
Allen-Bradley
Standard Driver Software
(Cat. No. 6001-F2E)

User’s Manual

Preface 6�1 .
This Manual's Purpose 6�1 .

Audience 6�1 .

Related Publications 6�1 .

Product Overview 1�1 .

Why Use the Standard Driver Software? 1�1 .

Compatible Hardware and Software 1�1 .

Overview of the Function Calls 1�2 .

Software Considerations 1�3 .

Installing the Standard Driver Software 2�1 .

Chapter Objectives 2�1 .

What the Package Includes 2�1 .

What's on the Diskette 2�2 .

Installing the Standard Driver Hardware and Software 2�3 .

Planning Your Application Program 3�1 .

Chapter Objectives 3�1 .

Include Files 3�1 .

Overview of the Function Calls 3�2 .

Programming Considerations 3�2 .

Using the Function Calls 4�1 .

Chapter Objectives 4�1 .

Using Open_StdDrv() 4�1 .

Communicating on DH�485 with the 6001�F2E Standard Driver 4�2

Using Appl_StdDrv() 4�2 .

Using Send_StdDrv() 4�4 .

Using Get_ErrMsg() 4�6 .

Using Close_StdDrv() 4�7 .

Compiling, Linking, and Configuring Your Application Program 5�1 . . .
Chapter Objectives 5�1 .

Compiling and Linking Your Application Program 5�1 .

Configuring Your Application Program 5�2 .

Application Program Examples A�1 .

Sample Program A�1 .

PLC�2 Unprotected Read A�4 .

PLC�2 Unprotected Write A�6 .

Diagnostic Loop Back A�8 .

Diagnostic Counter Read A�10 .

Diagnostic Status A�12 .

Diagnostic Counter Reset A�14 .

Specifying Message Packet Commands with Send_StdDrv() B�1

Chapter Objectives B�1 .

Formatting the Message Packet B�1 .

Message Packet Fields B�4 .

Supported Command Set B�6 .

Diagnostic Counters Reset B�7 .

Diagnostic Loop B�7 .

Diagnostic Read B�8 .

Diagnostic Status B�8 .

Unprotected Read B�9 .

Unprotected Write B�9 .

Protected Typed Logical Read
with Three Address Fields (File,
Element, Sub�element) B�10 .

Protected Typed Logical Write
with Three Address fields (File,
Element, Sub�element) B�12 .

Diagnostic Replies C�1 .

Diagnostic Status Reply C�1 .

Diagnostic Read Reply (Diagnostic Counters) C�4 .

Error Codes D�1 .

Error Codes D�1 .

Preface

Preface

This manual shows you how to:

 Install the 6001-F2E Standard Driver software
 Communicate with DH-485 stations via the 6001-F2E Standard Driver

software

Use this manual and the 6001-F2E Standard Driver software if any of
your application programs require information from devices such as the
SLC-500 programmable controller. We assume you are familiar with the
DOS operating system and C programming language.

See the following publications for information about communicating on
the DH-485 network.

Refer to this manual For

PC DH-485 Interface Module Installation
Data (publication 1784-2.23)

installing the 1784-KR module

Data Highway/Data Highway Plus
Protocol and Command Set User’s
Manual (publication 1770-6.5.16)

information on PLC commands and
protocol

SLC-500 Advanced Programming
Software User’s Manual (publication
1747-801)

information on the SLC-500

This Manual’s Purpose

Audience

Related Publications

Chapter

1

1-1

Product Overview

The Standard Driver Software (cat. no. 6001-F2E) for the 1784-KR
Interface Module lets you communicate directly to SLC-500
programmable controllers and other devices on the DH-485 network. You
use a standard set of function calls to communicate with DH-485 stations.
These function calls let you define your own message packets or request
pre-defined message packets included in the software. See page 4-2 for
more information about the message packets.

You can use the following hardware devices with the 6001-F2E Standard
Driver software:

 1784-T35 Plant Floor Terminal
 1784-T50 Industrial Terminal
 6120, 6121, and 6122 Industrial Support Computers
 IBM PC/XT and PC/AT
 Compaq Deskpro 286
 Compaq Portable II and III

If your computer is not listed above, consult your local Allen-Bradley
sales office for compatibility information.

You can use the following with the 6001-F2E Standard Driver software:

If you use this programming device Use this operating system

1784-T50 programming terminal1 Allen-Bradley DOS version 3.21

IBM PC/XT, PC/AT, or IBM-compatible
programming terminal

DOS version 3.0 or later (Use the DOS version
included with the programming terminal)

1If you are using a 1784-T50 that has DOS version 2.11 or earlier, you need to purchase the
current version of Allen-Bradley DOS

Why Use the Standard Driver
Software?

Compatible Hardware and
Software

Product Overview
Chapter 1

1-2

The 6001-F2E Standard Driver Software consists of a library of C
programming language function calls that let your computer communicate
with nodes on the DH-485 network. Table 1.A lists these commands:

Table 1.A
6001-F2E Standard Driver Software Commands

If you want to Use this function call

perform initialization functions (required
before any communication can take
place)

Open_StdDrv

transmit data over the DH-485 network
to a DH-485 station

Send_StdDrv

release all resources and services
before the application program
terminates

Close_StdDrv

See chapter 4 for more information on the function calls.

Overview of the Function Calls

Product Overview
Chapter 1

1-3

Important information about the 6001-F2E Standard Driver software for
the 1784-KR Interface Module is listed below:

 the 6001-F2E driver does not support unsolicited messages
 the 6001-F2E does not support multiple outstanding commands (you

must receive the reply from your command before sending another
command)

 the 6001-F2E supports the large memory model version of Microsoft C
and Borland Turbo C only

 the 6001-F2E driver does not respond to a diagnostic status command
sent to itself, but responds to diagnostic status commands sent from
another computer

 the 6001-F2E driver does not return a local error code if the KR detects
a node address on the network the same as its own. The station that had
the address first stays on-line; the other station goes off-line, so check
for duplicate addresses in this situation,

 if you incorrectly format messages to be sent by the Standard Driver
software, a timeout condition occurs in the application. Since there is
no error code indicating an incorrect message format, check the
message format first when the application software times out with a
timeout error code

 the 6001-F2E does not support off-link messages (messages sent across
a bridge to another network)

 the 6001-F2E supports applications that communicate with a single
1784-KR only

Software Considerations

Chapter

2

2-1

Installing the Standard Driver Software

In this chapter, you learn about:

 what the Standard Driver package includes
 the contents of the Standard Driver diskette
 how to install the Standard Driver Software

You have one of these two packages:

Cat. No. Product Description

6001–F2E Stand-alone Standard Driver software for the
1784-KR

1747-F2E Standard Driver software bundled with the 1784-KR
hardware

Each package contains:

 one User’s Manual (publication 6001-6.5.5)
 one 5-1/4” diskette and one 3-1/2” diskette (use the appropriate diskette

for your system)
 software license

If you ordered the 1747-F2E, you received a 1784-KR board in addition
to the items listed above.

Chapter Objectives

What the Package Includes

Installing the Standard Driver Software
Chapter 2

2-2

The Standard Driver diskette contains the following types of files:

 linkable large memory model standard driver library files
 application library files
 example application files

 Standard Driver Library Files

Use the following files to build a linkable large memory model
application using the Standard Driver.

This file Contains

L_MSKR.LIB a large memory model Microsoft v5.1 compatible 6001-F2E
Standard Driver library module

L_TCKR.LIB a large memory model Borland v2.01 compatible 6001-F2E
Standard Driver library module

STDDRV.H definitions and declarations required to compile a 6001-F2E
Standard Driver application

KRDEFS.H

START485.EXE the 6001-F2E Standard Driver start-up and initialization program.
Run the START485.EXE to initialize the 1784-KR before you run
your application

Application Library Files

The following files contain application functions libraries that let you use
pre-defined support routines (Application Libraries). Use these in
applications using the basic command set in table 4.B on page 4-2.

This file Contains

L_MSAPP.LIB a large memory model Microsoft v5.1 compatible application library
module

L_TCAPP.LIB a large memory model Borland v2.0 compatible application library
module

What’s on the Diskette

Installing the Standard Driver Software
Chapter 2

2-3

Example Files

The following files contain working 6001-F2E Standard Driver
application examples:

This file Contains

F2EDIAG.C diagnostic routines

F2ESLC.C unprotected read and unprotected write routines

SCREEN.H definitions and declarations required to compile F2EDIAG.C or
F2ESLC.C

This section tells you how to install the Standard Driver hardware and
software.

Installing the Hardware

To install the Standard Driver hardware:

1. Set the 1784-KR memory address switches and jumper settings that
are compatible with your computer system (See the 1784-KR
Installation Data, publication 1784-2.23, for instructions on setting
these switches.)

2. Record these addresses on a piece of paper. You will need them
when you configure the software.

Installing the Standard Driver
Hardware and Software

Installing the Standard Driver Software
Chapter 2

2-4

Installing the Software

To install the Standard Driver software:

1. Create a working directory in your computer’s hard disk (C:\F2E, for
example). Use this directory to build your application program(s).

2. Put the disk containing the Standard Driver files in disk drive A:>
(We use drive A:> as a default.)

3. Copy all the files from the disk to that directory
(Copy A:*.* C:\F2E).

This completes the installation procedure. The next chapter helps you
plan your application program.

Chapter

3

3-1

Planning Your Application Program

This section guides you through the process of planning an application
program. It contains the following:

 include files you need to put in your program
 function calls
 programming considerations

The include files contain declarations for the driver type you are using.
Define them at the top of your application program. The 6001-F2E
Standard Driver uses the following include files:

 KRDEFS.H
 STDDRV.H

Important: In addition to including header files in your application, you
need to link with an appropriate Standard Driver and Application Library
file (whether you are using the Application Library or not).

If you use multiple files, place KRDEFS.H and STDDRV.H in the main
file. Only one source per executable can reference each include file. If
additional source files within an executable reference the Standard Driver
software, you must do the following:

 duplicate KRDEFS.H and STDDRV.H under different names
 delete the following lines from the duplicate KRDEFS.H:

int max_umsg = Max_Umsg;

int max__smsg = 16;

 delete from the duplicate STDDRV.H all lines beginning from the first
occurance of /* */ under the “Prototype” heading to the
end of the file

Use these edited versions in all remaining source files that reference the
6001-F2E Standard Driver software.

Chapter Objectives

Include Files

Chapter 3
Planning an Application Program

3-2

Function calls let your application program communicate with devices on
the DH-485 network:

This Function Call Lets You

Open_StdDrv() initialize the 6001-F2E Standard Driver. Use this function call in
every program you write.

Appl_StdDrv() use predefined support routines (Application Library) in
applications that use the basic command set. See page 4-2 for a
list of these commands.

Send_StdDrv() format commands not provided in the Application Library. It lets
you format message packets when communicating with
token-passing or slave-only devices.

Get_ErrMsg() retrieve an ASCII string that describes a network message error.

Close_StdDrv() end communication. Use this function call in every program you
write.

Important: When you write your program, you must always start with
Open_StdDrv() and end with Close_StdDrv(). The middle of your
program will consist of Appl_StdDrv() or Send_StdDrv() or a
combination of both. Use the Send_StdDrv() function call to format
commands not supported by the Application Library routines. (See table
4.B on page 4-2 for a list of these commands.)

Your disk contains example programs (F2EDIAG.C and F2ESLC.C) you
can use to test communication on the DH-485 network. (See appendix A
for additional program examples.)

The next chapter for the format and parameters for each function call.

Keep the following considerations in mind when you write your
application program:

 Use Borland Turbo C (v2.01 or later) or Microsoft C (v5.0 or later)
 Whether you use only Appl_StdDrv() routines or Send_StdDrv()

routines, you must always link the following:

If you are using this Link these files

Borland Turbo C (v2.01) L_TCKR.LIB

L_TCAPP.LIB

Microsoft C (v5.0) L_MSKR.LIB

L_MSAPP.LIB

Overview of the Function Calls

Programming Considerations

Chapter

4

4-1

Using the Function Calls

This chapter shows you how to use each of the function calls. It includes
the format and parameters for each function call.

The Open_StdDrv() function call initializes the 6001-F2E Standard
Driver. To open the Standard Driver, use the following format and
parameters:

Format for Open_StdDrv()

The Open function call is shown below:

status = Open_StdDrv(device,0,0,0,

(unsol_msg *)NULL,

0,0,0);

Parameters for Open_StdDrv()

Assign the parameters in Table 4.A:

Table 4.A
Assigning Parameters to Open Communication

Parameter Type Description

device[] = “KR:0” char Assigns a driver type “KR:” and communication channel “0”. The 6001-F2E
Standard Driver supports one 1784-KR communication channel.

(unsol_msg *)NULL, struct This is a null pointer for this release.

0 N/A These parameters are ignored, but you still need to include them in the
function call. Type in a zero for each ignored parameter.

When the Open_StdDrv() function is called, a status value is returned
indicating whether the operation was successful or unsuccessful. Normal
completion is 1. A value other than 1 indicates that an error occurred.

See Appendix D for a list of error codes.

Chapter Objectives

Using Open_StdDrv()

Writing Your Own Application Program
Chapter 4

4-2

After you have initialized the Standard Driver with the Open_StdDrv()
function call, you are ready to communicate. You can use the
Appl_StdDrv() function call (Application Library) or the Send_StdDrv()
function call or a combination of both. Use the SendStdDrv() function
call to format commands not supported by the Application Library. See
table 4.B for a list of commands supported by the Application Library.

The Appl_StdDrv() function formats DH-485 messages for the basic
command set and transmits them over the DH-485 network. Use the
Appl_StdDrv() with the selected PLC application symbol and
Appl_StdDrv() message block data structure. The application symbols
and the message block data structure are defined in the STDDRV.H header
files. Use the following format and parameters:

Format for Appl_StdDrv()

The Appl_StdDrv() function call is shown below:

status = Appl_StdDrv(SYMBOL, SD_FB *);

Parameter Type Description

SYMBOL int identifies the support routine symbol (see table 4.B)

SD_FB struct initializes the DH+ function block (see table 4.C)

See appendix D for return status values for the Appl_StdDrv()
function.

Parameters for Appl_StdDrv()

Table 4.B below shows the available functions (in the Application
Library) you can use with Appl_StdDrv(). Table 4.C shows the
Appl_StdDrv() message block data structure:

Table 4.B
6001-F2E Support Routines

To do this Specify this

Diagnostic loop back testing PLC_DLB

Read diagnostic counters PLC_DCR

Read diagnostic status PLC_DS

Reset diagnostic counters PLC_RC

Basic command set unprotected read PLC_UPR

Basic command set unprotected write PLC_UWR

Communicating on DH-485 with
the 6001-F2E Standard Driver

Using Appl_StdDrv()

Writing Your Own Application Program
Chapter 4

4-3

Refer to Appendix B for each of the available Application Library
routines.

Table 4.C
Appl_StdDrv() Message Block Data Structure

Variable Type Description

DHP_MSG.dev = device; char The device variable indicates to the Standard Driver the communication
interface and its channel. Set this variable to KR:0.

DHP_MSG.stat = &io_stat[0]; unsigned int The io_stat variable serves two purposes. When Application Library routines
are called, they return status before any type of reply is received from the
remote device.

When the Appl_StdDrv() successfully initiates a request to send a message
(status = 1), io_stat[0] is reset to 0. When a reply message is received or a
reply timeout occurs that matches the original request, io_stat[0] is set to a
value greater than 0. Normal completion is 1. If io_stat[0] is normal,
io_stat[1] will contain the length of the reply data buffer.

If io_stat does not equal 1, an error occurred. The format is as follows:
The low byte (EXT STS) of io_stat[0] contains local errors, such as timeout.
The High byte (STS) of io_stat[0] contains DH-485 errors. If the high byte of
io_stat[0] equals F0 Hex (indicating the extended DH-485 status), the low
byte if io_stat[0] will contain the extended DH-485 status value. See
appendix D for more information on error messages. See table 4.F for
examples of STS and EXT STS bytes in io_stat[0].

DHP_MSG.L_R = Loc_Rem; int Set this variable to 0.

DHP_MSG.dst = &destination; unsigned char The DH-485 destination address. The destination variable is the DH-485
address where you want your message to be sent on the DH-485 network.

DHP_MSG.dta = &dt_addr unsigned int The data table address. Depending on the routine, the dt_addr variable is a
two byte value or string describing the data table address where data is to be
read from or written to.

DHP_MSG.len = size; int When reading data, the size variable indicates how many data bytes are to
be read. When writing data, the size variable indicates how many bytes
should be copied from the data buffer and written to the remote station.

DHP_MSG.buf = &d_buff[0]; unsigned char
or
int

The application data buffer. The application data may take on several
formats. If you are using byte values, d_buff may be defined as a char array,
the size variable is defined as a one-to-one relationship. If you are using
signed integers, data is automatically stored in byte swapped format, the size
value is defined as a two-to-one relationship.

DHP_MSG.TO = timeout; unsigned int The timeout variable is the number of seconds that you want to wait for a
reply.

Important: If you are communicating to an SLC-500 using the
unprotected read or unprotected write commands, create Data File 9 in the
SLC-500. The SLC-500 uses this file for DH-485 communication. The
data table address (defined as dt_addr in the Appl_StdDrv() function) will

Writing Your Own Application Program
Chapter 4

4-4

be interpretted by the SLC-500 as a logical offset (in words) into Data
File 9. See the SLC-500 Advanced Programming Software Manual,
chapter A3, for more information on the SLC-500 memory organization.

If you do not wish to use the commands supported by the Application
Library, use the Send_StdDrv() function to send user-formatted messages.
The Send_StdDrv() function call transmits data over the DH-485 network
to a DH-485 station. Depending on your application, you can use the
Send_StdDrv() function call two ways. You can:

 communicate with token-passing DH-485 devices (such as the
SLC-500)

 communicate with slave-only DH-485 devices

(See appendix B for more information on message packet formats for the
Send_StdDrv() function call.)

Any transmission that does not complete normally is aborted by a timeout
or local error code indicating the problem. See appendix D for a list of
error codes. Use the following format and parameters:

Format for Send_StdDrv()

The Send_StdDrv() function call is shown below:

status = Send_StdDrv(device,

&io_stat[0],

&cmd_buff[0],

pass_thru,

&reply_buff[0],

timeout,

0,0)

Use the Send_StdDrv() function call to send user-formatted messages.

Using Send_StdDrv()

Writing Your Own Application Program
Chapter 4

4-5

Parameters for Send_StdDrv()

Assign the parameters in Table 4.D:

Table 4.D
Assigning Parameters to Send Data

Parameter Type Description

 device[] = “KR:0” char The device parameter should coincide with the same device used in the Open_StdDrv()
function (Set this value to KR:0.)

io_stat[2]; unsigned int The io_stat variable serves two purposes. When standard driver routines are called, they
return status before any type of reply is received from the remote device.

When the Standard Driver successfully initiates a request to send a message (status = 1),
io_stat[0] is reset to 0. When a reply message is received or a reply timeout occurs that
matches the original request, io_stat[0] is set to a value greater than 0. Normal completion is
1.

If io_stat does not equal 1, an error occurred. The format is as follows:
The low byte (EXT STS) of io_stat[0] contains local errors, such as timeout. The high byte
(STS) of io_stat[0] contains DH-485 errors. If the high byte of io_stat[0] equals F0 Hex
(indicating the extended DH-485 status), the low byte if io_stat [0] will contain the extended
DH-485 status value. See appendix D for more information on error messages. See table
4.F for examples of STS and EXT STS bytes in io_stat[0].

cmd_buff[...] unsigned char The cmd_buff parameter is the buffer containing your message to be sent to the remote
station. Use the following format:

LEN TYP DST SRC CMD STS TNS TNS DATA

The LEN field contains the entire packet length, including LEN. The TYP field is the
message type. Set this value to 0 or 5, depending on the message type. The DST field is the
DH-485 destination where your message is sent. The SRC field is the local 1784-KR DH-485
address. This field can be set to 0. See appendix B for definitions of each field.

pass_thru = 1;
pass_thru = 0;

int The pass_thru parameter is a reply option for the Standard Driver. When pass_thru is set to
1, the entire reply message (the header and the data you requested) is placed in your buffer.
When the pass_thru parameter is set to 0, only the data you requested (not the header) is
placed in your buffer. The length is returned in io_stat[1].

 reply_buff[...]; unsigned char The reply_buff parameter tells the driver where to put a reply message to your application.The
reply message is copied into your buffer using the following format:

LEN TYP DST SRC CMD STS TNS TNS DATA

timeout = 5; unsigned int The timeout parameter is the number of seconds your application waits for a reply message.

0, 0 N/A Parameters 7 and 8 are not used, but you still need to include them in the function call. Type
in a zero for both parameters.

See Appendix D for return status values for the Send_StdDrv()
function.

Writing Your Own Application Program
Chapter 4

4-6

Preventing Reply Messages from Being Lost

To prevent reply messages from being lost, we provide a Get_tns()
function. Use the following format:

x = Get_tns()

The Get_tns() function returns an unsigned integer value. Place this value
in the two-byte TNS field of your DH-485 message prior to calling the
Send_StdDrv() function. See page B-5 for more information on
Get_tns().

The Get_ErrMsg() function call supplies a message string for errors in
data transmission. If an error occurs, call Get_ErrMsg() with the error
code to get a message indicating the problem. Use the following format
and parameters:

Format for Get_ErrMsg()

The Get_ErrMsg() function call is shown below:

Get_ErrMsg(err, ret_msg);

Parameters for Get_ErrMsg()

Table 4.E explains the parameters:

Table 4.E
Get_ErrMsg() Parameters

Parameter Type Description

err unsigned int is a copy of the error value returned in io_stat[0].

ret_msg char is a pointer to a character buffer at least 80 characters long. It contains
the error message string that corresponds to the code in the err
parameter. The error message is returned in this buffer.

Table 4.F explains how to read io_stat[0] to get the STS and EXT STS
bytes.

Using Get_ErrMsg()

Writing Your Own Application Program
Chapter 4

4-7

Table 4.F
Reading io_stat[0]

If the STS and EXT STS bytes of io_stat[0] look like this It is a

STS EXT STS

0 0
Command message. No error. The values in the

STS EXT STS

F 0 0B

Reply message with extended status information.
Match the code in the low byte (EXT STS) to
the code for the appropriate command in appendix D.

EXT STS byte can be any values.

STS EXT STS

X Y

Reply message. X = status field of the DH-485
packet (this field contains remote errors returned
by devices on the DH-485 network. See appendix
D for a list of error codes. Y = user interface local error
codes listed in appendix D.

The CloseStdDrv() function call releases all resources and services and
must be called before the application terminates. Use the following
format and parameters:

Format for Closing Communication

The Close_StdDrv() function call is shown below:

status = Close_StdDrv(device);

Parameters for Closing Communication

Assign the parameters in Table 4.G:

Table 4.G
Assigning Parameters to Close Communication

Parameter Type Description

device[] = “KR:0”; char The device parameter should coincide with the device used in the
Open_StdDrv() function

When the Close function is called, a status value is returned indicating
whether the operation was successful or unsuccessful. Normal
completion is 1. A value other than 1 indicates that an error occurred
(See appendix D for a list of error codes.)

Using Close_StdDrv()

Chapter

5

5-1

Compiling, Linking, and Configuring Your
Application Program

This chapter tells you what you need to do before your application
program can communicate with other devices on the network. First, you
compile and link the software, then configure it. See the instructions
below.

To compile and link the linkable driver application software, do the
following:

1. Create your application program and “include” the KRDEFS.H and
STDDRV.H files.

2. Compile your application program with the large memory model
option.

3. Link your driver with an appropriate standard driver and application
library module.

Important: In addition to including header files in your application, you
need to link with an appropriate Standard Driver and Application Library
file (whether you are using the Application Library or not).

4. Copy your application.EXE and START485.EXE programs to the
directory you wish to use.

5. If the 1784-KR card switch settings are configured for other than
default settings, enter an environment string. See the PC DH-485
Interface Module Installation Data (publication 1784-2.23) for more
information.

Chapter Objectives

Compiling and Linking Your
Application Program

Compiling, Linking, and Configuring Your
Application Program

Chapter 5

5-2

The following are compile line examples of Microsoft C and Borland
Turbo C:

 Microsoft C

C>CL /AL /Gs <PROGRAM.C> L_MSAPP.LIB L_MSKT.LIB

 Borland Turbo C

C>TCC -ml <PROGRAM> L_TCAPP.LIB L_TCKT.LIB

To configure your application program:

1. Type START485 followed by the communication option settings. For
example, type:

START485 a0 m31 cM b9600

where:

This Variable Is

a the DH-485 address of the 1784-KR (valid addresses are 0-31)

m the maximum node address on the Dh-485 link (valid addresses
are 0-31)

c the category of operation (this is always m)

b the DH-485 baud rate (valid entries are 300, 1200, 2400, 4800,
9600, or 19,200 baud only)

Important: SLC-500 processors operate at 9600 or 19,200 baud only.

2. Press [ENTER].

This operation initializes the 1784-KR. Now that the 1784-KR board and
driver are installed and configured, you can run your application program.

Configuring Your Application
Program

Appendix

A

A-1

Application Program Examples

The following program is an application that shows how to write
information to Data File 9 of an SLC-500 processor using the Application
Library and the PLC-2 (Unprotected Write) function symbol. If you are
communicating to an SLC-500 using the unprotected read or unprotected
write commands, you must first create Data File 9 in the SLC-500. The
SLC-500 uses this file for DH-485 communication. The data table
address (defined as dt_addr in the Appl_StdDrv() function) will be
interpretted by the SLC-500 as a logical offset (in words) into Data File 9.
See the SLC-500 Advanced Programming Software Manual, chapter A3,
for more information on the SLC-500 memory organization

/* ––– */

/* A typical 6001-F2E Application */

/* Calling the Application Library via the APPL function dispatcher */

/* Write 2 integers to a remote SLC-500 */

/* include <stdio.h> */

/* 6001-F2E linkable driver include files: */

#include “krdefs.h”

#include “stddrv.h”

/* Define the communication device */

char device[] = “KR:0”

main()

 {

#define NORMAL 1 /* Normal F2E status */

int i

size, /* Data qty in bytes */

d_buff[4], /* Integer data buffer */

PLC_FCT;

char err_msg[80];

unsigned char DST=2, /* Byte wide destination */

unsigned int io_stat[2], /* Status variables */

 fct_stat,

 /* dt_addr[2]={0,0}, */

 timeout=5; /* 5 second timeout */

Sample Program

Application Program Examples
Appendix A

A-2

/* DH-485 function block description found in STDDRV.H */

struct SD_FB DHP_MSG; /* DH-485 function block */

/* Start the 6001-F2E software */

fct_stat = Open_StdDrv(device,0,0,0,

 (struct unsol_msg *)NULL,0,0,0);

/* If the open was unsuccessful display the error and exit */

if (fct_stat != NORMAL){

Get_ErrMsg(fct_stat, err_msg);

printf(”n%s\n”,err_msg);

exit(1);

}

/* Initialize the data to be sent to the SLC-500 */

d_buff[0] = 1; /* Integer value 1 */

d_buff[1] = 2; /* Integer value 2 */

size = 4; /* This example uses 2-byte integers so size is.. */

/* 2 times the number of integers sent */

/* Initialize the DH-485 function block */

DHP_MSG.dev = device; /* Communication device */

DHP_MSG.stat = &io_stat[0]; /* I/O status */

DHP_MSG.L_R = 0;

DHP_MSG.dst = &DST; /* DH-485 address */

DHP_MSG.dta = &dt_addr; /* DT address */

DHP_MSG.len = size; /* Size in bytes */

DHP_MSG.buf = &d_buff[0]; /* Write buffer */

DHP_MSG.TO = timeout; /* Reply timeout in sec */

PLC_FCT = PLC2_UWR;

 /* Initialize a PLC function */

/* Write 2 integer values to a SLC-500 file at remote station DST */

fct_stat = Appl_StdDrv(PLC_FCT,&DHP_MSG); */

Application Program Examples
Appendix A

A-3

/* Fct_stat returns 1 if F2E snet the command successfully */

if (fct_stat != NORMAL){

 Get_ErrMsg(fct_stat, err_msg);

 printf(“%s/n”,err_msg);

 fct_stat = close_StdDrv(device);

 exit(1);

 }

/* When a reply has been received or a timeout io_stat[0] will be set*/

while(!io_stat[0]);

printf(“status reply received\n”);

/* If io_stat[0] does not = 1 then an error occurred

if (io_stat[0] != NORMAL){

 Get_ErrMsg(io_stat[0],err_msg);

 printf(“%s/n”,err_msg);

 }

fct_stat = Close_StdDrv(device);

exit(1);

}

Application Program Examples
Appendix A

A-4

/* ––– */

/*

DH/DH+ Application Library (c) 1989 Allen–Bradley

APPLICATION: PLC–2 Unprotected Read

SYMBOL: PLC2_URD

Include files:

Linkable Driver:

#include “krdefs.h”

#include “stddrv.h”

Application Variables:

int size,

PLC_FCT;

d_buff[...]

unsigned int status,

io_stat[2],

dt_addr = 0110,

timeout;

char device[]= “KR:0”;

unsigned char destination;

struct SD_FB DHP_MSG;

*/

/* Initialize the DH-485 function block */

DHP_MSG.dev = device; /* Communication device */

DHP_MSG.stat = &io_stat[0]; /* I/O status */

DHP_MSG.L_R = 0;

DHP_MSG.dst = &destination; /* DH-485 address */

DHP_MSG.dta = &dt_addr; /* DT address(byte location) */

DHP_MSG.len = size; /* Size in bytes (max 244) */

DHP_MSG.buf = &d_buff[0]; /* Read buffer */

DHP_MSG.TO = timeout; /* Reply timeout in sec */

PLC_FCT = PLC2_URD; /* Initialize a PLC function */

PLC-2 Unprotected Read

Application Program Examples
Appendix A

A-5

/* Call the Standard Driver Appl() function */

status = Appl_StdDrv(PLC_FCT, &DHP_MSG);

/*

status = See 6001–F2E User’s Manual appendix D

io_stat[0]: Local & remote I/O status

Hi_byte = DH-485 status

Lo_byte = Local & extended DH-485 status

io_stat[1]: Reply length in bytes (if applicable)

Binary address format: dt_addr[0] = lo_byte, dt_addr[1] = hi_byte

*/

Application Program Examples
Appendix A

A-6

/* ––– */

/*

DH/DH+ Application Library (c) 1989 Allen–Bradley

APPLICATION: PLC–2 Unprotected Write

SYMBOL: PLC2_UWR

Include files:

Linkable Driver:

#include “krdefs.h”

#include “stddrv.h”

Application Variables:

int size,

PLC_FCT;

d_buff[...]

unsigned int status,

io_stat[2],

dt_addr = 0110,

timeout;

char device[]= “KR:0”;

unsigned char destination;

struct SD_FB DHP_MSG;

*/

/* Initialize the DH-485 function block */

DHP_MSG.dev = device; /* Communication device */

DHP_MSG.stat = &io_stat[0]; /* I/O status */

DHP_MSG.L_R = 0;

DHP_MSG.dst = &destination; /* DH-485 address */

DHP_MSG.dta = &dt_addr; /* DT address (byte location) */

DHP_MSG.len = size; /* Size in bytes (max 242) */

DHP_MSG.buf = &d_buff[0]; /* Write buffer */

DHP_MSG.TO = timeout; /* Reply timeout in sec */

PLC_FCT = PLC2_UWR; /* Initialize a PLC function */

PLC-2 Unprotected Write

Application Program Examples
Appendix A

A-7

/* Call the Standard Driver Appl() function */

status = Appl_StdDrv(PLC_FCT, &DHP_MSG);

/*status = See 6001–F2E User’s manual appendix D

io_stat[0]: Local & remote I/O status

Hi_byte = DH-485 status

Lo_byte = Local & extended DH-485 status

io_stat[1]: Reply length in bytes (if applicable)

Binary address format: dt_addr[0] = lo_byte, dt_addr[1] = hi_byte

*/

Application Program Examples
Appendix A

A-8

/* ––– */

/*

DH/DH+ Application Library (c) 1989 Allen–Bradley

APPLICATION: Diagnostic Loop Back

SYMBOL: PLCx_DLB

Include files:

Linkable Driver:

#include “krdefs.h”

#include “stddrv.h”

Application Variables:

int size,

PLC_FCT;

unsigned int status,

io_stat[2],

timeout;

char device[]= “KR:0”;

unsigned char destination;

unsigned char d_buff[...];

struct SD_FB DHP_MSG;

*/

/* Initialize the DH-485 function block */

DHP_MSG.dev = device; /* Communication device */

DHP_MSG.stat = &io_stat[0]; /* I/O status */

DHP_MSG.L_R = 0;

DHP_MSG.dst = &destination; /* DH-485 address */

DHP_MSG.dta = (unsigned char *)NULL;

DHP_MSG.len = size; /* Size in bytes (max 243)

 */

DHP_MSG.buf = &d_buff[0]; /* Loop back buffer

DHP_MSG.TO = timeout; /* Reply timeout in sec */

PLC_FCT = PLCx_DLB; /* Initialize a PLC function */

Diagnostic Loop Back

Application Program Examples
Appendix A

A-9

/* Call the Standard Driver Appl() function */

status = Appl_StdDrv(PLC_FCT, &DHP_MSG);

/*

status = See 6001–F2E User’s manual appendix D

io_stat[0]: Local & remote I/O status

Hi_byte = DH-485 status

Lo_byte = Local & extended DH-485 status

io_stat[1]: Reply length in bytes (if applicable)

*/

Application Program Examples
Appendix A

A-10

/* ––– */

/*

DH/DH+ Application Library (c) 1989 Allen–Bradley

APPLICATION: Diagnostic Counter Read

SYMBOL: PLCx_DCR

Include files:

Linkable Driver:

#include “krdefs.h”

#include “stddrv.h”

Application Variables:

int size,

PLC_FCT;

unsigned int status,

io_stat[2],

ctr_addr;

timeout;

char device[]= “KR:0”;

unsigned char destination;

unsigned char d_buff[...];

struct SD_FB DHP_MSG;

*/

/* Initialize the DH-485 function block */

DHP_MSG.dev = device; /* Communication device */

DHP_MSG.stat = &io_stat[0]; /* I/O status */

DHP_MSG.L_R = 0;

DHP_MSG.dst = &destination; /* DH-485 address */

DHP_MSG.dta = &ctr_addr; /* Counter address ret’d from DS cmd */

DHP_MSG.len = size; /* Size in bytes (max 243) */

DHP_MSG.buf = &d_buff[0]; /* Counter buffer */

DHP_MSG.TO = timeout; /* Reply timeout in sec */

Diagnostic Counter Read

Application Program Examples
Appendix A

A-11

PLC_FCT = PLCx_DCR; /* Initialize a PLC function */

/* Call the Standard Driver Appl() function */

status = Appl_StdDrv(PLC_FCT, &DHP_MSG);

/*

status = See 6001–F2E User’s manual appendix D

io_stat[0]: Local & remote I/O status

Hi_byte = DH-485 status

Lo_byte = Local & extended DH-485 status

io_stat[1]: Reply length in bytes (if applicable)

*/

Application Program Examples
Appendix A

A-12

/* ––– */

/*

DH/DH+ Application Library (c) 1989 Allen–Bradley

APPLICATION: Diagnostic Status

SYMBOL: PLCx_DCR

Include files:

Linkable Driver:

#include “krdefs.h”

#include “stddrv.h”

Application Variables:

int size,

PLC_FCT;

unsigned int status,

io_stat[2],

timeout;

char device[]= “KR:0”;

unsigned char destination;

unsigned char d_buff[...];

struct SD_FB DHP_MSG;

*/

/* Initialize the DH-485 function block */

DHP_MSG.dev = device; /* Communication device */

DHP_MSG.stat = &io_stat[0]; /* I/O status */

DHP_MSG.L_R = 0;

DHP_MSG.dst = &destination; /* DH-485 address */

DHP_MSG.dta = (unsigned char *)NULL;

DHP_MSG.len = 0; /* Size not applicable */

DHP_MSG.buf = &d_buff[0]; /* Status buffer */

DHP_MSG.TO = timeout; /* Reply timeout in sec */

Diagnostic Status

Application Program Examples
Appendix A

A-13

PLC_FCT = PLCx_DS; /* Initialize a PLC function */

/* Call the Standard Driver Appl() function */

status = Appl_StdDrv(PLC_FCT, &DHP_MSG);

/*

status = See 6001–F2E User’s manual appendix D

io_stat[0]: Local & remote I/O status

Hi_byte = DH-485 status

Lo_byte = Local & extended DH-485 status

io_stat[1]: Reply length in bytes (if applicable)

*/

Application Program Examples
Appendix A

A-14

/* ––– */

/*

DH/DH+ Application Library (c) 1989 Allen–Bradley

APPLICATION: Diagnostic Counter Reset

SYMBOL: PLCx_RC

Include files:

Linkable Driver:

#include “krdefs.h”

#include “stddrv.h”

Application Variables:

int size,

PLC_FCT;

unsigned int status,

io_stat[2],

timeout;

char device[]= “KR:0”;

unsigned char destination;

unsigned char d_buff[...];

struct SD_FB DHP_MSG;

*/

/* Initialize the DH-485 function block */

DHP_MSG.dev = device; /* Communication device */

DHP_MSG.stat = &io_stat[0]; /* I/O status */

DHP_MSG.L_R = 0;

DHP_MSG.dst = &destination; /* DH-485 address */

DHP_MSG.dta = (unsigned char *)NULL;

DHP_MSG.len = 0; /* Size not applicable */

DHP_MSG.buf = (unsigned char *)NULL;

DHP_MSG.TO = timeout; /* Reply timeout in sec */

Diagnostic Counter Reset

Application Program Examples
Appendix A

A-15

PLC_FCT = PLCx_RC; /* Initialize a PLC function */

/* Call the Standard Driver Appl() function */

status = Appl_StdDrv(PLC_FCT, &DHP_MSG);

/*

status = See 6001–F2E User’s manual appendix D

io_stat[0]: Local & remote I/O status

Hi_byte = DH-485 status

Lo_byte = Local & extended DH-485 status

io_stat[1]: Reply length in bytes (if applicable)

*/

Appendix

B

B-1

Specifying Message Packet Commands with
Send_StdDrv()

Use the information in this appendix to format the Send_StdDrv()
function call. Your message packet format depends on whether you are
sending data to:

 token-passing devices (such as the SLC-500)
 slave-only DH-485 devices

This appendix contains:

 the message packet format you need (and an explanation of the fields
each packet contains)

 supported commands for the Send function call

The figures on the following pages show all possible fields in the Send
function call message packet. The unshaded blocks indicate fields that are
always included in your message packet. The shaded blocks indicate
fields that may be included in your message packet, depending on the
command. Use the appropriate message packet format for your particular
application.

Chapter Objectives

Formatting the Message Packet

Specifying Message Packet Commands
with Send_StdDrv()

Appendix B

B-2

Communicating with a Token-passing Device (SLC-500 Processor)

Figure B.1 shows the message packet format you use to communicate
with token-passing devices (such as an SLC-500 processor).

Important: Shaded blocks indicate packet fields that may or may not be
included in your message packet, depending on the command.

Figure B.1
Message Packet Format for Communicating with an SLC-500 Processor

LEN TYP DST SRC CMD STS TNS
Data

(from Application Layer)
DATA

FNC ADDR SIZETNS TNS

Table B.A explains the message packet fields in Figure B.1.

Table B.A
Communicating with an SLC-500 Processor

This Packet Field Is the

LEN length of the message packet (including LEN)

TYP type code identifying this message packet format
(this is always a 0)

DST DH-485 destination address for this packet

SRC DH-485 address of the device sending the packet

CMD command byte

STS message packet status

TNS transaction number (2 bytes)

FNC byte used with CMD. If used, it defines the specific function
under the command type

ADDR two-byte field that contains the address of a memory
location in the command executor where the command is to
begin executing.

SIZE byte that specifies the number of data bytes to be
transferred by a message

DATA data sent as part of themessage command

Specifying Message Packet Commands
with Send_StdDrv()

Appendix B

B-3

Communicating with a Slave-only Device

Figure B.2 shows the message packet format you use to communicate
with a slave-only DH-485 device.

Important: Shaded blocks indicate packet fields that may or may not be
included in your message packet, depending on the command.

Figure B.2
Message Packet Format for Communicating with a Slave-only Device

LEN TYP DST SRC CMD STS TNS FNC ADDR SIZEIMMED. 1 DATATNS

Table B.B shows the message packet fields in Figure B.2.

Table B.B
Communicating with a Slave-only Device

This Packet Field Is the

LEN length of the message packet (including LEN)

TYP type code identifying this format
(this is always a 5)

IMMEDIATE BLOCK immediate block in the destination device

1 local link message
(this is always a 1)

DST DH-485 destination address for this packet

SRC DH-485 address of the device sending the packet

CMD command byte

STS message packet status

TNS transaction number (2 bytes)

FNC byte used with CMD. If used, it defines the specific function
under the command type

ADDR two-byte field that contains the address of a memory
location in the command executor where the command is to
begin executing.

SIZE byte that specifies the number of data bytes to be
transferred by a message

DATA data sent as part of a message command

The next section describes the packet fields for both applications.

Specifying Message Packet Commands
with Send_StdDrv()

Appendix B

B-4

The message packet fields for the previous applications are described in
more detail in the table below.

Table B.C
Message Packet Field Description

Field Description

LEN This field identifies the length of the message packet (including LEN). The
allowed range is 0-255.

TYP This is the code that identifies the type of communication. Use 0 to
communicate to an SLC-500 processor and 5 to communicate to a
slave-only device.

IMMEDIATE BLOCK The allowed range is 0 and 128-255 (depending on the device.)

DST and SRC The DST (destination) byte contains the DH-485 node number of the
node that is the ultimate destination of the message. The SRC (source)
byte contains the DH-485 node number of the node that originated the
message.

The application layer supplies the DST value; the data link layer supplies
the SRC value. Allowed values for these bytes are 0 to 31 (decimal).

CMD and FNC The CMD (command) and FNC (functions) bytes (1 byte each) together
define the activity to be performed by the command message at the
destination node. Command defines the command type and FNC, if
used, defines the specific function under that command type.

STS and EXT STS The STS (status) and EXT STS (extended status) bytes indicate the
status of the message transmission. In command messages, the
application program should always set the STS value to 0. In reply
messages, the STS byte may contain one of the status codes listed in
appendix D . If the high byte = F0 Hex, there is extended status
information in the EXT STS byte. Otherwise, there is no EXT STS byte.
An STS value of 0 in a reply message means the command has been
executed with no error.

In a reply message, the STS byte is divided between application layer
and link layer. The link layer uses bits 0 through 3 of the STS byte to
report local errors (those errors that occur when the link layer attempts to
transmit a message across the link).

The application layer uses bits 4 through 7 of the STS byte (and in some
cases, the EXT STS byte) to report remote errors (those errors that occur
when the command executor at the destination node tries to execute the
command message). Refer to appendix D for more information.

Message Packet Fields

Specifying Message Packet Commands
with Send_StdDrv()

Appendix B

B-5

Field Description

TNS The TNS (transaction) bytes (2 bytes) contain a unique 16-bit transaction
identifier.

For each command message transmitted by your computer node, your
application level software must assign a unique 16-bit transaction
number. A simple way to generate this number is to use the Get_tns()
function and store the value in the two TNS bytes of the new message.
See page 4-6 for more information on Get_tns().

When the command initiator receives a reply to one of its command
messages, it can use the TNS value to associate the reply message with
its corresponding command. If the TNS value of a reply message
matches the TNS value of a command message, then that reply is the
appropriate one for that command.

Note that the low byte (least significant bits) of your TNS value will be
transmitted across the link before the high byte (most significant bits).

At any instant, the combination of SRC, CMD, and TNS are sufficient to
uniquely identify every message packet in transit. At least one of these
fields in the current message must be different than the corresponding
field in the last message received by a command executor. If none of
these fields is different, the message is ignored. The process is called
duplicate message detection.

ADDR The ADDR (address) field (2 bytes) contains the address of a memory
location in the command executor where the command is to begin
executing. For example, if the command is to read data from the
command executor, ADDR specifies the address of the first byte of data
to be read.

The first byte of the ADDR field contains the low (least significant) byte of
the address, and the second byte contains the high byte of the address.
The ADDR field specifies a byte address, not a word address, as in SLC
programming.

SIZE The SIZE byte specifies the number of data bytes to be transferred by a
message. This field appears in read commands, where it specifies the
number of data bytes that the responding node must return in its reply
message. The allowed value for SIZE varies with the type of command.

DATA The DATA field contains binary data from the application program. The
number of data bytes in a message depends on the command or function
being executed.

Specifying Message Packet Commands
with Send_StdDrv()

Appendix B

B-6

The supported command set includes commands that can generally be
executed by any SLC processor. Use these commands with the
Send_StdDrv() function call.

Command CMD (Hex) FNC (Hex)

SLC-500

Protected Typed Logical Read with 3 address
fields

0F A2

Protected Typed Logical Write with 3 address
fields

0F AA

Basic

Diagnostic Counters reset 06 07

Diagnostic Loop 06 00

Diagnostic Read 06 01

Unprotected Read 01 N/A

Unprotected Write 08 N/A

Diagnostic Status 06 03

Important: In the example formats that follow, CMD and FNC values are
expressed in hexadecimal notation; all other values are in decimal form.

The message packet fields for each of the commands are described in
more detail in the following pages. See page B-2 for more information
on formatting message packets.

Supported Command Set

Specifying Message Packet Commands
with Send_StdDrv()

Appendix B

B-7

This command resets to zero all the diagnostic timers and counters in the
node interface module. The diagnostic status command gives the starting
address for this block of counters and timers

Command Format

CMD STS TNS FNC
06 07

Reply Format

CMD STS TNS
46

You can use this command to check the integrity of the transmissions over
the communication link. The command message transmits up to 243
bytes of data to a node interface module. The receiving module should
reply to this command by transmitting the same data back to the
originating node.

Command Format

CMD STS TNS FNC
06 00

DATA
243 bytes max.

Reply Format

CMD STS TNS
46

DATA
243 bytes max.

Diagnostic Counters Reset

Diagnostic Loop

Specifying Message Packet Commands
with Send_StdDrv()

Appendix B

B-8

This command reads up to 244 bytes of data from the PROM or RAM of
the node interface module. You can use it to read the module’s diagnostic
timers and counters. When communicating to an SLC-500, set ADDR to
0 and SIZE to 10 (decimal). See appendix C for diagnostic read replies
for DH-485 devices.

Command Format

CMD STS TNS
06

ADDR SIZEFNC
01

Reply Format

CMD STS TNS
46

DATA
244 bytes max.

Your computer uses this command to read a block of status information
from a DH-485 device. The reply contains the information in its DATA
field. The status information varies with the type of device. See appendix
C for diagnostic status replies for DH-485 devices.

Command Format

CMD STS TNS
06

FNC
03

Reply Format

CMD STS TNS
46

DATA
244 bytes max.

Diagnostic Read

Diagnostic Status

Specifying Message Packet Commands
with Send_StdDrv()

Appendix B

B-9

This command reads words of data from any area of PLC data table
memory. Use the SIZE field to specify the number of bytes to be read.
To specify a number of PLC words, SIZE should be an even value
because PLC words are two bytes long. Data bytes are transferred low
byte first. The address of a word should be even.

Command Format

CMD STS TNS
01

ADDR SIZE

Reply Format

CMD STS TNS
41

DATA
244 bytes max.

This command writes words of data into any area of PLC data table
memory.

Command Format

CMD STS TNS
08

ADDR DATA
244 bytes max.

Reply Format

CMD STS TNS
48

Important: If you are communicating to an SLC-500 using the
unprotected read or unprotected write commands, create a Data File 9 in
the SLC-500. The SLC-500 uses this file for DH-485 communication.
The data table address (defined as dt_addr in the Appl_StdDrv() function)
will be defined as a logical offset (in words) into Data File 9. See the
SLC-500 Advanced Programming Software Manual, chapter A3, for more
information on the SLC-500 memory organization.

Unprotected Read

Unprotected Write

Specifying Message Packet Commands
with Send_StdDrv()

Appendix B

B-10

Command Format

CMD FNC
SIZE

FILE ELEMENT
NUMBER

FILE
TYPE

SUB–ELMT.
NUMBERNUMBER

BYTETNSSTS
0F A2

Byte No.: 1 2 3,4 5 6 7 8 9 10

Table C.A gives a description of each field.

Table B.D
Protected Typed Logical Read with Three Address Fields

Byte Description

CMD 0F

STS Indicates the status of a message transmission

TNS A unique 16-bit transaction number. Use it to match a reply
message to its corresponding command, which contains the
same number.

FNC A2

BYTE SIZE the size of data to be read (in bytes), not including the
address fields or other overhead bytes

FILE NUMBER (or
bytes 7a-7c)

Byte 7 addresses files 0-254 only. For higher addresses,
byte 7a = FF expands FILE NUMBER to three bytes total.
Use bytes 7b and 7c for expanded file address (low address
byte first)

FILE TYPE 80H, 81H – Reserved
82H – Output
83H – Input
84H – Reserved
85H – Bit
86H – Timer
87H – Counter
88H – Control
89H – Integer

ELEMENT NUMBER
(or bytes 9a-9c)

Byte 9 addresses elements 0-254. For higher addresses,
byte 9A = FF expands ELEMENT NUMBER to three bytes
total. Bytes 9b and 9c are used for expanded element
address (low address byte first)

SUB-ELEMENT
NUMBER (or bytes
10a-10c)

Byte 10 only addresses sub-elements 0-254. For higher
addresses, byte 10a = FF expands SUB-ELEMENT
NUMBER to three bytes total. Bytes 10b and 10c are used
for expanded sub-element address (low byte first)

Protected Typed Logical Read
with Three Address Fields (File,
Element, Sub-element)

Specifying Message Packet Commands
with Send_StdDrv()

Appendix B

B-11

Reply Format

CMD STS TNS EXT STS DATA
(244 bytes max)(only if error)4F

The following are possible STS and EXT STS responses.

Table B.E
Possible Responses for Typed Logical Read with Three Address Fields

This Response Means

STS

00 success

10 command format incorrect

50 address problem

F0 extended STS

EXT STS

1A file already open

Specifying Message Packet Commands
with Send_StdDrv()

Appendix B

B-12

Command Format

CMD FNC
SIZE

FILE ELEMENT
NUMBER

FILE
TYPE

SUB–ELMT.
NUMBER

DATA
244 bytes max.NUMBER

BYTESTS TNS
0F AA

Byte No.: 1 2 3,4 5 6 7 8 9 10

Table B.F
Protected Typed Logical Write with Three Address Fields

Byte Description

CMD 0F

STS Indicates the status of a message transmission

TNS A unique 16-bit transaction number. Use it to match a reply
message to its corresponding command, which contains the
same number.

FNC AA

BYTE SIZE the size of data to be written (in bytes), not including the
address fields or other overhead bytes

FILE NUMBER (or
bytes 7a-7c)

Byte 7 addresses files 0-254 only. For higher addresses, byte
7a = FF expands FILE NUMBER to three bytes total. Bytes 7b
and 7c are used for expanded file address (low address byte
first)

FILE TYPE 80, 81 – Reserved
82 – Output
83 – Input
84 – Status
85 – Bit
86 – Timer
87 – Counter
88 – Control
89 – Integer

ELEMENT NUMBER
(or bytes 9a-9c)

Byte 9 addresses elements 0-254 only. For higher addresses,
byte 9a = FF expands ELEMENT NUMBER to three bytes total.
Bytes 9b and 9c are used for expanded element address (low
address byte first)

SUB-ELEMENT
NUMBER (or bytes
10a-10c)

Byte 10 addresses sub-elements 0-254 only. For higher
addresses, byte 10a = FF expands SUB-ELEMENT NUMBER
to three bytes total. Bytes 10b and 10c are used for expanded
sub-element address(low address byte first)

DATA Low byte first

Reply Format

CMD
4F

STS TNS EXT STS
(only if error)

Protected Typed Logical Write
with Three Address fields (File,
Element, Sub-element)

Appendix

C

C-1

Diagnostic Replies

The tables below show diagnostic status replies for the following:

 SLC-5/01 (Table C.A)
 APS Software (Table C.B)
 1784-KR Interface Module (Table C.C)

Table C.A
Diagnostic Status Replies for the SLC-5/01

Byte Description Status Reply

1 Mode/Status 00 (Hex)

2 Type Extender EE (Hex)

3 Extended Interface Type 1F(Hex)

4 Extended Processor Type
 – for rack type 1747-L51
 – for 20-40 I/O

18
1A

5 Series/Revision
 – Bits 0-4

 – Bits 5-7

0 (Release 1)
1 (Release 2), etc.
0 (Series A)
1 (Series B), etc.

6-16 Bulletin Number/Name
1747-LP11&LP14
1747-L20
1747-L30
1747-L40

(in ASCII)
5/01
500-20
500-30
500-40

Product Specific Information

17 Major Error Code Word (low byte)

18 Major Error Code Word (high byte)

Diagnostic Status Reply

Message Packet Formats for the
Basic Command Set

Appendix C

C-2

Byte Status ReplyDescription

19 Processor Mode
Status/Control Word
 – Bit 0-4 mode:

– Bit 5
– Bit 6
– Bit 7

0 – Download
1 – Program
2 – Reserved
3 – Idle due to SUS instruction
4 – Reserved
5 – Reserved
6 – Run
7 – Test Continuous Scan
8 – Test Single Scan
9 – 31 Reserved
Forces Active
Forces Installed
Communication Active

20 Processor Mode
Status/Control Word (High
Byte)
Bit 0
Bit 2
Bit 5

Protection Power Loss
Load Memory Module on Mem Error
Major Error – Process halted

21 Program ID (low byte)

22 Program ID (high byte)

23 Processor RAM size (in
Kbytes)

24 Bit 0
Bits 2-7:

Directory File Corrupted
00-1F (Program Owner Node Address)
3F (No Program Owner)

Message Packet Formats for the
Basic Command Set

Appendix C

C-3

Table C.B
Diagnostic Status Reply for APS Software (with COM1 Port DH-485 connection)

Byte Description Status Reply (Hex)

1 Mode/Status Byte 00 (no modes)

2 Type Extender EE

3 Extended Interface Type 20

4 Extended Processor Type 1B

5 Series/Revision:
Bits 0-4

Bits 5-7

0 (Release 1)
1 (Release 2). etc.
0 (Series A)
1 (Series B), etc.

6-16 Bulletin Number/Name= APS (ASCII)

17-24 Product Specific Information 00

Table C.C
Diagnostic Status Reply for 1784-KR

Byte Description Status Reply (Hex)

1 Mode/Status Byte 00 (no modes)

2 Type Extender FE

3 Extended Interface type 24

4 Not used 00

5 Series/Revision
Bits 0-4:

Bits 5-7:

0 (Release 1)
1 (Release 2). etc.
0 (Series A)
1 (Series B), etc.

6-16 Bulletin Number/Name =
“1784-KR”

ASCII

17-24 Product Specific Information 00

Message Packet Formats for the
Basic Command Set

Appendix C

C-4

The table below contains diagnostic read reply values for:

 SLC-500
 APS (COM1)
 1784-KR Interface Module

Table C.D
Diagnostic Read Reply Values for SLC-500, APS, and 1784-KR

This Byte Means

0 Total packets received, low byte

1 Total packets received, high byte

2 Total messagaes sent, low byte

3 Total messages sent, high byte

4 Retries

5 Retry limit exceeded

6 NAK, no memory sent

7 NAK, no memory received

8 Bad messages received

9 Reserved

Diagnostic Read Reply
(Diagnostic Counters)

Appendix

D

D-1

Error Codes

This appendix contains local and remote error codes:

Table D.A
Local Error Codes

Error Codes (in Hex) Message

1 Successful transmission

18 LLC Interface not initialized; SSAP already used or invalid
SSAP

19 LLC Interface not initialized; KTLLC driver not installed

1A Unsuccessful send request; SSAP not active or illegal

1B Unsuccessful send request; Invalid packet size

1C Unsuccessful send request; Host cannot access dual port

1D Reply timeout; No reply data received

1E Unsuccessful send request; Buffer not available

1F DH-485 Interface not initialized

23 Bad function parameter

25 Invalid Channel

27 KR transmit timeout

28 Fatal solicited buffer memory allocation

29 Fatal timer buffer memory allocation

2A Fatal timer buffer memory corrupted

2B KR channel already open

Error Codes

Error Codes
Appendix D

D-2

Table D.B
Remote Error Codes

Error Codes (in Hex) Message

STS

00 Success

10 Command format incorrect

50 Address problem

60 Disallowed due to command protection

F0 Extended status

EXT STS

0B Access denied. Improper privilege

1A File already open

1B Procesor in edit mode. Not accessible

Index

II–1

A
Application Library Files, 2-2
Application Program

Compiling, Linking, and Configuring, 5-1
Examples, A-1

diagnostic counter read, A-10
diagnostic counter reset, A-14
diagnostic loop back, A-8
diagnostic status, A-12
plc-2 unprotected read, A-4
plc-2 unprotected write, A-6
sample program, A-1

Planning, 3-1

C
Command Set, Supported, B-6

Diagnostic Counters Reset, B-7
Diagnostic Loop, B-7
Diagnostic Read, B-8
Diagnostic Status, B-8
protected typed logical with three address fields, B-10
protected typed logical write with three address fields, B-12
Unprotected Read, B-9
Unprotected Write, B-9

Compatibility, Hardware and Software, 1-1

D
DH-485 Network, Communicating with the 6001-F2E on the, 4-2
Diagnostic Replies

Diagnosstic Status Reply, C-1
Diagnostic Status Reply

for APS software, C-3
for the SLC-5/01, C-1

Diagnostic Reply
Diagnostic Read Reply (Diagnostic Counters), C-4
Diagnostic Status Reply, for the 1784-KR, C-3

E
Error Codes, D-1

Local, D-1
Remote, D-2

Example Files, 2-3

F
Function Calls, 3-2

Appl_StdDrv(), message block data structure, 4-3
Appl_StdDrv(), using, 4-2
Close_StdDrv(), using, 4-7
Get_ErrMsg(), reading io_stat[0], 4-7
Get_ErrMsg(), using, 4-6
Open_StdDrv(), using, 4-1
Overview, 1-2
Send_StdDrv()

preventing reply messages from being lost, 4-6
specifying message packet commands, B-1

Send_StdDrv(), using, 4-4

G
Get_tns() Function, 4-6

I
Include Files, 3-1
io_stat[0], 4-7

M
Message Packet Fields, B-4
Message Packets, Formatting, B-1

communicating with slave-only devices, B-3
communicating with Token-passing devices, B-2

P
Programming Considerations, 3-2

S
Standard Driver Library Files, 2-2
Standard Driver Software

Considerations, 1-3
Contents of, 2-1

application library files, 2-2
example files, 2-3
standard driver library files, 2-2

Installing, 2-1
hardware, 2-3
software, 2-4

Product Overview, 1-1
Why you use it, 1-1

With offices in major cities worldwide

WORLD
HEADQUARTERS
1201 South Second Street
Milwaukee, WI 53204 USA
Tel: (414)382-2000
Telex: 43 11 016
FAX: (414)382-4444

EUROPE/INDIA/
MIDDLE EAST/AFRICA
HEADQUARTERS
Allen-Bradley Europa B.V.
Amsterdamseweg 15
1422 AC Uithoorn
The Netherlands
Tel: (31)2975/60611
Telex: (844) 18042
FAX: (31)2975/60222

ASIA/PACIFIC
HEADQUARTERS
Allen-Bradley (Hong Kong)
Limited
2901 Great Eagle Center
23 Harbour Road
G.P.O. Box 9797
Wanchai, Hong Kong
Tel: (852)5/739391
Telex: (780) 64347
FAX: (852)5/834 5162

CANADA
HEADQUARTERS
Allen-Bradley Canada Limited
135 Dundas Street
Cambridge, Ontario N1R 5X1
Canada
Tel: (519)623-1810
Telex: (069) 59317
FAX: (519)623-8930

LATIN AMERICA
HEADQUARTERS
1201 South Second Street
Milwaukee, WI 53204 USA
Tel: (414)382-2000
Telex: 43 11 016
FAX: (414)382-2400

Publication 6001-6.5.5 – May 1990
Supercedes publication 6001-6.5.4 – December 1989

PRINTED IN USA

PN 404631101

	6001-6.5.5, Allen-Bradley Standard Driver Software, User's Manual
	Table of Contents
	Preface
	This Manual's Purpose
	Audience
	Related Publications

	1 - Product Overview
	Why Use the Standard Driver Software?
	Compatible Hardware and Software
	Overview of the Function Calls
	Software Considerations

	2 - Installing the Standard Driver Software
	Chapter Objectives
	What the Package Includes
	What's on the Diskette
	Standard Driver Library Files
	Application Library Files
	Example Files
	Installing the Standard Driver Hardware and Software
	Installing the Hardware
	Installing the Software

	3 - Planning Your Application Program
	Chapter Objectives
	Include Files
	Overview of the Function Calls
	Programming Considerations

	4 - Using the Function Calls
	Chapter Objectives
	Using Open_StdDrv()
	Communicating on DH-485 with the 6001- F2E Standard Driver
	Using Appl_StdDrv()
	Using Send_StdDrv()
	Using Get_ErrMsg()
	Using Close_StdDrv()

	5 - Compiling, Linking, and Configuring Your Application Program
	Chapter Objectives
	Compiling and Linking Your Application Program
	Configuring Your Application Program

	A - Application Program Examples
	Sample Program
	PLC-2 Unprotected Read
	PLC-2 Unprotected Write
	Diagnostic Loop Back
	Diagnostic Counter Read
	Diagnostic Status
	Diagnostic Counter Reset

	B - Specifying Message Packet Commands with Send_ StdDrv()
	Chapter Objectives
	Formatting the Message Packet
	Message Packet Fields
	Supported Command Set
	Diagnostic Counters Reset
	Diagnostic Loop
	Diagnostic Read
	Diagnostic Status
	Unprotected Read
	Unprotected Write
	Protected Typed Logical Read with Three Address Fields (File, Element, Sub- element)
	Protected Typed Logical Write with Three Address fields (File, Element, Sub- element)

	C - Diagnostic Replies
	Diagnostic Status Reply
	Diagnostic Read Reply (Diagnostic Counters)

	D - Error Codes
	Error Codes

	Index
	Back Cover

