
Perforce 97.3
Graphical User Interface
User’s Manual

Manual 97.3.gg1 (Beta Edition)

November 24, 1997

This manual copyright 1997 PERFORCE Software.
All rights reserved.

PERFORCE software and documentation is available from
http://www.perforce.com/. You may download and
use PERFORCE programs, but you may not sell or redistribute
them. You may download and print the documentation, but you
may not sell or redistribute it. You may not modify or attempt to
reverse engineer the programs.

PERFORCE programs and documents are available from our Web
site as is. No warranty or support is provided. Warranties and
support, along with higher capacity servers, are sold by
PERFORCE Software.

PERFORCE Software assumes no responsibility or liability for
any errors or inaccuracies that may appear in this book.

By downloading and using our programs and documents you
agree to these terms.

PERFORCE and Inter-File Branching are trademarks of
PERFORCE Software. PERFORCE software includes software
developed by the University of California, Berkeley and its
contributors.

All other brands or product names are trademarks or registered
trademarks of their respective companies or organizations.

The remainder of this column is left blank for your use. You may
utilize it to store such written, inscribed, drawn, painted, copied,
drafted, or duplicated material as you see fit, or for any other use,
providing the use does not violate the laws, ordinances, statutes,
regulations, edicts, canons, or decrees of your country, state,
territory, kingdom, province, county, city, or other municipality.
PERFORCE Software will assume no liability, responsibility, debt,
risk or other obligation for any defamatory, libelous, pejorative,
unlawful, slanderous, or otherwise illegal material appearing
below this paragraph in this column on this page.

Table of Contents

PREFACE About This Manual 7

Margin Note Icons 7
The Example Set 7
Menu Commands and Shortcut Menus 8
Please Give Us Feedback 8

CHAPTER 1 PERFORCE Concepts 9

PERFORCE Architecture 9
Moving Files Between the Clients
and the Server 10
File Conflicts 10
Labeling Groups of Files 11
Branching Files 11
Job Tracking 11
Change Review and Daemons 12
Protections 12

CHAPTER 2 The P4WIN Window 13

The P4WIN Panes 14
The Depot Pane 14
The Object Pane 14
The Status Pane 15

CHAPTER 3 Connecting to the
p4d Server 16

Verifying the Connection to
the p4d Server 16
Telling P4 Where P4D is 17

CHAPTER 4 Depots, Clients,
Files and Changelists: Quick Start 18

Underlying Concepts 18
File Configurations Used in the Examples 18

Setting Up a Client Workspace 19
Naming the Client Workspace 19
Describing the Client Workspace
to the PERFORCE Server 19
Editing an Existing Client Specification 21
Deleting an Existing Client Specification 21

Copying Files from the Workspace
to the Depot 21

Adding Files to the Depot 22
Editing Depot Files 24
Deleting Files From the Depot 24

Retrieving Files from the Depot
into a Workspace 24
Reverting Files to their
Unopened States 26
Basic Reporting 26

CHAPTER 5 Depots, Clients, and Changelists:
More Details 28

Description of the Client Workspace 28
Mapping the Depot to the Client Workspace 29

Using Views 30
Wildcards in Views 31
Types of Mappings 31

PERFORCE Syntax
for File Names Within Views 33
Name and String Limitations 34

File Names 34
Descriptions 34
Depot and Client Names 34

Changelists 34
Creating Numbered Changelists 35
Moving Files between Changelists 35
Automatic Creation of
Numbered Changelists 35
Changelists May Be Renumbered upon Submission 36
Deleting Changelists 36
Viewing Submitted Changelists 36

Accessing Older File Revisions 36
File Types 37
Depot Pane Options 38

CHAPTER 6 PERFORCE Basics:
Resolving File Conflicts 40

RCS Format: How PERFORCE Stores File Revisions 40
Only the Differences Between Revisions are Stored 41
Use of ‘diff ’ to Determine File Revision Differences42

Scheduling Resolves of Conflicting Files 42
Resolving Conflicting Files 43

Interactive File Resolution 43
Automatic File Resolution 48
Resolving Binary Files 48

Locking Files to Minimize File Conflicts 49
Preventing Multiple Resolves with File Locking49

Resolves and Branching 50

CHAPTER 7 Labels 51

Why Not Just Use Change Numbers? 51
Viewing Labels 52
Creating a Label 52
Adding and Changing
Files Listed in a Label 53
Preventing Accidental Overwrites of
a Label’s Contents 54
Retrieving File Revisions from a Label
into a Client Workspace54

Matching the Client Workspace to the Label 54
Retrieving a Subset of a Label’s File Revisions
Into the Client Workspace54

Deleting Labels 55

CHAPTER 8 Branching 56

What is Branching? 56
When to Create a Branch 56
Viewing Branches 57
Branching’s First Action:
Creating a Branch 57

Step 1: Create the branch view 58
Step 2: Include the Branched Files in the Client View 59
Step 3:
Use Integrate
to Create the Target Files
in the Client Workspace 60
Step 4:
Submit the Changelist
to Create the Files
in the Depot 61

Working With Branched Files 61
Branching’s Second Action:
Propagating Changes from One Codeline
to the Other 61

Propagating Changes from Branched Files
to the Original Files 62

Deleting Branches 62
How Integrate Works 62

Integrate’s Definitions of yours, theirs, and base62
The Integration Algorithm 63
Integrate’s Actions 63

Additional Command-Line Functionality 64

CHAPTER 9 Job Tracking 65

Viewing Jobs 65
Creating and Editing Jobs 66
Linking Jobs to Changelists,
and Changing a Job’s Status67

Automatically Performed Functions 67
Controlling Which Jobs Appear in Changelists 68
Manually Associating Jobs with Changelists 68
Arbitrarily Changing a Job’s Status69

Deleting Jobs 69

PREFACE $ERXW�7KLV�0DQXDO
PERFORCE 97.3 Graphic

is

S�

!

This is the PERFORCE 97.3 Graphical User Interface User’s Guide. It is meant for P4WIN

users who have never used PERFORCE before; experienced PERFORCE command line users
will find the P4 to P4WIN Translation Guide to be more useful. This manual teaches the use
of PERFORCE’s Windows GUI interface, P4WIN; the command line is discussed in th
manual only to point out differences between P4 and P4WIN. For information on our com-
mand line interface, P4, please see the Command Line User’s Guide, which is available at
our Web site.

0DUJLQ�1RWH�,FRQV

This manual makes use of notes in the left margin to supply additional information. The
icons accompanying these notes have the following meanings:

Highlightes an important difference between P4WIN and P4.

A cross-reference to other material in this manual.

A concrete example of the material discussed.

A note of general interest.

This note is rather important!

7KH�([DPSOH�6HW

We have attempted to develop a uniform example set for use with this manual. All of the
examples use the source code for Elm, a popular UNIX mail program. We selected the
Elm source code for a number of reasons:

• Elm is widely used, and many PERFORCE users will be familiar with the program. If
they are not, they at least understand what it does.
al User Interface User’s Beta Manual 7

PERFORCE 97.3 Graphic

Chapter PREFACE : About This Manual

mon-

 Elm

em-

These
e not
n the

iving
ever
ors?
dion?

lica-
.

• The source code is stored in well-organized subdirectories, which allow us to de
strate certain capabilities of PERFORCE.

• The source code for Elm is widely available; users of this manual can download
and try the examples as they're encountered.

Links to the Elm source code can be found at

http://www.myxa.com/elm.html

We are using the Elm source with the kind permission of Sydney Weinstein and Bill P
berton of the USENET Community Trust.

0HQX�&RPPDQGV�DQG�6KRUWFXW�0HQXV

In this manual, references to menu commands appear as Menu>Command. For example,
the Lock command in the File menu is referred to as File>Lock. Submenus are indicated
by extending this scheme to multiple levels; for example, the Sync to Head Revision sub-
menu of the Sync/Remove command of the File menu would appear as
File>Sync/Remove>Sync To Head Revision.

For every menu command, a corresponding shortcut menu command is available.
shortcut menus, which are accessed by right-clicking on objects within windows, ar
explicitly mentioned in the manual unless there is some important difference betwee
menu command and the shortcut menu version of the same command.

3OHDVH�*LYH�8V�)HHGEDFN

This is the first release of this particular manual, and we’re very interested in rece
opinions on it from our users. In particular, we’d like to hear from users who have n
used PERFORCE before. Does this guide teach the topic well? Are there any glaring err
Are the explanations clear, or are the exemplifications obfuscated by this enchiri
Please let us know what you think; we can be reached at manual@perforce.com.

Disclaimer: To the best of our knowledge, the Elm team has never used PERFORCE
for source management. As far as we know, they never heard of PERFORCE until they
received our email asking for permission to use their code in our manual. No imp
tion that the Elm team uses or endorses PERFORCE is intended; none should be inferred
al User Interface User’s Beta Manual 8

CHAPTER 1 3(5)25&(�&RQFHSWV
PERFORCE 97.3 Graphic

and

heir

nown

t in

re revi-
ystem
lve
P

-
 com-

You don’t need to
read this chapter if
you don’t want to.

All the material
discussed here is
also covered in the
‘how-to’ chapters,
which comprise the
rest of the manual.

This chapter is
provided as a guide
to what PERFORCE
does, without the
details of how to
do it.
PERFORCE facilitates the sharing of files among multiple users. It is a software configura-
tion management tool, but software configuration management (SCM) is defined in many
different ways, depending on who is giving the definition. SCM has been described as pro-
viding version control, file sharing, release management, defect tracking, build manage-
ment, and a few other things. It’s worth looking at exactly what PERFORCE does and
doesn’t do:

• PERFORCE offers version control: multiple revisions of the same file are stored,
older revisions are always accessible.

• PERFORCE provides facilities for concurrent development; multiple users can edit t
own copies of the same file.

• Some release management facilities are offered; PERFORCE will track which revisions of
which files are part of a particular release.

• Bugs and system improvement requests can be tracked from entry to fix; this is k
as defect tracking.

• PERFORCE supplies some lifecycle management functionality; files can be kep
release branches, development branches, or in any sort of needed file set.

• Change review functionality is provided by PERFORCE; this allows users to be notified
by email when particular files are changed.

• Although a build management tool is not built into PERFORCE, we do offer a companion
freeware product called “JAM - Make(1) Redux”. JAM and PERFORCE meet at the file
system; source files managed by PERFORCE are easily built by JAM.

PERFORCE excels at all file management functions. Although PERFORCE was built to man-
age source files, it can manage any sort of on-line documents. It can be used to sto
sions of a manual, to manage Web pages, or to store old versions of operating s
administration files. Its branching functionality, which allows copies of files to evo
separately from the files they were copied from, is unparalleled in the industry. And ER-
FORCE is extremely fast.

3(5)25&(�$UFKLWHFWXUH

PERFORCE has a client/server architecture, in which many computers, called clients, are
connected to one central machine, the server. Each user works on a client; at their com
mand, files they’ve been editing are transferred to and from the server. The clients
municate with the server via TCP/IP.
al User Interface User’s Beta Manual 9

PERFORCE 97.3 Graphic

Chapter 1 : PERFORCE Concepts

ry,

ts

,

l

tories
 a

, and

 For
d, and
, which
e of

pot at

t
cess all
 P

 per-

mple,
h edits

o the

The details of
changelists, and
basic PERFORCE
usage, are discussed
in chapters 4 and 5.

Resolving
file conflicts is the
topic of Chapter 6.
The PERFORCE clients may be distributed around a local area network, wide area network,
dialup network, or any combination of these. There can also be PERFORCE clients on the
same host as the server.

Three programs do the bulk of PERFORCE’s work:

• The P4D program is run on the PERFORCE server. It manages the shared file reposito
and keeps track of users, clients, protections, and other PERFORCE metadata.

P4D must be run on a UNIX or Windows/NT host.

• The P4 command-line program is run on PERFORCE clients. It sends the users’ reques
to the P4D server program for processing, and communicates with p4d via TCP/IP.

P4 client programs can be run on many platforms, including UNIX, Windows, VMS
Macintosh, BeOS, and Next hosts.

• P4WIN, the subject of this manual, is similar to P4, except it is controlled via a graphica
user interface rather than by typing commands. It handles most of the tasks that P4 can
do, but does not run P4’s administrative functions.

P4WIN runs only on Windows 95 and Windows/NT.

0RYLQJ�)LOHV�%HWZHHQ�WKH�&OLHQWV
DQG�WKH�6HUYHU

Users create, edit, and delete files in their own directories on the clients; these direc
are called client workspaces. PERFORCE commands are used to move files to and from
shared file repository on the server known as the depot. PERFORCE users can retrieve files
from the depot into their own client workspaces, where they can be read, edited
resubmitted to the depot for other users to access. When a new revision of a file is stored
in the depot, the old revisions are kept, and are still accessible.

Files that have been edited within a client workspace are sent to the depot via a changelist,
which is a list of files, and instructions that tell the depot what to do with those files.
example, one file might have been changed in the client workspace, another adde
another deleted. These file changes might be sent to the depot in a single changelist
is processed atomically: either all the changes are made to the depot at once, or non
them are. This allows problem fixes that span multiple files to be updated in the de
exactly the same time.

Each client workspace has its own client view, which determines which files in the depo
can be accessed by that client workspace. One client workspace might be able to ac
the files in the depot; another client workspace might access only a single file. TheER-
FORCE server is responsible for tracking the state of the client workspace; PERFORCE

knows which files a client workspace has, where they are, and which files have write
mission turned on.

)LOH�&RQIOLFWV

When two users edit the same file, it is possible for their changes to conflict. For exa
suppose two users copy the same file from the depot into their workspaces, and eac
his copy of the file in different ways. The first user sends his version of the file back t
al User Interface User’s Beta Manual 10

PERFORCE 97.3 Graphic

Chapter 1 : PERFORCE Concepts

would

o
ide
ile be
er’s

and

s, the
rticu-
ame,
-
ace.

is not
ctions;

, and
f the

in
l

w

ade to
 press
 run

resents
e

 up to
who

Chapter 7 discusses
labels.

The workings of
Inter-File
Branching is
covered in
Chapter 8.

You’ll learn how to
do job tracking in
Chapter 9.
depot; subsequently, the second user tries to do the same thing. If PERFORCE were to
unquestioningly accept the second user’s file into the depot, the first user’s changes
not be included in the latest revision of the file (known as the head revision).

When a file conflict is detected, PERFORCE allows the user experiencing the conflict t
perform a resolve of the conflicting files. The resolve process allows the user to dec
what needs to be done: should his file overwrite the other user’s? Should his own f
thrown away? Or should the two conflicting files be merged into one? At the us
request, PERFORCE will perform a three-way merge between the two conflicting files and
the single file that both were based on. This process generates a merge file from the con-
flicting files: the merge file contains all the changes from both conflicting versions,
this file can be edited and then submitted to the depot.

/DEHOLQJ�*URXSV�RI�)LOHV

It is often useful to mark a particular set of file revisions for later access. For example
release engineers might want to keep a list of all the file revisions that comprise a pa
lar release of their program. This list of files can be assigned a single mnemonic n
like release2.0.1; this name is a label for the user-determined list of files. At any sub
sequent time, the label can be used to copy the old file revisions into a client worksp

%UDQFKLQJ�)LOHV

Thus far, it has been assumed that all changes of files happen linearly. But this
always the case: suppose that one source file needs to evolve in two separate dire
perhaps one set of upcoming changes will allow the program to run under VMS
another set will make it a Mac program. Clearly, two separately evolving copies o
same files are necessary.

PERFORCE’s Inter-File Branching™ mechanism allows any set of files to be copied with
the depot. By default, the new file set, or codeline, evolves separately from the origina
files, but changes in either codeline can be propagated to the other.

We’re particularly proud of PERFORCE’s branching mechanism. Most SCM systems allo
some form of branching, but PERFORCE’s is particularly flexible and elegant.

-RE�7UDFNLQJ

Job is a generic term for a plain-text description of some change that needs to be m
the source code. A job might be a bug description, like “the system crashes when I
return”, or it might be a system improvement request, like “please make the program
faster.”

Whereas a job represents work that is intended to be performed, a changelist rep
work actually done. PERFORCE’s job tracking mechanism allows jobs to be linked to th
changelists that implement the work requested by the job. A job can later be looked
determine if and when it was fixed, which file revisions implemented the fix, and
fixed it.
al User Interface User’s Beta Manual 11

PERFORCE 97.3 Graphic

Chapter 1 : PERFORCE Concepts

up-
, or it
ch as

en
ceives
ternal
nge

ess to

s. Since
ty, not

P4
Change review
administration and
protections are both
administrative
functions, and must
be handled from the
P4 command line
interface. Please see
the PERFORCE
Command Line
User’s Guide for
more information.
PERFORCE’s job tracking mechanism does not implement all functionality normally s
plied by full-scale defect tracking systems. Its simple functionality can be used as is
can be integrated with a full-scale job tracking system with a scripting language su
Perl.

&KDQJH�5HYLHZ�DQG�'DHPRQV

PERFORCE’s change review mechanism allows users to receive email notifying them wh
particular files have been updated in the depot. The files that a particular user re
notification on is determined by that user. Change review is implemented by an ex
Perl program, or daemon, and can be recoded by a knowledgeable user, allowing cha
review functionality to be customized.

3URWHFWLRQV

PERFORCE provides a protection scheme to prevent unauthorized or inadvertent acc
the depot. The protection mechanism determines exactly which PERFORCE commands are
allowed to be run by any particular client.

Permissions are granted or denied based on the user’s username and IP addres
PERFORCE usernames are easily changed, protections at the user level provide safe
security. Protections at the IP address level are as secure as the host itself.
al User Interface User’s Beta Manual 12

CHAPTER 2 7KH�3�:,1�:LQGRZ
PERFORCE 97.3 Graphic
All work in P4WIN is done in the P4WIN window. This window provides a graphical repre-
sentation of all files and activities managed by a PERFORCE server.

The p4win window has this appearance:

It is divided into three primary panes: two side-by-side graphical panes at the top, and a
pane that displays text messages near the bottom. These panes may be resized by dragging
the split bars.
al User Interface User’s Beta Manual 13

PERFORCE 97.3 Graphic

Chapter 2 : The P4WIN Window

ows
n be
.

key
hile

appear.

s and
7KH�3�:,1�3DQHV

7KH�'HSRW�3DQH

The pane at the upper-left of the window is the depot pane. It displays files stored in the
current P4D server, and has this appearance:

Items in this pane may be manipulated similarly to the way they’re used in Wind
Explorer: folders may be unfolded by clicking on the ; multiple files and folders ca
selected contiguously with the shift key, or non-contiguously by using the control key

A multiple selection may be dragged, but it differs from Windows Explorer in one
respect: after making the multiple selection, the modifier key must be held down w
performing the drag. If it is not, only the last file clicked on will be dragged.

The meaning of the items in the depot pane is explained in the next two chapters.

7KH�2EMHFW�3DQH

The rightmost pane’s display changes depending on what the user has selected to
Collectively, the pane is referred to as the object pane, but it’s usually referred to by its
current contents.

The contents of this pane is controlled by seven buttons in the toolbar. The button
panes displayed are:
al User Interface User’s Beta Manual 14

PERFORCE 97.3 Graphic

Chapter 2 : The P4WIN Window
Alternatively, each pane may be displayed by choosing a corresponding menuitem. For
example, the branches pane can be displayed either by clicking on the branches button, or
by choosing the Activate Branches Window command in the Branch menu. The remain-
der of this manual refers only to buttons to change panes, but the corresponding menu item
is always available.

These seven panes fall into two categories. The first category consists of one of the above
panes, the pending changelists pane. It looks like this:

Although the contents of this pane are somewhat different than those of the depot pane, it
follows the same rules as the depot pane and Windows Explorer. The contents of this pane
are explained in the next two chapters

The second category of panes is made up by the remaining six panes (the submitted
changelists, branches, labels, client workspaces, labels, and jobs panes). These panes dis-
play lists of objects. The branches pane, for example, looks like this:

Any of the columns can be sorted on by clicking in the header for that column. The current
sort column is indicated by a red triangle; the branch listing above is currently sorted on
the Branch column.

Columns may be resized by dragging the split bars that separate the columns.

7KH�6WDWXV�3DQH

The pane at the bottom is the status pane. It displays messages from P4WIN and from the
P4D server.
al User Interface User’s Beta Manual 15

CHAPTER 3 &RQQHFWLQJ�WR�WKH
p4d�6HUYHU
PERFORCE 97.3 Graphic

ry,

er
d

s
l

he

This chapter
assumes that both
the p4d and p4
programs have been
installed. xxx”just
do it” or cross-ref to
instructions?xxx
PERFORCE uses a client/server architecture. Files are created and edited by users on their
own client hosts; these files are transferred to and from a shared file repository located on
a PERFORCE server. Every running PERFORCE system uses a single server and can have
many clients.

Three programs do the bulk of PERFORCE’s work:

• The p4d program is run on the PERFORCE server. It manages the shared file reposito
and keeps track of users, clients, protections, and other PERFORCE metadata.

• p4win is run on those Windows PERFORCE clients whose users prefer a graphical us
interface. It sends the users’s requests to the p4d server program for processing, an
communicates with p4d via TCP/IP.

• P4 has the same core functionality as P4WIN, but is run from the command line, and run
on all PERFORCE platforms. It does everything that P4WIN does, and handles additiona
tasks, such as administrative jobs, as well.

Each p4win program needs to know the address and port of the p4d server that it commu-
nicates with. Setting this address is the topic of the next section

9HULI\LQJ�WKH�&RQQHFWLRQ�WR�
WKH�S�G�6HUYHU

A p4 client needs to know two things in order to talk to the p4d server:

• The name of the host that p4d is running on

• The port that p4d is listening on.

Together, these make up the P4D server address. This address is set through the Per-

force>Options... dialog box, which can also be displayed by clicking the button. T
P4D server address is originally set when P4WIN is installed; if it’s not set correctly, you'll
need to change it.
al User Interface User’s Beta Manual 16

PERFORCE 97.3 Graphic

Chapter 3 : Connecting to the p4d Server

t that
u’ve

 clos-

Example:
Startup error:
the p4d server
connection is
incorrectly specified
P4WIN looks for the P4D server every time P4WIN starts. If the P4D address is set incor-
rectly, you’ll see a variant of this message:

This message means that the server address has not been set correctly in the Options dia-
log.

7HOOLQJ�3��:KHUH�3�'�LV

Before continuing, you’ll need to ask your system administrator the name of the hos
P4D is located on, and the number of the TCP/IP port it’s listening on. Once yo
obtained this information, set the value of the P4 Port text box in the Options dialog to
host:port#, where host is the name of the host that p4d is running on, and port# is
the port that P4D is listening on. For example:

The definition of P4PORT can be shortened if p4win is running on the same host as p4d.
In this case, only the p4d port number need be provided to p4. And if p4d is running on a
host named or aliased perforce, listening on port 1666, the definition of P4PORT for the
p4 client can be dispensed with altogether. For example:

If the setting of P4 Port is still incorrect, you’ll receive the same error message when
ing the Options dialog. If the error doesn’t appear, then PERFORCE is ready to use.

Connect to server failed, check $P4PORT
TCP Connect to host:port failed.
host: host unknown

If the p4d host is named... and the p4d port is named... set P4 Port to:

dogs 3435 dogs:3435

x.com 1818 x.com:1818

If the p4d host is named... and the p4d port is... set P4 Port to...

<same host as the p4 client> 9783 9783

perforce 1666 <no value needed>
al User Interface User’s Beta Manual 17

CHAPTER 4 'HSRWV��&OLHQWV��
)LOHV�DQG�&KDQJHOLVWV��
4XLFN�6WDUW
PERFORCE 97.3 Graphic

e

er; the

d in

an be
evision

rmal
d text
.

e elm

 The
 in

All of the tasks
discussed in this
chapter utilize
pending changelist
pane at the right
side of the main
P4WIN window. To
display this pane,
press the button
in the toolbar.

The use of the Elm
source code set is
described in the
About This
Manual chapter
(page 7).
This chapter teaches basic P4WIN usage. You’ll learn how to move files to and from th
common file repository, how to back out of these operations, and some basic P4WIN

reporting tools.

These concepts and commands are painted with very broad strokes in this chapt
details are provided in the next.

8QGHUO\LQJ�&RQFHSWV

The basic ideas behind PERFORCE are quite simple: files are created, edited, and delete
the user’s own directories, which are called client workspaces. PERFORCE commands are
used to move files to and from a shared file repository known as the depot. PERFORCE

users can retrieve files from the depot into their own client workspaces, where they c
read, edited, and resubmitted to the depot for other users to access. When a new r
of a file is stored in the depot, the old revisions are kept, and are still accessible.

PERFORCE was written to be as unobtrusive as possible; very few changes to your no
work habits are required. Files are still created in your own directories with a standar
editor; P4WIN actions supplement your normal work actions instead of replacing them

)LOH�&RQILJXUDWLRQV�8VHG�LQ�WKH�([DPSOHV

This manual makes extensive use of examples based on the Elm source code set. The Elm

examples used in this manual are set up as follows:

A single depot is used to store the elm files, and perhaps other projects as well. Th
files will be shared by storing them under an elm subdirectory within the depot.

Each user will store his or her client workspace Elm files in a different subdirectory.
two users we’ll be following most closely, Ed and Lisa, will work with their Elm files
the following locations:

User Username Client Workspace Name Top of own Elm File Tree

Ed edk eds_elm C:\Projects\elm

Lisa lisag lisas_ws C:\Docs\elm
al User Interface User’s Beta Manual 18

PERFORCE 97.3 Graphic

Chapter 4 : Depots, Clients, Files and Changelists: Quick Start

he

g
Example:
Naming the
client workspace
6HWWLQJ�8S�D�&OLHQW�:RUNVSDFH

To move files between a client workspace and the depot, the PERFORCE server requires
two pieces of information, collectively called the client specification:

• A name that uniquely identifies the client specification, and

• The top-level directory of the client workspace.

1DPLQJ�WKH�&OLHQW�:RUNVSDFH

To name your client workspace, or to use a different workspace, set the value of tP4

Client text box in the Options dialog to the name of the client workspace.

Ed is working on the code for Elm. He wants to refer to the collection of files he’s workin

on by the name eds_elm. He presses the Options button and types eds_elm in the

P4 Client text box.

'HVFULELQJ�WKH�&OLHQW�:RUNVSDFH
WR�WKH�3(5)25&(�6HUYHU

Once the client workspace has been named, it must be identified and described to the PER-
FORCE server with the Client>Create/Edit my Client command. Running this command
brings up the client specification dialog box; once the dialog is filled in and closed, the
PERFORCE server will be able to move files between the depot and the client workspace.

The Client dialog has a number of fields; the two most important are the Root and the
View. The meanings of these fields are as follows:

Field Meaning

Root: Identifies the top subdirectory of the client workspace
on the local NT or Windows 95 machine. This should
be the lowest-level directory that includes all the files
and directories that you’ll be working with in this
workspace.

View: Describes which files and directories in the depot are
available to the client workspace, and where the files in
the depot will be located within the client workspace.
al User Interface User’s Beta Manual 19

PERFORCE 97.3 Graphic

Chapter 4 : Depots, Clients, Files and Changelists: Quick Start

ork-

e

Example:
Setting the client
root and the client
view
Ed is working with his elm files in a setting as described above. He’s set his client w
space to eds_elm; now he chooses Client>Create/Edit my Client, and sees the following
dialog:

If he were to leave the form as is, all of the files under Ed’s C:\ directory would be
mapped to the depot, and they would map to the entire depot, instead of to just thelm

project. He changes the values in the Root: and View: fields as follows:
al User Interface User’s Beta Manual 20

PERFORCE 97.3 Graphic

Chapter 4 : Depots, Clients, Files and Changelists: Quick Start

e,

 The
lient

hen a
here
ent

ion.
ediate

ce is
ere is
iew:

as

lect-

ot; it
files
t the

. This

To use PERFORCE
properly, it is crucial
to understand how
views work. Views
are explained in more
detail at the start of
the next chapter.

!

If you’re working in
an already-
established
PERFORCE
environment, and
want to start by
retrieving already-
existing files, you
can skip to page 24
and come back to
this section later.
This specifies that C:\Projects\elm is the top level directory of Ed’s client workspac
and that the files under this workspace directory are to be mapped to the depot’s elm sub-
tree.

When Ed’s done, he clicks the Update Client button, and the client specification is
updated.

The read-only Client: field contains the current client name as defined in the Options
dialog. Description: can be filled with anything at all (up to 128 characters); this pro-
vides an arbitrary textual description of what’s contained in this client workspace.
View: field describes the relationship between files in the depot and files in the c
workspace.

Creating a client specification has no immediate visible effect; no files are created w
client specification is created or edited. The client specification simply indicates w
files will be located when P4WIN is used to move files between the depot and the cli
workspace.

(GLWLQJ�DQ�([LVWLQJ�&OLHQW�6SHFLILFDWLRQ

Client>Create/Edit my Client can be used at any time to change the client specificat
Just as when a client specification is created, changing a specification has no imm
affect on the locations of any files; the location of files in the depot and workspa
affected only when the client specification is used in subsequent commands. But th
an important distinction between changing the client’s root and changing the client’s v
if you change the root, PERFORCE assumes that you will manually relocate the files
well. If you change the view and then bring files into the client from the depot, PERFORCE

will delete and add files as necessary to make the client workspace reflect the view.

'HOHWLQJ�DQ�([LVWLQJ�&OLHQW�6SHFLILFDWLRQ

An existing client specification can be deleted by displaying the client pane (), se
ing a client workspace within that pane, and choosing Client>Delete. Clients can only be
deleted if there are no files open for addition, edit, or delete within the client.

Deleting a client specification has no effect on any files in the client workspace or dep
simply removes the P4D server’s record of the mapping between the depot and the
within the client workspace. To delete existing files from a client workspace, selec
files to be removed within the depot pane and choose File>Sync/Remove>Remove from
Client or throw the files into the Windows Recycle Bin after deleting the client specifica-
tion.

&RS\LQJ�)LOHV�IURP�WKH�:RUNVSDFH�
WR�WKH�'HSRW

Any file in a client workspace can be added to, updated in, or deleted from the depot
is accomplished in two steps:
al User Interface User’s Beta Manual 21

PERFORCE 97.3 Graphic

Chapter 4 : Depots, Clients, Files and Changelists: Quick Start

t with

e
indow
firm-

If a submit of the
default changelist
fails, that changelist
will be assigned a
number.
“Changelists” on
page 34 discusses the
creation and use of
numbered
changelists.

Example:
Adding files to a
changelist
1. PERFORCE is told the new state of client workspace files with the commands File>Add
To Source Control (to add files), File>Check Out for Edit (to open files for edit), or
File>Check Out for Delete (to open files for deletion). When these commands are
given, the corresponding files are listed in a PERFORCE changelist, which is a list of
files and operations on those files to be performed in the depot.

2. The operations are performed on the files in the changelist when the change is selected
and the Changelist>Submit... command is given.

The commands listed in step one above do not immediately add, edit, or delete files in the
depot. Instead, the affected file and the corresponding operation are listed in a changelist,
and the files in the depot are affected only when this changelist is submitted to the depot
with Changelist>Submit.... This allows a set of files to be updated in the depot all at
once: when the changelist is submitted, either all of the files in the changelist are affected,
or none of them are.

When a file has been added to a changelist, or checked out for editing or deletion, but the
corresponding changelist has not yet been submitted in the depot, the file is said to be open
in the client workspace.

$GGLQJ�)LOHV�WR�WKH�'HSRW

To add a file or files to the depot, use File>Add To Source Control...., or drag the file(s)
or the enclosing folder from the Explorer window to a changelist in the pending changelist
pane. These commands opens the file(s) for edit and lists them in a changelist, but they
won’t be added to the depot until the files in the changelist are submitted to the depo
Changelist>Submit...

Ed is writing a help manual for Elm. The files are named elm-help.0 through
elm-help.3, and they’re sitting in the doc subdirectory of his client workspace root. H
wants to add these files to the depot, so he drags them from the Windows Explorer w
to the default changelist in the pending changelist pane. After answering a dialog con
ing his choice of files, he sees

At this point, the files that Ed wants to add to the depot have been added to his default
changelist. However, the files are not actually added to the depot until the changelist is
submitted to the depot.

al User Interface User’s Beta Manual 22

PERFORCE 97.3 Graphic

Chapter 4 : Depots, Clients, Files and Changelists: Quick Start

e

efault

nt
ing is

 a
e

Example:
Submitting a
changelist to the
depot

Jobs are discussed
in chapter 9.
Ed is ready to submit his added files to the depot. He selects the default changelist in the
rightmost pane and chooses Changelist>Submit... The following dialog appears:

Ed changes the contents of the Description: field to describe what these file updates
do. When he’s done, he quits from the editor; the new files are added to the depot.

The Description: field contents must be changed, or the depot update won’t b
accepted. Files can be unchecked in the Files: field; any files deleted from this list will
carry over to the next default changelist, and will appear again the next time the d
changelist is submitted.

)LOH�3HUPLVVLRQV

The operating system’s read-only attribute on submitted files is turned on in the clie
workspace when the file is submitted to the depot. This helps ensure that file edit
done with PERFORCE’s knowledge. The read-only attribute is turned off when the file is
opened for edit.

You may have noticed that the filenames are always displayed as filename#n in the
pending changelist pane. PERFORCE always displays filenames within changelists with
#n suffix; the #n indicates that this is the n-th revision of this file. Revision numbers ar
always assigned sequentially.
al User Interface User’s Beta Manual 23

PERFORCE 97.3 Graphic

Chapter 4 : Depots, Clients, Files and Changelists: Quick Start

ine,

be

depot
d in the
 been

ther
 at its

 edit:

ace,
ce,

ace
t

by the
e, the
ient
ne and

Files opened for
add are, of course,
already in the client
workspace; other
files must be
retrieved into the
client workspace
before they can be
edited. Discussion
of this starts on
page 24.

If a file is checked
out for edit or
deletion, and
another user
already has the file
open, a file conflict
may occur when the
file is submitted.
Conflict resolution
is discussed in
chapter 6.

!

Example:
Deleting a file from
the depot.
(GLWLQJ�'HSRW�)LOHV

To open file(s) for edit, select the file(s) in the depot pane and choose File>Check Out
For Edit. This has two effects:

• The file(s) read-only permissions are turned off on the client workspace’s mach
and

• The file(s) to be edited are added to a pending changelist.

Since the files must have their read-only permission turned back on before they can
edited, the edit command must be given before the files are actually edited.

To save the new file revision to the depot, use Changelist>Submit..., as above.

Example: Ed wants to make changes to his elm-help.3 file. He selects the file in the
depot pane at the left and chooses File>Check Out For Edit. The file appears in the pend-
ing changelist pane in his default changelist.

Files may be opened for edit in a number of ways: files can be dragged from the
pane to the desired changelist in the pending changelist pane, or they can be selecte
depot pane and then the button in the toolbar can be clicked. Once a file has

checked out for edit, a red checkmark will appear at the left of the file icon ; if ano
user already has the file checked out for edit, the file icon will have a blue checkmark
right ; but the file can still be checked out.

'HOHWLQJ�)LOHV�)URP�WKH�'HSRW

Files are opened for deletion from the depot similarly to the way they are opened for
the file(s) are selected in the depot pane, File>Check Out For Delete is used to open the
files for deletion in the default changelist and to delete the file from the client worksp
and then Changelist>Submit is used to delete the file from the depot. In essen
File>Check Out For Delete replaces the MS/DOS del command for files within a client
workspace by allowing the file to be deleted both locally and on the server.

Ed’s file doc/elm-help.3 is no longer needed. He deletes it from the client worksp
by selecting the file and choosing File>Check Out for Edit. The file is added to his defaul
changelist for deletion; once he submits the changelist with Changelist>Submit, the file
will be deleted from the depot.

Once the changelist is submitted, it will appear as if the file has been deleted from the
depot; however, old file revisions are never actually removed. This makes it possible to
read older revisions of ‘deleted’ files back into the client workspace.

5HWULHYLQJ�)LOHV�IURP�WKH�'HSRW�
LQWR�D�:RUNVSDFH

Files from a depot that are not yet in the local client workspace can be recognized
empty file icon . Once a file has been read from the depot to the client workspac
file icon will contain the green “synced” dot, and will appear as . Files in the cl
workspace can be synced with files in the depot by selecting the files in the depot pa
then choosing File>Sync/Remove/Sync to Head Revision (alternatively, select the file(s)
al User Interface User’s Beta Manual 24

PERFORCE 97.3 Graphic

Chapter 4 : Depots, Clients, Files and Changelists: Quick Start

into a

ll the

ons;
ad into

work-

n her

client
t of the

Example:
Retrieving files from
the depot
into the
client workspace.
and then press). The head revision of a file is the newest version of a file within the
depot; as we’ll see in chapter 5, it is also possible to retrieve older revisions of a file
client workspace.

Lisa has been assigned to fix bugs in Ed’s code. She creates a directory called lisas_ws

within her own directory, and sets up a client workspace; now she wants to copy a
existing elm files from the depot into her workspace. She sees

None of the four files in the //depot/elm/doc directory contain a green dot in their ic
this means that these files were created by another user and have not yet been re
her client workspace. She selects the entire doc folder and chooses
File>Sync/Remove>Sync to Head Revision, and these files are read into her client
space. Lisa now sees the following in the leftmost pane:

The green dot in the middle of each icon indicates that Lisa now has those files withi
client workspace

The Sync to Head Revision command maps depot files through the client view, compares
the result against the current client contents, and then adds, updates, or deletes files in the
client workspace as needed to bring the client contents in sync with the depot.

The job of sync is to match the state of the client workspace to that of the depot; thus, if a
file has been deleted from the depot, Sync to Head Revision will delete it from the client
workspace.

We’ve already mentioned that the green dot in the file icon indicates that the current
workspace has had those files synced; another indicator are the numbers to the righ
file name. The revision specifier #m/n means that the depot has n revisions of the file, and
that the client workspace contains the m-th revision of that file.
al User Interface User’s Beta Manual 25

PERFORCE 97.3 Graphic

Chapter 4 : Depots, Clients, Files and Changelists: Quick Start

Example:
Reverting a file back
to the last version
gotten.
5HYHUWLQJ�)LOHV�WR�WKHLU
8QRSHQHG�6WDWHV

Any file can be removed from a changelist and reverted to its unopened state by selecting
the file within the pending changelist pane and then choosing File>Revert to Saved, or by
selecting the file and then pressing the button.

Ed wants to edit a set of files in his src directory: leavembox.c, limit.c, and sig-
nals.c. He opens the files for edit by selecting them in the depot pane and then choosing
File>Checkout For Edit, but then realizes that signals.c is not one of the files he will
be working on, and that he didn’t mean to open it. He can revert signals.c to its
unopened state by selecting it in the pending changelist pane and choosing File>Revert.

If a file that had been checked out for deletion is reverted, it will appear back in the client
workspace immediately. If the file was originally opened for add, Revert will remove it
from the changelist but leave the client workspace file intact. If the reverted file was origi-
nally checked out for edit, the last synced version will be written back to the client work-
space, overwriting the newly-edited version of the file. In this case, you may want to save
a copy of the file before reverting it.

%DVLF�5HSRUWLQJ

Reporting commands are those commands that supply information about objects without
altering anything within the client workspace or the depot. Two reporting commands are
used quite frequently: the first supplies information about the current P4D version and the
client workspace, and the second allows viewing of depot file metadata.

To view basic P4D version and client workspace metadata information, choose Per-
force>Info..., or click the button. A dialog box like the following will appear:
al User Interface User’s Beta Manual 26

PERFORCE 97.3 Graphic

Chapter 4 : Depots, Clients, Files and Changelists: Quick Start

s-

de-

file

ed.

file

ally
To view file metadata, select a file in the depot pane and choose File>Properties... The
following dialog will be displayed:

The meaning of each field is as follows:

Field Meaning

Depot Path The full path of the file within the depot, in relation to the server root.

Client Path The full path of the file within the client workspace, as mapped
through the client view.

File Type The type of the file (see page “File Types” on page 37 for a full di
cussion)

Head Revision The highest-numbered revision of this file within the depot

Head Action The action associated with the head revision of the file: add, edit,
lete, branch, or integrate.

Have Revision The revision of the file last synced to the client workspace.

Head Change The number of the changelist that the current head revision of the
was submitted in.

Last Mod Time The date and time the current head revision of the file was submitt

Opened By The usernames and client names of all users who have the
opened for edit, delete, branch, or integrate.

Locked By The usernames and client names of all users who have manu
locked the file.
al User Interface User’s Beta Manual 27

CHAPTER 5 'HSRWV��&OLHQWV��DQG�
&KDQJHOLVWV��
0RUH�'HWDLOV
PERFORCE 97.3 Graphic

en by

the
e

ates,
h
ns off
nished

 per-

ration
llful
g or
The Quick Start chapter explained the basics of using changelists to transfer files between
the client workspace and the depot, but discussion of the practical details were deferred.
This chapter, which supplements the Quick Start, provides additional information and
covers the dry PERFORCE rules. The topics discussed include a detailed description of the
client workspace, how to set up views to map the depot to the client workspace, how to
access older file revisions, creation and use of numbered changelists, the different PER-
FORCE-supported file types, and options for displaying the depot pane.

It is assumed that the material in the Quick Start chapter has been read and properly
digested.

'HVFULSWLRQ�RI�WKH�&OLHQW�:RUNVSDFH

A client workspace is a collection of source files managed by PERFORCE on a host. Each
such collection is given a name which identifies the client workspace to the PERFORCE

server. The name is, by default, simply the host’s name, but this can be overridd
changing the value of the P4 Client text box in the Perforce>Options... dialog box.
There can be more than one PERFORCE client workspace on a client host.

All files within a PERFORCE client workspace share a common root directory, called
client root. The client root can be the C:\ directory, but in practice the client root is th
lowest level directory under which the managed source files will sit.

PERFORCE manages the files in a client workspace in a few direct ways. It creates, upd
or deletes files when the user requests PERFORCE to synchronize the client workspace wit
the depot; it turns on write permission when the user requests to edit a file; and tur
write permission and submits updated versions back to the depot when the user is fi
editing the file.

The entire PERFORCE client workspace state is tracked by the PERFORCE server. The server
knows what files a client workspace has, where they are, and which files have write
mission turned on.

PERFORCE’S management of a client workspace requires a certain amount of coope
from the user. Since client files are just plain files with write permission turned off, wi
users can circumvent the system by turning on write permission, directly deletin
renaming files, or otherwise modifying the file tree supposedly under PERFORCE’s control.
al User Interface User’s Beta Manual 28

PERFORCE 97.3 Graphic

Chapter 5 : Depots, Clients, and Changelists: More Details

state;
or

ely
t

es, as

o-
he

 client

e

the

The directory that
temporary files are
stored in can be set
in the Temp Files
tab of the
Perforce>Options...
dialog box.
PERFORCE counters this with two measures: first, PERFORCE has explicit commands to
verify that the client workspace state is in accord with the server’s recording of that
second, PERFORCE tries to make using PERFORCE at least as easy as circumventing it. F
example: to make a temporary modification to a file, it is easier to use PERFORCE than it is
to copy and restore the file manually.

Files not managed by PERFORCE may also be under a client’s root, and they are larg
ignored by PERFORCE. For example, PERFORCE may manage the source files in a clien
workspace, while the workspace also holds compiled objects, libraries, executabl
well as a developer’s temporary files.

In addition to accessing the client files, the p4 client program sometimes creates temp
rary files on the client host. Otherwise, PERFORCE neither creates nor uses any files on t
client host.

0DSSLQJ�WKH�'HSRW�WR�WKH�&OLHQW�
:RUNVSDFH

Just as a client name is nothing more than an alias for a particular directory on the
machine, a depot name is an alias for a directory on the PERFORCE server. The relationship
between files in the depot and files in the client workspace is described in the client view;
this is set with Client>Create/Edit my Client command. When this command is run, th
following dialog appears:

The contents of the View: field determine where client workspace files get stored in
depot, and where depot files are copied to within the client workspace.
al User Interface User’s Beta Manual 29

PERFORCE 97.3 Graphic

Chapter 5 : Depots, Clients, and Changelists: More Details

 view
files

ping.
pace
; for
ce, or
 the

 value
p-

oot to
8VLQJ�9LHZV

Views consist of multiple lines, or mappings, and each mapping has two parts. The left-
hand side specifies one or more files within the depot, and has the form

//depotname/file_specification

The right-hand side of each mapping describes one or more files within the client work-
space, and has the form

//clientname/file_specification

The left-hand side of a client view mapping is called the depot side; the right-hand side is
the client side.

The default view in the example above is quite simple: it maps the entire depot to the
entire client workspace. But views can contain multiple mappings, and can be much more
complex. Any client view, no matter how elaborate, performs the same two functions:

• The client view determines which files in the depot can be used in a client workspace.
This is determined by the sum of the depot sides of the mappings within a view. A
might allow the client workspace to retrieve every file in the depot, or only those
within two directories, or only a single file.

• It constructs a one-to-one mapping between files in the depot and files in the client
workspace. Each mapping within a view describes a subset of the complete map
The one-to-one mapping might be straightforward; for example, the client works
file tree might be identical to a portion of the depot’s file tree. Or it can be oblique
example, a file might have one name in the depot and another in the client workspa
be moved to an entirely different directory in the client workspace. No matter how
files are named, there is always a one-to-one mapping.

To determine the exact location of any client file on the host machine, substitute the
of the clients dialog box’s Root: field for the client name on the client side of the ma
ping. For example, if the client dialog box’s Root: field for the client eds_elm is set to
C:\projects\edk\elm, then the file //eds_elm/doc/elm-help.1 will be found on
the local machine in C:\projects\edk\elm\doc\elm-help.1.

6LQJOH�:RUNVSDFH��0XOWLSOH�'ULYHV

An NT client workspace can be spread across multiple drives by setting the client r
null and including the drive letter in the client view. For example:
al User Interface User’s Beta Manual 30

PERFORCE 97.3 Graphic

Chapter 5 : Depots, Clients, and Changelists: More Details

y
sed

ntical
ical

,

t

li-
erent
client

ntical

to be

e of
.

y.

s

r-

P4
The P4 command-
line interface allows
the first two of these
wildcards in any
command that take
file arguments.

Example:
Mapping
part of the depot
to the client
workspace.
:LOGFDUGV�LQ�9LHZV

PERFORCE uses three wildcards for pattern matching in view specifications; these wild-
cards can be used in any view specification, such as the dialog that’s displayed bCli-
ent>Create/Edit my Client. Any number and combination of these wildcards can be u
in a single string.

Any wildcard used on the depot side of a mapping must be matched with an ide
wildcard in the mapping’s client side. Any string matched by the wildcard will be ident
on both sides.

In the client view

//depot/elm_proj/... //eds_elm/...

the single mapping contains PERFORCE’s “...” wildcard, which matches everything
including slashes. The result is that any file in the eds_elm client workspace will be
mapped to the same location within the depot’s elm_proj file tree. For example, the
depot file //depot/elm_proj/nls/gencat/README will be mapped to the client
workspace file //eds_elm/nls/gencat/README, which is located on the client host a
C:\Projects\elm\nls\gencat\README.

7\SHV�RI�0DSSLQJV

By changing the value of the View field, it’s possible to map only part of a depot to a c
ent workspace. It’s even possible to map files within the same depot directory to diff
client workspace directories, or to have files named differently in the depot and the
workspace. This section discusses PERFORCE’s mapping methods.

'LUHFW�&OLHQW�WR�'HSRW�9LHZV

The default view in the client dialog maps the entire client workspace tree into an ide
directory tree in the depot. For example, the default view

//depot/... //eds_elm/...

indicates that any file in the directory tree under the client workspace eds_elm will be
stored in the identical subdirectory in the depot. This view is usually considered
overkill; most users only need to see a subset of the files in the depot.

0DSSLQJ�WKH�)XOO�&OLHQW�WR�RQO\�3DUW�RI�WKH�'HSRW

Usually only a portion of the depot is of interest to a particular client. The left-hand sid
the View field can be changed to point to only the portion of the depot that’s relevant

Bettie is rewriting the documentation for Elm, which is found in the depot within its
elm_proj/doc subdirectory. Her client is named elm_docs, and her client root is
C:\usr/bes/docs; she selects Client>Create/Edit my Client and sets the View: field
of the dialog as follows:

Wildcard Meaning

* Matches anything except slashes, matches only within a single director

... Matches anything including slashes; matches across multiple directorie

%d Used for parametric substitution; see the subsection “Changing the O
der of Filename Substrings” on page 33 for a full explanation.
al User Interface User’s Beta Manual 31

PERFORCE 97.3 Graphic

Chapter 5 : Depots, Clients, and Changelists: More Details

ely,

 in

pot.

p-

Example:
Multiple mappings
in a single client
view.

Example:
Using views to
exclude files from a
client workspace

Example:
Files with different
names in the depot
and client
workspace
//depot/elm_proj/doc/... //elm_docs/...

0DSSLQJ�)LOHV�LQ�WKH�'HSRW�WR
D�'LIIHUHQW�3DUW�RI�WKH�&OLHQW

Views can consist of multiple mappings, which are used to map portions of the depot file
tree to different parts of the client file tree. If there is a conflict in the mappings, later map-
pings have precedence over the earlier ones.

The elm_proj subdirectory of the depot contains a directory called doc, which has all
the Elm documents. Included in this directory are four files named elm-help.0 through
elm-help.3. Mike wants to separate these four files from the other documentation files
in his client workspace, which is called mike_elm.

To do this, he creates a new directory in his client workspace called help; it’s located at
the same level as his doc directory. The four elm-help files will go here; he fills in the
View field of the client specification dialog as follows:

Any file whose name starts with elm-help within the depot’s doc subdirectory will be
caught by the later mapping and appear in Mike’s workspace’s help directory; all other
files are caught by the first mapping and will appear in their normal location. Convers
any files beginning with elm-help within Mike’s client workspace help subdirectory will
be mapped to the doc subdirectory of the depot.

([FOXGLQJ�)LOHV�DQG�'LUHFWRULHV�IURP�WKH�9LHZ

Exclusionary mappings allow files and directories to be excluded from a client workspace;
this is accomplished by prefacing the mapping with a minus sign (-). Whitespace is not
allowed between the minus sign and the mapping.

Bill, whose client is named billm, wants to view only source code; he’s not interested
the documentation files. His client view would look like this:

Since later mappings have precedence over earlier ones, no files from the depot’s doc sub-
directory will ever be copied to Bill’s client workspace. Conversely, if Bill does have a doc

subdirectory in his client, no files from that subdirectory will ever be copied to the de

$OORZLQJ�)LOHQDPHV�LQ�WKH�&OLHQW�WR�EH�'LIIHUHQW
WKDQ�'HSRW�)LOHQDPHV

Mappings can be used to make the names of files different in the client workspace than
they are in the depot.

Mike wants to store the files as above, but he wants to take the elm-help.X files in the
depot and call them helpfile.X in his client workspace. He uses the following ma
pings:

//depot/... //mike_elm/...
//depot/elm_proj/doc/elm-help.* //mike_elm/help/elm-help.*

 //depot/elm_proj/... //billm/...
 -//depot/elm_proj/doc/... //billm/doc/...

 //depot/elm_proj... //mike_elm/...
 //depot/elm_proj/doc/elm-help.* //mike_elm/help/helpfile.*
al User Interface User’s Beta Manual 32

PERFORCE 97.3 Graphic

Chapter 5 : Depots, Clients, and Changelists: More Details

. For

:

 same

Example:
Changing string
order in client
workspace names

Example:
Mappings that fail.

P4
In the P4 command-
line interface, files
provided as
arguments to any P4
commands can be
specified in one of
three syntaxes: local
OS syntax,
PERFORCE depot
syntax, or PERFORCE
client syntax. The P4
manual describes all
of these.
Each wildcard on the depot side of a mapping must have a corresponding wildcard on the
client side of the same mapping. The wildcards are replaced in the copied-to direction by
the substring that the wildcard represents in the copied-from direction.

There can be multiple wildcards; the n-th wildcard in the depot specification corresponds
to the n-th wildcard in the client description.

&KDQJLQJ�WKH�2UGHU�RI�)LOHQDPH�6XEVWULQJV

The %d wildcard can be used to rearrange the order of the matched substrings.

Mike wants to change the names of any files with a dot in them within his doc subdirectory
in such a way that the file’s suffixes and prefixes are reversed in his client workspace
example, he’d like to rename the Elm.cover file in the depot cover.Elm in his client
workspace. (Mike can be a bit difficult to work with). He uses the following mappings

7ZR�0DSSLQJV�&DQ�&RQIOLFW�DQG�)DLO

It is possible for multiple mappings in a single view to lead to a situation in which the
name does not map the same way in both directions. When a file doesn’t map the
way in both directions, the file is ignored.

Joe has constructed a view as follows:

The depot file //depot/elm_proj/doc/help would map to //joe/elm/doc/help,
but the same file in the client workspace would map back to the depot via the higher-pre-
cedence second line to //depot/nowhere/help. Because the file would be written back
to a different location in the depot than where it was read from, PERFORCE doesn’t map
this name at all.

In older versions of PERFORCE, this was often used as a trick to exclude particular files
from the client workspace. Because PERFORCE now has exclusionary mappings, this type
of mapping is no longer useful, and should be avoided.

3(5)25&(�6\QWD[�
IRU�)LOH�1DPHV�:LWKLQ�9LHZV

File and directory names provided in view specifications are always referred to PERFORCE

syntax, which remains the same across operating systems. Filenames specified in this way
begin with two slashes and the client or depot name, followed by the path name of the file
relative to the client or depot root directory. The components of the path are separated by
forward slashes.

 //depot/elm_proj/... //mike_elm/...
 //depot/elm_proj/doc/%1.%2 //mike_elm/doc/%2.%1

 //depot/elm_proj/... //joe/elm/...
 //depot/nowhere/* //joe/elm/doc/*

Examples of PERFORCE Syntax

//depot/...
//eds_elm/docs/help.1
al User Interface User’s Beta Manual 33

PERFORCE 97.3 Graphic

Chapter 5 : Depots, Clients, and Changelists: More Details

 file

n,

es on

 so
mes

er-

red

ing of
ate in
bmis-

e
g it;
ain a
de.

server
s, the

of the

Multiple depots can
be provided within a
single PERFORCE
server; these must
be set up with P4.
PERFORCE syntax is sometimes called depot syntax or client syntax, depending on whether
the file specifier refers to a file in the depot or on the client. But the syntax is the same in
either case.

The specifier //... is occasionally used; it means ‘all files in all depots’.

1DPH�DQG�6WULQJ�/LPLWDWLRQV

)LOH�1DPHV�

Because of PERFORCE’S naming conventions, certain characters cannot be used in
names. These include unprintable characters, the above wildcards, and the PERFORCE revi-
sion characters @ and #. Full file names, which include the entire directory specificatio
must be 128 characters or less.

'HVFULSWLRQV

Label, branch, user, and client workspace specifications have a silent limit of 128 byt
descriptions. The description field of a changelist can be any length.

'HSRW�DQG�&OLHQW�1DPHV

Client names and depot names in a single PERFORCE server share the same namespace,
PERFORCE will never confuse a client name with a depot name. Client workspace na
and depot names can never be the same.

&KDQJHOLVWV

A PERFORCE changelist is a list of files, their revision numbers, and operations to be p
formed on these files. Commands such as File>Add to Source Control and File>Check
Out for Edit include the affected files in a changelist; the depot is not actually alte
until the changelist is submitted with Changelist>Submit.

When a changelist is submitted to the depot, the depot is updated atomically: either all of
the files in the changelist are updated in the depot, or none of them are. This group
files as a single unit guarantees that code alterations spanning multiple files will upd
the depot simultaneously. To reflect the atomic nature of changelist submissions, su
sion of a changelist is sometimes called an atomic change transaction.

When the command Changelist>Submit is given, a dialog is displayed that contains th
files in the default changelist. Any file can be removed from this list by uncheckin
when a file is deleted, it is moved to the default changelist. A changelist must cont
user-entered description, which should describe the nature of the changes being ma

When the user quits from the changelist dialog, the changelist is submitted to the
and the server attempts to update the files in the depot. If there are no problem
changelist is assigned a sequential number, and its status changes from new or pending to
submitted. Once a changelist has been submitted, it becomes a permanent part
depot’s metadata, and is unchangeable except by PERFORCE superusers.
al User Interface User’s Beta Manual 34

PERFORCE 97.3 Graphic

Chapter 5 : Depots, Clients, and Changelists: More Details

ence

t, and
st was
 in

bered

ion, a

Chapter 6
discusses the
merge/resolve
process.
&UHDWLQJ�1XPEHUHG�&KDQJHOLVWV

A user can create a changelist in advance of submission with Changelist>New.... This
command brings up the same form seen when a changelist is submitted. All files in the
default changelist are moved to this new changelist; when the user quits from the form, the
changelist is assigned the next changelist number in sequence, and this changelist must be
subsequently referred to by this change number. Files can be deleted from the changelist
by editing the form; files deleted from this changelist are moved to the next default
changelist. The status for a changelist created by this method is pending until the form is
submitted.

Multiple changelists are created in order to keep fixes that span multiple files in a single,
logical location. For example, a fix to one bug may involve changes to three files, and a
new feature may mean changing four other files. The bug fix might be handled in one
changelist, and the new feature might be added via another changelist. Each changelist
would include only the files that affect that particular change to the system.

Any client file may be included in only one pending changelist.

0RYLQJ�)LOHV�EHWZHHQ�&KDQJHOLVWV

Files may be moved between pending changelists by dragging them from one changelist
to the other.

$XWRPDWLF�&UHDWLRQ�RI�
1XPEHUHG�&KDQJHOLVWV

Submits of changelists will occasionally fail. This can happen for a number of reasons:

• A file in the changelist has been locked by another user with File>Lock;

• The client workspace no longer contains a file included in the changelist;

• There is a server error, such as not enough disk space; or

• The user was not editing the head revision of a particular file. The following sequ
shows an example of how this can occur:

Ed’s submit is rejected, since the file revision of foo that he edited is no longer the
head revision of that file.

If any file in a changelist is rejected for any reason, the entire changelist is backed ou
none of the files in the changelist are updated in the depot. If the submitted changeli
the default changelist, PERFORCE assigns the changelist the next change number
sequence, an error message will be written to the status pane, and the new num
changelist will appear in the pending changelist pane.

If the submit failed because the client-owned revision of the file is not the head revis
merge must be performed before the changelist will be accepted.

Ed checks out file foo for edit and puts it in his default changelist;
Bettie checks out the same file for edit and puts it in her default changelist;
Bettie submits his default changelist;
Ed submits his default changelist.
al User Interface User’s Beta Manual 35

PERFORCE 97.3 Graphic

Chapter 5 : Depots, Clients, and Changelists: More Details

t
r file

Example:
Automatic
renumbering of
changelists
&KDQJHOLVWV�0D\�%H�5HQXPEHUHG�XSRQ�6XEPLVVLRQ

The change numbers of submitted changelists always reflect the order in which the
changelists were submitted. Thus, when a changelist is submitted, it may be renumbered.

Ed has finished fixing the filtering bug that he’s been using changelist 29 for. Since he cre-
ated that changelist, he’s since submitted another changelist (change 30), and two other
users have submitted changelists. Ed submits change 29, and the following message
appears in the status pane:

Change 33 submitted

'HOHWLQJ�&KDQJHOLVWV

To remove a pending changelist that has no files or jobs associated with it, use Change-
list>Delete. Pending changelists that contain open files or jobs must have the files and
jobs removed from them before they can be deleted: simply drag the files or jobs to
another changelist, use File>Revert to remove files from the changelist and revert them
back to their synced revision, and/or use Changelist>Remove Job Fix to remove jobs
from the changelist.

9LHZLQJ�6XEPLWWHG�&KDQJHOLVWV

A list of changelists that have been submitted to the depot can be viewed by clicking the
submitted changelist pane button in the toolbar. Four columns are displayed:

Any of the columns can be used to sort the changelists; click on the column that you want
to sort by. The number of submitted changelists retrieved from the server can be set with
the Perforce>Options... Connection Settings tab.

A list of files and jobs included in any changelist can be viewed by clicking on the change-
list and choosing Changelist>Describe....

$FFHVVLQJ�2OGHU�)LOH�5HYLVLRQV

Thus far, we’ve seen how to sync only the most recent revision (the head revision) of a
depot file to the client workspace, but PERFORCE allows older file revisions to be brough
into the client workspace, and allows other operations on those files as well. Olde
al User Interface User’s Beta Manual 36

PERFORCE 97.3 Graphic

Chapter 5 : Depots, Clients, and Changelists: More Details

ext
n the
file
,

f any
file is

pane,
ted

ion.

most

nes
 file

RCS format and
delta storage are
described in detail
at the start of the
next chapter.
revisions are accessed by selecting a single file within the depot window, and then choos-
ing File>Revision History.... When this command is run, the following dialog will
appear:

For each revision of the file, the revision number is shown, along with the number of the
changelist that the revision was submitted in, the date the revision was submitted, the
action (add, edit, delete, integrate, or branch) that the file was submitted with, and
the username and client workspace name from which the revision was submitted. Any
revision can be selected; the description of the changelist that the revision was submitted
in will be displayed in the Change Summary at the bottom.

Any file revision can be read into the client workspace by selecting the revision and click-
ing the Sync button. A revision can be viewed in an external editor by selecting the revi-
sion and pressing the Browse button; two revisions can be compared by selecting them
both (using the Control key) and pressing the Diff Revs button.

)LOH�7\SHV

PERFORCE supports normal text files as well as binary, “large text” files, keyword t
files, Macintosh resource forks, and symbolic links; these file types are described o
next page. PERFORCE attempts to determine the type of the file automatically: when a
is opened for add, PERFORCE first determines if the file is a regular file or a symbolic link
and then examines the first part of the file to determine whether is it text or binary. I
non-text characters are found, the file is assumed to be binary; otherwise, the
assumed to be text.

The detected file type can be overridden by selecting a file in the pending client
choosing File>Change Type To, and then selecting the desired file type. The suppor
file types are described on the next page.

Unless a file’s type is explicitly changed, it will remain the same from revision to revis

PERFORCE must sometimes store the complete version of every file in the depot, but
often it stores only the changes in the file since the previous revision. This is calleddelta
storage, and PERFORCE uses RCS format to store its deltas. The file’s type determi
whether full file or delta storage is used. When delta storage is used, file merges and
al User Interface User’s Beta Manual 37

PERFORCE 97.3 Graphic

Chapter 5 : Depots, Clients, and Changelists: More Details

ed or

ne.

rough
this is

P4
Files of type
resource and
symlink have
limited support in
P4WIN: although
files of these types
can be
synced into the
client workspace,
and the edited
versions of these
synced files can be
submitted, P4WIN
doesn’t allow files to
change their type to
symlink or
resource.
compares can be performed. Files that are stored in their full form can’t be merg
compared.

The PERFORCE file types are:

The types of existing files are displayed to the right of the file names in the depot pa

'HSRW�3DQH�2SWLRQV

By default, the depot pane displays only those files in the depot that are mapped th
the current client view. The entire contents of the depot can be displayed instead;
controlled by deselecting the Client View Only menu item in the Window menu.

File Type Description Comments
Storage
Type

Full
support
for type
in P4WIN?

text Text file Treated as text on the client delta yes

xtext Executable
text file

Like a text file, but execute
permission is set on the client
file when on UNIX hosts

delta yes

binary Non-text file Accessed as binary files on the
client

full
file

yes

xbinary Executable
binary file

Like a binary file, but execute
permission is set on the client
filewhen on UNIX hosts

full
file

yes

ltext Long text file This type should be used for
generated text files, such as
PostScript files.

full
file

yes

symlink Symbolic
link

UNIX clients access these as
symbolic links; on non-UNIX
clients, these are text files con-
taining symlink target file-
names.

delta no

(see note at
left)

ktext Text file with
keyword ex-
pansion.

Any inclusion of the literal
string Id within the file will
be expanded to reflect the depot
file name and revision number.

delta yes

kxtext Executable
text file with
keyword ex-
pansion

Like a ktext file, but execute
permission is set on the client
file when on UNIX hosts

delta yes

resource Macintosh
resource fork

Please see the Macintosh client
release notes at <http://
www.perforce.com/per-

force/doc/macnotes.txt>

full
file

no

(see note at
left)
al User Interface User’s Beta Manual 38

PERFORCE 97.3 Graphic

Chapter 5 : Depots, Clients, and Changelists: More Details
By default, the server is contacted to update the contents of the depot pane every 30 min-
utes. The time period between automatic updates can be specified in the PER-
FORCE>OPTIONS... dialog; automatic updating can even be turned off altogether.

Users with large depots should be careful in their use of these two options, since updates
of the depot pane of a very large depot may be painfully slow.
al User Interface User’s Beta Manual 39

CHAPTER 6 3(5)25&(�%DVLFV�
5HVROYLQJ�)LOH�&RQIOLFWV
PERFORCE 97.3 Graphic

in

 place

e

list
 sub-
t

mi-

ays
ection
File conflicts can occur when two users edit and submit two versions of the same file.
Conflicts can occur in a number of ways, but the situation is usually a variant of the fol-
lowing:

Ed opens file foo for edit;
Lisa opens the same file in her client for edit;
Ed and Lisa both edit their client workspace versions of foo;
Ed submits a changelist containing foo, and the submit succeeds;
Lisa submits a changelist with her version of foo; her submit fails.

If PERFORCE were to accept Lisa’s version into the depot, the head revision would conta
none of Ed’s changes. Instead, the changelist is rejected and a resolve must be performed.
The resolve process allows a choice to be made: Lisa’s version can be submitted in
of Ed’s, Lisa’s version can be dumped in favor of Ed’s, a PERFORCE-generated merged
version of both revisions can be submitted, or the PERFORCE-generated merged file can b
edited and then submitted.

Resolving a file conflict is a two-step process: first the resolve is scheduled, then the
resolve is performed. A resolve is automatically scheduled when a submit of a change
fails because of a file conflict; the same resolve can be scheduled manually, without
mitting, by syncing the head revision of a file over an opened revision within the clien
workspace.

PERFORCE also provides facilities for locking files when they are edited. This can eli
nate file conflicts entirely.

5&6�)RUPDW��+RZ�3(5)25&(�6WRUHV�)LOH�
5HYLVLRQV

PERFORCE uses RCS format to store its text file revisions; binary file revisions are alw
saved in full. If you already understand what this means, you can skip to the next s
of this chapter; the remainder of this section explains how RCS format works.
al User Interface User’s Beta Manual 40

PERFORCE 97.3 Graphic

Chapter 6 : PERFORCE Basics: Resolving File Conflicts
2QO\�WKH�'LIIHUHQFHV�%HWZHHQ�5HYLVLRQV�DUH�6WRUHG

A single file might have hundreds, even thousands, of revisions. Every revision of a par-
ticular file must be retrievable, and if each revision was stored in full, disk space problems
could occur: one thousand 10KB files, each with a hundred revisions, would use a
gigabyte of disk space. The scheme used by most SCM systems, including PERFORCE, is
to save only the latest revision of each file, and then store the differences between each file
revision and the one previous.

As an example, suppose that a PERFORCE depot has three revisions of file foo. The head
revision (foo#3) looks like this:

Revision two might be stored as a symbolic version of the following:

And revision 1 would be a representation of this:

From these partial file descriptions, any file revision can be reconstructed. The recon-
structed foo#1 would read

The RCS (Revision Control System) algorithm, developed by Walter Tichy, uses a notation
for implementing this system that requires very little storage space and is quite fast. In
RCS terminology, it is said that the full text of the head revisions are stored, along with the
reverse deltas of each previous revision.

It is interesting to note that the full text of the first revision could be stored, with the deltas
leading forward through the revision history of the file, but RCS has chosen the other path:
the full text of the head revision of each file is stored, with the deltas leading backwards to
the first revision. This is because the head revision is accessed much more frequently than
previous file revisions; if the head revision of a file had to be calculated from the deltas
each time it was accessed, any SCM utilizing RCS format would run much more slowly.

foo#3:

This is a test
of the
emergency
broadcast system

foo#2:

line 3 was “urgent”

foo#1:

line 4 was “system”

This is a test
of the
urgent
system
al User Interface User’s Beta Manual 41

PERFORCE 97.3 Graphic

Chapter 6 : PERFORCE Basics: Resolving File Conflicts

ns

nly
iles

head
 in

ient
t

sched-

newly
e

gned
red

hin

 sync

it is

e file

 that

ining
lves of

Example:
Automatic and
manual scheduling
of resolves of
conflicting files.
8VH�RI�¶GLII·�WR�'HWHUPLQH�)LOH�5HYLVLRQ�'LIIHUHQFHV

RCS utilizes the ‘GNU diff’ program to determine the differences between two versio
of the same file; P4D contains its own diff routine which is used by PERFORCE servers to
determine file differences when storing deltas. Because PERFORCE’s diff always determines
file deltas by comparing chunks of text between newline characters, it is by default o
used with text files. If a file is binary, each revision is usually stored in full, but binary f
can be checked in as text files, insuring that only the deltas are stored.

6FKHGXOLQJ�5HVROYHV�RI�&RQIOLFWLQJ�)LOHV

Whenever a file revision is to be submitted that is not an edit of the file’s current
revision, there will be a file conflict, and this conflict must be resolved. A file that is
conflict will appear in the depot with a yellow explanation point on the icon: .

In slightly more technical terms: we’ll call the file revision that was read into a cl
workspace the base file revision. If the base file revision for a particular file in a clien
workspace is not the same as the head revision of the same file in the depot, a resolve must
be performed before the new file revision can be accepted into the depot.

Before resolves can be performed, they must be scheduled. There are two ways of
uling resolves:

1. The easiest way to schedule a resolve is to submit a changelist that contains the
conflicting files; if a resolve is necessary, the submit will fail, and the resolve will b
scheduled automatically.

If the changelist whose submission failed was the default changelist, it will be assi
a number, and the files from the default changelist will appear in the newly numbe
changelist.

2. Resolves of conflicting files can be scheduled by selecting the conflicting files wit
the depot pane, and chose File>Sync/Remove>Sync to Head Revision. Remember
that syncing’s job is to project the state of the depot onto the client. Thus, when a
is performed on a particular file:

• If the file does not exist in the client, or it is found in the client but is unopened,
copied from the depot to the client.

• If the file has been deleted from the depot, it is deleted from the client.

• If the file has been checked out for edit, the PERFORCE server can’t simply copy the
file onto the client: any changes that had been made to the current revision of th
in the client would be overwritten. Instead, a resolve is scheduled between the file
revision in the depot, the file on the client, and the base file revision (the revision
was last read into the client).

Ed is making a series of changes to the *.guide files in the elm doc subdirectory. He has
retrieved the //depot/elm/doc/*.guide files into his client and has checked out the
files for edit. He edits the files, but before he has a chance to submit them, Lisa submits
new versions of some of the same files to the depot. The versions Ed has been editing are
no longer the head revisions; resolves must be scheduled and performed for each of the
conflicting files before Ed’s edits can be accepted. Ed submits the changelist conta
these files; the submit fails and error messages appear in the status pane. The reso
the conflicting files are scheduled as part of the submission failure.
al User Interface User’s Beta Manual 42

PERFORCE 97.3 Graphic

Chapter 6 : PERFORCE Basics: Resolving File Conflicts

t.
Alternatively, Ed could have selected the //depot/elm_proj/doc/*.guide files in the
depot pane and chosen File>Submit/Remove>Sync to Head Revision. Since these files
are already open in the client, PERFORCE doesn’t replace the client files; instead, PER-
FORCE schedules resolves between the client files and the head revisions in the depo

5HVROYLQJ�&RQIOLFWLQJ�)LOHV

File conflicts can be fixed interactively with File>Resolve..., or automatically with
File>Auto-Resolve. The latter is easier to use than the former, but provides fewer options.

,QWHUDFWLYH�)LOH�5HVROXWLRQ

Any number of conflicting files can be selected in either the depot pane or the pending
changelist pane, each file is processed separately when File>Resolve... is chosen. The
resolve process begins with three revisions of the same file and generates a fourth version;
the user can accept any of these revisions to replace the current client workspace file, and
can edit the generated version before accepting it. Of course, the new revision is not stored
in the depot until it has been submitted in a changelist.

File>Resolve... brings up the file resolution dialog:

The remainder of this section explains what this means, and how to use this dialog.
al User Interface User’s Beta Manual 43

PERFORCE 97.3 Graphic

Chapter 6 : PERFORCE Basics: Resolving File Conflicts

Discussion of
resolving branched
files begins on
page 50.
)LOH�5HYLVLRQV�8VHG�DQG�*HQHUDWHG�ZKHQ�5HVROYLQJ

The resolve process begins with three revisions of the same file, generates a new version
that merges elements of all three revisions, allows the user to edit the new file, and writes
the new file (or any of the original three revisions) to the client. The file revisions used in
the resolve process are these:

The remainder of this chapter will use the terms theirs, yours, base, merged, and
result to refer to the corresponding file revisions. The definitions given above are
somewhat different when resolve is used to integrate branched files.

7\SHV�RI�&RQIOLFWV�%HWZHHQ�)LOH�5HYLVLRQV

The diff program that underlies the PERFORCE resolve mechanism determines differences
between file revisions on a line-by-line basis. Once these differences are found, they are
grouped into chunks: for example, three new lines that are adjacent to each other are
grouped into a single chunk. Yours and theirs are both generated by a series of edits
to base; for each set of lines in yours, theirs, and base, the resolve routine asks the
following questions:

• Is this line set the same in yours, theirs, and base?

• Is this line set the same in theirs and base, but different in yours?

• Is this line set the same in yours and base, but different in theirs?

• Is this line set the same in yours and theirs, but different in base?

• Is this line set different in all three files?

yours The newly-edited revision of the file in the client workspace. This file
is overwritten by result once the resolve process is complete.

theirs The revision in the depot that the client revision conflicts with. Usu-
ally, this is the head revision, but resolves can be scheduled with any
revision between the head revision and base.

base The file revision in the depot that yours was edited from. Note that
base and theirs are different revisions; if they were the same, there
would be no reason to perform a resolve.

merged File variation generated by PERFORCE from theirs, yours, and base.

result The file resulting from the resolve process. result is written to the cli-
ent workspace, overwriting yours, and must subsequently be submit-
ted by the user. The instructions given by the user during the resolve
process determine exactly what is contained in this file. The user can
simply accept theirs, yours, or merge as the result, or can edit theirs,
yours, and merge, generating a more reliable result.
al User Interface User’s Beta Manual 44

PERFORCE 97.3 Graphic

Chapter 6 : PERFORCE Basics: Resolving File Conflicts

ber of
ve dia-

ed to

erge

hanges

i-
.

P4
The P4 command-
line version of this
command, p4
resolve, takes a
flag to generate
difference markers
even when only
yours and base
differ, or when only
theirs and base
differ.
Any line sets that are the same in all three files don’t need to be resolved. The num
line sets that answer the other four questions are reported at the bottom of the resol
log:

In this case, one line set is identical in theirs and base but is different in yours; two
line sets are identical in yours and base but are different in theirs; one line set was
changed identically in yours and theirs; and no line sets are different in yours,
theirs, and base.

+RZ�WKH�0HUJH�)LOH�LV�*HQHUDWHG

The resolve process generates a preliminary version of the merged file, which can be
accepted as is, edited and then accepted, or rejected. A simple algorithm is follow
generate this file: any changes found in yours, theirs, or both yours and theirs
are applied to the base file and written to the merged file; and any conflicting changes
will appear in the merge file in the following format:

>>>> ORIGINAL VERSION
(text from the original version)
==== THEIR VERSION
(text from their file)
==== YOUR VERSION
(text from your file)
<<<<

Thus, editing the PERFORCE-generated merge file is often as simple as opening the m
file, searching for the difference marker ‘>>>>’ , and editing that portion of the text. How-
ever, this is not always the case; it’s often useful (and necessary) to examine the c
made to theirs to make sure they’re compatible with other changes that you made.

7KH�5HVROYH�'LDORJ�2SWLRQV

The File>Resolve... command contains the following buttons:

Button Name What it Does

Accept

(under Your File)

Accept yours into the client workspace as the resolved revi-
sion, ignoring changes that may have been made in theirs.

Diff

(under Your File)

Diff line sets from yours that conflict with base

Edit

(under Your File)

Edit the revision of the file currently in the client

Accept

(under Their File)

Accept theirs into the client workspace as the resolved rev
sion. The revision that was in the client workspace is trashed
al User Interface User’s Beta Manual 45

PERFORCE 97.3 Graphic

Chapter 6 : PERFORCE Basics: Resolving File Conflicts

y

s, he

-

Example:
Resolving
file Conflicts
The merge file is generated by p4D’s internal diff routine. But the differences displayed b
all the diff options above are created by a diff routine internal to the P4 client program, and
this diff can be overridden by specifying an external diff in the P4DIFF environment vari-
able.

In the last example, Ed scheduled the doc/*.guide files for resolve. This was necessary
because both he and Lisa had been editing the same files; Lisa had already submitted ver-
sions, and Ed needs to reconcile his changes with Lisa’s. To perform the resolve

Diff

(under Their File)

Diff line sets from theirs that conflict with base

View

(under Their File)

Edit the revision in the depot that the client revision conflicts
with (usually the head revision). This edit is read-only.

Accept Merged Accept merged into the client workspace as the resolved revi-
sion. The version originally in the client workspace is trashed.

Diff Merged Diff line sets from merge that conflict with base.

Edit Merged File Edit the preliminary merge file generated by PERFORCE.

Run Merge Utility Call a third-party merge tool to generate the merged file. This
tool must be able to take four file arguments in the order

base theirs yours merge

To use this option, you must set the environment variable
MERGE to the name of a third-party program that merges the
first three files and writes the fourth as a result

Cancel Don’t perform the resolve right now. The file remains in con
flict.
al User Interface User’s Beta Manual 46

PERFORCE 97.3 Graphic

Chapter 6 : PERFORCE Basics: Resolving File Conflicts

ny of
of. He

ange.

hey’re
 the
e

selects these files in the pending client pane, chooses File>Resolve... and sees the follow-
ing:

This is the resolve dialog for doc/Alias.guide, the first of the files that Ed needs to
resolve . Ed sees that he’s made four changes to the base file that don’t conflict with a
Lisa’s changes; he also notes that Lisa has made two changes that he’s unaware
clicks the Diff button in the Their File pane to view Lisa’s diffs; he looks them over
and sees that they’re fine. Of most concern to him, of course, is the one conflicting ch
He chooses Edit Merged File and searches for the difference marker ‘>>>>’ . The fol-
lowing text is displayed:

He and Lisa have both tried to add a zip code to an address in the file; Ed had typed it
wrong. He changes this portion of the file so it reads as follows:

The merge file is now acceptable to him: he’s viewed Lisa’s changes, seen that t
compatible with his own, and the only line conflict has been resolved. He quits from
editor and chooses Accept Merge; the edited merge file is written to the client, and th
resolve dialog is displayed again for the next file that Ed needs to resolve.

Intuitive Systems
Mountain View, California
>>>> ORIGINAL VERSION
==== THEIR VERSION
98992
==== YOUR VERSION
98993
<<<<

Intuitive Systems
Mountain View, California
98992
al User Interface User’s Beta Manual 47

PERFORCE 97.3 Graphic

Chapter 6 : PERFORCE Basics: Resolving File Conflicts

it
he file

les,

File locking is
described in
“Locking Files to
Minimize File
Conflicts”, later in
this chapter.

Example:
Automatically
accepting particular
revisions of
conflicting files
When a version of the file is accepted onto the client, the previous client file is overwrit-
ten, and the new client file must still be submitted to the depot. Note that it is possible for
another user to have submitted yet another revision of the same file to the depot between
the time a file is resolved and the time the file’s changelist is submitted; in this case,
would be necessary to perform another resolve. This can be prevented by locking t
before performing the resolve.

$XWRPDWLF�)LOH�5HVROXWLRQ

A file can be resolved automatically by PERFORCE by selecting the file and choosing
File>Auto-Resolve. This command automatically accepts yours, theirs, or merged
according to the following criteria:

• If there are no differences between theirs and base, yours is accepted;

• Otherwise, if there are no differences between yours and base, theirs is accepted;

• Otherwise, if there are differences between yours and base, and between theirs and base,
but there are no conflicts between yours and theirs, merged is accepted;

• Otherwise, there are conflicts between changes made to yours and theirs, and the resolve
is skipped.

Ed has been editing the doc/*.guide files, and knows that some of them will require
resolving. He selects all the doc/*.guide files within his changelist and schedules them
for resolve. He then chooses File>Auto-Resolve...; the merge files for all scheduled
resolves are generated, and those merge files that contain no line set conflicts are written
to his client workspace. He’ll still need to manually resolve all the other conflicting fi
but the amount of work he needs to do is substantially reduced.

3UHYLHZLQJ�$XWRPDWLF�)LOH�5HVROXWLRQ

The results of automatic file resolution can be previewed with File>Auto-Resolve (Pre-
view Only). This command displays messages in the status pane that inform you what
would happen if you chose File>Auto-Resolve.

5HVROYLQJ�%LQDU\�)LOHV

If any of the three file revisions participating in the merge are binary instead of text, a
three-way merge is not possible. Instead, p4 resolve performs a two-way merge: the
al User Interface User’s Beta Manual 48

PERFORCE 97.3 Graphic

Chapter 6 : PERFORCE Basics: Resolving File Conflicts

e
auto-
user
ne

 will
 this
ked,

 deal

 fol-
two conflicting file versions are presented, and you can edit and choose between them.
The two-way merge dialog is a very limited version of the three-way merge dialog:

None of the commands that involve base or merged are available, since these revisions
don’t exist in a two-way merge.

/RFNLQJ�)LOHV�WR�0LQLPL]H�)LOH�&RQIOLFWV

Once open, a file can be locked with File>Lock so that only the user who locked the fil
can submit the next revision of that file to the depot. Once the file is submitted, it is
matically unlocked. Locked files can also be unlocked manually by the locking
File>Unlock. A locked file will appear with a lock to its left in both the depot pa
and the pending changelist pane.

The clear benefit of locking a file is that once a file is locked, the user who locked it
experience no further conflicts on that file, and will not need to resolve the file. But
comes at a price: other users will not be able to submit the file until the file is unloc
and will have to do their own resolves once they submit their revision. Under most circum-
stances, a user who locks a file is essentially saying to other users “I don’t want to
with any resolves; you do them.” But there is an exception to this rule.

3UHYHQWLQJ�0XOWLSOH�5HVROYHV�ZLWK�)LOH�/RFNLQJ

Without file locking, there is no guarantee that the resolve process will ever end. The
lowing scenario demonstrates the problem:

Ed opens file foo for edit;
Lisa opens the same file in her client for edit;
Ed and Lisa both edit their client workspace versions of foo;
Ed submits a changelist containing that file, and his submit succeeds;
Lisa submits a changelist with her version of the file; her submit

fails because of file conflicts with the new depot’s foo;
Lisa starts a resolve;
Ed edits and submits a new version of the same file;
Lisa finishes the resolve and attempts to submit; the submit fails and must now
al User Interface User’s Beta Manual 49

PERFORCE 97.3 Graphic

Chapter 6 : PERFORCE Basics: Resolving File Conflicts

. The
e file.
itted
be merged with Ed’s latest file.
<etc...>

File locking can be used in conjunction with resolves to avoid this sort of headache
sequence would be implemented as follows: before scheduling a resolve, lock th
Then sync the file, resolve the file, and submit the file. New versions can’t be subm
by other users until the resolved file is either submitted or unlocked.

5HVROYHV�DQG�%UDQFKLQJ

Files in separate codelines can be integrated with File>Resolve; discussion of resolving
branched files begins in the Branching chapter on page 61.
al User Interface User’s Beta Manual 50

CHAPTER 7 /DEHOV
PERFORCE 97.3 Graphic

f the

r

 per-
t will

articu-
e four

ts;

ngelist

 in the

by
A PERFORCE label is simply a user-determined list of files and revisions. The label can
later be used to reproduce the state of these files within a client workspace.

Labels provide a method of naming important combinations of file revisions for later ref-
erence. For example, the file revisions that comprise a particular release of your software
might be given the label release2.0.1. At a later time, all the files in that label can be
retrieved into a client workspace with a single command.

Create a label when:

• You want to keep track of all the file revisions contained in a particular release o
software;

• There exists a particular set of file revisions that you want to give to other users; o

• You have a set of file revisions that you want to branch from, but you don’t want to
form the branch yet. In this case, you would create a label for the file revisions tha
form the base of the branch.

:K\�1RW�-XVW�8VH�&KDQJH�1XPEHUV"

Labels share certain important characteristics with change numbers: both refer to p
lar file sets, and both act as handles to refer to all the files in the set. But labels hav
important advantages over change numbers:

• the file revisions referenced by a particular label can come from different changelis

• a change number refers to the state of all the files in the depot at the time the cha
was submitted; a label can refer to any arbitrary set of files and revisions;

• the files and revisions referenced by a label can be arbitrarily changed at any point
label’s existence; and

• changelists are always referred to by PERFORCE-assigned numbers; labels are named
the user.
al User Interface User’s Beta Manual 51

PERFORCE 97.3 Graphic

Chapter 7 : Labels

Example:
Creating a label
9LHZLQJ�/DEHOV

Labels are created and edited within the labels pane.To display the labels pane, click the
labels pane selection icon in the toolbar. The labels pane will appear at the right of the

window:

This pane lists every label known to the current P4D server. Any of the three columns may
be sorted on by clicking on the column title; more detailed information on any label is
available by selecting the label and choosing Label>Describe.

&UHDWLQJ�D�/DEHO

Labels are created with Label>New...; this command brings up a dialog similar to the cli-
ent specification dialog. Like clients, labels have associated views; the label view limits
which files can be referenced by the label. Once the label has been created, the
Label>Synchronize Label to Match Client command is used to load the label with file
references.

Label names share the same namespace as clients, branches, and depots; thus, a label
name can’t be the same as any existing client, branch, or depot name.

Ed has finished the first version of filtering in elm; he wants to create a label that refer-
ences only the head revisions of files in the filter and hdrs subdirectories. He wants to
name the label filters.1; he types chooses Label>New... and fills in the label dialog as
follows:
al User Interface User’s Beta Manual 52

PERFORCE 97.3 Graphic

Chapter 7 : Labels

ine

e

t be
 the

s

lecting

 view
ill be

Example:
Storing
file references
in a label.
When he quits from the editor, the label is created.

Before following this example further, it’s worth stopping for a moment to exam
exactly what has and hasn’t been accomplished. So far, a label called filters.1 has
been created. It can contain files only from the depot’s elm/filter and elm/hdrs sub-
directories. But the label filters.1 is empty; it contains no file references. It will b
loaded with its file references with Label>Synchronize>Label to match Client.

The View: field is used to limit the files that are included in the label. These files mus
specified by their location in the depot; this view differs from other views in that only
depot side of the view is specified. The locked/unlocked option in the Options: field
can prevent Label>Synchronize>Label to Match Client from overwriting previously
synced labels (this is described further in “Preventing Accidental Overwrites of a Label’
Contents” on page 54).

$GGLQJ�DQG�&KDQJLQJ�
)LOHV�/LVWHG�LQ�D�/DEHO

Once a label has been created, references to files can be included in the label by se
the label in the rightmost pane and choosing Label>Synchronize>Label to Match Cli-
ent. The files that are added to the label will be those in the intersection of the label
and those that were last synced to the client workspace; the revisions in the label w
those last synced to the client workspace.

Ed has created a label called filters.1 as specified above; now he wants to load the
filters.1 label with the proper file revisions. The client view of the depot in the leftmost
pane shows which files and revisions are in his workspace:

Ed clicks on the filters.1 label and chooses Label>Synchronize>Label to match Cli-
ent. The files included in the label are the intersection of those listed in the client view and
the label view that the label was defined with; since the label view was defined to include
only those files in the filter and hdrs subdirectories, only those files will be included in
the label.
al User Interface User’s Beta Manual 53

PERFORCE 97.3 Graphic

Chapter 7 : Labels

from

nd
nt

f the
pace
m the

P4
Although P4WIN
requires the entire of
contents of the client
workspace to be
stored in the label,
the P4 command-
line provides more
precision, allowing
individual files and
revisions to be
added to the files
already listed in a
label. Please see the
Labels chapter of
the Command-Line
User’s Guide for
more information.

Example:
Retrieving files into
a client workspace
from a label
The revisions included in the label will be those last synced to the client workspace; by
inspecting the client view of the depot above, we can see that this will include revision 7 of
the file audit.c and revision 2 of filter.c.

3UHYHQWLQJ�$FFLGHQWDO�2YHUZULWHV�RI�
D�/DEHO·V�&RQWHQWV

Since Label>Synchronize>Label to match Client overwrites all the files that are listed
in the label, it is possible to accidently lose the information that a label is meant to contain.
To prevent this, select the label in the labels pane, choose Label>Edit Specification... and
set the value of the Options: field to locked. Syncing the label to the client will not be
allowed unless the label is subsequently unlocked.

5HWULHYLQJ�)LOH�5HYLVLRQV�IURP�D�/DEHO
LQWR�D�&OLHQW�:RUNVSDFH

0DWFKLQJ�WKH�&OLHQW�:RUNVSDFH�WR�WKH�/DEHO

To retrieve all the files listed in a label into a client workspace, select the label in the label
pane and choose Label>Sync Client to Label... This command will match the state of the
client workspace to the state of the label, rather than simply adding the files to the client
workspace. Thus, files in the client workspace that aren’t in the label will be deleted
the client workspace.

Lisa wants to make the state of her client workspace exactly match the files and revisions
stored in Ed’s filters.1 label. She selects the filters.1 label in the labels pane, a
chooses Label>Sync Client to Label.... Files are added to and deleted from her clie
workspace to make it exactly match the file revision listing in the label.

5HWULHYLQJ�D�6XEVHW�RI�D�/DEHO·V�)LOH�5HYLVLRQV
,QWR�WKH�&OLHQW�:RUNVSDFH

To retrieve only a subset of the file revisions listed in a label into a client workspace, select
the files in the depot pane and choose File>Sync/Remove Files>Sync to Label or
Change.

Lisa wants to retrieve only those file revisions in the //depot/elm/hdrs subdirectory o
filter.1 label into her client workspace; she wants to leave the rest of her client works
intact. Within the depot pane, she shift-selects the files that she wants to sync fro
label:
al User Interface User’s Beta Manual 54

PERFORCE 97.3 Graphic

Chapter 7 : Labels

tact.

have

 pane,

at

osing

P4
It is often useful to
view a list of files
contained in a label.
P4WIN does not
currently allow this,
but it can be
accomplished by
running the
PERFORCE
command-line
command
p4 files
@labelname.
and chooses File>Sync/Remove Files>Sync to Label or Change. The following dialog is
displayed:

Lisa types the label name filters.1 and presses the Get Files button. Only those files
she’s selected are synced to the client workspace; the rest of her workspace is left in

If Lisa had selected the enclosing folder instead of the files in the folder, all the files in the
folder would have been synced to the client workspace, as mapped through the label view.
Thus, if the folder had contained files that weren’t included in the label, they would
been deleted from Lisa’s client view.

3UHYLHZLQJ�6\QF·V�5HVXOWV

A sync to the contents of a label can be previewed by selecting files within the depot
choosing File>Sync/Remove Files>Sync to Label or Change as above, typing in the
label name, and pressing Get (Preview). The status pane will display the operations th
would occur were the sync to actually be performed.

'HOHWLQJ�/DEHOV

A label can be deleted from the system by selecting it in the label pane and cho
Label>Delete.
al User Interface User’s Beta Manual 55

CHAPTER 8 %UDQFKLQJ
PERFORCE 97.3 Graphic

in
l

tical,
g; we
ers

dy to
py all
, and
 your
.

 one

 code
s. For

r their
ode to
anch
line is
PERFORCE’s Inter-File Branching™ mechanism allows any set of files to be copied with
the depot. By default, the new file set (or codeline) evolves separately from the origina
files, but changes in either codeline can be propagated to the other with P4WIN commands.

:KDW�LV�%UDQFKLQJ"

Branching is a method of keeping in sync two or more sets of similar, but not iden
files. Most software configuration management systems have some form of branchin
believe that PERFORCE’s mechanism is unique in that it mimics the style in which us
create their own file copies when no branching mechanism is available.

Suppose that you’re writing a program and are not using an SCM system. You’re rea
release your program: what would you do with your code? Chances are that you’d co
your files to a new location. One of your file sets would become your release codeline
bug fixes to the release would be made to that file set; your other files would become
development file set, and new functionality to the code would be added to these files

What would you do when you find a bug that’s shared by both file sets? You’d fix it in
file set, and then copy the edits that you made into the other file set.

The only difference between this homegrown method of branching and PERFORCE’s
branching methodology is that PERFORCE manages the file copying and edit propagation
for you. In PERFORCE’s terminology, copying the files is called making a branch; each file
set is known as a codeline, and copying an edit from one file set to the other is called inte-
gration. The entire process is called branching.

:KHQ�WR�&UHDWH�D�%UDQFK

Create a branch whenever two sets of code have different rules governing when
should be submitted, or whenever a set of files needs to evolve along different path
example:

• The members of the development group want to submit code to the depot wheneve
code changes, whether or not it compiles; but the release engineers don’t want c
be submitted until it’s been debugged, verified, and signed off on. They would br
the release codeline from the development codeline; when the development code
al User Interface User’s Beta Manual 56

PERFORCE 97.3 Graphic

Chapter 8 : Branching

IX
IX

 they
tely. If

 to the

ceeds
ed

.

s pane,
ear at

anch

reated
eeded.

eline
ready, it would be integrated into the release codeline. Patches and bug fixes would be
made in the release code; later, these changes could be integrated into the development
code.

• A company is writing a driver for a new multi-platform printer. They’ve written a UN
device driver; they’re now going to begin work on a Macintosh driver, using the UN
code as their starting point. They create a branch from the existing UNIX code;
now have two copies of the same code, and these codelines can evolve separa
bugs are found in either codeline, bug fixes can be propagated from one codeline
other with the integrate commands.

• At PERFORCE, we use branching to manage our releases. Development always pro
in files located within //depot/main/... When a new release is ready, it’s branch
into another codeline, for example, the code for this release was copied from
//depot/main/... into //depot/97.3/... Bug fixes that affect both codelines
will be made within //depot/main/..., and later integrated into the other codeline

Development of release 98.1 will proceed in //depot/main/..., when the new
release is ready, it will be branched into //depot/98.1/..., and the process will con-
tinue like this for all PERFORCE releases.

9LHZLQJ�%UDQFKHV

Branches are created and edited within the branches pane.To display the branche
click the branches pane selection icon in the toolbar. The branches pane will app
the right side of the P4WIN window:

This pane lists every branch known to the current P4D server. Any of the three columns
may be sorted on by clicking on the column title; more detailed information on any br
is available by selecting the branch and choosing Branch>Describe.

%UDQFKLQJ·V�)LUVW�$FWLRQ�
&UHDWLQJ�D�%UDQFK

As described above, two separate actions comprise branching: first, a branch is c
(e.g., files are copied); second, edits are copied from one codeline to the other as n
This section describes the first of these actions.

The steps to creating a branched codeline are:

1. Create the new branch view with Branch>New.... Use the view in the dialog box to
indicate which files are to be included in the branch, and where the branched cod
will be stored within the depot’s file tree.
al User Interface User’s Beta Manual 57

PERFORCE 97.3 Graphic

Chapter 8 : Branching

Example:
Creating a branch
2. Make sure that the new files and directories are included in the client view of the client
workspace that will hold the new files.

3. Use Branch>Integrate to open the new files for branching. The new files are listed in
a changelist; the associated operation is branch.

4. Submit the changelist that contains the branched file to the PERFORCE server. This cre-
ates the new files in the depot.

The following example demonstrates each of these steps.

6WHS����&UHDWH�WKH�EUDQFK�YLHZ

The first step is to create the branch view. Creating a branch view does four things:

1. Assigns the branched codeline a name;

2. Describes which files will be copied from;

3. For each original file, describes where the new copy will be stored within the depot;

4. Maintains a mapping between each original and branch file, so that changes to one can
be easily propagated to the other.

A version of Elm is ready for release, and a potential problem is foreseen: the developers
will be submitting code to the depot for the next version of Elm, but the release engineers
will be submitting fixes to the released version. The two policies are clearly incompatible;
so a branched codeline, with duplicate Elm files, needs to be created. Kurt, one of the
release engineers, is assigned to create the branch for the release engineers.

The original code is stored in the depot under its elm subtree; Kurt decides to call the
branch elm_r1, and will store the branched codeline in the depot under an
elm_release1 subdirectory. He displays the branches in the rightmost pane, chooses
Branch>New... The following dialog box appears:
al User Interface User’s Beta Manual 58

PERFORCE 97.3 Graphic

Chapter 8 : Branching

ght;

e at
The default View above would map the entire depot to itself in a branch, which is useless.
The View needs to map the original codeline’s files on the left to branch files on the ri
Kurt fills in a branch name and changes the View field as follows:

This maps all the files in the depot’s elm file tree to a new depot file tree called
elm_release1. All files from the source subtree will be copied to the branch subtre
the end of this process; these files will be the contents of the branch.

Kurt quits the editor; the branch is created.

The new branch command does not copy files into the branch; it simply specifies which
original file will correspond to which branched file.

Exclusionary mappings may be used within a branch view.

6WHS����,QFOXGH�WKH�%UDQFKHG�)LOHV�LQ�WKH�&OLHQW�9LHZ

In order to work with branched files, the branched files must be accessible through the cli-
ent view.
al User Interface User’s Beta Manual 59

PERFORCE 97.3 Graphic

Chapter 8 : Branching

ork-

ells
n the

hich

op-

ere
lient

Example:
Including
branched files
in a client view

Example:
Using integrate
to create
branched files
Kurt will be working with the branched files. His client is kurtv_cli; he chooses Cli-
ent>Create/Edit my Client, and adds a line to his client view:

There might be other mappings within the client view; the only crucial factor is that the
files in the depot’s elm branch directory be mapped to some location in Kurt’s client w
space. The mapping shown here accomplishes this.

6WHS���
8VH�,QWHJUDWH
WR�&UHDWH�WKH�7DUJHW�)LOHV
LQ�WKH�&OLHQW�:RUNVSDFH

To create the new branch files in the client workspace, select the branch in the branch pane
and choose Branch>Integrate>Source Line to Branch. When the branch files don’t yet
exist in the depot, integrate creates the branched files in the client workspace and t
the server that the branch files are to be copied from the original files described i
branch mapping. The integrate command, like add, edit, and delete, does not actu-
ally affect the depot immediately; instead, it adds the affected files to a changelist w
must be submitted.

Kurt has created the branch elm_r1 as above, and he’s ready to create the branched c
ies in the depot. He selects this branch in the branch pane and chooses Branch>Inte-
grate>Source Line to Branch. The status pane tells him whether or not the files w
copied successfully into the client workspace; all the files that are created in the c
workspace are opened in the default changelist.

(GLWLQJ�1HZO\�%UDQFKHG�)LOHV

By default, a file that has been newly created in a client workspace by the integration com-
mand cannot be edited before its first submission. To make a newly-branched file avail-
able for editing before submission, simply check out the file for edit.
al User Interface User’s Beta Manual 60

PERFORCE 97.3 Graphic

Chapter 8 : Branching

ccom-

other
er-
ge

e files

n he’s
 must

o be
nch

Discussion of
file conflict
resolution
begins on page 43.

Example:
Propagating
original codeline
changes to the
branched codeline
6WHS���
6XEPLW�WKH�&KDQJHOLVW
WR�&UHDWH�WKH�)LOHV
LQ�WKH�'HSRW

The previous step created the files within the client workspace and opened the files within
the default changelist. The last step to create branched files is to submit the changelist.
This keeps the branching operation atomic: either all the named files are affected at once,
or none of them are.

:RUNLQJ�:LWK�%UDQFKHG�)LOHV

Once a branch has been created and the files have been copied into the branched codeline
with the integrate command, the branched files are treated exactly like non-branched files,
with the normal use of syncing, checking out for edit, checking out for delete, etc. Evolu-
tion of both codelines proceeds separately; additional PERFORCE commands are used only
when changes to one codeline need to be propagated to the other.

%UDQFKLQJ·V�6HFRQG�$FWLRQ�
3URSDJDWLQJ�&KDQJHV�IURP�2QH�&RGHOLQH�
WR�WKH�2WKHU

It is worth repeating that two separate actions comprise branching: first, one set of files is
copied from one location in the depot to another location, and second, changes made to
one codeline can be copied to the branched codeline as needed. The steps needed to
accomplish the first action have been described above; now we’ll discuss how to a
plish the second action.

Edits to a file in either codeline can be propagated to the corresponding file in the
codeline with the File>Resolve... command. Only one additional step needs to be p
formed: before resolving, the Branch>Integrate command is used to schedule the mer
between the original files and the branched files.

A bug has been fixed in the original Elm codeline. Kurt wants to propagate the same bug
fix to the branched codeline he’s been working on. He selects the elm_r1 branch in the
branch pane and chooses Branch>Integrate>Source Line to Branch; the files in the
branch are scheduled for resolve. He switches to the changelist pane and selects th
he wants to resolve; the standard merge dialog appears on his screen.

He resolves the conflicts with the resolution techniques described in chapter 6. Whe
done, the result files overwrite the files in his branched client workspace, and they
still be submitted to the depot.

There is one fundamental difference between resolving conflicts in two revisions of the
same file, and resolving conflicts between the same file in two different codelines. The
difference is that PERFORCE will detect conflicts between two revisions of the same file
and then schedule a resolve, but there are always differences between two versions of the
same file in two different codelines, and these differences usually don’t need t
resolved. You must tell PERFORCE that text in one file needs to be propagated to its bra
al User Interface User’s Beta Manual 61

PERFORCE 97.3 Graphic

Chapter 8 : Branching

 code-

n the

t files
r direc-

e orig-

w
nds. If
 with

ection
ind the

n

-

P4
Access levels must
be set through the P4
command line.
Please see the
PERFORCE
Command Line
User’s Guide for
details.

yours, theirs,
and base are first
discussed in the File
Conflicts chapter on
page 44.
by using the integrate command. If the codelines evolve separately, and changes never
need to be propagated, you’ll never need to integrate or resolve the files in the two
lines.

The integrate command acts only on files that are the intersection of target files i
branch view and the client view. To run the integrate command, write access is needed
on the target files, and read access is required on the donor files.

3URSDJDWLQJ�&KDQJHV�IURP�%UDQFKHG�)LOHV�
WR�WKH�2ULJLQDO�)LOHV

In PERFORCE terminology, changes are always propagated from donor files to target files.
In the above example, the original codeline provided the donor files and the targe
were located in the branched codeline, but changes can be propagated in the othe
tion by using Branch>Integrate>Branch Back to Source. When this reverse integration
command is used to propagate changes from branched donors to original targets, th
inal source files must be visible through the client view.

'HOHWLQJ�%UDQFKHV

To delete a branch, use Branch>Delete. Deleting a branch deletes only the branch vie
description, making the branch inaccessible from any subsequent integrate comma
the files in the branched codeline are to be removed, they must be deleted
File>Check Out for Delete.

+RZ�,QWHJUDWH�:RUNV

The preceding material in this chapter was written from a user’s perspective. This s
makes another pass at the same material, this time describing the mechanism beh
integration process.

,QWHJUDWH·V�'HILQLWLRQV�RI�\RXUV��WKHLUV��DQG�EDVH

The values of yours, theirs, and base in a three-way merge are quite different whe
propagating changes between two codelines:

yours The file that changes are being propagated to (also known as the tar-

get file). This file is in the client workspace, and it is overwritten by
the result once the resolve process is complete.

In a forward integrate, this is a file in the branched codeline. In a re
verse integration, this is a file in the original codeline.
al User Interface User’s Beta Manual 62

PERFORCE 97.3 Graphic

Chapter 8 : Branching

ed
is
7KH�,QWHJUDWLRQ�$OJRULWKP

The integration mechanism performs the following steps:

1. It applies the branch view to all target files to produce a list of donor/target file pairs.It
notes individually each revision of each donor file that is to be integrated.

2. It discards any donor/target pairs for which the donor file revisions have been inte-
grated in previous changes. Each revision of each file that has been integrated is
remembered individually, in order to avoid making the user merge changes more than
once.

3. It discards any donor/target pairs whose donor file revisions have integrations pending
in files that are already opened in the client.

4. All remaining donor/target pairs will be integrated. The target file is opened on the cli-
ent for the appropriate action (see below), and merging is scheduled.

,QWHJUDWH·V�$FWLRQV

The integrate command will take one of three actions, depending on particular characteris-
tics of the donor and target files:

When a forward integration is performed, the original codeline provides the donor files,
and the branched codeline provides the targets. When a reverse integration is run, the
branched codeline is the donor, and the original files are the targets.

theirs The file revision that changes are being read from (also known as the
donor file). This file revision comes from the depot, and is un-
changed by the resolve process.

In a forward integrate, this is a file revision from the original codeline.
In a reverse integration, this is a file in the branched codeline.

base The last integrated revision of the donor file. When a new branch is
created and integrate is used to create the branched copy of the file in
the depot, the newly-branched copy is base.

Action Meaning

branch If the target file does not exist, it is opened for branch. The branch
action is a variant of add, but PERFORCE keeps a record of which do-
nor file the target file was branched from. This allows three-way
merges to be performed between subsequent donor and target revi-
sions with the original donor file revision as base.

integrate If both the donor and target files exist, the target is opened for inte-
grate, which is a variant of edit. Before a user can submit a file
that has been opened for integration, the donor and target must be
merged through PERFORCE’s resolve process.

delete When the target file exists but no corresponding donor file is mapp
through the branch view, the target is marked for deletion. This
consistent with integrate’s semantics: it attempts to make the tar-
get tree reflect the donor tree.
al User Interface User’s Beta Manual 63

PERFORCE 97.3 Graphic

Chapter 8 : Branching
$GGLWLRQDO�&RPPDQG�/LQH�)XQFWLRQDOLW\

The P4 command line interface to PERFORCE provides additional branching functionality
that is not available in P4WIN. P4 allows integration of a subset of files in a branch, integra-
tion of specific file revisions, the re-integration and re-resolving of already integrated
code, and merging of two files that were previously not related. For more information,
please see the PERFORCE Command Line User’s Manual.
al User Interface User’s Beta Manual 64

CHAPTER 9 -RE�7UDFNLQJ
PERFORCE 97.3 Graphic

ctually
that
if and
ed

d
ible for
job.
rting

an

e jobs

vail-

P4
Please see the “P4
User’s Manual” for
information about
daemons.
A job is a written description of some modification to be made to a source code set. A job
might be a bug description, like “the system crashes when I press return”, or it might be
a system improvement request, like “please make the program run faster.”

Whereas a job represents work that is intended, a changelist represents work a
done. PERFORCE’s job tracking mechanism allows jobs to be linked to the changelists
implement the work requested by the job. A job can later be looked up to determine
when it was fixed, which file revisions implemented the fix, and who fixed it. A job link
to a particular changelist is marked as completed when the changelist is submitted.

Jobs perform no functions internally to PERFORCE; rather, they are provided as a metho
of keeping track of what changes to the source are needed, which user is respons
implementing the job, and which file revisions contain the implementation of the
Since jobs do nothing more than provide this information to the user, the job repo
facilities are particularly important.

The job facilities in PERFORCE do not provide a full-scale job tracking system. They c
be used as is, or integrated with another system via a daemon.

9LHZLQJ�-REV

Jobs are created and edited within the Jobs pane.To display the jobs pane, click th
pane selection icon in the toolbar. The jobs pane will appear:

This pane lists every job known to the current P4D server. Any of the five columns may be
sorted on by clicking on the column title; more detailed information on any job is a
able by selecting the job and choosing Job>Describe.
al User Interface User’s Beta Manual 65

PERFORCE 97.3 Graphic

Chapter 9 : Job Tracking

g
g box

to

Example:
Creating a Job
&UHDWLQJ�DQG�(GLWLQJ�-REV

Jobs are created with the Job>New... command.

Sarah, who shares the same PERFORCE server as Ed, has found a bug in Elm’s filterin
code. Ed is fixing the code, so Sarah creates a new job and fills in the resulting dialo
as follows:

She has changed User: from her username to edk. Ed will see this job listed in the
changelist dialog the next time he creates a new changelist.

The job dialog box’s fields are:

The name that appears by default on the form is new, but this can be changed by the user
any desired string. If the Job: field is left as new, or is blank, PERFORCE will assign the
job the name jobN, where N is a sequentially-assigned six-digit number.

Field Name Description Default

Job The name of the job. Whitespace is not
allowed in the name.

new

User The user whom the job is assigned to, usually
the username of the person assigned to fix
this particular problem.

PERFORCE user-
name of the per-
son creating the
job.

Status open, closed, suspended, or new.

An open job is one that has been created but
has not yet been fixed.

A closed job is one that has been completed.

A suspended job is an open job that is not
currently being worked on.

New jobs exist only while the change creation
form is open.

new; changes to
open after job
creation form is
closed.

Description Arbitrary text assigned by the user. Usually a
written description of the problem that is
meant to be fixed.

text that must be
changed
al User Interface User’s Beta Manual 66

PERFORCE 97.3 Graphic

Chapter 9 : Job Tracking

ed

d, he
ed; the

r of
in the
lects
ppear

Example:
Including and
excluding jobs from
changelists
Existing jobs can be edited with Job>Edit Specification... The owner and description can
be changed arbitrarily, and the status can be changed to any of the three valid status values
open, closed, or suspended.

/LQNLQJ�-REV�WR�&KDQJHOLVWV��
DQG�&KDQJLQJ�D�-RE·V�6WDWXV

$XWRPDWLFDOO\�3HUIRUPHG�)XQFWLRQV

By default, all open jobs owned by a particular user will appear in all PERFORCE change-
lists subsequently created by that user. A job is automatically closed when one of its asso-
ciated changelists is successfully submitted. Jobs can be disassociated from changelists by
deselecting the job in the changelist ’s dialog box, and any job of any status may be add
to a changelist.

Ed is unaware of the job that Sarah has assigned to him. He is currently working on an
unrelated problem; he chooses Changelist>New... and sees the following:

Since this job is unrelated to the work he’s been doing, and since it hasn’t been fixe
leaves the job deselected and closes the dialog box. When the changelist is submitt
job is not associated with it.

Ed uses Job>Describe to read the job’s details. He fixes this problem, and a numbe
other filtering bugs; when he creates his next changelist, the same job appears
changelist dialog again and this time, since the job is fixed in this changelist, Ed se
the job. When he submits this changelist, the job is marked as closed, and will not a
in any subsequent changelists unless it is reopened.
al User Interface User’s Beta Manual 67

PERFORCE 97.3 Graphic

Chapter 9 : Job Tracking

Example:
Attaching a job
to a changelist
When a job has been linked to a pending changelist, the job will appear in that changelist
when the changelist is expanded:

&RQWUROOLQJ�:KLFK�-REV�$SSHDU�LQ�&KDQJHOLVWV

The types of jobs that appear in new changelists created by a particular user can be con-
trolled through User>Create/Edit My User. The dialog box brought up by this command
has a JobView: field that allows one of three values:

In all three cases, any unwanted job may be deselected from the form before leaving the
editor, and additional jobs can be added.

0DQXDOO\�$VVRFLDWLQJ�-REV�ZLWK�&KDQJHOLVWV

Any open job can be linked to any pending changelist other than the default changelist by
selecting the changelist in the pending changelist pane and choosing Changelist>Add
Job Fix.

Sarah has submitted a job called options-bug to Ed. Ed has already created a change-
list that fixes this bug, but this changelist has not yet been submitted; Ed selects his

Value of JobView field Description

Mine When a new changelist is created, automatically in-
clude all open jobs owned by the invoking user in the
changelist dialog. This setting of JobView is the de-
fault.

None Don’t include any jobs in new changelist dialogs.

All Include all open jobs owned by all users in all new
changelists dialogs.
al User Interface User’s Beta Manual 68

PERFORCE 97.3 Graphic

Chapter 9 : Job Tracking

d

 is sub-
 with
lues.

ecting
osing
by
changelist in the pending changelist pane and links the job to his changelist with Change-
list>Add Job Fix. He sees the following dialog:

The appearance of any job that Ed selects in the Job field will appear in the Job Descrip-
tion field at the bottom of the dialog. When Ed clicks OK, the job he’s chosen will be adde
to the changelist he’d originally selected:

$UELWUDULO\�&KDQJLQJ�D�-RE·V�6WDWXV

We’ve already seen that a job is automatically closed when an associated changelist
mitted. The status of any job can also be changed by editing the job description
Job>Edit Specification... and then changing the status to one of the three allowed va
This is the only way of changing a job’s status to suspended.

'HOHWLQJ�-REV

A job that has been linked to a changelist can be unlinked from that changelist by sel
the job within the expanded changelist in the pending changelist pane, and cho
Changelist>Remove Job Fix. A job can be completely removed from the system
selecting the job in the jobs pane and choosing Job>Delete.
al User Interface User’s Beta Manual 69

	PREFACE About This Manual
	Margin Note Icons
	The Example Set
	Menu Commands and Shortcut Menus
	Please Give Us Feedback

	CHAPTER 1 Perforce Concepts
	Perforce Architecture
	Moving Files Between the Clients and the Server
	File Conflicts
	Labeling Groups of Files
	Branching Files
	Job Tracking
	Change Review and Daemons
	Protections

	CHAPTER 2 The p4win Window
	The p4win Panes
	The Depot Pane
	The Object Pane
	The Status Pane

	CHAPTER 3 Connecting to the p4d Server
	Verifying the Connection to the p4d Server
	Telling p4 Where p4d is

	CHAPTER 4 Depots, Clients, Files and Changelists: Quick Start
	Underlying Concepts
	File Configurations Used in the Examples

	Setting Up a Client Workspace
	Naming the Client Workspace
	Describing the Client Workspace to the Perforce Server
	Editing an Existing Client Specification
	Deleting an Existing Client Specification

	Copying Files from the Workspace to the Depot
	Adding Files to the Depot
	Editing Depot Files
	Deleting Files From the Depot

	Retrieving Files from the Depot into a Workspace
	Reverting Files to their Unopened States
	Basic Reporting

	CHAPTER 5 Depots, Clients, and Changelists: More Details
	Description of the Client Workspace
	Mapping the Depot to the Client Workspace
	Using Views
	Wildcards in Views
	Types of Mappings

	Perforce Syntax for File Names Within Views
	Name and String Limitations
	File Names
	Descriptions
	Depot and Client Names

	Changelists
	Creating Numbered Changelists
	Moving Files between Changelists
	Automatic Creation of Numbered Changelists
	Changelists May Be Renumbered upon Submission
	Deleting Changelists
	Viewing Submitted Changelists

	Accessing Older File Revisions
	File Types
	Depot Pane Options

	CHAPTER 6 Perforce Basics: Resolving File Conflicts
	RCS Format: How Perforce Stores File Revisions
	Only the Differences Between Revisions are Stored
	Use of ‘diff’ to Determine File Revision Differences

	Scheduling Resolves of Conflicting Files
	Resolving Conflicting Files
	Interactive File Resolution
	Automatic File Resolution
	Resolving Binary Files

	Locking Files to Minimize File Conflicts
	Preventing Multiple Resolves with File Locking

	Resolves and Branching

	CHAPTER 7 Labels
	Why Not Just Use Change Numbers?
	Viewing Labels
	Creating a Label
	Adding and Changing Files Listed in a Label
	Preventing Accidental Overwrites of a Label’s Contents
	Retrieving File Revisions from a Label into a Client Workspace
	Matching the Client Workspace to the Label
	Retrieving a Subset of a Label’s File Revisions Into the Client Workspace

	Deleting Labels

	CHAPTER 8 Branching
	What is Branching?
	When to Create a Branch
	Viewing Branches
	Branching’s First Action: Creating a Branch
	Step 1: Create the branch view
	Step 2: Include the Branched Files in the Client View
	Step 3: Use Integrate to Create the Target Files in the Client Workspace
	Step 4: Submit the Changelist to Create the Files in the Depot

	Working With Branched Files
	Branching’s Second Action: Propagating Changes from One Codeline to the Other
	Propagating Changes from Branched Files to the Original Files

	Deleting Branches
	How Integrate Works
	Integrate’s Definitions of yours, theirs, and base
	The Integration Algorithm
	Integrate’s Actions

	Additional Command-Line Functionality

	CHAPTER 9 Job Tracking
	Viewing Jobs
	Creating and Editing Jobs
	Linking Jobs to Changelists, and Changing a Job’s Status
	Automatically Performed Functions
	Controlling Which Jobs Appear in Changelists
	Manually Associating Jobs with Changelists
	Arbitrarily Changing a Job’s Status

	Deleting Jobs

