
 68000 Assembler

 by Paul McKee

 User's Manual

 Table of Contents

 1. Introduction 2

 2. Source Code Format 3
 2.1 Source Line Format....................... 3
 2.1.1 Label Field............................ 3
 2.1.2 Operation Field........................ 3
 2.1.3 Operand Field.......................... 3
 2.1.4 Comment Field.......................... 4
 2.2 Symbols.................................. 4
 2.3 Expressions.............................. 4
 2.3.1 Operands in Expressions................ 4
 2.3.1.1 Decimal Numbers...................... 4
 2.3.1.2 Hexadecimal Numbers.................. 4
 2.3.1.3 Binary Numbers....................... 5
 2.3.1.4 Octal Numbers........................ 5
 2.3.1.5 ASCII Constants...................... 5
 2.3.2 Operators in Expressions............... 5
 2.4 Addressing Mode Specifications........... 6

 3. Assembly Details 7
 3.1 Branch Instructions...................... 7
 3.2 MOVEM Instruction........................ 7
 3.3 Quick Instructions (MOVEQ, ADDQ, SUBQ)... 8

 4. Assembler Directives 9
 4.1 ORG - Set Origin......................... 9
 4.2 Symbol Definition Directives............. 9
 4.2.1 EQU - Equate Symbol.................... 9
 4.2.2 SET - Set Symbol....................... 9
 4.2.3 REG - Register List Symbol............. 10
 4.3 Data Storage Directives.................. 10
 4.3.1 DC - Define Constant................... 10
 4.3.2 DCB - Define Constant Block............ 11
 4.3.3 DS - Define Storage.................... 12
 4.4 END - End of Source File................. 13
 4.5 INCLUDE - directive...................... 13
 5. Usage 14
 5.1 Command Line............................. 14
 5.2 Listing File Format...................... 14
 5.3 Object Code File Format.................. 15

 1

 2

 1. Introduction

 The program described here, 68000 Assembler, is a basic two-
 pass assembler for the 68000 and 68010 microprocessors. It
 supports the complete instruction set of both processors as well
 as a modest but capable set of assembler directives. The program
 produces formatted listing files as well as object code files in
 S-record format.

 The program was written in VAX-11 C by Paul McKee during the
 fall semester, 1986. The program should be portable (with some
 changes) to any C language implementation that supports 32-bit
 integers.

 3

 2. Source Code Format

 2.1 Source Line Format

 The input to the assembler is a file containing instruc
 tions, assembler directives, and comments. Each line of the file
 may be up to 256 characters long. It is recommended, however,
 that the source lines be no longer that 80 characters, as this
 will guarantee that the lines of the listing file do not exceed
 132 characters in length. The assembler treats uppercase and
 lowercase identically.

 Each line of the source code consists of the following
 fields:

 LABEL OPERATION OPERAND,OPERAND,... COMMENT

 For example,

 LOOP MOVE.L (A0)+,(A1)+ Sample source line

 The fields may be separated by any combination of spaces and
 tabs. Except for the comment field and quoted strings, there must
 be no spaces or tabs within a field.

 2.1.1 Label Field

 Legal labels follow the rules for forming symbol names
 described in section 2.2. Labels may be distinguished in one of
 two ways: (1) They may begin in column 1, or (2) they may end in
 a colon, which does not become part of the label but simply
 serves to mark its end. A line may consist of a label alone.
 When a label is encountered in the source code, it is defined to
 have a value equal to the current location counter. This symbol
 may be used elsewhere is the program to refer to that location.

 2.1.2 Operation Field

 The operation field specifies the instruction that is to be
 assembled or the assembler directive that is to be performed. A
 size code (.B, .W, .L, or .S) may be appended to the operation
 code if allowed, to specify Byte, Word, Long, or Short opera
 tions, respectively. The operation field must not begin in the
 column 1, because the operation would be confused with a label.

 2.1.3 Operand Field

 The operand field may or may not be required, depending on
 the instruction or directive being used. If present, the field
 consists of one or more comma-separated items with no intervening
 spaces or tabs. (There may be spaces or tabs within an item, but
 only within quoted strings.)

 4

 2.1.4 Comment Field

 The comment field usually consists of everything on a source
 line after the operand field. No special character is needed to
 introduce the comment, and it may contain any characters desired.

 A comment may also be inserted in the source file in another
 way: An asterisk ("*") at the beginning of the line or after the
 label field will cause the rest of the line to be ignored, i.e.,
 treated as a comment.

 2.2 Symbols

 Symbols appear in the source code as labels, constants, and
 operands. The first character of a symbol must be either a
 letter (A-Z) or a period ("."). The remaining characters may be
 letters, dollar signs ("$"), periods ("."), or underscores("_").
 A symbol may be of any length, but only the first 8 characters
 are significant. Remember that capitalization is ignored, so
 symbols which are capitalized differently are really the same.

 2.3 Expressions

 An expression may be used in the source program anywhere a
 number is called for. An expression consists of one or more
 operands (numbers or symbols), combined with unary or binary
 operators. These components are described below. The value of
 the expression and intermediate values are always computed to 32
 bits, with no account being made of any overflow that may occur.
 (Division by zero, however, will cause an error.)

 2.3.1 Operands in Expressions

 An operand in an expression is either a symbol or one of the
 following sorts of constants.

 2.3.1.1 Decimal Numbers

 A decimal number consists of a sequence of decimal digits
 (0-9) of any length. A warning will be generated if the value of
 the number cannot be represented in 32 bits.

 2.3.1.2 Hexadecimal Numbers

 A hexadecimal number consists of a dollar sign ("$") fol
 lowed by a sequence of hexadecimal digits (0-9 and A-F) of any

 length. A warning will be generated if the value of the number
 cannot be represented in 32 bits.

 5

 2.3.1.3 Binary Numbers

 A binary number consists of a percent sign ("%") followed by
 a sequence of binary digits (0 and 1) of any length. A warning
 will be generated if the number consists of more that 32 digits.

 2.3.1.4 Octal Numbers

 An octal number consists of a commercial at sign ("@")
 followed by a sequence of octal digits (0-7) of any length. A
 warning will be generated if the value of the number cannot be
 represented in 32 bits.

 2.3.1.5 ASCII Constants

 An ASCII constant consists of one to four ASCII characters
 enclosed in single quote marks. If it is desired to put a single
 quote mark inside an ASCII constant, then two consecutive single
 quotes may be used to represent one such character.

 If the ASCII constant consists of one character, then it
 will be placed in the bottom byte of the 32 bit value; two
 characters will be placed in the bottom word, with the first
 character in the higher-order position. If four characters are
 used, then all four bytes will contain characters, with the first
 in the highest-order location. However, if three characters are
 used, then they will be placed in the three highest-order bytes
 of the 32-bit value, with 0 in the low byte (this is to accom
 modate the high-byte-first addressing used on the 68000).

 Note that ASCII constants in expressions are different from
 strings in DC directives, as the latter may be of any length.

 2.3.2 Operators in Expressions

 The operators allowed in expressions are shown in the fol
 lowing table, in order of decreasing precedence. Within each
 group, the operators are evaluated in left-to-right order (except
 for group 2, which is evaluated right-to-left).

 Operators in Expressions

 1. () Parenthesized subexpressions
 2. - Unary minus (two's complement)
 ~ Bitwise not (one's complement)
 3. << Shift left
 >> Shift right
 4. & Bitwise and
 ! Bitwise or
 5. * Multiplication
 / Integer division
 \ Modulus (x\y produces the remainder of x divided by y)
 6. + Addition
 - Subtraction

 6

 2.4 Addressing Mode Specifications

 The 68000 and 68010 provide 14 general addressing modes.
 The formats used to specify these modes in assembly language
 programs are listed in the table below. The following symbols
 are used to describe the operand formats:

 Dn = Data Register
 An = Address Register (SP may used instead of A7)
 Xn = Data or Address register
 .s = Index register size code (either .W or .L, .W will
 be assumed if omitted)
 <ex8> = Expression that evaluates to an 8-bit value (may be
 empty, in which case 0 will be used)
 <ex16> = Expression that evaluates to a 16-bit value (may be
 empty, in which case 0 will be used)
 <ex> = Any expression
 PC = Program Counter

 Addressing Mode Specifications

 Mode Assembler Format
 --- ----------------
 Data Register Direct Dn
 Address Register Direct An
 Address Register Indirect (An)
 Address Register Indirect with Predecrement -(An)
 Address Register Indirect with Postincrement (An)+
 Address Register Indirect with Displacement <ex16>(An)
 Address Register Indirect with Index <ex8>(An,Xn.s)
 Absolute Short or Long (chosen by assembler) <ex>
 Program Counter with Displacement <ex16>(PC)
 Program Counter with Index <ex8>(PC,Xn.s)
 Immediate #<ex>

 In addition to the general addressing modes, the following
 register names may be used as operands in certain instructions
 (e.g., MOVEC or EORI to CCR):

 SR = Status Register
 CCR = Condition Code Register
 USP = User Stack Pointer
 VBR = Vector Base Register (68010)
 SFC = Source Function Code Register (68010)
 DFC = Destination Function Code Register (68010)

 7

 3. Assembly Details

 3.1 Branch Instructions

 The branch instructions (Bcc, BRA, and BSR) are unique in
 that they can take a ".S" size code. This suffix directs the
 assembler to assemble these as short branch instructions, i.e.,
 one-word instructions with a range to -128 to +127 bytes. If the
 ".S" size code is used, and the destination is actually outside
 this range, then the assembler will print an error message. If
 the ".L" size code is used, the assembler will use a long branch,
 which is a two-word instruction with a range of -32768 to +32767
 bytes. If neither size code is specified, then the assembler
 will use a short branch if possible (the branch destination must
 be known on the first pass to be within the short branch range);
 otherwise it will use long branch.

 3.2 MOVEM Instruction

 The MOVEM instruction, which is used for saving and restor
 ing sets of registers, has one the following two forms:

 MOVEM <register_list>,<effective_address>
 MOVEM <effective_address>,<register_list>

 The register list may be an explicit register list of the form
 described in Section 4.2.3. On the other hand, if a particular
 set of registers is to be saved and restored repeatedly, the REG
 directive (Section 4.2.3) can be used to define a register list
 symbol that specifies the registers. For example, if the regis
 ter list symbol WORKSET is defined as follows:

 WORKSET REG A0-A4/D1/D2

 then the following instructions will perform the same function:

 MOVEM.L WORKSET,-(SP)
 MOVEM.L A0-A4/D1/D2,-(SP)

 If a register list symbol is used, it must be defined before it
 appears in any MOVEM instructions.

 8

 3.3 Quick Instructions (MOVEQ, ADDQ, SUBQ)

 The MOVE, ADD, and SUB instructions have one-word "quick"
 variations which can be used certain addressing modes and operand
 values. The assembler will use these faster variations automat
 ically when possible, or they may be specified explicitly by
 writing the mnemonic as MOVEQ, ADDQ, or SUBQ.

 The MOVEQ instruction may be used for moving an immediate
 value in the range -128 to +127 into a data register. The assembler
 will assemble a MOVE.L #<value>,Dn as a MOVEQ if the value is
 known on the first pass.

 The ADDQ (SUBQ) instruction adds (subtracts) an immediate
 value from 1 to 8 to (from) any alterable destination. The
 assembler will use the quick form if the value is known on the
 first pass to be in the range 1 to 8.

 9

 4. Assembler Directives

 4.1 ORG - Set Origin

 The assembler maintains a 32-bit location counter, whose
 value is initially zero and which is incremented by some amount
 whenever an instruction is assembled or a data storage directive
 is carried out. The value of this location counter may be set
 with the ORG directive. This is typically done at the start of a
 program and at appropriate places within it. The format of the
 ORG directive is

 <label> ORG <expression>

 where <expression> is an expression containing no forward refer
 ences, i.e., its value must be known on the first pass at the
 point where the ORG directive appears. An error will result if
 an attempt is made to set the location counter to an odd value;
 in this case the location counter will be set to the specified
 value plus one. The <label> is optional and, if present, the
 specified symbol will be set to the new value of the location
 counter.

 4.2 Symbol Definition Directives

 4.2.1 EQU - Equate Symbol

 The equate directive is used to define symbols whose value
 will not change within the program. The format of this directive
 is
 <label> EQU <expression>

 where <expression> is an expression containing no forward refer
 ences, i.e., its value must be known on the first pass at the
 point where the EQU directive appears. The <label> must be speci
 fied, since it tells what symbol is being defined. If <label> is
 omitted, an error will result. If an attempt is made to redefine
 a symbol that was defined with EQU, either as a label or using
 any symbol definition directive, an error message will be printed.

 4.2.2 SET - Set Symbol

 The SET directive is similar in function and format to the
 equate directive, with one important difference: symbols defined
 using SET may be redefined later using another SET directive (but
 not using a EQU or REG directive). The format of this directive
 is

 <label> SET <expression>

 10

 4.2.3 REG - Register Range

 Register ranges consist of lists of registers separated by
 slashes ("/"). Each register range may be either a single
 register ("An" or "Dn") or a range of registers ("An-Am" or
 "Dn-Dm"), which denotes all the registers between the two
 registers listed (they may be given in either order). For exam
 ple, the following register list specifies that D0, D1, D2, D3,
 D7, A1, A2, and A3 are to be saved (or restored):

 D3-D0/D7/A1-A3

 The registers and ranges may be specified in any order. The same
 format for register lists may be used with the MOVEM instruction
 directly. In order to avoid confusion, it is best to avoid
 specifying a range that includes both an address register and a
 data register, although the assembler will not treat this as an
 error.

 4.3 Data Storage Directives

 4.3.1 DC - Define Constant

 The define constant directive is used to store strings and
 lists of constants in memory. The format of a DC directive is

 <label> DC.<size> <item>,<item>,...

 The label will be defined to equal the address of the start of
 the list of data. The size code specifies that a list of bytes
 (.B), words (.W), or longwords (.L) is being defined; if omitted,
 word size is used.

 A list of items follows the directive; each item may be an
 expression or a string. If an item is an expression, the expres
 sion is evaluated and stored as the size indicated, i.e., a byte,
 a word, or a longword. An error is generated if the value will
 not fit as either a signed or unsigned value in the specified
 size. If an item is a string, delimited by single quotes, then
 the string will be stored in successive entities of the size
 specified; if words or longwords are being generated, and the
 string does not fit into an whole number of words or longwords,
 then the string will be padded with zeros at the end to make a
 whole number of words or longwords. Strings and expressions may
 intermixed in a single DC directive.

 If words (DC.W) or longwords (DC.L) are being generated,
 then the start of the list of constants will be aligned on a word
 boundary by increasing the location counter by one, if necessary.
 This is not performed for DC.B directives, so that strings of
 bytes may be contiguous in memory. If an instruction follows a
 DC.B directive, the assembler will automatically adjust the loca
 tion counter (if necessary) to place the instruction on a word
 boundary.

 11

 An example of a DC directive that defines a null-terminated
 string:

 TEXT DC.B 'DC Example',$0D,$0A,0

 This directive results in the following data at location TEXT:

 44 43 20 45 78 61 6D 70 6C 65 0D 0A 00 (hexadecimal)

 4.3.2 DCB - Define Constant Block

 The define constant block directive generates a block of
 bytes, words, or longwords that are all initialized to the same
 value by the assembler. The format of the directive is

 <label> DCB.<size> <length>,<value>

 The label will be defined to equal the address of the start of
 the block. The size code specifies that a block of bytes (.B),
 words (.W), or longwords (.L) is being set up; if omitted, word
 size is used.

 The length argument is an expression that tells the number
 of bytes, words, or longwords that are to be in the block. This
 value must be known on the first pass at the point where the DCB
 directive appears, and it must be non-negative. The value argu
 ment is an expression whose value is to be placed in each data
 item in the block; it needn't be known on the first pass. An
 warning message will be printed if the value will not fit (as a
 signed or unsigned number) in the data size selected.

 12

 If word or longword size is selected, then the start of the
 block will be placed on a word boundary by increasing the loca
 tion counter by one, if necessary. If an instruction follows a
 DCB.B directive, the assembler will automatically adjust the
 location counter (if necessary) to place the instruction on a
 word boundary.

 4.3.3 DS - Define Storage

 The define storage directive generates an uninitialized

 block of bytes, words, or longwords. The format of the directive
 is

 <label> DS.<size> <length>

 The label will be defined to equal the address of the start of
 the block. The size code specifies that a block of bytes (.B),
 words (.W), or longwords (.L) is being set up; if omitted, word
 size is used.

 The length argument is an expression that tells the number
 of bytes, words, or longwords that are to be in the block. This
 value must be known on the first pass at the point where the DCB
 directive appears, and it must be non-negative. The effect of
 the DS directive is basically to increase the value of the loca
 tion counter by <length> times one (if DS.B is used), two (if
 DS.W is used), or four (if DS.L is used)

 If word or longword size is selected, then the start of the
 block will be placed on a word boundary by increasing the loca
 tion counter by one, if necessary. Thus, DS.W 0 can be used to
 force the location counter to be aligned on a word boundary
 without allocating any space. However, if an instruction follows
 a DS.B directive, the assembler will automatically adjust the
 location counter (if necessary) to align the instruction on a
 word boundary.

 13

 4.4 END - End of Source File

 The end directive is used to mark the end of the source
 file. It is purely optional. The format is simply

 END

 The assembler will ignore anything in the source file after the
 END directive.

 4.5 INCLUDE directive

 The include directive is used to make another file seem as
 if it is a part of the source file. When the include directive is
 found, processing stops on the source file and starts immediately
 on the file named in the directive. This has the effect of making
 it as if the contents of the included file had been contained in
 the source file at the point of the include directive. Processing
 continues on the include file until the end of file is reached.
 Processing then resumes on the original file at the line immediately
 after the include directive. The syntax is:

 INCLUDE function.asm

 Note that if the same label is defined both in the source file
 and the include file an error will occur.

 14

 5. Usage

 5.1 Command Line

 The 68000 Assembler is run by typing a command line of the
 following form:

 68kasm <options> <filename>

 The options are a string of letters, preceded by a dash,
 which alter the behavior of the assembler. The following option
 letters are allowed:

 c = Show all the Constants produced by DC directives
 l = Produce a Listing file
 n = Produce No object code file
 a = Produce long word absolute addresses only

 If these options are not specified, the defaults are to show only
 one line of data from a DC directive, to produce no listing, and
 to produce an object file.

 The filename is the name, including directory specifica
 tions, of the file to be assembled. No default file extension is
 applied. The names of the listing and object code files, if
 generated, are constructed by using the source file name with an
 extension of ".lis" (for the listing) or ".h68" (for the object
 file); the output files are always placed in the user's default
 directory.

 The program will print "68000 Assembler by PGM" when it
 begins work. If any errors occur, the program will print "ERROR
 in line X" or "WARNING in line X" (this information is also
 placed in the listing file). Upon conclusion, it will print the
 number of errors encountered and warnings generated during the
 assembly.

 If there is an error in the command line, e.g., if no file
 name is specified, then the assembler will print a brief usage
 summary and abort.

 5.2 Listing File Format

 The assembler produces a listing file which shows the source
 code alongside the the object code produced by the assembler. A
 typical listing file line might appear as follows (not to scale):

 0000102E 22D8 200 LOOP MOVE.L (A0)+,(A1)+ Sample

 The eight digit hexadecimal number at the left is the assembler's
 location counter; the generated instruction word, $22D8, is
 placed at that address. The next number is the source file line
 number, and the remainder of the line simply repeats the source
 line. Remember that if the source lines are no longer than 80
 columns, then the listing file lines will not exceed 132 columns.

 15

 If an error is encountered or a warning is generated for a
 given source line, then in the listing that line will be followed
 by a line that describes the error. At the end of the listing,
 the program prints the total number of errors and warnings.

 There is only limited space to list the object code in this
 format. There is sufficient space for the longest possible
 instruction, but the DC directive poses a problem, since it may
 generate, e.g., dozens of longwords from a single source line.
 The assembler's -c command line option controls the assembler's
 actions when the object code exceeds the space available on one
 line. If -c is not specified, then the assembler will print only
 one listing line with an ellipsis ("...") at the end of the
 object code field, indicating that some of the data produced by
 the directive was omitted from the listing. If -c is included on
 the command line, then the assembler will use as many source
 lines as are needed to print all the data produced by the direc
 tive. Each line after the first will contain only the location
 counter and the object code field (the source line is not re
 peated).

 5.3 Object Code File Format

 The 68000 Assembler produces an object code output file in
 S-record format. The object file name is the source file name,
 with the extension changed to ".h68". The object file and the
 listing file are always placed in the user's default directory.

 The S-record format is designed to allow files containing
 any data to be interchanged in text file format with checksum
 error detection. The format of these files will not be described
 here, but the following technical information will be provided:
 The first line of the object file is an S0 (header) record and
 the last line is an S9 (termination) record. The lines in be
 tween are S1, S2, or S3 records, depending on the whether the
 address of the first byte in a record requires 2, 3, or 4 bytes
 to be represented. No record is longer than 80 characters.

