

 The expert for industrial and automotive communication

Manual

VCI - Virtual CAN Interface
VCI-V2 Programmers Manual

IXXAT
Headquarter US Sales Office
IXXAT Automation GmbH IXXAT Inc.
Leibnizstr. 15 120 Bedford Center Road
D-88250 Weingarten USA-Bedford, NH 03110

Tel.: +49 (0)7 51 / 5 61 46-0 Phone: +1-603-471-0800
Fax: +49 (0)7 51 / 5 61 46-29 Fax: +1-603-471-0880
Internet: www.ixxat.de Internet: www.ixxat.com
e-Mail: info@ixxat.de e-Mail: sales@ixxat.com

Support
In case of unsolvable problems with this product or other IXXAT products
please contact IXXAT in written form by:

Fax: +49 (0)7 51 / 5 61 46-29
e-Mail: support@ixxat.de

For customers from the USA/Canada
Fax: +1-603-471-0880
e-Mail: techsupport@ixxat.com

Copyright
Duplication (copying, printing, microfilm or other forms) and the electronic
distribution of this document is only allowed with explicit permission of
IXXAT Automation GmbH. IXXAT Automation GmbH reserves the right to
change technical data without prior announcement. The general business
conditions and the regulations of the license agreement do apply. All rights
are reserved.

Document No. VCIV2_Programmers Manual-E-V2.9

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Contents

3

1 INTRODUCTION ... 7

1.1 Areas of Application ... 7

1.2 Notes on this Manual ... 8

1.3 Installation of the VCI .. 8

1.4 Functional Scope of the VCI ... 9

1.5 Limitations ... 9

1.6 Message Administration .. 10

1.6.1 Receive buffers ... 10

1.6.2 Receive queues .. 10

1.6.3 Transmit queues .. 11

1.6.4 Remote buffers .. 12

1.6.5 Opening a PC-CAN Interface .. 12

2 INTERFACE DESCRIPTION ... 13

2.1 Pre-defined Return Codes of the VCI 13

2.2 Type Definitions of the Call-back Handler 15

2.2.1 Receive-Interrupt-Handler ... 16

2.2.2 Exception-Handlers .. 16

2.2.3 Handler for String Output .. 17

2.3 State diagram for Board Initialization 18

2.4 Table of VCI functions .. 19

2.5 Initialization of the VCI .. 21

2.5.1 VCI_Init ... 21

2.6 Functions for VCI Support Information 22

2.6.1 VCI_Get_LibType .. 22

2.6.2 VCI_GetBrdNameByType... 22

2.6.3 VCI_GetBrdTypeByName... 22

2.7 Functions for Board Initialization 22

2.7.1 VCI_SearchBoard ... 22

2.7.2 VCI_SetDownloadState .. 22

2.7.3 VCI2_PrepareBoard and VCI2_PrepareBoardMsg 22

2.7.3.1 VCI_PrepareBoard ... 23

2.7.3.2 VCI2_PrepareBoard.. 23

2.7.3.3 VCI_PrepareBoardMsg ... 25

2.7.3.4 VCI2_PrepareBoardMsg ... 25

2.7.4 VCI_PrepareBoardVisBas ... 27

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Contents

4

2.7.5 VCI_CancelBoard ... 27

2.7.6 VCI_TestBoard ... 27

2.7.7 VCI_ReadBoardInfo .. 27

2.7.8 VCI_ReadBoardStatus... 29

2.7.9 VCI_ResetBoard ... 30

2.8 Functions for CAN-Controller handling 30

2.8.1 VCI_ReadCanInfo ... 30

2.8.2 VCI_ReadCanStatus .. 31

2.8.3 VCI_InitCan ... 32

2.8.4 VCI_SetAccMask .. 34

2.8.5 VCI_ResetCan .. 34

2.8.6 VCI_StartCan ... 35

2.9 Functions for the Queue and Buffer Configuration 35

2.9.1 VCI_ConfigQueue .. 35

2.9.2 VCI_AssignRxQueObj ... 41

2.9.3 VCI_ResetTimeStamp ... 41

2.9.4 VCI_ConfigBuffer ... 42

2.9.5 VCI_ReConfigBuffer ... 42

2.10 Receiving Messages ... 43

2.10.1 VCI_ReadQueStatus ... 43

2.10.2 VCI_ReadQueObj ... 43

2.10.3 VCI_ReadBufStatus .. 44

2.10.4 VCI_ReadBufData ... 44

2.11 Sending Messages .. 45

2.11.1 VCI_TransmitObj .. 45

2.11.2 VCI_RequestObj ... 45

2.11.3 VCI_UpdateBufObj ... 46

2.12 Data Types Used ... 47

2.12.1 VCI-CAN-Object ... 47

2.12.2 VCI-Board Information ... 47

2.12.3 VCI-Board-Status ... 48

2.12.4 VCI-CAN-Information ... 49

2.12.5 VCI-CAN-Status ... 49

3 REGISTRATION FUNCTIONS (XATXXREG.DLL) 50

3.1 Type Definitions of the Call-back Handler 50

3.1.1 Call-back to list the registered PC/CAN-interfaces 50

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Contents

5

3.2 Function Definitions ... 51

3.2.1 XAT_SelectHardware .. 51

3.2.2 XAT_GetConfig .. 52

3.2.3 XAT_EnumHWEntry ... 53

3.2.4 XAT_FindHWEntry ... 54

3.2.5 XAT_SetDefaultHwEntry ... 57

3.2.6 XAT_GetDefaultHwEntry .. 58

3.2.7 XAT_BoardCFG .. 58

3.2.8 HRESULT error codes .. 59

4 NOTES ON USE OF THE VCI-DLLS ... 60

4.1 Common Notes .. 60

4.2 Integration of the DLL in an Application 60

4.2.1 Implicit Import during Linking .. 61

4.2.2 Dynamic Import during the Run-time 61

4.3 Notes for VisualBasic developers 62

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Introduction

7

1 Introduction
The Virtual CAN Interfaces (VCI) is a powerful software package for the IXXAT-
PC/CAN-Interfaces. It has been designed for software developers who wish to
develop high-quality, hardware-independent CAN-Applications for PCs.
For this reason, particular importance was placed on easy application and good
real-time behavior of the VCI.

1.1 Areas of Application
The aim of the VCI is to provide the user with a unified programming interface
for the various PC/CAN-interface versions of the IXXAT company. For this, neither
the design of the PC-connection (PCI(e), USB, TCP-IP ...) nor the CAN Controller of
the interface used is important. In addition, the VCI makes it possible to operate
several (even different) cards at the same time.

Fig. 1 - 1 Virtual CAN Interface

This concept enables realization of application programs independent of the
PC/CAN-interface type used.
For this, a virtual CAN Controller was defined in the VCI, the structure of which
corresponds to a Basic-CAN-Controller and which supports operation with 11-bit
and 29-bit identifiers. Downstream from this virtual CAN-Controller a Firmware is
installed which organizes the message administration. The virtual CAN-Controller

Virtual CAN Interface

CAN

iPCI XC16 PCI 04 USB-to-CAN CAN@net II

Control
function

Monitor
function

CAN
Analyser

User
Application

USB TCP-IP
slot cards

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Introduction

8

can be present on a PC/CAN-Interface up to 4 times, whereby simultaneous
operation of up to 4 cards is possible.
Both intelligent PC/CAN-interfaces (with their own memory and CPU) and passive
cards are supported by the VCI.
Active PC/CAN-interface cards support the PC in the pre-processing of the CAN-
messages and in data management. This has a positive effect on the load of the
processor of the PC.
With passive cards the processor of the PC is loaded considerably more by the
interrupt routine of the CAN-Controller and the message administration. On the
other hand, passive PC/CAN-interface cards make possible a reasonably priced
connection of a PC to a CAN-network. However, high demands are made on the
real-time behavior of the PC (under Windows only useful with low baud rates).

1.2 Notes on this Manual
The aim of this manual is to explain the way of functioning of the VCI and its
functions.
This manual does not intend to describe the whole area of programming of
CAN-applications nor to represent a reference for the functionality of individual
CAN-Controllers.
This manual requires knowledge of programming under MS-Windows (Multi-
Threading, event-controlled processing).
Before working with the VCI, it is absolutely necessary that you read through
this manual completely at least once.
In order to keep this documentation as short as possible, the information it
contains is given to a great extent without redundancy. It is therefore
recommended that you work through the manual several times, since important
information is often overlooked on the first reading.
In this connection we also strongly recommend studying the header files VCI.h.

1.3 Installation of the VCI

For information on the installation of the PC/CAN-interface, please see the
“PC/CAN-interface hardware manual“ supplied.

The procedure for the VCI-software installation is described in the "CAN-
Driver VCI installation manual" .

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Introduction

9

1.4 Functional Scope of the VCI
The VCI supports:

• Standard and Extended Protocol (11 and 29-bit-Identifier)

• Several CAN-Controllers per interface (if supported by the hardware)

• Simultaneous operation of up to four interfaces by one or more applications

• Baud rates of up to 1000 Kbaud

• Reception of messages via configurable receive queues (FIFO) with time
marker

• Reception of messages via configurable receive buffers with receive counter.

• Several queues and buffers can be assigned to each CAN-Controller.

• Sending of messages (via configurable send queues)

• Queues can be polled or read per interrupt (Timeout or ´High water mark´)

• Automatic, configurable response to request messages (Remote frames)
(only in 11 Bit Standard protocol)

In addition, the VCI supplies statistic data to the CAN-Bus, to the CAN-Controller,
via the data structures and the PC/CAN-interfaces.

1.5 Limitations
• Access to a PC/CAN-interface is only possible for one application. Therefore

several applications cannot share one PC/CAN-interface.
• Depending on the CAN-Controller of the PC/CAN-interface used, there are

limitations in the functional scope of the VCI:

• Philips 82C200: No extended protocol possible

• Intel 82527: No remote operation possible

• Philips SJA1000: No limitations
In order to support the corresponding functionality, your application must
select the corresponding CAN-Controller.

• Remote Buffers only possible in 11Bit Standard Mode

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Introduction

10

1.6 Message Administration
The VCI possesses its own message administration. In this message
administration, both incoming and outgoing messages are administered in
different structures.
Intermediate storage of the received messages occurs in so-called Receive queues
or in Receive buffers. In the case of a Queue, the messages are stored in order of
the time of their occurrence including a time marker (FIFO-principle), whereby the
messages can also have different identifiers. In contrast, a buffer contains only
the last message received under a certain identifier (according to a current
process diagram) as well as a counter for the number of the receive processes on
this buffer.
The messages to be sent are recorded in Transmit queues. These are then serviced
by a microcontroller (only with intelligent PC/CAN-interfaces) or by an interrupt
routine of the PC. In addition, so-called Remote buffers can be created, in which
messages are entered which are not sent directly but only on request (Remote-
Frame) by another node.
The following section describes the elements provided by the VCI for the
administration of the CAN-messages.

1.6.1 Receive buffers
Receive buffers are created for each identifier to be received. They always contain
the last data received under the selected identifier. This means that data which
have not yet been accepted by the application are overwritten. For flow control
with repeated reception, the Receive buffers are equipped with a Receive counter.
Receive buffers are specifically checked by the application for the presence of new
data and the data are then accepted.
An event-controlled reading of Receive buffers is not possible, since Receive
buffers generally come into use when the application has to check certain process
data only sporadically and is only concerned with the most recent data in each
case.
The maximum configurable number of buffers (Receive and Remote buffers
together) is 2048 per CAN-Controller.

1.6.2 Receive queues
The use of Receive queues is recommended in particular for applications where all
data are to be received which are transmitted under one or more identifiers and
for which the application program is not able to react directly to the reception of
a message.
The application program can determine how many messages a queue can accept
and which identifiers should be assigned to a queue. Several queues can be

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Introduction

11

created, so that pre-sorting can already be carried out by the VCI. All messages
recorded in a Receive queue are provided with a time stamp.
If due to the structure of the application program a regular polling of the Receive
queue(s) is not useful or not possible, the application can be informed via a Call-
back-function. The time of informing can be configured and depends on two
events of which one must occur to trigger the callback:
• A certain number of entries is present in a queue ("high water mark" is

reached)
• After a certain amount of time has expired (Timeout function).

The Call-back-function is called up from the Interrupt-thread of the VCI. This gives
rise to several limitations:
• In the Call-back-function no time-critical calculations should be carried out, as

otherwise CAN-messages may be lost.
• They are located in the Call-back-function in the context of the Interrupt-

threads. An attempt to access data from its application may fail for this
reason.
One way to uncouple Call-back from its application is to start an application-
thread for processing a queue. Incoming CAN-messages are signaled in their
Call-back-function by the setting of an event. The application-thread waits for
this event and carries out processing after the Event has been set. After the
processing step it returns to wait mode.

The maximum number of Receive queues which can be configured is 16 per CAN-
Controller.

1.6.3 Transmit queues
Messages (data and data requests) from the application are normally sent via
Transmit queues. In this way, when making a request to send, the application
does not need to wait until the CAN-Controller is ready to transmit. Servicing of
the Transmit queue(s) is carried out by the microcontroller of the active PC/CAN-
interfaces or with passive PC/CAN-interfaces by the Interrupt routine of the PC.
Several queues of different sizes (number of messages) and different priority can
be created. The different priorities of the queues determine the order in which
they are processed by the microcontroller.
The maximum number of Transmit queues per CAN-Controller which can be
configured is 8.

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Introduction

12

1.6.4 Remote buffers
If data are to be kept available for requests by other nodes, they can be entered
in so-called Remote buffers. If a request message is received (Remote frame) with
appropriate identifier, the data are taken from the buffer and sent. The
application only needs to update the data in the buffer. Processing of a request
message is carried out with highest priority, which is before the processing of the
Transmit queues.
Alternatively, request messages can also be received via a Receive queue. In this
case the application initiates sending of the requested data itself, by entering a
corresponding message in a Transmit queue.
The maximum number of buffers which can be configured (Receive and Remote
buffers together) is 2048 per CAN-Controller.

1.6.5 Opening a PC-CAN Interface
VCI2_PrepareBoard or VCI2_PrepareBoardMsg are called to open an IXXAT PC-
CAN Interface. The interface board you want to open is identified by an index
number which is to be ascertained via one of four possible ways first:
• Manual selection of the interface in the Hardware Selection dialog (refer

chapter 3.2.1).
• Query the attributes of the interface that is declared as “Default” in the IXXAT

Interfaces Control Panel applet (refer chapter 3.2.6).
• Enumerate all installed IXXAT PC-CAN Interfaces (refer chapter 3.2.3).
• Search for an IXXAT PC-CAN Interface by means of specific board attributes

(refer chapter 3.2.4).

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

13

2 Interface Description
The VCI-user interface provides the user with a collection of functions for the PC
which access PC/CAN-Interface and handle communication via CAN. The interface
distinguishes four different classes of functions:

• functions for the control and configuration of the PC/CAN interface

• functions for checking and configuration of the CAN-Controller

• functions to receive messages

• functions to send messages

The functions are described in the following section. Example programs supplied
show the uses of the functions.

2.1 Pre-defined Return Codes of the VCI
In order to be able to support other PC/CAN-interface types in future, and as it is
not possible to specify all errors and Return codes today which may occur in
future implementations, all possible Return codes are described via the following
Defines. Additional information (error string and further parameters) is provided
by the Exception handler of the VCI (Call-back-function).

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

14

Define Value Error description
VCI_OK 1 Successful, not further specified message for functions

carried out correctly
VCI_ERR 0 Standard error message, further specification provided by

the Exception handler
VCI_QUE_EMPTY 0 The Receive queue is empty, no messages can be read
VCI_QUE_FULL 0 The Transmit queue is already full, no further entries can

be made at the moment
VCI_OLD 0 There are no new data in the Receive buffer, old data are

read if applicable
VCI_HWSW_ERR -1 Function could not be carried out due to hardware or

software errors; check function of the PC/CAN-interface
VCI_SUPP_ERR -2 Function is not supported in this form (support error);

check your error with the implementation overview of
your platform

VCI_PARA_ERR -3 Parameter(s) transferred is/are faulty or outside the
permitted range; check the parameters transferred

VCI_RES_ERR -4 Resource error; during creation of a queue etc. the
resource limits (memory, max. number of queues, etc.)
has been exceeded; check your error with the
implementation overview of your platform

VCI_QUE_ERR -5 Receive queue overrun: One or more objects couldn't be
inserted into the queue and were lost. The last inserted
object was marked with the 'Receive-Queue-Overrun' bit.

VCI_TX_ERR -6 It was not possible to send a message via CAN over a long
period (several seconds), which indicates a missing device,
missing bus terminator or wrong baud rate; check your
CAN-connection and cabling

If a 'CciReqData-Error' is signaled with a VCI_ERR as error string of the Exception
handler, this means an error in communication between PC and PC/CAN-
interface. Possible errors are given in the following list:

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

15

Value Significance
0 Command could not be transmitted to the PC/CAN-interface
1 An Error was returned from the PC/CAN-interface as a response and not

an OK
2 The wrong response to the commando was returned
3 While waiting for the response, a Timeout has occurred
4 Response is too short (wrong length)
5 When handing off a command to the PC/CAN-interface, a Timeout has

occurred

The errors listed here can normally be traced to installation problems, such as:
• Memory range of the PC/CAN-interface is not displayed correctly in the

address space of the PC (error number 0, 1 or 5).
• Interrupt of the PC/CAN-interface is not passed on correctly to the PC or is

occupied by other plug-in cards (error number 3).
• Communication to the PC/CAN-interface (e.g. interfaces with LPT-interface) is

interrupted.

2.2 Type Definitions of the Call-back Handler
Call-back handlers are functions coded by the user and called up (in this case by
the VCI) when certain events occur.
In this case they are used for error display and error handling, processing of
interrupt messages or for issuing test or initialization protocols.
In order that the VCI can recognize and carry out these Call-back handlers, these
functions must correspond to the set type definitions and introduce them to the
VCI via ‘VCI2_PrepareBoard’.
If, for example, an interrupt is triggered by a Receive queue, a corresponding
function (Call-back handler) must be coded by the user. This function must be
coded for each installed PC/CAN-interface which should trigger interrupts.
The user decides whether to use the possibilities of Call-back-handling or to do
without and just transfer ‘VCI2_PrepareBoard’ to a NULL-Pointer instead of to a
function pointer.

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

16

2.2.1 Receive-Interrupt-Handler
The queue messages (Timeout or "High water mark") received via the interrupts
are transferred to this function, provided this was specified via the
VCI_ConfigQueue.
This Call-back handler is used for 2 different interrupt mechanisms:

• Transmission of messages (max. 13 messages simultaneously)

• Signal of a Receive queue for the application

In the first case the messages are given to the Interrupt-Callback function by
parameter. This mode should be used only at low message rates.
Within the Receive-Interrupt-Callback function you should pay attention to the
following points:
• Avoid time consuming calculations because the Interrupt-Thread is blocked

while you are in the Callback function and no more messages could be
handled during this time.

• Sometimes it could be difficult to access application data within the Receive-
Interrupt-Callback function because you are in the context of the Interrupt-
Thread.

In the second mechanism the call to the Callback function is only a signal to the
application (count = 0) and means that messages are in the receive queue that
should be read using the VCI_ReadQueObj function.
This could be used for example to set a worker thread in the running state (by
setting an event) which could process the messages.

Type definition: typedef void (*VCI_t_UsrRxIntHdlr)

(UINT16 que_hdl, UINT16 count, VCI_CAN_OBJ far * p_obj);
Parameter: que_hdl (in)

Handle of the queue which has triggered the interrupt.
count (in)
Number of messages received.
p_obj (in)
FAR-Pointer on the received message(s) of type VCI_CAN_OBJ.

Return values: none

2.2.2 Exception-Handlers
This function is always called up when an error has occurred in a system function.
In this case this error is not only displayed via the Return value, but is also handed
on to the Exception handler. Thus the user has two ways to handle errors,
whereby the one via the Exception handler provides a clearer program code.

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

17

Strings with a more exact error specification are transferred to the Exception
handler which can be output in an error window or written in a file.
These Null-terminated strings (without control character) with a max. length of
60 characters state the function name of the function in which the error has
occurred and the error is specified more precisely.
For each PC/CAN-interface a separate Exception handler must be coded.

Type definition: typedef void (*VCI_t_UsrExcHdlr)(VCI_FUNC_NUM

func_num,
int err_code, UINT16 ext_err, char * s);

Parameter: func_num (in)
Type name from the list type VCI_FUNC_NUM, via which the
function is specified in which the error has occurred.
err_code (in)
Standard-Error-Codes (VCI_SUPP_ERR, VCI_PARA_ERR, ...)
specified via defines.
ext_err (in)
Further error specifications with Standard-Error-Code
VCI_ERR (see below).
s (in)
Error string (max. 60 characters) stating the function name
and further error specification.

Return values: none

2.2.3 Handler for String Output
For the functions VCI2_TestBoard or VCI2_PrepareBoard it is possible to specify
an output function via which a test or initialization protocol can be output.
Null-terminated strings (without control character) with a max length of 60
characters are transferred to this function.

Type definition: typedef void (*VCI_t_PutS)(char * s);
Parameter: s (in)

Error string (max. 60 characters) stating function name and
further error specification.

Return values: none

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

18

2.3 State diagram for Board Initialization

VCI loaded

Hardware-
Interface
initialized

CAN-Controller
initialized and

 Reset-State

CAN-Controller
started

VCI_Init VCI_Cancelboard

VCI_PrepareBoard

VCI_ResetBoard

VCI_InitCan

VCI_ConfigQueue
VCI_AssignRxQueObj

VCI_SetAccMask

Load VCI-DLL

VCI_ResetCan
VCI_InitCan

VCI_StartCan

Fig. 2 - 1 State Diagram for Board Initialization

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

19

2.4 Table of VCI functions
In this table all necessary VCI functions are sorted by usage. For every VCI
function the states are given in which a call is possible. (see state diagram of VCI
in chapter 2.3)

 VCI – State

VCI functions

V
CI

-D
LL

lo

ad
ed

Bo

ar
d

in
iti

al
iz

ed

Co
nt

ro
lle

r
in

iti
al

iz
ed

an

d
in

 R
es

et

Q
ue

ue
/B

uf
fe

r
cr

ea
te

d

Co
nt

ro
lle

r
st

ar
te

d

Re
m

ar
k

VCI_Init x x x x x Should be used

only for
development!

See description.
VCI_Get_LibType x x x x x For compatibility

reasons only
VCI_GetBrdTypeInfo x x x x x For compatibility

reasons only
VCI_GetBrdNameByType x x x x x For compatibility

reasons only
VCI_GetBrdTypeByName x x x x x For compatibility

reasons only
Board handling

VCI_Prepareboard
VCI_PrepareboardMsg

x For compatibility
reasons only

VCI2_PrepareBoard
VCI2_PrepareBoardMsg

x

VCI_ResetBoard x x x x
VCI_CancelBoard x x x x
VCI_ReadBoardInfo x x x x
VCI_ReadBoardStatus x x x x
VCI_ResetTimeStamp x x x x

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

20

 VCI – State

VCI functions

V
CI

-D
LL

lo

ad
ed

Bo

ar
d

in
iti

al
iz

ed

Co
nt

ro
lle

r
in

iti
al

iz
ed

an

d
in

 R
es

et

Q
ue

ue
/B

uf
fe

r
cr

ea
te

d
Co

nt
ro

lle
r

st
ar

te
d

Re
m

ar
k

CAN-controller handling
VCI_ReadCanInfo x x x x
VCI_ReadCanStatus x x x x
VCI_InitCan x x x x
VCI_SetAccMask x To set the

acceptance mask
the CAN-

Controller should
be in reset mode!

VCI_ResetCan x x x
VCI_StartCan x x x Before starting

the CAN
controller all

necessary
initializations like

creating of
queues/buffers

should have been
done.

Queue handling
VCI_ConfigQueue x
VCI_AssignRxQueObj x
VCI_ReadQueObj x x
VCI_ReadQueStatus x x
VCI_TransmitObj x

Buffer handling
VCI_ConfigBuffer x
VCI_ReConfigBuffer x
VCI_ReadBufStatus x x
VCI_ReadBufData x x

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

21

 VCI – State

VCI functions

V
CI

-D
LL

lo

ad
ed

Bo

ar
d

in
iti

al
iz

ed

Co
nt

ro
lle

r
in

iti
al

iz
ed

an

d
in

 R
es

et

Q
ue

ue
/B

uf
fe

r
cr

ea
te

d

Co
nt

ro
lle

r
st

ar
te

d
Re

m
ar

k

Remote Buffer handling
VCI_RequestObj x
VCI_UpdateBufObj x x

2.5 Initialization of the VCI

2.5.1 VCI_Init
Function: void VCI_Init(void);
Description: Initialization of the VCI-structures (without Board initialization).

Already initialized boards are replaced and logged off (all
handles are discarded!).

 This function should only be used during the program
development of VCI-applications. If during a test a VCI-
application has crashed and has left the VCI in an undefined
state, the internal data structures can be replaced with this
function.

 In this way the VCI can be set up again without having to re-
boot the computer.

 Note: Calling up the function VCI_Init() causes all handles of the
VCI-applications currently running to become invalid. This can
lead to crashes if at the time of the call-up a VCI-application has
already initialized its board and then attempts to access it.
Therefore: In release versions of a VCI-application, do not
execute VCI-Init!

Return value: none

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

22

2.6 Functions for VCI Support Information
These functions had formerly been used to get additional information about
different PC/CAN interface types. They have been replaced by the functions from
the XATxxReg.DLL (see chapter 3).

2.6.1 VCI_Get_LibType
Note: This function is only still included for reasons of compatibility. It should no
longer be used.

2.6.2 VCI_GetBrdNameByType
Note: This function is only still included for reasons of compatibility. It should no
longer be used.

2.6.3 VCI_GetBrdTypeByName
Note: This function is only still included for reasons of compatibility. It should no
longer be used.

2.7 Functions for Board Initialization

2.7.1 VCI_SearchBoard
Note: This function is only still included for reasons of compatibility. It should no
longer be used.

2.7.2 VCI_SetDownloadState
Note: This function is only still included for reasons of compatibility. In the
current version of the VCI, this function is without any action. It should therefore
no longer be used.

2.7.3 VCI2_PrepareBoard and VCI2_PrepareBoardMsg
There are several different versions of the function VCI_PrepareBoard, which differ
in the following properties:
• Parameter transfer according to VCI V1 or conform with VCI V2.

The parameters for specification of the PC/CAN-interface must be known to
the user for the VCI V1 version and explicitly specified.
For the VCI V2 version, the parameters for specification of the PC/CAN-
interface are acquired via the XAT-registration functions (see Section 3).

• Use of a Call-back function or of a Message handler for the interrupt-
controlled processing of messages received.
(see Section 2.2 and Section 2.9.1).

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

23

Overview of the versions:

Function Use
VCI_PrepareBoard VCI V1 with Call-back function
VCI2_PrepareBoard VCI V2 with Call-back function
VCI_PrepareBoardMsg VCI V1 with Message handler
VCI2_PrepareBoardMsg VCI V2 with Message handler

Description:
The function requests the use of a PC/CAN-interface from the VCI. This involves
resetting the interface, Firmware download and start of the Firmware on
intelligent interface as well as registration of the Call-back functions. The CAN-
Controllers of the interface are set to Init-mode.
A Handle is returned to the PC/CAN-interface as a Return value, under which the
interface can be addressed. Handles are assigned as ascending numbers from
zero onwards (0, 1, 2, ...n).
The function must be executed before the interface is accessed. Interfaces already
logged in and thus occupied by a program cannot be logged in again. (If the
PC/CAN-interface is to be used by another application, the interface must first be
released by the VCI_CancelBoard.)
The Call-back handlers are also set by VCI2_PrepareBoard.

• Put string for screen issue with PrepareBoard.

• Exception handler for error handling.

• Receive interrupt handler or Message handler for Interrupt operation,
depending on version.

For this, see type definitions Call-back handler.

2.7.3.1 VCI_PrepareBoard
Note: This function is only still included for reasons of compatibility. It should no
longer be used. Please use the VCI2_PrepareBoard function instead.

2.7.3.2 VCI2_PrepareBoard
Function: int VCI2_PrepareBoard(VCI_BOARD_TYPE board_type,

UINT16 board_index, char* s_addinfo, UINT8 b_addLength,
VCI_t_PutS fp_puts, VCI_t_UsrIntHdlr fp_int_hdlr, VCI_t_UsrExHdlr
fp_exc_hdlr);

Description: see under 2.7.3
Parameter: board_type (in)

An integer value which marks the type of PC/CAN-interface used. Is

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

24

only used for checking consistency, as the board is clearly defined
by the parameter board index.
board_index (in)
In the parameter board_index a unique index number is
transferred, under which the PC/CAN-interface is registered with
the system. Valid index numbers can be defined by the application
via the registration functions (see Section 3).
s_addinfo (in)
Pointer to a buffer with maximum 256 bytes, which can accept
additional information. This additional information is administered
by the VCI_V2 and can be altered by the user in the hardware
selection dialogue.
If you no longer require this information, set this parameter to
zero.
At the moment this parameter is only used for special hardware.
Standard IXXAT PC/CAN-interfaces do not use this additional
information.
b_addLength (in)
Maximum length of the buffer for the additional information in
s_addinfo.
fp_puts (in)
Call-back function for issue of error and status messages for
Prepare
(NULL -> no status issue).
fp_int_hdlr (in)
Function pointer to the Routine for processing the messages
received.
(NULL -> no interrupt processing)
fp_exc_hdlr (in)
Function pointer to the Exception handler for processing of the
error which has occurred
(NULL -> no Exception handler)

Return value: >= 0 -> Board-Handle

< 0 -> VCI-Return codes.

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

25

2.7.3.3 VCI_PrepareBoardMsg
Note: This function is only still included for reasons of compatibility. It should no
longer be used. Please use the VCI2_PrepareBoardMsg function instead.

2.7.3.4 VCI2_PrepareBoardMsg
Function: int VCI2_PrepareBoardMsg (VCI_BOARD_TYPE board_type,

UINT16 board_index, char *s_addinfo, UINT8 b_addLength,
VCI_t_PutS fp_puts, UINT msg_rx_int_hdlr, VCI_t_UsrExcHdlr
fp_exc_hdlr, HWND apl_handle);

Description: see under 2.7.3
By means of this function, a Windows Message-Identifier
('msg_int_hdlr') and a Windows-Handle ('apl_handle') are
transferred instead of a Call-back-function for the Interrupt
processing of the VCI-DLL.
With the Windows Message, the following parameters are also
transferred to the application which is referenced by the Windows
Handle.
WPARAM count
(Number of CAN-messages transferred together with the
Message)
LPARAM Pointer to transferred data
1. BYTE QueRef
(indicates the queue which has triggered the interrupt)
2..n.BYTE CAN_OBJ
(the number given by ´count´ of the CAN_OBj of type
VCI_CAN_OBJ)
Example:

void Int_Msg_handler(UINT16 WPARAM,UINT32 LPARAM)
{
 // number of messages is in wparam
 UINT16 count = WPARAM;

 // get queuehandle
 UINT8 QueRef = *((UINT8*)LPARAM)

 // get pointer to first can message
 VCI_CAN OBJ* pObj =
 (VCI_CAN_OBJ*)(((UINT8*)LPARAM)+1);

 // copy messages from queue to destination
 VCI_CAN OBJ DestObj[20];
 memcpy(DestObj, pObj,
 count*sizeof(VCI_CAN OBJ));
}

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

26

Parameter: board_type (in)
an integer value which marks the type of the PC/CAN-interface
used. Is only used for checking consistency, since the board is
clearly defined by the board index parameter.
board_index (in)
In the parameter board_index, a unique index number is
transferred, under which the PC/CAN-interface is registered with
the system. Valid index numbers can be determined by the
application via the registration functions (see Section 3).
s_addinfo (in)
Pointer to a buffer with maximum 256 bytes which can accept
additional information. This additional information is administered
by the VCI_V2 and can be altered by the user in the hardware
selection dialogue.
If you do not require this information, set this parameter to zero.
At the moment this parameter is only used for special hardware.
Standard IXXAT PC/CAN-interfaces do not use this additional
information.
b_addLength (in)
Maximum length of the buffer for the additional information in
s_addinfo.
fp_puts (in)
Call-back function for the issue of error and status messages with
Prepare
(NULL -> no status issue).
msg_rx_int_hdlr (in)
ID of the Windows-message with which the reception of CAN-
messages is to be signaled to the application. Typically one user-
defined message (WM_USER + Offset) is determined and
transferred at this point.
fp_exc_hdlr (in)
Function pointer to the Exception handler for processing of the
error which has occurred
(NULL -> no Exception handler)
apl_handle (in)
Handle of the application to which the agreed Windows-message
is to be sent.

Return value: >= 0 -> Board-Handle
< 0 -> VCI-Return codes.

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

27

2.7.4 VCI_PrepareBoardVisBas
Unfortunately, the possibility to use Call-backs was again limited from
Microsoft Visual Basic 6.0. Therefore you should not use this function
under Visual Basic.

2.7.5 VCI_CancelBoard
Function: int VCI_CancelBoard(UINT16 board_hdl);
Description: Cancel board with VCI. This involves resetting the interface and

the CAN Controller as well as uninstalling the interrupts used. The
board handle thus becomes free again.

Parameter: board_hdl (in)
Handle of a board logged in previously.

Return value: VCI-Return codes.

2.7.6 VCI_TestBoard
Note: This function is only still included for reasons of compatibility. It should no
longer be used.

2.7.7 VCI_ReadBoardInfo
Function: int VCI_ReadBoardInfo(UINT16 board_hdl , VCI_BOARD_INFO*

p_info);
Description: Reading of the board information according to VCI_BOARD_INFO:

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

28

VCI_BOARD_INFO Description
~.hw_version Hardware version as HEX-value (e.g.: 0x0100

for V1.00)
~.fw_version Firmware version as HEX-value
~.dd_version Device-Driver version as HEX-value (only for PC

card)
~.sw_version Version number of PC-software as HEX-value
~.can_num Number of the CAN-Controllers supported by

the board
~.time_stamp_res Smallest possible Time Stamp resolution in

100nsec
~.timeout_res Smallest possible Timeout resolution for the

Receive queues
~.mem_pool_size Size of the memory pool for the creation of

queues and buffers (In the VCI_V2 this value is
set to 0, because it is not necessary any more)

~.irq_num Interrupt number for the communication with
the PC/CAN-interface

~.board_seg Set Board-Address/Segment/Port number
~.serial_num 16-character-string with the serial number of

the board
~str_hw_type Null-terminated string with the hardware type

The time information of the Time Stamp or Timeout resolution
enables correct setting of these times.
The function execution is optional and is only intended for
specification of the PC/CAN-interface.

Parameter: board_hdl (in)
Handle of the board logged in previously.
p_info (out)
Pointer to the info data.

Return value: VCI-Return codes.

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

29

2.7.8 VCI_ReadBoardStatus
Function: int VCI_ReadBoardStatus(UINT16 board_hdl, VCI_BRD_STS *

p_sts);
Description: Reading of the board information according to VCI_BRD_STS:

VCI_BRD_STS Description
~.sts Bit-coded information on board status

Dependent on the IXXAT PC/CAN-Interface you are working on
the reflectance of the given board status after calls to functions
like VCI_StartCan and VCI_ResetCan can be delayed up to 100ms.
During this time VCI_ReadBoardStatus may retrieve an obsolete
status. Therefore use this function for status visualization in your
application and not to verify the accomplishment of called VCI
control functions.

The individual bits of ~.sts have the following significance:
Bit 0: RxQueue Overrun; an overrun has occurred in a configured

Receive queue (queue was already full and a further
message could not be entered.) Further information is given
by VCI_ReadQueStatus and VCI_ReadQueObj.

Bit 4: CAN0-Running
Bit 5: CAN1-Running
Bit 6: CAN2-Running
Bit 7: CAN3-Running

Status bit for the CAN-Controllers of the boards (up to a
maximum of 4 CAN-Controllers per board are supported by
the VCI).

 CAN-Controllers which have been initialized started and
which are working correctly are set to ´1´. If the CAN-
Controller is in Bus-Off-status or Init-mode, or if a CAN-
Data-Overrun or Remote queue-Overrun occurred, the bit is
set to ´0´. The exact cause must then be determined via
VCI_ReadCanStatus.
An overview of the status of the CAN-Controller can thus be
obtained very quickly without having to read the CAN-
State.

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

30

VCI_BRD_STS Description

~.cpu_load Average CPU-load in % (0-100)

Parameter: board_hdl (in)
Handle of the board logged in previously.

 p_sts (out)
Pointer to the status to be read.

Return value: VCI-Return codes.

2.7.9 VCI_ResetBoard
Function: int VCI_ResetBoard(UINT16 board_hdl);
Description: Reset of the interface (software and hardware). The board thus

remains logged in, but the communication is interrupted. After
this the board and the CAN-Controllers are initialized again.

Parameter: board_hdl (in)
Handle of the boards already logged in.

Return value: VCI-Return codes.

2.8 Functions for CAN-Controller handling

2.8.1 VCI_ReadCanInfo
Function: int VCI_ReadCanInfo(UINT16 board_hdl, UINT8 can_num ,

VCI_CAN_INFO * p_info);
Description: Reading of the type of CAN-Controller and of the set parameters

according to VCI_CAN_INFO:

VCI_CAN_INFO Description
~.can_type type of CAN-Controller according to

VCI_CAN_TYPE
~.bt0 set value for the Bit Timing Register 0
~.bt1 set value for the Bit Timing Register 1
~.acc_code set value for the Acceptance-Code-Register
~.acc_mask set value for the Acceptance-Mask-Register

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

31

Parameter: board_hdl (in)
Handle of the board logged in previously.

 can_num (in)
number of CAN-Controllers (0..3).

 p_info (out)
Pointer to the info data.

Return value: VCI-Return codes.

2.8.2 VCI_ReadCanStatus
Function: int VCI_ReadCanStatus(UINT16 board_hdl, UINT8 can_num ,

VCI_CAN_STS * p_sts);
Description: Reading of the status information of the given CAN-Controllers

and of the assigned software according to VCI_CAN_STS:

VCI_CAN_STS Description
~.sts Bit-coded information to the CAN-Status (1 = true):

Dependent on the IXXAT PC/CAN-Interface you are working on
the reflectance of the given CAN status after calls to functions like
VCI_StartCan and VCI_ResetCan can be delayed up to 100ms.
During this time VCI_ReadCanStatus may retrieve an obsolete
status. Therefore use this function for status visualization in your
application and not to verify the accomplishment of called VCI
control functions.

The individual bits of ~.sts have the following significance:
Bit 0: not used,
Bit 1: not used,
Bit 2: RemoteQueueOverrun – An overrun has occurred in the

internal queue for the processing of the Remote requests,
Bit 3: CAN-TX-Pending – A send process is running. If this state

continues without data being sent again, the CAN-
Controller cannot deposit the data (line breakage or
similar)

Bit 4: CAN-Init-Mode - CAN is in Initialization status and can be
set to running mode via VCI_StartCan,

Bit 5: CAN-Data-Overrun – An overrun of CAN-messages has
occurred in the CAN-Controller (or in the software in
proximity to the CAN-Controller).

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

32

Bit 6: CAN-Error-Warning-Level - The CAN-Controller has
reached the Error-Warning level due to faults on the bus.

Bit 7: CAN-Bus-Off-Status, - The CAN-Controller has switched
itself off from the bus due to bus faults.

VCI_CAN_STS Description

~.bus_load Busload in percent. This feature is only
supported for active CAN interfaces. Stuff
bits are not considered here.

 The bits 4 - 7 are delivered directly from the CAN-Controllers. (For

further information on these bits, please read the data sheets on
the CAN-Controllers Phillips 82C200 or Intel 82527).
If an error has occurred in the CAN-Controller (bits 2,5 and 7), this
state can only be exited via the function VCI_ResetCan.

Parameter: board_hdl (in)
Handle of the board logged in previously.

 can_num (in)
Number of CAN-Controllers (0..n).

 p_sts (out)
Pointer to the status data.

Return value: VCI-Return codes.

2.8.3 VCI_InitCan
Function: int VCI_InitCan(UINT16 board_hdl, UINT8 can_num, UINT8 bt0,

UINT8 bt1, UINT8 mode);
Description: Initialization of the Timing-Register. The values correspond to

those of Philips SJA 1000. For other Controllers, the values are
converted accordingly. For this purpose, the given CAN-Controller
is set to the state of Init-mode and must then be re-started via
VCI_StartCan.

Parameter: board_hdl (in)
Handle of the board logged in previously.

 can_num (in)
number of CAN-Controllers (0..3).

 bt0 (in)
value for the Timing-Register 0.

 bt1 (in)
value for the Timing-Register 1.

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

33

Transmission
rate in kBit/s

bt0 bt1

1000 00h 14h
500 00h 1Ch
250 01h 1Ch
125 03h 1Ch
100 04h 1Ch
50 09h 1Ch
20 18h 1Ch
10 31h 1Ch

 mode (in)
 VCI_11B:
 Standard CAN frame format with 11Bit identifier.
 VCI_29B:
 Extended CAN frame format with 29Bit identifier.
 VCI_LOW_SPEED:
 Low speed bus connector (if provided by the hardware).
 VCI_TX_ECHO:
 Self reception.
 VCI_TX_PASSIV:
 Passive mode of CAN controller (“Listen only” mode).
 VCI_ERRFRM_DET:
 Error frames detection.

 Except of the VCI_11B and VCI_29B other settings can be

combined.
 Example for standard mode with self reception and error frame

detection:
 VCI_InitCan(BoardHdl, CAN_NUM, VCI_125KB, VCI_11B |

VCI_TX_ECHO | VCI_ERRFRM_DET);

Return value: VCI-Return codes.

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

34

2.8.4 VCI_SetAccMask
Function: int VCI_SetAccMask(UINT16 board_hdl, UINT8 can_num,

UINT32 acc_code, UINT32 acc_mask);
Description: Setting of the Acceptance-Mask-Register of the CAN-Controllers

for a global message-filtering in 11-bit- or 29-bit operation. (this
Controller function may be replaced by software). The filter works
via all identifier-bits. It is fully opened (0x0UL, 0x0UL) as long as
this function is not executed. For this purpose, the given CAN-
Controller is set to the Init-mode state and must then be re-
started via VCI_StartCan.

 With the variables acc_code and acc_mask, individual CAN-IDs or
whole ID-groups can be defined.

 Examples:

• Only the CAN-ID 100 is to be received:
acc_code = 100 and acc_mask = 0xffffffff
0xffffffff -> all Bits of acc_code are relevant

• The CAN-IDs 100-103 are to be received:
acc_code = 100 and acc_mask = 0xfffffffc
0xfffffffc -> all bits of acc_code are relevant except the lower
two (00,01,10,11).

Parameter: board_hdl (in)
Handle of the board logged in previously.

 can_num (in)
number of CAN-Controllers (0..3).

 acc_code (in)
value for the Acceptance-Code-Register

 acc_mask (in)
value for the Acceptance-Mask-Register
(0 - don't care; 1 - relevant)

Return value: VCI-Return codes.

2.8.5 VCI_ResetCan
Function: int VCI_ResetCan(UINT16 board_hdl, UINT8 can_num);
Description: Reset of the CAN-Controllers and thus stop of communication

via the given CAN-Controller. In addition, the status register of
the CAN-Controllers is deleted and the queues and buffers
allocated to this CAN-Controller are re-initialized via this
function.
The CAN-Controller does not lose its configuration, but can be
put back into operation via VCI_StartCan.

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

35

Parameter: board_hdl (in)
Handle of the board logged in previously.

 can_num (in)
number of CAN-Controllers (0..3).

Return value: VCI-Return codes.

2.8.6 VCI_StartCan
Function: int VCI_StartCan(UINT16 board_hdl, UINT8 can_num);
Description: Start of the given CAN-Controllers
Parameter: board_hdl (in)

Handle of the board logged in previously.
 can_num (in)

number of CAN-Controllers (0..3).
Return value: VCI-Return codes.

2.9 Functions for the Queue and Buffer Configuration

2.9.1 VCI_ConfigQueue
Function: UINT16 VCI_ConfigQueue(UINT16 board_hdl, UINT8

can_num, UINT8 que_type, UINT16 que_size, UINT16 int_limit,
UINT16 int_time, UINT16 ts_res, UINT16 * p_que_hdl);

Description: Creation of a Transmit or Receive queue. As a result, a handle is
returned to the queue under which the queue can be addressed.

 Then, in the case of a Receive queue, all required CAN-messages
are signaled with VCI_AssignRxQueObj.

 For Receive queues there are 3 different ways of processing
queue messages:

• Creation of a queue for polling operation via
VCI_ReadQueObj. For this, the parameters int_limit and
int_time are set to zero.

• Creation of a queue for the interrupt processing of alarm
messages. For this, int_limit is set to 1 (max. 13 messages).
The message or messages are transmitted directly to the
Interrupt-Callback handler (transmitted in
‘VCI2_PrepareBoard’) which is called when the number of
messages in the receive queue reaches or exceeds int_limit.
It’s also called if one or more messages are received but
int_time is expired and int_limit is not reached.

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

36

'VCI_ReadQueObj()' cannot be used here.
This operating mode guarantees very short reaction
times, but is not suitable for larger data rates due to
relatively low effectiveness. The messages must be
copied via the pointer cosigned to the Interrupt-
Callback handler.

• Creation of a queue with Event operation. The Interrupt
signal (Interrupt-Callback handler is called) can be used here
to trigger the corresponding task under a Multitasking
environment to poll the received message via
VCI_ReadQueObj (The Interrupt-Callback handler itself does
not provide the received message here).
An interrupt is signaled when the number of message in the
receive queue reaches or exceeds int_limit. It’s also called if
one or more messages are received but int_time is expired
and int_limit is not reached.
For configuring the receive queue with event operation the
int_limit has to be set to a value bigger than 13.

This operating mode is the most effective and is
therefore recommended for the reception of larger
amounts of data with higher data rates.

The Call-back handler is described in more detail in chapter
2.2.1.
The user decides whether to use the possibilities of Call-back-
handling or to do without and just transfer ‘VCI2_PrepareBoard’
to a NULL-Pointer instead of to a function pointer.
With the parameters for the time information, the resolution
supported by the interface must be observed.
The CAN-Controller, which is assigned to the queue, must be in
Init-mode for the configuration of the queues!

Parameter: board_hdl (in)
Handle of the board logged in previously.

 can_num (in)
CAN-number (0..3).

 que_type (in)
Queue type (VCI_TX_QUE, VCI_RX_QUE).

 que_size (in)
Size of the queue in CAN- messages (must be >= 20!)

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

37

 int_limit (in)
Number of CAN-messages after which an Interrupt is triggered.
0 = Do not trigger an Interrupt.
<=13 The messages received are passed up immediately
 with the Interrupt
>13 The messages received must be read with the aid
 of the function 'VCI_ReadQueObj()' .
For a transmit queue this parameter can be set to zero.

 int_time (in)
Time in ms after which a receive queue interrupt is triggered, if
'int_limit' is not reached. According to the size of 'int_limit', the
CAN- messages are transmitted directly with the Interrupt or
have to be polled. If for a receive queue int_time is set to zero
it’s internally set to 500ms to prevent consuming much of CPU
time.

 For configuration of a transmit queue this parameter is not
considered and therefore it can be set to zero.

 ts_res (in)
Required resolution in µs of the message-Time-Stamps for one
Receive queue. For configuration of a transmit queue this
parameter is not considered and therefore it can be set to zero.

 p_que_hdl (out)
Handle of the queue.

Return value: VCI-Return codes.

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

38

Example: Polling of a receive queue

VCI_CAN_OBJ sObj;
INT32 lRes;
UINT16 hRxQue ;

int main(int argc, char* argv[])
{
 ...
 lRes = VCI_ConfigQueue(hBrd
 , 0 // CAN 1
 , VCI_RX_QUE // receive queue
 , 100 // queue size = 100 can objects
 , 0 // no limit = polling mode
 , 0 // timeout not relevant
 , 100 // timestamp res. 100µsec
 , &hRxQue);
 if (VCI_OK == lRes)
 {
 ...
 while (!_kbhit())
 {
 lRes = VCI_ReadQueObj(hBrd, hRxQue, 1, &sObj);
 if (0 < lRes)
 {
 printf(“Id 0x%X received\n”, sObj.id);
 }
 }
 ...
 }
}

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

39

Example: Interrupt processing of a receive queue

INT32 lRes;
UINT16 hRxQue;

void VCI_CALLBACKATTR ReceiveCallback(UINT16 que_hdl
 , UINT16 count
 , VCI_CAN_OBJ FAR * p_obj)
{
 for (UINT16 i = 0; i < count; i++)
 {
 printf(“Id 0x%X received\n”, p_obj[i].id);
 }
}

int main(int argc, char* argv[])
{
 XAT_BoardCFG sConfig;
 ...
 INT32 hBrd = VCI2_PrepareBoard(sConfig.board_type
 , sConfig.board_no
 , sConfig.sz_CardAddString
 , strlen(sConfig.sz_CardAddString)
 , NULL
 , ReceiveCallback
 , NULL);
 if (0 <= hBrd)
 {
 ...
 lRes = VCI_ConfigQueue(hBrd
 , 0 // CAN 1
 , VCI_RX_QUE // receive queue
 , 100 // queue size = 100 can objects
 , 1 // interrupt mode
 , 100 // timeout 100msec
 , 100 // timestamp res. 100µsec
 , &hRxQue);
 if (VCI_OK == lRes)
 {
 ...
 }
 }
}

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

40

Example: Receive queue in event mode.
#define NUMOFOBJ 50
INT32 lRes;
UINT16 hRxQue;
HANDLE hRxEvent;

void VCI_CALLBACKATTR ReceiveCallback(UINT16 que_hdl
 , UINT16 count , VCI_CAN_OBJ FAR * p_obj)
{
 SetEvent(hRxEvent);
}

int main(int argc, char* argv[])
{
 XAT_BoardCFG sConfig;
 ...
 INT32 hBrd = VCI2_PrepareBoard(sConfig.board_type
 , sConfig.board_no
 , sConfig.sz_CardAddString
 , strlen(sConfig.sz_CardAddString)
 , NULL
 , ReceiveCallback
 , NULL);
 if (0 <= hBrd)
 {
 ...
 lRes = VCI_ConfigQueue(hBrd
 , 0 // CAN 1
 , VCI_RX_QUE // receive queue
 , 100 // queue size = 100 can objects
 , 14 // event mode
 , 100 // timeout 100msec
 , 100 // timestamp res. 100µsec
 , &hRxQue);
 if (VCI_OK == lRes)
 {
 DWORD dwWaitRes;
 VCI_CAN_OBJ asObj[NUMOFOBJ];
 INT32 lReadCount;
 ...
 while (!_kbhit())
 {
 dwWaitRes = WaitForSingleObject(hRxEvent, 1000);
 if (WAIT_OBJECT_0 == dwWaitRes)
 {
 do
 {
 lReadCount = VCI_ReadQueObj(hBrd, hRxQue, NUMOFOBJ, &asObj);
 for (INT32 i = 0; i<lReadCount; i++)
 {
 printf(“Id 0x%X received\n”, sObj[i].id);
 }
 } while(0 < lReadCount)
 }
} } } }

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

41

2.9.2 VCI_AssignRxQueObj
Function: int VCI_AssignRxQueObj(UINT16 board_hdl, UINT16 que_hdl,

UINT8 mode, UINT32 id, UINT32 mask);
Description: Assignment / blocking of messages to the given Receive queue.

Identifier groups are directly definable via the mask.
 Attention: In 29-bit-operation it is not possible to define an

unlimited number of identifiers. Depending on hardware,
different filter mechanisms are used. Therefore the number of
the definable filters is limited.

 The use of ‘id’ and ‘mask’ is similarly explained in
‘VCI_SetAccMask’.

 The CAN-Controller to be assigned to the queue must be in Init-
mode for the configuration of the queue!!

Parameter: board_hdl (in)
Handle of the boards logged in previously.

 que_hdl (in)
Queue-handle.

 mode (in)
Release/blocking of the message(s)
(VCI_ACCEPT, VCI_REJECT).

 id (in)
Identifier of the message(s).

 mask (in)
Mask for defining the relevant Identifier bits. (0 - don't care; 1 -
relevant)

Return value: VCI-Return codes.

2.9.3 VCI_ResetTimeStamp
Function: int VCI_ResetTimeStamp(UINT16 board_hdl);
Description: Reset of the timers for the Time-Stamps of the Receive queues.
Parameter: board_hdl (in)

Handle of the boards logged in previously.
Return value: VCI-Return codes.

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

42

2.9.4 VCI_ConfigBuffer
Function: int VCI_ConfigBuffer(UINT16 board_hdl, UINT8 can_num,

UINT8 type, UINT32 id, UINT16 * p_buf_hdl);
Description: Creation of a Receive or Remote buffer. Access to this buffer is

via the returned handle. Handles are assigned as ascending
numbers from zero onwards (0, 1, 2, ...n).

Parameter: board_hdl (in)
Handle of the boards logged in previously.

 can_num (in)
CAN-number (0..n).

 type (in)
Receive or Remote buffer
(VCI_RX_BUF, VCI_RMT_BUF).

 id (in)
Identifier.

 p_buf_hdl (out)
Handle to the buffer.

Return value: VCI-Return codes.

2.9.5 VCI_ReConfigBuffer
Function: int VCI_ReConfigBuffer(UINT16 board_hdl, UINT16 buf_hdl,

UINT8 type, UINT32 id);
Description: Alteration of the identifiers of a Receive or Remote buffer. Access

to this buffer is via the Handle.
Parameter: board_hdl (in)

Handle of the boards logged in previously.
 buf_hdl (in)

Buffer-Handle.
 type (in)

Receive or Remote buffer
(VCI_RX_BUF, VCI_RMT_BUF).

 id (in)
Identifier.

Return value: VCI-Return codes.

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

43

2.10 Receiving Messages

2.10.1 VCI_ReadQueStatus
Function: int VCI_ReadQueStatus(UINT16 board_hdl, UINT16 que_hdl);
Description: Reading of the status of the given queue.
Parameter: board_hdl (in)

Handle of the boards logged in previously.
 que_hdl (in)

Handle of the queue.
Return value: >0 Number of queue entries.

=0 Queue empty (VCI_QUE_EMPTY).
<0 VCI-Return codes.

2.10.2 VCI_ReadQueObj
Function: int VCI_ReadQueObj(UINT16 board_hdl, UINT16 que_hdl,

UINT16 count, VCI_CAN_OBJ * p_obj);
Description: Reads the first entry/entries of a Receive queue. The number of

the entries to be read is given via ‘count’. However, only as many
entries are read as are in the queue or are supported by the
interface per read process. This means that the queue must be
read until VCI_QUE_EMPTY is returned as Return value.
If Bit7 (0x80 = Queue-Overrun) of the status byte in the
message is set, no further message could be entered in the
Receive queue after this message as it is already full.

 This means that messages has been lost.
Parameter: board_hdl (in)

Handle of the boards logged in previously.
 que_hdl (in)

Handle of the queue.
 count (in)

Maximum number of messages to be read (max = 13)
 p_obj (out)

Pointer to the message(s) to be read.
Return value: >0 Number of the queue entries read.
 =0 Queue empty (VCI_QUE_EMPTY).

<0 VCI-Return codes.

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

44

2.10.3 VCI_ReadBufStatus
Function: int VCI_ReadBufStatus(UINT16 board_hdl, UINT16 buf_hdl);
Description: Reading of the buffer status without altering it. The buffer status

shows the number of Receive processes on this buffer since the
last Read process.

Parameter: board_hdl (in)
Handle of the boards logged in previously.

 buf_hdl (in)
Buffer-handle.

Return value: =0 VCI_OLD no new data received.
 >0 Number, how often the data were received after the

last Read process.
 <0 VCI-Return codes.

2.10.4 VCI_ReadBufData
Function: int VCI_ReadBufData(UINT16 board_hdl,

UINT16 buf_hdl, UINT8 * p_data, UINT8 * p_len);
Description: Reading of the buffer data and return of the buffer status. The

status (number of the Receive processes since the last reading) is
delivered as Return. If this value is added up, the absolute
number of Receive processes since program start is obtained.

Parameter: board_hdl (in)
Handle of the boards logged in previously.

 buf_hdl (in)
Buffer-Handle.

 p_data (out)
Pointer to the data to be read.

 p_len (out)
Pointer to the number of data bytes.

Return value: = 0 VCI_OLD no new data received.
>0 Number, how often the data were received after the last

Read process.
<0 VCI-Return codes.

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

45

2.11 Sending Messages

2.11.1 VCI_TransmitObj
Function: int VCI_TransmitObj(UINT16 board_hdl,

UINT16 que_hdl, UINT32 id, UINT8 len,
UINT8 * p_data);

Description: Sending of a CAN-message via the given Send queue. If
VCI_QUE_FULL is returned, the given Send queue is full at the
moment and the Send request must be repeated (later). If
VCI_TX_ERR is returned, the CAN-Controller is not able to send
messages.

 Possible Reasons are missing devices, missing bus terminators or
wrong baud rate. Please check your CAN connector and cabling.

 For invalid parameter values as an invalid identifier (>7FFh for
11-bit mode; >1FFFFFFFh for 29-bit mode) the return value is
VCI_PARA_ERR. The VCI exception callback gives a detailed error
description.

Parameter: board_hdl (in)
Handle of the board logged in previously.

 que_hdl (in)
Queue handle.

 id (in)
Identifier of the Send message.

 len (in)
Number of the data bytes.

 p_data (in)
Pointer to the Send data.

Return value: VCI-Return codes.

2.11.2 VCI_RequestObj
Function: int VCI_RequestObj(UINT16 board_hdl,

UINT16 que_hdl, UINT32 id, UINT8 len);
Description: Sending of a request message (Remote frame) via the given Send

queue. If VCI_QUE_FULL is returned, the given Send queue is full
at the moment and the Send request must be repeated (later). If
VCI_TX_ERR is returned, the CAN-Controller is not able to send
messages.

 Possible Reasons are missing devices, missing bus terminators or
wrong baud rate. Please check your CAN connector and cabling.

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

46

 For invalid parameter values as an invalid identifier (>7FFh for
11-bit mode; >1FFFFFFFh for 29-bit mode) the return value is
VCI_PARA_ERR. The VCI exception callback gives a detailed error
description.

 If the CAN controller does not support remote frames
VCI_RequestObj returns VCI_SUPP_ERR.

Parameter: board_hdl (in)
Handle of the board logged in previously.

 que_hdl (in)
Queue handle.

 id (in)
Identifier of the Send message.

 len (in)
Number of data bytes.

Return value: VCI-Return codes.

2.11.3 VCI_UpdateBufObj
Function: int VCI_UpdateBufObj(UINT16 board_hdl,

UINT16 buf_hdl, UINT8 len, UINT8 * p_data);
Description: Update of data in a Remote buffer, which can be requested via

the CAN-network by another CAN-Controller.
Parameter: board_hdl (in)

Handle of the board logged in previously.
 buf_hdl (in)

Buffer handle.
 len (in)

Number of the data bytes.
 p_data (in)

Pointer to the data.
Return value: VCI_OK, VCI_QUE_ERR, VCI_HWSW_ERR, VCI_SUPP_ERR,

VCI_PARA_ERR.

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

47

2.12 Data Types Used
For the exact specification of the data types used, please see File VCI.H. In the
following section, the most important structures are explained.

2.12.1 VCI-CAN-Object
Sending of CAN-messages via Transmit queues and reading of CAN-messages
from Receive queues is carried out via the data type VCI_CAN_OBJ:

VCI_CAN_OBJ Description
~.time_stamp Reception time stamp for Receive queue-messages. The resolution is

prescribed the function VCI_ConfigQueue. Please note that
independently of formatting of the time stamp after (2 ^ 32 *
Timestamp resolution) an overrun occurs (> 12 hours). The time
stamp can be reset via the function VCI_ResetTimeStamp.

~.id 11/29-bit-identifier of the CAN-message (always right-justified)
~.len Number of data bytes of the CAN-message(0-8 bytes)
~.rtr 1= Remote-Request (data request message; the

 following data bytes therefore have no significance
0 = Data frame (Data)

~.res Not used
~.a_data[8] 8-byte-array for the data bytes of the message
~.sts Status of the message:

0 = OK; 0x80 = Queue-Overrun (After this message no further
could be entered in the Receive queue -> data loss!)

2.12.2 VCI-Board Information
Reading of the board information occurs via the structure VCI_BOARD_INFO:

VCI_BOARD_INFO Description
~.hw_version Hardware version as HEX-value (z. B: 0x0100 for V1.00)
~.fw_version Firmware version as HEX-value
~.dd_version Device-Driver version as HEX-value (only for PCMCIA-cards)
~.sw_version Version number of the PC-software as HEX-value
~.can_num Number of CAN-Controllers supported by the board
~.time_stamp_res Smallest possible Time Stamp resolution in 100 nsec
~.timeout_res Smallest possible Timeout resolution for the Receive queues
~.mem_pool_size Size of the memory pools creating queues and buffers
~.irq_num Interrupt number for communication with the PC/CAN-interface

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

48

~.board_seg Set Board-Address/Segment/Port number
~.serial_num 16-character-string with the serial number of the board
~.str_hw_type Null-terminated string with the hardware type

2.12.3 VCI-Board-Status
Reading of the board status occurs via the structure VCI_BRD_STS:

VCI_BRD_STS Description
~.sts Bit-coded information on board status:

Bit 0: RxQueue Overrun; an overrun has occurred in a Receive
queue (queue was already full and a further message could not be
entered.) Further information via VCI_ReadQueStatus and
VCI_ReadQueObj.
Bit 4: CAN0-Running
Bit 5: CAN1-Running
Bit 6: CAN2-Running
Bit 7: CAN3-Running
Status-bit for the CAN-Controller of the board
(a maximum of 4 CAN-Controllers per board are supported).
CAN-Controllers which have been initialized started and which are
working correctly are set to ´1´. If the CAN-Controller is in Bus-
Off-status or Init-mode, or if a CAN-Data-Overrun or Remote-
Queue-Overrun occurred, the bit is set to ´0´. The exact cause
must then be determined via VCI_ReadCanStatus.
In this way an overview of the state of the CAN-Controller can be
obtained very quickly without having to read CAN-State.

~.cpu_load average CPU-load in % (0-100)

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Interface Description

49

2.12.4 VCI-CAN-Information
Reading of the CAN-information occurs via the structure VCI_CAN_INFO:

VCI_CAN_INFO Description
~.can_type Type of the CAN-Controllers according to VCI_CAN_TYPE
~.bt0 Set value for the Bit Timing Register 0
~.bt1 Set value for the Bit Timing Register 1
~.acc_code Set value for the Acceptance-Code-Register
~.acc_mask Set value for the Acceptance-Mask-Register

2.12.5 VCI-CAN-Status
Reading of the CAN-status occurs via the structure VCI_CAN_STS:

VCI_CAN_STS Description
~.sts Bit-coded information on the CAN-status (1 = true):

Bit 0: not used,
Bit 1: not used,
Bit 2: Remote queue overrun – An overrun has occurred in the

internal queue for the processing of the Remote requests,
Bit 3: CAN-TX-Pending – A send process is running. If this state

continues without data being sent again, the CAN-
Controller cannot deposit the data (missing device),

Bit 4: CAN-Init-Mode - CAN is in initialization state and can be set
to Running mode via VCI_StartCan,

Bit 5: CAN-Data-Overrun – An overrun of CAN-messages has
occurred in the CAN-Controller (or in the software in
proximity to the CAN- Controller),

Bit 6: CAN-Error-Warning-Level - The CAN-Controller has reached
the Error-Warning-level due to many faults on the bus

Bit 7: CAN-Bus-Off-Status, - The CAN-Controller has switched off
completely from the bus due to bus faults.

The bits 4 - 7 are delivered directly from the CAN-Controllers. (For
further information on these bits, please read the data sheets of
the CAN-Controllers Phillips 82C200 or Intel 82527).
If an error has occurred in the CAN-Controller (bits 2,5 and 7), this
state can only be exited via the function VCI_ResetCan.

~.bus_load Bus load in percent. This feature is only supported by active CAN
interfaces.

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Registration Functions (XATxxReg.DLL)

50

3 Registration Functions (XATxxReg.DLL)
The VCI_V2 introduced the possibility to register PC/CAN-interfaces which can be
addressed via the VCI, under a unique index number in the system.
The VCI_V2 now provides an interface with the XATxxReg.DLL (xx stands for
version number, e.g. 10) in order to access this registration information.
The interface to this DLL is contained in the Header-file XATxxReg.h with the
same name. For integration of the XATxxReg.DLL, the same notes apply as for the
VCI-DLL in Section 4.
In the following, only those functions of the XATxxReg.DLL are described which
are necessary for a VCI-application in order to access information on the PC/CAN-
interfaces registered in the system.
The functions provided cover the following areas:
• Listing (enumeration) of all registered PC/CAN-interfaces and the assigned

parameters
• Search for a certain PC/CAN-interface
• Call-up of a hardware-selection dialogue
• Reading of the configuration of a PC/CAN-interface
• Selection/querying of a system-wide default-PC/CAN-interface

3.1 Type Definitions of the Call-back Handler
The XATxxReg.DLL uses Call-back-mechanism in order to read out all available
information on registered PC/CAN-interfaces.

3.1.1 Call-back to list the registered PC/CAN-interfaces
The registered PC/CAN-interfaces are transferred to this function after call-up of
the function XAT_EnumHwEntry.

Type definition: typedef short (XATREG_CALLBACKATTR * ENUM_CALLBACK)

(int i_index, int hw_key, char * name, char * value, char *
valuehex, void* vp_context);

Parameter: i_index (in)
Type of entry.
• 0 -> Hardware entry
• 1 -> Hardware parameter

 hw_key (in)
Unique index number, under which the PC/CAN-interface is
registered with the system.

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Registration Functions (XATxxReg.DLL)

51

 name (in)
For Hardware parameter:
Name of the entry

 value (in)
For Hardware-parameter:
Value of the entry

 valuehex (in)
For Hardware-parameter:
Hex-value of the entry

 vp_context (in)
Void* to the context , which was transferred in the function
XAT_EnumHwEntry.

Return value: none

3.2 Function Definitions

3.2.1 XAT_SelectHardware
Function: int XATREG_CALLATTR XAT_SelectHardware

(HWND hwndOwner, XAT_BoardCFG* pConfig);
Description: Shows a dialogue for selection of the PC/CAN-interfaces. The

configuration selected by the user is deposited in a structure
indicated by the parameter pConfig.

Parameter: hwndOwner (in)
Window-Handle of the parent window of the dialogue.
Normally, the Handle of the main window of the application is
transmitted here.

 pConfig (in/out)
Pointer to a data structure in which the board configuration
selected by the user is written.

Return value: 0 -> User pressed CANCEL button
1 -> User pressed OK-Button
-1 -> Error (use GetLastError()-function to retrieve extended
 error info)

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Registration Functions (XATxxReg.DLL)

52

Example:

XAT_BoardCFG sConfig;
HRESULT hr;

hr = XAT_SelectHardware(hwndParent
 , &sConfig);
if (1 == hr)
{
 INT32 hBrd = VCI2_PrepareBoard(sConfig.board_type
 , sConfig.board_no
 , sConfig.sz_CardAddString
 , strlen(sConfig.sz_CardAddString)
 , ...);
 ...
}

3.2.2 XAT_GetConfig
Function: HRESULT XATREG_CALLATTR XAT_GetConfig

(DWORD dw_key, XAT_BoardCFG* pConfig);
Description: Reads the configuration of the PC/CAN-interface which is

registered with the system under the unique index number
dw_key. The configuration is deposited in the structure indicated
by the pointer pConfig.

Parameter: dw_key (in)
Unique index number under which the PC/CAN-interface is
registered with the system.

 pConfig (out)
Pointer to a data structure in which retrieves the board
configuration.

Return value: ERROR_SUCCESS –> success
HRESULT error code otherwise

Example:

XAT_BoardCFG sConfig;
hr = XAT_GetConfig(dwBrdKey // Unique board index that identifies
 // the board.
 , &sConfig);
if (ERROR_SUCCESS == hr)
{
 INT32 hBrd = VCI2_PrepareBoard(sConfig.board_type
 , sConfig.board_no
 , sConfig.sz_CardAddString
 , strlen(sConfig.sz_CardAddString)
 , ...);
 ...
}

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Registration Functions (XATxxReg.DLL)

53

3.2.3 XAT_EnumHWEntry
Function: HRESULT XATREG_CALLATTR XAT_EnumHwEntry

(ENUM_CALLBACK fp_callback, void * vp_context);
Description: Enumerates all registered IXXAT PC/CAN-interfaces. For each

entry the Call-back-function transferred in the parameter
fp_callback is called up.

Parameter: fp_callback (in)
Pointer to the Call-back-function which is called up for each
entry.

 vp_context (in)
Optional context which is passed to the Call-back-function.

Return value: ERROR_SUCCESS –> success
HRESULT error code otherwise

Example:

short EnumCallback (int i_index
 , int i_hw_key
 , char* name
 , char* value
 , char* valuehex
 , void* vp_context)
{
 // callback for hardware entry?
 if (0 == i_index)
 {
 // get hardware configuration
 XAT_BoardCFG sConfig;
 if (ERROR_SUCCESS == XAT_GetConfig(i_hw_key, &sConfig))
 {
 // using the attributes of sConfig you may open the board
 // via VCI2_PrepareBoard function
 }

 return 0;
}

int main(int argc, char* argv[])
{
 ...
 XAT_EnumHwEntry(EnumCallback, 0);
 ...
}

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Registration Functions (XATxxReg.DLL)

54

3.2.4 XAT_FindHWEntry
Function: HRESULT XATREG_CALLATTR XAT_FindHwEntry

(BYTE b_typ, DWORD * p_dw_key, int* p_i_boardtyp, char
ca_entryname[255], DWORD dw_arg);

Description: Search for certain registered PC/CAN-interface. Several search
options are supported which can be selected via parameter
b_typ.

Parameter: b_typ (in)
The Parameter b_typ decides on the type of search to be carried
out:

• XATREG_FIND_BOARD_AT_RELATIVE_POSITION
Search for a board (its unique index number) by the given board
type and the board type related index (e.g. search for the second
registered USB-to-CAN interface).

• XATREG_FIND_RELATIVE_BTYPE_POSITION
Search for the board type related index of a board by the given
unique board index.

• XATREG_FIND_ADDRESS
Search for a board by its given board address. This is reasonable
only for ISA cards.

• XATREG_FIND_ENTRY_WITH_VALUE
Search for a board by its given board type and a board
parameter / board parameter value combination (e.g. Search for
the tinCAN with IRQ 15). The supported board type specific
parameters are shown in the IXXAT Interfaces applet in the
Control Panel.
p_dw_key (in/out)
• XATREG_FIND_BOARD_AT_RELATIVE_POSITION:
(out) Retrieves the unique index of the found board.

• XATREG_FIND_RELATIVE_BTYPE_POSITION
(in) Unique index of the board which board type related index is
wanted.

• XATREG_FIND_ADDRESS
(out) Retrieves the unique index of the found board.

• XATREG_FIND_ENTRY_WITH_VALUE
(out) Retrieves the unique index of the found board.

 p_i_boardtyp (in/out)

• XATREG_FIND_BOARD_AT_RELATIVE_POSITION:
(in) Type of the board to look for.

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Registration Functions (XATxxReg.DLL)

55

• XATREG_FIND_RELATIVE_BTYPE_POSITION
(in) Type of the board to look for
(out) Retrieves the board type related index of the found board.

• XATREG_FIND_ADDRESS
(in) Type of the board to look for.

• XATREG_FIND_ENTRY_WITH_VALUE
(in) Type of the board to look for.

 ca_entryname (in)
 This parameter is used for XATREG_FIND_ENTRY_WITH_VALUE

and specifies the name of the parameter which value is
consigned by dw_arg.

 dw_arg (in)
• XATREG_FIND_BOARD_AT_RELATIVE_POSITION:
(in) Board type related index of the wanted board.
• XATREG_FIND_RELATIVE_BTYPE_POSITION
Parameter is not relevant here.
• XATREG_FIND_ADDRESS
(in) Address of the wanted board.
• XATREG_FIND_ENTRY_WITH_VALUE
(in) Value of the board parameter which name is specified by
ca_entryname.

Return value: ERROR_SUCCESS –> success
HRESULT error code otherwise

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Registration Functions (XATxxReg.DLL)

56

Example for XATREG_FIND_BOARD_AT_RELATIVE_POSITION:
Search for the second registered USB-to-CAN interface.

DWORD dwBrdKey;
DWORD dwBrdType = VCI_USB2CAN;
DWORD dwBrdTypeRelatedIndex = 1; // second USB-to-CAN wanted

HRESULT hr = XAT_FindHwEntry(XATREG_FIND_BOARD_AT_RELATIVE_POSITION
 , &dwBrdKey
 , &dwBrdType
 , NULL
 , dwBrdTypeRelatedIndex);
if (ERROR_SUCCESS == hr)
{
 // dwBrdKey holds the unique board index now which can be used to
 // open the found board.
 XAT_BoardCFG sConfig;
 hr = XAT_GetConfig(dwBrdKey
 , &sConfig);
 if (ERROR_SUCCESS == hr)
 {
 INT32 hBrd = VCI2_PrepareBoard(sConfig.board_type
 , sConfig.board_no)
 , ...);
 ...
 }
}

Example for XATREG_FIND_RELATIVE_BTYPE_POSITION:
Look for the index of the currently used USB-to-CAN interface.

DWORD dwBrdType = VCI_USB2CAN;
DWORD dwBrdKey = 4; // Unique machine specific board index
 // e.g. out of XAT_SelectHardware

HRESULT hr = XAT_FindHwEntry(XATREG_FIND_RELATIVE_BTYPE_POSITION
 , &dwBrdKey
 , &dwBrdType
 , NULL
 , 0);
if (ERROR_SUCCESS == hr)
{
 // dwBrdType now holds the board type related index
 printf("It's the %uth registered USB-to-CAN\n"
 , dwBrdType+1);
}

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Registration Functions (XATxxReg.DLL)

57

Example for XATREG_FIND_ADDRESS:
Search for the installed iPC-I 320 with address 0xD0000.

DWORD dwBrdKey;
DWORD dwBrdType = VCI_IPCI320;
DWORD dwBrdAddress = 0xD0000;

HRESULT hr = XAT_FindHwEntry(XATREG_FIND_ADDRESS
 , &dwBrdKey
 , &dwBrdType
 , NULL
 , dwBrdAddress);
if (ERROR_SUCCESS == hr)
{
 // dwBrdKey holds the unique board index now which can be used to
 // open the found board.
}

Example for XATREG_FIND_ENTRY_WITH_VALUE:
Search for the installed tinCAN with IRQ 15.

DWORD dwBrdKey;
DWORD dwBrdType = VCI_PCMCIA;
char caEntryName[255] = "IRQ";
DWORD dwEntryValue = 15;

HRESULT hr = XAT_FindHwEntry(XATREG_FIND_ENTRY_WITH_VALUE
 , &dwBrdKey
 , &dwBrdType
 , caEntryName
 , dwEntryValue);
if (ERROR_SUCCESS == hr)
{
 // dwBrdKey holds the unique board index now which can be used to
 // open the found board.
}

3.2.5 XAT_SetDefaultHwEntry
Function: HRESULT XATREG_CALLATTR XAT_SetDefaultHwEntry

(DWORD dw_key);
Description: Sets the default-hardware entry to the PC/CAN-interface with the

index number dw_key.
Parameter: dw_key (in/out)

index number of the PC/CAN-interface.
Return value: ERROR_SUCCESS –> success

HRESULT error code otherwise

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Registration Functions (XATxxReg.DLL)

58

3.2.6 XAT_GetDefaultHwEntry
Function: HRESULT XATREG_CALLATTR XAT_GetDefaultHwEntry

(DWORD * p_dw_key);
Description: Determines the default-hardware entry.
Parameter: p_dw_key (in/out)

Pointer to a DWORD in which the index number of the PC/CAN-
interface is deposited.

Return value: ERROR_SUCCESS –> success
HRESULT error code otherwise

Example:

DWORD dwBrdKey;
XAT_BoardCFG sConfig;
HRESULT hr;

hr = XAT_GetDefaultHwEntry(&dwBrdKey);
if (ERROR_SUCCESS == hr)
{
 hr = XAT_GetConfig(dwBrdKey
 , &sConfig);
 if (ERROR_SUCCESS == hr)
 {
 INT32 hBrd = VCI2_PrepareBoard(sConfig.board_type
 , sConfig.board_no
 , sConfig.sz_CardAddString
 , strlen(sConfig.sz_CardAddString)
 ...);
 ...
 }
}

3.2.7 XAT_BoardCFG
Reading of the information on registered PC/CAN-interfaces is done via the
structure XAT_BoardCFG:

XAT_BoardCFG Description
~.board_no Unique index number
~.board_type type of the PC/CAN-interface
~.sz_brd_name[255] Name
~.sz_manufacturer[50] Manufacturer
~.sz_brd_info[50]; additional information
~.sz_CardAddString[255]; Card-specific information

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Registration Functions (XATxxReg.DLL)

59

3.2.8 HRESULT error codes
The functions within XATxxReg.DLL are mainly based on the registry access
functions from Microsoft. Because of this they the error codes are returned
directly. You can use the Win32-API-function FormatMessage() to convert the
error code to readable text.

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Notes on Use of the VCI-DLLs

60

4 Notes on Use of the VCI-DLLs
The Virtual CAN Interface for Windows is implemented as a Dynamic Link Library
(DLL).

• The DLL is not integrated like a normal C-library but loaded at the run-time of
the application and connected with it dynamically; the functions of the DLL
are therefore located in their own compiled module and must be integrated
in a certain way; integration is explained in Section 3.1.

• The function VCI_Init() should not be used under Windows in normal
operation; however, for the development in an Interpreter environment, it
can be helpful to reset the VCI explicitly with VCI_Init(); however, this should
not apply to the release version of the application; there the
‘VCI_CancelBoard’ must be used. See also the description of VCI_Init().

4.1 Common Notes

The installation of the VCI_V2 comes with Header-Files and examples for the
following development systems:
• Visual C++ 6.0
• Borland C++ Builder 4
• Delphi 5

It is possible to develop applications on top of VCI_V2 with other development
systems. For this have a look at the documentation of your development system.

For statically linking you need an import library suitable for your system. Most
systems ship with little command-line tools to generate an import library from
the function signatures of a DLL. Is it not possible to generate the import library
you could in all cases load the VCI-DLL dynamically.

Users of script languages and Visualization-Software (e.g. Labview) should
determine if the software supports invocation of COM-Objects, and use the
VCIWrapper (see Chapter 0).

Refer to our web page http://www.ixxat.com for performance data of the
different types of IXXAT CAN-Interfaces.

4.2 Integration of the DLL in an Application
Integration of the DLL can occur in different ways.
• Implicit Import via import library
• Dynamic Import
The Header 'VCI2.H' contains the prototypes for the exportable functions.

http://www.ixxat.com/�

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Notes on Use of the VCI-DLLs

61

4.2.1 Implicit Import during Linking
The DLL can be integrated in a project file of the application by inserting the
Import-Library. The Import-Library has the same name as the DLL with the file
extension ".LIB". This contains the entries which the Linker uses to create a
"Relocation Table". During the run-time, the addresses of the functions of the DLL
are entered here. With this procedure, the library is loaded during the start of the
application. The installation contains libraries for Microsoft Visual C++ 5.0,
Microsoft Visual C++ 6.0 and Borland C++ Builder. Import-libraries can also be
created for other compilers by means of the Module-Definition-File (ending
".DEF") also contained in the installation. Please see the documentation of your
development environment for the procedure.

4.2.2 Dynamic Import during the Run-time
With the dynamic import, the DLL is not loaded at the start of the application but
only when it is actually needed. After this, the DLL can similarly be closed again
without ending the application at the same time. This import is done by hand in
the application itself.
For this, the Windows-API-functions
• LoadLibrary
• GetProcAdress
• FreeLibrary
Are used. For more information, please see the documentation of the Windows-
API. The following code fragment explains the procedure for dynamic loading:

HINSTANCE hLibrary:
FARPROC lpVCI_PREPAREBOARD:

hLibrary = LoadLibrary("VCI_11un6");
if (NULL != hLibrary)
{
 lpVCI_PREPAREBOARD = GetProcAddress(hLibrary, "VCI_PREPAREBOARD");
 if (lpVCI_PREPAREBOARD != (FARPROC) NULL)
 {
 *(lpVCI_PREPAREBOARD) (board_type
 , board_seg
 , irq_num
 , fp_puts
 , msg_int_hdlr
 , fp_exc_hdlr
 , apl_handle);
 ...
 }
 FreeLibrary(hLibrary);
}

Copyright IXXAT Automation GmbH VCI-V2 Programmers Manual, Version 2.9

Notes on Use of the VCI-DLLs

62

4.3 Notes for VisualBasic developers
In former times the VCI has been available as a C-API, with some extensions for
VisualBasic. VisualBasic has the ability to use functions within DLL’s but there are
some annoying traps:
• The VisualBasic debugger is not able to handle multithreading outside of

COM-objects. Because the VCI is using some internal threads the VisualBasic-
IDE could crash when you are within debug mode.

• Problems with the alignment of user defined data types could occur when
you are calling a DLL-function.

• There is only a limited support of callback functions within VisualBasic. Even
worse the callback support has been removed from Version 5.0 to Version 6.0
of VisualBasic.

All these Problems can be avoided by using a COM-component which
encapsulates access to the VCI-DLL. IXXAT Automation GmbH has already
implemented such a VCIWrapper component.
You could download the installation file of the VCIWrapper via IXXAT Web server
under http://www.ixxat.com. The installation includes a user manual along with a
simple VisualBasic example which demonstrates the usage of the VCIWrapper.

http://www.ixxat.com/�

	1 Introduction
	1.1 Areas of Application
	1.2 Notes on this Manual
	1.3 Installation of the VCI
	1.4 Functional Scope of the VCI
	1.5 Limitations
	1.6 Message Administration
	1.6.1 Receive buffers
	1.6.2 Receive queues
	1.6.3 Transmit queues
	1.6.4 Remote buffers
	1.6.5 Opening a PC-CAN Interface

	2 Interface Description
	2.1 Pre-defined Return Codes of the VCI
	2.2 Type Definitions of the Call-back Handler
	2.2.1 Receive-Interrupt-Handler
	2.2.2 Exception-Handlers
	2.2.3 Handler for String Output

	2.3 State diagram for Board Initialization
	2.4 Table of VCI functions
	2.5 Initialization of the VCI
	2.5.1 VCI_Init

	2.6 Functions for VCI Support Information
	2.6.1 VCI_Get_LibType
	2.6.2 VCI_GetBrdNameByType
	2.6.3 VCI_GetBrdTypeByName

	2.7 Functions for Board Initialization
	2.7.1 VCI_SearchBoard
	2.7.2 VCI_SetDownloadState
	2.7.3 VCI2_PrepareBoard and VCI2_PrepareBoardMsg
	2.7.3.1 VCI_PrepareBoard
	2.7.3.2 VCI2_PrepareBoard
	2.7.3.3 VCI_PrepareBoardMsg
	2.7.3.4 VCI2_PrepareBoardMsg

	2.7.4 VCI_PrepareBoardVisBas
	2.7.5 VCI_CancelBoard
	2.7.6 VCI_TestBoard
	2.7.7 VCI_ReadBoardInfo
	2.7.8 VCI_ReadBoardStatus
	2.7.9 VCI_ResetBoard

	2.8 Functions for CAN-Controller handling
	2.8.1 VCI_ReadCanInfo
	2.8.2 VCI_ReadCanStatus
	2.8.3 VCI_InitCan
	2.8.4 VCI_SetAccMask
	2.8.5 VCI_ResetCan
	2.8.6 VCI_StartCan

	2.9 Functions for the Queue and Buffer Configuration
	2.9.1 VCI_ConfigQueue
	2.9.2 VCI_AssignRxQueObj
	2.9.3 VCI_ResetTimeStamp
	2.9.4 VCI_ConfigBuffer
	2.9.5 VCI_ReConfigBuffer

	2.10 Receiving Messages
	2.10.1 VCI_ReadQueStatus
	2.10.2 VCI_ReadQueObj
	2.10.3 VCI_ReadBufStatus
	2.10.4 VCI_ReadBufData

	2.11 Sending Messages
	2.11.1 VCI_TransmitObj
	2.11.2 VCI_RequestObj
	2.11.3 VCI_UpdateBufObj

	2.12 Data Types Used
	2.12.1 VCI-CAN-Object
	2.12.2 VCI-Board Information
	2.12.3 VCI-Board-Status
	2.12.4 VCI-CAN-Information
	2.12.5 VCI-CAN-Status

	3 Registration Functions (XATxxReg.DLL)
	3.1 Type Definitions of the Call-back Handler
	3.1.1 Call-back to list the registered PC/CAN-interfaces

	3.2 Function Definitions
	3.2.1 XAT_SelectHardware
	3.2.2 XAT_GetConfig
	3.2.3 XAT_EnumHWEntry
	3.2.4 XAT_FindHWEntry
	3.2.5 XAT_SetDefaultHwEntry
	3.2.6 XAT_GetDefaultHwEntry
	3.2.7 XAT_BoardCFG
	3.2.8 HRESULT error codes

	4 Notes on Use of the VCI-DLLs
	4.1 Common Notes
	4.2 Integration of the DLL in an Application
	4.2.1 Implicit Import during Linking
	4.2.2 Dynamic Import during the Run-time

	4.3 Notes for VisualBasic developers

