[

NP NNDNNRNODNNDDNNDDND
POOWWOWWOWNERRERER

WN P

OO ORRRRRRRRRRRD

WN P

TROWWRNNNNE

A WN P

WN P

WN P

NRRRRRR

abrwiNE

68000 Assenbl er
by Paul MKee

User's Manual

Tabl e of Contents

Introduction ....... ... ... . .. i, 2
Source Code Format ....................... 3
Source Line Format....................... 3
Label Field............ ... ... ....... 3
Qperation Field........................ 3
Qperand Field.......................... 3
Comment Field.......................... 4
Symbol s. ... 4
EXpressions. ..... ..., 4
Qperands in Expressions................ 4
Decimal Numbers...................... 4
Hexadeci mal Numbers.................. 4
Binary Numbers....................... 5
Cctal Numbers........................ 5
ASCIl Constants...................... 5
Qperators in Expressions............... 5
Addr essi ng Mbde Specifications........... 6
Assenbly Details ........... ... ... .. ...... 7
Branch Instructions...................... 7
MOVEM I nstruction............. ... ....... 7
Qui ck Instructions (MOVEQ ADDQ SUBQ... 8
Assenbler Directives ..................... 9
ORG - Set Oigin.......... .. .. 9
Synbol Definition Directives............. 9
EQU - Equate Symbol .................... 9
SET - Set Synmbol....................... 9
REG - Register List Symbol............. 10
Data Storage Directives.................. 10
DC - Define Constant................... 10
DCB - Define Constant Block............ 11

DS - Define Storage.................... 12
END - End of Source File................. 13
INCLUDE - directive...................... 13
USage ... 14
Command Line......... ... ... 14
Listing File Format...................... 14
hject Code File Format.................. 15



1. Introduction

The program descri bed here, 68000 Assenbler, is a basic two-
pass assenbler for the 68000 and 68010 nicroprocessors. It
supports the conplete instruction set of both processors as well
as a nodest but capable set of assenbler directives. The program
produces formatted listing files as well as object code files in
S-record fornat.

The programwas witten in VAX-11 C by Paul MKee during the
fall senmester, 1986. The program shoul d be portable (with sone
changes) to any C | anguage inplenmentation that supports 32-bit
i ntegers.



2. Source Code For mat

2.1 Source Line Fornat

The input to the assenbler is a file containing instruc
tions, assenbler directives, and comments. Each line of the file
may be up to 256 characters long. It is reconmended, however,
that the source lines be no |longer that 80 characters, as this
will guarantee that the Iines of the listing file do not exceed
132 characters in length. The assenbler treats uppercase and
| owercase identically.

Each line of the source code consists of the foll ow ng
fields:

LABEL OPERATI ON OPERAND, OPERAND, ... COMMVENT
For exanpl e,
LOOP MOVE. L (A0) +, (A1) + Sanpl e source line

The fields may be separated by any conbi nati on of spaces and
tabs. Except for the comment field and quoted strings, there nust
be no spaces or tabs within a field.

2.1.1 Label Field

Legal | abels follow the rules for form ng synbol nanes
described in section 2.2. Labels nmay be distinguished in one of
two ways: (1) They may begin in colum 1, or (2) they may end in
a colon, which does not becone part of the |abel but sinmply
serves to mark its end. A line my consist of a |abel alone.
When a | abel is encountered in the source code, it is defined to
have a value equal to the current |ocation counter. This synbol
may be used el sewhere is the programto refer to that |ocation

2.1.2 Operation Field

The operation field specifies the instruction that is to be
assenbl ed or the assenbler directive that is to be perforned. A
size code (.B, .W .L, or .S) may be appended to the operation
code if allowed, to specify Byte, Wrd, Long, or Short opera
tions, respectively. The operation field nust not begin in the
colum 1, because the operation would be confused with a | abel

2.1.3 Operand Field

The operand field may or may not be required, dependi ng on
the instruction or directive being used. |If present, the field
consi sts of one or nmore comma-separated itens with no intervening
spaces or tabs. (There nmay be spaces or tabs within an item but
only within quoted strings.)



2.1.4 Coment Field

The conment field usually consists of everything on a source
line after the operand field. No special character is needed to
i ntroduce the commrent, and it may contain any characters desired.

A comment nmay al so be inserted in the source file in another
way: An asterisk ("*") at the beginning of the line or after the
| abel field will cause the rest of the I[ine to be ignored, i.e.
treated as a comment.

2.2 Synbols

Synbol s appear in the source code as | abels, constants, and
operands. The first character of a synbol nust be either a
letter (A-Z) or a period ("."). The renaining characters may be
letters, dollar signs ("$"), periods ("."), or underscores("_").
A synbol may be of any length, but only the first 8 characters
are significant. Renenber that capitalization is ignored, so
synbol s which are capitalized differently are really the sane.

2.3 Expressions

An expression nay be used in the source program anywhere a
nunber is called for. An expression consists of one or nore
operands (nunbers or synbols), conbined with unary or binary
operators. These conponents are described below. The val ue of
t he expression and internediate val ues are always computed to 32
bits, with no account being nmade of any overfl ow that may occur.
(Division by zero, however, will cause an error.)

2.3.1 Operands in Expressions
An operand in an expression is either a synmbol or one of the
foll owi ng sorts of constants.
2.3.1.1 Decimal Nunbers
A deci mal nunber consists of a sequence of decinmal digits
(0-9) of any length. A warning will be generated if the value of
t he nunber cannot be represented in 32 bits.
2.3.1.2 Hexadeci mal Nunbers

A hexadeci mal nunber consists of a dollar sign ("$") fol
| owed by a sequence of hexadecinal digits (0-9 and A-F) of any

length. A warning will be generated if the value of the nunber
cannot be represented in 32 bits.



2.3.1.3 Binary Nunbers

A binary nunber consists of a percent sign ("% ) foll owed by
a sequence of binary digits (0 and 1) of any length. A warning
will be generated if the nunber consists of nore that 32 digits.

2.3.1.4 Cctal Numbers

An octal nunber consists of a commercial at sign ("@)
foll owed by a sequence of octal digits (0-7) of any length. A
warning will be generated if the value of the nunmber cannot be
represented in 32 bits.

2.3.1.5 ASCII Constants

An ASCI| constant consists of one to four ASCI| characters
enclosed in single quote marks. If it is desired to put a single
guote mark inside an ASCI|I constant, then two consecutive single

guotes nay be used to represent one such character

If the ASCI|I constant consists of one character, then it

will be placed in the bottombyte of the 32 bit value; two
characters will be placed in the bottomword, with the first
character in the higher-order position. |If four characters are

used, then all four bytes will contain characters, with the first
in the highest-order location. However, if three characters are
used, then they will be placed in the three highest-order bytes
of the 32-bit value, with O in the low byte (this is to accom
nodate the high-byte-first addressing used on the 68000).

Note that ASCI| constants in expressions are different from
strings in DC directives, as the latter nay be of any I|ength.

2.3.2 Operators in Expressions

The operators allowed in expressions are shown in the fo
lowing table, in order of decreasing precedence. Wthin each
group, the operators are evaluated in left-to-right order (except
for group 2, which is evaluated right-to-left).

Operators in Expressions

1. () Parenthesized subexpressions
2. - Unary minus (two's conpl enent)
~ Bitwi se not (one's conpl ement)
3. << Shift left
>> Shift right
& Bitw se and
! Bi t wi se or
5. * Mul tiplication
/ I nt eger division
\ Modul us (x\y produces the remmi nder of x divided by y)
+ Addi tion
- Subt racti on



2.4 Addressing Mode Specifications

The 68000 and 68010 provi de 14 general

addr essi ng nodes.

The formats used to specify these nodes in assenbly | anguage

prograns are listed in the table bel ow.
are used to describe the operand fornmats:

The foll owi ng synbols

Dn = Data Regi ster

An = Address Register (SP may used instead of A7)

Xn = Data or Address register

.S = Index register size code (either .Wor .L, .Wwll
be assuned if omitted)

<ex8> = Expression that evaluates to an 8-bit value (nmay be
enpty, in which case O will be used)

<ex16> = Expression that evaluates to a 16-bit value (nmay be
enpty, in which case 0 will be used)

<ex> = Any expression

PC = Program Count er

Addr essi ng Mbde Specifications

Mode

Dat a Regi ster Direct

Addr ess Regi ster Direct

Addr ess Regi ster |Indirect

Address Register Indirect with Predecrenent
Address Register Indirect with Postincrenent
Address Register Indirect with D splacenent
Address Register Indirect with | ndex

Absol ute Short or Long (chosen by assenbl er)
Program Counter wi th Di spl acenent

Program Counter with Index

| medi ate

In addition to the general

addr essi ng nodes,

Assenbl er For mat

An

(An)

- (An)

(An) +
<ex16>( An)
<ex8>( An, Xn. s)
<ex>

<ex16>( PC)
<ex8>(PC, Xn. s)
#<ex>

the foll ow ng

regi ster names may be used as operands in certain instructions
(e.g., MOVEC or ECRI to CCR):

SR = Status Register

CCR = Condition Code Register

USP = User Stack Pointer

VBR = Vector Base Register (68010)

SFC = Source Function Code Register (68010)

DFC = Destination Function Code Regi ster

(68010)



3. Assenbly Details

3.1 Branch Instructions

The branch instructions (Bcc, BRA, and BSR) are unique in
that they can take a ".S" size code. This suffix directs the

assenbl er to assenble these as short branch instructions, i.e.
one-word instructions with a range to -128 to +127 bytes. |If the
".S" size code is used, and the destination is actually outside
this range, then the assenbler will print an error nessage. |If

the ".L" size code is used, the assenbler will use a | ong branch
which is a two-word instruction with a range of -32768 to +32767
bytes. |If neither size code is specified, then the assenbler
will use a short branch if possible (the branch destinati on nust
be known on the first pass to be within the short branch range);
otherwise it will use |long branch

3.2 MOVEM I nstruction

The MOVEM i nstruction, which is used for saving and restor
ing sets of registers, has one the follow ng two forns:

MOVEM <register |ist> <effective_address>
MOVEM <effective_address>, <register_|ist>

The register list may be an explicit register list of the form
described in Section 4.2.3. On the other hand, if a particular
set of registers is to be saved and restored repeatedly, the REG
directive (Section 4.2.3) can be used to define a register |ist
synbol that specifies the registers. For exanple, if the regis
ter list synbol WORKSET is defined as foll ows:

WORKSET REG AO- A4/ D1/ D2
then the following instructions will performthe sanme function

MOVEM L WORKSET, - ( SP)
MOVEM L AO- A4/ D1/ D2, - ( SP)

If a register list synbol is used, it nust be defined before it
appears in any MOVEM instructions.



3.3 Quick Instructions (MOVEQ ADDQ SUBQ

The MOVE, ADD, and SUB instructions have one-word "quick"
vari ations which can be used certain addressi ng nodes and operand
val ues. The assenbler will use these faster variations automat
ically when possible, or they may be specified explicitly by
witing the menonic as MOVEQ ADDQ or SUBQ

The MOVEQ i nstruction may be used for nmoving an i mmedi ate
value in the range -128 to +127 into a data register. The assenbler
will assenble a MOVE. L #<value> Dn as a MOVEQ if the value is
known on the first pass.

The ADDQ (SUBQ) instruction adds (subtracts) an i mediate
value from1l to 8 to (fron) any alterable destination. The
assenbler will use the quick formif the value is known on the
first pass to be in the range 1 to 8.



4, Assenbler Directives

4.1 ORG - Set Oigin

The assenbler naintains a 32-bit |ocation counter, whose
value is initially zero and which is increnented by sone anopunt
whenever an instruction is assenbled or a data storage directive
is carried out. The value of this location counter nay be set
with the ORG directive. This is typically done at the start of a
program and at appropriate places withinit. The format of the
ORG directive is

<l abel > ORG <expressi on>

where <expression> is an expression containing no forward refer
ences, i.e., its value nmust be known on the first pass at the
poi nt where the ORG directive appears. An error will result if
an attenpt is made to set the |location counter to an odd val ue;
in this case the location counter will be set to the specified
val ue plus one. The <label> is optional and, if present, the
specified synbol will be set to the new value of the location
counter.

4.2 Synbol Definition Directives
4.2.1 EQU - Equate Synbol
The equate directive is used to define synbols whose val ue
wﬁll not change within the program The format of this directive
s <l abel > EQU <expressi on>

where <expression> is an expression containing no forward refer

ences, i.e., its value nmust be known on the first pass at the
poi nt where the EQU directive appears. The <l abel > nust be speci
fied, since it tells what synmbol is being defined. |If <label>is
omtted, an error will result. |If an attenpt is nade to redefine

a synbol that was defined with EQJ, either as a | abel or using
any synmbol definition directive, an error nessage will be printed.

4.2.2 SET - Set Synbol

The SET directive is simlar in function and format to the
equate directive, with one inportant difference: synbols defined
usi ng SET nmay be redefined |l ater using another SET directive (but
not using a EQU or REG directive). The format of this directive
is

<l abel > SET <expressi on>



10
4.2.3 REG - Regi ster Range

Regi ster ranges consist of lists of registers separated by
slashes ("/"). Each register range may be either a single
register ("An" or "Dn") or a range of registers ("An-Am or
"Dn-Dnt'), which denotes all the registers between the two
registers listed (they nay be given in either order). For exam
ple, the following register list specifies that DO, D1, D2, D3,
D7, Al, A2, and A3 are to be saved (or restored):

D3- DO/ D7/ Al- A3

The regi sters and ranges may be specified in any order. The sane
format for register lists may be used with the MOVEM i nstruction
directly. In order to avoid confusion, it is best to avoid
specifying a range that includes both an address register and a
data register, although the assenmbler will not treat this as an
error.

4.3 Data Storage Directives
4.3.1 DC - Define Constant

The define constant directive is used to store strings and
lists of constants in nenory. The format of a DC directive is

<l abel > DC. <si ze> <itenp,<itenp,...

The | abel will be defined to equal the address of the start of
the list of data. The size code specifies that a |list of bytes
(.B), words (.W, or longwords (.L) is being defined; if omtted,
word size is used

Alist of items follows the directive; each item nmay be an
expression or a string. If an itemis an expression, the expres
sion is evaluated and stored as the size indicated, i.e., a byte,
a word, or a longword. An error is generated if the value wll
not fit as either a signed or unsigned value in the specified
size. If anitemis a string, delimted by single quotes, then
the string will be stored in successive entities of the size
specified; if words or | ongwords are bei ng generated, and the
string does not fit into an whol e nunber of words or | ongwords,
then the string will be padded with zeros at the end to nake a
whol e nunber of words or longwords. Strings and expressi ons nmay
internmixed in a single DC directive.

If words (DC.W or |ongwords (DC. L) are being generated,
then the start of the Iist of constants will be aligned on a word
boundary by increasing the |ocation counter by one, if necessary.
This is not perforned for DC. B directives, so that strings of
bytes may be contiguous in nmenory. |If an instruction follows a
DC.B directive, the assenbler will automatically adjust the |oca
tion counter (if necessary) to place the instruction on a word
boundary.



11

An exanple of a DC directive that defines a null-term nated
string:

TEXT DC. B ' DC Exanpl e', $0D, $0A, 0
This directive results in the followi ng data at |ocation TEXT:

44 43 20 45 78 61 6D 70 6C 65 OD OA 00 (hexadeci nal)

4,3.2 DCB - Define Constant Bl ock

The define constant block directive generates a bl ock of
bytes, words, or longwords that are all initialized to the sane
val ue by the assenbler. The fornmat of the directive is

<l abel > DCB. <si ze> <l ength>, <val ue>

The | abel will be defined to equal the address of the start of
the block. The size code specifies that a block of bytes (.B)
words (. W, or longwords (.L) is being set up; if omtted, word
size is used

The I ength argunment is an expression that tells the numnber
of bytes, words, or longwords that are to be in the block. This
val ue nust be known on the first pass at the point where the DCB
directive appears, and it nust be non-negative. The value argu
ment is an expression whose value is to be placed in each data
itemin the block; it needn't be known on the first pass. An
war ni ng nessage will be printed if the value will not fit (as a
signed or unsigned nunber) in the data size sel ected.



12

If word or longword size is selected, then the start of the
bl ock will be placed on a word boundary by increasing the |oca
tion counter by one, if necessary. |If an instruction follows a
DCB.B directive, the assenbler will automatically adjust the
| ocation counter (if necessary) to place the instruction on a
word boundary.

4.3.3 DS - Define Storage
The define storage directive generates an uninitialized

bl ock of bytes, words, or longwords. The format of the directive
is

<l abel > DS. <size> <l|ength>

The | abel will be defined to equal the address of the start of
the bl ock. The size code specifies that a block of bytes (.B)
words (. W, or longwords (.L) is being set up; if omtted, word
size is used

The I ength argunment is an expression that tells the numnber
of bytes, words, or longwords that are to be in the block. This
val ue nust be known on the first pass at the point where the DCB
directive appears, and it nust be non-negative. The effect of
the DS directive is basically to increase the value of the |l oca
tion counter by <length> tines one (if DS.B is used), two (if
DS. Wis used), or four (if DS.L is used)

If word or longword size is selected, then the start of the
bl ock will be placed on a word boundary by increasing the |oca
tion counter by one, if necessary. Thus, DS.WO0 can be used to
force the location counter to be aligned on a word boundary
wi t hout allocating any space. However, if an instruction foll ows
a DS.B directive, the assenbler will automatically adjust the
| ocation counter (if necessary) to align the instruction on a
word boundary.



13
4.4 END - End of Source File

The end directive is used to mark the end of the source
file. It is purely optional. The format is sinmply

END

The assenbler will ignore anything in the source file after the
END directive.

4.5 | NCLUDE directive

The include directive is used to make another file seem as
if it is a part of the source file. Wen the include directive is
found, processing stops on the source file and starts i mediately
on the file naned in the directive. This has the effect of making
it as if the contents of the included file had been contained in
the source file at the point of the include directive. Processing
continues on the include file until the end of file is reached.
Processing then resunes on the original file at the line inmediately
after the include directive. The syntax is:

| NCLUDE functi on.asm

Note that if the sanme |abel is defined both in the source file
and the include file an error will occur.



14

5. Usage

5.1 Command Line

The 68000 Assenbler is run by typing a conmand |ine of the
following form

68kasm <options> <fil enanme>

The options are a string of letters, preceded by a dash
whi ch alter the behavior of the assenbler. The followi ng option
letters are all owed:

Show al | the Constants produced by DC directives
Produce a Listing file

Produce No object code file

Produce | ong word absol ute addresses only

o s B ]

If these options are not specified, the defaults are to show only
one line of data froma DC directive, to produce no listing, and
to produce an object file.

The filenanme is the nane, including directory specifica
tions, of the file to be assenbled. No default file extension is
applied. The names of the listing and object code files, if
generated, are constructed by using the source file nane with an
extension of ".lis" (for the listing) or ".h68" (for the object
file); the output files are always placed in the user's default
directory.

The programwi || print "68000 Assenbl er by PGW when it
begins work. If any errors occur, the programw |l print "ERROR
inline X' or "WARNING in line X' (this information is al so
placed in the listing file). Upon conclusion, it will print the
nunber of errors encountered and warni ngs generated during the
assenbl y.

If there is an error in the command line, e.g., if no file
nane is specified, then the assenbler will print a brief usage
sunmary and abort.

5.2 Listing File Format

The assenbl er produces a listing file which shows the source
code al ongside the the object code produced by the assenbler. A
typical listing file line mght appear as follows (not to scale):

0000102E 22D8 200 LOOP MOVE.L (AQ)+ (Al)+  Sanple

The eight digit hexadeci mal nunber at the left is the assenbler's
| ocation counter; the generated instruction word, $22D8, is

pl aced at that address. The next nunber is the source file line
nunber, and the renainder of the line sinply repeats the source
line. Remenber that if the source lines are no |onger than 80
colums, then the listing file lines will not exceed 132 col ums.



15

If an error is encountered or a warning is generated for a
given source line, then in the listing that Iine will be foll owed
by a Iine that describes the error. At the end of the listing,
the programprints the total nunmber of errors and warni ngs.

There is only Iimted space to list the object code in this
format. There is sufficient space for the | ongest possible
instruction, but the DC directive poses a problem since it may
generate, e.g., dozens of |ongwords froma single source line.
The assenbler's -c comand |ine option controls the assenbler's
actions when the object code exceeds the space avail abl e on one
line. If -c is not specified, then the assenbler will print only
one listing line with an ellipsis ("...") at the end of the
object code field, indicating that some of the data produced by
the directive was onmtted fromthe listing. If -c is included on
the conmand |ine, then the assenbler will use as nmany source
lines as are needed to print all the data produced by the direc
tive. Each line after the first will contain only the |ocation
counter and the object code field (the source line is not re
peat ed) .

5.3 nject Code File Fornat

The 68000 Assenbl er produces an object code output file in
S-record fornmat. The object file name is the source file naneg,
with the extension changed to ".h68". The object file and the
listing file are always placed in the user's default directory.

The S-record format is designed to allow files containing
any data to be interchanged in text file format with checksum
error detection. The format of these files will not be described
here, but the follow ng technical information will be provided:
The first line of the object file is an SO (header) record and
the last Iine is an S9 (termi nation) record. The lines in be
tween are S1, S2, or S3 records, depending on the whether the
address of the first byte in a record requires 2, 3, or 4 bytes
to be represented. No record is |longer than 80 characters.



