

Formation Robots

Senior Project Design Report

Lemuel Diaz
Michelle Enyeart
Kristen Kristich

Alan Moore
January 30, 2003

 2

Table of Contents

Introduction Page 3

Use Cases Pages 4-5

Requirements Pages 6-7

Technologies Used Page 7

Trade Off Analysis Pages 8-21

Algorithms Pages 22-25

Behavior Description Pages 26-30

Test Plan Pages 31-32

Time Line Pages 33-34

Appendix A – Functionality and Pages 35-38
State Diagrams

Overall System Diagram Page 39

Appendix B – Angle of Arrival Pages 40-41
Diagrams

Appendix C – User Manual Pages 42-51

 3

Introduction
The overall vision of this project is to have an indefinite number of robots move

in a predetermined formation from one location to another. This formation will be

controlled by a combination of an off-board processor and individual on-board processors

with a graphical user interface. The idea of having a set of robots moving in a desired

formation with one controller has become more practical with the recently released

government technology of Ultra Wideband communication (UWB). Our first exposure to

UWB technology came from a Santa Clara alumnus who is currently working at

Lockheed Martin and researching UWB. Our project could potentially be used to further

his research as well as contribute to the following technologies:

Satellites- UWB could be used in the current image capturing satellites. This

technology is not very susceptible to interference, which frequently causes problems in

other wireless technologies. UWB would assist satellites in holding a predetermined

formation with a great deal a precision. This degree of precision would allow scientists to

more accurately measure distant objects in space.

Military- UWB could be used to maneuver vehicles in a set formation without a

driver/controller for each vehicle. This could be implemented in all-terrain vehicles

(tanks), aircraft, or even in convoys, to eliminate the loss of human life. This is also a

valuable tool in surveying unknown or inaccessible terrain.

Industry- When a heavy or awkward load needs to be moved it often takes more

than one machine or person to do this. Having the ability to stay in formation will allow

the weight of heavy loads to be distributed among more than one machine. This could be

especially useful in areas such as steel mills, junkyards, airports, and scrap metal

factories.

 4

Use Cases

An immediate application for this project could be to determine the layout of

obstacles, such as furniture in a room. Between user prompted commands and artificial

intelligence, which allows a memory of locations where obstacles are located to be

created, the robots can navigate their way around a room with fairly good accuracy. This

can be a fun and experiment which demonstrates the capabilities of the robots.

One interesting application of formation robots occurs in the field of satellite

image capturing. Satellite imaging and related fields could use the implications of our

project to potentially improve image quality. The UWB technology is not susceptible to

the types of common signal interference that frequently cause problems in other wireless

technologies. UWB could assist satellites or cameras in forming and holding a formation

with a great deal a precision. This degree of precision would allow scientists to more

accurately measure distant objects in space, among other things.

Another application involves manipulation of unmanned vehicles. UWB

maintained formations could be used to maneuver vehicles in a set formation without a

driver or controller for each vehicle. This could be implemented in all-terrain vehicles,

aircraft, or even in convoys, in situations that may risk the loss of human life or that are

unapproachable for large teams of people. Therefore, this would also be a valuable tool

in surveying unknown or inaccessible terrain such as hazardous structures, other planets,

or very high altitudes. There are many other uses for formation control applications, one

final example comes from the futuristic idea of being able to drive on a highway without

paying attention to road in front of you. With a so-called Autopilot, the UWB can control

 5

the distance of you and the cars surrounding. These intelligent highways could be the first

place where the common man would use government technology UWB.

 6

System Requirements

Formation Requirements

• Must maintain a fixed distance from robot to robot at all times
• Must be capable of maintaining formation determined by user or default setting

after the initial formation is made
• A time must be designated as the time out amount, which would result in the

formation to stop trying to get around impossible obstacles, or in essence to quit
their current task

• At the start up once the user has defined the number of robots, desired formation,
and distance between robots, all robots must get into initial formation

• Must maintain the orientation (maintain a front of formation)
• Allow for continuing operation of the modified formation after a single unit

failure has occurred
• Be able to move from point A to point B, and if an obstacle is in the way must try

to get around it or must alert the user to the futile attempt
• The UWB will be used to check and maintain distances between robots

Software and User side requirements

• Control 1-n robots from a single processing unit
• Need a user friendly interface (i.e., easy to use and understandable)
• Allow for the user to click on the grid to specify the new destination for the robot

formation. In this case the user will not need to specify the angle, since they most
likely do not know what it is, and the program will calculate it for them.

• Allow the user to enter in a specific distance to be traveled, and at what
orientation (angle) to head in. The user will specify a desired angle. To measure
the angle, the zero degree point is straight ahead in the direction the formation is
facing, and all angles are measured counterclockwise.

• Depending on what obstacles the formation encounters, various error messages
will pop up. Options for moving the formation back to its original starting
location will be given.

• Display on the grid to the user where the front end of the robots (formation) are
• Either show the sonar to the user, or display a mark on the screen where an

obstacle is located
• Allow for a user definable formation
• Allow for clockwise or counterclockwise rotation of the formation when

necessary
• Needs to calculate the angle and distance the robot must travel when the user

clicks a desired destination on the grid

 7

Technologies Used

• UWB – Property of Lockheed Martin
• ActivMedia Pioneer Robots
• Wireless Network cards
• Multiple Laptops TBD
• Custom Built Battery Packs
• Microsoft Visual C++
• Compass x 3 TBD

 8

Tradeoff Analysis

Powering Units

We need to power the UWB unit and the robot in a cost adequate and effective manner.

1) Chord to a power jack- This option would provide us with unlimited power.

Having unlimited power has many advantages but the tether will prove to be the ultimate

downfall of this option. Having a power chord connected from the robot/UWB unit to

power outlet means that we are going to have chords laying on the ground which may

hinder the movements of the robots and/or give unnecessary limitations to the distance

capabilities.

2) Solar power-Given the scope of this project solar power panels would be too

expensive. However this method of powering the units could prove very useful in other

applications such as in space or lengthy operations.

3) Tap battery from robot to power UWB unit- While this method eliminates the

need for any external connections, it also drains the battery on the robots much faster. If

we were to tap the supply on the robot, we would have to create a power management

circuit that isolates the UWB unit and provides the necessary voltage for it.

4) Creating power packs for the UWB- Given that the robots already have a power

supply system within them, we propose that the best solution would be to create a

separate power pack for the UWB units. This reduces the drain on the robot’s battery. It

also allows the units to move around independent of external supplies. . We have

decided to go with a 7.2V battery. These batteries cost approximately $25. They have

been tested under full load (applied by UWB unit) to have a lifetime of 1 hour and 15

minutes. Below is a schematic of the battery pack circuit which we have constructed.

 9

Communication

Fast and effective communication between the robot and the user is very important. The

robot needs to receive the movement commands and send information about obstacles

and position. The only wireless communications devices that we currently have at our

disposal are UWB and a wireless area network (WAN)

1) Sending/Receiving information through the UWB unit.- One of the possibilities

was to use the payload of the UWB signal to send and receive the necessary commands

and information. This proved to be ineffective due to the lack of our knowledge of the

UWB operating system. In order to be able to send/receive information we would need

to create an interface that would allow the robot’s CPU to communicate with the UWB

unit’s CPU. Since we already have an alternate form of communication in place we

decided to stick with that.

2) Sending/Receiving information through a WAN- Using the current set up of a

wide area network we would be able to send and receive all the necessary information.

This WAN constitutes one transmitter/receive on each of the robots and at the base

station. This form of communication is already implemented. Continuing to use this

7.2V

Fast blow fuse

Switch
BNC connector

 10

form of communication helps us accomplish all the tasks required to send and receive

signals in a timely manner. Another factor which drove us away from this decision is the

fact that we would need another expensive UWB in order to communicate from off

board.

Obstacle DetectionSensors

As the formation moves about it will encounter obstacles. Detecting these

obstacles with some type of sensor is the first step in avoiding them.

1) Indirect use of the step motors- We can use our step motor along with our relative

positioning algorithm to compare whether the robot has moved since some previous

sample. If the unit has moved to a point that we expect then there is no obstacle. On the

other hand, if the robot is not where the program exceptsexpects, then we know there is

an obstacle in front of it. This method is a very shoddy way to implement an obstacle

detection mechanism. In our project we want to detect obstacles before we get to them so

that the robot and formation can avoid them entirely. This method would only know of

an obstacle after it has run into it.

2) Video- This option requires that there be constant attention given to the images

received. An operator would have to interpret the images and navigate around the

obstacles manually or there would need to be some sort of sophisticated image processing

which is beyond the scope of the project. This would be contrary to the goals of having

an autonomous movement. While this method provides a good way to see exactly what

is around the robot, it is expensive and unnecessary for this project.

3) Sonar- A system of detection using sonar has already been implemented on the

robot. There are currently four sonar detectors on the front. Using these we can see up to

 11

about 40 degrees off north of the field in front of the robot. After implementing two

more sonar detectors on each side, we will have additional sight of the field around the

rear of the robot. This is the best option because it is cheap and already mostly

implemented.

Robot Processors

In order for the robot to carry out commands from the user the commands must be

put into a language which the robot can understand. To accomplish this we need to

decode the received commands using some sort of onboard processing unit.

1) Internal Processor – Each robot is equipped with an onboard processor. This

processor is responsible for controlling the wheels, sonar, and any other designed

peripherals. Unfortunately using the onboard processor is not a viable option. This

processor was specifically designed only for factory equipment.

2) Use an external microcontroller- We have the option of using an external

processor such as an Atmel processing board or equivalent. In order to use this

microcontroller, it is required to build a separate power supply for it. Already having two

supplies onboard, building a third would be excessive.

2) Use a laptop- Laptops are the equivalent of having an Atmel board, but they

already have a battery inside them. We decided to go with a laptop primarily for the ease

of use and compatibility with the current system.

 12

Direction Recognition

All units must have knowledge of absolute and relative reference points in order

to move successfully as a rigid body. For example: to have an initial movement north, all

units must first be facing north. Also, to move as a rigid body each unit must know

where they are relative to each other unit. To ensure a rigid body movement each unit

must always be at a similar angle and distance away from one and another. The goal here

is to develop a way for all robots to know their heading relative to some known reference

heading.

1) Use a compass- Having a compass on each unit would ensure a similar absolute

reference between each unit. The relative positions could be derived from the

information provided by each compass. We will attempt to find a way to avoid using

compasses on each unit.

2) UWB angle of arrival (AOA) feature- Each UWB unit has the option to have two

antennas and provide an angle of arrival between two units. Using this feature would

allow us to calculate relative angles and positions fairly easily. The downfall comes

when we place the robots at random directions, the UWB has no absolute position

reference. The only way that this method would be correct is if the robots are placed in a

very specific initial direction. Due to the high possibility of error this method has been

discarded. (See Appendix B for diagrams)

3) UWB and Predefined absolute direction using AOA- To solve the problem of not

having an absolute reference we can place an extra UWB unit at a predefined position

and use that as the absolute point of reference. This is impractical for two reasons. The

first reason is because the UWB units are not useful at long distances. If we were to send

 13

position information from the base UWB to the robot’s UWB at distances greater than 50

(may be different) feet, the accuracy of the units drops off significantly. The second

reason is apparent when we consider costs. At $45K per unit, it would be financially

impractical to buy an extra unit if other, cheaper, methods are available. (See Appendix B

for diagrams)

4) GPS- Global Position is a technology which would allow control of the position

of the robots through a satellite tracking system. GPS would solve the problem of

relative and absolute references but sacrifice accuracy. Current outdoor GPS technology

give positions of objects with an error factor of 3 feet. This technology may be useful for

similar large scale experiments, but is not useful for our current project.

5) AOA and compass combination- The most feasible and economical solution is a

combination of a compass and the UWB angle of arrival option. For most earth based

applications the compass would provide an absolute point of reference at a very low cost.

The UWBs AOA, as stated above, solves the relative references problem. We would

only need to purchase a single compass and use the relative information to derive other

necessary information. Using this combination of technologies gives us a cheap and

practicable solution.

 14

Robots

 Which robots to use for the project was one of the first questions our group was

faced with.

1) The idea of building our own robots was quickly discarded. Building a reliable

robot is, in itself, a tremendous project that we did not wish to tackle. Instead, we wanted

to focus on the problem of formation.

2) After, talking to our design advisors, we were given the opportunity to use robots

that the school owned. Initially, we wanted to use the small and mobile robots known as

AmigoBots. The AmigoBots are manufactured by ActivMedia and have many

interesting attributes including obstacle avoidance and a graphical user interface.

However, when we realized that the Ultra Wide Band units were rather large and heavy,

it became clear that the AmigoBots could not hold the extra weight.

3) So we had to upgrade to the larger Pioneer Robot, also manufactured by

ActivMedia, that can carry loads up to 30kg. The Pioneer comes with most of the same

software and programming interfaces that the AmigoBot came with, which makes the

Pioneer a desirable alternative to the smaller AmigoBots.

GUI

 15

 One goal of the project is to create a user interface that is easy to use. In order to

achieve this goal, we want to make the GUI as simple as possible while maintaining a

great deal of user input in the action of the robots.

1) The first issue is whether the user should enter the desired position of the

formation by clicking on the screen, or by entering in the new coordinates. In the end,

our group decided to go with both options. In this way, the user can be very precise by

entering in the desired coordinates, or they can be more informal by simply clicking the

screen. It seems that both functions are highly desirable.

2) The second issue was whether the interface should display the range of the sonar

sensors. There occurs a problem when all of the sensors are displayed because the

sensors will often overlap or will sense an obstacle where there is actually another robot.

However, by displaying the sensors, the user will have a clearer sense of the position of

potential obstacles. Again, our group has decided on a compromise. The interface will

display only those sensors on the periphery of the formation. In this way we get the best

of both worlds, however, there may arise some problems when determining which

sensors to display. In this way we get the best of both worlds, however, there may arise

some problems when determining which sensors to display. In this way we get the best

of both worlds, however, there may arise some problems when determining which

sensors to display. In this way we get the best of both worlds, however, there may arise

some problems when determining which sensors to display.

3) It is also important to consider which parameters should be fixed and which

should be input by the user. Examples of various parameters include, the number of

robots in the system, the formation of the robots, the distance between each robot in the

 16

formation, the initial direction that the robots are facing, the location of the formation

when it is first formed, time spent attempting to reach destination before giving it up as

impossible (timing out), and the maximum speed the robots should travel. Some of these

parameters will always be user defined due to the goals of the project, such as the number

of robots in the system, the formation that the system will maintain, and the distance

between robots. Other parameters, such as the initial direction and the location of the

initial formation will be fixed because it does not add value to the system to change these

items. And finally, some parameters will have defaults that can be modified by the user

in order to make the system more versatile and robust, such as the length spent searching

before timing out and the maximum speed the robots will be allowed to travelhow fast

the robots can travel.

Formation Reference Point

Formations require a specific reference frame to determine relative positions and

angles. There are a few ways to accomplish this task.

1) Centroid/Center of mass – There is a simple algorithm to calculate the center

point that will work for our purposes. This algorithm adds up the x coordinates of all the

bots and divides by the number of bots in the system. Then it does the same thing for the

y coordinates. The benefit to this method is to have a reference point within the

formation, which will facilitate the problem of getting into formation. The simple

algorithm to calculate the center of mass is very useful to get

 17

 2) Master Robot – The master robot would carry the axis and point of reference

within it. One robot will be designated as the (0,0) in order to facilitate building a grid of

the environment and all the robots in it. A protocol can be set up which would

automatically assign a new master robot if the first one malfunctions.

Discussion of Algorithms

 There are three algorithms that our project needs in order to function as desired.

These three algorithms include a method for getting into formation, a method moving

from the current position to the desired position, and a method for avoiding obstacles

1) The first of these, getting into formation, is quite easily solved. We thought of

two different methods for positioning the robots in their formation. The first method we

thought of was to assign a position to a robot randomly. Then the other robots would

move towards the first robot in small steps, one at a time, while continually checking for

obstacles. In this way they could avoid running into each other. They would stop once

they were within a certain distance from the first robot. Then each robot would move,

one at a time, into formation. This could be accomplished by moving the closest robot

into the next position of the formation.

 The second method we thought of was to use a variation of the Assignment

Algorithm. This well-defined algorithm is used to assign a number of items to the same

number of positions by finding a minimum cost solution for the system. Our system will

implement Munkres’ Assignment Algorithm (also known as the Hungarian Algorithm)

described at the following website:

 18

http://campus.murraystate.edu/academic/faculty/bob.pilgrim/445/algorithms_7.html. Our

system will use the distance formula as the weight factor to determine the best fit.

 2) The second algorithm to be considered is the method of moving from one place to

another. First, the system will calculate the desired coordinates. The formation will then

attempt to get to the new location by moving in a straight line while using obstacle

avoidance techniques and a behavioral approach to keep from running into things. The

distance traveled will be measured by using the length calculated by the rotation of the

wheels. This straightforward approach is very simple and will be consistent for any

formation, making it unnecessary to consider many alternatives.

3) The third method that needs to be considered is the problem of obstacle

avoidance. This is a dilemma that has been highly discussed by many in the field of

robotics and artificial intelligence. One method that our group has discussed is very

simple, and should prove effective, though it is not very efficient. This method involves

searching for a set amount of time in one direction until a way around the obstacle is

discovered. If no clear path is discovered within the set time, the formation will return to

its original position and then search in the other direction for a set amount of time. If no

clear path is found in this time, the system gives an alert of an impossible obstacle and

gives up. Although this method may waste a lot of time and effort, and may not find a

clear path that exists just outside the boundaries examined, it will work in simple cases.

 While the above algorithm is very simple, it is more efficient to utilize an obstacle

avoidance algorithm that involves looking ahead. Any such avoidance algorithm will

require the use some mapping function. Thrun et al.1 2 describe two different types of

1 Thrun, Sebastian et al. “Map Learning and High-Speed Navigation in RHINO.” Arificial
Intelligence and Mobile Robots. Ed. David Kortenkamp. Menlo Park: 1998. 21-52.

 19

maps. The first is map-based and has vertices and edges stored in a table. The second is

grid-based and uses a grid to represent the environment. Our system will be using a grid-

based mapping function because grids are easier to maintain and should correspond well

with our grid-based graphical interface.

There exist several methods for obstacle avoidance that look ahead and try to

navigate around obstacles while in motion. In a 1991 article, Borenstein and Koren

identify three common types of algorithms as well as describe a technique of their own.3

.2

 The first of these methods is known as the edge-detection method. In this case,

the system attempts to detect the edges of an obstacle and then steer around it. Often, the

robot must stop in order to sense its surroundings. In this type of obstacle avoidance, it is

important that the sensor data is accurate. This type of algorithm is best suited towards

an interpretation of visual or video data, and hence is not suitable for our project.

 The second method involves using a certainty grid. A certainty grid is an array

that represents the robots environment. Each element of the grid contains a value (the

certainty value) that represents the probability or confidence that there exists an obstacle

in that position. Whenever the sensors detect an obstacle, the value in the grid that

represents that obstacle’s location is incremented. Then the system would maneuver the

robot in a manner that avoids the locations with high certainty values. This method

3 33 Thrun, Sebastian et al. “Map Learning and High-Speed Navigation in RHINO.” Arificial
Intelligence and Mobile Robots. Ed. David Kortenkamp. Menlo Park: 1998. 21-52.
3 2 Borenstein, J., and Y. Koren. “The Vector Field Histogram – Fast Obstacle Avoidance for
Mobile Robots.” IEEE Journal of Robotics and Automation 7.3 (1991): 278-288.

 20

avoids the necessity for high accuracy in sensor data, making it more effective for sonar

sensors.

 Borenstein and Koren identify one method to navigate obstacles. In this case, the

potential field is used, but there is an additional grid, called the polar histogram, that

helps to guide the robot’s movements. The polar histogram breaks the environment into

segments of five degrees. In each segment, the polar histogram adds up the certainty

values in that range, producing a new certainty value for each segment. The segments

with certainty values below a pre-defined threshold are considered safe to steer through.

Although perhaps the most complicated, we feel that this method provides the most

accurate reading of the robots surroundings as well as the most thorough method for

navigating and determining the next move.

The final method uses potential fields to steer the robots around obstacles. When

an object is detected, the system uses the distance the object is from the robot and

calculates a vector that acts as a force, pushing the robot away from the obstacle. At the

same time, there is an imaginary force pulling the robot towards its destination. The

direction the robot moves is determined by the sum of all the vectors. One major

drawback of this method is that in environments with many obstacles, the robot tends to

have many fluctuations if the repulsive vectors become large. However, we feel that the

behavioral technique involved in this algorithm makes this method highly desirable.

Coordinate system

 There are two choices when it comes to a two-dimensional coordinate system.

The first is to use Cartesian coordinates and the second is to use polar coordinates. The

 21

Cartesian plane is more desirable to our project because we will be calculating many

distances and will have many points on the plane at all times. One point for each robot

and each wheel, and one point for the center of the formations, and one for the center of

the new location the robots are moving towards. The ease of use for calculating distance

and angles makes Cartesian coordinates highly desirable.

Orientation vs. Rotation

 There was some discussion amongst our group about the best way to change the

direction that the robots are facing before they move to the next desired location.

1) We originally thought that it would be best to turn by rotating the robots in place

until they are facing the desired direction. This way we could save time and keep from

making unnecessary movement. Furthermore, when examining the process of rotating

the formation as a whole, it was obvious that the rotation would be difficult because some

robots would need to travel farther and faster than other robots of the formation whenever

a turn is made. Additionally, calculating the movements for an effective turn would be

far more difficult than the calculations for a simple rotation in place. However, a simple

rotation would cause a change in the orientation of the formation whenever the formation

is not symmetrical. It is not worth the effort to determine when a formation is symmetric

so that we can take advantage of the shortcut to rotate the robots in place.

2) The change in orientation is obviously an undesirable consequence of simple rotation,

so we discarded the idea in favor of the rotation of the entire formation as a single unit as

described above. Although this method may result in more movement and take more

 22

time, it is consistent and will always work to change the direction the formation is facing

regardless of the shape of the formation.

 23

Algorithms

Getting into Formation
The problem of getting into formation will utilize the Hungarian assignment algorithm
and will move each robot in small increments to avoid collision.

Given:

1. The distances and angles between all the robots (from the UWB)
2. The distances and angles between the robots of the desired formation

Steps:
1. Select one robot to be the reference robot (0,0)
2. Calculate the center of the robots’ current positions

((Sum of all x’s / number of robots), (Sum of all y’s / number of robots))
3. Overlay the center of the current position and the center of the desired

formation (see diagram).
4. Create an nxn matrix for n robots
5. Calculate the distance to move each bot to each position – this is the cost

function for the assignment algorithm
6. For each row in the matrix, find the smallest element in each row and subtract

that amount from every element in the row
7. If there is no marked zero, find a zero and mark it
8. Repeat step seven for each row
9. “Cover” the columns containing a marked zero. If n columns are covered, go

to step 13. If not, go to step 10.
10. Find an uncovered zero and prime it. If there are no marked zeroes in this

row, go to step 11. Else, cover this row and uncover the column with the
marked zero. Repeat until there are no more zeroes. Save the smallest
uncovered value and go to step 12.

11. Construct a series of alternating marked and primed zeroes until there is a
primed zero without a marked zero in its column. Then unmark each marked
zero and mark each primed zero. Uncover and un-prime everything else and
return to step 9.

12. Add the value from step 10 to every element of each covered row and
subtract it from every element of each uncovered column. Go to step 4.

13. Done – Assignment pairs are indicated by the positions of the starred zeroes.

Output:

1. The bots in the appropriate formation

 24

bo

bo

bo

Center of
formation

bo bo

bo

bo
t

bo
t

bo
t

Reference Robot

Desired Formation

Center of bots

Original locations and the desired formation

Robots in the original and the new formations

 25

 26

Obstacle Avoidance
A complex but highly probable scenario involves manipulating the system around an
obstacle detected in the formation’s path. This algorithm uses a behavioral approach.

Given:

1. Current location on the grid
2. Sonar reading of the environment giving distance to nearest obstacle

Steps:
1. Calculate “forces” from objects detected by sonar
2. Add together all the vector forces, including the force pulling the formation

toward its destination
3. Steer the robot in the direction indicated by the calculated forces

Output:
1. The robots safely move to the desired location

 27

Moving Towards a Desired Location
Moving from one location to another is perhaps the most basic, and most important
applications of our system. The movement algorithm is very simple, but it uses the other
behaviors to react to the environment. The output will be the original desired location if
a straight-line movement can reach the position. However, if that is not possible, the
output will be the newer and closer coordinates that will allow for obstacle avoidance or
rotation as necessary.

Given:

1. Current coordinates
2. Coordinates of desired location

Steps:

1. Move in a straight line towards the new coordinates
2. Monitor obstacle avoidance behavior
3. Monitor constant distance and angle behaviors

Output:

1. Coordinates to head towards

 28

Behavior Description

The robots will be programmed by a set of behaviors that will constantly monitor

the status of the formation and adjust accordingly. Each formation is controlled by a gain

factor. This gain factor will determine how much strength each behavior will have over

the actions of the robot. For example, if it is more important to maintain a rigid

formation than to get to the destination, then the distance and angle behaviors will have a

higher gain than the destination behavior. The next few pages outline the four most

important behaviors of the system.

 29

Destination Behavior

GOAL: To get the lead robot to the destination point

Dd = Distance from current robot position to ending destination.
Gg = Gain factor for the velocity to the goal destination.

Vg = Gg *Dd

Dd

 30

Sustained Distance Behavior

GOAL: To maintain a predefined distance “d” from other robots.

D = ideal distance to maintain between two robots
∆d = difference of actual from ideal distance (may be negative)
Gd = gain factor for distance
Vd = instantaneous velocity

∆d = d – (actual distance calculated from UWB)
Vd = Gd * ∆d

3

 31

Obstacle Avoidance Behavior

Goal: All vectors from the obstacles will add to the overall force exerted on the system
and dictating the velocity and direction of the system

The red vector is the resultant velocity of the robot after all obstacle vectors are
considered.

Let V o = instantaneous velocity due to objects

Let F n = velocity vector due to the Nth obstacle (xyz coordinates)

Let G o = gain factor for obstacle avoidance

 V o = Fn * G o

G o à sensitivity for obstacle avoidance behavior

Obstacle

Obstacle
Obstacle

Robot

 32

Relative Angle

Goal: Maintain a specified angle from a reference position using UWB angle of arrival.

θ = ideal angle of arrival
φ = actual angle of arrival
∆θ = the difference between the ideal and the actual

φ = 90 – (cos-1 ((a2 + x2 – b2) / (2*a*x))
∆θ = θ - φ

Vθ = ∆θ * Gθ

The robot needs to turn ∆θ to maintain the desired (ideal) angle at the rotational velocity
indicated by Vθ.

∆θ

x

b

a

θ

x

b

a

φ

 33

Formation Rotation Error Algorithm (FREA)

The algorithm outputs the ratio of the

number of steps between the outer and inner

wheel. Realizing that this ratio might not always

end up being a perfect integer, we will have to

implement a correction algorithm. The input to

the FREA will be mod of the step ratio. The

output will be a correction factor. This correction

factor will then be the input to the TCA, which

takes into account other errors such as: distance

between robots, relative angles and referenced

angles.

Relative Distance Error Algorithm (RDEA)

 34

This algorithm is very similar to the FREA. It

inputs the actual and desired distances between

two robots and outputs a correction factor. This

correction factor in then becomes the input for the

TCA.

Total Correction Algorithm (TCA)

This algorithm takes into account all of the error

factors from each other algorithm and calculates

the correction movement of the wheels.

Test Plan

Testing the overall functionality of the system obviously requires a breakdown

into individual subsystems. These systems include, but are not limited to: the program

(code), the graphical user interface, the functionality of the robots, the effectiveness of

the wide band communication system, and the quality of movement of the formation.

Listed below are the predicted methods of test for each subsystem. The methods

discussed below are purposely vague do due to the inevitability of change in subsystem

designs

 35

The Program:

The program code is the key element of all interactions between the graphical

interface, the user, and the robots. Code, like this project, can be broken down into

subsystems. Each subsystem has its own particular contribution to the overall program.

These subsystems are algorithms which have an expected output based on their individual

inputs. Thus, when we test the performance of the program, we will test each individual

subsystem by observing the known output for a given input.

The GUI:

The Graphical User Interface (GUI) is the portion of the system that is most

accessible to the user. There are two main issues that need to be tested for the GUI. The

first is clearly the accurate interaction between the commands given by the user and what

the robots actually do. The GUI is a subsystem of the entire program and will be tested

as described above. The second key component in a successful user interface is the

relative ease of operation. The GUI should be easy to comprehend and manipulate. To

test this we will employ the services of our peers. The best way to determine whether a

GUI is good enough is through peer evaluation. , Tthus the testing of our GUI will be

done by our peers. We will take into consideration their recommendations and modify

our interface accordingly.

The robots:

In order for our entire system to be complete the robots must have certain

capabilities which are intrinsic to the code. For example, if the user calls out for a

particular movement which requires the robot to rotate 45 degrees, the robot must have

the ability to do just that. Given current software our team can test all of the capabilities

of the robots. While testing we can see which directions the robots are capable of

moving in and also whether or not they can rotate.

Ultra Wideband Communication:

 36

The primary purposes for having ultra wideband communication is to gain

information such as how far apart the robots are relative to each other and their relative

anglesand to communicate to the central processing unit. To test these two things we are

going to enter a known distance between two robots and then confirm the actual distance

manually. This will give us an idea of the amount of deviation we will be working with

throughout the project.

Quality of movement:

Due to the fact that quality is not entirely quantifiable, our tests will be based on

accuracy and efficiency of movement. For example, we want to avoid jittery and

extraneous movements.

 37

Timeline

December

5th – Experiment with test capabilities of the UWB

By 13th – (Alan) Understand the Robots, and how they are controlled

By 20th – Test Angle of arrival on the UWB units (two antenna system)

– Test Robots with UWB on them (distance control)
– Ability to calculate the geometric center of mass of any formation, so that the

center point can be found. The center point is then used as the part of the
formation which should end of at the exact location of the desired destination

– Research on adding more sonar to the existing robots to allow for better
obstacle detection

–

January

By 10th – Begin Coding AlgorithmsDesigned

– Test the compass on the Robot formation direction verification
– Continue testing two Robots manually with UWB units for distance control

By 24th – Test One Robot with program
o Must be able to move from point A to point B, and if an obstacle is in

the way must try to get around it or must alert the user to the futile
attempt

– Start implementing GUI to allow for a user definable formation

February

By 7th – Test Two Robots with program

o Must be able to move from point A to point B, and hold a formation
o Test for clockwise or counterclockwise rotation of the formation when

necessary
– GUI finished

o Test with Robots
– Test sonar with one Robot with program

By 21st – Be able to calculate the angle and distance from the robot must travel when the
user clicks a desired destination on the grid.

– Test Three Robots with program
o Maintain speed and orientation
o Obstacles
o GUI displays movement

 38

March
Finished with Designing Implementation – now test

 39

Appendix A
Functionality

and
State Diagrams

 40

Get formation parameters from bots
Interpret parameters

Convert param Õs into rover specific
language

Determine Rover Drive commands

Get formation parameters from user

Check for obstacles Correct formation

Continuously listen for
interrupt from CPU

Compare expected vs
actual state of
formation

Send drive commands to bot

Move bot

Drive Function

CPU Function

Determine ideal path

 41

Get formation
parameters
from user

BOT CONTROL UNIT

GUI -CPU Function

Parameters
and/or BOT
info are run
through the
program

WAN UNIT

Receive
UWB/Drive
parameters at
BOT

BOT info and
UWB
parameters are
sent

UWB/Drive
parameters are
sent to BOT
CONTROL
UNIT

 42

BOT CONTROL UNIT
?Everything is sent through the
BOT(LAPTOP) to be sent to the GUI
(CPU) using the WAN connection

UWB- checks for
distances and angles
of the BOTs formation

BOT CONTROL UNIT (LAPTOP)

WAN COM.

Receive
UWB/Drive
parameters at
BOT

BOT info and
UWB
parameters are
sent

SONAR- checks for obstacles
and/or other BOTs in the area

If obstacle or BOTs are
in the way, move to
avoid obstacles or
correct the formation

Pioneer computes
sonar data to send to
GUI (CPU)

With X amount of
BOTs and a desired
formation the UWB will
calculate the distances
and angles between
the BOTs

UWB sends its
calculated parameters
to the GUI (CPU)

DISTANCE CONTROL
UNIT (Pioneer)-
monitors the distance
that the BOT has
travelled

Pioneer computes
distance data to send
to GUI (CPU)

 43

Overall System

WAN PC card
talks to main
computer

Base

Compass

 44

Appendix B
Angle of Arrival Diagrams

 45

x

Φ

Φ=Angle of Arrival

x=Distance between antennas

 46

Appendix C
User Manual

 47

User Manual

 48

1. Setup
Using Serial cord, connect the laptop with the Pioneer robot. The Pioneer serial port is
located on the back by the battery bay. Next connect the Ultra Wide Band unit to the
laptop using the Ethernet LAN cord. Last of all, insert Wireless Network card into the
PCI slot. View diagram below for help.

WAN PC card
talks to main
computer

UWBConnected
with SERIAL

Connected
with LAN

Pioneer 2

2. Before Operation
Before you can begin giving commands to your robots via a GUI program on your main
CPU a few functionality checks should be made. Check to see that all battery packs
mounted on the robots are fully charged and that the robots are turned on. Also, make
sure the laptop mounted on each robot is turned on with a fully charged battery as well.
The laptops will function as communicators between the GUI run on the main CPU and
the robots. Once this is done switch on your main CPU and begin the program. You are
now ready to begin directing your Pioneer robot formation!

3. Defining a Robot Formation

 49

Once you have opened your Robot Formation program, you will be brought to a page
looking similar to the screen shot above. Click on the formation you wish to choose, and
then click OK. By selecting one of the predetermined formations, you are choosing the
number of robots and formation type portrayed in the picture. If you wish to design your
own robot formation, click on DESIGN and you can create your own formation. This
will be explained later in the section.

3.1 Choosing a Predetermined Formation
Once you have selected your formation choice, you will be taken to a screen which looks
similar to the screen shot below. You will be asked to define a MINIMUM RADIAL
ROBOT DISANCE. This distance will be the minimum distance between any two
robots. It is recommended to keep a minimum distance of one and a half times the
robots' length between your robots. Do not worry about the other distances, the program
will calculate them for you.

Select Number of ROBOTS and a Formation…….or Design Formation

2

3

4

5

A B C D E

OK DESIGNClick Here to Design New FormationClick Here if Done

Select Number of ROBOTS and a Formation…….or Design Formation

2

3

4

5

A B C D E

OK DESIGNClick Here to Design New FormationClick Here if Done

 50

Once you have made your selections, click the NEXT button at the bottom of the
window. This will close the window so that only the main screen with the grid and main
user options will be viewable. As soon as you have clicked on NEXT, the robots will get
into the formation you have just designated. At any time if you are unhappy with your
decisions and wish to reselect the number of robots, distance between them, or formation
type, you may click the Formation Type button located on the bottom right side below
the grid on the main page.

ENTER MINIMUM RADIAL ROBOT DISTANCE: X= FT

x

NEXT

ENTER MINIMUM RADIAL ROBOT DISTANCE: X= FT

x

ENTER MINIMUM RADIAL ROBOT DISTANCE: X= FT

xx

NEXT

 51

3.2 Designing your Own Formation
If you do not want to select one of the predetermined formations, click on the
Design button shown in the screen shot located at the beginning of section 3. Now, you
will be taken to a new screen looking similar to the one above. To the left of the grid is a
button with a picture of a robot on it. To add a new robot to your formation simply click
the button, and while still holding down on the mouse, drag the robot to the place on the
grid where you wish to place it. Once you have put the robot in the proper location,
release the mouse button. Continue this step until you have the number of robots you
want, and in their proper positions on the screen. If you wish to relocate a robot, once
again click on it and drag it to its new location. To remove a robot, click on it once and
then hit the delete button. When you have finished designing your formation, click on
FINISHED. You will be taken to the “Your Formation Choice Page.” If you have any
questions on this part, refer to Section 3.1.

CLICK AND DRAG
ROBOT ONTO

GRID

FINISHED

 52

4. Moving your Formation

4.1 Click and Move
For beginning users, and when an exact destination for the robot formation cannot be
determined, the grid is the recommended option. Most of your window is taken up by a
grid, which will show the location of your robots. The grid has limited ability and can
only represent the areas detected by the robots. When the robot formation originally
shows up on the screen, it will represent the formation’s relative position.

Once you have entered your desired robot formation and you can see the robots on the
grid, you are ready to move the formation. While looking at the grid, sonar sent out by
the robots should be seen (not shown above). Only the sonar on the periphery of the
formation will be displayed, so as to not cause confusion. The longer sonar rays mean
that there is no obstacle in the formation's path, and the shorter rays mean that something
is in the way of a clear path. To actually move the formation, click somewhere on the
screen and the robots will attempt to move to the new location. When using the click and
move function of the program, you do not need to specify an angle for the robots to
travel. The formation will attempt a straight line of travel to get to the desired location if
possible and the front end of the formation will end up covering the place on the screen
clicked by the mouse.

X

Y

CANCEL

DISTANCE:

ANGLE:

DESTINATION CURRENT POSTION

STOPGO

Formation TypeCLICK HERE TO SET
NEW FORMATION

HOME

DISTANCE:

ANGLE:

CLICK ON GRID FOR
DESIRED LOCATION

or
ENTER DESTINATION

OK

 53

If it is not possible to get all robots to the new location, you will receive a warning
message. Also, don't worry if your formation does not get to the new location
immediately. It may take a while for a clear path to be found, and the time out
mechanism will not come into effect until either all options have been exhausted, or the
time allotted for the movement has expired. You will be able to view on the screen your
robot formation's progress from the old location to the new one. The orientation of the
formation can be discerned by a small red circle located on the front end of each robot.
The red circle should always be located in the point, facing in the direction the robots are
facing. Once your formation has reached its new location you can again click a new
place on the screen and the formation will move accordingly. If at any time you wish
your formation to return to its original location and starting information, click on Home ,
and the starting location will be resumed.

X

Y

CANCEL

DISTANCE:

ANGLE:

DESTINATION CURRENT POSTION

STOPGO

Formation TypeCLICK HERE TO SET
NEW FORMATION

HOME

DISTANCE:

ANGLE:

 54

4.2 Advanced Movement
Advanced instructions may be given to the robot formation if the desired distance and
angle of rotation are known. Below the grid, which displays the existing robots and their
current formation, are fields labeled Distance and Angle. In the Distance field you can
enter in the distance in which you want the formation to travel. The Angle field will take
whole numbers ranging from 0 to 360. Whichever direction your robots are facing will
be considered to be the (0,0) coordinate, so give your angle of desired rotation
accordingly. Once you have filled in these two fields, click the GO button, which is to
the right of the Distance and Angle fields.

Once you have hit GO you can watch the screen to see your formation move from the old
location to the new location. To move the formation again, reenter the desired distance
and angle to be turned before hitting GO. If at any time you wish to return to your
original starting point hit Home , which is located on the right of your screen.

 55

5. Trouble Shooting
Various problems may occur during operation of your robot formation. Some common
problems and their quick fixes are listed below.

• One of the robots experienced power failure. In this case you have two
options. Depending on where the robots are being used, it may be possible to go
over to the robot and check the battery pack. If you can switch the battery or in
any way power up the robot again, the formation can continue as it had before the
power failure. If this does not work, your screen will ask you what you wish to
do. You may simply tell the formation to continue on with n-1 robots in the same
formation, or you can request a new formation. If after a certain amount of time
you do not give the robots a command, a default time out will occur and the robot
formation will continue on in the same formation with n-1 robots.

• The robot formation doesn't seem to be receiving my commands. In this case

there may be a problem with the network cards used by the laptops mounted on
the robots. Check to see that all the cards are installed and functioning correctly.

• The robots are not reaching the specified location no matter how many

attempts are made. It is possible that the desired location is not reachable. In
this case, choose another destination for the robots to relocate to, or try choosing a
different robot formation. By doing so, the new formation may be able to
maneuver around the obstacle that was unavoidable with the previous formation.

• Using the click and move method, the formation does not go where I want it

to. To choose an exact destination, the completely accurate the advanced
movement by specifying the exact distance and angle of rotation is necessary. If
you do not know exactly where you want to go, then the click and move is still a
better option.

• After I have chosen the number of robots, I cannot find the desired

formation. It is possible that the formation you are searching for is not
predefined for the number of robots you have chosen. You can either choose the
number of robots that go with your desired formation or attempt to define your
own formation.

