
Modeling and Complexity Comparison of

Different Designs

Cheolgi Kim, Abdullah Al-Nayeem, Heechul Yun, Lui Sha
Department of Computer Science, University of Illinois at Urbana-Champaign

1 Introduction

While designing complex systems, there are many design alternatives. The
choice of a simple design at the first place is crucial because it determines
maintenance costs in future. The current practice is to follow good heuristics
and design patterns that have stood the test of time. However, there are similar
patterns to be chosen and different ways to assemble, modify and adapt the
chosen patterns.

We have three related questions raised to select the simplest possible design
that meets all the requirements: First, what should be the complexity metric?
We suggest to used the size of the state space in verification as the metric. Some
engineers claim a verification space may not be definable because of state space
explosions that they commonly observe in many system verification practices.
However, it is sensible to assume that the verification spaces are assumed to be
measurable in our applications since the majority of avionics software is either
safety critical or mission critical.

Second, how do we evaluate the (verification) complexity of alternative de-
signs? Since verification state space size may vary by different verification
methodology, we recommend the following steps to obtain a meaningful com-
parison we require : (a) use the same model checker as the“ruler”; (b) minimal,
verifiably correct and homogeneous abstractions must be employed since ab-
stractions reduces the model checking state space; and (c) the constructs in the
chosen model checking language should closely correspond to the programming
language construct of the design to limit variances caused by different modeling
practices.

Third, developing accurate formal models for software designs can be time
consuming. How can we reduce the overall cost and efforts? Our cost minimiza-
tion approach follows classic optimization method known as branch-and-bound.
This approach is discussed in detail in Section 2

To illustrate our approach, our first example is an Active-Standby control
system described in Section 3 to show how to achieve consistent distributed
views and actions in a networked real-time control system. First, we note
that there is a generic formal low-complexity design pattern called Physically

1

Asynchronous Logically Synchronous architecture (PALS) and its library called
PRISM that can be adapted to support the specific active-standby design.
PALS/PRISM provides the advantages of a logical synchronous system on phys-
ically distributed systems. With this technique, designers can reuse their syn-
chronous design without requiring a single physical global clock. As a result,
complexity of distributed computation can be reduced to be equivalent to the
synchronous design that uses a global clock. PALS and PRISM are described
in more detail in Section 4.1.

Second, we compare a active-standby design using PALS/PRISM and a de-
sign based on asynchronous communications. We use model checking techniques
and use the number of reachable states in each model as a metric of software
complexity. To help make sure the fidelity of the model, we will show the one-
to-one correspondence between the models and actual C implementations. In
addition, we use two model checking tools, Maude[1] and NuSMV[2], each of
which has its advantages and limitations. In the next version of this report, we
will provide more examples.

The rest of this document is organized as follows: Section 2 describe our
complexity metric and comparison methodology. Section 3 describes an active-
standby system example. In Section 4 and 5, we describe the PALS/PRISM
based synchronous design and the event-driven asynchronous design of the
active-standby system. In Section 6 and Section 7, we describe our modeling
technique using Maude and NuSMV. Section 8 presents the conclusion.

2 A Comparison of the Complexity using Model
Checkers

Model checking is a formal verification technique that systematically explores
the state spaces and check the design correctness. While this technique is usu-
ally used to check required properties in a design, we also use the number of
reachable states in model checking as a metric for comparing complexities of
design alternatives. Our analysis is viable based on the fact that safety criti-
cal systems have very strict certification requirements. For example, DO-178B
certification requires full coverage testing for Level A and high coverage testing
for Level B software [3]. Such coverage can be achieved only if the verification
complexity is bounded.

Modeling methodology In order for fair comparisons, the modeling must
be carefully performed. The modeling of the design consists environment mod-
eling and computation logic modeling. The environment includes processes for
dealing with task failure, packet delivery, message queues, etc. Since the envi-
ronment usually have regular patterns, they can be reused over and over again
once they are modeled properly. On the other hand, the computation logic is
what programmers or designers create. Our approach in modeling computation
logic is maintaining one-to-one correspondence between the model and its con-

2

crete implementation (or prototype). It means that our model closely resembles
the concrete implementation both syntactically and semantically. For example,
Figure 1 shows a part of C implementation and its Maude model of an event
handling logic used in our case study. While language keywords used in Maude
model may differ from the C code, there is clear one-to-one correspondence
between the two.

The reason why we highlight the one-to-one correspondence is that this
would increase confidence that any design abstraction used by the modeler would
match to the real implementations. Otherwise, problems discovered in one may
not exist in the other, which means that the verification effort is wasted.

void handle_manualselect() {

event_t evt;

if(my_side == STANDBY) {

my_side = ACTIVE;

SENDTO_SIDE2

(EVT_STANDBY);

} else {

SENDTO_SIDE2

(EVT_MANUALSELECT);

}

}

eq task side1HandlesManualSelection =

if task . mySide == STANDBY then

task lets mySide <- ACTIVE

sends EvtStandby

to side2

else

task sends EvtManualSelection

to side2

fi .

C code Maude code

Figure 1: One-to-one correspondence between the C implementation(left side)
and the Maude model(right side)

Design selection procedure Modeling a design is a iterative and time con-
suming procedure. Therefore, when we compare multiple designs, it may take
enormous time and effort. Here, we intuitively explain our branch-and-bound
design selection procedure to save such time and effort. Suppose that we have
three initial design candidates A, B, and C. The ascending order of complexity
by intuition is 〈A,B,C〉. We may start modeling A first. After some modeling
and design-refinement iterations, we obtain a final design A′ (branching). Let
|A′| denote the state space size of design A′. We then start the same process for
the initial design B. When we model design B, suppose that we find |B| � |A′|.
Since design refinement typically increase the state space size, sticking to design
B is of no use as long as we are looking for a simplest design. Therefore, we
stop refining design B (bounding) and move on to design C to save time and
efforts. We show this procedure as a flowchart in Figure 2.

Based on our experience in our case study, we believe this procedure is
effective. We now describe our experience beginning from the following section.

3

Candidates : Set of designs

Simplest ←∞
BestDesign ← ∅

Does M
fulfill requirements

when model-checking is
performed?

|M| < Simplest

|M| � Simplest

Candidates = ∅

Take BestDesign

yes

yes

yes

yes

no

D ← RefineDesign(D)

Candidates ← Candidates \ {D}

Simplest ← |M|
BestDesign ← D
Candidates ← Candidates \ {D}

M← Modeling(D)

D ← Simplest looking design

among Candidates

no

no

no

Figure 2: Branch-n-Bound design selection flowchart

3 Active-Standby System

In this section, we describe our case study example, called the Active-Standby
System. In the active-standby system, there are two controllers: Side1 and
Side2 for fault-tolerance. We assume a fault-tolerant real-time communication
channel exists between these two sides. At any point in time, only one controller
operates in the ACTIVE mode, while the other one operates in the STANDBY mode.
In this example, the console receives commands from users and sends them to
the controllers. For the sake of complexity, we only consider one command,
ManualSelect, that toggles the active and standby modes of the two controllers.
Both sides also exchange their status or heartbeat at regular intervals. Figure
3 shows the high-level structure of the active-standby system that consists of
three components: Console, Side1, and Side2.

4

Side 1 Side 2

Side1 status

Side2 status

Console

manual selection

Figure 3: Active Standby System

Additionally, we assume that the controllers can fail in the fail-stop manner
and also recover from such failure. In this example, both sides have to work
consistently while facing random failures and user commands as long as both
sides do not get failed together.

We verify our models against the following set of requirements:

1. Both sides should agree on which side is active and only one side must be
active at any point of time.

2. If a side fails, the other side should become active.

3. The user can always choose to toggle the active side given that both sides
are alive or in operative modes.

4 Synchronous System

One example design of the active-standby system for complexity comparison
is a synchronous system design. If we have a global clock synchronizing the
operations of distributed systems in lock steps, system design becomes much
simpler. Designers are also less likely to make errors due to the absence of any
non-deterministic asynchronous interactions.

One of the benefits of synchronous system design is that a synchronous sys-
tem design can easily provide consistent views, consistent actions and synchro-
nized state transitions across distributed nodes, which are desirable in networked
real-time systems, e.g. avionics systems. For example, in a dual-redundant
active-standby system, both controllers must consistently perform discrete mode
controls, for example, changing the active side, in the presence of random hard-
ware failure and asynchronous commands.

However, achieving absolute synchronization by a global clock is not physi-
cally possible in a distributed system. The clock errors of physically separated
nodes can be bounded, but cannot be eliminated. While system engineers may

5

start the design phase with a globally synchronous model, the design must be
modified to cope with the real asynchrony that exists in the system. Such mod-
ifications are usually non-trivial, and can introduce many errors. Also, one of
the biggest problems is that these transformations are currently performed in
an ad-hoc manner.

The rest of the section illustrates our solution to solve these problems. We
present the design of the active-standby example to illustrate our points.

4.1 Overview of the PALS and PRISM solution

In our recent work, we developed an architectural pattern that we named Physi-
cally Asynchronous Logically Synchronous (PALS) system [4, 5, 6, 7] for achiev-
ing optimal logical synchronization in hard real-time distributed systems. Using
PALS, designers can systematically reuse synchronous solution on physically
asynchronous architecture without any changes in the application logic, even in
the absence of a global clock. Also, our solution has been shown to be optimal;
it is impossible to have faster rate to reach a consensus.

We have also developed a library, called PRISM, to implement such a PALS
system. The PRISM library can guarantee that the views, actions and state
transitions of a PALS system are exactly identical to those of a perfectly syn-
chronous system. PALS (and PRISM) based solution can essentially reduce
the design and verification costs of a complex asynchronous system so that it
matches the cost of the simpler synchronous design.

The intuition of the PALS/PRISM solution is quite simple and can be il-
lustrated in Figure 4. The basic idea is to clock the distributed computation
logic in a logical period T . For example, each node in Figure 4 accepts inputs
from the other nodes and the environment, computes its new local state, and
generates outputs to the other nodes and environment at each step. Conceptu-
ally, this is very similar to how the asynchronous logic of an integrated circuit is
made synchronous through the introduction of a clock signal that initiates the
next computation step. To work correctly and preserve logical equivalence with
a synchronous system, we must ensure that

1. The global computation logic for each node executes with period T with
a bounded error to the same global time as every other node. Note that
only the distributed computations run at this period. The local control
computations can run as fast as possible.

2. The period T is long enough to ensure that all messages have arrived at
their destination before the next computation step begins.

3. All nodes that have common external inputs start each synchronization
step with identical values for those inputs.

If these constraints are met, then the behavior of this distributed system at
the end of each step is equivalent to that of a synchronous system of Figure 4.

6

Node 1

Node 2

Node 3

(a) Synchronous System

Node 1

Node 2

Node 3

(b) PALS System

Time

Step i Step i+1 Step i+2

Step i Step i+1 Step i+2

Tmaximum
clock skew

Figure 4: Synchronous system vs. asynchronous system implementing the PALS
pattern

4.2 Synchronous Solution Based on PRISM

In the synchronous model, both Side1 and Side2 make decisions in a lock-step
manner based on a common global clock. Any update to the current clock step
is visible to the all components on the next clock step. Each controller manages
its own mode, ACTIVE or STANDBY, and broadcasts its mode at each clock step.
Since the information is distributed over the system, the mode of each controller
can be treated as part of the global system state.

Figure 5 shows such synchronous operations that is also supported by PRISM.
For example, Side1 posts its status g side1 to Side2 in clock step i. (g is the
prefix for global information.) This change is visible to Side2 on the next clock
step i+1. For consistency, PRISM defers making the same value to be available
to Side1 at step i + 1, too. This deferral of availability simplifies the design
because every node see the same picture at the same time. Manual selection

7

Side1 Side2

Step i

Step i+1

Step i+2

g_side1 g_side1

g_side1 g_side1

g_side2g_side2

g_side2g_side2

Figure 5: Synchronous execution in PRISM

from the console is also maintained as a global information clock-by-clock, too.
Figure 6 (a) shows the state transition diagram of both Side1 and Side2 of

the active-standby system design with PRISM. The logic for Side1 and Side2
are basically the same as follows:

• A controller becomes active if itself is alive and the other is not.

• If both are alive, the mode is flipped by g manualselect.

There is only one difference between Side1 and Side2 logic is the (re)initialization
step. If both become alive in the same step, we need a break even rule. Thereby,
in such a case, Side1 in enforced to be ACTIVE, while Side2 is chosen to be
STANDBY. It is defined in the state transitions from the WAIT states of both
controllers.

This simple and intuitive state diagram can exactly be reflected in the global
computation logic by using the PRISM library. Figure 6 (b) shows the C code
for our PRISM-based implementation of the active-standby system. In this C
code, each state transition happens periodically at the logical clock period as
mentioned in Section 4.1. PRISM also abstracts away the asynchronous com-
munication and presents library functions to read any global system information
and post any value to it. For example, Side1 can post its status, g side1 of
current logical clock step by using the post_side1() function. Then at the
next logical clock step, both Side1 and Side2 can access this value consistently
through the read_side1() function.

8

STANDBY
g_side2 = STANDBY

ACTIVE
g_side2 = ACTIVE

WAIT
g_side2= NO_MSG

g_manualselection ==1
&& g_side1 != NO_MSG

g_manualselection == 1
|| g_side1 == NO_MSG

ALIVE

FAILED
g_side2 = NO_MSG

[TaskFailure]

[TaskRecovery]

STANDBY
g_side1 = STANDBY

ACTIVE
g_side1 = ACTIVE

WAIT
g_side1= NO_MSG

g_side2 != NO_MSG

g_side2 == NO_MSG

g_manualselection == 1
&& g_side2 != NO_MSG

g_manualselection == 1
|| g_side2 == NO_MSG

FAILED
g_side1:= NO_MSG

[TaskFailure]

[TaskRecovery]

Side 1

Side 2

ALIVE

(a) State chart diagram

Side1::eachPeriod() {
if(read_side1() == WAIT

&& read_side2() == NO_MSG) {
post_side1(ACTIVE);

} else if (read_side1() == WAIT) {
post_side1(STANDBY);

} else if (read_side2() == NO_MSG) {
post_side1(ACTIVE);

} else if(read_manualSelection()) {
post_side1(flip(read_side1()));

} else
post_side1(read_side1());

}

(a) C code for Side1

Side2::eachPeriod() {

if (read_side2() == WAIT) {
post_side2(STANDBY);

} else if (read_side1() == NO_MSG) {
post_side2(ACTIVE);

} else if(read_manualSelection()) {
post_side2(flip(read_side2()));

} else
post_side2(read_side2());

}

(b) C code for Side2

(b) C implementation

Figure 6: Design and implementation of PRISM-based active-standby system

9

5 Asynchronous Design

To compare the complexity, we also designed an active-standby system based
on asynchronous communications. Since messages can be issued and delivered
at any time in asynchronous communications, each node must employs message
queues not to accidentally lose messages. The system configuration for active-
standby system is depicted in Figure 7. In asynchronous systems, message
queues are usually the source of complexity as well as the source of the state
space explosions. Since messages are often queued (and hence delayed), different
subsystems tend to have different perspectives on the situation. If messages are
queued in both directions between a pair of nodes, the system experiences race
conditions.

Side1 Side2

Console

Figure 7: Active-standby system configuration in an asynchronous environment

Our asynchronous design is based on [8], which presents the design and
verification of an asynchronous active-standby system. The authors claimed
that they performed model-checking to verify the correctness of the system,
and it took 35 hours in NuSMV [7]. Moreover, the authors mentioned that
the design took about 6 months to be fully completed and verified. Since the
document does not include the precise design of the system, the details of our
design may not be the same as [8]. Indeed, our current design is not complete
with a proof of safety. This design has the following basic behaviors:

• An alive controller generates EvtHeartbeat to the other controller to no-
tify its liveness.

• If no EvtHeartbeat comes in for a while, the controller regards the other
side has failed, taking ACTIVE side role.

• The console delivers EvtManualSelect only to Side1 at the event of user
input. If Side1 is not supposed to process the event, the event is forwarded
to Side2. The reason why the event is forwarded by Side1 rather than
being broadcasted simultaneously to both controllers by the console is to
avoid race condition.

• (EvtManualSelect) is only processed by the STANDBY controller. On the
reception of the event, the STANDBY controller switches its role to ACTIVE,
and enforces the other side to be STANDBY by sending EvtStandby.

10

 [ALIVE]

[FAILED] ACTIVE STANDBY

[HeartbeatTimer] / EvtHeartbeat!

[TimeoutTimer]

EvtHeartbeat? / reset(TimeoutTimer)

EvtStandby?

(EvtHeartBeat(STANDBY)? || EvtManualSelection)
/ EvtStandby!

[TaskRecovery]

EvtManualSelect?
/ EvtManualSelect!

Side1

Side2

[TaskFailure]

 [ALIVE]

[FAILED] ACTIVE STANDBY

[HeartbeatTimer] / EvtHeartbeat!

[TimeoutTimer]

EvtHeartbeat? / reset(TimeoutTimer)

EvtStandby?

EvtManualSelection / EvtStandby!
[TaskRecovery]

EvtManualSelect?

[TaskFailure] EvtHeartBeat
(STANDBY)?

/
EvtHeartbeat
(STANDBY)!

* EvtXXX! : trigger and deliver EvtXXX to the other side in transition
* EvtXXX? : EvtXXX is delivered from outside * [evt] : Internal event such as timer is triggered

(a) State chart diagram

void handle_timeout() {
my_side = ACTIVE;

}

void timer_triggered() {
SEND_HEARTBEAT_TO_SIDE2(my_side);

}

void handle_heartbeat(int state) {
event_t evt;
reset_timeout();
if(my_side == STANDBY

&& state == STANDBY) {
my_side = ACTIVE;
SENDTO_SIDE2(EVT_STANDBY);

}
}

void handle_manualselect() {
event_t evt;
if(my_side == STANDBY) {

my_side = ACTIVE;
SENDTO_SIDE2(EVT_STANDBY);

} else {
SENDTO_SIDE2 (EVT_MANUALSELECT);

}
}

void handle_recvstandby() {
my_side = STANDBY;

}

C code for Side1

void handle_timeout() {
my_side = ACTIVE;

}

void timer_triggered() {
SEND_HEARTBEAT_TO_SIDE1(my_side);

}

void handle_heartbeat(int state) {
event_t evt;
reset_timeout();
if(my_side == STANDBY

&& state == STANDBY) {
SEND_HEARTBEAT_TO_SIDE1(my_side);

}
}

void handle_manualselect() {
event_t evt;
if(my_side == STANDBY) {

my_side = ACTIVE;
SENDTO_SIDE2(EVT_STANDBY);

}
}

void handle_recvstandby() {
my_side = STANDBY;

}

C code for Side2

(b) C implementation

Figure 8: Design and implementation of the asynchronous active-standby system

11

EvtManual
SelectionEvtManual

Selection
EvtStandby

EvtManual
Selection

EvtStandby

Console Side1 Side2

(a) Delayed EvtManualSelection problem

EvtStandby

EvtManual
Selection

Console Side1 Side2

(b) Delayed EvtManualSelection solution

active standby failed

No flipping
of modes

Figure 9: Delayed EvtManualSelection problem

• Sometimes, both side may fall into STANDBY mode together in the initial-
ization. The situation is detected by the first EvtHeartbeat. In such
a case, Side1 changes its mode to ACTIVE mode, and enforces Side2 to
remain in STANDBY mode.

The design is depicted in Figure 8 (a) in a state chart diagram. The message
handlers in C realizing the state chart is presented in Figure 8 (b). Even though
the design looks simple, it hides complexity behind the message delays and
queues.

5.1 Race condition examples in the asynchronous design

In fact, the design presented in Figure 8 needs to be refined and improved.
However, we did not improve the design further based on branch-and-bound
policy because our project goal is to identify these simplest design as soon as
possible. Since the asynchronous design results in far bigger state space even
with some unaddressed bugs we stopped the design refinement iterations.

In this section, we describe two race condition examples that we found during
the design iterations. The first is the one resolved in the current design, and
the second is not.

Why Side1 forwards EvtManualSelect to Side2 As we explained earlier,
EvtManualSelect generated by console to change ACTIVE controller is not si-
multaneously broadcasted to the controllers, but is delivered to Side1 first, and
then Side1 forwards it to Side2. This design is against our intuition. In our ini-
tial design, the console was supposed to broadcast the event to both controllers.
However, we found that the broadcast incurs a race condition. The current de-
sign in which Side1 forwards EvtManualSelect to Side2 without broadcasting
is the result of refinement to avoid the race condition.

12

Figure 9 (a) depicts the scenario that has the race condition. Recall that the
controller in STANDBY mode only handles EvtManualSelect actively in our de-
sign. In the scenario, Side2 was in STANDBY mode when receiving EvtManualSelect.
Thus, it changes its mode into ACTIVE mode and transmits EvtStandby to Side1
to switch the mode of Side1 to STANDBY. Once this procedure is completed, Side2
becomes ACTIVE, and Side1 STANDBY, flipping their roles. The problem happens,
when EvtManualSelect is delivered to Side1 after the above procedure is com-
pleted. The delayed delivery of EvtManualSelect to Side1 initiates another
mode switching procedure between Side1 and Side2, rolling back their roles as
if there has been no EvtManualSelect.

Without modeling the message delays and queues, such a race condition is
not easy to detect. Hence, the state space caused by message queues and delays
have to be counted as complexity sources.

Side1 Side2

EvtHeartbeat
(STANDBY)

Console

EvtManualSelection

EvtManualSelection

EvtStandby

EvtStandby

Both sides
in Standby mode

Figure 10: The next problem

A series of coincidence making system unsafe As we mentioned earlier,
our asynchronous design described in Figure 8 is not comprehensive. There still
is a scenario to make both controllers be in STANDBY mode in the design.1 It is
presented in Figure 10. As shown in the figure, the scenario is complicated, and
series of coincidences. It is almost impossible to find such a scenario from our
design without machine’s assistance. Consequently, we can see that the large
state space size of asynchronous system is not just a number, but the level of
uncertainty that the system can fall into.

1Even though both controllers become STANDBY in the example, they can resolve the prob-
lem after exchanging heartbeat messages. However, once the model checker found this unsafe
state is reachable, there can be other scenarios reaching the same state.

13

6 Model Checking using Maude

In this section, we describe how we modeled the active-standby systems in
Maude, a model checking language, and how we checked the properties for
the system, including state space size. Maude is a functional language that
supports rewriting logic specification. While SMV and UPPAAL are designed
to describe a system in a specific framework, (such as timed automata), Maude
is a general purpose meta-model language. Maude is flexible and easy to extend
its features because of its meta language characteristics. The maude website,
http://maude.cs.uiuc.edu, is the best source of information about maude.
See Appendix A for installation method.

Synchronous Asynchronous designDesign
Design n = 1 n = 2

of states 26 8,122 212,746
* n : the number of same kind of events allowed in a queue at an instance

Table 1: Model-checking state space size in Maude models

6.1 Analysis on state space results

The state space size of the synchronous and asynchronous system models in
Maude is presented in Table 1. (Plase see Appendix B on how to replicate
the results.) The synchronous system model has 26 states of model-checking,
while the asynchronous system model has over 8,000 states even with optimistic
assumptions of message queue behaviors.

The source of this state space difference is the difference of configurations.
In fact, the logic of synchronous and asynchronous designs presented in Fig-
ures 6 and 8 are not very different in complexity by intuition; both have 10–20
lines of code with a couple of if statements in total. However, the complexity
of the asynchronous design is hidden under the system configuration that al-
lows messages to be queued. Recall that message queues cause race conditions,
which are typically overlooked. The results means that more than 8,000 states
(or 200,000) must be rigorously visited and measured to investigate if we have
overlooked system states that may violate requirements in our asynchronous
design.

6.2 Maude model walkthrough

As Maude has a distinctive grammar, understanding Maude models at the first
place is nontrivial. However, we put some efforts to enhance the readability
of the logic modeling part of the code, to achieve one-to-one correspondence
between the model and the design. Recall Figure 1 to compare the Maude
model and corresponding C code.

14

http://maude.cs.uiuc.edu

To briefly introduce our Maude models, let us use the Maude model for
the asynchronous design coded in ‘async3.maude.’ You can find the following
sentences at the end of the modeling file:

op InitialConfig : -> Configuration .

eq InitialConfig =

< side1 : Side | alive , mySide : ACTIVE ,

fromOther : nil , fromConsole : nil >

< side2 : Side | alive , mySide : STANDBY ,

fromOther : nil > .

which describes initial configuration of our model. In these sentences, we can
see that the state of each task is encapsulated within < and >. The encapsulated
entity is called Object in Maude. In the above sentences, Side1 controller is de-
fined to be alive in ACTIVE mode, and has no message in the queues (fromOther
: nil and fromConsole : nil), while Side2 is alive in STANDBY mode with
no queued message.

A configuration changes its state by internal and environmental events from
the defined initial configuration. State transitions are defined by the statements
starting with ‘rl,’ which means rewriting logic, for example:

rl [Console-ManualSelection-triggers] :

< side1 : Side | fromConsole : nil , attr1 >

=> < side1 : Side | fromConsole : nil , attr1 >

EvtManualSelect from console to side1 .

The above rewriting logic explains the state transition, at which console gen-
erates EvtManualSelect event. The expression before => is the precondition
for the event; Side1 must not have any event queued from console.2 Since pre-
condition does not include Side2 object, it has no precondition related to this
event. As long as the precondition is satisfied, an eventual transformation from
the precondition to the postcondition is allowed in the system.

Once an event occurs, it is handled by an event handler:

eq task side1HandlesManualSelection =

if task . mySide == STANDBY then

task lets mySide <- ACTIVE

sends EvtStandby to (task . opposite)

else

task sends EvtManualSelection to (task . opposite)

fi .

Even though the syntax of event handlers is very similar to that of C codes,
it is not because Maude has such predefined syntax. To have such one-to-one
correspondence between C and Maude codes, we have to define the required

2If there is no such precondition, the message queue to store the events from the console
can be indefinitely long. Hence, such a message-queue restriction is required. However, such
restrictions must be sensible and must not be optimistic.

15

syntax and utilities from the scratch. For example lets operation must be
defined in Maude such that:

op _lets otherSide <-_ : Object ActiveStandby -> Object [prec 0] .

eq < s : Side | otherSide : mode1 , attr > lets otherSide <- mode2

= < s : Side | otherSide : mode2, attr > .

which has no resemblance to C code in this case. Indeed, C-like code for the
event handler was not given naturally. Maude language nature is far from
conventional languages, so we need to put some effort to close the gap. But, we
were able to achieve decent similarity with C code in the case of event handlers,
because Maude is flexible and highly extensible.

7 Model Checking using NuSMV

NuSMV [2] is a symbolic model checker. It is capable of verifying both syn-
chronous as well as completely asynchronous systems. In case of the syn-
chronous system designers specify the synchronous Mealy machine represen-
tation of the system while the asynchronous system is specified as a network of
non-deterministic processes. Designers can then verify the temporal properties
of the system in both Computation Tree Logic (CTL) and Linear Temporal
Logic (LTL) form. The NuSMV website, http://nusmv.irst.itc.it/index.
html is the best source of information on this model checker. See Appendix A
for download and installation information.

7.1 Analysis of state space results

Our model checking results using NuSMV also resemble the model checking
results using Maude. (Appendix B show the procedure of model checking in
NuSMV). Our results show that the asynchronous model has very large state
space compared to the PRISM-based synchronous models.

In our synchronous NuSMV model, there are 67 reachable states. Note that
the synchronous Maude model has only 26 states. Since the input variables in
the NuSMV model are considered as part of the state variables, it has has more
states than the Maude model. We have also specified all requirements as CTL
properties, and verified them.

In the asynchronous NuSMV model, we assumed a very restricted asyn-
chronous communication model. The communication model consists of a glob-
ally shared message buffer of size one instead of a more realistic multiple queue
model. Even with this simplification, the number of states is considerably big-
ger, i.e. more than 15 times, than the PRISM based synchronous model. Our
our asynchronous model has 1017 reachable states. Any further relaxation of
the assumption or the refinement of the design will less likely to improve the
number of reachable state space, as shown in Section 6.

16

http://nusmv.irst.itc.it/index.html
http://nusmv.irst.itc.it/index.html

7.2 Brief Explanation of the NuSMV Model

The finite-state representation of each specification in NuSMV is presented as
a MODULE. Each module defines the state variables, initial states and the state
transition relations. The key part of any NuSMV specification is the transition
relation. In general, designers can express any propositional expression to define
the transition relation. However, the lack of powerful high-level constructs can
be limiting to describe very complex interactions.

PRISM-based synchronous model Our synchronous NuSMV model con-
tains three modules: Side1Logic, Side2Logic and main module. Every NuSMV
specification must begin with a main module. There are two key state variables
in this model, g side1 and g side2, to represent the status of each side.

These state variables are updated in lock-step fashion in the module Side1Logic
and Side2Logic respectively. By the properties of the PRISM based syn-
chronous models (Figure 5), both g side1 and g side2 are observed by these
two modules.

The main module in our specification has two more purposes. It randomly
generates three boolean inputs for manual selection (g manualSelection) and
failure injection/restart command–side1Failed and side2Failed–for Side1
and Side2. The main module defines the constraint of no concurrent fail-
ures of both sides for side1Failed and side2Failed. Both Side1Logic and
Side2Logic receive these non-deterministically generated inputs.

Based on this input, Side1Logic and Side2Logic decide the next state value
of g side1 and g side2 respectively. For example, the next state transition of
g side1 in the NuSMV is given below:

DEFINE

NO_MSG := {FAILED, WAIT};

TRANS

side1Failed = 0 & g_side1 != FAILED ->

next(g_side1) = case

g_side1 = WAIT & g_side2 in NO_MSG: ACTIVE;

g_side1 = WAIT & !(g_side2 in NO_MSG): STANDBY;

g_side1 != WAIT & g_side2 in NO_MSG: ACTIVE;

g_side1 = ACTIVE & !(g_side2 in NO_MSG) & g_manualSelection: STANDBY;

g_side1 = STANDBY & !(g_side2 in NO_MSG) & g_manualSelection: ACTIVE;

1 : g_side1;

esac;

The propositional logic of this transition relation shows the evolution of
g side1 in a non-failed state. It is exactly equivalent to the state diagram given
by Figure 6 (a) and resembles these NuSMV case conditions.

In this model, we specify 6 CTL properties as shown in Section B.2 to verify
the requirements. Here we summarize only three properties. The rest are similar
to these three properties.

17

1. AG (!ONE ACTIVE -> ABF 0..5 ONE ACTIVE): This property shows that
the system can be in a state for at most 4 steps without any one side
being active. It takes 5 steps to have one side as active from the initial
state that includes non-deterministic restart as well as any failures during
the initialization. Note that in our model both sides are initially in the
FAILED state and start in non-deterministic order.

2. AG ((BOTH STABLE & FAIL SIDE1) -> ABF 0..2 SIDE2 ACTIVE): If Side1
fails when both sides are stable (ACTIVE or STANDBY), then Side2 can be
active in at most two steps.

3. AG (((MANUAL SELECTION & BOTH STABLE) & SIDE1 ACTIVE) -> AX (BOTH STABLE

-> SIDE2 ACTIVE)): This property states that the manual selection can
switch the active mode from Side1 to Side2 only when both sides are
stable.

7.2.1 Asynchronous model

Similar to the synchronous model there are three processes in our asynchronous
NuSMV model: Side1Logic, Side2Logic, and main. These processes are
non-deterministically executed and communicate through a single event buffer,
EVT BUFFER. Since it is not possible to have global consistent state information
in an asynchronous model, both Side1Logic and Side2Logic maintain local
copy of g side1 and g side2.

The following messages are allowed in the model: heartbeat, standby and
timeout events from Side1 and Side2, manual selection event and failure/restart
events. Each of these events handles are modeled in close correspondence with
the C implementation to keep the model simple. For example, consider the
handler of standby event (EVT STANDBY SIDE1) in Side1. Side2 generates this
event to force Side1 to become standby after the manual selection. The handler
of this event in the Side1Logic process is given below. It updates the status
variables of Side1 and removes the event from the message buffer.

TRANS

ALIVE_STATE = 1 & EVT_BUFFER = EVT_STANDBY_SIDE1 ->

next(g_side1) = ACTIVE &

next(g_side2) = STANDBY &

next(EVT_BUFFER) = EVT_NONE

We have also specified five CTL properties as shown in Section B.2 to ver-
ify the requirements. However, the properties are much weaker compared to
the synchronous model. The properties are given as liveness properties, i.e.
with eventual guarantees, because of the asynchronous interleaving of process
executions.

Here we summarize only the three important CTL properties. The others
are similar to these three.

18

1. AG (!ONE ACTIVE -> AF ONE ACTIVE): This property states that the sys-
tem can eventually reach a safe state of one active side. However, we
cannot explicitly specify in how many steps will take place unlike the
synchronous model.

2. AG ((BOTH STABLE & FAIL SIDE1) -> AF SIDE2 ACTIVE): If Side1 fails
when both sides are alive or stable, then Side2 eventually becomes active.

3. AG (((MANUAL SELECTION & BOTH STABLE) & SIDE1 ACTIVE) -> AF (BOTH STABLE

-> SIDE2 ACTIVE)): This property shows that the manual selection can
eventually switch the active mode from Side1 to Side2 if both sides are
alive or stable.

8 Conclusion

In this document, we demonstrated how to measure and compare the complexity
of software systems. We used a simple active-standby system as a case study
for these purposes. We adopted both synchronous and asynchronous design
principles. For each design principle we developed a concrete C implementation
and corresponding models in both Maude and NuSMV. We model-checked the
desired properties and compared the state spaces. We quantitatively showed
that the complexity of the asynchronous design was much higher than that of the
synchronous one and also how easy it is to introduce errors in the asynchronous
design, even for a very small system.

A Installation of Maude and NuSMV

In this section, we describe installation methods of model checkers we used in
this document.

A.1 Maude

Installation of Maude is mostly about unzipping a file and setting a right path
environment. Once the maude.tar.gz is downloaded from the website, you
may want to unzip it in a directory. Suppose that we want to unzip it at
/usr/local/.

/usr/local$ sudo tar xvf <Downloaded-directory>/maude.tar.gz

/usr/local$ cd maude

/usr/local$ sudo ln -s maude maude.linux (in linux 32bit system)

/usr/local$ sudo chmod 755 maude

Do not make symbolic link to run maude outside of maude installation directory.
The execution file must reside in the same directory as all the other maude
installation files. Then, the path environment variable must be set to include
/usr/local/maude. For example, you can append the following line at the end
of ∼/.bashrc.

19

export PATH=$PATH:/usr/local/maude

Now, we are ready to run Maude.

$ source ~/.bashrc

$ maude

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 2.5 built: May 7 2010 18:55:22

Copyright 1997-2010 SRI International

Sun Aug 1 13:41:32 2010

Maude> _

A.2 NuSMV

NuSMV is freely available. It can be downloaded from http://nusmv.irst.

itc.it/index.html. NuSMV is available for Windows and Linux (Redhat) en-
vironment. In addition to its source, users can directly use the binaries without
any further installation. The latest version is 2.5.0.

NuSMV website hosts relevant tutorials and user manual. You can download
them from the following websites:

1. Tutorial: http://nusmv.fbk.eu/NuSMV/tutorial/index.html

2. User manual: http://nusmv.fbk.eu/NuSMV/userman/index-v2.html

A.2.1 Installation in Windows

The website also gives a self-extracting installation file and allows to install the
program in the system. The executable is located in INSTALL_DIR\NUSMV\2.4.

3\bin\NuSMV.exe. It has to be run from the command prompt.
Alternately, users can download the binaries for Windows environment, un-

zip it and run the executable from the command prompt.

A.2.2 Installation in Linux

Method 1 Users can download the binary (NuSMV-2.5.0-i686-redhat-linux-
gnu.tar.gz)and unzip the files 3. The executable is located in INSTALL_DIR\

bin\NuSMV.

Method 2 Users can download the source files (e.g. NuSMV-2.4.3.tar.gz)
from the website4. NuSMV source files come with additional source code of
CUDD necessary for the execution of NuSMV. Additionally, it uses ZChaff
which has to be download from http://www.princeton.edu/~chaff/zchaff.

3Users might need to install some shared libraries, before using the executable.
4I found some problems installing the version 2.5.0

20

http://nusmv.irst.itc.it/index.html
http://nusmv.irst.itc.it/index.html
http://nusmv.fbk.eu/NuSMV/tutorial/index.html
http://nusmv.fbk.eu/NuSMV/userman/index-v2.html
INSTALL_DIR\NUSMV\2.4.3\bin\NuSMV.exe
INSTALL_DIR\NUSMV\2.4.3\bin\NuSMV.exe
INSTALL_DIR\bin\NuSMV
INSTALL_DIR\bin\NuSMV
http://www.princeton.edu/~chaff/zchaff.html
http://www.princeton.edu/~chaff/zchaff.html
http://www.princeton.edu/~chaff/zchaff.html

html. Before installing NuSMV, users need to compile and link both ZChaff
and CUDD with NuSMV. To install the NuSMV, please follow the following set
of commands.

$ tar zxvf NuSMV-2.4.3.tar.gz

$ cd NuSMV-2.4.3

$ cd cudd-2.4.1.0

$ make

$ cd ../zchaff

$ wget http://www.princeton.edu/~chaff/zchaff/zchaff.64bit.2007.3.12.zip

$./build.sh

$ cd ../nusmv

$./configure --enable-zchaff

$ make

$ make install

NuSMV is by default installed in /usr/local/bin.

B Model Checking using Maude and NuSMV

In this section, we describe how to replicate our state space comparison result
in both Maude and NuSMV.

B.1 Maude

If you would like to reproduce the result:

1. run the maude shell:

$ maude

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 2.5 built: May 7 2010 18:55:22

Copyright 1997-2010 SRI International

Sun Aug 1 13:41:32 2010

Maude> _

2. load a Maude model file:
Maude> load prism.maude (For synchronous design)
Maude> load async3.maude (For asynchronous design)

3. and search the state space:

21

http://www.princeton.edu/~chaff/zchaff.html

Maude> search InitialConfig =>! conf .

search in ACTIVE-STANDBY : InitialConfig =>! conf .

No solution.

states: 26 rewrites: 4416 in 8ms cpu (14ms real) (526278 rewrites/second)

The searching statement is to search deadlock case in the model starting
from the initial configuration (InitialConfig).

Notice that the asynchronous design has a parameter to specify a environ-
ment characteristics. To prohibit message queues from growing indefinitely,
which causes unbounded model-checking space, we limits the number of events
of same kind in a queue. It can be specified by changing the line of the Maude
model file of

eq maxSameEvtAllowed = 2 .

into:

eq maxSameEvtAllowed = n .

where n is the number that you want to set.

B.2 NuSMV

In this section, we show how the model checking results can be replicated for
the PALS/PRISM based synchronous system and the asynchronous system.

Synchronous active-standby system The procedure of model checking of
PRISM-based NuSMV model (prism.smv)is shown in the following:

1. run the model in the interactive mode of NuSMV.
c:\NuSMV-2.5.0\bin\NuSMV.exe -int prism.smv

2. load and build the module with command go. NuSMV > go

3. check the CTL properties with command check ctlspec.

NuSMV > check_ctlspec

-- specification AG (!ONE_ACTIVE -> ABF 0..5 ONE_ACTIVE) is true

-- specification AG !BOTH_ACTIVE is true

-- specification AG ((BOTH_STABLE & FAIL_SIDE1) -> ABF 0..2 SIDE2_ACTIVE) is true

-- specification AG ((BOTH_STABLE & FAIL_SIDE2) -> ABF 0..2 SIDE1_ACTIVE) is true

-- specification AG (((MANUAL_SELECTION & BOTH_STABLE) & SIDE1_ACTIVE) ->

AX (BOTH_STABLE -> SIDE2_ACTIVE)) is true

-- specification AG (((MANUAL_SELECTION & BOTH_STABLE) & SIDE2_ACTIVE) ->

AX (BOTH_STABLE -> SIDE1_ACTIVE)) is true

4. print the number of reachable states with print reachable states com-
mand.

22

NuSMV > print_reachable_states

##

system diameter: 5

reachable states: 67 (2^6.06609) out of 128 (2^7)

##

Asynchronous active-standby system Similar to the previous example
we can calculate the number of reachable states and verify the properties of the
asynchronous NuSMV model (asynch.smv) in the interactive mode:

1. run NuSMV and load the model.

c:\NuSMV-2.5.0\bin\NuSMV.exe -int asynchronous-activestandby.smv

NuSMV > go

2. check the properties.

NuSMV > check_ctlspec

-- specification AG (!ONE_ACTIVE -> AF ONE_ACTIVE) is true

-- specification AG ((BOTH_STABLE & FAIL_SIDE1) -> AF SIDE2_ACTIVE) is true

-- specification AG ((BOTH_STABLE & FAIL_SIDE2) -> AF SIDE1_ACTIVE) is true

-- specification AG (((MANUAL_SELECTION & BOTH_STABLE) & SIDE1_ACTIVE) ->

AF (BOTH_ALIVE -> SIDE2_ACTIVE)) is true

-- specification AG (((MANUAL_SELECTION & BOTH_STABLE) & SIDE2_ACTIVE) ->

AF (BOTH_ALIVE -> SIDE1_ACTIVE)) is true

3. print the number of reachable states.

NuSMV > print_reachable_states

##

system diameter: 11

reachable states: 1017 (2^9.9901) out of 3159 (2^11.6253)

##

References

[1] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott, All About Maude – A High-Performance Logical Framework, ser.
Lecture Notes in Computer Science. Springer, 2007, vol. 4350.

[2] NuSMV, “http://nusmv.irst.itc.it/index.html.”

[3] RTCA, “DO-178B - Software Considerations in Airborne Systems and
Equipment Certification,” RTCA Inc., 1992.

[4] L. Sha, A. Al-Nayeem, M. Sun, J. Meseguer, and P. C. Ölveczky, “PALS:
Physically Asynchronous Logically Synchronous Systems,” University of Illi-
nois at Urbana-Champaign, http://hdl.handle.net/2142/11897, Tech. Rep.,
2009.

23

http://nusmv.irst.itc.it/index.html

[5] J. Meseguer and P. C. Ölveczky, “Formalization and Correctness of the
PALS Pattern for Asynchronous Real-Time Systems,” University of Illinois
at Urbana-Champaign, https://www.ideals.illinois.edu/handle/2142/14214,
Tech. Rep., 2009.

[6] A. Al-Nayeem, M. Sun, X. Qiu, L. Sha, S. P. Miller, and D. D. Cofer,
“A Formal Architecture Pattern for Real-Time Distributed Systems,” in
Proceedings of the 30th Real-Time Systems Symposium, 2009.

[7] S. P. Miller, D. D. Cofer, L. Sha, J. Meseguer, and A. Al-Nayeem, “Imple-
menting Logical Synchrony in Integrated Modular Avionics,” in Proceedings
of the 28th Digital Avionics Conference, 2009.

[8] S. P. Miller, M. W. Whalen, D. O’Brien, M. P. Heimdahl, and A. Joshi,
“A Methodology for the Design and Verification of Globally Asyn-
chronous/Locally Synchronous Architectures.” NASA Contractor Report
CR-2005-213912, 2005.

24

	Introduction
	A Comparison of the Complexity using Model Checkers
	Active-Standby System
	Synchronous System
	Overview of the PALS and PRISM solution
	Synchronous Solution Based on PRISM

	Asynchronous Design
	Race condition examples in the asynchronous design

	Model Checking using Maude
	Analysis on state space results
	Maude model walkthrough

	Model Checking using NuSMV
	Analysis of state space results
	Brief Explanation of the NuSMV Model
	Asynchronous model

	Conclusion
	Installation of Maude and NuSMV
	Maude
	NuSMV
	Installation in Windows
	Installation in Linux

	Model Checking using Maude and NuSMV
	Maude
	NuSMV

