
Power HawkTM Series 900
Diskless Systems Administrator’s Guide

0891090-030

January 2006

Copyright 2006 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent Computer Corporation products by Concurrent Computer Corporation personnel,
customers, and end–users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the
information contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the
correction or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corpora-
tion, 2881 Gateway Drive Pompano Beach, FL 33069. Mark the envelope “Attention: Publications Department.”
This publication may not be reproduced for any other reason in any form without written permission of the publisher.

UNIX is a registered trademark of the Open Group.
Ethernet is a trademark of Xerox Corporation.
PowerMAX OS is a registered trademark of Concurrent Computer Corporation.
Power Hawk is a trademark of Concurrent Computer Corporation.

Other products mentioned in this document are trademarks, registered trademarks, or trade names of the
manufactures or marketers of the product with which the marks or names are associated.

Printed in U. S. A.

Revision History: Level: Effective With:

Original issue January 2006 000 PowerMAX OS Release 6.0 beta

Pevious Release January 2004 010 PowerMAX OS Release 6.1

Previous Release November 2004 020 PowerMAX OS Release 6.2

Current Release January 2006 030 PowerMAX OS Release 6.3

iii

Preface

Scope of Manual

Intended for system administrators responsible for configuring and administering diskless
system configurations.

Structure of Manual

This manual consists of a title page, this preface, a master table of contents, four chapters,
local tables of contents for the chapters, two appendices, glossary of terms, and an index.

• Chapter 1, Introduction, contains an overview of Diskless Topography,
Diskless boot basics, configuration toolsets, definition of terms, hardware
overview, diskless implementation, configuring diskless systems and
licensing details.

• Chapter 2, Netboot System Administration, provides an overview of the
steps that must be followed in configuring a loosely-coupled system (LCS)
configuration.

• Chapter 3, Flash Boot System Administration, is a guide to configuring a
diskless single board computer (SBC) to boot PowerMAX OS from flash
memory.

• Chapter 4, Debugging Tools, covers the tools available for system debug-
ging on a diskless client. The tools that are available to debug a diskless
client depend on the diskless system architecture.

• Appendix A provides instructions on how to add a local disk to a client.

• Appendix B provides instructions on how to make a client system run in
NFS File Server mode.

• The Glossary explains the abbreviations, acronyms, and terms used
throughout the manual.

• The Index contains an alphabetical list of all paragraph formats, character
formats, cross reference formats, table formats, and variables.

Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must specify
appear in italic type. Special terms may also appear in italic.

list bold User input appears in list bold type and must be entered
exactly as shown. Names of directories, files, commands, options
and man page references also appear in list bold type.

Power Hawk Series 900 Diskless Systems Administrator’s Guide

iv

list Operating system and program output such as prompts and mes-
sages and listings of files and programs appears in list type.

[] Brackets enclose command options and arguments that are
optional. You do not type the brackets if you choose to specify
such option or arguments

Referenced Publications

Concurrent Computer Corporation Manuals

Vendor Manuals

Related Specifications

 Title Pubs No.

System Administration Manual (Volume 1) 0890429

System Administration Manual (Volume 2) 0890430

Power Hawk Series 900 PowerMAX OS Version 6.3 Release Notes 0891089-6.3

Manual Name
Synergy

Document
 Number

Raptor DX VMEbus Dual G4, Dual PMC & StarFabric
PowerPC Single Board Computer User Guide

02-0426/UG-VYFD-<REV>

MantaQX3/VAFQ VMEbus Quad G4, Single PMC & StarFabric
PowerPC Single Board Computer User Manual.

815138 - Version <VER>

Synergy Microsystem STAR User Guide 03-0072/UG-STAR-<REV>

Synergy Microsystem ASTRix User’s Guide 03-0076/UG-ASTX-<REV>

 Title Pubs No.

IEEE - Common Mezzanine Card Specification (CMC) P1386 Draft 2.0

IEEE - PCI Mezzanine Card Specification (CMC) P1386.1 Draft 2.0

Compact PCI Specification CPCI Rev 2.1 Dated 9/2/97

v

Chapter 0

Contents

Preface . iii

Chapter 1 Introduction

Overview . 1-1
Loosely-Coupled Systems (LCS) . 1-1
Diskless Boot Basics . 1-2
Net Boot Toolset. 1-3

Definitions . 1-4
Hardware Overview. 1-6

Model 920 Hardware Feature Summary . 1-6
Model 940 Hardware Feature Summary . 1-6

Diskless Implementation . 1-7
Virtual Root . 1-7
Boot Image Creation and Characteristics . 1-7
MEMFS Root Filesystem. 1-8
Booting . 1-9

Net Boot . 1-10
Flash Boot . 1-11

Remote File Sharing . 1-12
Swap Space. 1-15

Configuring Diskless Systems. 1-17
Loosely-Coupled System Hardware Prerequisites . 1-17
Disk Space Requirements. 1-18
Software Prerequisites . 1-18

Licensing Information . 1-19

Chapter 2 Netboot System Administration

Configuration Overview . 2-1
Installing a Loosely-Coupled System. 2-1
Installing Additional Boards . 2-3

SBC Client Board Configuration. 2-3
Modifying an Existing Automatic Netboot Configuration . 2-12
Client Configuration . 2-13

The Client Profile File . 2-13
Required Parameters . 2-13
Required NFS-Related Parameters . 2-14
Hosts Tables . 2-15

Configuring Clients Using netbootconfig . 2-16
Creating and Removing a Client Configuration . 2-16
Subsystem Support . 2-17

Customizing the Basic Client Configuration. 2-18
Modifying the Kernel Configuration . 2-18

kernel.modlist.add . 2-19
mknetbstrap . 2-19

Power Hawk 900 Series Diskless Systems Administrator’s Guide

vi

config utility . 2-19
idtuneobj . 2-20

Custom Configuration Files . 2-20
S25client and K00client rc Scripts . 2-23
memfs.inittab and inittab Tables . 2-23
vfstab Table . 2-24
kernel.modlist.add Table . 2-25
memfs.files.add Table . 2-25
vroot.files.add Table . 2-26

Modifying the Client Profile Parameters . 2-28
Launching Applications . 2-29

Launching an Application for Embedded Clients . 2-29
Launching an Application for NFS Clients . 2-30

Booting and Shutdown. 2-31
The Boot Image . 2-31
Creating the Boot Image . 2-32

Examples on Creating the Boot Image . 2-33
Net Booting. 2-33

Netboot Using ASTRix . 2-34
Shutting Down the Client . 2-35

Chapter 3 Flash Boot System Administration

Introduction . 3-1
Flash Characteristics . 3-2
The Flash Filesystem Method . 3-3
The Raw Write Method . 3-5

Chapter 4 Debugging Tools

System Debugging Tools . 4-1
kdb . 4-1
crash . 4-2

Appendix A Adding a Local Disk . A-1

Appendix B Make Client System Run in NFS File Server Mode . B-1

Glossary . Glossary-1

Index . Index-1

List of Illustrations

Figure 1-1. Loosely-Coupled System Configuration . 1-2
Figure 1-2. Power Hawk Networking Structure . 1-13

List of Tables

Table 2-1. Boot Image Dependencies . 2-32

 1
Introduction

1.1. Overview . 1-1
 1.1.1. Loosely-Coupled Systems (LCS) . 1-1
 1.1.2. Diskless Boot Basics . 1-2
 1.1.3. Net Boot Toolset. 1-3

1.2. Definitions . 1-4
1.3. Hardware Overview . 1-6

 1.3.1. Model 920 Hardware Feature Summary . 1-6
 1.3.2. Model 940 Hardware Feature Summary . 1-6

1.4. Diskless Implementation . 1-7
 1.4.1. Virtual Root . 1-7
 1.4.2. Boot Image Creation and Characteristics . 1-7
 1.4.3. MEMFS Root Filesystem. 1-8
 1.4.4. Booting . 1-9

 1.4.4.1 Net Boot . 1-10
 1.4.4.2 Flash Boot . 1-11

 1.4.5. Remote File Sharing . 1-12
 1.4.6. Swap Space. 1-15

1.5. Configuring Diskless Systems . 1-17
 1.5.1. Loosely-Coupled System Hardware Prerequisites 1-17
 1.5.2. Disk Space Requirements. 1-18
 1.5.3. Software Prerequisites . 1-18

1.6. Licensing Information . 1-19

Power Hawk Series 900 Diskless System Administrator’s Guide

1-1

1
Chapter 1Introduction

1
1
1

1.1. Overview

This manual is a guide to diskless operation of PowerMAX OS. Diskless operation
encompasses the ability to configure, boot, administer and debug systems that do not have
attached system disks. It should be noted that such a system might have attached non-
system disks. Each diskless system runs its own copy of the PowerMAX operating sys-
tem.

This manual specifically discusses Power Hawk Series 900 diskless configuration. Power
Hawk Series 900 systems are currently supported in Loosely Coupled System (LCS) con-
figurations, where a mix of Power Hawk Series 700 and Series 900 systems may be con-
figured within the same LCS configuration.

Only the configuration and use of Power Hawk Series 900 systems are discussed in this
manual. The user should refer to the Power Hawk Series 700 Diskless System Administra-
tor’s Guide (0891089) for details that are specific to setting up Power Hawk Series 700
systems in LCS configurations that may or may not include Series 900 systems.

1.1.1. Loosely-Coupled Systems (LCS)

The LCS configuration (see Figure 1-1) is supported when the only attachment between
the fileserver and the diskless system is from an ethernet network. Inter-process commu-
nication between processes running on separate single board computers is limited to
standard networking protocols across ethernet.

There are two possible ways of configuring a diskless client system. The difference
between these client configurations is whether the client system maintains an NFS
connection to the fileserver after boot such that file system space is available for the client
system on the File Server. It is important to note that the type of client system
configuration selected will impact the resource requirements of the File Server as will be
explained in more detail later.

The two client configurations are:

Embedded client - Embedded clients are either stand-alone systems which have no attach-
ments to other SBCs or they are not configured with networking and therefore do not use
existing network attachments once the system is up and running. The embedded applica-
tions must be a part of the original boot image which is downloaded onto the client system
and those applications begin execution at the end of the boot sequence.

Power Hawk Series 900 Diskless Systems Administrator’s Guide

1-2

NFS client - In an NFS client configuration, the File Server provides UNIX file systems
for the client system. A client system operates as an NFS client of the File Server. This
configuration allows substantially more file system space to be available to the client sys-
tem for storing an application and application data than an embedded configuration.

The LCS configuration described may contain a mix of Power Hawk Series 700 and
Power Hawk Series 900 systems. The file server in this LCS configuration may be either a
Series 700 or Series 900 system.

Figure 1-1. Loosely-Coupled System Configuration

1.1.2. Diskless Boot Basics

The first step in creating a diskless system is to create a boot image which contains both
the operating system and a file system that contains at a minimum the executable needed
to boot the PowerMAX OS. This file system, which is bundled into the boot image, can

SYSTEM DISK

SYSTEM CONSOLE

FAST/WIDE SCSI-2

RS-232 PORT

E
T
H
E
R
N
E
T

SBC

 N

SBC

 1

SBC

 2

NETBOOT CLIENTS

FILE SERVER (HOST)

SBC

Introduction

1-3

also be used to store application programs and data, UNIX commands and libraries or any
other file that might live in a disk-based partition. The size of this file system is limited,
since it must either be copied into memory or must reside in flash ROM.

The File Server is an SBC with attached disks where the boot image and a virtual root par-
tition for each configured diskless system is created. The virtual root is both the environ-
ment used to build the boot image and it is also mounted by diskless systems that maintain
an NFS connection to the File Server. Embedded diskless configurations do not maintain
such an NFS connection. When the virtual root is mounted by the diskless system, it is
used to hold system commands and utilities as well as user-defined files and application
programs. The virtual root can be viewed as a resource for additional disk space for a
diskless system.

Once a boot image is created, it must be copied from the File Server to the diskless
system. There are two supported mechanisms for transferring a boot image to a diskless
system:

1. A diskless system that is configured to boot from the network will read the
boot image via an ethernet network connection to the File Server. The
firmware uses the Trivial File Transfer Protocol (TFTP) over an ethernet
connection to download the boot image.

2. The boot image may have already been burned into flash ROM. In this
case, the board’s firmware (ASTRix) is configured to execute the boot
image from flash ROM.

Closely related to the technique for copying a boot image to a diskless SBC, is the tech-
nique for initiating the boot sequence on the diskless SBC. There are two techniques for
initiating the boot sequence on a diskless system. In some cases, the loading of the boot
image cannot be separated from the initiation of execution within that image.

1. To boot from the ethernet network, the board's firmware (ASTRix) must be
configured to boot from the network. The boot sequence is initiated by
resetting the board, by cycling the power on the board, or by manually issu-
ing the ASTRix command to execute a TFTP boot. The manual ASTRix
method is only available when a console terminal is connected to the disk-
less system.

2. To boot from flash ROM, the board's firmware (ASTRix) must be config-
ured to boot from flash, through the use of a ASTRix startup script. The
boot sequence will be initiated whenever the board is reset, power is cycled
on the board or by manually executing the ASTRix startup script or flash
boot commands. The manual ASTRix method is only available when a
console terminal is connected to the diskless system.

1.1.3. Net Boot Toolset

The Net Boot toolset is provided for creating the diskless configuration environment on
the File Server and for creating boot images. The diskless configuration environment
includes the generation of the virtual root as well as the creation and modification of
relevant system configuration files. The virtual root serves as the environment for config-
uring a client’s kernel, building the boot image and as one of the partitions which is NFS
mounted by an NFS client. The Net Boot tool is executed on the File Server.

Power Hawk Series 900 Diskless Systems Administrator’s Guide

1-4

The Net Boot toolset consists of the tools netbootconfig and mknetbstrap. These
tools handle loosely-coupled clients that boot via an ethernet network or from flash ROM,
where no common I/O bus based communication will be utilized on the client system.

The netbootconfig tool is used to create the diskless configuration environment for a
diskless client. The mknetbstrap tool is used for creating a diskless client’s boot
image. More information is provided on the Net Boot tool in Chapter 2, “Netboot System
Administration”.

1.2. Definitions

Loosely-Coupled System
(LCS)

A Loosely-Coupled System (LCS) is a network of Single-Board
Computers (SBCs). One of the SBCs must have a system disk and is
referred to as the File Server and all other SBCs are generally referred
to as clients. An ethernet connection between the File Server and the
client systems provides the means for inter-board communication.

File Server The File Server has special significance in a Loosely-Coupled system
as it is the only system with physically attached disk(s) that contain
file systems and directories essential to running the PowerMAX
OSTM (/etc, /sbin, /usr, /var, /tmp, and /dev).

The File Server boots from a locally attached SCSI disk and provides
disk storage space for configuration and system files for all clients.
There is only one File Server in a Loosely-coupled system.

All clients depend on the File Server for booting since all the boot
images are stored on the File Server’s disk.

Client All SBCs, except for the File Server are considered clients. Clients do
not have their own “system” disk. Clients must rely on the File Server
for such support. However, clients may have local, non-system disk
drives configured.

The two client configurations, embedded and NFS, are described
below:

 1) Embedded Client An embedded client runs self-contained from an internal memory-
based file system; they do not offer console or network services.
There is no swap space, because there is no media that can be used for
swapping pages out of main memory. Applications run in single user
mode (init state 1).

 2) NFS Client NFS clients are diskless SBCs that are configured with networking
and NFS. Most directories are NFS mounted from the File Server. In
addition to NFS, all standard PowerMAX OSTM network protocols
are available. Swap space is configured to be remote and is accessed
over NFS. Applications run in multi-user mode (init state 3).

Introduction

1-5

System Disk The PowerMAX OSTM requires a number of “system” directories to
be available in order for the operating system to function properly.
These directories include: /etc, /sbin, /dev, /usr, /var and
/opt.

The File Server is configured so that these directories are available on
one, or more, locally attached SCSI disk drives.

Since clients do not have locally attached system disk(s), they will
NFS mount these directories from the File Server (an “NFS Client”),
or create them in a memory file system which is loaded with the ker-
nel (an “Embedded Client”).

Net Boot
(or Network Boot)

A client/server kernel boot method that uses standard TFTP protocols
for kernel loading from the File Server. Any client can be configured
to initiate a net boot operation from the File Server.

Flash Boot A client boot method where the boot image executed comes from the
client’s own Flash memory.

Boot Image This is the object that is downloaded into the memory of a diskless
client. It contains a UNIX kernel image and a memory-based root file
system. The memory-based file system must contain the utilities and
files needed to boot the kernel. In the case of an NFS client, booting
must proceed to the point that remote file systems can be mounted.
For an embedded kernel, the memory-based file system is the only
file system space that is available on the diskless system. Users may
add their own files to the memory-based file system.

Synergy Monitor
(STAR/ASTRix)

A board-resident ROM monitor utility that provides a basic I/O
system (BIOS), a boot ROM, and system diagnostics for Power Hawk
Series 900 single board computers (SBCs).

Trivial File Transfer
Protocol (TFTP)

Internet standard protocol for file transfer with minimal capability
and minimal overhead. TFTP depends on the “connectionless”
datagram delivery service (UDP).

System Run Level
Init Level

A term used in UNIX-derived systems indicating the level of services
available in the system. Those at “init level 1” are single user
systems which in turn is typical of embedded systems running on cli-
ent SBCs. Those at “init level 3” have full multi-user, networking,
and NFS features enabled, and is typical of client SBCs that run as
netboot clients. See init(1M) for complete details.

swap space Swap reservation space, referred to as ‘virtual swap’ space, is made
up of the number of real memory pages that may be used for user
space translations, plus the amount of secondary storage (disk) swap
space available. Clients in the NFS configuration utilize a file
accessed over NFS as their secondary swap space.

Embedded clients, which are usually also Flashboot clients, generally
do not utilize a swap device, but if a local disk is available then they
too may be configured with a swap device.

Power Hawk Series 900 Diskless Systems Administrator’s Guide

1-6

1.3. Hardware Overview

The Power Hawk Model 920 and 940 platforms are supported only as a loosely-coupled
client.

1.3.1. Model 920 Hardware Feature Summary

1.3.2. Model 940 Hardware Feature Summary

Motherboard
Designation

System Platform
Number
of CPUs

Form
Factor

Netboot Flashboot

VYFD Power Hawk Model 920 2 VME 6U yes yes

VAFQ Power Hawk Model 940 4 VME 6U yes yes

* SMP compliant
* PCI-to-VME64 bridge rated at 50 MB/sec.
* Dual G4 PowerPC 7455/7457
* 2 MB backside L3 cache per CPU
* 256 MB - 1 GB onboard memory
* 64 MB Boot/User Flash
* 128 MB of NVRAM, battery backed
* Two mailboxes (Hi & Lo) per CPU
* Real-time clock/calendar (4-digit year)
* Two asynchronous RS-232/423 serial ports up to 115.Kbps
* Fast Ethernet 10Base-T/100Base-TX (3 ports)
* Programmable 4-bit TTL-compatible general purpose I/O (GPIO)
* Dual 64-bit PMC slot

* SMP compliant
* PCI-to-VME64 bridge rated at 50 MB/sec.
* Dual G4 PowerPC 7457
* 2 MB backside L3 cache per CPU
* 256 MB - 1 GB onboard memory
* 64 MB Boot/User Flash
* 128 MB of NVRAM, battery backed
* Two mailboxes (Hi & Lo) per CPU
* Real-time clock/calendar (4-digit year)
* Four asynchronous RS-232/423 serial ports up to 115.Kbps
* Dual Gigabit Ethernet Ports
* Single 64-bit PMC slot

Introduction

1-7

1.4. Diskless Implementation

1.4.1. Virtual Root

The virtual root directory is created on the File Server for each client when the client is
configured. The virtual root directory is used to store the kernel build environment, clus-
ter configuration and device files. In addition, for clients configured with NFS, the client’s
/etc, /var, /tmp and /dev directories are created here and NFS mounted on the
client during system initialization. Each configured client has its own, unique virtual root
on the File Server which is used as the configuration environment for that client.

A client’s virtual root directory may be generated in any file system partition on the file
server except for those used for the / (root) and /var file systems.

Virtual roots are created on the host for all clients. Clients running embedded systems will
utilize their virtual root for configuring the clients’s kernel and building the boot image.

1.4.2. Boot Image Creation and Characteristics

One of the primary functions of the virtual root is as the development environment for
building the boot image that will be downloaded to diskless client systems. After a
client’s virtual root development environment has been created, users have the opportunity
to tune the development environment in various ways, including that of adding in their
own applications and data.

The boot image file, known as unix.bstrap, is composed primarily of two intermedi-
ate files: unix, and memfs.cpio. These are located in the same directory as
unix.bstrap. unix is the client’s kernel as built by idbuild(1M). memfs.cpio
is a compressed cpio archive of all the files which are to be the contents of that client’s
memfs root filesystem. This archive was compressed using the tool rac(1).
Conversely, if the user wants to examine the contents, rac(1) must be used to decom-
press it.

The final boot image, unix.bstrap, will contain a compressed version of the text and
data regions of the unix kernel. These were extracted from the unix file. It will also con-
tain bootstrap code, which decompresses the kernel and sets up its execution environment
when the boot image is executed on the client, a copy of the compressed cpio image
from memfs.cpio, and a bootstrap record used to communicate information about the
client to the kernel and its bootstrap.

At the time of booting, boot files are created as needed based on dependencies established
b y t h e make f i l e “bstrap.makefile” unde r t h e /usr/etc/disk-
less.d/sys.conf/bin.d directory (see table below).

Power Hawk Series 900 Diskless Systems Administrator’s Guide

1-8

1.4.3. MEMFS Root Filesystem

A memory-based filesystem, called the memfs filesystem, becomes the root filesystem of
a client as part of its booting process. As the client completes its boot, it may mount other
file systems that are available to it, perhaps those on local disks or from across the net-
work.

These other file systems do not replace the original memfs root filesystem but instead
augment it with their extra directories and files. Files needed by diskless applications can
be located either in the memfs root filesystem of a client or on the File Server in the
client’s virtual root directory.

For embedded systems, all user applications and data must be placed into the memfs root
filesystem, since by definition no other file systems are available to such clients.

The tools used to build boot images provide a mechanism for adding user-defined files to
the memfs filesystem contents and wraps those contents into the boot image that will be
later downloaded into the client. When the boot image is downloaded into a diskless cli-
ent system, it is resident in memory whether or not the files are being used. This means
that the number and size of files that can be placed into the memfs file system is thus lim-
ited. This effect is minimized if the boot image is burned into flash using the raw write
method (via the ASTRix fw flash write command). When the boot image resides in Flash,
using the raw write method, then only those files actually in use will reside in (i.e. be cop-
ied into) physical memory at any time. In this mode of operation, the root filesystem
behaves more like a normal filesystem: pages are automatically fetched from the Flash as
needed, and, if not modified by applications, are automatically released when other needs
for the space become more urgent.

It is possible for applications running on the client to write to memfs files; however, there
not being a disk associated with these files, the changes will be lost on the next reboot of
that client. Moreover, such pages remain permanently in memory until the files contain-
ing them are deleted or truncated. This ties up precious physical memory. This can be
alleviated only by the addition of a swap device to the system, to which the system can
write these dirty pages to as necessary, or by careful consideration and minimization of
how much file writing is done by embedded applications into the memfs root filesystem.

Memfs file systems stored in Flash will be in a compressed format, in order to make
maximum use of this relatively tiny device. Please refer to the Flash Boot System Admin-
istration chapter for more details on Flash boot configuration.

Boot File Description Dependencies

unix unix kernel kernel.modlist.add

memfs.cpio cpio image of all files to be loaded in the
client’s memory-based root file system

unix ,
memfs.files.add,
system configuration
files

unix.bstrap bootstrap image unix, memfs.cpio

Introduction

1-9

1.4.4. Booting

Once a bootstrap image is generated, it must be loaded and started on the client for which
it was built. Two methods of booting are provided: Net Boot and Flash Boot. These meth-
ods are explained in more detail in the following sub-sections.

Booting a diskless client consists of two (Net boot) or three (Flash boot) distinct opera-
tions.

Step 1: Load the boot image into the client’s SDRAM.
Step 2: Burn the boot image into flash (Flash boot method only).
Step 3: Initiate execution of the boot image.

Step 1

Regardless of whether the user is using Net boot or Flash boot method, the
boot image must be downloaded to the diskless client. Downloading is per-
formed across an ethernet network with the ASTRix tftp command. The
tftp download is initiated automatically with an ASTRix startup script, or
manually at the client’s attached terminal console terminal. The ASTRix
tftp command will read the boot image from the file server and download it
into the client’s SDRAM.

Step 2

This step applies only to the Flash boot method. After downloading the
boot image to SDRAM, the image may be burned into flash. This is accom-
plished manually at the client’s attached console terminal using the
ASTRix ffsw (Flash File System Write) command, or the ASTRix fw (flash
write) command. Once burned into flash, the boot image no longer needs to
be downloaded across the network int SDRAM; step 1 is no longer
required.

Step 3

The final step of the boot operation is to execute the downloaded boot
image. This step is accomplished with the ASTRix boot command. The
ASTRix boot may be initiated automatically within an ASTRix startup
script, or manually at the client’s attached console terminal. The ASTRix
boot command allows for booting images from various devices, including
booting images directly from memory (for the Net boot method), and boot-
ing images from flash (the Flash boot method).

The entire Net boot method may be set up so that the sequence is automatically initiated
after any reset or power up cycle, by using the ASTRix startup script. In addition, once
step 2 (Flash burn) has been accomplished for the Flash boot method, an ASTRix startup
script may be used to automatically load and boot the flash boot image after any reset or
power up cycle.

Booting from flash is significantly faster and more reliable than the Net boot method, and
is recommended for final deployed environments. While actively testing and modifying
the application and boot image the Net boot method may be used via an ethernet connec-
tion. The Flash boot method can then be used to burn the final version of the boot image
into flash when the application is deployed.

Power Hawk Series 900 Diskless Systems Administrator’s Guide

1-10

1.4.4.1. Net Boot

Net Boot is a method of loading a kernel image into a client's SDRAM over an Ethernet
connection, and then initiating execution of that image.

Since the file server and the client are only connected via Ethernet, the file server cannot
actively force a client to accept and boot an image, rather, the client must initiate the
transfer from the fileserver, and cooperate with the file server to complete the transfer.
This client initiation takes one of two forms:

- manually entering and executing ASTRix commands at the client's
attached console terminal,

or

- automatic execution of the ASTRix commands by the client SBC when-
ever it is powered up or reset, through the use of an ASTRix startup script.

Net booting is performed by ASTRix using the TFTP (Trivial File Transfer Protocol,
RFC783). This is a standard protocol that is supported by PowerMAX OS. For additional
information pertaining to TFTP, refer to the Network Administration manual (0890432).

Any client SBC can be Net Booted as long as the client SBC has access to the file server
through the client's ethernet connection. When the client is not on the same local Ethernet
network, the system administrator may setup a routing table entry that will provide access
to a remote file server through a local gateway.

Whether manually booting or autobooting a client, the client SBC must first be set up with
the information it needs to do Net Booting. This is accomplished with the STAR 'config'
command, and possibly with an additional ASTRix route command. or the appropriate
commands in an ASTRix startup script. Once this setup is done, the client should not
need to be reconfigured unless one or more of these parameters change, since the STAR
config command information and ASTRix startup script is saved in NVRAM and is pre-
served across reboots and power cycles.

The following information is required by the STAR config command in order to config-
ure a client that will be performing a net boot:

Target IP address:

The local client SBC's IP address which ASTRix will use as the return address
for TFTP data transfer. For NFS clients, this is the Ethernet IP Address of this
client SBC.

Host IP address:

The IP address for the File Server which should already be defined in the
/etc/hosts file.

You may also Net Boot an Embedded Client. Since this client kernel does not support net-
working, no IP address has yet been defined for it. In this situation, select a unique IP
address to use. An address should be selected that decodes to the same local subnet that
the client is connected to, and that does not conflict with any other IP addresses used in the
network.

Introduction

1-11

If the client SBC's access to the File Server is through a gateway, then a routing table entry
must be setup with the ASTRix route command. Usually, this would be done in the
ASTRix startup script, so that this setup would be automatically executed every time
ASTRix was initiated following a reset or power cycle.

After STAR has been initialized with the proper network parameters and any required
routing table entry has been added with the ASTRix route command, a transfer of the
boot image across the Ethernet connection may be initiated via the ASTRix tftp com-
mand. Refer to the chapter on Netboot System Administration for more information on
Net Booting.

1.4.4.2. Flash Boot

Flash Boot is a method of loading and executing a kernel image from flash. Flash Boot is
the preferred method of booting a diskless client in the production or deployed phase of an
application. There are two advantages to booting from flash:

- Flash Boot provides very fast boot times because there are no rotational
delays that would normally be associated with reading from a local system
disk, and no networking delays that would normally be associated with
downloading a bootable image from a file server, when using the Net Boot
method.

- The root file system resides as a read-only image in flash, thus providing
greater system stability because the root file system cannot be corrupted by
unexpected system crashes which might leave a writable file system in an
inconsistent state.

The boot image that is burned into flash is the same boot image that is downloaded via an
Ethernet network connection when a developer is using the Net Boot method. As such, a
developer may use the Net boot method when they are actively modifying the boot image
during the development phase, and then they may burn the final boot image into flash
when they enter into the deployed phase of the application.

There are no tools specifically targeted towards creating boot images for Flash Booting.
Instead, the standard loosely-coupled configuration tools are used for building the image.

Since the File Server is only connected to the client system via an ethernet connection, the
flash must be burned via a process known as network loading. Preparation for loading the
boot image into flash is the same method used in the Net Boot method. The ASTRix
tftp command is used to load the boot image into memory without executing that image.
The boot image is then burned into flash from memory by using either the ASTRix ffsw
(flash filesystem write) command, or the ASTRix fw (flash write) command.

Once the image is burned into flash, then all subsequent booting can be automatically ini-
tiated at reset or power cycle time by setting up an ASTRix startup script that will execute
the appropriate “boot” command that will boot the bootable image that is stored in flash.
Refer to Flash Boot System Administration chapter for more details.

Power Hawk Series 900 Diskless Systems Administrator’s Guide

1-12

1.4.5. Remote File Sharing

Clients configured as “Embedded Clients” must have in their memory-based root file
system all the files needed for booting and all the files needed to run applications. This is
because Embedded Clients do not have networking by definition and therefore will not
have access to remote files on the File Server.

The memfs root file system of a client configured with NFS need only contain the files
required for booting. When the client system reaches init state 3 it is able to NFS mount
and access the File Server’s directories. The NFS mounts are executed from a start-up
script in /etc/rc3.d.

Two different inittab files are used in booting an NFS configuration. When the etc
directory in a client’s virtual root is NFS mounted, the original inittab file is overlaid
with the one in the virtual root. The directory etc/rc3.d is then re-scanned to execute
start-up scripts in the virtual root.

The directories /usr, /sbin and /opt are completely shared with the server, while
/etc and /var are shared on a file-by-file basis.

Listed below is the NFS mount scheme in use:

The /etc and /var directories under the client's virtual root contain some files that are client
specific, therefore these files are not shared. Each client has its own unique version of
these files. These directories also contain some files which have the same content for the
File Server and all client virtual roots on the File Server. These files are shared between
the File Server and all of the File Server's clients. Because the /etc and /var directories
contain a mix of both shared and non-shared files, these directories require special han-
dling within the client's virtual root.

The files /etc/nodename (not shared) and /etc/chroot (shared) will be used to
illustrate how shared and non-shared files are handled in /etc and /var.

Path on File Server Mount Point on Client

/usr /usr

/sbin /sbin

/opt /opt

<virtual_rootpath>/etc /etc

<virtual_rootpath>/var /var

<virtual_rootpath>/dev /dev

<virtual_rootpath>/tmp /tmp

virtual_rootpath>/users /users

/etc /shared/etc

/var /shared/var

/dev /shared/dev

Introduction

1-13

The /etc/nodename file is simply created as a real file in the client’s virtual root under
the <virtual_rootpath>/etc directory. The <virtual_rootpath>/etc
directory is mounted on the diskless client under the /etc directory.

The /etc/chroot file is created in the client’s virtual root not as a real file, but as a
symbolic link to the file name /shared/etc/chroot. On the File Server there is no
such directory as /shared. On the client system, /shared is used as the mount point
for mounting the File Server’s actual /etc/ directory. Thus any reference on the diskless
client to /etc/chroot will actually be referencing the /etc/chroot file that exists in
the File Server’s /etc directory.

Figure 1-2. Power Hawk Networking Structure

As new files are added and removed from the File Server’s /etc and /var directories,
the symbolic links under the client’s virtual root may become stale. The configuration util-
ity mknetbstrap can be used to update the links in these directories to match the cur-
rent state of the File Server.

The directories /dev and /tmp are also created under the client’s virtual root but do not
share any files with the File Server. Device files may have kernel dependencies and so
these files are not shared. The directory /tmp is created as an empty directory. The
directory /users is also empty and may be used to access user files across NFS.

Once the client system is up and running, the files in the memory-based root file system
required for booting are no longer needed and are removed to free up memory.

 File Server System

/
(root)

/etc < virtual_root >

etc

nodename chroot /shared/etc/chroot

/
(root)

/etc (server: < virtual_root >/etc) /shared

etc (server: /etc)

Client System

chroot chroot nodename

Power Hawk Series 900 Diskless Systems Administrator’s Guide

1-14

Permission to access remote files on the File Server is automatically granted. During client
con f i gu ra t i on , t h e /etc/dfs/dfstab (s ee dfstab(4)) an d
/usr/etc/diskless.d/cluster.conf/dfstab.diskless tables are modi-
fied to allow a client either read or read/write access to files which reside on the File
Server.

The dfstab.diskless file is generated when the first client is configured. Sample
entries from this file are listed below. These entries should not be modified.

The dfstab.diskless file is referenced from a command line entry in dfstab, generated when
the first client is configured. For every client configured thereafter, the client's name is
added to the CLIENTS variable. For example, after configuring two clients, named client1
and client2 the following line appears in the dfstab table:

 CLIENTS=client1:client2 /usr/sbin/shareall \
-F nfs /usr/etc/diskless.d/cluster.conf/dfstab.diskless

In addition, an entry to make each client's virtual root directory accessible is generated at
configuration time. If a parent directory of the client's virtual root directory is already cur-
rently shared (has an entry in sharetab(4)), then the matching entry in dfstab(4), if found,
is modified to include the client in its rw= and root= attribute specifications. For example,
if the virtual root directory for the client named client1 is in /home/vroots/client1 and the
/home/vroots directory is currently shared; then the sample entry below would be changed
as shown below.

from:

/usr/sbin/share -F nfs -d “/home/vroots” /home/vroots vroots

to:

/usr/sbin/share -F nfs -o root=client1 -d \
“/home/vroots” /home/vroots vroots

There is no need to add an rw= attribute since, when not specified, it defaults to read/write
access permissions to all.

If no entry is currently shared that covers the client’s virtual root directory, then a specific
entry for each client is appended to the dfstab.diskless file. For example, for the
client named client1, whose virtual root directory is /home/vroots/client1, the
following entry is generated:

/usr/sbin/share -F nfs -o rw=client1,root=client1\
-d /home/vroots/client1 /home/vroots/client1 vroot

After the files are updated, the “shareall -F nfs” command is executed to update the
File Server’s shared file system table.

share
share
share
share
share
share

-F
-F
-F
-F
-F
-F

nfs
nfs
nfs
nfs
nfs
nfs

-o
-o
-o
-o
-o
-o

ro,root=$CLIENTS
ro,root=$CLIENTS
rw=$CLIENTS,root=$CLIENTS
ro,root=$CLIENTS
rw=$CLIENTS,root=$CLIENTS
rw=$CLIENTS,root=$CLIENTS

-d
-d
-d
-d
-d
-d

“/etc/”
“/dev/”
“/var/”
“/sbin/”
“/usr/”
“/opt/”

/etc
/dev
/var
/sbin
/usr
/opt

/shared/etc
/shared/dev
/shared/var
/sbin
/usr
/opt

Introduction

1-15

When a client’s configuration is removed, all references to the client and it’s virtual root
directory are removed from both the dfstab and dfstab.diskless files and the
unshare(1M)command is executed to update the shared file system table.

1.4.6. Swap Space

Embedded systems generally do not have swap space. Nevertheless, some aspects of
swap space configuration do affect even embedded systems, so this section should be read
even for these users.

Normal systems have a disk partition reserved for swap space. For diskless nfs clients,
swap space is implemented using a regular file created in the client’s virtual root directory
and accessed over NFS. The size of the swap file is user-configurable.

Swap reservation space, referred to as ‘virtual swap’ space, is made up of the number of
real memory pages that may be used for user space translations, plus the amount of
secondary storage (disk) swap space available. If no secondary storage swap space is
available, then the amount of virtual swap space degenerates to the number of real mem-
ory pages available for user address space.

A virtual swap space reservation is made by decrementing the amount of available virtual
swap space. If no virtual swap space is available, then the reservation will fail, and
subsequently, either the page fault or segment create operation will not succeed. Virtual
swap reservations are made so that as real memory becomes low, the pageout and process
swap daemons can guarantee that there will be an appropriate number of user pages that
can be swapped out to secondary storage and subsequently freed, in order to maintain an
adequate level of free memory pages for new page allocations.

Even when there is no swap space configured into the kernel, the virtual swap reservations
will prevent the kernel from over committing real memory to user pages that cannot be
swapped and freed if and when the number of free real memory pages becomes low. If
these daemons did not maintain an adequate number of free memory pages for page
allocations, then applications might become blocked forever in the kernel, waiting for
their page allocation requests (or internal kernel memory page allocation requests) to
complete.

There are a number of possible swap space configurations on client systems:

1. no swap space typically, this would be a client configured in Embedded
mode

2. remote swap space client would be configured as a NFS diskless system with
the swap space accessed through the NFS subsystem

3. local disk swap space client configured in either NFS or Embedded mode, client
configured to use a local disk for swap space

When there is no swap space, or a small amount of swap space, it may be necessary to
modify the default values of certain system tunables in order to maximize system
performance and user virtual space capacities.

The following are some of the system tunables that are relevant to system swap space
management in a system with little or no secondary storage swap space.

Power Hawk Series 900 Diskless Systems Administrator’s Guide

1-16

1. Systems with no swap space should be tuned such that process swapping
does not become aggressively active before process growth is limited by
virtual swap reservations, as this will impact system performance without
providing significant amounts of additional free memory. The address
space aging interval should also be increased.

System tunables that govern the address space aging interval are:

INIT_AGEQUANTUM
MIN_AGEQUANTUM
MAX_AGEQUANTUM
LO_GROW_RATE
HI_GROW_RATE

In order to ensure longer address space aging intervals, all of these tunables
may be set to a higher than default value.

2. The GPGSLO tunable value can be decreased in order to lower the free
memory level at which process swapping will become aggressively active.

3. The DISSWAPRES tunable disables virtual swap reservations by setting the
amount of available virtual swap space to an artificially large value.

The DISSWAPRES tunable allows more user page identities/objects to be
created than what can be accommodated for in virtual swap space. Since
typically, applications do not tend to access all the pages that may
potentially be considered writable (and therefore require a virtual swap
reservation), this tunable may allow for a larger number of applications to
run simultaneously on a system by not requiring virtual swap space for
every potentially writable user page.

However, when the DISSWAPRES tunable is enabled, it becomes possible
for page allocations to block forever, since the pageout and process swap
daemons may not be able to swap out an adequate number of user pages in
order to free up pages for additional allocations. At this point, the system
will enter a state where little or no useful work is being accomplished.
Therefore, caution is advised when using the DISSWAPRES tunable.

The DISSWAPRES tunable may be useful when a fixed set of applications
and their corresponding virtual address space working sets are known to fit
into the amount of available real memory (and secondary storage swap
space, if any), even though their total virtual swap space requirements
exceed the system’s virtual swap space capacity.

Introduction

1-17

1.5. Configuring Diskless Systems

1.5.1. Loosely-Coupled System Hardware Prerequisites

A loosely-coupled configuration requires the following hardware:

• At least one VME card chassis.

• One Power Hawk Series 900 or Series 700 single board computer,
with a minimum of 128 MB of DRAM, for use as the server SBC.

• One Power Hawk Series 900 or Series 700 single board computer,
with a minimum of 128 MB of DRAM, for each client SBC.

• One SCSI 2 GB (4 GB or higher is preferred) disk drive for
PowerMAX OSTM software installation, connected to the Synergy
PSCx SCSI/PMC interface card on the server SBC.

• One supported SCSI CD-ROM device, connected to the PSCx
SCSI/PMC interface card for installation of system software on the
server SBC.

• At least one system console terminal, which may be a video display
terminal such as a Wyse 150, vt100, or comparable device connected
to Serial Port A on the server SBC. Additional system console
terminals may be attached to any client SBC's Serial Port A, for
debug purposes.

• The server SBC must be accessible from all client SBCs via an
Ethernet LAN. For Power Hawk Model 920 systems, the on-board
Galileo GT64260 Ethernet controller should be used for this connec-
tion, for Power Hawk Model 940 systems, the on-board Marvell
MV64460 Ethernet controller should be used. For Power Hawk
Series 700 systems, the on-board Symbios Ethernet controller (Sym-
bios SYM53C885) should be used for this connection.

Power Hawk Series 900 Diskless Systems Administrator’s Guide

1-18

1.5.2. Disk Space Requirements

The table below details the amount of available disk space required per client single board
computer for the virtual root partition. These values are for the default shipped
configuration. Added applications may increase disk space requirements. Values in this
table do not include swap space for the diskless system. The amount of swap space is con-
figurable, but should be at least one and one-half times the size of physical memory on the
single board computer.

A client’s virtual root directory can be generated in any disk partition on the File Server.
The /(root) and /var file systems are not recommended for use as client virtual
partitions.

1.5.3. Software Prerequisites

The following software packages must be installed on the host system prior to installing
the diskless package (prerequisite packages listed alphabetically by package name):

Client Configuration Disk Space

NFS 25 Megabytes

Embedded 15 Megabytes

Package
Name

Package Description
Package Dependencies
 (See Note)

base Base System (Release 6.0 or later)

cmds Advanced Commands lp, nsu

gte GT64260 Ethernet Driver (910/920) nsu

mve MV64460 Ethernet Driver (940) nsu

sym Symbios 53C885 Fast Ethernet Driver nsu

dfs Distributed File System Utilities inet

inet Internet Utilities nsu

lp Printer Support

ncr Internal NCR SCSI Driver

netcmds Commands Networking Extension lp, inet

nfs Network File System Utilities nsu, inet, rpc, dfs

nsu Network Support Utilities

rpc Remote Procedure Call Utilities inet

Note: All packages are dependent on base package

Introduction

1-19

1.6. Licensing Information

The system installed on the File Server carries a license for the number of processors
allowed to be booted. The license also carries a limit for the number of users allowed to
log on to the File Server. All diskless client SBCs are limited to a maximum of 2 users
each.

To print the processor and user limits set for your machine, use the -g option of the
keyadm(1M) command.

Power Hawk Series 900 Diskless Systems Administrator’s Guide

1-20

 2
Netboot System Administration

2.1. Configuration Overview. 1-1
 2.1.1. Installing a Loosely-Coupled System. 1-1
 2.1.2. Installing Additional Boards . 1-3

2.2. SBC Client Board Configuration . 1-3
2.3. Modifying an Existing Automatic Netboot Configuration. 1-12
2.4. Client Configuration . 1-13

 2.4.1. The Client Profile File . 1-13
 2.4.1.1 Required Parameters . 1-13
 2.4.1.2 Required NFS-Related Parameters . 1-14
 2.4.1.3 Hosts Tables . 1-15

 2.4.2. Configuring Clients Using netbootconfig . 1-16
 2.4.2.1 Creating and Removing a Client Configuration 1-16
 2.4.2.2 Subsystem Support . 1-17

2.5. Customizing the Basic Client Configuration . 1-18
 2.5.1. Modifying the Kernel Configuration . 1-18

 2.5.1.1 kernel.modlist.add . 1-19
 2.5.1.2 mknetbstrap . 1-19
 2.5.1.3 config utility . 1-19
 2.5.1.4 idtuneobj . 1-20

 2.5.2. Custom Configuration Files . 1-20
 2.5.2.1 S25client and K00client rc Scripts . 1-23
 2.5.2.2 memfs.inittab and inittab Tables . 1-23
 2.5.2.3 vfstab Table . 1-24
 2.5.2.4 kernel.modlist.add Table . 1-25
 2.5.2.5 memfs.files.add Table . 1-25
 2.5.2.6 vroot.files.add Table . 1-26

 2.5.3. Modifying the Client Profile Parameters . 1-28
 2.5.4. Launching Applications . 1-29

 2.5.4.1 Launching an Application for Embedded Clients 1-29
 2.5.4.2 Launching an Application for NFS Clients. 1-30

2.6. Booting and Shutdown . 1-31
 2.6.1. The Boot Image . 1-31
 2.6.2. Creating the Boot Image. 1-32

 2.6.2.1 Examples on Creating the Boot Image 1-33
 2.6.3. Net Booting . 1-33

 2.6.3.1 Netboot Using ASTRix . 1-34
 2.6.4. Shutting Down the Client . 1-35

Power Hawk Series 900 Diskless System Administrator’s Guide

2-1

2
Chapter 2Netboot System Administration

2
2
2

2.1. Configuration Overview

This is a overview of the steps that must be followed in configuring a loosely-coupled
configuration. Some of these steps are described in more detail in the sections that follow.

A loosely-coupled system consists of a File Server and one or more diskless clients which
download their private boot image, which resides on the File Server. A loosely-coupled
system uses an ethernet network connection between each diskless client and the File
Server for communication. There is no sharing of a VME bus in this configuration.

The following instructions assume that all the prerequisite hardware has been installed and
each netboot client's on-board Ethernet controller is attached to a subnet on which the File
Server system may be accessed, either directly on the same subnet, or through a gateway.
For details, see “Loosely-Coupled System Hardware Prerequisites” on page 1-17

2.1.1. Installing a Loosely-Coupled System

Follow these steps to configure a loosely-coupled system.

1. Install the File Server with the prerequisite software packages, the diskless
package and all patches. Refer to the “Software Prerequisites” on
page 1-18 and the applicable system release notes for more information.

2. On the File Server system, configure and mount file system(s) (other than
/ (root) or /var) that can be used to store the virtual root directories for
each client. If not already present, an entry for this file system must be
added to /etc/vfstab(4). An existing file system can be used, but
there must be sufficient file space to hold the client virtual root files.

The boot images for each netboot client are placed into the /tftpboot
directory by mknetbstrap(1M). Since these images tend to be large in
size, the system administrator may want to mount a sufficiently large file-
system at the /tftpboot mount point, if the File Server's / root partition
is not able to accommodate the projected client boot image disk space
requirements.

See the “Disk Space Requirements” section on page 1-18 for details of the
amount of file space required for the client virtual root directories and
/tftpboot boot images.

3. On the File Server system in the /etc/profiles directory, create a
client profile file for each netboot client.

Power Hawk Series 900 Diskless Systems Administrator’s Guide

2-2

You can use netbootconfig(1M) to print out a template of a netboot
client profile. The client profile file name must be equivalent to the client's
Ethernet hostname. For example, to create a netboot client profile for a
client with a hostname of ‘wilma’, do the following:

netbootconfig -P > /etc/profiles/wilma
vi /etc/profiles/wilma

Edit the resulting client profile file to be relevant to the specific
characteristics of the client SBC. The parameters listed in the client profile
are described in “The Client Profile File” on page 2-13. Additional
description of these parameters in the file /usr/etc/diskless.d/
profiles.conf/netboot.client.profile.README.

4. Update the /etc/hosts file on the File Server SBC with the hostnames
of all the netboot clients. The hostname(s) added to the hosts file should
match the filename(s) of the client profile file(s). The IP addresses for each
client should correspond to the IP address of the first onboard Ethernet
controller (/dev/gte0 for Series 910/920, /dev/mve0 for Series 940).

5. On the File Server system, execute netbootconfig(1M) to configure
the build environment of each diskless client to be configured. See the
“Configuring Clients Using netbootconfig” on page 2-16 for more infor-
mation.

6. On the File Server system, execute mknetbstrap(1M) to create the boot
images of each diskless client. See the “Booting and Shutdown” section on
page 2-31 section for more information.

7. On each client, connect a console terminal and power up the netboot client.
Use STAR to set the hardware clock and networking configuration,and
optionally use ASTRix to configure an ASTRix netboot startup script.Use
ASTRix to set the hardware clock, to setup the ASTRix networking con-
figuration, and to optionally configure a ASTRix netboot startup script.
See “SBC Client Board Configuration” on page 2-3 for more details.

8. On each client, either:
 - manually boot into ASTRix from STAR (if STAR is not configured to
automatically boot ASTRix), and then manually execute ASTRix tftp and
boot commands to boot the client, or

- reset or power-cycle the client board, if the client is configured to auto-
matically start up ASTRix from STAR, and to execute an ASTRix tftp boot
startup script.

See “Net Booting” for more details on booting up the client.

On the File Server system, customize the client's virtual root configuration
as needed and then run mknetbstrap(1M) to process the changes. If a
new boot image is created as a result of the changes, shutdown the client
and then reboot it. See “Booting and Shutdown” on page 2-31 for more
information.

Netboot System Administration

2-3

2.1.2. Installing Additional Boards

To add additional boards after the initial configuration, follow steps 2 through 8 described
above.

2.2. SBC Client Board Configuration

This section describes the procedure for configuring a SBC board as a client SBC in a
loosely-coupled system.

The user should also refer to the Synergy Microsystems ASTRix User Guide and the
Synergy Microsystems S.T.A.R. User Guide for additional information regarding STAR
and ASTRix commands and features.

The following steps should be followed in order to set up a board as a client SBC:

1. Connect a terminal to Serial UART Port A/Console if one is not already
connected.

2. The next step is to update some of the STAR configuration parameters.
Power-on or reset the board and watch for the resulting input prompt.
 If the:

STAR0>
prompt appears, then skip the rest of this step and go to step #3. If STAR is
automatically setup to boot ASTRix, then following prompt will eventually
appear on your screen (without any user intervention):

*
To return back to STAR from ASTRix, enter the following command at the
ASTRix prompt:

*star
and then enter <cr>. The system will reboot itself into STAR without start-
ing up ASTRix.

At this point you should be running STAR, and sitting at the:
STAR0>

prompt.

This step describes how to enable the automatic startup of ASTRix by
STAR. To enable the automatic startup of ASTRix, use the STAR config
command.

An example of the entire output of the config command is shown below:

STAR0> config
Enter a new value or a return to skip, '-' to back up, or '.' to exit:
**** BOOT Configs (reset when defaults set) ****
Port A baudrate: 9600 =
Port B baudrate: 9600 =
Share console port: Y =

Power Hawk Series 900 Diskless Systems Administrator’s Guide

2-4

PCI Enum powerup delay (milliseconds): 1007 =
Enable quiet boot mode: N =
Enable ASTRix autoboot: N =
Enable "post" script: Y =
Skip PCI Enumeration: N =
Skip PMC Configuration: N =
L1 Miss Queue Depth (1,3,6): 3 =
L3 Size L3 (1, 2 MB): 2 =
Enable Built-in self tests:

 1= at powerup only
 2= at all hard resets
 3= at all resets 0 =

**** USER Configs (unchanged when defaults are set) ****
Board serial number: 0x1301892 =
Target IP address: 129.134.32.80 =
Host IP address: 129.134.32.81 =
Print Boot Banner: Y =
Init mem EDC: N =
Legacy Mode Input: N =
Enable ChangeLog Message: Y =
PCI 0 Start Addr (ex. 0x80000000): 0x80000000 =
PCI 0 Size (ex. 0x40000000 (1GB)): 0x30000000 =
PCI 1 Start Addr (ex. 0xB0000000): 0xB0000000 =
PCI 1 Size (ex. 0x10000000 (256MB)): 0x40000000 =
Hit Enter to finish: =
STAR0>

3. Hit the <cr> key until the “Enable ASTRix autoboot:” prompt appears, and
then enter “Y <cr>”. Then continue entering <cr> until the

STAR0>
prompt reappears.

NOTE

Once the autoboot ASTRix parameter is enabled, it is still possi-
ble to get back into STAR without immediately going into
ASTRix. To get back into STAR from ASTRix, simply enter the
following command while running ASTRix:

star <cr>

This command will reboot the board and return to STAR without
autobooting ASTRix, regardless of the current setting of the
“Enable ASTRix autoboot:” parameter.

Additional parameters in the STAR 'config' command are listed below:

Netboot System Administration

2-5

- The “Port A baudrate” parameter should be set to “9600”, and it is recom-
mended that you also set the “Port B baudrate” to “9600”, especially if you
plan to hook up a second terminal to Port B.

- The “Share console port” parameter MUST be set to “Y”.

- It is highly recommended that you do NOT modify the “Board serial num-
ber” parameter. This parameter is used to create unique Ethernet hardware
addresses for all of the on-board Ethernet controllers.

- The PCI 0 and 1 Memory Space config command parameters should beset
to the values shown above. If they are not setup with these values, then use
the STAR config command to set them to the values shown above.

After you have successfully netbooted the client, you may want to change
the PCI Memory Space layout from the above default values.

Please consult the Power Hawk Series 900 Console Reference Manual
(Pubs No. 0830060) section "PCI Memory Space Configuration", for more
information on this subject.

- It is highly recommended that you do NOT set the “Enable quiet boot
mode:” to “Y”. This parameter disables all STAR output to the console ter-
minal. However, if you do happen to enable quiet mode by accident, then
enter the following command to disable quiet mode. The output of this
command will NOT be echoed to the terminal:

serialok=1 <cr>

After this command has been entered, then execute the config command
again and disable the “Enable quiet boot mode:” parameter.

- Even if you wish to enable ECC memory error correction and detection,
leave the “Init mem EDC:” parameter set to “N”. The enabling of ECC will
be accomplished through the use of a post script, and is described in a fol-
lowing step in this section.

4. The netboot client's hardware clock must be updated to match the date on
the system designated as the File Server. Use the STAR 'date' command to
display and/or set the current date and time. To display the date/time val-
ues, enter the date command with no arguments:

STAR0> date
 X: 2/10/2006 TUE 15:44:38 GMT-0

To set the date and time to a value that matches the File Server's date and
time (displayed via a date(1) command when executed on the File Server),
use the STAR date command, where the new date and time values are spec-
ified in the following format:

date YYMMDD HHMMSS tz

(The “help date” STAR command will output more information about the
date command.)

Power Hawk Series 900 Diskless Systems Administrator’s Guide

2-6

It is best to use a 'tz' (timezone) value of 0 (GMT timezone) and adjust the
hour field manually to adjust the hour to fit your own local timezone.

For example, to set the date to March 14, 2006 and the time to 1:15:00 P.M.
in the EDT timezone, enter the following:

 STAR0> date 060314 181500
 X: 3/14/2006 TUE 18:15:00 GMT-0

Note

You must add 4 hours to the above HH field in order to enter the
correct GMT time that corresponds to the current EST timezone
with daylight savings time in affect (add 5 hours if daylight sav-
ings time is not in currently active).

5. This step describes how to configure the IP address networking parameters
that will be used by the onboard Ethernet controller when executing under
STAR and ASTRix. To setup the networking parameters, use the STAR
config command again:

STAR0> config
Enter <cr> until the “Target IP address” prompt appears.

This parameter should be set to the IP address of this client SBC. This IP
address should be the onboard Ethernet address of this client SBC that is
already in the File Server SBC's /etc/hosts file. Enter this IP address, fol-
lowed by a <cr>.

The next config parameter, “Host IP address” should be set to the IP
address of the File Server for this client SBC. This IP address should be the
same IP address of the File Server that is located in the File Server's
/etc/hosts file. Enter the appropriate IP address followed by a <cr>. The
address contained in the “Host IP address” parameter will be the $HOST
environment variable that is used later on when running under ASTRix.

NOTE

If the client and server SBC are not connected to the same net-
work and the client accesses the server SBC through a gateway,
then this routing issue is handled under ASTRix, which is dis-
cussed later on in step 10 below.

6. You may optionally setup the client SBC so that ECC error correction and
detection is enabled in the SDRAM memory. If you do NOT wish to enable
ECC for the SDRAM memory, then set the

Enable “post” script:
parameter of the STAR config command to “N”, and proceed to step 8.

The enabling of ECC checking in SDRAM is accomplished through the
use of post script commands. The execution of post script commands may

Netboot System Administration

2-7

be enabled when running STAR, but the creation and setup of these post
scripts is accomplished while running under ASTRix.

So at this point, simply enable post script execution using the STAR config
command. Enter <cr> until the following parameter appears:

Enable “post” script:
and then set this parameter to “Y”. The creation of the proper post scripts
will be discussed in step 8.

7. The remaining setup of the client is accomplished while running ASTRix.
Since STAR configuration parameters have changed, reset the board so that
the new STAR parameters will now take affect.
Use the STAR 'reboot' command to reset the board:

STAR0> reboot <cr>

The board should reset itself, and STAR should automatically boot into
ASTRix:

Y: CPU 1 standing by.
This is the example NVRAM startup script

Synergy Microsystems ASTRix Rev: 1.01.06 Jan 29 2003 19:42:00

*

The “*” above is the default ASTRix command prompt.

NOTE

Some of the following steps discuss creating or modifying files
that are located in the /nvram directory when running under
ASTRix. The /nvram directory is created by ASTRix when ever it
is started up, and the contents of the NVRAM filesystem are cop-
ied into this directory. Users can save up to 24KB of files in the
NVRAM filesystem. Files placed in the /nvram directory are auto-
matically copied to the NVRAM filesystem whenever the “boot”,
“reboot”, “star” or “halt” commands are issued. Thus, the files in
/nvram that are saved in the NVRAM filesystem are preserved
across resets and power shut down, allowing users to retain files
from one boot to the next.

8. If you do NOT wish to enable ECC checking in SDRAM memory, and you
have already disabled post script execution in step 6 above, then skip ahead
to step 9.

The rest of the ECC configuration involves setting up two post scripts. The
/nvram/post script is executed by STAR after reset or power-on, and the
/nvram/post05 script is executed at the end of the ASTRix 'boot 5' com-
mand sequence just before the client netboot image execution begins.

To create the /nvram/post script, issue the following ASTRix commands:
* cd /nvram <cr>
* rm post <cr> (ignore any error messages if this file doesn't

Power Hawk Series 900 Diskless Systems Administrator’s Guide

2-8

exist)
* vi post <cr>

Add the following lines to the post script file, using the vi editor:

 if (cpuid == 0) {
 imedc 0 0 1;
}

Use the “:wq” vi command to write the file and exit vi. You may then:
* cat /nvram/post <cr>

to check that the file contents are correct. If the contents are not correct,
then use “vi post” to correct the contents.

The above post script will cause CPU 0 to initialize memory and enable
ECC checking in SDRAM when ever STAR begins executing after a reset
or power-on.

To create the post script that will be executed before the client netboot
image is executed, issue the following commands:

* cd /nvram <cr>
* rm post05 <cr> (ignore any error messages if this file doesn't

exist)
* vi post05 <cr>

Then add the following lines to the post05 script file, using the vi editor:

if (cpuid == 0) {
 serialok=1;
 printf(“\nEnabling ECC\n”);
 serialok=0;
 eecc;
}

Use the “:wq” vi command to write the file and exit vi. You may then:
* cat /nvram/post05 <cr>

to check that the file contents are correct. If the contents are not correct,
then use “vi post05” to correct the contents of the post file.

When the client boot image is booted, the post05 script above will output
the “Enabling ECC” message to the console terminal, and will then re-
enable ECC checking in SDRAM.

9. This step will setup an ASTRix boot command configuration slot for boot-
ing the client netboot image. This step is required for both manual and
automatic booting.

To setup an ASTRix boot command “configuration” slot number that may
always be used for booting the client netboot image:

* boot 5 -n /<client>.bstrap -s -c

The command above will setup the booting of the client's netboot image,
where <client> should be replaced by the actual hostname of the client. For

Netboot System Administration

2-9

example, if this client's hostname is wilma, then the following boot com-
mand line to setup configuration slot number 5 would be:

* boot 5 -n /wilma.bstrap -s -c

The -s option sets the configuration without actually executing the boot
operation, and the -c option clears the command line, which not used by
PowerMAX OS client netboot images.

NOTE
The hostname of this loosely-coupled client MUST be equal to the name of
the client profile file that is located on the File Server SBC in the /etc/pro-
files directory.

10. This step will configure the board for either manual or automatic down-
loading and booting of the client.

If you wish to always manually boot the client, then go to 'b)' below.

a) To have ASTRix automatically attempt to boot the client, the
/nvram/startup script must be installed. To create a new netboot startup
script, you may either manually type in the entire startup script, or you may
start with a startup script file template so that you only need to modify just
a few lines of the already existing template.

If you wish to use the startup script template file, then you need to first
download the template version of the startup script from the file server
SBC:

On the file server SBC, issue the following command as root:

netbootconfig -P astrix > /tftpboot/astrix

Then on the client SBC console terminal, issue the following ASTRix com-
mands:

* cd / <cr>
* tftp -g -r astrix $HOST <cr>
* cp astrix /nvram/startup <cr>
* cd /nvram <cr>
* vi startup <cr>

At this point, simply modify the “CLIENT=” line using vi, so that
CLIENT is set to the hostname of this client. For example, if wilma is the
hostname of this client, then change this line to:

CLIENT=wilma

The only other 2 lines that MAY need to be uncommented and modified are
the routing entry lines. Only uncomment and setup these 2 lines if the client
accesses the file server SBC through a gateway.

For example, if the file server's network is 129.148.42.0 and it is accessed
locally by the client through the gateway 129.148.43.196, with the client
residing on the 129.148.43.0 network, then the routing lines in the startup
script should be uncommented and modified to be:

Power Hawk Series 900 Diskless Systems Administrator’s Guide

2-10

route add -net 129.148.42.0 gw 129.148.43.196 \
netmask 255.255.255.0 dev eth0

To instead create the startup file from scratch instead of using the template
file above, issue the following ASTRix commands on the client:

* cd /nvram <cr>
* rm startup <cr> (ignore any errors if this file didn't exist)
* vi startup <cr>

Then add the following lines to the startup file using the vi editor (the com-
mented out route lines are not always necessary - see the comments
below):

CLIENT=
route add -net xxx.xxx.xxx.xxx gw xxx.xxx.xxx.xxx \
netmask 255.255.xxx.xxx dev eth0
while [1]
do

echo “tftp -g -r /$CLIENT.bstrap $HOST”
tftp -g -r /$CLIENT.bstrap $HOST
case $? in

0) break;
*) sleep 5
echo “retrying...”;;

esac
done
echo “Booting client $CLIENT netboot image...”
sync
boot 5

Modify the “CLIENT=” line above using vi, so that CLIENT is set to the
hostname of this client. For example, if wilma is the hostname of this cli-
ent, then change this line to:

CLIENT=wilma

Enter “:wq” in vi to write the /nvram/startup file and exit the vi editor.

The two “route” lines in the above startup script above should only be used
when the client accesses the file server through a gateway.

 For example, if the file server's network is 129.148.42.0, and it is accessed
locally through the gateway 129.148.43.196, with the client residing on the
129.148.43.0 network, then the above routing lines in the startup script
should be uncommented and modified to be:

route add -net 129.148.42.0 gw 129.148.43.196 \
netmask 255.255.255.0 dev eth0

If the client and file server reside on the same network, then comment-out
or leave these lines out of the startup file.

Netboot System Administration

2-11

The tftp “while” loop that downloads the client's netboot image serves two
purposes. The first purpose of the loop is to continually retry the tftp com-
mand should any errors occur during the transfer while the file server SBC
is up and running. The second purpose is to accommodate situations when
the client and file server SBCs are in the same rack and it is desirable to
have the netboot clients boot themselves up after a power cycle sequence
without the need for any additional manual resets. In order to ensure that a
client can successfully download its boot image via tftp, the file server sys-
tem MUST be completely booted into run level 3 before attempting to net-
boot any clients. Thus, the tftp retry loop gives the client the ability to
actively wait for the file server to boot up and enter run level 3.

The execution of the startup script may be manually aborted by entering
“<Ctrl>c” at the console terminal, should there be a need to do so. Once
aborted, the startup script may be manually started by entering:

* /nvram/startup <cr>

The startup script file uses boot configuration number 5 to reset the board
and begin execution of the client's netboot image; therefore, boot configu-
ration number 5 MUST have been previously setup in step #9 above.

At this point, the ASTRix netboot client configuration setup has been com-
pleted. Once the file server has created this client's netboot image, entry the
following command to reboot the system and test the new client's netboot
setup:

* reboot

b) If you wish to always manually boot the client from ASTRix, then take
the following steps:

If this board was previously setup with a /nvram/startup script for
automatic netbooting, then remove this /nvram/startup file so that auto-
matic netbooting will no longer occur:

* rm /nvram/startup <cr>

The above command only needs to be issued once, and only if the board
was previously setup for automatic netbooting of the client.

If the client accesses the file server through a gateway, then enter the fol-
lowing ASTRix command. Otherwise, skip this command:

* route add -net xxx.xxx.xxx.xxx gw xxx.xxx.xxx.xxx \
netmask xxx.xxx.xxx.xxx dev eth0

Replace the above 'net' and 'gw' and 'netmask' IP addresses with the appro-
priate values. The 'net' IP address should be the remote network that the file
server resides on, and the 'gw' IP address should be the local gateway sys-
tem that provides the client with access to the remote network. 'netmask' is
typically set to a value of 255.255.255.0 for class 3 IP addressing.

Power Hawk Series 900 Diskless Systems Administrator’s Guide

2-12

To download the client netboot image from the file server, enter the follow-
ing command:

* tftp -g -r /<client>.bstrap <cr>

where <client> should be replaced by the actual hostname of the client. If
the tftp command fails, then you may re-enter the tftp command to try the
download again.

Lastly, to boot the client, enter the following ASTRix commands:

* sync <cr>
* boot 5 <cr>

Note

Boot configuration slot number 5 MUST have been previously
setup as specified in step #9. The file server SBC should be at run
level 3 before you attempt to boot the netboot client image.

2.3. Modifying an Existing Automatic Netboot Configuration

If you have setup STAR/ASTRix to automatically boot the client and at some point you
wish to modify this configuration, then shutdown the client if it is currently running
PowerMAX OS, or otherwise reset or power-cycle the client board, and then:

issue a <Ctrl>c from the console keyboard when the:

tftp -g -r /<client>.bstrap $HOST

message appears under ASTRix. This will abort the file transfer from the file server. At
this point, you may make modifications to the ASTRix post scripts and/or the ASTRix
startup script and then either issue:

 reboot

if you wish to reboot the client without any STAR configuration changes, or issue:

 star

if you wish to enter STAR and modify one or more of the STAR ‘config’ parameters. Once
the STAR ‘config’ parameters have been modified, you may enter:

STAR0> reboot <cr>

to reboot the board and to have the STAR ‘config’ parameters take affect and have STAR
automatically boot ASTRix.

Netboot System Administration

2-13

2.4. Client Configuration

This section describes the steps using netbootconfig(1M), for creating the
environment on the File Server that are necessary for supporting loosely-coupled netboot
diskless clients. Major topics described are:

• client profile files

• Client Configuration Using netbootconfig (page 2-16)

Information about each client is specified in a client profile file. The system administrator
creates and updates these profile files for each netboot client, and then invokes
netbootconfig(1M) to create, on the File Server system, the file environment
necessary to support a private virtual root directory and a private boot image for each
client.

2.4.1. The Client Profile File

For each client SBC installed in the cluster, a client profile file must be created in the
/etc/profiles directory. This section explains the various parameters that are
contained in a client profile file. All of the parameters located in a client profile file are
specific to that one client SBC.

You should use netbootconfig(1M) to print out a starting template of a client profile
with the “-P’ option (which defaults to -P client.

So for example, to create a client profile for a client with a hostname of ‘wilma‘, do the
following:

netbootconfig -P > /etc/profiles/wilma
vi /etc/profiles/wilma

You must then update the resulting client profile file, modifying the parameter values in
the file to fit the specific characteristics of that loosely-coupled netboot client SBC.

The client profile file is loaded by the loosely-coupled tools and various start-up scripts.
After the initial client is configured with netbootconfig(1M), this file must not be
modified.

Each required parameter must be assigned a value in the ksh-loadable format
<parameter=value>. No spaces are allowed on either side of the equal sign.
Parameters specified as optional may be left blank <parameter=>.

An explanation of each of the parameters follows.

2.4.1.1. Required Parameters

The following client profile parameters are required for all loosely-coupled netboot
clients.

Power Hawk Series 900 Diskless Systems Administrator’s Guide

2-14

VROOT=

This parameter is the directory path name under which the client's virtual root directory
will be created. The directory will be created if it doesn't already exist.

Example:

VROOT=/home/vroots/wilma

SYS_CONFIG=

This parameter specifies the client configuration to be either NFS or embedded. An NFS
client is configured with networking, executes in multi-user mode and has the ability to
swap memory pages to a remote swap area on the File Server. An embedded client does
not have networking support, cannot swap out memory pages and runs in single user
mode. This parameter should be set to either ‘nfs’ or ‘emb’.

Example:

SYS_CONFIG=nfs

BOOT_IFACE=net

Specifies the networking interface used for loading a diskless client's boot image. This
parameter is set to ‘net’ by default, and the user should not modify this setting.

2.4.1.2. Required NFS-Related Parameters

The following netboot client profile parameters are required only if the client is a NFS
client (SYS_CONFIG=nfs). The values in these parameters are ignored if the client is an
embedded client (SYS_CONFIG=emb).

AUTOBOOT=

This parameter specifies whether this client should be shutdown whenever the File Server
is shutdown. The value for this parameter should be either ‘y’ or ‘n’. If set to ‘y’, then the
client will be shutdown by the File Server when ever the File Server is shutting itself
down.

Example:

AUTOBOOT=y

NOTE When this parameter is set to ‘y’, then a hidden file named.autoboot will
be created by netbootconfig(1M) under this client's virtual root directory
(the VROOT parameter path). This file will serve to indicate that the client
SBC should be automatically shutdown by the File Server SBC whenever the
File Server is shutdown. This.autoboot file may be manually removed or
created in the client's virtual root directory, as needed.

Netboot System Administration

2-15

SWAP_SIZE=

This parameter is the size, in megabytes, of remote swap space. Swap space is
implemented as a file named <virtual_root>/dev/swap_file, which resides on
the File Server in the client's virtual root directory, and which is accessed over NFS. The
recommended value for this parameter is 1.5 times the size of the amount of physical
memory located on the client's SBC.

Example:

SWAP_SIZE=192

ETHER_SUBNETMASK=

This parameter specifies the ethernet interface subnetmask in decimal dot notation
(xxx.xxx.xxx.xxx).

Example:

ETHERNET_SUBNETMASK=255.255.255.0

GATEWAY_IPADDR=

The IP address, in decimal dot notation (xxx.xxx.xxx.xxx), of a gateway system that
provides this client with access to the File Server. This parameter is optional, and it is only
necessary to setup this parameter when the File Server and this netboot client do not reside
on the same physical subnetwork.

Example:

GATEWAY_IPADDR=129.158.64.40

2.4.1.3. Hosts Tables

For each loosely-coupled client profile file created in the /etc/profiles directory, an
entry for that client's onboard ethernet networking interface must be added to the systems
hosts(4) file, /etc/hosts.

The client hostname added to the /etc/hosts file must match the client profile
f i l ename o f the c l i en t . For exam ple , i f a new c l i en t p rof i l e f i le nam ed
/etc/profiles/fred has just been created, then an entry with a hostname of ‘fred’
must be added to the /etc/hosts file.

The corresponding IP address for each new /etc/hosts entry should be chosen based
on local rules for the ethernet subnet. This IP address should match the value entered for
this client SBC under the STAR config command's “Target IP address” parameter, as
described under step #5 in the “SBC Client Board Configuration” section.

Power Hawk Series 900 Diskless Systems Administrator’s Guide

2-16

2.4.2. Configuring Clients Using netbootconfig

The netbootconfig(1M) tool is used to create, remove or update one or more diskless
client configurations. For more details on running this tool, see the manual page available
online.

Netbootconfig(1M) gathers information from the client profile files and stores this
information in a ksh-loadable file, named.client_profile, under the client’s virtual
root directory. The.client_profile is used by netbootconfig(1M), by other
configuration tools and by the client initialization process during system startup. It is
accessible on the client from the path /.client_profile.

Netbootconfig(1M) appends a process progress report and run-time errors to the
client-private log file, /etc/profiles/<client_hostname>.log, on the File
Server, or if invoked with the -t option, to stdout.

With each invocation of the tool, an option stating the mode of execution must be
specified. The modes are create client (-C), remove client (-R) and update client (-U).

2.4.2.1. Creating and Removing a Client Configuration

When creating new client configurations, the client profile parameters must already be set
up in the /etc/profiles client profile files (see “The Client Profile File” on page 2-
13) before using netbootconfig(1M) to create the new client configurations. The
/etc/hosts file should also already contain the appropriate entries for the new netboot
clients (see “Hosts Tables” on page 2-15 for more details).

By default, when run in create mode (-C option), netbootconfig(1M) performs the
following tasks:

- Populates a client-private virtual root directory.

- Modifies client-private configuration files in the virtual root.

- Creates the <virtual_rootpath>/.client_profile

- Modifies the dfstab(4C) table and executes the shareall(1M) com-
mand to give the client permission to access, via NFS, its virtual root direc-
tory and system files that reside on the File Server.

- Creates the client-private custom directory -
/etc/clients/<client_hostname>.net/custom.conf, where
the <client_hostname> is equal to the name of the client profile file.

For example, if a client's client profile filename is ‘fred’, then the client's
custom directory would be:

/etc/clients/fred.net/custom.conf

By default, when run in remove mode (-R option), netbootconfig(1M) performs the
following tasks:

Netboot System Administration

2-17

- Removes the virtual root directory.

- Removes client's name from the dfstab(4C) tables and executes an
unshare(1M) of the virtual root directory.

- Removes the client-private log file -
/etc/profiles/<client_hostname>.log.

- Removes the client-private custom directory -
/etc/clients/<client_hostname>.net/custom.conf.

The update option (-U) indicates that the client's environment already exists and, by
default, nothing is done. The task to be performed must be indicated by specifying
additional options. For example, one might update the files under the virtual root
directory. Some examples are shown below.

Example 1.

Create the diskless client configurations for all clients that have netboot client pro-
file files in the /etc/profiles directory. Process at most three clients at the
same time.

netbootconfig -C -p3 all

Example 2.

Remove the client virtual root configuration of netboot client ‘rosie’.
Send the output to stdout instead of to the client's log file.

netbootconfig -R -t rosie

Example 3.

Update the virtual root directories of netboot clients ‘fred’ and ‘barney’. Process one
client at a time.

netbootconfig -U -v -p 1 fred barney

2.4.2.2. Subsystem Support

A subsystem is a set of software functionality (package) that is optionally installed on the
File Server during system installation or via the pkgadd(1M) utility. Additional
installation steps are sometimes required to make the functionality of a package usable on
a diskless client.

Subsystem support is added to a diskless client configuration via netbootconfig(1M)
options, when invoked in either create or update mode. Subsystem support is added to a
client configuration via the -a option and removed via the -r option. For a list of the
current subsystems supported see the netbootconfig(1M) manual page or invoke
netbootconfig(1M) with the help option (-h).

Power Hawk Series 900 Diskless Systems Administrator’s Guide

2-18

If the corresponding package software was added on the File Server after the client's
virtual root was created, you must first bring the client's virtual root directory up to date by
using the -v option of netbootconfig(1M) before adding subsystem support.

Example 1:

Create netboot client ‘wilma's’ configuration and also add support for the RCFBS
subsystem:

netbootconfig -C -a RCFBS wilma

Example 2:

Remove support for the RCFBS subsystem from netboot clients ‘wilma’ and ‘fred’:

netbootconfig -U -r RCFBS wilma fred

2.5. Customizing the Basic Client Configuration

This section contains information on the following major topics:

• Modifying the Kernel Configuration (page 2-18)

• Custom Configuration Files (page 2-20)

• Modifying the Client Profile Parameters (page 2-28)

• Launching Applications (page 2-29)

• Launching an Application (Embedded Clients) (page 2-29)

• Launching an Application (NFS clients) (page 2-30)

2.5.1. Modifying the Kernel Configuration

A diskless client’s kernel configuration directory is resident on the File Server and is a part
of the client’s virtual root partition. Initially, it is a copy of the File Server’s /etc/conf
directory. The kernel object modules are symbolically linked to the File Server’s kernel
object modules to conserve disk space.

By default, a client’s kernel is configured with a minimum set of drivers to support the
chosen client configuration. The set of drivers configured by default for an NFS client and
for an embedded configuration are lis ted in modlist.nfs.netboot and
modlist.emb.netboot r e spec t i ve l y, u nde r t h e d i r ec to ry pa th
/usr/etc/diskless.d/sys.conf/kernel.d. These template files should not be
modified.

For diskless clients, only one copy of the unix file (the kernel object file) is kept under the
virtual root. When a new kernel is built, the current unix file is over-written. System
diagnostic and debugging tools, such as crash(1M) and hwstat(1M), require access
to the unix file that matches the currently running system. Therefore, if the kernel is being

Netboot System Administration

2-19

modified while the client system is running and the client is not going to be immediately
rebooted with the new kernel, it is recommended that the current unix file be saved.

Modifications to a client’s kernel configuration can be accomplished in various ways. All
the commands referenced below should be executed on the file server system.

1. Additional kernel object modules can be automatically configured and a
new kerne l bu i l t by spec i fy ing the modules in thekernel.
modlist.add custom file and then invoking mknetbstrap(1M). The
advantage of this method is that the client’s kernel configuration is
recorded in a file that is utilized by mknetbstrap(1M). This allows the
kernel to be easily re-created if there is a need to remove and recreate the
client configuration.

2. Kernel modules may be manually configured or deconfigured using
options to mknetbstrap(1M).

3. All kernel configuration can be done using the config(1M) utility and
then rebuilding the unix kernel.

4. The idtuneobj(1M) utility may be used to directly modify certain
kernel tunables in the specified unix kernel without having to rebuild the
unix kernel.

2.5.1.1. kernel.modlist.add

The kernel.modlist.add custom table is used by the boot image creating tool,
mknetbstrap(1M) for adding user-defined extensions to the standard kernel
configuration of a client system. When mknetbstrap(1M) is run, it compares the
modification date of this file with that of the unix kernel. If mknetbstrap(1M) finds
the file to be newer than the unix kernel, it will automatically configure the modules listed
in the file and rebuild a new kernel and boot image. This file may be used to change the
kernel configuration of one client or all the clients. For more information about this table,
see “Custom Configuration Files” on page 2-20.

2.5.1.2. mknetbstrap

Kernel modules may be configured or deconfigured via the -k opt ion of
mknetbstrap(1M). A new kernel and boot image is then automatically created. For
more information about mknetbstrap(1M), see the online manual page.

2.5.1.3. config utility

The config(1M) tool, may be used to modify a client’s kernel environment. It can be
used to enable additional kernel modules, configure adapter modules, modify kernel
tunables, or build a kernel. You must use the -r option to specify the root of the client’s
kernel configuration directory.

If you do not specify the -r option, you will modify the File Server’s kernel configuration
instead of the client’s. For example, if the virtual root directory for client rosie was created
under /vroots/rosie, then invoke config(1M) as follows:

Power Hawk Series 900 Diskless Systems Administrator’s Guide

2-20

config -r /vroots/rosie

After making changes using config(1M), a new kernel and boot image must be built.
There are two ways to build a new boot image:

1. Use the Rebuild/Static menu from within config(1M) to build a new
unix kernel and then invoke mknetbstrap(1M). mknetbstrap(1M)
will find the boot image out-of-date compared to the newly built unix file
and will automatically build a new boot image.

2. Use mknetbstrap(1M) and specify “unix” on the rebuild option (-r).

2.5.1.4. idtuneobj

In situations where only kernel tunables need to be modified for an already built host
and/or client kernel(s), it is possible to directly modify certain kernel tunable values in a
client and/or host unix object files without the need for rebuilding the kernel.

The idtuneobj(1M) utility may be used to directly modify certain kernel tunables in
the specified unix or Dynamically Linked Module (DLM) object files.

The tunables that idtuneobj(1M) supports are contained in the /usr/lib
/idtuneobj/tune_database file and can be listed using the -l option of
idtuneobj(1M).

The idtuneobj(1M) utility can be used interactively, or it can process an ASCII
command file that the user may create and specify.

Although the unix kernel need not be rebuilt, the tunable should be modified in the client’s
kernel configuration (see the “config utility” section above) to avoid losing the update the
next time a unix kernel is rebuilt.

Refer to the idtuneobj(1M) online man page for additional information.

2.5.2. Custom Configuration Files

The files installed under the /usr/etc/diskless.d/cluster.conf/
custom.conf directory may be used to customize a diskless client system
configuration.

In some cases a client’s configuration on the File Server may need to be removed and re-
created. This may be due to file corruption in the client’s virtual root directory or because
of changes needed to a client’s configuration. In such cases, the client configuration
described by these files may be saved and used again when the client configuration is re-
created. The -s option of netbootconfig(1M) must be specified when the client
configuration is being removed to prevent these files from being deleted.

The custom files listed below and described in-depth later in this section, are initially
ins ta l l ed under the ‘nfs’ and ‘emb’ d i r ec tor ies unde r the /usr/etc/
diskless.d/cluster.conf/custom.conf directory. Some of these files are
installed as empty templates, while others contain the entries needed to generate the basic
diskless system configuration. The files used for client customizing include:

Netboot System Administration

2-21

K00client to execute commands during system start-up

S25client to execute commands during system shutdown

memfs.inittab to modify system initialization and shutdown

inittab to modify system initialization and shutdown
(nfs clients only)

vfstab to automatically mount file systems
(nfs clients only)

kernel.modlist.add to configure additional modules into the unix kernel

memfs.files.add to add files to the memfs / (root) file system

vroot.files.add to make a copy of specific non-system files in the client’s
virtual root directory (nfs clients only)

When a client is configured using netbootconfig(1M), a directory is created
specifically for that client under the /etc/clients directory. The client's custom
configuration files are installed under this client's custom.conf directory, /etc
/clients/<client_dir>/custom.conf, and are initially linked to the files in the
cluster's custom.conf directory - /usr/etc/diskless.d/cluster.conf
/custom.conf/nfs|emb.

When the client is a netboot client, then the name of the <client_dir> will be of the
format:

<client_profile_filename>.net

So for example, if the client profile file named ‘fred’ is for a netbooted client, then the
corresponding private client directory name will be:

/etc/clients/fred.net/custom.conf

The files in these client-private directories are initially shared with the other embedded or
nfs clients; therefore a change to one of these files will affect all the clients in the loosely-
coupled system.

NOTE

Please note that if the File Server is a Power Hawk Series 700 sys-
tem and it is also supporting Series 700 closely-coupled clients,
then changes to the shared custom.conf files also affect the File
Server's closely-coupled clients as well as the File Server's
loosely-coupled clients. See the Power Hawk Series 700 Diskless
Systems Administrator's Guide for more details on closely-cou-
pled clients.

Under each client's private custom.conf directory two commands, mkprivate and
mkshared, are available to change the state of a custom file from being shared to being
private. Before creating a new version, mkshared will save the current version to a file

Power Hawk Series 900 Diskless Systems Administrator’s Guide

2-22

named <customfile>.old, mkprivate will move the current version to a file named
<customfile>.linked.

 To make a change that is private to a client:

1. verify that the custom file is NOT symbolically linked

cd /etc/clients/<client>.net/custom.conf
ls -l <customfile>

2. if the file is currently symbolically linked, first break the link

#./mkprivate <customfile>

3. verify that the file is a regular file and edit the file

ls -l <customfile>
vi <customfile>

To make a change that will affect all the diskless clients configured to share this custom
file:

1. Make the changes to the shared file (type is either nfs or emb):

vi /etc/clients/cluster.conf/custom.conf/<type> \
/<customfile>

2. For each client to share these changes:

a. Verify that the custom file is symbolically linked to the file edited
above:

cd /etc/clients/<client>.net/custom.conf
ls -l <customfile>

b. If the file is not currently symbolically linked, then re-link it:

 #./mkshared <customfile>

c. Verify that the file is now symbolically linked:

 # ls -l <customfile>

For example, to make private changes to the K00client script for a netboot client
named ‘wilma’:

cd /etc/clients/wilma.net/custom.conf
./mkprivate K00client
vi K00client

Changes to the customization files are processed the next time the boot image generating
utility, mknetbstrap(1M), is invoked. If mknetbstrap(1M) finds that a
customization file is out-of-date compared to a file or boot image component, it will
implement the changes indicated. If applicable (some changes do not affect the boot
image), the boot image component will be rebuilt and a new boot image will be generated.

The customization files are described below in terms of their functionality.

Netboot System Administration

2-23

2.5.2.1. S25client and K00client rc Scripts

Commands added to these rc scripts will be executed during system initialization and
shutdown. The scripts must be written in the Bourne Shell (sh(1)) command language.

These scripts are available to both NFS and embedded type client configurations. Since
embedded configurations run in init level 1 and NFS configurations run in init
level 3, the start-up script is executed from a different rc level directory path
depending on the client configuration.

Any changes to these scripts are processed the next time the mknetbstrap(1M) utility
is invoked on the File Server. For embedded clients, a new memfs.cpio image and a
new boot image is generated. An embedded client must be rebooted using the new boot
image in order for these changes to take effect.

For NFS clients, the modified scripts will be copied into the client’s virtual root and are
accessed by the client during the boot process via NFS. Therefore, the boot image does not
need to be rebuilt for an NFS client and the changes will take effect the next time the
system is booted or shutdown.

These scripts may be updated in one of the two subdirectories (nfs or emb) under the
/usr/etc/diskless.d/cluster.conf/custom.conf directory so that the
changes apply globally to all clients. If the customizing is to be applied to a specific client,
t h e cu s to m iz ed rc f i l e s h o u l d b e c r e a t e d in th e /etc/clients/
<client_profile_filename>.net/custom.conf directory. If there is already
an existing shared customization file, and those customizations should also be applied to
this client, then a private copy of the shared rc file should be created with the
mkprivate tool script in the clients’s custom.conf directory and edited there.

K00client Script is executed during system shutdown. It is executed on the
client from the path /etc/rc0.d/K00client. By default this
file is empty.

S25client Script is executed during system start-up. It is executed on a client
c o n f i g u r e d wi th N FS s u p p o r t f r o m t h e p a th
/etc/rc3.d/S25client. For embedded configurations, it is
executed from /etc/rc1.d/S25client. By default this file is
empty.

2.5.2.2. memfs.inittab and inittab Tables

These tables are used to initiate execution of programs on the client system. Programs
listed in these files are dispatched by the init process according to the init level
specified in the table entry. When the system initialization process progresses to a
particular init level the programs specified to run at that level are initiated. It should be
noted that embedded clients can only execute at init level 1, since an embedded
client never proceeds beyond init level 1. NFS clients can execute at init levels
1, 2 or 3. Init level 0 is used for shutting down the system. See the online man
page for inittab(4) for more information on init levels and for information on
modifying this table.

The memfs.inittab table is a part of the memory-based file system, which is a
component of the boot image. Inside the boot image, the files to be installed in the
memory-based fi le system are stored as a compressed cpio fi le. When the

Power Hawk Series 900 Diskless Systems Administrator’s Guide

2-24

memfs.inittab file is modified a new memfs.cpio image and a new boot image will
be created the next time mknetbstrap(1M) is invoked. A client must be rebooted
using the new boot image in order for any changes to take effect.

Any programs to be initiated on an embedded client must be specified to run at init
level 1. NFS clients may use the memfs.inittab table for starting programs at
init levels 1-3. However, part of the standard commands executed at init
level 3 on an NFS client is the mounting of NFS remote disk partitions. At this time, an
NFS client will mount its virtual root. The memfs-based /etc directory is used as the
mount point for the <virtual_root>/etc directory that resides on the File Server.
This causes the memfs.inittab table to be replaced by the inittab file. This means
that any commands to be executed in init state 0 (system shutdown) or commands
which are to be respawned in init state 3, should be added to both the
memfs.inittab and the inittab file if they are to be effective.

After configuring an NFS client system, the inittab table contains entries that are
needed for the basic operation of a diskless system configuration. The default entries
created by the configuration utilities in the inittab file should not be removed or
modified.

Changes to inittab are processed the next time mknetbstrap(1M) is invoked. The
inittab table is copied into the client’s virtual root and is accessed via NFS from the
client system. Therefore, the boot image does not need to be rebuilt after modifying the
initab table and the changes to this table will take effect the next time the system is
booted or shutdown.

Like the other customization files, these tables may be updated in one of the two
s u b d i r e c t o r i e s (nfs o r emb) . C h a n g e s m a d e u n d e r th e /usr/etc/
diskless.d/cluster.conf/custom.conf directory apply globally to all nfs or
embedded clients that share this File Server. If the changes are specific to a particular
client, then a private copy of the shared file should first be created in that client's private
customization directory by using the mkprivate tool, and then edited in that client's
custom.conf directory.

2.5.2.3. vfstab Table

The vfstab table defines attributes for each mounted file system. The vfstab table
applies only to NFS client configurations. The vfstab(4) file is processed when the
mountall(1M) command is executed during system initialization to run level 3.
See the vfstab(4) online manual page for rules on modifying this table.

Configuring an NFS client configuration causes this table to be installed with entries
needed for basic diskless system operation and these entries should not be removed or
modified.

The vfstab table is part of the client’s virtual root and is accessed via NFS. The boot
image does not need to be rebuilt after modifying the vfstab table, the changes will take
effect the next time the system is booted or shutdown.

Like other NSF-only customization files, these tables may be updated in the client-
shared nfs su b d i r e c t o r y. C h a n g e s m a d e u n d e r t h e /usr/etc
/diskless.d/cluster.conf/custom.conf/nfs directory apply globally to all
NFS clients that share this File Server. If the changes are specific to a particular client,
then a private copy of the shared file should first be created in that client's private

Netboot System Administration

2-25

customization directory by using the mkprivate tool, and then edited in that client’s
custom.conf directory.

2.5.2.4. kernel.modlist.add Table

New kernel object modules may be added to the basic kernel configuration using the
kernel.modlist.add file. One module per line should be specified in this file. The
specified module name must have a corresponding system file installed under the
<virtual_rootpath>/etc/conf/sdevice.d directory. For more information
about changing the basic kernel Configuration, see “Modifying the Kernel Configuration”
on page 2-18.

Changes to this file are processed the next time mknetbstrap(1M) is invoked, causing
the kernel and the boot image to be rebuilt. When modules are specified that are currently
not configured into the kernel (per the module’s System(4) file), those modules will be
enabled and a new unix and boot image will be created. If mknetbstrap(1M) finds
that the modules are already configured, the request will be ignored. A client must be
rebooted using the new boot image in order for these changes to take effect.

Like the other customization files, these tables may be updated in one of the two
s u b d i r e c t o r i e s (nfs o r emb) . C h a n g e s m a d e u n d e r t h e /usr/etc
/diskless.d/custom.conf/client.shared/ directory apply globally to all
NFS or embedded clients that share this File Server. If the changes are specific to a
particular client, then a private copy of the shared file should first be created in the client’s
private customization directory, by using the mkprivate tool, and then edited in that
client’s custom.conf directory.

2.5.2.5. memfs.files.add Table

When the mknetbstrap(1M) utility builds a boot image, it utilizes several files for
building the compressed cpio file system. The set of files included in the basic diskless
memory-based file system are listed in the files devlist.nfs.netboot and
filelist.nfs.netboot for NFS clients and devlist.emb.netboot and
filelist.emb.netboot fo r embedded c l i en ts unde r the /usr/etc
/diskless.d/sys.conf/memfs.d directory.

Addi t iona l f i l es may be added to the memory-based f i l e sys t em v ia the
memfs.files.add t able located under the /usr/etc/diskless.d/
cluster.conf/custom.conf directory. Like the other customization files, this
tables may be updated in one of the two subdirectories (nfs or emb). Changes made
under the /usr/etc/diskless.d/cluster.conf/ custom.conf directory
apply globally to all nfs or embedded clients that share this File Server. If the changes are
specific to a particular netboot client, a private copy of the shared memfs.files.add
file should first be created in that client 's private customization directory,
/etc/profiles/<client_profile_filename>.net/custom.conf, by
using the mkprivate tool, and then editing it in that custom.conf directory.

Guidelines for adding entries to this table are included as comments at the beginning of
the table.

A file may need to be added to the memfs.files.add table if:

Power Hawk Series 900 Diskless Systems Administrator’s Guide

2-26

1. The client is configured as embedded. Since an embedded client does not
have access to any other file systems, then all user files must be added via
this table.

2. The client is configured with NFS support and:

a. the file needs to be accessed early during a diskless client’s boot,
before run level 3 when the client is able to access the file on the
File Server system via NFS

b. it is desired that the file is accessed locally rather than across NFS.

For NFS clients the system directories /etc, /usr, /sbin, /dev, /var, /opt and
/tmp all serve as mount points under which remote file systems are mounted when the
diskless client reaches run level 3. Files added via the memfs.files.add table
should not be installed under any of these system directories if they need to be accessed in
run level 3 as the NFS mounts will overlay the file and render it inaccessible.

Files added via the memfs.files.add table are memory-resident and diminish the
client’s available free memory. This is not the case for a system where the boot image is
stored in flash using the “raw write” method with the ASTRix “fw” flash write command,
since pages are brought into DRAM memory from flash only when referenced. Please
refer to the “Flash Boot System Administration” chapter for more details on flash booting.

C h an g e s t o t h e memfs.files.add f i l e a r e p roce sse d t h e nex t t i me
mknetbstrap(1M) is invoked. A new memfs image and boot image is then created. A
client must be rebooted using the new boot image in order for these changes to take effect.

You can verify that the file has been added to the memfs.cpio image using the following
command on the File Server:

rac -d < <virtual_rootpath>/etc/conf/cf.d/memfs.cpio \
| cpio -itcv | grep <file>

2.5.2.6. vroot.files.add Table

This custom client configuration table may be used to optionally specify a set of non-
system files that are located on the File Server to be automatically copied by
mknetbstrap(1M) into a a client's virtual root directory so that they can be
subsequently accessed from the client system.

This custom client configuration file may only be used by NFS netboot clients (the
embedded netboot clients are unable to access their virtual root on the File Server system).

This table is processed by mknetbstrap(1M) whenever this table has been modified
since the last invocation of mknetbstrap(1M).

Although non-system files can be copied manually into a client's virtual root directories,
the use of this table provides an automated method that provides the following
advantages:

- This file table makes it easier to recreate a client's virtual root environment
when a client is removed (-R and -s options) and then recreated (-C
option) with netbootconfig(1M).

Netboot System Administration

2-27

- Entries in this file table may be setup to have mknetbstrap(1M) auto-
matically re-copy the specified File Server source files into the client target
virtual root directories every time this table is processed, with the ‘a’
option (see below).

The format for each entry in this file is:

Path_on_server Path_on_client Options

Lines beginning with the pound sign '#' will be ignored. The fields in this table are
described below:

Path_on_server:

This is the pathname of a file or directory located on the File Server
system that is to be copied into the client's virtual root. When the
pathname is a directory, then the contents of this directory will be recur-
sively copied into the client's vroot directory.

Path_on_client:

This is the pathname of a file or a directory as it will be accessed from
the client system. If a directory in this path does not currently exist in
the client's virtual root directory, then it is created. This path must begin
with one of the system directories already under the client’s vroot:
/users, /dev, /etc, /tmp, or /var. Any files in /tmp and
/var/tmp are destroyed when the client system is rebooted. A dash “-
” in this field may be used to indicate that the path name is the same as
that specified for the “Path on server” field.

Options:

a The always option. Update the file or directory each time
this table is processed.

o The once option. Install the file or directory only if it
doesn't already exist.

Some example vroot.files.add entries are shown below.

Example 1.

Th i s ex a m p l e s p e c i f i e s t h a t t h e f i l e s c o n ta in ed i n t h e d i r ec to ry
/home/me/test.dir on the File Server system should be copied into the client's
virtual root directory: <client_virtual_root>/users/me/test.dir
whenever mknetbstrap(1M) processes this file (the ‘a’ option):

/home/me/test.dir /users/me/test.dir a

Example 2.

This example specifies that the single file /home/me/timer.c, located on the
File Server system, should be copied into <client_virtual_root>/
users/me/timer.c whenever mknetbstrap(1M) processes the
vroot.files.add file (the ‘a’ option):

Power Hawk Series 900 Diskless Systems Administrator’s Guide

2-28

/home/me/timer.c /users/me/timer.c a

Example 3.

This example specifies the single file /etc/appl1 on the File Server system
should be copied to the <client_virtual_root>/etc/appl1 if the target
file does not already exist in the client's virtual root directory (‘o’ option):

/etc/appl1 - o

The following are some additional considerations for adding entries to the
vroot.files.add table:

The client's /usr and /sbin system directories are shared completely with the File
Server; hence, these directories do not appear under a client's virtual root and may not be
used in the vroot.files.add table.

The files in the vroot.files.add table are copied into a client's virtual root partition
and therefore require disk space on the File Server system. In some cases it may be more
efficient to NFS mount a user's working directory on the client system instead of
duplicating the files in the client's virtual root directory.

Because of kernel dependencies, device files should be created locally in the client's
virtual root directory; this vroot.files.add file table should NOT be used for this
purpose.

To add a device file to a client's vroot, the corresponding kernel module must be enabled
(config -r <vroot_path>), the corresponding Node(4) file under the client's
vroot may need to be modified, and the client's kernel must be rebuilt and rebooted
(mknetbstrap -B -r unix <client_profile_filename>).

2.5.3. Modifying the Client Profile Parameters

To modify the parameter values in a netboot client profile file, the client configuration
must be removed and reconfigured. The only exceptions to this rule are the AUTOBOOT
and SWAP_SIZE parameters (discussed separately below).

It is best that the netboot NFS client be shutdown before modifying any of its client profile
parameters.

As an example, to modify most parameters in netboot client wilma's client profile file, take
the following steps to remove, modify and re-create and client's configuration:

1. Remove the current client configuration for wilma, but preserve any client
customization files for client wilma:

netbootconfig -R -s wilma

2. Edit wilma's client profile file as needed:

vi /etc/profiles/wilma

Netboot System Administration

2-29

3. Re-create the configuration for client wilma:

netbootconfig -C wilma

The client profile file parameters that MAY be modified without the need to remove and
reconfigure the client are described below. These parameters only apply to NFS netboot
clients. For these parameters, the actual client profile parameter value within the client's
profile file are NOT modified; only the actual objects that these parameters act upon are
modified.

AUTOBOOT

This parameter is implemented as a hidden file named.autoboot directly under the
client's virtual root directory. This hidden file may be created and removed to enable or
disable, respectively, the automatic shutdown of the client when the File Server shuts
down. In this case, it is not necessary to modify the actual client profile file in order to
modify this setting. See the section “The Client Profile File” on page 2-13 for more details
on the AUTOBOOT parameter.

 SWAP_SIZE

For NFS clients, a different sized dev/swap_file file from the one specified in the
client's profile file may be created by invoking the mkswap command:

/usr/etc/diskless.d/sys.conf/bin.d/mkswap <vrootpath> <megabytes>

NOTE

As previously mentioned, the client should be first shutdown
before issuing the mkswap command, if the NFS client is cur-
rently up and running.

2.5.4. Launching Applications

Following are descriptions on how to launch applications for:

- Embedded Clients

- NFS Clients

2.5.4.1. Launching an Application for Embedded Clients

For diskless embedded clients, all the application programs and files referenced must be
added to the memfs root file system via the memfs.files.add file. See section
“memfs.files.add Table” on page 2-25, for more information on adding files via the
memfs.files.add file.

As an example, the command name myprog resides on the File Server under the path
/home/myname/bin/myprog. We wish to automatically have this command executed
from the path /sbin/myprog when the client boots. This commands reads from a data

Power Hawk Series 900 Diskless Systems Administrator’s Guide

2-30

file expected to be under /myprog.data. This data file is stored on the File Server
under /home/myname/data/myprog.data.

 The following entries are added to the memfs.files.add table:

f /sbin/myprog 0755 /home/myname/bin/myprog
f /myprog.data 0444 /home/myname/data/myprog.data

The following entry is added to the client’s start-up script:

#
Client’s start-up script
#
/sbin/myprog

See “Custom Configuration Files” on page 2-20 for more information about the
memfs.files.add table and the S25client rc script.

2.5.4.2. Launching an Application for NFS Clients

Clients configured with NFS support may either add application programs to the memfs
root file system or they may access applications that reside on the File Server across NFS.
The advantage to using the memfs root file system is that the file can be accessed locally
on the client system rather than across the network. The disadvantage is that there is only
limited space in the memfs file system. Furthermore, this file system generally uses up
physical memory on the client system. When the client system is booted from an image
stored in flash using the “raw write” method with the ASTRix “fw” flash write command,
this is not the case, since the memfs file system remains in flash until the pages are
accessed and brought into memory.

To add files to the memfs root file system follow the procedures for an embedded client
above.

When adding files to the client’s virtual root so that they can be accessed on the client via
NFS, the easiest method is to place the file(s) in one of the directories listed below. This is
because the client already has permission to access these directories and these directories
are automatically NFS mounted during the client’s system initialization.

Storage Path on File Server Access Path on the Client

/usr /usr
/sbin /sbin
/opt /opt
<virtual_root>/etc /etc
<virtual_root>/var /var
<virtual_root>/users /users

As an example , the command name myprog was c rea ted under the pa th
/home/myname/bin/myprog. To have this command be accessible to all the diskless
clients on the File Server we could mv(1) or cp(1) the command to the /sbin
directory.

 mv /home/myname/bin/myprog /sbin/myprog

Netboot System Administration

2-31

If only one client needs access to the command, it could be moved or copied to the /etc
directory in that client’s virtual root directory.

mv /home/myname/bin/myprog <virtual_root>/etc/myprog

To access an application that resides in directories other than those mentioned above, the
File Server’s directory must be made accessible to the client by adding it to the
dfstab(4) table and then executing the share(1M) or shareall(1M) command
on the File Server. To automatically have the directories mounted during the client’s
system start-up, an entry must be added to the client’s vfstab file. See “Custom
Configuration Files” on page 2-20 for more information about editing the vfstab file.

2.6. Booting and Shutdown

This section describes the following major topics:

• The Boot Image (page 2-31)

• Creating the Boot Image (page 2-32)

• Net Booting (page 2-33)

• Verifying Boot Status (page 2-34)

• Shutting Down the Client (page 2-35)

2.6.1. The Boot Image

The boot image is the file that is loaded from the File Server to a diskless client. The boot
image contains everything needed to boot a diskless client. The components of the boot
image are:

- unix kernel binary

- compressed cpio archive of a memory-based file system

- a bootstrap loader that uncompresses and loads the unix kernel

Each diskless client has a unique virtual root directory. Part of that virtual root is a unique
kernel configuration directory (etc/conf) for each client. The boot image file
(unix.bstrap), in particular two of its components: the kernel image (unix) and a
memory-based file system (memfs.cpio), are created based on configuration files that
are part of the client’s virtual root.

The makefile, /etc/diskless.d/sys.conf/bin.d/bstrap.makefile, is used
by mknetbstrap(1M) to create the boot image. Based on the dependencies listed in
that makefile, one or more of the following steps may be taken by mknetbstrap(1M)
in order to bring the boot image up-to-date.

1. Build the unix kernel image and create new device nodes.

Power Hawk Series 900 Diskless Systems Administrator’s Guide

2-32

2. Create and compress a cpio image of the files to be copied to the memfs
root file system.

3. Insert the loadable portions of the unix kernel, the bootstrap loader, the
compressed cpio image and certain bootflags into the unix.bstrap file.
The unix kernel portion in unix.bstrap is then compressed.

When mknetbstrap is invoked, updates to key system files on the File Server (i.e.
/etc/inet/hosts) will cause the automatic rebuild of one or more of the boot image
components. In addition, updates to user-configurable files also affect the build of the boot
image. A list of the user-configurable files and the boot image component that is affected
when that file is modified are shown in Table 2-1. These files are explained in detail under
section “Customizing the Basic Client Configuration” on page 2-18.

The boot image components are created under etc/conf/cf.d in the client’s virtual
root directory. The boot image itself is installed into the /tftpboot directory, under the
name of <client_profile_filename>.bstrap. For example, a netboot client
with a client profile filename of target1 would have a boot image installed with a
pathname of:

/tftpboot/target1.bstrap

2.6.2. Creating the Boot Image

The mknetbstrap(1M) tool is used to build the boot image. This tool gathers
information about the client(s) from each client’s client profile file, located in the
/etc/profiles directory. Some example uses follow. Building a boot image is
resource-intensive. When creating the boot image of multiple clients in the same call, use
the -p option of mknetbstrap(1M) to limit the number of client boot images which
are simultaneously processed.

Table 2-1. Boot Image Dependencies

Boot Image Component User-Configurable File

unix kernel kernel.modlist.add

memfs cpio memfs.files.add

memfs.inittab

K00client
(embedded client configurations only)

KS25client
(embedded client configurations only)

Netboot System Administration

2-33

2.6.2.1. Examples on Creating the Boot Image

Example 1.

Update the boot image of all the clients configured with netboot client profile files in the
/etc/profiles directory. Limit the number of clients processed in parallel to 2.

mknetbstrap -p2 all

Example 2.

Update the boot image of clients wilma and fred. Force the rebuild of the unix kernels and
configure the boot images to stop in kdb early during system initialization.

mknetbstrap -r unix -b kdb wilma fred

Example 3.

Update the boot image of all the clients configured with netboot client profile files in the
/etc/profiles directory. Rebuild their unix kernel with the kdb module configured
and the rtc kernel module deconfigured. Limit the number of clients processed in
parallel to 3.

mknetbstrap -p 3 -k kdb -k “-rtc” all

2.6.3. Net Booting

Netboot diskless clients boot from an image downloaded via an ethernet network
connection. Net booting (also referred to as Network booting) is performed by the
ASTRix ROM based firmware using the TFTP (Trivial File Transfer Protocol, RFC783)
network protocol.

All netboot diskless clients depend on the File Server for the creation and storage of the
boot image. Once booted, netboot clients configured with NFS support continue to rely on
the File Server for accessing their system files via NFS. Clients configured as embedded
do not depend upon the File Server system once they are up and running.

NOTE

A netboot client may download the boot image and, instead of
booting from it, may burn the boot image into its User Flash
Memory for later booting. This is called Flash booting and it is
described in a separate chapter. Refer to Chapter 3, “Flash Boot
System Administration” for more information on Flash Booting.

Prior to net booting, verify that the following steps have been completed:

Power Hawk Series 900 Diskless Systems Administrator’s Guide

2-34

1. Verify that the networking parameters have been setup on the client board
with the STAR 'config' command.

If the client is to automatically boot up after reset or power-cycle, then ver-
ify that STAR is configured to automatically boot ASTRix, and that an
ASTRix startup script has been setup to download and boot the client
image from the File Server. See the “SBC Client Board Configuration” sec-
tion for details.

2. Verify that the boot image has been created. (See “Creating the Boot
Image” on page 2-32.)

3. Verify that the File Server is up and running in run level 3.

2.6.3.1. Netboot Using ASTRix

Once the boot image is generated and the File Server is accepting network requests (is up
and is at init state 3), you can test the network booting of a client by one of the following
methods:

- If the client is configured to autoboot ASTRix, and an ASTRix startup script is
setup to tftp download and boot the client's netboot image, then test the booting of the
client by either resetting or power-cycling the board.

- If the client is not configured to autoboot, then type the following commands at the
client's console terminal:

 STAR0> astrix <cr>
* tftp -g -r /<client_profile_filename>.bstrap $HOST <cr>
* boot 5 <cr>

where <client_profile_filename> is equal to the client profile filename of the client on the
File Server system. Boot configuration slot number 5 should have already been setup as
specified in the section “SBC Client Board Configuration”.

Verifying Boot Status

If the client is configured with NFS support, you can verify that the client was successfully
booted using any one of the following methods:

• rlogin(1) or telnet(1) from the File Server system, or

• attach a terminal to the console serial port and login.

You can also use the ping(1M) command to verify that the network interface is running.
However this does not necessarily mean that the system successfully booted.

If the client does not boot, verify that the NFS daemons are running by executing the
nfsping(1M) command on the File Server. An example run of this command is shown
below.

nfsping -a
nfsping: rpcbind is running
nfsping: nfsd is running
nfsping: biod is running

Netboot System Administration

2-35

nfsping: mountd is running
nfsping: lockd is running
nfsping: statd is running
nfsping: bootparamd is running
nfsping: pcnfsd is running
nfsping: The system is running in client, server, bootserver,
 and pc server modes

If there is a console attached to the client and the client appears to boot successfully but
cannot be accessed from any other system, verify that the inetd(1M) daemon is
running on the client.

2.6.4. Shutting Down the Client

From the client’s console, the client may be shutdown using any of the system shutdown
commands, e.g. shutdown(1M) or init(1M).

A client configured with NFS can be shutdown from the File Server using the rsh(1)
command. For example, the following shutdown(1M) command would bring the
system configured with the ethernet hostname ‘fred’ to init state 0 immediately.

rsh fred /sbin/shutdown -g0 -y -i0

By default, clients configured in Embedded mode do not require an orderly shutdown but
an application may initiate it.

Power Hawk Series 900 Diskless Systems Administrator’s Guide

2-36

 3
Flash Boot System Administration

3.1. Introduction . 1-1
3.2. Flash Characteristics. 1-2
3.3. The Flash Filesystem Method. 1-3
3.4. The Raw Write Method . 1-5

Power Hawk Series 900 Diskless System Administrator’s Guide

3-1

3
Chapter 3Flash Boot System Administration

3

3
3

3.1. Introduction

Flash is a mostly-read, memory-mapped device that behaves like normal memory (at least
for reads), and whose contents are not lost across system reboots or power cycles. Power
Hawk Series 900 systems come with at least 32 MB of Boot Flash.The actual STAR/
ASTRix boot code uses a small portion of this (8 MB). The rest of the Boot Flash space is
free for users to store their own data.

Additional User Flash can be optionally added to the board by the factory in 32 MB incre-
ments, up to a total of 96 MB.

NOTE

For Power Hawk Series 920 systems, please refer to the “Boot and
Flash Memory” section of the Raptor DX VMEbus Dual G4, Dual
PMC & StarFabric User Guide for more information about User
Flash modules and their use.

For Power Hawk Series 940 systems, please refer to the Manta
QX VMEbus Quad, Single PMC & StarFabric User Manual.

While Flash reads behave much like normal memory reads, Flash writes are accomplished
through use of a set ASTRix flash write commands that support bulk erasure and repro-
gramming of Flash with any desired set of user data that will fit onto the device.

The rest of this chapter discusses using some portion of Boot or User Flash to store a cli-
ent's netboot image so that the client may be thereafter booted directly from Flash, without
the need to re-download the client's boot image from the file server with tftp.

Flash booting would typically be done as part of the transition from the software develop-
ment and testing phase of a project to the production or deployed phase:

- While in the development phase, each client would typically be booted
using the netboot tftp method as previously described in the “Netboot Sys-
tem Administration” chapter.

- When entering the deployed phase, the client could be converted from
network tftp booting to Flash booting, where the already existing client
boot sequence would need to be slightly modified from copying a netboot
image from the file server, to instead loading and booting the client boot

Power Hawk Series 900 Diskless Systems Administrator’s Guide

3-2

image directly from Flash. All the other steps of the client's boot sequence
are performed as before.

Flash booting should not be thought of as a totally separate function from booting a client,
but as a minor, and significant adjustment to the standard client boot sequence that must
always occur.

Any client boot image which is netbootable can be stored into Flash and booted directly
from Flash. No special preparation or treatment of the client boot image itself is needed.

There are several advantages to storing the client boot image in Flash:

- It gives a client some independence from a File Server SBC. For embedded
clients especially, it is possible to develop a boot image that makes no ref-
erence to a File Server at all, thus resulting in a client that can be placed
into a standalone configuration during the deployed phase.

- Bootup times are faster when booting from Flash as no boot image down-
load occurs. This can be especially important during system startup to ward
off the network congestion that occurs when many clients simultaneously
download their boot images from a common File Server.

3.2. Flash Characteristics

The Flash on Power Hawk Series 900 boards is what is called a paged flash or a banked
flash. Flash is accessed through two 32 MB windows, one for User Flash and one for Boot
Flash, where the Boot Flash is always accessible. A particular single bank of 32 MB User
Flash may be selected for access through the 32 MB User Flash window, where this selec-
tion is accomplished through the ASTRix ‘fbs’ (User Flash bank select) command.

PowerMAX OS supports two methods for storing and booting a client boot image in
Flash; the Raw Write method, and the Flash file system method

The Raw Write method uses the ASTRix ‘fw’ (Flash write) command to write the client
boot image to Flash in a direct raw write manner.

The Flash filesystem method uses the ASTRix ‘ffsw’ (Flash filesystem write) command to
write the client boot image into a Flash file system area. The format of this area is an
ASTRix-supported Flash filesystem that may contain multiple files.

The advantages of using the Flash filesystem method are:

- The ASTRix Flash filesystem support is used for storing the client boot
image. As such, multiple boot images may be stored into the same Flash
filesystem and queried with the ‘ffsls’ (Flash filesystem 'ls' command),

- The user may store client boot images into User Flash (if available) as well
as the Boot Flash area.

The main “disadvantage” of using the Flash file system method is that, unlike the Raw
Write method, the entire client boot image is loaded into memory and uncompressed. The

Flash Boot System Administration

3-3

entire memory-resident root filesystem remains in memory after booting. This attribute of
Flash filesystem booting is thus the same as network booting.

The main advantage of using the Raw Write method is that, even though the real physical
Flash bank size is 32 MB, the boot image is conceptually divided into a series of 128 KB
sized virtual banks or pages by the PowerMAX OS kernel. These virtual Flash pages are
copied into memory only on an as needed basis, and the Flash-backed memory area is
freed when it is no longer in use.

This Flash paging support provides for better utilization of client memory, as the root file-
system continues to reside in Flash after booting, thus freeing up the memory that would
otherwise have been used to implement a memory-resident root filesystem.

The main disadvantage of using the Raw Write method is that when the Raw Write
method is used, the boot image object must be written to a specific location within the
Boot Flash. Therefore, only one boot image may be stored in Flash at any point in time.

The following sections discuss how to setup a Flash boot image using either the Flash file-
system or the Raw Write methods. The user is free to choose either method, depending
upon their needs.

3.3. The Flash Filesystem Method

To convert the netboot client into a Flash filesystem booted client, take the following
steps.

NOTE

This procedure assumes that the user has already setup and booted
the client successfully as a netboot client, using the procedures
described in the “Netboot System Administration” chapter.

1. Reset or power-cycle the client board, and wait for STAR to autoboot into
ASTRix.

2. Abort the startup script with a ‘<Ctrl>c’ keyboard sequence, if an auto-
matic netboot startup script has previously been setup to netboot the client.

3. Tftp the netboot image into the client's memory from the File Server SBC:

 * tftp -g -r <client>.bstrap $HOST <cr>

where <client> should be replaced with the name of the client profile file that
is located on the File Server SBC in the /etc/profiles directory.

4. Burn the boot image into a Flash filesystem. If you choose to use the Boot
Flash for storing the boot image, then Flash filesystem number 3 should be
used:

Power Hawk Series 900 Diskless Systems Administrator’s Guide

3-4

* ffsw <client>.bstrap 3 <cr>

NOTE

Multiple versions of a client bootimage may be stored into the
same Flash filesystem by using a different name. For example, to
store a second version of a boot image into Flash filesystem 3
while keeping the previous version:

* mv <client>.bstrap <client>.bstrap2 <cr>
* ffsw <client>.bstrap2 3 <cr>

Alternatively, if you have User Flash available and wish to store
the client boot image into User Flash instead of Boot Flash, then
use the ASTRix command:

 * ffsls <cr>

to view the available Flash filesystem areas, and to pick a Flash
filesystem that resides in a User Flash area instead of Boot Flash
filesystem area 3.

 So for example, to use User Flash filesystem area 5, use the fol-
lowing ASTRix command to burn the boot image to User Flash:

* ffsw <client>.bstrap 5

5. Change the boot command's configuration slot number 5 so that it boots
from the Flash boot image:

* boot 5 -n ffs3:<curtis>.bstrap -s -c

Or possibly enter something like:

* boot 5 -n ffs3:<curtis>.bstrap2 -s -c

if you are using a second boot image.

Alternatively, if you are using User Flash to store the image, then enter the
Flash filesystem number that you used in step #4.

For example, the command:
* boot 5 -n ffs5:<curtis>.bstrap -s -c

will setup to boot the boot image from User Flash filesystem number 5.

6. If you wish to only manually Flash boot, then remove the startup script:

* rm /nvram/startup

and proceed to step #7. If you wish to autoboot from Flash, then create a
new startup script:

Flash Boot System Administration

3-5

* rm /nvram/startup
* vi /nvram/startup

and add the following lines to the file:

echo “About to Flash boot the client...”
sleep 3
boot 5

Use ‘:wq <cr>’ to write the file and exit vi.

The “sleep 3" line above will provide time for you to abort out of the
Flash autoboot sequence with a <Ctrl>c keyboard sequence, should you
need to make any configuration changes to the client.

7. To test the Flash boot configuration with autoboot configured, issue the
ASTRix command:

* reboot <cr>
 The board should reset and enter STAR, and STAR should then autoboot
ASTRix; ASTRix should execute the /nvram/startup script, which should
boot the client from Flash.

If there is a problem with the Flash autoboot configuration, then you may
abort the ASTRix startup script with a <Ctrl>c keyboard sequence and
make any required changes.

If the board is configured to manually boot the system without using an
ASTRix startup script, then test the Flash boot configuration with the fol-
lowing ASTRix command:

* boot 5 <cr>

ASTRix should load and boot the client boot image from Flash.

3.4. The Raw Write Method

To convert the netboot client into a Flash Raw Write booted client, follow the procedure
below. This procedure assumes that the user has already setup and booted the client suc-
cessfully as a netboot client, using procedures described in the “Netboot System Adminis-
tration” chapter.

1. Reset or power-cycle the client board, and wait for STAR to autoboot into
ASTRix.

2. If an automatic netboot startup script has previously been setup to netboot
the client, abort the startup script using a <Ctrl>c keyboard sequence.

3. Copy the netboot image into the client's memory from the File Server SBC:

* tftp -g -r <client>.bstrap $HOST <cr>

Power Hawk Series 900 Diskless Systems Administrator’s Guide

3-6

where <client> should be replaced with the name of the client profile file
that is located on the File Server SBC in the /etc/profiles directory.

4. Burn the boot image into Flash, using the ASTRix Flash write command:

* fw 2 0 <client>.bstrap

5. fw 0xfa000000 <client>.bstrap

Replace <client> above with the same name used in step #3.

Note

Flash area 2 and the flash offset value of 0 MUST be used in the
flash write (fw) command above in order for this method of Flash
booting to function properly.The above Flash address MUST be
used in order for this method of Flash booting to function prop-
erly. The ‘fw’ command will replace/overwrite any filesystem that
was previously setup in Flash filesystem 3 in the Boot Flash. Also
note that the ‘ffsls’ ASTRix command will therefore display the
#3 BOOT area as 'Unused'.

If Flash Booting is no longer desired, the Flash filesystem 3 may
be re-created when a ‘ffsw’ ASTRix command is issued for Flash
filesystem 3. In this case, the first ‘ffsw’ command issued for
Flash filesystem3 will recognize that the Flash filesystem is not
present and this command will prompt the user to see if a new
filesystem should be created.

6. Place the flashboot program from the File Server into NVRAM. The flash-
boot program is a small executable that will be booted by ASTRix via the
'boot 5' command. This flashboot program will jump from memory to the
start of the Flash executable to begin execution of the client Flash boot
image. To store the flashboot program into NVRAM:

* cd /nvram <cr>
* tftp -g -r flashboot $HOST <cr>

7. Change the boot command configuration slot number 5 so that it boots the
flashboot program:

* boot 5 -n /nvram/flashboot -s -c

8. If you wish to only manually Flash boot, then remove the startup script:

* rm /nvram/startup

and proceed to step #8.

Flash Boot System Administration

3-7

If you wish to autoboot from Flash, then create a new startup script:

* rm /nvram/startup
* vi /nvram/startup

Add the following lines to the file using vi:

echo “About to Flash boot the client...”
sleep 3
boot 5

Use ‘:wq <cr>’ to write the file and exit vi.

The “sleep 3” line above will provide time for you to abort out of the
Flash autoboot sequence with a <Ctrl>c keyboard sequence, should you
need to make any configuration changes to the client.

9. To test the Flash boot configuration with autoboot configured issue the
ASTRix “reboot” command:

* reboot <cr>

The board should reset and enter STAR. STAR should then autoboot
ASTRix, and ASTRix should execute the /nvram/startup script, which will
boot the client from Flash. If there is a problem with the Flash autoboot
configuration, then you may abort the ASTRix startup script with a <Ctrl>c
keyboard sequence and make any required changes.

 If the board is configured to manually boot the system without using an
ASTRix startup script, then test the Flash boot configuration with the
ASTRix “boot” command:

* boot 5 <cr>

ASTRix should load and boot the client boot image from Flash.

Power Hawk Series 900 Diskless Systems Administrator’s Guide

3-8

 4
Debugging Tools

4.1. System Debugging Tools . 1-1
4.2. kdb . 1-1
4.3. crash . 1-2

Power Hawk Series 900 Diskless System Administrator’s Guide

4-1

4
Chapter 4Debugging Tools

4
4
4

4.1. System Debugging Tools

This chapter covers the tools available for system debugging on a diskless client. Tools
covered in this include the following:

• kdb

• crash

In the loosely-coupled architecture, the only attachment between the file server and the
diskless client is via an ethernet network connection. There is no way to remotely access a
diskless system’s memory in a loosely-coupled configuration. A client is referred to as a
netboot client and is configured via a netboot client profile file in the /etc/profile
directory. For more information on netboot clients, see Chapter 2 “Netboot System
Administration”.

The state of a diskless system may be examined as follows:

a. Enter kdb by typing a ~k sequence on the client's console. The client's boot
image must have been built with kdb support.

b. Examine the client system locally on the client system using crash.

When kdb is configured into a client’s kernel, the ~k sequence will cause the system to
drop into kdb. The sequences ~b, ~i, and ~h all cause an immediate reset of the board,
where control is subsequently returned to the STAR/ASTRix firmware.

4.2. kdb

The kdb package is provided with the kernel base package. A client kernel may be
configured with kdb, and its boot image may be configured to enter kdb early in the boot
process. A console terminal must be connected to the client board to interact with kdb.

On client boards, the console debugger support is not present. However, if system level
debugging on a client is desired, then it is possible to use kdb. To use kdb, the kdb and
kdb_util kernel drivers must be configured into the client’s unix kernel. Except for the
kdb consdebug and star (or smon) commands, kdb operates without any differences from a
normal system when executing on a client. The consdebug command is not available on
netboot clients, and the star (or smon) command will reset the board and return control to
the STAR/ASTRix firmware.

Power Hawk Series 900 Diskless Systems Administrator’s Guide

4-2

By default, the client kernel configuration is not built with kdb support. The kdb kernel
modules may be configured into the client's kernel via the ‘-k’ option to the mknetbstrap
command.

 #>mknetbstrap -kkdb -kkdb_util

The client system may also be programmed to stop during bootup in kdb via the:

 mknetbstrap -b kdb

option. See the mknetbstrap(1M) system manual page for more details on these kdb-
related options.

When kdb is configured into a client’s kernel, the ~k sequence will cause the system to
drop into kdb.

4.3. crash

The crash(1M) utility command may be used to examine the system memory image of a
running system by internally formatting and then displaying various control structures, tables,
and other information.

The crash(1M) utility may be run directly on the client system to examine the current state
of the running system. The user may be logged into the system through the attached console
terminal or through a networked terminal connection, such as telnet or rlogin.

A-1

A
Appendix AAdding a Local Disk

1
1

1 This appendix describes the various cluster configurations that are supported when a P0Bus bridge board (BPP0) is present. This appendix also describes the additional limitations that are associated with some of the BPP0 configurations.

By default, clients are configured as diskless systems. It may be desirable to connect a
local disk drive which is used to store application-specific data. The following example
demonstrates how to configure a disk assuming that the disk has been formatted, file
systems have been created on the appropriate partitions and the disk has been connected to
the client. Refer to the System Administration manual (Volume 2) for guidelines on how to
accomplish these pre-requisite steps.

The kernel configuration may be modified using the config(1M) tool and specifying
the client’s virtual root directory. For example, if the client’s virtual root path is
/vroots/elroy:

config -r /vroots/elroy

1. If necessary, add an entry to the adapters table -

Adapter information must be added to the adapters table for VME adapters
(i.e., via). PCI adapters (i.e., ncr) are auto-configurable and should not be
added to the adapters table. If this is a VME adapter, add an entry for it in
the adapters table using the Adapters/Add menu option of config(1m).

2. Configure kernel modules -

Use the Modules function of the config(1M) tool to enable the follow-
ing modules:

gd (generic disk driver)

scsi (device independent SCSI interface support)

ncr (internal SCSI adapter interface driver)

ufs (unix file system)

sfs (unix secure file system)

If a Resilient File System (XFS) is required for a client, instead of enabling ufs and
sfs, enable:

xfs (resilient file system)

xfsth (resilient file system threaded)

Note that the kernel.modlist.add table in the client's custom.conf
directory (/etc/clients/<client_dir>/custom.conf) may instead be
used to enable kernel modules.

A-2

Power Hawk Series 900 Diskless Systems Administrator’s Guide

Note:

The procedural steps below differ depending whether the client
was configured with NFS support or as embedded.

NFS Clients (steps #3 - #6):

3. Configure Disk Device Files

Check that an appropriate device node entry (Node(4)) exists and is uncommented
for the disk being added. The following is such an entry from the Node file
/vroots/elroy/etc/conf/node.d/gd:

gd dsk/0 D ncr 0 0 0 0 3 0640 2

4. Add mount point directory entries to the memfs root file system via the
memfs.files.add custom file. For example, to add the directories arbitrarily
named /dsk0s0 and /dsk0s1:

cd /etc/clients/<client_dir>/custom.con
./mkprivate memfs.files.add
vi memfs.files.add

Example entries:

d /dsk0s0 0777
d /dsk0s1 0777

5. Enable Automatic Mounting of a Disk Partition by adding entries to the client's
vfstab file. Note that the mount point directory name must match the directory
name specified in the memfs.files.add file in step 4 above.

cd /etc/clients/<client_dir>/custom.conf
./mkprivate vfstab
vi vfstab

Example entries:

6. Generate a new netboot image:

 mknetbstrap -r all <client>

Embedded clients (steps #3 - #5):

3. The disk management tools must be added to the memfs file system. The list of
tools is documented in the file /usr/etc/diskless.d/sys.conf
/memfs.d/add_disk.sh. In executing the following commands, we grep the

/dev/dsk/0s0 /dev/rdsk/0s0 /dsk0s0 ufs 1 yes -

/dev/dsk/0s1 /dev/rdsk/0s1 /dsk0s1 ufs 1 yes -

A-3

Adding a Local Disk

list of commands from this file and append them to the memfs.files.add tables.

cd /etc/clients/<client_dir>/custom.conf
./mkprivate memfs.files.add
/sbin/grep “^#f” /usr/etc/diskless.d/sys.conf \
/memfs.d/add_disk.sh | cut -c2- >> ./memfs.files.add

Verify that the following entries were appended to memfs.files.add.

f /sbin/expr 0755
f /usr/bin/devcfg 0755
f /usr/bin/cut 0755
f /sbin/mknod 0755
f /usr/bin/mkdir 0755
f /sbin/fsck 0755
f /etc/fs/ufs/fsck 0755
f /etc/fs/xfs/mount 0755
f /etc/fs/ufs/mount 0755
f /sbin/df 0755

4. Embedded client systems do not have access to the kernel configuration directory,
which is needed to generate the device node entries. However, the device node must
be created on the client system because it’s minor number carries information that
is unique to the running system. For this reason, special steps must be taken during
client boot-up to create the device nodes.

The sample script below will do the necessary steps to add a local disk on an
embedded client. This script may be found on the File Server system under the path
/usr/etc/diskless.d/sys.conf/memfs.d/add_disk.sh. Note that
you must set the variables “FSTYPE” and “PARTITIONS” to the appropriate
values.

cd /etc/clients/<client_dir>/custom.conf
./mkprivate S25client
cat /usr/etc/diskless.d/sys.conf/memfs.d \
/add_disk.sh >> ./S25client
vi ./S25 client

Verify that the script (illustrated on the next page after step #5) was appended to
S25client and set the variables FSTYPE and PARTITIONS.

5. Generate a new netboot image:

 mknetbstrap -r all <client>

----------- Beginning of Script --------------------

#
Start-up script to mount a local disk on a client configured
as embedded.
#
The variables FSTYPE and PARTITIONS should be set to the
appropriate values.

To be able to run this script, the following binaries must be

A-4

Power Hawk Series 900 Diskless Systems Administrator’s Guide

added to the memfs file system via the memfs.files.add custom
table. Example entries follow.
#
#f /sbin/expr 0755

#f /usr/bin/devcfg 0755

#f /usr/bin/cut 0755

#f /sbin/mknod 0755

#f /usr/bin/mkdir 0755
#f /sbin/fsck 0755
#f /etc/fs/ufs/fsck0755
#f /etc/fs/xfs/mount0755
#f /etc/fs/ufs/mount 0755

#f /sbin/df 0755
#
Set FSTYPE and PARTITIONS
#
FSTYPE=ufs # file system type (ufs, xfs)
PARTITIONS=”0 1 2 3 4 5 6” # disk partitions to be mounted

#
Initialize
#
> /etc/mnttab
> /etc/vfstab
disk=0

#
Create the device directories
#
/usr/bin/mkdir -p /dev/dsk
/usr/bin/mkdir -p /dev/rdsk

#
In this loop, the device nodes are created based on
major/minor device information gathered from the call
to devcfg. The fsck(1m) utility is executed for each
file system, a mount point directory is created, and
the file system is mounted and then verified using df.
#
/usr/bin/devcfg -m disk | /usr/bin/cut -f3 | while read majmin
do

maj=`echo $majmin | /usr/bin/cut -f1 -d” “`
min=`echo $majmin | /usr/bin/cut -f2 -d” “`
#
Creates, fsck and mounts the partition.
#
for i in $PARTITIONS
do

#
create the device nodes
#
minor=`/sbin/expr $min + $i`
echo “===>Creating nodes /dev/dsk/${disk}s${i} \c”
echo “and /dev/rdsk/${disk}s${i}”
/sbin/mknod /dev/dsk/${disk}s${i} b $maj $minor
/sbin/mknod /dev/rdsk/${disk}s${i} c $maj $minor

A-5

Adding a Local Disk

fsck (ufs only) and mount each partitions.
#
if [“$FSTYPE” != “xfs”]
then
echo “===>Fsck’ing partition /dev/rdsk/${disk}s${i}”

/etc/fs/$FSTYPE/fsck -y /dev/rdsk/${disk}s${i} \
> /dev/null

fi

#
create a mount point directory
#
/usr/bin/mkdir /${disk}s${i}

#
mount the partition
#
echo “===>Mounting /dev/dsk/${disk}s${i} /${disk}s${i}\n”
/etc/fs/$FSTYPE/mount /dev/dsk/${disk}s${i} /${disk}s${i}

done
break
disk=`/sbin/expr $disk + 1`

done
#
verify the partitions are mounted
#
echo “===>Verifying mounted file systems”
/sbin/df -kl

-------------- End of Script --------------------

A-6

Power Hawk Series 900 Diskless Systems Administrator’s Guide

B-1

B
Appendix BMake Client System Run in

NFS File Server Mode

2
2

2 This appendix describes the various cluster configurations that are supported when a P0Bus bridge board (BPP0) is present. This appendix also describes the additional limitations that are associated with some of the BPP0 configurations.

To become an NFS server, a client system must have an attached local disk. In becoming
an NFS server, the client can share the data in the local disk partitions with other systems
that have network access to the client. See Appendix A “Adding a Local Disk” for
instructions on how to add a local disk to a diskless client.

We will refer to the client with the local disk as the disk_server, and the system(s) that
want to access this client disk as disk_clients.

Note

It is important that the hostnames that are used for the disk_server
and the disk_clients correspond to network interfaces that are
accessible to both the disk_clients and disk_server. The
disk_server hostname is the one specified by the disk_clients
when they are mounting the disk_client's NFS partition(s), and the
various disk_clients hostnames are used on the disk_server for the
'share' command line in the /etc/dfstab file.

1. Enable the nfssrv kernel module for the client that has the local disk
attached (disk_server). The following commands should be executed on
the File Server system of the disk_server client.

cd /etc/clients/<disk_server_dir>/custom.conf
./mkprivate kernel.modlist.add
vi kernel.modlist.add

Add the following:

nfssrv

2. For each partition to be shared, add an entry similar to the example entry
shown below. Note that “disk_client_1:disk_client_n” refers
to a list of nodes that want to share this partition. See the dfstab(4)
manpage for more information. disk_server_vrootpath is the path
to the virtual root directory of the node with the local disk attached.

vi <disk_server_vrootpath>/etc/dfs/dfstab

Example entry:

share -F nfs -o rw,root=disk_client_1:disk_client_n -d "/disk0s0" /disk0s0 disk0s0

B-2

Power Hawk Series 900 Diskless Systems Administrator’s Guide

3. Generate a new netboot image for the disk_server client by executing the
following command:

mknetbstrap -r all <disk_server>

On each disk_client node that wants to share the disk partitions, we need to generate a
mount point directory for each partition to be mounted across NFS. These partition can
also be automatically mounted and unmounted during the system's boot/shutdown if
desired. If the disk_client node is another diskless client, the mount points may be added
to the memfs root file system via the memfs.files.add table and the automatic
mounting may be achieved via the node's vfstab file or the rc scripts shown below.

1. Add directories to be used for mount points to the memfs filesystem.

cd /etc/clients/<disk_client_dir>/custom.conf
./mkprivate memfs.files.add
vi memfs.files.add

Example entry:

d /rem_0s0 0755

2. Add an entry to the client’s startup script to automatically mount the
partition.

cd /etc/clients/<disk_client_dir>/custom.conf
./mkprivate S25client
vi S25client

Example entry:

#

if the disk_server is up, mount remote file system

mount point /rem_0s0

#

if ping <disk_server> > /dev/null

then

/sbin/mount -F nfs <disk_server>:/disk0s0 /rem_0s0

fi

3. Add an entry to the client’s shutdown script to automatically unmount the
partition

cd /etc/clients/<disk_client_dir>/custom.conf
./mkprivate K00client
vi K00client

Example entry:

umount /rem_0s0

Glossary-1

Glossary

1
1 Abbreviations, Acronyms, and Terms to Know

1

10base-T

See twisted-pair Ethernet (10base-T).

100base-T

See twisted-pair Ethernet (100base-T).

ARP

Address Resolution Protocol as defined in RFC 826. ARP software maintains a table of
translation between IP addresses and Ethernet addresses.

AUI

Attachment Unit Interface (available as special order only)

asynchronous

An event occurring in an unpredictable fashion. A signal is an example of an asynchro-
nous event. A signal can occur when something in the system fails, but it is not known
when the failure will occur.

asynchronous I/O operation

An I/O operation that does not of itself cause the caller to be blocked from further use of
the CPU. This implies that the caller and the I/O operation may be running concurrently.

asynchronous I/O completion

An asynchronous read or write operation is completed when a corresponding synchronous
read or write would have completed and any associated status fields have been updated.

block data transfer

The method of transferring data in units (blocks) between a block device such as a
magnetic tape drive or disk drive and a user program.

block device

A device, such as a magnetic tape drive or disk drive, that conveys data in blocks through
the buffer management code. Compare character device.

Glossary-2

Power Hawk Series 900 Diskless Systems Administrator’s Guide

block driver

A device driver, such as for a magnetic tape device or disk drive, that conveys data in
blocks through the buffer management code (for example, the buf structure). One driver
is written for each major number employed by block devices.

block I/O

A data transfer method used by drivers for block access devices. Block I/O uses the sys-
tem buffer cache as an intermediate data storage area between user memory and the
device.

block

The basic unit of data for I/O access. A block is measured in bytes. The size of a block dif-
fers between computers, file system sizes, or devices.

boot

The process of starting the operating system. The boot process consists of self-configura-
tion and system initialization.

boot device

The device that stores the self-configuration and system initialization code and necessary
file systems to start the operating system.

boot image file

A file that can be downloaded to and executed on a client SBC. Usually contains an
operating system and root filesystem contents, plus all bootstrap code necessary to start it.

bootstrap

The process of bringing up the operating system by its own action. The first few instruc-
tions load the rest of the operating system into the computer.

buffer

A staging area for input-output (I/O) processes where arbitrary-length transactions are col-
lected into convenient units for system operations. A buffer consists of two parts: a mem-
ory array that contains data from the disk and a buffer header that identifies the buffer.

cache

A section of computer memory where the most recently used buffers, i-nodes, pages, and
so on are stored for quick access.

character device

A device, such as a terminal or printer, that conveys data character by character.

Glossary-3

Glossary

character driver

The driver that conveys data character by character between the device and the user pro-
gram. Character drivers are usually written for use with terminals, printers, and network
devices, although block devices, such as tapes and disks, also support character access.

character I/O

The process of reading and writing to/from a terminal.

client

A SBC board, usually without a disk, running a stripped down version of PowerMAX OS
and dedicated to running a single set of applications. Called a client, since the client may
maintain an Ethernet connection to its File Server and use that File Server as a type of
remote disk device; utilizing it to fetch applications, data, and to swap unused/needed
pages to/from memory

controller

The circuit board that connects a device, such as a terminal or disk drive, to a computer. A
controller converts software commands from a driver into hardware commands that the
device understands. For example, on a disk drive, the controller accepts a request to read a
file and converts the request into hardware commands to have the reading apparatus move
to the precise location and send the information until a delimiter is reached.

cyclic redundandancy check (CRC)

A way to check the transfer of information over a channel. When the message is received,
the computer calculates the remainder and checks it against the transmitted remainder.

datagram

Transmission unit at the IP level.

data structure

The memory storage area that holds data types, such as integers and strings, or an array of
integers. The data structures associated with drivers are used as buffers for holding data
being moved between user data space and the device, as flags for indicating error device
status, as pointers to link buffers together, and so on.

data terminal ready (DTR)

The signal that a terminal device sends to a host computer to indicate that a terminal is
ready to receive data.

data transfer

The phase in connection and connection-less modes that supports the transfer of data
between two DLS users.

Glossary-4

Power Hawk Series 900 Diskless Systems Administrator’s Guide

device number

The value used by the operating system to name a device. The device number contains the
major number and the minor number.

diagnostic

A software routine for testing, identifying, and isolating a hardware error. A message is
generated to notify the tester of the results.

DLM

Dynamically Loadable Modules.

DRAM

Dynamic Random Access Memory.

driver entry points

Driver routines that provide an interface between the kernel and the device driver.

driver

The set of routines and data structures installed in the kernel that provide an interface
between the kernel and a device.

embedded

The host system provides a boot image for the client system. The boot image contains a
UNIX kernel and a file system image which is configured with one or more embedded
applications. The embedded applications execute at the end of the boot sequence.

error correction code (ECC)

A generic term applied to coding schemes that allow for the correction of errors in one or
more bits of a word of data.

FDDI

Fiber Distributed Data Interface.

flash autobooting

The process of booting a target from an image in its Flash memory rather than from an
image downloaded from a host. Flash booting makes it possible to design targets that can
be separated from their hosts when moved from a development to a production environ-
ment.

flash booting

See definition for flash autobooting.

Glossary-5

Glossary

flash burning

The process of writing a boot or other image into a Flash memory device. On client Power
Hawk Series 900 boards, this is usually accomplished with ASTRix 'ffsw' or 'fw' com-
mands.

flash memory

A memory device capable of being occasionally rewritten in its entirety, usually by a
special programming sequence. Like ROM, Flash memories do not lose their contents
upon power down.

FTP (ftp)

The File Transfer Protocol is used for interactive file transfer.

File Server

The File Server has special significance in that it is the only system with a physically
attached disk(s) that contain file systems and directories essential to running the Power-
MAX OS. The File Server boots from a locally attached SCSI disk and provides disk stor-
age space for configuration and system files for all clients. All clients depend on the File
Server since all the boot images and the system files are stored on the File Server’s disk.

function

A kernel utility used in a driver. The term function is used interchangeably with the term
kernel function. The use of functions in a driver is analogous to the use of system calls and
library routines in a user-level program.

host

A SBC running a full fledged PowerMAX OS system containing disks, networking, and
the netboot development environment. Called a File Server since it serves clients with
boot images, filesystems, or whatever else they need when they are running.

host board

The single board computer of the File Server.

host name

A name that is assigned to any device that has an IP address.

host system

A term used for the File Server. It refers to the prerequisite Power Hawk system.

interprocess communication (IPC)

A set of software-supported facilities that enable independent processes, running at the
same time, to share information through messages, semaphores, or shared memory.

Glossary-6

Power Hawk Series 900 Diskless Systems Administrator’s Guide

interrupt level

Driver interrupt routines that are started when an interrupt is received from a hardware
device. The system accesses the interrupt vector table, determines the major number of the
device, and passes control to the appropriate interrupt routine.

interrupt vector

Interrupts from a device are sent to the device's interrupt vector, activating the interrupt
entry point for the device.

ICMP

Internet Control Message Protocol, an integral part of IP as defined in RFC 792. This
protocol is part of the Internet Layer and uses the IP datagram delivery facility to send its
messages.

IP

The Internet Protocol, RFC 791, is the heart of the TCP/IP. IP provides the basic packet
delivery service on which TCP/IP networks are built.

ISO

International Organization for Standardization

kernel buffer cache

A set of buffers used to minimize the number of times a block-type device must be
accessed.

kdb

Kernel debugger.

loadable module

A kernel module (such as a device driver) that can be added to a running system without
rebooting the system or rebuilding the kernel.

MTU

Maximum Transmission Units - the largest packet that a network can transfer.

memory file system image

A cpio archive containing the files which will exist in the root file system of a client sys-
tem. This file system is memory resident. It is implemented via the existing memfs file
system kernel module. The kernel unpacks the cpio archive at boot time and populates the
root memory file system with the files supplied in the archive.

Glossary-7

Glossary

memory management

The memory management scheme of the UNIX operating system imposes certain restric-
tions on drivers that transfer data between devices.

modem

A contraction of modulator-demodulator. A modulator converts digital signals from the
computer into tones that can be transmitted across phone lines. A demodulator converts
the tones received from the phone lines into digital signals so that the computer can pro-
cess the data.

netboot

The process of a client SBC downloading into its own memory and then executing a boot
image file that is retrieved from a File Server SBC by using the TFTP network protocol.
On client SBC boards, networking is configured with the STAR 'config' command, and an
ASTRix /nvram/startup script may be created and automatically executed after a reset, in
order to download and execute a client boot image via TFTP with ASTRix 'tftp' and 'boot'
commands.

netload

The process of a target loading a boot image as discussed under netboot, but without
subsequently executing it. On Power Hawk Series 900 client boards, netloading is invoked
with the ASTRix 'tftp' command.

network boot

See definition for netboot.

network load

See definition for netload.

netstat

The netstat command displays the contents of various network-related data structures
in various formats, depending on the options selected.

NFS

Network File System. This protocol allows files to be shared by various hosts on the net-
work.

NFS client

In a NFS client configuration, the host system provides UNIX file systems for the client
system. A client system operates as a diskless NFS client of a host system.

Glossary-8

Power Hawk Series 900 Diskless Systems Administrator’s Guide

NIS

Network Information Service (formerly called yellow pages or yp). NIS is an administra-
tive system. It provides central control and automatic dissemination of important adminis-
trative files.

NVRAM

Non-Volatile Random Access Memory. This type of memory retains its state even after
power is removed.

panic

The state where an unrecoverable error has occurred. Usually, when a panic occurs, a mes-
sage is displayed on the console to indicate the cause of the problem.

PDU

Protocol Data Unit

PowerPC G4

The PowerPC G4 (7450) microprocessor. Part of the PowerPC family of microprocessors;
an architecture based on Motorola/IBM's 32-bit RISC design CPU core.

PPP

Point-to-Point protocol is a method for transmitting datagrams over point-to-point serial
links

prefix

A character name that uniquely identifies a driver's routines to the kernel. The prefix name
starts each routine in a driver. For example, a RAM disk might be given the ramd prefix.
If it is a block driver, the routines are ramdopen, ramdclose, ramdsize,
ramdstrategy, and ramdprint.

protocol

Rules as they pertain to data communications.

RFS

Remote File Sharing.

random I/O

I/O operations to the same file that specify absolute file offsets.

Glossary-9

Glossary

raw I/O

Movement of data directly between user address spaces and the device. Raw I/O is used
primarily for administrative functions where the speed of a specific operation is more
important than overall system performance.

raw mode

The method of transmitting data from a terminal to a user without processing. This mode
is defined in the line discipline modules.

rcp

Remote copy allows files to be copied from or to remote systems. rcp is often compared to
ftp.

read queue

The half of a STREAMS module or driver that passes messages upstream.

rlogin

Remote login provides interactive access to remote hosts. Its function is similar to telnet.

routines

A set of instructions that perform a specific task for a program. Driver code consists of
entry-point routines and subordinate routines. Subordinate routines are called by driver
entry-point routines. The entry-point routines are accessed through system tables.

rsh

Remote shell passes a command to a remote host for execution.

SBC

Single Board Computer

SCSI driver interface (SDI)

A collection of machine-independent input/output controls, functions, and data structures,
that provide a standard interface for writing Small Computer System Interface (SCSI)
drivers.

sequential I/O

I/O operations to the same file descriptor that specify that the I/O should begin at the “cur-
rent” file offset.

SLIP

Serial Line IP. The SLIP protocol defines a simple mechanism for “framing” datagrams
for transmission across serial line.

Glossary-10

Power Hawk Series 900 Diskless Systems Administrator’s Guide

server

See definition for File Server and host.

STAR/ASTRix

A pair of board-resident Flash monitor utilities that provide a basic I/O system (BIOS), a
boot Flash, and system diagnostics for Power Hawk Series 900 single board computers.

ASTRix startup script

As part of the boot process, ASTRix can automatically perform ASTRix commands and/
or user defined functions written in a startup script that is stored in NVRAM (nonvolatile
RAM). A special startup script is used for netbooting client SBCs in loosely-coupled con-
figurations.

SMTP

The Simple Mail Transfer Protocol, delivers electronic mail.

small computer system interface (SCSI)

The American National Standards Institute (ANSI) approved interface for supporting
specific peripheral devices.

SNMP

Simple Network Management Protocol

Source Code Control System (SCCS)

A utility for tracking, maintaining, and controlling access to source code files.

special device file

The file that identifies the device's access type (block or character), the external major and
minor numbers of the device, the device name used by user-level programs, and security
control (owner, group, and access permissions) for the device.

synchronous data link interface (SDLI)

A UN-type circuit board that works subordinately to the input/output accelerator (IOA).
The SDLI provides up to eight ports for full-duplex synchronous data communication.

system

A single board computer running its own copy of the operating system, including all
resources directly controlled by the operating system (for example, I/O boards, SCSI
devices).

Glossary-11

Glossary

system disk

The PowerMAX OS requires a number of system directories to be available on a system
disk in order for the operation system to function properly.These directories include: /etc, /
sbin, /dev, /usr and /var.

system initialization

The routines from the driver code and the information from the configuration files that
initialize the system (including device drivers).

System Run Level

A netboot system is not fully functional until the files residing on the File Server are
accessible. init(1M) ‘init state 3’ is the initdefault and the only run level supported for
netboot systems. In init state 3, remote file sharing processes and daemons are started.
Setting initdefault to any other state or changing the run level after the system is up and
running, is not supported.

swap space

Swap reservation space, referred to as ‘virtual swap’ space, is made up of the number of
real memory pages that may be used for user space translations, plus the amount of
secondary storage (disk) swap space available.

target

See definition for client.

TELNET

The Network Terminal Protocol, provides remote login over the network.

TCP

Transmission Control Protocol, provides reliable data delivery service with end-to-end
error detection and correction.

Trivial File Transfer
Protocol(TFTP)

Internet standard protocol for file transfer with minimal capability and minimal overhead.
TFTP depends on the connection-less datagram delivery service (UDP).

twisted-pair Ethernet (10base-T)

An Ethernet implementation in which the physical medium is an unshielded pair of
entwined wires capable of carrying data at 10 Mbps for a maximum distance of 185
meters.

Glossary-12

Power Hawk Series 900 Diskless Systems Administrator’s Guide

twisted-pair Ethernet (100base-T)

An Ethernet implementation in which the physical medium is an unshielded pair of
entwined wires capable of carrying data at 100 Mbps for a maximum distance of 185
meters.

UDP

User Datagram Protocol, provides low-overhead, connection-less datagram delivery
service.

unbuffered I/O

I/O that bypasses the file system cache for the purpose of increasing I/O performance for
some applications.

upstream

The direction of STREAMS messages flowing through a read queue from the driver to the
user process.

user space

The part of the operating system where programs that do not have direct access to the ker-
nel structures and services execute. The UNIX operating system is divided into two major
areas: the user programs and the kernel. Drivers execute in the kernel, and the user
programs that interact with drivers execute in the user program area. This space is also
referred to as user data area.

yellow pages

See definition for NIS (Network Information Services).

Index-1

Symbols

/etc/clients 2-21
/etc/hosts 2-15
/etc/profiles 2-13, 2-28

Numerics

100base-T Glossary-1
10base-T Glossary-1

A

ARP Glossary-1
ASTRix

description 1-3, 1-5, Glossary-10
Flash access 3-2
manual iv
netboot 2-34
SBC client board configuration 2-3

B

banked flash 3-2
block

device Glossary-1
driver Glossary-2

boot device Glossary-2
Boot Flash 3-1, 3-2
boot image

characteristics 1-2, 1-5, 1-7
creation 1-7, 2-32
dependencies 2-32
description 2-31
file definition Glossary-2
file system 1-2

boot status 2-34
booting

basics 1-2
Flash file system 3-3
Flash Raw Write 3-5
netboot 2-31
procedure 1-9

C

client
configuration 2-13, 2-16

customize 2-18
kernel 2-18
types 1-1

definition 1-4, Glossary-3
embedded, see embedded client
NFS, see NFS client
profile 2-13, 2-28
SBC 2-3
shutdown 2-35

config utility 2-19
configuration

clients (netbootconfig) 2-16
custom files 2-20
diskless systems 1-17, 2-1
kernel 2-18

crash 4-1, 4-2
custom configuration files 2-20
customize basic client configuration 2-18

D

debugging 4-1
definitions of terms 1-4, Glossary-1
dfstab 1-14
dfstab.diskless 1-14
disk space requirements 1-18
disk, add a local A-1
disk_clients B-1
disk_server B-1
diskless

boot basics 1-2

Index

Power Hawk Series 900 Diskless System Administrator’s Guide

Index-2

implementation 1-7
operation description 1-1

E

embedded client
configuration 2-14
definition 1-4
launching an application 2-29
overview 1-1

F

file server 1-3, 1-4, Glossary-5
Flash

autobooting Glossary-4
boot, see Flash Boot
booting Glossary-4
burning Glossary-5
characteristics 3-2
file system 3-2, 3-3
memory Glossary-5
overview 3-1
Raw Write 3-2, 3-5

Flash Boot
definition 1-5
description 1-9, 1-11
system administration 3-1

H

hardware overview 1-6
host Glossary-5
hosts tables 2-15

I

idtuneobj 2-20
init level 1-5, Glossary-11
inittab 1-12, 2-21, 2-23

K

K00client rc script 2-21-2-23

kdb 4-1
kernel configuration 2-18
kernel.modlist.add 2-19, 2-21, 2-25
keyadm 1-19

L

launching applications
embedded clients 2-29
NFS clients 2-30

licensing information 1-19
local disk A-1
Loosely-Coupled System (LCS)

configuration 1-2
definition 1-4
disk space 1-18
hardware prerequisites 1-17
installation 2-1
overview 1-1
software prerequisites 1-18

M

memfs file system 1-8, 1-12
memfs.cpio 1-7, 1-8
memfs.files.add 2-21, 2-25, 2-29
memfs.inittab 2-21, 2-23
mknetbstrap 2-19, 2-28, 2-31-2-33, 4-2

N

Net Boot
configuration

client 2-13
modify 2-12
overview 2-1

definition 1-5
description 1-9, 1-10
procedure 2-33
system administration 2-1
toolset 1-3
using ASTRix 2-34

netboot Glossary-7
netbootconfig 1-4, 2-13, 2-16, 2-17
netload Glossary-7
network boot Glossary-7
network load Glossary-7
networking structure 1-13

Index

Index-3

NFS client
configuration 2-14
definition 1-4, Glossary-7
launching an application 2-30
make NFS server B-1
overview 1-2

NFS mount scheme 1-12
nfssrv B-1

P

paged flash 3-2
Point-to-Point protocol Glossary-8
Power Hawk Model 920 features 1-6
Power Hawk Model 940 features 1-6
Power Hawk Networking Structure 1-13
PPP Glossary-8
processor limits 1-19
profiles 2-13, 2-28

R

random I/O Glossary-8
raw I/O Glossary-9
Raw Write 3-2, 3-5
rcp Glossary-9
referenced publications iv
remote file sharing

description 1-12, Glossary-8
networking structure 1-13

rlogin Glossary-9
root, virtual 1-3, 1-7
rsh Glossary-9

S

S25client rc script 2-21, 2-23
SBC client configuration 2-3
sequential I/O Glossary-9
Serial Port A 1-17
shared files 1-12
shutdown 2-35
SMTP Glossary-10
SNMP Glossary-10
Source Code Control System (SCCS) Glossary-10
STAR iv, 1-5, 1-10, 2-3
subsystem support 2-17
swap space 1-5, 1-15, 2-15, Glossary-11

Synergy Monitor (STAR/ASTRix) 1-5
syntax notation iii
system console 1-17
system disk 1-5
system run level 1-5, Glossary-11

T

tables
dfstab 1-14
dfstab.diskless 1-14
hosts 2-15
inittab 2-23
kernel.modlist.add 2-19, 2-25
memfs.files.add 2-25
memfs.inittab 2-23
vfstab 2-24
vroot.files.add 2-26

TCP Glossary-11
TELNET Glossary-11
Trivial File Transfer Protocol (TFTP) 1-5, Glossary-11

U

UDP Glossary-12
unix kernel 1-7, 1-8, 2-18
unix.bstrap 1-7, 1-8
User Flash 3-1, 3-2
user limits 1-19

V

vfstab 2-21, 2-24
virtual root 1-3, 1-7
virtual swap 1-15
vroot.files.add 2-21, 2-26

Power Hawk Series 900 Diskless System Administrator’s Guide

Index-4

Spine for 1” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8” beginning
1/4” in from either side

Part Number: Helvetica,
6 pt, centered, 1/8” up

Power Hawk
Series 900
Diskless
Systems

Administrator’s
Guide

0891090

Admin

P
o

w
erM

A
X

 O
S

	Preface
	Contents
	Introduction
	1.1. Overview
	1.1.1. Loosely-Coupled Systems (LCS)
	1.1.2. Diskless Boot Basics
	1.1.3. Net Boot Toolset

	1.2. Definitions
	1.3. Hardware Overview
	1.3.1. Model 920 Hardware Feature Summary
	1.3.2. Model 940 Hardware Feature Summary

	1.4. Diskless Implementation
	1.4.1. Virtual Root
	1.4.2. Boot Image Creation and Characteristics
	1.4.3. MEMFS Root Filesystem
	1.4.4. Booting
	1.4.4.1. Net Boot
	1.4.4.2. Flash Boot

	1.4.5. Remote File Sharing
	1.4.6. Swap Space

	1.5. Configuring Diskless Systems
	1.5.1. Loosely-Coupled System Hardware Prerequisites
	1.5.2. Disk Space Requirements
	1.5.3. Software Prerequisites

	1.6. Licensing Information

	Netboot System Administration
	2.1. Configuration Overview
	2.1.1. Installing a Loosely-Coupled System
	2.1.2. Installing Additional Boards

	2.2. SBC Client Board Configuration
	2.3. Modifying an Existing Automatic Netboot Configuration
	2.4. Client Configuration
	2.4.1. The Client Profile File
	2.4.1.1. Required Parameters
	2.4.1.2. Required NFS-Related Parameters
	2.4.1.3. Hosts Tables

	2.4.2. Configuring Clients Using netbootconfig
	2.4.2.1. Creating and Removing a Client Configuration
	2.4.2.2. Subsystem Support

	2.5. Customizing the Basic Client Configuration
	2.5.1. Modifying the Kernel Configuration
	2.5.1.1. kernel.modlist.add
	2.5.1.2. mknetbstrap
	2.5.1.3. config utility
	2.5.1.4. idtuneobj

	2.5.2. Custom Configuration Files
	2.5.2.1. S25client and K00client rc Scripts
	2.5.2.2. memfs.inittab and inittab Tables
	2.5.2.3. vfstab Table
	2.5.2.4. kernel.modlist.add Table
	2.5.2.5. memfs.files.add Table
	2.5.2.6. vroot.files.add Table

	2.5.3. Modifying the Client Profile Parameters
	2.5.4. Launching Applications
	2.5.4.1. Launching an Application for Embedded Clients
	2.5.4.2. Launching an Application for NFS Clients

	2.6. Booting and Shutdown
	2.6.1. The Boot Image
	2.6.2. Creating the Boot Image
	2.6.2.1. Examples on Creating the Boot Image

	2.6.3. Net Booting
	2.6.3.1. Netboot Using ASTRix

	2.6.4. Shutting Down the Client

	Flash Boot System Administration
	3.1. Introduction
	3.2. Flash Characteristics
	3.3. The Flash Filesystem Method
	3.4. The Raw Write Method

	Debugging Tools
	4.1. System Debugging Tools
	4.2. kdb
	4.3. crash

	Adding a Local Disk
	Make Client System Run in NFS File Server Mode
	Glossary
	Index

