
End-User License Agreement

Trademark Information

Getting Started with ADVance MS

Software Version 1.5_1

Release 2001.3

Copyright  Mentor Graphics Corporation 2001.
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original
recipient of this document may duplicate this document in whole or in part for internal business purposes
only, provided that this entire notice appears in all copies. In duplicating any part of this document, the
recipient agrees to make every reasonable effort to prevent the unauthorized use and distribution of the

proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed
entirely at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation

8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.

This is an unpublished work of Mentor Graphics Corporation.

Getting Started with ADVance MS, v1.5_1 3
 December 2001

Getting Started with
ADVance MS

Introduction
The purpose of this chapter is to help you install and become familiar with
ADVance MS, so you can start experimenting with VHDL-AMS. Towards the
end of the chapter there are guidelines on using both ADVance MS and ModelSim
together.

Installing ADVance MS
You must install the Cygnus GNUPro Tool Kit, the product software, and your
license before you can begin to use ADVance MS.

Installing the Cygnus GNUPro tool kit

You will need the Cygnus June 2000 Release CD, Mentor Part number 206710.
Follow the instructions in the CD booklet to mount the CD and then use the
information in the README file at the root to complete the installation. You are
making a “non-Falcon” installation, therefore you need to follow instructions 1 to
7, followed by the instructions under “Non-Falcon based Installation” which
begin approximately halfway through the README file.

Installing ADVance MS and ModelSim software

You will need the ADVance MS CD. Follow the instructions in the CD booklet to
mount the disk and start the installation program. Select the appropriate
architecture (for example, Sun OS 5.6) and install “ALL” software. Select the
“platform independent” item and install the “documentation.”

Getting Started with ADVance MS, v1.5_14

Running your first VHDL-AMS design

 December 2001

Section 5 of the Installation Guide (supplied both as a PostScript file at the root of
the CD, and as a PDF file) describes how to use the licensing system supplied with
ADVance MS.

The installation procedure provides the option of performing a basic installation
of the licensing system. The installation procedure will optionally modify a user’s
.cshrc or .profile file to add initialization items for ADVance MS.

After installation is complete, run a “systest” by typing the following command:
/bin/sh $anacad/adms/$admsver/examples/test.adms

This will run a test to verify that the software has been installed correctly.

Running your first VHDL-AMS design on
ADVance MS

User initialization sets the environment variable anacad to point to the root of the
ADVance MS installation and sources the $anacad/com/init_anacad file. In
addition, be sure to have access to the Cygnus gcc executables with your path
environment variable.

Using ADVance MS
The first two examples in this chapter contain Pure VHDL-AMS and Mixed
VHDL-AMS—Spice descriptions. This follows the ADC12 design, which is
provided as an example with the product.

• Copy the sample model directory to your default directory:
$ cp $anacad/adms/$admsver/examples/adc12/* .

Note

Please note that the installation of ModelSim is embedded within
ADVance MS. This is transparent to the user.

Using ADVance MS

Getting Started with ADVance MS, v1.5_1 5
 December 2001

When you look at the description, you will see that the files listed below contain
the following design units:

• adc12-ms.vhd (pure digital description)

o entity multi_clock

o architecture multi_clock(modelsim)

o entity dlatch

o architecture dlatch(modelsim)

o entity sar

o architecture sar(modelsim).

• adc12-adms.vhd (contains mixed descriptions)

o architecture adc12(structural)

o architecture test(adc12test).

• adc12-all-adms.vhd (contains digital, analog, and mixed descriptions)

o architecture multi_clock(adms)

o architecture dlatch(adms)

o architecture sar(adms)

o entity dac

o architecture dac(behavioral)

o entity comp

o architecture comp(behavioral)

o entity dtoa

Getting Started with ADVance MS, v1.5_16

Using ADVance MS

 December 2001

o architecture dtoa(behavioral)

o entity d2a

o architecture d2a(structural)

o entity adc12.

Example 1—Pure VHDL-AMS description

• Before you can compile your design, you must create a library to store the
compilation results. Use “valib” on page 8-16 to create a new library.
Create the working library in your current default directory from the Unix
command line:

$ valib ADC12

• You will receive progress messages as the various steps in creating the
library are executed. The result will be a directory ADC12 in your default
directory. If you get messages indicating that valib “can’t find” various
items, it is probably because you have not run the ADVance MS set up
script. In subsequent sessions you will need to execute the following
command to restore the working library definition:

$ vasetlib ADC12

Refer to “Using Design Libraries” on page 3-1, for additional information
on working with libraries.

• Compile the model from the Unix command line:
$ vacom adc12-ms.vhd
$ vacom adc12-all-adms.vhd
$ vacom adc12-adms.vhd

The ADVance MS compiler compiles one or more VHDL-AMS design
units with a single invocation of “vacom” on page 8-2. The design units are
compiled in the order that they appear on the command line. For ADVance
MS, the order of compilation is important—you must compile any entities
or configurations before an architecture that references them.

Using ADVance MS

Getting Started with ADVance MS, v1.5_1 7
 December 2001

You can choose to use either batch or interactive simulation. Use the
command below for a batch simulation, using Xelga to view the results
(.dou and .cou files) at the end of the simulation:

$ vasim -c -cmd adc12test.cmd TEST ADC12TEST -do adc12test.do

Interactive simulation

• After compiling the design units, you can proceed to simulate your designs
with vasim, the MGC ADVance MS simulator. Start the simulator:

$ vasim

Refer to the ADVance MS Command Reference for more information on
the “vasim” on page 8-26.

• Bring the Load Design window to the front. Select architecture design unit
ADC12TEST under TEST, select the adc12test.cmd file in the “command
file” frame and click Load. The appropriate text command will be echoed
to the main window (on the upper left of the screen) and you will see a
series of progress messages ending with Load done. In general, each menu
command will be echoed to the main window in text form. Refer to
“Simulation startup” on page 9-53 for further details on the Load Design
window.

• In the Main window select View � All. Six additional windows will
appear. Refer to the “ADVance MS Main window” on page 9-7 for further
details on the Main window.

• The model is a twelve bit, successive approximation A/D converter. Select
instance u1:adc12(structural) in the Structure window to see the
components. In data-flow order they are: one-bit DAC (dac), comparator
(comp), D-latch (dlatch), and successive approximation register (sar). The
output of sar is fed back to the input of the dac. The sar and dlatch are
clocked by non-overlapping clocks generated by multi_clock.

dac comp dlatch sar

Tvbg Tvin clk2 comset clk1

eoc

databoutcomp_dTvoutq

Getting Started with ADVance MS, v1.5_18

Using ADVance MS

 December 2001

Refer to the Structure window for further details.

• In the Nets window, hold down the control key and select the following
nets: clk1, clk2, comset, eoc, q, tvin, and tvout. (Note this can be executed
only if you previously selected 'u1' instance in the Structure window as in
the step above.) clk1 is the sar clock, clk2 is the dlatch clock, comset is the
sar enable line, eoc is the sar conversion complete output signal, q is the
digital output, tvin is the analog input and tvout is the DAC output that
feeds the comparator. Refer to the “Nets (Signals) window” on page 9-18
for further details.

• In the Nets window select View � Wave � Selected Net.

• In the main window select Run � Run-All. Simulation progress messages
appear in the main window. At the end of the run, the Wave (Xelga)
window appears with the selected nets displayed. Refer to the “Wave
window” on page 9-45 for further details.

• Rescale the display for easy viewing with View � Zoom � Mouse.
Expand the Xelga window by dragging a rectangle over the area to be
examined. For further information on using Xelga please refer to the Xelga
User’s Manual supplied.

Example 2—Mixed VHDL-AMS and SPICE description,
top VHDL-AMS

In addition to the files already used, the file below is available containing the
following design units:

• adc12-eldo.vhd (contains analog and mixed descriptions)

o architecture adc12(structural_mixed_eldo)

o architecture test(adc12test_mixed_eldo).

• You must first create a library. Use valib to create the library in the current
directory from the Unix command line:

$ valib ADC12_ELDO

Using ADVance MS

Getting Started with ADVance MS, v1.5_1 9
 December 2001

• Define this library as the working library using the vasetlib command:
$ vasetlib ADC12_ELDO

• Compile the model from the Unix command line:
$ vacom adc12-ms.vhd
$ vacom adc12-all-adms.vhd
$ vacom adc12-eldo.vhd

You can choose between using batch and interactive simulation. Use the
command below for a batch simulation, using Xelga to view the results
(.dou and .cou files) at the end of the simulation:

$ vasim -c -cmd adc12test_mixed_eldo.cmd TEST
 ADC12TEST_MIXED_ELDO -do adc12test.do

Interactive simulation

• Now, select again the File � Load New Design menu, select architecture
design unit ADC12TEST_MIXED_ELDO under TEST, select the
adc12test_mixed_eldo.cmd file in the “command file” frame and click
Load. This new design is as the previous one, except that the dac
component has been replaced with the equivalent SPICE subcircuit. In this
version, the voltage reference is defined locally to the model.

• Select the same nets in the Nets window, as in the previous example, plot
them, and run the simulation as before. The result should match the
previous one, with some additional effects introduced by the dac
component.

• Try a third design with the File � Load New Design menu: select the Eldo
radio button in the Top Design line, then select adc12_tr.cir and click
Load. This design is the pure SPICE equivalent of the ADC12.

• Select the dac_out net for plotting, and run the simulation. The simulation
is purely electrical, and so will take a bit longer to run.

i Refer to “Using Design Libraries” on page 3-1, for additional
information on working with libraries.

Getting Started with ADVance MS, v1.5_110

Using ADVance MS and ModelSim

 December 2001

• From the Xelga window, open the control panel, and overlap the three
simulation results. This can be done by hand, or by selecting the “page
composition” file adc12.pag, which is included in the examples
subdirectory.

• The three simulations above can be done from the command line by
executing in the Unix shell all the commands contained in the file
adc12_run, which illustrates how the batch mode can be performed.

• Try a small modification. Exit ADVance MS (Main � File � Quit). Edit
the behavioral test bench in adc12-adms.vhd to change the reference
voltage (Vvbg) to 10.0 and the voltage to be converted (Vvin) to 0.666666.
Recompile the modified model, restart ADVance MS and rerun the
simulation.

Using ADVance MS and ModelSim
The following examples in this chapter contain mixed descriptions (VHDL-AMS
and ModelSim). In addition to the files already used, the following files are
available containing the following design units:

• adc12-adms-ms.vhd (contains digital, analog, and mixed descriptions)

o architecture adc12(structural_mixed_ms)

o architecture test(adc12test_mixed_ms).

The top design units are:

• test(adc12test), all of the description is simulated in VHDL-AMS from
ADVance MS

• test(adc12test_mixed_ms), one part of the description is simulated in
VHDL-AMS from ADVance MS, and the multi_clock and the dlatch are
simulated in ModelSim.

Using ADVance MS and ModelSim

Getting Started with ADVance MS, v1.5_1 11
 December 2001

Example 3—Mixed VHDL-AMS and ModelSim
description, top VHDL-AMS, using import_ms

The simulation of test(adc12test_mixed_ms) can be achieved in the following
way.

• You must first create a library. Use valib to create the library in the current
directory from the Unix command line:

$ valib ADC12_MS

This creates an ADVance MS library called ADC12_MS in the current
directory. It also creates a ModelSim library (ADC12_MS/MS) within this
library. A mapping (ADC12_MS) is automatically created both for
ADVance MS and for ModelSim. Thus, the .ini files are updated as follows:

adms.ini:
...
ADC12_MS = ADC12_MS

modelsim.ini:
...
ADC12_MS = ADC12_MS/MS

• Define this library as the working library using the vasetlib command:
$ vasetlib ADC12_MS

The .ini files are updated as follows:

adms.ini:
...
ADC12_MS = ADC12_MS
work = ADC12_MS

modelsim.ini:
...
ADC12_MS = ADC12_MS/MS
work = ADC12_MS/MS

• Compile, using the vcom command, the file: adc12-ms.vhd for ModelSim;
Import from ModelSim to ADVance MS the following design units

Getting Started with ADVance MS, v1.5_112

Using ADVance MS and ModelSim

 December 2001

"multi_clock(modelsim) dlatch(modelsim) sar(modelsim)"; Compile the
files: adc12-all-adms.vhd and adc12-adms-ms.vhd only for ADVance MS,
using the vacom command:

$ vcom adc12-ms.vhd
$ import_ms -c -vhdl "multi_clock(modelsim)
dlatch(modelsim) sar(modelsim)"
$ vacom adc12-all-adms.vhd
$ vacom adc12-adms-ms.vhd

• Do the simulation (batch mode):
$ vasim -c -cmd adc12test_mixed_ms.cmd TEST
ADC12TEST_MIXED_MS -do adc12test-adms-ms.do

This example demonstrates the main flow when all the compilations are done
from ADVance MS.

Example 4—Mixed VHDL-AMS and ModelSim
description, top VHDL-AMS

It is possible to simulate the test(adc12test_mixed_ms) in a different way to the
previous example.

To do this, you must build an extra (dummy) file called adc12-ms-fk.vhd to be
compiled by ADVance MS to say that the corresponding design units will be
simulated by ModelSim. This contains the following design units:

• adc12-ms-fk.vhd (contains digital descriptions)

o entity multi_clock as it is in adc12-ms.vhd

o architecture multi_clock(modelsim) empty architecture

o entity dlatch as it is in adc12-ms.vhd

o architecture dlatch(modelsim) empty architecture

o entity sar as it is in adc12-ms.vhd

o architecture sar(modelsim) empty architecture.

Using ADVance MS and ModelSim

Getting Started with ADVance MS, v1.5_1 13
 December 2001

The procedure is as follows:

• You must first create a library. Use valib to create the library in the current
directory from the Unix command line:

$ valib ADC12_LINK

This creates an ADVance MS library called ADC12_LINK in the current
directory. It also creates a ModelSim library (ADC12_LINK/MS) within this
library. A mapping (ADC12_LINK) is automatically created both for
ADVance MS and for ModelSim. Thus, the .ini files are updated as follows
(supposing that this is done at the same level as in the previous example):

adms.ini:
...
ADC12_MS = ADC12_MS
work = ADC12_MS
ADC12_LINK = ADC12_LINK

modelsim.ini:
...
ADC12_MS = ADC12_MS/MS
work = ADC12_MS/MS
ADC12_LINK = ADC12_LINK/MS

• Define this library as the working library using the vasetlib command:
$ vasetlib ADC12_LINK

The .ini files are updated as follows:

adms.ini:
...
ADC12_MS = ADC12_MS
work = ADC12_LINK
ADC12_LINK = ADC12_LINK

modelsim.ini:
...
ADC12_MS = ADC12_MS/MS
work = ADC12_LINK/MS
ADC12_LINK = ADC12_LINK/MS

Getting Started with ADVance MS, v1.5_114

Using ADVance MS and ModelSim

 December 2001

• Compile the file: adc12-ms.vhd for ModelSim; Import from ModelSim to
ADVance MS the following design units "multi_clock(modelsim)
dlatch(modelsim) sar(modelsim)"; Compile the files : adc12-all-ms.vhd and
adc12-adms.vhd for ADVance MS:

$ vcom adc12-ms.vhd
$ import_ms -c -vhdl "multi_clock(modelsim)
dlatch(modelsim) sar(modelsim)"
$ vacom adc12-all-adms.vhd
$ vacom adc12-adms.vhd
$ vacom adc12-adms-ms.vhd

• Do the simulation (in batch mode):
$ vasim -c -cmd adc12test_mixed_ms.cmd TEST
ADC12TEST_MIXED_MS -do adc12test-adms-ms.do

This example demonstrates the main flow where some compilations are done
directly in ModelSim, and others are done in ADVance MS. It highlights what to
do to maintain the mirroring between ADVance MS and ModelSim.

Example 5—Mixed VHDL-AMS and ModelSim
description, top VHDL-AMS, using the -link option,
importing design parts

The same example will be used to observe this third methodology. The example
has to be developed using ModelSim as usual. When the digital part is done and
validated, it has to be integrated into ADVance MS. Thus, to validate the models
from adc12-ms.vhd an extra file is provided containing the following design units:

• adc12-all-ms.vhd (contains digital descriptions)

o entity test

Note

The vcom command is used to compile only in ModelSim. The .ini
files are mirrored, which means the ModelSim compilation is done
in the correct library. The dummy file is compiled in ADVance MS
with the -link option so that, during the simulation, the correct
design units are simulated by ModelSim. After this, the files
required by ADVance MS only are compiled as previously.

Using ADVance MS and ModelSim

Getting Started with ADVance MS, v1.5_1 15
 December 2001

o architecture test(adc12test).

The procedure is as follows:

• Run and validate using ModelSim:
$ mkdir MS
$ cd MS
$ vlib ADC12
$ vmap work ADC12
$ vcom ../adc12-ms.vhd
$ vcom ../adc12-all-ms.vhd

• Do the simulation (vsim command in batch mode):
$ vsim -c TEST ADC12TEST -do ../adc12test-ms-alone.do

• Determine exactly which design units have to be visible from ADVance
MS. This will determine which library will have to be mirrored. Suppose
that this is the library which is in MS/ADC12. The mirroring is done using
the -link option of the command valib:

$ cd ..
$ mkdir ADMS
$ cd ADMS
$ valib -link ../MS/ADC12 NEW_ADC12
$ vasetlib NEW_ADC12

This has created a new ADVance MS library. This library contains a link to
the ModelSim library MS/ADC12.

• An important point is to reference in the modelsim.ini file managed by
ADVance MS, the .ini file that was used by ModelSim when the project we
are importing was compiled and simulated. Suppose that this file is
MS/modelsim.ini. At this point, the .ini files are:

adms.ini:
...
NEW_ADC12= NEW_ADC12
work = NEW_ADC12

modelsim.ini:

Getting Started with ADVance MS, v1.5_116

Using ADVance MS and ModelSim

 December 2001

...
NEW_ADC12= NEW_ADC12/MS
work = NEW_ADC12/MS
others = ../MS/modelsim.ini

• For each of the DUs that have to be visible in ADVance MS, place them in
a separate file and modify them as explained below:

o Keep the entities and packages as they are

o Replace the architectures by empty ones, or keep them as they are if
they can be compiled by vacom.

• When finished, compile them using the -link option of the vacom
command:

$ vacom -link "multi_clock(modelsim) dlatch(modelsim)
sar(modelsim)"

• The test bench and the new VHDL-AMS description can now be written
and compiled as usual:

$ vacom ../adc12-all-adms.vhd
$ vacom ../adc12-adms-ms.vhd

• Do the simulation (in batch mode):
cp ../adc12test_mixed_ms.cmd .
$ vasim -c -cmd adc12test_mixed_ms.cmd TEST
ADC12TEST_MIXED_MS -do ../adc12test-adms-ms.do

This example demonstrates the main flow when there is a need to import libraries
developed using ModelSim in ADVance MS environment. It highlights how to
create the mirroring between ADVance MS and ModelSim.

Example 6—Mixed VHDL-AMS, Spice and ModelSim
description, top VHDL-AMS, using the -ms option

The simulation of test(adc12test_mixed_eldo_ms) can be achieved in the
following way.

Using ADVance MS and ModelSim

Getting Started with ADVance MS, v1.5_1 17
 December 2001

• You must first create a library. Use valib to create the library in the current
directory from the Unix command line:

$ valib ADC12_ELDO_MS

This creates an ADVance MS library called ADC12_ELDO_MS in the
current directory. It also creates a ModelSim library
(ADC12_ELDO_MS/MS) within this library. A mapping
(ADC12_ELDO_MS) is automatically created for both ADVance MS and
ModelSim.

• Define this library as the working library using the vasetlib command:
$ vasetlib ADC12_ELDO_MS

• Compile, using the vacom command, the different files: adc12-ms.vhd for
both ADVance MS and ModelSim; adc12-all-adms.vhd and adc12-eldo-
ms.vhd only for ADVance MS, using the vacom command:

$ vacom adc12-ms.vhd -ms
$ vacom adc12-all-adms.vhd
$ vacom adc12-eldo-ms.vhd

• Do the simulation (in batch mode):
$ vasim -c -cmd adc12test_mixed_eldo_ms.cmd TEST
ADC12TEST_MIXED_ELDO_MS -do adc12test-adms-ms.do

This example demonstrates the main flow when all the compilations are done
from ADVance MS.

Getting Started with ADVance MS, v1.5_118

Simulating with both ADVance MS and ModelSim

 December 2001

Simulating with both ADVance MS and
ModelSim

As can be seen in the previous examples, the simulation commands are exactly the
same for each of them:

Example 3: ADC12, using the -ms option
vasim -c -cmd adc12test_mixed_ms.cmd TEST ADC12TEST_MIXED_MS
-do adc12test-adms-ms.do

Example 4: ADC12, using the -link option
vasim -c -cmd adc12test_mixed_ms.cmd TEST ADC12TEST_MIXED_MS
-do adc12test-adms-ms.do

Example 5: ADC12, using the layout methodology
vasim -c -cmd adc12test_mixed_ms.cmd TEST ADC12TEST_MIXED_MS
-do adc12test-adms-ms.do

Using ADVance MS, ModelSim and
Verilog-A

Example 7—Mixed VHDL-AMS, ModelSim and
Verilog-A description, top SPICE

The simulation of test(adc12test_eldo_mixed_ms_va) can be achieved in the
following way.

• Define this library as the working library using the vasetlib command:
$ vasetlib ADC12_ELDO_MS

• Compile using the valog command, the Verilog-A source file:
$ valog comp.va

• Do the simulation (in batch mode):
$ vasim -c -cmd adc12test_eldo_mixed_ms_va.cir -do
adc12-ms-va.do

ModelSim on Top Example

Getting Started with ADVance MS, v1.5_1 19
 December 2001

ModelSim on Top Example

Example 8—Mixed SPICE and ModelSim description,
top Verilog

This example is based on the instantiation of a Spice subcircuit in a Verilog
(ModelSim) top.

In a top down design methodology, you are basically using a design language such
as VHDL or Verilog in the initial stages. As you go down, you would like to
introduce analog parts (transistor level) of your digital design without breaking
down your whole design.

Introducing an analog Spice description in a digital Verilog design in ADVance
MS is as simple as Verilog module instantiation.

Below is a complete description of the methodology and the commands to be
executed.

Methodology

Considering this methodology, the steps to perform are the following:

1. Description of the top of the design that corresponds to a Verilog
description.
This model contains the stimuli and the SPICE subcircuit instantiation:
top.v file.

The syntax to instantiate this SPICE subcircuit in a Verilog description is:
\<library_name>.<module_name>(<subckt_name>)
<instance_name> [(parameter_mapping) (<port_mapping>)]

e.g. \spice.inv(inv_device) u1 (clk, dout)

2. Definition of the SPICE subcircuit.
For instance, in this example, the SPICE subcircuit corresponds to an ideal
inverter: inv.ckt file.

Getting Started with ADVance MS, v1.5_120

ModelSim on Top Example

 December 2001

Basic CMOS inverter subckt
.subckt inv_device p_in p_out
* Model card declaration - Berkley level 3 model is used
.model n nmos level=3
.model p pmos level=3
* P-MOS and N-MOS devices
m1 p_out p_in vss vss n w=1u l=1u
m2 p_out p_in vdd vdd p w=2u l=1u
.ends

3. Description of the boundary between the SPICE subcircuit and the “Verilog
on top” description.
The user has to specify a Verilog module that only describes the boundary.
In this example, the boundary is described in the Verilog module “inv”:
inv.v file.

4. Compilation of the Verilog module.
The module is compiled in ModelSim then imported into ADVance MS.

5. Description of the command file: test.cmd file.
The command file must contain:

o hook models with a defhook statement to define implicit a2d/d2a.

o analysis type: in this example, a transient simulation of 10 µs is
performed

6. Create a script to access the simulator performing the following.

Note

If this Verilog module already exists, it can be directly compiled in
ModelSim and imported into ADVance MS.

Note

If the user prefers to use VHDL, a VHDL entity has to be specified
to describe the boundary between the SPICE subcircuit and the
“Verilog on top” description. In this example, the VHDL entity is
provided in the file: inv_entity.vhd. This VHDL entity is directly
compiled in ADVance MS.

ModelSim on Top Example

Getting Started with ADVance MS, v1.5_1 21
 December 2001

a. Create a library

b. Compile the “boundary” description for ADVance MS

c. Import the SPICE subcircuit in the digital ModelSim kernel

d. Compile the Verilog top

e. Run the simulation

Commands to execute

Here the commands to execute are described for this example, where the boundary
between the SPICE subcircuit and the “Verilog on top” module is described in a
Verilog module.

1. ADVance MS library creation with the valib command:
valib SPICE

2. Compilation of the Verilog module associated to the SPICE subcircuit in
ModelSim and import of this module into ADVance MS (-ms option):

valog inv.v -ms

3. “Import” the SPICE subcircuit into ADVance MS/ModelSim:
vacom -f -ams -spice inv inv_device@inv.ckt

o “-spice” option to compile in ADVance MS the subcircuit “inv_device”
associated with the Verilog module “inv”

o “-ams” option to import from ADVance MS to ModelSim

4. Compilation of the Verilog top module:
valog top.v -ms

5. Simulation using cmd file test.cmd on the Verilog top module:
vasim -cmd test.cmd top

Getting Started with ADVance MS, v1.5_122

ModelSim on Top Example

 December 2001

Example file contents

Below are the full contents of each required file:

top.v
`timescale 1 ns/1 ns
module top ;
reg clk ;
initial
 clk <= 1'b0 ;

Note

In the case of the boundary being described in a VHDL-AMS
entity, the commands to execute are:

1. ADVance MS library creation with the valib command:
valib SPICE

2. Compilation of the VHDL-AMS entity in ADVance MS
and import of this entity in ModelSim (-ams option):

vacom -ams inv_entity.vhd

3. “Import” the SPICE subcircuit into ADVance
MS/ModelSim:

vacom -spice inv inv_device@inv.ckt
vacom -ams -link inv\(inv_device\)

o “-spice” option to compile in ADVance MS the
subcircuit “inv_device” associated to the VHDL-AMS
entity “inv”

o “-ams” option to import from ADVance MS to
ModelSim

4. Compilation of the Verilog top module:
valog top.v -ms

5. Simulation using command file test.cmd on the Verilog
top module:

vasim -cmd test.cmd top

ModelSim on Top Example

Getting Started with ADVance MS, v1.5_1 23
 December 2001

 always @(clk)
 #1000 clk <= ~ clk ;
/// inv u1 (clk, dout) ; // verilog instance
\spice.inv(inv_device) u1 (clk, dout) ; // spice (vhdl) inst
endmodule

inv.ckt
.subckt inv_device p_in p_out
.model n nmos level=3
.model p pmos level=3

m1 p_out p_in vss vss n w=1u l=1u
m2 p_out p_in vdd vdd p w=2u l=1u
.ends

inv.v
`timescale 1 ns/1 ns
module inv(din, dout) ;
input din ;
output dout ;
endmodule

inv_entity.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY inv IS
 PORT(din : IN std_logic;
 dout : OUT std_logic
);
END ENTITY inv;

test.cmd

This is the command file. The .defhook statement defines implicit AD/DA.
A transient analysis is then carried out over 10 µs.

.model a2d a2d mode=std_logic vth1=2.5 vth2=2.5

.model d2a d2a mode=std_logic vhi=5 vlo=0 trise=1n tfall=1n

.defhook d2a_std a2d_std
vdd vdd 0 5
vss vss 0 0
.tran 1n 10u
.probe v

Getting Started with ADVance MS, v1.5_124

ModelSim on Top Example

 December 2001

run_test_*

To compile and run this example, please use the appropriate “run_test_*” script.
Two scripts are shown, one where the boundary is described in a Verilog module,
and the other where it is described in a VHDL-AMS entity:

run_test_verilog_description
the boundary between the SPICE sub-circuit and the Verilog
on top description is described in a Verilog module

\rm -rf SPICE *.ini
valib SPICE
valog inv.v -ms
vacom -f -ams -spice inv inv_device@inv.ckt
valog top.v -ms
vasim -cmd test.cmd top -do dofile

run_test_vhdlams_description
the boundary between the SPICE sub-circuit and the Verilog
on top description is described in a VHDL-AMS entity

\rm -rf SPICE *.ini
valib SPICE
vacom -ams inv_entity.vhd
vacom -spice inv inv_device@inv.ckt
vacom -ams -link inv\(inv_device\)
valog top.v -ms
vasim -cmd test.cmd top -do dofile

do file
view structure nets
add wave :top:dout
add wave :top:clk
add wave :top:u1:p_in
add wave :top:u1:p_out
run -all

