

AN-13
Application Note

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on Jul 27, 2002 updated on Jul 27, 2002
All trademarks mentioned herein are properties of their respective companies.

Building a Salvo Application with
Keil's C51 C Compiler and
µVision IDE

Introduction
This Application Note explains how to use Keil's
(http://www.keil.com/) C51 compiler and µVision IDE to create a
multitasking Salvo application for the 8051 family of
microcontrollers.

We will show you how to build the Salvo application contained in
\salvo\ex\ex1\main.c for a generic 8051 microcontroller using
the Keil tools. For more information on how to write a Salvo
application, please see the Salvo User Manual.

Before You Begin
If you have not already done so, install the C51 and µVision tools.
With the µVision IDE you will be able to run and debug this
application in the simulator or on real hardware (if available).

Creating and Configuring a New Project
Create a new µVision project using Project > New Project. In the
Create New Project window, navigate to your working directory
(in this case we've chosen c:\temp) and enter a name for the
project (we'll use myex1) in the File Name field:

http://www.keil.com/

 Application Note

2 AN-13 Building a Salvo Application with Keil's C51 C Compiler and µVision IDE

Figure 1: Creating the New Project

Click on Save to continue. The Select Devices for Target
'Target 1' window appears. Under the CPU tab select and expand
Generic:

Figure 2: µVision Device Selection Window with Generic

8051 Selected

Select 8051 (all Variants) and click on OK to continue.

Now let's setup the project's options for Salvo's pathnames, etc.
Choose Project > Options for Target 'Target 1' > C51 and
define any symbols you may need for your project in the
Preprocessor Symbols > Define area.1 In the Include Paths,
add \salvo\inc:

 Application Note

AN-13 Building a Salvo Application with Keil's C51 C Compiler and µVision IDE

3

Figure 3: C51 Options for Target

Click on OK to finish configuring your project.

Adding your Source File(s) to the Project
Now it's time to add files to your project. Choose Project >
Targets, Groups, Files > Groups / Add Files, select Source
Group 1 under Available Groups, click on Add Files to
Group…, navigate to your project's directory, select your main.c
and click on Add. Your project window should now look like this:

Figure 4: µVision Project Window with your Source

File(s)

Click on Close after you are adding source files to your project.

Creating Groups for Salvo Files
For legibility and organizational purposes, we recommend you add
additional groups to your project to hold Salvo files. They are:

Salvo Configuration File
Salvo Libraries
Salvo Sources

 Application Note

4 AN-13 Building a Salvo Application with Keil's C51 C Compiler and µVision IDE

Add these groups now using Project > Targets, Groups, Files >
Groups / Add Files > Group to Add. When done, your project
window should look like this:

Figure 5: µVision Project Window with your Source

File(s) and Salvo Groups

Adding Salvo-specific Files to the Project
Now it's time to add the Salvo files your project needs. Salvo
applications can be built by linking to precompiled Salvo libraries,
or with the Salvo source code files as nodes in your project.

Adding a Library
For a library build, a fully-featured Salvo freeware library for the
C51 compiler is sfc51sdab.lib.2 Choose Project > Targets,
Groups, Files > Groups / Add Files, select Salvo Libraries
under Available Groups, click on Add Files to Group…, choose
Library file (*.lib) under Files of type, navigate to the
\salvo\lib directory, and select sfc51sdab.lib:

Figure 6: Adding the Library to the Project

Click on Add, then on Close when you are finished. You can find
more information on Salvo libraries in the Salvo User Manual.

Your project window should now look like this:

 Application Note

AN-13 Building a Salvo Application with Keil's C51 C Compiler and µVision IDE

5

Figure 7: Vision Project Window for Library Build

The salvocfg.h Header File

You will also need a salvocfg.h file for this project. To use the
library selected in Figure 6, your salvocfg.h should contain only:

#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_GLOBALS OSD
#define OSLIBRARY_CONFIG OSA
#define OSLIBRARY_VARIANT OSB

Listing 1: salvocfg.h for a Library Build

Create this file and save it in your project directory, e.g.
c:\temp\salvocfg.h. We also recommend adding it to the
project's Salvo Configuration File group using Project > Targets,
Groups, Files > Groups / Add Files, etc.

Note To add a header file (*.h) to a Group, in the Get Filetype
window you must specify that the file is of type Text Document
file for it to be accepted.

Proceed to Building the Project, below.

Adding Salvo Source Files

If you have a Salvo distribution that contains source files, you can
do a source code build instead of a library build. The application in
\salvo\ex\ex1\main.c contains calls to the following Salvo user
services:

OS_Delay() OSInit()
OS_WaitBinSem() OSSignalBinSem()
OSCreateBinSem() OSSched()
OSCreateTask() OSTimer()
OSEi()

 Application Note

6 AN-13 Building a Salvo Application with Keil's C51 C Compiler and µVision IDE

You must add the Salvo source files that contain these user
services, as well as those that contain internal Salvo services, to
your project. The Reference chapter of the Salvo User Manual lists
the source file for each user service. Internal services are in other
Salvo source files. For this project, the complete list is:

binsem.c mem.c
delay.c port8051.c
event.c qins.c
init.c sched.c
inittask.c timer.c

To add these files to your project, choose Project > Targets,
Groups, Files > Groups / Add Files, select Salvo Sources
under Available Groups, click on Add Files to Group…, choose
C source file (*.c) under Files of type, navigate to the
\salvo\src directory, select3 the *.c files listed above, and click
on Add:

Figure 8: Adding Salvo Source Files to the Project

Click on Close when finished. Your project window should now
look like this:

Figure 9: Project Window for a Source Code Build

 Application Note

AN-13 Building a Salvo Application with Keil's C51 C Compiler and µVision IDE

7

The salvocfg.h Header File
You will also need a salvocfg.h file for this project.
Configuration files for source code builds are quite different from
those for library builds (see Listing 1, above). For a source code
build, the salvocfg.h for this project contains only:

#define OSBYTES_OF_DELAYS 1
#define OSENABLE_IDLING_HOOK TRUE
#define OSENABLE_BINARY_SEMAPHORES TRUE
#define OSEVENTS 1
#define OSTASKS 3
#define OSLOC_ALL data

Listing 2: salvocfg.h for a Source Code Build

Create this file and save it in your project directory, e.g.
c:\temp\salvocfg.h. We also recommend adding it to the
project's Salvo Configuration File group using Project > Targets,
Groups, Files > Groups / Add Files, etc.

Note To add a header file (*.h) to a Group, in the Get Filetype
window you must specify that the file is of type Text Document
file for it to be accepted.

Building the Project
For a successful compile, your project must also include a header
file (e.g. reg51.h) for the particular chip you are using. We
recommend that you include it in your project's salvocfg.h. For a
library build, your salvocfg.h would look like this:

#include <reg51.h>

#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_GLOBALS OSD
#define OSLIBRARY_CONFIG OSA
#define OSLIBRARY_VARIANT OSB

Listing 3: salvocfg.h with Target-specific Header File

With everything in place, you can now build the project using
Project > Build Target or Project > Rebuild all target files.
The build results can be seen in the Build window:

 Application Note

8 AN-13 Building a Salvo Application with Keil's C51 C Compiler and µVision IDE

Building targer 'Target 1'
compiling timer.c…
compiling delay.c…
compiling event.c…
compiling init.c…
compiling inittask.c…
compiling mem.c…
compiling port8051.c…
compiling qins.c…
compiling sched.c…
compiling binsem.c…
linking…
Program Size: data=46.0 xdata=0 code=1028
"myex1" – 0 Error(s), 0 Warning(s).

Listing 4: Source Code Build Results

This example uses a total of 46 bytes of RAM in the data space,
and 1028 bytes of ROM in the code space.

Note The library-based projects supplied in the Salvo for 8051
family distributions use \salvo\src\mem.c and the appropriate
entries in the salvocfg.h header file to minimize the RAM usage.
See the Libraries chapter in the Salvo User Manual for more
information.

Testing the Application
You can test and debug this application using the µVision
simulator or real hardware. You launch the debugger after a
successful build by choosing Debug > Start/Stop Debug
Session.

You can use all of the IDE's supported features when debugging
and testing Salvo applications. This includes breakpoints, profiling,
watch windows, tracing, etc.

 Application Note

AN-13 Building a Salvo Application with Keil's C51 C Compiler and µVision IDE

9

Figure 10: Testing a Salvo Application in µVision

Debugger

Note µVision supports debugging at the source code level. Only
applications built from the Salvo source code enable you to step
through Salvo services (e.g. OSCreateBinSem()) at the source
code level. Regardless of how you build your Salvo application,
you can always step through your own C and assembly code in the
IDE / debugger.

Troubleshooting

C51 Error: can't open file 'salvo.h'
If you fail to add \salvo\inc to the project's include paths (see
Figure 3) the compiler will generate errors like these:

Figure 11: Compiler Error due to Missing \salvo\inc

Include Path

 Application Note

10 AN-13 Building a Salvo Application with Keil's C51 C Compiler and µVision IDE

By adding \salvo\inc to the project's include path, you enable
the compiler to find the main Salvo header file salvo.h, as well as
other included Salvo header files.

If you fail to create a salvocfg.h header file in the project's own
directory, the compiler will generate errors like these:

Figure 12: Compiler Error due to Missing salvocfg.h

By adding the project's own directory to the project's include path,
you enable the compiler to find the project-specific header file
salvocfg.h.

Cannot See Window Upon Opening Project
If you can't see a particular window after opening an µVision
project that's part of a Salvo distribution, it may be because your
display's resolution is less than that used to create the project.
Select Window > Tile Horizontal to make all open windows
visible.

Example Projects
Example projects for the C51 compiler and µVision IDE are found
in the \salvo\tut\tu1-6\sysi directories. The include path for
each of these projects includes \salvo\tut\tu1\sysi, and each
project defines the SYSI symbol.

Complete projects using Salvo source code are contained in the
project files \salvo\tut\tu1-6\sysi\tu1-6pro.Uv2.

Complete projects using Salvo standard libraries are contained in
the project files \salvo\tut\tu1-6\sysi\tu1-6le. Uv2. These
projects also define the MAKE_WITH_STD_LIB symbol.

Complete projects using Salvo freeware libraries are contained in
the project files \salvo\tut\tu1-6\sysi\tu1-6lite. Uv2.
These projects also define the MAKE_WITH_FREE_LIB symbol.

 Application Note

AN-13 Building a Salvo Application with Keil's C51 C Compiler and µVision IDE

11

1 This Salvo project supports a wide variety of targets and compilers. For use with

µVision and the C51 compiler, it requires the SYSI defined symbol, as well as
the symbols MAKE_WITH_FREE_LIB or MAKE_WITH_STD_LIB for library builds.
When you write your own projects, you may not require any symbols.

2 This Salvo Lite library contains all of Salvo's basic functionality. The
corresponding Salvo LE and Pro library is slc51sdab.lib.

3 You can Ctrl-select multiple files at once.

	Building a Salvo Application with Keil's C51 C Compiler and µVision IDE
	Introduction
	Before You Begin
	Creating and Configuring a New Project
	Adding your Source File(s) to the Project
	Creating Groups for Salvo Files
	Adding Salvo-specific Files to the Project
	Adding a Library
	The salvocfg.h Header File
	Adding Salvo Source Files
	The salvocfg.h Header File

	Building the Project
	Testing the Application
	Troubleshooting
	C51 Error: can't open file 'salvo.h'
	Cannot See Window Upon Opening Project

	Example Projects

