
PostgreSQL 7.1 User’s Guide

The PostgreSQL Global Development Group

PostgreSQL 7.1 User’s Guide
by The PostgreSQL Global Development Group
Copyright © 1996-2001 by PostgreSQL Global Development Group

Legal Notice

PostgreSQL

 is Copyright © 1996-2001 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the

University of California below.

Postgres95

 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written

agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all

copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS

SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE

PROVIDED HEREUNDER IS ON AN "AS-IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO

PROVIDE MAINTAINANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

i

Table of Contents

Table of Contents . i
List of Tables . iv
Preface . i

1. What is PostgreSQL? . i
2. A Short History of Postgres . i

2.1. The Berkeley Postgres Project . ii
2.2. Postgres95 . ii
2.3. PostgreSQL . iii

3. Documentation Resources . iii
4. Terminology and Notation . v
5. Bug Reporting Guidelines . v

5.1. Identifying Bugs. v
5.2. What to report . vi
5.3. Where to report bugs . vii

6. Y2K Statement . viii
Chapter 1. SQL Syntax. 1

1.1. Lexical Structure . 1
1.1.1. Identifiers and Key Words . 1
1.1.2. Constants. 2
1.1.3. Operators . 4
1.1.4. Special Characters . 5
1.1.5. Comments . 5

1.2. Columns. 6
1.3. Value Expressions . 7

1.3.1. Column References. 7
1.3.2. Positional Parameters . 8
1.3.3. Function Calls . 8
1.3.4. Aggregate Expressions . 8

1.4. Lexical Precedence . 9
Chapter 2. Queries . 11

2.1. Table Expressions . 11
2.1.1. FROM clause . 11
2.1.2. WHERE clause . 15
2.1.3. GROUP BY and HAVING clauses . 16

2.2. Select Lists . 17
2.2.1. Column Labels . 17
2.2.2. DISTINCT. 18

2.3. Combining Queries . 18
2.4. Sorting Rows . 19
2.5. LIMIT and OFFSET . 19

Chapter 3. Data Types . 21
3.1. Numeric Types . 22

3.1.1. The Serial Type. 23
3.2. Monetary Type . 23
3.3. Character Types . 24
3.4. Date/Time Types . 25

3.4.1. Date/Time Input . 25
3.4.2. Date/Time Output. 30
3.4.3. Time Zones . 30
3.4.4. Internals . 31

3.5. Boolean Type. 32
3.6. Geometric Types . 32

ii

3.6.1. Point. 33
3.6.2. Line Segment . 33
3.6.3. Box . 34
3.6.4. Path . 34
3.6.5. Polygon . 35
3.6.6. Circle . 35

3.7. Network Address Data Types . 35
3.7.1. inet . 36
3.7.2. cidr. 36
3.7.3. inet vs cidr . 37
3.7.4. macaddr. 37

3.8. Bit String Types . 37
Chapter 4. Functions and Operators . 38

4.1. Logical Operators . 38
4.2. Comparison Operators. 39
4.3. Mathematical Functions and Operators . 40
4.4. String Functions and Operators . 42
4.5. Pattern Matching . 44

4.5.1. Pattern Matching with LIKE . 44
4.5.2. POSIX Regular Expressions . 45

4.6. Formatting Functions . 47
4.7. Date/Time Functions. 53

4.7.1. EXTRACT, date_part . 54
4.7.2. date_trunc . 57
4.7.3. Current Date/Time. 57

4.8. Geometric Functions and Operators. 58
4.9. Network Address Type Functions . 60
4.10. Conditional Expressions. 61
4.11. Miscellaneous Functions. 63
4.12. Aggregate Functions . 64

Chapter 5. Type Conversion . 66
5.1. Overview . 66

5.1.1. Guidelines . 67
5.2. Operators. 68

5.2.1. Examples . 68
5.3. Functions . 70

5.3.1. Examples . 71
5.4. Query Targets . 72

5.4.1. Examples . 72
5.5. UNION and CASE Constructs. 73

5.5.1. Examples . 73
Chapter 6. Arrays . 75
Chapter 7. Indices . 78

7.1. Introduction. 78
7.2. Index Types . 79
7.3. Multi-Column Indices. 79
7.4. Unique Indices. 80
7.5. Functional Indices. 80
7.6. Operator Classes . 81
7.7. Keys . 82
7.8. Partial Indices . 83

Chapter 8. Inheritance . 84
Chapter 9. Multi-Version Concurrency Control . 87

9.1. Introduction. 87
9.2. Transaction Isolation . 87
9.3. Read Committed Isolation Level . 88
9.4. Serializable Isolation Level . 88
9.5. Data consistency checks at the application level . 89

iii

9.6. Locking and Tables. 89
9.6.1. Table-level locks . 90
9.6.2. Row-level locks . 91

9.7. Locking and Indices . 91
Chapter 10. Managing a Database. 92

10.1. Database Creation. 92
10.2. Alternate Database Locations . 92
10.3. Accessing a Database . 93
10.4. Destroying a Database . 94

Chapter 11. Performance Tips. 95
11.1. Using EXPLAIN . 95
11.2. Controlling the Planner with Explicit JOINs . 98
11.3. Populating a Database . 99

11.3.1. Disable Auto-commit . 99
11.3.2. Use COPY FROM . 99
11.3.3. Remove Indices . 99

Appendix A. Date/Time Support . 100
A.1. Time Zones . 100

A.1.1. Australian Time Zones . 102
A.1.2. Date/Time Input Interpretation . 102

A.2. History of Units . 104
Appendix B. SQL Key Words . 106
Bibliography . 122

SQL Reference Books . 122
PostgreSQL-Specific Documentation. 122
Proceedings and Articles . 123

iv

List of Tables
1-1. Operator Precedence (decreasing).. 9
3-1. Data Types ... 21
3-2. Numeric Types ... 22
3-3. Monetary Types.. 23
3-4. Character Types ... 24
3-5. Specialty Character Type ... 25
3-6. Date/Time Types.. 25
3-7. Date Input... 26
3-8. Month Abbreviations.. 26
3-9. Day of the Week Abbreviations ... 27
3-10. Time Input .. 27
3-11. Time With Time Zone Input .. 28
3-12. Time Zone Input... 28
3-13. Special Date/Time Constants ... 29
3-14. Date/Time Output Styles .. 30
3-15. Date Order Conventions... 30
3-16. Geometric Types .. 33
3-17. Network Address Data Types... 36
3-18. cidr Type Input Examples .. 36
4-1. Comparison Operators.. 39
4-2. Mathematical Operators ... 40
4-3. Bit String Binary Operators.. 40
4-4. Mathematical Functions ... 41
4-5. Trigonometric Functions .. 42
4-6. SQL String Functions and Operators ... 42
4-7. Other String Functions ... 43
4-8. Regular Expression Match Operators... 45
4-9. Formatting Functions ... 48
4-10. Template patterns for date/time conversions.. 48
4-11. Template pattern modifiers for date/time conversions ... 50
4-12. Template patterns for numeric conversions.. 51
4-13. to_char Examples .. 52
4-14. Date/Time Functions .. 53
4-15. Geometric Operators .. 58
4-16. Geometric Functions .. 59
4-17. Geometric Type Conversion Functions.. 60
4-18. cidr and inet Operators .. 60
4-19. cidr and inet Functions .. 61
4-20. macaddr Functions .. 61
4-21. Miscellaneous Functions .. 63
4-22. Aggregate Functions... 64
9-1. ANSI/ISO SQL Isolation Levels .. 87
A-1. Postgres Recognized Time Zones ... 100
A-2. Postgres Australian Time Zones.. 102
B-1. SQL Key Words .. 106

i

Preface

1. What is PostgreSQL?
 PostgreSQL is an object-relational database management system (ORDBMS) based on
POSTGRES, Version 4.2 (http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/postgres.html), developed
at the University of California at Berkeley Computer Science Department. The POSTGRES project,
led by Professor Michael Stonebraker, was sponsored by the Defense Advanced Research Projects
Agency (DARPA), the Army Research Office (ARO), the National Science Foundation (NSF), and
ESL, Inc.

 PostgreSQL is an open-source descendant of this original Berkeley code. It provides SQL92/SQL99
language support and other modern features.

 POSTGRES pioneered many of the object-relational concepts now becoming available in some
commercial databases. Traditional relational database management systems (RDBMS) support a
data model consisting of a collection of named relations, containing attributes of a specific type. In
current commercial systems, possible types include floating point numbers, integers, character
strings, money, and dates. It is commonly recognized that this model is inadequate for future data
processing applications. The relational model successfully replaced previous models in part because
of its �Spartan simplicity�. However, as mentioned, this simplicity often makes the implementation of
certain applications very difficult. Postgres offers substantial additional power by incorporating the
following additional concepts in such a way that users can easily extend the system:

inheritance
data types
functions

 Other features provide additional power and flexibility:

constraints
triggers
rules
transaction integrity

 These features put Postgres into the category of databases referred to as object-relational. Note that
this is distinct from those referred to as object-oriented, which in general are not as well suited to
supporting the traditional relational database languages. So, although Postgres has some
object-oriented features, it is firmly in the relational database world. In fact, some commercial
databases have recently incorporated features pioneered by Postgres.

2. A Short History of Postgres
 The object-relational database management system now known as PostgreSQL (and briefly called
Postgres95) is derived from the Postgres package written at the University of California at Berkeley.
With over a decade of development behind it, PostgreSQL is the most advanced open-source
database available anywhere, offering multi-version concurrency control, supporting almost all SQL
constructs (including subselects, transactions, and user-defined types and functions), and having a
wide range of language bindings available (including C, C++, Java, Perl, Tcl, and Python).

Preface

ii

2.1. The Berkeley Postgres Project

 Implementation of the Postgres DBMS began in 1986. The initial concepts for the system were
presented in The Design of Postgres and the definition of the initial data model appeared in The
Postgres Data Model. The design of the rule system at that time was described in The Design of the
Postgres Rules System. The rationale and architecture of the storage manager were detailed in The
Postgres Storage System.

 Postgres has undergone several major releases since then. The first "demoware" system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. We released Version 1,
described in The Implementation of Postgres, to a few external users in June 1989. In response to a
critique of the first rule system (A Commentary on the Postgres Rules System), the rule system was
redesigned (On Rules, Procedures, Caching and Views in Database Systems) and Version 2 was
released in June 1990 with the new rule system. Version 3 appeared in 1991 and added support for
multiple storage managers, an improved query executor, and a rewritten rewrite rule system. For the
most part, releases until Postgres95 (see below) focused on portability and reliability.

 Postgres has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an asteroid
tracking database, a medical information database, and several geographic information systems.
Postgres has also been used as an educational tool at several universities. Finally, Illustra
Information Technologies (http://www.illustra.com/) (since merged into Informix
(http://www.informix.com/)) picked up the code and commercialized it. Postgres became the
primary data manager for the Sequoia 2000
(http://www.sdsc.edu/0/Parts_Collabs/S2K/s2k_home.html) scientific computing project in late
1992.

 The size of the external user community nearly doubled during 1993. It became increasingly
obvious that maintenance of the prototype code and support was taking up large amounts of time
that should have been devoted to database research. In an effort to reduce this support burden, the
project officially ended with Version 4.2.

2.2. Postgres95

 In 1994, Andrew Yu and Jolly Chen added a SQL language interpreter to Postgres. Postgres95 was
subsequently released to the Web to find its own way in the world as an open-source descendant of
the original Postgres Berkeley code.

 Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes
improved performance and maintainability. Postgres95 v1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to Postgres v4.2. Apart from bug fixes, these were the major
enhancements:

 The query language Postquel was replaced with SQL (implemented in the server). Subqueries
were not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with
user-defined SQL functions. Aggregates were re-implemented. Support for the GROUP BY query
clause was also added. The libpq interface remained available for C programs.

 In addition to the monitor program, a new program (psql) was provided for interactive SQL
queries using GNU readline.

 A new front-end library, libpgtcl, supported Tcl-based clients. A sample shell, pgtclsh,
provided new Tcl commands to interface tcl programs with the Postgres95 backend.

 The large object interface was overhauled. The Inversion large objects were the only mechanism
for storing large objects. (The Inversion file system was removed.)

Preface

iii

 The instance-level rule system was removed. Rules were still available as rewrite rules.

 A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code.

 GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled
with an unpatched gcc (data alignment of doubles was fixed).

2.3. PostgreSQL

 By 1996, it became clear that the name "Postgres95" would not stand the test of time. We chose a
new name, PostgreSQL, to reflect the relationship between the original Postgres and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Postgres Project.

 The emphasis during development of Postgres95 was on identifying and understanding existing
problems in the backend code. With PostgreSQL, the emphasis has shifted to augmenting features
and capabilities, although work continues in all areas.

 Major enhancements in PostgreSQL include:

 Table-level locking has been replaced with multi-version concurrency control, which allows
readers to continue reading consistent data during writer activity and enables hot backups from
pg_dump while the database stays available for queries.

 Important backend features, including subselects, defaults, constraints, and triggers, have been
implemented.

 Additional SQL92-compliant language features have been added, including primary keys, quoted
identifiers, literal string type coercion, type casting, and binary and hexadecimal integer input.

 Built-in types have been improved, including new wide-range date/time types and additional
geometric type support.

 Overall backend code speed has been increased by approximately 20-40%, and backend start-up
time has decreased 80% since version 6.0 was released.

3. Documentation Resources
 This manual set is organized into several parts:

Tutorial

 An introduction for new users. Does not cover advanced features.

User’s Guide

 Documents the SQL query language environment, including data types and functions.

Programmer’s Guide

 Advanced information for application programmers. Topics include type and function
extensibility, library interfaces, and application design issues.

Administrator’s Guide

 Installation and server management information

Preface

iv

Reference Manual

 Reference pages for SQL command syntax and client and server programs

Developer’s Guide

 Information for Postgres developers. This is intended for those who are contributing to the
Postgres project; application development information should appear in the Programmer’s
Guide.

 In addition to this manual set, there are other resources to help you with Postgres installation and
use:

man pages

 The Reference Manual’s pages in the traditional Unix man format.

FAQs

 Frequently Asked Questions (FAQ) lists document both general issues and some
platform-specific issues.

READMEs

 README files are available for some contributed packages.

Web Site

 The PostgreSQL web site (http://www.postgresql.org) carries details on the latest release,
upcoming features, and other information to make your work or play with PostgreSQL more
productive.

Mailing Lists

 The <pgsql-general@postgresql.org>
(archive (http://www.postgresql.org/mhonarc/pgsql-general/)) mailing list is a good place to
have user questions answered. Other mailing lists are available; consult the User’s Lounge
(http://www.postgresql.org/users-lounge/) section of the PostgreSQL web site for details.

Yourself!

 PostgreSQL is an open source effort. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. If you
learn something which is not in the documentation, write it up and contribute it. If you add
features to the code, contribute it.

 Even those without a lot of experience can provide corrections and minor changes in the
documentation, and that is a good way to start. The <pgsql-docs@postgresql.org>
(archive (http://www.postgresql.org/mhonarc/pgsql-docs/)) mailing list is the place to get
going.

Preface

v

4. Terminology and Notation
 The terms �Postgres� and �PostgreSQL� will be used interchangeably to refer to the software that
accompanies this documentation.

 An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms
should not be interpreted too narrowly; this documentation set does not have fixed presumptions
about system administration procedures.

 /usr/local/pgsql/ is generally used as the root directory of the installation and
/usr/local/pgsql/data as the directory with the database files. These directories may vary on
your site, details can be derived in the Administrator’s Guide.

 In a command synopsis, brackets ("[" and "]") indicate an optional phrase or keyword. Anything in
braces ("{" and "}") and containing vertical bars ("|") indicates that you must choose one.

 Examples will show commands executed from various accounts and programs. Commands
executed from a Unix shell may be preceeded with a dollar sign (�$�). Commands executed from
particular user accounts such as root or postgres are specially flagged and explained. SQL
commands may be preceeded with �=>� or will have no leading prompt, depending on the context.

Note: The notation for flagging commands is not universally consistant throughout the
documentation set. Please report problems to the documentation mailing list
<pgsql-docs@postgresql.org>.

5. Bug Reporting Guidelines
 When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important
part in making PostgreSQL more reliable because even the utmost care cannot guarantee that every
part of PostgreSQL will work on every platform under every circumstance.

 The following suggestions are intended to assist you in forming bug reports that can be handled in
an effective fashion. No one is required to follow them but it tends to be to everyone’s advantage.

 We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of
users, chances are good that someone will look into it. It could also happen that we tell you to
update to a newer version to see if the bug happens there. Or we might decide that the bug cannot be
fixed before some major rewrite we might be planning is done. Or perhaps it is simply too hard and
there are more important things on the agenda. If you need help immediately, consider obtaining a
commercial support contract.

5.1. Identifying Bugs

 Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that the program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

 A program terminates with a fatal signal or an operating system error message that would point
to a problem in the program. (A counterexample might be a �disk full� message, since you have to
fix that yourself.)

 A program produces the wrong output for any given input.

Preface

vi

 A program refuses to accept valid input (as defined in the documentation).

 A program accepts invalid input without a notice or error message. Keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

 PostgreSQL fails to compile, build, or install according to the instructions on supported
platforms.

 Here �program� refers to any executable, not only the backend server.

 Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to SQL is not a bug unless
compliance for the specific feature is explicitly claimed.

 Before you continue, check on the TODO list and in the FAQ to see if your bug is already known.
If you cannot decode the information on the TODO list, report your problem. The least we can do is
make the TODO list clearer.

5.2. What to report

 The most important thing to remember about bug reporting is to state all the facts and only facts.
Do not speculate what you think went wrong, what "it seemed to do", or which part of the program
has a fault. If you are not familiar with the implementation you would probably guess wrong and not
help us a bit. And even if you are, educated explanations are a great supplement to but no substitute
for facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting
the bare facts is relatively straightforward (you can probably copy and paste them from the screen)
but all too often important details are left out because someone thought it does not matter or the
report would be understood anyway.

 The following items should be contained in every bug report:

 The exact sequence of steps from program start-up necessary to reproduce the problem. This
should be self-contained; it is not enough to send in a bare select statement without the preceding
create table and insert statements, if the output should depend on the data in the tables. We do not
have the time to reverse-engineer your database schema, and if we are supposed to make up our
own data we would probably miss the problem. The best format for a test case for query-language
related problems is a file that can be run through the psql frontend that shows the problem. (Be
sure to not have anything in your ~/.psqlrc start-up file.) An easy start at this file is to use
pg_dump to dump out the table declarations and data needed to set the scene, then add the
problem query. You are encouraged to minimize the size of your example, but this is not
absolutely necessary. If the bug is reproduceable, we will find it either way.

 If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any
case remember to provide the exact input files, do not guess that the problem happens for "large
files" or "mid-size databases", etc. since this information is too inexact to be of use.

 The output you got. Please do not say that it �didn’t work� or �crashed�. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system
error, say which. If nothing at all happens, say so. Even if the result of your test case is a program
crash or otherwise obvious it might not happen on our platform. The easiest thing is to copy the
output from the terminal, if possible.

Note: In case of fatal errors, the error message provided by the client might not contain all
the information available. In that case, also look at the log output of the database server. If
you do not keep your server output, this would be a good time to start doing so.

Preface

vii

 The output you expected is very important to state. If you just write "This command gives me
that output." or "This is not what I expected.", we might run it ourselves, scan the output, and
think it looks okay and is exactly what we expected. We should not have to spend the time to
decode the exact semantics behind your commands. Especially refrain from merely saying that
"This is not what SQL says/Oracle does." Digging out the correct behavior from SQL is not a fun
undertaking, nor do we all know how all the other relational databases out there behave. (If your
problem is a program crash you can obviously omit this item.)

 Any command line options and other start-up options, including concerned environment
variables or configuration files that you changed from the default. Again, be exact. If you are
using a pre-packaged distribution that starts the database server at boot time, you should try to
find out how that is done.

 Anything you did at all differently from the installation instructions.

 The PostgreSQL version. You can run the command SELECT version(); to find out the
version of the server you are connected to. Most executable programs also support a --version
option; at least postmaster --version and psql --version should work. If the function or
the options do not exist then your version is probably old enough. You can also look into the
README file in the source directory or at the name of your distribution file or package name. If
you run a pre-packaged version, such as RPMs, say so, including any subversion the package may
have. If you are talking about a CVS snapshot, mention that, including its date and time.

 If your version is older than 7.1 we will almost certainly tell you to upgrade. There are tons of
bug fixes in each new release, that is why we make new releases.

 Platform information. This includes the kernel name and version, C library, processor, memory
information. In most cases it is sufficient to report the vendor and version, but do not assume
everyone knows what exactly "Debian" contains or that everyone runs on Pentiums. If you have
installation problems then information about compilers, make, etc. is also necessary.

 Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it is fair to ask first whether somebody is interested in looking into it.

 Do not spend all your time to figure out which changes in the input make the problem go away.
This will probably not help solving it. If it turns out that the bug cannot be fixed right away, you
will still have time to find and share your work around. Also, once again, do not waste your time
guessing why the bug exists. We will find that out soon enough.

 When writing a bug report, please choose non-confusing terminology. The software package as
such is called "PostgreSQL", sometimes "Postgres" for short. (Sometimes the abbreviation "Pgsql"
is used but don’t do that.) When you are specifically talking about the backend server, mention that,
do not just say "Postgres crashes". The interactive frontend is called "psql" and is for all intends and
purposes completely separate from the backend.

5.3. Where to report bugs

 In general, send bug reports to the bug report mailing list at <pgsql-bugs@postgresql.org>.
You are invited to find a descriptive subject for your email message, perhaps parts of the error
message.

 Do not send bug reports to any of the user mailing lists, such as <pgsql-sql@postgresql.org>
or <pgsql-general@postgresql.org>. These mailing lists are for answering user questions and

Preface

viii

their subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to
fix them.

 Also, please do not send reports to the developers’ mailing list
<pgsql-hackers@postgresql.org>. This list is for discussing the development of PostgreSQL
and it would be nice if we could keep the bug reports separate. We might choose to take up a
discussion about your bug report on it, if the bug needs more review.

 If you have a problem with the documentation, send email to the documentation mailing list
<pgsql-docs@postgresql.org>. Mention the document, chapter, and sections in your problem
report.

 If your bug is a portability problem on a non-supported platform, send mail to
<pgsql-ports@postgresql.org>, so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses
are closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it. If
you simply want to send mail but do not want to receive list traffic, you can subscribe and set
your subscription option to nomail. For more information send mail to
<majordomo@postgresql.org> with the single word help in the body of the message.

6. Y2K Statement
Author: Written by Thomas Lockhart (<lockhart@alumni.caltech.edu>) on 1998-10-22.
Updated 2000-03-31.

 The PostgreSQL Global Development Group provides the PostgreSQL software code tree as a
public service, without warranty and without liability for its behavior or performance. However, at
the time of writing:

 The author of this statement, a volunteer on the Postgres support team since November, 1996, is
not aware of any problems in the Postgres code base related to time transitions around Jan 1, 2000
(Y2K).

 The author of this statement is not aware of any reports of Y2K problems uncovered in
regression testing or in other field use of recent or current versions of Postgres. We might have
expected to hear about problems if they existed, given the installed base and the active
participation of users on the support mailing lists.

 To the best of the author’s knowledge, the assumptions Postgres makes about dates specified
with a two-digit year are documented in the current User’s Guide in the chapter on data types. For
two-digit years, the significant transition year is 1970, not 2000; e.g. "70-01-01" is interpreted
as 1970-01-01, whereas "69-01-01" is interpreted as 2069-01-01.

 Any Y2K problems in the underlying OS related to obtaining "the current time" may propagate
into apparent Y2K problems in Postgres.

 Refer to The Gnu Project (http://www.gnu.org/software/year2000.html) and The Perl Institute
(http://language.perl.com/news/y2k.html) for further discussion of Y2K issues, particularly as it
relates to open source, no fee software.

1

Chapter 1. SQL Syntax
 A description of the general syntax of SQL.

1.1. Lexical Structure
 SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
terminated by a semicolon (�;�). The end of the input stream also terminates a command. Which
tokens are valid depends on the syntax of the particular command.

 A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special
character symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not
be if there is no ambiguity (which is generally only the case if a special character is adjacent to
some other token type).

 Additionally, comments can occur in SQL input. They are not tokens, they are effectively
equivalent to whitespace.

 For example, the following is (syntactically) valid SQL input:
SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, ’hi there’);

 This is a sequence of three commands, one per line (although this is not required; more than one
command can be on a line, and commands can usefully be split across lines).

 The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. The first few tokens are generally the command name, so in the above
example we would usually speak of a �SELECT�, an �UPDATE�, and an �INSERT� command. But for
instance the UPDATE command always requires a SET token to appear in a certain position, and
this particular variation of INSERT also requires a VALUES in order to be complete. The precise
syntax rules for each command are described in the Reference Manual.

1.1.1. Identifiers and Key Words

 Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words,
that is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are
examples of identifiers. They identify names of tables, columns, or other database objects,
depending on the command they are used in. Therefore they are sometimes simply called �names�.
Key words and identifiers have the same lexical structure, meaning that one cannot know whether a
token is an identifier or a key word without knowing the language. A complete list of key words can
be found in Appendix B.

 SQL identifiers and key words must begin with a letter (a-z) or underscore (_). Subsequent
characters in an identifier or key word can be letters, digits (0-9), or underscores, although the SQL
standard will not define a key word that contains digits or starts or ends with an underscore.

 The system uses no more than NAMEDATALEN-1 characters of an identifier; longer names can be
written in commands, but they will be truncated. By default, NAMEDATALEN is 32 so the
maximum identifier length is 31 (but at the time the system is built, NAMEDATALEN can be
changed in src/include/postgres_ext.h).

 Identifier and key word names are case insensitive. Therefore

Chapter 1. SQL Syntax

2

UPDATE MY_TABLE SET A = 5;

 can equivalently be written as

uPDaTE my_TabLE SeT a = 5;

 A convention often used is to write key words in upper case and names in lower case, e.g.,

UPDATE my_table SET a = 5;

 There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by
enclosing an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always
an identifier, never a key word. So "select" could be used to refer to a column or table named
�select�, whereas an unquoted select would be taken as a key word and would therefore provoke a
parse error when used where a table or column name is expected. The example can be written with
quoted identifiers like this:

UPDATE "my_table" SET "a" = 5;

 Quoted identifiers can contain any character other than a double quote itself. This allows
constructing table or column names that would otherwise not be possible, such as ones containing
spaces or ampersands. The length limitation still applies.

 Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to
lower case. For example, the identifiers FOO, foo and "foo" are considered the same by Postgres,
but "Foo" and "FOO" are different from these three and each other. 1

1.1.2. Constants

 There are four kinds of implicitly typed constants in Postgres: strings, bit strings, integers, and
floating point numbers. Constants can also be specified with explicit types, which can enable more
accurate representation and more efficient handling by the system. The implicit constants are
described below; explicit constants are discussed afterwards.

1.1.2.1. String Constants

 A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (�’�), e.g.,
’This is a string’. SQL allows single quotes to be embedded in strings by typing two
adjacent single quotes (e.g., ’Dianne’’s horse’). In Postgres single quotes may alternatively be
escaped with a backslash (�\�, e.g., ’Dianne\’s horse’).

 C-style backslash escapes are also available: \b is a backspace, \f is a form feed, \n is a newline,
\r is a carriage return, \t is a tab, and \xxx, where xxx is an octal number, is the character with
the corresponding ASCII code. Any other character following a backslash is taken literally. Thus, to
include a backslash in a string constant, type two backslashes.

 The character with the code zero cannot be in a string constant.

 Two string constants that are only separated by whitespace with at least one newline are
concatenated and effectively treated as if the string had been written in one constant. For example:

SELECT ’foo’
’bar’;

Chapter 1. SQL Syntax

3

 is equivalent to

SELECT ’foobar’;

 but

SELECT ’foo’ ’bar’;

 is not valid syntax.

1.1.2.2. Bit String Constants

 Bit string constants look like string constants with a B (upper or lower case) immediately before the
opening quote (no intervening whitespace), e.g., B’1001’. The only characters allowed within bit
string constants are 0 and 1. Bit string constants can be continued across lines in the same way as
regular string constants.

1.1.2.3. Integer Constants

 Integer constants in SQL are sequences of decimal digits (0 though 9) with no decimal point. The
range of legal values depends on which integer data type is used, but the plain integer type
accepts values ranging from -2147483648 to +2147483647. (The optional plus or minus sign is
actually a separate unary operator and not part of the integer constant.)

1.1.2.4. Floating Point Constants

 Floating point constants are accepted in these general forms:

digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

 where digits is one or more decimal digits. At least one digit must be before or after the decimal
point, and after the e if you use that option. Thus, a floating point constant is distinguished from an
integer constant by the presence of either the decimal point or the exponent clause (or both). There
must not be a space or other characters embedded in the constant.

 These are some examples of valid floating point constants:
3.5
4.
.001
5e2
1.925e-3

 Floating point constants are of type DOUBLE PRECISION. REAL can be specified explicitly by
using SQL string notation or Postgres type notation:

REAL ’1.23’ -- string style
’1.23’::REAL -- Postgres (historical) style

Chapter 1. SQL Syntax

4

1.1.2.5. Constants of Other Types

 A constant of an arbitrary type can be entered using any one of the following notations:

type ’string’
’string’::type
CAST (’string’ AS type)

 The value inside the string is passed to the input conversion routine for the type called type. The
result is a constant of the indicated type. The explicit type cast may be omitted if there is no
ambiguity as to the type the constant must be (for example, when it is passed as an argument to a
non-overloaded function), in which case it is automatically coerced.

 It is also possible to specify a type coercion using a function-like syntax:

typename (value)

 although this only works for types whose names are also valid as function names. (For example,
double precision can’t be used this way --- but the equivalent float8 can.)

 The ::, CAST(), and function-call syntaxes can also be used to specify the type of arbitrary
expressions, but the form type ’string’ can only be used to specify the type of a literal constant.

1.1.2.6. Array constants

 The general format of an array constant is the following:

’{ val1 delim val2 delim ... }’

 where delim is the delimiter character for the type, as recorded in its pg_type entry. (For all
built-in types, this is the comma character ",".) Each val is either a constant of the array element
type, or a sub-array. An example of an array constant is

’{{1,2,3},{4,5,6},{7,8,9}}’

 This constant is a two-dimensional, 3 by 3 array consisting of three sub-arrays of integers.

 Individual array elements can be placed between double-quote marks (") to avoid ambiguity
problems with respect to white space. Without quote marks, the array-value parser will skip leading
white space.

 (Array constants are actually only a special case of the generic type constants discussed in the
previous section. The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

1.1.3. Operators

 An operator is a sequence of up to NAMEDATALEN-1 (31 by default) characters from the
following list:

+ - * / < > = ~ ! @ # % ^ & | ‘ ? $

 There are a few restrictions on operator names, however:

 "$" (dollar) cannot be a single-character operator, although it can be part of a multi-character
operator name.

Chapter 1. SQL Syntax

5

 -- and /* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

 A multi-character operator name cannot end in "+" or "-", unless the name also contains at least
one of these characters:

~ ! @ # % ^ & | ‘ ? $

 For example, @- is an allowed operator name, but *- is not. This restriction allows Postgres to
parse SQL-compliant queries without requiring spaces between tokens.

 When working with non-SQL-standard operator names, you will usually need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left-unary operator
named "@", you cannot write X*@Y; you must write X* @Y to ensure that Postgres reads it as two
operator names not one.

1.1.4. Special Characters

 Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element is
described. This section only exists to advise the existence and summarize the purposes of these
characters.

 A dollar sign ($) followed by digits is used to represent the positional parameters in the body of a
function definition. In other contexts the dollar sign may be part of an operator name.

 Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

 Brackets ([]) are used to select the elements of an array. See Chapter 6 for more information on
arrays.

 Commas (,) are used in some syntactical constructs to separate the elements of a list.

 The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

 The colon (:) is used to select �slices� from arrays. (See Chapter 6.) In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

 The asterisk (*) has a special meaning when used in the SELECT command or with the COUNT
aggregate function.

 The period (.) is used in floating point constants, and to separate table and column names.

1.1.5. Comments

 A comment is an arbitrary sequence of characters beginning with double dashes and extending to
the end of the line, e.g.:

-- This is a standard SQL92 comment

 Alternatively, C-style block comments can be used:

/* multi-line comment

Chapter 1. SQL Syntax

6

 * with nesting: /* nested block comment */
 */

 where the comment begins with /* and extends to the matching occurrence of */. These block
comments nest, as specified in SQL99 but unlike C, so that one can comment out larger blocks of
code that may contain existing block comments.

 A comment is removed from the input stream before further syntax analysis and is effectively
replaced by whitespace.

1.2. Columns
 A column is either a user-defined column of a given table or one of the following system-defined
columns:

oid

 The unique identifier (object ID) of a row. This is a serial number that is added by Postgres to
all rows automatically. OIDs are not reused and are 32-bit quantities.

tableoid

 The OID of the table containing this row. This attribute is particularly handy for queries that
select from inheritance hierarchies, since without it, it’s difficult to tell which individual table a
row came from. The tableoid can be joined against the OID attribute of pg_class to obtain the
table name.

xmin

 The identity (transaction ID) of the inserting transaction for this tuple. (Note: a tuple is an
individual state of a row; each UPDATE of a row creates a new tuple for the same logical
row.)

cmin

 The command identifier (starting at zero) within the inserting transaction.

xmax

 The identity (transaction ID) of the deleting transaction, or zero for an undeleted tuple. In
practice, this is never nonzero for a visible tuple.

cmax

 The command identifier within the deleting transaction, or zero. Again, this is never nonzero
for a visible tuple.

ctid

 The tuple ID of the tuple within its table. This is a pair (block number, tuple index within
block) that identifies the physical location of the tuple. Note that although the ctid can be used
to locate the tuple very quickly, a row’s ctid will change each time it is updated or moved by
VACUUM. Therefore ctid is useless as a long-term row identifier. The OID, or even better a
user-defined serial number, should be used to identify logical rows.

 For further information on the system attributes consult Stonebraker, Hanson, Hong, 1987.
Transaction and command identifiers are 32-bit quantities.

Chapter 1. SQL Syntax

7

1.3. Value Expressions
 Value expressions are used in a variety of contexts, such as in the target list of the SELECT
command, as new column values in INSERT or UPDATE, or in search conditions in a number of
commands. The result of a value expression is sometimes called a scalar, to distinguish it from the
result of a table expression (which is a table). Value expressions are therefore also called scalar
expressions (or even simply expressions). The expression syntax allows the calculation of values
from primitive parts using arithmetic, logical, set, and other operations.

 A value expression is one of the following:

 A constant or literal value; see Section 1.1.2.

 A column reference

 An operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

 where operator follows the syntax rules of Section 1.1.3 or is one of the tokens AND, OR,
and NOT. Which particular operators exist and whether they are unary or binary depends on what
operators have been defined by the system or the user. Chapter 4 describes the built-in operators.

(expression)

 Parentheses are used to group subexpressions and override precedence.

 A positional parameter reference, in the body of a function declaration.

 A function call

 An aggregate expression

 A scalar subquery. This is an ordinary SELECT in parentheses that returns exactly one row with
one column. It is an error to use a subquery that returns more than one row or more than one
column in the context of a value expression.

 In addition to this list, there are a number of constructs that can be classified as an expression but
do not follow any general syntax rules. These generally have the semantics of a function or operator
and are explained in the appropriate location in Chapter 4. An example is the IS NULL clause.

 We have already discussed constants in Section 1.1.2. The following sections discuss the remaining
options.

1.3.1. Column References

 A column can be referenced in the form:

correlation.columnname ‘[’subscript‘]’

 correlation is either the name of a table, an alias for a table defined by means of a FROM
clause, or the keyword NEW or OLD. (NEW and OLD can only appear in the action portion of a rule,
while other correlation names can be used in any SQL statement.) The correlation name can be
omitted if the column name is unique across all the tables being used in the current query. If
column is of an array type, then the optional subscript selects a specific element in the array. If

Chapter 1. SQL Syntax

8

no subscript is provided, then the whole array is selected. Refer to the description of the particular
commands in the PostgreSQL Reference Manual for the allowed syntax in each case.

1.3.2. Positional Parameters

 A positional parameter reference is used to indicate a parameter in an SQL function. Typically this
is used in SQL function definition statements. The form of a parameter is:

$number

 For example, consider the definition of a function, dept, as

CREATE FUNCTION dept (text) RETURNS dept
 AS ’select * from dept where name = $1’ LANGUAGE ’sql’;

 Here the $1 will be replaced by the first function argument when the function is invoked.

1.3.3. Function Calls

 The syntax for a function call is the name of a function (which is subject to the syntax rules for
identifiers of Section 1.1.1), followed by its argument list enclosed in parentheses:

function ([expression [, expression ...]])

 For example, the following computes the square root of 2:

sqrt(2)

 The list of built-in functions is in Chapter 4. Other functions may be added by the user.

1.3.4. Aggregate Expressions

 An aggregate expression represents the application of an aggregate function across the rows
selected by a query. An aggregate function reduces multiple inputs to a single output value, such as
the sum or average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression)
aggregate_name (ALL expression)
aggregate_name (DISTINCT expression)
aggregate_name (*)

 where aggregate_name is a previously defined aggregate, and expression is any expression
that does not itself contain an aggregate expression.

 The first form of aggregate expression invokes the aggregate across all input rows for which the
given expression yields a non-NULL value. (Actually, it is up to the aggregate function whether to
ignore NULLs or not --- but all the standard ones do.) The second form is the same as the first, since
ALL is the default. The third form invokes the aggregate for all distinct non-NULL values of the
expression found in the input rows. The last form invokes the aggregate once for each input row
regardless of NULL or non-NULL values; since no particular input value is specified, it is generally
only useful for the count() aggregate function.

Chapter 1. SQL Syntax

9

 For example, count(*) yields the total number of input rows; count(f1) yields the number of
input rows in which f1 is non-NULL; count(distinct f1) yields the number of distinct
non-NULL values of f1.

 The predefined aggregate functions are described in Section 4.12. Other aggregate functions may
be added by the user.

1.4. Lexical Precedence
 The precedence and associativity of the operators is hard-wired into the parser. Most operators have
the same precedence and are left-associative. This may lead to non-intuitive behavior; for example
the Boolean operators "<" and ">" have a different precedence than the Boolean operators "<=" and
">=". Also, you will sometimes need to add parentheses when using combinations of binary and
unary operators. For instance

SELECT 5 ! - 6;

 will be parsed as

SELECT 5 ! (- 6);

 because the parser has no idea -- until it is too late -- that ! is defined as a postfix operator, not an
infix one. To get the desired behavior in this case, you must write

SELECT (5 !) - 6;

 This is the price one pays for extensibility.

Table 1-1. Operator Precedence (decreasing)

Operator/Element Associativity Description

:: left Postgres-style typecast

[] left array element selection

. left table/column name separator

- right unary minus

^ left exponentiation

* / % left multiplication, division, modulo

+ - left addition, subtraction

IS test for TRUE, FALSE, NULL

ISNULL test for NULL

NOTNULL test for NOT NULL

(any other) left all other native and user-defined operators

IN set membership

BETWEEN containment

OVERLAPS time interval overlap

LIKE ILIKE string pattern matching

Chapter 1. SQL Syntax

10

Operator/Element Associativity Description

< > less than, greater than

= right equality, assignment

NOT right logical negation

AND left logical conjunction

OR left logical disjunction

 Note that the operator precedence rules also apply to user-defined operators that have the same
names as the built-in operators mentioned above. For example, if you define a �+� operator for some
custom data type it will have the same precedence as the built-in �+� operator, no matter what yours
does.

Notes
1. Postgres’ folding of unquoted names to lower case is incompatible with the SQL standard,

which says that unquoted names should be folded to upper case. Thus, foo should be equivalent
to "FOO" not "foo" according to the standard. If you want to write portable applications you
are advised to always quote a particular name or never quote it.

11

Chapter 2. Queries
 A query is the process of retrieving or the command to retrieve data from a database. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is

SELECT select_list FROM table_expression [sort_specification]

 The following sections describe the details of the select list, the table expression, and the sort
specification. The simplest kind of query has the form

SELECT * FROM table1;

 Assuming that there is a table called table1, this command would retrieve all rows and all columns
from table1. (The method of retrieval depends on the client application. For example, the psql
program will display an ASCII-art table on the screen, client libraries will offer functions to retrieve
individual rows and columns.) The select list specification * means all columns that the table
expression happens to provide. A select list can also select a subset of the available columns or even
make calculations on the columns before retrieving them; see Section 2.2. For example, if table1 has
columns named a, b, and c (and perhaps others) you can make the following query:

SELECT a, b + c FROM table1;

 (assuming that b and c are of a numeric data type).

 FROM table1 is a particularly simple kind of table expression. In general, table expressions can be
complex constructs of base tables, joins, and subqueries. But you can also omit the table expression
entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

 This is more useful if the expressions in the select list return varying results. For example, you
could call a function this way.

SELECT random();

2.1. Table Expressions
 A table expression specifies a table. The table expression contains a FROM clause that is optionally
followed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to
a table on disk, a so-called base table, but more complex expressions can be used to modify or
combine base tables in various ways.

 The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a
pipeline of successive transformations performed on the table derived in the FROM clause. The
derived table that is produced by all these transformations provides the input rows used to compute
output rows as specified by the select list of column value expressions.

2.1.1. FROM clause

 The FROM clause derives a table from one or more other tables given in a comma-separated table
reference list.

Chapter 2. Queries

12

FROM table_reference [, table_reference [, ...]]

 A table reference may be a table name or a derived table such as a subquery, a table join, or
complex combinations of these. If more than one table reference is listed in the FROM clause they
are CROSS JOINed (see below) to form the derived table that may then be subject to
transformations by the WHERE, GROUP BY, and HAVING clauses and is finally the result of the
overall table expression.

 When a table reference names a table that is the supertable of a table inheritance hierarchy, the
table reference produces rows of not only that table but all of its subtable successors, unless the
keyword ONLY precedes the table name. However, the reference produces only the columns that
appear in the named table --- any columns added in subtables are ignored.

2.1.1.1. Joined Tables

 A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. INNER, OUTER, and CROSS JOIN are supported.

Join Types

CROSS JOIN

 T1 CROSS JOIN T2

 For each combination of rows from T1 and T2, the derived table will contain a row consisting
of all columns in T1 followed by all columns in T2. If the tables have N and M rows
respectively, the joined table will have N * M rows. A cross join is equivalent to an INNER
JOIN ON TRUE.

Tip: FROM T1 CROSS JOIN T2 is equivalent to FROM T1, T2.

Qualified JOINs

 T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2
 ON boolean_expression
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2
 USING (join column list)
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

 The words INNER and OUTER are optional for all JOINs. INNER is the default; LEFT,
RIGHT, and FULL imply an OUTER JOIN.

 The join condition is specified in the ON or USING clause, or implicitly by the word
NATURAL. The join condition determines which rows from the two source tables are
considered to �match�, as explained in detail below.

 The ON clause is the most general kind of join condition: it takes a Boolean value expression
of the same kind as is used in a WHERE clause. A pair of rows from T1 and T2 match if the
ON expression evaluates to TRUE for them.

 USING is a shorthand notation: it takes a comma-separated list of column names, which the
joined tables must have in common, and forms a join condition specifying equality of each of
these pairs of columns. Furthermore, the output of a JOIN USING has one column for each of
the equated pairs of input columns, followed by all of the other columns from each table. Thus,
USING (a, b, c) is equivalent to ON (t1.a = t2.a AND t1.b = t2.b AND t1.c =
t2.c) with the exception that if ON is used there will be two columns a, b, and c in the result,
whereas with USING there will be only one of each.

Chapter 2. Queries

13

 Finally, NATURAL is a shorthand form of USING: it forms a USING list consisting of
exactly those column names that appear in both input tables. As with USING, these columns
appear only once in the output table.

 The possible types of qualified JOIN are:

INNER JOIN

 For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the
join condition with R1.

LEFT OUTER JOIN

 First, an INNER JOIN is performed. Then, for each row in T1 that does not satisfy the
join condition with any row in T2, a joined row is returned with NULL values in columns
of T2. Thus, the joined table unconditionally has at least one row for each row in T1.

RIGHT OUTER JOIN

 First, an INNER JOIN is performed. Then, for each row in T2 that does not satisfy the
join condition with any row in T1, a joined row is returned with NULL values in columns
of T1. This is the converse of a left join: the result table will unconditionally have a row
for each row in T2.

FULL OUTER JOIN

 First, an INNER JOIN is performed. Then, for each row in T1 that does not satisfy the
join condition with any row in T2, a joined row is returned with null values in columns of
T2. Also, for each row of T2 that does not satisfy the join condition with any row in T1, a
joined row with null values in the columns of T1 is returned.

 Joins of all types can be chained together or nested: either or both of T1 and T2 may be JOINed
tables. Parentheses may be used around JOIN clauses to control the join order. In the absence of
parentheses, JOIN clauses nest left-to-right.

2.1.1.2. Subqueries

 Subqueries specifying a derived table must be enclosed in parentheses and must be named using an
AS clause. (See Section 2.1.1.3.)

FROM (SELECT * FROM table1) AS alias_name

 This example is equivalent to FROM table1 AS alias_name. More interesting cases, which
can’t be reduced to a plain join, arise when the subquery involves grouping or aggregation.

2.1.1.3. Table and Column Aliases

 A temporary name can be given to tables and complex table references to be used for references to
the derived table in further processing. This is called a table alias.

FROM table_reference AS alias

 Here, alias can be any regular identifier. The alias becomes the new name of the table reference
for the current query -- it is no longer possible to refer to the table by the original name. Thus

SELECT * FROM my_table AS m WHERE my_table.a > 5;

Chapter 2. Queries

14

 is not valid SQL syntax. What will actually happen (this is a Postgres extension to the standard) is
that an implicit table reference is added to the FROM clause, so the query is processed as if it were
written as

SELECT * FROM my_table AS m, my_table AS my_table WHERE my_table.a > 5;

 Table aliases are mainly for notational convenience, but it is necessary to use them when joining a
table to itself, e.g.,

SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...

 Additionally, an alias is required if the table reference is a subquery.

 Parentheses are used to resolve ambiguities. The following statement will assign the alias b to the
result of the join, unlike the previous example:

SELECT * FROM (my_table AS a CROSS JOIN my_table) AS b ...

FROM table_reference alias

 This form is equivalent to the previously treated one; the AS key word is noise.

FROM table_reference [AS] alias (column1 [, column2 [, ...]])

 In this form, in addition to renaming the table as described above, the columns of the table are also
given temporary names for use by the surrounding query. If fewer column aliases are specified than
the actual table has columns, the remaining columns are not renamed. This syntax is especially
useful for self-joins or subqueries.

 When an alias is applied to the output of a JOIN clause, using any of these forms, the alias hides the
original names within the JOIN. For example,

SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...

 is valid SQL, but

SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

 is not valid: the table alias A is not visible outside the alias C.

2.1.1.4. Examples

FROM T1 INNER JOIN T2 USING (C)
FROM T1 LEFT OUTER JOIN T2 USING (C)
FROM (T1 RIGHT OUTER JOIN T2 ON (T1C1=T2C1)) AS DT1
FROM (T1 FULL OUTER JOIN T2 USING (C)) AS DT1 (DT1C1, DT1C2)

FROM T1 NATURAL INNER JOIN T2
FROM T1 NATURAL LEFT OUTER JOIN T2
FROM T1 NATURAL RIGHT OUTER JOIN T2
FROM T1 NATURAL FULL OUTER JOIN T2

FROM (SELECT * FROM T1) DT1 CROSS JOIN T2, T3
FROM (SELECT * FROM T1) DT1, T2, T3

Chapter 2. Queries

15

 Above are some examples of joined tables and complex derived tables. Notice how the AS clause
renames or names a derived table and how the optional comma-separated list of column names that
follows renames the columns. The last two FROM clauses produce the same derived table from T1,
T2, and T3. The AS keyword was omitted in naming the subquery as DT1. The keywords OUTER
and INNER are noise that can be omitted also.

2.1.2. WHERE clause

 The syntax of the WHERE clause is

WHERE search_condition

 where search_condition is any value expression as defined in Section 1.3 that returns a value
of type boolean.

 After the processing of the FROM clause is done, each row of the derived table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (that is, if the result is false or NULL) it is discarded. The search condition typically
references at least some column in the table generated in the FROM clause; this is not required, but
otherwise the WHERE clause will be fairly useless.

Note: Before the implementation of the JOIN syntax, it was necessary to put the join condition
of an inner join in the WHERE clause. For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

 and

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5

 or perhaps even

FROM a NATURAL JOIN b WHERE b.val > 5

 Which one of these you use is mainly a matter of style. The JOIN syntax in the FROM clause is
probably not as portable to other products. For outer joins there is no choice in any case: they
must be done in the FROM clause. An outer join’s ON/USING clause is not equivalent to a
WHERE condition, because it determines the addition of rows (for unmatched input rows) as
well as the removal of rows from the final result.

FROM FDT WHERE
 C1 > 5

FROM FDT WHERE
 C1 IN (1, 2, 3)
FROM FDT WHERE
 C1 IN (SELECT C1 FROM T2)
FROM FDT WHERE
 C1 IN (SELECT C3 FROM T2 WHERE C2 = FDT.C1 + 10)

FROM FDT WHERE
 C1 BETWEEN (SELECT C3 FROM T2 WHERE C2 = FDT.C1 + 10) AND 100

FROM FDT WHERE
 EXISTS (SELECT C1 FROM T2 WHERE C2 > FDT.C1)

Chapter 2. Queries

16

 In the examples above, FDT is the table derived in the FROM clause. Rows that do not meet the
search condition of the where clause are eliminated from FDT. Notice the use of scalar subqueries
as value expressions. Just like any other query, the subqueries can employ complex table
expressions. Notice how FDT is referenced in the subqueries. Qualifying C1 as FDT.C1 is only
necessary if C1 is also the name of a column in the derived input table of the subquery. Qualifying
the column name adds clarity even when it is not needed. This shows how the column naming scope
of an outer query extends into its inner queries.

2.1.3. GROUP BY and HAVING clauses

 After passing the WHERE filter, the derived input table may be subject to grouping, using the
GROUP BY clause, and elimination of group rows using the HAVING clause.

SELECT select_list FROM ... [WHERE ...] GROUP BY grouping_column_reference
[, grouping_column_reference]...

 The GROUP BY clause is used to group together rows in a table that share the same values in all
the columns listed. The order in which the columns are listed does not matter (as opposed to an
ORDER BY clause). The purpose is to reduce each group of rows sharing common values into one
group row that is representative of all rows in the group. This is done to eliminate redundancy in the
output and/or obtain aggregates that apply to these groups.

 Once a table is grouped, columns that are not used in the grouping cannot be referenced except in
aggregate expressions, since a specific value in those columns is ambiguous - which row in the
group should it come from? The grouped-by columns can be referenced in select list column
expressions since they have a known constant value per group. Aggregate functions on the
ungrouped columns provide values that span the rows of a group, not of the whole table. For
instance, a sum(sales) on a table grouped by product code gives the total sales for each product,
not the total sales on all products. Aggregates computed on the ungrouped columns are
representative of the group, whereas individual values of an ungrouped column are not.

 Example:

SELECT pid, p.name, (sum(s.units) * p.price) AS sales
 FROM products p LEFT JOIN sales s USING (pid)
 GROUP BY pid, p.name, p.price;

 In this example, the columns pid, p.name, and p.price must be in the GROUP BY clause since they
are referenced in the query select list. The column s.units does not have to be in the GROUP BY list
since it is only used in an aggregate expression (sum()), which represents the group of sales of a
product. For each product, a summary row is returned about all sales of the product.

 In strict SQL, GROUP BY can only group by columns of the source table but Postgres extends this
to also allow GROUP BY to group by select columns in the query select list. Grouping by value
expressions instead of simple column names is also allowed.

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING
boolean_expression

 If a table has been grouped using a GROUP BY clause, but then only certain groups are of interest,
the HAVING clause can be used, much like a WHERE clause, to eliminate groups from a grouped
table. Postgres allows a HAVING clause to be used without a GROUP BY, in which case it acts like
another WHERE clause, but the point in using HAVING that way is not clear. A good rule of thumb
is that a HAVING condition should refer to the results of aggregate functions. A restriction that does
not involve an aggregate is more efficiently expressed in the WHERE clause.

Chapter 2. Queries

17

 Example:

SELECT pid AS "Products",
 p.name AS "Over 5000",
 (sum(s.units) * (p.price - p.cost)) AS "Past Month Profit"
 FROM products p LEFT JOIN sales s USING (pid)
 WHERE s.date > CURRENT_DATE - INTERVAL ’4 weeks’
 GROUP BY pid, p.name, p.price, p.cost
 HAVING sum(p.price * s.units) > 5000;

 In the example above, the WHERE clause is selecting rows by a column that is not grouped, while
the HAVING clause restricts the output to groups with total gross sales over 5000.

2.2. Select Lists
 As shown in the previous section, the table expression in the SELECT command constructs an
intermediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This
table is finally passed on to processing by the select list. The select list determines which columns of
the intermediate table are actually output. The simplest kind of select list is * which emits all
columns that the table expression produces. Otherwise, a select list is a comma-separated list of
value expressions (as defined in Section 1.3). For instance, it could be a list of column names:

SELECT a, b, c FROM ...

 The columns names a, b, and c are either the actual names of the columns of tables referenced in
the FROM clause, or the aliases given to them as explained in Section 2.1.1.3. The name space
available in the select list is the same as in the WHERE clause (unless grouping is used, in which
case it is the same as in the HAVING clause). If more than one table has a column of the same
name, the table name must also be given, as in

SELECT tbl1.a, tbl2.b, tbl1.c FROM ...

 (see also Section 2.1.2).

 If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column
to the returned table. The value expression is evaluated once for each retrieved row, with the row’s
values substituted for any column references. But the expressions in the select list do not have to
reference any columns in the table expression of the FROM clause; they could be constant
arithmetic expressions as well, for instance.

2.2.1. Column Labels

 The entries in the select list can be assigned names for further processing. The �further processing� in
this case is an optional sort specification and the client application (e.g., column headers for
display). For example:

SELECT a AS value, b + c AS sum FROM ...

 If no output column name is specified via AS, the system assigns a default name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of
the function. For complex expressions, the system will generate a generic name.

Chapter 2. Queries

18

Note: The naming of output columns here is different from that done in the FROM clause (see
Section 2.1.1.3). This pipeline will in fact allow you to rename the same column twice, but the
name chosen in the select list is the one that will be passed on.

2.2.2. DISTINCT

 After the select list has been processed, the result table may optionally be subject to the elimination
of duplicates. The DISTINCT key word is written directly after the SELECT to enable this:

SELECT DISTINCT select_list ...

 (Instead of DISTINCT the word ALL can be used to select the default behavior of retaining all
rows.)

 Obviously, two rows are considered distinct if they differ in at least one column value. NULLs are
considered equal in this comparison.

 Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

SELECT DISTINCT ON (expression [, expression ...]) select_list ...

 Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for
which all the expressions are equal are considered duplicates, and only the first row of the set is kept
in the output. Note that the �first row� of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving at the DISTINCT filter. (DISTINCT
ON processing occurs after ORDER BY sorting.)

 The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious use of GROUP BY and
subselects in FROM the construct can be avoided, but it is very often the most convenient
alternative.

2.3. Combining Queries
 The results of two queries can be combined using the set operations union, intersection, and
difference. The syntax is

query1 UNION [ALL] query2
query1 INTERSECT [ALL] query2
query1 EXCEPT [ALL] query2

 query1 and query2 are queries that can use any of the features discussed up to this point. Set
operations can also be nested and chained, for example

query1 UNION query2 UNION query3

 which really says

(query1 UNION query2) UNION query3

 UNION effectively appends the result of query2 to the result of query1 (although there is no
guarantee that this is the order in which the rows are actually returned). Furthermore, it eliminates
all duplicate rows, in the sense of DISTINCT, unless ALL is specified.

Chapter 2. Queries

19

 INTERSECT returns all rows that are both in the result of query1 and in the result of query2.
Duplicate rows are eliminated unless ALL is specified.

 EXCEPT returns all rows that are in the result of query1 but not in the result of query2. Again,
duplicates are eliminated unless ALL is specified.

 In order to calculate the union, intersection, or difference of two queries, the two queries must be
�union compatible�, which means that they both return the same number of columns, and that the
corresponding columns have compatible data types, as described in Section 5.5.

2.4. Sorting Rows
 After a query has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in random order. The actual order in
that case will depend on the scan and join plan types and the order on disk, but it must not be relied
on. A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

 The ORDER BY clause specifies the sort order:

SELECT select_list FROM table_expression ORDER BY column1 [ASC | DESC] [,
column2 [ASC | DESC] ...]

 column1, etc., refer to select list columns. These can be either the output name of a column (see
Section 2.2.1) or the number of a column. Some examples:

SELECT a, b FROM table1 ORDER BY a;
SELECT a + b AS sum, c FROM table1 ORDER BY sum;
SELECT a, sum(b) FROM table1 GROUP BY a ORDER BY 1;

 As an extension to the SQL standard, Postgres also allows ordering by arbitrary expressions:

SELECT a, b FROM table1 ORDER BY a + b;

 References to column names in the FROM clause that are renamed in the select list are also
allowed:

SELECT a AS b FROM table1 ORDER BY a;

 But these extensions do not work in queries involving UNION, INTERSECT, or EXCEPT, and are
not portable to other DBMSes.

 Each column specification may be followed by an optional ASC or DESC to set the sort direction.
ASC is default. Ascending order puts smaller values first, where �smaller� is defined in terms of the <
operator. Similarly, descending order is determined with the > operator.

 If more than one sort column is specified, the later entries are used to sort rows that are equal under
the order imposed by the earlier sort specifications.

2.5. LIMIT and OFFSET
SELECT select_list FROM table_expression [ORDER BY sort_spec] [LIMIT {
number | ALL }] [OFFSET number]

Chapter 2. Queries

20

 LIMIT allows you to retrieve just a portion of the rows that are generated by the rest of the query. If
a limit count is given, no more than that many rows will be returned. If an offset is given, that many
rows will be skipped before starting to return rows.

 When using LIMIT, it is a good idea to use an ORDER BY clause that constrains the result rows
into a unique order. Otherwise you will get an unpredictable subset of the query’s rows---you may
be asking for the tenth through twentieth rows, but tenth through twentieth in what ordering? The
ordering is unknown, unless you specified ORDER BY.

 The query optimizer takes LIMIT into account when generating a query plan, so you are very likely
to get different plans (yielding different row orders) depending on what you give for LIMIT and
OFFSET. Thus, using different LIMIT/OFFSET values to select different subsets of a query result
will give inconsistent results unless you enforce a predictable result ordering with ORDER BY. This
is not a bug; it is an inherent consequence of the fact that SQL does not promise to deliver the
results of a query in any particular order unless ORDER BY is used to constrain the order.

21

Chapter 3. Data Types
 Postgres has a rich set of native data types available to users. Users may add new types to Postgres
using the CREATE TYPE command.

 Table 3-1 shows all general-purpose data types available to users. Most of the alternative names
listed in the �Aliases� column are the names used internally by Postgres for historical reasons. In
addition, some internally used or deprecated types are available, but they are not documented here.
Many of the built-in types have obvious external formats. However, several types are either unique
to Postgres, such as open and closed paths, or have several possibilities for formats, such as the date
and time types.

Table 3-1. Data Types

Type Name Aliases Description

bigint int8 signed eight-byte integer

bit fixed-length bit string

bit varying(n) varbit(n) variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box in 2D plane

character(n) char(n) fixed-length character string

character varying(n) varchar(n) variable-length character string

cidr IP network address

circle circle in 2D plane

date calendar date (year, month, day)

double precision float8 double precision floating-point number

inet IP host address

integer int, int4 signed four-byte integer

interval general-use time span

line infinite line in 2D plane

lseg line segment in 2D plane

macaddr MAC address

money US-style currency

numeric(p, s) decimal(p, s) exact numeric with selectable precision

oid object identifier

path open and closed geometric path in 2D plane

point geometric point in 2D plane

Chapter 3. Data Types

22

Type Name Aliases Description

polygon closed geometric path in 2D plane

real float4 single precision floating-point number

smallint int2 signed two-byte integer

serial autoincrementing four-byte integer

text variable-length character string

time

[without time zone]

time of day

time with time zone time of day, including time zone

timestamp

[with time zone]

date and time

Compatibility: The following types (or spellings thereof) are specified by SQL: bit, bit
varying, boolean, char, character, character varying, varchar, date, double precision,
integer, interval, numeric, decimal, real, smallint, time, timestamp (both with or without
time zone).

 Most of the input and output functions corresponding to the base types (e.g., integers and floating
point numbers) do some error-checking. Some of the operators and functions (e.g., addition and
multiplication) do not perform run-time error-checking in the interests of improving execution
speed. On some systems, for example, the numeric operators for some data types may silently
underflow or overflow.

 Some of the input and output functions are not invertible. That is, the result of an output function
may lose precision when compared to the original input.

3.1. Numeric Types
 Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating point
numbers and fixed-precision decimals.

Table 3-2. Numeric Types

Type Name Storage Description Range

smallint 2 bytes Fixed-precision -32768 to +32767

integer 4 bytes Usual choice for fixed-precision -2147483648 to +2147483647

bigint 8 bytes Very large range fixed-precision about 18 decimal places

decimal variable User-specified precision no limit

numeric variable User-specified precision no limit

real 4 bytes Variable-precision 6 decimal places

double precision 8 bytes Variable-precision 15 decimal places

Chapter 3. Data Types

23

Type Name Storage Description Range

serial 4 bytes Identifier or cross-reference 0 to +2147483647

 The syntax of constants for the numeric types is described in Section 1.1.2. The numeric types have
a full set of corresponding arithmetic operators and functions. Refer to Chapter 4 for more
information.

 The bigint type may not be available on all platforms since it relies on compiler support for
eight-byte integers.

3.1.1. The Serial Type

 The serial type is a special-case type constructed by Postgres from other existing components. It
is typically used to create unique identifiers for table entries. In the current implementation,
specifying

CREATE TABLE tablename (colname SERIAL);

 is equivalent to specifying:

CREATE SEQUENCE tablename_colname_seq;
CREATE TABLE tablename
 (colname integer DEFAULT nextval(’tablename_colname_seq’);
CREATE UNIQUE INDEX tablename_colname_key on tablename (colname);

Caution
 The implicit sequence created for the serial type will not be automatically removed
when the table is dropped.

 Implicit sequences supporting the serial are not automatically dropped when a table containing a
serial type is dropped. So, the following commands executed in order will likely fail:

CREATE TABLE tablename (colname SERIAL);
DROP TABLE tablename;
CREATE TABLE tablename (colname SERIAL);

 The sequence will remain in the database until explicitly dropped using DROP SEQUENCE.

3.2. Monetary Type
Deprecated: The money type is deprecated. Use numeric or decimal instead, in combination
with the to_char function. The money type may become a locale-aware layer over the numeric
type in a future release.

 The money type stores U.S.-style currency with fixed decimal point representation. If Postgres is
compiled with locale support then the money type uses locale-specific output formatting.

Chapter 3. Data Types

24

 Input is accepted in a variety of formats, including integer and floating point literals, as well as
�typical� currency formatting, such as ’$1,000.00’. Output is in the latter form.

Table 3-3. Monetary Types

Type Name Storage Description Range

money 4 bytes Fixed-precision -21474836.48 to +21474836.47

3.3. Character Types
 SQL defines two primary character types: character and character varying. Postgres
supports these types, in addition to the more general text type, which unlike character
varying does not require an explicit declared upper limit on the size of the field.

 Refer to Section 1.1.2.1 for information about the syntax of string literals, and to Chapter 4 for
information about available operators and functions.

Table 3-4. Character Types

Type Name Storage Recommendation Description

character(n), char(n) (4+n) bytes SQL-compatible Fixed-length blank padded

character varying(n),
varchar(n)

(4+n) bytes SQL-compatible Variable-length with limit

text (4+n) bytes Most flexible Variable unlimited length

Note: Although the type text is not SQL-compliant, many other RDBMS packages have it as
well.

 There are two other fixed-length character types in Postgres. The name type exists only for storage
of internal catalog names and is not intended for use by the general user. Its length is currently
defined as 32 bytes (31 characters plus terminator) but should be referenced using the macro
NAMEDATALEN. The length is set at compile time (and is therefore adjustable for special uses);
the default maximum length may change in a future release. The type "char" (note the quotes) is
different from char(1) in that it only uses one byte of storage. It is internally used in the system
catalogs as a poor-man’s enumeration type.

Chapter 3. Data Types

25

Table 3-5. Specialty Character Type

Type Name Storage Description

"char" 1 byte Single character internal type

name 32 bytes Thirty-one character internal type

3.4. Date/Time Types
 Postgres supports the full set of SQL date and time types.

Table 3-6. Date/Time Types

Type Description Storage Earliest Latest Resolution

timestamp both date and
time

8 bytes 4713 BC AD 1465001 1 microsecond
/ 14 digits

timestamp

[with time

zone]

date and time
with time
zone

8 bytes 1903 AD 2037 AD 1 microsecond
/ 14 digits

interval for time
intervals

12 bytes -178000000
years

178000000 years 1 microsecond

date dates only 4 bytes 4713 BC 32767 AD 1 day

time

[without

time zone]

times of day
only

4 bytes 00:00:00.00 23:59:59.99 1 microsecond

time with

time zone

times of day
only

4 bytes 00:00:00.00+12 23:59:59.99-12 1 microsecond

Note: To ensure compatibility to earlier versions of Postgres we also continue to provide
datetime (equivalent to timestamp) and timespan (equivalent to interval), however support
for these is now restricted to having an implicit translation to timestamp and interval. The
types abstime and reltime are lower precision types which are used internally. You are
discouraged from using any of these types in new applications and are encouraged to move
any old ones over when appropriate. Any or all of these internal types might disappear in a
future release.

3.4.1. Date/Time Input

 Date and time input is accepted in almost any reasonable format, including ISO-8601,
SQL-compatible, traditional Postgres, and others. The ordering of month and day in date input can
be ambiguous, therefore a setting exists to specify how it should be interpreted in ambiguous cases.

Chapter 3. Data Types

26

The command SET DateStyle TO ’US’ or SET DateStyle TO ’NonEuropean’ specifies the
variant "month before day", the command SET DateStyle TO ’European’ sets the variant "day
before month". The ISO style is the default but this default can be changed at compile time or at run
time.

 See Appendix A for the exact parsing rules of date/time input and for the recognized time zones.

 Remember that any date or time input needs to be enclosed into single quotes, like text strings.
Refer to Section 1.1.2.5 for more information. SQL requires the following syntax

type ’value’

 but Postgres is more flexible.

3.4.1.1. date

 The following are possible inputs for the date type.

Table 3-7. Date Input

Example Description

January 8, 1999 Unambiguous

1999-01-08 ISO-8601 format, preferred

1/8/1999 US; read as August 1 in European mode

8/1/1999 European; read as August 1 in US mode

1/18/1999 US; read as January 18 in any mode

19990108 ISO-8601 year, month, day

990108 ISO-8601 year, month, day

1999.008 Year and day of year

99008 Year and day of year

January 8, 99 BC Year 99 before the Common Era

Table 3-8. Month Abbreviations

Month Abbreviations

April Apr

August Aug

December Dec

February Feb

January Jan

July Jul

June Jun

Chapter 3. Data Types

27

Month Abbreviations

March Mar

November Nov

October Oct

September Sep, Sept

Note: The month May has no explicit abbreviation, for obvious reasons.

Table 3-9. Day of the Week Abbreviations

Day Abbreviation

Sunday Sun

Monday Mon

Tuesday Tue, Tues

Wednesday Wed, Weds

Thursday Thu, Thur, Thurs

Friday Fri

Saturday Sat

3.4.1.2. time [without time zone]

 Per SQL99, this type can be referenced as time and as time without time zone.

 The following are valid time inputs.

Table 3-10. Time Input

Example Description

04:05:06.789 ISO-8601

04:05:06 ISO-8601

04:05 ISO-8601

040506 ISO-8601

04:05 AM Same as 04:05; AM does not affect value

04:05 PM Same as 16:05; input hour must be <= 12

z Same as 00:00:00

zulu Same as 00:00:00

Chapter 3. Data Types

28

Example Description

allballs Same as 00:00:00

3.4.1.3. time with time zone

 This type is defined by SQL92, but the definition exhibits fundamental deficiencies that render the
type nearly useless. In most cases, a combination of date, time, and timestamp should provide a
complete range of date/time functionality required by any application.

 time with time zone accepts all input also legal for the time type, appended with a legal time
zone, as follows:

Table 3-11. Time With Time Zone Input

Example Description

04:05:06.789-8 ISO-8601

04:05:06-08:00 ISO-8601

04:05-08:00 ISO-8601

040506-08 ISO-8601

 Refer to Table 3-12 for more examples of time zones.

3.4.1.4. timestamp

 Valid input for the timestamp type consists of a concatenation of a date and a time, followed by
an optional AD or BC, followed by an optional time zone. (See below.) Thus

1999-01-08 04:05:06 -8:00

 is a valid timestamp value that is ISO-compliant. In addition, the wide-spread format

January 8 04:05:06 1999 PST

 is supported.

Table 3-12. Time Zone Input

Time Zone Description

PST Pacific Standard Time

-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

Chapter 3. Data Types

29

3.4.1.5. interval

 intervals can be specified with the following syntax:

 Quantity Unit [Quantity Unit...] [Direction]
@ Quantity Unit [Direction]

 where: Quantity is ..., -1, 0, 1, 2, ...; Unit is second, minute, hour, day, week, month, year,
decade, century, millennium, or abbreviations or plurals of these units; Direction can be ago
or empty.

3.4.1.6. Special values

 The following SQL-compatible functions can be used as date or time input for the corresponding
data type: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP.

 Postgres also supports several special constants for convenience.

Table 3-13. Special Date/Time Constants

Constant Description

current Current transaction time, deferred

epoch 1970-01-01 00:00:00+00 (Unix system time zero)

infinity Later than other valid times

-infinity Earlier than other valid times

invalid Illegal entry

now Current transaction time

today Midnight today

tomorrow Midnight tomorrow

yesterday Midnight yesterday

 ’now’ is resolved when the value is inserted, ’current’ is resolved every time the value is
retrieved. So you probably want to use ’now’ in most applications. (Of course you really want to
use CURRENT_TIMESTAMP, which is equivalent to ’now’.)

Chapter 3. Data Types

30

3.4.2. Date/Time Output

 Output formats can be set to one of the four styles ISO-8601, SQL (Ingres), traditional Postgres,
and German, using the SET DateStyle. The default is the ISO format.

Table 3-14. Date/Time Output Styles

Style Specification Description Example

’ISO’ ISO-8601 standard 1997-12-17 07:37:16-08

’SQL’ Traditional style 12/17/1997 07:37:16.00 PST

’Postgres’ Original style Wed Dec 17 07:37:16 1997 PST

’German’ Regional style 17.12.1997 07:37:16.00 PST

 The output of the date and time styles is of course only the date or time part in accordance with
the above examples.

 The SQL style has European and non-European (US) variants, which determines whether month
follows day or vice versa. (See also above at Date/Time Input, how this setting affects interpretation
of input values.)

Table 3-15. Date Order Conventions

Style Specification Description Example

European day/month/year 17/12/1997 15:37:16.00 MET

US month/day/year 12/17/1997 07:37:16.00 PST

 interval output looks like the input format, except that units like week or century are converted
to years and days. In ISO mode the output looks like

[Quantity Units [...]] [Days] Hours:Minutes [ago]

 There are several ways to affect the appearance of date/time types:
 The PGDATESTYLE environment variable used by the backend directly on postmaster start-up.
 The PGDATESTYLE environment variable used by the frontend libpq on session start-up.
 SET DATESTYLE SQL command.

3.4.3. Time Zones

 Postgres endeavors to be compatible with SQL92 definitions for typical usage. However, the
SQL92 standard has an odd mix of date and time types and capabilities. Two obvious problems are:

 Although the date type does not have an associated time zone, the time type can or does. Time
zones in the real world can have no meaning unless associated with a date as well as a time since
the offset may vary through the year with daylight savings time boundaries.

Chapter 3. Data Types

31

 The default time zone is specified as a constant integer offset from GMT/UTC. It is not possible
to adapt to daylight savings time when doing date/time arithmetic across DST boundaries.

 To address these difficulties, we recommend using date/time types that contain both date and time
when using time zones. We recommend not using the SQL92 type TIME WITH TIME ZONE
(though it is supported by Postgres for legacy applications and for compatibility with other RDBMS
implementations). Postgres assumes local time for any type containing only date or time. Further,
time zone support is derived from the underlying operating system time zone capabilities, and hence
can handle daylight savings time and other expected behavior.

 Postgres obtains time zone support from the underlying operating system for dates between 1902
and 2038 (near the typical date limits for Unix-style systems). Outside of this range, all dates are
assumed to be specified and used in Universal Coordinated Time (UTC).

 All dates and times are stored internally in UTC, traditionally known as Greenwich Mean Time
(GMT). Times are converted to local time on the database server before being sent to the client
frontend, hence by default are in the server time zone.

 There are several ways to affect the time zone behavior:
 The TZ environment variable is used by the backend directly on postmaster start-up as the
default time zone.
 The PGTZ environment variable set at the client used by libpq to send time zone information to
the backend upon connection.
 The SQL command SET TIME ZONE sets the time zone for the session.
 The SQL92 qualifier on

timestamp AT TIME ZONE ’zone’

 where zone can be specified as a text time zone (e.g. ’PST’) or as an interval (e.g. INTERVAL
’-08:00’).

Note: If an invalid time zone is specified, the time zone becomes GMT (on most systems
anyway).

Note: If the compiler option USE_AUSTRALIAN_RULES is set then EST refers to Australia
Eastern Standard Time, which has an offset of +10:00 hours from UTC.

3.4.4. Internals

 Postgres uses Julian dates for all date/time calculations. They have the nice property of correctly
predicting/calculating any date more recent than 4713BC to far into the future, using the assumption
that the length of the year is 365.2425 days.

 Date conventions before the 19th century make for interesting reading, but are not consistent
enough to warrant coding into a date/time handler.

Chapter 3. Data Types

32

3.5. Boolean Type
 Postgres provides the SQL99 type boolean. boolean can have one of only two states: �true� or
�false�. A third state, �unknown�, is represented by the SQL NULL state.

 Valid literal values for the �true� state are:

TRUE

’t’

’true’

’y’

’yes’

’1’

 For the �false� state, the following values can be used:

FALSE

’f’

’false’

’n’

’no’

’0’

 Using the key words TRUE and FALSE is preferred (and SQL-compliant).

Example 3-1. Using the boolean type

CREATE TABLE test1 (a boolean, b text);
INSERT INTO test1 VALUES (TRUE, ’sic est’);
INSERT INTO test1 VALUES (FALSE, ’non est’);
SELECT * FROM test1;
 a | b
---+---------
 t | sic est
 f | non est

SELECT * FROM test1 WHERE a;
 a | b
---+---------
 t | sic est

 Example 3-1 shows that boolean values are output using the letters t and f.

Tip: Values of the boolean type cannot be cast directly to other types (e.g., CAST (boolval AS
integer) does not work). This can be accomplished using the CASE expression: CASE WHEN
boolval THEN ’value if true’ ELSE ’value if false’ END . See also Section 4.10.

 boolean uses 1 byte of storage.

3.6. Geometric Types
 Geometric types represent two-dimensional spatial objects. The most fundamental type, the point,
forms the basis for all of the other types.

Chapter 3. Data Types

33

Table 3-16. Geometric Types

Geometric Type Storage Representation Description

point 16 bytes (x,y) Point in space

line 32 bytes ((x1,y1),(x2,y2)) Infinite line

lseg 32 bytes ((x1,y1),(x2,y2)) Finite line segment

box 32 bytes ((x1,y1),(x2,y2)) Rectangular box

path 4+32n bytes ((x1,y1),...) Closed path (similar to polygon)

path 4+32n bytes [(x1,y1),...] Open path

polygon 4+32n bytes ((x1,y1),...) Polygon (similar to closed path)

circle 24 bytes <(x,y),r> Circle (center and radius)

 A rich set of functions and operators is available to perform various geometric operations such as
scaling, translation, rotation, and determining intersections.

3.6.1. Point

 Points are the fundamental two-dimensional building block for geometric types.

 point is specified using the following syntax:

(x , y)
 x , y

 where the arguments are

x

 The x-axis coordinate as a floating point number.

y

 The y-axis coordinate as a floating point number.

3.6.2. Line Segment

 Line segments (lseg) are represented by pairs of points.

 lseg is specified using the following syntax:

((x1 , y1) , (x2 , y2))
 (x1 , y1) , (x2 , y2)
 x1 , y1 , x2 , y2

 where the arguments are

Chapter 3. Data Types

34

(x1,y1)
(x2,y2)

 The end points of the line segment.

3.6.3. Box

 Boxes are represented by pairs of points that are opposite corners of the box.

 box is specified using the following syntax:

((x1 , y1) , (x2 , y2))
 (x1 , y1) , (x2 , y2)
 x1 , y1 , x2 , y2

 where the arguments are

(x1,y1)
(x2,y2)

 Opposite corners of the box.

 Boxes are output using the first syntax. The corners are reordered on input to store the upper right
corner, then the lower left corner. Other corners of the box can be entered, but the lower left and
upper right corners are determined from the input and stored.

3.6.4. Path

 Paths are represented by connected sets of points. Paths can be "open", where the first and last
points in the set are not connected, and "closed", where the first and last point are connected.
Functions popen(p) and pclose(p) are supplied to force a path to be open or closed, and
functions isopen(p) and isclosed(p) are supplied to test for either type in a query.

 path is specified using the following syntax:

((x1 , y1) , ... , (xn , yn))
[(x1 , y1) , ... , (xn , yn)]
 (x1 , y1) , ... , (xn , yn)
 (x1 , y1 , ... , xn , yn)
 x1 , y1 , ... , xn , yn

 where the arguments are

(x,y)

 End points of the line segments comprising the path. A leading square bracket ("[") indicates
an open path, while a leading parenthesis ("(") indicates a closed path.

 Paths are output using the first syntax.

Chapter 3. Data Types

35

3.6.5. Polygon

 Polygons are represented by sets of points. Polygons should probably be considered equivalent to
closed paths, but are stored differently and have their own set of support routines.

 polygon is specified using the following syntax:

((x1 , y1) , ... , (xn , yn))
 (x1 , y1) , ... , (xn , yn)
 (x1 , y1 , ... , xn , yn)
 x1 , y1 , ... , xn , yn

 where the arguments are

(x,y)

 End points of the line segments comprising the boundary of the polygon.

 Polygons are output using the first syntax.

3.6.6. Circle

 Circles are represented by a center point and a radius.

 circle is specified using the following syntax:

< (x , y) , r >
((x , y) , r)
 (x , y) , r
 x , y , r

 where the arguments are

(x,y)

 Center of the circle.

r

 Radius of the circle.

 Circles are output using the first syntax.

3.7. Network Address Data Types
 Postgres offers data types to store IP and MAC addresses. It is preferable to use these types over
plain text types, because these types offer input error checking and several specialized operators and
functions.

Chapter 3. Data Types

36

Table 3-17. Network Address Data Types

Name Storage Description Range

cidr 12 bytes IP networks valid IPv4 networks

inet 12 bytes IP hosts and networks valid IPv4 hosts or networks

macaddr 6 bytes MAC addresses customary formats

 IP v6 is not supported, yet.

3.7.1. inet

 The inet type holds an IP host address, and optionally the identity of the subnet it is in, all in one
field. The subnet identity is represented by the number of bits in the network part of the address (the
�netmask�). If the netmask is 32, then the value does not indicate a subnet, only a single host. Note
that if you want to accept networks only, you should use the cidr type rather than inet.

 The input format for this type is x.x.x.x/y where x.x.x.x is an IP address and y is the
number of bits in the netmask. If the /y part is left off, then the netmask is 32, and the value
represents just a single host. On display, the /y portion is suppressed if the netmask is 32.

3.7.2. cidr

 The cidr type holds an IP network specification. Input and output formats follow Classless
Internet Domain Routing conventions. The format for specifying classless networks is x.x.x.x/y
where x.x.x.x is the network and y is the number of bits in the netmask. If y is omitted, it is
calculated using assumptions from the older classful numbering system, except that it will be at
least large enough to include all of the octets written in the input.

 Here are some examples:

Table 3-18. cidr Type Input Examples

CIDR Input CIDR Displayed abbrev(CIDR)

192.168.100.128/25 192.168.100.128/25 192.168.100.128/25

192.168/24 192.168.0.0/24 192.168.0/24

192.168/25 192.168.0.0/25 192.168.0.0/25

192.168.1 192.168.1.0/24 192.168.1/24

192.168 192.168.0.0/24 192.168.0/24

128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

Chapter 3. Data Types

37

3.7.3. inet vs cidr

 The essential difference between inet and cidr data types is that inet accepts values with
nonzero bits to the right of the netmask, whereas cidr does not.

Tip: If you do not like the output format for inet or cidr values, try the host(), text(), and
abbrev() functions.

3.7.4. macaddr

 The macaddr type stores MAC addresses, i.e., Ethernet card hardware addresses (although MAC
addresses are used for other purposes as well). Input is accepted in various customary formats,
including ’08002b:010203’, ’08002b-010203’, ’0800.2b01.0203’,
’08-00-2b-01-02-03’, and ’08:00:2b:01:02:03’, which would all specify the same address.
Upper and lower case is accepted for the digits a through f. Output is always in the latter of the
given forms.

 The directory contrib/mac in the Postgres source distribution contains tools that can be used to
map MAC addresses to hardware manufacturer names.

3.8. Bit String Types
 Bit strings are strings of 1’s and 0’s. They can be used to store or visualize bit masks. There are two
SQL bit types: BIT(x) and BIT VARYING(x); the x specifies the maximum length. BIT type data
is automatically padded with 0’s on the right to the maximum length, BIT VARYING is of variable
length. BIT without length is equivalent to BIT(1), BIT VARYING means unlimited length. Input
data that is longer than the allowed length will be truncated. Refer to Section 1.1.2.2 for information
about the syntax of bit string constants. Bit-logical operators and string manipulation functions are
available; see Chapter 4.

 Some examples:
CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B’101’, B’00’);
SELECT SUBSTRING(b FROM 1 FOR 2) FROM test;

38

Chapter 4. Functions and Operators
 Postgres provides a large number of functions and operators for the built-in data types. Users can
also define their own functions and operators, as described in the Programmer’s Guide. The psql
commands \df and \do can be used to show the list of all actually available functions and operators,
respectively.

 If you are concerned about portability then take note that most of the functions and operators
described in this chapter, with the exception of the most trivial arithmetic and comparison operators
and some explicitly marked functions, are not specified by the SQL standard. However, many other
RDBMS packages provide a lot of the same or similar functions, and some of the ones provided in
Postgres have in fact been inspired by other implementations.

4.1. Logical Operators
 The usual logical operators are available:

AND
OR
NOT

 SQL uses a three-valued Boolean logic where NULL represents �unknown�. Observe the following
truth tables:

a b a AND b a OR b

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

TRUE NULL NULL TRUE

FALSE FALSE FALSE FALSE

FALSE NULL FALSE NULL

NULL NULL NULL NULL

a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

Chapter 4. Functions and Operators

39

4.2. Comparison Operators
Table 4-1. Comparison Operators

Operator Description

 < less than

 > greater than

 <= less than or equal to

 >= greater than or equal to

 = equal

 <> or != not equal

Note: The != operator is converted to <> in the parser stage. It is not possible to implement !=
and <> operators that do different things.

 Comparison operators are available for all data types where this makes sense. All comparison
operators are binary operators that return values of type boolean; expressions like 1 < 2 < 3 are
not valid (because there is no < operator to compare a Boolean value with 3).

 In addition to the comparison operators, the special BETWEEN construct is available.

a BETWEEN x AND y

 is equivalent to

a >= x AND a <= y

 Similarly,

a NOT BETWEEN x AND y

 is equivalent to

a < x OR a > y

 There is no difference between the two respective forms apart from the CPU cycles required to
rewrite the first one into the second one internally.

 To check whether a value is or is not NULL, use the constructs

expression IS NULL
expression IS NOT NULL

 Do not use expression = NULL because NULL is not �equal to� NULL. (NULL represents an
unknown value, so it is not known whether two unknown values are equal.) Postgres presently
converts x = NULL clauses to x IS NULL to allow some broken client applications (such as
Microsoft Access) to work, but this may be discontinued in a future release.

Chapter 4. Functions and Operators

40

4.3. Mathematical Functions and Operators
Table 4-2. Mathematical Operators

Name Description Example Result

 + Addition 2 + 3 5

 - Subtraction 2 - 3 -1

 * Multiplication 2 * 3 6

 / Division (integer division truncates results) 4 / 2 2

 % Modulo (remainder) 5 % 4 1

 ^ Exponentiation 2.0 ^ 3.0 8.0

 |/ Square root |/ 25.0 5.0

 ||/ Cube root ||/ 27.0 3

 ! Factorial 5 ! 120

 !! Factorial (prefix operator) !! 5 120

 @ Absolute value @ -5.0 5.0

 & Binary AND 91 & 15 11

 | Binary OR 32 | 3 35

 # Binary XOR 17 # 5 20

 ~ Binary NOT ~1 -2

 << Binary shift left 1 << 4 16

 >> Binary shift right 8 >> 2 2

 The �binary� operators are also available for the bit string types BIT and BIT VARYING.

Table 4-3. Bit String Binary Operators

Example Result

B’10001’ & B’01101’ 00001

B’10001’ | B’01101’ 11101

B’10001’ # B’01101’ 11110

~ B’10001’ 01110

B’10001’ << 3 01000

B’10001’ >> 2 00100

 Bit string arguments to &, |, and # must be of equal length. When bit shifting, the original length of
the string is preserved, as shown here.

Chapter 4. Functions and Operators

41

Table 4-4. Mathematical Functions

Function Return
Type

Description Example Result

abs(x) (same as x) absolute value abs(-17.4) 17.4

cbrt(dp) dp cube root cbrt(27.0) 3.0

ceil(numeric) numeric smallest int not less than ceil(-42.8) -42

degrees(dp) dp radians to degrees degrees(0.5) 28.647...

exp(dp) dp exponential exp(1.0) 2.7182...

floor(numeric) numeric largest integer not greater than floor(-42.8) -43

ln(dp) dp natural logarithm ln(2.0) 0.693...

log(dp) dp base 10 logarithm log(100.0) 2.0

log(b numeric,
x numeric)

numeric logarithm to base b log(2.0, 64.0) 6.0

mod(y, x) (same as args) remainder of y/x mod(9,4) 1

pi() dp �Pi� constant pi() 3.141...

pow(e dp, n dp) dp n raised to e pow(9.0, 3.0) 729.0

radians(dp) dp degrees to radians radians(45.0) 0.785...

random() dp a pseudo-random value between
0.0 to 1.0

random()

round(dp) dp round to nearest integer round(42.4) 42

round(v numeric,
s integer)

numeric round to s places round(42.4382, 2) 42.44

sqrt(dp) dp square root sqrt(2.0) 1.414...

trunc(dp) dp truncate -> zero trunc(42.8) 42

trunc(numeric,
s integer)

numeric truncate to s places round(42.4382, 2) 42.43

 In the table above, "dp" indicates double precision. The functions exp, ln, log, pow, round
(1 argument), sqrt, and trunc (1 argument) are also available for the type numeric in place of
double precision. Functions returning a numeric result take numeric input arguments, unless
otherwise specified. Many of these functions are implemented on top of the host system’s C library
and behavior in boundary cases could therefore vary depending on the operating system.

Chapter 4. Functions and Operators

42

Table 4-5. Trigonometric Functions

Function Description

acos(x) inverse cosine

asin(x) inverse sine

atan(x) inverse tangent

atan2(x, y) inverse tangent of y/x

cos(x) cosine

cot(x) cotangent

sin(x) sine

tan(x) tangent

 All trigonometric functions have arguments and return values of type double precision.

4.4. String Functions and Operators
 This section describes functions and operators for examining and manipulating string values.
Strings in this context include values of all the types CHARACTER, CHARACTER VARYING, and
TEXT. Unless otherwise noted, all of the functions listed below work on all of these types, but be
wary of potential effects of the automatic padding when using the CHARACTER type. Generally the
functions described here also work on data of non-string types by converting that data to a string
representation first. Some functions also exist natively for bit string types.

 SQL defines some string functions with a special syntax where certain keywords rather than
commas are used to separate the arguments. Details are in Table 4-6. These functions are also
implemented using the regular syntax for function invocation. (See Table 4-7.)

Table 4-6. SQL String Functions and Operators

Function Returns Description Example Result

 string || string text string
concatenation

’Postgre’ || ’SQL’ PostgreSQL

char_length(string) or
character_length(string)

integer length of string char_length(’jose’) 4

lower(string) text Convert string to
lower case.

lower(’TOM’) tom

octet_length(string) integer number of bytes in
string

octet_length(’jose’) 4

position(substr in str) integer location of
specified substring

position(’om’ in
’Thomas’)

3

substring(string [from
integer] [for integer])

text extract substring substring(’Thomas’
from 2 for 3)

oma

Chapter 4. Functions and Operators

43

Function Returns Description Example Result

 trim([leading | trailing |
both] [characters]
from string)

text Removes the
longest string
containing only
the characters
(a space by
default) from the
beginning/end/bot-
h ends of the
string.

trim(both ’x’ from
’xTomx’)

Tom

upper(string) text Convert string to
upper case.

upper(’tom’) TOM

 Additional string manipulation functions are available and are listed below. Some of them are used
internally to implement the SQL string functions listed above.

Table 4-7. Other String Functions

Function Returns Description Example Result

ascii(text) integer Returns the ASCII code of
the first character of the
argument.

ascii(’x’) 120

btrim(string
text, trim
text)

text Remove (trim) the longest
string consisting only of
characters in trim from the
start and end of string.

btrim(’xyxtrimyyx’,
’xy’)

trim

chr(integer) text Returns the character with
the given ASCII code.

chr(65) A

initcap(text) text Converts first letter of each
word (whitespace separated)
to upper case.

initcap(’hi thomas’) Hi Thomas

 lpad(string
text, length
integer [,
fill text])

text Fills up the string to
length length by
prepending the characters
fill (a space by default). If
the string is already
longer than length then it
is truncated (on the right).

lpad(’hi’, 5, ’xy’) xyxhi

ltrim(string
text, trim
text)

text Removes the longest string
containing only characters
from trim from the start of
the string.

ltrim(’zzzytrim’,
’xyz’)

trim

repeat(text,
integer)

text Repeat text a number of
times.

repeat(’Pg’, 4) PgPgPgPg

Chapter 4. Functions and Operators

44

Function Returns Description Example Result

 rpad(string
text, length
integer [,
fill text])

text Fills up the string to
length length by
appending the characters
fill (a space by default). If
the string is already
longer than length then it
is truncated.

rpad(’hi’, 5, ’xy’) hixyx

rtrim(string
text, trim
text)

text Removes the longest string
containing only characters
from trim from the end of
the string.

rtrim(’trimxxxx’,’x’) trim

strpos(strin-
g,
substring)

text Locates specified substring.
(same as
position(substring in

string), but note the
reversed argument order)

strpos(’high’,’ig’) 2

substr(strin-
g, from [,
count])

text Extracts specified substring.
(same as
substring(string from

from for count))

substr(’alphabet’, 3,
2)

ph

to_ascii(text
[, encoding])

text Converts text from multibyte
encoding to ASCII.

to_ascii(’Karel’) Karel

 translate(
string text,
from text,
to text)

text Any character in string
that matches a character in
the from set is replaced by
the corresponding character
in the to set.

translate(’12345’,
’14’, ’ax’)

a23x5

 The to_ascii function supports conversion from LATIN1, LATIN2, WIN1250 (CP1250) only.

4.5. Pattern Matching
 There are two separate approaches to pattern matching provided by Postgres: the SQL LIKE
operator and POSIX-style regular expressions.

Tip: If you have pattern matching needs that go beyond this, or want to make pattern-driven
substitutions or translations, consider writing a user-defined function in Perl or Tcl.

4.5.1. Pattern Matching with LIKE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

 Every pattern defines a set of strings. The LIKE expression returns true if the string is
contained in the set of strings represented by pattern. (As expected, the NOT LIKE expression
returns false if LIKE returns true, and vice versa. An equivalent expression is NOT (string LIKE
pattern).)

Chapter 4. Functions and Operators

45

 If pattern does not contain percent signs or underscore, then the pattern only represents the
string itself; in that case LIKE acts like the equals operator. An underscore (_) in pattern stands
for (matches) any single character; a percent sign (%) matches any string of zero or more characters.

 Some examples:
’abc’ LIKE ’abc’ true
’abc’ LIKE ’a%’ true
’abc’ LIKE ’_b_’ true
’abc’ LIKE ’c’ false

 LIKE pattern matches always cover the entire string. To match a pattern anywhere within a string,
the pattern must therefore start and end with a percent sign.

 To match a literal underscore or percent sign without matching other characters, the respective
character in pattern must be preceded by the escape character. The default escape character is the
backslash but a different one may be selected by using the ESCAPE clause. To match the escape
character itself, write two escape characters.

 Note that the backslash already has a special meaning in string literals, so to write a pattern
constant that contains a backslash you must write two backslashes in the query. You can avoid this
by selecting a different escape character with ESCAPE.

 The keyword ILIKE can be used instead of LIKE to make the match case insensitive according to
the active locale. This is not in the SQL standard but is a Postgres extension.

 The operator ~~ is equivalent to LIKE, and ~~* corresponds to ILIKE. There are also !~~ and
!~~* operators that represent NOT LIKE and NOT ILIKE. All of these are also Postgres-specific.

4.5.2. POSIX Regular Expressions

Table 4-8. Regular Expression Match Operators

Operator Description Example

 ~ Matches regular expression, case sensitive ’thomas’ ~ ’.*thomas.*’

 ~* Matches regular expression, case insensitive ’thomas’ ~* ’.*Thomas.*’

 !~ Does not match regular expression, case sensitive ’thomas’ !~ ’.*Thomas.*’

 !~* Does not match regular expression, case insensitive ’thomas’ !~* ’.*vadim.*’

 POSIX regular expressions provide a more powerful means for pattern matching than the LIKE
function. Many Unix tools such as egrep, sed, or awk use a pattern matching language that is
similar to the one described here.

 A regular expression is a character sequence that is an abbreviated definition of a set of strings (a
regular set). A string is said to match a regular expression if it is a member of the regular set
described by the regular expression. As with LIKE, pattern characters match string characters
exactly unless they are special characters in the regular expression language --- but regular
expressions use different special characters than LIKE does. Unlike LIKE patterns, a regular
expression is allowed to match anywhere within a string, unless the regular expression is explicitly
anchored to the beginning or end of the string.

 Regular expressions (�RE�s), as defined in POSIX 1003.2, come in two forms: modern REs (roughly
those of egrep; 1003.2 calls these �extended� REs) and obsolete REs (roughly those of ed; 1003.2
�basic� REs). Postgres implements the modern form.

Chapter 4. Functions and Operators

46

 A (modern) RE is one or more non-empty branches, separated by |. It matches anything that
matches one of the branches.

 A branch is one or more pieces, concatenated. It matches a match for the first, followed by a match
for the second, etc.

 A piece is an atom possibly followed by a single *, +, ?, or bound. An atom followed by * matches
a sequence of 0 or more matches of the atom. An atom followed by + matches a sequence of 1 or
more matches of the atom. An atom followed by ? matches a sequence of 0 or 1 matches of the
atom.

 A bound is { followed by an unsigned decimal integer, possibly followed by , possibly followed by
another unsigned decimal integer, always followed by }. The integers must lie between 0 and
RE_DUP_MAX (255) inclusive, and if there are two of them, the first may not exceed the second.
An atom followed by a bound containing one integer i and no comma matches a sequence of
exactly i matches of the atom. An atom followed by a bound containing one integer i and a comma
matches a sequence of i or more matches of the atom. An atom followed by a bound containing two
integers i and j matches a sequence of i through j (inclusive) matches of the atom.

Note: A repetition operator (?, *, +, or bounds) cannot follow another repetition operator. A
repetition operator cannot begin an expression or subexpression or follow ^ or |.

 An atom is a regular expression enclosed in () (matching a match for the regular expression), an
empty set of () (matching the null string), a bracket expression (see below), . (matching any single
character), ^ (matching the null string at the beginning of the input string), $ (matching the null
string at the end of the input string), a \ followed by one of the characters ^.[$()|*+?{\
(matching that character taken as an ordinary character), a \ followed by any other character
(matching that character taken as an ordinary character, as if the \ had not been present), or a single
character with no other significance (matching that character). A { followed by a character other
than a digit is an ordinary character, not the beginning of a bound. It is illegal to end an RE with \.

 Note that the backslash (\) already has a special meaning in string literals, so to write a pattern
constant that contains a backslash you must write two backslashes in the query.

 A bracket expression is a list of characters enclosed in []. It normally matches any single character
from the list (but see below). If the list begins with ^, it matches any single character (but see
below) not from the rest of the list. If two characters in the list are separated by -, this is shorthand
for the full range of characters between those two (inclusive) in the collating sequence, e.g. [0-9]
in ASCII matches any decimal digit. It is illegal for two ranges to share an endpoint, e.g. a-c-e.
Ranges are very collating-sequence-dependent, and portable programs should avoid relying on
them.

 To include a literal] in the list, make it the first character (following a possible ^). To include a
literal -, make it the first or last character, or the second endpoint of a range. To use a literal - as the
first endpoint of a range, enclose it in [. and .] to make it a collating element (see below). With
the exception of these and some combinations using [(see next paragraphs), all other special
characters, including \, lose their special significance within a bracket expression.

 Within a bracket expression, a collating element (a character, a multi-character sequence that
collates as if it were a single character, or a collating-sequence name for either) enclosed in [. and
.] stands for the sequence of characters of that collating element. The sequence is a single element
of the bracket expression’s list. A bracket expression containing a multi-character collating element
can thus match more than one character, e.g. if the collating sequence includes a ch collating
element, then the RE [[.ch.]]*c matches the first five characters of chchcc.

Chapter 4. Functions and Operators

47

 Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class,
standing for the sequences of characters of all collating elements equivalent to that one, including
itself. (If there are no other equivalent collating elements, the treatment is as if the enclosing
delimiters were [. and .].) For example, if o and ^ are the members of an equivalence class, then
[[=o=]], [[=^=]], and [o^] are all synonymous. An equivalence class may not be an endpoint of
a range.

 Within a bracket expression, the name of a character class enclosed in [: and :] stands for the list
of all characters belonging to that class. Standard character class names are: alnum, alpha, blank,
cntrl, digit, graph, lower, print, punct, space, upper, xdigit. These stand for the
character classes defined in ctype. A locale may provide others. A character class may not be used
as an endpoint of a range.

 There are two special cases of bracket expressions: the bracket expressions [[:<:]] and [[:>:]]
match the null string at the beginning and end of a word respectively. A word is defined as a
sequence of word characters which is neither preceded nor followed by word characters. A word
character is an alnum character (as defined by ctype) or an underscore. This is an extension,
compatible with but not specified by POSIX 1003.2, and should be used with caution in software
intended to be portable to other systems.

 In the event that an RE could match more than one substring of a given string, the RE matches the
one starting earliest in the string. If the RE could match more than one substring starting at that
point, it matches the longest. Subexpressions also match the longest possible substrings, subject to
the constraint that the whole match be as long as possible, with subexpressions starting earlier in the
RE taking priority over ones starting later. Note that higher-level subexpressions thus take priority
over their lower-level component subexpressions.

 Match lengths are measured in characters, not collating elements. A null string is considered longer
than no match at all. For example, bb* matches the three middle characters of abbbc,
(wee|week)(knights|nights) matches all ten characters of weeknights, when (.*).* is
matched against abc the parenthesized subexpression matches all three characters, and when (a*)*
is matched against bc both the whole RE and the parenthesized subexpression match the null string.

 If case-independent matching is specified, the effect is much as if all case distinctions had vanished
from the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character
outside a bracket expression, it is effectively transformed into a bracket expression containing both
cases, e.g. x becomes [xX]. When it appears inside a bracket expression, all case counterparts of it
are added to the bracket expression, so that (e.g.) [x] becomes [xX] and [^x] becomes [^xX].

 There is no particular limit on the length of REs, except insofar as memory is limited. Memory
usage is approximately linear in RE size, and largely insensitive to RE complexity, except for
bounded repetitions. Bounded repetitions are implemented by macro expansion, which is costly in
time and space if counts are large or bounded repetitions are nested. An RE like, say,
((((a{1,100}){1,100}){1,100}){1,100}){1,100} will (eventually) run almost any existing
machine out of swap space. 1

4.6. Formatting Functions
Author: Written by Karel Zak (<zakkr@zf.jcu.cz>) on 2000-01-24

 The Postgres formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted
strings to specific data types. These functions all follow a common calling convention: the first

Chapter 4. Functions and Operators

48

argument is the value to be formatted and the second argument is a template that defines the output
or input format.

Table 4-9. Formatting Functions

Function Returns Description Example

to_char(timestamp, text) text convert timestamp to
string

to_char(timestamp ’now’,
’HH12:MI:SS’)

to_char(int, text) text convert int4/int8 to string to_char(125, ’999’)

to_char(double precision,
text)

text convert real/double
precision to string

to_char(125.8, ’999D9’)

to_char(numeric, text) text convert numeric to string to_char(numeric ’-125.8’,
’999D99S’)

to_date(text, text) date convert string to date to_date(’05 Dec 2000’,
’DD Mon YYYY’)

to_timestamp(text, text) timestamp convert string to
timestamp

to_timestamp(’05 Dec 2000’,
’DD Mon YYYY’)

to_number(text, text) numeric convert string to numeric to_number(’12,454.8-’,
’99G999D9S’)

 In an output template string, there are certain patterns that are recognized and replaced with
appropriately-formatted data from the value to be formatted. Any text that is not a template pattern
is simply copied verbatim. Similarly, in an input template string template patterns identify the parts
of the input data string to be looked at and the values to be found there.

Table 4-10. Template patterns for date/time conversions

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

MI minute (00-59)

SS second (00-59)

SSSS seconds past midnight (0-86399)

AM or A.M. or PM or P.M. meridian indicator (upper case)

am or a.m. or pm or p.m. meridian indicator (lower case)

Y,YYY year (4 and more digits) with comma

YYYY year (4 and more digits)

Chapter 4. Functions and Operators

49

Pattern Description

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

BC or B.C. or AD or A.D. year indicator (upper case)

bc or b.c. or ad or a.d. year indicator (lower case)

MONTH full upper case month name (blank-padded to 9 chars)

Month full mixed case month name (blank-padded to 9 chars)

month full lower case month name (blank-padded to 9 chars)

MON abbreviated upper case month name (3 chars)

Mon abbreviated mixed case month name (3 chars)

mon abbreviated lower case month name (3 chars)

MM month number (01-12)

DAY full upper case day name (blank-padded to 9 chars)

Day full mixed case day name (blank-padded to 9 chars)

day full lower case day name (blank-padded to 9 chars)

DY abbreviated upper case day name (3 chars)

Dy abbreviated mixed case day name (3 chars)

dy abbreviated lower case day name (3 chars)

DDD day of year (001-366)

DD day of month (01-31)

D day of week (1-7; SUN=1)

W week of month (1-5): first week start on the first day of the month

WW week number of year (1-53): starts on the first day of the year

IW ISO week number in year: first week has the first Thursday of year

CC century (2 digits)

J Julian Day (days since January 1, 4712 BC)

Q quarter

RM month in Roman Numerals (I-XII; I=January) - upper case

rm month in Roman Numerals (I-XII; I=January) - lower case

TZ timezone name - upper case

tz timezone name - lower case

Chapter 4. Functions and Operators

50

 Certain modifiers may be applied to any template pattern to alter its behavior. For example,
FMMonth� is the �Month� pattern with the �FM� prefix.

Table 4-11. Template pattern modifiers for date/time conversions

Modifier Description Example

FM prefix fill mode (suppress padding blanks and zeroes) FMMonth

TH suffix add upper-case ordinal number suffix DDTH

th suffix add lower-case ordinal number suffix DDth

FX prefix FiXed format global option (see below) FX Month DD Day

SP suffix spell mode (not yet implemented) DDSP

 Usage notes:

 FM suppresses leading zeroes or trailing blanks that would otherwise be added to make the output
of a pattern be fixed-width.

 to_timestamp and to_date skip multiple blank spaces in the input string if the FX option is
not used. FX must be specified as the first item in the template; for example
to_timestamp(’2000 JUN’,’YYYY MON’) is right, but to_timestamp(’2000

JUN’,’FXYYYY MON’) returns an error, because to_timestamp expects one blank space only.

 If a backslash (�\�) is desired in a string constant, a double backslash (�\\�) must be entered; for
example ’\\HH\\MI\\SS’. This is true for any string constant in Postgres.

 Ordinary text is allowed in to_char templates and will be output literally. You can put a
substring in double quotes to force it to be interpreted as literal text even if it contains pattern
keywords. For example, in ’"Hello Year: "YYYY’, the YYYY will be replaced by year data,
but the single Y will not be.

 If you want to have a double quote in the output you must precede it with a backslash, for
example ’\\"YYYY Month\\"’.

 YYYY conversion from string to timestamp or date is restricted if you use a year with more than 4
digits. You must use some non-digit character or template after YYYY, otherwise the year is
always interpreted as 4 digits. For example (with year 20000): to_date(’200001131’,
’YYYYMMDD’) will be interpreted as a 4-digit year; better is to use a non-digit separator after the
year, like to_date(’20000-1131’, ’YYYY-MMDD’) or to_date(’20000Nov31’,

’YYYYMonDD’).

Chapter 4. Functions and Operators

51

Table 4-12. Template patterns for numeric conversions

Pattern Description

9 value with the specified number of digits

0 value with leading zeros

. (period) decimal point

, (comma) group (thousand) separator

PR negative value in angle brackets

S negative value with minus sign (uses locale)

L currency symbol (uses locale)

D decimal point (uses locale)

G group separator (uses locale)

MI minus sign in specified position (if number < 0)

PL plus sign in specified position (if number > 0)

SG plus/minus sign in specified position

RN roman numeral (input between 1 and 3999)

TH or th convert to ordinal number

V shift n digits (see notes)

EEEE scientific numbers (not supported yet)

 Usage notes:

 A sign formatted using ’SG’, ’PL’ or ’MI’ is not an anchor in the number; for example,
to_char(-12, ’S9999’) produces ’ -12’, but to_char(-12, ’MI9999’) produces ’- 12’. The
Oracle implementation does not allow the use of MI ahead of 9, but rather requires that 9 precede
MI.

 9 specifies a value with the same number of digits as there are 9s. If a digit is not available use
blank space.

 TH does not convert values less than zero and does not convert decimal numbers.

 PL, SG, and TH are Postgres extensions.

 V effectively multiplies the input values by 10^n, where n is the number of digits following V.
to_char does not support the use of V combined with a decimal point. (E.g., 99.9V99 is not
allowed.)

Chapter 4. Functions and Operators

52

Table 4-13. to_char Examples

Input Output

to_char(now(),’Day, DD HH12:MI:SS’) ’Tuesday , 06 05:39:18’

to_char(now(),’FMDay, FMDD HH12:MI:SS’) ’Tuesday, 6 05:39:18’

to_char(-0.1,’99.99’) ’ -.10’

to_char(-0.1,’FM9.99’) ’-.1’

to_char(0.1,’0.9’) ’ 0.1’

to_char(12,’9990999.9’) ’ 0012.0’

to_char(12,’FM9990999.9’) ’0012’

to_char(485,’999’) ’ 485’

to_char(-485,’999’) ’-485’

to_char(485,’9 9 9’) ’ 4 8 5’

to_char(1485,’9,999’) ’ 1,485’

to_char(1485,’9G999’) ’ 1 485’

to_char(148.5,’999.999’) ’ 148.500’

to_char(148.5,’999D999’) ’ 148,500’

to_char(3148.5,’9G999D999’) ’ 3 148,500’

to_char(-485,’999S’) ’485-’

to_char(-485,’999MI’) ’485-’

to_char(485,’999MI’) ’485’

to_char(485,’PL999’) ’+485’

to_char(485,’SG999’) ’+485’

to_char(-485,’SG999’) ’-485’

to_char(-485,’9SG99’) ’4-85’

to_char(-485,’999PR’) ’<485>’

to_char(485,’L999’) ’DM 485

to_char(485,’RN’) ’ CDLXXXV’

to_char(485,’FMRN’) ’CDLXXXV’

to_char(5.2,’FMRN’) V

to_char(482,’999th’) ’ 482nd’

to_char(485, ’"Good number:"999’) ’Good number: 485’

to_char(485.8,’"Pre:"999" Post:" .999’) ’Pre: 485 Post: .800’

to_char(12,’99V999’) ’ 12000’

Chapter 4. Functions and Operators

53

Input Output

to_char(12.4,’99V999’) ’ 12400’

to_char(12.45, ’99V9’) ’ 125’

4.7. Date/Time Functions
 Table 4-14 shows the available functions for date/time value processing. The basic arithmetic
operators (+, *, etc.) are also available. For formatting functions, refer to Section 4.6. You should be
familiar with the background information on date/time data types (see Section 3.4).

Table 4-14. Date/Time Functions

Name Returns Description Example Result

age(timestamp) interval subtract from today age(timestamp
’1957-06-13’)

43 years 8 mons
3 days

age(timestamp,
timestamp)

interval subtract arguments age(’2001-04-10’,
timestamp
’1957-06-13’)

43 years 9 mons
27 days

current_date date Today’s date

current_time time Time of day

current_timestamp timestamp Date and time now

date_part(text,
timestamp)

double
precision

Get subfield (equivalent
to extract)

date_part(’hour’,
timestamp
’2001-02-16
20:38:40’)

20

date_part(text,
interval)

double
precision

Get subfield (equivalent
to extract)

date_part(’month’,
interval ’2 years 3
months’)

3

date_trunc(text,
timestamp)

timestamp Truncate date to
specified units

date_trunc(’hour’,
timestamp
’2001-02-16
20:38:40’)

2001-02-16
20:00:00+00

extract(identifier
from timestamp)

double
precision

Get subfield extract(hour from
timestamp
’2001-02-16
20:38:40’)

20

extract(identifier
from interval)

double
precision

Get subfield from
interval value

extract(month
from interval ’2
years 3 months’)

3

isfinite(timestamp) boolean Test for finite time
stamp (neither invalid
nor infinity)

isfinite(timestamp
’2001-02-16
21:28:30’)

true

isfinite(interval) boolean Test for finite interval isfinite(interval ’4
hours’)

true

Chapter 4. Functions and Operators

54

Name Returns Description Example Result

now() timestamp Current date and time
(equivalent to
current_timestamp)

timeofday() text High-precision date and
time

timeofday() Wed Feb 21
17:01:13.000126
2001 EST

timestamp(date) timestamp Date to timestamp timestamp(date
’2000-12-25’)

2000-12-25
00:00:00

timestamp(date,
time)

timestamp Date and time to
timestamp

timestamp(date
’1998-02-24’,time
’23:07’)

1998-02-24
23:07:00

4.7.1. EXTRACT, date_part

EXTRACT (field FROM source)

 The extract function retrieves sub-fields from date/time values, such as year or hour. source is
a value expression that evaluates to type timestamp or interval. (Expressions of type date or
time will be cast to timestamp and can therefore be used as well.) field is an identifier or string
that selects what field to extract from the source value. The extract function returns values of type
double precision. The following are valid values:

century

 The year field divided by 100

SELECT EXTRACT(CENTURY FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 20

 Note that the result for the century field is simply the year field divided by 100, and not the
conventional definition which puts most years in the 1900’s in the twentieth century.

day

 The day (of the month) field (1 - 31)

SELECT EXTRACT(DAY FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 16

decade

 The year field divided by 10

SELECT EXTRACT(DECADE FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 200

dow

 The day of the week (0 - 6; Sunday is 0) (for timestamp values only)

SELECT EXTRACT(DOW FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 5

Chapter 4. Functions and Operators

55

doy

 The day of the year (1 - 365/366) (for timestamp values only)

SELECT EXTRACT(DOY FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 47

epoch

 For date and timestamp values, the number of seconds since 1970-01-01 00:00:00 (Result
may be negative.); for interval values, the total number of seconds in the interval

SELECT EXTRACT(EPOCH FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 982352320

SELECT EXTRACT(EPOCH FROM INTERVAL ’5 days 3 hours’);
Result: 442800

hour

 The hour field (0 - 23)

SELECT EXTRACT(HOUR FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 20

microseconds

 The seconds field, including fractional parts, multiplied by 1 000 000. Note that this includes
full seconds.

SELECT EXTRACT(MICROSECONDS FROM TIME ’17:12:28.5’);
Result: 28500000

millennium

 The year field divided by 1000

SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2

 Note that the result for the millennium field is simply the year field divided by 1000, and not
the conventional definition which puts years in the 1900’s in the second millennium.

milliseconds

 The seconds field, including fractional parts, multiplied by 1000. Note that this includes full
seconds.

SELECT EXTRACT(MILLISECONDS FROM TIME ’17:12:28.5’);
Result: 28500

minute

 The minutes field (0 - 59)

SELECT EXTRACT(MINUTE FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 38

Chapter 4. Functions and Operators

56

month

 For timestamp values, the number of the month within the year (1 - 12) ; for interval
values the number of months, modulo 12 (0 - 11)

SELECT EXTRACT(MONTH FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2

SELECT EXTRACT(MONTH FROM INTERVAL ’2 years 3 months’);
Result: 3

SELECT EXTRACT(MONTH FROM INTERVAL ’2 years 13 months’);
Result: 1

quarter

 The quarter of the year (1 - 4) that the day is in (for timestamp values only)

SELECT EXTRACT(QUARTER FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 1

second

 The seconds field, including fractional parts (0 - 592)

SELECT EXTRACT(SECOND FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 40

SELECT EXTRACT(SECOND FROM TIME ’17:12:28.5’);
Result: 28.5

week

 From a timestamp value, calculate the number of the week of the year that the day is in. By
definition (ISO 8601), the first week of a year contains January 4 of that year. (The ISO week
starts on Monday.) In other words, the first Thursday of a year is in week 1 of that year.

SELECT EXTRACT(WEEK FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 7

year

 The year field

SELECT EXTRACT(YEAR FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2001

 The extract function is primarily intended for computational processing. For formatting date/time
values for display, see Section 4.6.

 The date_part function is modeled on the traditional Ingres equivalent to the SQL-function
extract:

date_part(’field’, source)

 Note that here the field value needs to be a string. The valid field values for date_part are the
same as for extract.

Chapter 4. Functions and Operators

57

SELECT date_part(’day’, TIMESTAMP ’2001-02-16 20:38:40’);
Result: 16

SELECT date_part(’hour’, INTERVAL ’4 hours 3 minutes’)
Result: 4

4.7.2. date_trunc

 The function date_trunc is conceptually similar to the trunc function for numbers.

date_trunc(’field’, source)

 source is a value expression of type timestamp (values of type date and time are cast
automatically). field selects to which precision to truncate the time stamp value. The return value
is of type timestamp with all fields that are less than the selected one set to zero (or one, for day
and month).

 Valid values for field are:

microseconds
milliseconds
second
minute
hour
day
month
year
decade
century
millennium

SELECT date_trunc(’hour’, TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2001-02-16 20:00:00+00

SELECT date_trunc(’year’, TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2001-01-01 00:00:00+00

4.7.3. Current Date/Time

 The following functions are available to obtain the current date and/or time:

CURRENT_TIME
CURRENT_DATE
CURRENT_TIMESTAMP

 Note that because of the requirements of the SQL standard, these functions must not be called with
trailing parentheses.

SELECT CURRENT_TIME;

19:07:32

SELECT CURRENT_DATE;

2001-02-17

Chapter 4. Functions and Operators

58

SELECT CURRENT_TIMESTAMP;

2001-02-17 19:07:32-05

 The function now() is the traditional Postgres equivalent to CURRENT_TIMESTAMP.

 There is also timeofday(), which returns current time to higher precision than the
CURRENT_TIMESTAMP family does:

SELECT timeofday();
 Sat Feb 17 19:07:32.000126 2001 EST

 timeofday() uses the operating system call gettimeofday(2), which may have resolution as
good as microseconds (depending on your platform); the other functions rely on time(2) which is
restricted to one-second resolution. For historical reasons, timeofday() returns its result as a text
string rather than a timestamp value.

 It is quite important to realize that CURRENT_TIMESTAMP and related functions all return the time
as of the start of the current transaction; their values do not increment while a transaction is running.
But timeofday() returns the actual current time.

 All the date/time datatypes also accept the special literal value now to specify the current date and
time. Thus, the following three all return the same result:

SELECT CURRENT_TIMESTAMP;
SELECT now();
SELECT TIMESTAMP ’now’;

Note: You do not want to use the third form when specifying a DEFAULT value while creating a
table. The system will convert now to a timestamp as soon as the constant is parsed, so that
when the default value is needed, the time of the table creation would be used! The first two
forms will not be evaluated until the default value is used, because they are function calls. Thus
they will give the desired behavior of defaulting to the time of row insertion.

4.8. Geometric Functions and Operators
 The geometric types point, box, lseg, line, path, polygon, and circle have a large set of native
support functions and operators.

Table 4-15. Geometric Operators

Operator Description Usage

 + Translation box ’((0,0),(1,1))’ + point ’(2.0,0)’

 - Translation box ’((0,0),(1,1))’ - point ’(2.0,0)’

 * Scaling/rotation box ’((0,0),(1,1))’ * point ’(2.0,0)’

 / Scaling/rotation box ’((0,0),(2,2))’ / point ’(2.0,0)’

 # Intersection ’((1,-1),(-1,1))’ # ’((1,1),(-1,-1))’

 # Number of points in polygon # ’((1,0),(0,1),(-1,0))’

 ## Point of closest proximity point ’(0,0)’ ## lseg ’((2,0),(0,2))’

Chapter 4. Functions and Operators

59

Operator Description Usage

 && Overlaps? box ’((0,0),(1,1))’ && box ’((0,0),(2,2))’

 &< Overlaps to left? box ’((0,0),(1,1))’ &< box ’((0,0),(2,2))’

 &> Overlaps to right? box ’((0,0),(3,3))’ &> box ’((0,0),(2,2))’

 <-> Distance between circle ’((0,0),1)’ <-> circle ’((5,0),1)’

 << Left of? circle ’((0,0),1)’ << circle ’((5,0),1)’

 <^ Is below? circle ’((0,0),1)’ <^ circle ’((0,5),1)’

 >> Is right of? circle ’((5,0),1)’ >> circle ’((0,0),1)’

 >^ Is above? circle ’((0,5),1)’ >^ circle ’((0,0),1)’

 ?# Intersects or overlaps lseg ’((-1,0),(1,0))’ ?# box ’((-2,-2),(2,2))’;

 ?- Is horizontal? point ’(1,0)’ ?- point ’(0,0)’

 ?-| Is perpendicular? lseg ’((0,0),(0,1))’ ?-| lseg ’((0,0),(1,0))’

 @-@ Length or circumference @-@ path ’((0,0),(1,0))’

 ?| Is vertical? point ’(0,1)’ ?| point ’(0,0)’

 ?|| Is parallel? lseg ’((-1,0),(1,0))’ ?|| lseg ’((-1,2),(1,2))’

 @ Contained or on point ’(1,1)’ @ circle ’((0,0),2)’

 @@ Center of @@ circle ’((0,0),10)’

 ~= Same as polygon ’((0,0),(1,1))’ ~= polygon ’((1,1),(0,0))’

Table 4-16. Geometric Functions

Function Returns Description Example

area(object) double precision area of item area(box ’((0,0),(1,1))’)

box(box, box) box intersection box box(box ’((0,0),(1,1))’,box
’((0.5,0.5),(2,2))’)

center(object) point center of item center(box ’((0,0),(1,2))’)

diameter(circle) double precision diameter of circle diameter(circle ’((0,0),2.0)’)

height(box) double precision vertical size of box height(box ’((0,0),(1,1))’)

isclosed(path) boolean a closed path? isclosed(path ’((0,0),(1,1),(2,0))’)

isopen(path) boolean an open path? isopen(path ’[(0,0),(1,1),(2,0)]’)

length(object) double precision length of item length(path ’((-1,0),(1,0))’)

pclose(path) path convert path to
closed

popen(path ’[(0,0),(1,1),(2,0)]’)

npoint(path) int4 number of points npoints(path ’[(0,0),(1,1),(2,0)]’)

popen(path) path convert path to
open path

popen(path ’((0,0),(1,1),(2,0))’)

radius(circle) double precision radius of circle radius(circle ’((0,0),2.0)’)

Chapter 4. Functions and Operators

60

Function Returns Description Example

width(box) double precision horizontal size width(box ’((0,0),(1,1))’)

Table 4-17. Geometric Type Conversion Functions

Function Returns Description Example

box(circle) box circle to box box(circle ’((0,0),2.0)’)

box(point, point) box points to box box(point ’(0,0)’, point ’(1,1)’)

box(polygon) box polygon to box box(polygon ’((0,0),(1,1),(2,0))’)

circle(box) circle to circle circle(box ’((0,0),(1,1))’)

circle(point, double
precision)

circle point to circle circle(point ’(0,0)’, 2.0)

lseg(box) lseg box diagonal to lseg lseg(box ’((-1,0),(1,0))’)

lseg(point, point) lseg points to lseg lseg(point ’(-1,0)’, point ’(1,0)’)

path(polygon) point polygon to path path(polygon ’((0,0),(1,1),(2,0))’)

point(circle) point center point(circle ’((0,0),2.0)’)

point(lseg, lseg) point intersection point(lseg ’((-1,0),(1,0))’, lseg
’((-2,-2),(2,2))’)

point(polygon) point center point(polygon ’((0,0),(1,1),(2,0))’)

polygon(box) polygon 12 point polygon polygon(box ’((0,0),(1,1))’)

polygon(circle) polygon 12-point polygon polygon(circle ’((0,0),2.0)’)

polygon(npts, circle) polygon npts polygon polygon(12, circle ’((0,0),2.0)’)

polygon(path) polygon path to polygon polygon(path ’((0,0),(1,1),(2,0))’)

4.9. Network Address Type Functions
Table 4-18. cidr and inet Operators

Operator Description Usage

 < Less than inet ’192.168.1.5’ < inet ’192.168.1.6’

 <= Less than or equal inet ’192.168.1.5’ <= inet ’192.168.1.5’

 = Equals inet ’192.168.1.5’ = inet ’192.168.1.5’

 >= Greater or equal inet ’192.168.1.5’ >= inet ’192.168.1.5’

 > Greater inet ’192.168.1.5’ > inet ’192.168.1.4’

 <> Not equal inet ’192.168.1.5’ <> inet ’192.168.1.4’

 << is contained within inet ’192.168.1.5’ << inet ’192.168.1/24’

 <<= is contained within or equals inet ’192.168.1/24’ <<= inet ’192.168.1/24’

 >> contains inet’192.168.1/24’ >> inet ’192.168.1.5’

 >>= contains or equals inet ’192.168.1/24’ >>= inet ’192.168.1/24’

Chapter 4. Functions and Operators

61

 All of the operators for inet can be applied to cidr values as well. The operators <<, <<=, >>,
>>= test for subnet inclusion: they consider only the network parts of the two addresses, ignoring
any host part, and determine whether one network part is identical to or a subnet of the other.

Table 4-19. cidr and inet Functions

Function Returns Description Example Result

broadcast(inet) inet broadcast address
for network

broadcast(’192.168.1.5/24’) 192.168.1.255/24

host(inet) text extract IP address as
text

host(’192.168.1.5/24’) 192.168.1.5

masklen(inet) integer extract netmask
length

masklen(’192.168.1.5/24’) 24

netmask(inet) inet construct netmask
for network

netmask(’192.168.1.5/24’) 255.255.255.0

network(inet) cidr extract network part
of address

network(’192.168.1.5/24’) 192.168.1.0/24

text(inet) text extract IP address
and masklen as text

text(inet ’192.168.1.5’) 192.168.1.5/32

abbrev(inet) text extract abbreviated
display as text

abbrev(cidr ’10.1.0.0/16’) 10.1/16

 All of the functions for inet can be applied to cidr values as well. The host(), text(), and
abbrev() functions are primarily intended to offer alternative display formats.

Table 4-20. macaddr Functions

Function Returns Description Example Result

trunc(macaddr) macaddr set last 3 bytes to
zero

trunc(macaddr
’12:34:56:78:90:ab’)

12:34:56:00:00:00

 The function trunc(macaddr) returns a MAC address with the last 3 bytes set to 0. This can be
used to associate the remaining prefix with a manufacturer. The directory contrib/mac in the
source distribution contains some utilities to create and maintain such an association table.

 The macaddr type also supports the standard relational operators (>, <=, etc.) for lexicographical
ordering.

4.10. Conditional Expressions
 This section describes the SQL-compliant conditional expressions available in Postgres.

Tip: If your needs go beyond the capabilities of these conditional expressions you might want
to consider writing a stored procedure in a more expressive programming language.

Chapter 4. Functions and Operators

62

CASE

CASE WHEN condition THEN result
 [WHEN ...]
 [ELSE result]
END

 The SQL CASE expression is a generic conditional expression, similar to if/else statements in other
languages. CASE clauses can be used wherever an expression is valid. condition is an
expression that returns a boolean result. If the result is true then the value of the CASE expression
is result. If the result is false any subsequent WHEN clauses are searched in the same manner. If
no WHEN condition is true then the value of the case expression is the result in the ELSE
clause. If the ELSE clause is omitted and no condition matches, the result is NULL.

 An example:
=> SELECT * FROM test;

 a

 1

 2

 3

=> SELECT a, CASE WHEN a=1 THEN ’one’
 WHEN a=2 THEN ’two’ ELSE ’other’ END FROM test;

 a | case

---+-------

 1 | one

 2 | two

 3 | other

 The data types of all the result expressions must be coercible to a single output type. See Section
5.5 for more detail.

CASE expression
 WHEN value THEN result
 [WHEN ...]
 [ELSE result]
END

 This �simple� CASE expression is a specialized variant of the general form above. The
expression is computed and compared to all the values in the WHEN clauses until one is
found that is equal. If no match is found, the result in the ELSE clause (or NULL) is returned.
This is similar to the switch statement in C.

 The example above can be written using the simple CASE syntax:
=> SELECT a, CASE a WHEN 1 THEN ’one’ WHEN 2 THEN ’two’ ELSE ’other’ END
FROM test;

 a | case

---+-------

 1 | one

 2 | two

 3 | other

Chapter 4. Functions and Operators

63

COALESCE

COALESCE(value[, ...])

 The COALESCE function returns the first of its arguments that is not NULL. This is often useful to
substitute a default value for NULL values when data is retrieved for display, for example:

SELECT COALESCE(description, short_description, ’(none)’) ...

NULLIF

NULLIF(value1, value2)

 The NULLIF function returns NULL if and only if value1 and value2 are equal. Otherwise it
returns value1. This can be used to perform the inverse operation of the COALESCE example given
above:

SELECT NULLIF(value, ’(none)’) ...

Tip: COALESCE and NULLIF are just shorthand for CASE expressions. They are actually
converted into CASE expressions at a very early stage of processing, and subsequent
processing thinks it is dealing with CASE. Thus an incorrect COALESCE or NULLIF usage may
draw an error message that refers to CASE.

4.11. Miscellaneous Functions
Table 4-21. Miscellaneous Functions

Name Return Type Description

current_user name user name of current execution context

session_user name session user name

user name equivalent to current_user

 The session_user is the user that initiated a database connection and is fixed for the duration of
that connection. The current_user is the user identifier that is applicable for permission
checking. Currently it is always equal to the session user, but in the future there might be �setuid�
functions and other facilities to allow the current user to change temporarily. In Unix parlance, the
session user is the �real user� and the current user is the �effective user�.

 Note that these functions have special syntactic status in SQL; they must be called without trailing
parentheses.

Deprecated: The function getpgusername() is an obsolete equivalent of current_user.

Chapter 4. Functions and Operators

64

4.12. Aggregate Functions
Author: Written by Isaac Wilcox <isaac@azartmedia.com> on 2000-06-16

 Aggregate functions compute a single result value from a set of input values. The special syntax
considerations for aggregate functions are explained in Section 1.3.4. Consult the PostgreSQL
Tutorial for additional introductory information.

Table 4-22. Aggregate Functions

Function Description Notes

AVG(expr) the average (arithmetic
mean) of all input
values

 Finding the average value is available on the
following data types: smallint, integer,
bigint, real, double precision, numeric,
interval. The result is of type numeric for
any integer type input, double precision for
floating point input, otherwise the same as the
input data type.

COUNT(*) number of input values The return value is of type integer.

COUNT(expr) Counts the input values
for which the value of
expression is not
NULL.

MAX(expr) the maximum value of
expression across
all input values

 Available for all numeric, string, and date/time
types. The result has the same type as the input
expression.

MIN(expr) the minimum value of
expression across
all input values

 Available for all numeric, string, and date/time
types. The result has the same type as the input
expression.

STDDEV(expr) the sample standard
deviation of the input
values

 Finding the standard deviation is available on
the following data types: smallint, integer,
bigint, real, double precision, numeric.
The result is of type double precision for
floating point input, otherwise numeric.

SUM(expr) sum of expression
across all input values

 Summation is available on the following data
types: smallint, integer, bigint, real,
double precision, numeric, interval. The
result is of type numeric for any integer type
input, double precision for floating point
input, otherwise the same as the input data type.

VARIANCE(expr) the sample variance of
the input values

 The variance is the square of the standard
deviation. The supported data types are the same.

 It should be noted that except for COUNT, these functions return NULL when no rows are selected.
In particular, SUM of no rows returns NULL, not zero as one might expect.

Chapter 4. Functions and Operators

65

Notes
1. This was written in 1994, mind you. The numbers have probably changed, but the problem

persists.

2. 60 if leap seconds are implemented by the operating system

66

Chapter 5. Type Conversion
SQL queries can, intentionally or not, require mixing of different data types in the same expression.
Postgres has extensive facilities for evaluating mixed-type expressions.

In many cases a user will not need to understand the details of the type conversion mechanism.
However, the implicit conversions done by Postgres can affect the results of a query. When
necessary, these results can be tailored by a user or programmer using explicit type coercion.

This chapter introduces the Postgres type conversion mechanisms and conventions. Refer to the
relevant sections in the User’s Guide and Programmer’s Guide for more information on specific
data types and allowed functions and operators.

The Programmer’s Guide has more details on the exact algorithms used for implicit type conversion
and coercion.

5.1. Overview
SQL is a strongly typed language. That is, every data item has an associated data type which
determines its behavior and allowed usage. Postgres has an extensible type system that is much
more general and flexible than other RDBMS implementations. Hence, most type conversion
behavior in Postgres should be governed by general rules rather than by ad-hoc heuristics to allow
mixed-type expressions to be meaningful, even with user-defined types.

The Postgres scanner/parser decodes lexical elements into only five fundamental categories:
integers, floats, strings, names, and keywords. Most extended types are first tokenized into strings.
The SQL language definition allows specifying type names with strings, and this mechanism can be
used in Postgres to start the parser down the correct path. For example, the query

tgl=> SELECT text ’Origin’ AS "Label", point ’(0,0)’ AS "Value";
 Label | Value
--------+-------
 Origin | (0,0)
(1 row)

has two strings, of type text and point. If a type is not specified for a string, then the placeholder
type unknown is assigned initially, to be resolved in later stages as described below.

There are four fundamental SQL constructs requiring distinct type conversion rules in the Postgres
parser:

Operators

 Postgres allows expressions with left- and right-unary (one argument) operators, as well as
binary (two argument) operators.

Function calls

 Much of the Postgres type system is built around a rich set of functions. Function calls have
one or more arguments which, for any specific query, must be matched to the functions
available in the system catalog. Since Postgres permits function overloading, the function name
alone does not uniquely identify the function to be called --- the parser must select the right
function based on the data types of the supplied arguments.

Chapter 5. Type Conversion

67

Query targets

 SQL INSERT and UPDATE statements place the results of expressions into a table. The
expressions in the query must be matched up with, and perhaps converted to, the types of the
target columns.

UNION and CASE constructs

 Since all select results from a UNION SELECT statement must appear in a single set of
columns, the types of the results of each SELECT clause must be matched up and converted to
a uniform set. Similarly, the result expressions of a CASE construct must be coerced to a
common type so that the CASE expression as a whole has a known output type.

Many of the general type conversion rules use simple conventions built on the Postgres function and
operator system tables. There are some heuristics included in the conversion rules to better support
conventions for the SQL92 standard native types such as smallint, integer, and float.

The Postgres parser uses the convention that all type conversion functions take a single argument of
the source type and are named with the same name as the target type. Any function meeting these
criteria is considered to be a valid conversion function, and may be used by the parser as such. This
simple assumption gives the parser the power to explore type conversion possibilities without
hardcoding, allowing extended user-defined types to use these same features transparently.

An additional heuristic is provided in the parser to allow better guesses at proper behavior for SQL
standard types. There are several basic type categories defined: boolean, numeric, string, bitstring,
datetime, timespan, geometric, network, and user-defined. Each category, with the exception of
user-defined, has a preferred type which is preferentially selected when there is ambiguity. In the
user-defined category, each type is its own preferred type. Ambiguous expressions (those with
multiple candidate parsing solutions) can often be resolved when there are multiple possible built-in
types, but they will raise an error when there are multiple choices for user-defined types.

5.1.1. Guidelines

All type conversion rules are designed with several principles in mind:
Implicit conversions should never have surprising or unpredictable outcomes.
User-defined types, of which the parser has no a-priori knowledge, should be "higher" in the type
hierarchy. In mixed-type expressions, native types shall always be converted to a user-defined
type (of course, only if conversion is necessary).
User-defined types are not related. Currently, Postgres does not have information available to it
on relationships between types, other than hardcoded heuristics for built-in types and implicit
relationships based on available functions in the catalog.
There should be no extra overhead from the parser or executor if a query does not need implicit
type conversion. That is, if a query is well formulated and the types already match up, then the
query should proceed without spending extra time in the parser and without introducing
unnecessary implicit conversion functions into the query.

Additionally, if a query usually requires an implicit conversion for a function, and if then the user
defines an explicit function with the correct argument types, the parser should use this new
function and will no longer do the implicit conversion using the old function.

Chapter 5. Type Conversion

68

5.2. Operators
Operator Type Resolution

1. Check for an exact match in the pg_operator system catalog.

a. If one argument of a binary operator is unknown type, then assume it is the same type
as the other argument for this check. Other cases involving unknown will never find a
match at this step.

2. Look for the best match.

a. Make a list of all operators of the same name for which the input types match or can
be coerced to match. (unknown literals are assumed to be coercible to anything for
this purpose.) If there is only one, use it; else continue to the next step.

b. Run through all candidates and keep those with the most exact matches on input types.
Keep all candidates if none have any exact matches. If only one candidate remains,
use it; else continue to the next step.

c. Run through all candidates and keep those with the most exact or binary-compatible
matches on input types. Keep all candidates if none have any exact or
binary-compatible matches. If only one candidate remains, use it; else continue to the
next step.

d. Run through all candidates and keep those that accept preferred types at the most
positions where type coercion will be required. Keep all candidates if none accept
preferred types. If only one candidate remains, use it; else continue to the next step.

e. If any input arguments are "unknown", check the type categories accepted at those
argument positions by the remaining candidates. At each position, select "string"
category if any candidate accepts that category (this bias towards string is appropriate
since an unknown-type literal does look like a string). Otherwise, if all the remaining
candidates accept the same type category, select that category; otherwise fail because
the correct choice cannot be deduced without more clues. Also note whether any of
the candidates accept a preferred datatype within the selected category. Now discard
operator candidates that do not accept the selected type category; furthermore, if any
candidate accepts a preferred type at a given argument position, discard candidates
that accept non-preferred types for that argument.

f. If only one candidate remains, use it. If no candidate or more than one candidate
remains, then fail.

5.2.1. Examples

5.2.1.1. Exponentiation Operator

There is only one exponentiation operator defined in the catalog, and it takes arguments of type
double precision. The scanner assigns an initial type of int4 to both arguments of this query
expression:

tgl=> select 2 ^ 3 AS "Exp";
 Exp

 8
(1 row)

Chapter 5. Type Conversion

69

So the parser does a type conversion on both operands and the query is equivalent to

tgl=> select CAST(2 AS double precision) ^ CAST(3 AS double precision) AS
"Exp";
 Exp

 8
(1 row)

or

tgl=> select 2.0 ^ 3.0 AS "Exp";
 Exp

 8
(1 row)

Note: This last form has the least overhead, since no functions are called to do implicit type
conversion. This is not an issue for small queries, but may have an impact on the performance
of queries involving large tables.

5.2.1.2. String Concatenation

A string-like syntax is used for working with string types as well as for working with complex
extended types. Strings with unspecified type are matched with likely operator candidates.

One unspecified argument:

tgl=> SELECT text ’abc’ || ’def’ AS "Text and Unknown";
 Text and Unknown

 abcdef
(1 row)

In this case the parser looks to see if there is an operator taking text for both arguments. Since
there is, it assumes that the second argument should be interpreted as of type text.

Concatenation on unspecified types:

tgl=> SELECT ’abc’ || ’def’ AS "Unspecified";
 Unspecified

 abcdef
(1 row)

In this case there is no initial hint for which type to use, since no types are specified in the query.
So, the parser looks for all candidate operators and finds that there are candidates accepting both
string-category and bitstring-category inputs. Since string category is preferred when available, that
category is selected, and then the "preferred type" for strings, text, is used as the specific type to
resolve the unknown literals to.

5.2.1.3. Factorial

This example illustrates an interesting result. Traditionally, the factorial operator is defined for
integers only. The Postgres operator catalog has only one entry for factorial, taking an integer
operand. If given a non-integer numeric argument, Postgres will try to convert that argument to an
integer for evaluation of the factorial.

Chapter 5. Type Conversion

70

tgl=> select (4.3 !);
 ?column?

 24
(1 row)

Note: Of course, this leads to a mathematically suspect result, since in principle the factorial of
a non-integer is not defined. However, the role of a database is not to teach mathematics, but
to be a tool for data manipulation. If a user chooses to take the factorial of a floating point
number, Postgres will try to oblige.

5.3. Functions
Function Call Type Resolution

1. Check for an exact match in the pg_proc system catalog. (Cases involving unknown will never
find a match at this step.)

2. Look for the best match.

a. Make a list of all functions of the same name with the same number of arguments for
which the input types match or can be coerced to match. (unknown literals are
assumed to be coercible to anything for this purpose.) If there is only one, use it; else
continue to the next step.

b. Run through all candidates and keep those with the most exact matches on input types.
Keep all candidates if none have any exact matches. If only one candidate remains,
use it; else continue to the next step.

c. Run through all candidates and keep those with the most exact or binary-compatible
matches on input types. Keep all candidates if none have any exact or
binary-compatible matches. If only one candidate remains, use it; else continue to the
next step.

d. Run through all candidates and keep those that accept preferred types at the most
positions where type coercion will be required. Keep all candidates if none accept
preferred types. If only one candidate remains, use it; else continue to the next step.

e. If any input arguments are "unknown", check the type categories accepted at those
argument positions by the remaining candidates. At each position, select "string"
category if any candidate accepts that category (this bias towards string is appropriate
since an unknown-type literal does look like a string). Otherwise, if all the remaining
candidates accept the same type category, select that category; otherwise fail because
the correct choice cannot be deduced without more clues. Also note whether any of
the candidates accept a preferred datatype within the selected category. Now discard
operator candidates that do not accept the selected type category; furthermore, if any
candidate accepts a preferred type at a given argument position, discard candidates
that accept non-preferred types for that argument.

f. If only one candidate remains, use it. If no candidate or more than one candidate
remains, then fail.

3. If no best match could be identified, see whether the function call appears to be a trivial type
coercion request. This happens if the function call has just one argument and the function name
is the same as the (internal) name of some datatype. Furthermore, the function argument must
be either an unknown-type literal or a type that is binary-compatible with the named datatype.
When these conditions are met, the function argument is coerced to the named datatype.

Chapter 5. Type Conversion

71

5.3.1. Examples

5.3.1.1. Factorial Function

There is only one factorial function defined in the pg_proc catalog. So the following query
automatically converts the int2 argument to int4:

tgl=> select int4fac(int2 ’4’);
 int4fac

 24
(1 row)

and is actually transformed by the parser to

tgl=> select int4fac(int4(int2 ’4’));
 int4fac

 24
(1 row)

5.3.1.2. Substring Function

There are two substr functions declared in pg_proc. However, only one takes two arguments, of
types text and int4.

If called with a string constant of unspecified type, the type is matched up directly with the only
candidate function type:

tgl=> select substr(’1234’, 3);
 substr

 34
(1 row)

If the string is declared to be of type varchar, as might be the case if it comes from a table, then
the parser will try to coerce it to become text:

tgl=> select substr(varchar ’1234’, 3);
 substr

 34
(1 row)

which is transformed by the parser to become

tgl=> select substr(text(varchar ’1234’), 3);
 substr

 34
(1 row)

Note: Actually, the parser is aware that text and varchar are "binary compatible", meaning
that one can be passed to a function that accepts the other without doing any physical
conversion. Therefore, no explicit type conversion call is really inserted in this case.

And, if the function is called with an int4, the parser will try to convert that to text:

Chapter 5. Type Conversion

72

tgl=> select substr(1234, 3);
 substr

 34
(1 row)

actually executes as

tgl=> select substr(text(1234), 3);
 substr

 34
(1 row)

This succeeds because there is a conversion function text(int4) in the system catalog.

5.4. Query Targets
Query Target Type Resolution

1. Check for an exact match with the target.

2. Otherwise, try to coerce the expression to the target type. This will succeed if the two types are
known binary-compatible, or if there is a conversion function. If the expression is an
unknown-type literal, the contents of the literal string will be fed to the input conversion routine
for the target type.

3. If the target is a fixed-length type (e.g. char or varchar declared with a length) then try to
find a sizing function for the target type. A sizing function is a function of the same name as the
type, taking two arguments of which the first is that type and the second is an integer, and
returning the same type. If one is found, it is applied, passing the column’s declared length as
the second parameter.

5.4.1. Examples

5.4.1.1. varchar Storage

For a target column declared as varchar(4) the following query ensures that the target is sized
correctly:

tgl=> CREATE TABLE vv (v varchar(4));
CREATE
tgl=> INSERT INTO vv SELECT ’abc’ || ’def’;
INSERT 392905 1
tgl=> SELECT * FROM vv;
 v

 abcd
(1 row)

What’s really happened here is that the two unknown literals are resolved to text by default,
allowing the || operator to be resolved as text concatenation. Then the text result of the operator is
coerced to varchar to match the target column type. (But, since the parser knows that text and
varchar are binary-compatible, this coercion is implicit and does not insert any real function call.)
Finally, the sizing function varchar(varchar,int4) is found in the system catalogs and applied

Chapter 5. Type Conversion

73

to the operator’s result and the stored column length. This type-specific function performs the
desired truncation.

5.5. UNION and CASE Constructs
The UNION and CASE constructs must match up possibly dissimilar types to become a single result
set. The resolution algorithm is applied separately to each output column of a UNION. CASE uses
the identical algorithm to match up its result expressions.

UNION and CASE Type Resolution

1. If all inputs are of type unknown, resolve as type text (the preferred type for string category).
Otherwise, ignore the unknown inputs while choosing the type.

2. If the non-unknown inputs are not all of the same type category, fail.

3. If one or more non-unknown inputs are of a preferred type in that category, resolve as that type.

4. Otherwise, resolve as the type of the first non-unknown input.

5. Coerce all inputs to the selected type.

5.5.1. Examples

5.5.1.1. Underspecified Types

tgl=> SELECT text ’a’ AS "Text" UNION SELECT ’b’;
 Text

 a
 b
(2 rows)

Here, the unknown-type literal ’b’ will be resolved as type text.

5.5.1.2. Simple UNION

tgl=> SELECT 1.2 AS "Double" UNION SELECT 1;
 Double

 1
 1.2
(2 rows)

5.5.1.3. Transposed UNION

Here the output type of the union is forced to match the type of the first/top clause in the union:

tgl=> SELECT 1 AS "All integers"
tgl-> UNION SELECT CAST(’2.2’ AS REAL);
 All integers

 1
 2
(2 rows)

Since REAL is not a preferred type, the parser sees no reason to select it over INTEGER (which is
what the 1 is), and instead falls back on the use-the-first-alternative rule. This example demonstrates

Chapter 5. Type Conversion

74

that the preferred-type mechanism doesn’t encode as much information as we’d like. Future
versions of Postgres may support a more general notion of type preferences.

75

Chapter 6. Arrays
 Postgres allows columns of a table to be defined as variable-length multi-dimensional arrays.
Arrays of any built-in type or user-defined type can be created. To illustrate their use, we create this
table:

CREATE TABLE sal_emp (
 name text,
 pay_by_quarter integer[],
 schedule text[][]
);

 The above query will create a table named sal_emp with a text string (name), a one-dimensional
array of type integer (pay_by_quarter), which shall represent the employee’s salary by quarter,
and a two-dimensional array of text (schedule), which represents the employee’s weekly
schedule.

 Now we do some INSERTs; note that when appending to an array, we enclose the values within
braces and separate them by commas. If you know C, this is not unlike the syntax for initializing
structures.

INSERT INTO sal_emp
 VALUES (’Bill’,
 ’{10000, 10000, 10000, 10000}’,
 ’{{"meeting", "lunch"}, {}}’);

INSERT INTO sal_emp
 VALUES (’Carol’,
 ’{20000, 25000, 25000, 25000}’,
 ’{{"talk", "consult"}, {"meeting"}}’);

 Now, we can run some queries on sal_emp. First, we show how to access a single element of an
array at a time. This query retrieves the names of the employees whose pay changed in the second
quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[1] <> pay_by_quarter[2];

 name

 Carol
(1 row)

 Postgres uses the �one-based� numbering convention for arrays, that is, an array of n elements starts
with array[1] and ends with array[n].

Chapter 6. Arrays

76

 This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;

 pay_by_quarter

 10000
 25000
(2 rows)

 We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted
by writing lower subscript : upper subscript for one or more array dimensions. This
query retrieves the first item on Bill’s schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = ’Bill’;

 schedule

 {{"meeting"},{""}}
(1 row)

 We could also have written

SELECT schedule[1:2][1] FROM sal_emp WHERE name = ’Bill’;

 with the same result. An array subscripting operation is taken to represent an array slice if any of
the subscripts are written in the form lower : upper. A lower bound of 1 is assumed for any
subscript where only one value is specified.

 An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter = ’{25000,25000,27000,27000}’
 WHERE name = ’Carol’;

 or updated at a single element:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
 WHERE name = ’Bill’;

 or updated in a slice:

UPDATE sal_emp SET pay_by_quarter[1:2] = ’{27000,27000}’
 WHERE name = ’Carol’;

 An array can be enlarged by assigning to an element adjacent to those already present, or by
assigning to a slice that is adjacent to or overlaps the data already present. For example, if an array
value currently has 4 elements, it will have five elements after an update that assigns to array[5].
Currently, enlargement in this fashion is only allowed for one-dimensional arrays, not
multidimensional arrays.

 The syntax for CREATE TABLE allows fixed-length arrays to be defined:

CREATE TABLE tictactoe (
 squares integer[3][3]
);

Chapter 6. Arrays

77

 However, the current implementation does not enforce the array size limits --- the behavior is the
same as for arrays of unspecified length.

 Actually, the current implementation does not enforce the declared number of dimensions either.
Arrays of a particular base type are all considered to be of the same type, regardless of size or
number of dimensions.

 The current dimensions of any array value can be retrieved with the array_dims function:

SELECT array_dims(schedule) FROM sal_emp WHERE name = ’Carol’;

 array_dims

 [1:2][1:1]
(1 row)

 array_dims produces a text result, which is convenient for people to read but perhaps not so
convenient for programs.

 To search for a value in an array, you must check each value of the array. This can be done by hand
(if you know the size of the array):

SELECT * FROM sal_emp WHERE pay_by_quarter[1] = 10000 OR
 pay_by_quarter[2] = 10000 OR
 pay_by_quarter[3] = 10000 OR
 pay_by_quarter[4] = 10000;

 However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. Although it is not part of the primary PostgreSQL distribution, in the contributions
directory, there is an extension to PostgreSQL that defines new functions and operators for iterating
over array values. Using this, the above query could be:

SELECT * FROM sal_emp WHERE pay_by_quarter[1:4] *= 10000;

 To search the entire array (not just specified columns), you could use:

SELECT * FROM sal_emp WHERE pay_by_quarter *= 10000;

 In addition, you could find rows where the array had all values equal to 10 000 with:

SELECT * FROM sal_emp WHERE pay_by_quarter **= 10000;

 To install this optional module, look in the contrib/array directory of the PostgreSQL source
distribution.

Tip: Arrays are not lists; using arrays in the manner described in the previous paragraph is
often a sign of database misdesign. The array field should generally be split off into a separate
table. Tables can obviously be searched easily.

78

Chapter 7. Indices
 Indices are a common way to enhance database performance. An index allows the database server
to find and retrieve specific rows much faster than it could do without an index. But indices also add
overhead to the database system as a whole, so they should be used sensibly.

7.1. Introduction
 The classical example for the need of an index is if there is a table similar to this:

CREATE TABLE test1 (
 id integer,
 content varchar
);

 and the application requires a lot of queries of the form

SELECT content FROM test1 WHERE id = constant;

 Ordinarily, the system would have to scan the entire test1 table row by row to find all matching
entries. If there are a lot of rows in test1 and only a few rows (possibly zero or one) returned by
the query, then this is clearly an inefficient method. If the system were instructed to maintain an
index on the id column, then it could use a more efficient method for locating matching rows. For
instance, it might only have to walk a few levels deep into a search tree.

 A similar approach is used in most books of non-fiction: Terms and concepts that are frequently
looked up by readers are collected in an alphabetic index at the end of the book. The interested
reader can scan the index relatively quickly and flip to the appropriate page, and would not have to
read the entire book to find the interesting location. As it is the task of the author to anticipate the
items that the readers are most likely to look up, it is the task of the database programmer to foresee
which indexes would be of advantage.

 The following command would be used to create the index on the id column, as discussed:

CREATE INDEX test1_id_index ON test1 (id);

 The name test1_id_index can be chosen freely, but you should pick something that enables you
to remember later what the index was for.

 To remove an index, use the DROP INDEX command. Indices can be added and removed from
tables at any time.

 Once the index is created, no further intervention is required: the system will use the index when it
thinks it would be more efficient than a sequential table scan. But you may have to run the
VACUUM ANALYZE command regularly to update statistics to allow the query planner to make
educated decisions. Also read Chapter 11 for information about how to find out whether an index is
used and when and why the planner may choose to not use an index.

 Indices can also benefit UPDATEs and DELETEs with search conditions. Note that a query or
data manipulation commands can only use at most one index per table. Indices can also be used in
table join methods. Thus, an index defined on a column that is part of a join condition can
significantly speed up queries with joins.

Chapter 7. Indices

79

 When an index is created, it has to be kept synchronized with the table. This adds overhead to data
manipulation operations. Therefore indices that are non-essential or do not get used at all should be
removed.

7.2. Index Types
 Postgres provides several index types: B-tree, R-tree, and Hash. Each index type is more
appropriate for a particular query type because of the algorithm it uses. By default, the CREATE
INDEX command will create a B-tree index, which fits the most common situations. In particular,
the Postgres query optimizer will consider using a B-tree index whenever an indexed column is
involved in a comparison using one of these operators: <, <=, =, >=, >

 R-tree indices are especially suited for spacial data. To create an R-tree index, use a command of
the form

CREATE INDEX name ON table USING RTREE (column);

 The Postgres query optimizer will consider using an R-tree index whenever an indexed column is
involved in a comparison using one of these operators: <<, &<, &>, >>, @, ~=, && (Refer to Section
4.8 about the meaning of these operators.)

 The query optimizer will consider using a hash index whenever an indexed column is involved in a
comparison using the = operator. The following command is used to create a hash index:

CREATE INDEX name ON table USING HASH (column);

Note: Because of the limited utility of hash indices, a B-tree index should generally be preferred
over a hash index. We do not have sufficient evidence that hash indices are actually faster than
B-trees even for = comparisons. Moreover, hash indices require coarser locks; see Section 9.7.

 The B-tree index is an implementation of Lehman-Yao high-concurrency B-trees. The R-tree index
method implements standard R-trees using Guttman’s quadratic split algorithm. The hash index is
an implementation of Litwin’s linear hashing. We mention the algorithms used solely to indicate
that all of these access methods are fully dynamic and do not have to be optimized periodically (as
is the case with, for example, static hash access methods).

7.3. Multi-Column Indices
 An index can be defined on more than one column. For example, if you have a table of this form:

CREATE TABLE test2 (
 major int,
 minor int,
 name varchar
);

 (Say, you keep you your /dev directory in a database...) and you frequently make queries like

SELECT name FROM test2 WHERE major = constant AND minor = constant;

 then it may be appropriate to define an index on the columns major and minor together, e.g.,

Chapter 7. Indices

80

CREATE INDEX test2_mm_idx ON test2 (major, minor);

 Currently, only the B-tree implementation supports multi-column indices. Up to 16 columns may
be specified. (This limit can be altered when building Postgres; see the file config.h.)

 The query optimizer can use a multi-column index for queries that involve the first n consecutive
columns in the index (when used with appropriate operators), up to the total number of columns
specified in the index definition. For example, an index on (a, b, c) can be used in queries
involving all of a, b, and c, or in queries involving both a and b, or in queries involving only a, but
not in other combinations. (In a query involving a and c the optimizer might choose to use the index
for a only and treat c like an ordinary unindexed column.)

 Multi-column indexes can only be used if the clauses involving the indexed columns are joined
with AND. For instance,

SELECT name FROM test2 WHERE major = constant OR minor = constant;

 cannot make use of the index test2_mm_idx defined above to look up both columns. (It can be
used to look up only the major column, however.)

 Multi-column indices should be used sparingly. Most of the time, an index on a single column is
sufficient and saves space and time. Indexes with more than three columns are almost certainly
inappropriate.

7.4. Unique Indices
 Indexes may also be used to enforce uniqueness of a column’s value, or the uniqueness of the
combined values of more than one column.

CREATE UNIQUE INDEX name ON table (column [, ...]);

 Only B-tree indices can be declared unique.

 When an index is declared unique, multiple table rows with equal indexed values will not be
allowed. NULL values are not considered equal.

 PostgreSQL automatically creates unique indices when a table is declared with a unique constraint
or a primary key, on the columns that make up the primary key or unique columns (a multi-column
index, if appropriate), to enforce that constraint. A unique index can be added to a table at any later
time, to add a unique constraint. (But a primary key cannot be added after table creation.)

7.5. Functional Indices
 For a functional index, an index is defined on the result of a function applied to one or more
columns of a single table. Functional indices can be used to obtain fast access to data based on the
result of function calls.

 For example, a common way to do case-insensitive comparisons is to use the lower:

SELECT * FROM test1 WHERE lower(col1) = ’value’;

 In order for that query to be able to use an index, it has to be defined on the result of the

Chapter 7. Indices

81

lower(column) operation:

CREATE INDEX test1_lower_col1_idx ON test1 (lower(col1));

 The function in the index definition can take more than one argument, but they must be table
columns, not constants. Functional indices are always single-column (namely, the function result)
even if the function uses more than one input field; there cannot be multi-column indices that
contain function calls.

Tip: The restrictions mentioned in the previous paragraph can easily be worked around by
defining custom functions to use in the index definition that call the desired function(s)
internally.

7.6. Operator Classes
 An index definition may specify an operator class for each column of an index.

CREATE INDEX name ON table (column opclass [, ...]);

 The operator class identifies the operators to be used by the index for that column. For example, a
B-tree index on four-byte integers would use the int4_ops class; this operator class includes
comparison functions for four-byte integers. In practice the default operator class for the column’s
data type is usually sufficient. The main point of having operator classes is that for some data types,
there could be more than one meaningful ordering. For example, we might want to sort a
complex-number data type either by absolute value or by real part. We could do this by defining two
operator classes for the data type and then selecting the proper class when making an index. There
are also some operator classes with special purposes:

 The operator classes box_ops and bigbox_ops both support R-tree indices on the box data
type. The difference between them is that bigbox_ops scales box coordinates down, to avoid
floating point exceptions from doing multiplication, addition, and subtraction on very large
floating point coordinates. If the field on which your rectangles lie is about 20 000 units square or
larger, you should use bigbox_ops.

 The following query shows all defined operator classes:

SELECT am.amname AS acc_name,
 opc.opcname AS ops_name,
 opr.oprname AS ops_comp
 FROM pg_am am, pg_amop amop,
 pg_opclass opc, pg_operator opr
 WHERE amop.amopid = am.oid AND
 amop.amopclaid = opc.oid AND
 amop.amopopr = opr.oid
 ORDER BY acc_name, ops_name, ops_comp;

Chapter 7. Indices

82

7.7. Keys

Author: Written by Herouth Maoz (<herouth@oumail.openu.ac.il>). This originally appeared
on the User’s Mailing List on 1998-03-02 in response to the question: "What is the difference
between PRIMARY KEY and UNIQUE constraints?".

Subject: Re: [QUESTIONS] PRIMARY KEY | UNIQUE

 What’s the difference between:

 PRIMARY KEY(fields,...) and
 UNIQUE (fields,...)

 - Is this an alias?
 - If PRIMARY KEY is already unique, then why
 is there another kind of key named UNIQUE?

 A primary key is the field(s) used to identify a specific row. For example, Social Security numbers
identifying a person.

 A simply UNIQUE combination of fields has nothing to do with identifying the row. It’s simply an
integrity constraint. For example, I have collections of links. Each collection is identified by a
unique number, which is the primary key. This key is used in relations.

 However, my application requires that each collection will also have a unique name. Why? So that
a human being who wants to modify a collection will be able to identify it. It’s much harder to
know, if you have two collections named �Life Science�, the the one tagged 24433 is the one you
need, and the one tagged 29882 is not.

 So, the user selects the collection by its name. We therefore make sure, within the database, that
names are unique. However, no other table in the database relates to the collections table by the
collection Name. That would be very inefficient.

 Moreover, despite being unique, the collection name does not actually define the collection! For
example, if somebody decided to change the name of the collection from �Life Science� to �Biology�, it
will still be the same collection, only with a different name. As long as the name is unique, that’s
OK.

 So:

 Primary key:
 Is used for identifying the row and relating to it.
 Is impossible (or hard) to update.
 Should not allow NULLs.

 Unique field(s):
 Are used as an alternative access to the row.
 Are updatable, so long as they are kept unique.
 NULLs are acceptable.

Chapter 7. Indices

83

 As for why no non-unique keys are defined explicitly in standard SQL syntax? Well, you must
understand that indices are implementation-dependent. SQL does not define the implementation,
merely the relations between data in the database. Postgres does allow non-unique indices, but
indices used to enforce SQL keys are always unique.

 Thus, you may query a table by any combination of its columns, despite the fact that you don’t have
an index on these columns. The indexes are merely an implementation aid that each RDBMS offers
you, in order to cause commonly used queries to be done more efficiently. Some RDBMS may give
you additional measures, such as keeping a key stored in main memory. They will have a special
command, for example

CREATE MEMSTORE ON table COLUMNS cols

 (This is not an existing command, just an example.)

 In fact, when you create a primary key or a unique combination of fields, nowhere in the SQL
specification does it say that an index is created, nor that the retrieval of data by the key is going to
be more efficient than a sequential scan!

 So, if you want to use a combination of fields that is not unique as a secondary key, you really don’t
have to specify anything - just start retrieving by that combination! However, if you want to make
the retrieval efficient, you’ll have to resort to the means your RDBMS provider gives you - be it an
index, my imaginary MEMSTORE command, or an intelligent RDBMS that creates indices without
your knowledge based on the fact that you have sent it many queries based on a specific
combination of keys... (It learns from experience).

7.8. Partial Indices
Author: This is from a reply to a question on the email list by Paul M. Aoki
(<aoki@CS.Berkeley.EDU>) on 1998-08-11.

Note: Partial indices are not currently supported by PostgreSQL, but they were once supported
by its predecessor Postgres, and much of the code is still there. We hope to revive support for
this feature someday.

 A partial index is an index built over a subset of a table; the subset is defined by a predicate.
Postgres supported partial indices with arbitrary predicates. I believe IBM’s DB2 for AS/400
supports partial indices using single-clause predicates.

 The main motivation for partial indices is this: if all of the queries you ask that can profitably use
an index fall into a certain range, why build an index over the whole table and suffer the associated
space/time costs? (There are other reasons too; see Stonebraker, M, 1989b for details.)

 The machinery to build, update and query partial indices isn’t too bad. The hairy parts are index
selection (which indices do I build?) and query optimization (which indices do I use?); i.e., the parts
that involve deciding what predicate(s) match the workload/query in some useful way. For those
who are into database theory, the problems are basically analogous to the corresponding
materialized view problems, albeit with different cost parameters and formulae. These are, in the
general case, hard problems for the standard ordinal SQL types; they’re super-hard problems with
black-box extension types, because the selectivity estimation technology is so crude.

 Check Stonebraker, M, 1989b, Olson, 1993, and Seshardri, 1995 for more information.

84

Chapter 8. Inheritance
 Let’s create two tables. The capitals table contains state capitals which are also cities. Naturally, the
capitals table should inherit from cities.

CREATE TABLE cities (
 name text,
 population float,
 altitude int -- (in ft)
);

CREATE TABLE capitals (
 state char(2)
) INHERITS (cities);

 In this case, a row of capitals inherits all attributes (name, population, and altitude) from its parent,
cities. The type of the attribute name is text, a native Postgres type for variable length ASCII
strings. The type of the attribute population is float, a native Postgres type for double precision
floating point numbers. State capitals have an extra attribute, state, that shows their state. In
Postgres, a table can inherit from zero or more other tables, and a query can reference either all rows
of a table or all rows of a table plus all of its descendants.

Note: The inheritance hierarchy is a actually a directed acyclic graph.

 For example, the following query finds the names of all cities, including state capitals, that are
located at an altitude over 500ft:

SELECT name, altitude
 FROM cities
 WHERE altitude > 500;

 which returns:

+----------+----------+
|name | altitude |
+----------+----------+
|Las Vegas | 2174 |
+----------+----------+
|Mariposa | 1953 |
+----------+----------+
|Madison | 845 |
+----------+----------+

 On the other hand, the following query finds all the cities that are not state capitals and are situated

Chapter 8. Inheritance

85

at an altitude of 500ft or higher:

SELECT name, altitude
 FROM ONLY cities
 WHERE altitude > 500;

+----------+----------+
|name | altitude |
+----------+----------+
|Las Vegas | 2174 |
+----------+----------+
|Mariposa | 1953 |
+----------+----------+

 Here the �ONLY� before cities indicates that the query should be run over only cities and not tables
below cities in the inheritance hierarchy. Many of the commands that we have already discussed --
SELECT, UPDATE and DELETE -- support this �ONLY� notation.

 In some cases you may wish to know which table a particular tuple originated from. There is a
system column called �TABLEOID� in each table which can tell you the originating table:

 SELECT c.tableoid, c.name, c.altitude
 FROM cities c
 WHERE c.altitude > 500;

 which returns:

+---------+----------+----------+
|tableoid |name | altitude |
+---------+----------+----------+
|37292 |Las Vegas | 2174 |
+---------+----------+----------+
|37280 |Mariposa | 1953 |
+---------+----------+----------+
|37280 |Madison | 845 |
+---------+----------+----------+

 If you do a join with pg_class you can see the actual table name:

 SELECT p.relname, c.name, c.altitude
 FROM cities c, pg_class p
 WHERE c.altitude > 500 and c.tableoid = p.oid;

 which returns:

+---------+----------+----------+
|relname |name | altitude |
+---------+----------+----------+
capitals	Las Vegas	2174
cities	Mariposa	1953
cities	Madison	845
+---------+----------+----------+

Chapter 8. Inheritance

86

Deprecated: In previous versions of Postgres, the default was not to get access to child tables.
This was found to be error prone and is also in violation of SQL99. Under the old syntax, to get
the sub-tables you append "*" to the table name. For example

SELECT * from cities*;

 You can still explicitly specify scanning child tables by appending "*", as well as explicitly
specify not scanning child tables by writing �ONLY�. But beginning in version 7.1, the default
behavior for an undecorated table name is to scan its child tables too, whereas before the
default was not to do so. To get the old default behavior, set the configuration option
SQL_Inheritance to off, e.g.,

SET SQL_Inheritance TO OFF;

 or add a line in your postgresql.conf file.

87

Chapter 9. Multi-Version Concurrency Control
 Multi-Version Concurrency Control (MVCC) is an advanced technique for improving database
performance in a multi-user environment. Vadim Mikheev (<vadim@krs.ru>) provided the
implementation for Postgres.

9.1. Introduction
 Unlike most other database systems which use locks for concurrency control, Postgres maintains
data consistency by using a multiversion model. This means that while querying a database each
transaction sees a snapshot of data (a database version) as it was some time ago, regardless of the
current state of the underlying data. This protects the transaction from viewing inconsistent data that
could be caused by (other) concurrent transaction updates on the same data rows, providing
transaction isolation for each database session.

 The main difference between multiversion and lock models is that in MVCC locks acquired for
querying (reading) data don’t conflict with locks acquired for writing data and so reading never
blocks writing and writing never blocks reading.

9.2. Transaction Isolation
 The ANSI/ISO SQL standard defines four levels of transaction isolation in terms of three
phenomena that must be prevented between concurrent transactions. These undesirable phenomena
are:

 dirty reads

 A transaction reads data written by concurrent uncommitted transaction.

 non-repeatable reads

 A transaction re-reads data it has previously read and finds that data has been modified by
another transaction (that committed since the initial read).

 phantom read

 A transaction re-executes a query returning a set of rows that satisfy a search condition and
finds that the set of rows satisfying the condition has changed due to another
recently-committed transaction.

 The four isolation levels and the corresponding behaviors are described below.

Table 9-1. ANSI/ISO SQL Isolation Levels

 Isolation Level Dirty Read Non-Repeatable Read Phantom Read

 Read uncommitted Possible Possible Possible

 Read committed Not possible Possible Possible

 Repeatable read Not possible Not possible Possible

 Serializable Not possible Not possible Not possible

Chapter 9. Multi-Version Concurrency Control

88

 Postgres offers the read committed and serializable isolation levels.

9.3. Read Committed Isolation Level
 Read Committed is the default isolation level in Postgres. When a transaction runs on this isolation
level, a SELECT query sees only data committed before the query began and never sees either
uncommitted data or changes committed during query execution by concurrent transactions.
(However, the SELECT does see the effects of previous updates executed within this same
transaction, even though they are not yet committed.) Notice that two successive SELECTs can see
different data, even though they are within a single transaction, when other transactions commit
changes during execution of the first SELECT.

 If a target row found by a query while executing an UPDATE statement (or DELETE or SELECT
FOR UPDATE) has already been updated by a concurrent uncommitted transaction then the second
transaction that tries to update this row will wait for the other transaction to commit or rollback. In
the case of rollback, the waiting transaction can proceed to change the row. In the case of commit
(and if the row still exists; i.e. was not deleted by the other transaction), the query will be
re-executed for this row to check that the new row version still satisfies the query search condition.
If the new row version satisfies the query search condition then the row will be updated (or deleted
or marked for update). Note that the starting point for the update will be the new row version;
moreover, after the update the doubly-updated row is visible to subsequent SELECTs in the current
transaction. Thus, the current transaction is able to see the effects of the other transaction for this
specific row.

 The partial transaction isolation provided by Read Committed level is adequate for many
applications, and this level is fast and simple to use. However, for applications that do complex
queries and updates, it may be necessary to guarantee a more rigorously consistent view of the
database than Read Committed level provides.

9.4. Serializable Isolation Level
 Serializable provides the highest transaction isolation. This level emulates serial transaction
execution, as if transactions had been executed one after another, serially, rather than concurrently.
However, applications using this level must be prepared to retry transactions due to serialization
failures.

 When a transaction is on the serializable level, a SELECT query sees only data committed before
the transaction began and never sees either uncommitted data or changes committed during
transaction execution by concurrent transactions. (However, the SELECT does see the effects of
previous updates executed within this same transaction, even though they are not yet committed.)
This is different from Read Committed in that the SELECT sees a snapshot as of the start of the
transaction, not as of the start of the current query within the transaction.

 If a target row found by a query while executing an UPDATE statement (or DELETE or SELECT
FOR UPDATE) has already been updated by a concurrent uncommitted transaction then the second
transaction that tries to update this row will wait for the other transaction to commit or rollback. In
the case of rollback, the waiting transaction can proceed to change the row. In the case of a
concurrent transaction commit, a serializable transaction will be rolled back with the message

ERROR: Can’t serialize access due to concurrent update

Chapter 9. Multi-Version Concurrency Control

89

 because a serializable transaction cannot modify rows changed by other transactions after the
serializable transaction began.

 When the application receives this error message, it should abort the current transaction and then
retry the whole transaction from the beginning. The second time through, the transaction sees the
previously-committed change as part of its initial view of the database, so there is no logical conflict
in using the new version of the row as the starting point for the new transaction’s update. Note that
only updating transactions may need to be retried --- read-only transactions never have serialization
conflicts.

 Serializable transaction level provides a rigorous guarantee that each transaction sees a wholly
consistent view of the database. However, the application has to be prepared to retry transactions
when concurrent updates make it impossible to sustain the illusion of serial execution, and the cost
of redoing complex transactions may be significant. So this level is recommended only when update
queries contain logic sufficiently complex that they may give wrong answers in Read Committed
level.

9.5. Data consistency checks at the application level
 Because readers in Postgres don’t lock data, regardless of transaction isolation level, data read by
one transaction can be overwritten by another concurrent transaction. In other words, if a row is
returned by SELECT it doesn’t mean that the row still exists at the time it is returned (i.e. sometime
after the current transaction began); the row might have been modified or deleted by an
already-committed transaction that committed after this one started. Even if the row is still valid
"now", it could be changed or deleted before the current transaction does a commit or rollback.

 Another way to think about it is that each transaction sees a snapshot of the database contents, and
concurrently executing transactions may very well see different snapshots. So the whole concept of
"now" is somewhat suspect anyway. This is not normally a big problem if the client applications are
isolated from each other, but if the clients can communicate via channels outside the database then
serious confusion may ensue.

 To ensure the current existence of a row and protect it against concurrent updates one must use
SELECT FOR UPDATE or an appropriate LOCK TABLE statement. (SELECT FOR UPDATE
locks just the returned rows against concurrent updates, while LOCK TABLE protects the whole
table.) This should be taken into account when porting applications to Postgres from other
environments.

Note: Before version 6.5 Postgres used read-locks and so the above consideration is also the
case when upgrading to 6.5 (or higher) from previous Postgres versions.

9.6. Locking and Tables
 Postgres provides various lock modes to control concurrent access to data in tables. Some of these
lock modes are acquired by Postgres automatically before statement execution, while others are
provided to be used by applications. All lock modes acquired in a transaction are held for the
duration of the transaction.

Chapter 9. Multi-Version Concurrency Control

90

9.6.1. Table-level locks

 AccessShareLock

 A read-lock mode acquired automatically on tables being queried.

 Conflicts with AccessExclusiveLock only.

 RowShareLock

 Acquired by SELECT FOR UPDATE and LOCK TABLE for IN ROW SHARE MODE
statements.

 Conflicts with ExclusiveLock and AccessExclusiveLock modes.

 RowExclusiveLock

 Acquired by UPDATE, DELETE, INSERT and LOCK TABLE for IN ROW EXCLUSIVE
MODE statements.

 Conflicts with ShareLock, ShareRowExclusiveLock, ExclusiveLock and
AccessExclusiveLock modes.

 ShareLock

 Acquired by CREATE INDEX and LOCK TABLE table for IN SHARE MODE statements.

 Conflicts with RowExclusiveLock, ShareRowExclusiveLock, ExclusiveLock and
AccessExclusiveLock modes.

 ShareRowExclusiveLock

 Acquired by LOCK TABLE for IN SHARE ROW EXCLUSIVE MODE statements.

 Conflicts with RowExclusiveLock, ShareLock, ShareRowExclusiveLock, ExclusiveLock and
AccessExclusiveLock modes.

 ExclusiveLock

 Acquired by LOCK TABLE table for IN EXCLUSIVE MODE statements.

 Conflicts with RowShareLock, RowExclusiveLock, ShareLock, ShareRowExclusiveLock,
ExclusiveLock and AccessExclusiveLock modes.

 AccessExclusiveLock

 Acquired by ALTER TABLE, DROP TABLE, VACUUM and LOCK TABLE statements.

 Conflicts with all modes (AccessShareLock, RowShareLock, RowExclusiveLock, ShareLock,
ShareRowExclusiveLock, ExclusiveLock and AccessExclusiveLock).

Note: Only AccessExclusiveLock blocks SELECT (without FOR UPDATE) statement.

Chapter 9. Multi-Version Concurrency Control

91

9.6.2. Row-level locks

 These locks are acquired when rows are being updated (or deleted or marked for update).
Row-level locks don’t affect data querying. They block writers to the same row only.

 Postgres doesn’t remember any information about modified rows in memory and so has no limit to
the number of rows locked at one time. However, locking a row may cause a disk write; thus, for
example, SELECT FOR UPDATE will modify selected rows to mark them and so will result in
disk writes.

 In addition to table and row locks, short-term share/exclusive locks are used to control read/write
access to table pages in the shared buffer pool. These locks are released immediately after a tuple is
fetched or updated. Application writers normally need not be concerned with page-level locks, but
we mention them for completeness.

9.7. Locking and Indices
 Though Postgres provides nonblocking read/write access to table data, nonblocking read/write
access is not currently offered for every index access method implemented in Postgres.

 The various index types are handled as follows:

 GiST and R-Tree indices

 Share/exclusive index-level locks are used for read/write access. Locks are released after
statement is done.

 Hash indices

 Share/exclusive page-level locks are used for read/write access. Locks are released after page
is processed.

 Page-level locks provide better concurrency than index-level ones but are subject to deadlocks.

 Btree indices

 Short-term share/exclusive page-level locks are used for read/write access. Locks are released
immediately after each index tuple is fetched/inserted.

 Btree indices provide the highest concurrency without deadlock conditions.

 In short, btree indices are the recommended index type for concurrent applications.

92

Chapter 10. Managing a Database
Note: This section is currently a thinly disguised copy of the Tutorial. Needs to be augmented. -
thomas 1998-01-12

 Although the site administrator is responsible for overall management of the Postgres installation,
some databases within the installation may be managed by another person, designated the database
administrator. This assignment of responsibilities occurs when a database is created. A user may be
assigned explicit privileges to create databases and/or to create new users. A user assigned both
privileges can perform most administrative task within Postgres, but will not by default have the
same operating system privileges as the site administrator.

 The Database Administrator’s Guide covers these topics in more detail.

10.1. Database Creation
 Databases are created by the create database issued from within Postgres. createdb is a
command-line utility provided to give the same functionality from outside Postgres.

 The Postgres backend must be running for either method to succeed, and the user issuing the
command must be the Postgres superuser or have been assigned database creation privileges by the
superuser.

 To create a new database named mydb from the command line, type

% createdb mydb

 and to do the same from within psql type

=> CREATE DATABASE mydb;

 If you do not have the privileges required to create a database, you will see the following:

ERROR: CREATE DATABASE: Permission denied.

 Postgres allows you to create any number of databases at a given site and you automatically
become the database administrator of the database you just created. Database names must have an
alphabetic first character and are limited to 32 characters in length.

10.2. Alternate Database Locations
 It is possible to create a database in a location other than the default location for the installation.
Remember that all database access actually occurs through the database backend, so that any
location specified must be accessible by the backend.

 Alternate database locations are created and referenced by an environment variable which gives the
absolute path to the intended storage location. This environment variable must have been defined
before the postmaster was started and the location it points to must be writable by the postgres
administrator account. Consult with the site administrator regarding preconfigured alternate
database locations. Any valid environment variable name may be used to reference an alternate

Chapter 10. Managing a Database

93

location, although using variable names with a prefix of PGDATA is recommended to avoid
confusion and conflict with other variables.

Note: In previous versions of Postgres, it was also permissable to use an absolute path name
to specify an alternate storage location. Although the environment variable style of specification
is to be preferred since it allows the site administrator more flexibility in managing disk storage,
it is also possible to use an absolute path to specify an alternate location. The administrator’s
guide discusses how to enable this feature.

 For security and integrity reasons, any path or environment variable specified has some additional
path fields appended. Alternate database locations must be prepared by running initlocation.

 To create a data storage area using the environment variable PGDATA2 (for this example set to
/alt/postgres), ensure that /alt/postgres already exists and is writable by the Postgres
administrator account. Then, from the command line, type

% initlocation PGDATA2
Creating Postgres database system directory /alt/postgres/data
Creating Postgres database system directory /alt/postgres/data/base

 To create a database in the alternate storage area PGDATA2 from the command line, use the
following command:

% createdb -D PGDATA2 mydb

 and to do the same from within psql type

=> CREATE DATABASE mydb WITH LOCATION = ’PGDATA2’;

 If you do not have the privileges required to create a database, you will see the following:

ERROR: CREATE DATABASE: permission denied

 If the specified location does not exist or the database backend does not have permission to access
it or to write to directories under it, you will see the following:

ERROR: The database path ’/no/where’ is invalid. This may be due to a
character that is not allowed or because the chosen path isn’t permitted
for databases.

10.3. Accessing a Database
 Once you have constructed a database, you can access it by:

running the PostgreSQL interactive terminal psql which allows you to interactively enter, edit,
and execute SQL commands.
 writing a C program using the LIBPQ subroutine library. This allows you to submit SQL
commands from C and get answers and status messages back to your program. This interface is
discussed further in The PostgreSQL Programmer’s Guide.

Chapter 10. Managing a Database

94

You might want to start up psql, to try out the examples in this manual. It can be activated for the
mydb database by typing the command:

% psql mydb

 You will be greeted with the following message:

Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit

mydb=>

This prompt indicates that psql is listening to you and that you can type SQL queries into a
workspace maintained by the terminal monitor. The psql program responds to escape codes that
begin with the backslash character, "\". For example, you can get help on the syntax of various
PostgreSQL SQL commands by typing:

mydb=> \h

 Once you have finished entering your queries into the workspace, you can pass the contents of the
workspace to the Postgres server by typing:

mydb=> \g

 This tells the server to process the query. If you terminate your query with a semicolon, the "\g" is
not necessary. psql will automatically process semicolon terminated queries. To read queries from a
file, say myFile, instead of entering them interactively, type:

mydb=> \i fileName

 To get out of psql and return to Unix, type

mydb=> \q

 and psql will quit and return you to your command shell. (For more escape codes, type \? at the
psql prompt.) White space (i.e., spaces, tabs and newlines) may be used freely in SQL queries.
Single-line comments are denoted by "--". Everything after the dashes up to the end of the line is
ignored. Multiple-line comments, and comments within a line, are denoted by "/* ... */".

10.4. Destroying a Database
 If you are the owner of the database mydb, you can destroy it using the following Unix command:

% dropdb mydb

 This action physically removes all of the Unix files associated with the database and cannot be
undone, so this should only be done with a great deal of forethought.

95

Chapter 11. Performance Tips
 Query performance can be affected by many things. Some of these can be manipulated by the user,
while others are fundamental to the underlying design of the system. This chapter provides some
hints about understanding and tuning Postgres performance.

11.1. Using EXPLAIN
Author: Written by Tom Lane, from e-mail dated 2000-03-27.

 Postgres devises a query plan for each query it is given. Choosing the right plan to match the query
structure and the properties of the data is absolutely critical for good performance. You can use the
EXPLAIN command to see what query plan the system creates for any query. Unfortunately,
plan-reading is an art that deserves a tutorial, and I haven’t had time to write one. Here is some
quick & dirty explanation.

 The numbers that are currently quoted by EXPLAIN are:

 Estimated start-up cost (time expended before output scan can start, e.g., time to do the sorting in
a SORT node).

 Estimated total cost (if all tuples are retrieved, which they may not be --- a query with a LIMIT
will stop short of paying the total cost, for example).

 Estimated number of rows output by this plan node (again, without regard for any LIMIT).

 Estimated average width (in bytes) of rows output by this plan node.

 The costs are measured in units of disk page fetches. (CPU effort estimates are converted into
disk-page units using some fairly arbitrary fudge-factors. If you want to experiment with these
factors, see the list of run-time configuration parameters in the Administrator’s Guide.)

 It’s important to note that the cost of an upper-level node includes the cost of all its child nodes. It’s
also important to realize that the cost only reflects things that the planner/optimizer cares about. In
particular, the cost does not consider the time spent transmitting result tuples to the frontend ---
which could be a pretty dominant factor in the true elapsed time, but the planner ignores it because
it cannot change it by altering the plan. (Every correct plan will output the same tuple set, we trust.)

 Rows output is a little tricky because it is not the number of rows processed/scanned by the query
--- it is usually less, reflecting the estimated selectivity of any WHERE-clause constraints that are
being applied at this node. Ideally the top-level rows estimate will approximate the number of rows
actually returned, updated, or deleted by the query (again, without considering the effects of
LIMIT).

 Average width is pretty bogus because the thing really doesn’t have any idea of the average length
of variable-length columns. I’m thinking about improving that in the future, but it may not be worth
the trouble, because the width isn’t used for very much.

 Here are some examples (using the regress test database after a vacuum analyze, and almost-7.0

Chapter 11. Performance Tips

96

sources):

regression=# explain select * from tenk1;
NOTICE: QUERY PLAN:

Seq Scan on tenk1 (cost=0.00..333.00 rows=10000 width=148)

 This is about as straightforward as it gets. If you do

select * from pg_class where relname = ’tenk1’;

 you’ll find out that tenk1 has 233 disk pages and 10000 tuples. So the cost is estimated at 233 block
reads, defined as 1.0 apiece, plus 10000 * cpu_tuple_cost which is currently 0.01 (try show
cpu_tuple_cost).

 Now let’s modify the query to add a qualification clause:

regression=# explain select * from tenk1 where unique1 < 1000;
NOTICE: QUERY PLAN:

Seq Scan on tenk1 (cost=0.00..358.00 rows=1000 width=148)

 The estimate of output rows has gone down because of the WHERE clause. (This estimate is
uncannily accurate because tenk1 is a particularly simple case --- the unique1 column has 10000
distinct values ranging from 0 to 9999, so the estimator’s linear interpolation between min and max
column values is dead-on.) However, the scan will still have to visit all 10000 rows, so the cost
hasn’t decreased; in fact it has gone up a bit to reflect the extra CPU time spent checking the
WHERE condition.

 Modify the query to restrict the qualification even more:

regression=# explain select * from tenk1 where unique1 < 100;
NOTICE: QUERY PLAN:

Index Scan using tenk1_unique1 on tenk1 (cost=0.00..89.35 rows=100
width=148)

 and you will see that if we make the WHERE condition selective enough, the planner will
eventually decide that an indexscan is cheaper than a sequential scan. This plan will only have to
visit 100 tuples because of the index, so it wins despite the fact that each individual fetch is
expensive.

 Add another condition to the qualification:

regression=# explain select * from tenk1 where unique1 < 100 and
regression-# stringu1 = ’xxx’;
NOTICE: QUERY PLAN:

Index Scan using tenk1_unique1 on tenk1 (cost=0.00..89.60 rows=1
width=148)

Chapter 11. Performance Tips

97

 The added clause "stringu1 = ’xxx’" reduces the output-rows estimate, but not the cost because we
still have to visit the same set of tuples.

 Let’s try joining two tables, using the fields we have been discussing:

regression=# explain select * from tenk1 t1, tenk2 t2 where t1.unique1 <
100
regression-# and t1.unique2 = t2.unique2;
NOTICE: QUERY PLAN:

Nested Loop (cost=0.00..144.07 rows=100 width=296)
 -> Index Scan using tenk1_unique1 on tenk1 t1
 (cost=0.00..89.35 rows=100 width=148)
 -> Index Scan using tenk2_unique2 on tenk2 t2
 (cost=0.00..0.53 rows=1 width=148)

 In this nested-loop join, the outer scan is the same indexscan we had in the example before last, and
so its cost and row count are the same because we are applying the "unique1 < 100" WHERE clause
at that node. The "t1.unique2 = t2.unique2" clause isn’t relevant yet, so it doesn’t affect the outer
scan’s row count. For the inner scan, the current outer-scan tuple’s unique2 value is plugged into the
inner indexscan to produce an indexqual like "t2.unique2 = constant". So we get the same
inner-scan plan and costs that we’d get from, say, "explain select * from tenk2 where unique2 = 42".
The loop node’s costs are then set on the basis of the outer scan’s cost, plus one repetition of the
inner scan for each outer tuple (100 * 0.53, here), plus a little CPU time for join processing.

 In this example the loop’s output row count is the same as the product of the two scans’ row counts,
but that’s not true in general, because in general you can have WHERE clauses that mention both
relations and so can only be applied at the join point, not to either input scan. For example, if we
added "WHERE ... AND t1.hundred < t2.hundred", that’d decrease the output row count of the join
node, but not change either input scan.

 One way to look at variant plans is to force the planner to disregard whatever strategy it thought
was the winner, using the enable/disable flags for each plan type. (This is a crude tool, but useful.
See also Section 11.2.)

regression=# set enable_nestloop = off;
SET VARIABLE
regression=# explain select * from tenk1 t1, tenk2 t2 where t1.unique1 <
100
regression-# and t1.unique2 = t2.unique2;
NOTICE: QUERY PLAN:

Hash Join (cost=89.60..574.10 rows=100 width=296)
 -> Seq Scan on tenk2 t2
 (cost=0.00..333.00 rows=10000 width=148)
 -> Hash (cost=89.35..89.35 rows=100 width=148)
 -> Index Scan using tenk1_unique1 on tenk1 t1
 (cost=0.00..89.35 rows=100 width=148)

 This plan proposes to extract the 100 interesting rows of tenk1 using ye same olde indexscan, stash
them into an in-memory hash table, and then do a sequential scan of tenk2, probing into the hash
table for possible matches of "t1.unique2 = t2.unique2" at each tenk2 tuple. The cost to read tenk1

Chapter 11. Performance Tips

98

and set up the hash table is entirely start-up cost for the hash join, since we won’t get any tuples out
until we can start reading tenk2. The total time estimate for the join also includes a pretty hefty
charge for CPU time to probe the hash table 10000 times. Note, however, that we are NOT charging
10000 times 89.35; the hash table setup is only done once in this plan type.

11.2. Controlling the Planner with Explicit JOINs
 Beginning with Postgres 7.1 it is possible to control the query planner to some extent by using
explicit JOIN syntax. To see why this matters, we first need some background.

 In a simple join query, such as

SELECT * FROM a,b,c WHERE a.id = b.id AND b.ref = c.id;

 the planner is free to join the given tables in any order. For example, it could generate a query plan
that joins A to B, using the WHERE clause a.id = b.id, and then joins C to this joined table, using
the other WHERE clause. Or it could join B to C and then join A to that result. Or it could join A to
C and then join them with B --- but that would be inefficient, since the full Cartesian product of A
and C would have to be formed, there being no applicable WHERE clause to allow optimization of
the join. (All joins in the Postgres executor happen between two input tables, so it’s necessary to
build up the result in one or another of these fashions.) The important point is that these different
join possibilities give semantically equivalent results but may have hugely different execution costs.
Therefore, the planner will explore all of them to try to find the most efficient query plan.

 When a query only involves two or three tables, there aren’t many join orders to worry about. But
the number of possible join orders grows exponentially as the number of tables expands. Beyond ten
or so input tables it’s no longer practical to do an exhaustive search of all the possibilities, and even
for six or seven tables planning may take an annoyingly long time. When there are too many input
tables, the Postgres planner will switch from exhaustive search to a genetic probabilistic search
through a limited number of possibilities. (The switchover threshold is set by the
GEQO_THRESHOLD run-time parameter described in the Administrator’s Guide.) The genetic
search takes less time, but it won’t necessarily find the best possible plan.

 When the query involves outer joins, the planner has much less freedom than it does for plain
(inner) joins. For example, consider

SELECT * FROM a LEFT JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);

 Although this query’s restrictions are superficially similar to the previous example, the semantics
are different because a row must be emitted for each row of A that has no matching row in the join
of B and C. Therefore the planner has no choice of join order here: it must join B to C and then join
A to that result. Accordingly, this query takes less time to plan than the previous query.

 In Postgres 7.1, the planner treats all explicit JOIN syntaxes as constraining the join order, even
though it is not logically necessary to make such a constraint for inner joins. Therefore, although all
of these queries give the same result:

SELECT * FROM a,b,c WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a CROSS JOIN b CROSS JOIN c WHERE a.id = b.id AND b.ref =
c.id;
SELECT * FROM a JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);

Chapter 11. Performance Tips

99

 the second and third take less time to plan than the first. This effect is not worth worrying about for
only three tables, but it can be a lifesaver with many tables.

 You do not need to constrain the join order completely in order to cut search time, because it’s OK
to use JOIN operators in a plain FROM list. For example,

SELECT * FROM a CROSS JOIN b, c, d, e WHERE ...;

 forces the planner to join A to B before joining them to other tables, but doesn’t constrain its
choices otherwise. In this example, the number of possible join orders is reduced by a factor of 5.

 If you have a mix of outer and inner joins in a complex query, you might not want to constrain the
planner’s search for a good ordering of inner joins inside an outer join. You can’t do that directly in
the JOIN syntax, but you can get around the syntactic limitation by using subselects. For example,

SELECT * FROM d LEFT JOIN
 (SELECT * FROM a, b, c WHERE ...) AS ss
 ON (...);

 Here, joining D must be the last step in the query plan, but the planner is free to consider various
join orders for A,B,C.

 Constraining the planner’s search in this way is a useful technique both for reducing planning time
and for directing the planner to a good query plan. If the planner chooses a bad join order by default,
you can force it to choose a better order via JOIN syntax --- assuming that you know of a better
order, that is. Experimentation is recommended.

11.3. Populating a Database
 One may need to do a large number of table insertions when first populating a database. Here are
some tips and techniques for making that as efficient as possible.

11.3.1. Disable Auto-commit

 Turn off auto-commit and just do one commit at the end. Otherwise Postgres is doing a lot of work
for each record added. In general when you are doing bulk inserts, you want to turn off some of the
database features to gain speed.

11.3.2. Use COPY FROM

 Use COPY FROM STDIN to load all the records in one command, instead of a series of INSERT
commands. This reduces parsing, planning, etc overhead a great deal. If you do this then it’s not
necessary to fool around with autocommit, since it’s only one command anyway.

11.3.3. Remove Indices

 If you are loading a freshly created table, the fastest way is to create the table, bulk-load with
COPY, then create any indexes needed for the table. Creating an index on pre-existing data is
quicker than updating it incrementally as each record is loaded.

 If you are augmenting an existing table, you can DROP INDEX, load the table, then recreate the
index. Of course, the database performance for other users may be adversely affected during the
time that the index is missing.

100

Appendix A. Date/Time Support

A.1. Time Zones
 Postgres must have internal tabular information for time zone decoding, since there is no *nix
standard system interface to provide access to general, cross-timezone information. The underlying
OS is used to provide time zone information for output.

Table A-1. Postgres Recognized Time Zones

Time Zone Offset from UTC Description

NZDT +13:00 New Zealand Daylight Time

IDLE +12:00 International Date Line, East

NZST +12:00 New Zealand Std Time

NZT +12:00 New Zealand Time

AESST +11:00 Australia Eastern Summer Std Time

ACSST +10:30 Central Australia Summer Std Time

CADT +10:30 Central Australia Daylight Savings Time

SADT +10:30 South Australian Daylight Time

AEST +10:00 Australia Eastern Std Time

EAST +10:00 East Australian Std Time

GST +10:00 Guam Std Time, USSR Zone 9

LIGT +10:00 Melbourne, Australia

ACST +09:30 Central Australia Std Time

SAST +09:30 South Australia Std Time

CAST +09:30 Central Australia Std Time

AWSST +9:00 Australia Western Summer Std Time

JST +9:00 Japan Std Time,USSR Zone 8

KST +9:00 Korea Standard Time

WDT +9:00 West Australian Daylight Time

MT +8:30 Moluccas Time

AWST +8:00 Australia Western Std Time

CCT +8:00 China Coastal Time

WADT +8:00 West Australian Daylight Time

WST +8:00 West Australian Std Time

Appendix A. Date/Time Support

101

Time Zone Offset from UTC Description

JT +7:30 Java Time

WAST +7:00 West Australian Std Time

IT +3:30 Iran Time

BT +3:00 Baghdad Time

EETDST +3:00 Eastern Europe Daylight Savings Time

CETDST +2:00 Central European Daylight Savings Time

EET +2:00 Eastern Europe, USSR Zone 1

FWT +2:00 French Winter Time

IST +2:00 Israel Std Time

MEST +2:00 Middle Europe Summer Time

METDST +2:00 Middle Europe Daylight Time

SST +2:00 Swedish Summer Time

BST +1:00 British Summer Time

CET +1:00 Central European Time

DNT +1:00 Dansk Normal Tid

FST +1:00 French Summer Time

MET +1:00 Middle Europe Time

MEWT +1:00 Middle Europe Winter Time

MEZ +1:00 Middle Europe Zone

NOR +1:00 Norway Standard Time

SET +1:00 Seychelles Time

SWT +1:00 Swedish Winter Time

WETDST +1:00 Western Europe Daylight Savings Time

GMT 0:00 Greenwich Mean Time

WET 0:00 Western Europe

WAT -1:00 West Africa Time

NDT -2:30 Newfoundland Daylight Time

ADT -03:00 Atlantic Daylight Time

NFT -3:30 Newfoundland Standard Time

NST -3:30 Newfoundland Standard Time

AST -4:00 Atlantic Std Time (Canada)

EDT -4:00 Eastern Daylight Time

Appendix A. Date/Time Support

102

Time Zone Offset from UTC Description

CDT -5:00 Central Daylight Time

EST -5:00 Eastern Standard Time

CST -6:00 Central Std Time

MDT -6:00 Mountain Daylight Time

MST -7:00 Mountain Standard Time

PDT -7:00 Pacific Daylight Time

PST -8:00 Pacific Std Time

YDT -8:00 Yukon Daylight Time

HDT -9:00 Hawaii/Alaska Daylight Time

YST -9:00 Yukon Standard Time

AHST -10:00 Alaska-Hawaii Std Time

CAT -10:00 Central Alaska Time

NT -11:00 Nome Time

IDLW -12:00 International Date Line, West

A.1.1. Australian Time Zones

 Australian time zones and their naming variants account for fully one quarter of all time zones in
the Postgres time zone lookup table. There are two naming conflicts with common time zones
defined in the United States, CST and EST.

 If the compiler option USE_AUSTRALIAN_RULES is set then CST, EST, and SAT will be
interpreted using Australian conventions. Without this option, SAT is interpreted as a noise word
indicating "Saturday".

Table A-2. Postgres Australian Time Zones

Time Zone Offset from UTC Description

CST +10:30 Australian Central Standard Time

EST +10:00 Australian Eastern Standard Time

SAT +9:30 South Australian Std Time

A.1.2. Date/Time Input Interpretation

 The date/time types are all decoded using a common set of routines.

Appendix A. Date/Time Support

103

Date/Time Input Interpretation

1. Break the input string into tokens and categorize each token as a string, time, time zone, or
number.

a. If the token contains a colon (":"), this is a time string.

b. If the token contains a dash ("-"), slash ("/"), or dot ("."), this is a date string which
may have a text month.

c. If the token is numeric only, then it is either a single field or an ISO-8601
concatenated date (e.g. "19990113" for January 13, 1999) or time (e.g. 141516 for
14:15:16).

d. If the token starts with a plus ("+") or minus ("-"), then it is either a time zone or a
special field.

2. If the token is a text string, match up with possible strings.

a. Do a binary-search table lookup for the token as either a special string (e.g. today),
day (e.g. Thursday), month (e.g. January), or noise word (e.g. on).

 Set field values and bit mask for fields. For example, set year, month, day for today,
and additionally hour, minute, second for now.

b. If not found, do a similar binary-search table lookup to match the token with a time
zone.

c. If not found, throw an error.

3. The token is a number or number field.

a. If there are more than 4 digits, and if no other date fields have been previously read,
then interpret as a "concatenated date" (e.g. 19990118). 8 and 6 digits are interpreted
as year, month, and day, while 7 and 5 digits are interpreted as year, day of year,
respectively.

b. If the token is three digits and a year has already been decoded, then interpret as day
of year.

c. If four or more digits, then interpret as a year.

d. If in European date mode, and if the day field has not yet been read, and if the value is
less than or equal to 31, then interpret as a day.

e. If the month field has not yet been read, and if the value is less than or equal to 12,
then interpret as a month.

f. If the day field has not yet been read, and if the value is less than or equal to 31, then
interpret as a day.

g. If two digits or four or more digits, then interpret as a year.

h. Otherwise, throw an error.

4. If BC has been specified, negate the year and offset by one for internal storage (there is no year
zero in the Gregorian calendar, so numerically 1BC becomes year zero).

5. If BC was not specified, and if the year field was two digits in length, then adjust the year to 4
digits. If the field was less than 70, then add 2000; otherwise, add 1900.

Tip: Gregorian years 1-99AD may be entered by using 4 digits with leading zeros (e.g. 0099 is
99AD). Previous versions of Postgres accepted years with three digits and with single

Appendix A. Date/Time Support

104

digits, but as of version 7.0 the rules have been tightened up to reduce the possibility of
ambiguity.

A.2. History of Units
Note: Contributed by José Soares (<jose@sferacarta.com>)

 The Julian Day was invented by the French scholar Joseph Justus Scaliger (1540-1609) and
probably takes its name from the Scaliger’s father, the Italian scholar Julius Caesar Scaliger
(1484-1558). Astronomers have used the Julian period to assign a unique number to every day since
1 January 4713 BC. This is the so-called Julian Day (JD). JD 0 designates the 24 hours from noon
UTC on 1 January 4713 BC to noon UTC on 2 January 4713 BC.

 "Julian Day" is different from "Julian Date". The Julian calendar was introduced by Julius Caesar in
45 BC. It was in common use until the 1582, when countries started changing to the Gregorian
calendar. In the Julian calendar, the tropical year is approximated as 365 1/4 days = 365.25 days.
This gives an error of about 1 day in 128 years. The accumulating calendar error prompted Pope
Gregory XIII to reform the calendar in accordance with instructions from the Council of Trent.

 In the Gregorian calendar, the tropical year is approximated as 365 + 97 / 400 days = 365.2425
days. Thus it takes approximately 3300 years for the tropical year to shift one day with respect to the
Gregorian calendar.

 The approximation 365+97/400 is achieved by having 97 leap years every 400 years, using the
following rules:

 Every year divisible by 4 is a leap year.
 However, every year divisible by 100 is not a leap year.
 However, every year divisible by 400 is a leap year after all.

 So, 1700, 1800, 1900, 2100, and 2200 are not leap years. But 1600, 2000, and 2400 are leap years.
By contrast, in the older Julian calendar only years divisible by 4 are leap years.

 The papal bull of February 1582 decreed that 10 days should be dropped from October 1582 so that
15 October should follow immediately after 4 October. This was observed in Italy, Poland, Portugal,
and Spain. Other Catholic countries followed shortly after, but Protestant countries were reluctant to
change, and the Greek orthodox countries didn’t change until the start of this century. The reform
was observed by Great Britain and Dominions (including what is now the USA) in 1752. Thus 2 Sep
1752 was followed by 14 Sep 1752. This is why Unix systems have cal produce the following:

% cal 9 1752
 September 1752
 S M Tu W Th F S
 1 2 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

Note: SQL92 states that �Within the definition of a datetime literal, the datetime values are
constrained by the natural rules for dates and times according to the Gregorian calendar�. Dates
between 1752-09-03 and 1752-09-13, although eliminated in some countries by Papal fiat,
conform to �natural rules� and are hence valid dates.

Appendix A. Date/Time Support

105

 Different calendars have been developed in various parts of the world, many predating the
Gregorian system. For example, the beginnings of the Chinese calendar can be traced back to the
14th century BC. Legend has it that the Emperor Huangdi invented the calendar in 2637 BC. The
People’s Republic of China uses the Gregorian calendar for civil purposes. Chinese calendar is used
for determining festivals.

106

Appendix B. SQL Key Words
 Table B-1 lists all tokens that are key words in the SQL standard and in PostgreSQL 7.1.
Background information can be found in Section 1.1.1.

 SQL distinguishes between reserved and non-reserved key words. Reserved key words are the only
real key words; they are never allowed as identifiers. Non-reserved key words only have a special
meaning in particular contexts and can be used as identifiers in other contexts. Most non-reserved
key words are actually the names of built-in tables and functions specified by SQL and the concept
of non-reserved key words essentially only exists to declare that some predefined meaning is
attached to a word in some contexts.

 In the PostgreSQL parser life is a bit more complicated. There are several different classes of
tokens ranging from those that can never be used as an identifier to those that have absolutely no
special status in the parser as compared to an ordinary identifier. (The latter is usually the case for
functions specified by SQL.) Most SQL reserved key words are not completely reserved in
PostgreSQL, but can be used as column label (as in SELECT 55 AS CHECK, even though CHECK
is a reserved key word).

 In Table B-1 in the column for PostgreSQL we classify as �non-reserved� those key words that are
explicitly known to the parser but are allowed in most or all contexts where an identifier is expected.
Labeled �reserved� are those tokens that are only allowed as �AS� column label names (and perhaps in
very few other contexts). The token AS is the only exception: it cannot even be used as a column
label. As a general rule, if you get spurious parser errors for commands that contain any of the listed
key words as an identifier you should try to quote the identifier to see if the problem goes away.

 It is important to understand before studying Table B-1 that the fact that a key word is not reserved
in PostgreSQL does not mean that the feature related to the word is not implemented. Conversely,
the presence of a key word does not indicate the existence of a feature.

Table B-1. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

ABORT reserved

ABS non-reserved

ABSOLUTE non-reserved reserved reserved

ACCESS non-reserved

ACTION non-reserved reserved reserved

ADA non-reserved non-reserved

ADD non-reserved reserved reserved

ADMIN reserved

AFTER non-reserved reserved

AGGREGATE non-reserved reserved

ALIAS reserved

ALL reserved reserved reserved

ALLOCATE reserved reserved

Appendix B. SQL Key Words

107

Key Word PostgreSQL SQL 99 SQL 92

ALTER non-reserved reserved reserved

ANALYSE reserved

ANALYZE reserved

AND reserved reserved reserved

ANY reserved reserved reserved

ARE reserved reserved

ARRAY reserved

AS reserved reserved reserved

ASC reserved reserved reserved

ASENSITIVE non-reserved

ASSERTION reserved reserved

ASSIGNMENT non-reserved

ASYMMETRIC non-reserved

AT non-reserved reserved reserved

ATOMIC non-reserved

AUTHORIZATION reserved reserved

AVG non-reserved reserved

BACKWARD non-reserved

BEFORE non-reserved reserved

BEGIN non-reserved reserved reserved

BETWEEN reserved non-reserved reserved

BINARY reserved reserved

BIT reserved reserved reserved

BITVAR non-reserved

BIT_LENGTH non-reserved reserved

BLOB reserved

BOOLEAN reserved

BOTH reserved reserved reserved

BREADTH reserved

BY non-reserved reserved reserved

C non-reserved non-reserved

CACHE non-reserved

CALL reserved

CALLED non-reserved

Appendix B. SQL Key Words

108

Key Word PostgreSQL SQL 99 SQL 92

CARDINALITY non-reserved

CASCADE non-reserved reserved reserved

CASCADED reserved reserved

CASE reserved reserved reserved

CAST reserved reserved reserved

CATALOG reserved reserved

CATALOG_NAME non-reserved non-reserved

CHAIN non-reserved non-reserved

CHAR reserved reserved reserved

CHARACTER reserved reserved reserved

CHARACTERISTICS non-reserved

CHARACTER_LENGTH non-reserved reserved

CHARACTER_SET_CATALOG non-reserved non-reserved

CHARACTER_SET_NAME non-reserved non-reserved

CHARACTER_SET_SCHEMA non-reserved non-reserved

CHAR_LENGTH non-reserved reserved

CHECK reserved reserved reserved

CHECKED non-reserved

CHECKPOINT non-reserved

CLASS reserved

CLASS_ORIGIN non-reserved non-reserved

CLOB reserved

CLOSE non-reserved reserved reserved

CLUSTER reserved

COALESCE reserved non-reserved reserved

COBOL non-reserved non-reserved

COLLATE reserved reserved reserved

COLLATION reserved reserved

COLLATION_CATALOG non-reserved non-reserved

COLLATION_NAME non-reserved non-reserved

COLLATION_SCHEMA non-reserved non-reserved

COLUMN reserved reserved reserved

COLUMN_NAME non-reserved non-reserved

COMMAND_FUNCTION non-reserved non-reserved

Appendix B. SQL Key Words

109

Key Word PostgreSQL SQL 99 SQL 92

COMMAND_FUNCTION_CODE non-reserved

COMMENT non-reserved

COMMIT non-reserved reserved reserved

COMMITTED non-reserved non-reserved non-reserved

COMPLETION reserved

CONDITION_NUMBER non-reserved non-reserved

CONNECT reserved reserved

CONNECTION reserved reserved

CONNECTION_NAME non-reserved non-reserved

CONSTRAINT reserved reserved reserved

CONSTRAINTS non-reserved reserved reserved

CONSTRAINT_CATALOG non-reserved non-reserved

CONSTRAINT_NAME non-reserved non-reserved

CONSTRAINT_SCHEMA non-reserved non-reserved

CONSTRUCTOR reserved

CONTAINS non-reserved

CONTINUE reserved reserved

CONVERT non-reserved reserved

COPY reserved

CORRESPONDING reserved reserved

COUNT non-reserved reserved

CREATE non-reserved reserved reserved

CREATEDB non-reserved

CREATEUSER non-reserved

CROSS reserved reserved reserved

CUBE reserved

CURRENT reserved reserved

CURRENT_DATE reserved reserved reserved

CURRENT_PATH reserved

CURRENT_ROLE reserved

CURRENT_TIME reserved reserved reserved

CURRENT_TIMESTAMP reserved reserved reserved

CURRENT_USER reserved reserved reserved

CURSOR non-reserved reserved reserved

Appendix B. SQL Key Words

110

Key Word PostgreSQL SQL 99 SQL 92

CURSOR_NAME non-reserved non-reserved

CYCLE non-reserved reserved

DATA reserved non-reserved

DATABASE non-reserved

DATE reserved reserved

DATETIME_INTERVAL_CODE non-reserved non-reserved

DATETIME_INTERVAL_PRECISION non-reserved non-reserved

DAY non-reserved reserved reserved

DEALLOCATE reserved reserved

DEC reserved reserved reserved

DECIMAL reserved reserved reserved

DECLARE non-reserved reserved reserved

DEFAULT reserved reserved reserved

DEFERRABLE reserved reserved reserved

DEFERRED non-reserved reserved reserved

DEFINED non-reserved

DEFINER non-reserved

DELETE non-reserved reserved reserved

DELIMITERS non-reserved

DEPTH reserved

DEREF reserved

DESC reserved reserved reserved

DESCRIBE reserved reserved

DESCRIPTOR reserved reserved

DESTROY reserved

DESTRUCTOR reserved

DETERMINISTIC reserved

DIAGNOSTICS reserved reserved

DICTIONARY reserved

DISCONNECT reserved reserved

DISPATCH non-reserved

DISTINCT reserved reserved reserved

DO reserved

DOMAIN reserved reserved

Appendix B. SQL Key Words

111

Key Word PostgreSQL SQL 99 SQL 92

DOUBLE non-reserved reserved reserved

DROP non-reserved reserved reserved

DYNAMIC reserved

DYNAMIC_FUNCTION non-reserved non-reserved

DYNAMIC_FUNCTION_CODE non-reserved

EACH non-reserved reserved

ELSE reserved reserved reserved

ENCODING non-reserved

END reserved reserved reserved

END-EXEC reserved reserved

EQUALS reserved

ESCAPE non-reserved reserved reserved

EVERY reserved

EXCEPT reserved reserved reserved

EXCEPTION reserved reserved

EXCLUSIVE non-reserved

EXEC reserved reserved

EXECUTE non-reserved reserved reserved

EXISTING non-reserved

EXISTS reserved non-reserved reserved

EXPLAIN reserved

EXTEND reserved

EXTERNAL reserved reserved

EXTRACT reserved non-reserved reserved

FALSE reserved reserved reserved

FETCH non-reserved reserved reserved

FINAL non-reserved

FIRST reserved reserved

FLOAT reserved reserved reserved

FOR reserved reserved reserved

FORCE non-reserved

FOREIGN reserved reserved reserved

FORTRAN non-reserved non-reserved

FORWARD non-reserved

Appendix B. SQL Key Words

112

Key Word PostgreSQL SQL 99 SQL 92

FOUND reserved reserved

FREE reserved

FROM reserved reserved reserved

FULL reserved reserved reserved

FUNCTION non-reserved reserved

G non-reserved

GENERAL reserved

GENERATED non-reserved

GET reserved reserved

GLOBAL reserved reserved reserved

GO reserved reserved

GOTO reserved reserved

GRANT non-reserved reserved reserved

GRANTED non-reserved

GROUP reserved reserved reserved

GROUPING reserved

HANDLER non-reserved

HAVING reserved reserved reserved

HIERARCHY non-reserved

HOLD non-reserved

HOST reserved

HOUR non-reserved reserved reserved

IDENTITY reserved reserved

IGNORE reserved

ILIKE reserved

IMMEDIATE non-reserved reserved reserved

IMPLEMENTATION non-reserved

IN reserved reserved reserved

INCREMENT non-reserved

INDEX non-reserved

INDICATOR reserved reserved

INFIX non-reserved

INHERITS non-reserved

INITIALIZE reserved

Appendix B. SQL Key Words

113

Key Word PostgreSQL SQL 99 SQL 92

INITIALLY reserved reserved reserved

INNER reserved reserved reserved

INOUT reserved reserved

INPUT reserved reserved

INSENSITIVE non-reserved non-reserved reserved

INSERT non-reserved reserved reserved

INSTANCE non-reserved

INSTANTIABLE non-reserved

INSTEAD non-reserved

INT reserved reserved

INTEGER reserved reserved

INTERSECT reserved reserved reserved

INTERVAL non-reserved reserved reserved

INTO reserved reserved reserved

INVOKER non-reserved

IS reserved reserved reserved

ISNULL reserved

ISOLATION non-reserved reserved reserved

ITERATE reserved

JOIN reserved reserved reserved

K non-reserved

KEY non-reserved reserved reserved

KEY_MEMBER non-reserved

KEY_TYPE non-reserved

LANCOMPILER non-reserved

LANGUAGE non-reserved reserved reserved

LARGE reserved

LAST reserved reserved

LATERAL reserved

LEADING reserved reserved reserved

LEFT reserved reserved reserved

LENGTH non-reserved non-reserved

LESS reserved

LEVEL non-reserved reserved reserved

Appendix B. SQL Key Words

114

Key Word PostgreSQL SQL 99 SQL 92

LIKE reserved reserved reserved

LIMIT reserved reserved

LISTEN reserved

LOAD reserved

LOCAL reserved reserved reserved

LOCALTIME reserved

LOCALTIMESTAMP reserved

LOCATION non-reserved

LOCATOR reserved

LOCK reserved

LOWER non-reserved reserved

M non-reserved

MAP reserved

MATCH non-reserved reserved reserved

MAX non-reserved reserved

MAXVALUE non-reserved

MESSAGE_LENGTH non-reserved non-reserved

MESSAGE_OCTET_LENGTH non-reserved non-reserved

MESSAGE_TEXT non-reserved non-reserved

METHOD non-reserved

MIN non-reserved reserved

MINUTE non-reserved reserved reserved

MINVALUE non-reserved

MOD non-reserved

MODE non-reserved

MODIFIES reserved

MODIFY reserved

MODULE reserved reserved

MONTH non-reserved reserved reserved

MORE non-reserved non-reserved

MOVE reserved

MUMPS non-reserved non-reserved

NAME non-reserved non-reserved

NAMES non-reserved reserved reserved

Appendix B. SQL Key Words

115

Key Word PostgreSQL SQL 99 SQL 92

NATIONAL non-reserved reserved reserved

NATURAL reserved reserved reserved

NCHAR reserved reserved reserved

NCLOB reserved

NEW reserved reserved

NEXT non-reserved reserved reserved

NO non-reserved reserved reserved

NOCREATEDB non-reserved

NOCREATEUSER non-reserved

NONE non-reserved reserved

NOT reserved reserved reserved

NOTHING non-reserved

NOTIFY non-reserved

NOTNULL reserved

NULL reserved reserved reserved

NULLABLE non-reserved non-reserved

NULLIF reserved non-reserved reserved

NUMBER non-reserved non-reserved

NUMERIC reserved reserved reserved

OBJECT reserved

OCTET_LENGTH non-reserved reserved

OF non-reserved reserved reserved

OFF reserved reserved

OFFSET reserved

OIDS non-reserved

OLD reserved reserved

ON reserved reserved reserved

ONLY reserved reserved reserved

OPEN reserved reserved

OPERATION reserved

OPERATOR non-reserved

OPTION non-reserved reserved reserved

OPTIONS non-reserved

OR reserved reserved reserved

Appendix B. SQL Key Words

116

Key Word PostgreSQL SQL 99 SQL 92

ORDER reserved reserved reserved

ORDINALITY reserved

OUT reserved reserved

OUTER reserved reserved reserved

OUTPUT reserved reserved

OVERLAPS reserved non-reserved reserved

OVERLAY non-reserved

OVERRIDING non-reserved

OWNER non-reserved

PAD reserved reserved

PARAMETER reserved

PARAMETERS reserved

PARAMETER_MODE non-reserved

PARAMETER_NAME non-reserved

PARAMETER_ORDINAL_POSITION non-reserved

PARAMETER_SPECIFIC_CATALOG non-reserved

PARAMETER_SPECIFIC_NAME non-reserved

PARAMETER_SPECIFIC_SCHEMA non-reserved

PARTIAL non-reserved reserved reserved

PASCAL non-reserved non-reserved

PASSWORD non-reserved

PATH non-reserved reserved

PENDANT non-reserved

PLI non-reserved non-reserved

POSITION reserved non-reserved reserved

POSTFIX reserved

PRECISION reserved reserved reserved

PREFIX reserved

PREORDER reserved

PREPARE reserved reserved

PRESERVE reserved reserved

PRIMARY reserved reserved reserved

PRIOR non-reserved reserved reserved

PRIVILEGES non-reserved reserved reserved

Appendix B. SQL Key Words

117

Key Word PostgreSQL SQL 99 SQL 92

PROCEDURAL non-reserved

PROCEDURE non-reserved reserved reserved

PUBLIC reserved reserved reserved

READ non-reserved reserved reserved

READS reserved

REAL reserved reserved

RECURSIVE reserved

REF reserved

REFERENCES reserved reserved reserved

REFERENCING reserved

REINDEX non-reserved

RELATIVE non-reserved reserved reserved

RENAME non-reserved

REPEATABLE non-reserved non-reserved

RESET reserved

RESTRICT non-reserved reserved reserved

RESULT reserved

RETURN reserved

RETURNED_LENGTH non-reserved non-reserved

RETURNED_OCTET_LENGTH non-reserved non-reserved

RETURNED_SQLSTATE non-reserved non-reserved

RETURNS non-reserved reserved

REVOKE non-reserved reserved reserved

RIGHT reserved reserved reserved

ROLE reserved

ROLLBACK non-reserved reserved reserved

ROLLUP reserved

ROUTINE reserved

ROUTINE_CATALOG non-reserved

ROUTINE_NAME non-reserved

ROUTINE_SCHEMA non-reserved

ROW non-reserved reserved

ROWS reserved reserved

ROW_COUNT non-reserved non-reserved

Appendix B. SQL Key Words

118

Key Word PostgreSQL SQL 99 SQL 92

RULE non-reserved

SAVEPOINT reserved

SCALE non-reserved non-reserved

SCHEMA non-reserved reserved reserved

SCHEMA_NAME non-reserved non-reserved

SCOPE reserved

SCROLL non-reserved reserved reserved

SEARCH reserved

SECOND non-reserved reserved reserved

SECTION reserved reserved

SECURITY non-reserved

SELECT reserved reserved reserved

SELF non-reserved

SENSITIVE non-reserved

SEQUENCE non-reserved reserved

SERIAL non-reserved

SERIALIZABLE non-reserved non-reserved non-reserved

SERVER_NAME non-reserved non-reserved

SESSION non-reserved reserved reserved

SESSION_USER reserved reserved reserved

SET non-reserved reserved reserved

SETOF reserved

SETS reserved

SHARE non-reserved

SHOW reserved

SIMILAR non-reserved

SIMPLE non-reserved

SIZE reserved reserved

SMALLINT reserved reserved

SOME reserved reserved reserved

SOURCE non-reserved

SPACE reserved reserved

SPECIFIC reserved

SPECIFICTYPE reserved

Appendix B. SQL Key Words

119

Key Word PostgreSQL SQL 99 SQL 92

SPECIFIC_NAME non-reserved

SQL reserved reserved

SQLCODE reserved

SQLERROR reserved

SQLEXCEPTION reserved

SQLSTATE reserved reserved

SQLWARNING reserved

START non-reserved reserved

STATE reserved

STATEMENT non-reserved reserved

STATIC reserved

STDIN non-reserved

STDOUT non-reserved

STRUCTURE reserved

STYLE non-reserved

SUBCLASS_ORIGIN non-reserved non-reserved

SUBLIST non-reserved

SUBSTRING reserved non-reserved reserved

SUM non-reserved reserved

SYMMETRIC non-reserved

SYSID non-reserved

SYSTEM non-reserved

SYSTEM_USER reserved reserved

TABLE reserved reserved reserved

TABLE_NAME non-reserved non-reserved

TEMP non-reserved

TEMPLATE non-reserved

TEMPORARY non-reserved reserved reserved

TERMINATE reserved

THAN reserved

THEN reserved reserved reserved

TIME non-reserved reserved reserved

TIMESTAMP non-reserved reserved reserved

TIMEZONE_HOUR non-reserved reserved reserved

Appendix B. SQL Key Words

120

Key Word PostgreSQL SQL 99 SQL 92

TIMEZONE_MINUTE non-reserved reserved reserved

TO reserved reserved reserved

TOAST non-reserved

TRAILING reserved reserved reserved

TRANSACTION reserved reserved reserved

TRANSACTIONS_COMMITTED non-reserved

TRANSACTIONS_ROLLED_BACK non-reserved

TRANSACTION_ACTIVE non-reserved

TRANSFORM non-reserved

TRANSFORMS non-reserved

TRANSLATE non-reserved reserved

TRANSLATION reserved reserved

TREAT reserved

TRIGGER non-reserved reserved

TRIGGER_CATALOG non-reserved

TRIGGER_NAME non-reserved

TRIGGER_SCHEMA non-reserved

TRIM reserved non-reserved reserved

TRUE reserved reserved reserved

TRUNCATE non-reserved

TRUSTED non-reserved

TYPE non-reserved non-reserved non-reserved

UNCOMMITTED non-reserved non-reserved

UNDER reserved

UNION reserved reserved reserved

UNIQUE reserved reserved reserved

UNKNOWN reserved reserved

UNLISTEN non-reserved

UNNAMED non-reserved non-reserved

UNNEST reserved

UNTIL non-reserved

UPDATE non-reserved reserved reserved

UPPER non-reserved reserved

USAGE reserved reserved

Appendix B. SQL Key Words

121

Key Word PostgreSQL SQL 99 SQL 92

USER reserved reserved reserved

USER_DEFINED_TYPE_CATALOG non-reserved

USER_DEFINED_TYPE_NAME non-reserved

USER_DEFINED_TYPE_SCHEMA non-reserved

USING reserved reserved reserved

VACUUM reserved

VALID non-reserved

VALUE reserved reserved

VALUES non-reserved reserved reserved

VARCHAR reserved reserved reserved

VARIABLE reserved

VARYING non-reserved reserved reserved

VERBOSE reserved

VERSION non-reserved

VIEW non-reserved reserved reserved

WHEN reserved reserved reserved

WHENEVER reserved reserved

WHERE reserved reserved reserved

WITH non-reserved reserved reserved

WITHOUT non-reserved reserved

WORK non-reserved reserved reserved

WRITE reserved reserved

YEAR non-reserved reserved reserved

ZONE non-reserved reserved reserved

122

Bibliography
 Selected references and readings for SQL and Postgres.

 Some white papers and technical reports from the original Postgres development team are available
at the University of California, Berkeley, Computer Science Department web site
(http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/)

SQL Reference Books
 The Practical SQL Handbook , Bowman et al, 1996 , Using Structured Query Language , 3, Judith

Bowman, Sandra Emerson, and Marcy Darnovsky, 0-201-44787-8, 1996, Addison-Wesley,
1996.

 A Guide to the SQL Standard , Date and Darwen, 1997 , A user’s guide to the standard database
language SQL , 4, C. J. Date and Hugh Darwen, 0-201-96426-0, 1997, Addison-Wesley,
1997.

 An Introduction to Database Systems , Date, 1994 , 6, C. J. Date, 1, 1994, Addison-Wesley, 1994.

 Understanding the New SQL , Melton and Simon, 1993 , A complete guide, Jim Melton and Alan R.
Simon, 1-55860-245-3, 1993, Morgan Kaufmann, 1993.

Abstract

Accessible reference for SQL features.

 Principles of Database and Knowledge : Base Systems , Ullman, 1988 , Jeffrey D. Ullman, 1,
Computer Science Press , 1988 .

PostgreSQL-Specific Documentation
 The PostgreSQL Administrator’s Guide , The Administrator’s Guide , Edited by Thomas Lockhart,

2001-04-13, The PostgreSQL Global Development Group.

 The PostgreSQL Developer’s Guide , The Developer’s Guide , Edited by Thomas Lockhart,
2001-04-13, The PostgreSQL Global Development Group.

 The PostgreSQL Programmer’s Guide , The Programmer’s Guide , Edited by Thomas Lockhart,
2001-04-13, The PostgreSQL Global Development Group.

 The PostgreSQL Tutorial Introduction , The Tutorial , Edited by Thomas Lockhart, 2001-04-13,
The PostgreSQL Global Development Group.

 The PostgreSQL User’s Guide , The User’s Guide , Edited by Thomas Lockhart, 2001-04-13, The
PostgreSQL Global Development Group.

 Enhancement of the ANSI SQL Implementation of PostgreSQL , Simkovics, 1998 , Stefan
Simkovics, O.Univ.Prof.Dr.. Georg Gottlob, November 29, 1998, Department of Information
Systems, Vienna University of Technology .

 Discusses SQL history and syntax, and describes the addition of INTERSECT and EXCEPT
constructs into Postgres. Prepared as a Master’s Thesis with the support of O.Univ.Prof.Dr.
Georg Gottlob and Univ.Ass. Mag. Katrin Seyr at Vienna University of Technology.

 The Postgres95 User Manual , Yu and Chen, 1995 , A. Yu and J. Chen, The POSTGRES Group ,
Sept. 5, 1995, University of California, Berkeley CA.

Bibliography

123

Proceedings and Articles
 Partial indexing in POSTGRES: research project , Olson, 1993 , Nels Olson, 1993, UCB Engin

T7.49.1993 O676, University of California, Berkeley CA.

 A Unified Framework for Version Modeling Using Production Rules in a Database System , Ong
and Goh, 1990 , L. Ong and J. Goh, April, 1990, ERL Technical Memorandum M90/33,
University of California, Berkeley CA.

 The Postgres Data Model , Rowe and Stonebraker, 1987 , L. Rowe and M. Stonebraker, Sept. 1987,
VLDB Conference, Brighton, England, 1987.

 Generalized partial indexes (http://simon.cs.cornell.edu/home/praveen/papers/partindex.de95.ps.Z)
, Seshardri, 1995 , P. Seshadri and A. Swami, March 1995, Eleventh International Conference
on Data Engineering, 1995, Cat. No.95CH35724, IEEE Computer Society Press.

 The Design of Postgres , Stonebraker and Rowe, 1986 , M. Stonebraker and L. Rowe, May 1986,
Conference on Management of Data, Washington DC, ACM-SIGMOD, 1986.

 The Design of the Postgres Rules System, Stonebraker, Hanson, Hong, 1987 , M. Stonebraker, E.
Hanson, and C. H. Hong, Feb. 1987, Conference on Data Engineering, Los Angeles, CA,
IEEE, 1987.

 The Postgres Storage System , Stonebraker, 1987 , M. Stonebraker, Sept. 1987, VLDB Conference,
Brighton, England, 1987.

 A Commentary on the Postgres Rules System , Stonebraker et al, 1989, M. Stonebraker, M. Hearst,
and S. Potamianos, Sept. 1989, Record 18(3), SIGMOD, 1989.

 The case for partial indexes (DBMS)
(http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M89-17.pdf) , Stonebraker, M,
1989b, M. Stonebraker, Dec. 1989, Record 18(no.4):4-11, SIGMOD, 1989.

 The Implementation of Postgres , Stonebraker, Rowe, Hirohama, 1990 , M. Stonebraker, L. A.
Rowe, and M. Hirohama, March 1990, Transactions on Knowledge and Data Engineering
2(1), IEEE.

 On Rules, Procedures, Caching and Views in Database Systems , Stonebraker et al, ACM, 1990 ,
M. Stonebraker and et al, June 1990, Conference on Management of Data, ACM-SIGMOD.

