
Document Part Number 9050-1205M

API Developer’s Guide
V e r s i o n 2 . 6 1

Argus® Multi-Board Encoder

MPEG-2 Broadcast Audio/Video
Serial Digital Encoding System

Application Programming Interface Documentation
for the Vela Argus Audio/Video Multi-Board Encoder

Copyright 2002 Vela LP. All rights reserved.
This manual is written and published by Vela LP. All rights reserved. Vela
reserves the right to make changes to this manual and to the product(s)
represented without notice. No portion of this manual may be copied, repro-
duced, or transcribed without the express written authorization of Vela.

Vela OEM Products Division
5733 Myerlake Circle
Clearwater, FL 33760-2804
Phone: (727) 507-5300
Fax: (727) 573-5310
World Wide Web – http://www.vela.com

Mailing / Shipping Address:
5733 Myerlake Circle
Clearwater. FL 33760-2804

All returns must be accompanied by an authorized RMA number obtained
from Vela.

NOTE: “Argus” and “CineView” are registered trademarks of Vela LP. All other trade-
marks, brand names or product names appearing in this publication are registered to
the respective companies or organizations that own the trademarks or names.

Printed in the United States of America 5-02 Rev. AMA-0205-001

Table of Contents

Table of Contents

List of Figures and Tables . v

Chapter 1
Getting Started. 1

The Multi-Board Encoder . 1

The Multi-Board API . 1
What’s New Since Version 2.5 . 2

New Features . 2
What's Different? . 3
Minimum System Requirements . 4
Software Requirements . 4
Included Files. 5
Component Summary . 6

SDK Installation . 8

Suggested Reading . 14

ATL/COM References . 14
C++ References. 14
Other References . 15

Customer Support. 15

Chapter 2
Using the Multi-Board Encoder API. 17

Overview . 17
Multi-Board Filter Manager Interfaces . 17
Changing Individual Registry Settings . 20
MultiBoardFilterMgr Registry-Access Methods . 21
MultiBoard FilterMgr Interface Properties . 21
MultiBoardFilterMgr Commands . 22
Multi-Board Encoder Commands. 23
Events . 25
Summary . 26

Sample Applications . 28

Overview . 28
The “FourBoardTestApp” Sample Application . 28
Running the Sample Application . 37
MBProps . 39

iv Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Table of Contents

Distributing Components . 46

Overview. .46
Multi-Board Installation Using Single-Board Driver. .47
Microsoft Redistributable Code. .57
Microcode Directory Structure .57
COM Components .58
Component Registration .58
Error Codes .58
Customer Support. .59

Chapter 3
Using the VTR API . 61

Component Overview. 61

Windows Registry Settings . 62

Creating an Instance of IVTRCenter . 62

Properties Exposed Through IVTRCenter . 63

Methods Exposed Through IVTRCenter . 65

Component Initialization Method .65
Serial Communications Port Management Methods .65
Tape Deck Control Methods .65

Appendix A
Multi-Board Encoder Registry Settings . 69

Overview . 69

Registry Table Property Settings . 70

The IBM Video Registry Table .71
GOP Structure and Size .75
The IBM Audio Registry Table .77
The Mux Registry Table .80
The MuxStore Registry Table .84
The VideoStore Registry Table. .85
The FirstAudStore Registry Table .86
The SecondAudStore Registry Table .87

Appendix B
Filter Manager Error/Status Codes . 89

Index. 113

List of Figures and Tables

List of Figures and Tables

Chapter 1
Getting Started. 1

Figure 1-1. Argus Filter Architecture for Control of a Single Encoder Board 2

Table 1-1. Argus Multi-Board SDK Included Files. 5

Figure 1-2. Installation Autorun Screen . 10

Figure 1-3. Installation Welcome Screen . 10

Figure 1-4. Destination Location Screen . 11

Figure 1-5. Select Components Screen . 11

Figure 1-6. Select Program Manager Group Screen . 12

Figure 1-7. Installation Start Screen. 12

Figure 1-8. License Agreement Screen . 13

Figure 1-9. Password Entry Screen . 13

Figure 1-10.Installation Complete Screen. 14

Chapter 2
Using the Multi-Board Encoder API. 17

Figure 2-1. Filter Manager Interfaces . 18

Figure 2-2. Windows Registry Transactions. 19

Table 2-1. Managing Encode Parameters . 20

Table 2-2. Argus Allowable State Transitions . 23

Figure 2-3. C++ Sample Application Window. 38

Figure 2-4. MBProps — IBM Video Properties. 43

Figure 2-5. MBProps — IBM Audio Properties. 44

Figure 2-6. MBProps — Mux Properties . 44

Figure 2-7. MBProps — Mux Store Properties. 45

Figure 2-8. MBProps — Video Store Properties . 45

Figure 2-9. MBProps — Audio Store Properties . 46

Figure 2-10.“Found New Hardware” Windows . 48

Figure 2-11.“Install Hardware Device Driver” Window . 49

Figure 2-12.“Locate Driver Files” Window . 49

Figure 2-13.“Driver Files Search Results” Window. 50

Figure 2-14.“Completing Found New Hardware Wizard” Window 51

Figure 2-15.“Found New Hardware Wizard” Window . 52

Figure 2-16.“Install Hardware Device Drivers” Window 52

vi Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

List of Figures and Tables

Figure 2-17.“Select a Device Driver” Window . 53

Figure 2-18.“Select a Device Driver” Window . 54

Figure 2-19.“Completing Found New Hardware Wizard” Window 55

Figure 2-20.Device Manager Window . 56

Chapter 3
Using the VTR API . 61

Appendix A
Multi-Board Encoder Registry Settings . 69

Table A-1. IBM Video Registry Table . 71

Table A-2. Allowable Combinations of Video Properties 74

Table A-3. GOP Structure Examples . 76

Table A-4. IBM Audio Registry Table . 77

Table A-5. Mux Registry Table . 80

Table A-6. Mux Store Registry Table . 84

Table A-7. Video Store Registry Table . 85

Table A-8. First Audio Store Registry Table . 86

Table A-9. Second Audio Store Registry Table . 87

Appendix B
Filter Manager Error/Status Codes . 89

Table B-1. Filter Manager Error/Status Codes . 89

Index. 113

The Multi-Board Encoder

Chapter 1

Getting Started

The Multi-Board Encoder
The Vela Argus MPEG-2 multi-board encoder system is a professional audio/
video encoding system, hosted by a Microsoft Windows 2000 Platform, that con-
tains two or more Argus 4:2:2 or 4:2:0 single-board encoders. These single-board
encoders convert analog and digital audio and video signals into studio-quality
MPEG-2 digital streams supporting both Main Profile and (with the 4:2:2 board)
4:2:2 Profile encoding. The resulting MPEG-2 compressed video can then be
stored on a hard drive and/or transferred via a network, ultimately to be decoded
with an MPEG-2-compliant decoder, similar to the acclaimed
Vela CineView Pro, for broadcast or personal viewing.

Vela manufactures the single-board PCI encoders used in the Argus multi-board
system. Each board features an IBM MPEG-2 encoder chip to compress and
encode video data, and two digital signal processors to compress and encode up
to four channels of digital or analog audio.

NOTE: Vela also manufactures the Argus® Spectrum, its multi-stream encoder. The
Argus Spectrum is capable of producing up to four encoded streams simultaneously.
Typically it is used to generate a production-quality MPEG-2 stream that corresponds
to one or more lower-bitrate streams. For instructions on programming the multi-
stream encoder, please refer to the Argus Spectrum API Developer's Guide.

The Multi-Board API
Designed using an object-oriented approach, the Application Programming
Interface (API) for the Argus multi-board system is similar to Versions 2.3 and
later of the single-board Argus API. As a developer, you need only to
create a multi-board Filter Manager object for each active encoder board, then
issue calls to the Filter Manager interface to initialize, cue, start, stop, pause,
and resume the encode.

Each core function of the encoder has its own COM (Microsoft's Component
Object Model) component, also referred to as a filter. One instance of the Filter
Manager is responsible for managing all of the filters, in effect controlling the
encoding sessions for a specific encoder board, beginning with the reading of

NOTE: “Argus” and “CineView” are registered trademarks of Vela LP. All other trade-
marks, brand names, or product names appearing in this publication are registered to
their respective owners.

2 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

What’s New Since Version 2.5

the encoding parameters from the Windows Registry through to the storage or
transmission of the last byte of encoded material.

What’s New Since Version 2.5

New Features
• Support for Dolby* Digital (AC-3) encoding has been added as an optional

feature. Ask your Vela sales representative for more information.

• Audio channels 3 and 4 start more reliably.

• The length of time required to cue has been reduced.

Filter Manager automatically detects and sets drop-frame mode if VTR Control
is enabled.

Figure 1-1 illustrates the configuration of Argus filters used to control an encod-
ing session performed by one specific encoder board.

*Dolby is a trademark of Dolby Laboratories.

Figure 1-1. Argus Filter Architecture for Control of a Single Encoder Board

Chapter 1 — Getting Started 3

What’s New Since Version 2.5

In Figure 1-1:

• The solid lines represent data flow.

• The broken lines represent command flow.

• The gray rectangles are filters (COM components that send or receive
MPEG data).

• The IBM Video filter reads video data from the encoder board and delivers
it to the Multiplex component

• The IBM Audio filter reads audio data from the encoder board and delivers
it to the Multiplex component.

• The Multiplex filter receives audio and video data from the IBM Audio
and IBM Video filters, optionally processing the video stream to insert
closed captioning or to adjust GOP header time codes. It then performs
one of the following actions:

Merges the audio and video data together into a single system, program,
or transport stream, delivering the single stream to a Remote Store filter,
referred to as MuxStore.

Delivers the video data to a Remote Store filter, referred to as Video-
Store. When you elect this option, the IBM Audio filters deliver their au-
dio data directly to FileStore filters known as FirstAudioStore and
(optionally) SecondAudioStore. The audio filters are able to store their
streams directly to files because, unlike the video elementary stream, the
audio streams require no additional processing.

• MuxStore (or VideoStore, FirstAudioStore, and SecondAudioStore) writes
its data to a file.

• FilterManager controls all of the filters. In response to commands that it
receives from your client application, the Filter Manager component issues
commands to all of the filters and receives responses from them in the
form of COM events. It communicates with the client application by
sending log events, error events, and finished events.

What's Different?
As we mentioned previously, the multi-board encoder API is similar to the
standard single-board Argus encoder API, with a few major differences:

• You can simultaneously run multiple instances of the multi-board Filter
Manager interface, each responsible for the operation of a single Argus
encoder board. Before calling the Initialize() method for each instance of

4 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

What’s New Since Version 2.5

the Filter Manager, just call the PutEncoderBoardNumber() method to
indicate which board that instance of the Filter Manager is to control.

• Each of the Windows Registry tables that store encoding parameters is
uniquely numbered to indicate to which encoder board the parameters
apply. For example, for encoder board 0, the multiplex (or mux) parame-
ters are now stored in the Windows Registry table named Mux0; those
for board 1 are stored in Mux1; and so on.

• Where there are multiple output files (for example, when producing audio
and video elementary files), you can set the properties for each output file
separately, using separate Registry tables.

• The multi-board API does not currently support real-time playback (confi-
dence monitoring), multi-stream-encoding, or any of the other features
that require the use of a CineView Pro family decoder.

• The multi-board API does not currently support VTR control. If you wish
to control a VTR as part of the encoding process, you might want to use
the VTR API, detailed in Chapter 3, to monitor the position of the tape in
preparation for starting the encode. As a result of this change, the duration
of the encode is now set in the Mux table.

Minimum System Requirements
• Windows 2000 operating system, with Service Pack 2.

• Microsoft Internet Explorer 5.0

• IBM PC or PC-compatible Pentium 600 MHz dual-processor system with
PCI bus.

• 256 MB RAM minimum

• CD-ROM drive (for installation of system files)

• One or more Vela Argus 4:2:2 or 4:2:0 encoder boards. (Can be mixed)

• 9.0 GB hard drive (Fast/Wide SCSI recommended)

Software Requirements
• Argus multi-board encoder software installation (version 2.6)

• Argus multi-board encoder SDK installation (version 2.6)

• Compiler with COM support (Microsoft Visual C++, with service pack 4
or higher, or Visual Basic 6 is recommended.)

Chapter 1 — Getting Started 5

What’s New Since Version 2.5

Included Files
The following table is a list of all files to be installed with the standard installation
and with the installation of the SDK. Those that are installed as part of the SDK
are located in the folder C:\Program Files\Vela Research\Argus\SDK or in one of
its sub-folders.

Argus Multi-Board SDK Included Files

Filename File Description Folder

MultiBoardFilterMgrU.dll
IBMAudioMT.dll
IBMVideoMT.dll
FileStoreMT.dll
MultiplexMT.dll
ArgusPlugInMT.dll (optional)

Argus multi-board COM
components.

C:\Program Files\Vela
Research\Argus\SDK_MB

MultiBoardServer.exe Optional COM component that may
be used in place of MultiBoardFil-
terMgrU.dll to run as an out-of-
process server. To use, just change
(#import) statement with “Multi-
boardServer.tlb” instead of “Multi-
BoardFilterMgr.tlb.” (See StdAfx.h.)
Also, you must register MultiBoard-
Server.exe instead of MultiBoardFil-
terMgrU.dll

C:\Program Files\Vela
Research\Argus\SDK_MB

MemMgrMT.dll
MemMgrServerMT.exe
PinsMT.dll

Modules used for communication
among COM components.

C:\Program Files\Vela
Research\Common

MBProps.exe
MBProps.ico

Application for editing encoder
parameters in the Windows Registry.

C:\Program Files\Vela
Research\Argus\SDK_MB

MultiBoardFilterMgr.tlb
MultiBoardServer.tlb

Type libraries for Filter Manager
COM components.
Select one of these to correspond to
the component you will be using.

C:\Program Files\Vela
Research\Argus\SDK_MB\
TypeLibs

MBTestApp.dsp
Associated source code

Work space containing source code
for the C++ sample application that
drives a single encoder board.

C:\Program Files\ Vela
Research\ Argus\ SDK_MB\
FourBoardTestApp

Table 1-1. Argus Multi-Board SDK Included Files

6 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

What’s New Since Version 2.5

Component Summary
The goal of this API set is to give you, the Visual Basic, Visual C++, or Java
developer, an easy-to-use interface to the Argus encoder. As described earlier in
this chapter, we have implemented the encoder software on the Windows 2000
platform as a set of COM (Component Object Model) components.

The only component with which your software must interface directly is the
multi-board Filter Manager (MultiBoardFilterMgrU.dll or MultiBoard-
Server.exe). You'll use the interface to the Filter Manager to initialize, cue,
start, stop, pause, resume, or reset the encoder board.

Note that, beginning with this release (2.6), you can choose one of two Filter
Manager components: the in-process MultiBoardFilterMgrU.dll component, or
the out-of-process MultiBoardServer.exe component. Both have identical inter-
faces, so you need to do just two things to identify the particular component you
wish to use: (1) name its .tlb file in the (#import) statement within the StdAfx.h;
and (2) register the component itself.

MBProps.dsp
Associated source code

Work space containing source code
for the C++ sample application that
manages the encoder parameters in
the Windows Registry.

C:\Program Files\Vela
Research\Argus\SDK_MB\
MBProps

FourBoardTestApp.dsp
Associated source code

Work space containing source code
for the C++ sample application that
drives up to four encoder boards
simultaneously.

C:\Program Files\Vela
Research\Argus\SDK_MB\
FourBoardTestApp

VTRTestApp.dsp
Associated source code

Work space containing source code
for the Visual C++ sample applica-
tion that controls a tape deck.

C:\Program Files\Vela
Research\Argus\SDK\
VTRTestApp

sbencode.exe
sbetest.exe
sbe.exe

Applications that can be used with
Customer Support to diagnose prob-
lems with the encoder hardware.

C:\Program Files\Vela
Research\Argus\Diags

Various System DLLs for ATL and MFC.
See “Distributing Components.”

C:\Winnt\System32

Argus Multi-Board SDK Included Files (Continued)

Filename File Description Folder

Table 1-1. Argus Multi-Board SDK Included Files (Continued)

Chapter 1 — Getting Started 7

What’s New Since Version 2.5

In preparing to encode a clip, your application must configure a set of encoding
parameters using the Windows Registry. With the SDK, we provide the code for a
sample application, MBProps, which demonstrates the setting of parameters
using the Registry. Using the CRegistry class provided with MBProps, you
should be able to write code to customize your encoding environment.

The multi-board Argus SDK also includes an auxiliary API that can be used to
control a tape deck independently of an encoding session. This second compo-
nent, VTR.dll, is can be found under “COM Components,” page 58.

In developing a client application to control the encoder, you'll need to follow
these steps:
1. Determine which encoding properties will most likely remain unchanged from
one encoding session to another. These properties can be set using MBProps (or a
similar application). For a complete list of multi-board encoding properties, see
Appendix A. For a description of the MBProps application, refer to “MBProps,”
page 39.

2. Create a project that supports COM. Within the project, create an instance of
IMBFilterMgr (the multi-board Filter Manager interface) and of CFilterManager-
Events (its events interface) for each encoder board that your application will con-
trol. After setting the board number, call Initialize() for each of the instances of the
Filter Manager. (See “Sample Applications,” page 28).

3. For each instance of the Filter Manager, before cueing for an encode, use the
CRegistry class to set any encoding parameters that need to be changed for the
upcoming encode (for example, file name or duration).

4. For each instance of the Filter Manager, call Cue() to set up for the encoding
session. Then call Start() to start the encoding session.

5. In the method that receives the finished event from the Filter Manager, add
code that resets your application when the clip has finished encoding.

For a more detailed description of the steps required to create a client application,
refer to “Sample Applications,” page 28. For a complete listing of all of the multi-
board encoding parameters, refer to Appendix A.

The COM components that drive the Argus multi-board encoder are all self-regis-
tering. The multi-board Argus installation program registers each component
using regsvr32.exe, a utility that is included with the Argus API distribution. This
utility can be used to remove components from the Registry, to add new compo-
nents, or to replace existing components with newer versions.

8 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

SDK Installation

SDK Installation
Note that the installation of the Argus Software Developer’s Kit is a password-
protected process. Included with the SDK is an authenticated password that
allows installation of the SDK and accompanying files. If you did not receive a
password with your SDK purchase, contact Vela Support.

If a previous version of Argus encoder system software is installed on your sys-
tem, it must be uninstalled before continuing with the installation of the version
2.6 SDK. Use the Windows Control Panel “Add/Remove Programs” function to
uninstall Argus software, if necessary.

If you have not already installed version 2.6 of the Argus system software, you
must refer to the Argus/CineView Pro installation instructions for Windows NT
or Windows 2000 to install the software before continuing. See the appropriate
product installation and user manual for complete instructions.

If you have already installed version 2.6 of the Argus software on your system,
but did not check the “Argus SDK” during the first installation, you can install it
at this time.

To begin the installation, simply insert the Argus system software CD-ROM and,
from the Autorun setup screen (Figure 1-2), select “Install Argus or Argus Spec-
trum”, and follow the steps below:
1. Read the “Welcome” screen (Figure 1-3), then click Next.
2. On the “Choose Destination Location” screen (Figure 1-4), accept the C:\Pro-
gram Files\ Vela Research destination, as listed, by clicking Next. Do not
change the destination, as it is important for proper system operation.
3. On the “Select Components” screen (Figure 1-5):

• Under SDK, check the “Argus and Argus Spectrum SDK” check box.
(Because it is password-protected, you will be able to install the SDK only if
you purchased it and received the corresponding password. If you cannot
locate the password, call Vela Support for assistance.)

• If you have not already done so, you must run the “MFC Update” and
“Core Encoder Modules” (under Required Components on the “Select Com-
ponent” screen). These two check boxes must always be checked to insure
proper installation of the SDK software.

• Click Next to proceed with the installation of the selected components.

4. From the “Select Program Manager Group” screen (Figure 1-6), accept “Vela
Research” by clicking Next.

Chapter 1 — Getting Started 9

SDK Installation

5. On the “Start Installation” screen (Figure 1-7), click Next.
• A “DO NOT REMOVE THE CD” screen will display as a reminder that a

number of reboots may be required during the installation process, click OK.

• If you have chosen to run the MFC Update option, the installation process
will begin here to copy files.

• An “Install” message box will appear advising that the system must be
restarted. Click OK, and then wait as the system reboots. Leave the CD-
ROM in the drive through the restart process.

6. If you remembered to leave the CD-ROM in the drive, the setup application
pops up immediately after the system reboot. Continue with the installation by
following these steps:

• Select the “I Agree” radio button on the “Argus SDK End User License
agreement” screen (Figure 1-8). Click OK.

• On the “Password” screen (Figure 1-9), you will be asked for a password.
Use the one supplied with your SDK. If you have problems finding your
password, contact Vela Support (see page 15). After entering the password,
click OK.

• At this time, the application will install some files.

7. On the “Installation Complete” screen (Figure 1-10), note that Argus 2.6 has
been successfully installed. Click Finish.
8. The “Install” message box will appear advising that the system must be
restarted. Click OK then let the system reboot. Leave the CD-ROM in the
drive through the system restart process.

9. After the system has rebooted, close the setup application if it is active, then
remove the CD-ROM from the drive.

10 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

SDK Installation

Figure 1-2. Installation Autorun Screen

Figure 1-3. Installation Welcome Screen

Chapter 1 — Getting Started 11

SDK Installation

Figure 1-4. Destination Location Screen

Figure 1-5. Select Components Screen

12 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

SDK Installation

Figure 1-6. Select Program Manager Group Screen

Figure 1-7. Installation Start Screen

Chapter 1 — Getting Started 13

SDK Installation

Figure 1-8. License Agreement Screen

Figure 1-9. Password Entry Screen

14 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Suggested Reading

Suggested Reading
This manual assumes that you are familiar with ATL, COM, and C++ (or Visual
Basic) programming. For more information on these topics, we recommend that
you refer to the following publications.

ATL/COM References
Inside COM, Rogerson; Microsoft Press. Recommended for COM introduction.
Covers COM programming explicitly from a C/C++ hard-core, low-level mode.
ATL Internals, Rector and Sells; Addison-Wesley. This is an excellent reference
for ATL programming using Visual Studio 6.0. It includes very useful sections on
Smart Pointers, BSTRs, and events.
ATL COM, Grimes, Stockton, Reilly, and Templeton; WROX Press. This book
delves deep into the heart of the Active Template Library. Primarily deals with
server-side issues, but has some client code development considerations as well.

C++ References
The C++ Programming Language, Stroustrup. This bottom line reference on the
C++ programming language is highly recommended for the serious developer.
Using Visual C++, Gregory; QUE Publishing. A comprehensive reference for
Microsoft’s VC++ compiler.

Figure 1-10. Installation Complete Screen

Chapter 1 — Getting Started 15

Customer Support

Other References
References on the Sony® 9-Pin Protocol, used for VTR machine control, are
available on the Internet or by contacting Sony Broadcast and Professional
Company (Division of Sony Corporation).

Customer Support
In the event of questions or problems with Vela Application Programming
Interface methods, materials, or this manual, do not hesitate to contact
Vela Training and Support as follows:

• Phone: (727) 507-5301

• E-mail: support@vela.com

World Wide Web - http://www.vela.com

Chapter 2

Using the Multi-Board Encoder API
Overview
The key element of Version 2.6 of the multi-board Argus API is the Filter Manager
COM component, which offers two custom interfaces. The primary interface
allows your application to make requests of the Filter Manager. The second custom
interface (the outgoing interface) allows the Filter Manager to send COM events to
your calling application. Note that both Filter Manager interfaces use Unicode-
style character strings.

Multi-Board Filter Manager Interfaces
The Primary Interface

The primary Filter Manager interface exposes methods that service requests for
encoder functionality. Specifically, it accepts requests to initialize and reset the
encoder software, as well as requests to cue, start, stop, pause, and resume an
encoding session. Additionally, it exposes methods to read hardware and firm-
ware version numbers, to calculate useful time codes, and to track the status and
progress of an encode.

Through its primary interface, the Filter Manager exposes methods and proper-
ties. If you are unfamiliar with methods and properties, or with other aspects of
object-oriented programming, take time to review reading material on C++ or
COM. Refer to the end of Chapter 1 for some suggestions.

A method is simply a function call. Usually this function performs an operation,
then returns a status code. Each of the fully supported Filter Manager methods is
defined in this manual. The definition includes a description of the operation that
the method performs as well as a list of the possible return values. Be sure to
check the return value of any method that you call before proceeding with the
encoding process.

Similar to a C++ class data member, a property has a value or a setting. Typically
the value of the property can be set by calling a specific Put() method exposed by
the Filter Manager interface. Likewise, its value can be retrieved with a Get()
method. However, in this version of the multi-board Argus software, we concen-
trate more on the Windows Registry and less on COM properties to set and
retrieve encoding parameters. In fact, the multi-board Filter Manager interface
exposes just four fully supported properties.

18 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

The Secondary (Outgoing) Interface

Through its outgoing interface, the multi-board Filter Manager component
implements events. An event is a COM mechanism that allows the component
to send messages to the calling application. The Filter Manager uses events to
issue log messages, error messages, pause / resume messages, and finished
messages to the client application. The client can register to receive these
messages, at your discretion.

The remainder of this section describes techniques for setting encoding parame-
ters, then defines and describes each of the encoding commands exposed through
the primary Filter Manager interface.

Common Encode Parameters: The Windows Registry

Configurable parameters for the multi-board encoder are stored in the Windows
Registry. Many of these properties will probably be set once, when the encoder soft-
ware is installed, and never changed. It is advisable to use an application similar to
MBProps (whose source code is included with the SDK) to set these “fixed”
properties. Other properties (for example, the file name and duration) will probably
change with each encoding session. Using the CRegistry class provided with the
SDK, your application can easily set the Registry keys for these properties.

Figure 2-1. Filter Manager Interfaces

Chapter 2 — Using the Multi-Board Encoder API 19

Each of the sub-components controlled by the Filter Manager has its own Regis-
try table, from which it loads and stores encoding properties. The final character
of the table name is a single digit, specifying the board to which the properties
apply. For example, the multiplex properties for board #0 are stored in the
Registry table Mux0.

Figure 2-2 illustrates typical interactions between Argus-related software and the
Windows Registry.

One useful feature of the Registry method of storing encoding parameters is
that it is not necessary to set up the Registry before the first encode. If the
application attempts to load from the Registry when there are no encode set-
tings there, the Filter Manager responds by saving all of the default settings to
the Registry, creating all of the needed keys. You can then programmatically or
manually (using Microsoft's regedit or regedt32 tool) change Registry settings
before subsequent encodes.

All of the Registry settings for the multi-board Argus are stored in one of five
Registry locations under HKEY_CURRENT_USER \ Software \ Vela Research
\Broadcast Argus. These sub-locations are: MultiBoardFilterMgrX, IBMAudioX,
IBMVideoX, MuxX, and RemoteStoreX. In each case, the 'X' represents the

Figure 2-2. Windows Registry Transactions

20 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

board number. Appendix A identifies and describes in detail each of the Registry
settings that support the Argus multi-board encoding process.

There are a number of circumstances in which you may need to access the encod-
ing parameters that are stored in the Windows Registry. As shown in Table 6-1,
the Argus SDK provides a variety of tools to assist with the task of managing the
encode parameters.

Changing Individual Registry Settings
The multi-board encoder SDK contains source code for a sample application,
MBProps, that illustrates the loading, modification, and saving of each of the
individual Registry settings. This source code is installed in the C:\Program
Files\Vela Research\Argus\SDK\MBProps folder. You'll probably find that you
can configure most of the encoding properties once using a Registry editing tool
like the MBProps application, then leave the settings untouched.

Task Tool Description

Review, modify, save the full
set of parameters through an
application other than the
user interface.

MBProps An application that displays all
of the encoding parameters,
allowing the user to review
and modify them. Source code
is provided with the SDK. See
“MBProps,” page 39.

Change individual Registry
settings (such as file name
or duration) before an
encode.

CRegistry class, SetValue() method. The CRegistry class, whose
source code is provided with
the MBProps application, pro-
vides easy-to-use GetValue()
and SetValue() commands to
manage encoding parame-
ters of all data types.

Display a specific set of
encode parameters through
the user interface to the
encoder

CRegistry class, GetValue() method.

Load the full set of encoding
parameters from the Win-
dows Registry in preparation
for an encode.

MultiBoardFilterMgr Load() method. Loads all of the encode
parameters from the Registry
into the specific encoder COM
components to which the
parameters apply.

Save the full set of encoding
parameters under which
Argus is currently encoding.

MultiBoardFilterMgr Save() method. Dumps all of the encoding
parameters currently in mem-
ory out to the Windows Reg-
istry.

Table 2-1. Managing Encode Parameters

Chapter 2 — Using the Multi-Board Encoder API 21

However, a few properties (for example, the output file name and the duration of
the encode) are likely to change with each encode. Using the source code of the
MBProps application as an example, you can programmatically change these set-
tings before loading and cueing for each encoding session.

MBProps includes source code for a Registry-management class, CRegistry, that
makes it easy for you to access and change Registry settings.

MultiBoardFilterMgr Registry-Access Methods
The Filter Manager interface exposes a Load() method that loads the full set of
encode parameters from the Registry into memory, as well as a Save() method
that writes all the encoder's current property settings to the Registry. Before
calling the MultiBoardFilterMgr Cue() method to set up for an encode, you
should first write to the Registry any individual property changes that you need
to make, then call Load() to load all of the encoder settings into memory. Refer
to the source code of our sample application, MBTestApp, for an example. You
can preserve the current encoder settings by calling Save() with each encode. It
is wise to include this step following a successful call to Cue(), as the cue
method may modify several of the Registry settings to meet encoding require-
ments.

For example, it may reset the video GOP size to agree with the GOP structure and
the GOP open/close setting. Calling Save() following a successful cue guarantees
that corrections to the encoding parameters are stored in the Registry.

long Load() – Loads all of the settings from the Registry. If the Registry table
does not yet exist, the Load() call creates it, enters all of the Registry keys,
and assigns their default values. The Load() method returns 0 if it is success-
ful, or a negative error code if it fails. Definitions of each of the error codes
are listed in Appendix B.

long Save() – Saves to the appropriate Registry keys all of the encoding param-
eters that are currently in memory. It returns 0 if the save procedure finished
successfully or a negative error code if it failed.

MultiBoard FilterMgr Interface Properties
Because most of the encoding parameters are stored in the Windows Registry, this
section is short. In fact, apart from the encoder commands described in the next
section, MultiBoardFilterMgr exposes only two methods and four properties, as
listed on the following page:

22 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Methods:

long GetDurationFrameCount() – Anytime after the Cue() method has been
called for the current encode, GetDurationFrameCount() can be called to
retrieve the total number of frames that are to be encoded. This number is
calculated during the Cue() process. It can be used in combination with the
current frame count to determine what percentage of the encode has finished.

long GetCurrentFrameCount() – While an encode is in progress, this property
indicates the number of frames that have already been encoded. Specifically,
it identifies the number of picture headers that the MuxMT filter has received
from IBMVideoMT and parsed. It has no meaning if an encode is not cur-
rently running. If this property is used to update a progress bar, it should be
called in its own separate thread.

Properties:

short EncoderBoardNumber – The PutEncoderBoardNumber() method
assigns <val> as the encoder board number for this Filter Manager object. The
encoder board number must be assigned before your application calls Initial-
ize(). The default value of the board number is 0 (where 0 specifies the first
encoder board). The GetEncoderBoardNumber() method is also supported,
returning the board number represented as a short.

BSTR EncoderHardwareVersion – The GetEncoderHardwareVersion()
method returns the string representation of the hardware version of the
encoder board that this MultiBoardFilterMgr component controls. “S422
SBE” is the 4:2:2 single-chip encoder board, and “S420 SBE” is the 4:2:0
single-chip encoder board.

BSTR EncoderFirmwareVersion – The GetEncoderFirmwareVersion() method
returns the version-number character string of the firmware installed on the
encoder board that this MultiBoardFilterMgr component controls. Only
version “1.20” and later support closed captioning. Firmware versions “3.0”
and later support configurable reference levels (+4 dB, 0 dB, and -10 dB) for
each of the two audio streams.

BSTR SecondAudioVersion – GetSecondAudioVersion() returns the version
number character string of the firmware that controls the second audio board
managed by this instance of MultiBoardFilterMgr.

MultiBoardFilterMgr Commands
In previous sections we discussed methods and classes used to load and save
encoding properties. The multi-board Filter Manager exposes another set of

Chapter 2 — Using the Multi-Board Encoder API 23

methods, referred to as commands, that you can use to start, stop, and otherwise
control an encoding session. These same commands are exposed through the
API of all Argus encoders. Each of these methods performs a specific action,
then returns a result. When the requested action is performed successfully, the
returned result is always 0. When the method fails, it returns a negative result.
To determine the nature of the failure, reference Appendix B of this manual,
where all of the Argus error codes are listed and explained.

Before performing the action requested by a command, the multi-board Filter
Manager checks a state table, summarized below, to determine if the requested
action is legal:

Multi-Board Encoder Commands
Note that all of the commands listed below are board specific. Once a Filter

Allowable State Transitions

Current State Allowed Commands Resulting State

Success Failure

Start State
Initialize() Initialized Exit

Exit

Initialized
Reset() Reset state Exit

Exit

Reset State Cue() Cued Initialized

Cued Start() Started Initialized

Started
Pause() Paused Initialized

End() or Stop() Initialized Initialized

Paused Resume() Resumed Initialized

Resumed
Pause() Paused Initialized

End() or Stop() Initialized Initialized

Table 2-2. Argus Allowable State Transitions

24 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Manager object is created, you should immediately call the PutEncoderBoard-
Number() method to bind the Filter Manager to a specific encoder board. Then
call Initialize(). If Initialize() returns successfully, use the state table above to
determine the allowable sequences of encoder commands.

long Initialize() – Sets up the encoder application, binding the current instance
of the Filter Manager to a specific board, creating an instance of each board-
specific COM object, initializing the drivers, and resetting the encoder
board. Must be called after a call to PutEncoderBoardNumber(), defined in
the previous section of this manual. A return of 0 indicates that the Filter
Manager was set up successfully and that it is now safe to call Cue().

long Cue() – Should be called after Load() returns with a value of 0, indicating
valid encoder settings were loaded from the Windows Registry. Cue() sets up
each component for an encode, based on the encoding parameters that apply.
Generally speaking, it communicates all of the requested encoder settings to
the audio and video encoders and opens requested output files. If the Filter
Manager Cue() method returns with a value of 0, each sub-filter (IBMAudi-
oMT, IBMVideoMT, MuxMT, and FileStoreMT) will have already created a
thread that will perform the encoding for that filter. Each of those four threads
waits to begin encoding until the filter's Start() method releases a semaphore.

long Start(). Actually starts the encoding process by releasing a semaphore and
starting the encoding thread in each of the sub-components. A return of 0 indi-
cates only that the semaphore was released successfully, not that the encoding
process has finished (or even begun successfully). To monitor the progress of
the encode, you might call GetCurrentFrameCount(), comparing its return
value with that of GetDurationFrameCount(). Otherwise, you can wait for a
finished event to determine when the encoding process has finished. See the
Events section, below.

long Stop() – Stops the encode. Actually, this is one of three methods of
stopping an encode:

• Prior to the start of each encode, an encode duration is set in the mux Reg-
istry table for the current board. If neither Stop() nor End() is called, this
duration parameter controls the automatic stopping of the encoder

• Calling the Stop() command causes the encoding process to stop immedi-
ately, or abort, without flushing buffers.

• Calling the End() command causes the encoding process to stop cleanly,
after fully processing the frame that is currently in the mux component and
flushing it out to file.

A return of 0 from the Stop() or End() method indicates only that Filter

Chapter 2 — Using the Multi-Board Encoder API 25

Manager received the call. You must wait for a finished event to determine
when the encoding process has actually halted. See the Events section,
below.

long End() – This is the alternate and preferred method of stopping an encoding
session. It performs a clean stop, guaranteeing that the frame currently being
processed by the mux component will be flushed through the storage mod-
ules before the encode halts. See the discussion of stopping encodes, above.
A return of 0 from the End() method indicates only that the Filter Manager
received the call. You must wait for a finished event to determine when the
encoding process has actually halted. See the Events section, below.

long Pause() – Causes the encoding process to pause immediately. Note that
with each set of pause / resume calls, the audio-video synchronization may
be affected slightly. We recommend no more than 3 or 4 pauses per encode.
A return of 0 from the Pause() method indicates only that the Filter Manager
received the call. You must wait for a paused event to determine when the
encoding process has actually paused.

long Resume() – Causes the encoding process to resume immediately after a
pause.

long Reset() – Causes all of the encoder's COM components to reset themselves
in preparation for the next encode. This command should be issued prior to
the Load() / Cue() pair if an error occurred during the previous encode.

long Destroy() – Called when exiting your application, this method closes
handles, frees memory, and otherwise cleans up the multi-board filter
 manager component.

Events
The multi-board Filter Manager uses the COM event mechanism to send mes-
sages to its client through the outgoing interface. An event is similar to a call-
back issued by the Filter Manager in response to a noteworthy occurrence or
condition. Any client of the Filter Manager may elect to register for and
respond to Filter Manager events. Most likely, you'll want your client to register
to receive them. After you have called the Start() method, only through events
can the Filter Manager let your application know that it has finished encoding,
and whether or not it completed successfully.

From the Filter Manager's outgoing interface, a message and a code are passed
each time an event is fired. The message is used to display a detailed message
string describing the event. In the case of an error event, the code specifies the

26 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

error that occurred. For events other than error events, the code parameter may be
0, indicating a successful outcome. Codes with negative values are generally error
codes, a list of which can be found in Appendix B. All others are status codes.

The multi-board Filter Manager supports these events:

HRESULT ErrorEvent(long code, BSTR message) – Issued when a process-
ing error has occurred. When your application receives an error event, it should
set a flag indicating that an error has occurred. The Cue() method should check
this error flag, calling Reset() if the flag is set.

HRESULT LogEvent(long code, BSTR message) – Issued to inform the client
of the status of the encoding process or of a recently issued command. Infor-
mational only. If the code value is negative, the log event can be considered a
warning.

HRESULT FinishedEvent(long code, BSTR message) – Issued to inform the
client that the current encoding session has finished.

For an explanation of how to register events in your C++ or Visual Basic applica-
tion, see the respective sections of this manual that describe C++ and Visual Basic
client applications. For a more detailed explanation of COM events, refer to the
COM references listed in Chapter 1, particularly the book ATL Internals.

Summary
Using the methods and properties of the primary interface, combined with the
three methods of the events interface, you will be able to create an application that
controls the multi-board Argus encoder. For each board that you wish to manage,
just follow these steps:

Setting up the multi-board Filter Manager object:

1. Create a MultiBoardFilterMgr object (let's refer to its Smart Pointer as pFM)
and register for events issued by that object.

2. Call pFM->PutEncoderBoardNumber(x) to indicate that this instance of the
Filter Manager will control board x.

3. Call pFM->Initialize() to initialize the Filter Manager. Ascertain that the return
value of the method is 0 (not a negative return code) before continuing.

Preparing for an encode (Repeat steps 4—8 for each stream to encode):

4. If an error condition was flagged during the previous encode, call
pFM->Reset(). Check the result before continuing.

5. Programmatically modify any Windows Registry values that must be reset for

Chapter 2 — Using the Multi-Board Encoder API 27

this particular encoding session. (The source code provided with the MBProps
application demonstrates the setting of Windows Registry values using the
CRegistry class.)

6. Call pFM->Load() to load the encoding parameters from the Windows Regis-
try. If the return value of the Load() call is less than 0, abort the encode, flag an
error condition, and notify the user that the load has failed.

7. Call pFM->Cue() to cue all of the filters in preparation for the upcoming
encoding session. If the return value of the Cue() call is less than 0, abort the
encode, flag an error condition, and notify the user that the cue has failed. If the
cue succeeds, you might want to call Save() to save the current encoder parame-
ters to the Registry. Note that the Filter Manager, through its Load() and Cue()
commands, may adjust a few of the Windows Registry settings if it detects
inconsistencies.

8. When you are ready to start the encode, call pFM->Start(). The Start()
 command activates the encoding threads of all of the filters by releasing a
semaphore for each, causing the encode to begin two frames later. The Start()
command returns immediately. If the encoding process finishes successfully,
the Filter Manager will fire a finished event, to which your application should
respond by resetting its state in preparation for the next encode. If an error
occurs before the encode finishes, the Filter Manager will fire an error event. In
response, your application should flag an error condition, triggering a call to
Reset() on the next cue (see step 4). Notify the user that the encode has aborted
or finished successfully.

9. Repeat steps 4 through 8 for each encoding session.

Before exiting the application:

10. Call the events EasyUnadvise() method, then delete the Events object.

11. Call pFM->Destroy() to free memory and close handles.

12. Call pFM.Release() to release the Filter Manager.

13. Call CoUninitialize() to close the COM library and free COM resources on
the current thread.

28 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Sample Applications

Sample Applications

Overview
Developers using the multi-board Filter Manager (MultiBoardFilterMgr) should
be familiar with Microsoft Visual C++ 6.0 and/or Microsoft Visual Basic.
Microsoft provides several wizards and tools that make adding COM support to
your C++ or Basic applications relatively straightforward. While it is possible
to access and use these components from other development environments, only
examples for Visual C++ are provided in this SDK. Other packages with full
COM support should behave similarly.

The general steps for setting up a client application are:
1. Create the client project.

2. Initialize the COM libraries (VC++ only)

3. Create an instance of the desired object. (In VC++, use the Smart Pointer to
the interface).

4. Use the object.

5. Release the object (C++ only)

6. Uninitialize the COM libraries when finished.

The remaining sections of this section describe and explain three working
example applications that control various aspects of the Argus encoding
process. When the Argus SDK is installed, the source code for each of these
applications can be found in C:\Program Files\ Vela Research \Argus\SDK. The
intent of providing the source code for each of these applications is to illustrate
the use of various programming tools to control some aspect of the encoding
process. In order to present readable, easy-to-follow code, we have intentionally
kept the applications simple.

The “FourBoardTestApp” Sample Application
The Sample Visual C++ Multi-Board Encoder-Control Application

Overview

A full set of source code for a C++ interface to the multi-board Argus encoder
is provided with this SDK. The application (including source code, the Filter
Manager type library, and Registry-based DLLs) is located in C:\Program
Files\Vela Research\Argus \ SDK\FourBoardTestApp. It would be useful to refer
to a copy of the source code as you read the section that follows. Most of the

Chapter 2 — Using the Multi-Board Encoder API 29

Sample Applications

source code referenced in this document is located in FourBoardTestApp-
Calls.cpp and FilterManagerEvents.cpp.

Creating the Project

When you are creating a Microsoft Foundation Class (MFC) Application Wizard
EXE project like MBTestApp, it is very important that you select from the App
Wizard window the check box that adds support for ActiveX controls. This inserts
into the StdAfx.h file the header files required to support the COM libraries. If
you are adding COM support to an existing project, or if your project does not use
MFC, we highly suggest that you study some of the books available on MFC core
details and COM specifics. We also suggest that you use MFC as a shared DLL
from App Wizard, as all of the COM components are already using this DLL.

Initializing the COM Libraries

When you create a client of a multi-board Argus COM filter, you must first
initialize the COM libraries by calling CoInitializeEx(), the COM initialization
method that fully supports multi-threaded programming. The code to initialize
the COM libraries looks like this:

{
HRESULT hr = CoInitializeEx(NULL, COINIT_MULTITHREADED);

if (FAILED(hr))
return FALSE;

}

CoInitializeEx() must be called in each thread of your application before any other
COM-related calls are made. Each call to CoInitializeEx() must be matched with a
call to CoUninitialize().

All of the multi-board Argus core components support a dual-interface. A dual
interface is any interface that inherits from IDispatch, which is the interface that
supports OLE Automation. Using the custom interface of the component provides
the client with direct table access to the functionality of the component. This is
much more efficient than the IDispatch interface, which uses the COM Automa-
tion libraries to access component functionality.

In general, if you are using version 6.0 of Visual C++, it is best to use the custom
interface directly. The IDispatch interface is provided for backward compatibility
with Visual Basic 4.0 and earlier development, as well as to access the compo-
nents from scripting languages such as VBScript and JScript.

Using the #import Directive

This section describes the steps required to create a COM object using Smart

30 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Sample Applications

Pointers and the #import compiler directive. The #import directive is a
Microsoft-specific compiler directive that creates a Smart Pointer wrapper class
from a type library. That class can be used to create an instance of the required
COM object and to use its services. To use the #import directive for an instance
of the multi-board Filter Manager interface, you would insert the following
code in the StdAfx.h file after the #include <afxwin.h> directive.

#include <afxwin.h> // MFC core and standard components
#include <afxext.h> // MFC extensions
#include <afxdisp.h> // MFC Automation classes

#include <afxdtctl.h> // For IE4 Common Controls
#ifndef _AFX_NO_AFXCMN_SUPPORT
#include <afxcmn.h> // Windows Common

#endif // _AFX_NO_AFXCMN_SUPPORT

#include <atlbase.h>

extern CComModule _Module;
#include <atlcom.h>
#include <objbase.h>

#import “MultiBoardFilterMgr.tlb” no_namespace named_guids

The CComModule class implements a COM server, allowing the client to access
the module's components. When you open your application, you should call
_Module.Init(NULL, AfxGetInstanceHandle()). When you close the application,
call _Module.Term(). If you fail to do this, many of the multi-board Filter Man-
ager features, including events, will not work properly. For an example, please
refer to the InitInstance() method in FourBoardTestApp.cpp.

The #import directive creates two header files that reconstruct the type library
contents in C++ source code. In this case, the files would be named Multi-
BoardFilterMgr.tlh and MultiBoardFilterMgr.tli. The primary header file,
MultiBoardFilterMgr.tlh, contains a typedef macro that expands to the
following format:

typedef
com_ptr_t<com_IIID<IMBFilterMgr,__uuidof(IMBFilterMgr)>>IMBFilterMgrPtr

The C++ template class _com_ptr_t, used in the above typedef, creates a Smart
Pointer (in this case, IMBFilterMgrPtr) that can be used to access the interface
passed in as the template argument (in this case, IMBFilterMgr).

Chapter 2 — Using the Multi-Board Encoder API 31

Sample Applications

Creating an Instance of the Multi-Board Filter Manager Interface

In order to use the commands and properties that the multi-board Filter Man-
ager exposes, you'll need to create an instance of the Filter Manager interface,
then register to receive Filter Manager events. The Create() method defined in
FourBoardTestAppCalls.cpp shows the source code that is required to create
instances of the primary and the event interfaces of the MultiBoardFilterMgr
component. Note that the Create() method establishes a Filter Manager object
that will control the first encoder board. To control the second, third and fourth
boards, the application defines the Create1(), Create2(), and Create3() methods.

The Smart Pointer interface defined in MultiBoardFilterMgr.tlh makes it easy to
create an instance of the multi-board Filter Manager. You simply need to call Cre-
ateInstance(). Note that the only argument to the CreateInstance() method is the
class ID of the multi-board Filter Manager component. Because we specify the
named_guids modifier, the #import directive creates the required CLSID in the
header file for us, eliminating the need to call CLSIDFromProgID.

m_pIMBFilterMgrPtr.CreateInstance(CLSID_MBFilterMgr);

Once an instance of IMBFilterMgr has been created, it can be used to access the
properties and methods exposed through the primary multi-board Filter Manager
interface.

For a more thorough discussion of Smart Pointers, please refer to ATL Internals,
by Rector and Sells.

Setting Up an Event Sink Object

Now that you have created an IMBFilterMgr object to control the first encoder
board, you'll need to set up your application to receive log, error, and finished
events from the multi-board Filter Manager COM component for that same board.
Setting up your application to receive events involves creating an event sink
object, then connecting to the Filter Manager event source. Later in this chapter,
in the section entitled “Registering to Receive Multi-Board Filter Manager
Events,” we'll discuss the details of registering to receive events. For now, we'll
just briefly mention that there are two methods that should be called immediately
after the multi-board Filter Manager CreateInstance() call, described above.
These two methods are:

m_pFilterManagerEvents = new CFilterManagerEvents();

m_pFilterManagerEvents->EasyAdvise(m_pIFilterMgr);

The first method creates the event sink object. The second advises the multi-board
Filter Manager event interface that we are connecting to it. The EasyAdvise()
method, which you will write yourself, is described in detail in the “Registering to
Receive Multi-Board Filter Manager Events” section.

32 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Sample Applications

Using the Object

Once the IMBFilterMgrPtr is created, we can use that pointer to call any of the
methods that the interface makes available. The following segment of code, for
example, is the method that the sample application calls to set up or “cue” the
first encoder board in preparation for an encode. There are similar methods
(OnCue1(), OnCue2(), OnCue3()) that are used to cue the remaining three
encoder boards. Within the OnCue() method, the actual calls to the multi-board
Filter Manager interface are Load(), Cue() and GetDurationFrameCount().

void CMBTestAppDlg::OnCue()
{

long lRetval = 0;
if(EncoderState == esError)
{

lRetVal = m_pIFilterMgr->Reset();
EncoderState = (lRetval < 0) ? esError : esInitialized;

}

SetButtons();
lRetVal = m_pIFilterMgr->Load();
if(lRetval < 0)

{
CString msg;
msg.Format(

_T(“Error Loading Encode Parameters: %ld.”),
lRetval);

MessageBox(msg);

return;
}

lRetval = m_pIFilterMgr->Cue();
if(lRetval < 0)
{

CString msg;
msg.Format(_T(“Error on Cue: %ld”), lRetval);
MessageBox(msg);

return;
}
long lFrames = m_pIFilterMgr->GetDurationFrameCount();

m_nRequestedFrames = lFrames;

Chapter 2 — Using the Multi-Board Encoder API 33

Sample Applications

UpdateData(FALSE);

EncoderState = esCued;
SetButtons();

}

Note that we always check the return value of Filter Manager methods to ensure
that the method succeeded. COM-related errors raise exceptions, while the com-
ponents themselves return a long result, which is typically set to 0 if successful or
to a negative error code if not. For a complete list of Filter Manager error codes,
refer to Appendix B.

Releasing the COM Libraries

Like all resources, the COM libraries must be released when the program is finished
using them. For this purpose, COM provides a single method, CoUninitialize(),
which should be invoked in the destructor of the client code.

Before calling CoUninitialize(), first release the Filter Manager interface by calling:

m_pIFilterMgr.Release();
m_pIFilterMgr = NULL;

Registering to Receive Filter Manager Events

When you're programming in C++, registering to receive events is not the easiest
of tasks. However, ATL does provide a template class, IDispEventImpl, to assist
C++ client applications in receiving events from the server.

Before registering to receive events, make certain that you have already called
_Module.Init() to initialize the data members of the COM server module. This
should be done when you initialize your application. Also remember to call
_Module.Term() before exiting your application.

These are the steps that you'll need to follow to register for events using the
IDispEventImpl template:
1. Derive a class from the IDispEventImpl template. For example, in our sam-
ple application, we derive CFilterManagerEvents from IDispEventImpl (see
FilterManagerEvents.h):

class CFilterManagerEvents :
public IDispEventImpl<1, CFilterManagerEvents>

The first argument to IDispEventImpl is a unique identifier for the event source.
Since the Filter Manager is the only source from which our sample application
receives events, its ID of 1 is, indeed, unique.

2. In the class definition, insert a SINK_MAP that includes each of the
events from MultiBoardFilterMgr that you'd like to receive. For example, in

34 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Sample Applications

our sample application, we register to receive the error, log, finished, and pause
events.

BEGIN_SINK_MAP(CFilterManagerEvents)
SINK_ENTRY(1, 1, OnError)
SINK_ENTRY(1, 2, OnLog)

SINK_ENTRY(1, 3, OnFinished)
SINK_ENTRY(1, 4, OnPause)

END_SINK_MAP()

The arguments for SINK_ENTRY are (SOURCE, DISPID, FUNC), where:

• SOURCE identifies the event source. Since the Filter Manager was identi-
fied by a value of '1' in step 1, above, we use the value '1' here to indicate
that we're receiving events from the Filter Manager.

• DISPID identifies the dispatch ID within the event source of the event that
we're receiving. In the Filter Manager, the error event has a dispatch ID of
1, the log event has a dispatch ID of 2, the finished event has a dispatch ID
of 3, and the pause event has a dispid of 4.

• FUNC identifies the function or method that will handle the received
event. This method will be defined within the class that we're currently
deriving from the IDispEvent Impl.

3. Define and implement a method that calls AtlGetObjectSourceInterface()
and DispEventAdvise(). First call AtlGetObjectSourceInterface() to retrieve
pUnk, a pointer to the interface ID of the default source interface. Then call
DispEventAdvise() to establish a connection with the event source represented
by pUnk. This connection allows events fired from pUnk (or, in our case, from
the Filter Manager) to be routed to the handler functions specified in our event
sink map.

In our C++ sample application, the EasyAdvise() method is included in the CFilter-
ManagerEvents class to perform the connections described in the paragraph above:

HRESULT EasyAdvise(IUnknown* pUnk)
{

// The COM object corresponding to pUnk must
// implement IProvideClassInfo2 or IPersist*.
// Call this method to extract info about the

// source type library if you specified only 2
// parameters to IDispEventImpl
HRESULT hr = AtlGetObjectSourceInterface(

Chapter 2 — Using the Multi-Board Encoder API 35

Sample Applications

pUnk, &m_libid, &m_iid, &m_wMajorVerNum,

&m_wMinorVerNum);

// connect the sink and source

hr = DispEventAdvise(pUnk, &m_iid);
return hr;

}

4. Within the CFilterManagerEvents class, define and implement a method
that calls AtlGetObjectSourceInterface() and DispEventUnadvise(). Once
again, AtlGetObjectSourceInterface() is called to retrieve pUnk, a pointer to the
event source. DispEventUnadvise() breaks the connection with the event source
represented by pUnk. Once the connection is broken, events will no longer be
routed to the handler functions.

In our C++ application, the EasyUnadvise() method is included in the CFilter-
ManagerEvents class:

HRESULT EasyUnadvise(IUnknown *pUnk)
{

AtlGetObjectSourceInterface(punk, &m_libid, &m_iid,

 &m_wMajorVerNum, m_wMinorVerNum);
return DispEventUnadvise(punk, &m_iid);

}

5. Within the CFilterManagerEvents class, define and implement the func-
tions that will handle the events that you've registered for. Within the body of
each of these event handlers, insert code to respond in whatever way you decide
to the event that you're receiving. For example, you may choose to write out to a
log file any messages that you receive from a log event.

Within the class definition of our sample application, the event handlers are proto-
typed as follows:

STDMETHOD(OnError)(long code, BSTR error);
STDMETHOD(OnLog)(long code, BSTR error);
STDMETHOD(OnFinished)(long code, BSTR error);

STDMETHOD(OnPause)(long code, BSTR error);

Following is an example of the implementation of the log event handler, copied
from FilterManagerEvents.cpp. Note that we call MessageBox() for demonstra-
tion purposes only. For deliverable applications, never hold up a log event with a
function requiring user input.

36 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Sample Applications

STDMETHODIMP

CFilterManagerEvents::OnLog(long code, BSTR error)
{

CString strMessage = _T(“”);

// Displaying this message in a message box is
// for demo purposes only. DO NOT use Message

// Boxes (or any other method requiring
// extensive processing or requiring user input)
// in production code event handlers! Doing so

// may lock up the encoder.
if(error)
{

BSTR localBstr = error;
int strLen = ::SysStringLen(localBstr);
if(strLen > 0)

{
CComBSTR tempBstr(strLen, localBstr);
strMessage = tempBstr;

if((code < 0) && pView)
{

pView->MessageBox(strMessage);

}
}

}

if(!pFile)
return S_OK;

// Send error message to log file.
if(code < 0)

_ftprintf(pFile,

_T(“Warning %ld: %s\n”),
code, strMessage);

else

_ftprintf(pFile, _T(“%s\n”), strMessage);
fflush(pFile);
return S_OK;

}

Chapter 2 — Using the Multi-Board Encoder API 37

Sample Applications

When you implement the event interfaces, it is important to consider what
Argus software threads or processes will be firing them. Most events generated
by the Argus API will be called in the context of their own thread, which is
engaged in near real-time processing with the encoder hardware. If event inter-
face methods cause excessive delays, exceptions to be raised, or the calling
thread to wait indefinitely on a synchronization object, undesirable behavior is
sure to result. If these types of operations must be performed in response to an
event, create your own thread, return control to the calling thread, and proceed
to do the processing in the context of your own thread.

For example, if receiving a finished event should trigger your application to start
another encode, make certain that your implementation of the finished event just
toggles a flag or a semaphore, which prompts another thread (preferably the main
thread) to cue the next encode. This will ensure that the threads invoking the event
interfaces remain responsive to hardware events.

It is important, too, to realize that by implementing an event interface, you have
effectively made your client code a server for those events. This means you need
to take into account the synchronization of data accessed by objects using the
event interface.

Running the Sample Application
The FourBoardTestApp sample C++ application, portions of which have been
discussed in the previous sections of this chapter, is intended as an example of the
use of the multi-board Filter Manager interface, not as an end-user application.
However, it is useful to compile and run the sample application to observe and
understand the operation of the Argus encoder.

Before running the sample application, first visit “MultiBoard FilterMgr Inter-
face Properties,” page 21, to set up the encoding parameters for each installed
encoder board. Next, make certain that you have a running audio/video source
connected to each encoder board. Then run FourBoardTestApp.

When the FourBoardTestApp main dialog first pops up, click on the Initialize but-
ton. In performing its initialization, the MultiBoardFilterMgr component creates
a Filter Manager object for each installed board. If the initialization procedure
succeeds for each board, the dialog will change so that only the Cue button for
each board is active. If the initialization fails, all buttons for the board in question
will remain inactive.

Now click on the Cue button to start an encode for one of the boards. The Filter
Manager Cue() method resets all of the sub-components, loads the encoding

38 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Sample Applications

parameters from the Registry, then cues each of the sub-components in prepara-
tion for the start of an encode. If all of these procedures complete successfully, the
FourBoardTestApp dialog will change so that only the Start, Stop, and Reset
buttons for the encoder board are active. Additionally, the requested number of
video frames will appear in the Requested text window.

When you (and your source) are ready to begin encoding, click Start. Note that
the Encoded Frames text field is updated each second with the number of frames
already encoded. The encode will end when the requested number of frames have
been encoded. At that point, the application will receive a finished event from the
Filter Manager, and the dialog will change once again so that only the Cue button
is active for the board that just finished encoding.

During the encode, you can click on the Pause and Resume buttons to pause and
resume the current encode. However, if you pause the encode too many times,
you risk losing audio/video synchronization.

If an error should occur sometime during the encode, the sample application will
receive an error event. In response, it writes a message to the log file, then calls
the Filter Manager Stop() and Reset() methods.

Note that you should be able simultaneously to run multiple encoding sessions,
one for each installed board.

Figure 2-3. C++ Sample Application Window

Chapter 2 — Using the Multi-Board Encoder API 39

Sample Applications

MBProps
Sample Visual C++ Registry-Control Application for Multiple-Board Encoding

Overview

Most of the properties that must be defined before the start of an encode are set
in Argus-specific Windows Registry tables. Many of these properties can be set
once when the encoder software is installed, then can be left unchanged thereaf-
ter. Specific applications, however, may need to reset a subset of the encoder
properties before each encode. For example, most applications will assign a
new MPEG file path name with each encode. Other applications may allow the
user to change the video bit rate or resolution with each encode.

In order to adjust specific Windows Registry settings before cueing for an encode,
you may need to control the Registry programmatically. To allow programmatic
access to the encoder Registry tables, Vela has designed a C++ class (CRegistry),
the source code to which is provided in the MBProps sample application.
MBProps uses the CRegistry class to read from and to write to the encoder Regis-
try tables. We encourage you to use the CRegistry class to access and modify the
encoder Registry tables. Example screen shots developed from the MBProps
program are shown at the end of this section.

If you have programmed using our standard Argus SDK, you'll notice that
MBProps is similar to the RegCtrlPnl application. The biggest difference is that
each Registry table managed by MBProps (and subsequently used by the multi-
board Argus encoder) has a single digit appended to its name. For example, the
table that holds the mux properties for the first encoder board is named Mux0.
The digit appended to the table name indicates the encoder board to which the
properties apply, where the number of the first board is '0.' Each of the encoder-
specific multi-board Registry tables is listed and described in Appendix A.

CRegistry Methods

The CRegistry class provides the following five methods (or, in the case of
numbers 3 and 4, types of methods).
1. Constructor: Creates an instance of the class and initializes its members.

2. Open: Opens the Registry. Returns TRUE if successful, FALSE otherwise.

3. SetValue: Writes a setting to the Registry. There are a number of SetValue()
methods defined in the CRegistry class, each of which handles a specific data
type. The SetValue() method is usually called with two arguments: the name of
the Registry key and the value to be saved to that Registry key. The method
returns TRUE if it is successful.

40 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Sample Applications

4. GetValue: Reads a setting from the Registry. Again, there are a number of
GetValue() methods defined in the CRegistry class, each of which handles a spe-
cific data type. The GetValue() method is usually called with three arguments: the
name of the Registry key, a pointer to a variable to hold the value read, and a
default value to be given to the variable if no Registry setting is available. The
method returns TRUE if it is successful.

5. Destructor: Closes the Registry table.

Example: Loading an Encoder Registry Table

As an example of using the CRegistry class to load settings, the following excerpt
of MBProps source code loads the file-store settings from the “MuxStore0” Reg-
istry table. Again, this code is provided as an example of the calls required to read
values from the Registry. In a production-quality application, you would be likely
to add more error-checking.

///
// InitializeMuxStoreSettings() reads the settings for the // mux-store property
page from the Registry, setting the // windows controls accordingly.
///

void MuxStore::InitializeMuxStoreSettings()
{

CRegistrySettings;

CRegistryMuxStore;
unsigned long val;

// m_strTableName = “MuxStore0”;

if(Settings.Open(HKEY_CURRENT_USER, ARGUS_KEY) == TRUE)
{

if(MuxStore.Open(Settings.hKey(),

m_strTableName) == TRUE)
{

MuxStore.GetValue(T(“LocalFilename”),&m_strFileName,

_T(“D:\\MpegFiles\\Test.mpg”));
MuxStore.GetValue(_T(“OptimizedMuxWrites”), &val,

TRUE);
m_bMuxStoreOptimize = (val != 0);

Chapter 2 — Using the Multi-Board Encoder API 41

Sample Applications

MuxStore.GetValue(_T(“StorageEnabled”), &val,
FALSE);

m_bMuxStoreEnabled = (val != 0);

MuxStore.Close();
}
Settings.Close();

}

// Remainder of code for this function pertains to

// dialog settings and has been omitted.
}

The above code segment begins by opening the HKEY_CURRENT_USER\
Software\Vela Research\Broadcast Argus branch of the Registry with the Set-
tings.Open() call. Note that HKEY_CURRENT_USER is defined in winreg.h,
and ARGUS_KEY is defined in CRegistry.hpp. We chose to store Argus prop-
erties in HKEY_CURRENT_USER so that we could programmatically both
read and write settings to the Registry, even when the logged-in user does not
have administrative privileges. HKEY_LOCAL_MACHINE is read-only for
any users that are not set up with administrative privileges.

If the Broadcast Argus branch of the Registry is opened successfully, the method
calls MuxStore.Open() to open the MuxStore0 table. Finally, it calls MuxStore.-
GetValue() to retrieve the value stored in the Registry for the “LocalFilename,”
“OptimizedMux Writes,” and “StorageEnabled” keys. As you can see, the first
argument to GetValue() is the Unicode-compliant name of the key whose value is
being read. The second argument is the address of the variable whose setting is
being read from the Registry. The third and last GetValue() argument is the
default value that the variable should take if the key cannot be found or read
from the Registry.

When the keys in the table are read successfully, Close() is called on all CRegistry
objects that were successfully opened.

Example: Storing Values in an Encoder Registry Table

As an example of using the CRegistry class to store settings, the following
excerpt of MBProps source code saves file-store settings in the “MuxStore0”
Registry table. Note that all of the Open() and Close() calls are the same as in the
InitializeMuxStoreSettings() method above. The only difference is that, instead of
calling GetValue() to read from the Registry, the following code calls SetValue()
to write to the Registry. The SetValue() method takes just two arguments: the

42 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Sample Applications

Unicode-compliant name of the Registry key that is being set and the value to
which that key is being set.

///
// SaveMuxStoreSettings() reads the settings of the mux-store property
// page controls, then stores those values to the Registry.

///
void MuxStore::SaveMuxStoreSettings()
{

CRegistrySettings;
CRegistryMuxStore;

UpdateData(true);
m_bMuxStoreOptimize = m_ctlMuxOptimize.GetCheck() == 1;
m_bMuxStoreEnabled = m_cltMuxStoreEnabled.GetCheck() == 1;

if(Settings.Open(HKEY_CURRENT_USER, ARGUS_KEY) == TRUE)
{

if(MuxStore.Open(Settings.hKey(),m_strTableName) == TRUE)
{

MuxStore.SetValue(_T(“LocalFilename”), m_strFileName);

MuxStore.SetValue(_T(“OptimizedMuxWrites”),
m_bMuxStoreOptimize);

MuxStore.SetValue(_T(“StorageEnabled”),
m_bMuxStoreEnabled);

MuxStore.Close();
}

Settings.Close();
}

}

For More Information on Registry Control

For more examples of the use of the CRegistry class, review the source code for
the MBProps application. In addition to defining CRegistry, this application has
a .cpp file to manage each Registry table that holds encoder properties. Each
MPProps property page allows you to specify the encoder board whose proper-
ties you are reading and writing. The application opens only Registry tables

Chapter 2 — Using the Multi-Board Encoder API 43

Sample Applications

whose names are appended with the specified board number.

For information regarding the multi-board Registry settings for each of the table
types, please refer to Appendix A.

MBProps Typical Screen Shots

When you double-click on MBProps.exe, a tabbed property sheet appears.
By default, the application begins by displaying the encode properties for encoder
board 0. Each page of the property sheet displays the encode properties that are
stored in one of the multi-board Registry tables described in Appendix A.

Whenever you change a property on one of the property pages, the Apply button
becomes active. Just click on Apply to write to the Registry the changed property
values. To restore the current property page to its factory settings, click the Set
Default button. To change the board whose properties you are viewing or modify-
ing, just click on Select Board, enter the board number, and click on Apply. The
settings on all of the property pages will change to correspond to the board
number that you requested.

Sample screen shots of the property pages appear on the following pages.

Figure 2-4. MBProps — IBM Video Properties

44 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Sample Applications

Figure 2-5. MBProps — IBM Audio Properties

Figure 2-6. MBProps — Mux Properties

Chapter 2 — Using the Multi-Board Encoder API 45

Sample Applications

Figure 2-7. MBProps — Mux Store Properties

Figure 2-8. MBProps — Video Store Properties

46 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Distributing Components

Distributing Components

Overview
Building an installation disk is very important. This is the first view a user will
have of your software system. It is crucial that the installation procedure install
your software easily and correctly. The last thing you want to hear from a user is
that the software won't install.

For the multi-board Argus encoder we use Wise version 8.1 to build our software
installation package. The resulting installation disks are robust and easy to follow,
and they give a nice presentation to the package. All of the necessary steps
required by our components (driver and component registration, Windows Regis-
try setup, etc.) are handled automatically by this software. If this product meets
your needs, use it. If not, there are many alternative installation products.

The concept of this section is to give you some direction on creating your installa-
tion disks. It is very important that certain features of the component architecture
be installed correctly in order for the encoder to function properly. You will, of
course, be required to add the portions that you have created (any *.exe files and
required *.dll files) to the install script. We list the files that are needed for your

Figure 2-9. MBProps — Audio Store Properties

Chapter 2 — Using the Multi-Board Encoder API 47

Distributing Components

install script, and where they can be found on an installed multi-board Argus sys-
tem. It is important that these files be placed into the same directory structure on
the destination machine.

The following issues must be addressed within the installation procedure in order
for the board(s) and components to function correctly:

• Driver installation / Registry settings
• Redistributable files
• Microcode directory structure
• Multi-board Argus COM components and registration

Multi-Board Installation Using Single-Board Driver
The multi-board Argus requires the Windows 2000 WDM Vela single-board
encoder device driver velasbe.sys. Only users with Administrator privileges can
install hardware drivers. The Vela single-board encoder device driver uses the
Plug and Play installation methods. First, install the hardware. Then use either the
Windows Hardware Wizard or the Device Manager to install and/or associate the
correct driver for each encoder board as follows.

When you install a new device, Windows 2000 will detect and configure it. For
Plug and Play PCI devices, such as the Vela single-board encoder, just shutdown,
power off, and install the board(s). When you restart the system, log in as a user
with Administrator privileges. Windows 2000 enumerates the device and starts
the Plug and Play installation procedure automatically.
1. You first see a pair of “Found New Hardware” windows (Figure 2-10). The
small window identifies the hardware based on what Windows 2000 knows
about the device. In this case, because the Vela single-board encoder's PCI
configuration data identifies it as a Multimedia Video Controller, the board
is initially identified as a “Multimedia Video Controller.”

2. When you click “Next,” the “Install Hardware Device Drivers” window opens
(Figure 2-11). Select “Search for a suitable driver for my device,” and click Next.

3. The “Locate Driver Files” window opens (Figure 2-12). Check “CD-ROM
drives” and uncheck any other “Optional search locations”. Click Next.

48 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Distributing Components

Figure 2-10. “Found New Hardware” Windows

Chapter 2 — Using the Multi-Board Encoder API 49

Distributing Components

Figure 2-11. “Install Hardware Device Driver” Window

Figure 2-12. “Locate Driver Files” Window

50 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Distributing Components

4. The “Driver Files Search Results” window (Figure 2-13) appears when an INF
file on the CD-ROM is located that contains a match for the device identification.

After you click Next here, the setup process will interpret the INF file, establish
the Registry settings to identify this hardware as a Vela Single Board Encoder
family board, and copy the driver velasbe.sys and INF file velasbe.inf to the
appropriate system directory locations. From this point on, the system will be
able to identify the boards by the friendly names specified in the velasbe.inf file.

A number of windows briefly appear as the setup process copies the velasbe.sys
driver and velasbe.inf files as directed by the INF file.

When the driver installation completes, the “Completing the Found New Hard-
ware Wizard” window (Figure 2-14) appears.

Figure 2-13. “Driver Files Search Results” Window

Chapter 2 — Using the Multi-Board Encoder API 51

Distributing Components

5. The board (in this example, the 3-chip 4:2:2 SBE) is now identified correctly.
Click Finish to proceed. If there are more SBE's to install at this point, Windows
Plug and Play setup will continue with the installation of the remaining boards.

6. First you will see the “Found New Hardware” pop-up window, shown above,
this time identifying the second single-board encoder by its registered friendly
name.

7. The “Found New Hardware Wizard” window will also open (Figure 2-15).
Click Next.

8. The “Install Hardware Device Drivers” window (Figure 2-16) opens. Select
“Search for a suitable driver for my device” and click Next.

Figure 2-14. “Completing Found New Hardware Wizard” Window

52 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Distributing Components

Figure 2-15. “Found New Hardware Wizard” Window

Figure 2-16. “Install Hardware Device Drivers” Window

Chapter 2 — Using the Multi-Board Encoder API 53

Distributing Components

9. (Figure 2-17) The system Registry now contains the necessary information to
identify the device and its driver from the previous installation process. The “Vela
IBM ME31 4:2:2 SBE” device is automatically selected. Click Next.

Figure 2-17. “Select a Device Driver” Window

54 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Distributing Components

10. The “Start Device Driver Installation” window appears (Figure 2-18). If the
installation media is still present, the files will be copied again when you click Next.
Otherwise, you will be asked to locate the installation files, as before.

Figure 2-18. “Select a Device Driver” Window

Chapter 2 — Using the Multi-Board Encoder API 55

Distributing Components

11. The “Completing the Found New Hardware Wizard” window appears
(Figure 2-19). Click Finish.

After the last board is installed, you can verify that the driver installed and the
board is functioning correctly by using the System Properties / Device Manager
control panel.

12. Select “My Computer” on the desktop, right click and select “Properties.”
The System Properties control panel will open. Then click Device Manager.

Figure 2-19. “Completing Found New Hardware Wizard” Window

56 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Distributing Components

The Device Manager window appears (Figure 2-20). The velasbe.inf INF file
declares a device class with the name Vela Single Board Encoder and three
different hardware devices that belong to the class:

• Vela IBM ME31 4:2:2 SBE

• Vela IBM S420 SBE

• Vela IBM S422 SBE

Device Manager displays a hierarchical view of device class/devices. In this
example, we installed two Vela IBM ME31 4:2:2 SBE boards.

When the driver installs correctly and the devices are functioning correctly and
have no resource conflicts, the display appears as shown the illustration.

Figure 2-20. Device Manager Window

Chapter 2 — Using the Multi-Board Encoder API 57

Distributing Components

Microsoft Redistributable Code
The current installation requires two sets of Microsoft redistributable code:

• MFC Class Libraries:
mfc42.dll
mfc42u.dll
msvcrt.dll
wininet.dll

• COM Registration:
atl.dll
comctl32.dll
comctl32.ocx
olepro32.dll
regsvr32.exe

File names may differ depending on the version used. For more information, see the
online help for Microsoft developers. This list can also be found on the Microsoft
online help files for Distributing ActiveX Controls. In addition to the core registra-
tion files, the file atl.dll must be added to allow the COM objects to self-register.

Microcode Directory Structure
The IBM encoder microcode is loaded onto the encoder hardware at encode time.
It is installed on Argus encoders in two folders: C:\etc\422 for the 3-chip encoder
boards, and C:\etc\S422 for the 1-chip boards. It must be placed in the correct
sub-folder of C:\etc in order to load.

The microcode files used by the multi-board encoder are:

• Set 1: ME31 V1-FAST Studio Profile Set (3-chip board):
c:\etc\422\h4_03.bin
c:\etc\422\i4_03.bin
c:\etc\422\f4_1e.bin
c:\etc\422\r2_19.bin

• Set 2: S-Series Microcode (S422 and S420 boards):
c:\etc\S422\i5_10.bin
c:\etc\S422\e5_10.bin
c:\etc\S422\r3_10.bin
c:\etc\S422\md5_10.bin

58 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Distributing Components

The last two digits of the microcode file represent the version number of the
binary file. As IBM releases new microcode revisions for the ME31, S422, and
S420 encoder chipsets, the multi-board Argus software will incorporate them.

COM Components
The following COM libraries, which comprise the API set, are distributed with
the multi-board Argus application. These COM objects are registered automati-
cally with each installation of the standard product.

• Argus COM Components Located in C:\Program Files\Argus:

MultiBoardFilterMgrU.dll

FileStoreMT.dll

IBMAudioMT.dll

IBMVideoMT.dll

MultiplexMT.dll

• Argus COM Components Located in C:\Program Files\Common:

MemMgrMT.dll

MemMgrServerMT.dll

PinsMT.dll

• Optional COM Component Registered by SDK Installation:

Vtr.dll

Component Registration
In order for multi-board Argus software to run, all of the COM components listed
above must be registered. The multi-board Argus installation procedure registers
all of the standard COM components. If the components are installed on a system
without an automatic registration program like Wise, you can register them using
the regsvr32.exe application provided with the multi-board Argus software.
To register a COM component, type:

Regsvr32 /s <COM component filename>

Regsvr32 is a redistributable utility that Microsoft provides at no extra charge.

Error Codes
Each of the methods exposed through the main interface of the MBFilterManager
COM component returns a value, typically a long. A return value of 0 indicates

Chapter 2 — Using the Multi-Board Encoder API 59

Distributing Components

that the method completed without error. However, a negative return value
indicates that an error was encountered.

Similarly, once an encoding session has begun, you may receive a negative value
for the first argument of an error, finished, or log event fired by the Filter Manager
interface. Once again, a negative code indicates that an error has occurred.

Appendix B contains a table with all possible Argus Filter Manager error codes.

Customer Support
In the event of questions or problems with Vela Application Programming
Interface methods, materials, or this manual, do not hesitate to contact
Vela Training and Support as follows:

• Phone: (727) 507-5301
• E-mail: support@vela.com
• World Wide Web - http://www.vela.com

Component Overview

Chapter 3

Using the VTR API

Component Overview
Lois, please check this out for applicability re the multi-board.

The multi-board API does not currently support VTR control. If you wish to
control a VTR as part of the encoding process, you might want to use the VTR
API, detailed in this chapter, to monitor the position of the tape in preparation
for starting the encode. As a result of this change, the duration of the encode is
now set in the Mux table.

If you want to control a tape deck programmatically while not actively encod-
ing, the Vela Software Developer’s Kit provides a stand-alone VTR component
that uses Sony 9-pin protocol to communicate through a serial port with a tape
deck. (References on the 9-pin protocol are available on the Internet or can be
ordered from Sony.) This particular COM component is called VTR.dll. Its type
library, VTR.tlb, is inserted in the C:\Program Files\Vela Research\Argus\SDK
\TypeLibs folder when the SDK is installed. The customer interface provided
for the VTR component is IVTRCenter.

Note that VTR.dll should not be confused with VTRControl.dll, a component of the
Argus encoder software architecture that is directly managed by Filter Manager. If
the “Source Enabled” key in the “VTR” Windows Registry is set to 1, VTRCon-
trol.dll is responsible for controlling the VTR during the encoding process, starting
with the cue phase of the encode. Minimally, if the “Source Enabled” key is set to 0,
VTRControl.dll is responsible for logging and managing the duration of the encode.

On the other hand, the VTR component is an “extra.” You can successfully run the
encoder without using it. Though it is not required, the VTR component provides
you with a set of methods to control the tape deck between encodes. For example,
you can use it to tell the tape deck to fast-forward, to rewind, to jog or shuttle. Or, in
preparation for setting your mark-in or mark-out value, you can instruct the VTR
component to retrieve the current time code from the tape deck. Alternatively, you
could substitute your own VTR-control software or a third-party package.

The center panel of “FMTestApp,” the C++ sample encoder application, offers a set
of buttons and edit fields that illustrate the use of a few of the methods of the VTR
component. Also included with the Software Developer’s Kit is “VTRTestApp,” an
application that more comprehensively illustrates the use of the methods exposed
through the VTR COM component. Source code is provided.

If the Filter Manager component already has control of the serial port used to con-
trol the tape deck, the commands issued by the VTR component will not work.

62 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Windows Registry Settings

Therefore, the Filter Manager component exposes a VTRDisconnect() method.
The Filter Manager VTRDisconnect() method allows you to detach from the serial
port before giving control of the port to the VTR component. Likewise, the Filter
Manager VTRConnect() method can be used to return control of the serial port to
the Filter Manager component prior to an encode. Of course, these two Filter
Manager methods are meaningful and effective only when the “VTR” Windows
Registry “Source Enabled” key is set to 1.

Similar to Filter Manager, the VTR component has a Connect() and a Discon-
nect() method. These methods allow the VTR component to assume or to relin-
quish control of the encoder serial port attached to the tape deck. Before calling
any of the commands exposed through the VTR interface, you should first call the
Connect() method. Before returning control of the serial port to the Filter Manager
component, you should call the Disconnect() method. Make certain not to attempt
to assume control of the tape deck while an encode is cueing or in progress.

Windows Registry Settings
The VTR component uses a single Windows Registry value to set the serial port
delay (the minimum amount of time, in milliseconds, to wait after sending a
command to the tape deck via the serial communications port). The Windows
Registry key used to define this setting is:

HKEY_LOCAL_MACHINE\SOFTWARE\Vela Research\Argus \SerPortDly.

If this Registry key is not defined, the VTR component uses a default value of 10
(translated as 10 milliseconds).

NOTE: Do not call VTRDisconnect() from the error-event or finished-event handler.

Creating an Instance of IVTRCenter
You can access the VTR COM component through a single custom interface,
IVTRCenter. To generate a Smart Pointer to this interface, first call (in the
StdAfx.h file):

#include <atlbase.h> // ATL Support
#import “VTR.tlb” no_namespace named_guids

In your class definition, you should define a Smart Pointer to the VTR interface:

IVTRCenterPtr m_IVtr;

Then, in the initialization section of your application, create an instance of the
interface:

m_IVtr.CreateInstance(CLSID_VTRCenter);

Chapter 3 — Using the VTR API 63

Properties Exposed Through IVTRCenter

Immediately after creating an instance of the VTR component, you should set and
initialize the communications port, as follows:

m_IVtr->PutComPort(1);
long result = m_IVtr->Initialize();

If the value returned by Initialize() is 0, then the serial-port initialization was
successful, and you’re ready to use the methods and properties exposed through
the IVTRCenter interface.

Properties Exposed Through IVTRCenter
The following properties are exposed through the IVTRCenter interface:

ComPort – This property, a long, identifies which of the communication ports
on the encoder is connected to the tape deck. On most Vela encoders, the
number of each of the communication ports is marked on the chassis. Typically
the ComPort property will be set to either 1 or 2.

The ComPort property can be retrieved by calling val = GetComPort(). It can
be set by calling PutComPort(val). In both cases, the variable “val” is defined
as a long.

DropFrame – This property, a BOOL, reports whether or not the current time
code read from the tape deck is a drop frame time code. To retrieve the value
of this property, call val = GetDropFrame(), where val is defined as a BOOL.
If the GetDropFrame method returns 1, the time code is drop-frame time
code. If the method returns 0, the time code is a non-drop-frame time code.
There is no Put() method available for this property.

HardError – This property, a BOOL, determines whether or not the VTR inter-
face encountered an error during the previous operation or method call. Use
the call val = GetHardError() to retrieve the value of the property. If the value
returned is 1, an error was encountered during the last operation. If the return
value is 0, the last operation was successful.

MarkIn – This value, a BSTR, represents the current value of the inpoint or
mark-in set on the tape deck. The format of the property is “hh:mm:ss:ff”,
where “01:02:03:04” represents a mark-in of 1 hour, 2 minutes, 3 seconds,
and 4 frames.

There are two access methods, Get() and Put(), available for this property. The
Get() method queries the tape deck to determine the current setting of its mark-
in. It returns the retrieved value to the calling application. The Put() method
accepts a mark-in value as an argument, sending a command to the tape deck

64 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Properties Exposed Through IVTRCenter

to set its inpoint or mark-in to that value. Where val is defined as a _bstr_t, the
Get() and Put() methods for MarkIn are called as follows:

val = m_IVtr->GetMarkIn();

m_IVtr->PutMarkIn(val);

MarkOut. This value, a BSTR, represents the current value of the outpoint or
mark-out set on the tape deck. The format of the property is “hh:mm:ss:ff”,
where “01:02:03:04” represents a time code of 1 hour, 2 minutes, 3 seconds,
and 4 frames.

There are two access methods, Get() and Put(), available for this property.
The Get() method queries the tape deck to determine the current setting of its
out-point. It returns the retrieved value to the calling application. The Put()
method accepts time code as an argument, sending a command to the tape
deck to set its out-point or mark-in to that value.

Where val is defined as a _bstr_t, the Get() and Put() methods for MarkOut
are called as follows:

val = m_IVtr->GetMarkOut();

m_IVtr->PutMarkOut(val);

TapeInserted. This property, a BOOL, determines whether or not there is a tape
inserted in the tape deck. The single access method available for this prop-
erty is GetTapeInserted(). It returns a value of 1 if there is a tape inserted, 0 if
there is not.

TimeStamp. This property, a BSTR, represents the time stamp currently on the
tape deck. Its format is “hh:mm:ss:ff.” For example, a time stamp of
“01:02:03:04” translates as 1 hour, 2 minutes, 3 seconds, and 4 frames. There
is a single access method available for this property. Where val is defined as
a _bstr_t, the access method is:

val = m_IVtr->GetTimeStamp();

Calling GetTimeStamp() prompts the VTR component to query the tape deck
for the current time code, which the Get() method then returns.

VTRRemoteMode. This property, a BOOL, determines whether the encoder is
set to local or remote mode. There is a single access method available for
VTRRemoteMode. Where val is defined as a BOOL, the access method is:

val = m_IVtr->GetVTRRemoteMode();

Calling the Get() method prompts the VTR component to query the tape deck

Chapter 3 — Using the VTR API 65

Methods Exposed Through IVTRCenter

as to whether it is in remote or local mode. The method returns 1 if the tape
deck is set to remote-control mode, or to 0 if the deck is set to local-
control mode.

VTRType. This property, a long, indicates the type of protocol used to commu-
nicate with the tape deck. Both Get() and Put() methods are available to
access VTRType. The Get() method returns a long, and the Put() method
accepts a long as an argument.

Currently the only supported value for this property is SONY9_PIN(0).

Methods Exposed Through IVTRCenter
The methods exposed through the IVTRCenter interface fall into three categories:
those used to initialize the component, those used to manage the serial port, and
those used to control the tape deck itself.

Component Initialization Method
long Initialize() – This method should be called immediately after a Smart Pointer

to the IVTRCenter interface is created. It connects to and sets up the serial port
in preparation for sending commands to or receiving information from the tape
deck. Note that you should identify the serial port used for tape-deck communi-
cations before calling Initialize(). Do this by calling PutComPort(val).

The Initialize() method returns 0 if successful, 1 if not.

Serial Communications Port Management Methods
long Connect()
long Disconnect() – As discussed at the beginning of this chapter, these methods

allow you to connect or to disconnect from the serial port used to communicate
with the tape deck. Before returning control of the tape deck back to the Filter
Manager, you should call Disconnect() on the IVTRCenter interface. To return
control of the tape deck to the VTR component, first call the Filter Manager
VTRDisconnect() method, then call the IVTRCenter Connect() method.

Both of these methods return 0 on success, -1 on error.

Tape Deck Control Methods
The remaining methods of the IVTRCenter interface allow you to issue commands
to the tape deck using Sony 9-pin protocol. The tape-deck control methods available
through the IVTRCenter interface are described below.

long Eject() – Issues a command to the tape deck to eject the tape.

66 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Methods Exposed Through IVTRCenter

Returns:
 0 if the command was successful
-9 if the command failed
-32 if VTRType is not set to SONY_9_PIN.

long FFwd() – Issues a command to the tape deck to fast-forward the tape.

Returns:
0 if the command was successful
-17 if the command failed
-32 if VTRType is not set to SONY_9_PIN.

long GetPreRoll(long *pPreRoll) – Issues a command to the tape deck to
retrieve the number of seconds to pre-roll. The pre-roll (in integral seconds)
is returned at the address passed as the only argument to GetPreRoll().

The method returns:
0 if the command was successful
-19 if the command failed
-32 if VTRType is not set to SONY_9_PIN.

long GotoPreRoll() – Issues a command to roll the tape to <pre-roll>
seconds before the mark-in, where both the mark-in and the pre-roll have
been set by earlier Set() or Put() commands.

The method returns:
0 if the command was successful
-33 if the command failed
-32 if the VTRType is not set to SONY_9_PIN.

long GotoTimeCode(BSTR TimeCode) – Issues a command to roll the tape to
the time code indicated by the TimeCode argument, which is expressed as a
string in the format “hh:mm:ss:ff.”

The method returns:
0 if the command was successful
-58 if the command failed
-32 if the VTRType is not set to SONY_9_PIN.

long Jog(long direction, long speed) – If direction is set to 1, jogs the tape
forward. If the direction is set to -1, jogs the tape backward. The speed can
assume any integer value from 0 to 9, defined as followed:

0 – Still
1 – 1/100 of play speed
2 – 1/10 of play speed

Chapter 3 — Using the VTR API 67

Methods Exposed Through IVTRCenter

5 – Play speed
6 – 2.9 times play speed
9 – 5 times play speed.

The method returns:
0 if the command was successful
-51 if the command failed
-33 if the VTRType is not set to SONY_9_PIN.

long Pause() – Issues a command to pause the tape deck.

The method returns:
0 if the command was successful
-14 if the command failed
-33 if the VTRType is not set to SONY_9_PIN.

long Play() – Issues a command to play the tape deck.

The method returns:
0 if the command was successful
-4 if the command failed
-33 if the VTRType is not set to SONY_9_PIN.

long Rwnd() – Issues a command to rewind the tape deck.

The method returns:
0 if the command was successful
-11 if the command failed
-33 if the VTRType is not set to SONY_9_PIN.

long SetPreRoll(long Preroll) – Issues a command to set the pre-roll to the
value passed in as an argument, which is expressed in integral seconds.

The method returns:
0 if the command was successful
-44 if the command failed
-33 if the VTRType is not set to SONY_9_PIN.

long Shuttle(long ShuttleSpeed) – This command operates the same as the
Jog command, except that it takes just one argument. If ShuttleSpeed is a
value greater than 0, the tape deck shuttles forward at the speed indicated in
the table below. If the ShuttleSpeed is a negative value, the tape deck shuttles
backward. Use the absolute value of ShuttleSpeed to determine the actual
shuttle speed, as follows:

0 – Still
1– 1/100 of play speed

68 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Methods Exposed Through IVTRCenter

2 – 1/10 of play speed
5 – Play speed
6 – 2.9 times play speed
9 – 5 times play speed.

The method returns:
0 if the command was successful
-33 if the VTRType is not set to SONY_9_PIN
-41 if the shuttle speed is an invalid value
-42 if the command failed for any other reason.

long Stop() – Issues a command to stop the tape deck.

The method returns:
0 if the command was successful
-7 if the command failed
-33 if the VTRType is not set to SONY_9_PIN.

Appendix A

Multi-Board Encoder Registry Settings

Overview
The multi-board Argus encoder reads all of its encoding properties from the
Windows Registry. For each encoder board installed in the system, there is a set
of seven Registry tables from which the application reads all of its encoding prop-
erties and to which it stores the set of encoding properties used during the most
recent encode performed by that encoder board. Each of the seven Registry table
names ends in a single digit, specifying the number of the encoder board to which
the properties apply. The multi-board Argus Registry tables are listed below. The
'X' at the end of each represents the encoder board number, where the first board
number is 0.

\HKEY_CURRENT_USER\Software\Vela Research\Broadcast Argus\IBM AudioX
\HKEY_CURRENT_USER\Software\Vela Research\Broadcast Argus\IBM VideoX
\HKEY_CURRENT_USER\Software\Vela Research\Broadcast Argus\MuxX
\HKEY_CURRENT_USER\Software\Vela Research\Broadcast Argus\MuxStoreX
\HKEY_CURRENT_USER\Software\Vela Research\Broadcast Argus\VideoStoreX
\HKEY_CURRENT_USER\Software\Vela Research\Broadcast Argus\FirstAudStoreX
\HKEY_CURRENT_USER\Software\Vela Research\Broadcast Argus\SecondAudStoreX

If the multi-board Argus Registry locations listed above are not established prior
to the first encode, a call to the Filter Manager Load() method will create the
tables, providing default settings for each of the keys. These settings can be
modified in one of three ways:

• Programmatically. See the discussion of the CRegistry class at “CRegistry
Methods,” page 39.

• Manually, using regedt32 or regedit.

• Using MBProps (see “MBProps,” page 39.)

The multi-board Filter Manager interface exposes two special methods that load
all of the encoder properties from and save all of the encoder properties to the
Registry:

long Load() – Loads into memory all of the Registry settings for the current
encoder board. If the Registry location does not exist, the Load() call creates
it, creates all of the Registry keys, then assigns to each key its default value.
You should call the Load() method prior to each call to Cue() (but after any

70 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

call to Reset()). It returns 0 if successful or, on failure, returns a negative
error code listed in Appendix B.

long Save() – In the appropriate Registry tables, saves all of the current encod-
ing properties for the currently selected encoder board. It returns 0 if
successful, or, on failure, returns a negative error code listed in Appendix B.
It is useful to call the Save() method after cueing for each encode, as the
Load() or Cue() method may have made subtle changes to some of the
Registry settings to guarantee a successful encoding session.

Registry Table Property Settings
Descriptions of the settings of Registry keys related to multi-board encoding are
listed in the following tables. Each of the tables listed below corresponds to a
property page in the MBProps application (see “MBProps,” page 39).

Appendix A — Multi-Board Encoder Registry Settings 71

The IBM Video Registry Table

The IBM Video Registry Table
The “IBM VideoX” table (where X represents the encoder board number) stores
the encode properties that are related to the video elementary stream. Many of the
video encoder properties are interrelated. The first of the following tables identi-
fies and describes the properties themselves. The second table shows the relation-
ship between format, chroma, mode, and resolution. Finally, the third table
defines the relationship between I-frame distance (N value), reference frame dis-
tance (M value), closed/open GOP, and GOP structure.

In the table below, the Data Type identifies the recommended data type of the
variable or class member that will be holding the property setting. Within the
IBM Video Registry table itself, all keys are of type REG_DWORD.

IBM Video Registry Table

Property Registry Key Data Type Value Set Comments

Video Bit Rate BitRate Unsigned long 512,000 to
15,000,000 bps
for 4:2:0 Chroma.
Up to 50,000,000
bps for 4:2:2.
Default:
8,000,000 bps.

Typically, SIF resolu-
tion (352x240/288) is
used for lower bit
rates
(.5 to 3 Mbps).
Half-D1 (352x480/
576) is used for 3.5 to
6 Mbps.
Full resolution (704 or
720 horizontal) is
used for 7 Mbps and
higher.
If VBR mode is turned
ON, BitRate repre-
sents the maximum
video bit rate.

Variable Bit Rate
Flag

VBRFlag BOOL Off = 0
On = 1
Default: 0

Turns variable bit-rate
mode on or off

Average Bit Rate VBRAvgBitRate unsigned long Must be less than
the BitRate set-
ting if VBR is
turned on.

If VBR is turned on,
this setting defines
the average video bit
rate.

Table A-1. IBM Video Registry Table

72 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

The IBM Video Registry Table

Video Mode VideoMode Unsigned char VM_SIF = 0
VM_AFF = 1
Default: AFF

VM_SIF represents
MPEG-1
VM_AFF represents
MPEG-2.

Video Format VideoFormat Unsigned char VF_NTSC=0
VF_PAL=1
Default: NTSC

A setting of VF_NTSC
is interpreted as
NTSC; all other set-
tings are interpreted
as PAL.

Horizontal
Resolution

HorizRes Unsigned long 352
544
704
720 (Default)

See Table C-2 for
acceptable combina-
tions.

Vertical
Resolution

VerticalRes Unsigned long 120 (QSIF)
240 (SIF)
480 (Full)
512 (VBI)
288 (PAL SIF)
576 (PAL Full)
608 (PAL VBI)
Default: 480

See Table C-2 for
acceptable combina-
tions.

Source Type InputType Unsigned char 0 – 8
Default: 0

A setting of 1 is inter-
preted as Digital, all
others are interpreted
as Composite.

Distance between
I-frames (MPEG
N value)

IFrameDistance Unsigned long 1 – 16
Default: 15

See Table C-3.

IBM Video Registry Table (Continued)

Property Registry Key Data Type Value Set Comments

Table A-1. IBM Video Registry Table (Continued)

Appendix A — Multi-Board Encoder Registry Settings 73

The IBM Video Registry Table

Distance between
reference frames
(MPEG M Value)

RefFrameDis-
tance

Unsigned char FS_IP = 1
FS_IBP = 2
FS_IBBP = 3
Default: 3

Where I and P are
considered reference
frames, the reference
frame distance is
defined as the number
of frames from one
reference frame up to
but not including the
next. It can also be
seen as one more
than the number of
“B” frames between
reference frames.

Chroma Format ChromaFormat Unsigned char CF_4_2_0 = 0
CF_4_2_2 = 1
CF_4_4_4 = 2
Default: 0

A value of CF_4_2_2
is interpreted as 4:2:2.
All other values are
interpreted as 4:2:0.
Note that Argus 4:2:0
encoders support only
CF_4_2_0.

Closed GOP Flag ClosedGOP Unsigned long 0 = Open
1 = Closed
Default: 0

See table C-3. Closed
GOP setting is useful
for post-encode
editing.

Non-linear Quan-
tization Flag

NonLinear-
Quant

Unsigned long 0 = Off
1 = On
Default: 0

Turns on/off the non-
linear quantizer table.
Use “1,” especially for
low bit rates.

Concealment
Vector Flag

Concealment-
Vector

Unsigned long 0 = Off
1 = On
Default: 0

Turn On to embed
concealment
vectors in the stream.
Useful in noisy trans-
mission environ-
ments.
Do not use with SIF.

IBM Video Registry Table (Continued)

Property Registry Key Data Type Value Set Comments

Table A-1. IBM Video Registry Table (Continued)

74 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

The IBM Video Registry Table

Allowable Combinations of Video Properties

The table that follows lists acceptable combinations of video format, chroma,
mode, horizontal resolution, and vertical resolution.

DC Precision DCPrecision Unsigned char SIF: 8
MPEG-2: 9, 10, or
11.
Default: 10

Number of bits used
to represent the DC
coefficients for intra-
coded portions of pic-
tures. See note (1),
below.

Alternate
Co-efficient Table

IntraTable Unsigned char 0 = Off
1 = On
Default: 0

A setting of 1 enables
the alternate coeffi-
cient table, appropri-
ate for MPEG-2
encodes. See note (2)

Aspect Ratio AspectRatio Unsigned char 1 = Square
2 = 4x3
3 = 16x9
4 = 2.21x1

Indicates aspect ratio
of material being
encoded.

NOTES: (1) The MPEG Specifications allow integral settings of 8 through 10. The IBM chip set also
allows a non-standard setting of 11. The Filter Manager forces a setting of 8 whenever SIF resolution
is specified, regardless of the value stored in the Registry.
(2) In most cases, the IBM encoder will override this setting based on the compression type.

Format Chroma Mode Horizontal
Res

Vertical
Res

NTSC 4:2:2 1 (MPEG-2) 720 512 (VBI)

4:2:0 1 (MPEG-2) 720 512 (VBI)

4:2:0 1 (MPEG-2) 720 480

4:2:0 1 (MPEG-2) 704 480

Table A-2. Allowable Combinations of Video Properties

IBM Video Registry Table (Continued)

Property Registry Key Data Type Value Set Comments

Table A-1. IBM Video Registry Table (Continued)

Appendix A — Multi-Board Encoder Registry Settings 75

GOP Structure and Size

GOP Structure and Size
A GOP (group of pictures) is composed of a combination of I frames, B frames,
and P frames. The only required frame type in a GOP is the I frame. If P and B
frames are included in a GOP, they are arranged in repeated fixed sequences.

The multi-board Argus encoder allows from one to 16 frames per GOP. A GOP
can be closed (it can be decoded by itself, with no reference to a previous or sub-
sequent GOP) or open (it cannot stand alone). If the GOP is an open GOP, it is
composed of an introductory I frame, followed by one or more of the following:

• From 0 to 15 “P” frames

• From 0 to 7 “BP” groups, followed by a single B at the end.

• From 0 to 14 “P” frames.

If the GOP is a closed GOP, it is composed of an introductory IP frame combina-
tion, followed by one of these:

• From 0 to 14 “P” frames

• From 0 to 6 “BP” groups, followed by a single “B” frame at the end

• From 0 to 4 “BBP” groups, followed by a “BB” pair at the end.

For all acceptable GOP structures, the I-frame distance (or N value in MPEG
terminology) is defined as the number of frames between I frames, including

4:2:0 1 (MPEG-2) (Half-D1) 352 480

4:2:0 0 (MPEG-1) (SIF) 352 240

PAL 4:2:2 1 (MPEG-2) 720 608 (VBI)

4:2:0 1 (MPEG-2) 720 608 (VBI)

4:2:0 1 (MPEG-2) 720 576

4:2:0 1 (MPEG-2) 704 576

4:2:0 1 (MPEG-2) (Half-D1) 352 576

4:2:0 0 (MPEG-1) (SIF) 352 288

Format Chroma Mode Horizontal
Res

Vertical
Res

Table A-2. Allowable Combinations of Video Properties (Continued)

76 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

GOP Structure and Size

the first, but excluding the second. The reference frame distance (or M value in
MPEG terms) is defined as the number of frames between reference frames
(where I and P are reference frames), including the first, but not including the
second. Note that the introductory closed-GOP P frame is NOT considered
when calculating the reference frame distance.

Let's look at some examples:

I-Frame
Distance
(N Value)

Ref-Frame
Distance
(M Value)

Open or Closed GOP Structure

1 1 Either II…(I-Only)

2 1 Either IPIP…

4 1 Either IPPPIPPP…

2 2 Open IBIBIB…

6 2 Open IBPBPBIBPBPB…

3 2 Closed IPBIPBIPB…

7 2 Closed IPBPBPBIPBPBPB…

3 3 Open IBBIBBIBB…

6 3 Open IBBPBBIBBPBB…

4 3 Closed IPBBIPBB…

7 3 Closed IPBBPBBIPBBPBB…

Table A-3. GOP Structure Examples

Appendix A — Multi-Board Encoder Registry Settings 77

The IBM Audio Registry Table

The IBM Audio Registry Table
The “IBM AudioX” table (where X represents the encoder board number) stores
the encode properties that are related to the audio elementary stream. There can
be up to two audio streams. In the following table, where the property is followed
by the digit 0 or 1, the 0 or 1 specifies to which of the two audio streams the
property applies.

In the table below, the Data Type identifies the recommended data type of the
variable or class member that will be holding the property setting. Within the
IBM Audio Registry table itself, all keys are of type REG_DWORD.

IBM Audio Registry Table

Property Registry Key Data
Type Value Set Comments

Audio Bit
Rate

BitRate0
BitRate1

Unsigned
long

32,000 (mono)
48,000 (mono)
56,000 (mono)
64,000
80,000
96,000
112,000
128,000
160,000
192,000
224,000
256,000
320,000
384,000
Default: 192,000

Audio
Sample Rate

SampleRate0
SampleRate1

Unsigned
long

32,000
44,100
48,000
Default: 48,000

Table A-4. IBM Audio Registry Table

78 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

The IBM Audio Registry Table

Audio Mode Mode0
Mode1

Unsigned
char

Stereo = 0,
Joint Stereo = 1
Dual Audio = 2,
Single Audio = 3,
Multiple = 4
Default: Stereo

Audio Input Input0
Input1

Unsigned
char

Analog = 0
Digital = 1
Inactive = 2
Default: Analog

Second audio stream is set to
inactive if it is not being used.

Error
Protect Flag

ErrorProtectFlag0
ErrorProtectFlag1

BOOL 0 = FALSE
1 = TRUE
Default: FALSE

Refers to a setting in an MPEG
audio header.
NOTE: Use with extreme cau-
tion. A setting of 1 may corrupt
the PTS.

Copyright
Flag

CopyrightFlag0
CopyrightFlag1

BOOL 0 = FALSE
1 = TRUE
Default: FALSE

Refers to a setting in an MPEG
audio header.

Original Flag OriginalFlag0
OriginalFlag1

BOOL 0 = FALSE
1 = TRUE
Default: FALSE

Refers to a setting in an MPEG
audio header. Marks stream as
original or copy.

Audio Slave
Mode

WaitOnStartFlag0
WaitOnStartFlag1

BOOL 0 = FALSE
1 = TRUE
Default: TRUE

To guarantee A/V synchroniza-
tion, should be set to 1 when
both video and audio are being
encoded. Then the audio start is
triggered by the start of the
video encoder.

Audio Head
Room

HeadRoom0
HeadRoom1

Unsigned
long

18 (Default)
20

IBM Audio Registry Table (Continued)

Property Registry Key Data
Type Value Set Comments

Table A-4. IBM Audio Registry Table (Continued)

Appendix A — Multi-Board Encoder Registry Settings 79

The IBM Audio Registry Table

Audio Refer-
ence Level

ReferenceLevel0
ReferenceLevel1

Unsigned
char

0 = +4dB
1 = 0dB
2 = -10dB

+4 dB is default value. Config-
urable reference level is avail-
able only with encoder firmware
version 3.0 or later.

NOTE: (1) In previous releases, the last five entries in the IBM Audio Registry Table were stored in
the ArgusConfig.txt configuration file. The configuration file is no longer used in versions 2.3 and
later. All of its entries have been moved to the Windows Registry.

IBM Audio Registry Table (Continued)

Property Registry Key Data
Type Value Set Comments

Table A-4. IBM Audio Registry Table (Continued)

80 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

The Mux Registry Table

The Mux Registry Table
The “MuxX” table (where X represents the encoder board number) stores the
encode properties that are related to the multiplexing of the audio and video
elementary streams into a single system, program, or transport stream. Note,
however, that it is possible to generate “unmixed” video and audio elementary
streams by setting the MPEG Standard to 3.

In the table below, the Data Type identifies the recommended data type of the
variable or class member that will be holding the property setting. Within the
Mux Registry table itself, all keys are of type REG_DWORD.

Mux Registry Table

Property Registry Key Data
Type Value Set Comments

Stream Type MPEGStd Unsigned
char

0 = System
1 = Program
2 = Transport
3 = Elementary
Default: 2

Type of multiplexed stream
being generated by this
encode.

Mux Rate MuxRate Unsigned
long

Range is 1,500,000
to 50,000,000
Default: 8,000,000

If the MPEGStd is set to 2,
this key represents the
overall bit rate of the trans-
port stream. Otherwise, it
has no meaning. (For sys-
tem, program, and elemen-
tary streams, the audio and
video bit rates determine
the overall mux rate).

Closed
Caption Flag

ClosedCaption-
Flag

BOOL TRUE if mux must
insert closed cap-
tioning, FALSE
otherwise.
Default: FALSE

If the resolution is set to
720 VBI, this flag is set to
0, because the closed cap-
tion is encoded with the
VBI.

Table A-5. Mux Registry Table

Appendix A — Multi-Board Encoder Registry Settings 81

The Mux Registry Table

Closed Cap-
tion Format

ClosedCaption-
Format

Unsigned
long

0 = C-Cube
1 = ATSC
2 = Reordered
C-Cube
3 = ATSC
reordered

See note (1).

Adjust GOP
Time Code
Flag

AdjustGopTime-
Code

Unsigned
char

0 = Off
1 = On
Default: 0

A setting of 1 tells the
encoder to turn on GOP
time code adjustment. See
note (2).

Starting
GOP Time
Code

GopTcStart Unsigned
long

Default: 0 If the adjust GOP time code
flag is set to 1, this key
identifies the starting time
code. See note (3).

Duration of
the Encode

Duration Unsigned
long

Default: 900 The proposed duration of
the encode, in frames.

Audio
Stream ID

AudioStreamID0
AudioStreamID1

Unsigned
long

Allowable range: 0–
31. Default is 0 for
first audio stream, 1
for second audio
stream.

PES header stream ID of
audio stream.

Video
Stream ID

VideoStreamID Unsigned
long

Allowable range: 0–
15.
Default: 0.

PES header stream ID of
the video stream.

Audio
Stream PID

AudioStreamPID0
AudioStreamPID1

Unsigned
long

Minimum value: 16.
Minimum DVB-com-
pliant value: 512.
Default: 640,641

Must be unique among all
other audio and video PIDs
for this stream.

Video
Stream PID

VideoStreamPID Unsigned
long

Minimum value: 16.
Minimum DVB-com-
pliant value: 512.
Default: 512

Must be unique among all
other audio and video PIDs
for this stream.

Mux Registry Table (Continued)

Property Registry Key Data
Type Value Set Comments

Table A-5. Mux Registry Table (Continued)

82 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

The Mux Registry Table

Audio
Packet Size

AudioPktSize Unsigned
long

Default: 1728 Size (in bytes) of an audio
PES packet. May be over-
ridden, especially for trans-
port streams.

Video
Packet Size

VideoPktSize Unsigned
long

Default: 1728 Size (in bytes) of a video
PES packet. May be over-
ridden, especially for trans-
port streams.

Language
Code

Audio Language
Code0
Audio Language
Code1

Short 0 = English
1 = Spanish
2 = French
3 = German
4 = Japanese
5 = Dutch
6 = Danish
7 = Finnish
8 = Italian
9 = Greek
10 = Portuguese
11 = Swedish
12 = Russian
13 = Chinese

This code is informational
only, used to identify the
language in which the audio
is presented.

First Sys-
tem Clock
Reference

FirstClockRef Unsigned
long

Default: 0 First system-clock value to
be assigned by mux com-
ponent.

Mux Registry Table (Continued)

Property Registry Key Data
Type Value Set Comments

Table A-5. Mux Registry Table (Continued)

Appendix A — Multi-Board Encoder Registry Settings 83

The Mux Registry Table

NOTES: (1) The “reordered” notation instructs the encoder to sort the bytes of closed caption data
so that they are actually stored in the frames on which they will be displayed. Otherwise, the decoder
will sort the closed caption data to put it in the correct display-order. “0” is the setting for the stan-
dard C-Cube closed caption format. “3” is the setting for the standard ATSC closed caption format.
Neither of the two ATSC formats is supported for SIF encodes. Note that encoder firmware version
1.20 or later is required to use settings “2” or” 3.”
(2) Turning on GOP-time-code adjustment instructs the encoder to stamp the GOP time codes in
such a way that the time code of the first GOP is equal to the setting of the GopTcStart key, defined in
the table above and in note (3). The time codes of all subsequent GOPs are then offset by the GopTc-
Start setting.
(3) The starting time code is an unsigned long of the format t:hh:mm:ss:ff, where the high-order
digit “t” represents the time code type (0 = PAL, 1 = NTSC, 2 = drop-frame NTSC); the “hh” digits
represent the hours field of the time code, the “mm” digits represent the minutes field, the “ss” dig-
its represent the seconds field, and the “ff” digits represent the frames field. For example, a drop-
frame starting time code of 01:32:43:14 would be represented as 201324314.

Mux Registry Table (Continued)

Property Registry Key Data
Type Value Set Comments

Table A-5. Mux Registry Table (Continued)

84 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

The MuxStore Registry Table

The MuxStore Registry Table
The “MuxStoreX” table (where X represents the encoder board number) stores
the encode properties that determine whether, how, and where the output muxed
file is stored.

In the table below, the Data Type identifies the recommended data type of the
variable or class member that will be holding the property setting. Within the
MuxStore Registry table itself, the two keys marked BOOL are of type
REG_DWORD; the FileName key is of Registry type REG_MULTI_SIZE.

MuxStore Registry Table

Property Registry Key Data
Type Value Set Comments

File Storage
Enabled

StorageEnabled BOOL 0= Disabled
1= Enabled
Default: 1

See note (1).

File Name LocalFilename CString Must be a legitimate path name
recognized by the encoder.

Optimize the
Writes?

OptimizedMux-
Writes

BOOL 0 = Do not
optimize
1 = Optimize
Default: 1

See note (2).

NOTES: (1) When the MPEG stream type is system, program or transport, you will probably be cre-
ating and storing a muxed file, so this setting should be “1.” However, if you are generating elemen-
tary streams, this setting should be “0.” Instead, set the enabled flag in the VideoStore and
AudioStore tables to “1.”
(2) Turning optimization on makes the file-writes more efficient. However, a side effect of turning
optimization on is that the file size will not be recognized by the operating system until the end of the
encode, when the application closes the file. If you need to see a file size that increases as the
encode progresses, turn optimization off, but be aware that the encode may fail if the file I/O cannot
keep up with the speed of the encoder.

Table A-6. Mux Store Registry Table

Appendix A — Multi-Board Encoder Registry Settings 85

The VideoStore Registry Table

The VideoStore Registry Table
The “VideoStoreX” table (where X represents the encoder board number) stores
the encode properties that determine whether, how, and where the output video
elementary file is stored (elementary-stream encode only).

In the table below, the Data Type identifies the recommended data type of the
variable or class member that will be holding the property setting. Within the
VideoStore Registry table itself, the two keys marked BOOL are of type
REG_DWORD; the FileName key is of Registry type REG_MULTI_SIZE.

VideoStore Registry Table

Property Registry Key Data
Type Value Set Comments

File Storage
Enabled

StorageEnabled BOOL 0= Disabled
1= Enabled
Default: 1

See note (1).

File Name LocalFilename CString Must be a legitimate path name
recognized by the encoder.

Optimize the
Writes?

OptimizedMux-
Writes

BOOL 0 = Do not
optimize
1 = Optimize
Default: 1

See note (2).

NOTES: (1) When the MPEG stream type is elementary, you will probably be creating and storing a
video and audio file, so this setting should be “1.” However, if you are generating a system, program,
or transport stream, this setting should be “0.” Instead, set the enabled flag in the MuxStore table to
“1.”
(2) Turning optimization on makes the file-writes more efficient. However, a side effect of turning
optimization on is that the file size will not be recognized by the operating system until the end of the
encode, when the application closes the file. If you need to see a file size that increases as the
encode progresses, turn optimization off, but be aware that the encode may fail if the file I/O cannot
keep up with the speed of the encoder.

Table A-7. Video Store Registry Table

86 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

The FirstAudStore Registry Table

The FirstAudStore Registry Table
The “FirstAudStoreX” table (where X represents the encoder board number)
stores the encode properties that determine whether, how, and where the output
file for the first audio stream is stored (elementary-stream encode only).

In the table below, the Data Type identifies the recommended data type of the
variable or class member that will be holding the property setting. Within the
FirstAudStore Registry table itself, the two keys marked BOOL are of type
REG_DWORD; the FileName key is of Registry type REG_MULTI_SIZE.

FirstAudStore Registry Table

Property Registry Key Data
Type Value Set Comments

File Storage
Enabled

StorageEnabled BOOL 0= Disabled
1= Enabled
Default: 1

See note (1).

File Name LocalFilename CString Must be a legitimate path name
recognized by the encoder.

Optimize the
Writes?

OptimizedMux-
Writes

BOOL 0 = Do not
optimize
1 = Optimize
Default: 1

See note (2).

NOTES: (1) When the MPEG stream type is elementary, you will probably be creating and storing a
video and audio file, so this setting should be “1.” However, if you are generating a system, program,
or transport stream, this setting should be “0.” Instead, set the enabled flag in the MuxStore table to
“1.”
(2) Turning optimization on makes the file-writes more efficient. However, a side effect of turning
optimization on is that the file size will not be recognized by the operating system until the end of the
encode, when the application closes the file. If you need to see a file size that increases as the
encode progresses, turn optimization off, but be aware that the encode may fail if the file I/O cannot
keep up with the speed of the encoder.

Table A-8. First Audio Store Registry Table

Appendix A — Multi-Board Encoder Registry Settings 87

The SecondAudStore Registry Table

The SecondAudStore Registry Table
The “SecondAudStoreX” table (where X represents the encoder board number)
stores the encode properties that determine whether, how, and where the output
file for the second audio stream, if there is one, is stored (elementary-stream
encode only).

In the table below, the Data Type identifies the recommended data type of the
variable or class member that will be holding the property setting. Within
the SecondAudStore Registry table itself, the two keys marked BOOL are of type
REG_DWORD; the FileName key is of Registry type REG_MULTI_SIZE.

SecondAudStore Registry Table

Property Registry Key Data
Type Value Set Comments

File Storage
Enabled

StorageEnabled BOOL 0= Disabled
1= Enabled
Default: 1

See note (1).

File Name LocalFilename CString Must be a legitimate path name
recognized by the encoder.

Optimize the
Writes?

OptimizedMux-
Writes

BOOL 0 = Do not
optimize
1 = Optimize
Default: 1

See note (2).

NOTES: (1) When the MPEG stream type is elementary, you may or may not be creating and storing
a second audio stream, as well as the primary audio and video streams. If you are encoding two
audio streams and wish to store both, set this key to “1.” However, if you are generating a system,
program, or transport stream, or if you are generating just a single audio elementary stream, this
setting should be “0.”
(2) Turning optimization on makes the file-writes more efficient. However, a side effect of turning
optimization on is that the file size will not be recognized by the operating system until the end of the
encode, when the application closes the file. If you need to see a file size that increases as the
encode progresses, turn optimization off, but be aware that the encode may fail if the file I/O cannot
keep up with the speed of the encoder.

Table A-9. Second Audio Store Registry Table

Filter Manager Error/Status Codes

Appendix B

Filter Manager Error/Status Codes
The following return codes may be returned by calls to Filter Manager methods or
by Filter Manager Error Events. This table applies to both the Argus single-board
encoder system and the Argus multi-board encoder.

NOTE 1: There are six error codes that are reported by the video encoder chip and
passed unaltered through Filter Manager. Unfortunately, these six error codes con-
flict with identically numbered errors generated by Filter Manager itself. Although it is
true that these six error codes do not uniquely identify a single specific Argus error
condition, in most cases the error condition can be identified by the context in which
it is reported. The error codes reported by the encoder chip are identified as such in
the Comments section of the Error/Status Codes table that follows.

NOTE 2: If you abort an encode or shut down your application without cleanly ending
an encode, you must make certain that CVProServer and MemMgrServer have both
been terminated before you restart the application. You can terminate these services
using Task Manager.

Filter Manager Error/Status Codes

Error Code Meaning Comments

11 Encode has been successfully resumed after a
pause.

Not an error.

0 Operation completed successfully. Status OK. Not an error.

-5 V_NO_DATA (Encoder chip error code)
No video data was available
at the time of the last
“read.” Run encoder diags,
check the video source.

-9 Unable to eject tape using Sony command.

-10 Video component failed to start, stop, pause,
resume, or reset.

Summary error message.
Check log for more descrip-
tive messages regarding
status of video encoder.

-12 Mux component failed to start, stop, pause,
resume, or reset.

Summary error message.
Check log for more descrip-
tive messages regarding
status of mux.

Table B-1. Filter Manager Error/Status Codes

90 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Filter Manager Error/Status Codes

-13 Main storage component failed to stop, pause, or
resume.

Summary error message.
Check log for more descrip-
tive messages regarding sta-
tus of storage component.

-13 V_FIFO_UNDERFLOW (Encoder chip error code)
A timeout occurred while
attempting to read data from
the encoder. Run encoder
diags, check the video
source.

-14 CineView Pro component failed on a stop. May be locked up. Check log
for other error messages.

-14 V_FIFO_OVERFLOW (Encoder chip error code)
A FIFO overflow was
detected when trying to read
data from the board. May be
the result of setting the
bitrate too high, given the
configuration of the system
and the nature of the
encode. Also, make certain
no other process is running
on the system at the time of
the encode.

-15 VTR component failed to cue, stop, pause, or
write adjustment to Registry.

Summary message. Check
log for other VTR-related
messages.

-15 V_FIFO_READ (Encoder chip error code)
An error occurred while
attempting to read the video
FIFO. Run encoder diags,
check the video source.

-16 Storage component for elementary audio or video
stream failed to stop or resume.

Summary message. Should
occur only during elementary
stream encode.

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

Appendix B — Filter Manager Error/Status Codes 91

Filter Manager Error/Status Codes

-16 V_BITRATE (Encoder chip error code)
Too little video data avail-
able at the time of the last
“read.” Run encoder diags,
check the video source.

-17 Disk space error. Application determined that
there is insufficient disk
space for the muxed file or
for the elementary video file.

-18 VSP component failed during a reset. Summary message. Check
for more specific information
from VSP component.

-25 Exception thrown during reset, cue, or start.

-26 Failure to create one of Filter Manager mutexes. Probably a system error.
Check number of open
handles.

-27 Filter manager failed when trying to initialize COM
libraries.

System problem? COM DLLs
not installed?

-28 Multi-stream encode error message. User should not attempt
multi-stream encodes with
Argus 4:2:2/4:2:0 software.

-29 CineViewPro component failed to reset, cue, or
start.

Summary message. Check
for more specific messages
from decoder component.

-30 No mux filename was supplied, so Filter Manager
failed to create a codec file name.

Check file name field to make
sure that it contains a
legitimate file name.

-31 Exception thrown loading parameters from the
Registry.

Summary message. Check
Argus Registry to see if table
is there.

-32 No longer used.

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

92 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Filter Manager Error/Status Codes

-33, -34 Error resetting or starting audio storage component. Summary message. Check
log file for more specific
messages. Last encode may
not have shut down cor-
rectly? Exit application and
try again.

-35 Multi-stream encode error message. User should not attempt
multi-stream encodes with
Argus 4:2:2/4:2:0 software.

-36 Main storage component failed to start or reset. Summary message. Check
for more specific messages
in error log.

-39 Unable to set outpoint on tape deck. Check COM port connection
(including converter). Make
sure tape deck is on remote.
Make sure application is look-
ing at the correct COM port.

-41 Invalid VTR shuttle speed requested through Sony
protocol.

-42 Tape deck failed to receive shuttle command. Check COM port connection
(including converter). Make
sure tape deck is on remote.
Make sure application is look-
ing at the correct COM port.

-44 Invalid pre-roll value. Pre-roll should be a number
between 0 and 60 (seconds). AND mark-in value
must be greater than pre-roll.

Check validity of mark-in and
preroll.

-45 When you adjust the mark-in time code by adding
or subtracting the pre-roll adjustment, the result is
invalid (<0).

Check mark-in and adjust-
ment time codes. Adjustment
must be less than mark-in.

-47 Unable to read preroll from tape deck. Check COM port connec-
tions, Check to see that VTR
is in remote mode, etc.

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

Appendix B — Filter Manager Error/Status Codes 93

Filter Manager Error/Status Codes

-48 Unable to read mark-in from tape deck. Check COM port connec-
tions, Check to see that VTR
is in remote mode, etc.

-49 Unable to recognize microcode type in looking up
VTR adjustment in Registry.

-50 Error initializing pin that connects IBMVideo to
Mux component.

Check swap space on C:\
drive. Make sure mux was
shut down properly last time
(that CVPro Server and
MemMgrServer were not left
running).

-51 Attempted to initialize a video component that was
already initialized.

Try resetting or quitting appli-
cation. Make sure no other
instances of the encoder are
running simultaneously.
Be sure to terminate
CVProServer and
MemMgrServer before
restarting.

-52 Attempted to cue a video component that was
already cued.

Try resetting or quitting appli-
cation. Make sure no other
instances of the encoder are
running simultaneously.
Be sure to terminate
CVProServer and
MemMgrServer
before restarting.

-52 V_INIT (Encoder chip error code)
An error occurred while
attempting to initialize the
video board. Run diags.

-53 Attempted to cue a video component that was
already playing.

Terminate last encode (or
wait for it to finish) before
starting next encode.

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

94 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Filter Manager Error/Status Codes

-54 Attempted to Pause the video component while it
was already paused.

Application may have lost
track of its state. If error
persists, you may need to exit
application and restart.

-55 Attempted to Start the video component before
cueing it.

Application appears to have
lost track of its state. If error
persists, you may need to
exit application and restart.

-56 Attempted to Stop the video component, although
it was not currently playing.

Application appears to have
lost track of its state. If error
persists, you may need to
exit application and restart.

-57 Attempted to Resume the video component,
although it was not currently paused.

Application appears to have
lost track of its state. If error
persists, you may need to
exit application and restart.

-60 An exception was thrown from within the video
process thread.

Check video settings (PAL/
NTSC, Digital/ Composite).
Check video encoder hard-
ware. Run video encoder
diagnostics.

-61 Driver command to start video returned unsuc-
cessfully OR exception was thrown by video
Start method.

Check video settings (PAL/
NTSC, Digital/ Composite).
Check video encoder hard-
ware. Run video encoder
diagnostics.

-70 Audio chip timed out during a read or shut-down
command.

This is either a problem with
the audio encoder hardware
or with the system.

-71 Attempting to reinitialize an already-initialized
audio component.

Shut down application. Make
sure CVProServer and
MemMgrServer have been
terminated. Restart.

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

Appendix B — Filter Manager Error/Status Codes 95

Filter Manager Error/Status Codes

-73 Attempted to cue or Start an audio component
that is currently encoding.

The application may have
hung up during the previous
encode. Try calling Reset. If
that fails, restart the
application.

-74 Attempted to Pause the audio component when it
was already paused.

State problem? May need to
restart the application.

-75 Attempted to Start the audio component before
cueing it.

State problem? May need to
restart the application.

-76 Attempted to Stop or Pause the audio component
although it is not playing.

State problem? May need to
restart the application.

-77 Attempted to Resume the audio component,
although it is not paused.

State problem? May need to
restart the application.

-78 Encode failed because audio pin over- flowed, or
application was not successful in creating,
initializing, or resetting the pin from the
audio component to the mux.

If error occurred when appli-
cation was coming up, check
the C drive to be sure it has
adequate swap space. If
error occurred during an
encode, the audio pin backed
up-this is usually a second-
ary error. The audio backup
is caused because some
other component failed or
“hung up” the encoder. Shut
down application, terminat-
ing CVProServer and Mem-
MgrServer if needed.

-79 A stop was issued to the audio component, but it
won't stop in a reasonable amount of time.

It may be hung up in a while-
loop. May need to terminate
application with task manager.

-80 Software failed trying to read the firmware revi-
sion OR exception was thrown during the audio
component initialization process.

Check audio encoder hard-
ware. Make sure board is
installed properly.

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

96 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Filter Manager Error/Status Codes

-81 Audio process failed because of a driver initializa-
tion error, an error reading data from the audio
board, or for some other non-pin-related error.

Check audio encoder hard-
ware. Make sure board is
installed properly.

-82 The start-audio driver command failed or an excep-
tion was thrown during the audio Start method.

Check audio encoder hard-
ware. Make sure board is
installed properly.

-83 The init_audio driver command failed OR an excep-
tion was thrown during the audio Cue method.

Check audio encoder hard-
ware. Make sure board and
software are installed properly.

-98 While checking Registry for adjustment value, VTR
encountered an invalid microcode type designator.

Check to be sure that full set
of current software was
installed successfully.

-113 Exception thrown by FTP component while stream-
ing data.

-114 No FTP server name was provided, or an exception
was thrown trying to connect to FTP server.

Check Registry to make cer-
tain that FTP server name
was provided if you asked for
a streaming encode. Then
check FTP connections and
server setup.

-115 Error establishing internet session for FTP transfer.

-116 Either remote file name was not filled in or there
was an exception thrown while trying to open the
remote (FTP) file.

-117 Error opening local storage file. Check path name, folder per-
missions. Make sure file not
already open.

-118 Error writing to or closing local file. Check disk fullness and disk
status. If this is a high-bitrate
encode, it may be that the disk
can't handle the throughput.

-119 Error initializing the input pin of the storage
component.

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

Appendix B — Filter Manager Error/Status Codes 97

Filter Manager Error/Status Codes

-121 Error creating the storage component process
thread.

-122 Encoder is unable to communicate through the
serial port with the VTR.

Check the cabling from the
VTR to the converter, from
the converter to the serial
port (make sure converter is
not in backwards). Check the
COM port setting on the
encoder application (COM1 or
COM2) and make sure it
matches the number of the
serial port being used. Make
sure that the VTR is turned on
and that it is in remote mode.

-165 Error communicating with the VSP.

-166 Error creating CVspApi class. Mismatched software
components?

-170 Attempt to call audio Get or Put method with a
stream index other than 0 or 1, or attempting to
set invalid audio bitrate, invalid audio input type,
audio layer, or audio headroom with a Put() call.

Programming error. Check
source code.

-175 Error creating playback COM object. Ascertain that CinProSerCom
is registered.

-177 Error creating VTR COM object. Ascertain that VtrControl
is registered.

-179 Error creating Audio COM object. Ascertain that IBMAudio
is registered.

-181 Error creating Video COM object. Ascertain that IBMVideo
is registered.

-183 Error creating audio elementary storage object. Ascertain that RemoteStore
is registered.

-185 Error creating video elementary storage object. Ascertain that RemoteStore
is registered.

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

98 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Filter Manager Error/Status Codes

-189 Error creating mux storage object. Ascertain that RemoteStore
is registered.

-194 Multi-stream encode error message. User should not attempt
multi-stream encodes with
Argus 4:2:2/4:2:0 software.

-201 Error creating VSP object. Ascertain that IBMVSP
is registered.

-219 Error creating second audio object. Ascertain that IBMAudio
is registered.

-227 Multi-stream encode error message. User should not attempt
multi-stream encodes with
Argus 4:2:2/4:2:0 software.

-230 During cue, mux component received an invalid
stream type (0=system, 1=program, 2=transport,
3=elementary).

Check Registry setting of
mux stream type.

-233 Error creating or initializing plug-in component's
input pin.

-233 through -248 are all
plug-in errors. Since they are
working with the source
code, developers should be
able to track these error
codes themselves.

-234 Attempted to initialize plug-in component when it
was already initialized.

-235 Error starting suspended plug-in process thread.

-236 Attempted to start plug-in when it is already
encoding.

-237 Attempted to start plug-in without cueing it.

-238 Attempted to stop the plug-in component when it
was not playing.

-239 Attempted to pause the plug-in component when
it was already paused.

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

Appendix B — Filter Manager Error/Status Codes 99

Filter Manager Error/Status Codes

-240 Attempted to resume the plug-in component when
it was not paused.

-241 Plug-in component failed while writing to file.

-242 Plug-in failed to open file or allocate resources.

-243 Attempted to cue plug-in when it was already cued.

-245 Error creating one of the plug-in objects.

-247 The Initialize() method failed for one of the
plug-ins.

-248 Summary error code. Filter manager failed in
Cueing, Starting, Stopping, Pausing, Resuming,
or Resetting a plug-in.

-250 A pin underflowed. The error message will indicate
which pin.

This message indicates that
one of the components is
starved for data (it's not
being delivered fast enough).

-251 A pin overflowed. The error message will indicate
which pin.

Usually this is an indication
that the system is not able to
handle the volume of work
that it is being asked to
accomplish. Check task man-
ager during encode to see
where the bottleneck might be.

-252 Unable to find a matching reader/writer for a
specified pin.

-253 An attempt was made to read or to write too large
a block of data to/from a pin. (Block was larger
than pin size).

The error message will indi-
cate which pin. This is a
programming error.

-254 An attempt to create a pin object failed. The error
message will indicate which pin.

Ascertain that Vela_Pin is
registered.

-255 Pin component failed when trying to create a
mutex

System error. Check handle
count using task manager.

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

100 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Filter Manager Error/Status Codes

-260 Undefined error occurred when attempting to
create or use a pin.

-331 RemoteStore component attempted to write very
last block of data to the file, but failed.
This error occurs only when the FilterMgr
“Optimized MuxWrite” flag is set to 1.

We use a write procedure
that requires that all write-
blocks must be evenly divisi-
ble by the disk sector size. To
get around this restriction on
the last block of data, we
close the file, reopen it in
another mode, then write the
last block. This error could
be a timing error-make cer-
tain that no attempt was
made to move or lock the file
before the encode finished.

-332 Error closing the remote (FTP) file. Make certain that the FTP
process was not aborted
before the encode finished.

-334 Failure creating, initializing, or using the decoder
input pin (usually from the Mux).

-335 The PlayFromPin call to the CVPro Server failed.
The decoder failed to start realtime playback.

Make sure that the previous
encode did not end with an
unclosed CVProServer or
MemMgrServer executable
running. Make sure that the
decoder board is installed
properly and functioning
properly. Check firmware /
hardware revisions of the
decoder board.

-337 Attempt to set up CVPro scaler failed. See No. -335.

-338 Attempted to stop the decoder when it was not
playing.

-340 An invalid closed caption-type was defined (read
from Registry).

See notes in Appendix A on
closed caption types.

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

Appendix B — Filter Manager Error/Status Codes 101

Filter Manager Error/Status Codes

-341 Unable to create or initialize CVProServer object. Ascertain that CVProServer
is registered and functional.

-342 CVPro failed on request to initialize. Check functionality of
decoder in general using
standard CVPro client
application.

-343 CVProServer failed to pause.

-344 CVProServer failed to resume.

-345 When the mux Start component was called, there
was no active thread running to start.

State problem. May need to
restart application, making
certain that CVProServer and
MemMgrServer are
terminated.

-346 FilterManager asked mux component to create an
undefined stream type. (See -230).

-347 Mux component failed to open the mux writer
stream.

-348 An GOP Size of 0 or less was passed to Mux. Check the I-frame distance
setting in the Video Registry.

-349 Mux component failed to create its mutexes. System problem. Check
number of open handles
using task manager.

-350 Mux failed when trying to initialize the closed
caption “driver” class.

-400 … -438 MPEG-1 multi-stream error. User should not attempt
multi-stream encodes with
Argus 4:2:2/4:2:0 software.

-440 Audio storage component (during elementary
encode) failed to pause.

-441 During elementary encode, video component
failed to pause.

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

102 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Filter Manager Error/Status Codes

-443 If a system, program, or transport stream is
selected as the mux type in the mux Registry, but
the mux-file-enabled flag is not set in the “Filter-
Mgr” Registry table, this error flag is set. Also, if an
elementary stream is selected as the mux type in
the mux Registry, but the video-file-enabled flag is
not set in the “FilterMgr” Registry, this flag is set.

Check stream type in Mux
Registry, and compare it to the
file type enabled in the Filter-
Mgr Registry. See Appendix A.

-444 Invalid mux file path name. Make sure that the pathname
specified for the mux file is
present and writable.

-445 Invalid video file path name. For an elementary-stream
encode, make sure that the
pathname specified for the
video file is present and
writable.

-446 Invalid audio file path name. For an elementary stream
encode, make sure that the
pathname specified for the
audio file is present and
writable.

-448 Argus Registry failure. Unable to open the
HKEY_CURRENT_USER path
Software\Vela
Research\Broadcast Argus.
Check the Registry.

-449 Unable to open the “IBM Video” Registry table.

-450 Unable to open the “IBM Audio” Registry table.

-451 Unable to open the “Mux” Registry table.

-452 Unable to open the “DualEnc” Registry table

-455 Unable to open the “VTR” Registry table.

-456 Unable to open the “RemoteStore” Registry table.

-457 Unable to open the “FilterMgr” Registry table.

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

Appendix B — Filter Manager Error/Status Codes 103

Filter Manager Error/Status Codes

-458 Invalid video bitrate supplied. Check IBM Video Registry
table (see Appendix A).
Must be between 512,000
and 50,000,000. May not
exceed 3,500,000 for SIF.
May not exceed 15,000,000
for 4:2:0 chroma.

-459 Invalid horizontal resolution supplied for main
encode. Must be 352, 480, 544, 704, or 720.
(352 is the only valid value for SIF.)

Check IBM Video Registry
table (see Appendix A).

-460 Invalid vertical resolution supplied for main
encode. Must be 120, 240, 480, 512 for NTSC or
144, 288, 576, 608 for PAL.
(For SIF, must be 240 or 288.)

Check IBM Video Registry
table (see Appendix A).

-461 Invalid video mode supplied for main encode.
Must be SIF (0) or AFF (1)

Check IBM Video Registry
table (see Appendix A).

-462 Invalid video format. Must be NTSC (0) or PAL (1). Check IBM Video Registry
table (see Appendix A).

-463 Inverse telecine is not supported.

-464 Invalid input type supplied. Must be 1 for digital or
any other value between 0 and 8 for composite.

Check IBM Video Registry
table (see Appendix A).

-465 Invalid I-frame distance supplied in IBM Video
Registry. Note that the I-Frame distance must
agree with the RefFrameDistance and the Closed
GOP flag.

Check IBM Video Registry
table (see Appendix A) as well
as section that immediately
follows, also in Appendix A,
explaining relationship
between Closed GOP, I-frame
distance, and ref-frame-
distance.

-466 Invalid RefFrameDistance in IBM Video Registry
table.

Check IBM Video Registry
table (see Appendix A).

-467 Invalid ClosedGOP setting in IBM Video Registry
table.

Check IBM Video Registry
table (see Appendix A).

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

104 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Filter Manager Error/Status Codes

-468 Invalid chroma setting in IBM Video Registry table. Check IBM Video Registry
table (see Appendix A).

-469 Embedded metadata is not supported.

-470 Invalid non-linear quantization setting. Must be 0
or 1.

Check IBM Video Registry
table (see Appendix A).

-471 Invalid Concealment Vector setting. Must be 0 or
1. MUST set to 0 for low-bitrate SIF, or corrupted
macroblocking will occur.

Check IBM Video Registry
table (see Appendix A).

-472 Invalid DC Precision setting. Must be 8, 9, 10, or
11, with the value of 8 reserved exclusively for SIF
encodes. FilterManager will automatically encode
SIF with a DCPrecision of 8, regardless of setting
in Registry.

Check IBM Video Registry
table (see Appendix A).

-473 Invalid Intra-table flag. Check IBM Video Registry
table (see Appendix A).

-474 Invalid aspect ratio. Must be square(1), 4x3 (2),
16x9 (3) or 2.21 x 1 (4).

Check IBM Video Registry
table (see Appendix A).

-475 Invalid audio bitrate supplied for main encode.
Must be 32000, 48000, 56000, 64000, 80000,
96000, 112000, 128000, 160000, 192000,
224000, 256000, 320000, or 384000.

Check IBM Audio Registry
table (see Appendix A).

-476 Invalid sample rate supplied for main encode.
Must be 32000, 441000, or 48000.

Check IBM Audio Registry
table (see Appendix A).

-477 Invalid audio mode supplied for main encode.
Must be 0-Stereo, 1-Joint, 2-Dual, 3-Single.

Check IBM Audio Registry
table (see Appendix A).

-478 Invalid audio input supplied for main encode.
Must be analog, digital, or inactive.

Check IBM Audio Registry
table (see Appendix A).

-479 Invalid audio layer for main encode. We support
only layer 2.

Check IBM Audio Registry
table (see Appendix A).

-480 Invalid error protect flag supplied for main
encode. Must be 0 or 1.

Check IBM Audio Registry
table (see Appendix A).

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

Appendix B — Filter Manager Error/Status Codes 105

Filter Manager Error/Status Codes

-481 Invalid copyright flag supplied for main encode.
Must be 0 or 1.

Check IBM Audio Registry
table (see Appendix A).

-482 Invalid “original” flag supplied for main encode.
Must be 0 or 1.

Check IBM Audio Registry
table (see Appendix A).

-483 Invalid slave-mode setting for main encode. Must
be set to 1 if both audio AND video streams are
enabled.

Check IBM Audio Registry
table (see Appendix A).

-484 Invalid audio headroom setting for main encode.
Must be 18 or 20.

Check IBM Audio Registry
table (see Appendix A).

-485 Invalid audio stream ID for main encode. Must be
a value of 0 to 31. May not duplicate stream ID of
other AUDIO streams in this encoded file.

Check Mux Registry table
(see Appendix A).

-486 Invalid video stream ID for main encode. Must be
a value between 0 and 15.

Check Mux Registry table
(see Appendix A).

-487 Invalid mux stream type for main encode. Must be
system (0), program (1), transport (2)
or elementary (3).

Check Mux Registry table
(see Appendix A).

-488 Invalid language setting for one of audio streams
in main encode.

Check Mux Registry table
(see Appendix A).

-489 Invalid audio PID for one of audio streams in main
encode. Valid only for transport stream. Must be
between 0x10 and 0x1fff. Must be unique among
all component streams of transport stream.

Check Mux Registry table
(see Appendix A).

-490 Invalid video PID for video stream in main encode.
Valid only if this is a transport stream. Must be
between 0x10 and 0x1fff. Must be unique among
all component steams of transport stream.

Check Mux Registry table
(see Appendix A).

-491 Invalid setting for “Adjust GOP Time code” flag.
Must be off (0) or on (1). Can be turned on only if
VTR-control is turned on.

Check Mux Registry table
(see Appendix A).

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

106 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Filter Manager Error/Status Codes

-492 Invalid mux rate supplied for main encode. Used
only for transport stream. Must be between
512000 and 50,000,000.

Check Mux Registry table
(see Appendix A).

-493 Invalid closed caption flag setting for main
encode. Must be off (0) or on (1).

Check Mux Registry table
(see Appendix A).

-494 Invalid closed caption format. Must be between 0
and 3. Meaningful only if closed caption flag is set
to 1.

Check Mux Registry table
(see Appendix A).

-495 Invalid SourceEnabled setting. Mus4t be 0 to turn
OFF VTR Control, or 1 to turn it on. Can be turned
on only if VTR is marked as installed in Encoder
Config Registry.

Check VTR Registry table
(see Appendix A).

-496 Invalid Com-port setting for VTR component.
Must be 1 or 2 and must represent serial port
through which encoder communicates with VTR.

Check VTR Registry table
(see Appendix A).

-497 Invalid VTR adjustment for VTR component. Must
be between -20 frames and + 20 frames.

Check VTR Registry table
(see Appendix A).

-498 Invalid pre-roll for VTR. Must be >= 0 if VTR con-
trol is enabled. Represents number of frames ear-
lier (-) or later (+) to start encode.

Check VTR Registry table
(see Appendix A).

-499 Invalid drop frame setting. Must be 0 or 1 if this is
NTSC content, or 0 if it is PAL. This value will be
overridden during the encode with the actual
drop-frame setting of the tape once the encode is
cued and/or started.

Check VTR Registry table
(see Appendix A).

-500 Invalid segment count. You must define at least one
and no more than 3 durations. If VTR-control is
enabled, the duration is represented by a mark-in
and mark-out pair. If VTR-control is disabled, the
duration is represented by the Duration time code.
All of these are defined in the VTR Registry table.

Check VTR Registry table
(see Appendix A).

-501 Invalid Mark-in time code (used only when
VTR-Control is turned on).

Check VTR Registry table
(see Appendix A).

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

Appendix B — Filter Manager Error/Status Codes 107

Filter Manager Error/Status Codes

-502 Invalid Mark-out time code (used only when
VTR-Control is turned on).

Check VTR Registry table
(see Appendix A).

-503 Invalid duration (used only when VTR-Control is
turned off).

Check VTR Registry table
(see Appendix A).

-504 Invalid setting of mux-file-enabled flag (which
determines if a muxed file is to be stored during a
system, program, or transport stream encode), or
of the video-file-enabled flag or audio-file-enabled
flag (which determines if the video or audio file is
to be stored for an elementary-stream encode).
The mux file cannot be enabled for an elementary
encode, nor can the video or audio file be enabled
for a muxed encode.

Check FilterMgr Registry
table (see Appendix A).

-505 Invalid mux file name for main MPEG_2 file. A file
name must be supplied for the stored file if the
mux-file-enabled flag is turned on.

Check FilterMgr Registry
table (see Appendix A).

-506 Invalid video file name supplied for an elementary-
stream encode where video-file-enabled flag is
turned on.

Check FilterMgr Registry
table (see Appendix A).

-507 Invalid audio file name supplied for an elemen-
tary-stream encode where audio-file-enabled flag
is turned on.

Check FilterMgr Registry
table (see Appendix A).

-508 No file store selected. Either the mux-file-enabled
or the video-file-enabled flag must be selected.

Check FilterMgr Registry
table (see Appendix A).

-509 Invalid playback-enabled flag. It must be set to 0
or 1.

Check FilterMgr Registry
table (see Appendix A).

-510 One of the multi-encode selections was turned on
when the encode type selected was elementary
stream, or when playback was turned off.

Check FilterMgr Registry
table (see Appendix A).

-512 Mux database error when using EDL Editor.
Unable to open the mux database table.

Could be an ODBC error. Run
mdac_type.exe provided with
current installation. Check
database using MS Access.

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

108 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Filter Manager Error/Status Codes

-513 IBM-Video database error when using EDL Editor. Could be an ODBC error. Run
mdac_type.exe provided with
current installation

-514 IBM-Audio database error when using EDL Editor. Could be an ODBC error. Run
mdac_type.exe provided with
current installation.

-515 Storage database error when using EDL Editor. Could be an ODBC error. Run
mdac_type.exe provided with
current installation.

-516 VTR database error when using EDL Editor. Could be an ODBC error. Run
mdac_type.exe provided with
current installation.

-517 Invalid DSN supplied when using EDL Editor. Could be an ODBC error. Run
mdac_type.exe provided with
current installation. Also,
check EDL Editor properties
to be sure that it is associ-
ated with the correct DSN
(“BroadcastArgus”) and be
sure that “BroadcastArgus”
is registered on the system
as a database source.

-518 Attempted to access the ODBC load or save when
not in EDL Editor mode.

-519 Attempted to schedule pause/resume when dual-
encoding turned on. Not allowed.

-520 … -603 Multi-stream encode error. User should not attempt
multi-stream encodes with
Argus 4:2:2/4:2:0 software.

-610 Argus VTR configuration error. Attempted to turn
on VTR control when Registry indicated that VTR
is not installed.

Check EncodeConfig Regis-
try. Turn on VTRInstalled flag
if you intend to use the VTR.

-611 Unable to create mutexes for video component. System error? Check task
manager.

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

Appendix B — Filter Manager Error/Status Codes 109

Filter Manager Error/Status Codes

-612 Unable to create IBM video COM component. Make sure IBMVideo compo-
nent is registered.

-613 Exception thrown during IBM Video initialization.

-614 Error occurred during IBM Video stop procedure. This may result in (or may
have resulted from) “hung
up” encode. May need to
terminate it.

-615 Error occurred with IBM-video pause command.

-616 Error occurred with IBM-video resume command.

-617 Unable to create mutexes for IBM Audio component.

-618 Error occurred during IBM Audio stop.

-619 Error occurred with IBM Audio Pause.

-620 Error occurred with IBM Audio Resume.

-621 Error occurred with IBM Audio Reset.

-622 Failure communicating with VSP hardware. Check seating of encoder
board. Run diagnostics.

-623 Failure mapping VSP. Check seating of encoder
board. Run diagnostics.

-624 VSP driver “open” command failed. Check seating of encoder
board. Run diagnostics.

-625 VSP reset failed. Unable to reset encoder.

-626 VSP unmap failed.

-627 Unable to create mutexes for FTP component

-628 Unable to create FTP COM object. Make certain that the
RemoteStore component
is registered.

-629 Error initializing RemoteStore component.

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

110 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Filter Manager Error/Status Codes

-630 Error resetting RemoteStore component.

-700 … -726 Multi-stream encode error. User should not attempt
multi-stream encodes with
Argus 4:2:2/4:2:0 software.

-727 Mux failed to start. Usually the result of an
audio or video board failure.

-728 Video input ended. Video input stopped unex-
pectedly. Check for PAL/
NTSC or analog/digital con-
flict. Run diagnostics.

-729, -730 Audio input ended. Audio input stopped unex-
pectedly. Check for PAL/
NTSC or analog/digital con-
flict. Run diagnostics

-731 Mux outpin error. The application was unable
to send the muxed stream
to the output pin. Check
CPU/memory usage.

-732 Invalid VBR bit rate. The average VBR bit rate
entered must be less than
the maximum bit rate.

-733 VBR not installed. The application attempted to
run a VBR encode when the
VBR microcode has not
been installed.

-734 Invalid Mux mark-in. The mark-in entered for the
Mux time-code adjustment
is invalid.

-735 Error opening video board. Could be attempting to
open a board that is not installed.

Check installation of video
boards.

-736 Video unmap error. An error unmapping video-
board memory.

Programming error.

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

Appendix B — Filter Manager Error/Status Codes 111

Filter Manager Error/Status Codes

-737 No video data detected. During an attempted
encode (usually at the beginning), the video board
failed to detect video source data.

Make certain that a video
source is connected to the
encoder board. If the source
type is specified as digital,
make certain that there is
digital input. Make certain
that the PAL / NTSC setting
in the video Registry table
for the specified board is
correct.

-738 Video FIFO overflow. Application is not emptying
the video encoder FIFO (in
other words, is not reading
the data from the video
board) fast enough.

-739, -740 Video FIFO underflow. Application is attempting to
read data from the video
encoder board, but none is
available. See -737.

-741 Error memory-mapping the video encoder board. Check video board installa-
tion. Run diags.

-743 Cannot use Mux component— It is busy. Ascertain that previous
encode was shut down
correctly.

-744 Invalid number of audio pins. An attempt was
made to reference an out-of-range audio pin
index.

Programming error.

-800 User cancelled encode after cueing, but before
starting.

Shut down and restart the
application before attempting
another encode.

-2001 Encoder board or audio stream index out-of-
range.

Registry programming error.

-2002 Audio index out of range. An attempt was made to
save audio properties to a Registry table for an
undefined board.

Registry programming error.

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

112 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Filter Manager Error/Status Codes

-2003 Video index out of range. An attempt was made to
save video properties to a Registry table for an
undefined board.

Registry programming error.

-2004 Mux index out of range. An attempt was made to
save mux properties to a Registry table for an
undefined board.

Registry programming error.

-2005 Storage index out of range. An attempt was made
to save file-store properties to a Registry table for
an undefined board.

Registry programming error.

-2006 Stream-id conflict. An attempt was made to assign
the same stream id to two audio or to two video
streams within the same encoded file. Check the
stream-id values in the Mux properties table.

Registry error.

-2007 PID conflict. An attempt was made to assign
duplicate PID values to two streams within a sin-
gle transport stream. Check the audio and video
PID values in the Mux properties table.

Registry error.

-2008 Invalid time code type. The high-order digit of the
GopTcStart field in the Mux Registry table was
assigned a value other than 0 (PAL), 1 (NTSC,
non-drop-frame), or 2 (NTSC, drop-frame).

Registry error.

Filter Manager Error/Status Codes (Continued)

Error Code Meaning Comments

Table B-1. Filter Manager Error/Status Codes (Continued)

Index

Index

A

Audio Registry 77

C

CineView® Pro Decoder 4

Client Application Development 7

COM 1, 4, 28, 58

Component Initialization 65

Component Object Model 1

Component Registration 58

CRegistry Class 7

Customer Support 15, 59

D

Distributing Components 46

E

Encoding Parameters 20

Encoding Properties 21

Error Codes . 58

Event . 25

F

Filter Manager 1, 6, 22, 61

Filter Manager Error Events 89

Filter Manager Error/Status Codes . . . 89

Filter Manager Return Codes 89

H

hh:mm:ss:ff . 63

I

IBM® Microcode 57

IBM PC . 4

Included Files . 5

Inpoint . 63

IVTRCenter Interface 63

J

Java . 6

M

Mark-In . 63

Mark-Out . 63

MBProps Application 7, 20, 39

Methods . 17, 26

Microsoft Redistributable Code 57

Minimum System Requirements 4

Multi-Board Encoder 1, 3, 47, 89

Multi-Board Encoder Commands 23

Multi-Stream Encoder 1

Mux Registry 80

O

Outpoint . 63

P

Password . 8

Pre-Roll . 66

Property . 17, 26

R

Registry Settings 20

RemoteStore Registry . . . 84, 85, 86, 87

Return Codes (Error Codes) 89

S

Sample Applications 28

Sample Encoder Application 61

SDK . 61

Serial Port 62, 65

Single-Board Encoder . . . 1, 3, 47, 51, 89

Smart Pointer 62

Software Requirements 4

114 Argus Multi-Board Encoder Rel. 2.6 API Developer’s Guide

Index

Sony® 9-Pin Protocol 15, 61, 64, 65

Source Code . 28

Suggested Reading 14

T

Tape Deck Control 7

Time Code 63, 66

Time Code (Drop Frame) 63

Time Code (Non-Drop Frame_ 63

Time Stamp . 64

U

Uninstall . 8

V

Video Registry 71

Visual Basic™ 6, 28

Visual C++™ 6, 28

VTR . 61, 63

VTR Control 4, 65, 67

W

Windows® 2000 4

Windows Registry 2, 4, 7, 17, 62

Wise® Installer 46, 58

	Table of Contents
	List of Figures and Tables
	Getting Started
	The Multi-Board Encoder
	The Multi-Board API

	What’s New Since Version 2.5
	New Features
	What's Different?
	Minimum System Requirements
	Software Requirements
	Included Files
	Component Summary

	SDK Installation
	Suggested Reading
	ATL/COM References
	C++ References
	Other References

	Customer Support

	Using the Multi-Board Encoder API
	Overview
	Multi-Board Filter Manager Interfaces
	The Primary Interface
	The Secondary (Outgoing) Interface
	Common Encode Parameters: The Windows Registry

	Changing Individual Registry Settings
	MultiBoardFilterMgr Registry-Access Methods
	MultiBoard FilterMgr Interface Properties
	Methods:
	Properties:

	MultiBoardFilterMgr Commands
	Multi-Board Encoder Commands
	Events
	Summary
	Sample Applications
	Overview
	The “FourBoardTestApp” Sample Application
	Overview
	Creating the Project
	Initializing the COM Libraries
	Using the #import Directive
	Creating an Instance of the Multi-Board Filter Manager Interface
	Setting Up an Event Sink Object
	Using the Object
	Releasing the COM Libraries
	Registering to Receive Filter Manager Events

	Running the Sample Application
	MBProps
	Overview
	CRegistry Methods
	Example: Loading an Encoder Registry Table
	Example: Storing Values in an Encoder Registry Table
	For More Information on Registry Control
	MBProps Typical Screen Shots

	Distributing Components
	Overview
	Multi-Board Installation Using Single-Board Driver
	Microsoft Redistributable Code
	Microcode Directory Structure
	COM Components
	Component Registration
	Error Codes
	Customer Support

	Using the VTR API
	Component Overview
	Windows Registry Settings
	Creating an Instance of IVTRCenter
	Properties Exposed Through IVTRCenter
	Methods Exposed Through IVTRCenter
	Component Initialization Method
	Serial Communications Port Management Methods
	Tape Deck Control Methods

	Multi-Board Encoder Registry Settings
	Overview
	Registry Table Property Settings
	The IBM Video Registry Table
	Allowable Combinations of Video Properties

	GOP Structure and Size
	The IBM Audio Registry Table
	The Mux Registry Table
	The MuxStore Registry Table
	The VideoStore Registry Table
	The FirstAudStore Registry Table
	The SecondAudStore Registry Table

	Filter Manager Error/Status Codes
	Index
	A
	C
	D
	E
	F
	H
	I
	J
	M
	O
	P
	R
	S
	T
	U
	V
	W

