
70 Advanced Tutorials

SAS Macro Library
- An Easy Way to Increase the Productivity and

Improve the Quality of SAS Programming
LuXu

Procter & Gamble Pharmaceuticals, Inc.

INTRODUCTION

SAS provide tools to support a SAS macro
autocalllibrary which can be accessed by any
SAS user who bas the access authority. The user
can simply invoke the macros in the library
from one's progzam ·without· defining them in
the progzam. Macros can be shared easily. The
productivity of SAS programmers can be
increased dramatically.

A SAS macro library can be set up in any
computer system which supports SAS autocall
facility. In the mM MVSrrSO system,
Partitioned Data Set (PDS) can be used to
support the library; while in the mM eMS
system, the MACLm utility can be used to
support the library. In the VAX VMS system,
source statement directory or a VMS text
library can be used to support the library. There
are many ways to organize the library:
centralized, decentralized or hybrid.

No matter what computer system and library
organization are used, the library must be
reliable, and the macros must be correct. To
make a quality product, a good process is
essential. To build and maintain a quality SAS
macro li&rary a software engineering approach
should be adopted. This is because building a
library is a group activity, and during the life
time of the library there will be multiple
versions of the macro code and some personnel
changes. The configuration management plan,
quality assurance plan and design of the library
are the important aspects of the process.

A configuration management plan defines all
policies related to the project. It provides the
methods for managing configuration items
during the life time of the project, including the
maintenance. A quality assurance plan descnbes
the standards and the procedures for the project.
Design answers the questions addressed in the
requirement of the project in technical detail.

NESUG '92 Proceedings

This paper discusses some of the issues of
building a SAS macro autocalilibrary.

CONFIGURATION MANAGEMENT

There are two kinds of things that need to be
considered: configuration items and policies.

Configuration Items

For a SAS macro library, there are three types
of items that need to be considered:

1. All the documents, including the requirement
document, design document, user manual,
configuration management plan, some reports,
etc.

2. Source Code files.

3. Help library files.

Organizations and Policies

An organization to manage the project needs to
be set up. The responsibility of each job needs
to be defined. The process of evaluating and
approving or disapproving changes to any
project configuration item also needs to be
established. AIl the configuration items should
be controlled by their corresponding policies.

The following are some of the issues which
should be addressed by the policy governing the
source code file:

1. Current release repository

2. Backups and history

There should be a policy to handle an abnormal
situation. For example, if fault is discovered in
a macro, the macro needs to be taken off the
library and the user should be informed by e-

mail immediately, also the help library needs to
be updated.

Usually two documents are used to process
change:

1. The new macro request - document filled up
by the user to indicate the desire of having a
new macro.

2. The discrepancy report - document filled up
by the user to indicate faults of the existing
macro in the library.

During the life time of the library, macro code
will be updated either because SAS releases its
new version or a beUer design and
implementation for a macro is introduced. A
policy dealing with when the library should be
revised and how it should be done is necessary.

The key point regarding policy is that policy
should be useful, easy to follow and relevant to
the project.

QUALITY ASSURANCE

A quality assurance plan describes the standards
and the procedures for the project. Some
important standards and procedures related to a
SAS macro library are:

Docwnentation Standards

It specifies the format for all documents.

Design and Coding Standards

It specifies some "should"s and some "should
not"s. For example, in coding, all SAS
keyword should be in upper case. In design,
only the semantics which SAS manual tells
explicitly should be used, "short cut" not
supported by SAS should not be used.

Other Standards

If staffs are experienced, a cleanroom software
development approach may be used. If so, the
cleamoom approach is another standard of the
project.

Advanced Tutorials 71

Procedure for Accepting User Provided
Macros

This procedure describes the steps to accept a
user provided macro. Some necessary steps
would be: to complete requirement and design
documents, recode according to coding
standards, and pass the verification.

Code Review Procedure

This procedure describes how code should be
reviewed. Use code walk through andlor code
inspection techniques.

The key point regarding standards and
procedures is that overall they should make the
job easier.

REQUIREMENTS OF THE LmRARY

The following are some of the library
requirements:

Library Security

A library should be protected against
unauthorized and erroneous access which may
damage or destroy the library.

Information Hiding

For each macro defined in the library, only the
necessary information for using the macro,
(Le., the interface), should be provided to the
user, but not the implementation of the macro.

Low Coupling

Macros should not be coupled with each other
or with the macros which a user defines in one's
program.

No Side Effects

Macros should have no side effects. Neither
undesired data set change and deletion nor
undesired changes of macro variables' value
should happen.

Consistent with SAS Tradition

NESUG '92 Proceedings

72 Advanced Tutorials

SAS traditions, such as default data set name,
should be followed as much as possible. For
example, if no input data set is specified, the
most recent data set will be used as the input
data set; if no output data set is specified, the
output data set will be the same as the input data
set.

Macro Name

The macro name should be meaningful and
expandable in a structured manner.

DESIGN

The following are some of the general design
considerations:

The Macros Should Be General

For example, a certain operation can be applied
on a series of variables, not just one variable,
and the variable names do not have to be
VARI, VAR2 ..• VARn.

Consistent in the Way of Invoking a Macro

There are two ways to invoke macros:
statement-style and name-style. If combining
elements of name-style and statement-style
macro invocations in the same call, unexpected
results may occur. There are several reasons to
use name-style rather than statement-style
invocation:

1. It is easy to identify a name-style invocation
inSAS code.

2. Macros can be invoked anywhere in SAS
code by name-style invocation.

3. Statement-style invocation may cause conflict
if the macro name and variable are the same.

The Information Needed for Macro
Executing Should Be Passed 11u"ough
Parameters

Coupling and side effects will be minimized
because all parameters are local variables. The
keyword parameter passing method should be
used, which can incorporate default values of
parameters easily, make the order of the

NESUG '92 Proceedings

parameter irrelevant and help user to understand
the function of the macro.

The Data Set and Macro Variable Created by
the Macro Should Be Named in a Special
Way

In order to eliminate the side effects, the data
set and macro variable created by the macro
should be named in a special way and let all
SAS users who will use the library know this.
These names will be reserved. All the data sets
created within the macro are temporary which
will be deleted at the end of the execution to
keep the memory usage at a minimum.

Reference Envirorunent and Nested Macro
Invocation

In the SAS macro system, symbolic substitution
method, which is similar to pass by value
parameter passing method, is used for macro
variable reference. Reference environment is
dynamically determined based on invoking
sequence. Macros do not need to be defined in a
nested way. If a nest reference is needed, the
on! y thing to do is to nest the invocation.
Because of the dynamic characteristic, sometime
the RUN statement determines the reference
environment. See example 1 in the appendix for
comparing a nested definition and invocation,
and effect of the RUN statement. The general
rule is that the RUN statement should always be
used for the DATA and PRoe steps.

The following are some of the specific design
considerations:

Library Security

The write authority to the library should only be
granted to one person (or account), who usually
is the library administrator. The library project
member should have the read authority; while
the user should only have the execute authority.

Low Coupling and No Side Effects

The information should be passed by parameters
for communication between open SAS code and
macro, and between macro and macro. All local
variables should be declared local to limit their
visibility.

Consistent with SAS Tradition

To be consistent with SAS in handling default
data set name, the input data set name of a
macro should have a default value of _LAST_,
and the output data set name should be
determined by the statement: %if
%Iength(&dsnout) = 0 %then %Iet dsnout =
&dsnin; See example 1 of the appendix.

SOME OTHER ISSUES

Well-designed test cases are very important to a
macro library. Macros must be verified (code
review and testing) before being put into the
library. The functions of a macro should be
limited, otherwise the long and complicated
codes will cause difficulties in verification.

CONCLUSION

To build and maintain a useful SAS macro
library is not an easy job, but its reward is
tremendous. A software engineering approach is
very helpful during the life time of the library.

APPENDIX

Example 1

Macro definition A - nested macro
invocation

%MACRO prtmnbyl(dsnin = Jast_, byvar =,
var =);

PROC SORT data = &dsnin;
BY &byvar;

RUN;
%meanby(byvar = &byvar, var = &var)
PROC PRINT data = &dsnin;
RUN;

%MEND prtmnbyl;

%MACRO meanby(dsnin = _Iast_, dsnout = ,
byvar =, var=);

%if %length(&dsnout) = 0 %then %let
dsnout = &dsnin;

PROC MEANS data = &dsnin noprint;
BY &byvar;
VAR&var;

OUTPUT out = &dsnout;
RUN;

Advanced Tutorials 73

%MEND meanby;

Macro definition B - nested macro
definition:

%MACRO prtmnbyl(dsnin = _Iast_, byvar =,
var =);

%MACRO meanby(dsnin = _Iast_, dsnout =
, byvar =, var=);

%if %length(&dsnout) = 0 %then %181
dsnout = &dsnin;

PROC MEANS data = &dsnin noprint;
BY &byvar;
VAR&var;

OUTPUT out = &dsnout;
RUN;
%MEND meanby;
PROC SORT data = &dsnin;

BY &byvar;
RUN;
%meanby(byvar = &byvar, var = &var)
PROC PRINT data = &dsnin;

%MEND prtmnbyl;

SAS code for invoking macro prtmnbyl:

Title 'Correct Title';
%prtmnbyl(byvar = group dose time, var =
ci)
Title 'Wrong Title';

Macro resolutions for A:

PROC SORT DATA = _LAST_;
BY GROUP DOSE TIME;
RUN;

PROC MEANS DATA = _LAST_NOPRINT;
BY GROUP DOSE TIME;
VARCI;
OUTPUT OUT = _LAST_;
RUN;

PROC PRINT DATA = _LAST_;.
RUN;

The title for the printout is "Correct Title".

Macro resolutions for B:

They are the same as those for A except that
these is no RUN statement after PROC PRINT,

NESUG '92 proceedings

74 Advanced Tutorials

which causes the title for the printout to be "
Wrong Title" .

Example 2

The JCL code for adding a macro to the library.

II EXEC PGM=IEBUPDTE,PARM=NEW
IISYSPRINT DD SYSOUT=A
IISYSUT2 DD DSN=PDSname,DISP=MOD
IISYSIN DD *
.I ADD NAME=membername,UST=ALL
%MACRO macroname;

macro code
%MEND macroname;
.IENDUP
1*

Notice that the member name in JCL and the
macro name in SAS macro definition should be
the same.

Example 3

The CMS command MACUB for creating a
macro library, adding a member to and deleting
a member from the library.

1. Creating a library
MACUB GEN libname fn

2. Adding a member to the library
MACUB ADD libname fn

3. Deleting a member from the library
MACUB DEL Iibname membername

libname: file name of a macro hbrary, file type
must be MACUB.
fn: name of macro definition file, file type must
be COPY, file must contain fixed length, 80-
character records.

REFERENCES

SAS Language Reference Version 6 First
Edition - SAS Institute Inc.

SAS Guide to Macro Processing Version 6
Second Edition - SAS Institute Inc.

Systeml370 Job Control Language Second
Edition - Gary DeWard Brown

NESUG '92 Proceedings

VM/SP CMS Command Reference Release 6 -
mM

Fundamentals of Software Engineering - Carlo
Ghezzi

Concepts of Programming Languages - Robert
W. Sebesta

SAS is a registered trademark of SAS Institute
Inc.

mM is a registered trademark of International
Business Machines Corporation .

Comments and information, please contact:

LuXu
Procter & Gamble Pharmaceuticals Inc.
17 Eaton Ave.
Norwich, NY 13815
Tel. (607) 335-2992

