (c) 27. 28. 22. (c) 27. 28. 27. 28. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29	(0.0-0.2) (6			0.8-1.0) • 1.1	2 0 • r	Gene:)	TR-UpDownSt	ream ncR	_	ne V Others
Center Center Server 2001 Hollbrandte Test 110 Hollbrandte Test 110 F Hollbrandte Test 110 F Hollbrandte Test 110 F Hollbrandte Test 110 F Hollbrandte Formson 2001 Gene San : genesan 2001 F Hollbrandte Formson 2001 F Hollbrandte Formson 2001 F Hollbrandte Formson 2001 Gene San : genesan 2001 F Hollbrandte Formson 2001 F Hollbrandte Formson 2001 F Hollbrandte Formson 2001 F Hollbrandte Formson 2001 F Hollbrandte San 2001 F Hollbrandte Formson 2001 F Hollbrandte San 2001 F Hollb	Genome B Genome B 225. 225. 226. 226. 227. 226. 220. 25. 20. 25. 20. 25. 20. 25. 20. 25. 20. 25. 20. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25	(0.0-0.2) (6			0.8-1.0) • 1.1	2 0 • m	Gene:) Exon • Intron-U	TR-UpDownSt	ream	_	ne V Others
Genome sponte_orbit Hultivariate Test: IIIo Hultivariate Test: IIIo Hultivariate Test: IIIo Hultivariate Test: IIIo Test: CATES Gene scal: operation grantering Paules sources: [NETA+2] Gene scal: operation_crofit Paules sources: [NETA+2] Test: IIo weights Gene-scal: colors Show: Detailed Results Pathwary/GeneSet Scale: PathwaryGeneSet Genescal: operation_crofit Paules sources: [NETA+2] Show: Detailed Results PathwaryGeneSet Scale: PathwaryGeneSet Genescal: operation_crofit Genescal: operation_crofit Paules sources: [NETA+2] Test: IIo weights Test: IIIo weights Test: IIIIo weights Test: IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Genome Ba Genome Ba 22. (a) 20. (b) 20. (c) 27. 25. 22. (a) 20. (c) 27. 25. 22. (a) 20. (c) 27. 25. 22. (c) 27. 25. 22. (c) 27. 25. 20. (c) 27. 25. 20. (c) 27. 20. (c) 27. 20. (c) 27. 20. (c) 27. (c) 27.	(0.0-0.2) (5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0.8-1.0) • 1.1	2 0 • m	Gene:) Exon • Intron-U	TR-UpDownSt	ream ncRt	_	
Genome : genome _ toth Hollkovante Test: (h Hollkovante Test: (h Poules sources : (NETA-P) Stow: Debaled Results Gene san: genesian_toth Poules cources : (NETA-P) Gene san: genesian_toth Poules cources : (NETA-P) Gene san: genesian_toth Sources : (NETA-P) Gene san: genesian_toth Gene san: genesian_toth Gene san: genesian_toth Poules genesis: (SETA-P) Poules genesis: (SETA-P) Fest: No works Fact: No works Poules genesis: (CETA-P) Test: No works Poules genesis: (CETA-P)	Genome Br Genome Br 22. (9 20. (9 20. (9 21. (9 21.))))))))))))))))))))))))))))))))))))	(0.0-0.2) (5	• (0.20.4) = (0.40	.6) • (0.6-0.8) •	0.8-1.0) • 1.1	2	Gene:	WDR78	(3.68E-26) Exon • Intron-U	•			
Genome : genome : dnn Holltvariate Text : file Holltvariate Text : file Pradie sources : [VETA P] Text : CATES Gene san : genesion : dnn Value sources : [VETA P] Gene san : genesion : dnn Value sources : [VETA P] Contidence : 0.6 Sources : DetTA P] doue sources : [VETA P] Gene san : genesion : dnn Value sources : [VETA P] Sources : DetTA P] Sourc	Genome Br Genome Br 22. (9 20. (9 20. (9 21. (9 21.))))))))))))))))))))))))))))))))))))	(0.0-0.2) (5		.6) • (0.6-0.8) •	0.8-1.0) • 1.1	2	Gene: af	WDR78((3.68E-26) Exon • Intron-U • • • • •	TR-UpDownSt	ream	_	
Genome : genome _ toth Hollkovante Test: (h Hollkovante Test: (h Poules sources : (NETA-P) Stow: Debaled Results Gene san: genesian_toth Poules cources : (NETA-P) Gene san: genesian_toth Poules cources : (NETA-P) Gene san: genesian_toth Sources : (NETA-P) Gene san: genesian_toth Gene san: genesian_toth Gene san: genesian_toth Poules genesis: (SETA-P) Poules genesis: (SETA-P) Fest: No works Fact: No works Poules genesis: (CETA-P) Test: No works Poules genesis: (CETA-P)	Genome Br Genome Br 22. (9 20. (9 20. (9 21. (9 21.))))))))))))))))))))))))))))))))))))	(0.0-0.2) (5	• (0.20.4) = (0.40	.6) • (0.6-0.8) •	0.8-1.0) • 1.1	2	Gene: af	WDR78((3.68E-26) Exon • Intron-U • • • • •	•			
Genome : genome . orbin Holtbrantat Test : Illo Holtbrantat Test : Illo Holtbrantat Test : Illo Holtbrantat : CATES Show : Detailed Results Gene scal : genesion .orbin Poule sources : [PTA+2] Test : Illo worbits Confidence : IDR/NOPU95.txt.gz Confidence : IDR Mow : Detailed Results Patwary/GeneSet Scans: Patwory/GeneSet Gene scal : genesion.orbin Poule sources : [PTA+2] Gene scal : genesion.orbin Poules cources : [PTA+2] Gene scal : genesion.orbin Poules cources : [PTA+2] Test : Illo worbits Patwary UB : CL:pu+0. symbol.mt.pl. Candidate Gene : candidatemente, rr. Candidate Gene : candidatemente, rr. Candidate Gene : candidatemente, rr.	Genome Br Genome Br 22. (9 20. (9 20. (9 21. (9 21.))))))))))))))))))))))))))))))))))))	(0.0-0.2) (5	• (0.20.4) = (0.40	.6) • (0.6-0.8) •	0.8-1.0) • 1.1	2	Gene: af	WDR78((3.68E-26) Exon • Intron-U • • • • •	•			

Figure 3.1 A typical KGG interface

Illustration:

Frame 1: tree-structured branches to manage input data and analysis results of a KGG project;

Frame 2: view of input data or output results;

Frame 3: running log of KGG analysis results;

The graphic dialogs of KGGs are self-explaining. Therefore, we will not elaborate the function of each buttons.

3.1 Project

- **Create project**: create a new KGG project.
- > **Open project:** open an existing KGG project.
- **Close project:** close the current project.
- **Exit:** exit the KGG application.

3.2 Data

- **Load P value file:** import your association summary results (e.g., the plink output).
- > **Define seed genes:** tell KGG the known causal genes of the disease you are studying.
- Build analysis genome: build an analysis genome in which KGG maps all SNPs to their gene features and calculates the r-square or genotypic correlation of SNPs within genes.

3.4 Gene

- Gene-based association scan: conduce the gene-based association scans.
- **View genes:** view and export gene-based association results.

3.5 Module

- > **PPI-based association scan:** conduct PPI based association scan.
- > View PPIs: view significant PPI pairs.
- > Pathway-based association scan: conduct pathway based association scan.
- > View pathways: view significant pathways.

3.5 Tools

- Set system memory: set the memory of KGG.
- > Power calculator: SPS-a simulation tool for calculating power of set-based genetic association tests.

3.6 Window

- > AnalysisOutput: show the results when performing multiple tests.
- Project: depict the structure of the project.
- Resource: show the resource that KGG contains.
- > ResultViewer: give the real-time results when performing the concrete analysis.
- > RunningResultViewer: record the parameters using in each analysis.
- > TableViewer: display the content of some files.
- > Output: show all the IDE output.

4. Input files

4.1 Input file 1 (GWAS results)

KGG focuses on the downstream analysis of GWA studies, where statistical association p-values (or chi-square values) at SNPs have been generated by conventional statistical genetic methods (such as PLINK). Therefore, the association p-values are the major input of our KGG. KGG flexible supports a user-customized format for the association p-values.

Once three columns of information, chromosome number and SNP IDs (or physical position) and p-values are available in a file, you can define the column order by yourselves on KGG. The input file can include more than one p-value column. The following is an example.

Example	input format	(with rsID)	of KGG:
---------	--------------	-------------	---------

CHR	SNP	P-value1	P-value2	P-value3	
4	rs1513559	0.02301	0.8815	0.007688	•••
4	rs294755	0.4384	0.9575	0.006112	•••
4	rs835316	0.002688	0.007688	0.4893	•••
4	rs1841043	0.01115	0.006112	0.119	•••
4	rs11726946	0.005892	0.4893	0	
	•••	•••	•••	•••	•••

Example input format (with only position) of KGG:

CHR	SNPID	SNPPOS	P-value1	P-value2	P-value3	
4	Snp1	100001	0.02301	0.8815	0.007688	
4	Snp2	110011	0.4384	0.9575	0.006112	

4	Snp3	120001	0.002688	0.007688	0.4893	
4	Snp4	130011	0.01115	0.006112	0.119	
4	Snp5	140001	0.005892	0.4893	0	•••
•••		•••	•••	•••	•••	•••

Moreover, a p-value column could include values of different models. KGG will recognize this format if you select the input format as "multiple tests per column" when building the analysis genome.

Example a more complex i	input format of K	CGG:			
C	HR SN	P P-value	1 Test-Mod	e P-value2	
	4 rs151	0.02301	additive	0.007688	
	4 rs151	0.4384	recessive	0.006112	
	4 rs151	0.00268	8 dominant	0.4893	
	4 rs184	0.01115	additive	0.119	
	4 rs184	1043 0.005892	2 recessive	0	
•		• •••	•••	•••	

4.2 Input file 2 (Candidate Gene list)

Candidate genes could be loaded one by one or imported from a TXT file. The input file has only one column without header, while one row contains one gene (symbol or ID).

5. Set-based association analysis tutorial

Step 1: create a new project, named 'CrohnDisease', and set the project path at C:\KGG\Tutorial (or other path defined by user).

King Create KGG Pr	oject	×
Project Name:	CrohnDisease	
Working Folder:	D: \KGG\	
Description:	The knowledge-based downstream genetic/genomic s tatistical analysis forcrohn's disease	

Figure 5.1 Create project

Step 2: select the menu Data>Load P Value File and choose 'CrohnDiseaseSNP.txt' file which contains the whole-genome association p-values for Crohn disease at SNP-level. This dataset was downloaded from a public domain released by (Barrett, et al., 2008). It includes 7 columns, as SNP, CHR, POS, RISK, NONRISK, META-Z and META-P.

1.4	PassedResultView	er 🛛 🧮 TableViewe	r Window 88				4	-
rohnDisease	SNP	CHR	POS	RISK	NONRISK	META-Z	META-P	
P-value Files:	rs3094315	1	792429	A	G	1.208042	0.227031	
- 🚮 CrohnDiseaseSNP. txt	rs4040617	1	819185	A	G	0.5591984	0.5760264	
	rs2980300	1	825852	C	т	0.5241999	0.6001394	
	rs4075116	1	1043552	т	С	2.665530	0.007686718	
	rs3934834	1	1045729	т	С	1.319292	0.18707166	
	rs3737728	1	1061338	G	A	2.474539	0.01334083	
	rs6687776	1	1070488	т	С	2.292393	0.02188298	
	rs9651273	1	1071463	G	A	0.7116839	0.4766606	
	rs4970405	1	1088878	G	A	1.140031	0.2542734	
	rs12726255	1	1089873	G	A	1.580504	0.1139915	
	rs2298217	1	1104902	С	т	0.09809688	0.9218554	
	rs4970362	1	1134661	G	A	0.02632069	0.9790016	
	rs9442385	1	1137258	т	G	0.2917067	0.770511	
	rs9660710	1	1139265	A	С	0.1359162	0.8918876	
	rs4970420	1	1146396	A	G	2.418564	0.015581894	
	rs1320565	1	1159781	т	с	1.229683	0.218816	
	rs11260549	1	1161717	A	G	2.183678	0.02898592	
	rs10907175	1	1170650	c	A	1.449057	0.14732166	
	rs9729550	1	1175165	с	A	3.072463	0.002123002	
	rs11721	1	1192554	A	С	2.538362	0.011137286	
	rs2887286	1	1196054	с	т	1.392902	0.16364952	
	rs3813199	1	1198200	A	G	1.142227	0.2533598	
	rs6603781	1	1198554	G	A	1.705689	0.08806606	
	rs3766186	1	1202358	A	С	1.156287	0.247564	
	rs7515488	1	1203727	т	C	1.803396	0.07132612	
	m11060660		1005020		<u>د</u>	+ eeeenn	0.05900626	
	Analysis Log Wind	ow %						

Figure 5.2 Input GWAS original result file

Step 3: import file 'CrohnCandidateGeneSet.txt' as input of candidate gene; define ATG16L1, CARD9, IBD5, IL23R, NOD2 and TNFSF15 as seed genes. Then, save it as candidategeneset_crohn.

		To Be Selected						
Gene Symbo	• •	Source	Symbol	EntrezID	Name	Chromosome	As Seed	
CrohnCandid	lateGeneSet.txt	Source	Symbol	Entrezio	Name	Chromosome	As Seeu	None
Genes								All
IBD5 IL23R TNFSF15								
								Remove
	View							Add
	es	5.4		Norr			As ford	Add
urce	es Symbol	Entre		Name		hromosome	As Seed	
urce out	es Symbol [CARD9	6417	0	caspase recruitme	ent domain 9q	34	As Seed	Add
urce out out	es Symbol CARD9 ICOSLG	6417 2330	D 3	caspase recruitme inducible T-cell co	ent domain 9q -stimulator I 21	134 Lq22.3	As Seed	
urce out out out	es Symbol CARD9 ICOSLG ITLN1	6417 2330 5560	D B D	caspase recruitme inducible T-cell co- intelectin 1 (galac	ent domain 9q -stimulator l 21 tofuranose 1q	134 1q22.3 121.3	As Seed	
urce but but but but	es Symbol CARD9 ICOSLG	6417 2330	0 B D 92	caspase recruitme inducible T-cell co- intelectin 1 (galac leucine-rich repea	ent domain 9q -stimulator l 21 tofuranose 1q at kinase 2 12	134 1q22.3 121.3 2q12	As Seed	
ource out out out out out	es Symbol CARD9 ICOSLG ITLN1 LRRK2	6417 2330 5560 1208	0 8 0 92 33	caspase recruitme inducible T-cell co- intelectin 1 (galac leucine-rich repea interleukin 23 rece	ent domain 99 -stimulator l 21 tofuranose 10 at kinase 2 12 eptor 1p	134 1q22.3 121.3 2q12 131.2	As Seed	
ource out out out out out out	es Symbol CARD9 ICOSLG ITLN1 LRRK2 IL23R	6417/ 2330 5560 1208 1492	D B D 92 33 4	caspase recruitme inducible T-cell co- intelectin 1 (galac leucine-rich repea	ent domain 99 -stimulator l 21 :tofuranose 10 at kinase 2 12 eptor 10 d 16-like 1 (20	134 1q22.3 121.3 2q12 031.2 137.1	As Seed	
ource out out out out out out out	es Symbol ICOSLG ITLN1 LRRK2 IL23R ATG16L1	6417 2330 5560 1208 1492 5505	0 8 90 92 33 4	caspase recruitme inducible T-cell co- intelectin 1 (galac leucine-rich repea interleukin 23 rece autophagy relater	ent domain 99 -stimulator l 21 :tofuranose 19 at kinase 2 12 eptor 10 d 16-like 1 (20 log 5 (Dros 10	134 1q22.3 121.3 1212 131.2 137.1 1q23	As Seed	
andidate Gen ource put put put put put put put put put put	es Symbol CARD9 ICOSLG ITLN1 LRRK2 IL23R ATG16L1 DLG5	6417 2330 5560 1208 1492 5505 9231	0 8 0 92 33 4	caspase recruitme inducible T-cell co- intelectin 1 (galac leucine-rich repea interleukin 23 rece autophagy relate discs, large homol	ent domain 99 -stimulator I 21 tofuranose 10 at kinase 2 12 eptor 10 d 16-like 1 (20 log 5 (Dros 10 ant brain tu 10	134 1q22.3 121.3 1q12 131.2 137.1 1q23 1q25.3-q26.1	As Seed	

Figure 5.3 Input candidate gene set for crohn's disease

Step 4: select META-P for building analysis genome; extend gene region to its flanking 5 kb region in both sides; and use LD SNP coefficients from 1000 Genome Project to adjust LD.

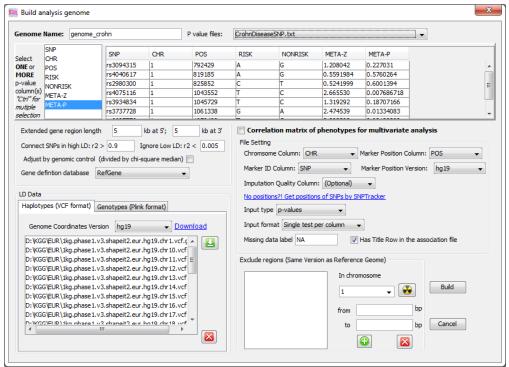


Figure 5.4.1 Select META-P to build analysis genome and name the genome as genome_crohn

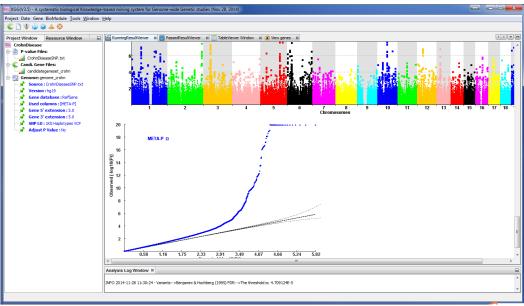


Figure 5.4.2 The display after building analysis genome

Step 5: do a gene-based association scan using SNP p-values integrated in the analysis genome named genome_crohn, select 'Extended Simes test(GATES, more powerful for a gene with one or a few independent causal variants' method. Set the parameters as Figure 5.5.1; and name the result as genescan_crohn. Remember that exported Manhattan plots and QQ plots will be shown in "Running Result Viewer Window" (Figure 5.5.2).

n Name genescan_cr	ne Groups	Manhattan plot display Label genes with p-values <= 1E-6 Width 1200
Genome Set genome	_crohn 🚽 🔽	Label SNPs with p-values <= 5E-8 Height 500
P Value Name META-P	Select	Minimal p-value 1E-10 Manhanttan plot SNPs outside genes
PIETAT	▼	QQ plot display
		QQ plot SNPs inside genes 📝 Width 600
		QQ plot SNP outside genes 📝 Height 400
This analysis genome h	nas NO phenotype correlation matrix!	Minimal p-value 1E-10
	as NO phenotype correlation matrix!	Minimal p-value 1E-10
lethods		
lethods Extended Simes test		h one or a few independent risk variants)
lethods Extended Simes test	(GATES, more powerful for a gene wit	h one or a few independent risk variants)

Figure 5.5.1 Setting for gene-based scans



Figure 5.5.2 The display after gene-based scan

Step 6: Click the "Show: Detailed Results" node under "Genome Scan" and a new tab "ShowGenes" will be created to provide you more information about the result (Figure 5.6). You can also export the results you want in this tab.

		ResultViewer	🛛 📰 PassedResultV	fiewer 🛛 🧮 TableVie	ewer Window 🛛 🕿 🔇		35						4) ·
ohnDisease	Gene Info					SNP Info					Search gene:	TTN, CD27		
P-value Files:	Symbol	NominalP	Correct Chromo	Start_P Length	Group	SNP	Position	Gene_Feat	META-P		Multiple Test			
CrohnDiseaseSNP.txt	MIER 1	2.53E-34	5.58264 1	67390577 23347	protein-c	rs2847288	12802896	Intronic	1.41E-2		Method:	Benjamini & He	chhoro (100	6 1 -
Candi. Gene Files:	CBLN1		3.02141 16	49311828 3915	protein-c	rs8087237	12824359	intronic	4.03E-6		meanou.	Denjanini or k	cine à (133	<i>.</i> , ,
🚮 candidategeneset_crohn			2.71065 1	67278571 112000	protein-c	rs10502414	12792416	3UTR	1.32E-2		Error Rate:	0.05	Ap	ply
Genome: genome_crohn	INPP 5D		5.73825 2	233924676 191874	protein-c	rs478582	12825976	intronic	3.96E-6					_
Source : CrohnDiseaseSNP.txt		3.70E-16	1.63478 1	67465014 55067	protein-c	rs973767	12810057	intronic	1.04E-2	E				
📌 Version : hg19	LCORL	8.94E-14	3.29436 4	17882217 141267	protein-c	rs10502416	12812702	intronic	1.65E-1		Export Settin			_
Gene database : RefGene	IGSF3 LOC283045	5.99E-12	1.89059 1 9.98602 10	117117019 93359	protein-c	rs17597893	12802061	exonic	1.59E-2		Content:	Variants inside	genes	•
Used columns : [META-P]	LOC283045 LINC01475		9.98602 10	64099346 35541 101286106 4829	unknown non-codi	rs1893217	12799340	intronic	6.54E-11		Format:	Excel(.xlsx)	Expor	-
Gene 5' extension : 5.0	ZNF300P1		1.50364 5	150309997 16150	pseudog	rs8085163	12799304	intronic	1.14E-2		Format:	Excertixisx)	Expor	
Gene 3' extension : 5.0	PTPN2	1.57E-9	3.15590 18	12785476 98859	protein-c	rs2847289 rs2542170	12802167 12790820	intronic	2.06E-1 2.05E-1		Gene p valu	ues <= 5E-2		
SNP LD : 1KG Haplotypes VCF		2.94E-9	5.41875 3	16357351 197872	protein-c	rs2542170 rs657555	12/90820	intronic	2.05E-1 3.02E-9					
Adjust P Value : No	NKX2-3	5.95E-9	1.01148 10	101292689 3592	protein-c	rs657555 rs908579	12837136	intronic	3.02E-9		Variants p v	values <= 5E-2		
Adjust P value : No							12001000	maronic						
Cone Scant conescan, crobo	SMIM3	2.61E-8	3.86757 5	150157507 18792	protein-c *	rs11080606	12857969	intronic	4.33E-1	*				
Genome:genome_crohn Multivariate Test:No P value sources:[META-P]	Genome Bro	owser				Gene		(1.57E-9)	1	* TR-UpDownStr	eam 🔶 ncRN	IA 🔺 InterGer	ne 🔻 Other	rs
Multivariate Test:No P value sources: [META-P]	Genome Bro	owser	3.86757 5 (0.2-0.4) • (0.4-0.6			Gene				TR-UpDownStr	eam 🔶 ncRN	IA 🔺 InterGer	ne 🔻 Other	rs
Genome : genome_crohn Multivariate Test : No P value sources : [META-P] Test : GATES	Genome Bri	owser				Gene			1	TR-UpDownStr	eam 🔶 ncRN	IA 🔺 InterGer	ne 🔻 Other	rs
Genome:genome_crohn Multivariate Test:No P value sources:[META-P] Test:GATES	Genome Bro	owser				Gene		(1.57E-9)	1	TR-UpDownStr		IA 🔺 InterGer	ie 🔻 Other	rs
Genome : genome_crohn Multivariate Test : No P value sources : [META-P] Test : GATES	Genome Bri 11 - 10 - 9 -	owser				Gene			1	TR-UpDownStr	eam 🔶 ncRN	IA 🔺 interGer	ne 🔻 Othei	rs
Genome:genome_crohn Multivariate Test:No P value sources:[META-P] Test:GATES	Genome Bri 11 - 10 - 9 -	owser				Gene		(1.57E-9)	1	TR-UpDownStr		IA 🛦 InterGer	ne 🔻 Othei	rs
Genome:genome_crohn Multivariate Test:No P value sources:[META-P] Test:GATES	Genome Bri 11 - 10 - 9 -	owser				Gene		(1.57E-9)	1	TR-UpDownStr		IA 🛦 interGer	ne 🔻 Other	rs
Genome:genome_crohn Multivariate Test:No P value sources:[META-P] Test:GATES	Genome Bri 11 - 10 - 9 -	owser				Gene		(1.57E-9)	1	TR-UpDownStr		A 🛦 InterGer	ne 🔻 Other	rs
Genome:genome_crohn Multivariate Test:No P value sources:[META-P] Test:GATES	Genome Bri 11 - 10 - 9 -	owser				Gene		(1.57E-9)	1	TR-UpDownStr		A 🔺 InterGer	ne 🔻 Other	rs
Genome:genome_crohn Multivariate Test:No P value sources:[META-P] Test:GATES	Genome Bri 11 - 10 - 9 -	owser				Gene		(1.57E-9)	1	TR-UpDownStr		IA 🛦 interGer	ne 🔻 Other	rs
Genome:genome_crohn Multivariate Test:No P value sources:[META-P] Test:GATES	Genome Bri 11 - 10 - 9 -	owser				Gene		(1.57E-9)	1	TR-UpDownStr		IA 🛦 InterGer	ne 🔻 Other	rs
Genome:genome_crohn Multivariate Test:No P value sources:[META-P] Test:GATES	Genome Bri 11 - 10 - 9 -	owser				Gene		(1.57E-9)	1	TR-UpDownStr		IA 🛦 InterGer	ne ♥ Other	rs
Genome:genome_crohn Multivariate Test:No P value sources:[META-P] Test:GATES	Genome Bri 11 - 10 - 9 -	owser				Gene		(1.57E-9)	1	TR-UpDownStr		IA ▲ InterGer	e ♥ Other	rs
Genome:genome_crohn Multivariate Test:No P value sources:[META-P] Test:GATES	Genome Br	(0.0-0.2) 4	• (0 20.4) • (0 40 8	5) • (0.6-0.8) • (0.1	3-1.0) ● 1.0 ● m	Gene ef	: PTPN2	(1.57E-9) •	Exon • Intron-U		•			
Genome:genome_crohn Multivariate Test:No P value sources:[META-P] Test:GATES	Genome Br	owser	• (0 20.4) • (0 40 8	5) • (0.6-0.8) • (0.1	3-1.0) ● 1.0 ● m	Gene:	: PTPN2	(1.57E-9)	Exon • Intron-U I 2,860,000					rs •
Genome:genome_crohn Multivariate Test:No P value sources:[META-P] Test:GATES	Genome Br	(0.0-0.2) 4	• (0 20.4) • (0 40 8	5) • (0.6-0.8) • (0.1	3-1.0) ● 1.0 ● m	Gene:	: PTPN2	(1.57E-9) •	Exon • Intron-U I 2,860,000		•			
Genome:genome_crohn Multivariate Test:No P value sources:[META-P] Test:GATES	Genome Br	(0.0-0.2) (80,000	(0.20.4) • (0.40.6 12.760,000 t	5) • (0.6-0.8) • (0.1	3-1.0) ● 1.0 ● m	Gene:	: PTPN2	(1.57E-9)	Exon • Intron-U I 2,860,000		•			

Figure 5.6 Function of displaying the gene-based association scan result

Step 7: perform pathway enrichment exploration both by gene p-values; settings as Figure 5.7.1 and the output as Figure 5.7.2.

Rathway-based a Scan Name Pathway Gene Association Set	GeneSetScan_Crohn	Genes and pathways Image: Candidate Genes Set(Optional): Candidategen • (Only seed genes used)
P Value Source META-P	Select	MsigDB GeneSet V4.0 C2: Canonical pathways from the pathway databases(1320 sets) Pathway DB in File: Example format Pathway size: More than 10 and less than 300 genes Gene set-based assocation test by HYST Assocation test by HYST No weights Ignore single-nucleotide polymorphisms (SNPs) without linkage disequilibrium (LD) information
		Reference Li MX, Kwan JS, Sham PC. HYST: A HYbrid Set-based Test for genome-wide association studies, with application to protein-protein interaction-bas association analysis. Am J Hum Genet. 2012 Sep 7;91(3):478-88.

Figure 5.7.1 Pathway enrichment exploration by gene p-values

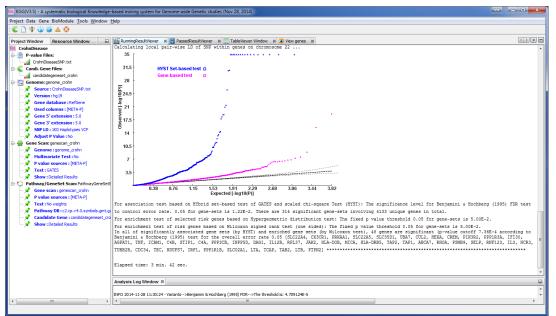


Figure 5.7.2 The display after pathway-based association scan

Step 8: for more detailed information of the result, you can click the node "Show Detailed Result" (Figure 5.8). You can also change the multiple test methods and export the results you want in this tab.

🗋 🕸 🍛 🚭 📥 📀		20 TabletGauss 116adau - 20 🔿 16au anna	m Chan California m					() V
ect Window Resource Window Productions of the second secon	REACTOVEC 349-2-96 Y 1.002-5 Y 1.002-5 REACTOVEC 349-22 Y 4.485-5 Y 7. REACTOVEC 140-22 Y 4.485-5 Y 7. REACTOVEC 140-21 Y A.186-6 Y 1. REACTOVEC 140-21 Y A.186-6 Y 1. REGO 140-51 Y 2.485-5 Y 4. REGO 140-51 Y 2.485-5 Y 6. REGO 140-51 Y 2.485-5 Y 6. REGO 140-51 Y 2.485-5 Y 6. REGO 140-15 Y 1.486-4 Y 1. REGO 140-15 Y 1.486-4 Y 1. REGO 240-15 Y 1.486-4 Y 1. REGO 240-15 Y 1.486-4 Y 1. REGO 240-15 Y	Seelet P I Total Gen Censist J 5.86:5 Y 239 REACTORE. 186:5 Y 243 REACTORE. 186:5 Y 34 REACTORE. 282:3 N 33 REACTORE. 282:3 N 63 REACTORE. 582:4 N 63 REACTORE. 582:4 N 60 REACTORE. 582:4 N 60 REACTORE. 582:4 N 60 REACTORE. 582:4 N 13 REACTORE. 582:4 N 13 REACTORE. 582:4 N 13 REACTORE. 582:4 N 92 REACTORE. 582:5 N 92 REACTORE. 582:4 N 92 REACTORE. 582:4 N 92 REACTORE. 582:2 N 12 REACTORE.	GensSet_s http://wwww http://wwwwww http://www http://www ht	Plake I: 1 4.385-4 Y 3.145-3 N 4.356-4 Y 3.145-3 N 6.176-6 Y 4.566-7 Y 4.566-7 Y 4.566-7 Y 5.667-7 Y 4.5670 y 4.5670 y 4.5670 y 4.5670 y 4.5670 y 4.5670 y 4.5670 y 4.5700 y 4.57000 y	ts p values by: B EFICANT sets by: B tric test tt(Optional): cand tule <= Fixed p-value outper values by: [canthy enriched ger 0.05 g	Benjamini & Hochberg (19 ne sets 📄 Remove over Filter gene by p-value: 🛛	2770 4510 6443 0 15692 4287 5) + Error R 5) + Error R (Only sa ror Rate: 0 155) + Error R 155) + Error R	ate: 0.05 eed genes used) .05 Rate: 0.05 between sets Apply
	Analysis Loo Window अ							

Figure 5.8 Function of displaying the results of pathway-based analysis

Step9: search PPIs between significant genes. The significant genes can be picked up according to the gene p-values and SNP p-values; set as Figure 5.9.1; output as Figure 5.9.2

	sociationScan_Crohn	Gene-pair DB STRINGV9.05	- PPI - STRING Confidence	e>= 0.6
ene Association Set	genescan_crohn	▼ File	Select	√ All
P Value Source	Select			Format
1ETA-P				Add
				Remvoe
				Merge
		Gene-pair association test	-	
		Reference	No weights e polymorphisms (SNPs) without linkage disequilibrium ham PC. HYST: A HYDrid Set-based Test	

Figure 5.9.1 PPI association scan by gene-based p-values

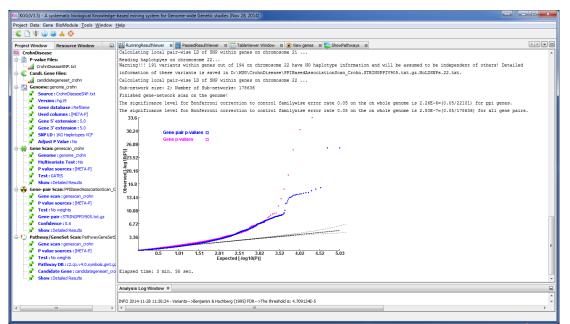


Figure 5.9.2 The display after running PPI-based association scan

Step 10: Click the node "Show: Detailed Results" and you will get the graph of PPI network. You can also export the results you want in this tab.

Figure 5.10 Function of displaying the results of PPI-based association scan

Step 12: View results of Crohn's Disease

➢ By text file or Excel file

Open text or excel file for snp-based or gene-based analysis from local computer

By Graphs

Check QQ plots and Manhattan plots saved in htmlLog folder

➢ By KGG Interface

Visualize pathway and PPI network output on KGG interface.

6. Power estimation of set-based tests by SPS

Step 1: Open the software and enter the main user interface on KGGV3.5 (Tools->Power Estimation). The interface is divided into two parts. The left one is used to set the basic parameters and the right one is to display the results.

All variants All variants Power of Risk Self-define Real data-plink Real data-vcf Power of Risk Total Variants: 20 Repeat Region: 1 ID Odds Ratio Frequence Number of Risk LD GATES ScaChi HYST SNP Dependence: Independent © Dependent ID Odds Ratio Frequence Number of Risk LD GATES ScaChi HYST	at sets
Linkage Disequilibrium (LD, r): (from) 0.6 (to) 0.6 (step) 0.1 Reference Li et al., SPS: a simulation tool for calculating power of set-based genetic association tests (Under Review) TD Odds Ratio Frequence Number of LD Powers	
Risk variants I (to) 3 (step) I Odds Ratio: (from) 1.8 (to) 2.2 (step) 0.05	•
Disease Prevalence: 0.05 Genetic Model: Additive Model Position of Risk Variants: Random (Start from 1; Separated by space or comma.) Change MAF:	- power
Population & Sample Change LD: Population Size: 500000 Number of Case: 500	
Simulation & Test Sampling Times: 1000 P Value Threshold: 0.05 Parallel Running Number 3 Meta-analysis: No Start Stop 0%	

Figure 6.1 The Main interface of SPS.

Step 2: Set the parameters of all variants. The number of SNPs, the minor allele frequency (MAF) and LD information should be set here. When these SNP markers are divided into several LD blocks, the markers within the same LD block have the same LD as each other, but the LD is set to 0 when the markers belong to different blocks. All of these markers and their LD pattern can be replicate to make up of a larger marker set. Some of these parameters can vary within a certain region, such as MAF and LD, so that the users can investigate how the power will be affected by changing the critical parameters conveniently. Moreover, these parameters can also read from the real data (Plink binary genotype files and vcf file). In this case, the LD information will be calculated from the input genotypes.

All variants Self-define Real data-plink Real data-vcf
Total Variants: 20 LD Block: 2 Repeat Region: 1
Minor Allele Frequency (MAF): (from) 0.02 (to) 0.07 (step) 0.05
SNP Dependence: 🔘 Independent 💿 Dependent
Linkage Disequilibrium (LD, r): (from) 0.6 (to) 0.6 (step) 0.1
Reference Li et al., SPS: a simulation tool for calculating power of set-based genetic association tests (Under Review)

Figure 6.2-1 Set parameters by users.

All variants				
Self-define Real data-plink Real data-vcf				
Family File: E:\KGG\plink\test.fam				
Map File: E:\KGG\plink\test.bim				
BED File: E:\KGG\plink\test.bed				
Consider the first 10 variants; Repeat Region 1				
SNP Dependence: Independent Dependent				

Figure 6.2-2 Set parameters by plink file.

All variants Self-define Real data-plink Real data-vcf	_		
VCF File: E:\KGG\vcf_example.vcf Consider the first 10 variants; Repeat Region 1			
SNP Dependence:			

Figure 6.2-3 Set parameters by vcf file.

Table to list parameters:

Parameter	Description	
Total Variants	The total number of SNPs tested in a set	
LD Block	The number of LD blocks. Variants in the same block are in LD and that in different blocks have no LD.	
Repeat Region	The number of copies of SNPs. The SNP will be copied for several times to form a larger set and so does the LD pattern of the.	
Minor Allele Frequency	The frequency of the least common allele occurs in the population. The MAF can increase from a initial value to a terminal value according to a step value that set from the GUI.	
SNP Dependence	The relationship between SNPs. If the SNPs are dependent, the user should set the LD value (r), otherwise 0 is set as default. The LD information can also be read from the real data, where it will be calculated based on the allele frequency.	

Linkage Disequilibrium (LD, r)	The r score used to represent LD information. The SNPs in the same block are dependent and keep the same r value, while SNPs in the different blocks are independent with each other and the r value is set as 0. The r value can also increase from an initial value to a final value by a step value.
Family File	The path of the Plink files. The valid file path can be input by the button on
Map File	the right. If the three files have the same file prefix and are stored in the same
BED File	directory, the other file paths will be filled automatically when one file is set.
Consider the	The number of SNP that input from the real data. The real data usually
first several	include large size of SNPs, which is unnecessary for our simulation. Hence,
SNPs	we just consider the first several SNPs as our study objects.
VCF File	The path of a VCF file.

Step 3: Set parameters of risk variants.

Risk variants			
Risk SNPs: (from)	1 (to) 3	(step) 1	
Odds Ratio: (from)	1.8 (to) 2.2	(step) 0.05	
Disease Prevalence:	0.05	Genetic Model:	Additive Model 🛛 👻
Position of Risk Varia	nts:		Random
	(Start from 1; Se	parated by space o	or comma.)

Figure 6.3 Set parameters about risk variants.

Table to list parameters:

Parameter	Description
Risk SNPs	The number of risk SNPs. This parameter can increase from a smaller to a larger value
NISK SINF S	step by step.
Odds Ratio	The value used to quantify the association between risk SNPs and disease. This
Ouus Kallo	parameter can increase from a smaller to a larger value step by step.
Disease The proportion of a population found to suffer the disease. This will be use	
Prevalence	genetic model.
Genetic Model	The genetic model of risk loci. The additive model and multiplicative model are
Genetic Model	candidates in SPS.
Position of Risk	The location information of risk variants within the total variants. The users can click
Variants	the random button for automatic setting or set by themselves.

Step 4: Set population and sample. The larger population size and number of case and control are recommended, because they make the result more accurate and stable, but it will take more time correspondingly. So the user should keep balance between them.

Population & Sample	
Population Size: 500000	
Number of Case: 500	Number of Control: 500

Figure 6.4. Set population and sample.

Table to list param	Table to list parameters:										
Parameter	Description										
Population Size	The number of individuals in a population generated by simulation according to the certain genotype and phenotype.										
Number of Case	The number of individuals that suffer the disease.										
Number of Control	The number of individuals that do not suffer the disease.										

Step 5: Set simulation and meta-analysis parameters. A number of case-control samples will be randomly drawn with replacement from the population and are subject to calculate the p value of the setbased test. The number of p values that pass the threshold will be counted to calculate the power. In order to speed up the simulation process, the user can set several parallel threads, but more memory resource is needed.

The meta-analysis can be carried out at the variant level or set level. When at variant level, the p values of variants in different studies will be combined using Fisher's Combination Test and these meta-p values in a set will be treated by GATES, ScaChi and HYTS. Alternatively, at set level, the p value of variants in a set should be conducted by GATES, ScaChi and HYTS, and then the set-based p values in different studies are aggregated. SPS can also mimic locus heterogeneity by randomizing risk loci of each study in meta-analysis.

Simulation & Test		
Sampling Times: 1000	P Value Threshold:	0.05
Parallel Running Number	3	
Meta-analysis: No	•	

Figure 6.5-1 Set simulation without meta-analysis.

Simulation & Test
Sampling Times: 1000 P Value Threshold: 0.05
Parallel Running Number 3
Meta-analysis: At variants - Number of Studies: 3
Randomize risk loci of each study (mimic genetic locus heterogeneity)

Figure 6.5-2 Set simulation with meta-analysis.

Table to list parameters:

T 11 4 1 4

Parameter	Description						
Sampling Times	The number samples randomly drawn from the case and control						
Sampning Times	group. For each time, a case-control study is achieved.						
	The threshold of type I error that used in the case-control study.						
P Value Threshold	For SNP-based test, the bonferroni correction is conducted as						
	default.						
Parallel Running	The number of threads that running concurrently. The multiple						
Number	threads mechanism is used here to speed up the running of						
	program. However, this may cost a large volume of memory.						

Meta-analysis	Whether to perform meta-analysis. If performed, the users should choose the meta-analysis at variants level or at set level.
Number of Studies	The number of studies considered in the meta-analysis.
Randomize risk loci of each study	Whether to consider the genetic heterogeneity. If considered, the position of risk loci of each study will be set randomly to mimic the heterogeneity.

STEP 6: Run the program. Click the Start button and run the program. The user can check the results from tables in the right part immediately. The progress bar can also provide the running information in a real time. If the user wants to stop the running program, just click the "stop" button.

elf-define Real data-pink Real data-vcf		Results Displays	ng												
															Power at sets
arker Number 20 LD Block 2 Repeat R	egion 1	ID		Odds Ratio	Fred	uence	Number of Risk Alle	e LD		GATES		ScaChi		HYST	
nor Allele Frequency (MAF): (from) 0.1 (to) 0.5	(step) 0.1	62/		1.6	10.2		15	0.8		1.0		1.0		1.0	
		628		1.6	0.2		3	0.8		1.0		1.0		1.0	
IP Dependence: 🕐 Independent 💿 Depende		630		1.6	0.2		4	0.5		1.0		1.0		1.0	-
skage disequilibrium (LD, r): (from) 0.5 (to) 0.9	(step) 0.1	631		1.6	0.2		4	0.6		1.0		1.0		1.0	
														,	ower at variant
		ID	Odds Ratio		Number of			P-3	P-4	p-5*	P-6	p.7*	P-8*	P-9	P-10
		629	1.0	0.2	2	0.8 1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
		630	1.6	0.2	4	0.5 0.70		0.83	0.9	0.994	0.866	0.998	0.885	0.85	0.816
		631	1.6	0.2	4	0.6 0.96	0.958	0.972	0.982	1.0	0.994	1.0	0.996	0.98	0.986
		*							-						
where of Risk SIMPs: (from) 2 (bo) 5 (st ds Ratio: (from) 1.0 (bo) 2.0 (step) 0. ease Prevalence: 0.05 Genetic Model: Addition ation of Risk SIMP: 5 15 7 14.8 (Start from 1; Separated by space of	e Model • Random	Chart Optic Charge MAP 0.1 • Charge LD: 0.5 •	-												odds - po
pulation & Sample amber of Population: 100000 Inveber of Case: 1000 Number of C	antrali 1000														

Figure 6.6 Run the program.

STEP 7: Save the result. The user can review the power from two tables at the SNP level and set level. A line chart is draw to show the variation of power within different odd ratios with given the MAF and LD information. The user can also change the MAF and LD values to update the chart. The users can right-click on the tables and save the results as excel file or txt file. The chart is can also be save by right-click.

Ivariants	Results Displayin	10												
elf-define Real data-plink. Real data-vcf														Power at se
arker Number 20 LD Block: 2 Repeat Region 1	ID	04	ids Ratio	Frequence	74.00	ber of Risk Allel	e LD		GATES		ScaChi		HIST	
nor Allele Frequency (MAF): (from) 0.1 (bo) 0.5 (step) 0.1	2090	μ		0.5	þ		U.5		1.0		1.0		2.0	
	1096 1097	2		0.5	5		0.6		1.0		1.0		1.0	
P Dependence: () Independent 👳 Dependent	1098	2		0.5	5		0.8		1.0		1.0		1.0	
kage disequilibrium (LD, r): (from) 0.5 (to) 0.9 (step) 0.1	1099	2		0.5	5		0.9		1.0		1.0		1.0	
													Po	wer at varia
	ID			Number of LD	P-1	P-2	P-3	P-4	p.5*	P-6	p.7*	P-8*	P-9	P-10
	1096 1097			5 0.7	1.0	0.976	0.998	0.932	0.998	1.0	0.996	1.0	0.904	1.0
	1098			5 0.8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	1099	2 0	0.5	5 0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
variants	1	0.010												
														odds - p
	Chart Option	rs												
	Chart Option Change MAP				4		1.5							
	Change MAP	1.0	-	3	T	-	-	- •	•	-	•	•	•	•
s Ratio: (from) 1.0 (to) 2.0 (step) 0.1 ase Prevalence: 0.05 Genetic Model: Additive Model •	Change MAP	1.0			T	-	/	•	•			•	•	-•
s Rates: (from) 1.0 (to) 2.0 (step) 0.1 ase Prevalence: 0.05 Genetic Model Additive Model + tion of Raik SNP: 5 15 7 14 8 Random	Change MAP	1 1.0		1	F	V	~	•	•		•	•	•	•
s Ratio: (from) 1.0 (to) 2.0 (step) 0.1 ase Prevalence: 0.05 Genetic Model: Additive Model •	Change MAP	1.0		Ø	T	P	~	•	•			•	•	•
s Rates: (from) 1.0 (to) 2.0 (step) 0.1 ase Prevalence: 0.05 Genetic Model Additive Model + tion of Raik SNP: 5 15 7 14 8 Random	Change MAP 0.2 • Change LD:	1.0 0.9 0.8		Ø	T	P	~	•	•			•	•	•
s Rates: (from) 1.0 (to) 2.0 (step) 0.1 ase Prevalence: 0.05 Genetic Model Additive Model + tion of Raik SNP: 5 15 7 14 8 Random	Change MAP 0.2 • Change LD:	1.0		Ń	T	P	/		•			•		•
s Rates: (from) 1.0 (to) 2.0 (step) 0.1 ase Prevalence: 0.05 Genetic Model Additive Model + tion of Raik SNP: 5 15 7 14 8 Random	Change MAP 0.2 • Change LD:	1.0 0.9 0.8 0.7	3 -	Ń	T	P	~	•	•			•		•
s Rates: (from) 1.0 (to) 2.0 (step) 0.1 ase Prevalence: 0.05 Genetic Model Additive Model + tion of Raik SNP: 5 15 7 14 8 Random	Change MAP 0.2 • Change LD:	1.0 0.9 0.8 0.7	3 -	P	T	P	/		•			•	•	•
s Rate: (from) 1.0 (b) 2.0 (shee) 8.1 and the same same same same same same same sam	Change MAP 0.2 • Change LD:	1.0 0.9 0.8 0.7	3 -		1	P	/		•					•
share (from 1.0 (b) 2.0 (bray) 3.1 and himsion 2.01 Geneta Weak Askat • Other them 1: Separated by space or comes.) Citer them 1: Separated by space or comes.)	Change MAP 0.2 • Change LD:	1.0 0.9 0.8 0.7 0.6 0.5	9		T	P	/		•					•
Rather (from 1.0 (b) 2.0 (bnd) 3.1 and Invasion 5.03 Genetic Model Addites Model Clark Them 2, Separated for space or comes. 3 Clark Them 2, Separated for space or comes. 3	Change MAP 0.2 • Change LD:	1.0 0.9 0.8 0.7	9		1	P	/		•					•
Analise (Hron L E do) 2.0 (Brea) 8.1 and Hrowalking 0.0 Genetic Hook Addition Hook I on of Hisk (Hron); Separated by space or comes.) Gilan 1 from); Separated by space or comes.) Anthen & Semple Inter of Houseking. (2000)	Change MAP 0.2 • Change LD:	1.0 0.9 0.8 0.7 0.6 0.5 0.4			1	P	-		•				•	•
Analise (Hron L E do) 2.0 (Brea) 8.1 and Hrowalking 0.0 Genetic Hook Addition Hook I on of Hisk (Hron); Separated by space or comes.) Gilan 1 from); Separated by space or comes.) Anthen & Semple Inter of Houseking. (2000)	Change MAP 0.2 • Change LD:	1.0 0.9 0.8 0.7 0.6 0.5			1	P	/		•			•		•
Rather (from 1.0 (b) 2.0 (bnd) 3.1 and Invasion 5.03 Genetic Model Addites Model Clark Them 2, Separated for space or comes. 3 Clark Them 2, Separated for space or comes. 3	Change MAP 0.2 • Change LD:	4 1.0 0.9 0.8 0.7 100.6 0.4 0.3			1	P	-							•
s Ratio (From) 1.0 (b) 2.0 (bites) 8.1 and Pre-admin 5.05 Geneta Hold Addites Hold I on of Hold Addites Addites Addites Addites (Glass Hold I) (Glass Hold I), Segue and Eye space or comes. 3 (Glass Hold I), Segue and Eye space or comes. 3 whethere & Sample andre of Franceshere: 100000	Change MAP 0.2 • Change LD:	1.0 0.9 0.8 0.7 0.6 0.5 0.4			1	P	-		•			•		•
s Ratio (Ferre) 1.0 (b) 2.0 (bez) 1.1 (b) Addite Addit (b) 1.0 (b) Addite Addit (b) 1.0 (b) Addite (b) 1.0 (b) Addit (b) 1.0 (b) 1.0 (b) Addit (b) Addit (b) 1.0 (b) Addit (b) A	Change MAP 0.2 • Change LD:	4 1.0 0.9 0.8 0.7 100.6 0.4 0.3	a		7	P	-		•					•
In Balan, Privateran () 10 (0 (2) (400) (3) (400) (4) (4) (4) (4) (4) (4) (Change MAP 0.2 • Change LD:	4 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.2 0.2 0.1	3 - 3 - 5 - 5 - 1 - 2 - 1 -		T/	P	-					•		
shate (from) 10 (b) 20 (beg) 11 as free from 200 Genetic Molt (Addite Addite (Dist of from 200 Genetic Molt (Addite Addit (Dist from 1: Separated to spece or comes.) Under from 1: Separated to spece or comes.) Addres 1: Sample andres 1: Sample addres 1: Test (Dist from 2: Separated to spece or comes.)	Change MAP 0.2 • Change LD:	 1.0 0.9 0.8 0.7 0.6 0.6 0.7 0.6 0.6 0.7 0.0 0.7 0.0 0.7 0.0 0.1 0.0 			T/	P								
In Balan, Privateran () 10 (0 (2) (400) (3) (400) (4) (4) (4) (4) (4) (4) (Change MAP 0.2 • Change LD:	 1.0 0.9 0.8 0.7 0.6 0.6 0.7 0.6 0.6 0.7 0.0 0.7 0.0 0.7 0.0 0.1 0.0 			5 120 125	130 13	15 1.40	145 1.50 Odds	155 160	1.65 1	70 1.75	180 185	190 195	

Figure 6.7-1. The output of SPS.

ID	Odds Ratio	Frequence	er of Risk Al	LD	GATES	ScaChi	HYST
0	1	0.1	1	0.5	0.055	0.025	0.048
1	1	0.1	1	0.6	0.04	0.016	0.033
2	1	0.1	2	0.5	0.042	0.025	0.041
3	1	0.1	2	0.6	0.047	0.021	0.047
4	1	0.1	3	0.5	0.049	0.017	0.048
5	1	0.1	3	0.б	0.049	0.029	0.044
б	1	0.1	4	0.5	0.044	0.028	0.049
7	1	0.1	4	0.б	0.062	0.027	0.055

Figure 6.7-2 The saved table of set-based power.

ID	Odds Ratio	Frequence	er of Risk Al	LD	P-1	P-2	P-3*	P-4	P-5	P-6	P-7*
0	1	0.1	1	0.5	0.002	0.004	0.005	0.001	0.001	0.002	0.001
1	1	0.1	1	0.6	0.003	0.001	0	0.001	0	0.003	0.001
2	1	0.1	2	0.5	0.003	0.003	0.001	0.002	0.001	0.001	0.002
3	1	0.1	2	0.6	0.003	0.006	0.005	0.002	0.002	0.001	0.004
4	1	0.1	3	0.5	0.004	0.002	0.001	0.003	0.003	0	0.001
5	1	0.1	3	0.6	0.003	0.002	0.003	0.001	0.002	0.001	0.004
б	1	0.1	4	0.5	0.003	0.004	0.003	0.004	0.003	0.004	0.004
7	1	0.1	4	0.6	0.001	0.002	0.001	0.003	0.004	0.002	0.001
8	1	0.2	1	0.5	0.004	0.004	0.005	0.002	0.004	0.002	0.005
9	1	0.2	1	0.6	0.008	0.004	0.003	0.001	0.003	0	0.005

Figure 6.7-3 The saved table of variant-based power.

7. Update from KGG 3.0 to KGG 3.5

Much progress was made from KGG 3.0 to KGG 3.5, mainly including:

- 1) Multivariate gene-based association analysis;
- 2) Direct link to multiple bioinformatics annotation databases;
- 3) Simplified operation; better plotting function;
- 4) Integrate regulatory information to prioritize risk genes (under development).
- 5) SPS plug-in is included.