Perforce 97.3
Graphical User Interface
User's Manual

Manual 97.3.gg1 (Beta Edition)

November 24, 1997

This manual copyright 1997 PERFORCE Software.
All rights reserved.

PERFORCE software and documentation is available from
http://ww. perforce.conl. Youmay download and
use PERFORCE programs, but you may not sell or redistribute
them. You may download and print the documentation, but you
may not sell or redistribute it. You may not modify or attempt to
reverse engineer the programs.

PERFORCE programs and documents are available from our Web
siteasis. No warranty or support is provided. Warranties and
support, along with higher capacity servers, are sold by
PERFORCE Software.

PERFORCE Software assumes no responsibility or liability for
any errors or inaccuracies that may appear in this book.

By downloading and using our programs and documents you
agree to these terms.

PERFORCE and Inter-File Branching are trademarks of
PERFORCE Software. PERFORCE software includes software
developed by the University of California, Berkeley and its
contributors.

All other brands or product names are trademarks or registered
trademarks of their respective companies or organizations.

The remainder of this columnisleft blank for your use. You may
utilize it to store such written, inscribed, drawn, painted, copied,
drafted, or duplicated material asyou seefit, or for any other use,
providing the use does not violate the laws, ordinances, statutes,
regulations, edicts, canons, or decrees of your country, state,
territory, kingdom, province, county, city, or other municipality.
PeERFORCE Software will assume no liability, responsibility, debt,
risk or other obligation for any defamatory, libelous, pejorative,
unlawful, slanderous, or otherwise illegal material appearing
below this paragraph in this column on this page.

Table of Contents

PREFACE

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

About ThisManual 7

Margin Notelcons 7

The Example Set 7

Menu Commands and Shortcut Menus 8
Please Give Us Feedback 8

PERFORCE Concepts 9

PERFORCE Architecture 9

Moving Files Between the Clients
and the Server 10

File Conflicts 10

Labeling Groups of Files 11
Branching Files 11

Job Tracking 11

Change Review and Daemons 12
Protections 12

The PAw NWindow 13

TheprP4w N Panes 14
The Depot Pane 14
The Object Pane 14
The Satus Pane 15

Connecting to the
p4d Server 16

Verifying the Connection to
the p4d Server 16

Telling P4 WhereP4Dis 17

Depots, Clients,
Files and Changelists: Quick Sart

Underlying Concepts 18
File Configurations Used in the Examples 18

18

Setting Up a Client Workspace 19
Naming the Client Workspace 19
Describing the Client \Workspace
to the PERFORCE Server 19
Editing an Existing Client Specification 21
Deleting an Existing Client Specification 21

Copying Files from the Workspace

tothe Depot 21
Adding Filesto the Depot 22
Editing Depot Files 24
Deleting Files Fromthe Depot 24

Retrieving Files from the Depot

into aWorkspace 24

Reverting Filesto their

Unopened States 26

Basic Reporting 26

CHAPTER 5 Depots, Clients, and Changelists:
More Details 28

Description of the Client Workspace 28

Mapping the Depot to the Client Workspace 29
Using Views 30
Wldcardsin Views 31
Types of Mappings 31
PERFORCE Syntax
for File Names Within Views 33
Name and String Limitations 34
FileNames 34
Descriptions 34
Depot and Client Names 34
Changelists 34
Creating Numbered Changdlists 35
Moving Files between Changelists 35
Automatic Creation of
Numbered Changelists 35
Changelists May Be Renumbered upon Submission 36
Deleting Changelists 36
Viewing Submitted Changelists 36
Accessing Older File Revisions 36
File Types 37

Depot Pane Options 38

CHAPTER 6 PERFORCE Basics:
Resolving File Conflicts 40

RCS Format: How PERFORCE Stores File Revisions 40
Only the Differences Between Revisions are Stored 41
Use of ‘diff’ to Determine File Revision Difference42

Scheduling Resolves of Conflicting Files 42

Resolving Conflicting Files 43
Interactive File Resolution 43
Automatic File Resolution 48
Resolving Binary Files 48

Locking Filesto Minimize File Conflicts 49
Preventing Multiple Resolves with File Locking9

Resolves and Branching 50

CHAPTER 7 Labels 51

Why Not Just Use Change Numbers? 51
Viewing Labels 52

CreatingalLabel 52

Adding and Changing
FilesListedinalLabel 53

Preventing Accidental Overwrites of
a Label's Contents 54

Retrieving File Revisions from a Label

into a Client Workspace 54
Matching the Client Workspace to the Label 54
Retrieving a Subset of a Label's File Revisions
Into the Client Workspace54

Deleting Labels 55

CHAPTER 8 Branching 56

What isBranching? 56
When to Create aBranch 56
Viewing Branches 57

Branching’s First Action:
Creating a Branch 57
Sep 1: Createthe branch view 58
Sep 2: Include the Branched Filesin the Client View 59
Sep 3:
Use Integrate
to Create the Target Files
in the Client Workspace 60
Sep 4:
Submit the Changelist
to Create the Files
inthe Depot 61

CHAPTER 9

Working With Branched Files 61
Branching’s Second Action:
Propagating Changes from One Codeline
to the Other 61
Propagating Changes from Branched Files
tothe Original Files 62
Deleting Branches 62
How Integrate Works 62
Integrate’s Definitions of yours, theirs, and basg2
The Integration Algorithm 63
Integrate’s Actions 63
Additional Command-Line Functionality 64

Job Tracking 65

Viewing Jobs 65

Creating and Editing Jobs 66

Linking Jobs to Changelists,

and Changing a Job’s Statu§7
Automatically Performed Functions 67
Controlling Which Jobs Appear in Changelists 68
Manually Associating Jobs with Changelists 68
Arbitrarily Changing a Job’s Status69

Deleting Jobs 69

PREFACE About This Manual

Thisis the PERFORCE 97.3 Graphical User Interface User’s Guideis meant for PAWIN
users who have never used PERFORCE before; experienced PERFORCE command line users
will find the P4 toPAwIN Translation Guidéo be more useful. This manual teachesthe use

of PERFORCE's Windows GUI interfacep4wiN; the command line is discussed in this
manual only to point out differences betwednandr4wiIN. For information on our com-
mand line interfacer4, please see tteommand Line User’s Guidehich is available at
our Web site.

Margin Note Icons

This manua makes use of notes in the left margin to supply additional information. The
icons accompanying these notes have the following meanings:

p4 Highlightes an important difference between P4AwIN and P4.

4‘ A cross-reference to other material in this manual.

QM A concrete example of the material discussed.
|EI A note of genera interest.
|E| This note is rather important!

The Example Set

We have attempted to develop a uniform example set for use with this manual. All of the
examples use the source code for El m a popular UNIX mail program. We selected the
Elm source code for a number of reasons:

» Elm is widely used, and marBERFORCE users will be familiar with the program. If
they are not, they at least understand what it does.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 7

Chapter PREFACE : About ThisManual

* The source code is stored in well-organized subdirectories, which allow us to demon-
strate certain capabilities PERFORCE.

* The source code for Elm is widely available; users of this manual can download Elm
and try the examples as they're encountered.

Links to the Elm source code can be found at

http://ww. nyxa. conl el m ht m

We are using the EIm source with the kind permission of Sydney Weinstein and Bill Pem-
berton of the USENET Community Trust.

Disclaimer: To the best of our knowledge, the EIm team has neverREREDORCE
for source management. As far as we know, they never he&BRBORCE until they
received our email asking for permission to use their code in our manual. No implica-
tion that the EIm team uses or endof3ERFORCE is intended; none should be inferrgd.

Menu Commands and Shortcut Menus

In this manual, references to menu commands appédems>Command. For example,
theLock command in th&ile menu is referred to dsle>L ock. Submenus are indicated
by extending this scheme to multiple levels; for exampleSyine to Head Revision sub-
menu of theSync/Remove command of th&ile menu would appear as
File>Sync/Remove>Sync To Head Revision.

For every menu command, a corresponding shortcut menu command is available. These
shortcut menus, which are accessed by right-clicking on objects within windows, are not

explicitly mentioned in the manual unless there is some important difference between the
menu command and the shortcut menu version of the same command.

Please Give Us Feedback

This is the first release of this particular manual, and we’re very interested in receiving
opinions on it from our users. In particular, we'd like to hear from users who have never
used BRFORCE before. Does this guide teach the topic well? Are there any glaring errors?
Are the explanations clear, or are the exemplifications obfuscated by this enchiridion?
Please let us know what you think; we can be reacheshatl @er f or ce. com

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 8

CHAPTER 1

PERFORCE Concepts

N

You dont need to
read this chapter if
you don't want to.

All the material
discussed here is
also covered in the
‘how-to’ chapters,
which comprise the
rest of the manual.

This chapter is
provided as a guide
to what FERFORCE
does, without the
details of how to

do it.

PeERFORCE facilitates the sharing of files among multiple users. It is a software configura-
tion management tool, but software configuration management (SCM) is defined in many
different ways, depending on who is giving the definition. SCM has been described as pro-
viding version control, file sharing, release management, defect tracking, build manage-
ment, and a few other things. It's worth looking at exactly wheRFERCE does and
doesn't do:

» PerrORCE offers version control: multiple revisions of the same file are stored, and
older revisions are always accessible.

» PERFORCE provides facilities for concurrent development; multiple users can edit their
own copies of the same file.

« Some release management facilities are offererkdRcE will track which revisions of
which files are part of a particular release.

* Bugs and system improvement requests can be tracked from entry to fix; this is known
as defect tracking.

» PERFORCE supplies some lifecycle management functionality; files can be kept in
release branches, development branches, or in any sort of needed file set.

« Change review functionality is provided bgRPORCE; this allows users to be notified
by email when particular files are changed.

« Although a build management tool is not built inERIFORCE, we do offer a companion
freeware product called)’AM - Make(1) Redux”. JAMand BRFORCE meet at the file
system; source files managed IBRPORCE are easily built by AM

PERFORCE excels at all file management functions. AlthoughA®RCE was built to man-

age source files, it can manage any sort of on-line documents. It can be used to store revi-
sions of a manual, to manage Web pages, or to store old versions of operating system
administration files. Its branching functionality, which allows copies of files to evolve
separately from the files they were copied from, is unparalleled in the industry.eRnd P
FORCE is extremely fast.

PERFORCE Architecture

PERFORCE has a client/server architecture, in which many computers, adiksds, are
connected to one central machine, seever. Each user works on a client; at their com-
mand, files they've been editing are transferred to and from the server. The clients com-
municate with the server via TCP/IP.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 9

Chapter 1 : PERFORCE Concepts

+

The details of
changelists, and
basic PERFORCE
usage, are discussed
in chapters4 and 5.

+

Resolving
file conflictsisthe
topic of Chapter 6.

The PERFORCE clients may be distributed around alocal area network, wide area network,
dialup network, or any combination of these. There can also be PERFORCE clients on the
same host as the server.

Three programs do the bulk of PERFORCE’S work:

« ThepP4D program is run on theeERFORCE server. It manages the shared file repository,
and keeps track of users, clients, protections, and oH®eDRCE metadata.
P4D must be run on a UNIX or Windows/NT host.

* TherP4 command-line program is run oERRORCE clients. It sends the users’ requests
to thepP4D server program for processing, and communicatespaithvia TCP/IP.
P4 client programs can be run on many platforms, including UNIX, Windows, VMS,
Macintosh, BeOS, and Next hosts.

* P4WIN, the subject of this manual, is similarrg except it is controlled via a graphical
user interface rather than by typing commands. It handles most of the tagit ¢hat
do, but does not rupd’'s administrative functions.

PAWIN runs only on Windows 95 and Windows/NT.

Moving Files Between the Clients
and the Server

Users create, edit, and delete files in their own directories on the clients; these directories
are calledclient workspaces. PERFORCE commands are used to move files to and from a
shared file repository on the server known agidpet. PERFORCE users can retrieve files

from the depot into their own client workspaces, where they can be read, edited, and
resubmitted to the depot for other users to access. When evigan of a file is stored

in the depot, the old revisions are kept, and are still accessible.

Files that have been edited within a client workspace are sent to the depdtarigeist,

which is a list of files, and instructions that tell the depot what to do with those files. For
example, one file might have been changed in the client workspace, another added, and
another deleted. These file changes might be sent to the depot in a single changelist, which
is processedtomically: either all the changes are made to the depot at once, or none of
them are. This allows problem fixes that span multiple files to be updated in the depot at
exactly the same time.

Each client workspace has its oalient view, which determines which files in the depot

can be accessed by that client workspace. One client workspace might be able to access all
the files in the depot; another client workspace might access only a single fileeRFhe P
FORCE server is responsible for tracking the state of the client workspagepHeE

knows which files a client workspace has, where they are, and which files have write per-
mission turned on.

File Conflicts

When two users edit the same file, it is possible for their changes to conflict. For example,
suppose two users copy the same file from the depot into their workspaces, and each edits
his copy of the file in different ways. The first user sends his version of the file back to the

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 10

Chapter 1 : PERFORCE Concepts

+

Chapter 7 discusses
labels.

+

The workings of
Inter-File
Branchingis
coveredin
Chapter 8.

+

You'll learn how to
do job tracking in
Chapter 9.

depot; subsequently, the second user tries to do the same thing. If PERFORCE were to
unquestioningly accept the second user’s file into the depot, the first user’'s changes would
not be included in the latest revision of the file (known a$éhad revision).

When a file conflict is detected ERFORCE allows the user experiencing the conflict to
perform aresolve of the conflicting files. The resolve process allows the user to decide
what needs to be done: should his file overwrite the other user’s? Should his own file be
thrown away? Or should the two conflicting files be merged into one? At the user’s
request, BRFORCE will perform athree-way merge between the two conflicting files and

the single file that both were based on. This process genenakegedfile from the con-
flicting files: the merge file contains all the changes from both conflicting versions, and
this file can be edited and then submitted to the depot.

Labeling Groups of Files

It is often useful to mark a particular set of file revisions for later access. For examples, the
release engineers might want to keep a list of all the file revisions that comprise a particu-
lar release of their program. This list of files can be assigned a single mnemonic name,
like r el ease2. 0. 1; this name is éabel for the user-determined list of files. At any sub-
sequent time, the label can be used to copy the old file revisions into a client workspace.

Branching Files

Thus far, it has been assumed that all changes of files happen linearly. But this is not
always the case: suppose that one source file needs to evolve in two separate directions;
perhaps one set of upcoming changes will allow the program to run under VMS, and
another set will make it a Mac program. Clearly, two separately evolving copies of the
same files are necessary.

PeRFORCE's Inter-File Branching™ mechanism allows any set of files to be copied within
the depot. By default, the new file set,andeline, evolves separately from the original
files, but changes in either codeline can be propagated to the other.

We’'re particularly proud of BRFORCE’S branching mechanism. Most SCM systems allow
some form of branching, bueRFORCE's is particularly flexible and elegant.

Job Tracking

Job is a generic term for a plain-text description of some change that needs to be made to
the source code. A job might be a bug description, like “the system crashes when | press
return”, or it might be a system improvement request, like “please make the program run
faster.”

Whereas a job represents work that is intended to be performed, a changelist represents
work actually done. BRFORCE's job tracking mechanism allows jobs to be linked to the
changelists that implement the work requested by the job. A job can later be looked up to
determine if and when it was fixed, which file revisions implemented the fix, and who
fixed it.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual n

Chapter 1 : PERFORCE Concepts

P4

Change review
administration and
protections are both
administrative
functions, and must
be handled fromthe
P4 command line
interface. Please see
the PERFORCE
Command Line
User’s Guideor
more information.

PERFORCE's job tracking mechanism does not implement all functionality normally sup-
plied by full-scale defect tracking systems. Its simple functionality can be used as is, or it
can be integrated with a full-scale job tracking system with a scripting language such as
Perl.

Change Review and Daemons

PERFORCE's change review mechanism allows users to receive email notifying them when
particular files have been updated in the depot. The files that a particular user receives
notification on is determined by that user. Change review is implemented by an external
Perl program, odaemon, and can be recoded by a knowledgeable user, allowing change
review functionality to be customized.

Protections

PERFORCE provides a protection scheme to prevent unauthorized or inadvertent access to
the depot. The protection mechanism determines exactly weERFORCE commands are
allowed to be run by any particular client.

Permissions are granted or denied based on the user’s username and IP address. Since
PERFORCE usernames are easily changed, protections at the user level provide safety, not
security. Protections at the IP address level are as secure as the host itself.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 12

CHAPTER 2 The PAWIN Window

All work in PAWIN is done in the PAwIN window. This window provides a graphical repre-
sentation of al files and activities managed by a PERFORCE server.

The p4win window has this appearance:

[C. Perforce Port= computer: 1667 Client= ed:_elm Uszer-edk
File Changelist Branch Cliemt Job Label User Perforce Window Help

J]| el@|B|B[o|a]d b B[S [w[H|% S8R5 €

ICIient View of Perforce Depot IF‘f:nding Perforce Changelists
El-- -::.:‘.;u Addepot =] EI.{E* ty Pending Changelizts
= @ elm Gl Mk Defaul
Gl-EE doc = ‘ Change B1 {0ptions screen now has comect ..}
Gl filker B Afdepot/elm/doc/blias guideR] <texts <edit:
B @5 hds B Afdepot/elm/zic/calendar o1 <test <add>
e @ filkerh H2/2 St B Afdepot/elm/aic/file. o1 <test: cadd>
------- E nl_tvpesh #2/2 ------- g /Adepotielmizrciingalias ol <texts<add:
------- E patchlevelh #4/ - /ﬁ job000012
------- E regexph B33 <L H-- i Change B2 {Fixes all filtering bugs repart. .}
e] testh #0A1 <test -4 Dther Pending Changelists
Ezl1 % EA I
EH-- B utils -
« I ;I_I
@ Adepotlelm/doc/chkalias.] /feds_elm/doc/chkalias. 1 ﬂ
@ Addepatdelmddocddliaz. guide /feds_elmddocdliaz guide
@ Addepatdelm/i ak efile. SH /feds_elm/M akefile. SH
J I ;Ij
For Help, press F1 | A

It is divided into three primary panes: two side-by-side graphical panes at the top, and a
pane that displays text messages near the bottom. These panes may be resized by dragging
the split bars.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 13

Chapter 2 : The PAWIN Window

The P4wWIN Panes

The Depot Pane

The pane at the upper-left of the window is the depot pane. It displays files stored in the
current PAD server, and has this appearance:

|Clit:nt View of Perforce Depot
E-soe //depot
B3 elm

o

E- g filter

E-Bg hd=
e [filterh H2/2 <tew
e @ rltypesh 242 -
o B patchlevel b 4/
o @ regexph #3473 <t
b [F] testh H0/1 <test

H--Eg s

BB utils

Items in this pane may be manipulated similarly to the way they're used in Windows
Explorer: folders may be unfolded by clicking on e ; multiple files and folders can be
selected contiguously with the shift key, or non-contiguously by using the control key.

A multiple selection may be dragged, but it differs from Windows Explorer in one key
respect: after making the multiple selection, the modifier key must be held down while
performing the drag. If it is not, only the last file clicked on will be dragged.

The meaning of the items in the depot pane is explained in the next two chapters.

The Object Pane

The rightmost pane’s display changes depending on what the user has selected to appear.
Collectively, the pane is referred to as tipect pane, but it's usually referred to by its
current contents.

The contents of this pane is controlled by seven buttons in the toolbar. The buttons and
panes displayed are:

PNESISIKY o) f
Pend.in,!: ‘ La]iels Usl:rs
Changelisis |Branches Johs

Submitied Client
Changelisis Workspaces

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 14

Chapter 2 : The PAWIN Window

Alternatively, each pane may be displayed by choosing a corresponding menuitem. For
exampl e, the branches pane can be displayed either by clicking on the branches button, or
by choosing the Activate Branches Window command in the Branch menu. The remain-
der of this manual refers only to buttons to change panes, but the corresponding menu item
isaways available.

These seven panes fall into two categories. The first category consists of one of the above
panes, the pending changelists pane. It looks like this:

|F"t:nding Perforce Changelists

B iﬂ_ My Pending Changelists

----- H- M Default
|_‘_| ----- ‘ Change 61 {0ptions screen now has corect .}
- E] Afdepot/elm/docidlias guidet] <tests <edit:
"'E] Adepot/elmercdcalendar o1 <textr <add:
: "'E] Afdepot/elmzrcdfile. o1 <test> <add>
------- "'E] Adepot/elmzcdfind_alias. ol <test> <add>
b ,ﬁ job00001 2
[‘ Change 62 {Fixes all filkering bugs report..}
[].{ﬂ Other Pending Changelists

Although the contents of this pane are somewhat different than those of the depot pane, it
follows the same rules as the depot pane and Windows Explorer. The contents of this pane
are explained in the next two chapters

The second category of panes is made up by the remaining six panes (the submitted
changelists, branches, labels, client workspaces, labels, and jobs panes). These panes dis-
play lists of objects. The branches pane, for example, looks like this:

| el el Ml (o et | g Ll il Tl ol | bl M |

IPerfur[:e Branches

Branch L3 | [ate | D eszcription

ﬁ branich 199711704 Created by barklay.

13 branch DOS 199711422 Branch of releaze 1 code for DOS
1T rclease 195711./22 Eranch from mainline for first code

Any of the columns can be sorted on by clicking in the header for that column. The current
sort column isindicated by ared triangle; the branch listing above is currently sorted on
the Branch column.

Columns may be resized by dragging the split bars that separate the columns.
The Status Pane

The pane at the bottom is the status pane. It displays messages from p4wIN and from the
PAD server.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 15

CHAPTER 3

Connecting to the
p4d Server

+

This chapter
assumes that both
the p4d and p4
programs have been
installed. xxx"just
do it” or cross-ref to
instructions?xxx

PERFORCE uses a client/server architecture. Files are created and edited by users on their
own client hosts; these files are transferred to and from a shared file repository located on
a PERFORCE server. Every running PERFORCE system uses a single server and can have
many clients.

Three programs do the bulk of PERFORCE’s work:

« Thep4d program is run on thBERFORCE server. It manages the shared file repository,
and keeps track of users, clients, protections, and BERHORCE metadata.

* p4wi n is run on those WindowBERFORCE clients whose users prefer a graphical user
interface. It sends the users’s requests topthie server program for processing, and
communicates witp4d via TCP/IP.

P4 has the same core functionalitypdsviN, but is run from the command line, and runs
on all EERFORCE platforms. It does everything thedwiN does, and handles additional
tasks, such as administrative jobs, as well.

Eachp4wi n program needs to know the address and port gf4tieserver that it commu-
nicates with. Setting this address is the topic of the next section

Verifying the Connection to
the p4d Server

A p4 client needs to know two things in order to talk toghe server:

» The name of the host thatd is running on
» The port thap4d is listening on.

Together, these make up thép server address. This address is set throughP¢he

force>Options... dialog box, which can also be displayed by clicking&a button. The

PAD server address is originally set wimwiN is installed; if it's not set correctly, you'll
need to change it.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 16

Chapter 3 : Connecting to the p4d Server

oA

Example:

Sartup error:

the p4d server
connection is
incorrectly specified

PAWIN looks for the PAD server every time PAwIN starts. If the PAD address is set incor-
rectly, you'll see a variant of this message:

Connect to server failed, check $P4PORT
TCP Connect to host:port fail ed.
host: host unknown

This message means that the server address has not been set correc®pfiottsdia-
log.

Telling P4 Where P4D is

Before continuing, you'll need to ask your system administrator the name of the host that
PAD is located on, and the number of the TCP/IP port it's listening on. Once you've
obtained this information, set the value of Hde Port text box in theOptions dialog to

host : port #, wherehost is the name of the host thatd is running on, angor t # is

the port thab4p is listening on. For example:

If the p4d host isnamed... ‘ and the p4d port isnhamed... ‘ set P4 Port to:
3435 dogs: 3435
1818 X.com 1818

dogs
X. com

The definition ofP4PORT can be shortened 4w n is running on the same hostmasi.
In this case, only the4d port number need be providedp®. And if p4d is running on a
host named or aliaseer f or ce, listening on porl666, the definition ofP4PORT for the
p4 client can be dispensed with altogether. For example:

If the p4d host isnamed... ‘ and the p4d port is... ‘ set P4 Port to...
<same host as thet client> 9783 9783
perforce 1666 <no value needed>

If the setting of P4 Port is still incorrect, you'll receive the same error message when clos-
ing the Options dialog. If the error doesn't appear, fRERFORCE is ready to use.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 17

CHAPTER 4

Depots, Clients,
Files and Changelists:
Quick Start

N

All of the tasks
discussed in this
chapter utilize
pending changelist
pane at the right
side of the main
PAWIN window. To
display this pane,
pressthe 44 button
in the tool bar.

+

The use of the EIm
source code setis
described in the
About This
Manual chapter

(page 7).

This chapter teaches basic PAWIN usage. You'll learn how to move files to and from the
common file repository, how to back out of these operations, and someprdasic
reporting tools.

These concepts and commands are painted with very broad strokes in this chapter; the
details are provided in the next.

Underlying Concepts

The basic ideas behin&®ORCE are quite simple: files are created, edited, and deleted in
the user’s own directories, which are caltignt workspaces. PERFORCE commands are

used to move files to and from a shared file repository known adefiot PERFORCE

users can retrieve files from the depot into their own client workspaces, where they can be
read, edited, and resubmitted to the depot for other users to access. When a new revision
of a file is stored in the depot, the old revisions are kept, and are still accessible.

PERFORCE was written to be as unobtrusive as possible; very few changes to your normal
work habits are required. Files are still created in your own directories with a standard text
editor; PAwIN actions supplement your normal work actions instead of replacing them.

File Configurations Used in the Examples

This manual makes extensive use of examples based Bhrtts®murce code set. Tl m
examples used in this manual are set up as follows:

A single depot is used to store the elm files, and perhaps other projects as well. The elm
files will be shared by storing them undereamsubdirectory within the depot.

Each user will store his or her client workspace Elm files in a different subdirectory. The
two users we’'ll be following most closely, Ed and Lisa, will work with their EIm files in
the following locations:

User ‘ Username ‘ Client Wor kspace Name ‘ Top of own EIm File Tree
Ed edk
Lisa

eds_elm C\Projects\elm

C.\Docs\el m

lisag lisas_ws

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 18

Chapter 4 : Depots, Clients, Filesand Changelists: Quick Start

Setting Up a Client Workspace

To move files between a client workspace and the depot, the PERFORCE server requires
two pieces of information, collectively called the client specification:

« A name that uniquely identifies the client specification, and
» The top-level directory of the client workspace.

Naming the Client Workspace

To name your client workspace, or to use a different workspace, set the valuerof the

d i ent text box in theDptions dialog to the name of the client workspace.
g Ed isworking on the code for EIl m He wants to refer to the collection of files he's working
Example: on by the nameds_el m He presses th@ptions buttone and typesds_el min the

Ngmlng the P4 Cient text box.
client workspace

Describing the Client Workspace
fo the PERFORCE Server

Once the client workspace has been named, it must be identified and described to the PER-
FORCE server with the Client>Create/Edit my Client command. Running this command
brings up the client specification dialog box; once the dialog is filled in and closed, the
PeRFORCE server will be able to move files between the depot and the client workspace.

The Client dialog has a number of fields; the two most important are the Root and the
Vi ew The meanings of thesefields are as follows:

Field M eaning

Root : I dentifies the top subdirectory of the client workspace
on thelocal NT or Windows 95 machine. This should
be the lowest-level directory that includes al the files
and directories that you'll be working with in this
workspace.

Vi ew: Describes which files and directories in the depot are
available to the client workspace, and where the files in
the depot will be located within the client workspace.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 19

Chapter 4 : Depots, Clients, Filesand Changelists: Quick Start

Ed is working with his elm files in a setting as described above. He's set his client work-
g space taeds_el m now he chooseGlient>Create/Edit my Client, and sees the following
dialog:
Example:
Setting the client Perforce Client Specification
root and the client
view Client: [eds_elm Update Client
Owner: [edk
Cancel
Date: |199?!11f1? 16:41:56
Description:
Created by edk| N
Root: |u;\
Options: [nomodtime noclobber
Uiew:
ffdepot/]... Ffeds elm/... -

If he were to leave the form as is, all of the files under Ed\s directory would be
mapped to the depot, and they would map to the entire depot, instead of to fishthe
project. He changes the values in et : andVi ew. fields as follows:

Perforce Chent Specification I

Client: leds_elm Update Client
Owner: [edk
Cancel

Date: [1997/11/17 16:41:56
Description:
Created by edk]. -]

Ad|
Root: |c:\Projectsyelm
Options: [nomodtime noclobber
Uiew:
fSfdepotselms ... ffeds_elm/... -

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 20

Chapter 4 : Depots, Clients, Filesand Changelists: Quick Start

This specifiesthat C: \ Pr oj ect s\ el mis the top level directory of Ed’s client workspace,
and that the files under this workspace directory are to be mapped to the depatisb-
tree.

When Ed’s done, he clicks thipdate dient button, and the client specification is

r
IEI updated.

To use PERFORCE The read-only d i ent : field contains the current client name as defined in the Options
properly, it is crucial dialog. Descri ption: can be filled with anything at all (up to 128 characters); this pro-
vides an arbitrary textual description of what's contained in this client workspace. The
Vi ew: field describes the relationship between files in the depot and files in the client

to understand how
views work. Views
areexplainedinmore ~ Workspace.
detail at the start of

the next chapter. Creating a client specification has no immediate visible effect; no files are created when a

client specification is created or edited. The client specification simply indicates where
files will be located whem4wiIN is used to move files between the depot and the client
workspace.

Editing an Existing Client Specification

Client>Create/Edit my Client can be used at any time to change the client specification.
Just as when a client specification is created, changing a specification has no immediate
affect on the locations of any files; the location of files in the depot and workspace is
affected only when the client specification is used in subsequent commands. But there is
an important distinction between changing the client’s root and changing the client’s view:
if you change the root,HRFORCE assumes that you will manually relocate the files as
well. If you change the view and then bring files into the client from the defrRRORCE

will delete and add files as necessary to make the client workspace reflect the view.

Deleting an Existing Client Specification

An existing client specification can be deleted by displaying the client |@ghe (), select-
ing a client workspace within that pane, and chooSlhent>Delete. Clients can only be
deleted if there are no files open for addition, edit, or delete within the client.

Deleting a client specification has no effect on any files in the client workspace or depot; it
simply removes the4p server’s record of the mapping between the depot and the files
within the client workspace. To delete existing files from a client workspace, select the
files to be removed within the depot pane and ch&dg2Sync/Remove>Remove from

EI Client or throw the files into the Windows Recycle Bifter deleting the client specifica-
tion.

If you're working in
an already- _ ,
established Copying Files from the Workspace

PERFORCE to the Depot
environment, and

want to start by
retrieving already-
existing files, you
can skip to page 24
and come back to
this section later.

Any file in a client workspace can be added to, updated in, or deleted from the depot. This
is accomplished in two steps:

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 21

Chapter 4 : Depots, Clients, Filesand Changelists: Quick Start

1. PerRrFORCE istold the new state of client workspace files with the commands File>Add
To Source Control (to add files), File>Check Out for Edit (to open files for edit), or
File>Check Out for Delete (to open files for deletion). When these commands are
given, the corresponding files are listed in a PERFORCE changelist, which isalist of
files and operations on those files to be performed in the depot.

2. Theoperations are performed on the filesin the changelist when the change is selected
and the Changelist>Submit... command is given.

r
Ill The commands listed in step one above do not immediately add, edit, or deletefilesin the
depot. Instead, the affected file and the corresponding operation are listed in a changelist,
If a submit of the and the files in the depot are affected only when this changelist is submitted to the depot

default changelist with Changelist>Submit.... This alows a set of files to be updated in the depot al at
fails, that changelist once: when the changelist is submitted, either all of the filesin the changelist are affected,

will be assigned a or none of them are.
number.
“Changelists” on When afile has been added to a changelist, or checked out for editing or deletion, but the

page 34 discusses th corresponding changelist has not yet been submitted in the depot, the fileis said to be open
creation and use of in the client workspace.
numbered

changelists. Adding Files to the Depot

To add afile or files to the depot, use File>Add To Source Control...., or drag the file(s)
or the enclosing folder from the Explorer window to a changelist in the pending changelist
pane. These commands opens the file(s) for edit and lists them in a changelist, but they
won'’t be added to the depot until the files in the changelist are submitted to the depot with

g Changelist>Submit...

Ed iswriting a help manual for EIm. The files are named el m hel p. 0 through

Example:
Adding files to a el m hel p. 3, and they're sitting in thdoc subdirectory of his client workspace root. He
changelist wants to add these files to the depot, so he drags them from the Windows Explorer window

to the default changelist in the pending changelist pane. After answering a dialog confirm-
ing his choice of files, he sees

I‘—I"""l" |I—- '-"ll 1 *q.l|a—v'|w|f‘-!| ""l'\.rll

-IPending Perforce Changelists

- E--dg My Pending Changelists

- A Default
------- ""E] /fdepatdelmddoc/elm-help. 081 <bexts < add:
------- ""E] /fdepatdelmddoc/elm-help THT <bests < add:
------- ""E] Hdepotfelm/doc/elm-help. 281 <text: < add>
- "'E] Hdepotdelm/doc/elm-help. 381 <text: < add:

-4y Dther Pending Changelists

At this point, the files that Ed wants to add to the depot have been added to his default
changelist. However, the files are not actually added to the depot until the changelist is
submitted to the depot.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 22

Chapter 4 : Depots, Clients, Filesand Changelists: Quick Start

&

Example:
Submitting a
changelist to the
depot

+

Jobs are discussed
in chapter 9.

Ed is ready to submit his added files to the depot. He selects the default changelist in the
rightmost pane and chooses Changelist>Submit... The following dialog appears:

Perforce Change 5pecification

Change: [new |Suhmit Changelist
Client: [eds_elm -
User : |rlu Update Changelist
Status: [new Cancel

Description:

{enter description herel

KNN3

Jobs :

job000DDDG
[ljob00O0OODS
[ljob0ODODA

4

R

Files:

Wi{depotfelm{docielm-help.3
Wi{depotfelm{docielm-help.2

Ed changes the contents of the Descri pti on: field to describe what these file updates
do. When he’s done, he quits from the editor; the new files are added to the depot.

The Description: field contents must be changed, or the depot update won't be
accepted. Files can be unchecked inRihiees: field; any files deleted from this list will

carry over to the next default changelist, and will appear again the next time the default
changelist is submitted.

File Permissions

The operating systemisead- onl y attribute on submitted files is turned on in the client
workspace when the file is submitted to the depot. This helps ensure that file editing is
done with BRFORCE’s knowledge. The ead- onl y attribute is turned off when the file is
opened for edit.

You may have noticed that the filenames are always displayéd /asnane#n in the
pending changelist paneeRrorcCE always displays filenames within changelists with a
#n suffix; the#n indicates that this is the- th revision of this file. Revision numbers are
always assigned sequentially.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 23

Chapter 4 : Depots, Clients, Filesand Changelists: Quick Start

N

Files opened for
add are, of course,
already in the client
wor kspace; other
files must be
retrieved into the
client workspace
before they can be
edited. Discussion
of this starts on
page 24.

]

If afileischecked
out for edit or
deletion, and
another user
already hasthefile
open, a file conflict
may occur when the
file is submitted.
Conflict resolution
isdiscussed in
chapter 6.

oA

Example:
Deleting a file from
the depot.

Editing Depot Files

To open file(s) for edi t, select the file(s) in the depot pane and choose File>Check Out
For Edit. This has two effects:

* The file(s)r ead- onl y permissions are turned off on the client workspace’s machine,
and

» The file(s) to be edited are added to a pending changelist.

Since the files must have theigad- onl y permission turned back on before they can be
edited, the edit command must be given before the files are actually edited.

To save the new file revision to the depot, Gbangelist>Submit..., as above.

Example: Ed wants to make changes to his el m hel p. 3 file. He selects the file in the
depot pane at the left and chooses File>Check Out For Edit. The file appearsin the pend-
ing changelist pane in his default changelist.

Files may be opened for edit in a number of ways: files can be dragged from the depot
pane to the desired changelist in the pending changelist pane, or they can be selected in the

depot pane and then tt gy button in the toolbar can be clicked. Once a file has been
checked out for edit, a red checkmark will appear at the left of the filggon ; if another

user already has the file checked out for edit, the file icon will have a blue checkmark at its
rightﬁnr; but the file can still be checked out.

Deleting Files From the Depot

Files are opened for deletion from the depot similarly to the way they are opened for edit:
the file(s) are selected in the depot pdfils>Check Out For Delete is used to open the

files for deletion in the default changelist and to delete the file from the client workspace,
and thenChangelist>Submit is used to delete the file from the depot. In essence,
File>Check Out For Delete replaces the MS/DO&I command for files within a client
workspace by allowing the file to be deleted both locally and on the server.

Ed's filedoc/ el m hel p. 3 is no longer needed. He deletes it from the client workspace
by selecting the file and choosiRge>Check Out for Edit. The file is added to his default
changelist for deletion; once he submits the changelist @hmgelist>Submit, the file

will be deleted from the depot.

Once the changelist is submitted, it will appear as if the file has been deleted from the
depot; however, old file revisions are never actually removed. This makes it possible to
read older revisions of ‘deleted’ files back into the client workspace.

Retrieving Files from the Depot
into a Workspace

Files from a depot that are not yet in the local client workspace can be recognized by the
empty file icong . Once a file has been read from the depot to the client workspace, the
file icon will contain the green “synced” dot, and will appeargps . Files in the client
workspace can be synced with files in the depot by selecting the files in the depot pane and
then choosingdrile>Sync/Remove/Sync to Head Revision (alternatively, select the file(s)

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 24

Chapter 4 : Depots, Clients, Filesand Changelists: Quick Start

[N

Example:

Retrieving filesfrom
the depot

into the

client workspace.

and then press =). The head revision of afile is the newest version of afile within the

depot; as we'll see in chapter 5, it is also possible to retrieve older revisions of a file into a
client workspace.

Lisa has been assigned to fix bugs in Ed’s code. She creates a directory caledws
within her own directory, and sets up a client workspace; now she wants to copy all the
existing elm files from the depot into her workspace. She sees

)| By - - | BB(B)) | W] B[
Client Yiew of Perforce Depot IF‘f:nding Perforce Changelists

e #/depot Bl {ﬂ by Pending Changelists
- ‘ Defau“
----- £ Other Pending Changelists

elm-help. 0 #0/7 <text:
elm-help. 1 #07 <text:
elm-help. 2 #0471 <text:
elm-help. 3 #0/7 <text:

None of the four files in the //depot/elm/doc directory contain a green dot in their icons;
this means that these files were created by another user and have not yet been read into
her client workspace. She selects the entire doc folder and chooses
File>Sync/Remove>Sync to Head Revision, and these files are read into her client work-
space. Lisa now sees the following in the leftmost pane:

Client Yiew of Perforce Depot

Bl /fdepot
E,% elm
E,% doc

i B elnchelp 0 #141 Stewt:
b B elmchelp 1 #1417 <test
b B elmchelp 2 #1417 <test
b B El-help 3 H141 <test

The green dot in the middle of each icon indicates that Lisa how has those files within her
client workspace

The Syncto Head Revision command maps depot files through the client view, compares
the result against the current client contents, and then adds, updates, or deletes filesin the
client workspace as needed to bring the client contents in sync with the depot.

The job of syncisto match the state of the client workspace to that of the depot; thus, if a
file has been deleted from the depot, Sync to Head Revision will delete it from the client
workspace.

We've already mentioned that the green dot in the file icon indicates that the current client
workspace has had those files synced; another indicator are the numbers to the right of the
file name. The revision specifiem#n means that the depot hasevisions of the file, and

that the client workspace contains theh revision of that file.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 25

Chapter 4 : Depots, Clients, Filesand Changelists: Quick Start

Reverting Files to their
Unopened States
Any file can be removed from a changelist and reverted to its unopened state by selecting

the file within the pending changelist pane and then choosing File>Revert to Saved, or by
selecting the file and then pressing the =y button.

g Ed wants to edit a set of filesin hissrc directory: | eavenbox. c,linit.c, andsig-
Example: nal s. c. He opensthefiles for edit by selecting them in the depot pane and then choosing
Reverting afile bact File>Checkout For Edit, but then realizes that si gnal s. c is not one of the files he will
to the last version be working on, and that he didnt mean to open it. He can resiarbal s. ¢ to its
gotten. unopened state by selecting it in the pending changelist pane and chiedekigevert.

If afile that had been checked out for deletion is reverted, it will appear back in the client
workspace immediately. If the file was originally opened for add, Revert will remove it
from the changelist but |eave the client workspace file intact. If the reverted file was origi-
nally checked out for edit, the last synced version will be written back to the client work-
space, overwriting the newly-edited version of the file. In this case, you may want to save
acopy of thefile before reverting it.

Basic Reporting

Reporting commands are those commands that supply information about objects without
altering anything within the client workspace or the depot. Two reporting commands are
used quite frequently: the first supplies information about the current P4D version and the
client workspace, and the second allows viewing of depot file metadata.

To view basic PAD version and client workspace metadata information, choose Per-
force>Info..., or click the button. A dialog box like the following will appear:

User Hame= edk
Client Hame= eds _elm
Client Root= c:\Projectsielm

Client Address= 286.14.52_212:3249

Client Version= 97.3.8.4723 11/16/97 (beta)

Seruer Address= computer.perforce.com:1667

Server Uersion= P4D/FREEBSD/97.3/74586 (11/83/797)

Server License= Perforce Software 1080 clients 2800 users
Server Root= fusrfdepot/phtest

Client 0%= Windows HT, ver. 4.8
Build= 1381, Service Pack 3

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 26

Chapter 4 : Depots, Clients, Filesand Changelists: Quick Start

To view file metadata, select a file in the depot pane and choose File>Properties... The
following dialog will be displayed:

| File Information |
Depot Path: |f;deput;elm;duc;elm—help.n
Client Path: [c:\Projectsielmidocielm-help.0
File Type: text

Head Rewvision:

Is

Have HeuiSiun:I 1
| 36

Head Action: add Head Change:

Last HodTime: |199?I11I1B 21:39:27

Opened By: edk@eds_elm
Locked By:
1114
The meaning of each field is as follows:
Field M eaning
Depot Path Thefull path of thefilewithin the depot, in relation to the server root.

Cient Path The full path of the file within the client workspace, as mapped
through the client view.

File Type The type of the file (see page “File Types” on page 37 for a full dis-
cussion)

Head Revi sion | The highest-numbered revision of this file within the depot

Head Action The action associated with the head revision of the file: add, edit, de-
lete, branch, or integrate.

Have Revi sion | The revision of the file last synced to the client workspace.

Head Change The number of the changelist that the current head revision of the file
was submitted in.

Last Mbdd Time | The date and time the current head revision of the file was submitted.

Qpened By The usernames and client names of all users who have the file
opened for edit, delete, branch, or integrate.

Locked By The usernames and client names of all users who have manually
locked the file.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 27

CHAPTER 5 Depots, Clients, and
Changelists:
More Details

The Quick Start chapter explained the basics of using changelists to transfer files between
the client workspace and the depot, but discussion of the practical details were deferred.
This chapter, which supplements the Quick Sart, provides additional information and
covers the dry PERFORCE rules. The topics discussed include a detailed description of the
client workspace, how to set up views to map the depot to the client workspace, how to
access older file revisions, creation and use of numbered changelists, the different PER-
FORCE-supported file types, and options for displaying the depot pane.

It is assumed that the material in the Quick Sart chapter has been read and properly
digested.

Description of the Client Workspace

A client workspace is a collection of source files managed by PERFORCE on a host. Each

such collection is given a name which identifies the client workspace to the PERFORCE

server. The name is, by default, simply the host's name, but this can be overridden by
changing the value of thed d i ent text box in thePerforce>Options... dialog box.

There can be more than onerRPORCE client workspace on a client host.

All files within a PERFORCE client workspace share a common root directory, called the
client root. The client root can be th@ \ directory, but in practice the client root is the
lowest level directory under which the managed source files will sit.

PERFORCE manages the files in a client workspace in a few direct ways. It creates, updates,

or deletes files when the user requesRFBRCE to synchronize the client workspace with

the depot; it turns on write permission when the user requests to edit a file; and turns off

write permission and submits updated versions back to the depot when the user is finished
editing the file.

The entire BRFORCE client workspace state is tracked by tleef®RCE server. The server
knows what files a client workspace has, where they are, and which files have write per-
mission turned on.

PERFORCE’'S management of a client workspace requires a certain amount of cooperation
from the user. Since client files are just plain files with write permission turned off, willful
users can circumvent the system by turning on write permission, directly deleting or
renaming files, or otherwise modifying the file tree supposedly urefgORCE’s control.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 28

Chapter 5: Depots, Clients, and Changelists: More Details

PERFORCE counters this with two measures: first, PERFORCE has explicit commands to

verify that the client workspace state is in accord with the server’s recording of that state;
second, PRFORCE tries to make usingHRFORCE at least as easy as circumventing it. For
example: to make a temporary modification to a file, it is easier toERrFORCE than it is

to copy and restore the file manually.

n Files not managed byeERFORCE may also be under a client’s root, and they are largely
. ignored by RRFORCE. For example, BRFORCE may manage the source files in a client
I:I workspace, while the workspace also holds compiled objects, libraries, executables, as
well as a developer’s temporary files.

The directory that
temporary files are
stored in can be set
intheTenp Files
tab of the
Perforce>Options...
dialog box.

In addition to accessing the client files, ¥ client program sometimes creates tempo-
rary files on the client host. Otherwis&RPORCE neither creates nor uses any files on the
client host.

Mapping the Depot to the Client
Workspace

Just as a client name is nothing more than an alias for a particular directory on the client
machine, a depot name is an alias for a directory ongReoRCE server. The relationship
between files in the depot and files in the client workspace is describeddietteiew;

this is set withClient>Create/Edit my Client command. When this command is run, the
following dialog appears:

Perforce Client Specification I

Client: |eds_elm Update Client
Ouner: |Edk

Cancel
Date: [1997/11/717 16:41:56

Description:
created by edk]. |

Root: [c:\Projectsyeln

Options: [nomodtime noclobber

Uiew:

Ffdepotselm/ ... f/feds_eln/... “

The contents of thei ew. field determine where client workspace files get stored in the
depot, and where depot files are copied to within the client workspace.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 29

Chapter 5: Depots, Clients, and Changelists: More Details

Using Views

Views consist of multiple lines, or mappings, and each mapping has two parts. The left-
hand side specifies one or more files within the depot, and has the form

/| depot nanel fil e_specification

The right-hand side of each mapping describes one or more files within the client work-
space, and has the form

[l clientnanel file_specification

The left-hand side of a client view mapping is called the depot side; the right-hand side is
theclient side.

The default view in the example above is quite smple: it maps the entire depot to the
entire client workspace. But views can contain multi ple mappings, and can be much more
complex. Any client view, no matter how elaborate, performs the same two functions:

» The client view determines which files in the depot can be used in a client workspace.
This is determined by the sum of the depot sides of the mappings within a view. A view
might allow the client workspace to retrieve every file in the depot, or only those files
within two directories, or only a single file.

It constructs a one-to-one mapping between files in the depot and files in the client
workspace. Each mapping within a view describes a subset of the complete mapping.
The one-to-one mapping might be straightforward; for example, the client workspace
file tree might be identical to a portion of the depot’s file tree. Or it can be oblique; for
example, a file might have one name in the depot and another in the client workspace, or
be moved to an entirely different directory in the client workspace. No matter how the
files are named, there is always a one-to-one mapping.

To determine the exact location of any client file on the host machine, substitute the value
of the clients dialog box'®oot : field for the client name on the client side of the map-
ping. For example, if the client dialog boReot : field for the clienteds_el mis set to

C.\ proj ect s\ edk\ el m then the file/ / eds_el m doc/ el m hel p. 1 will be found on

the local machine ig: \ pr oj ect s\ edk\ el m doc\ el m hel p. 1.

Single Workspace, Multiple Drives

An NT client workspace can be spread across multiple drives by setting the client root to
nul I and including the drive letter in the client view. For example:

Client: |eds_eln
Root: |nu11
Uiew:

/fdepot/felmfdocs/ ... Ffeds _elmfc:/Projects/elmfdocsy ...
/fdepotfelmisrc/... /FFfeds elmfe:/Code/Elm/src/...

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 30

Chapter 5: Depots, Clients, and Changelists: More Details

P4

The P4 command-
lineinterface allows
thefirst two of these
wildcardsin any
command that take
file arguments.

oA

Example:
Mapping

part of the depot
to the client

wor kspace.

Wildcards in Views

PERFORCE uses three wildcards for pattern matching in view specifications; these wild-
cards can be used in any view specification, such as the dialog that’s displa@éid by
ent>Create/Edit my Client. Any number and combination of these wildcards can be used
in a single string.

Wildcard Meaning

* Matches anything except slashes, matches only within a single directory.
Matches anything including slashes; matches across multiple directories

9% Used for parametric substitution; see the subsection “Changing the Or-
der of Filename Substrings” on page 33 for a full explanation.

Any wildcard used on the depot side of a mapping must be matched with an identical
wildcard in the mapping’s client side. Any string matched by the wildcard will be identical
on both sides.

In the client view

[/ depot/elmproj/... [leds_elni...
the single mapping containse®oORCE's “. .. " wildcard, which matches everything,
including slashes. The result is that any file in #oes_el m client workspace will be
mapped to the same location within the depet's proj file tree. For example, the
depot file // depot /el m proj/ nl s/ gencat/ README will be mapped to the client
workspace filg / eds_el mi nl s/ gencat / READVE, which is located on the client host at
C:\ Proj ect s\ el M nl s\ gencat \ README.

Types of Mappings

By changing the value of thé ewfield, it's possible to map only part of a depot to a cli-
ent workspace. It's even possible to map files within the same depot directory to different
client workspace directories, or to have files hamed differently in the depot and the client
workspace. This section discussegFRCE'S mapping methods.

Direct Client-to-Depot Views

The default view in the client dialog maps the entire client workspace tree into an identical
directory tree in the depot. For example, the default view

[/depot/... [/leds_eln...

indicates that any file in the directory tree under the client worksgpdseel mwill be
stored in the identical subdirectory in the depot. This view is usually considered to be
overkill; most users only need to see a subset of the files in the depot.

Mapping the Full Client to only Part of the Depot

Usually only a portion of the depot is of interest to a particular client. The left-hand side of
theVi ewfield can be changed to point to only the portion of the depot that’s relevant.

Bettie is rewriting the documentation for EIm, which is found in the depot within its
el m proj/doc subdirectory. Her client is named el m docs, and her client root is
C:\usr/ bes/ docs; shesdectsClient>Create/Edit my Client and setsthe Vi ew. field
of the dialog as follows:

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 31

Chapter 5: Depots, Clients, and Changelists: More Details

&

Example:

Multiple mappings
in a single client
view.

&

Example:

Using views to
exclude files from a
client workspace

&

Example:

Files with different
names in the depot
and client
workspace

/1 depot /el m proj/doc/... /1 el mdocs/. ..

Mapping Files in the Depot to

a Different Part of the Client

Views can consist of multiple mappings, which are used to map portions of the depot file
treeto different parts of the client file tree. If there is a conflict in the mappings, later map-
pings have precedence over the earlier ones.

The el m proj subdirectory of the depot contains a directory called doc, which has all
the EIm documents. Included in this directory are four files named el m hel p. 0 through
el m hel p. 3. Mike wants to separate these four files from the other documentation files
in his client workspace, which iscalled m ke_el m

To do this, he creates a new directory in his client workspace called hel p; it's located at
the same level as hitoc directory. The fouel m hel p files will go here; he fills in the
Vi ew field of the client specification dialog as follows:

[/ depot /...
/ / depot / el m proj/doc/ el mhel p. *

[/mke eln...
/1 m ke_el nl hel p/ el mhel p. *

Any file whose name starts wighm hel p within the depot'dloc subdirectory will be
caught by the later mapping and appear in Mike's workspaed's directory; all other

files are caught by the first mapping and will appear in their normal location. Conversely,
any files beginning witkl m hel p within Mike’s client workspaciee! p subdirectory will

be mapped to théoc subdirectory of the depot.

Excluding Files and Directories from the View

Exclusionary mappingalow files and directories to be excluded from a client workspace;
this is accomplished by prefacing the mapping with aminus sign (-). Whitespace is not
allowed between the minus sign and the mapping.

Bill, whose client is nameld | | m wants to view only source code; he’s not interested in
the documentation files. His client view would look like this:

[billm. ..
[1Dbillmdoc/...

[/ depot/elmproj/...
-/ / depot/el m proj/doc/...

Since later mappings have precedence over earlier ones, no files from the dtepetio-
directory will ever be copied to Bill's client workspace. Conversely, if Bill does hawe a
subdirectory in his client, no files from that subdirectory will ever be copied to the depot.

Allowing Filenames in the Client to be Different

than Depot Filenames

Mappings can be used to make the names of files different in the client workspace than
they are in the depot.

Mike wants to store the files as above, but he wants to taks thénel p. X files in the
depot and call themel pfile. Xin his client workspace. He uses the following map-

pings:

[/ depot/el mproj...
/1 depot/ el m proj/doc/el mhel p.*

/1mke_eln...
/1 mke_el ml hel p/ hel pfile.*

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 32

Chapter 5: Depots, Clients, and Changelists: More Details

&

Example:
Changing string
order in client
workspace names

5

Example:
Mappings that fail.

P4

In ther4 command-
line interface, files
provided as
arguments to any4
commands can be
specified in one of
three syntaxes: loca
OS syntax,
PERFORCE depot
syntax, or BRRFORCE
client syntax. The4
manual describes al
of these.

Each wildcard on the depot side of a mapping must have a corresponding wildcard on the
client side of the same mapping. The wildcards are replaced in the copied-to direction by
the substring that the wildcard represents in the copied-from direction.

There can be multiple wildcards; the n-th wildcard in the depot specification corresponds
to the n-th wildcard in the client description.

Changing the Order of Filename Substrings
The % wildcard can be used to rearrange the order of the matched substrings.

Mike wants to change the names of any fileswith a dot in themwithin hisdoc subdirectory

in such a way that the file's suffixes and prefixes are reversed in his client workspace. For

example, he'd like to rename tEem cover file in the depotover. El min his client
workspace. (Mike can be a bit difficult to work with). He uses the following mappings:

[/ depot/elmproj/...
[/ depot /el m proj/doc/%. 92

//mke_eln...
/1 mke_el m doc/ 9%2. %

Two Mappings Can Conflict and Fail
It is possible for multiple mappings in a single view to lead to a situation in which the

name does not map the same way in both directions. When a file doesn’t map the same

way in both directions, the file is ignored.

Joe has constructed a view as follows:

[/ depot/elmproj/...
/ I depot / nowher e/ *

/ljoelelnl...
/1joelel mdoc/*

The depot file / / depot / el m proj / doc/ hel p would map to //j oe/ el m doc/ hel p,
but the same file in the client workspace would map back to the depot via the higher-pre-
cedence second lineto / / depot / nowher e/ hel p. Because the file would be written back
to a different location in the depot than where it was read from, PERFORCE doesnt map
this name at all.

In older versions of PERFORCE, this was often used as a trick to exclude particular files
from the client workspace. Because PERFORCE now has exclusionary mappings, this type
of mapping is no longer useful, and should be avoided.

PERFORCE Syntax
for File Names Within Views

File and directory names provided in view specifications are always referred to PERFORCE
syntax, which remains the same across operating systems. Filenames specified in this way
begin with two dlashes and the client or depot name, followed by the path name of thefile
relative to the client or depot root directory. The components of the path are separated by
forward slashes.

Examples of PERFORCE Syntax

[/ depot /...
/1 eds_el m docs/ hel p. 1

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 33

Chapter 5: Depots, Clients, and Changelists: More Details

PERFORCE syntax is sometimes called depot syntax or client syntax, depending on whether
the file specifier refersto afilein the depot or on the client. But the syntax is the same in

either case.
4 The specifier / /. . . is occasionally used; it means ‘all files in all depots’.
Multiple depots can
be provided within a
single PERFORCE Name and String Limitations
server; these must
be set up with P4.

File Names

Because of BRFORCE’'S naming conventions, certain characters cannot be used in file
names. These include unprintable characters, the above wildcards, aprFtbrcP revi-

sion characterg@and#. Full file names, which include the entire directory specification,
must be 128 characters or less.

Descriptions

Label, branch, user, and client workspace specifications have a silent limit of 128 bytes on
descriptions. The description field of a changelist can be any length.

Depot and Client Names

Client names and depot names in a sirgRFORCE server share the same namespace, so
PerrFORCE will never confuse a client name with a depot name. Client workspace names
and depot names can never be the same.

Changelists

A PERFORCE changdlist is a list of files, their revision numbers, and operations to be per-
formed on these files. Commands suclride>Add to Source Control andFile>Check

Out for Edit include the affected files in a changelist; the depot is not actually altered
until the changelist is submitted wi@hangelist>Submit.

When a changelist is submitted to the depot, the depot is upatataidally: either all of

the files in the changelist are updated in the depot, or none of them are. This grouping of
files as a single unit guarantees that code alterations spanning multiple files will update in
the depot simultaneously. To reflect the atomic nature of changelist submissions, submis-
sion of a changelist is sometimes calledisomic change transaction.

When the comman@hangelist>Submit is given, a dialog is displayed that contains the
files in the default changelist. Any file can be removed from this list by unchecking it;
when a file is deleted, it is moved to the default changelist. A changelist must contain a
user-entered description, which should describe the nature of the changes being made.

When the user quits from the changelist dialog, the changelist is submitted to the server
and the server attempts to update the files in the depot. If there are no problems, the
changelist is assigned a sequential number, and its status changesvfronpendi ng to

submi tted. Once a changelist has been submitted, it becomes a permanent part of the
depot’'s metadata, and is unchangeable excepERORCE superusers.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 34

Chapter 5: Depots, Clients, and Changelists: More Details

Creating Numbered Changelists

A user can create a changelist in advance of submission with Changelist>New.... This
command brings up the same form seen when a changelist is submitted. All files in the
default changelist are moved to this new changelist; when the user quits from the form, the
changelist is assigned the next changelist number in sequence, and this changelist must be
subsequently referred to by this change number. Files can be deleted from the changelist
by editing the form; files deleted from this changelist are moved to the next default
changelist. The status for a changelist created by this method is pendi ng until theformis
submitted.

Multiple changelists are created in order to keep fixes that span multiple filesin asingle,
logical location. For example, a fix to one bug may involve changes to three files, and a
new feature may mean changing four other files. The bug fix might be handled in one
changelist, and the new feature might be added via another changelist. Each changelist
would include only the files that affect that particular change to the system.

Any client file may be included in only one pending changelist.

Moving Files between Changelists

Files may be moved between pending changelists by dragging them from one changelist
to the other.

Automatic Creation of
Numbered Changelists

Submits of changelists will occasionally fail. This can happen for a number of reasons:

« Afile in the changelist has been locked by another userRilighL ock;
» The client workspace no longer contains a file included in the changelist;
« There is a server error, such as not enough disk space; or

« The user was not editing the head revision of a particular file. The following sequence
shows an example of how this can occur:

Ed checks out file foo for edit and puts it in his default changelist;

Bettie checks out the same file for edit and puts it in her default changelist;
Bettie submits his default changelist;

Ed submits his default changelist.

Ed’s submit is rejected, since the file revisiorf 0b that he edited is no longer the
head revision of that file.

If any file in a changelist is rejected for any reason, the entire changelist is backed out, and
none of the files in the changelist are updated in the depot. If the submitted changelist was
the default changelist, ERFORCE assigns the changelist the next change number in

4 sequence, an error message will be written to the status pane, and the new numbered
changelist will appear in the pending changelist pane.

Chapter 6

discusses the If the submit failed because the client-owned revision of the file is not the head revision, a
merge/resolve merge must be performed before the changelist will be accepted.

process.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 35

Chapter 5: Depots, Clients, and Changelists: More Details

2

Example:
Automatic
renumbering of
changelists

Changelists May Be Renumbered upon Submission

The change numbers of submitted changelists always reflect the order in which the
changelists were submitted. Thus, when a changelist is submitted, it may be renumbered.

Ed has finished fixing the filtering bug that he’s been using chang@li&ir. Since he cre-
ated that changelist, he’s since submitted another changelist (cl3angand two other
users have submitted changelists. Ed submits chaagend the following message
appears in the status pane:

Change 33 subnitted

Deleting Changelists

To remove a pending changelist that has no files or jobs associated with it, use Change-
list>Delete. Pending changelists that contain open files or jobs must have the files and
jobs removed from them before they can be deleted: simply drag the files or jobs to
another changelist, use File>Revert to remove files from the changelist and revert them
back to their synced revision, and/or use Changelist>Remove Job Fix to remove jobs
from the changelist.

Viewing Submitted Changelists

A list of changelists that have been submitted to the depot can be viewed by clicking the
submitted changelist pane button 4gin the toolbar. Four columns are displayed:

—l.'_—|'lﬁ'f|’ | -] | = | R) Ll T |

|Suhmittt:d Perforce Changelists

Change ¥ | D ate | |1zer | D ezcriptiaon

Sy 00037 19974 rlof@lizaz_ws Deleting unuzed file
2y 00036 19974 dlof@eds_elm Adding help files
Sy 00034 195974 rlof@eds_elm Adding basze file

< [+

Any of the columns can be used to sort the changelists; click on the column that you want
to sort by. The number of submitted changelists retrieved from the server can be set with
the Perforce>Options... Connection Settings tab.

A list of filesand jobsincluded in any changelist can be viewed by clicking on the change-
list and choosing Changelist>Describe....

Accessing Older File Revisions

Thus far, we've seen how to sync only the most recent revisiorhétuerevision) of a
depot file to the client workspace, buRRORCE allows older file revisions to be brought
into the client workspace, and allows other operations on those files as well. Older file

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 36

Chapter 5: Depots, Clients, and Changelists: More Details

+

RCSformat and
delta storage are
described in detail
at the start of the
next chapter.

revisions are accessed by selecting a single file within the depot window, and then choos-
ing File>Revision History.... When this command is run, the following dialog will

appear:
Revizsion History for //depot/elm/doc/elm-help.1

Browse | Get | Diff Revs | OK
i | Change | Date | Aiction | User
2 2 1997 /11718 edit rlodeds elm
=7 CETE 36 1997711711 add rloReds _elm

Change Summary
Adding help files

For each revision of the file, the revision number is shown, along with the number of the
changelist that the revision was submitted in, the date the revision was submitted, the
action (add, edi t, del et e, i nt egr at e, or br anch) that the file was submitted with, and
the username and client workspace name from which the revision was submitted. Any
revision can be selected; the description of the changelist that the revision was submitted
inwill be displayed in the Change Sunmmary at the bottom.

Any file revision can be read into the client workspace by selecting the revision and click-
ing the Sync button. A revision can be viewed in an external editor by selecting the revi-
sion and pressing the Br owse button; two revisions can be compared by selecting them
both (using the Cont r ol key) and pressingtheDi f f Revs button.

File Types

PERFORCE supports normal text files as well as binary, “large text” files, keyword text
files, Macintosh resource forks, and symbolic links; these file types are described on the
next page. BRFORCE attempts to determine the type of the file automatically: when a file

is opened foadd, PERFORCE first determines if the file is a regular file or a symbolic link,
and then examines the first part of the file to determine whether is it text or binary. If any
non-text characters are found, the file is assumed to be binary; otherwise, the file is
assumed to be text.

The detected file type can be overridden by selecting a file in the pending client pane,
choosingFile>Change Type To, and then selecting the desired file type. The supported
file types are described on the next page.

Unless afile’s type is explicitly changed, it will remain the same from revision to revision.

PERFORCE must sometimes store the complete version of every file in the depot, but most
often it stores only the changes in the file since the previous revision. This isdettiéed
storage, and RRFORCE uses RCS format to store its deltas. The file’'s type determines
whetherfull file or delta storage is used. When delta storage is used, file merges and file

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 37

Chapter 5: Depots, Clients, and Changelists: More Details

compares can be performed. Files that are stored in their full form can’'t be merged or

compared.

The RERFORCE file types are:

Full
support
Storage | for type
P4 File Type Description | Comments Type in PAWIN?
Files of type t ext Text file Treated as text on the client |delta |yes
resour ce and xt ext Executable |Like atext file, but execute¢delta |yes
synl i nk have text file permission is set on the client
limited support in file when on UNIX hosts
PAWIN: although _ ' . ,
files of these types bi nary Non-text file Apcessed as binary files on tfeul | yes
can be client file
synced into the xbi nary Executable | Like abi nary file, but executef ul | yes
client workspace, binary file permission is set on the cligrti | e
and the edited filewhen on UNIX hosts
versmns_of these I text Long text file| This type should be used fdmul | yes
synced files can be generated text files, such [isile
submitted, PAWIN PostScript files.
doesn’t allow filesto)) ,
change their type to sym i nk $ymbol|c UNIX c_:hents access these pdelta |no
syt i nk or link symbolic links; on non-UNIX (see note at
I esour ce. clients, these are text files con- left)
taining symlink target file
names.
kt ext Text file with | Any inclusion of the literajdelta |yes
keyword ex-| string$l d$ within the file will
pansion. be expanded to reflect the depot
file name and revision number.
kxt ext Executable |Like aktext file, but executedel ta |yes
text file with | permission is set on the clignt
keyword ex- file when on UNIX hosts
pansion
resour ce Macintosh Please see the Macintosh clighul | no
resource fork| release notes at<http:// |[file (see note at
www. per f or ce. conl per - | ft)

f orce/ doc/ macnot es. t xt >

The types of existing files are displayed to the right of the file names in the depot pane.

Depot Pane Options

By default, the depot pane displays only those files in the depot that are mapped through
the current client view. The entire contents of the depot can be displayed instead; this is
controlled by deselecting th@&ient View Only menu item in th&Vindow menu.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual

38

Chapter 5: Depots, Clients, and Changelists: More Details

By default, the server is contacted to update the contents of the depot pane every 30 min-
utes. The time period between automatic updates can be specified in the PeER-
FORCE>OPTIONS... dialog; automatic updating can even be turned off altogether.

Users with large depots should be careful in their use of these two options, since updates
of the depot pane of a very large depot may be painfully slow.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 39

CHAPTER 6 PERFORCE Basics:
Resolving File Conflicts

File conflicts can occur when two users edit and submit two versions of the same file.
Conflicts can occur in a number of ways, but the situation is usualy a variant of the fol-
lowing:

Ed opensfilef oo for edit;

Lisa opens the samefile in her client for edit;

Ed and Lisa both edit their client workspace versions of f 0o;

Ed submits a changelist containing f oo, and the submit succeeds;
Lisa submits a changelist with her version of f oo; her submit fails.

If PERFORCE were to accept Lisa's version into the depot, the head revision would contain
none of Ed’s changes. Instead, the changelist is rejectedrasalve@ must be performed.

The resolve process allows a choice to be made: Lisa’s version can be submitted in place
of Ed’s, Lisa’s version can be dumped in favor of Ed's,ERFBRCE-generated merged
version of both revisions can be submitted, or ttRFBRCE-generated merged file can be
edited and then submitted.

Resolving a file conflict is a two-step process: first the resolsehixluled, then the

resolve isperformed. A resolve is automatically scheduled when a submit of a changelist
fails because of a file conflict; the same resolve can be scheduled manually, without sub-
mitting, by syncing the head revision of a file over an opened revision within the client
workspace.

PERFORCE also provides facilities for locking files when they are edited. This can elimi-
nate file conflicts entirely.

RCS Format: How PERFORCE Stores File
Revisions

PERFORCE uses RCS format to store its text file revisions; binary file revisions are always
saved in full. If you already understand what this means, you can skip to the next section
of this chapter; the remainder of this section explains how RCS format works.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 40

Chapter 6 : PERFORCE Basics. Resolving File Conflicts

Only the Differences Between Revisions are Stored

A single file might have hundreds, even thousands, of revisions. Every revision of a par-
ticular file must be retrievable, and if each revision was stored in full, disk space problems
could occur: one thousand 10KB files, each with a hundred revisions, would use a
gigabyte of disk space. The scheme used by most SCM systems, including PERFORCE, is
to save only the latest revision of each file, and then store the differences between each file
revision and the one previous.

As an example, suppose that a PERFORCE depot has three revisions of file f oo. The head
revision (f oo#3) lookslike this:

foo#3:

Thisisatest

of the
emergency
broadcast system

Revision two might be stored as a symbolic version of the following:

foo#2:
line 3 was “urgent”

And revision 1 would be a representation of this:

foo#1:
line 4 was “system”

From these partia file descriptions, any file revision can be reconstructed. The recon-
structed f oo#1 would read

This is a test
of the

urgent
system

The RCS (Revision Control System) algorithm, developed by Walter Tichy, uses a notation
for implementing this system that requires very little storage space and is quite fast. In
RCS terminology, it is said that the full text of the head revisions are stored, along with the
reverse deltas of each previous revision.

It isinteresting to note that the full text of the first revision could be stored, with the deltas
leading forward through the revision history of the file, but RCS has chosen the other path:
the full text of the head revision of each file is stored, with the deltas leading backwards to
thefirst revision. Thisis because the head revision is accessed much more frequently than
previous file revisions; if the head revision of afile had to be calculated from the deltas
each time it was accessed, any SCM utilizing RCS format would run much more slowly.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 41

Chapter 6 : PERFORCE Basics. Resolving File Conflicts

Use of “diff’ to Determine File Revision Differences

RCS utilizes the ‘GNUIi f f ' program to determine the differences between two versions
of the same filep4D contains its owliff routine which is used byERFORCE servers to
determine file differences when storing deltas. BecasredRCE's diff always determines

file deltas by comparing chunks of text between newline characters, it is by default only
used with text files. If a file is binary, each revision is usually stored in full, but binary files
can be checked in as text files, insuring that only the deltas are stored.

Scheduling Resolves of Conflicting Files

Whenever a file revision is to be submitted that is not an edit of the file’s current head
revision, there will be a file conflict, and this conflict must be resolved. A file that is in
conflict will appear in the depot with a yellow explanation point on the i@)n:

In slightly more technical terms: we’ll call the file revision that was read into a client
workspace théase file revision. If the base file revision for a particular file in a client
workspace is not the same as the head revision of the same file in the degpbieanust

be performed before the new file revision can be accepted into the depot.

Before resolves can be performed, they must be scheduled. There are two ways of sched-
uling resolves:

1. The easiest way to schedule a resolve is to submit a changelist that contains the newly
conflicting files; if a resolve is necessary, the submit will fail, and the resolve will be
scheduled automatically.

If the changelist whose submission failed was the default changelist, it will be assigned
a number, and the files from the default changelist will appear in the newly numbered
changelist.

2. Resolves of conflicting files can be scheduled by selecting the conflicting files within
the depot pane, and chdsite>Sync/Remove>Sync to Head Revision. Remember
that syncing’s job is to project the state of the depot onto the client. Thus, when a sync
is performed on a particular file:

« If the file does not exist in the client, or it is found in the client but is unopened, it is
copied from the depot to the client.

« If the file has been deleted from the depot, it is deleted from the client.

« If the file has been checked out for edit, tE@H®RCE server can’'t simply copy the
file onto the client: any changes that had been made to the current revision of the file

in the client would be overwritten. Insteadesolve is scheduled between the file
revision in the depot, the file on the client, and the base file revision (the revision that

was last read into the client).
Q Ed is making a series of changesto the*. gui de filesin theelmdoc subdirectory. He has
Example: retrieved the / / depot / el m doc/ *. gui de filesinto his client and has checked out the
Automatic and files for edit. He edits the files, but before he has a chance to submit them, Lisa submits
manual scheduling new versions of some of the same files to the depot. The versions Ed has been editing are
of resolves of no longer the head revisions; resolves must be scheduled and performed for each of the
conflicting files. conflicting files before Ed's edits can be accepted. Ed submits the changelist containing

these files; the submit fails and error messages appear in the status pane. The resolves of
the conflicting files are scheduled as part of the submission failure.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual a2

Chapter 6 : PERFORCE Basics. Resolving File Conflicts

Alternatively, Ed could have selected the/ / depot / el m proj / doc/ *. gui de filesin the
depot pane and chosen File>Submit/Remove>Sync to Head Revision. Since these files
are already open in the client, PERFORCE doesnt replace the client files; insteadgRP
FORCE schedules resolves between the client files and the head revisions in the depot.

Resolving Conflicting Files

File conflicts can be fixed interactively with File>Resolve..., or automatically with
File>Auto-Resolve. The latter is easier to use than the former, but provides fewer options.

Interactive File Resolution

Any number of conflicting files can be selected in either the depot pane or the pending
changelist pane, each file is processed separately when File>Resolve... is chosen. The
resolve process begins with three revisions of the same file and generates afourth version;
the user can accept any of these revisions to replace the current client workspace file, and
can edit the generated version before accepting it. Of course, the new revision is not stored
in the depot until it has been submitted in a changelist.

File>Resolve... brings up the file resolution dial og:

Reszolve File [3-way merge] I

—Your File

Ic:\FrujEttS\Elm\duc\chkaliaE.1

Diff HMerged

Accept Diff Edit

Edit Herged File

—~Their File

Run Herge Utility

ffdepot/elm/doc/chkalias . 1#2

Accept Diff Edit Cancel

~Summary of file differences - count of file chunks—

Yours: [1 Both |1

Theirs |2 Conflicting |9

The remainder of this section explains what this means, and how to use this dial og.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 43

Chapter 6 : PERFORCE Basics. Resolving File Conflicts

+

Discussion of
resolving branched
files begins on
page 50.

File Revisions Used and Generated when Resolving

The resolve process begins with three revisions of the same file, generates a new version
that merges elements of all three revisions, allows the user to edit the new file, and writes
the new file (or any of the original three revisions) to the client. The file revisions used in
the resolve process are these:

yours The newly-edited revision of the file in the client workspace. This file
is overwritten byresult once the resolve process is complete.

theirs The revision in the depot that the client revision conflicts with. Usu-
ally, this is the head revision, but resolves can be scheduled with any
revision between the head revision &ase.

base The file revision in the depot thgiburs was edited from. Note that
base andtheirs are different revisions; if they were the same, there
would be no reason to perform a resolve.

ner ged File variation generated byeRFORCE from theirs, yours, andbase.

resul t The file resulting from the resolve processult is written to the cli-
ent workspace, overwritingpurs, and must subsequently be submit-
ted by the user. The instructions given by the user during the resolve
process determine exactly what is contained in this file. The user can
simply acceptheirs, yours, or merge as the result, or can edligirs,
yours, andmerge, generating a more reliable result.

The remainder of this chapter will use the terms t hei r s, your s, base, ner ged, and
resul t to refer to the corresponding file revisions. The definitions given above are
somewhat different when resolve is used to integrate branched files.

Types of Conflicts Between File Revisions

The diff program that underlies the PERFORCE resolve mechanism determines differences
between file revisions on a line-by-line basis. Once these differences are found, they are
grouped into chunks: for example, three new lines that are adjacent to each other are
grouped into a single chunk. Your s and t hei r s are both generated by a series of edits
to base; for each set of linesin your s, t hei r s, and base, the resolve routine asks the
following questions:

« Is this line set the same your s, t hei r s, andbase?

« Is this line set the samefmei r s andbase, but different inyour s?

« Is this line set the same your s andbase, but different int hei r s?

Is this line set the same yrour s andt hei r s, but different inbase?

Is this line set different in all three files?

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 44

Chapter 6 : PERFORCE Basics. Resolving File Conflicts

P4

The P4 command-
line version of this
command, p4
resol ve, takesa
flag to generate
difference markers
even when only
yoursand base
differ, or when only
theirsand base
differ.

Any line sets that are the same in all three files don’t need to be resolved. The number of
line sets that answer the other four questions are reported at the bottom of the resolve dia-
log:

~Summary of file differences - count of file chunks—

Yours: |1 Both |1

Theirs |2 Conflicting |9

In this case, one line set is identicat ihei r s andbase but is different inyour s; two
line sets are identical imour s andbase but are different it hei r s; one line set was
changed identically iryour s andt hei rs; and no line sets are different yrour s,

t hei rs, andbase.

How the Merge File is Generated

The resolve process generates a preliminary version afghged file, which can be
accepted as is, edited and then accepted, or rejected. A simple algorithm is followed to
generate this file: any changes found/iour s, t hei r s, or bothyour s andt hei r s

are applied to théase file and written to therer ged file; and any conflicting changes

will appear in the merge file in the following format:

>>>> ORI G NAL VERSI ON

(text fromthe original version)
==== THEI R VERSI ON

(text fromtheir file)

==== YOUR VERSI ON

(text fromyour file)

<

Thus, editing the ERFORCE-generated merge file is often as simple as opening the merge
file, searching for the difference marker>>’ , and editing that portion of the text. How-

ever, this is not always the case; it's often useful (and necessary) to examine the changes
made tot hei r s to make sure they’'re compatible with other changes that you made.

The Resolve Dialog Options
TheFile>Resolve... command contains the following buttons:

What it Does

Acceptyour s into the client workspace as the resolved revi-
sion, ignoring changes that may have been matiéén r s.

Button Name

Accept
(underYour Fi | e)

Diff Diff line sets fromyour s that conflict withbase
(underYour Fi | e)
Edi t Edit the revision of the file currently in the client
(underYour Fi |l)

Accept
(underThei r Fil e)

Acceptt hei r s into the client workspace as the resolved revi-
sion. The revision that was in the client workspace is trashed.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 45

Chapter 6 : PERFORCE Basics. Resolving File Conflicts

Diff Diff line setsfrom t hei r s that conflict with base
(under Their Fil e)
Vi ew Edit the revision in the depot that the client revision conflicts

(under Thei r Fil e) with (usualy the head revision). This edit is read-only.

Accept Merged Accept nrer ged into the client workspace as the resolved revi-
sion. The version originally in the client workspace is trashed.

Di ff Merged Diff line sets from ner ge that conflict with base.
Edit Merged File | Editthe preliminary merge file generated by PERFORCE.

Run Merge Wility | Cal athird-party mergetool to generate the merged file. This
tool must be able to take four file argumentsin the order

base theirs yours merge

To use this option, you must set the environment variable
MERGE to the name of a third-party program that merges the
first three files and writes the fourth as a result

Cancel Don't perform the resolve right now. The file remains in con-
flict.

Thener ge fileisgenerated by p4p’s internaldiff routine. But the differences displayed by
all thediff options above are created bglifi routine internal to the4 client program, and
this diff can be overridden by specifying an exteuitilin theP4DI FF environment vari-

able.
Q In the last example, Ed scheduled the doc/ *. gui de files for resolve. This was necessary
Example: because both he and Lisa had been editing the same files; Lisa had already submitted ver-
Resolving sions, and Ed needs to reconcile his changes with Lisa’s. To perform the resolves, he
file Conflicts

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 46

Chapter 6 : PERFORCE Basics. Resolving File Conflicts

selects these files in the pending client pane, chooses File>Resolve... and sees the follow-

ing:

Resolve File [3-way merge] |
~Your File

Accept Herged

Ic:HPrujectsheldeuchﬁlias.guide
Diff Herged
ficcept Diff Edit
Edit Herged File

~Their File

Run Herge Utility

/fdepot/eln/doc/Alias . .quide#f?

Accept Diff Uiew Cancel

~Summary of file differences - count of file chunks—
Yours: |4 Both |1

Theirs |2 Conflicting |1

This is the resolve dialog for doc/ Al'i as. gui de, the first of the files that Ed needs to

resolve . Ed sees that he's made four changes to the base file that don' conflict with any of
Lisa's changes; he also notes that Lisa has made two changes that he's unaware of. He
clicks theDi f f button in theThei r Fi | e pane to view Lisa'liffs; he looks them over

and sees that they’re fine. Of most concern to him, of course, is the one conflicting change.
He choose&dit Merged Fil e and searches for the difference marker=>' . The fol-

lowing text is displayed:

Intuitive Systens
Mountain View, California
>>>> ORI G NAL VERSI ON
==== THElI R VERSI ON

98992

==== YOUR VERSI| ON

98993

<KL

He and Lisa have both tried to add a zip code to an address in the file; Ed had typed it
wrong. He changes this portion of the file so it reads as follows:

Intuitive Systens
Mountain View, California
98992

The merge file is now acceptable to him: he's viewed Lisa's changes, seen that they're
compatible with his own, and the only line conflict has been resolved. He quits from the
editor and choose&ccept Mer ge; the edited merge file is written to the client, and the
resolve dialog is displayed again for the next file that Ed needs to resolve.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 47

Chapter 6 : PERFORCE Basics. Resolving File Conflicts

+

File locking is
described in
“Locking Files to
Minimize File
Conflicts”, later in
this chapter.

A

Example:
Automatically
accepting particular
revisions of
conflicting files

When a version of the file is accepted onto the client, the previous client file is overwrit-

ten, and the new client file must still be submitted to the depot. Note that it is possible for

another user to have submitted yet another revision of the same file to the depot between

the time a file is resolved and the time the file’s changelist is submitted; in this case, it
would be necessary to perform another resolve. This can be prevented by locking the file
before performing the resolve.

Automatic File Resolution

A file can be resolved automatically by¥ARORCE by selecting the file and choosing
File>Auto-Resolve. This command automatically accepgsurs, theirs, or merged
according to the following criteria:

« If there are no differences betwetbairs andbase, yoursis accepted;
» Otherwise, if there are no differences betwgmms andbase, theirs is accepted,;

» Otherwise, if there are differences betwgeurs andbase, and betweetheirs andbase,
but there are no conflicts betwegmurs andtheirs, merged is accepted,;

» Otherwise, there are conflicts between changes maaert®andtheirs, and the resolve
is skipped.

Ed has been editing the doc/ *. gui de files, and knows that some of them will require
resolving. He selects all the doc/ *. gui de files within his changelist and schedul es them

for resolve. He then chooses File>Auto-Resolve...; the merge files for all scheduled
resolves are generated, and those merge files that contain no line set conflicts are written

to his client workspace. He'll still need to manually resolve all the other conflicting files,
but the amount of work he needs to do is substantially reduced.

Previewing Automatic File Resolution

The results of automatic file resolution can be previewed with File>Auto-Resolve (Pre-
view Only). This command displays messages in the status pane that inform you what
would happen if you chose File>Auto-Resolve.

Resolving Binary Files

If any of the three file revisions participating in the merge are binary instead of text, a
three-way merge is not possible. Instead, p4 resol ve performs a two-way merge: the

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 48

Chapter 6 : PERFORCE Basics. Resolving File Conflicts

two conflicting file versions are presented, and you can edit and choose between them.
The two-way merge dialog isa very limited version of the three-way merge dialog:

Resolve File [3-way merge] |
~Your File
Ic:HPrujectsxeldeucxﬂliaS.guide
Accept Edit
~Their File
//depot/elm/doc/Alias.quidest? Diff Files
Accept Edit Cancel

None of the commands that involve base or merged are available, since these revisions
don't exist in a two-way merge.

Locking Files to Minimize File Conflicts

Once open, a file can be locked witHe>L ock so that only the user who locked the file
can submit the next revision of that file to the depot. Once the file is submitted, it is auto-
matically unlocked. Locked files can also be unlocked manually by the locking user
File>Unlock. A locked file will appear with a lock to its leflgg in both the depot pane

and the pending changelist pane.

The clear benefit of locking a file is that once a file is locked, the user who locked it will
experience no further conflicts on that file, and will not need to resolve the file. But this
comes at a price: other users will not be able to submit the file until the file is unlocked,
and will have to do their own resolves once they submit their revision. hodecircum-
stances, a user who locks a file is essentially saying to other users “I don’t want to deal
with any resolvesyou do them.” But there is an exception to this rule.

Preventing Multiple Resolves with File Locking

Without file locking, there is no guarantee that the resolve process will ever end. The fol-
lowing scenario demonstrates the problem:

Ed opens filg oo for edit;
Lisa opens the same file in her client for edit;
Ed and Lisa both edit their client workspace versiorfsoof
Ed submits a changelist containing that file, and his submit succeeds;
Lisa submits a changelist with her version of the file; her submit
fails because of file conflicts with the new depoét®;
Lisa starts a resolve;
Ed edits and submits a new version of the same file;
Lisa finishes the resolve and attempts to submit; the submit fails and must now

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 49

Chapter 6 : PERFORCE Basics. Resolving File Conflicts

be merged with Ed’s latest file.
<etc...>

File locking can be used in conjunction with resolves to avoid this sort of headache. The
sequence would be implemented as follows: before scheduling a resolve, lock the file.
Then sync the file, resolve the file, and submit the file. New versions can't be submitted
by other users until the resolved file is either submitted or unlocked.

Resolves and Branching

Files in separate codelines can be integrated Rilg»Resolve; discussion of resolving
branched files begins in tieranching chapter on page 61

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 50

CHAPTER 7

Labels

A PerRrFORCE label is simply a user-determined list of files and revisions. The label can
later be used to reproduce the state of these files within a client workspace.

Labels provide a method of haming important combinations of file revisions for later ref-
erence. For example, the file revisions that comprise a particular release of your software
might be given the label r el ease2. 0. 1. At alater time, all the filesin that label can be
retrieved into a client workspace with a single command.

Create alabel when:

« You want to keep track of all the file revisions contained in a particular release of the
software;

» There exists a particular set of file revisions that you want to give to other users; or

» You have a set of file revisions that you want to branch from, but you don’t want to per-
form the branch yet. In this case, you would create a label for the file revisions that will
form the base of the branch.

Why Not Just Use Change Numbers?

Labels share certain important characteristics with change numbers: both refer to particu-
lar file sets, and both act as handles to refer to all the files in the set. But labels have four
important advantages over change numbers:

« the file revisions referenced by a particular label can come from different changelists;

« a change number refers to the state of all the files in the depot at the time the changelist
was submitted; a label can refer to any arbitrary set of files and revisions;

« the files and revisions referenced by a label can be arbitrarily changed at any point in the
label’s existence; and

« changelists are always referred to IBrRFRCE-assigned numbers; labels are named by
the user.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 51

Chapter 7 : Labels

Viewing Labels
Labels are created and edited within the labels pane.To display the labels pane, click the
labels pane selection icon %in the toolbar. The labels pane will appear at the right of the
window:

Ll el P LI Bl o Y = |

IF"erfur[:e Labels

Label P | D ate | D ezcription |
% prebranch_DOS 199710/22 Befare-branching label...
B releases 199710/22 Elmreleasze b

This pane lists every label known to the current PAD server. Any of the three columns may
be sorted on by clicking on the column title; more detailed information on any labdl is
available by selecting the label and choosing L abel>Describe.

Creating a Label

Labels are created with L abel>New...; this command brings up adialog similar to the cli-
ent specification dialog. Like clients, labels have associated views; the label view limits
which files can be referenced by the label. Once the label has been created, the
L abel>Synchronize Label to Match Client command is used to load the label with file
references.

Label names share the same namespace as clients, branches, and depots; thus, a label

name can't be the same as any existing client, branch, or depot name.
Q Ed has finished the first version of filtering in elm; he wants to create a label that refer-
Example: ences only the head revisions of filesinthef i | t er and hdr s subdirectories. He wants to
Creating a label namethelabel fil ters. 1; hetypes choosesLabel>New... and fillsin the label dialog as
follows:

| Perforce Label Specification |

Label: [Filters.1 Update Label
Ouner : [edk

Cancel
Description:

Created by edk.

Options: funlocked
Uiew:

/fdepot/elmfFilter/. ..
//depot/elmfhdrsys ...

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 52

Chapter 7 : Labels

When he quits from the editor, the label is created.

Before following this example further, it's worth stopping for a moment to examine
exactly what has and hasn't been accomplished. So far, a label fdalleér s. 1 has
been created. It can contain files only from the dedt'a fi | t er andel m hdrs sub-
directories. But the labéli | t ers. 1 is empty; it contains no file references. It will be
loaded with its file references withabel >Synchronize>L abel to match Client.

TheVi ew: field is used to limit the files that are included in the label. These files must be
specified by their location in the depot; this view differs from other views in that only the
depot side of the view is specified. Thecked/unl ocked option in theOpt i ons: field

can prevent abel>Synchronize>Label to Match Client from overwriting previously
synced labels (this is described further Rréventing Accidental Overwrites of a Label’s
Contents on page 54).

Adding and Changing
Files Listed in a Label

Once a label has been created, references to files can be included in the label by selecting
the label in the rightmost pane and choodirdpel>Synchronize>L abel to Match Cli-

ent. The files that are added to the label will be those in the intersection of the label view
and those that were last synced to the client workspace; the revisions in the label will be

those last synced to the client workspace.
Q Ed has created a label called fil ters. 1 as specified above; now he wants to load the
Example: filters. 1 label withthe proper filerevisions. The client view of the depot in the leftmost
Storing pane shows which files and revisions are in his workspace:
file references | el Ml PR Ml Ml (il Rt e RPN [et A B
inalabdl. - -
ICIlf:nt View of Perforce Depot IPEI’fDr[:E Labels
IElc:;,‘".a /fdepot Label - | Date | Dezcription
B3 eim %, [199711722 Labeltom
G- doc %, prebranch D 1337/11/22 Beforetia
L_—_| .

- filter B, releases 1997/11/22 Elmreleas
- F actions.c #1471 <te

e @ audibc #1743 <tet:
L [filkerc H2/2 <tewts

E--Eg hds
- % 2
E--Eg s

------- B Changes #1/1 <text:
....... B confighSH #1/1 staus

Ed clicksonthefilters. 1 label and chooses Label>Synchronize>Label to match Cli-
ent. Thefilesincluded in the label are theintersection of those listed in the client view and
the label view that the label was defined with; since the label view was defined to include
only thosefilesinthefi | t er and hdr s subdirectories, only those fileswill be included in
the label.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 53

Chapter 7 : Labels

P4
AlthoughrP4wiN

requires the entire o

contents of the clien
workspace to be
stored in the label,
therP4 command-
line provides more
precision, allowing
individual files and
revisions to be
added to the files
already listed in a
label. Please see th
Labels chapter of
the Command-Line
User’s Guidefor
more information.

&

Example:
Retrieving files into
a client workspace
from a label

The revisions included in the label will be those last synced to the client workspace; by
inspecting the client view of the depot above, we can see that this will include revision 7 of
thefileaudit. c andrevision2of filter.c.

Preventing Accidental Overwrites of
a Label’s Contents

Since L abel>Synchronize>L abel to match Client overwrites al the files that are listed
inthelabel, it is possible to accidently lose the information that alabel is meant to contain.
To prevent this, select the label in the labels pane, choose L abel>Edit Specification... and
set the value of the Opt i ons: fieldto | ocked. Syncing the label to the client will not be
allowed unless the label is subsequently unlocked.

Retrieving File Revisions from a Label
into a Client Workspace

Matching the Client Workspace to the Label

To retrieve dl thefiles listed in alabel into a client workspace, select the label in the label

pane and choose L abel>Sync Client to L abel... Thiscommand will match the state of the

client workspace to the state of the label, rather than simply adding the files to the client
workspace. Thus, files in the client workspace that aren’t in the label will be deleted from
the client workspace.

Lisa wants to make the state of her client workspace exactly match the files and revisions
stored in Edsfilters. 1 label. She selects the filters.1 label in the labels pane, and
choosed abel>Sync Client to Label.... Files are added to and deleted from her client
workspace to make it exactly match the file revision listing in the label.

Retrieving a Subset of a Label’s File Revisions
Into the Client Workspace

Toretrieve only asubset of thefilerevisionslisted in alabel into aclient workspace, select
the files in the depot pane and choose File>Sync/Remove Files>Sync to Label or
Change.

Lisa wants to retrieve only those file revisions in the //depot/elm/hdrs subdirectory of the
filter.1 label into her client workspace; she wants to leave the rest of her client workspace
intact. Within the depot pane, she shift-selects the files that she wants to sync from the
label:

B //depat
El---w@ elm
Y

El' @ hdrs
....... filter.h

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 54

Chapter 7 : Labels

P4

It is often useful to
view a list of files
contained in alabel.
PAWN does not
currently allow this,
but it can be
accomplished by
running the
PERFORCE
command-line
command

pd files

@ abel nane.

and chooses File>Sync/Remove Files>Sync to Label or Change. The following dialog is

displayed:
I Custom File Get EH |

Get Files

Get {Preview)

Cancel

Label or Change Humber:

Lisatypesthelabel namefi | t ers. 1 and pressesthe Get Fi | es button. Only those files
she’s selected are synced to the client workspace; the rest of her workspace is left intact.

If Lisahad selected the enclosing folder instead of the filesin the folder, all thefilesin the

folder would have been synced to the client workspace, as mapped through the [abel view.

Thus, if the folder had contained files that weren'’t included in the label, they would have
been deleted from Lisa’s client view.

Previewing Sync’s Results

A sync to the contents of a label can be previewed by selecting files within the depot pane,
choosingFile>Sync/Remove Files>Sync to Label or Change as above, typing in the

label name, and pressiggt (Previ ew) . The status pane will display the operations that
would occur were the sync to actually be performed.

Deleting Labels

A label can be deleted from the system by selecting it in the label pane and choosing
L abel>Delete.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 55

CHAPTER 8

Branching

PERFORCE's Inter-File Branching™ mechanism allows any set of files to be copied within
the depot. By default, the new file set (mdeline) evolves separately from the original
files, but changes in either codeline can be propagated to the othedwithcommands.

What is Branching?

Branching is a method of keeping in sync two or more sets of similar, but not identical,
files. Most software configuration management systems have some form of branching; we
believe that BRFORCE'S mechanism is unique in that it mimics the style in which users
create their own file copies when no branching mechanism is available.

Suppose that you're writing a program and are not using an SCM system. You're ready to
release your program: what would you do with your code? Chances are that you'd copy all
your files to a new location. One of your file sets would become your release codeline, and
bug fixes to the release would be made to that file set; your other files would become your
development file set, and new functionality to the code would be added to these files.

What would you do when you find a bug that’s shared by both file sets? You'd fix it in one
file set, and then copy the edits that you made into the other file set.

The only difference between this homegrown method of branching arEbRTE's
branching methodology is thaERFoRCE manages the file copying and edit propagation
for you. In PERFORCE's terminology, copying the files is calleobking a branch; each file
set is known as eodeling, and copying an edit from one file set to the other is catlee
gration. The entire process is callbchnching.

When to Create a Branch

Create a branch whenever two sets of code have different rules governing when code
should be submitted, or whenever a set of files needs to evolve along different paths. For
example:

* The members of the development group want to submit code to the depot whenever their
code changes, whether or not it compiles; but the release engineers don’'t want code to
be submitted until it's been debugged, verified, and signed off on. They would branch
the release codeline from the development codeline; when the development codeline is

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 56

Chapter 8 : Branching

ready, it would be integrated into the release codeline. Patches and bug fixes would be
made in the release code; later, these changes could be integrated into the devel opment
code.

« A company is writing a driver for a new multi-platform printer. They've written a UNIX
device driver; they're now going to begin work on a Macintosh driver, using the UNIX
code as their starting point. They create a branch from the existing UNIX code; they
now have two copies of the same code, and these codelines can evolve separately. If
bugs are found in either codeline, bug fixes can be propagated from one codeline to the
other with the integrate commands.

» At PERFORCE, we use branching to manage our releases. Development always proceeds
in files located within' / depot / mai n/ . . . When a new release is ready, it's branched
into another codeline, for example, the code for this release was copied from
/1 depot/main/... into//depot/97.3/... Bug fixes that affect both codelines
will be made withir/ / depot / mai n/ . . ., and later integrated into the other codeline.
Development of releass. 1 will proceed ir/ / depot / mai n/ . . . , when the new

release is ready, it will be branched intalepot / 98. 1/ . . ., and the process will con-
tinue like this for all BRFORCE releases.

Viewing Branches

Branches are created and edited within the branches pane.To display the branches pane,
click the branches pane selection icjh in the toolbar. The branches pane will appear at
the right side of thedwiN window:

| il el sl [e | g1] e [T | b L |

IPEI"fDr[:E Branches

Branch & | [ate | D escription

ﬁ‘ branch 199711704 Created by barklay.

ﬁ‘ branch_DOS 1337A11/22 Branch of releaze 1 code for DO
1T release 195711./22 Eranch from mainline for first code

This pane lists every branch known to the currdpt server. Any of the three columns
may be sorted on by clicking on the column title; more detailed information on any branch
is available by selecting the branch and chooBiremch>Describe.

Branching’s First Action:
Creating a Branch
As described above, two separate actions comprise branching: first, a branch is created

(e.g., files are copied); second, edits are copied from one codeline to the other as needed.
This section describes the first of these actions.

The steps to creating a branched codeline are:

1. Create the new branch view wiltanch>New.... Use the view in the dialog box to
indicate which files are to be included in the branch, and where the branched codeline
will be stored within the depot’s file tree.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 57

Chapter 8 : Branching

2. Make sure that the new files and directories are included in the client view of the client
workspace that will hold the new files.

3. UseBranch>Integrate to openthenew filesfor branching. Thenew filesarelisted in
achangelist; the associated operation isbr anch.

4. Submit the changelist that contains the branched file to the PERFORCE server. This cre-
ates the new filesin the depot.

The following example demonstrates each of these steps.

Step 1: Create the branch view

Thefirst step isto create the branch view. Creating a branch view does four things:

1. Assigns the branched codeline aname;

2. Describes which fileswill be copied from;

3. For each origina file, describes where the new copy will be stored within the depot;
4. Maintains a mapping between each original and branch file, so that changes to one can

g be easily propagated to the other.

A version of EImisready for release, and a potential problem is foreseen: the developers
Example: will be submitting code to the depot for the next version of Elm, but the release engineers
Creating a branch will be submitting fixes to the released version. The two policies are clearly incompatible;

so a branched codeline, with duplicate EIm files, needs to be created. Kurt, one of the
release engineers, is assigned to create the branch for the release engineers.

The original code is stored in the depot under its el msubtree; Kurt decides to call the
branch el mri1, and will store the branched codeline in the depot under an
el m r el easel subdirectory. He displays the branches in the rightmost pane, chooses
Branch>New... The following dialog box appears:

Perforce Branch 5pecification |

Branch: I Update Branch
Ouner: |kur'tu

Cancel
Description:
Created by KkKurtu. ﬂ
Uieuw:
//depot/... /f/depot/... =]

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 58

Chapter 8 : Branching

The default Vi ew above would map the entire depot to itself in a branch, which is useless.
The Vi ewneeds to map the original codeline’s files on the left to branch files on the right;
Kurt fills in a branch name and changes thewfield as follows:

Perforce Branch 5pecification I

Branch: |l_=1m_r1 Update Branch
Ouner: |kurtu

Cancel
Description:
Created by kurtu. ;l
Uiew:
ffdepot/elm/. .. f/depotfelm releasel/s... =]

A

This maps all the files in the depots m file tree to a new depot file tree called
el m rel easel. All files from the source subtree will be copied to the branch subtree at
the end of this process; these files will be the contents of the branch.

Kurt quits the editor; the branch is created.

The new branch command does not copy files into the branch; it simply specifies which
origina file will correspond to which branched file.

Exclusionary mappings may be used within a branch view.

Step 2: Include the Branched Files in the Client View

In order to work with branched files, the branched files must be accessible through the cli-
ent view.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 59

Chapter 8 : Branching

&

Example:
Including
branched files
in a client view

A

Example:

Usingi ntegrate
to create
branched files

Kurt will be working with the branched files. His client iskurtv_cl i ; he chooses Cli-
ent>Create/Edit my Client, and adds a line to his client view:

Perforce Client 5pecification I

Client: [kurtu_cli Update Client

Ouner: |kurtu pancel

Date: [1997/11/17 16:41:56

Description:

Created by Kurtu :l
Ad

Root: |c:\Docs\Code\Elm

Options: [nomodtime noclobber

Uiew:

fifdepot/elm releasel/... F/Rurtu_clifelm.ri1/... -

There might be other mappings within the client view; the only crucial factor is that the
files in the depot’s elm branch directory be mapped to some location in Kurt’s client work-
space. The mapping shown here accomplishes this.

Step 3:

Use Integrate

tfo Create the Target Files
in the Client Workspace

To create the new branch filesin the client workspace, select the branch in the branch pane

and choose Branch>I ntegrate>Sour ce Line to Branch. When the branch files don't yet
exist in the depot,nt egr at e creates the branched files in the client workspace and tells
the server that the branch files are to be copied from the original files described in the
branch mapping. Thient egr at e command, likeadd, edi t , anddel et e, does not actu-

ally affect the depot immediately; instead, it adds the affected files to a changelist which
must be submitted.

Kurt has created the branch el m r 1 as above, and he’s ready to create the branched cop-
ies in the depot. He selects this branch in the branch pane and cl®aseh>Inte-
grate>Source Line to Branch. The status pane tells him whether or not the files were
copied successfully into the client workspace; all the files that are created in the client
workspace are opened in the default changelist.

Editing Newly Branched Files
By default, afile that has been newly created in a client workspace by the integration com-

mand cannot be edited before its first submission. To make a newly-branched file avail-
ablefor editing before submission, smply check out the file for edit.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 60

Chapter 8 : Branching

+

Discussion of

file conflict
resolution

begins on page 43.

oA

Example:
Propagating
original codeline
changesto the
branched codeline

Step 4:

Submit the Changelist

fo Create the Files

in the Depot

The previous step created the files within the client workspace and opened the files within
the default changelist. The last step to create branched files is to submit the changelist.

This keeps the branching operation atomic: either all the named files are affected at once,
or none of them are.

Working With Branched Files

Once a branch has been created and the files have been copied into the branched codeline
with the integrate command, the branched files are treated exactly like non-branched files,
with the normal use of syncing, checking out for edit, checking out for delete, etc. Evolu-
tion of both codelines proceeds separately; additional PERFORCE commands are used only
when changes to one codeline need to be propagated to the other.

Branching’s Second Action:
Propagating Changes from One Codeline
to the Other

It is worth repeating that two separate actions comprise branching: first, one set of filesis

copied from one location in the depot to another location, and second, changes made to

one codeline can be copied to the branched codeline as needed. The steps needed to
accomplish the first action have been described above; now we’ll discuss how to accom-
plish the second action.

Edits to a file in either codeline can be propagated to the corresponding file in the other
codeline with theFile>Resolve... command. Only one additional step needs to be per-
formed: before resolving, tHeranch>Integrate command is used to schedule the merge
between the original files and the branched files.

A bug has been fixed in the original EIm codeline. Kurt wants to propagate the same bug

fix to the branched codeline he’s been working on. He selectd the 1 branch in the

branch pane and choos&ranch>Integrate>Source Line to Branch; the files in the

branch are scheduled for resolve. He switches to the changelist pane and selects the files
he wants to resolve; the standard merge dialog appears on his screen.

He resolves the conflicts with the resolution techniques described in chapter 6. When he’s
done, the result files overwrite the files in his branched client workspace, and they must
still be submitted to the depot.

There is one fundamental difference between resolving conflicts in two revisions of the

same file, and resolving conflicts between the same file in two different codelines. The
difference is that PERFORCE will detect conflicts between two revisions of the same file

and then schedule aresolve, but there are alwaysdifferences between two versions of the

same file in two different codelines, and these differences usually don't need to be
resolved. You must tellHRFORCE that text in one file needs to be propagated to its branch

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 61

Chapter 8 : Branching

P4

Access levels must
be set through the P4
command line.
Please see the
PERFORCE
Command Line
User’s Guideor
details.

+

yours,theirs,
and base arefirst
discussed inthe File
Conflictschapter on
page 44.

by using the integrate command. If the codelines evolve separately, and changes never
need to be propagated, you'll never need to integrate or resolve the files in the two code-
lines.

The integrate command acts only on files that are the intersection of target files in the
branch view and the client view. To run the integrate commarid,e access is needed
on the target files, antead access is required on the donor files.

Propagating Changes from Branched Files
fo the Original Files

In PERFORCE terminology, changes are always propagated ftomor files totarget files.

In the above example, the original codeline provided the donor files and the target files
were located in the branched codeline, but changes can be propagated in the other direc-
tion by usingBranch>I ntegrate>Branch Back to Source. When thisreverse integration
command is used to propagate changes from branched donors to original targets, the orig-
inal source files must be visible through the client view.

Deleting Branches

To delete a branch, ugranch>Delete. Deleting a branch deletes only the branch view
description, making the branch inaccessible from any subsequent integrate commands. If
the files in the branched codeline are to be removed, they must be deleted with
File>Check Out for Delete.

How Integrate Works

The preceding material in this chapter was written from a user’s perspective. This section
makes another pass at the same material, this time describing the mechanism behind the
integration process.

Integrate’s Definitions of yours, theirs, and base

The values ofour s, t hei r s, andbase in a three-way merge are quite different when
propagating changes between two codelines:

yours The file that changes are being propagated to (also knowntas the
get file). This file is in the client workspace, and it is overwritten by
the result once the resolve process is complete.

In a forward integrate, this is a file in the branched codeline. In a re-
verse integration, this is a file in the original codeline.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 62

Chapter 8 : Branching

theirs Thefilerevision that changes are being read from (also known as the
donor file). This file revision comes from the depot, and is un-
changed by the resolve process.

Inaforward integrate, thisisafilerevision from the original codeline.
In areverse integration, thisis afilein the branched codeline.

base The last integrated revision of the donor file. When a new branch is
created and integrate is used to create the branched copy of thefilein
the depot, the newly-branched copy is base.

The Integration Algorithm
The integration mechanism performs the following steps:

1. It appliesthe branch view to all target filesto produce alist of donor/target file pairs.It
notes individually each revision of each donor file that isto be integrated.

2. It discards any donor/target pairs for which the donor file revisions have been inte-
grated in previous changes. Each revision of each file that has been integrated is
remembered individually, in order to avoid making the user merge changes more than
once.

3. It discards any donor/target pairs whose donor file revisions have integrations pending
in filesthat are already opened in the client.

4. All remaining donor/target pairs will be integrated. The target file is opened on the cli-
ent for the appropriate action (see below), and merging is scheduled.

Integrate’s Actions

Theintegrate command will take one of three actions, depending on particular characteris-
tics of the donor and target files:

Action Meaning

branch If the target file does not exigt, it is opened for br anch. Thebr anch
actionisavariant of add, but PERFORCE keeps arecord of which do-
nor file the target file was branched from. This allows three-way
merges to be performed between subseguent donor and target revi-
sions with the original donor file revision as base.

integrate If both the donor and target files exist, the target is opened for i nt e-
gr at e, which is a variant of edi t . Before a user can submit afile
that has been opened for integration, the donor and target must be
merged through PERFORCE'’S resolve process.

del ete When the target file exists but no corresponding donor file is mapped
through the branch view, the target is marked for deletion. This is
consistent with nt egr at e’s semantics: it attempts to make the tar-
get tree reflect the donor tree.

When a forward integration is performed, the original codeline provides the donor files,
and the branched codeline provides the targets. When a reverse integration is run, the
branched codeline is the donor, and the origina files are the targets.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 63

Chapter 8 : Branching

Additional Command-Line Functionality

The P4 command line interface to PERFORCE provides additional branching functionality
that isnot available in PAwWIN. P4 allows integration of a subset of filesin abranch, integra-
tion of specific file revisions, the re-integration and re-resolving of already integrated
code, and merging of two files that were previously not related. For more information,
please see the PERFORCE Command Line User's Manual

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 64

CHAPTER 9

Job Tracking

P4

Please see thert
User’s Manudl for
information about
daemons.

A job isawritten description of some modification to be made to a source code set. A job
might be a bug description, like “the system crashes when | pgessn”, or it might be
a system improvement request, like “please make the program run faster.”

Whereas a job represents work that is intended, a changelist represents work actually
done. BRFORCE's job tracking mechanism allows jobs to be linked to the changelists that
implement the work requested by the job. A job can later be looked up to determine if and
when it was fixed, which file revisions implemented the fix, and who fixed it. A job linked

to a particular changelist is marked as completed when the changelist is submitted.

Jobs perform no functions internally teRRORCE; rather, they are provided as a method

of keeping track of what changes to the source are needed, which user is responsible for
implementing the job, and which file revisions contain the implementation of the job.
Since jobs do nothing more than provide this information to the user, the job reporting
facilities are particularly important.

The job facilities in BRFORCE do not provide a full-scale job tracking system. They can
be used as is, or integrated with another system via a daemon.

Viewing Jobs

Jobs are created and edited within the Jobs pane.To display the jobs pane, click the jobs
pane selection icogg in the toolbar. The jobs pane will appear:

—"‘-‘I Iq§||._l1ﬂ"|f | = ll‘l%l\:}’lx..." -) urll
IPEI’fDrEE Jobs

|_Job ki | D ate | | zer | Statuz | D escription
,@ job000003 19374... 1o apeEn Filtering bug: when a us...
/ﬁ job000007 199741, 1o closed Car't delete ald email w...
/ﬁ ob00000% 19374, 1o suspended Email headers often def...
/9 compat_bug 19974, 1o apen Compatability problems ..

This pane lists every job known to the curredtt server. Any of the five columns may be
sorted on by clicking on the column title; more detailed information on any job is avail-
able by selecting the job and choositopp>Describe.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 65

Chapter 9: Job Tracking

Creating and Editing Jobs
g Jobs are created with the Job>New... command.

Sarah, who shares the same PERFORCE server as Ed, has found a bug in EIm’s filtering
Example: code. Ed is fixing the code, so Sarah creates a new job and fills in the resulting dialog box

Creating a Job as follows:
Perfun::e Job Specification |

Job: [new Update Job
User: IEdk

Cancel

Status |new |v|

Description:

Filtering doesn't work on B
the "Reply-To:" field.

She has changedser: from her username tedk. Ed will see this job listed in the
changelist dialog the next time he creates a new changelist.

The job dialog box’s fields are:

Field Name Description Default

Job The name of the job. Whitespace is not new
allowed in the name.

User The user whom the job is assigned to, usualli’PERFORCE user-
the username of the person assigned to firame of the per-
this particular problem. son creating the

job.

St at us open, cl osed, suspended, Ornew. new, changes to
An open job is one that has been created buepen after job
has not yet been fixed. creation form is

Acl osed job is one that has been complete jleosed.

A suspended job is an open job that is not
currently being worked on.

New jobs exist only while the change creatio
form is open.

Descri ption | Arbitrary text assigned by the user. Usually [gext that must be
written description of the problem that i$changed
meant to be fixed.

]

The name that appears by default on the fonmeg but this can be changed by the user to
any desired string. If th#ob: field is left asnew, or is blank, BRFORCE will assign the
job the namé ob N, whereNis a sequentially-assigned six-digit number.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 66

Chapter 9: Job Tracking

&

Example:

Including and
excluding jobs from
changelists

Existing jobs can be edited with Job>Edit Specification... The owner and description can
be changed arbitrarily, and the status can be changed to any of the three valid status values
open, cl osed, or suspended.

Linking Jobs to Changelists,
and Changing a Job’s Status

Automatically Performed Functions

By default, all open jobs owned by a particular user will appear in al PERFORCE change-

lists subsequently created by that user. A job is automatically closed when one of its asso-
ciated changelistsis successfully submitted. Jobs can be disassociated from changelists by
deselecting the job in the changelist’s dialog box, and any job of any status may be added
to a changelist.

Ed is unaware of the job that Sarah has assigned to him. He is currently working on an
unrelated problem; he chooses Changelist>New... and sees the following:

Perforce Change 5Specification |

Change: [new Update Changelist
Client: |ed5 elm

— Gancel
User: [edk
Status: |new

Description:

{enter description herel

Jobs:
II:liuhI]I]I]I]H

Files:

W{{depotfelm/srcifind_alias.c
Wj{depotfelmisrcffile.c

Since this job is unrelated to the work he’s been doing, and since it hasnt been fixed, he
leaves the job deselected and closes the dialog box. When the changelist is submitted; the
job is not associated with it.

Ed useslob>Describe to read the job’s details. He fixes this problem, and a number of
other filtering bugs; when he creates his next changelist, the same job appears in the
changelist dialog again and this time, since the job is fixed in this changelist, Ed selects
the job. When he submits this changelist, the job is marked as closed, and will not appear
in any subsequent changelists unless it is reopened.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 67

Chapter 9: Job Tracking

When ajob has been linked to a pending changelist, the job will appear in that changelist
when the changelist is expanded:

1 el el Mot R B B y - |'®I-'_|u.]

IPending Perforce Changelists
Bl My Pending Changelists

B M Change B2 {Fixes all fitering bugs report...}
------- B Adepotielmsrc/calendar ol <bests <add:
------- B Adepotielm/srcdencode el <tests<adds
------- B Adepotielm/srcespies ol <bests <add:
- S job000003
b JB job000011

B4 Other Pending Changelists

Controlling Which Jobs Appear in Changelists

The types of jobs that appear in new changelists created by a particular user can be con-
trolled through User >Create/Edit My User. The dialog box brought up by this command
hasaJobVi ew. field that allows one of three values:

Value of JobVi ewfield Description

M ne When a new changelist is created, automatically in-
clude all open jobs owned by the invoking user in the
changelist dialog. This setting of JobVi ew is the de-

fault.
None Don't include any jobs in new changelist dialogs.
All Include all open jobs owned by all users in all new

changelists dialogs.

In al three cases, any unwanted job may be deselected from the form before leaving the
editor, and additional jobs can be added.

Manually Associating Jobs with Changelists

Any open job can be linked to any pending changelist other than the default changelist by
selecting the changelist in the pending changelist pane and choosing Changelist>Add

Job Fix.
g Sarah has submitted a job called opt i ons- bug to Ed. Ed has already created a change-
Example: list that fixes this bug, but this changelist has not yet been submitted; Ed selects his
Attaching ajob
to a changelist

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 68

Chapter 9: Job Tracking

changelist in the pending changelist pane and links the jab to his changelist with Change-
list>Add Job Fix. He sees the following dialog:

Select Job[s] Fixed by Change

Cancel 0K
Job | Date | User | Status
L job000a12 1997/18/22 sarah open
f2 johaaaa11 1997718722 edk open
{2 johpoanas 1997/7108/21 rlo open

Job Description

The OPTIONS screen doesn't have the
proper appearance on TTY terminals.

The appearance of any job that Ed selects in the Job field will appear in the Job Descrip-
tion field at the bottom of the dialog. When Ed clicks O, the job he's chosen will be added
to the changelist he’'d originally selected:

-] Ferorce Lhangelists

B {ﬁ My Pending Changelists
------- A Default

¥ Adepotielmdsrcdcalendar cH <te:-:t><au:||:|>
--‘E] Addepotdeimd sredfile. o1 <bexts <add:

--‘E] Hdepotdelm/srcdind_alias. ol <texts<add:

A8 job000012

Change B2 {Fixes all filtering bugs report...}
LB Pdemmt et endm o] chady s e

Arbitrarily Changing a Job’s Status

We've already seen that a job is automatically closed when an associated changelist is sub-
mitted. The status of any job can also be changed by editing the job description with
Job>Edit Specification... and then changing the status to one of the three allowed values.
This is theonly way of changing a job’s statusd¢aspended.

Deleting Jobs

A job that has been linked to a changelist can be unlinked from that changelist by selecting
the job within the expanded changelist in the pending changelist pane, and choosing
Changelist>Remove Job Fix. A job can be completely removed from the system by
selecting the job in the jobs pane and choodoiprDel ete.

PERFORCE 97.3 Graphical User Interface User’s Beta Manual 69

	PREFACE About This Manual
	Margin Note Icons
	The Example Set
	Menu Commands and Shortcut Menus
	Please Give Us Feedback

	CHAPTER 1 Perforce Concepts
	Perforce Architecture
	Moving Files Between the Clients and the Server
	File Conflicts
	Labeling Groups of Files
	Branching Files
	Job Tracking
	Change Review and Daemons
	Protections

	CHAPTER 2 The p4win Window
	The p4win Panes
	The Depot Pane
	The Object Pane
	The Status Pane

	CHAPTER 3 Connecting to the p4d Server
	Verifying the Connection to the p4d Server
	Telling p4 Where p4d is

	CHAPTER 4 Depots, Clients, Files and Changelists: Quick Start
	Underlying Concepts
	File Configurations Used in the Examples

	Setting Up a Client Workspace
	Naming the Client Workspace
	Describing the Client Workspace to the Perforce Server
	Editing an Existing Client Specification
	Deleting an Existing Client Specification

	Copying Files from the Workspace to the Depot
	Adding Files to the Depot
	Editing Depot Files
	Deleting Files From the Depot

	Retrieving Files from the Depot into a Workspace
	Reverting Files to their Unopened States
	Basic Reporting

	CHAPTER 5 Depots, Clients, and Changelists: More Details
	Description of the Client Workspace
	Mapping the Depot to the Client Workspace
	Using Views
	Wildcards in Views
	Types of Mappings

	Perforce Syntax for File Names Within Views
	Name and String Limitations
	File Names
	Descriptions
	Depot and Client Names

	Changelists
	Creating Numbered Changelists
	Moving Files between Changelists
	Automatic Creation of Numbered Changelists
	Changelists May Be Renumbered upon Submission
	Deleting Changelists
	Viewing Submitted Changelists

	Accessing Older File Revisions
	File Types
	Depot Pane Options

	CHAPTER 6 Perforce Basics: Resolving File Conflicts
	RCS Format: How Perforce Stores File Revisions
	Only the Differences Between Revisions are Stored
	Use of ‘diff’ to Determine File Revision Differences

	Scheduling Resolves of Conflicting Files
	Resolving Conflicting Files
	Interactive File Resolution
	Automatic File Resolution
	Resolving Binary Files

	Locking Files to Minimize File Conflicts
	Preventing Multiple Resolves with File Locking

	Resolves and Branching

	CHAPTER 7 Labels
	Why Not Just Use Change Numbers?
	Viewing Labels
	Creating a Label
	Adding and Changing Files Listed in a Label
	Preventing Accidental Overwrites of a Label’s Contents
	Retrieving File Revisions from a Label into a Client Workspace
	Matching the Client Workspace to the Label
	Retrieving a Subset of a Label’s File Revisions Into the Client Workspace

	Deleting Labels

	CHAPTER 8 Branching
	What is Branching?
	When to Create a Branch
	Viewing Branches
	Branching’s First Action: Creating a Branch
	Step 1: Create the branch view
	Step 2: Include the Branched Files in the Client View
	Step 3: Use Integrate to Create the Target Files in the Client Workspace
	Step 4: Submit the Changelist to Create the Files in the Depot

	Working With Branched Files
	Branching’s Second Action: Propagating Changes from One Codeline to the Other
	Propagating Changes from Branched Files to the Original Files

	Deleting Branches
	How Integrate Works
	Integrate’s Definitions of yours, theirs, and base
	The Integration Algorithm
	Integrate’s Actions

	Additional Command-Line Functionality

	CHAPTER 9 Job Tracking
	Viewing Jobs
	Creating and Editing Jobs
	Linking Jobs to Changelists, and Changing a Job’s Status
	Automatically Performed Functions
	Controlling Which Jobs Appear in Changelists
	Manually Associating Jobs with Changelists
	Arbitrarily Changing a Job’s Status

	Deleting Jobs

