
1

ICFlash: Web-based Network Measurement Using Adobe AIR

CSE 534 Final Research Paper

Jian Xu1, Benjamin X. Lin1, Yang Sheng Fang1

1Department of Computer Science, Stony Brook University,

Stony Brook, NY 11794-4400

{jianxu1, xianlin, yafang}@cs.stonybrook.edu

http://www.ic.sunysb.edu/stu/xianlin/~cse534

ABSTRACT
In order to help ICLab [1] collect data for censorship

related researches, we develop ICFlash, a network

measurement application embedded on a webpage. In

specific, ICFlash allows an end user to issue HTTP GET

requests or DNS queries to a remote web server and upload

corresponding results to the Centinel Server. We implement

ICFlash by using Adobe AIR, after investigating the

feasibility of HTML5, JavaScript, PHP, Adobe Flash and

AIR, since AIR does not have the cross-domain restriction.

We describe our design and implementation details,

provide the user manual and sample results of ICFlash

application, and outline the future work.

Key Words: Cross-Domain, Adobe Flash, Adobe AIR,

HTTP, DNS, Centinel Server

1. INTRODUCTION

Currently, the ICLab [1] application requires an end user

to download the Centinel Client and run it locally to collect

enough information for research purposes. It requires too

complex configurations and installation steps that may limit

the number of users who are willing to participate in this

censorship data collection program.

We create an Adobe AIR application named ICFlash for

web browsers, enabling users to help ICLab collect HTTP

and DNS data by simply typing URL links and clicking

buttons. In order to implement these functions, ICFlash first

issues an HTTP GET request (or DNS query) to the web

server designated by the URL; then it uploads the HTTP (or

DNS) response to the Centinel Server.

In the rest of this paper, we firstly review the background

(Section 2) technologies that may be used for ICFlash and

briefly describe why we reach our decision of using Adobe

AIR. Next, we introduce the design of our application

(Section 3), followed by its implementation (Section 4). We

present the prototype of ICFlash in Section 5, discuss the

future work in Section 6, and conclude in Section 7.

2. BACKGROUND
In this section, we review several web technologies for

their feasibility in ICFlash.

2.1 HTML5
HTML5 is a core technology markup language of the

Internet used for structuring and presenting content for the

World Wide Web. It is derived from HTML4, which was

standardized in 1997. Comparing to HTML4, a great

improvement of HTML5 is the support of the latest

multimedia technology [2].

Some new features were designed to make it easy to

include and handle multimedia and graphical content on the

web without having to resort to proprietary plugins and

APIs. Additionally, several technologies were applied in

HTML5 to support specific features, like WebSocket API, to

provide full-duplex communication channels over a single

TCP connection [3]. So we can apply Websocket API to issue

HTTP requests to servers.

While in this case in order to process successfully,

servers that accept the WebSocket protocol requests have to

support the protocol by upgrading. This is hardly practical in

our project since we have to urge all the web servers to

upgrade to support the Websocket protocol.

Therefore, applying HTML5 with Websocket API is not

practical in our project.

2.2 JavaScript
JavaScript is a language supported by all modern web

browsers. It complements HTML and CSS by providing

client-side scripting. JavaScript is commonly used to change

the document content, control the browser window,

communicate asynchronously with the web server, and do

complex math calculations [4]. Consequently, many web

applications and games use JavaScript.

While JavaScript provides some APIs to communicate

with servers, it is restricted by the cross-domain policy. This

policy does not permit sending requests to another website

with a different domain name. Because our application needs

to send requests to other domains, this technology is not

suitable.

2

2.3 PHP
PHP is a server-side scripting language designed for

web development, in which case PHP generally runs on a

web server (e.g. Apache, Nginx, etc.)

PHP code can be mixed with HTML code to construct a

dynamic webpage. It is usually processed by a PHP

interpreter, which is often implemented on the web server

side by a server native module or a Common Gateway

Interface (CGI) executable. After the PHP code is

interpreted and executed, the web server sends the resulting

output to its client, usually in form of a part of the generated

web page; for example, PHP code can generate a web page's

HTML code, an image, or some other data [5].

According to the fact that PHP is a server-side scripting

language and can only be executed on the server side, this

makes us have to execute our program remotely. Therefore,

servers instead of browsers will send the DNS/HTTP

requests that we embed in PHP programs. Results will reflect

the accessibility in servers’ perspective instead of users

which is not what we intend to measure.

Alternatively we can achieve our goal by deploying

LAMP-like environment in client-side (e.g. LAMP [6],

MAMP [7], WAMP [8]) where to let PHP scripts execute on,

but this approach breaches our principle that do not install

heavy packages and complex configurations on the client

side.

As a consequence, PHP is not an ideal method for this

project.

2.4 Adobe Flash
Adobe Flash is a common user-side presentation

platform in modern web applications. Its common usage

includes video player, animation, website navigation, and

complex application (such as image editor). It supports

cross-platforms running on Windows, Mac OS, and Linux.

It not only has a wide number of platform supports, but also

gains a huge user base.

Flash application is written in ActionScript with various

front-end technologies. The source code is compiled into a

Shockwave Flash file (i.e. SWF file).

SWF files can be embedded in web pages, and they must

be running on a system with Adobe Flash installed.

Flash provides certain APIs that do not exist in

browsers. These APIs include TCP streams and custom TCP

requests, which are crucial to our application

implementation.

However, Flash enforces certain security policies. One

of such is the cross-domain policy [9]. The target server

which the Flash application tries to access, must grant

permission to the domain where the Flash application

resides, by including a “crossdomain.xml” file on its own

server. For example, if a Flash application on www.a.com

wants to access www.b.com, www.b.com must include

“crossdomain.xml” on its root that grants permission to

www.a.com. This policy demonstrates a huge restriction on

what we want to achieve, which is to send requests to any

domain. And, it is impractical for us to ask web

administrators to grant our application access to their web

servers. Therefore, we opt not to use Flash.

2.5 Adobe AIR
 Adobe AIR supports the full Adobe Flash API so that

it gains all the advantages of Flash. In addition, AIR provides

an API named flash.net.dns for DNS queries and other APIs

supporting file system integration and access to connected

devices. The AIR runtime supports installable applications

on Windows, OS X and mobile operating systems like

Android, iOS and BlackBerry Tablet OS [10].

Another advantage of Adobe AIR is allowing Adobe

Flash and ActionScript code to construct applications that

run outside of a web browser, and behaves like a native

application on supported platforms [10].

The most important point is that AIR does not have the

cross-domain restriction. Consequently it allows us to send

HTTP requests to arbitrary servers [10].

According to the investigations on HTML5, JavaScript,

PHP, Flash and AIR technologies, we find that AIR is a

suitable platform for our application because AIR does not

have the cross-domain restriction and also provides APIs

accessing low level streams. Therefore, we decide to

implement ICFlash using AIR.

3. DESIGN

Figure 1. Interaction between ICFlash and other systems

Figure 1 presents an overview of ICFlash’s workflow.

Initially, the user visits our web server to download

ICFlash application. Next, the user can use a specified URL

or our predefined URL list to send HTTP GET requests or

DNS queries to the target server. After that, ICFlash records

3

the response from the server and presents the result to the

user. If the request is an HTTP GET, the result will include

HTTP response status code, response URL, the name-value

pairs of the HTTP header and HTML content. If the request

is a DNS query, the result will contain one or more IP

addresses for the requested domain name. In both cases

ICFlash will record the round-trip time (RTT). Finally, with

the user’s consent, ICFlash sends the response data to the

ICLab Centinel Servers for further analysis.

4. IMPLEMENTATION

4.1 User Interface
Our user interface is written in Flex. Flex is an SDK for

developing user interface for the Adobe Flash platform. One

advantage of Flex is to provide consistent user experience on

all major browsers, desktops, and devices [14]. Flex is based

on XML technology so the code is easy to write and

maintain.

An example of Flex component we used is the Datagrid,

which provides a multiple column table for displaying our

result. We add a row in the datagrid for each result we

received. In each row, we show the original domain URL,

the status code, the round-trip time, and the uploading status.

We also add an event listener to the datagrid to handle users’

interactions. When the user clicks on a record in the datagrid,

the textbox on the right of the Result Panel will be updated

to show details of that result record.

4.2 Library
In order to implement the function of sending HTTP

GET requests, we use the flash.net API [11] from the Flash

library. We first build a URLRequest object, which stores

various parameters related to the HTTP request. We set the

method property to GET, and the contentType to "text/html".

Then by using an instance of URLLoader, our application

sends an HTTP request to a remote server. An event handler

is used to asynchronously process the response. We extract

the data and then present it.

We use the flash.net.dns API to send DNS queries. With

a DNSResolver object, we use the lookup method to resolve

a domain name to obtain its IPv4 address. In the event

handler, we process the result in the DNSResolverEvent

object and display the data in our user interface.

4.3 Result Uploading
In order to let ICLab easily decode the result, we choose

the JSON encoding. JSON is an open standard format that

uses human-readable text to transmit data objects consisting

of attribute–value pairs [15]. Some examples we used include:

the attribute body paired with the result HTML body, the

attribute time paired with the round-trip time, and so on.

We then upload this JSON encoded result onto the

Centinel Server. Because the Centinel Server uses REST [17]

architecture, we can upload the result by sending an HTTP

POST request. We use the method similar to HTTP GET

request detailed as mentioned previously except the method

property being changed to POST instead of GET. We embed

the JSON string into the data property separated by

boundaries as complied with the HTTP standard [16].

4.4 Embedding Air into a Web Page
We compile our code into an AIR installer and then

deploy it to our current server. We use a collection of sample

html files named “Badge” from the official Adobe site [12].

Then we replace the AIR file with ours, and modify the AIR

version and the absolute URL to our AIR file.

Then we upload the whole folder containing “Badge”

files to our server, allowing users to test our application.

5. PROTOTYPE

5.1 User Interface
The user interface of ICFlash looks like Figure 2.

Figure 2. The user interface of ICFlash

5.2 User Manual
Step 1: The user needs to visit the webpage with ICFlash

embedded, as shown in Figure 3.

Figure 3. The initial webpage to start ICFlash installation

4

Step 2: The user clicks the “Install Now” button.

ICFlash asks the user whether or not he wants to open and

run it as shown in Figure 4.

Figure 4. Installation Prompt

Step 3: The user will see the warning message in Figure

5. By clicking “Install” button, he confirms his decision of

installing.

Figure 5. Request uer confirmation

Step 4: Then ICFlash asks the location where he wants

to install it as shown in Figure 6.

Figure 6. Installation Path

Step 5: By clicking the “Continue” button, the

installation of ICFlash will start.

After the installation is finished, the interface of ICFlash

will pop up, as shown in Figure 2.

Then the user can click the “Manual” tab on the

interface to start his testing.

5.3 Result

5.3.1 Result of an HTTP GET Functionality
After the user inputs a correct website URL, selects

HTTP in the dropdown menu, and then clicks “Test” button,

he will see the HTTP status code, the round-trip time (RTT)

and the status for this result to be uploaded in the grid on the

left of the Result Panel; after clicking the record in the grid,

he will further see the HTML content of the website on the

right of the panel, as shown in Figure 7.

Figure 7. Result of an HTTP GET functionality

5.3.2 Result of an DNS Query Functionality
Similarly, if the user inputs a site URL, selects DNS in

the dropdown menu, and then clicks “Test” button, he will

see the RTT to run this DNS query and its uploading status;

after he further clicks the record, ICFlash will display the

detailed DNS query results on the right of the Result Panel,

as shown in Figure 8.

5

Figure 8. Result of an DNS query functionality

By clicking the “Clear” button below the grids, the user

can always remove the current results displayed on the panel.

5.3.3 Send Collected Results to a Local

Centinel Server
We have enabled the functionality for the user to upload

the previously obtained result to a locally deployed Centinel

Server in JSON format. The user simply needs to click the

result record shown in the grid, modifies the IP Address

Field to the right of the “Clear” button, and then click

“Upload” button. After clicking the “YES” button to

prompted security alerts, he will see the uploading status of

this result changes from “ready” to “uploading” then to

“done”, as shown in Figure 9.1. Simultaneously, the local

Centinel Server logs the result sent by the user, as shown in

Figure 9.2. If error occurs in the uploading process, the

status code for the result would display “error”, as shown in

Figure 9.3.

Figure 9.1. A successful result uploading from the user side

Figure 9.2. The corresponding DNS

query result on the server side

Figure 9.3. A result when uploading failed

5.3.4 Allow Users to Automatically Test a

List of URLs
Besides the required functionalities we have

implemented, as illustrated in Section 5.3.1 to 5.3.3, we have

also implemented a feature to supply a list of URLs for a user

to test in sequence, as shown in Figure 10. Similarly, when

the user clicks any result record in the grid, he will see the

detailed result on the right of the Result Panel. The

functionality of uploading results to the local Centinel Server

is also available.

Figure 10. Result from executing a list of HTTP GET requests

6

6. FUTURE WORK
Till now, we have overcome the cross-domain

restriction, completed the HTTP GET and DNS query

modules, the uploading to a locally deployed Centinel Server

functionality [13] and an extra feature of including a list of

URLs for a user to test in batch.

For the future, we plan to give users more flexibility by

allowing them to upload a customized list of URLs to test.

Moreover, we will contact the administrator of ICLab

Centinel Server Project to figure out the way of uploading

users’ testing results to the actual Centinel Server instead of

a locally deployed one. Last but not the least, we would

coordinate with ICLab to promote our ICFlash application to

the volunteers who participated or are willing to participate

in ICLab’s data collection program over the world.

7. CONCLUSION
In order to get HTTP/DNS information from users’

perspective via browsers, we implement a web-based

application named ICFLash. In this paper we first investigate

the feasibility of several technologies such as HTML5,

JavaScript, PHP and Adobe Flash.

Then we eliminate those technologies, as they are not

able to satisfy our requirements. For instance, we cannot get

user-perspective information from servers executing PHP;

since not all servers support WebSocket protocol, it is

impossible to deploy a general application which sends

WebSocket requests via HTML5; because JavaScript and

Flash are subjected to the cross-domain policy, they are

impractical for us to apply, either.

Hence, we decide to use Adobe AIR technology due to

its capability of satisfying our project requirements and

convenient deployment, for instance, to acquire user-

perspective accessibility to web servers.

Next, we describe several key steps on how to realize

the project, for example, how to send HTTP GET requests

and DNS queries by using Adobe AIR APIs, how to upload

the corresponding results to the Centinel Server in JSON

format, etc.

We also demonstrate the user manual of how to install

and use the ICFlash step by step.

Finally, we look into the future work of ICFlash,

planning to give users more flexibility of customizing a list

of URLs to test, coordinate with the ICLab administrator for

uploading testing results to the actual Centinel Server, and

promoting our ICFlash application to the volunteers who

participate in ICLab’s data collection program over the

world.

8. REFERENCES
[1] The Internet Censorship Lab:

http://www.internetcensorshiplab.com/

[2] http://en.wikipedia.org/wiki/HTML5

[3] http://en.wikipedia.org/wiki/WebSocket

[4] http://en.wikipedia.org/wiki/JavaScript

[5] http://en.wikipedia.org/wiki/PHP

[6] http://en.wikipedia.org/wiki/LAMP_(software_bundle)

[7] http://en.wikipedia.org/wiki/MAMP

[8] http://en.wikipedia.org/wiki/LAMP_(software_bundle)#WA

MP

[9] http://help.adobe.com/en_US/ActionScript/3.0_Programming

AS3/WS5b3ccc516d4fbf351e63e3d118a9b90204-7e3f.html

[10] https://en.wikipedia.org/wiki/Adobe_AIR

[11] http://help.adobe.com/en_US/FlashPlatform/reference/action

script/3/flash/net/package-detail.html

[12] Adobe Getting started with the custom install badge.

https://www.adobe.com/devnet/air/articles/badge_for_air.ht

ml

[13] Discussion of our project scope with Abbas Razzaghpanah, a

PhD student participating in the Internet Censorship Lab.

Friday, April 03, 2015

[14] Flex. https://www.adobe.com/products/flex.html

[15] https://en.wikipedia.org/wiki/JSON

[16] Form-based File Upload in HTML.

https://tools.ietf.org/html/rfc1867

[17] https://en.wikipedia.org/wiki/Representational_state_transfer

