Pmetrics

User Manual

July 2015

An R package for parametric
and non-parametric modeling
and simulation of
pharmacokinetic and

pharmacodynamic systems

LAPKB

Laboratory of Applied
Pharmacokinetics &

=2 USC University of
1Y Southern California

Table of Contents

0] o X0 1¥ T ' o TN 3
L) a0 ¥ o3 0T ol 3
[0 o Ty =T 3
System Requirements and INStallationccc.ceiieeiiiiiiiiiiinieeiieiieteeeieereeeeetenseeteesseesensseesesssessanssessssssesssnssssens 3
What This ManUal IS NOT......cciiiiiiiiiirirtireeerteerenereeeteeeresiernsssenserenseressessssessssssassessssssnsssensesensessnsesansesnnnns 5
Getting Help and UPdatesc...iieeeiiiiiiiiieieceieinierteeeeerensneetensseerenssessenssessenssesssnssssssnssesssnssssssnssesssnssesssnssssens 5
PMEtriCS COMPONENTES ...ccuiiieirieirrieerteerteereenerenereserasernssseassseasessasessnserensessssesassssassssassssnssssnsessnsssensessnsesansnen 5
[OVES oY 0 V7T o = o g TN ATt 0 o n o o £ 6
LC =T 1= = LI AV e T8 1 (o 7
PMEtriCS INPUL FIlES..cuuuiiieniiieeniiiieenieetenneeteeneeteesseeeeessessenssessenssesssassessssssesssnsssssssssesssnsssssssssssssnsssssssssssssnnssnns 8
DAta .CSV FIlES ...eeeeecceiieeeceeeccceerttrreecneesee e e s e e s e s ennn s eee s s e e e e s anasssssssssesesnnnssssssssseeeesnnnssssssssseeesnnnnsssssssseseesnnnnsnnnsnnnnns 8
MaNIPUIAtioN Of CSV fIlESceeeeee et ccce e e et re e see e s e e e e e sansssssessseesesnnnsssssssssesesnnnnssssssnseesesnnnnsnnnnnnnnns 9
IMIOAEI FIlES . eeeeiiiieeeiiciieiicciteieeeerrieeeereneneesteneseeetenesssssenssseseensssssesnsssssesnsssssesnsssssesnsssssesnsssssesnsssssssnssssssnnsssnssnssanes 10
HOW t0 USE R @aNd PMELIICS cuuuuiiiiiiiiiniiiiiiiiiineiiiiiiienneiiiiissesssiiseiissensssssssiessssssssssssssnsssssssssssnsssssssssssnnnssssssss 18
PMetrics Data Objects. ..ottt reneesrenessssenssessenessssensssssensssssennssssenssssssnnssssannsnsns 19
Making NeW Pmetrics ODJECtS......ccuviiiiiiiiiimiiiiiiiiieiuiiiiiiieeneiiiiiiesssiiiiimessssiisiiresssssssstmesssssssssssssssssssssses 24
SUMMArIZING PMELIICS OBJECES ..cccuuiieeniiiieeniiiieeierienneetteasietteasereensessensssseenssesssnssesssnssesssnssesssnssesssnssesssnsssesnn 27
o 17 oo S 27
PIMIUINGQI.......caneeeeeeeeeeeeeeeeeeeeeetettetiseeeesessesennsssssssssessssmmsssssssssssssssmnssssssssssssssnnssssssssssssssnnssssssssssssssnnnsssssssnnsnsnnnn 28

PIVIOP ..c.ucieeiiiieiiieuiiienieisninsssissssissssiossssossesssssssssnsssssssssssssssssssssessssessssssssssssssssssssessssssssssssssessssessnssssnssssnssessssossns 31

o 117 o N 32

NPAG RUNS .eviiiiuiiiiniiiieiiiieiiiiesiimesimmsimsitemsionstesorsessrssssrasssrssssssesssssstossstssssssssssessssassssasssssssssssssssssssssssanssses 33
IT2B RUNS ..ciciiieiicniiiicreieeeteerastesstoserassessteserasessssessrasessssasssasessssasssasessssssssesesnssssssasesnsessssasssnsessssasssnsesnssasssanans 35
ERR RURNS cuuiiiiiiiiiiiiiiiiiieiieiieiieesieneiaiisesiossrastsesiosstasessstossiassssstssstossssssssstossssssssstosssassssstasssassssstasssassssssssssasses 35
SIMUIATOEN RUNS...ccuiiiiiiiiiiiiiiiiiieieeiiisiieeeeesissssseesessssstssssssssssssssssnsssssssssesnssssssstessssssssssssssnsssssssssssnnssssssssasnne 36
[Uo7 u [¥ - PPN 42
EXAMPICS Of PMELIICS PIOLSeeaaeeeeeeeeeeeeieiiieeeeeeeeeteteiaesssessessssennssssssssssssssmmsssssssssssssssnsssssssssssssssnnsssssssnssssnnnn 44
Probability of Target AttainmeENt..... ... iiieeiiiieeiiiieieireeeeerenseertensneerensseseenssessenssessenssesssnssessenssssssnssessennsanns 47
[\ FeTs [T I D F=T=4 Vo 1 u [oL RPNt 49
INtErNAl Validationot cce st e rreecneee e eee e s s e e e e snnasssssssseesesnnnsssssssssereesnnsssssssssenseennnnsssssssseseeennnnnnnnnn 49
EXternal Validation ...ttt rene e s rene s seenesssseenssssseenssssseenssssseensssssesnsssssasnsssssasnsssssssnnsnnns 52
PMETriCS OULPULS ...ceuiiieiiiiiiiiirtierecerreereaeereanerensernssernessrnssseassssnsssenssrenserensesnssssensssassssasssrnsssensssensesensesensenen 52
PN Yol |1 =1 oV 20T Lot n T T3 L3 53
REFEIENCES . euuereeiirieiienieteieteeireeeertesereaserenserenseresserasserasssrasssenssssnssssnsssensesessesasssssssssassssassesnssssnsssensssensesansenen 53

ALt o

Pmetrics” ser's Guide 2

Introduction

Thank you for your interest in Pmetrics! This guide provides instructions and examples to assist users of the
Pmetrics R package, by the Laboratory of Applied Pharmacokinetics at the University of Southern California.
Please see our website at http://www.lapk.org for more information.

Here are some tips for using this guide.

Items that are hyperlinked can be selected to jump rapidly to relevant sections.

At the bottom of every page, the text “User’s Guide” can be selected to jump immediately to the table of
contents.

* Itemsin courier font correspond to R commands

Citing Pmetrics

Please help us maintain our funding to provide Pmetrics as a free research tool to the pharmacometric community.
If you use Pmetrics in a publication, you can cite it as below. In R you can always type citation (“"Pmetrics”)
to get this same reference.

Neely MN, van Guilder MG, Yamada WM, Schumitzky A, Jelliffe RW. Accurate Detection of Outliers and
Subpopulations With Pmetrics, a Nonparametric and Parametric Pharmacometric Modeling and
Simulation Package for R. Ther Drug Monit 2012; 34:467-476.

Disclaimer

You, the user, assume all responsibility for acting on the results obtained from Pmetrics. The USC Laboratory of
Applied Pharmacokinetics, members and consultants to the Laboratory of Applied Pharmacokinetics, and the
University of Southern California and its employees assume no liability whatsoever. Your use of the package
constitutes your agreement to this provision.

System Requirements and Installation

Pmetrics and all required components will run under Mac (Unix), Windows, and Linux. There are three required
software components which must be installed on your system in this order:

1. The statistical programming language and environment “R”
2. The Pmetrics package for R
3. gfortran or some other Fortran compiler

A fourth, highly recommended, but optional component is Rstudio, a user-friendly wrapper for R. It can be
installed any time after installing R (i.e. step 1 above).

All components have versions for Mac, Windows, and Linux environments, and 32- and 64- bit processors. All are
free of charge.

R

R is a free software environment for statistical computing and graphics, which can be obtained from http://
www.R-project.org/. Pmetrics is a library for R.

Pmetrics

If you are reading this manual, then you have likely visited our website at http://www.lapk.org, where you can
select the software tab and download our products, including Pmetrics.

ALt o

Pmetrics” ser's Guide 3

http://www.lapk.org
http://www.lapk.org
http://www.R-project.org
http://www.R-project.org
http://www.R-project.org
http://www.R-project.org
http://www.lapk.org
http://www.lapk.org

Pmetrics is distributed as a package source file archive (.tgz for Mac, .zip for Windows, .tar.gz for Linux). Do not
open the archive. To install Pmetrics from the R console, use the command
install.packages (file.choose ()), and navigate when prompted to the folder in which you placed the
Pmetrics package archive (.zip or .tgz) file. Pmetrics will need the following R packages for some functions: chron,
Defaults, and RZHTML. However, you do not have to install these if you do not already have them in your R library.
They should automatically be downloaded and installed when you use PMbuild () or the first time you use a
Pmetrics function that requires them, but if something goes awry (such as no internet connection or busy server)
you can do this manually.

Fortran

In order to run Pmetrics, a Fortran compiler is required. After you have installed Pmetrics, the first command to
run is PMbuild () which will verify an installed fortran compiler on your system, or link you to the OS-specific
page of our website with explicit instructions and a link to download and install gfortran on your system. Details
of this procedure follow, but are not relevant if you already have a compiler installed.

For Mac users the correct version of gfortran will be downloaded for your system (Mavericks 64-bit, Mountain
Lion 64-bit, Lion 64-bit, Snow Leopard 64- or 32-bit). You will also be provided a link to download and install
Apple’s Xcode application if you do not already have it on your system. Xcode is required to run gfortran on Macs.
As of version 4.3 for Lion, Xcode is available from the App store for free. For Snow Leopard, Xcode is on your
installation disk.

NOTE: For Xcode downloaded from the App store (Lion and later), you must additionally install the Command
Line Tools available in the Xcode Preferences -> Downloads pane (Lion and Mountain Lion) or the Apple
Developer website for Xcode 5 (Mavericks).

Windows users need to pay special attention because the the “gcc” installer that provides necessary, common
libraries for many programming languages does not by default include gfortran. When gcc is installed, be sure to
choose the fortran option to include gfortran, as shown below.

G TDM-GCC Setup B (=l E 3| & Tom-GeC setup B (= [) [
New Installation_Choose Components New Installation: Choose Components
Choose which fe| C||Ck the expander bUttOn : Choose which features of TDM-GCC you want installed.
Check !1e components you want installed and uncheck the components you don't want Check the components you want installed and uncheck the components you don't want
installed. Click Install to start the installation. installed. Click Install to start the installation.
Select the type of install: TDM-GCC Recommended, C/C++ - Select the type of install: Custom -
Or, select the optional components you wish to have installed: Or, selec \ i
Description Check this box Description
=J- Components GNU Make for MinGW - [=]8 Gkl
+)-[H] gcc (TDM64 Current: 4.6.1-tdm64-1) (NOT for MSYS) - Version
" binutils (Binutils CVS: 2.21.53-20110731-tdmé| = ($) TDM64 Current: 4.6.1-tdm64-1 2
+ mingw64-runtime (MinGW-w64 Runtime Snaps core
+ mingw32-make (MinGW Stable: 3.82-5) c++
+)-[7] gdb (Stable Release: 7.3.1-tdm64-1) i] fortran i
] ot S e [e
m » « m »
Download: 31.2 MB; Install: 260 MB Download: 36.7 MB; Install: 296 MB
| <Back l Install Cancel < Back J Install Cancel

Linux users have the easiest time, as gfortran comes with Linux.
Rstudio

A text editor that can link to R is useful for saving scripts. Both the Windows and Mac versions of R have
rudimentary text editors that are stable and reliable. Numerous other free and paid editors can also do the job, and
these can be located by searching the internet. We prefer Rstudio.

ALt o

Pmetrics’ Jser’s Guide 4

http://rstudio.org/
http://rstudio.org/

What This Manual Is Not

We assume that the user has familiarity with population modeling and R, and thus this manual is not a tutorial for
basic concepts and techniques in either domain. We have tried to make the R code simple, regular and well
documented. A very good free online resource for learning the basics of R can be found at http://
www.statmethods.net/index.html. We recognize that initial use of a new software package can be complex, so
please feel free to contact us at any time, preferably through the Pmetrics forum at http: /www.lapk.org or directly

by email at contact@lapk.org.

This manual is also not intended to be a theoretical treatise on the algorithms used in IT2B or NPAG. For that the
user is directed to our website at www.lapk.org.

Getting Help and Updates

There is an active LAPK forum available from our website at http://www.lapk.org with all kinds of useful tips and
help with Pmetrics. Register (separately from your LAPK registration) and feel free to post! Within R, you can also
use help (“command”) or ?command in the R console to see detailed help files for any Pmetrics command. Many
commands have examples included in this documentation and you can execute the examples with
example (command). Note that, here, quotation marks are unnecessary around command. You can also type
PMmanual () to launch this manual from within Pmetrics as well as a catalogue of all Pmetrics functions. Finally,
PMnews () will display the Pmetrics changelog.

Pmetrics will check for updates automatically every time you load it with 1ibrary (Pmetrics). If an update is
available, it will provide a brief message to inform you. You can then use PMupdate () to update Pmetrics from
within R, without having to visit our website. You will be prompted for your LAPK user email address and
password. When bugs arise in Pmetrics, you may see a start up message to inform you of the bug and a patch can
be installed by the command PMpatch () if available. Note that patches must be reinstalled with this command
every time you launch Pmetrics, until the bug is corrected in the next version.

As of version 1.0.0 Pmetrics has graphical user interface (GUI) capability for many functions. Using
PMcode (“function”) will launch the GUI in your default browser. While you are interacting with the GUI, R is
“listening” and no other activity is possible. The GUI is designed to generate Pmetrics R code in response to your
input in a friendly, intuitive environment. That code can be copied and pasted into your Pmetrics R script. You can
also see live plot previews with the GUI. All this is made possible with the ‘shiny’ package for R.

Currently, the following GUIs are available: PMcode (“NPrun”), PMcode (“ITrun”), PMcode (“plot”).
More are coming!

Pmetrics Components

There are three main software programs that Pmetrics controls.

IT2B is the ITerative 2-stage Bayesian parametric population PK modeling program. It is generally used to
estimate parameter ranges to pass to NPAG. It will estimate values for population model parameters under the
assumption that the underlying distributions of those values are normal or transformed to normal.

* NPAG is the Non-parametric Adaptive Grid software. It will create a non-parametric population model
consisting of discrete support points, each with a set of estimates for all parameters in the model plus an
associated probability (weight) of that set of estimates. There can be at most one point for each subject in the
study population. There is no need for any assumption about the underlying distribution of model parameter
values.

The simulator is a semi-parametric Monte Carlo simulation software program that can use the output of IT2B
or NPAG to build randomly generated response profiles (e.g. time-concentration curves) for a given population
model, parameter estimates, and data input. Simulation from a non-parametric joint density model, i.e. NPAG
output, is possible, with each point serving as the mean of a multivariate normal distribution, weighted
according to the weight of the point. The covariance matrix of the entire set of support points is divided
equally among the points for the purposes of simulation.

ALt o

Pmetrics” ser's Guide 5

http://www.statmethods.net/index.html
http://www.statmethods.net/index.html
http://www.statmethods.net/index.html
http://www.statmethods.net/index.html
http:/www.lapk.org
http:/www.lapk.org
mailto:contact@lapk.org
mailto:contact@lapk.org
http://www.lapk.org
http://www.lapk.org
http://www.lapk.org
http://www.lapk.org

Pmetrics has groups of R functions named logically to run each of these programs and to extract the output. Again,
these are extensively documented within R by using the help (command) or ?command syntax.

®* ITrun, [Tparse, ERRrun

®* NPrun, NPparse

* PMload, PMsave, PMreport
* SIMrun, SIMparse

For IT2B and NPAG, the “run” functions generate batch files, which when executed, launch the software programs
to do the analysis. ERRrun is a special implementation of IT2B designed to estimate the assay error polynomial
coefficients from the data, when they cannot be calculated from assay validation data (using makeErrorPoly ())
supplied by the analytical laboratory. The batch files contain all the information necessary to complete a run, tidy
the output into a date/time stamped directory with meaningful subdirectories, extract the information, generate a
report, and a saved Rdata file of parsed output which can be quickly and easily loaded into R. On Mac (Unix)
systems, the batch file will automatically launch in a Terminal window. On Windows systems, the batch file must
be launched manually. In both cases, the execution of the program to do the actual model parameter estimation is
independent of R, so that the user is free to use R for other purposes.

For the Simulator, the “SIMrun” function will execute the program directly within R.

For all programs, the “parse” functions will extract the primary output from the program into meaningful R data
objects. For IT2B and NPAG, this is done automatically at the end of a successful run, and the objects are saved in
the output subdirectory as IT2Bout.Rdata or NPAGout.Rdata, respectively.

For IT2B and NPAG, the “PMload” function can be used to load the either of the above .Rdata files after a successful
run. “PMsave” is the companion to PMload and can re-save modified objects to the .Rdata file.

The “PMreport” function is automatically run at the end of a successful NPAG and IT2B run, and it will generate an
HTML page with summaries of the run, as well as the .Rdata files and other objects. The default browser will be
automatically launched for viewing of the HTML report page. It will also generate a .tex file suitable for processing
by a [ATEX engine to generate a pdf report. See the Pmetrics Outputs section.

Within Pmetrics there are also functions to manipulate data .csv files and process and plot extracted data.
* Manipulate data .csv files: PMreadMatrix, PMcheck, PMwriteMatrix, PMmatrixRelTime, PMwrk2csv, NM2PM
* Process data: makeAUC, makeCov, makeCycle, makeFinal, makeOP, makeNCA, makePTA, makeErrorPoly

* Plot data: plot.PMcov, plot.PMcycle, plot.PMfinal, plot.PMmatrix, plot.PMop, plot.PMsim, plot.PMdiag,
plot.PMpta

* Model selection and diagnostics: PMcompare, plot.PMop (with residual option), makeNPDE, PMstep
* Pmetrics function defaults: PMwriteDefaults

Again, all functions have extensive help files and examples which can be examined in R by using the
help (command) or ?command syntax.

Customizing Pmetrics Options

You can change global options in Pmetrics

setPMoptions (sep, dec) Currently you can change two options. sep will allow Pmetrics to read data files
whose field separators are semicolons and decimal separators are commas, e.g. setPMoptions (sep=";",
dec=","). These options will persist from session to session until changed.

getPMoptions () will return the current options.

ALt o

Pmetrics’ (Jser’s Guide 6

General Workflow

The general Pmetrics workflow for IT2B and NPAG is shown in the following diagram.

You supply these files; Pmetrics does the rest!

Data .csv file Model .txt file
R4
"
’é
.° \ 4
4
\
$Q(\>:\¢'
0(\\\; .° Preparation program =3 |nstruction file
N
L d
’¢
\ 3 Engine program
A
. 47/
ss “OQO'
ss s‘//
. .
A A
Ss [N
- “
A [N
A d .
A d N
A d N
A d N
g .
PR .
N .
RO Output
u
@// s‘ p

R is used to specify the working directory containing the data .csv and model .txt files. Through the batch file
generated by R, the preparation program is compiled and executed. The instruction file is generated automatically
by the contents of the data and model files, and by arguments to the NPrun (), ITrun() or ERRrun ()
commands. The batch file will then compile and execute the engine file according to the instructions, which will
generate several output files upon completion. Finally, the batch file will call the R script to generate the summary
report and several data objects, including the IT2Bout.Rdata or NPAGout.Rdata files which can be loaded into R
subsequently using PM1oad (). Objects that are modified can be saved back to the .Rdata files with PMsave ().

Both input files (data, model) are text files which can be edited directly.

ALt o

Pmetrics’ (Jser’s Guide 7

Pmetrics Input Files

Data .csv Files
Pmetrics accepts input as a spreadsheet “matrix” format. It is designed for input of multiple records in a concise
way. Please keep the number of characters in the file name < 8.

Files are in comma-separated-values (.csv) format. Examples of programs that can save .csv files are any text
editor (e.g. TextEdit on Mac, Notepad on Windows) or spreadsheet program (e.g. Excel). Click on hyperlinked
items to see an explanation.

IMPORTANT: The order, capitalization and names of the header and the first 12 columns are fixed. All entries
must be numeric, with the exception of ID and “.” for non-required placeholder entries.

POPDATADEC11

#ID EVID TIME DUR DOSE ADDL II INPUT OUT OUTEQ CO C1 C2 (C3 cCov..
GH 1 0 0 400 . . 1 :

GH O 05 042 1 0.0101 O 0

GH O 1 046 1 0.0101 O 0

GH O 2 . . . 247 1 0.0101 O 0

GH 4 0 0 150 1 . . .

GH 1 35 05 150 1 . 0.0101 O 0

GH O 5.12 055 1 0.0101 0 0

GH O 24 052 1 0.0101 O 0
1423 1 0 1 400 -1 12 1

1423 1 0.1 0 100 . . 2 :
1423 0 1 -9 1 0.0101 O 0
1423 0 2 038 1 0.0101 O 0
1423 0 2 1.6 2 0.05 0.2 -0.11 0.002

POPDATA DEC 11 This is the fixed header for the file and must be in the first line. It identifies the version. It is
not the date of your data file.

#ID This field must be preceded by the “#” symbol to confirm that this is the header row. It can be
numeric or character and identifies each individual. All rows must contain an ID, and all
records from one individual must be contiguous. Any subsequent row that begins with “#” will
be ignored, which is helpful if you want to exclude data from the analysis, but preserve the
integrity of the original dataset, or to add comment lines. IDs should be 11 characters or less
but may be any alphanumeric combination. There can be at most 800 subjects per run.

EVID This is the event ID field. It can be 0, 1, or 4. Every row must have an entry.
0 = observation
1 = input (e.g. dose)
2, 3 are currently unused

4 = reset, where all compartment values are set to 0 and the time counter is reset to 0. This is
useful when an individual has multiple sampling episodes that are widely spaced in time with
no new information gathered. This is a dose event, so dose information needs to be complete.

TIME This is the elapsed time in decimal hours since the first event. It is not currently clock time (e.g.
21:30), although this is planned. Every row must have an entry, and within a given ID, rows
must be sorted chronologically, earliest to latest.

ALt o

Pmetrics’ (Jser’s Guide 8

DUR This is the duration of an infusion in hours. If EVID=1, there must be an entry, otherwise it is
ignored. For a bolus (i.e. an oral dose), set the value equal to 0.

DOSE This is the dose amount. If EVID=1, there must be an entry, otherwise it is ignored.

ADDL This specifies the number of additional doses to give at interval II. It may be missing for dose
events (EVID=1 or 4), in which case it is assumed to be 0. It is ignored for observation
(EVID=0) events. Be sure to adjust the time entry for the subsequent row, if necessary, to
account for the extra doses. If set to -1, the dose is assumed to be given under steady-state
conditions. ADDL=-1 can only be used for the first dose event for a given subject, or an EVID=4
event, as you cannot suddenly be at steady state in the middle of dosing record, unless all
compartments/times are reset to 0 (as for an EVID=4 event).

I This is the interdose interval and is only relevant if ADDL is not equal to 0, in which case it
cannot be missing. If ADDL=0 or is missing, Il is ignored.

INPUT This defines which input (i.e. drug) the DOSE corresponds to. Inputs are defined in the model
file.

ouT This is the observation, or output value. If EVID=0, there must be an entry; if missing, this must

“«n

be coded as -99. It will be ignored for any other EVID and therefore can be “.”. There can be at
most 150 observations for a given subject.

OUTEQ This is the output equation number that corresponds to the OUT value. Output equations are
defined in the model file.

Co,C1,C2,C3 These are the coefficients for the assay error polynomial for that observation. Each subject may
have up to one set of coefficients per output equation. If more than one set is detected for a
given subject and output equation, the last set will be used. If there are no available
coefficients, these cells may be left blank or filled with “.” as a placeholder.

cov.. Any column after the assay error coefficients is assumed to be a covariate, one column per
covariate.

Manipulation of CSV files

There are several functions in Pmetrics which are useful for either converting other formats into Pmetrics data
files, or checking Pmetrics data files for errors and fixing some of them automatically.

PMreadMatrix (filename, ...) This function simply reads filename and creates a PMmatrix object in
memory which can be plotted (see ?plot.PMmatrix) or otherwise analyzed.

PMcheck (PMmatrix|filename, model,...) This function will check a .csv file named filename or a
PMmatrix data frame containing a previously loaded .csv file (the output of PMreadMatrix) for errors which
would cause the analysis to fail. If a model file is provided, and the data file has no errors, it will also check the
model file for errors. See ?PMcheck for details in R.

PMwriteMatrix (data.frame, filename,...) This function writes an appropriate data.frame as a
new .csv file. It will first check the data.frame for errors via the PMcheck () function above, and writing will fail if
errors are detected. This can be overridden with override=T.

PMmatrixRelTime () This function converts dates and clock times of specified formats into relative times for
use in the NPAG, IT2B and Simulator engines. See ?PMmatrixRelTime for details.

PMwrk2csv () This function will convert old-style, single-drug USC*PACK .wrk formatted files into Pmetrics
data .csv files. Details are available with ?PMwrk2csvinR.

NM2PM () Although the structure of Pmetrics data files are similar to NONMEM, there are some differences. This
function attempts to automatically convert to Pmetrics format. It has been tested on several examples, but there
are probably NONMEM files which will cause it to crash. Running PMcheck () afterwards is a good idea. Details
can be found with ?NM2PM in R.

ALt o

Pmetrics’ (Jser’s Guide 9

Model Files

Model files for Pmetrics are ultimately Fortran text files with a header version of TSMULT... As of Pmetrics version
0.30, we have adopted a very simple user format that Pmetrics will use to generate the Fortran code automatically
for you. Version 0.4 additionally eliminates the previously separate instruction file. A model library is available on
our website at http://www.lapk.org/pmetrics.ph

Naming your model files. The default model file name is “model.txt,” but you can call them whatever you wish.
However, please keep the number of characters in the model file name < 8. When you use a model file in
NPrun (), ITrun(), ERRrun(), or SIMrun (), Pmetrics will make a Fortran model file of the same name,
temporarily renaming your file. At the end of the run, your original model file will be in the /inputs subfolder of
the run folder, and the generated Fortran model file will be called “model.for” and moved to the /etc subfolder of
the run folder. If your model is called “mymodel.txt”, then the Fortran file will be “mymodel.for”.

You can still use appropriate Fortran model files directly, but we suggest you keep the .for extension for all Fortran
files to avoid confusion with the new format. If you use a .for file as your model, you will have to specify its name
explicitly in the NPrun (), ITrun, ERRrun(), or SIMrun () command, since the default model name again
is “model.txt.” If you use a .for file directly, it will be in the /inputs subfolder of the run folder, not in /etc, since you
did not use the simpler template as your model file.

Structure of model files. The new model file is a text file with 11 blocks, each marked by "#" followed by a header
tag.

#PRImary variables
#COVariates

#SECcondary variables
#BOLus inputs
#INItial conditions

#F (bioavailability)
#LAG time

#DIFferential equations
#0UTputs

#ERRor

#EXTra

For each header, only the capital letters are required for recognition by Pmetrics. The blocks can be in any order,
and header names are case-insensitive (i.e. the capitalization here is just to show which letters are required).
Fortran is also case-insensitive, so in variable names and expressions case is ignored. Details of each block are
next, followed by a complete example.

Important: Sometimes it is important to preserve spacing and formatting in Fortran code that you might insert into
blocks, particularly the #EXTRA block. If you wish to do this, insert [format] and [/format] before and after any
code that you wish to reproduce verbatim with spacing in the fortran model file.

Comments: You can insert comments into your model text file by starting a line with a capital “C” followed by a
space. These lines will be removed/ignored in the final fortran code.

Primary variables

Primary variables are the model parameters that are to be estimated by Pmetrics or are designated as fixed
parameters with user specified values. It should be a list of variable names, one name to a line. Variable names
should be 11 characters or fewer. Some variable names are reserved for use by Pmetrics and cannot be used as
primary variable names. The number of primary variables must be between 2 and 32, with at most 30
random or 20 fixed.

On each row, following the variable name, include the range for the parameter that defines the search space. These
ranges behave slightly differently for NPAG, IT2B, and the simulator.

ALt o

Pmetrics™ Jser’s Guide 10

http://www.lapk.org/pmetrics.php
http://www.lapk.org/pmetrics.php

¢ For all engines, the format of the limits is min, max. A single value will fix that parameter to the specified
value.

¢ For NPAG, the limits are absolute, i.e. the algorithm will not search outside this range.

¢ For IT2B, the range defines the Bayesian prior distribution of the parameter values for cycle 1. For each
parameter, the mean of the Bayesian prior distribution is taken as the middle of the range, and the standard
deviation is xsig*range (see IT2B runs). Adding an exclamation point (!) to a line will prevent that
parameter from being assigned negative values. NPAG and the simulator will ignore the pluses as the
ranges are absolute for these engines.

¢ The simulator will ignore the ranges with the default value of NULL for the limits argument. If the
simulator limits argument is set to NA, which will mean that these ranges will be used as the limits to
truncate the simulation (see Simulator Runs).

Example:

#Pri

KE, 10,5 In this example, KE has a range of 0 to 5, which
V,0.01,100 will be absolute for NPAG and the simulator (if
KA, 0,5 limits=NA), but defines the prior distribution
KCP, 5 for KE if using IT2B. The “I” limits KE to the
KPC, 0,5 positive real numbers for IT2B. KCP is fixed to
Tlagl, 0, 2 5 regardless of the engine.

IC3,0,10000

FA1,0,1

Covariates

Covariates are subject specific data, such as body weight, contained in the data .csv file. The covariate names, which
are the column names in the data file, can be included here for use in secondary variable equations. The order
should be the same as in the data file and although the names do not have to be the same, we strongly encourage
you to make them the same to avoid confusion.

Covariates are applied at each dose event. The first dose event for each subject must have a value for every
covariate in the data file. By default, missing covariate values for subsequent dose events are linearly interpolated
between existing values, or carried forward if the first value is the only non-missing entry. To suppress
interpolation and carry forward the previous value in a piece-wise constant fashion, include an exclamation point
(1) in any declaration line.

Note that any covariate relationship to any parameter may be described as the user wishes by mathematical
equations and Fortran code, allowing for exploration of complex, non-linear, time-dependent, and/or conditional
relationships.

Example:

#Cov
wt

cyp
1C()

where IC will be piece-wise constant and the other two will be linearly interpolated for missing values.

Secondary variables

Secondary variables are those that are defined by equations that are combinations of primary, covariates, and
other secondary variables. If using other secondary variables, define them first within this block. Equation syntax
must be Fortran. It is permissible to have conditional statements, but because expressions in this block are

ALt o

Pmetrics” Jser's Guide 11

translated into variable declarations in Fortran, expressions other than of the form "X = function(Y)" must be

prefixed by a "+" and contain only variables which have been previously defined in the Primary, Covariate, or
Secondary blocks.

Example:

#Sec
CL =Ke *V * wt**0.75
+IF(cyp .GT. 1) CL = CL * cyp

Bolus inputs

By default, inputs with DUR (duration) of 0 in the data .csv file are "delivered" instantaneously to the model
compartment equal to the input number, i.e. input 1 goes to compartment 1, input 2 goes to compartment 2, etc.
This can be overridden with NBOLUS(input number) = compartment number.

Example:

#Bol
NBCOMP(1) =2

Initial conditions

By default, all model compartments have zero amounts at time 0. This can be changed by specifying the
compartment amount as X(.) = expression, where "." is the compartment number. Primary and secondary variables
and covariates may be used in the expression, as can conditional statemtents in Fortran code. A "+" prefix is not

necessary in this block for any statement, although if present, will be ignored.
Example:

#Ini
X(2) = IC*V (i.e. IC is a covariate with the measured trough concentration prior to an observed dose)
X(3) =1C3 (i.e. IC3 is a fitted amount in this unobserved compartment)

In the first case, the initial condition for compartment 2 becomes the value of the IC covariate (defined in
#Covariate block) multiplied by the current estimate of V during each iteration. This is useful when a subject has
been taking a drug as an outpatient, and comes in to the lab for PK sampling, with measurement of a concentration
immediately prior to a witnessed dose, which is in turn followed by more sampling. In this case, IC or any other
covariate can be set to the initial measured concentration, and if V is the volume of compartment 2, the initial
condition (amount) in compartment 2 will now be set to the measured concentration of drug multiplied by the
estimated volume for each iteration until convergence.

In the second case, the initial condition for compartment 3 becomes another variable, IC3 defined in the #Primary
block, to fit in the model, given the observed data.

F (bioavailability)

nn

Specify the bioavailability term, if present. Use the form FA(.) = expression, where "." is the input number. Primary
and secondary variables and covariates may be used in the expression, as can conditional statemtents in Fortran
code. A "+" prefix is not necessary in this block for any statement, although if present, will be ignored.

Example:

#F
FA(1) = FA1

Lag time

Specify the lag term, if present, which is the delay after an absorbed dose before observed concentrations. Use the

form TLAG(.) = expression, where "." is the input number. Primary and secondary variables and covariates may be

ALt o

Pmetrics” Jser's Guide 12

nm,on

used in the expression, as can conditional statemtents in Fortran code. A "+
any statement, although if present, will be ignored.

prefix is not necessary in this block for

Example:

#Lag
TLAG(1) = Tlagl

Differential equations

Specify a model in terms of ordinary differential equations, in Fortran format. XP(.) is the notation for dX(.)/dt,

where "." is the compartment number. X(.) is the amount in the compartment. There can be a maximum of 20
such equations.

Example:

#Dif

XP(ll) = -KA*X(1)

XP(2) = RATEIV(1) + KA*X(1) - (KE+KCP)*X(2) + KPC*X(3)
XP(3) = KCP*X(2) - KPC*X(3)

RATEIV(1) is the notation to indicate an infusion of input 1 (typically drug 1). The duration of the infusion and
total dose is defined in the data .csv file. Up to 7 inputs are currently allowed. These can be used in the model
file as RATEIV(1), RATEIV(2), etc. The compartments for receiving the inputs of oral (bolus) doses are defined in
the #Bolus block.

Outputs

nmn

Output equations, in Fortran format. Outputs are of the form Y(.) = expression, where "." is the output equation
number. Primary and secondary variables and covariates may be used in the expression, as can conditional
statemtents in Fortran code. A "+" prefix is not necessary in this block for any statement, although if present, will
be ignored. There can be a maximum of 6 outputs. They are referred to as Y(1), Y(2), etc.

Example:

#0ut
Y(1) =X(2)/V

Error

This block contains all the information Pmetrics requires for the structure of the error model. In Pmetrics, each
observation is weighted by 1/error?. There are two choices for the error term:

1. error = SD * gamma
2. error = (SD? + lamda?)%> (Note that lambda is only available in NPAG currently).

where SD is the standard deviation (SD) of each observation [obs], and gamma and lambda are terms to capture
extra process noise related to the observation, including mis-specified dosing and observation times.

SD is modeled by a polynomial equation with up to four terms: Co + C1*[obs] + C2*[obs]? + C3*[obs]3. The values
for the coefficients should ideally come from the analytic lab in the form of inter-run standard deviations or
coefficients of variation at standard concentrations. You can use the Pmetrics function makeErrorPoly () to
choose the best set of coefficients that fit the data from the laboratory. Alternatively, if you have no information
about the assay, you can use the Pmetrics function ERRrun () to estimate the coefficients from the data. Finally,
you can use a generic set of coefficients. We recommend that as a start, Co be set to half of the lowest
concentration in the dataset and C1 be set to 0.15. Cz and C3 can be 0.

In the multiplicative model, gamma is a scalar on SD. In general, well-designed and executed studies will have data
with gamma values approaching 1. Poor quality, noisy data will result in gammas of 5 or more. Lambda is an
additive model to capture process noise, rather than the multiplicative gamma model.

ALt o

Pmetrics™ Jser’s Guide 13

To specify the model in this block, the first line needs to be either L=[number] or G=[number] for a lambda or
gamma error model. The [number] term is the starting value for lambda or gamma. Good starting values for
lambda are 1 times Co for good quality data, 3 times Co for medium, and 5 or 10 times Co for poor quality. Note,
that Co should generally not be 0, as it represents machine noise (e.g. HPLC or mass spectrometer) that is always
present. For gamma, good starting values are 1 for high-quality data, 3 for medium, and 5 or 10 for poor quality. If
you include an exclamation point (!) in the declaration, then lambda or gamma will be fixed and not estimated.
Note that you can only fix lambda currently to zero.

The next line(s) contain the values for Co, C1, C2, and C3, separated by commas. There should be one line of
coefficients for each output equation. By default Pmetrics will use values for these coefficients found in the data
file. If none are present or if the model declaration line contains an exclamation point (!) the values here will be
used.

Example 1: estimated lambda, starting at 0.4, one output, use data file coefficients but if missing, use 0.1,0.1,0,0

#Err
L=0.4

0.1,0.1,0,0

Example 2: fixed gamma of 2, two outputs, use data file coefficients but if missing, use 0.1,0.1,0,0 for the first
output, but use 0.3, 0.1, 0, 0 for output 2 regardless of what is in the data file.

#Err

G=2!
0.1,0.1,0,0
0.3,0.1,0,0!

Extra

This block is for advanced Fortran programmers only. Occasionally, for very complex models, additional Fortran
subroutines are required. They can be placed here. The code must specify complete Fortran subroutines which
can be called from other blocks with appropriate call functions. As stated earlier, sometimes it is important to
preserve spacing and formatting in Fortran code that you might insert into blocks, particularly the #EXTRA block.
If you wish to do this, insert [format] and [/format] before and after any code that you wish to reproduce verbatim
with spacing in the fortran model file.

Reserved Names

The following cannot be used as primary, covariate, or secondary variable names. They can be used in equations,
however.

Reserved Variable Function in Pmetrics

ndim internal

t time

X array of compartment amounts

Xp array of first derivative of compartment amounts
rpar internal

ipar internal

ALt o

Pmetrics™ Jser’s Guide 14

b

npl
numeqt
ndrug
nadd
rateiv
cv

n

nd

ni

nup
nuic

np
nbcomp
psym

fa

tlag

tin

tout

array of primary parameters
input rates

input boluses

internal

output equation number

input number

covariate number

intravenous input for inputs when DUR>0 in data files
covariate values array

number of compartments
internal

internal

internal

internal

number of primary parameters
bolus compartment array
names of primary parameters
biovailability

lag time

internal

internal

ALt o

Pmetrics™ Jser’s Guide 15

Complete Example

Here is a complete example of a model file, as of Pmetrics version 0.40 and higher:

#Pri

KE, 0, 5 Notes:

V0, 0.1,100

KA, 0,5 By omitting a #Diffeq block with ODEs, Pmetrics understands that

Tlag1, 0, 3 you are specifying the model to be solved algebraically. In this case, at
least KE and V must be in the Primary or Secondary variables. KA,

#Cov KCP, and KPC are optional and specify absorption, and transfer to and

wt from the central to a peripheral compartment, respectively.

C this weight is in kg The comment line “C this weight is in kg” will be ignored.

#Sec

V =V0*wt

#Lag

TLAG(1) = Tlagl

#0ut
Y(1) =X(2)/V

#Err
L=0.4
0.1,0.1,0,0

ALt o

Pmetrics™ Jser’s Guide 16

Brief Fortran Tutorial

Much more detailed help is available from http://www.cs.mtu.edu/~shene/COURSES/cs201/NOTES/fortran.html.

Arithmetic Operator Meaning
+ addition
- subtraction
* multiplication
/ division
o exponentiation

Relational Operator Alternative Operator Meaning
< .LT. less than
<= .LE. less than or equal
> .GT. greater than
>= .GE. greater than or equal
== .EQ. equal
/= .NE. not equal
Selective Execution Example

IF (logical-expression) one-statement

IF (T >= 100) CL = 10

IF (logical-expression) THEN
statements
END IF

IF (T >= 100) THEN

IF (logical-expression) THEN
statements-1

ELSE
statements-2

END IF

CL=10
V=10
END IF
CL=10
ELSE
CL=CL
END IF

IF (T >= 100) THEN

ALt o

Pmetrics™ Jser’s Guide 17

http://www.cs.mtu.edu/~shene/COURSES/cs201/NOTES/fortran.html
http://www.cs.mtu.edu/~shene/COURSES/cs201/NOTES/fortran.html

How to use R and Pmetrics

Setting up a Pmetrics project

When beginning a new modeling project, it is convenient to use the command PMtree (“project name”). This
command will set up a new directory in the current working directory named whatever you have included as the
“project name”. For example, a directory called “DrugX” will be created by PMtree (“*DrugX”). Beneath this
directory, several subdirectories will be also created: Rscript, Runs, Sim, and src. The Rscript subdirectory will
contain a skeleton R script to begin Pmetrics runs in the new project. The Runs subdirectory should contain all
files required for a run (described next) and it will also contain the resulting numerically ordered run directories
created after each Pmetrics NPAG or IT2B run. The Sim subdirectory can contain any files related to simulations,
and the src subdirectory should contain original and manipulated source data files. Of course, you are free to edit
this directory tree structure as you please, or make your own entirely.

Getting the required files to run Pmetrics

When you wish to execute a Pmetrics run, you must ensure that appropriate Pmetrics model .txt and data .csv files
are in the working directory, i.e. the Runs subdirectory of the project directory. R can be used to help prepare the
data .csv file by importing and manipulating spreadsheets (e.g. read.csv ()). The Pmetrics function PMcheck ()
can be used to check a .csv file or an R dataframe that is to be saved as a Pmetrics data .csv file for errors. It can
also check a model file for errors in the context of a datafile, e.g. covariates that do not match.
PMcheck (..., fix=T) attempts to automatically rid data files of errors. The function PMwriteMatrix () can
be used to write the R data object in the correct format for use by IT2B, NPAG, or the Simulator.

You can also download sample data and scripts from the Pmetrics downloads section of our website. Edit prior
versions of model files to make new model files.

Using scripts to control Pmetrics

As you will see in the skeleton R script made by PMtree () and placed in the Rscript subdirectory, if this is a first-
time run, the R commands to run IT2B or NPAG are as follows. Recall that the “#” character is a comment
character.

library (Pmetrics)

#Run 1 - add your run description here
setwd (“working directory”)

NPrun () #for NPAG or ITrun() for IT2B

The first line will load the Pmetrics library of functions. The second line sets the working directory to the specified
path. The third line generates the batch file to run NPAG or IT2B and saves it to the working directory.

NOTE: On Mac systems, the batch file will be automatically launched in a Terminal window. On Windows systems,
the batch file must be launched manually by double clicking the npscript.bat or itscript.bat file in the working
directory.

ITrun () and NPrun () both return the full path of the output directory to the clipboard. By default, runs are
placed in folders numbered sequentially, beginning with “1”.

Now the output of IT2B or NPAG needs to be loaded into R, so the next command does this.

PMload (run_number)

Details of these commands and what is loaded are described in the R documentation (?PMload) and in the
following section. The run_number should be included within the parentheses to be appended to the names of
loaded R objects, allowing for comparison between runs, e.g. PM1oad (1). Finally, at this point other Pmetrics
commands can be added to the script to process the data, such as the following.

ALt o

Pmetrics™ Jser’s Guide 18

http://lapk.org/pmetrics.php
http://lapk.org/pmetrics.php

plot (final.l)

plot (cycle.l)

plot (op.1, type="pop”) or plot (op.lSpopl)

plot(op.1l) #default is to plot posterior predictions for output 1
plot (op.1, type="pop”, resid=T)

Of course, the full power of R can be used in scripts to analyze data, but these simple statements serve as examples.

If you do not use the PMtree () structure, we suggest that the R script for a particular project be saved into a
folder called “Rscript” or some other meaningful name in the working directory. Folders are not be moved by the
batch file. Within the script, number runs sequentially and use comments liberally to distinguish runs, as shown
below.

library (Pmetrics)

#Run 1 - Ka, Kel, V, all subjects

setwd (“working directory”)

NPrun () #assumes model="model.txt” and data="data.csv”
PMload (1)

Remember in R that the command example (function) will provide examples for the specified function. Most
Pmetrics functions have examples.

Pmetrics Data Objects

After a successful IT2B or NPAG run, an R datafile is saved in the output subdirectory of the newly created
numerically ordered folder in the working directory. After IT2B, this file is called “IT2Bout.Rdata”, and after NPAG
it is called “NPAGout.Rdata”. As mentioned in the previous section, these data files can be loaded by ensuring that
the Runs folder is set as the working directory, and then using the Pmetrics commands PMload (run num).

There are several Pmetrics data objects contained within the Rdata files which are loaded with PM1oad (), making
these objects available for plotting and other analysis.

Objects loaded by PMload (run_num)

Objects Variables Comments
op (class: PMop, list) $id Subject identification

$time Observation time in relative decimal hours

$obs Observation

$pred Predicted value

$pred.type Type of prediction, i.e. based on the population
parameter values or Bayesian posterior parameter
values

$icen Median (default) or mean of the parameter
distributions used to calculate the predicted
values.

$outeq

ALt o

Pmetrics™ Jser’s Guide 19

Objects Variables Comments

$block Dosing block, usually 1 unless data file contains
EVID=4 dose reset events, in which case each such
reset within a given ID will increment the dosing
block by 1 for that ID

$obsSD Calculated standard deviation (error) of the
observation based on the assay error polynomial

$d Difference between pred and obs

$ds Squared difference between pred and obs

$wd $d, weighted by the $obsSD

$wds $ds, weighted by the $obsSD

final (class: PMfinal, list) $popPoints (NPAG only) Data.frame of the final cycle joint

population density of grid points with column
names equal to the name of each random
parameter plus $prob for the associated
probability of that point

$popMean The final cycle mean for each random parameter
distribution

$popSD The final cycle standard deviation for each random
parameter distribution

$popCV The final cycle coefficient of variation for each
random parameter distribution

$popVar The final cycle variance for each random
parameter distribution

$popCov The final cycle covariance matrix for each random
parameter distribution

$popCor The final cycle correlation matrix for each random
parameter distribution

$popMedian The final cycle median for each random parameter
distribution

$gridpts (NPAG only) The initial number of support points

$ab Matrix of boundaries for random parameter

values. For NPAG, this is specified by the user
prior to the run; for IT2B, it is calculated as a user
specified multiple of the SD for the parameter
value distribution

ALt o

Pmetrics™ Jser’s Guide 20

Objects

Variables

Comments

$postPoints

(NPAG only) Data frame of the Bayesian posterior
parameter points for each of the first 100 subjects,
with the following columns:

id: subject ID

point: point number for that subject

parameters: parameters in the model

prob: probability of each point in the posterior for
each patient

cycle (class: PMcycle, list)

$names

Vector of names of the random parameters

$ll

Matrix of cycle number and -2*Log-likelihood at
each cycle

$gamlam

A matrix of cycle number and gamma or lambda at
each cycle (see item #16 under NPAG Runs below
for a discussion of gamma and lambda)

$mean

A matrix of cycle number and the mean of each
random parameter at each cycle, normalized to
initial mean

$sd

A matrix of cycle number and the standard
deviation of each random parameter at each cycle,
normalized to initial standard deviation

$median

A matrix of cycle number and the median of each
random parameter at each cycle, normalized to
initial standard deviation

$aic

A matrix of cycle number and Akaike Information
Criterion at each cycle

$bic

A matrix of cycle number and Bayesian (Schwartz)
Information Criterion at each cycle

cov (class: PMcov,
data.frame)

$id

Subject identification

$time

Time for each covariate entry

covariates...

Covariate values for each subject at each time,
extracted from the raw data file

ALt o

Pmetrics” Jser's Guide 21

Objects

Variables

Comments

parameters...

Mean, median, or mode of Bayesian posterior
distribution for each random parameter in the
model. Mode summaries are available for NPAG
output only, and the default is median. Values are
recycled for each row within a given subject, with
the number of rows driven by the number of
covariate entries

$icen

Median (default) or mean of the covariates and
parameter value distributions.

pop (class: PMpop,
data.frame)

post (class: PMpost,
data.frame)

NPAG only

$id

Subject identification

$time

Time of each prediction at a frequency specified in
the NPrun () command, with a default of 12
minutes.

$icen

Median (default) or mean of the parameter
distributions used to calculate the predicted
values.

$pred

Population prior (PMpop) or Bayesian posterior
(PMpost) predictions for each output equation

$outeq

Output equation for each prediction

$block

Same as for PMop objects above

NPdata (class: NPAG, list)
ITdata (class: IT2B, list

Raw data used to make the above objects. Please
use ?NPparse or ?ITparse in R for discussion
of the data contained in these objects

mdata (class: PMmatrix,
data.frame)

See Pmetrics Input
Files.

Your original raw data file.

NPDE (class: PMnpde, list)

This object will only be
present if you have run
makeNPDE () after arun is
completed.

Use the command
str (NPDE.x) in
R, where x is the
run number

This object contains the information to perform
graphical and numerical analysis of normalized
prediction distribution errors. It is a method of
internal model validation.

ALt o

Pmetrics” Jser's Guide 22

Objects Variables Comments

sim (class: PMsim, list) $obs A data frame with $id, $time, $out, $outeq columns
containing simulated observations at each time
This object will only be and output equation number in the template data
present if you have run file. If simulations from multiple template subjects
makeNPDE () after arunis have been combined (see Simulator Runs), then
completed. $id will be of the form x.y, where x is the

simulation number, and y is the template number.

$amt A data frame with $id, $time, $out, Scomp columns
containing simulated amounts in each
compartment.

$parValues A data frame with $id, ... columns containing the

parameter value sets for each simulated subject
with “.."” signifying the columns named according
to the names of the random parameters in the
model

$totalSets The total number of simulated sets of parameters,
which may be greater than the requested number
if limits were specified in the simulation (see
Simulator Runs).

$totalMeans The means of the parameter values in the total
simulated sets which can be used as a check of the
adequacy of the simulation to reproduce the
requested mean values when limits were applied.
The final truncated set will likely not have the
requested mean values.

$totalCov The covariances of the parameter values in the
total simulated sets which can be used as a check
of the adequacy of the simulation to reproduce the
requested covariance values when limits were
applied. The final truncated set will likely not have
the requested covariance values.

Since R is an object oriented language, to access the observations in a PMop object, for example, use the following
syntax: opSpostlS$obs.

Note that you will place an integer corresponding to the run number within the parentheses of the loading
functions, e.g. PM1oad (1), which will suffix all the above objects with that integer, e.g. op.1, final.1, NPdata.1. This
allows several models to be loaded into R simultaneously, each with a unique suffix, and which can be compared
with the PMcompare () command (see Model Diagnostics below).

ALt o

Pmetrics™ Jser’s Guide 23

Making New Pmetrics Objects

Once you have loaded the raw (NPdata or ITdata and mdata) or processed (op, final, cycle, pop, post) data
objects described above with PMload (run num), should you wish to remake the processed objects with
parameters other than the defaults, you can easily do so with the make family of commands. For example, the
default for PMop observed vs. predicted objects is to use the prediction based on the median of the population or
posterior distribution. If you wish to use the mean of the distribution, remake the PMop object using makeOP ().
If you wish to see all the cycle information in a PMcycle object, not omitting the first 10% of cycles by default,
remake it using makeCycle ().

For all of the following commands, the data input is either NPdata or ITdata, with additional function arguments
specific to each command. Accessing the help for each function in R will provide further details on the arguments,
defaults and output of each command.

Command Description R help

makeAUC Make a data.frame of class PMauc containing subject ID | ?makeAUC
and AUC from a variety of inputs including objects of
PMop, PMsim, PMpop, PMpost or a suitable
data.frame

makeCov Generate a data.frame of class PMcov with subject- ?makeCov
specific covariates extracted from the data .csv file. This
object can be plotted and used to test for covariates
which are significantly associated with model

parameters.

makeCycle Create a PMcycle object described in the previous ?makeCycle
section.

makeFinal Create a PMfinal object described in the previous ?makeFinal
section.

makeOP Create a PMop object described in the previous section. | ?makeOP

ALt o

Pmetrics™ Jser’s Guide 24

Command Description R help
makeNCA Create a data.frame (class PMnca) with the output ofa | ?makeNCA

non-compartmental analysis using PMmatrix or

PMpost data objects as input. The PMnca object

contains several columns.

e id: Subject identification

e auc: Area under the time-observation curve, using
the trapezoidal approximation, from time 0 until the
second dose, or if only one dose, until the last
observation

e aumc: Area under the first moment curve

e k: Slope by least-squares linear regression of the
final 6 log-transformed observations vs. time

e auclast: Area under the curve from the time of the
last observation to infinity, calculated as [Final obs]/
k

e aumclast: Area under the first moment curve from
the time of the last observation to infinity

e aucinf: Area under the curve from time 0 to infinity,
caluculated as auc + auclast

e aumcinf: Area under the first moment curve from
time 0 to infinity

e mrt: Mean residence time, calculated as 1/k

e cmax: Maximum predicted concentration after the
first dose

e tmax: Time to cmax

e cl: Clearance, calculated as dose/aucinf

e vdss: Volume of distribution at steady state,
calculated as cl*mrt

o thalf: Half life of elimination, calculated as In(2)/k

e dose: First dose amount for each subject

makeErrorPoly This function plots first, second, and third order ?makeErrorPoly

polynomial functions fitted to pairs of observations and
associated standard deviations for a given output assay.
In this way, the standard deviation associated with any
observation may be calculated and used to
appropriately weight that observation in the model
building process. Observations are weighted by the
reciprocal of the variance, or squared standard
deviation. Output of the function is a plot of the
measured observations and fitted polynomial curves
and a list with the first, second, and third order
coefficients.

ALt o

Pmetrics™ Jser’s Guide 25

Command

Description

R help

makePTA

This function performs a Probability of Target
Attainment analysis for a set of simulated doses and
time-concentration profiles. Targets (e.g. Minimum
Inhibitory Concentrations), the type of target
attainment (i.e. %time above target, Cmax:target,
AUC:target, Cmin:target, or Cx:target, where x is any
time point), and the success threshold (e.g. %time > 0.7
or Cmax:target > 10) can all be specified. Outputis a list
(class PMpta) with two objects

¢ Results: A data frame with the following columns:
simnum is the number of the simulation; id is the
simulated profile number within each simulation;
target is the specified target; and pdi is the target
pharmacodynamic index, e.g. time > target,
auc:target, etc.

e Outcome: A data frame summarizing the results
with the following columns: simnum and target are
as for results; prop.success column has the
proportion with a pdi > success, as specified in the
function call; pdi.mean and pdi.sd columns have the
mean and standard deviation of the target
pharmacodynamic index (e.g. proportion end-start
above target, ratio of Cmax to target) for each
simulation and target. If targets was specified via
makePTAtarget to be a sampled distribution, then
the target column will be missing from the outcome
table.

PMpta objects can be summarized with summary(x)
and plotted with plot(x) .

?makePTA

makePop
makePost
(NPAG only)

These functions create data.frames of class PMpop and
PMpost, respectively.

The PMpop or PMpost object contains several columns
as described in the previous section.

?makePop
?makePost

ALt o

Pmetrics™ Jser’s Guide 26

http://127.0.0.1:9635/help/library/Pmetrics/help/makePTAtarget
http://127.0.0.1:9635/help/library/Pmetrics/help/makePTAtarget

Command Description R help

makeNPDE This function is a Pmetrics wrapper to the autoNPDE ?makeNPDE
function in the NPDE package of Comets et al ?NPDE::autoNPDE
(automatically loaded with Pmetrics) that will generate | ?NPDE::NpdeObject
an PMnpde object which is a list of NpdeObjects (one
for each output equation). NpdeObjects contain
normalized prediction distribution errors. For a given
NPAG or IT2B run number and output equation, this
function will iterate through the data .csv file, using
each subject as a template to simulate nsim new
individuals from the population prior. It is HIGHLY
recommended to use the default value of 1000 for nsim
for the most valid calculation of NPDE. More than this
could take a long time to execute. The mean population
values will be used for each parameter and the
covariance matrix. Errors may arise if extreme or
negative concentrations are simulated from excessively
large covariance matrices.

Because considerable time may be necessary to make
the NpdeObiject, it will be added as an NPDE item to the
NPAGout.Rdata or IT2Bout.Rdata objects so that it will
be loaded the next time PMload () isrun.

Additionally, the combined simulations for all the
subjects in the dataset will be saved as a sim item in the
NPAGout.Rdata or IT2B.Rdata objects.

Summarizing Pmetrics Objects

There are summary commands available for several Pmetrics objects, as detailed below. All objects can be
summarized by the R command summary (x), where x is the object you wish to summarize.

PMcov

summary (x, icen = "median")
?summary.PMcov

Summarize a PMcov object by creating a data frame with each subject’s covariate values and Bayesian
posterior parameter values, summarized according to icen. Default is “median” covariate values and
Bayesian posterior parameter values, but could be “mean”.

Example
data (PMex1)

summary (cov.l, “mean”)

id time wt africa age gender height Ka Ke v Tlagl

ALt o

Pmetrics™ Jser’s Guide 27

1 60 46. 21 160 .440395 .024616 66.3924 0.554941
2 60 66. 30 174 .7405 .0398 119.476 0.0269964
3 60 46. 24 164 .899944 .0431027 108.649 2.09592
4 60 50. 25 165 .897547 .0564307 119.819 0.688301
5 60 65. 22 181 .105318 .0675052 113.344 0.0186971
6 60 65 23 177 .895218 .0348829 71.8626 1.99784
7 60 51. 27 161 .215198 .0832836 35.2243 1.79653
8 60 51. 22 163 .895481 .0348882 71.847 .99849
9 60 55 23 174 .789913 .0439419 101.783 0.879688
10 60 52. 32 163 .655786 .0615878 61.6927 0.801376
11 60 56. 34 165 .583223 .068323 73.1082 1.33855
12 60 47. 54 160 .470306 .0306883 91.8595 1.02535
13 60 60. 24 180 .215198 .0832837 35.2243 1.79559
14 60 59. 26 174 .579989 .0439032 117.837 0.336257
15 60 43 19 150 .795628 .034209 72.2038 1.05869
16 60 64. 25 173 .752955 .0352986 89.6704 0.687976
17 60 54, 23 170 .891255 .0734126 63.3196 1.17994
18 60 44, 20 164 .894613 .023192 75.9273 1.76035
19 60 50 36 168 .662597 .0621169 30.9852 1.92418
20 60 59 31 170 .215198 .0832837 35.2243 1.79584

PMfinal

summary (x, lower = 0.025, upper = 0.975)
?summary.PMfinal

For NPAG runs, this function will generate a data frame with weighted medians as central tendencies of the
population points with an upper - lower (default 95%) confidence interval (95% CI) around the median, and the
median absolute weighted deviation (MAWD) from the median as a measure of the variance, with its 95% CI. These
estimates correspond to weighted mean, 95% CI of the mean, variance, and 95% CI of the variance, respectively,
for a sample from a normal distribution. To estimate these non-parametric summaries, the function uses a Monte
Carlo simulation approach, creating 1000 x npoint samples with replacement from the weighted marginal
distribution of each parameter, where npoint is the number of support points in the model. As an example, if there
are 100 support points, npoint = 100, and for Ka, there will be 1000 sets of 100 samples drawn from the weighted
marginal distribution of the values for Ka. For each of the 1,000 sets of npoint values, the median and MAWD are
calculated, with MAWD equal to the median absolute difference between each point and the median of that set. The
output is npoint estimates of the weighted median and npoint estimates of the MAWD for each parameter, from
which the median, 2.5th, and 97.5th percentiles can be found as point estimates and 95% confidence interval
limits, respectively, of both the weighted median and MAWD.

For IT2B runs, the function will return the mean and variance of each parameter, and the standard errors of these
terms, using SE (mean) = SD/sqrt(nsub) and SE (var) = var * sqrt(2/(nsub-1)).

ALt o

Pmetrics™ Jser's Guide 28

Example
data (PMex1)

summary (final.1l)

par type quantile value

Ka WtMed 0.025 5.19E-01
Ka WtMed 0.5 7.05E-01
Ka WtMed 0.975 8.48E-01
Ka MAWD 0.025 5.19E-02
Ka MAWD 0.5 1.59E-01
Ka MAWD 0.975 3.07E-01
Ke WtMed 0.025 3.51E-02
Ke WtMed 0.5 4.39E-02
Ke WtMed 0.975 6.48E-02
Ke MAWD 0.025 4.94E-03
Ke MAWD 0.5 1.48E-02
Ke MAWD 0.975 2.18E-02
\Y WtMed 0.025 6.47E+01
v WtMed 0.5 7.25E+01
Y WtMed 0.975 1.00E+02
Y, MAWD 0.025 6.25E+00
\Y MAWD 0.5 2.07E+01
Y MAWD 0.975 3.73E+01
Tlagl WtMed 0.025 6.88E-01
Tlagl WtMed 0.5 1.11E+00
Tlagl WtMed 0.975 1.79E+00
Tlagl MAWD 0.025 1.70E-01
Tlagl MAWD 0.5 5.02E-01
Tlagl MAWD 0.975 7.89E-01

In this example, the weighted median for Tlagl is 1.11, with a 95% CI around the weighted median of 0.0688 to
1.79. The median absolute weighted difference (MAWD) is 0.502 with a 95% CI of 0.17 to 0.789.

PMmatrix

summary (x, formula, FUN, ..., include, exclude)
?summary.PMfinal

ALt o

Pmetrics™ Jser’'s Guide 29

This function will summarize a Pmetrics data file, which is of class PMmatrix when loaded by PMreadMatrix ()
or PMload (). The simplest is to summarize just the object.

For example:
data (PMex1)

summary (mdata.l)

Number of subjects: 20

Number of inputs: 1

Number of outputs: 1

Total number of observations (outeqg 1): 139, with 0 (0.000%) missing
Number of covariates: 5

THE FOLLOWING ARE MEAN (SD), MIN TO MAX

INPUTS
Number of doses per subject (input 1): 6.000 (0.000), 6.000 to 6.000
Dose per subject (input 1): 585.000 (45.189), 450.000 to 600.000

OUTPUTS
Number of obs per subject (outeqg 1): 6.950 (0.224), 6.000 to 7.000
Observation per subject (outeq 1): 7.241 (3.799), 1.860 to 20.150

COVARIATES

wt: 54.538 (7.173), 43.000 to 66.500
africa: 1.000 (0.000), 1.000 to 1.000

age: 27.035 (7.717), 19.000 to 54.000
gender: 0.749 (0.434), 0.000 to 1.000
height: 167.792 (7.562), 150.000 to 181.000

Note: See help (summary.PMmatrix) for accessing specific items by name.
An object of class summary.PMmatrix is also returned. This object is a list with the following items.

nsub The number of subjects.

ndrug The number of drug inputs.

numeqt The number of output equations.

nobsXouteq The number of observations by output equation.
missObsXouteq The number of missing observations by output equation.
ncov The number of covariates.

covnames The covariate names.

ndoseXid The number of doses per input per subject.

nobsXid The number of observations per output equation per subject.
doseXid The doses per input per subject.

obsXid The observations per output per subject.

formula The results of including a formula.

To include a formula, use standard R notation for the formula and specify the aggregating function with FUN.
Example

To calculate average dose in mg/kg per subject...

summ <- summary (mdata.l, formula = I (dose/wt)~id, FUN="mean”)

summ$formula

id I (dose/wt)

ALt o

Pmetrics™ Jser’'s Guide 30

1 12.847966

2 9.022556
3 12.847966
4 11.811024
5 9.118541
6 9.230769
7 11.605416
8 11.71875
9 10.909091

10 11.516315
11 10.619469
12 12.526096
13 9.917355
14 10.135135
15 10.465116
16 9.31677
17 10.948905
18 10.158014
19 12

20 10.169492

mean (summSformulal[,2]) #choose the second column

[1] 10.84424

PMop

summary (x, digits = max (3, getOption("digits") - 3), pred.type = "post", icen =
"median", outeq = 1)

?summary.PMop

This will summarize a PMop object that contains observations, predictions and errors. You can specify the number
of digits, predictions based on posterior or population predictions, or based on mean or median parameter
distributions, for any output equation

Example
data (PMex1)

summary (op.1l) #summarize based on medians of Bayesian posterior parameter values

Time Obs Pred

ALt o

Pmetrics™ Jser's Guide 31

Min 120.0000 1.8600 1.9648

25% 121.0250 4.4950 4.5019

Median 126.0000 6.5600 6.5996

75% 132.0000 8.8850 8.9355

Max 144.9800 20.1500 19.8025

Mean 127.6899 7.2407 7.0689

SD 7.8600 3.7992 3.6420

Mean prediction error: -0.1718

Mean weighted prediction error (bias): -0.103 (P=0.9718 different than 0)

Mean squared prediction error: 0.795

Root mean squared error (RMSE): 0.8916

Percent root mean squared error (SRMSE): 12.3141

Mean weighed squared prediction error: 0.992

Bias-adjusted mean squared prediction error: 0.7655

Bias-adjusted mean weighted squared prediction error (imprecision): 0.9813

This function also returns a list with three items. The first item of the list is a data frame with the minimum, first
quartile, median, third quartile, maximum, mean and standard deviation for times, observations and predictions in
x. The second is a data frame of one row whose columns contain the mean prediction error, the mean weighted
prediction error (bias), the mean squared prediction error, root mean sqaured error (RMSE), percent root mean
squared error (squared prediction error, the bias-adjusted mean squared prediction error, and the bias- adjusted
mean weighted squared prediction error (imprecision). The third is itself a list of 6 items related to the weighted
prediction bias, which are the mean, the standard error of the mean, the 95% confidence interval, the t-statistic,
the degrees of freedom, and the p-value (compared to a bias of 0). In the example above, the p-value is 0.9718.

PMpta

summary(x, ci = 0.95, ...)
?summary.PMpta

This function returns a list with two named objects: pta (probability of target attainment) and pdi
(pharmacodynamic index).

pta

A data frame with the following columns: simnum, target, prop.success, pdi.mean, and pdi.sd simnum is the
number of the simulation; target is the specified target; success has the proportion with a ratio > prop.success;
pdi.mean and pdi.sd are the mean and standard deviation of the pharmacodynamic index (e.g. AUC/MIC) for each
simulation and target.

pdi

A data frame with the following columns: target, simnum, lowerCl, median, upperClI. target and simnum are as
above. lowerCl, median, and upperCI are the lower limit, median, and upper limit of the confidence interval for
the pdi whose width is specified by ci.

ALt o

Pmetrics™ Jser’'s Guide 32

NPAG Runs

Here we provide details of the arguments available to the NPrun () command. You must have a data and model
file in your working directory. In the R syntax below, any argument with a value has a default equal to that value
and if you wish to use that default, you do not have to specify the argument in your function call to NPrun ().

NPrun (model = "model.txt", data = "data.csv", run,
include, exclude, ode = -4, tol = 0.01, salt,
cycles = 100, indpts, icen = "median",
aucint, idelta = 12, prior, overwrite = F, nocheck = F, parallel = NA)

1. model Name of a suitable model file template in the working directory or an existing (previous) run number
corresponding to a folder in the current working directory that used the same model file as will be used in the
current run. If this is supplied, then the model file will be copied into the current working directory for
convenience. If not supplied, the default is “model.txt”. This file will be converted to a fortran model file. If it is
detected to already be a fortran file, then the analysis will proceed without any further file conversion.
Examples: NPrun (), NPrun (model="model2.txt”), NPrun (model=2). The first example uses all the
default options. The second example uses the defaults except for the model file. The third example uses the
same model as that used in Run 2, but defaults otherwise.

2. data Name of a suitable data file or an existing (previous) run number corresponding to a folder in the current
working directory that used the same data file as will be used in the current run. If this is supplied, then
previously made "ZMQ' files will be copied into the current working directory, bypassing the need to re-
convert the .csv file and speeding up the run. Examples: NPrun (data="“data2.csv”), NPrun (data=2).
The first example uses the defaults except for the data file. The second example uses the same data file as that
used in Run 2, but defaults otherwise.

3. run Specify the run number of the output folder. Default if missing is the next available number. Examples:
NPrun (), NPrun (run=2). The first example uses all the default options and the run number will be
automatically assigned to “3” if runs 1 and 2 already exist. The second example uses the defaults except for the
run number. If runs 1 and 3 exist and you have deleted run 2 because you wish to re-run it, then this syntax
will place the output in a folder labeled “2”. If you haven’t already deleted the old run folder, you can set
overwrite #15 below, to True.

4. include Vector of subject id values in the data file to include in the analysis. The default (missing) is all.
Examples: NPrun (include=c (1:3, 5)). Include only subjects with ID numbers of 1, 2, 3 and 5.

5. exclude Vector of subject id values in the data file to exclude in the analysis. The default (missing) is none. Be
careful if you include and exclude in the same run as you may have conflicting statements. Examples:
NPrun (exclude=c (1:3, 5)). Exclude subjects with ID numbers of 1, 2, 3 and 5.

6. ode Ordinary Differential Equation solver logio tolerance or stiffness. Default is -4, i.e. 0.0001. Higher values
will result in faster runs, but parameter estimates may not be as accurate. It is ignored if the model does not
use differential equations. Examples: NPrun (ode=-3). Do the run with a stiffness of 0.001, which will be
faster than the default but perhaps less accurate.

7. tol Tolerance for convergence of NPAG. Smaller numbers make it harder to converge. Default value is 0.01.
Examples: NPrun (to1=0.001). Do the run with a tolerance of 0.001, which will be slower than the default
but perhaps more accurate.

8. salt Vector of salt fractions for each ndrug, default is 1 for each drug. This is not the same as bioavailability.
Examples: NPrun (salt=c(1,0.9)). This sets the salt fraction for the first drug to 1 and for the second drug
to 0.9.

9. cycles Maximum number of NPAG cycles to run. Default is 100, but the value can be 0 or greater. If you enter
an integer greater than 0, the engine will terminate at convergence or the number of cycles you specify,
whichever comes first. Early in model exploration values of 10 to 100 can be useful, with larger values later in
model development. In order to facilitate model comparison, however, we recommend using the same cycle
limit for all early models, e.g. 100, rather than choosing 10 for one and 100 for another. If you enter 0, this is
the way to test the predictive power of a model on an independent data set and a non-uniform prior must be

ALt o

Pmetrics™ Jser's Guide 33

10.

11.

12.

13.

14.

15.

16.

17.

specified. This means that the engine will only calculate the individual Bayesian posteriors for the new
subjects, using the population joint density from a previous run as a Bayesian prior. Examples:
NPrun (cycles=1000), NPrun (data="newdata.csv”,cycles=0,prior=NPdata.l). The first
example will allow NPAG to run 1000 cycles before terminating. The second example calculates Bayesian
posteriors only (i.e. NPAG is not cycling) using the default model file and some new data. Note by specifying a
prior, which is required with 0 cycles, the grid points are distributed in a non-uniform manner corresponding
to the prior distribution in NPdata.1 (the output of Run 1). This means that the indpts argument will be
ignored. See also prior #14 below.

indpts Index of starting grid point number. Default is missing, which allows NPAG to choose depending on the
number of random parameters: 1 or 2 parameters = index of 1; 3 =3; 4 =4, 5 = 6, 6 or more is 10+number of
multiples for each parameter greater than 5, e.g. 6 = 101; 7 = 102, up to 108 for 13 or more parameters. This
number corresponds to the number of grid (support) points which will initially fill the model parameter space.
The larger the number of random parameters to be estimated, the more points are required. The more you
choose, the slower the run will be, but results may improve. It is reasonable to choose fewer points early in
model exploration and increase in later phases or if poor model fits or lack of convergence are noted. Indices of
1 to 6 correspond respectively to 2129, 5003, 10007, 20011, 40009, and 80021 points. 101 will choose 80021
points plus one additional multiple of 80021 points. Examples: NPrun (indpts=102). This will allow NPAG
to start with 80021 + 2*80021 = 240063 points. The unusual numbers are from early development of NPAG
where primes were thought to be important.

icen Summary of parameter distributions to be used to calculate predictions. Default is "median”, and other
choices are "mean” or "mode". Examples: NPrun (icen="mean”). This example will use the means of the
parameter distributions (rather than the medians) to calculate predictions.

aucint Interval for AUC calculations. Default is 24 hours if the number of intervals is not greater than 48;
otherwise it defaults to the interval which allows for <= 48 intervals. Examples: NPrun (aucint=12). This
example will use an interval of 12 hours for AUC estimations directly by NPAG. Note that the command
makeAUC () can be used to calculate AUCs of any interval from the output.

idelta Interval in minutes for predictions at times other than observations. Default is 12 minutes, which in
general, for most models provides sufficient granularity. Smaller values can result in very large files for big
populations. Examples: NPrun (idelta=60). This generates predictions every 60 minutes.

prior Name of a suitable NPAG output object from a prior run loaded with PM1oad (), i.e. the NPdata object. A
prior may be specified if the user wishes to start from a non-uniform prior distribution for the NPAG run. The
default value is -99, which translates in NPAG to a uniform prior distribution. An alternative is to include a
DENO0O001 file from the prior NPAG run in the working directory of the new run, and specify this as the value
for prior, e.g. prior = 'DEN0001". Examples: NPrun (data=2,model=2,prior=NPdata.2). This example
will use the model, data, and population density files from Run 2 to continue for another 100 cycles. This is a
useful way to continue a previous run that has not converged. See also cycles #9 above for a discussion and
example of specifying a prior simply to calculate the Bayesian posterior parameter and output values for a
population.

overwrite Overwrite existing run result folders. Only relevant when the run (#3) argument is specified.
Default is FALSE. Examples: NPrun (run=2, overwrite=T). This example will delete the previous Run 2
and replace it with the current run.

nocheck The default is false. Set to true to suppress automatic checking of data files for errors with
PMcheck (), which depends on Java. If Java is out of date, or is not a 64-bit version on 64-bit systems,
PMcheck () can fail. Update Java (ensure 64-bit if applicable), but use this argument as a temporary fix.

parallel As of version 1.4.0, Pmetrics can run in parallel processing mode. The default is N&, which allows
Pmetrics to choose parallel mode for models with differential equations, or serial mode for algebraic models.
This is because the overhead of managing the parallel threads is greater than the efficiency of algebraic
processing. NOTE: Parallel processing is not possible on 32-bit systems, and this argument will always be set
to false.

ALt o

Pmetrics™ Jser’s Guide 34

The NPAG run can complete in seconds for small populations with analytic solutions, or days for large populations
with complex differential equations. At the end of a successful run, the results will be automatically parsed and
saved to the output directory. Your default browser will launch with a summary of the run.

IT2B Runs

Here we provide details of the arguments available to the ITrun () command. You must have a data and model file
in your working directory. In the R syntax below, any argument with a value has a default equal to that value and if
you wish to use that default, you do not have to specify the argument in your function call to ITrun ().

ITrun (model = "model.txt", data = "data.csv", run,
include, exclude, ode = -4, salt, cycles = 100,
tol = 0.001, xdev =5, icen = "median",
overwrite = F, nocheck = F)

model Same as for NPAG.
data Same as for NPAG.
run Same as for NPAG.
include Same as for NPAG.
exclude Same as for NPAG.
ode Same as for NPAG.
salt Same as for NPAG.

©® N s W N

cycles Maximum number of IT2B cycles to run. Default is 100, but the value can be 1 or greater. Note that
unlike NPAG, you cannot enter a value of 0. If you enter an integer greater than 0, the engine will terminate at
convergence or the number of cycles you specify, whichever comes first. Examples: ITrun (cycles=1000).
The first example will allow IT2B to run 1000 cycles before terminating.

9. tol Same as for NPAG, except the default value is 0.001.

10. xdev Multiple of standard deviations for parameters to be used in NPAG as a range. Default is 5. The ranges
can be found in the FROM0O0O1 file in the /outputs folder of the run folder. IT2B is primarily used to estimate
ranges for parameter values to be passed to NPAG. Because it is parametric, it is not constrained to the initial
parameter ranges in the model file, unlike NPAG. Examples: ITrun (xdev=3). Recommend parameter ranges
which are equal to the mean *3 SD. You might choose a smaller range like this if you have log transformed
your parameters.

11. icen Same as for NPAG.
12. overwrite Same as for NPAG.
13. nocheck Same as for NPAG.

The IT2B run can complete in seconds for small populations with analytic solutions, or days for large populations
with complex differential equations. At the end of a successful run, the results will be automatically parsed and
saved to the output directory. Your default browser will launch with a summary of the run.

ERR Runs

Here we provide details of the arguments available to the ERRrun () command. This function is identical to
ITrun () but the purpose is to estimate the assay error coefficients (C0O, C1, C2, C3) from the data if you have no
idea what they are. Note that the estimates you get will be dependent on the model. You must have a data and

ALt o

Pmetrics™ Jser's Guide 35

model file in your working directory. In the R syntax below, any argument with a value has a default equal to that
value and if you wish to use that default, you do not have to specify the argument in your function call to
ERRrun ().

ERRrun (model = "model.txt", data = "data.csv", run,
include, exclude, ode = -4, salt, cycles = 100,
search = "cursory", tol = 0.001, xdev = 5, overwrite = F)

model Same as for NPAG, IT2B.
data Same as for NPAG, IT2B.
run Same as for NPAG, IT2B.
include Same as for NPAG, IT2B.
exclude Same as for NPAG, IT2B.
ode Same as for NPAG, IT2B.
salt Same as for NPAG, IT2B.

cycles Maximum number of ERR cycles to run. Default is 100, but the value can be 1 or greater. Note that
unlike NPAG, you cannot enter a value of 0. If you enter an integer greater than 0, the engine will terminate at
convergence or the number of cycles you specify, whichever comes first. Examples: ERRrun (cycles=1000).
The first example will allow ERR to run 1000 cycles before terminating.

©® N o s W

9. search Depth of the search for the coefficients. Default is "cursory”, but can be "medium" or "extensive", which
take progressively longer times to converge, but are more accurate.

10. tol Same as for IT2B.
11. xdev Same as for IT2B.

12. overwrite Same as for NPAG.

The ERR run can complete in seconds for small populations with analytic solutions, or days for large populations
with complex differential equations. At the end of a successful run, the results will be automatically parsed and
saved to the output directory. Your default browser will launch with a summary of the run that includes the
estimates of the assay error coefficients for each output equation in the model.

Simulator Runs

The Pmetrics simulator is a powerful Monte Carlo engine that is smoothly integrated with Pmetrics inputs and
outputs. Unlike NPAG and IT2B, it is run from within R. No batch file is created or terminal window opened.
However, the actual simulator is a Fortran executable compiled and run in an OS shell. It is documented with an
example within R. You can access this by using the help (SIMrun) or ?SIMrun commands from R.

In order to complete a simulator run you must include a data .csv file and a model file in the working directory.
The structure of these files is identical to those used by NPAG and IT2B. The data .csv contains the template dosing
and observation history as well as any covariates. Observation values (the OUT column) for EVID=0 events can be
any number; they will be replaced with the simulated values. However, do not use -99, as this will simulate a
missing value, which might be useful if you are testing the effects of such values. A good choice for the OUT value
in the simulator template .csv file is -1.

You can have any number of subject records within a data .csv file, each with its own covariates if applicable. Each
subject will cause the simulator to run one time, generating as many simulated profiles as you specify from each
template subject. This is controlled from the SIMrun () command with the include and nsim arguments. The
first specifies which subjects in the data .csv file will serve as templates for simulation. The second specifies how
many profiles are to be generated from each included subject.

ALt o

Pmetrics™ Jser’'s Guide 36

Simulation from a non-parametric prior distribution (from NPAG) can be done in one of two ways. The first is
simply to take the mean, standard deviation and covariance matrix of the distribution and perform a standard
Monte Carlo simulation. The second way is what we call semi-parametric, and was devised by Goutelle et al.[1] In
this method, the non-parametric “support points” in the population model, each a vector of one value for each
parameter in the model and the associated probability of that set of parameter values, serve as the mean of one
multi-variate normal distribution in a multi-modal, multi-variate joint distribution. The weight of each multi-
variate distribution is equal to the probability of the point. The overall population covariance matrix is divided by
the number of support points and applied to each distribution for sampling.

Limits may be specified for truncated parameter ranges to avoid extreme or inappropriately negative values.
When you load simulator output with SIMparse (), it will include values for the total number of simulated
profiles needed to generate nsim profiles within the specified limits, as well as the means and standard deviations
of the simulated parameters to check for simulator accuracy.

Output from the simulator will be controlled by further arguments to SIMrun (). If makecsv is not missing, a .csv
file with the simulated profiles will be created with the name as specified by makecsv; otherwise there will be
no .csv file created. If outname is not missing, the simulated values and parameters will be saved in a .txt file
whose name is that specified by outname; otherwise the filename will be “simout”. In either case, integers 1 to

» o«

nsub will be appended to outname or “simout”, e.g. “simoutl.txt”, “simout2.txt”.

Output files from the simulator can be read into R using the SIMparse () command (see documentation in R).
There is a plot method (plot.PMsim) for objects created by SIMparse ().

Here we detail the arguments to the STMrun () function.

SIMrun (poppar, limits = NULL, model = "model.txt",
data = "data.csv", split = F, include, exclude,
nsim = 1000, predInt = 0, seed = -17, ode = -4,
obsNoise, doseTimeNoise = rep(0, 4),
doseNoise = rep (0, 4), obsTimeNoise = rep(0, 4),
makecsv, outname, cleanUp = T, silent = F)

1. poppar Either an object of class PMfinal or a list containing three items in this order, but of any name: vector
of weights, vector of mean parameter values, and a covariance matrix. By far the easiest is to use the PMfinal
object. However, the list option is available, for example, to simulate with values obtained from the literature
or other sources. For the list option, if only one distribution is to be specified, the weights vector should be of
length 1 and contain a 1. If multiple distributions are to be sampled, the weights vector should be of length
equal to the number of distributions and its values should sum to 1, e.g. ¢(0.25,0.05,0.7). The means matrix may
be a vector for a single distribution, or a matrix with length(weights) rows and number of columns equal to the
number of parameters, npar. The covariance matrix will be divided by length(weights) and applied to each
distribution. Examples: SIMrun (poppar=final.1l, ...),
SIMrun (poppar=1list (weight=1,mean=c(2,4),covar=diag(2,2)),...),
SIMrun (poppar=list (weight=c(0.75,0.25),mean=matrix(c(2,4,1,2),nrow=2,byrow=T),
covar=diag(2,2)),...). The first example will use the population parameter distribution from Run 1
(NPAG or IT2B). The second example will use a distribution for two parameters with mean values of 2 and 4,
and a covariance matrix with variances of 2 (the diagonals) and covariances of 0 (the off-diagonals). The third
example will simulate from a bimodal, bivariate distribution. The first distribution, with weight 0.75, has
means of 2 and 4 for the parameters. The second distribution, with weight 0.25, has means of 1 and 2. The
overall covariance is the same as in example 2, but will be divided evenly across the two distributions.
Example 3 is similar to what occurs with a PMfinal poppar object when split #5, below, is true.

2. limits If limits are specified, each simulated parameter set that contains any parameter value outside of the
limits will be ignored and another set will be generated. This will result in a truncated distribution. See
SIMparse for details on the full and truncated distributions returned by the simulator. Four options exist for
limits. 1) The default NULL indicates that no limits are to be applied to simulated parameters. 2) The second
option is to set limits to NA. This will use the parameter limits on the primary parameters that are specified in
the model file. 3) The third option is a numeric vector of length 1 or 2, e.g. 3 or ¢(0.5,4), which specifies what to
multiply the columns of the limits in the model file. If length 1, then the lower limits will be the same as in the
model file, and the upper limits will be multiplied by value specified. If length 2, then the lower and upper

ALt o

Pmetrics™ Jser's Guide 37

limits will be multiplied by the specified values. If this option is used, popppar must be a PMfinal object. 4) The
fourth option for limits is a fully customized matrix of limits for simulated values for each parameter which will
overwrite any limits in the model file. If specified, it should be a data.frame or matrix with number of rows
equal to the number of random parameters and 2 columns, corresponding to the minimum and maximum
values. For example, a final$ab object, or a directly coded matrix, e.g. matrix(c(0,5,0,5,0.01,100),
nrow=3,ncol=2,byrow=T) for 3 parameters with limits of [0,5], [0,5] and [0.01,100], respectively. It is possible
to convert a parameter to fixed by omitting the second limit. Means and covariances of the total number of
simulated sets will be returned to verify the simulation, but only those sets within the specified limits will be
used to generate output(s) and the means and covariances of the retained sets may (and likely will be)
different than those specified by poppar.

Examples: SIMrun(...,limits=NULL), SIMrun(...,limits=NA), SIMrun(...,limits=3),
SIMrun(...,limits=c(0,5), SIMrun(...,limits=matrix(c(0,1,0.5,1000),
nrow=2,byrow=T)). The first example has no limits. The second example uses the limits on the primary
parameters in the model file. The third example uses the lower limits on the primary parameters in the model
file, and multiplies the upper limits of each primary parameter in the model file by 3 The fourth example
multiplies the lower limits of the primary parameter values in the model file by 0, and the upper limits are
multiplied by 5. The fifth example sets a custom matrix of limits, with ranges of 0 to 1 for the first parameter,
and 0.5 to 1000 for the second.

3. model Name of a suitable model file template in the working directory. The default is “model.txt”. This file will
be converted to a fortran model file. If it is detected to already be a fortran file, then the simulation will proceed
without any further file conversion. This is the same model file used for NPAG and IT2B runs.

4. data Either a PMmatrix object previously loaded with PMreadMatrix or character vector with the filename of a
Pmetrics data file that contains template regimens and observation times. This file is the same format as for
NPAG and IT2B runs, and the value for the OUT column (EVID=0 rows) in this file can be coded as any
number(s) other than -99. We typically use -1. The number(s) will be replaced in the simulator output with the
simulated values.

5. split Boolean operator controlling whether to split an NPAG PMfinal object into one distribution per support
point, with means equal to the vector of parameter values for that point, and covariance equal to the
population covariance divided by the number of support points. See the figures below to better understand
what happens when split is true or false. The red points are the non-parametric population distribution, while
the gold wireframe overlays are smoothed probability functions from which samples are drawn in simulations.

™
Nl
9 AL
ot
2

44l /

S LT

Seseany, fl

LRI

?::-'.',",',:,:'," ’,’,’ i
2

X ’l’ /]
QR 171
S eassilHb
GRRRERLLRLILL Q R A 1111
GRRRRRLRRE % o . 2
(LR A (LA AT T TS
RRRRRRLLLIRLL NN LKL RERLLLALII TR
e S R R OOy, e, o e LRI N
LRI 8, 5% LA 7] O
LRI LR % ~.~.',ul’l
LRRRERLLRLTRE &]
BRI o 3
R IR LRI R LY
LR L&t B2
R 4
LR
%

split=F, unimodal, multivariate sampling split=T, multimodal, multivariate sampling

ALt o

Pmetrics™ Jser’'s Guide 38

10.

include A vector of subject IDs in the data file to iterate through, with each subject serving as the source of an
independent simulation. If missing, all subjects in the datafile will be used. This is analogous to the same
argument in NPrun () and ITrun ().

exclude A vector of subject IDs to exclude in the simulation, e.g. c(4,6:14,16:20) If a makecsv filename is
supplied, ID numbers will be of the form nsub.nsim, e.g. 1.001 through 1.1 for the first subject, 2.001 through
2.1 for the second subject, etc. if 1000 simulations are made from each subject. This is analogous to the same
argument in NPrun () and ITrun ().

nsim The number of simulated profiles to create, per subject. Default is 1000.

predInt The interval in fractional hours for simulated predicted outputs at times other than those specified in
the template data. The default is 0, which means there will be simulated outputs only at times specified in the
data file. Values of predInt > 0 result in simulated outputs at the specified value of predint, e.g. every 15
minutes for predInt = 0.25 from time 0 up to the maximal time in the template file, per subject if nsub > 1. You
may also specify predInt as a vector of 3 values, e.g. c(1,4,1), similar to the R command seq, where the first
value is the start time, the second is the stop time, and the third is the step value. Outputs for times specified in
the template file will also be simulated. To simulate outputs only at the output times in the template data (i.e.
EVID=0 events), use predInt=0, which is the default. Note that the maximum number of predictions total is 594,
so the interval must be sufficiently large to accommodate this for a given number of output equations and total
time to simulate over. If predInt is set so that this cap is exceeded, predictions will be truncated.

Examples: STMrun(...),SIMrun(...,predInt=1),SIMrun(...,predInt=c(1,12,0.5)). The first
example is the same as predInt=0 (the default) which will simulate observations only at the times specified in
the template date file (i.e. the times of all EVID=0 events). The second example simulates observations hourly
starting at 1 hour, plus any specified by EVID=0 event times in the data file, and continuing until the maximum
time in the template data file. If the number of simulated observations exceeds 594, they will be truncated to
this value. The third example simulates observations half-hourly from 1 to 12 hours, plus at any EVID=0 event
times in the data file.

covariate If you are using the results of an NPAG or IT2B run to simulate, i.e. a PMfinal object as poppar, then

» o«

you can also simulate with covariates. This argument is a list with names “cov”, “mean”, “sd”, “limits”, and “fix”.

e The first item is a PMcov object, such as that loaded with PMload. Pmetrics will use this object to calculate
the correlation matrix between all covariates and Bayesian posterior parameter values.

e The second item, “mean”, allows you to specify a different mean for one or more of the covariates. This
argument is a named list, where each item in the list is the name of a covariate in your data that is to have a
different mean. If this argument is missing then the mean covariate values in the population will be used
for simulation. The same applies to any covariates that are not named in the “mean” list.

e The third item in the covariate argument list is “sd”, and this functions just as the “mean” object does -
allowing you to specify different standard deviations for covariates in the simulation. If “sd” is missing,
then the standard deviations of the covariates in the population are used.

e The fourth item in the covariate argument list is “limits”, and this functions a bit differently than the limits
argument for parameters does (#2 above). Because the desired limits of a covariate, e.g. weight, are
generally known, unlike for population parameters, this argument is specified in the same way as for mean
and sd, that is, a named list with the limits for each covariate. If this list item is missing altogether, no limits
will be applied to simulated covariates. If it is supplied, then covariates which are not fixed and not
included in the list will have the same limits as in the original population. If you want to simulate some
covariates with limits and some without, specify the latter with very large ranges.

¢ The fifth and final item in the covariate argument list is “fix”. This is simply a character vector of the names
of the covariates that you wish not to simulate, i.e. fix to the values in the template data file.

Whether you use the means and standard deviations in the population or specify your own, the covariance
matrix in poppar will be augmented by the covariate covariances. The parameter plus covariate means and
this augmented covariance matrix will be used for simulations. In effect, all covariates are moved into the
#Primary block of the model file to become parameters that are simulated. In fact, a copy of your model
file is made with a “c_” prepended to the model name (e.g. “model.txt” -> “c_model.txt”). Likewise, the data
file is copied to a new file with “c_” prepended to the data file name (e.g. “data.csv” -> “c_data.csv”).

ALt o

Pmetrics™ Jser's Guide 39

http://127.0.0.1:17355/help/library/Pmetrics/help/seq
http://127.0.0.1:17355/help/library/Pmetrics/help/seq

11.

12.

13.

14.

15.

16.

17.

Examples: assuming that the covariates wt (weight) and ccr (creatinine clearance) are in your data and you
are simulating from run 1. SIMrun(...,covariate=1list (cov=cov.1)). This will simulate all
parameters and covariates that were present in run 1, using the covariate means and covariances that
existed in the population. No limits will be applied. SIMrun(...,covariate=list (cov=cov.
1,mean=1ist (wt=100))). Note the list within a list. This simulation will be the same as the first
example, except that the mean weight will now be 100, retaining the same standard deviation as in the
original population. SIMrun(...,covariate=list (cov=cov.l, mean=list (wt=100),
sd=1list (wt=30))). This will now also replace the standard deviation of weight in the population with
30. SIMrun(...,covariate=list (cov=cov.1l,limits=1ist(wt=c(10,90),
age=c(-1,1000))). This will use the existing means and covariances of the covariates in the population,
but will limit simulated values for weight to be a minimum of 10 and maximum of 90. Age will effectively
have no limits. Other covariates will have limits equal to the limits in the original population.
SIMrun(...,covariate=list (cov=cov.1l, fix=c (“wt”, “age”))) This will simulate with
existing means, standard deviations, and limits for all covariates except weight and age, which will be fixed
to the values in the template data file used for simulations.

seed The seed for the random number generator. For nsub > 1, should be a vector of length equal to nsub.
Shorter vectors will be recycled as necessary. Default is -17. Examples: STMrun (. . ., seed=c (2,-3)). This
will run the simulator for the two subjects in the data file, with 2 as the seed for the first subject, and -3 for the
second subject. The value of the seed is that it will generate the same random parameter sets each time the
seed is specified. This allows random, but reproducible results for comparing simulations where other factors
have changed, such as the dosing regimen used in the template data file. Setting the seed to fewer than the
number of subjects (e.g. 1 seed for 3 subjects) will result in each subject having the same set of simulated
parameter values because Pmetrics recycles the seed as needed. This may or may not be desirable.

ode Ordinary Differential Equation solver log tolerance or stiffness. Default is -4, i.e. 0.0001. Higher values will
result in faster simulations, but simulated concentrations may not be as accurate. This is the same parameter
as for NPAG and IT2B runs.

obsNoise This is the noise added to simulated observations. If present will override any other values in the
data file or model file. Should be a vector of length 4 times the number of output equations, e.g. ¢(0.1,0.1,0,0)
for one output and c(0.1,0.1,0,0,0.01,0.2,-0.001,0) for two output equations. Each number is a coefficient that
allows calculation of the standard deviation of the normal distribution around zero from which the noise is
generated, such that SD = CO + C1*sim + C2*sim? + C3*sim3, where “sim” is the simulated value. This is directly
analogous to the assay error polynomial discussed in the section on the model file format. If you do not specify
obsNoise, all coefficients will be set to 0 for all output equations, i.e. no noise. If you specify obsNoise = N3,
values in the data file will be used (similar to 1imits above). If these values in the data file are missing, values
in the model file will be used. Examples: SIMrun(...), SIMrun(...,obsNoise=NA),
SIMrun(...,obsNoise=c(0,0.1,0,0,1,0.15,0,0)). The first example sets all the observation noise
terms to 0. The second example uses the error terms in the model file. The third example sets the noise terms
for the first output equation to 0, 0.1, 0, 0 and for the second output equation to 1, 0.15, 0, 0.

doseTimeNoise A vector of dose time error polynomial coefficients, analogous to obsNoise above. The default
is 0 for all coefficients. This is applied to all dose times, regardless of drug, so can only be of length 4, e.g
c(0.1,0.1,0,0).

doseNoise A vector of dose amount error polynomial coefficients, analogous to obsNoise above. The default is
0 for all coefficients. This is applied to all dose amounts, regardless of drug, so can only be of length 4, e.g
c(0.1,0.1,0,0).

obsTimeNoise A vector of observation timing error polynomial coefficients. The default is 0 for all
coefficients. This is applied to all observation times, regardless of output number, so can only be of length 4, e.g
c(0.1,0.1,0,0).

makecsv A character vector for the name of the single .csv file to be made for all simulated “subjects”. If
missing, no files will be made. Examples: SIMrun (. ..,makecsv="newsubj.csv”). This example will
make a .csv file in Pmetrics format called “newsubj.csv” containing the simulated subjects. If there were 3
subjects in the template data file, and nsim=10, then newsubj.csv will contain 3*10=30 simulated ubject
records.

ALt o

Pmetrics™ Jser's Guide 40

18. outname The name for the simulator output file(s) without an extension. Numbers 1 to nsub will be appended
to the files. If missing, will default to “simout”. Examples: SIMrun (...,outname="sim2 ”). This will
make the following output files for a template with 3 subjects: sim2_1.txt, sim2_2.txt, sim2_3.txt. These are the
files that are parsed by SIMparse ().

19. clean This is a rarely used Boolean parameter to specify whether temporary files made in the course of the
simulation run should be deleted. It is primarily used for debugging. Defaults to True.

20. silent Boolean operator controlling whether a model summary report is given. Default is False.

To get the results of a simulator run back into R, you need to use the SIMparse () command, which is detailed
below.

SIMparse(file, include, exclude, combine = F, silent = F)
Note that SIMparse() returns the parsed output of a simulator run as a PMsim object, so use the command like this:

simdata <- SIMparse(...) sothatsimdata will contain the results. The arguments to SIMparse follow.

1. file An output file or files of the simulator in the current working directory, or the full pathname to the file. To
load and combine multiple outputs, specify files separated by commas or using wild cards. For file specification
“?” will be matched by just a single numeral or character; “*” will be matched by any number of consecutive
alphanumeric characters. Examples: simdata <- SIMparse(file="simoutl.txt,
simout2.txt, simout3.txt”), simdata <- SIMparse(file="simout?.txt”) and simdata <-
SIMparse (file="sim*.txt”). All three examples will find the files simoutl.txt, simout2.txt, and
simout3.txt in the working directory. The second example would also find simout4.txt, etc. The third example
would also find sim_1.txt if that existed.

2. include A vector of files to include in the parsing. Example: simdata <- SIMparse (“simout?.txt”,
include=c(1,4)). If the wildcard match returned four files: simoutl.txt, simout2.txt, simout3.txt and
simout4.txt, and you wished to only parse the first and fourth files, this would accomplish that filtering.

3. exclude A vector of files to exclude in the parsing. Example: simdata <- SIMparse (“simout?.txt”,
include=c(1,4)). If the wildcard match returned four files: simoutl.txt, simout2.txt, simout3.txt and
simout4.txt, and you wished to only parse the second and third files, this would accomplish that filtering. Be
careful using include and exclude at the same time; you might end up with no files!

4. combine Boolean parameter, default False, which specifies whether you wish to combine the parsed files into a
single PMsim object. This can be useful for making visual predictive checks, for example. If combine=F, and
multiple files are parsed, then the return object will be a list of PMsim objects, which can be plotted or
otherwise accessed using standard list referencing, e.g. plot (simlist[[1]]), plot(simlist[[2]]),
etc. In this case, each element of the list corresponds to a single simulation template. Examples: simdata <-
SIMparse (“simout?.txt”, combine=F), simdata <- SIMparse (“simout?.txt”,
combine=F). If your template data file had four subjects, and you did not combine the results as in the first
example, simdata would be a list of length 4 (simdata[[1]], simdata[[2]], simdatal[[3]],
simdata([[4]11]), each containing a PMsim simulation output object corresponding to a subject in the
template data file. In the second example, all 4 simulation outputs would be combined into a single PMsim
object. You can combine any simulator output files, even with differing numbers of simulated parameter sets.
The number of outputs and times of observations also may differ, although combining these may lead to
strange plots since not all profiles have the same observations.

5. silent Suppress messages about parsing. Default is false.

ALt o

Pmetrics™ Jser's Guide 41

Plotting

There are numerous plotting methods included in Pmetrics to generate standardized, but customizable graphical
visualizations of Pmetrics data. Taking advantage of the class attribute in R, a single plot () command is used to
access all of the appropriate plot methods for each Pmetrics object class.

To access the R help for these methods, you must query each method specifically to get details, for 2plot will only
give you the parent function.

Object Classes | Creating functions R help Description
PMop PMload (), ?plot.PMop Plot population or individual Bayesian
makeOP () posterior predicted data vs. observed.
Optionally, you can generate residual
plots.
PMfinal PMload(), ?plot.PMfinal Plot marginal final cycle parameter
makeFinal () value distributions. Specifying a

formula of the form y~x will generate a
bivariate plot. For NPAG only, a
formula of the form prob~x will plot
the Bayesian posterior parameter x
distributions for included subjects.

PMcycle PMload(), ?plot.PMcycle Plots a panel with the following
makeCycle () windows: -2 times the log-likelihood at
each cycle, gamma/lambda at each
cycle; Akaike Information Criterion at
each cyle and Bayesian (Schwartz)
Information Criterion at each cycle,
the mean parameter values at each
cycle (normalized to starting values);
the normalized standard deviation of
the population distribution for each
parameter at each cycle; and the
normalized median parameter values
at each cycle. The default is to omit
the first 10% of cycles as a burn-in
from the plots.

PMcov makeCov () ?plot.PMcov Plots the relationship between any
two columns of a PMcov object.

ALt o

Pmetrics™ Jser's Guide 42

Object Classes | Creating functions R help Description

PMmatrix PMreadMatrix () | ?plot.PMmatrix | Plotsraw time-observation data from
a data .csv file read by the
PMreadMatrix () command, with a
variety of options, including joining
observations with line segments,
including doses, overlaying plots for
all subjects or separating them,
including individual posterior
predictions (post objects as described
above), color coding according to
groups and more.

PMsim SIMparse () ?plot.PMsim Plots simulated time-concentration
profiles overlaid as individual curves
or summarized by customizable
quantiles (e.g. 5th, 25th, 50th, 75th
and 95th percentiles). Inclusion of
observations in a population can be
used to return a visual and numerical
predictive check.

PMnpde makeNPDE () ?plot.PMnpde Plots an NPDE qgnorm, NPDE
histogram, NPDE vs. time, NPDE vs.
prediction and others to visualize
results of simulation based internal
model diagnostics accessed with the
makeNPDE () command.

More documentation is available at
http://www.biostat.fr/NPDE

index.php.

PMpta makePTA () ?plot.PMpta Plots superimposed curves
corresponding to each dose, with
target (e.g. MIC) on the x-axis and
proportion of the simulated time-
concentration profiles for the dose
with a target statistic (e.g. %time >
MIC) above a user-defined success
threshold

ALt o

Pmetrics™ Jser's Guide 43

http://www.biostat.fr/npde/index.php
http://www.biostat.fr/npde/index.php
http://www.biostat.fr/npde/index.php
http://www.biostat.fr/npde/index.php

Examples of Pmetrics plots

15
L

out
10

Time (h)

plot(PMmatrix object)

D'Agostino P = 0.267
e e ‘Shapiro-Wilk P = 0.00f
Kolmogorov-Smimoft ff

i3
°

|
|
- N
. 1o i
. - - . A
£ dulD
o i
3 ¢ g g
4 ° H 2 g i
& - i i] i
7 3 3 K !
g] 3 i
- 2 E B [
0 o ® ¢ b |
N Mean: 0.27 (P=0.169), SD: 2.34 N Medh: 0.27 (P=0.169), SD: 2.34 1) |‘
Resquared = 0949 1
Inter = 0.2 (95%Cl -0.261 to 0.662)
~ Slope = 0.966 (95%CI 0.885 to 1.05)
Bias = 0.0315 \
Imprecision = 0.346 U

2 4 6 8 10 s 10 15 20 120 125 130 135 140 145 5 0 5

Observed Prodicted Time Weighted residual error

plot(PMop object) plot(PMop object, resid=T)

o . o ‘ o ,
S 1 s | | S |
g | g ! i g | E
g | R ; g |
. : . : . !
z | ‘ z]! ‘ z | |
: | s7i : s :
= | s | | IS |
S A i - i e 4 1
< i 4 ' i e
g | | g | g | |
s ! 1 ! ° 1
g 1. g 1 ! g
ER T L thn o 1 R S T T T Sl wl) 1l
0.2 04 06 08 0.00 0.02 0.04 0.06 0.08 0.10 40 60 80 100 120
Ka Kel Vol

005 006 007 008 009 010

T T t
0 1 2 3 4

plot(PMfinal object)

ALt o

Pmetrics’ Jser's Guide 44

4370 4380

436.0

2360 2370

2350

1.10

-2 x Log likelihood AIC/BIC
£ J ——
— BIC
h — AIC
w
g
] J
~
T T T T T T T T T T T T T T
200 300 400 500 600 700 800 200 300 400 500 600 700 800
Cycle Cycle
Gammal/Lambda Normalized Mean
—
84| — kKa —_—
- — Kel) -
8 | ~—— Vol _’-—‘___d_,_,_,_,_.———'——
- — Tlag
w
&
=]
L g
T T T T T T T <o T T T T T T T
200 300 400 500 600 700 800 200 300 400 500 600 700 800
Cycle Cycle
Normalized SD Normalized Median
o | Y
— Ka | ———— = — Ka s
— Kel p - — Kel .
—— Vol o 3 —— Vol e
— Tlag 2 — Tlag [
g ,—J
=]
T T T T T T T T T T T T T T
200 300 400 500 600 700 800 200 300 400 500 600 700 800
Cycle Cycle

plot(PMcycle object)

Pmetrics’ yser's Guide 45

Q-Q plot versus N(0,1) for npde

Theoretical Quantiles

200
1

150
!

Frequency

50
1

Sample quantiles (npde) Sample quantiles (npde)

npde

npde
0
1

10 20 30 40 50 0 1 2 3 4 5

time () Predicted out ()

plot(PMnpde)

20
1

15
1

Output

05

Time (h)

plot(PMsim object)

Pmetrics’ Jser's Guide 46

24 4 - = e oo
2
o [}
< o |
®
©
o
%
5 ©
O o
s
A
kS
L <
£ o
H
c
2
=
(e}
Q N
g o
[\ %

e |

o

[I I I I I I !
0.25 0.5 1 2 4 8 16 32
MIC
plot(PMpta object)

Probability of Target Attainment

PTA analyses and plots are a powerful application of simulation in Pmetrics. Simulated output profiles, e.g time-
concentration profiles, are automatically compared to a target to generate a pharmacodynamic index (PDI). This
index can be one of several, such as the proportion of a dosing interval that the concentration remains above the
target, the ratio of area under the time-concentration curve to target, ratio of maximum or minimum concentration
to target, or ratio of concentration at a specific time to target.

Here are the details of the makePTA () function.

makePTA (simdata, simlabels, targets, target.type, success, outeq = 1,

free.fraction = 1, start, end)

» «

1. simdata A vector of simulator output filenames, e.g. c(“simoutl.txt”,“simout2.txt”), with wildcard support, e.g.
“simout*” or “simout?”, or a list of PMsim objects made by SIMparse with suitable simulated regimens and
observations, e.g. simdata <- SIMparse (“simout?.txt”). The latter method is preferable so that you
do not have to re-parse the simulator output each time you run makePTA (). The number and times of
simulated observations does not have to be the same in all objects.

2. simlabels Optional character vector of labels for each simulation. Default is ¢ ("Regimen 1”7, “Regimen
2”,...). These will be used in plots.

3. targets A vector of pharmacodynamic targets, such as Minimum Inhibitory Concentrations (MICs). This can
also be a sampled distribution using makePTAtarget (), which generates an object of class PMpta.targ that
can be used in makePTA () . The single input to makePTAtarget () is a data.frame or name of .csv file in
working directory whose first two columns are targets and the number of samples for each target. An example
can be seen for Staphylococcus aureus susceptibility to vancomycin at the EUCAST website at http://
mic.eucast.org/Eucast2/regShow.jsp?ld=1214 (see the bottom of the page). Examples:

ALt o

Pmetrics™ Jser's Guide 47

http://127.0.0.1:9635/help/library/Pmetrics/help/SIMparse
http://127.0.0.1:9635/help/library/Pmetrics/help/SIMparse
http://mic.eucast.org/Eucast2/regShow.jsp?Id=1214
http://mic.eucast.org/Eucast2/regShow.jsp?Id=1214
http://mic.eucast.org/Eucast2/regShow.jsp?Id=1214
http://mic.eucast.org/Eucast2/regShow.jsp?Id=1214

makePTA (..., targets=c(0.25, 0.5, 1, 2, 4, 8, 16, 32)) will test all profiles against the
specific targets listed. On the other hand, makePTA (..., targets=makePTAtarget (“staph.csv”))
will test each profile against one MIC drawn from a distribution of MICs for contained in the staph.csv file.

4. target.type A numeric or character vector, length 1.

e If numeric, must correspond to an observation time common to all PMsim objects in simdata, rounded to
the nearest hour. In this case, the target statistic will be the ratio of observation at time target.type to
target. This enables testing of a specific timed concentration (e.g. one hour after a dose or C1) which may be
called a peak, but is not actually the maximum drug concentration. Be sure that the time in the simulated
data is used, e.g. 122 after a dose given at 120.

e “time”, calculate the proportion of the time range specified by start and end time above target. The
algorithm looks at each pair of concentrations within a simulate profile, and if both are below the target,
the cumulative time is not incremented. If both are above, the cumulative time is incremented by the time
interval between the pair. If one is above and the other below, the cumulative time is incremented by the
fraction above the target, as estimated by linear regression between the paired concentrations.

e “auc”, calculate ratio of area under the curve within the start-end time range to target, using the trapezoidal
approximation in makeAUC () to calculate AUC.

e “peak”, calculate ratio of peak concentration within the start-end time range to target
¢ “min”, calculate the ratio of minimum concentration within the start-end time range to target.

5. success A single value specifying the success statistic, e.g. 0.4 for proportion time (start to end) above target, or
100 for peak:target.

6. outeq An integer specifying the number of the simulated output equation to use. Default is 1.

free.fraction Proportion of free, active drug, from 0 to 1. Default is 1, i.e. 100% free drug or 0% protein
binding.

8. start Specify the time to begin PTA calculations. Default is a vector with the first observation time for subjects
in each element of simdata, e.g. dose regimen. If specified as a vector, values will be recycled as necessary.

9. end Specify the time to end PTA calculations so that PTA is calculated from start to end. Default for end is the
maximum observation time for subjects in each element of simdata, e.g. dose regimen. If specified as a vector,
values will be recycled as necessary. Subjects with insufficient data (fewer than 5 simulated observations) for a
specified interval will trigger a warning. Ideally then, the simulated dataset should contain sufficient
observations within the interval specified by start and end.

If a simulation exists, such that simout1.txt, ..., simout4.txt exist in the current working directory, and each contain
a different simulated dosing regimen of 100 mg daily, 50 mg bid (twice daily), 200 mg daily, or 100 mg bid, all
given for 5 days, then here are examples of different PTAs.

Example 1:
#parse the results into a list
simlist <- SIMparse (“simout?.txt”)

#make the PTA with discrete targets, and define success as proportion 2 0.6 of
interval from 72 to 96 hours with concentration > target

pta.l <- makePTA(simdata=simlist, targets=c(0.25, 0.5, 1, 2, 4, 8, 16),
target.type="time”, success=0.6, start=72, end=96)

Example 2:
#parse the results into a list

simlist <- SIMparse (“simout?.txt”)

ALt o

Pmetrics™ Jser's Guide 48

#make the PTA with sampled targets wusing a file with the distribution of
vancomycin MICs for staphylococcus aureus, and define success as an AUC:target 2
400 from 72 to 96 hours

pta.l <- makePTA (simdata=simlist, targets=makePTAtarget (“staph.csv”),
target.type="auc”, success=400, start=72, end=96)

Example 3:
#parse the results into a list
simlist <- SIMparse (“simout?.txt”)

#make the PTA with a target concentration of 4 mg/L 12 hours after (e.g. time=84)
a steady state dose given every 12 hours

pta.l <- makePTA (simdata=simlist, targets=4, target.type=84, success=1)

The output of makePTA () is a list of class PMpta, which has 2 objects:
1. results A data frame with the following columns:

e simnum is the number of the simulation;

¢ idis the simulated profile number within each simulation;

e targetis the specified target;

e pdiis the target pharmacodynamic index, e.g. time > target, auc:target, etc.
2. outcome A data frame summarizing the results with the following columns:

e simnum and target are as for results. If targets was specified via makePTAtarget () to be a sampled
distribution, then the target column will be missing from the outcome table.

e prop.success column has the proportion with a pdi > success, as specified in the function call.

e The pdimean and pdi.sd columns have the mean and standard deviation of the target pharmacodynamic
index (e.g. proportion end-start above target, ratio of Cmax to target) for each simulation and target.

PMpta objects can be summarized with summary(x) and plotted with plot(x). See ?summary.PMpta and ?
plot.PMpta in R for additional help.

Model Diagnostics

Internal Validation

Several tools are available in Pmetrics to assist with model selection. The simplest methods are using
PMcompare () and plot.PMop (), viathe plot () command for a PMop object made by makeOP () or by using
PMload () after a successful run. PMstep () is another option for covariate analysis. All these functions are
carefully documented within R and accessible using the ?command or help (command) syntax.

Plotting observed vs. predicted objects (class: PMop). When you have successfully completed an NPAG or IT2B
run and loaded the results with PM1oad (), one of the objects will be a PMop object. Example: PMload (1) will
include op.1 in the list of loaded objects. You can also remake the PMop object, for example, if you want use the
mean of parameter values for calculation of predictions rather than the default median: op.1 <-
makeOP (NPdata.l, “mean”). In both cases, you can then simply plot (op.1), which is a wrapper for
plot.PMop (op.1). See ?plot . PMop for options to this plot.

One particularl option to plot.PMop (), resid=T will generate a residual plot instead of an observed vs.
predicted plot. A residual plot consists of three panels: 1) weighted residuals (predicted - observed) vs. time; 2)

ALt o

Pmetrics™ Jser's Guide 49

weighted residuals vs. predictions; 3) a histogram of residuals with a superimposed normal curve if the option
ref=T is specified (the default). The mean of the weighted residuals (expected to be 0) is reported along with the
probability that it is different from 0 by chance. Three tests of normality are reported for the residuals:
D’Agostino[2], Shapiro-Wilk, and Kolmogorov-Smirnof. An example is shown in the Plotting section.

Covariate analysis. The PMstep () function will report a 2x2 matrix of P-values for the linear regression
coefficients of each subject’s covariates vs. Bayesian posterior parameter values from the PMcov object loaded with
PMload (). Example: PMstep (cov.1l). Entries in the matrix are the multivariate P-values. A value of NA
indicates that the variable was not retained in the final model. The default method is “both”, but “forward”
selection and “backward” elimination are possible. PMstep () uses the step () function in the stats package for
R, which is a default package. It is possible to test non-linear relationships using capabilities of R and the PMcov
object, for example with the nls () function for non-linear least squares analysis.

Model comparison. To compare models with PMcompare (), simply enter two or more PMetrics data objects,
e.g. PMcompare (NPdata.l,NPdata.2,NPdata.3). These should be of the NPAG or IT2B class, made either
by using PM1load () or NPparse () /ITparse (). Although itis possible to compare models of mixed classes, the
validity of this is dubious. The return object will be a data frame with summaries of each model and key metrics
such as log-likelihood, final-cycle Akaike Information and Bayesian Information Criteria, bias and imprecision of
predictions relative to observations from the population prior distribution and individual posterior distributions,
and a p-value for model.

The p-values are a comparison of the joint distribution of population parameter values for all models, using the
first model in the list as the reference. Only parameters with common names to all models are included. Data
objects supplied to PMcompare () should not be zero-cycle runs, which will generate an error message. By
specifying the option plot=T, observed vs. predicted plots for all the models will be generated. The comparison is
based on the nearest neighbors approach in the MTSKNN package. The option to generate residual plots of
prediction errors, described next, can be specified with the additional switch resid=T, which is ignored if
plot=F.

Model bias and imprecision. In both PMcompare () and in plots of PMop objects with reg=T (the default),
Pmetrics supplies two statistics: bias and imprecision. Bias is the mean weighted error of predicted - observed.
Imprecision is the bias-adjusted, mean weighted squared error of predicted - observed. We adjust for bias because
the mean squared error (MSE), calculated as (pred - obs)? for all predictions/observations, is equal to the sum of
the variance of the predictions and the bias of the predictions, i.e. Var(pred) + Bias(pred). Therefore, the true
variance or imprecision of the predictions is MSE - Bias.

For both calculations, the weighting is according to the calculated SD of the observation, using C0, C1, C2, and C3.
The specific formulae are as follows.

¢ Weighted prediction error, wpe: (pred-obs)/SD for each prediction/observation

e Weighted squared prediction error, wspe: (pred-obs)?/SD? for each prediction/observation

¢ Bias, mean weighted prediction error, mwpe:) wpe / N

e Imprecision, bias-adjusted mean weighted squared prediction error, hamwspe: Ywspe / N - mwpe?

All these values are returned with summary () for PMop objects. Both summary () and PMcompare () will also
provide the root mean squared error (RMSE) and %RMSE. RMSE is the square root of (pred-obs)? i.e. an
unweighted measure of imprecision used by many, but which we favor less given its failure to account for
observation weights or adjust for bias. The %RMSE is the RMSE normalized to the total RMSE over all
observations.

Visual predictive checks and NPDE.

Two more complex and time-consuming options based on simulation are also available for internal model
validation: the normalized prediction distribution errors (NPDE) method of Mentré and Escolano [3] and
visual predictive checks (VPC). Both of these can be computed from the same simulation.

For NPDE, the basic idea is that each subject in the population serves as a template for a simulation of 1000 further
profiles using the population structural model and parameter values joint probability distribution, i.e. together the
“population model”. The simulated profiles are compared to the observed data, and the NPDE is generated. The
command to generate a PMnpde list object is makeNPDE (), which is documented in R. Your current working

ALt o

Pmetrics™ Jser’'s Guide 50

directory should be your runs folder, as the argument to makeNPDE () is the run (folder) number that you wish to
analyze. Because of the extensive simulations involved, execution of this command can be slow if the population is
large, the model complex, the time horizon long, and/or the number of observations to be simulated per profile is
large. There are print and plot methods for NpdeObjects, which are contained within PMnpde objects
(print.NpdeObject () and plot.NpdeObject) both of which are also documented within R and much more

extensively online at http://www.biostat.fr/NPDE/index.php. An example of a NPDE plot is shown in the Plotting
section.

Note that simulation from a population model can be a fickle thing, which may lead to errors when trying to
execute this command. Parameter value distributions in linear space run the risk of simulating extreme or even
inappropriately negative parameter values which can in turn lead to simulated observations far beyond anything
corresponding to possible reality. Arguments to the Pmetrics simulator can be supplied in the makeNPDE () call,
such as split, and limits to mitigate this problem.

In Pmetrics makeNPDE () automatically generates the simulations necessary for a VPC. VPCs are cumbersome
when models include covariates or have heterogeneous dosing/sampling regimens among subjects in the
population. Itis nonetheless possible to obtain a VPC in two ways.

The first way to generate a VPC is to use the PMsim object saved after running makeNPDE (), which will be called
sim.x, where x is the run number. If an observed vs. predicted PMop object made with makeOP () is passed to
plot.PMsim () with the obs argument, the observed values will be overlaid upon simulated profiles if possible,
and an NPC will be returned in addition to the plot. The NPC is simply a binomial test for the percentage of
observations less than the quantiles specified by the probs argument (0.05, 0.25, 0.5, 0.75, 0.95 by default). It is
up to the user to decide if the study population and model is homogeneous enough to justify a VPC.

Example: vpc <- plot(sim.l, obs=op.1l). Note that when we use the obs argument, the plot call will
return a list of , in addition to a plot like the one below. Although the template subjects all received only one dose
of drug in this interval, they were not sampled at the same times, so when the simulations were combined, it leads

Output

to the jagged quantiles. This can be improved (i.e. smooth the quantile curve) by setting the binSize argument
when plotting, which controls the width of binning interval for simulated concentrations, in time units, e.g. hours.
For example, a binSize of 0.5 will pull all simulated concentrations +/- 0.5 hours into the same time bin. The default
is 0, i.e. no binning. The return object when obs is included is a list with the following items:

1. npc A dataframe with three columns: quantile, prop.less, pval. quantile are those specified by theprob
argument to the plot call; prop.less are the proportion of simulated observations at all times less than the
quantile; pval is the P-value of the difference in the prop.less and quantile by the beta-binomial test.

2. simsum A dataframe with the quantile concentration at each simulated time, with lower and upper confidence
intervals

3. obs A dataframe similar to an PMop object made by makeOP () with the addition of the quantile for each
observation

ALt o

Pmetrics” Jser's Guide 51

http://www.biostat.fr/npde/index.php
http://www.biostat.fr/npde/index.php

So to get the NPC, simply type, from the example above, vpcS$Snpc.

Visual predictive checks can also be made from a PMnpde object made with the makeNPDE () function with the
following syntax: plot (npde.1,plot.type="vpc”). An example of this plot is shown below.

Visual Predictive Check

out ()
1.5 2.0 25
1

1.0

0.5

0.0

External Validation

Should you wish to use your population model to test how well it predicts a second population that is separate
from that used to build the model (i.e. externally validate your model) you may do that in Pmetrics. After
completing an NPAG run, place the same model file (located in the inputs subdirectory of the NPAG run whose
model you are validating) along with your new (validating) data file in your working directory. So there should be
two files in your working directory:

¢ model.txt file This will be the same as for model building NPAG run, found in the /inputs subdirectory.

e data.csv file This will be a Pmetrics data input file containing the new subjects for validation.
Next, do the following steps to complete the validation NPAG run.

1. Load the model building run with PMload (run_numl) so thatits NPdata object is in memory.

2. Initiate an NPAG run in Pmetrics as usual, but with an additional argument to specify the model density file
which will serve as a non-uniform prior, e.g. NPrun (model="mymodel.txt”,
data="validation.csv”, prior=NPdata.l, cycles=0), where NPdata.lis an example of the
object loaded in step 1, in this case with PMload (1). Specifying 0 cycles will calculate a Bayesian
posterior only for each subject in the validation data set.

Complete the NPAG run as usual.

4. Load the results with PMload (run num2) and plot, etc. as usual.

Pmetrics Outputs

At the end of a successful NPAG, IT2B or ERR run, your Run folder will have a new folder with the run number,
which is sequentially designated from the previous run. Within this folder are 4 subfolders.

ALt o

Pmetrics™ Jser’s Guide 52

¢ /etc This folder contains files made during the run. Generally you do not need to look at these. They include
the fortran code specifying the model (model.for) and the instructions (instr.inx) that NPAG or IT2B used.

« /inputs This folder contains the original data and model file used in the run.

¢ /outputs This folder contains the NPAGout.Rdata or IT2B.Rdata file (see Data Objects) which are created by
the PMreport() function, as well as the NPAGreport.html or IT2Breport.html files, which you will see open
automatically in your default browser at the end of a run. This html generates a tabbed page which will display
properly as long as it is in the run /outputs folder where the supporting image files are also located. Within
this folder are also .csv (comma separated values) tables of the population parameter value summaries
(popparam.csv), covariance matrix (popcov.csv), correlation matrix (popcor.csv), and points (NPAG only,
poppoints.csv). Images for default graphs are available as .png and .pdf files. Additional text files for NPAG
(OUT0001, OUTTO0001, DENOOO1, ILOG0001, PRTB0001, NP_RF0001.txt) contain combined cycle output/
density, cycle output, density, convergence, posterior predictions, and R-friendly information, respectively. For
IT2B, these text files (OUTF0001, OUFF0001, DENF0001, LAST0001, FROMO0001, IT_RF0001.txt) contain
combined cycle output/density, cycle output, density, Bayesian posterior parameters, parameter ranges that
can be passed to NPAG, and R-friendly information, respectively. Normally, you do not need to look at these
files.

Finally, for outputs, there is an NPAGreport.tex or IT2Breport.tex file. For users familiar with IATEX, this file can

be used to generate a pdf version of the html report page, useful for sharing with colleagues. You must have an
installed [ATEXengine. Our recommended LATEX engine for Mac users is MacTex, which is very large (>1GB) but

contains a complete installation. For Windows, MikTex is our recommended engine. Both are free.

Once you have a IATEX engine, it is easy to make a .pdf from the .tex file. Simply open it with Rstudio and click
the “Make PDF” button that appears. The .pdf file will be in your /outputs folder.

¢ /wrkcopy This folder contains “working copy” files in the original format used by NPAG and IT2B, and which
are still used “under the hood.” They are easy to read and can be used as a check if something goes wrong.

Ancillary Functions

Pmetrics has some ancillary functions which can be helpful when you are involved in population PK modeling.
These functions do not control the components of Pmetrics or process output.

¢ qgrowth This function will return a dataframe of height and weight for boys, girls or both for a given range of
ages in months and body size percentile (e.g. the median). This can be useful for simulations in Pmetrics. The
data for this function come from the 1977 National Center for Health Statistics Growth Chart Equations on the
website of the United States Centers for Disease Control.

¢ ss.PK Sample size calculations for PK studies are difficult as traditional power analysis is based on
comparisons between 2 or more groups. One proposed method is to sample sufficient subjects to ensure that
the width or precision of the standard error of the mean value for a given PK parameter is within a specified
degree for a given probability. This function uses the formula for precision of the standard error of the mean of
a distribution of PK parameter values to calculate either n, the sample size, or sd, the maximum standard
deviation of a PK parameter value distribution for a given mean, desired degree of precision and confidence.

The formula is n = Z?%(1+c);2 * sd? / (precision*mean)?, where Z is the standard normal quantile, ci is the
probability of the confidence interval (e.g. 0.95), sd is the standard deviation of the parameter values,
precision is the desired width of the confidence interval as a proportion of the mean (e.g. 0.2 = 20%), and
mean is the mean parameter value.

References

1. Goutelle S, Bourguignon L, Maire PH, Van Guilder M, Conte JE, Jelliffe RW. Population modeling and Monte
Carlo simulation study of the pharmacokinetics and antituberculosis pharmacodynamics of rifampin in
lungs. Antimicrob Agents Chemother 2009; 53:2974-2981.

ALt o

Pmetrics™ Jser's Guide 53

http://tug.org/mactex/
http://tug.org/mactex/
http://miktex.org
http://miktex.org
http://www.cdc.gov/growthcharts/1977charts.htm
http://www.cdc.gov/growthcharts/1977charts.htm

2.

D'Agostino R. Transformation to Normality of the Null Distribution of G 1. Biometrika 1970; 57:679-681.

Mentré F, Escolano S. Prediction discrepancies for the evaluation of nonlinear mixed-effects models. |
Pharmacokinet Pharmacodyn 2006; 33:345-367.

ALt o

Pmetrics™ Jser’s Guide 54

