
This is advance information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

ST10X167
USER’S MANUAL

Release 1.1

ST10X167

3/294

1 - INTRODUCTION ... 10

1.1 - DIFFERENCES BETWEEN THE ST10R167, ST10C167 & ST10F167...................... 11

1.2 - ABBREVIATIONS.. 12

2 - ARCHITECTURAL OVERVIEW ... 13

2.1 - BASIC CPU CONCEPTS AND OPTIMIZATIONS... 13

2.1.1 - High Instruction Bandwidth / Fast Execution ... 14

2.2 - HIGH FUNCTION 8 BIT AND 16 BIT ALU .. 15

2.2.1 - Extended Bit Processing and Peripheral Control .. 15
2.2.2 - High Performance Branch, Call, and Loop Processing ... 15
2.2.3 - Consistent and Optimized Instruction Formats.. 16
2.2.4 - Programmable Multiple Priority Interrupt System .. 16

2.3 - ON-CHIP SYSTEM RESOURCES.. 17

2.3.1 - Peripheral Event Control and Interrupt Control ... 17
2.3.2 - Memory Areas ... 17
2.3.3 - External Bus Interface ... 18

2.4 - CLOCK GENERATOR .. 18

2.4.1 - PLL Operation ... 20
2.4.2 - Prescaler Operation... 20
2.4.3 - Direct Drive.. 20
2.4.4 - Oscillator Watchdog (OWD) .. 20

2.5 - ON-CHIP PERIPHERAL BLOCKS .. 21

2.5.1 - Peripheral Interfaces ... 21
2.5.2 - Peripheral Timing .. 21
2.5.3 - Programming Hints .. 21
2.5.4 - Parallel Ports ... 22
2.5.5 - Serial Channels ... 22
2.5.6 - The on-chip CAN Module .. 22
2.5.7 - General Purpose Timer (GPT) Unit ... 23
2.5.8 - Watchdog Timer .. 23
2.5.9 - Capture / Compare (CAPCOM) Units .. 23
2.5.10 - Pulse Width Modulation Unit ... 24
2.5.11 - A/D Converter .. 24

2.6 - PROTECTED BITS ... 25

3 - MEMORY ORGANIZATION.. 26

3.1 - INTERNAL ROM ... 27

3.2 - INTERNAL RAM AND SFR AREA .. 28

3.2.1 - System Stack ... 29
3.2.2 - General Purpose Registers ... 30
3.2.3 - PEC Source and Destination Pointers... 31
3.2.4 - Special Function Registers .. 31

3.3 - THE ON-CHIP XRAM .. 32

3.3.1 - XRAM Access Via External Masters ... 32

3.4 - EXTERNAL MEMORY SPACE ... 33

TABLE OF CONTENTS Page

ST10X167

4/294

3.5 - CROSSING MEMORY BOUNDARIES ... 33

4 - THE CENTRAL PROCESSING UNIT (CPU).. 34

4.1 - INSTRUCTION PIPELINES .. 35

4.1.1 - Sequential Instruction Processing ... 36
4.1.2 - Standard Branch Instruction Processing ... 36
4.1.3 - Cache Jump Instruction Processing .. 36
4.1.4 - Particular Pipeline Effects.. 37

4.2 - BIT-HANDLING AND BIT-PROTECTION ... 40

4.3 - INSTRUCTION EXECUTION TIMES .. 41

4.4 - CPU SPECIAL FUNCTION REGISTERS ... 41

4.4.1 - The System Configuration Register SYSCON .. 42
4.4.2 - The Processor Status Word PSW ... 43
4.4.3 - The Instruction Pointer IP .. 46
4.4.4 - The Code Segment Pointer CSP ... 46
4.4.5 - The Data Page Pointers DPP0, DPP1, DPP2, DPP3 .. 48
4.4.6 - The Context Pointer CP ... 49
4.4.7 - The Stack Pointer SP .. 51
4.4.8 - The Stack Overflow Pointer STKOV .. 51
4.4.9 - The Stack Underflow Pointer STKUN .. 52
4.4.10 - The Multiply / Divide High Register MDH .. 52
4.4.11 - The Multiply / Divide Low Register MDL .. 53
4.4.12 - The Multiply / Divide Control Register MDC .. 53
4.4.13 - The Constant Zeros Register ZEROS ... 54
4.4.14 - The Constant Ones Register ONES .. 54
4.4.15 - Example.. 54

5 - INTERRUPT AND TRAP FUNCTIONS .. 55

5.1 - INTERRUPT SYSTEM STRUCTURE ... 55

5.1.1 - Normal Interrupt Processing and PEC Service ... 58
5.1.2 - Interrupt System Register Description... 59
5.1.3 - Interrupt Control Registers .. 59
5.1.4 - Interrupt Priority Level and Group Level .. 60
5.1.5 - Interrupt Control Functions in the PSW ... 61

5.2 - OPERATION OF THE PEC CHANNELS .. 62

5.3 - PRIORITIZING INTERRUPT & PEC SERVICE REQUESTS 64

5.3.1 - Enabling and Disabling Interrupt Requests ... 64
5.3.2 - Interrupt Class Management ... 64

5.4 - SAVING THE STATUS DURING INTERRUPT SERVICE .. 65

5.4.1 - Context Switching .. 66

5.5 - INTERRUPT RESPONSE TIMES ... 66

5.5.1 - PEC Response Times ... 67

5.6 - EXTERNAL INTERRUPTS .. 69

5.6.1 - Fast External Interrupts ... 70

5.7 - TRAP FUNCTIONS ... 71

5.7.1 - Software Traps 71
5.7.2 - Hardware Traps .. . 71

ST10X167

5/294

5.7.3 - External NMI Trap ... 73
5.7.4 - Stack Overflow Trap .. 73
5.7.5 - Stack Underflow Trap .. 73
5.7.6 - Undefined Opcode Trap .. 73
5.7.7 - Protection Fault Trap ... 73
5.7.8 - Illegal Word Operand Access Trap.. 73
5.7.9 - Illegal Instruction Access Trap... 73
5.7.10 - Illegal External Bus Access Trap... 73

6 - PARALLEL PORTS .. 74

6.1 - INTRODUCTION ... 74

6.1.1 - Open Drain Mode .. 74
6.1.2 - Input Threshold Control ... 75
6.1.3 - Alternate Port Functions .. 76

6.2 - PORT0... 77

6.2.1 - Alternate Functions of PORT0... 78

6.3 - PORT1... 80

6.3.1 - Alternate Functions of PORT1... 80

6.4 - PORT2... 82

6.4.1 - Alternate Functions of Port2 .. 83

6.5 - PORT3... 85

6.5.1 - Alternate Functions of Port3 .. 86

6.6 - PORT4... 88

6.6.1 - Alternate Functions of Port4 .. 89

6.7 - PORT5... 90

6.7.1 - Alternate Functions of Port5 .. 91

6.8 - PORT6... 92

6.8.1 - Alternate Functions of Port6 .. 93

6.9 - PORT7... 95

6.9.1 - Alternate Functions of Port7 .. 96

6.10 - PORT8... 99

6.10.1 - Alternate Functions of Port8 .. 100

7 - DEDICATED PINS .. 102

8 - THE EXTERNAL BUS INTERFACE... 104

8.1 - SINGLE CHIP MODE .. 104

8.2 - EXTERNAL BUS MODES .. 106

8.2.1 - Multiplexed Bus Modes ... 106
8.2.2 - Demultiplexed Bus Modes ... 107
8.2.3 - Switching Between the Bus Modes ... 108
8.2.4 - External Data Bus Width ... 109
8.2.5 - Disable / Enable Control for Pin BHE (BYTDIS) .. 110
8.2.6 - Segment Address Generation ... 110

ST10X167

6/294

8.2.7 - CS Signal Generation .. 110
8.2.8 - Segment Address Versus Chip Select .. 111

8.3 - PROGRAMMABLE BUS CHARACTERISTICS .. 111

8.3.1 - ALE Length Control ... 112
8.3.2 - Programmable Memory Cycle Time .. 113
8.3.3 - Programmable Memory Tri-state Time .. 113
8.3.4 - Read / Write Signal Delay ... 114
8.3.5 - READY Polarity ... 115
8.3.6 - READY / READY Controlled Bus Cycles .. 115
8.3.7 - Programmable Chip Select Timing Control ... 116

8.4 - CONTROLLING THE EXTERNAL BUS CONTROLLER .. 117

8.4.1 - Definition of Address Areas ... 121
8.4.2 - Address Window Arbitration .. 122
8.4.3 - Precautions and Hints ... 123

8.5 - EBC IDLE STATE .. 123

8.6 - EXTERNAL BUS ARBITRATION .. 124

8.6.1 - Connecting Bus Masters ... 125
8.6.2 - Entering the Hold State ... 125
8.6.3 - Exiting the Hold State .. 126

8.7 - THE XBUS INTERFACE ... 127

9 - THE GENERAL PURPOSE TIMER UNITS .. 128

9.1 - TIMER BLOCK GPT1.. 128

9.1.1 - GPT1 Core Timer T3 ... 130
9.1.2 - GPT1 Auxiliary Timers T2 and T4 ... 137
9.1.3 - Interrupt Control for GPT1 Timers ... 142

9.2 - TIMER BLOCK GPT2.. 143

9.2.1 - GPT2 Core Timer T6 ... 145
9.2.2 - Interrupt Control for GPT2 Timers and CAPREL... 154

10 - ASYNCHRONOUS/SYNCHRONOUS SERIAL INTERFACE 155

10.1 - ASYNCHRONOUS OPERATION.. 158

10.2 - SYNCHRONOUS OPERATION .. 161

10.3 - HARDWARE ERROR DETECTION.. 162

10.4 - ASC0 BAUD RATE GENERATION... 162

10.5 - ASC0 INTERRUPT CONTROL ... 163

11 - HIGH-SPEED SYNCHRONOUS SERIAL INTERFACE ... 165

11.1 - FULL-DUPLEX OPERATION .. 170

11.2 - HALF DUPLEX OPERATION .. 172

11.2.1 - Port Control ... 173

11.3 - BAUD RATE GENERATION ... 174

11.4 - ERROR DETECTION MECHANISMS .. 174

ST10X167

7/294

11.5 - SSC INTERRUPT CONTROL ... 175

12 - WATCHDOG TIMER .. 177

12.1 - OPERATION OF THE WATCHDOG TIMER... 177

13 - BOOTSTRAP LOADER .. 179

14 - THE CAPTURE / COMPARE UNITS.. 183

14.1 - CAPCOM TIMERS .. 186

14.2 - CAPCOM UNIT TIMER INTERRUPTS ... 188

14.3 - CAPTURE / COMPARE REGISTERS .. 189

14.3.1 - Selection of Capture Modes and Compare Modes ... 191

14.4 - CAPTURE MODE ... 191

14.5 - COMPARE MODES .. 192

14.5.1 - Compare Mode 0 ... 193
14.5.2 - Compare Mode 1 ... 194
14.5.3 - Compare Mode 2 ... 195
14.5.4 - Compare Mode 3 ... 196
14.5.5 - Double Register Compare Mode ... 196

14.6 - CAPTURE / COMPARE INTERRUPTS .. 198

15 - PULSE WIDTH MODULATION MODULE .. 200

15.1 - OPERATING MODES ... 202

15.1.1 - Mode 0: Standard PWM Generation (Edge Aligned PWM) ... 202
15.1.2 - Mode 1: Symmetrical PWM Generation (Center Aligned PWM) 204
15.1.3 - Burst Mode .. 205
15.1.4 - Single Shot Mode .. 206

15.2 - PWM MODULE REGISTERS.. 207

15.3 - INTERRUPT REQUEST GENERATION... 209

15.4 - PWM OUTPUT SIGNALS ... 210

16 - ANALOG / DIGITAL CONVERTER .. 211

16.1 - MODE SELECTION AND OPERATION.. 212

16.1.1 - Fixed Channel Conversion Modes .. 214
16.1.2 - Auto Scan Conversion Modes ... 214
16.1.3 - Wait for ADDAT Read Mode ... 215
16.1.4 - Channel Injection Mode... 216

16.2 - CONVERSION TIMING CONTROL .. 218

16.3 - CALIBRATION... 218

16.4 - A/D CONVERTER INTERRUPT CONTROL... 218

17 - ON-CHIP CAN INTERFACE .. 220

17.1 - THE CAN CONTROLLER ... 220

ST10X167

8/294

17.2 - REGISTER AND MESSAGE OBJECT ORGANIZATION ... 222

17.3 - CAN INTERRUPT HANDLING .. 225

17.4 - THE MESSAGE OBJECT ... 228

17.5 - ARBITRATION REGISTERS... 230

17.6 - INITIALIZATION AND RESET... 239

17.7 - CAN APPLICATION INTERFACE ... 240

18 - SYSTEM RESET... 241

18.1 - TYPES OF RESET ... 242

18.1.1 - ST10F167 Synchronous Hardware Reset ... 242
18.1.2 - ST10C167 - ST10R167 Synchronous Hardware Reset .. 242
18.1.3 - Asynchronous Hardware Reset... 243
18.1.4 - Software Reset .. 243
18.1.5 - Watchdog Timer Reset .. 243
18.1.6 - Bi-Directional Reset ... 243

18.2 - PINS AFTER RESET .. 244

18.2.1 - System Start-up Configuration .. 247

19 - POWER REDUCTION MODES .. 252

19.1 - IDLE MODE ... 252

19.2 - POWER DOWN MODE... 253

19.2.1 - Protected Power Down Mode .. 253

19.3 - INTERRUPTIBLE POWER DOWN MODE ... 253

19.4 - OUTPUT PIN STATUS.. 256

20 - REGISTER SET .. 257

20.1 - REGISTER DESCRIPTION FORMAT .. 257

20.2 - GENERAL PURPOSE REGISTERS (GPRS) ... 257

20.3 - SPECIAL FUNCTION REGISTERS ORDERED BY NAME 259

20.4 - REGISTERS ORDERED BY ADDRESS .. 265

20.5 - SPECIAL NOTES .. 271

20.6 - IDENTIFICATION REGISTERS .. 271

21 - SYSTEM PROGRAMMING... 273

21.1 - STACK OPERATIONS .. 275

21.2 - REGISTER BANKING ... 278

21.3 - PROCEDURE CALL ENTRY AND EXIT... 278

21.4 - TABLE SEARCHING... 280

21.5 - PERIPHERAL CONTROL AND INTERFACE ... 280

21.6 - FLOATING POINT SUPPORT .. 280

ST10X167

9/294

21.7 - TRAP / INTERRUPT ENTRY AND EXIT... 281

21.8 - INSEPARABLE INSTRUCTION SEQUENCES .. 281

21.9 - OVERRIDING THE DPP ADDRESSING MECHANISM ... 281

21.10 - HANDLING THE INTERNAL ROM .. 282

21.11 - PITS, TRAPS AND MINES.. 283

22 - KEY WORD INDEX... 284

23 - INDEX OF REGISTERS.. 288

24 - REVISION HISTORY .. 291

24.1 - REVISION OF THE 28TH OF AUGUST 2000 ... 291

24.2 - REVISION OF THE 7TH OF AUGUST 2002 ... 292

10/294August 2002

1 - INTRODUCTION

This manual describes the functionality of the
ST10X167 group of devices. ST10X167 is a
generic term covering the ROMless ST10R167,
ROM ST10C167 and flash ST10F167 devices.

The ST10R167 and ST10C167 are functionally
equivalent, apart from the memory arrangement.
The ST10F167 is an older derivative of the device
and has different functionality. Section 1.1 -
“Differences Between the ST10R167, ST10C167
& ST10F167” details the functional differences
between the ST10X167 derivatives.

Comments have been made throughout the
manual to highlight differences where applicable.

An architectural overview describes the CPU
performance, the on-chip system resources, the
on-chip clock generator, the on-chip peripheral
blocks and the protected bits.

The operation of the CPU and the on-chip
peripherals, and the different operating modes -
such as system reset, power reduction modes,
interrupt handling, and system programming - are
described in individual chapters.

The explanation of memory configuration has
been restricted to that of the internal addressable
memory space. The ST10F167 flash
configurations are not discussed in this manual.
Refer to the ST10F167 datasheet for detailed
information.

The Special Functional Registers are listed both
by name and hexadecimal address. The
instruction set is covered in full in the ST10 Family
Programming Manual and is, therefore, not
discussed in this manual. However, software
programming feature - including constructs for

modularity, loops, and context switching - are
described in Chapter 21 - System Programming.

The DC and AC electrical specifications of the
device and the pin description for each available
package, are not covered in this manual but are
listed in the specific device Data Sheets.

Before starting on a new design, verify the device
characteristics and pinout with an up-to-date copy
of the device Data Sheet.

The ST10X167 software and hardware develop-
ment tools include:

– Compilers (C, FORTH, C++)

– Macro-Assemblers, Linkers, Locators, Library
Managers, Format-Converters

– HLL debuggers

– Real-Time operating systems

– In-Circuit Emulators (based on bondout or
standard chips)

– Plug-In emulators

– Emulation and Clip-Over adapters, production
sockets

– Logic Analyzer disassemblers

– Evaluation Boards with monitor programs

– Industrial boards (also for CAN, FUZZY,
PROFIBUS, FORTH applications)

– Network driver software (CAN, PROFIBUS)

ST10X167

USER’S MANUAL

ST10X167

11/294

1.1 - Differences Between the ST10R167,
ST10C167 & ST10F167
Apart from the memory arrangement, the
ST10R167 and ST10C167 are functionally the
same as each other. The ST10F167 is an older
derivative of the device and has different
functionality. This section summarizes the

functional differences between the ST10R167,
ST10C167 devices and the older ST10F167.
These differences have been broken into
functional groups.
The differences have been highlighted again in
the individual chapters of the user manual where
applicable.

Feature ST10C167
& ST10R167 ST10F167

Power Reduction

– Interruptible power down mode Available Not available

– Return from powerdown mode: Selected by setting the bit PWDCFG in the
SYSCON register to ‘1’ and uses the VPP/RPD pin for C167/R167. For ST10F167
the VPP/RPD pin is used for the flash programming voltage.

Available Not available

External Bus Interface

– Programmable chip select timing control. Available Not available

– READY polarity: The active level of the READY pin can be selected by software Available Not available

– Address window arbitration: For each address access the EBC compares the
current address with all address select register.

Available Not available

General Purpose Timers

– Incremental interface mode Available Not available

Syscon Register

Bit allocation

– XPEN - XBUS Peripheral Enable bit enables XRAM and XCAN. For ST10F167 this
bit is used to enable XRAM only as XCAN is always enabled.

Allocated Allocated

– BDRSTEN - Bidirectional reset enable Allocated Not allocated

– OWDDIS - Oscillator watchdog disable control Allocated Not allocated

– PWDCFG - Power down mode configuration control Allocated Not allocated

– CSCFG - Chip select configuration control. Allocated Not allocated

System reset

– Bi-directional reset Available Not available

– Asynchronous reset function Available Not available

CAN module

– Optional disabling of the CAN module by the XPEN bit is the SYSCON
register.

Available Not available

Clock generation

– Optional disabling of the oscillator watchdog by selection of the OWDDIS bit in the
SYSCON register.

Available Not available

Dedicated pins

– The active level of the READY pin can be selected by software. Available Not available

– VPP used for flash programming voltage for ST10F167 or exit from powerdown for
all ST10C167 and ST10R167 devices.

Identification registers

– Four identification registers Available Not available

ST10X167

12/294

1.2 - Abbreviations
The following abbreviations are used in this User’s
Manual:

ADC Analog Digital Converter
ALE Address Latch Enable

ALU Arithmetic and Logic Unit

ASC Asynchronous/synchronous Serial
Controller

BRG Baud Rate Generator
CAN Controller Area Network (License

Bosch)

CAPCOM CAPture and COMpare unit
CISC Complex Instruction Set Computing

CMOS Complementary Metal Oxide Silicon
CPU Central Processing Unit

EBC External Bus Controller
ESFR Extended Special Function Register

Flash Non-volatile memory that may be
electrically erased

GPR General Purpose Register

GPT General Purpose Timer unit

HLL High Level Language

IRAM On-chip Internal RAM

I/O Input / Output

PEC Peripheral Event Controller

PLA Programmable Logic Array

PLL Phase Locked Loop

PWM Pulse Width Modulation

RAM Random Access Memory

RISC Reduced Instruction Set Computing

ROM Read Only Memory

SFR Special Function Register

SSC Synchronous Serial Controller

XBUS Internal representation of the External
Bus

XRAM On-chip extension RAM

ST10X167

13/294

2 - ARCHITECTURAL OVERVIEW

ST10X167 architecture combines the advantages
of both RISC and CISC processors with an
advanced peripheral subsystem. The following
block diagram gives an overview of the different
on-chip components and of the advanced, high
bandwidth internal bus structure of the
ST10X167. (see Figure 1).

2.1 - Basic CPU Concepts and Optimizations
The main core of the CPU includes a 4-stage
instruction pipeline, a 16 Bit arithmetic and logic
unit (ALU) and dedicated SFRs.
Additional hardware is provided for a separate
multiply and divide unit, a Bit-mask generator and
a barrel shifter (See Figure 2).
Several areas of the processor core have been
optimized for performance and flexibility.

Functional blocks in the CPU core are controlled
by signals from the instruction decode logic. The
core improvements are summarized below, and
described in detail in the following sections:

1 High instruction bandwidth / fast execution.

2 High function 8 Bit and 16 Bit arithmetic and
logic unit.

3 Extended Bit processing and peripheral
control.

4 High performance branch, call, and loop
processing.

5 Consistent and optimized instruction formats.

6 Programmable multiple priority interrupt
structure.

Figure 1 : ST10X167 functional block diagram

128K Byte Flash
32K Byte ROM

2K Byte
Internal
RAM

Port0

Port1

Port4

16

16

8

External
Bus

Controller

10
Bit

ADC

GPT1

GPT2

ASC

BRG

Usart
SSC

BRG

PWM CAPCOM2 CAPCOM1 Port2
16

Port6 Port5 Port3 Port7 Port8

8815168

Interrupt Controller

PEC

CPU-Core

16

16

Watchdog

16

Oscillator XTAL1

XTAL2

32

16

16

XRAM

CAN
RxD

TxD

Oscillator
Watchdog

PLL

ST10X167

14/294

2.1.1 - High Instruction Bandwidth / Fast
Execution
Most of the ST10X167’s instructions are executed
in one instruction cycle. For example, shift and
rotate instructions are processed in one
instruction cycle independent of the number of Bit
to be shifted. Multiple-cycle instructions have
been optimized: branches are carried out in 2
CPU clock cycles, 16 × 16 Bit multiplication in 5
CPU clock cycles and a 32/16 Bit division in 10
CPU clock cycles. The jump cache reduces the
execution time of repeatedly performed jumps in a
loop, from 2 CPU clock cycles to 1 CPU clock
cycle.
The instruction cycle time has been reduced by
instruction pipelining. This technique allows the
core CPU to process, in parallel, portions of

multiple sequential instruction stages. The
following four stage pipeline provides the optimum
balancing for the CPU core:

– Fetch: In this stage, an instruction is fetched
from the internal ROM or RAM or from the
external memory, based on the current IP value.

– Decode: In this stage, the previously fetched
instruction is decoded and the required
operands are fetched.

– Execute: In this stage, the specified operation is
performed on the previously fetched operands.

– Write back: In this stage, the result is written to
the specified location.

If this technique is not used, each instruction
would require four instruction cycles. Pipelining
offers increased performance.

Figure 2 : CPU Block Diagram

CPU

SP

STKOV

STKUN

Execution Unit

Instruction Pointer

4-Stage
Pipeline

PSW

SYSCON

MDH

MDL

Multiplication

Bit-Mask

Barrel-Shift

CP

16 Bit

ALU

R15

R0

ADDRSEL 1

ADDRSEL 2

ADDRSEL 3

ADDRSEL 4

BUSCON 0

BUSCON 1

BUSCON 2

BUSCON 3

BUSCON 4

Code Segment Data Page

General
Purpose
Registers

Internal RAM
2K Byte

Bank n

Bank i

Bank 0

16

16

128K Byte
Flash

32K Byte

XRAM

ROM
where

applicable

32

16

Division Hardware

Generator

PointerPointers

ST10X167

15/294

2.2 - High Function 8 Bit and 16 Bit ALU
All standard arithmetic and logical operations are
performed in a 16 Bit ALU. In addition, the
condition flags for Byte operations are provided
from Bit six and seven of the ALU result.
Multiple precision arithmetic is provided through a
'CARRY-IN' signal to the ALU, from previously
calculated portions of the desired operation. Most
of the internal execution blocks have been
optimized to perform operations on either 8 Bit or
16 Bit data.

Once the pipeline has been filled, one instruction
is completed per instruction cycle, except for
multiply and divide. An advanced Booth algorithm
has been incorporated to allow four Bit to be
multiplied and two Bit to be divided per instruction
cycle. Thus, these operations use two coupled 16
Bit registers, MDL and MDH, and require four and
nine instruction cycles, respectively, to perform a
16 Bit by 16 Bit (or 32 Bit by 16 Bit) calculation
plus one instruction cycle to setup and adjust the
operands and the result.

Even these longer multiply and divide instructions
can be interrupted during their execution to allow
very fast interrupt response.

Instructions have also been provided to allow Byte
packing in memory while providing sign extension
of Byte for Word wide arithmetic operations.

The internal bus structure also allows transfers of
Byte or Words to or from peripherals based on the
peripheral requirements.
A set of consistent flags is automatically updated
in the PSW after each arithmetic, logical, shift, or
movement operation.
These flags allow branching on specific
conditions. Support for both signed and unsigned
arithmetic is provided through user-specifiable
branch tests. These flags are also preserved
automatically by the CPU upon entry into an
interrupt or trap routine.
All targets for branch calculations are also
computed in the central ALU.
A 16 Bit barrel shifter provides multiple Bit shifts in
a single instruction cycle. Rotate and arithmetic
shifts are also supported.

2.2.1 - Extended Bit Processing and Peripheral
Control
A large number of instructions are dedicated to Bit
processing. These instructions provide efficient
control and testing of peripherals and they
enhance data manipulation. Unlike other
microcontrollers, these instructions provide direct
access to two operands in the Bit-addressable

space, without the need to move them into
temporary flags.

The same logical instructions available for Words
and Byte, are also supported for Bit. This allows
the user to compare and modify a control Bit for a
peripheral, in one instruction.

Multiple Bit shift instructions have been included
to avoid long instruction streams of single Bit shift
operations. These are also performed in a single
instruction cycle. In addition, Bit field instructions
have been provided to allow the modification of
multiple Bit from one operand in a single
instruction.

2.2.2 - High Performance Branch, Call, and
Loop Processing

Due to the high percentage of branching in
controller applications, branch instructions have
been optimized to require one extra instruction
cycle only when a branch is taken. This is
implemented by pre-calculating the target address
while decoding the instruction.

To decrease loop execution overhead, three
enhancements have been provided:

1 Single cycle branch execution is provided
after the first iteration of a loop. Therefore,
only one instruction cycle is lost during the
execution of the entire loop. In loops which fall
through upon completion, no instruction cycle
is lost when exiting the loop. No special
instruction is required to perform loops, and
loops are automatically detected during
execution of branch instructions.

2 Detection of the end of a table avoids the use
of two compare instructions embedded in
loops. One simply places the lowest negative
number at the end of the specific table, and
specifies branching if neither this value nor
the compared value have been found.
Otherwise the loop is terminated if either
condition has been met. The terminating
condition can then be tested.

3 The third loop enhancement provides a more
flexible solution than the Decrement and Skip
on Zero instruction which is found in other
microcontrollers. Through the use of Com-
pare and Increment or Decrement instruc-
tions, the user can make comparisons to any
value. This allows loop counters to cover any
range. This is particularly powerful in table
searching.

ST10X167

16/294

Saving of system state is automatically performed
on the internal system stack avoiding the use of
instructions to preserve state upon entry and exit
of interrupt or trap routines. Call instructions push
the value of the IP on the system stack, and
require the same execution time as branch
instructions.

Instructions have also been provided to support
indirect branch and call instructions. This supports
implementation of multiple CASE statement
branching in assembler macros and high level
languages.

2.2.3 - Consistent and Optimized Instruction
Formats

To obtain optimum performance in a pipeline
design, an instruction set has been designed
using concepts of Reduced Instruction Set
Computing (RISC).

These concepts primarily allow fast decoding of
the instructions and operands, while reducing
pipeline holds. These concepts, however, do not
preclude the use of complex instructions, which
are required by microcontroller users.

The following goals were used to design the
instruction set:

– To provide powerful instructions to perform
operations which currently require sequences of
instructions and which are frequently used. To
avoid transfer into and out of temporary registers
such as accumulators and carry Bit. To perform
tasks in parallel such as saving state upon entry
into interrupt routines or subroutines.

– To avoid complex encoding schemes by placing
operands in consistent fields for each
instruction. Also to avoid complex addressing
modes which are not frequently used. This
decreases the instruction decode time while also
simplifying the development of compilers and
assemblers.

– To provide most frequently used instructions
with one-word instruction formats. All other
instructions are placed into two-word formats.
This allows all instructions to be placed on Word
boundaries, which alleviates the need for
complex alignment hardware. It also has the
benefit of increasing the range for relative
branching instructions.

The high performance offered by the hardware
implementation of the CPU can efficiently be used
by a programmer via the highly functional
ST10X167 instruction set. Possible operand types
are Bit, Byte and Words. Specific instruction
support the conversion (extension) of Byte to

Words. A variety of direct, indirect or immediate
addressing modes are provided to specify the
required operands.

2.2.4 - Programmable Multiple Priority
Interrupt System

The following enhancements have been included
to allow processing of a large number of interrupt
sources:

– Peripheral Event Controller (PEC): This
processor is used to off-load many interrupt
requests from the CPU. It avoids the overhead
of entering and exiting interrupt or trap routines
by performing single cycle interrupt-driven Byte
or Word data transfers between any two
locations in segment 0 with an optional
increment of either the PEC source or the
destination pointer. Just one cycle is 'stolen'
from the current CPU activity to perform a PEC
service.

– Multiple Priority Interrupt Controller: This
controller allows all interrupts to be placed at any
specified priority. Interrupts may also be
grouped, which provides the user with the ability
to prevent similar priority tasks from interrupting
each other. For each of the possible interrupt
sources there is a separate control register,
which contains an interrupt request flag, an
interrupt enable flag and an interrupt priority
Bitfield. Once having been accepted by the
CPU, an interrupt service can only be
interrupted by a higher prioritized service
request. For standard interrupt processing, each
of the possible interrupt sources has a dedicated
vector location.

– Multiple Register Banks: This feature allows the
user to specify up to sixteen general purpose
registers located anywhere in the internal RAM.
A single “one instruction cycle” instruction is
used to switch register banks from one task to
another.

– Interruptible Multiple Cycle Instructions:
Reduced interrupt latency is provided by
allowing multiple-cycle instructions (multiply,
divide) to be interruptible.

With an interrupt response time within a range
from just 250ns to 500ns (in case of internal
program execution), the ST10X167 is capable of
fast reaction to non-deterministic events.

ST10X167

17/294

The ST10X167 also provides an excellent
mechanism to identify and to process exceptions
or error conditions that arise during run-time, so
called 'Hardware Traps'. Hardware traps cause an
immediate non-maskable system reaction which
is similar to a standard interrupt service
(branching to a dedicated vector table location).
The occurrence of a hardware trap is additionally
signified by an individual Bit in the trap flag
register (TFR).
Except for another higher prioritized trap service
being in progress, a hardware trap will interrupt
any current program execution. In turn, hardware
trap services can normally not be interrupted by
standard or PEC interrupts.
Software interrupts are supported by means of the
'TRAP' instruction in combination with an
individual trap (interrupt) number.

2.3 - On-chip System Resources
The ST10X167 controllers provide a number of
powerful system resources designed around the
CPU. The combination of CPU and these
resources results in the high performance of the
members of this controller family.

2.3.1 - Peripheral Event Control and Interrupt
Control
The Peripheral Event Controller makes it possible
to respond to an interrupt request with a single
data transfer (Word or Byte) which only consumes
one instruction cycle and does not require a save
and restore of the machine status.
Each interrupt source is prioritized in every
instruction cycle in the interrupt control block. If a
PEC service is selected, a PEC transfer is started.
If CPU interrupt service is requested, the current
CPU priority level stored in the PSW register is
tested to determine whether a higher priority
interrupt is currently being serviced.
When an interrupt is acknowledged, the current
state of the machine is saved on the internal
system stack and the CPU branches to the
system specific vector for the peripheral.
The PEC contains a set of SFRs which store the
count value and control Bit for eight data transfer
channels. In addition, the PEC uses a dedicated
area of RAM which contains the source and
destination addresses. The PEC is controlled
similarly to any other peripheral through SFRs
containing the desired configuration of each
channel.
An individual PEC transfer counter is implicitly
decremented for each PEC service except
forming in the continuous transfer mode. When

this counter reaches zero, a standard interrupt is
performed to the vector location related to the
corresponding source. PEC services are very well
suited, for example, to move register contents to/
from a memory table. The ST10X167 has 8 PEC
channels each of which offers such fast
interrupt-driven data transfer capabilities.

2.3.2 - Memory Areas
The memory space of the ST10X167 is
configured in a Von Neumann architecture which
means that code memory, data memory, registers
and I/O ports are organized within the same linear
address space which covers up to 16M Byte. The
entire memory space can be accessed Byte wise
or Word wise. Particular portions of the on-chip
memory have additionally been made directly Bit
addressable.
A 2K Byte 16 Bit wide internal RAM provides
fast access to General Purpose Registers
(GPRs), user data (variables) and system stack.
The internal RAM may also be used for code. A
unique decoding scheme provides flexible user
register banks in the internal memory while
optimizing the remaining RAM for user data.
The CPU contains an actual register context,
consisting of up to 16 Word wide and/or Byte wide
GPRs which are physically located within the
on-chip RAM area.
A Context Pointer (CP) register determines the
base address of the active register bank to be
accessed by the CPU at a time. The number of
register banks is only restricted by the available
internal RAM space. For easy parameter passing,
one register bank may overlap others.
A system stack of up to 1024 Words is provided as
a storage for temporary data. The system stack is
also located within the on-chip RAM area, and it is
accessed by the CPU via the stack pointer (SP)
register. Two separate SFRs, STKOV and
STKUN, are implicitly compared against the stack
pointer value upon each stack access for the
detection of a stack overflow or underflow.
Hardware detection of the selected memory
space is placed at the internal memory decoders
and allows the user to specify any address directly
or indirectly and obtain the desired data without
using temporary registers or special instructions.
A 2K Byte 16 Bit wide on-chip XRAM provides
fast access to user data (variables), user stacks
and code. The on-chip XRAM is an X-Peripheral
and appears to the software as an external RAM.
Therefore it cannot store register banks and is not
Bit addressable. The XRAM allows 16 Bit
accesses with maximum speed.

ST10X167

18/294

An optional internal ROM provides for both code
and constant data storage. This memory area is
connected to the CPU via a 32-bit-wide bus. Thus,
an entire double-word instruction can be fetched
in just one instruction cycle. Program execution
from the on-chip ROM is the fastest of all possible
alternatives.
For Special Function Registers 1024 Byte
of the address space are reserved. The
standard Special Function Register area (SFR)
uses 512 Byte, while the Extended Special
Function Register area (ESFR) uses the other
512 Byte. (E)SFRs are Word wide registers which
are used for controlling and monitoring functions
of the different on-chip units. Unused ESFR
addresses are reserved for future members of the
ST10X167 family.

2.3.3 - External Bus Interface
In order to meet the needs of designs where more
memory is required than is provided on chip, up to
16M Byte of external memory can be connected
to the microcontroller via its external bus interface.
The integrated External Bus Controller (EBC)
allows flexible access to external memory and/or
peripheral resources. For up to five address areas
the bus mode (multiplexed / demultiplexed), the
data bus width (8 Bit / 16 Bit) and even the length
of a bus cycle (waitstates, signal delays) can be
selected independently.
This allows access to a variety of memory and
peripheral components, directly and with
maximum efficiency. If the device does not run in
Single Chip Mode, where no external memory is
required, the EBC can control external accesses
in one of the following four different external
access modes:
– 16-/18-/20-/24 Bit Addresses, and 16 Bit data,

demultiplexed.
– 16-/18-/20-/24 Bit Addresses, and 8 Bit data,

demultiplexed.
– 16-/18-/20-/24 Bit Addresses, and 16 Bit data,

multiplexed.
– 16-/18-/20-/24 Bit Addresses, and 8 Bit data,

multiplexed.
The demultiplexed bus modes use PORT1 for
addresses and PORT0 for data input/output. The
multiplexed bus modes use PORT0 for both
addresses and data input/output. All modes use
Port 4 for the upper address lines (A16...) if
selected.
Important timing characteristics of the external
bus interface (waitstates, ALE length and Read/
Write Delay) have been made programmable to

give the user the choice of a wide range of
different types of memories and/or peripherals.
Access to very slow memories or peripherals is
supported via a particular 'Ready' function.

For applications which require less than 64K Byte
of address space, a non-segmented memory
model can be selected, where all locations can be
addressed by 16 Bit. Port4 is not needed for the
upper address Bit (A23/A19/A17...A16), as is the
case when using the segmented memory model.

The on-chip XBUS is an internal representation
of the external bus and allows to access
integrated application-specific peripherals/
modules in the same way as external
components. It provides a defined interface for
these customized peripherals.

The on-chip XRAM and the on-chip CAN-Module
are examples for these X-Peripherals.

2.4 - Clock Generator

The on-chip clock generator provides the
ST10X167 with its basic clock signal that controls
the activities of the controller hardware. Its
oscillator can run with an external crystal and
appropriate oscillator circuitry (see Chapter 7 -
Dedicated Pins), or can be driven by an external
oscillator.

The oscillator can directly feed the external clock
signal to the controller hardware (through buffers)
and divides the external clock frequency by 2, or
feeds an on-chip phase locked loop (PLL) which
multiplies the input frequency by a selectable
factor F.

The resulting internal clock signal is also referred
to as “CPU clock”. Two separated clock signals
are generated for the CPU itself and the
peripheral part of the chip.

While the CPU clock is stopped during idle mode,
the peripheral clock keeps running. Both clocks
are switched off when the power-down mode is
entered.

The on-chip PLL circuit allows operation of the
ST10X167 on a low frequency external clock
while still providing maximum performance.

The PLL multiplies the external clock frequency by
a selectable factor of 1:F and generates a CPU
clock signal with 50% duty cycle.

The PLL also provides fail safe mechanisms
which allows the detection of frequency deviations
and the execution of emergency actions in case of
an external clock failure even when PLL is by
passed (see Chapter 12 - Watchdog Timer).

ST10X167

19/294

Figure 3 : PLL block diagram

The Table 1 lists all the possible selections for the on-chip clock generator.

Note 1. The maximum depends on the duty cycle of the external clock signal. The maximum input frequency is 25 MHz when using an
external crystal oscillator, however, higher frequencies can be applied with an external clock source.

Table 1 : On-chip clock generator selections

P0.15-13
(P0H.7-5)

ST10C167 & ST10R167
CPU Frequency f CPU = fXTAL x F

ST10F167
CPU Frequency f CPU = fXTAL x F Notes

1 1 1 fXTAL x 4 fXTAL x 4 Default configuration

1 1 0 fXTAL x 3 fXTAL x 4

1 0 1 fXTAL x 2 fXTAL x 4

1 0 0 fXTAL x 5 fXTAL x 4

0 1 1 fXTAL x 1 fXTAL x 1 Direct drive

0 1 0 fXTAL x 1.5 fXTAL x 1

0 0 1 fXTAL / 2 fXTAL x 1 CPU clock via prescaler 1

0 0 0 fXTAL x 2.5 fXTAL x 1

MUX

Oscillator
Circuit PLL Circuit

fPLL = F x fIN

reset sleep UnlockReset

PWRDN

XP3INT

fPLL

fXTAL fCPUXTAL2

XTAL1 Factor

Oscillator
Watchdog

Prescaler
(÷ 2) MUX

P0H.7

MUX

P0H.6 P0H.5

ST10X167

20/294

2.4.1 - PLL Operation

The PLL is enabled except when P0H.[7..5] =
‘011’ or ‘001’ during reset. On power-up, the PLL
provides a stable clock signal within 1ms after
VDD has reached 5V±10%, even if there is no
external clock signal (in this case, the PLL will run
on its basic frequency of 2...5 MHz).

The PLL starts synchronizing with the external
clock signal as soon as it is available. Within 1ms
after stable oscillations of the external clock within
the specified frequency range, the PLL will be
synchronous with this clock at a frequency of
F x fXTAL, and the PLL locks to the external clock.

Note If the ST10X167 is required to operate on
the desired CPU clock directly after reset,
make sure that RSTIN remains active
until the PLL has locked (approx 1ms).

The PLL constantly synchronizes to the external
clock signal. Due to the fact that the external
frequency is 1/F’th of the PLL output frequency,
the output frequency may be slightly higher or
lower than the desired frequency.

This jitter is irrelevant for longer time periods. For
short periods (1...4 CPU clock cycles), it remains
below 4%.

When the PLL detects that it is no longer locked
(no longer stable), it generates an interrupt
request (on PLL Unlock XP3INT interrupt node).

This occurs when the input clock is unstable and
especially when the input clock fails completely
(for example due to a broken crystal). In this case,
the synchronization mechanism will reduce the
PLL output frequency down to the PLL’s basic
frequency (2...5 MHz). The basic frequency is still
generated and allows the CPU to execute
emergency actions in case of a loss of the
external clock.

2.4.2 - Prescaler Operation

When pins P0H.[7..5] = ’001’ during reset, the
CPU clock is derived from the internal oscillator
(input clock signal) by a 2:1 prescaler.

The frequency of fCPU is half the frequency of
fXTAL.

The PLL is still running on its basic frequency of
2...5 MHz, and delivers the clock signal for the
Oscillator Watchdog, except for ST10C167 or
ST10R167 where if Bit OWDDIS is set the PLL is
switched off.

2.4.3 - Direct Drive

When pins P0H.[7..5] = ’011’ during reset, the
CPU clock is directly driven from the internal
oscillator with the input clock signal (this means
fCPU = fOSC). The maximum input clock frequency
depends on the clock signal’s duty cycle, because
the minimum values for the clock phases (TCLs)
must be reselected.

The PLL runs on its basic frequency of 2...5 MHz,
and delivers the clock signal for the Oscillator
Watchdog, except for ST10C167 or ST10R167
where if Bit OWDDIS is set the PLL is switched
off.

2.4.4 - Oscillator Watchdog (OWD)

In order to provide a fail safe mechanism for the
instance of a loss of the external clock, an
oscillator watchdog is implemented when the
selected clock option is direct drive or direct drive
with prescaler.

The oscillator watchdog operates as follows:

– For the ST10F167, the oscillator watchdog is
always enabled

– For the ST10C167 and ST10R167, the oscillator
watchdog is enabled by default after reset. To
disable the OWD, set bit OWDDIS of the
SYSCON register..

– When the OWD is enabled, the PLL runs on its
free-running frequency, and increments the
Oscillator Watchdog counter.

– On each transition of XTAL1 pin, the Oscillator
Watchdog is cleared.

If an external clock failure occurs, then the
Oscillator Watchdog counter overflows (after 16
PLL clock cycles). The CPU clock signal will be
switched to the PLL clock signal (in this case, the
PLL will run on its basic frequency of 2...5 MHz),
and the Oscillator Watchdog Interrupt Request
(XP3INT) is flagged.

The CPU clock will not switch back to the external
clock even if a valid external clock exits on XTAL1
pin. Only a hardware reset can switch the CPU
clock source back to external clock input.

When the OWD is disabled, the CPU clock is
always fed from the oscillator input and the PLL is
switched off to decrease power supply current.

ST10X167

21/294

2.5 - On-chip Peripheral Blocks
The ST10 family of devices separates peripherals
from the core. This allows peripherals to be added
or deleted without modifications to the core. Each
functional block processes data independently
and communicates information over common
buses. Peripherals are controlled by data written
to the respective Special Function Registers
(SFRs). These SFRs are located either within
the standard SFR area (00’FE00h...00’FFFFh),
or within the extended ESFR area
(00’F000h...00’F1FFh).
The built in peripherals are used for interfacing the
CPU to the external world, or to provide on-chip
functions. The ST10X167 generic peripherals are:
– Two General Purpose Timer Blocks (GPT1 and

GPT2),
– Two Serial Interfaces (ASC0 and SSC),
– A Watchdog Timer,
– Two 16-channel Capture / Compare units

(CAPCOM1 and CAPCOM2),
– A 4-channel Pulse Width Modulation unit,
– A 10 Bit Analog / Digital Converter,
– Nine I/O ports with a total of 111 I/O lines,
Each peripheral also contains a set of Special
Function Registers (SFRs), which control the
functionality of the peripheral and temporarily
store intermediate data results. Each peripheral
has an associated set of status flags. Individually
selected clock signals are generated for each
peripheral from binary multiples of the CPU clock.

2.5.1 - Peripheral Interfaces
The on-chip peripherals generally have two
different types of interfaces, an interface to the
CPU and an interface to external hardware.
Communication between CPU and peripherals is
performed through Special Function Registers
(SFRs) and interrupts. The SFRs serve as control/
status and data registers for the peripherals.
Interrupt requests are generated by the
peripherals based on specific events which occur
during their operation like end of task, new event,
error...
Specific pins of the parallel ports are used for
interfacing with external hardware when an input
or output function has been selected for a
peripheral. During this time, the port pins are
controlled by the peripheral (when used as
outputs) or by the external hardware which
controls the peripheral (when used as inputs).
This is called the "alternate (input or output)

function" of a port pin, in contrast to its function as
a general purpose I/O pin.

2.5.2 - Peripheral Timing

Internal operation of CPU and peripherals is
based on the CPU clock (fCPU). The on-chip
oscillator derives the CPU clock from the crystal
or from the external clock signal.

The clock signal which is gated to the peripherals
is independent from the clock signal which feeds
the CPU. During Idle mode the CPU’s clock is
stopped while the peripherals continue their
operation. Peripheral SFRs may be accessed by
the CPU once per state.

When an SFR is written to by software in the
same state where it is also to be modified by the
peripheral, the software write operation has
priority. Further details on peripheral timing are
included in the specific sections about each
peripheral.

2.5.3 - Programming Hints

Access to SFRs : All SFRs reside in data page 3
of the memory space. The following addressing
mechanisms are used to access the SFRs:

– Indirect or direct addressing with 16 Bit (mem)
addresses it must be guaranteed that the used
data page pointer (DPP0...DPP3) selects data in
memory space page 3.

– accesses via the Peripheral Event Controller
(PEC) use the SRCPx and DSTPx pointers
instead of the data page pointers.

– short 8 Bit (reg) addresses to the standard
SFR area do not use the data page pointers but
directly access the registers within this 512 Byte
area.

– short 8 Bit (reg) addresses to the extended
ESFR area require switching to the 512 Byte
extended SFR area. This is done via the
EXTension instructions EXTR, EXTP(R),
EXTS(R).

Byte write operations to Word wide SFRs via
indirect or direct 16 Bit (mem) addressing or Byte
transfers via the PEC force zeros in the
non-addressed Byte. Byte write operations via
short 8 Bit (reg) addressing can only access the
low Byte of an SFR and force zeros in the high
Byte. It is therefore recommended, to use the Bit
field instructions (BFLDL and BFLDH) to write to
any number of Bit in either Byte of an SFR without
disturbing the non-addressed Byte and the
unselected Bit.

ST10X167

22/294

Reserved Bit Some of the Bit which are
contained in the ST10X167's SFRs are marked as
'Reserved'. User software should never write '1's
to reserved Bit.

These Bit are currently not implemented and may
be used in future products to invoke new
functions. In this case, the active state for these
functions will be '1', and the inactive state will be
'0'. Therefore writing only ‘0’s to reserved
locations provides portability of the current
software to future devices. Read accesses to
reserved Bit return ‘0’s.

2.5.4 - Parallel Ports

The ST10X167 provides up to 111 I/O lines which
are organized into eight input/output ports and
one input port. All port lines are Bit-addressable,
and all input/output lines are individually (Bit wise)
programmable as inputs or outputs via direction
registers. The I/O ports are true bidirectional ports
which are switched to high impedance state when
configured as inputs.

The output drivers of three I/O ports can be
configured (pin by pin) for push-pull operation or
open-drain operation via control registers. During
the internal reset, all port pins are configured as
inputs.

All pins of I/O ports also support an alternate pro-
grammable function:

– PORT0 and PORT1 may be used as data and
address lines respectively when accessing
external memory.

– Port2, accepts the fast external interrupt inputs
and provides inputs/outputs for CAPCOM1 unit.

– Port3 includes the alternate functions of timers,
serial interfaces, the optional bus control signal
BHE and the system clock output (CLKOUT).

– Port4 outputs the additional segment address bit
A16 to A23 in systems where segmentation is
enabled to access more than 64K Byte of
memory.

– Port5 is used as analog input channels of the A/
D converter or as timer control signals.

– Port6 provides optional bus arbitration signals
(BREQ, HLDA, HOLD) and chip select signals.

– Port7 provides the output signals from the PWM
unit and inputs/outputs for the CPACOM2 unit.

– Port8 provides inputs/outputs for the CAPCOM2
unit. Four pins of PORT1 may also be used as
inputs only for the CAPCOM2 unit.

All port lines that are not used for alternate func-
tions may be used as general purpose I/O lines.

2.5.5 - Serial Channels
Serial communication with other microcontrollers,
processors, terminals or external peripheral
components is provided by two serial interfaces
with different functionality, an Asynchronous/
Synchronous Serial Channel (ASC0) and a
High-Speed Synchronous Serial Channel (SSC).
They support full-duplex asynchronous
communication and half-duplex synchronous
communication. The SSC may be configured so it
interfaces with serially linked peripheral
components. Two dedicated Baud rate generators
allow to set up all standard Baud rates without
oscillator tuning. For transmission, reception and
error handling 3 separate interrupt vectors are
provided on channel SSC, 4 vectors are provided
on channel ASC0.
In asynchronous mode, 8- or 9 Bit data frames are
transmitted or received, preceded by a start Bit
and terminated by one or two stop Bit. For
multiprocessor communication, a mechanism to
distinguish address from data Byte has been
included (8 Bit data plus wake up Bit mode).
In synchronous mode, the ASC0 transmits or
receives Byte (8 Bit) synchronously to a shift clock
which is generated by the ASC0. The SSC
transmits or receives characters of 2...16 Bit
length synchronously to a shift clock which can be
generated by the SSC (master mode) or by an
external master (slave mode). The SSC can start
shifting with the LSB or with the MSB, while the
ASC0 always shifts the LSB first. A loop back
option is available for testing purposes.
A number of optional hardware error detection
capabilities has been included to increase the
reliability of data transfers. A parity Bit can
automatically be generated on transmission or be
checked on reception. Framing error detection
allows to recognize data frames with missing stop
Bit. An overrun error will be generated, if the last
character received has not been read out of the
receive buffer register at the time the reception of
a new character is complete.

2.5.6 - The on-chip CAN Module
The integrated CAN Module handles the
completely autonomous transmission and
reception of CAN frames in accordance with the
CAN specification V2.0 part B (active). The
on-chip CAN Module can receive and transmit
standard frames with 11 Bit identifiers as well as
extended frames with 29 Bit identifiers.
The module provides Full CAN functionality on up
to 15 message objects. Message object 15 may
be configured for Basic CAN functionality.

ST10X167

23/294

Both modes provide separate masks for
acceptance filtering which allows to accept a
number of identifiers in Full CAN mode and also
allows to disregard a number of identifiers in Basic
CAN mode. All message objects can be updated
independent from the other objects and are
equipped for the maximum message length of
8 Byte. The Bit timing is derived from the XCLK
and is programmable up to a data rate of 1M
Baud. The CAN Module uses two pins to interface
to a bus transceiver.

2.5.7 - General Purpose Timer (GPT) Unit

The GPT unit is a flexible multifunctional timer/
counter structure which may be used for time
related tasks, such as event timing and counting,
pulse width and duty cycle measurements, pulse
generation, or pulse multiplication.

The five 16 Bit timers are organized into two
separate modules, GPT1 and GPT2. Each timer in
each module may operate independently in a
number of different modes, or may be concatenated
with another timer of the same module.

Each timer can be configured individually for one
of three basic modes of operation, which are
Timer, Gated Timer, and Counter Mode. In Timer
Mode the input clock for a timer is derived from
the internal CPU clock divided by a programmable
prescaler, while Counter Mode allows a timer to
be clocked in reference to external events
(via TxIN). Pulse width or duty cycle
measurement is supported in Gated Timer Mode
where the operation of a timer is controlled by the
‘gate’ level on its external input pin TxIN.

The count direction (up/down) for each timer is
programmable by software or may additionally be
altered dynamically by an external signal (TxEUD)
to facilitate for example position tracking.

The core timers T3 and T6 have output toggle
latches (TxOTL) which change their state on each
timer overflow / underflow. The state of these
latches may be output on port pins (TxOUT) or
may be used internally to concatenate the core
timers with the respective auxiliary timers
resulting in 32/33 Bit timers/counters for
measuring long time periods with high resolution.

Various reload or capture functions can be
selected to reload timers or capture a timer’s
contents triggered by an external signal or a
selectable transition of toggle latch TxOTL.

2.5.8 - Watchdog Timer

The Watchdog Timer is a fail-safe mechanism. It
limits the maximum malfunction time of the
controller

– The Watchdog Timer is always enabled after a
reset of the chip, and can only be disabled in the
time interval until the EINIT (end of initialization)
instruction has been executed. In this way the
chip’s start-up procedure is always monitored.
The software must be designed to service the
Watchdog Timer before it overflows. If, due to
hardware or software related failures, the
software fails to do so, the Watchdog Timer
overflows and generates an internal hardware
reset and pulls the RSTOUT pin low in order to
allow external hardware components to be reset.

– The Watchdog Timer is a 16 Bit timer, clocked
with the system clock divided either by 2 or by
128. The high Byte of the Watchdog Timer
register can be set to a pre-specified reload value
(stored in WDTREL) in order to allow further
variation of the monitored time interval. Each time
it is serviced by the application software, the high
Byte of the Watchdog Timer is reloaded.

2.5.9 - Capture / Compare (CAPCOM) Units

The two CAPCOM units support generation and
control of timing sequences on up to 32 channels.
The CAPCOM units are typically used to handle
high speed I/O tasks such as pulse and waveform
generation, pulse width modulation (PMW), Digital
to Analog (D/A) conversion, software timing, or
time recording relative to external events.

Four 16 Bit timers (T0/T1, T7/T8) with reload
registers, provide two independent time bases for
the capture/compare register array.

The input clock for the timers is programmable to
several pre-scaled values of the internal system
clock, or may be derived from an overflow/
underflow of timer T6 in module GPT2.

This provides a wide range of variation for the
timer period and resolution and allows precise
adjustments to the application specific
requirements. In addition, external count inputs for
CAPCOM timers T0 and T7 allow event
scheduling for the capture/compare registers
relative to external events.

ST10X167

24/294

Both of the two capture/compare register arrays
contain 16 dual purpose capture/compare
registers, each of which may be individually
allocated to either CAPCOM timer T0 or T1 (T7 or
T8, respectively), and programmed for capture or
compare function.

Each register has one port pin associated with it
which is an input pin for triggering the capture
function, or is an output pin (except for
CC24...CC27) to indicate the occurrence of a
compare event.

When a capture/compare register has been
selected for capture mode, the current contents of
the allocated timer will be latched (captured) into
the capture/compare register in response to an
external event at the port pin which is associated
with this register.

In addition, a specific interrupt request for this
capture/compare register is generated. Either a
positive, a negative, or both a positive and a
negative external signal transition at the pin can
be selected as the triggering event.

The contents of all registers which have been
selected for one of the five compare modes are
continuously compared with the contents of the
allocated timers.

When a match occurs between the timer value
and the value in a capture/compare register,
specific actions will be taken, based on the
selected compare mode.

2.5.10 - Pulse Width Modulation Unit

The Pulse Width Modulation Module can generate
up to four PWM output signals using edge-aligned
or centre-aligned PWM. In addition the PWM
module can generate PWM burst signals and
single shot outputs.

In Burst Mode two channels can be combined
with their output signals ANDed, where one
channel gates the output signal of the other
channel. In Single Shot Mode, a single output
pulse is generated (retriggerable) under software
control.

Each PWM channel is controlled by an up/down
counter with associated reload and compare
registers. The polarity of the PWM output signals
may be controlled via the respective port output
latch (combination via EXOR).

2.5.11 - A/D Converter

A 10 Bit A/D converter with 16 multiplexed input
channels and a sample and hold circuit has been
integrated on-chip for analog signal measure-
ment.

It uses a successive approximation method. The
sample time (for loading the capacitors) and
conversion time is programmable and can be
modified for the external circuitry.

Overrun error detection/protection is provided for
the conversion result register (ADDAT). When the
result of a previous conversion has not been read
from the result register at the time the next
conversion is complete, either an interrupt request
is generated, or the next conversion is suspended,
until the previous result has been read.

For applications which require less than 16 analog
input channels, the remaining channel inputs can
be used as digital input port pins.

The A/D converter of the ST10X167 supports four
different conversion modes:

– Standard Single Channel conversion mode, the
analog level on a specified channel is sampled
once and converted to a digital result.

– Single Channel Continuous mode, the analog
level on a specified channel is repeatedly
sampled and converted without software
intervention.

– For the Auto Scan mode, the analog levels on a
pre-specified number of channels are
sequentially sampled and converted.

– In the Auto Scan Continuous mode, the number
of pre-specified channels is repeatedly sampled
and converted.

– In addition, the conversion of a specific channel
can be inserted (injected) into a running
sequence without disturbing this sequence. This
is called Channel Injection Mode. The Peripheral
Event Controller (PEC) may be used to
automatically store the conversion results into a
table in memory for later evaluation, without the
overhead of interrupt routines for each data
transfer.

ST10X167

25/294

2.6 - Protected Bits
The ST10X167 MCU provide 106 protected Bit. These Bit are modified by the on-chip hardware during
special events like power-on reset, power failure, application hardware, etc. These bit cannot be modified
by some wrong software accesses.

Note : Σ = 106 protected Bit.

Table 2 : Protected Bit

Register Bit Name Notes

T2IC, T3IC, T4IC T2IR, T3IR, T4IR GPT1 timer interrupt request flags

T5IC, T6IC T5IR, T6IR GPT2 timer interrupt request flags

CRIC CRIR GPT2 CAPREL interrupt request flag

T3CON, T6CON T3OTL, T6OTL GPTx timer output toggle latches

T0IC, T1IC T0IR, T1IR CAPCOM1 timer interrupt request flags

T7IC, T8IC T7IR, T8IR CAPCOM2 timer interrupt request flags

S0TIC, S0TBIC S0TIR, S0TBIR ASC0 transmit(buffer) interrupt request flags

S0RIC, S0EIC S0RIR, S0EIR ASC0 receive/error interrupt request flags

S0CON S0REN ASC0 receiver enable flag

SSCTIC, SSCRIC SSCTIR, SSCRIR SSC transmit/receive interrupt request flags

SSCEIC SSCEIR SSC error interrupt request flag

SSCCON SSCBSY SSC busy flag

SSCCON SSCBE, SSCPE SSC error flags

SSCCON SSCRE, SSCTE SSC error flags

ADCIC, ADEIC ADCIR, ADEIR ADC end-of-conversion/overrun interrupt request flag

ADCON ADST, ADCRQ ADC start flag / injection request flag

CC31IC...CC16IC CC31IR...CC16IR CAPCOM2 interrupt request flags

CC15IC...CC0IC CC15IR...CC0IR CAPCOM1 interrupt request flags

PWMIC PWMIR PWM module interrupt request flag

TFR TFR.15,14,13 Class A trap flags

TFR TFR.7,3,2,1,0 Class B trap flags

P2 P2.15...P2.0 All Bit of Port2

P7 P7.7...P7.0 All Bit of Port7

P8 P8.7...P8.0 All Bit of Port8

XPyIC (y=3...0) XPyIR (y=3...0) X-Peripheral y interrupt request flag

ST10X167

26/294

3 - MEMORY ORGANIZATION

The memory space of the ST10X167 is
configured in a Von-Neumann architecture. Code
memory, data memory, registers and I/O ports are
organized within the same linear address space.
All of the physically separated memory areas,
including internal ROM / Flash, internal RAM, the
internal Special Function Register Areas (SFRs
and ESFRs), the address areas for integrated
XBUS peripherals like XRAM or CAN module and
external memory are mapped into one common
address space.
The ST10X167 provides a total addressable
memory space of 16M Byte. This address space
is arranged as 256 segments of 64K Byte each,
and each segment is again subdivided into four
data pages of 16K Byte each (see Figure 4).
Most of the internal memory areas are mapped into
segment 0, named system segment. The upper

4K Byte of segment 0 (00’F000h...00’FFFFh) hold
the Internal RAM and Special Function Register
Areas (SFR and ESFR). The lower 32K Byte of
segment 0 (00’0000h...00’7FFFh) can be occupied
by a part of the on-chip ROM or Flash Memory and
is called the internal ROM area.

This ROM area can be remapped to segment 1
(01’0000h...01’7FFFh), to enable external
memory access in the lower half of segment 0, or
the internal ROM may be disabled.

Code and data may be stored in any part of the
internal memory areas, except for the SFR blocks,
which may be used for control / data, but not for
instructions.

Note Accesses to the internal ROM areas on
ROMless devices will produce unpredict-
able results.

Figure 4 : Memory areas and address space

FF’FFFF

FF’0000

1022

02’0000
01’FFFF

07

06

05

04 01’0000

00’400001

00
Page: 16K Byte

00’0000

02 00’8000

00’FFFF

IRAM / SFR Area

00’F600

XRAM
00’E000

S
eg

m
en

t 2
55

S
eg

m
en

t 2
54

S
eg

m
en

t 1
S

eg
m

en
t 0

Data Page Number
Absolut Memory Address

External00’C000

00’8000

Internal ROM

00’0000

FE’0000

00’FFFF
03

00’C000

Segment: 64K Byte

1023

or Flash Area

00’4000

Memory

Address space
16M Byte

System segment 0
64K Byte

CAN
00’EF00

00’E7FF

00’F5FF

and depending
on device
External Memory
for Romless device

ST10X167

27/294

Byte are stored at even or odd Byte addresses.
Words are stored in ascending memory locations
with the low Byte at an even Byte address being
followed by the high Byte at the next odd Byte
address.

Double Words (code only) are stored in ascending
memory locations as two subsequent Words.
Single Bit are always stored in the specified Bit
position at a Word address.

Bit position 0 is the least significant Bit of the Byte
at an even Byte address, and Bit position 15 is the
most significant Bit of the Byte at the next odd
Byte address. Bit addressing is supported for a
part of the Special Function Registers, a part of
the internal RAM and for the General Purpose
Registers.

Note Byte units forming a single Word or a dou-
ble Word must always be stored within the
same physical (internal, external, ROM,
RAM) and organizational (page, segment)
memory area.

3.1 - Internal ROM

The ST10X167 reserves an address area of
variable size (depending on the version) for
on-chip mask-programmable ROM (organized as
X * 32) or Flash memory.

The lower 32 KByte of the on-chip ROM/Flash are
referred to as “Internal ROM Area”. Internal ROM
accesses are globally enabled or disabled via Bit

ROMEN in register SYSCON. This Bit is set
during reset according to the level on pin EA, or
may be altered via software. If enabled, the
internal ROM area occupies the lower 32 KByte of
either segment 0 or segment 1. This ROM
mapping is controlled by Bit ROMS1 in register
SYSCON.
Note The size of the internal ROM area is inde-

pendent of the size of the actual imple-
mented ROM. Also devices with less than
32 KByte of ROM or with no ROM at all,
will have this 32 KByte area occupied, if
the ROM is enabled. Devices with larger
ROMs provide the mapping option only for
the ROM area.

Devices with a ROM size above 32 KByte expand
the ROM area from the middle of segment 1, i.e.
starting at address 01’8000H.
The internal ROM/Flash can be used for both
code (instructions) and data (constants, tables,
etc.) storage.
Code fetches are always made on even byte
addresses. The highest possible code storage
location in the internal ROM is either xx’xxFEH for
single word instructions, or xx’xxFCH for double
word instructions.
The respective location must contain a branch
instruction (unconditional), because sequential
boundary crossing from internal ROM to external
memory is not supported and causes erroneous
results.
Any word and byte data read accesses may use
the indirect or long 16Bit addressing modes.
There is no short addressing mode for internal
ROM operands. Any word data access is made to
an even byte address.
The highest possible word data storage location in
the internal ROM is xx’xxFEH. For PEC data
transfers the internal ROM can be accessed
independently of the contents of the DPP
registers via the PEC source and destination
pointers.
The internal ROM is not provided for single Bit
storage, and therefore it is not Bit addressable.
Note The ‘x’ in the locations above depends on

the available ROM/Flash memory and on
the mapping.

The internal ROM may be enabled, disabled or
mapped into segment 0 or segment 1 under
software control. "Handling the internal ROM"
Section 21.10 describes the mapping procedures
and precautions.

Figure 5 : Storage of Words, Byte and Bit in a
Byte organized memory

...

... Bit ...

... Bit ...

Byte

Byte

Word (high Byte)

Word (low Byte)

15 14 8

7 6 0

xxxx6h

xxxx5h

xxxx4h

xxxx3h

xxxx2h

xxxx1h

xxxx0h

xxxxFh...

ST10X167

28/294

3.2 - Internal RAM and SFR Area

The RAM/SFR area is located within data page 3
and provides access to 2K Byte Internal RAM
(organized as 1K x 16) and to two 512 Byte blocks
of Special Function Registers (SFRs). The
internal RAM is used as:

– System Stack (programmable size),
– General Purpose Register Banks (GPRs),
– Source and destination pointers for the

Peripheral Event Controller (PEC),
– Variable and other data storage, or Code

storage.

Figure 6 : Internal RAM and SFR/ESFR areas

00’FFFF

00’C000

00’8000

00’4000

00’FFFF

Bit addressable area :

00’FE00

00’FDFF

00’FD00

00’F600

00’F200

00’F1FF

00’F100

00’F000

XRAM / CAN

Page 2

Page 1

00’0000

Page 0

256 Byte

00’FF00

Bit addressable area :
256 Byte

Bit addressable area :
256 Byte

ESFR area
512 Byte

IRAM
2K Byte

SFR area
512 Byte

S
eg

m
en

t 0

Page 3

DPRAM / SFR AREA

Internal
ROM for
ST10C167

External
Memory
Area

Reserved

(reserved)

(reserved)

ST10X167

29/294

1 The upper 256 Byte of SFR area, ESFR area
and internal RAM are Bit-addressable.

2 Read or write access in reserved locations
may cause unexpected behaviour.

Code accesses are always made on even Byte
addresses. The highest possible code storage
location in the internal RAM is, either 00’FDFEh
for single Word instructions, or 00’FDFCh for
double Word instructions. The respective location
must contain a branch instruction (unconditional),
because sequential boundary crossing from
internal RAM to the SFR area is not supported
and can causes erroneous results.
Any Word and Byte data in the internal RAM can
be accessed via indirect or long 16Bit addressing
modes, if the selected DPP register points to data
page 3. Any Word data access is made on an
even Byte address. The highest possible Word
data storage location in the internal RAM is
00’FDFEh. For PEC data transfers, the internal
RAM can be accessed independently of the
contents of the DPP registers via the PEC source
and destination pointers.
The upper 256 Byte of the internal RAM
(00’FD00h through 00’FDFFh) and the GPRs of
the current bank are provided for single Bit

storage, and therefore, they are Bit addressable
(see Figure 6).

3.2.1 - System Stack

The system stack may be defined within the
internal RAM. The size of the system stack is
controlled by Bitfield STKSZ in the SYSCON
register (see Table 3).

For all system stack operations the on-chip RAM
is accessed via the Stack Pointer (SP) register.
The stack grows downward from higher towards
lower RAM address locations.

Only Word accesses are supported by the system
stack. A stack overflow (STKOV) and a stack
underflow (STKUN) register are provided to
control the lower and upper limits of the selected
stack area.

These two stack boundary registers can be used,
not only for protection against data destruction,
but also allow to implement a circular stack with
hardware supported system stack flushing and
filling (except for the 2K Byte stack option).

The technique of implementing this circular stack
is described in Section 21.1 Circular (virtual)
Stack.

Table 3 : Stack Size

(STKSZ) Stack Size (Words) Internal RAM Addresses (Words)

0 0 0b 256 00’FBFEh...00’FA00h (Default after Reset)

0 0 1b 128 00’FBFEh...00’FB00h

0 1 0b 64 00’FBFEh...00’FB80h

0 1 1b 32 00’FBFEh...00’FBC0h

1 0 0b 512 00’FBFEh...00’F800h

1 0 1b --- Reserved. Do not use this combination.

1 1 0b --- Reserved. Do not use this combination.

1 1 1b 1024 00’FDFEh...00’F600h (Note: No circular stack)

ST10X167

30/294

3.2.2 - General Purpose Registers
The general purpose registers (GPRs) use a block
of 16 consecutive Words within the internal RAM.
The Context Pointer (CP) register determines the
base address of the currently active register bank.
This register bank may consist of up to 16 Word
GPRs (R0, R1, ..., R15) and/or of up to 16 Byte
GPRs (RL0, RH0, ..., RL7, RH7) and 8 Word
registers R8-R15. The sixteen Byte GPRs are
mapped onto the first eight Word GPRs (see
Table 4).
In contrast to the system stack, a register bank
grows from lower towards higher address
locations and occupies a maximum space of
32 Byte.
The GPRs are accessed via short 2, 4 or 8 Bit
addressing modes using the context pointer (CP)
register as base address (independent of the
current DPP register contents). Additionally, each

Bit in the currently active register bank can be
accessed individually.

The ST10X167 supports fast register bank
(context) switching. Multiple register banks can
physically exist within the internal RAM at the
same time. Only the register bank selected by the
Context Pointer register (CP) is active at a given
time. Selecting a new active register bank is
simply done by updating the CP register.

A particular Switch Context (SCXT) instruction
performs register bank switching and an
automatic saving of the previous context. The
number of implemented register banks (arbitrary
sizes) is only limited by the size of the available
internal RAM.

Details on using, switching and overlapping
register banks are described in Register Banking
Section 21.2.

Table 4 : Mapping of general purpose registers to RAM addresses

Internal RAM Address Byte Registers Word Register

(CP) + 1Eh --- R15

(CP) + 1Ch --- R14

(CP) + 1Ah --- R13

(CP) + 18h --- R12

(CP) + 16h --- R11

(CP) + 14h --- R10

(CP) + 12h --- R9

(CP) + 10h --- R8

(CP) + 0Eh RH7, RL7 R7

(CP) + 0Ch RH6, RL6 R6

(CP) + 0Ah RH5, RL5 R5

(CP) + 08h RH4, RL4 R4

(CP) + 06h RH3, RL3 R3

(CP) + 04h RH2, RL2 R2

(CP) + 02h RH1, RL1 R1

(CP) + 00h RH0, RL0 R0

ST10X167

31/294

3.2.3 - PEC Source and Destination Pointers
The 16 Word locations in the internal RAM from
00’FCE0h to 00’FCFEh are provided as source
and destination address pointers for data
transfers on the eight PEC channels. Each
channel uses a pair of pointers stored in two
subsequent Word locations with the source
pointer (SRCPx) on the lower and the destination
pointer (DSTPx) on the higher Word address (x =
7...0) (see Figure 7).
Whenever a PEC data transfer is performed, the
pair of source and destination pointers selected by
the specified PEC channel number is accessed
independently of the current DPP register
contents. The locations referred to by these
pointers are accessed independently of the
current DPP register contents. If a PEC channel is
not used, the corresponding pointer locates the
area available and can be used for Word or Byte
data storage.
For more details about the use of the source and
destination pointers for PEC data transfers see
Chapter 21 - System Programming.

3.2.4 - Special Function Registers

The functions of the CPU, the bus interface, the I/O
ports and the on-chip peripherals of the ST10X167
are controlled via a number of so-called Special
Function Registers (SFRs).

These SFRs are arranged within two areas, each
of 512 Byte size. The first register block, is called
the SFR area, and is located in the 512 Byte
above the internal RAM (00’FFFFh...00’FE00h),
the second register block, the Extended SFR
(ESFR) area, is located in the 512 Byte below the
internal RAM (00’F1FFh...00’F000h).

Special function registers can be addressed via
indirect and long 16 Bit addressing modes. Using
an 8 Bit offset, together with an implicit base
address, makes it possible to address Word SFRs
and their respective low Byte. This does not work
for the respective high Byte!

Note Writing to any Byte of an SFR causes the
non-addressed complementary Byte to be
cleared!

The upper half of each register block is
Bit-addressable, so the respective control/status
Bit can be directly modified or checked by using
Bit addressing. When accessing registers in the
ESFR area using 8 Bit addresses or direct Bit
addressing, an Extend Register (EXTR)
instruction is required before, to switch the short
addressing mechanism from the standard SFR
area to the Extended SFR area.

This is not required for 16 Bit and indirect
addresses. The GPRs R15...R0 are duplicated,
and they are accessible within both register blocks
via short 2, 4 or 8 Bit addresses without switching.

Example:

Figure 7 : Location of the PEC pointers

00’FCFEh

00’FCFCh

00’FCE2h

00’FCE0h

DSTP7

SRCP7

DSTP7

DSTP7

00’F600h

00’FCDEh
00’FCE0h

00’FCFEh
00’FD00h

00’F5FEh

Internal
RAMPEC

source &
destination
pointers

EXTR #4 ;Switch to ESFR area for the next 4 instructions
MOV ODP2, #data16 ;ODP2 uses 8 Bit reg addressing
BFLDL DP6, #data8

#mask
;Bit addressing for Bit fields

BSET DP1h.7 ;Bit addressing for single Bit
MOV T8REL, R1 ;T8REL uses 16 Bit address, R1 is duplicated and

;also accessible
;via the ESFR mode (EXTR is not required for
;this access)

;----- ;------ ;The scope of the EXTR #4 instruction ends here!
MOV T8REL, R1 ;T8REL uses 16 Bit address, R1 is duplicated and

;does not require switching

ST10X167

32/294

In order to minimize the use of the EXTR
instructions, the ESFR area mostly holds registers
which are required for initialization and mode
selection. Wherever possible, registers that need
to be accessed frequently are allocated in the
standard SFR area.
Note The tools are equipped to monitor

accesses to the ESFR area and will auto-
matically insert EXTR instructions, or
issue a warning in case of missing or
excessive EXTR instructions.

3.3 - The On-chip XRAM
The XRAM area is located within data page 3 and
provides access to 2K Byte of on-chip RAM
(organized as 1K x 16). As the XRAM is
connected to the internal XBUS it is accessed like
external memory, however, no external bus cycles
are executed for these accesses.
XRAM accesses are globally enabled or disabled
via Bit XPEN in the SYSCON register. This Bit is
cleared after reset and may be set via software
during the initialization to allow accesses to the
on-chip XRAM. When the XRAM is disabled
(default after reset) all accesses to the XRAM
area are mapped to external locations. The XRAM
may be used for both code (instructions) and data
(variables, user stack, tables, etc.) storage.
Code fetches are always made on even Byte
addresses. The highest possible code storage
location in the XRAM is either 00’E7FEh for single
Word instructions, or 00’E7FCh for double Word
instructions.
The respective location must contain a branch
instruction (unconditional), because sequential
boundary crossing from XRAM to external
memory is not supported and causes erroneous
results.
Any Word and Byte data read accesses may use
the indirect or long 16Bit addressing modes.
There is no short addressing mode for XRAM
operands. Any Word data access is made to an
even Byte address. The highest possible Word
data storage location in the XRAM is 00’E7FEh.
For PEC data transfers the XRAM can be
accessed independently of the contents of the
DPP registers, via the PEC source and
destination pointers.
Note For the ST10C167 / ST10R167, the XPEN

Bit in the SYSCON register is used to
enable or disable the CAN. For the
ST10F167, the CAN is always enabled.
As the XRAM appears like external mem-
ory it cannot be used for the ST10X167’s
system stack or register banks. The

XRAM is not provided for single Bit stor-
age and therefore is not Bit addressable.

The on-chip XRAM is accessed without any
waitstates, using 16 Bit demultiplexed bus cycles
which takes one instruction cycle. Even if the
XRAM is used as external memory, it does not
occupy BUSCONx / ADDRSELx registers, but is
selected via additional dedicated XBCON /
XADRS registers. These registers are
mask-programmed and are not user accessible.
With these registers the address area 00’E000H to
00’E7FFH is reserved for XRAM accesses.

3.3.1 - XRAM Access Via External Masters

When Bit XPER-SHARE in register SYSCON is
set the on-chip XRAM of the ST10X167 can be
accessed by an external master during hold
mode, via the ST10X167’s bus interface. These
external accesses must use the same
configuration as the internally programmed,
(demultiplexed bus, 100 ns minimum access cycle
time). No waitstates are required.

The configuration in register SYSCON cannot be
changed after the execution of the EINIT
instruction.

Note 1. The address area 00’E800h to 00’EEFFh is mapped to
external memory but should be reserved for reasons of
upward compatibility.

Figure 8 : On-chip XRAM area

00’C000h

00’E000h

00’E7FFh

00’FFFFh

00’EF00h

00’F600h

Internal
RAM / SFR

Area

Data Page 3
(16K Byte)

External
Access

On-chip
XRAM

CAN Module

Reserved 1

ST10X167

33/294

3.4 - External Memory Space
The ST10X167 is capable of using an address
space of up to 16M Byte. Only parts of this
address space are occupied by internal memory
areas. All addresses which are not used for
on-chip memory (Flash, ROM or RAM) or for
registers, may refer to external memory locations.
This external memory is accessed via the
ST10X167’s external bus interface.
Four memory bank sizes are supported:
– Non-segmented mode: 64K Byte with A15...A0

on PORT0 or PORT1
– 2 Bit segmented mode: 256K Byte with

A17...A16 on Port4 and A15...A0 on PORT0 or
PORT1

– 4 Bit segmented mode: 1M Byte with A19...A16
on Port4 and A15...A0 on PORT0 or PORT1

– 8 Bit segmented mode: 16M Byte with A23...A16
on Port4 and A15...A0 on PORT0 or PORT1

Each bank can be directly addressed via the
address bus while the programmable chip select
signals can be used to select various memory
banks.
The ST10X167 also supports four different bus
types :
– Multiplexed 16 Bit Bus with address and data on

PORT0 (Default after Reset)
– Multiplexed 8 Bit Bus with address and data on

PORT0/P0L
– Demultiplexed 16 Bit Bus with address on

PORT1 and data on PORT0
– Demultiplexed 8 Bit Bus with address on PORT1

and data on P0L
Memory model and bus mode are selected during
reset by pin EA and PORT0 pins. For further
details about the external bus configuration and
control, (See Chapter 8 - The External Bus
Interface).
External Word and Byte data can only be
accessed via indirect or long 16 Bit addressing
modes, using one of the four DPP registers. There
is no short addressing mode for external
operands. Any Word data access is made to an
even Byte address.
For PEC data transfers the external memory in
segment 0 can be accessed independent of the
contents of the DPP registers via the PEC source
and destination pointers.
The external memory is not provided for single Bit
storage and therefore, it is not Bit addressable.

3.5 - Crossing Memory Boundaries

The address space of the ST10X167 is implicitly
divided into equally sized blocks of different
granularity and into logical memory areas.
Crossing the boundaries between these blocks
(code or data) or areas requires special attention
to ensure that the controller executes the desired
operations.

Memory Areas are partitions of the address
space that represent different kinds of memory (if
provided at all). These memory areas are the
internal RAM/SFR area, the internal ROM / Flash
Memory (if available), the on-chip X-Peripherals (if
integrated) and the external memory.

Accessing subsequent data locations that belong
to different memory areas is no problem.
However, when executing code, the different
memory areas must be switched explicitly via
branch instructions. Sequential boundary crossing
is not supported and leads to erroneous results.

Note Changing from the external memory area
to the internal RAM/SFR area takes place
within segment 0.

Segments are contiguous blocks of 64K Byte
each. They are referenced via the code segment
pointer CSP for code fetches and via an explicit
segment number for data accesses overriding the
standard DPP scheme.

During code fetching segments are not changed
automatically, but rather must be switched
explicitly. The instructions JMPS, CALLS and
RETS will do this.

In larger sequential programs make sure that the
highest used code location of a segment contains
an unconditional branch instruction to the
respective following segment, to prevent the
prefetcher from trying to leave the current
segment.

Data Pages are contiguous blocks of 16K Byte
each. They are referenced via the data page
pointers DPP3...0 and via an explicit data page
number for data accesses overriding the standard
DPP scheme. Each DPP register can select one
of the possible 1024 data pages. The DPP
register that is used for the current access is
selected via the two upper Bit of the 16 Bit data
address. Subsequent 16 Bit data addresses that
cross the 16K Byte data page boundaries
therefore will use different data page pointers,
while the physical locations need not be
subsequent within memory.

ST10X167

34/294

4 - THE CENTRAL PROCESSING UNIT (CPU)

The CPU is used to fetch and decode instructions,
to supply operands for the arithmetic and logic
unit (ALU), to perform operations on these
operands in the ALU, and to store the previously
calculated results.
A four stage pipeline is implemented, where up to
four instructions can be processed in parallel.
Most instructions of the ST10X167 are executed
in one instruction cycle due to this parallelism.
This chapter describes how the pipeline works for
sequential and branch instructions in general, and
which hardware provisions have been made to
speed the execution of jump instructions in
particular. The general instruction timing is
described, including standard and exceptional
timing.
While internal memory accesses are normally
performed by the CPU itself, external peripheral
or memory accesses are performed by a
particular on-chip External Bus Controller (EBC),
which is automatically invoked by the CPU
whenever a code or data address refers to the
external address space.
If possible, the CPU continues to operate while an
external memory access is in progress. If external
data are required but are not yet available, or if a
new external memory access is requested by the
CPU, before a previous access has been
completed, the CPU will be held by the EBC until
the request can be satisfied. The EBC is
described in The External Bus Interface (see
Chapter 8 - The External Bus Interface).
The on-chip peripheral units of the ST10X167 are
almost independent of the CPU, with a separate
clock generator.
Data and control information is interchanged
between the CPU and these peripherals via
Special Function Registers (SFRs).
Whenever peripherals need a non-deterministic
CPU action, an on-chip Interrupt Controller
compares all pending peripheral interrupt
requests and prioritizes one of them.
If the priority of the current CPU operation is lower
than the priority of the selected peripheral
request, an interrupt service will occur.
There are two types of interrupt processing:
1 Standard interrupt processing forces the

CPU to save the current program status and
return address on the stack before branching
to the interrupt vector jump table.

2 PEC interrupt processing steals just one
instruction cycle from the current CPU activity

to perform a single data transfer via the
on-chip PEC.

System errors detected during program execution
(so called hardware traps), or an external
non-maskable interrupt, are also processed as
high priority standard interrupts.

There is a close conjunction between the
watchdog timer and the CPU. If enabled, the
watchdog timer expects to be serviced by the
CPU within a programmable period of time,
otherwise it will reset the chip.

Therefore, the watchdog timer is able to prevent
the CPU from going totally astray when executing
erroneous code. After reset, the watchdog timer
starts counting automatically, but if necessary it
can be disabled via software.

Beside its normal operation there are the following
particular CPU states:

– Reset state: Any reset (hardware, software,
watchdog) forces the CPU into a predefined
active state.

– IDLE state: The clock signal to the CPU itself is
switched off, while the clocks for the on-chip
peripherals keep running.

– POWER DOWN state: All of the on-chip clocks
are switched off.

A transition into an active CPU state is forced by
an interrupt (if being IDLE) or by a reset (if being
in POWER DOWN mode).

The IDLE, POWER DOWN and RESET states
can be entered by particular ST10X167 system
control instructions. A set of Special Function
Registers is dedicated to the functions of the CPU
core:

– General System Configuration : SYSCON (RP0H)

– CPU Status Indication and Control: PSW

– Code Access Control: IP, CSP

– Data Paging Control: DPP0, DPP1, DPP2, DPP3

– GPRs Access Control: CP

– System Stack Access Control: SP, STKUN, STKOV

– Multiply and Divide Support: MDL, MDH, MDC

– ALU Constants Support: ZEROS, ONES

ST10X167

35/294

Figure 9 : CPU Block Diagram

4.1 - Instruction Pipelines
The instruction pipeline breaks down CPU
processing into the four following stages:
– Fetch: An instruction selected by the Instruction

Pointer (IP) and the Code Segment Pointer
(CSP) is fetched from either the internal
memory, internal RAM, or external memory.

– Decode: Instructions are decoded and, if
required, the operand addresses are calculated
and the respective operands are fetched.
For all instructions, which implicitly access the
system stack, the SP register is either
decremented or incremented, as specified.
For branch instructions the Instruction Pointer
and the Code Segment Pointer are updated with
the desired branch target address (provided that
the branch is taken).

– Execute: An operation is performed on the
previously fetched operands in the ALU.

Additionally, the condition flags in the PSW
register are updated as specified by the
instruction. All explicit writes to the SFR memory
space and all auto-increment or auto-decrement
writes to GPRs used as indirect address
pointers are performed during the execute stage
of an instruction, too.

– Write back: All external operands and the
remaining operands within the internal RAM
space are written back.

Injected instructions are generated internally by
the machine to provide extra time for instructions
that require more than one instruction cycle.
Instructions are automatically injected into the
decode stage of the pipeline, they pass through
the remaining stages like every standard
instruction. Program interrupts are performed by
the same method of injecting instructions.

ROM
or Flash
Memory
Where

Applicable

CPU

SP

STKOV

STKUN

Execution Unit

Instruction Pointer

4-Stage
Pipeline

PSW

SYSCON

MDH

MDL

Multiplication

Bit-Mask

Barrel-Shift

CP

16 Bit

ALU

R15

R0

ADDRSEL 1

ADDRSEL 2

ADDRSEL 3

ADDRSEL 4

BUSCON 0

BUSCON 1

BUSCON 2

BUSCON 3

BUSCON 4

Code Segment Data Page

General
Purpose
Registers

Internal RAM
2K Byte

Bank n

Bank i

Bank 0

16

16

XRAM

32

16

Division Hardware

Generator

PointerPointers

ST10X167

36/294

Figure 10 : Sequential instruction pipelining

4.1.1 - Sequential Instruction Processing
Each single instruction has to pass through each of
the four pipeline stages regardless of whether all
possible stage operations are really performed or
not. Since passing through one pipeline stage takes
at least one instruction cycle, any isolated
instruction takes at least four instruction cycles to
be completed. Pipelining, however, allows parallel
(simultaneous) processing of up to four instructions.
Therefore, as soon as the pipeline has been filled,
most instructions appear to be processed during
one instruction cycle (see Figure 10).
Specification of instruction execution time always
refers to the average execution time for pipelined
parallel instruction processing (see Figure 10).

4.1.2 - Standard Branch Instruction Processing
When a branch is taken, it is necessary to perform
the branched target instruction, before the current
instruction in the pipeline. Therefore, at least one
additional instruction cycle is required to fetch the
branch target instruction.
This extra instruction cycle is provided by means
of an injected instruction (see Figure 11). If a
conditional branch is not taken, there is no
deviation from the sequential program flow, and
thus no extra time is required. In this case the
instruction after the branch instruction will enter
the decode stage of the pipeline at the beginning

of the next instruction cycle after decode of the
conditional branch instruction.

4.1.3 - Cache Jump Instruction Processing
The ST10X167 incorporates a jump cache. This
minimizes the time taken for conditional jumps
which are repeatedly processed in a loop.
Whenever a cache jump instruction passes
through the decode stage of the pipeline for the
first time (provided that the jump condition is met),
the jump target instruction is fetched as usual,
causing a time delay of one instruction cycle.

If the instruction is repeated in a loop, the target
instruction (JMPA, JMPR, JB, JBC, JNB, JNBS) is
additionally stored in the cache. For execution of
the repeated cache jump instruction, the jump
target instruction is not fetched from program
memory but taken from the cache and
immediately injected into the decode stage of the
pipeline (see Figure 12).

A time saving jump on cache is always taken after
the second and any further occurrence of the
same cache jump instruction, unless an
instruction which, has the fundamental capability
of changing the CSP register contents (JMPS,
CALLS, RETS, TRAP, RETI), or any standard
interrupt has been processed during the period of
time between two following occurrences of the
same cache jump instruction.

1 instruction
cycle

FETCH I2

I1

I3

I2

I1

I4

I3

I2

I1

I6

I5

I4

I3

I5

I4

I3

I2

I1

DECODE

EXECUTE

WRITEBACK

time

Figure 11 : Standard branch instruction pipelining

1 instruction
cycle

FETCH In+2

BRANCH

In

. . .

ITARGET

(IINJECT)

BRANCH

In

ITARGET+1

ITARGET

(IINJECT)

BRANCH

ITARGET+3

ITARGET+2

ITARGET+1

ITARGET

ITARGET+2

ITARGET+1

ITARGET

(IINJECT)

BRANCH

In

. . .

. . .

DECODE

EXECUTE

WRITEBACK

time

Injection

ST10X167

37/294

Figure 12 : Cache jump instruction pipelining

4.1.4 - Particular Pipeline Effects

Since up to four different instructions are
processed simultaneously, additional hardware
has been included in the ST10X167 to take into
account dependencies between instructions in
different stages of the pipeline.

This extra hardware like a forwarding operand
read and write values, resolves most of the
possible conflicts like multiple usage of buses.

This prevents delays that would cause the pipeline
to become noticeable to the user. However, there
are some cases where allowances must be made
by the programmer, for the pipeline architecture of
the ST10X167.

In these cases the delays caused by pipeline
conflicts can be used for other instructions in
order to optimize performance.

In+2

Cache Jmp

In

. . .

ITARGET+1

ITARGET

Cache Jmp

In

ITARGET+2

ITARGET+1

ITARGET

Cache Jmp

In+2

Cache Jmp

In

. . .

ITARGET

(IINJECT)

Cache Jmp

In

ITARGET+1

ITARGET

(IINJECT)

Cache Jmp

1 instruction
cycle

FETCH

DECODE

EXECUTE

WRITEBACK

1st loop iteration

Injection Injection of cached
Target Instruction

Repeated loop iteration

ST10X167

38/294

Context Pointer Updating
An instruction which calculates a physical GPR operand address via the CP register, is generally not
capable of using a new CP value, which is to be updated by an immediately preceding instruction.
Therefore, to make sure that the new CP value is used, at least one instruction must be inserted between
a CP changing and a subsequent GPR using instruction, as shown in the example.

Data Page Pointer Updating
An instruction which calculates a physical operand address via a particular DPPn (n=0 to 3) register, is
generally not capable of using a new DPPn register value, which is to be updated by an immediately
preceding instruction. Therefore, to make sure that the new DPPn register value is used, at least one
instruction must be inserted between a DPPn-changing instruction and a subsequent instruction which
implicitly uses DPPn via a long or indirect addressing mode, as shown in the example.

Explicit Stack Pointer Updating
None of the RET, RETI, RETS, RETP or POP instructions are capable of correctly using a new SP
register value, which is to be updated by an immediately preceding instruction. Therefore, in order to use
the new SP register value without erroneously performed stack accesses, at least one instruction must be
inserted between an explicit SP writing and any subsequent of the just mentioned implicitly SP using
instructions, as shown in the example.

I n : SCXT CP, #0FC00h ; select a new context

I n+1 : ; must not be an instruction using a GPR

I n+2 : MOV R0, #dataX ; write to GPR 0 in the new context

I n : MOV DPP0, #4 ; select data page 4 via DPP0

I n+1 : ; must not be an instr using DPP0

I n+2 : MOV DPP0:0000H, R1 ; move contents of R1 to address loc
; 01’0000h

; (in dp 4) supposed segmentation is
; enabled

I n : MOV SP, #0FA40H ; select a new top of stack

I n+1 : ; must not be an instruction popping
; operands from the system stack

I n+2 : POP R0 ; pop Word value from new top of stack
; into R0

ST10X167

39/294

External Memory Access Sequences
The effect described here will only become noticeable, when watching the external memory access
sequences on the external bus by means of a Logic Analyzer. Different pipeline stages can
simultaneously put a request on the External Bus Controller (EBC).
The sequence of instructions processed by the CPU may diverge from the sequence of the corresponding
external memory accesses performed by the EBC, due to the predefined priority of external memory
accesses.

Controlling Interrupts
Software modifications (implicit or explicit) of the PSW are done in the execute phase of the respective
instructions. In order to maintain fast interrupt responses, however, the current interrupt prioritization
round does not consider these changes. For example an interrupt request may be acknowledged after the
instruction that disables interrupts via IEN or ILVL or after the following instructions.
Time critical instruction sequences, therefore, should not begin directly after the instruction disabling
interrupts, as shown in the example.

Note : The described delay of 1 instruction also applies for enabling the interrupts system that means no
interrupt requests are acknowledged until the instruction following the enabling instruction.

Initialization of Port Pins
Modifications of the direction of port pins (input or output) become effective only after the instruction
following the modifying instruction. As Bit instructions (BSET, BCLR) use internal read-modify-write
sequences accessing the whole port, instructions modifying the port direction should be followed by an
instruction that does not access the same port.

1st Write Data

2nd Fetch Code

3rd Read Data.

INT_OFF: BCLR IEN ; globally disable interrupts

I N-1 ; non-critical instruction

CRIT_1ST: I N ; start of non-interruptible critical
; sequence

. . .

CRIT_LAST: I N+x ; end of non-interruptible critical
; sequence

INT_ON: BSET IEN ; globally re-enable interrupts

WRONG: BSET DP3.13 ; change direction of P3.13 to output

BSET P3.5 ; P3.13 is still input, the read-modify-write
; reads pin P3.13

RIGHT: BSET DP3.13 ; change direction of P3.13 to output

NOP ; any instruction not accessing Port3

BSET P3.5 ; P3.13 is now output,

; the read-modify-write reads the P3.13 output
; latch

ST10X167

40/294

Changing the System Configuration
The instruction following an instruction that
changes the system configuration via register
SYSCON (like the mapping of the internal
memory, like segmentation like stack size), cannot
use the new resources (Memory or stack). This
instruction must not access the new ressources.
Code accesses to the new Memory area are only
possible after an absolute branch to this area. As
a rule, instructions that change Memory mapping
must be executed from internal RAM or external
memory.

BUSCON/ADDRSEL
The (In+1) instruction following an (In) instruction
that changes the properties of an external
address area, cannot access operands within the
new area.
This instruction (In+1) must not access this
memory area. Code accesses to the new address
area must be made after an absolute branch to
this area.
Note : As a rule, instructions that change

external bus properties must not be
executed from the respective external
memory area.

Timing
Pipeline architecture drastically reduces the
average instruction processing time. The mean
ratio is about four to one instruction cycle. Some
peculiar cases of pipeline configuration extend the
instruction processing time by half or by one cycle.
These cases have to be taken in account for the
time critical software routines. Besides a general
execution time description, the following section
provides some hints on how to optimize
time-critical program parts with regard to such
pipeline-caused timing particularities.

4.2 - Bit-handling and Bit-protection
The ST10X167 provides several mechanisms for
Bit manipulation. These mechanisms, either
handle software flags within the internal RAM,
control on-chip peripherals via control Bit in their
respective SFRs, or control I/O functions via port
pins.
The instructions BSET, BCLR, BAND, BOR,
BXOR, BMOV and BMOVN, explicitly set or clear
specific Bit. The instructions BFLDL and BFLDH
make it possible to change up to 8 Bit of a specific
Byte at a time.
The instructions JBC and JNBS implicitly clear or
set the specified Bit when the jump is taken. The

instructions JB and JNB (also conditional jump
instructions that refer to flags) evaluate the
specified Bit to determine if the jump is to be
taken.

Note : Bit operations on undefined Bit locations
will always read a Bit value of ‘0’, while the
write access will not effect the respective
Bit location.

All instructions that change single Bit or Bit groups
internally use a read-modify-write sequence that
accesses the whole Word containing the specified
Bit(s). This method has several consequences:

– Bit can only be modified within the internal
specific address areas (IRAM, SFRs...).
External locations cannot be used with Bit
instructions.

– The upper 256 Byte of the SFR area, the ESFR
area and the internal RAM are Bit-addressable
(see Chapter 3 - Memory Organization). Those
register bits located within the respective
sections can be directly manipulated using bit
instructions. The other SFRs must be accessed
Byte or Word wise.

Note : All GPRs are Bit-addressable indepen-
dently of the allocation of the register bank
via the context pointer CP. Even GPRs
which are allocated in not Bit-addressable
RAM locations provide this feature.

– The read-modify-write approach may be critical
with hardware-effected Bit. In these cases the
hardware may change specific Bit while the
read-modify-write operation is in progress,
where the writeback would overwrite the new Bit
value generated by the hardware. The solution
is either the implemented hardware protection
(see below) or realized through special
programming (see Section 4.1.4 - Particular
Pipeline Effects).

Protected Bit: As mentioned in Section 2.6 -
Protected Bits (hardware set) are not modified
during a read-modify-write sequence, even if an
interrupt request rises between read and write
time. The hardware protection logic guarantees
that only the intended Bit(s) is/are effected by the
write-back operation.

Note : If a conflict occurs between a Bit manipu-
lation generated by hardware and an
intended software access the software
access has priority and determines the
final value of the respective Bit (See Sec-
tion 2.6 - Protected Bits).

ST10X167

41/294

4.3 - Instruction Execution Times
Instruction execution time depends on where the
instruction is fetched from and where operands are
read from or written to. When a program is fetched
from internal memory, most of the instructions can
be processed in one instruction cycle. All external
memory accesses are performed by the on-chip
External Bus Controller (EBC) which works in
parallel with the CPU. This section summarizes the
execution times. A detailed description of the
execution times for the various instructions and the
specific exceptions can be found in the “ST10
Family Programming Manual” . Table 5 shows
the minimum execution times required to process
a ST10X167 instruction fetched from the internal
ROM, the internal RAM, or from external memory.
The values are in CPU clock cycles and assume
no wait states. Two CPU clock cycles are equal to
one instruction cycle.
These execution times apply to most of the
ST10X167 instructions except some of the
branches, the multiplication, the division and a
special move instruction. In case of internal
Memory program execution, there is no execution
time dependency on the instruction length, except
for some special branch situations. Because of
the short execution time, execution from internal
RAM is flexible for loadable and modifiable code.
Execution from external memory depends on the
selected bus mode and the programming of the
bus cycles (waitstates). The operand and
instruction accesses listed below can extend the
execution time of an instruction:
– Internal ROM / Flash Memory operand reads

(same for Byte and Word operand reads),
– Internal RAM operand reads via indirect

addressing modes,
– Internal SFR operand reads immediately after writing,
– External operand reads,
– External operand writes,

– Jumps to non-aligned double Word instructions
in the internal ROM / Flash Memory space,

– Testing Branch Conditions immediately after
PSW writes.

4.4 - CPU Special Function Registers
The CPU requires a set of Special Function
Registers (SFRs) to maintain the system state
information, to supply the ALU with register-
addressable constants and to control system and
bus configuration, multiply and divide ALU
operations, code memory segmentation, data
memory paging, and accesses to the General
Purpose Registers and the System Stack.
The access mechanism for these SFRs in the
CPU core is identical to the access mechanism for
any other SFR. Since all SFRs can be controlled
by means of any instruction which is able to
address the SFR memory space, a lot of flexibility
has been gained without creating a set of
system-specific instructions.
Note, however, that there are user access
restrictions for some of the CPU core SFRs to
ensure proper processor operations. The
instruction pointer IP and code segment pointer
CSP cannot be accessed directly. They can only be
changed indirectly via branch instructions. The
PSW, SP, and MDC registers can be modified, not
only explicitly by the programmer, but also implicitly
by the CPU during normal instruction processing.

Notes : 1. Note that any explicit write request (via
software) to an SFR supersedes a simul-
taneous modification of the same register,
by hardware.

2. Any write operation to a single Byte of
an SFR clears the non-addressed comple-
mentary Byte within the specified SFR.
Non-implemented (reserved) SFR Bit can-
not be modified, and will always supply a
read value of '0'.

Table 5 : Minimum execution times

Memory Area

Instruction Fetch Word Operand Access

Word Instruction
(CPU clock cycles)

Doubleword Instruction
(CPU clock cycles) Read from Write to

Internal memory 2 2 100 -

Internal RAM 6 8 0/50 0

16 Bit Demux Bus 2 4 100 100

16 Bit Mux Bus 3 6 150 150

8 Bit Demux Bus 4 8 200 200

8 Bit Mux Bus 6 12 300 300

ST10X167

42/294

4.4.1 - The System Configuration Register SYSCON
This Bit-addressable register provides general system configuration and control functions. The reset
value for register SYSCON depends on the state of the PORT0 pins during reset (see hardware
affectable Bit). Bit 2 to 6 are not allocated in the ST10F167 device.

F167 Reset Value: 0XX0h

SYSCON (FF12h / 89h) SFR C/R167 Reset Value: 0X00h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STKSZ ROM
S1

SGT
DIS

ROM
EN

BYT
DIS

CLK
EN

WR
CFG

CS
CFG

PWD
CFG

OWD
DIS

BDR
STEN

XPEN VISI
BLE

XPER
SHARE

RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

XPER-SHARE XBUS Peripheral Share Mode Control
‘0’: External accesses to XBUS peripherals are disabled
‘1’: XBUS peripherals are accessible via the external bus during hold mode

VISIBLE Visible Mode Control
‘0’: Accesses to XBUS peripherals are done internally
‘1’: XBUS peripheral accesses are made visible on the external pins

XPEN XBUS Peripheral Enable Bit
For ST10C167 / ST10R167 This Bit is used to enable XRAM and XCAN.
For ST10F167 this Bit is used to enable XRAM only as XCAN is always enabled.
‘0’: Accesses to the on-chip XRAM are disabled, external bus cycles instead.
‘1’: External bus cycles are executed for accesses to the XRAM area.

BDRSTEN
Not allocated
in ST10F167

Bidirectional Reset Enable
‘0’: RSTIN pin is an input pin only. SW Reset or WDT Reset have no effect on this pin
‘1’: RSTIN pin is a bidirectional pin. This pin is pulled low during 1024 TCL during reset sequence.

OWDDIS
Not allocated
in ST10F167

Oscillator Watchdog Disable Control
‘0’: Oscillator Watchdog (OWD) is enabled. If PLL is bypassed, the OWD monitors XTAL1 activity. If
there is no activity on XTAL1 for at least 1 µs, the CPU clock is switched automatically to PLL’s base
frequency (around 2 to 10MHz).
‘1’: OWD is disabled. If the PLL is bypassed, the CPU clock is always driven by XTAL1 signal. The
PLL is turned off to reduce power supply current.

PWDCFG
Not allocated
in ST10F167

Power Down Mode Configuration Control
‘0’: Power Down Mode can only be entered during PWRDN instruction execution if NMI pin is low,
otherwise the instruction has no effect. To exit Power Down Mode, an external reset must occurs by
asserting the RSTIN pin.
‘1’: Power Down Mode can only be entered during PWRDN instruction execution if all enabled fast
external interrupt EXxIN pins are in their inactive level. Exiting this mode can be done by asserting
one enabled EXxIN pin.

CSCFG
Not allocated
in ST10F167

Chip Select Configuration Control
‘0’: Latched Chip Select lines, CSx change 1 TCL after rising edge of ALE
‘1’: Unlatched Chip Select lines, CSx change with rising edge of ALE

WRCFG Write Configuration Control (Inverted copy of WRC bit of RPOH)
‘0’: Pins WR and BHE retain their normal function
‘1’: Pin WR acts as WRL, pin BHE acts as WRH

CLKEN System Clock Output Enable (CLKOUT)
‘0’: CLKOUT disabled, pin may be used for general purpose I/O
‘1’: CLKOUT enabled, pin outputs the system clock signal

ST10X167

43/294

Note : Register SYSCON cannot be changed
after execution of the EINIT instruction.
The function of Bit XPER-SHARE, VISI-
BLE, WRCFG, BYTDIS, ROMEN and
ROMS1 is described in more detail in Sec-
tion 8.4 - Controlling the External Bus
Controller.

System Clock Output Enable (CLKEN)

The system clock output function is enabled by
setting Bit CLKEN in register SYSCON to '1'. If
enabled, port pin P3.15 takes on its alternate
function as CLKOUT output pin. The clock output
is a 50 % duty cycle clock whose frequency equals
the CPU operating frequency (fOUT = fCPU).

Note : The output driver of port pin P3.15 is
switched on automatically, when the CLK-
OUT function is enabled. The port direc-
tion Bit is disregarded.
After reset, the clock output function is dis-
abled (CLKEN = ‘0’).

Segmentation Disable/enable Control (SGTDIS)

Bit SGTDIS allows to select either the segmented
or non-segmented memory mode.

In non-segmented memory mode (SGTDIS='1')
it is assumed that the code address space is
restricted to 64K Byte (segment 0) and thus 16 Bit
are sufficient to represent all code addresses.

For implicit stack operations (CALL or RET) the
CSP register is totally ignored and only the IP is
saved to and restored from the stack.

In segmented memory mode (SGTDIS='0') it is
assumed that the whole address space is
available for instructions. For implicit stack
operations (CALL or RET) the CSP register and
the IP are saved to and restored from the stack.
After reset the segmented memory mode is
selected.
Note : Bit SGTDIS controls if the CSP register is

pushed onto the system stack in addition
to the IP register before an interrupt ser-
vice routine is entered, and it is repopped
when the interrupt service routine is left
again.

System Stack Size (STKSZ)
This Bitfield defines the size of the physical
system stack, which is located in the internal RAM
of the ST10X167. An area of 32...1024 Words or
all of the internal RAM may be dedicated to the
system stack. A so-called “circular stack”
mechanism allows to use a bigger virtual stack
than this dedicated RAM area. These techniques
as well as the encoding of Bitfield STKSZ are
described in more detail in Stack Operations (see
Section 21.1 - Stack Operations).

4.4.2 - The Processor Status Word PSW
This Bit-addressable register reflects the current
state of the microcontroller. Two groups of Bit
represent the current ALU status, and the current
CPU interrupt status. A separate Bit (USR0)
within register PSW is provided as a general
purpose user flag.

BYTDIS Disable/Enable Control for Pin BHE (Set according to data bus width)
‘0’: Pin BHE enabled
‘1’: Pin BHE disabled, pin may be used for general purpose I/O

ROMEN Internal Memory Enable (Set according to pin EA during reset)
‘0’: Internal ROM disabled: accesses to the Flash Memory area use the external bus
‘1’: Internal ROM enabled

SGTDIS Segmentation Disable/Enable Control
‘0’: Segmentation enabled (CSP is saved/restored during interrupt entry/exit)
‘1’: Segmentation disabled (Only IP is saved/restored)

ROMS1 Internal Memory Mapping
‘0’: Internal ROM area mapped to segment 0 (00’0000h...00’7FFFh)
‘1’: Internal ROM area mapped to segment 1 (01’0000h...01’7FFFh)

STKSZ System Stack Size
Selects the size of the system stack (in the internal RAM) from 32 to 1024 Words

Bit Function

ST10X167

44/294

PSW (FF10h / 88h) SFR Reset Value: 0000h

ALU Status (N, C, V, Z, E, MULIP)

The condition flags (N, C, V, Z, E) within the PSW
indicate the ALU status due to the last performed
ALU operation. They are set by most of the
instructions due to specific rules, which depend
on the ALU or data movement operation
performed by an instruction.

After execution of an instruction which explicitly
updates the PSW register, the condition flags
cannot be interpreted as described in the
following, because any explicit write to the PSW
register supersedes the condition flag values,
which are implicitly generated by the CPU.

Explicitly reading the PSW register supplies a
read value which represents the state of the PSW
register after execution of the immediately
preceding instruction.

Note : After reset, all of the ALU status Bit are
cleared.

N-Flag: For most of the ALU operations, the
N-flag is set to '1', if the most significant Bit of the
result contains a '1', otherwise it is cleared. In the
case of integer operations the N-flag can be
interpreted as the sign Bit of the result (negative:
N=’1’, positive: N=’0’). Negative numbers are
always represented as the 2's complement of the
corresponding positive number. The range of
signed numbers extends from '–8000h' to
'+7FFFh' for the Word data type, or from '–80h' to
'+7Fh' for the Byte data type. For Boolean Bit

operations with only one operand the N-flag
represents the previous state of the specified Bit.
For Boolean Bit operations with two operands the
N-flag represents the logical XOR of the two
specified Bit.
C-Flag: After an addition the C-flag indicates that
a carry from the most significant Bit of the
specified Word or Byte data type has been
generated. After a subtraction or a comparison
the C-flag indicates a borrow, which represents
the logical negation of a carry for the addition.
This means that the C-flag is set to '1', if no carry
from the most significant Bit of the specified Word
or Byte data type has been generated during a
subtraction, which is performed internally by the
ALU as a 2's complement addition, and the C-flag
is cleared when this complement addition caused
a carry. The C-flag is always cleared for logical,
multiply and divide ALU operations, because
these operations cannot cause a carry anyhow.
For shift and rotate operations the C-flag
represents the value of the Bit shifted out last. If a
shift count of zero is specified, the C-flag will be
cleared. The C-flag is also cleared for a prioritize
ALU operation, because a '1' is never shifted out
of the MSB during the normalization of an
operand. For Boolean Bit operations with only one
operand the C-flag is always cleared. For Boolean
Bit operations with two operands the C-flag
represents the logical ANDing of the two specified
Bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ILVL IEN HLD
EN

- - - USR0 MUL
IP

E Z V C N

RW RW RW - - - RW RW RW RW RW RW RW

Bit Function

N Negative Result - Set, when the result of an ALU operation is negative.

C Carry Flag - Set, when the result of an ALU operation produces a carry Bit.

V Overflow Result - Set, when the result of an ALU operation produces an overflow.

Z Zero Flag - Set, when the result of an ALU operation is zero.

E End of Table Flag - Set, when the source operand of an instruction is 8000h or 80h.

MULIP Multiplication/Division In Progress
‘0’: There is no multiplication/division in progress.
‘1’: A multiplication/division has been interrupted.

USR0 User General Purpose Flag - May be used by the application software.

HLDEN,
ILVL, IEN

Interrupt and EBC Control Fields
Define the response to interrupt requests and enable external bus Arbitration. (Described in Chapter 5 -
Interrupt and Trap Functions)

ST10X167

45/294

V-Flag: For addition, subtraction and 2's
complementation the V-flag is always set to '1', if
the result overflows the maximum range of signed
numbers, which are representable by either 16 Bit
for Word operations ('–8000h' to '+7FFFh'), or by 8
Bit for Byte operations ('–80h' to '+7Fh'),
otherwise the V-flag is cleared. The result of an
integer addition, integer subtraction, or 2's
complement is not valid, if the V-flag indicates an
arithmetic overflow.

For multiplication and division the V-flag is set to
'1', if the result cannot be represented in a Word
data type, otherwise it is cleared. A division by
zero will always cause an overflow. In contrast to
the result of a division, the result of a multiplication
is valid regardless of whether the V-flag is set to '1'
or not. Since logical ALU operations cannot
produce an invalid result, the V-flag is cleared by
these operations.

The V-flag is also used as 'Sticky Bit' for rotate right
and shift right operations. With only using the
C-flag, a rounding error caused by a shift right
operation can be estimated up to a quantity of one
half of the LSB of the result. In conjunction with the
V-flag, the C-flag allows evaluating the rounding
error with a finer resolution (see Figure 13). For
Boolean Bit operations with only one operand the
V-flag is always cleared. For Boolean Bit operations
with two operands the V-flag represents the logical
ORing of the two specified Bit.

Z-Flag: The Z-flag is normally set to '1', if the
result of an ALU operation equals zero, otherwise
it is cleared. For the addition and subtraction with
carry the Z-flag is only set to '1', if the Z-flag
already contains a '1' and the result of the current
ALU operation additionally equals zero. This
mechanism is provided for the support of multiple
precision calculations.

For Boolean Bit operations with only one operand
the Z-flag represents the logical negation of the
previous state of the specified Bit. For Boolean Bit
operations with two operands the Z-flag
represents the logical NORing of the two specified
Bit. For the prioritize ALU operation the Z-flag
indicates, if the second operand was zero or not.

E-Flag: The E-flag can be altered by instructions,
which perform ALU or data movement operations.
The E-flag is cleared by those instructions which
cannot be reasonably used for table search
operations. In all other cases the E-flag is set
depending on the value of the source operand to
signify whether the end of a search table is
reached or not.
If the value of the source operand of an instruction
equals the lowest negative number, which is
representable by the data format of the
corresponding instruction ('8000h' for the Word
data type, or '80h' for the Byte data type), the
E-flag is set to '1', otherwise it is cleared.
MULIP-Flag: The MULIP-flag will be set to '1' by
hardware upon the entrance into an interrupt
service routine, when a multiply or divide ALU
operation was interrupted before completion.
Depending on the state of the MULIP Bit, the
hardware decides whether a multiplication or
division must be continued or not after the end of
an interrupt service. The MULIP Bit is overwritten
with the contents of the stacked MULIP-flag when
the return-from-interrupt-instruction (RETI) is
executed. This normally means that the
MULIP-flag is cleared again after that.
Note The MULIP flag is a part of the task environ-

ment. When the interrupting service routine
does not return to the interrupted multiply/
divide instruction (for example in case of a
task scheduler that switches between inde-
pendent tasks), the MULIP flag must be
saved as part of the task environment and
must be updated accordingly for the new
task before this task is entered.

CPU Interrupt Status (IEN, ILVL)
The Interrupt Enable Bit allows to globally enable
(IEN=’1’) or disable (IEN=’0’) interrupts. The four
Bit Interrupt Level field (ILVL) specifies the priority
of the current CPU activity.
The interrupt level is updated by hardware upon
entry into an interrupt service routine, but it can
also be modified via software to prevent other
interrupts from being acknowledged. In case an
interrupt level '15' has been assigned to the CPU,
it has the highest possible priority, and thus the
current CPU operation cannot be interrupted
except by hardware traps or external
non-maskable interrupts. For details please refer
to Chapter 5 - Interrupt and Trap Functions.
After reset all interrupts are globally disabled, and
the lowest priority (ILVL=0) is assigned to the
initial CPU activity.

Figure 13 : Shift right rounding error evaluation

C-Flag V-Flag Rounding Error Quantity

0
0
1
1

0
1
0
1

No rounding error
0 < Rounding error < 1/2 LSB

Rounding error = 1/2 LSB
Rounding error > 1/2 LSB

ST10X167

46/294

4.4.3 - The Instruction Pointer IP
This register determines the 16 Bit intra-segment address of the currently fetched instruction within the
code segment selected by the CSP register.
The IP register is not mapped into the MCU address space, and thus it is not directly accessible by the
programmer. The IP can, however, be modified indirectly via the stack by means of a return instruction.
The IP register is implicitly updated by the CPU for branch instructions and after instruction fetch
operations.

IP (---- / --) --- Reset Value: 0000h

4.4.4 - The Code Segment Pointer CSP
This non Bit addressable register selects the code segment being used at run-time to access instructions.
The lower 8 Bit of register CSP select one of up to 256 segments of 64K Byte each, while the upper 8 Bit
are reserved for future use.

CSP (FE08h / 04h) SFR Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IP

(R)(W)

Bit Function

IP Specifies the intra segment offset, from where the current instruction is to be fetched. IP refers to the
current segment (SEGNR).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - SEGNR

R

Bit Function

SEGNR Segment Number: Specifies the code segment, from where the current instruction is to be fetched.
SEGNR is ignored, when segmentation is disabled.

ST10X167

47/294

Note : When segmentation is disabled, the IP
value is used directly as the 16 Bit
address.

Code memory addresses are generated by
directly extending the 16 Bit contents of the IP
register by the contents of the CSP register as
shown in the Figure 14.
In case of the segmented memory mode the
selected number of segment address Bit (7...0,
3...0 or 1...0) of register CSP is output on the
segment address pins A23...A16 of Port4 for all
external code accesses. For non-segmented

memory mode the content of this register is not
significant, because all code accesses are
automatically restricted to segment 0.

The CSP register can only be read but not written
by data operations. It is, however, modified either
directly by means of the JMPS and CALLS
instructions, or indirectly via the stack by means of
the RETS and RETI instructions.

Upon the acceptance of an interrupt or the
execution of a software TRAP instruction, the
CSP register is automatically set to zero.

Figure 14 : Addressing Via the Code Segment Pointer

Code Segment

255

254

1

0

FF’FFFFh

FE’0000h

01’0000h

00’0000h

15 0CSP Register 15 0IP Register

24 / 20 / 18 Bit Physical Code Address

ST10X167

48/294

4.4.5 - The Data Page Pointers DPP0, DPP1, DPP2, DPP3
These four non Bit addressable registers select up to four different data pages being active
simultaneously at run-time. The lower 10 Bit of each DPP register select one of the 1024 possible 16K
Byte data pages while the upper 6 Bit are reserved for future use. The DPP registers make it possible to
access the entire memory space, in pages of 16K Byte each.
The DPP registers are implicitly used whenever data accesses to any memory location are made via
indirect, or direct long 16 Bit addressing modes (except for override accesses via EXTended instructions
and PEC data transfers). After reset, the Data Page Pointers are initialized in a way that all indirect or
direct long 16 Bit addresses result in identical 18 Bit addresses. This allows makes it possible to access
data pages 3...0 within segment 0 as shown in the figure below. If the user does not want to use any data
paging, no further action is required.

DPP0 (FE00h / 00h) SFR Reset Value: 0000h

DPP1 (FE02h / 01h) SFR Reset Value: 0001h

DPP2 (FE04h / 02h) SFR Reset Value: 0002h

DPP3 (FE06h / 03h) SFR Reset Value: 0003h

Data paging is performed by concatenating the lower 14 Bit of an indirect or direct long 16 Bit address with
the contents of the DDP register selected by the upper two Bit of the 16 Bit address. The content of the
selected DPP register specifies one of the 1024 possible data pages. This data page base address
together with the 14 Bit page offset forms the physical 24/20/18 Bit address. In case of non-segmented
memory mode, only the two least significant Bit of the implicitly selected DPP register are used to generate
the physical address. Thus, extreme care should be taken when changing the content of a DPP register, if
a non-segmented memory model is selected, because otherwise unexpected results could occur.

In case of the segmented memory mode the selected number of segment address Bit (9...2, 5...2 or 3...2) of the
respective DPP register is output on the segment address pins A23/A19/A17/A16 of Port4 for all external data
accesses. A DPP register can be updated via any instruction, which is capable of modifying an SFR.
Due to the internal instruction pipeline, a new DPP value is not yet usable for the operand address
calculation of the instruction immediately following the instruction updating the DPP register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - DPP0PN

RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - DPP1PN

RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - DPP2PN

RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - DPP3PN

RW

Bit Function

DPPxPN Data Page Number of DPPx: Specifies the data page selected via DPPx. Only the 2 least signifi-
cant Bit of DPPx are used when segmentation is disabled.

ST10X167

49/294

Figure 15 : Addressing via the data page pointers

4.4.6 - The Context Pointer CP

This non Bit addressable register is used to select the current register context. This means that the CP
register value determines the address of the first General Purpose Register (GPR) within the current
register bank of up to 16 Wordwide and/or Bytewide GPRs.

CP (FE10h / 08h) SFR Reset Value: FC00h

It is the user's responsibility to ensure that the physical GPR address, specified via the CP register plus
the short GPR address, must always be an internal RAM location. If this condition is not met, unexpected
results may occur.

– Do not set CP below the IRAM start address, 00’F600h (2K Byte).

– Do not set CP above 00’FDFEh.

– Be careful using the upper GPRs with CP above 00’FDE0h.

The CP register can be updated via any instruction which is capable of modifying an SFR.

Note : Due to the internal instruction pipeline, a new CP value is not yet usable for GPR address calcu-
lations of the instruction immediately following the instruction updating the CP register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 CP 0

R R R R RW R

Bit Function

CP Modifiable portion of register CP: Specifies the (Word) base address of the current register
bank. When writing a value to register CP with Bit CP.11...CP.9 = ‘000’, Bit CP.11...CP.10 are set to
‘11’ by hardware, in all other cases all Bit of Bit field “cp” receive the written value.

Data Pages

1023

1022

1021

3

2

1

0

DPP Registers

DPP3-11

DPP2-10

DPP1-01

DPP0-00

After reset or with segmentation disabled the DPP registers select data pages 3...0.
All of the internal memory is accessible in these cases.

1415 0

16-Bit Data Address

9 0

14-bit10-bit

13

DPP register concatenated with 14-bit
Intra-Page Address gives 24-bit address.

ST10X167

50/294

The Switch Context instruction (SCXT) makes it
possible to save the content of register CP on the
stack and updating it with a new value in just one
instruction cycle.
Several addressing modes use register CP
implicitly for address calculations.

Short 4 Bit GPR addresses (mnemonic: Rw or
Rb) specify an address relative to the memory
location specified by the contents of the CP
register, which is the base of the current register
bank.

Depending on whether a relative Word (Rw) or
Byte (Rb) GPR address is specified, the short 4
Bit GPR address is either multiplied by two or not
before it is added to the content of register CP
(see Figure 17).

Thus, both Byte and Word GPR accesses are
possible in this way. GPRs used as indirect
address pointers are always accessed Word wise.
For some instructions only the first four GPRs can
be used as indirect address pointers.

These GPRs are specified via short 2 Bit GPR
addresses. The respective physical address
calculation is identical to that for the short 4 Bit
GPR addresses.
Short 8 Bit register addresses (mnemonic: reg
or Bitoff) within a range from F0h to FFh interpret
the four least significant Bit as short 4 Bit GPR
address, while the four most significant Bit are
ignored.
The respective physical GPR address calculation
is identical to that for the short 4 Bit GPR
addresses. For single Bit accesses on a GPR, the
GPR's Word address is calculated as just

described, but the position of the Bit within the
Word is specified by a separate additional 4 Bit
value.

Figure 16 : Register bank selection via register CP

R15

R14

R13

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

R0

(CP) + 30

(CP) + 28

(CP) + 2

(CP)

Internal RAM

Context
Pointer

Figure 17 : Implicit CP use by short GPR addressing modes

Context Pointer 4 Bit GPR Address1111

Specified by register or Bitoff

+

x2

Control

For Byte GPR
accesses

For Word GPR
accesses

Internal
RAM

GPRs

Must be
within the
internal
RAM area

ST10X167

51/294

4.4.7 - The Stack Pointer SP
This non Bit addressable register is used to point to the top of the internal system stack (TOS). The SP
register is pre-decremented whenever data is to be pushed onto the stack, and it is post-incremented
whenever data is to be popped from the stack. Thus, the system stack grows from higher toward lower
memory locations.
Since the least significant Bit of register SP is tied to '0' and Bit 15 through 12 are tied to '1' by hardware,
the SP register can only contain values from F000h to FFFEh. This allows to access a physical stack
within the internal RAM of the MCU. A virtual stack (usually bigger) can be realized via software. This
mechanism is supported by registers STKOV and STKUN (see respective descriptions below).
The SP register can be updated via any instruction, which is capable of modifying an SFR.
Note : Due to the internal instruction pipeline, a POP or RETURN instruction must not immediately follow

an instruction updating the SP register.

SP (FE12h / 09h) SFR Reset Value: FC00h

4.4.8 - The Stack Overflow Pointer STKOV
This non Bit addressable register is compared against the SP register after each operation, which pushes
data onto the system stack (PUSH and CALL instructions or interrupts) and after each subtraction from the
SP register. If the content of the SP register is less than the content of the STKOV register, a stack overflow
hardware trap will occur. Since the least significant Bit of register STKOV is tied to '0' and Bit 15 through 12
are tied to '1' by hardware, the STKOV register can only contain values from F000h to FFFEh.

STKOV (FE14h / 0Ah) SFR Reset Value: FA00h

The Stack Overflow Trap (entered when (SP) < (STKOV)) may be used in two different ways:
Fatal error indication treats the stack overflow as a system error through the associated trap service
routine. Under these circumstances data in the bottom of the stack may have been overwritten by the
status information stacked upon servicing the stack overflow trap.
Automatic system stack flushing allows to use the system stack as a 'Stack Cache' for a bigger
external user stack. In this case register STKOV should be initialized to a value, which represents the
desired lowest Top of Stack address plus 12 according to the selected maximum stack size. This
considers the worst case that will occur, when a stack overflow condition is detected just during entry into
an interrupt service routine. Then, six additional stack Word locations are required to push IP, PSW, and
CSP for both the interrupt service routine and the hardware trap service routine.
More details about the stack overflow trap service routine and virtual stack management are given in
Chapter 21 - System Programming.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 SP 0

R R R R RW R

Bit Function

SP Modifiable portion of register SP: Specifies the top of the internal system stack.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 STKOV 0

R R R R RW R

Bit Function

STKOV Modifiable portion of register STKOV: Specifies the lower limit of the internal system stack.

ST10X167

52/294

4.4.9 - The Stack Underflow Pointer STKUN

This non Bit addressable register is compared against the SP register after each operation, which pops
data from the system stack (POP and RET instructions) and after each addition to the SP register. If the
content of the SP register is greater than the content of the STKUN register, a stack underflow hardware
trap will occur.

Since the least significant Bit of register STKUN is tied to '0' and Bit 15 through 12 are tied to '1' by
hardware, the STKUN register can only contain values from F000h to FFFEh.

STKUN (FE16h / 0Bh) SFR Reset Value: FC00h

The Stack Underflow Trap (entered when (SP) > (STKUN)) may be used in two different ways:

– Fatal error indication treats the stack underflow as a system error through the associated trap service
routine.

– Automatic system stack refilling allows to use the system stack as a 'Stack Cache' for a bigger
external user stack. In this case register STKUN should be initialized to a value, which represents the
desired highest Bottom of Stack address.

More details about the stack underflow trap service routine and virtual stack management are given in
Chapter 21 - System Programming.

Scope of stack limit control

The stack limit control realized by the register pair STKOV and STKUN detects cases where the stack
pointer SP is moved outside the defined stack area either by ADD or SUB instructions or by PUSH or
POP operations (explicit or implicit, CALL or RET instructions).

This control mechanism is not triggered, and no stack trap is generated, when:

– the stack pointer SP is directly updated via MOV instructions.

– the limits of the stack area (STKOV, STKUN) are changed, so that SP is outside of the new limits.

4.4.10 - The Multiply / Divide High Register MDH

This register is a part of the 32 Bit multiply/divide register, which is implicitly used by the CPU, when it
performs a multiplication or a division. After a multiplication, this non Bit addressable register represents
the high order 16 Bit of the 32 Bit result. For long divisions, the MDH register must be loaded with the high
order 16 Bit of the 32 Bit dividend before the division is started. After any division, register MDH
represents the 16 Bit remainder.

MDH (FE0Ch / 06h) SFR Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 STKUN 0

R R R R RW R

Bit Function

STKUN Modifiable portion of register STKUN: Specifies the upper limit of the internal system stack.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MDH

RW

Bit Function

MDH Specifies the high order 16 Bit of the 32 Bit multiply and divide register MD.

ST10X167

53/294

Whenever this register is updated via software, the Multiply/Divide Register In Use (MDRIU) flag in the
Multiply/Divide Control register (MDC) is set to '1'. When a multiplication or division is interrupted before
its completion and when a new multiply or divide operation is to be performed within the interrupt service
routine, register MDH must be saved along with registers MDL and MDC to avoid erroneous results.

A detailed description of how to use the MDH register for programming multiply and divide algorithms can
be found in Chapter 21 - System Programming.

4.4.11 - The Multiply / Divide Low Register MDL

This register is a part of the 32 Bit multiply/divide register, which is implicitly used by the CPU, when it
performs a multiplication or a division. After a multiplication, this non Bit addressable register represents
the low order 16 Bit of the 32 Bit result. For long divisions, the MDL register must be loaded with the low
order 16 Bit of the 32 Bit dividend before the division is started. After any division, register MDL
represents the 16 Bit quotient.

MDL (FE0Eh / 07h) SFR Reset Value: 0000h

Whenever this register is updated via software, the Multiply/Divide Register In Use (MDRIU) flag in the
Multiply/Divide Control register (MDC) is set to '1'. The MDRIU flag is cleared, whenever the MDL register
is read via software. When a multiplication or division is interrupted before its completion and when a new
multiply or divide operation is to be performed within the interrupt service routine, register MDL must be
saved along with registers MDH and MDC to avoid erroneous results.

A detailed description of how to use the MDL register for programming multiply and divide algorithms can
be found in Chapter 21 - System Programming.

4.4.12 - The Multiply / Divide Control Register MDC
This Bit addressable 16 Bit register is implicitly used by the CPU, when it performs a multiplication or a
division. It is used to store the required control information for the corresponding multiply or divide
operation. Register MDC is updated by hardware during each single cycle of a multiply or divide
instruction.

MDC (FF0Eh / 87h) SFR Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MDL

RW

Bit Function

MDL Specifies the low order 16 Bit of the 32 Bit multiply and divide register MD.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - MS MS MS MDR
IU

MS MS MS MS

RW RW RW RW RW RW RW RW

Bit Function

MDRIU Multiply/Divide Register In Use

‘0’: Cleared, when register MDL is read via software.
‘1’: Set when register MDL or MDH is written via software, or when a multiply

or divide instruction is executed.

MS Internal Machine Status

The multiply/divide unit uses these Bit to control internal operations.
Never modify these Bit without saving and restoring register MDC.

ST10X167

54/294

When a division or multiplication was interrupted before its completion and the multiply/divide unit is
required, the MDC register must first be saved along with registers MDH and MDL (to be able to restart
the interrupted operation later), and then it must be cleared prepare it for the new calculation. After
completion of the new division or multiplication, the state of the interrupted multiply or divide operation
must be restored. The MDRIU flag is the only portion of the MDC register which might be of interest for
the user. The remaining portions of the MDC register are reserved for dedicated use by the hardware,
and should never be modified by the user in another way than described above. Otherwise, a correct
continuation of an interrupted multiply or divide operation cannot be guaranteed.
A detailed description of how to use the MDC register for programming multiply and divide algorithms can
be found in Chapter 21 - System Programming.

4.4.13 - The Constant Zeros Register ZEROS
All Bit of this Bit-addressable register are fixed to '0' by hardware. This register can be read only. Register
ZEROS can be used as a register-addressable constant of all zeros, for Bit manipulation or mask
generation. It can be accessed via any instruction, which is capable of addressing an SFR.

ZEROS (FF1Ch / 8Eh) SFR Reset Value: 0000h

4.4.14 - The Constant Ones Register ONES
All Bit of this Bit-addressable register are fixed to '1' by hardware. This register can be read only. Register
ONES can be used as a register-addressable constant of all ones, for Bit manipulation or mask
generation. It can be accessed via any instruction, which is capable of addressing an SFR.

ONES (FF1Eh / 8Fh) SFR Reset Value: FFFFh

4.4.15 - Example
Mask for FFFFh values use to increment or decrement memory

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R R R R R R R R R R R R R R R R

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

R R R R R R R R R R R R R R R R

sub mem, ones ;mem=mem+1

;increments the memory location in one
;instruction instead of three, as described
;below

mov [R13], mem ;mem -->R13

add [R13], #1 ;R13 + 1;

mov mem, [R13] ;R13 --> mem

ST10X167

55/294

5 - INTERRUPT AND TRAP FUNCTIONS

The architecture of the ST10X167 supports
several mechanisms for fast and flexible response
to service requests that can be generated from
various sources internal or external to the
microcontroller. These mechanisms include:
– Normal interrupt processing : The CPU

temporarily suspends the current program
execution and branches to an interrupt service
routine in order to service an interrupt
requesting device. The current program status
(IP, PSW, in segmentation mode also CSP) is
saved on the internal system stack. A
prioritization scheme with 16 priority levels
allows the user to specify the order in
which multiple interrupt requests are to be
handled.

– Interrupt processing via the peripheral event
controller (PEC) : A faster alternative to normal
software controlled interrupt processing is
servicing an interrupt requesting device with the
ST10X167's integrated Peripheral Event
Controller (PEC). Triggered by an interrupt
request, the PEC performs a single Word or
Byte data transfer between any two locations in
segment 0 (data pages 0 through 3) through one
of eight programmable PEC Service Channels.
During a PEC transfer the normal program
execution of the CPU is halted for just 1
instruction cycle. No internal program status
information needs to be saved. The same
prioritization scheme is used for PEC service as
for normal interrupt processing. PEC transfers
share the 2 highest priority levels.

– Trap functions : Trap functions are activated in
response to special conditions that occur during
the execution of instructions. A trap can also be
caused externally by the Non-Maskable
Interrupt pin NMI. Several hardware trap
functions are provided for handling erroneous
conditions and exceptions that arise during the
execution of an instruction. Hardware traps
always have highest priority and cause
immediate system reaction. The software trap
function is invoked by the TRAP instruction,
which generates a software interrupt for a
specified interrupt vector. For all types of traps
the current program status is saved on the
system stack.

– External interrupt processing : Although the
ST10X167 does not provide dedicated interrupt
pins, it allows to connect external interrupt
sources and provides several mechanisms to
react on external events, including standard
inputs, non-maskable interrupts and fast

external interrupts. These interrupt functions are
alternate port functions, except for the
non-maskable interrupt and the reset input.

5.1 - Interrupt System Structure

The ST10X167 provides 56 separate interrupt
nodes that may be assigned to 16 priority levels.
In order to support modular and consistent
software design techniques, each source of an
interrupt or PEC request is supplied with a
separate interrupt control register and interrupt
vector.

The control register contains the interrupt request
flag, the interrupt enable bit, and the interrupt
priority of the associated source. Each source
request is activated by one specific event,
depending on the selected operating mode of the
respective device.

The only exceptions are the two serial channels of
the ST10X167, where an error interrupt request
can be generated by different kinds of error.
However, specific status flags which identify the
type of error are implemented in the serial
channels’ control registers.

The ST10X167 provides a vectored interrupt
system. In this system specific vector locations in
the memory space are reserved for the reset, trap,
and interrupt service functions.

Whenever a request occurs, the CPU branches to
the location that is associated with the respective
interrupt source.

This allows direct identification of the source that
caused the request. The only exceptions are the
class B hardware traps, which all share the same
interrupt vector.

The status flags in the Trap Flag Register (TFR)
can then be used to determine which exception
caused the trap. For the special software TRAP
instruction, the vector address is specified by the
operand field of the instruction, which is a seven
bit trap number.

The reserved vector locations build a jump table in
the low end of the ST10X167’s address space
(segment 0).

The jump table is made up of the appropriate jump
instructions that transfer control to the interrupt or
trap service routines, which may be located
anywhere within the address space.

ST10X167

56/294

The entries of the jump table are located at the
lowest addresses in code segment 0 of the
address space. Each entry occupies 2 Words,
except for the reset vector and the hardware trap
vectors, which occupy 4 or 8 Words.
The Table 6 lists all sources that are capable of
requesting interrupt or PEC service in the
ST10X167, the associated interrupt vectors, their
locations and the associated trap numbers. It also
lists the mnemonics of the affected Interrupt

Request flags and their corresponding Interrupt
Enable flags. The mnemonics are composed of a
part that specifies the respective source, followed
by a part that specifies their function (IR=Interrupt
Request flag, IE=Interrupt Enable flag).
Each entry of the interrupt vector table provides
room for two Word instructions or one doubleword
instruction. The respective vector location results
from multiplying the trap number by 4 (4 Byte per
entry).

Table 6 : Interrupt and PEC service request sources

Source of Interrupt or PEC
Service Request

Request
Flag

Enable
Flag

Interrupt
Vector

Vector
Location

Trap
Number

CAPCOM Register 0 CC0IR CC0IE CC0INT 00’0040h 10h

CAPCOM Register 1 CC1IR CC1IE CC1INT 00’0044h 11h

CAPCOM Register 2 CC2IR CC2IE CC2INT 00’0048h 12h

CAPCOM Register 3 CC3IR CC3IE CC3INT 00’004Ch 13h

CAPCOM Register 4 CC4IR CC4IE CC4INT 00’0050h 14h

CAPCOM Register 5 CC5IR CC5IE CC5INT 00’0054h 15h

CAPCOM Register 6 CC6IR CC6IE CC6INT 00’0058h 16h

CAPCOM Register 7 CC7IR CC7IE CC7INT 00’005Ch 17h

CAPCOM Register 8 CC8IR CC8IE CC8INT 00’0060h 18h

CAPCOM Register 9 CC9IR CC9IE CC9INT 00’0064h 19h

CAPCOM Register 10 CC10IR CC10IE CC10INT 00’0068h 1Ah

CAPCOM Register 11 CC11IR CC11IE CC11INT 00’006Ch 1Bh

CAPCOM Register 12 CC12IR CC12IE CC12INT 00’0070h 1Ch

CAPCOM Register 13 CC13IR CC13IE CC13INT 00’0074h 1Dh

CAPCOM Register 14 CC14IR CC14IE CC14INT 00’0078h 1Eh

CAPCOM Register 15 CC15IR CC15IE CC15INT 00’007Ch 1Fh

CAPCOM Register 16 CC16IR CC16IE CC16INT 00’00C0h 30h

CAPCOM Register 17 CC17IR CC17IE CC17INT 00’00C4h 31h

CAPCOM Register 18 CC18IR CC18IE CC18INT 00’00C8h 32h

CAPCOM Register 19 CC19IR CC19IE CC19INT 00’00CCh 33h

CAPCOM Register 20 CC20IR CC20IE CC20INT 00’00D0h 34h

CAPCOM Register 21 CC21IR CC21IE CC21INT 00’00D4h 35h

CAPCOM Register 22 CC22IR CC22IE CC22INT 00’00D8h 36h

CAPCOM Register 23 CC23IR CC23IE CC23INT 00’00DCh 37h

CAPCOM Register 24 CC24IR CC24IE CC24INT 00’00E0h 38h

CAPCOM Register 25 CC25IR CC25IE CC25INT 00’00E4h 39h

ST10X167

57/294

Notes 1. For devices which do not incorporate a CAN module or a PLL, the respective interrupt nodes may be used for software triggered
interrupts (see Section 8.7 - The XBUS Interface).

2. The currently unused nodes in the table (X-Peripheral nodes) are prepared to accept interrupt requests from integrated XBUS
peripherals. Nodes, where no X-Peripherals are connected or when no PLL is implemented, may be used to generate software
controlled interrupt requests by setting the respective XPnIR bit.

CAPCOM Register 26 CC26IR CC26IE CC26INT 00’00E8h 3Ah

CAPCOM Register 27 CC27IR CC27IE CC27INT 00’00ECh 3Bh

CAPCOM Register 28 CC28IR CC28IE CC28INT 00’00E0h 3Ch

CAPCOM Register 29 CC29IR CC29IE CC29INT 00’0110h 44h

CAPCOM Register 30 CC30IR CC30IE CC30INT 00’0114h 45h

CAPCOM Register 31 CC31IR CC31IE CC31INT 00’0118h 46h

CAPCOM Timer 0 T0IR T0IE T0INT 00’0080h 20h

CAPCOM Timer 1 T1IR T1IE T1INT 00’0084h 21h

CAPCOM Timer 7 T7IR T7IE T7INT 00’00F4h 3Dh

CAPCOM Timer 8 T8IR T8IE T8INT 00’00F8h 3Eh

GPT1 Timer 2 T2IR T2IE T2INT 00’0088h 22h

GPT1 Timer 3 T3IR T3IE T3INT 00’008Ch 23h

GPT1 Timer 4 T4IR T4IE T4INT 00’0090h 24h

GPT2 Timer 5 T5IR T5IE T5INT 00’0094h 25h

GPT2 Timer 6 T6IR T6IE T6INT 00’0098h 26h

GPT2 CAPREL Register CRIR CRIE CRINT 00’009Ch 27h

A/D Conversion Complete ADCIR ADCIE ADCINT 00’00A0h 28h

A/D Overrun Error ADEIR ADEIE ADEINT 00’00A4h 29h

ASC0 Transmit S0TIR S0TIE S0TINT 00’00A8h 2Ah

ASC0 Transmit Buffer S0TBIR S0TBIE S0TBINT 00’011Ch 47h

ASC0 Receive S0RIR S0RIE S0RINT 00’00ACh 2Bh

ASC0 Error S0EIR S0EIE S0EINT 00’00B0h 2Ch

SSC Transmit SSCTIR SSCTIE SSCTINT 00’00B4h 2Dh

SSC Receive SSCRIR SSCRIE SSCRINT 00’00B8h 2Eh

SSC Error SSCEIR SSCEIE SSCEINT 00’00BCh 2Fh

PWM Channel 0...3 PWMIR PWMIE PWMINT 00’00FCh 3Fh

CAN Interface 1 XP0IR XP0IE XP0INT 00’0100h 40h

X-Peripheral node 1 2 XP1IR XP1IE XP1INT 00’0104h 41h

X-Peripheral node 2 2 XP2IR XP2IE XP2INT 00’0108h 42h

PLL Unlock XP3IR XP3IE XP3INT 00’010Ch 43h

Table 6 : Interrupt and PEC service request sources (continued)

Source of Interrupt or PEC
Service Request

Request
Flag

Enable
Flag

Interrupt
Vector

Vector
Location

Trap
Number

ST10X167

58/294

Table 7 : Vector locations and status for hardware traps

The Table 7 lists the vector locations for hardware
traps and the corresponding status flags in register
TFR.

It also lists the priorities of trap service for cases,
where more than one trap condition might be
detected within the same instruction.

After any reset (hardware reset, software reset
instruction SRST, or reset by watchdog timer
overflow) program execution starts at the reset
vector at location 00’0000h.

Reset conditions have priority over every other
system activity and therefore have the highest
priority (trap priority III).

Software traps may be initiated to any vector
location between 00’0000h and 00’01FCh. A
service routine entered via a software TRAP
instruction is always executed on the current CPU
priority level which is indicated in bit field ILVL in
register PSW.

This means that routines entered via the software
TRAP instruction can be interrupted by all
hardware traps or higher level interrupt requests.

5.1.1 - Normal Interrupt Processing and PEC
Service
At each instruction cycle, among all the sources,
which require a PEC or an interrupt processing,
only the one with the highest priority is selected.
The priority of interrupts and PEC requests is
programmable in two levels. Each requesting
source can be assigned to a specific priority.
A second level (called “group priority”) allows to
specify an internal order for simultaneous
requests from a group of different sources on the
same priority level.
At the end of each instruction cycle the request
with the highest current priority will be determined
by the interrupt system. The request will be
serviced. If its priority is higher than the current
CPU priority which is stored in the register PSW.

Exception Condition Trap
Flag

Trap
Vector

Vector
Location

Trap
Number

Trap
Priority

Reset Functions:
Hardware Reset
Software Reset
Watchdog Timer

Overflow

RESET
RESET
RESET

00’0000h
00’0000h
00’0000h

00h
00h
00h

III
III
III

Class A Hardware Traps:
Non-Maskable Interrupt
Stack Overflow
Stack Underflow

NMI
STKOF
STKUF

NMITRAP
STOTRAP
STUTRAP

00’0008h
00’0010h
00’0018h

02h
04h
06h

II
II
II

Class B Hardware Traps:
Undefined Opcode
Protected Instruction
Fault
Illegal Word Operand
Access
Illegal Instruction Access
Illegal External Bus
Access

UNDOPC
PRTFLT

ILLOPA

ILLINA
ILLBUS

BTRAP
BTRAP

BTRAP

BTRAP
BTRAP

00’0028h
00’0028h

00’0028h

00’0028h
00’0028h

0Ah
0Ah

0Ah

0Ah
0Ah

I
I

I

I
I

Reserved [2CH – 3Ch] [0Bh – 0Fh]

Software Traps
TRAP Instruction

Any [00’0000h –
00’01FCh]

in steps of 4h

Any
[00h – 7Fh]

Current
CPU Priority

ST10X167

59/294

5.1.2 - Interrupt System Register Description
Interrupt processing is globally controlled by
register PSW through a general interrupt enable
bit (IEN) and the CPU priority field (ILVL).
Additionally the different interrupt sources are
individually controlled by their specific interrupt
control registers (...IC).
Thus, the acceptance of requests by the CPU is
determined by both the individual interrupt control
registers and the PSW. PEC services are
controlled by the respective PECCx register and
the source and destination pointers, which specify
the task of the respective PEC service channel.

5.1.3 - Interrupt Control Registers
All interrupt control registers are identically
organized. The lower 8 bit of an interrupt control

register contain the complete interrupt status
information of the associated source, which is
required during one round of prioritization, the
upper 8 bit of the respective register are reserved.
All interrupt control registers are bit-addressable
and all bit can be read or written via software.

This allows each interrupt source to be
programmed or modified with just one instruction.
When accessing interrupt control registers
through instructions which operate on Word data
types, their upper 8 bit (15...8) will return zeros,
when read, and will discard written data.

The layout of the Interrupt Control registers shown
below applies to each xxIC register, where xx
stands for the mnemonic for the respective
source.

xxIC (yyyyh / zzh) SFR Area Reset Value: 00h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - xxIR xxIE ILVL GLVL

RW RW RW RW

Bit Function

GLVL Group Level

Defines the internal order for simultaneous requests of the same priority.
3: Highest group priority
0: Lowest group priority

ILVL Interrupt Priority Level

Defines the priority level for the arbitration of requests.
Fh: Highest priority level
0h: Lowest priority level

xxIE Interrupt Enable Control Bit (individually enables/disables a specific source)

‘0’: Interrupt Request is disabled
‘1’: Interrupt Request is enabled

xxIR Interrupt Request Flag

‘0’: No request pending
‘1’: This source has raised an interrupt request

ST10X167

60/294

The Interrupt Request Flag is set by hardware
whenever a service request from the respective
source occurs. It is cleared automatically upon
entry into the interrupt service routine or upon a
PEC service. In the case of PEC service the
Interrupt Request flag remains set, if the COUNT
field in register PECCx of the selected PEC
channel decrements to zero. This allows a normal
CPU interrupt to respond to a completed PEC
block transfer.

Note Modifying the Interrupt Request flag via
software causes the same effects as if it
had been set or cleared by hardware.

5.1.4 - Interrupt Priority Level and Group Level

The four bit of bit field ILVL specify the priority
level of a service request for the arbitration of
simultaneous requests. The priority increases with
the numerical value of ILVL, so 0000b is the
lowest and 1111b is the highest priority level.

When more than one interrupt request on a
specific level gets active at the same time, the
values in the respective bit fields GLVL are used
for second level arbitration to select one request
for being serviced. Again the group priority
increases with the numerical value of GLVL, so
00b is the lowest and 11b is the highest group
priority.

Note All interrupt request sources that are
enabled and programmed to the same
priority level must always be programmed to
different group priorities. Otherwise an
incorrect interrupt vector will be generated.

Upon entry into the interrupt service routine, the
priority level of the source that wins the arbitration
and who’s priority level is higher than the current
CPU level, is copied into bit field ILVL of register
PSW after pushing the old PSW contents on the
stack.

The interrupt system of the ST10X167 allows
nesting of up to 15 interrupt service routines of
different priority levels (level 0 cannot be
arbitrated).

Interrupt requests that are programmed to priority
levels 15 or 14 (ILVL=111Xb) will be serviced by
the PEC, unless the COUNT field of the
associated PECC register contains zero. In this
case the request will instead be serviced by
normal interrupt processing. Interrupt requests
that are programmed to priority levels 13 through
1 will always be serviced by normal interrupt
processing.

Note Priority level 0000b is the default level of
the CPU. Therefore a request on level 0
will never be serviced, because it can
never interrupt the CPU. However, an
enabled interrupt request on level 0000b
will terminate the ST10X167’s Idle mode
and reactivate the CPU.

For interrupt requests which are to be serviced by
the PEC, the associated PEC channel number is
derived from the respective ILVL (LSB) and GLVL
(see Figure 18). So programming a source to
priority level 15 (ILVL=1111b) selects the PEC
channel group 7...4, programming a source to
priority level 14 (ILVL=1110b) selects the PEC
channel group 3...0. The actual PEC channel
number is then determined by the group priority
field GLVL (see Figure 18).

Simultaneous requests for PEC channels are
prioritized according to the PEC channel number,
where channel 0 has lowest and channel 8 has
highest priority.

All sources that request PEC service must be
programmed to different PEC channels.
Otherwise an incorrect PEC channel may be
activated.

Figure 18 : Priority levels and PEC channels

012345
Interrupt
Control Register

PEC Control

ILVL GLVL

PEC Channel #

012

ST10X167

61/294

The table below shows in a few examples, which action is executed with a given programming of an
interrupt control register.

Note All requests on levels 13...1 cannot initiate PEC transfers.
They are always serviced by an interrupt service routine. No PECC register is associated and no
COUNT field is checked.

5.1.5 - Interrupt Control Functions in the PSW
The Processor Status Word (PSW) is functionally divided into 2 parts: the lower Byte of the PSW basically
represents the arithmetic status of the CPU, the upper Byte of the PSW controls the interrupt system of
the ST10X167 and the arbitration mechanism for the external bus interface.
Note Pipeline effects have to be considered when enabling/disabling interrupt requests via modifications

of register PSW (see Chapter 4 - The Central Processing Unit (CPU)).

PSW (FF10h / 88h) SFR Reset Value: 0000h

Priority Level Type of Service

ILVL GLVL COUNT = 00h COUNT ≠ 00h

1 1 1 1 1 1 CPU interrupt, level 15, group priority 3 PEC service, channel 7

1 1 1 1 1 0 CPU interrupt, level 15, group priority 2 PEC service, channel 6

1 1 1 0 1 0 CPU interrupt, level 14, group priority 2 PEC service, channel 2

1 1 0 1 1 0 CPU interrupt, level 13, group priority 2 CPU interrupt, level 13, group priority 2

0 0 0 1 1 1 CPU interrupt, level 1, group priority 3 CPU interrupt, level 1, group priority 3

0 0 0 1 0 0 CPU interrupt, level 1, group priority 0 CPU interrupt, level 1, group priority 0

0 0 0 0 X X No service! No service!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ILVL IEN HLD
EN

- - - USR0 MUL
IP

E Z V C N

RW RW RW RW RW RW RW RW RW RW

Bit Function

N, C, V, Z, E,
MULIP, USR0

CPU status flags (Described in section “The Central Processing Unit”)

Define the current status of the CPU (ALU, multiplication unit).

HLDEN HOLD Enable (Enables External Bus Arbitration)

0: Bus arbitration disabled, P6.7...P6.5 may be used for general purpose I/O
1: Bus arbitration enabled, P6.7...P6.5 serve as BREQ, HLDA, HOLD, respectively

ILVL CPU Priority Level

Defines the current priority level for the CPU
Fh: Highest priority level
0h: Lowest priority level

IEN Interrupt Enable Control Bit (globally enables/disables interrupt requests)

‘0’: Interrupt requests are disabled

‘1’: Interrupt requests are enabled

ST10X167

62/294

CPU Priority ILVL defines the current level for the
operation of the CPU. This bit field reflects the
priority level of the routine that is currently
executed. Upon the entry into an interrupt service
routine this bit field is updated with the priority
level of the request that is being serviced. The
PSW is saved on the system stack before. The
CPU level determines the minimum interrupt
priority level that will be serviced. Any request on
the same or a lower level will not be
acknowledged.
The current CPU priority level may be adjusted via
software to control which interrupt request
sources will be acknowledged.
PEC transfers do not really interrupt the CPU, but
rather “steal” a single cycle, so PEC services do
not influence the ILVL field in the PSW.
Hardware traps switch the CPU level to maximum
priority (15) so no interrupt or PEC requests will
be acknowledged while an exception trap service
routine is executed.
Note The TRAP instruction does not change

the CPU level, so software invoked trap
service routines may be interrupted by
higher requests.

Interrupt Enable bit IEN globally enables or
disables PEC operation and the acceptance of
interrupts by the CPU. When IEN is cleared, no
interrupt requests are accepted by the CPU.
When IEN is set to '1', all interrupt sources, which
have been individually enabled by the interrupt
enable bit in their associated control registers, are
globally enabled.

Note Traps are non-maskable and are therefore
not affected by the IEN bit.

5.2 - Operation of the PEC Channels

The Peripheral Event Controller (PEC) of the MCU
provides 8 PEC service channels, which move a
single Byte or Word between two locations in
segment 0 (data pages 3...0). This is the fastest
possible interrupt response and in many cases is
sufficient to service the respective peripheral
request (from serial channels, A/D converter, etc.)
Each channel is controlled by a dedicated PEC
Channel Counter/Control register (PECCx) and a
pair of pointers for source (SRCPx) and
destination (DSTPx) of the data transfer. The
PECC registers control the action that is
performed by the respective PEC channel.

PECCx (FECyh / 6zh, see Table 8) SFR Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - INC BWT COUNT

RW RW RW

Bit Function

COUNT PEC Transfer Count

Counts PEC transfers and influences the channel’s action (see table below)

BWT Byte / Word Transfer Selection

0: Transfer a Word
1: Transfer a Byte

INC Increment Control (Modification of SRCPx or DSTPx)

0 0: Pointers are not modified
0 1: Increment DSTPx by 1 or 2 (BWT)
1 0: Increment SRCPx by 1 or 2 (BWT)
1 1: Reserved. Do not use this combination. (changed to 10 by hardware)

Table 8 : PEC Control Register Addresses

Register Address Reg. Space Register Address Reg. Space

PECC0 FEC0h / 60h SFR PECC4 FEC8h / 64h SFR

PECC1 FEC2h / 61h SFR PECC5 FECAh / 65h SFR

PECC2 FEC4h / 62h SFR PECC6 FECCh / 66h SFR

PECC3 FEC6h / 63h SFR PECC7 FECEh / 67h SFR

ST10X167

63/294

Byte/Word Transfer bit BWT controls, if a Byte
or a Word is moved during a PEC service cycle.
This selection controls the transferred data size
and the increment step for the modified pointer.
Increment Control Field INC controls, if one of
the PEC pointers is incremented after the PEC
transfer. It is not possible to increment both
pointers, however. If the pointers are not modified
(INC=’00’), the respective channel will always
move data from the same source to the same
destination.
Note The reserved combination ‘11’ is changed

to ‘10’ by hardware. Do not to use this
combination.

The PEC Transfer Count Field COUNT controls
the action of a respective PEC channel, where the
content of bit field COUNT at the time the request
is activated selects the action. COUNT may allow
a specified number of PEC transfers, unlimited
transfers or no PEC service at all.
The table below summarizes, how the COUNT
field itself, the interrupt requests flag IR and the
PEC channel action depend on the previous
content of COUNT.

The PEC transfer counter allows to service a
specified number of requests by the respective
PEC channel, and then (when COUNT reaches
00h) activate the interrupt service routine, which is
associated with the priority level. After each PEC

transfer the COUNT field is decremented and the
request flag is cleared to indicate that the request
has been serviced.

Continuous transfers are selected by the value
FFh in bit field COUNT. In this case COUNT is not
modified and the respective PEC channel
services any request until it is disabled again.

When COUNT is decremented from 01h to 00h
after a transfer, the request flag is not cleared,
which generates another request from the same
source. When COUNT already contains the value
00h, the respective PEC channel remains idle and
the associated interrupt service routine is
activated instead. This allows to choose, if a level
15 or 14 request is to be serviced by the PEC or
by the interrupt service routine.

Note PEC transfers are only executed, if their
priority level is higher than the CPU level,
for example only PEC channels 7...4 are
processed, while the CPU executes on
level 14. All interrupt request sources that
are enabled and programmed for PEC
service should use different channels.
Otherwise only one transfer will be per-
formed for all simultaneous requests.
When COUNT is decremented to 00h,
and the CPU is to be interrupted, an incor-
rect interrupt vector will be generated.

The source and destination pointers specify
the locations between which the data is to be
moved. A pair of pointers (SRCPx and DSTPx) is
associated with each of the 8 PEC channels.
These pointers do not reside in specific SFRs, but
are mapped into the internal RAM of the
ST10X167 just below the bit-addressable area
(see Figure 19).

Previous
COUNT

Modified
COUNT

IR after
PEC

service

Action of PEC
Channel

and Comments

FFh FFh ‘0’ Move a Byte /
Word
Continuous
transfer mode,
COUNT is not
modified

FEh..02h FDh..01h ‘0’ Move a Byte /
Word and
decrement
COUNT

01h 00h ‘1’ Move a Byte /
Word
Leave request flag
set, which triggers
another request

00h 00h (‘1’) No action!
Activate interrupt
service routine
rather than PEC
channel.

Figure 19 : Mapping of PEC pointers into the
internal RAM

DSTP7 00’FCFEh

SRCP7 00’FCFCh

DSTP6 00’FCFAh

SRCP6 00’FCF8h

DSTP5 00’FCF6h

SRCP5 00’FCF4h

DSTP4 00’FCF2h

SRCP4 00’FCF0h

DSTP3 00’FCEEh

SRCP3 00’FCECh

DSTP2 00’FCEAh

SRCP2 00’FCE8h

DSTP1 00’FCE6h

SRCP1 00’FCE4h

DSTP0 00’FCE2h

SRCP0 00’FCE0h

ST10X167

64/294

PEC data transfers do not use the data page
pointers DPP3...DPP0. The PEC source and
destination pointers are used as 16 bit
intra-segment addresses within segment 0, so
data can be transferred between any two
locations within the first four data pages 3...0.

The pointer locations for inactive PEC channels
may be used for general data storage. Only the
required pointers occupy RAM locations.

Note If Word data transfer is selected for a
specific PEC channel (BWT=’0’), the
respective source and destination pointers
must both contain a valid Word address
which points to an even Byte boundary.
Otherwise the Illegal Word Access
trap will be invoked, when this channel is
used.

5.3 - Prioritizing Interrupt & PEC Service
Requests
Interrupt and PEC service requests from all
sources can be enabled, so they are arbitrated
and serviced (if they win), or they may be
disabled, so their requests are disregarded and
not serviced.

5.3.1 - Enabling and Disabling Interrupt
Requests
This may be done in three ways:

– Control bit allow to switch each individual
source “ON” or “OFF”, so it may generate a
request or not. The control bit (xxIE) are located
in the respective interrupt control registers. All
interrupt requests may be enabled or disabled
generally via bit IEN in register PSW. This
control bit is the “main switch” that selects, if
requests from any source are accepted or not.
In order to be arbitrated, both dedicated and
global enable bit of the interrupt source must be
set.

– The Priority Level automatically selects a
certain group of interrupt requests that will be
acknowledged, disclosing all other requests.
The priority level of the source that wins the
arbitration is compared against the CPU’s

current level and only this source is serviced. If
its level is higher than the current CPU level.
Changing the CPU level to a specific value via
software blocks all requests on the same or a
lower level. An interrupt source that is
assigned to level 0 will be disabled and never be
serviced.

– The ATOMIC and EXTend instructions
automatically disable all interrupt requests for
the duration of the following 1...4 instructions.
This is useful for semaphore handling and does
not require to re-enable the interrupt system
after the inseparable instruction sequence (see
Chapter 21 - System Programming).

5.3.2 - Interrupt Class Management

An interrupt class covers a set of interrupt sources
with the same priority from the system’s
viewpoint. Interrupts of the same class must not
interrupt each other. The ST10X167 supports this
function with two features:

Classes with up to 4 members can be established
by using the same interrupt priority (ILVL) and
assigning a dedicated group level (GLVL) to each
member. This functionality is built-in and handled
automatically by the interrupt controller.

Classes with more than 4 members can be
established by using a number of adjacent
interrupt priorities (ILVL) and the respective group
levels (4 per ILVL).

Each interrupt service routine within this class
sets the CPU level to the highest interrupt priority
within the class. All requests from the same or any
lower level are blocked now, and no request of this
class will be accepted.

The example below establishes 3 interrupt
classes which cover 2 or 3 interrupt priorities,
depending on the number of members in a class.

A level 6 interrupt disables all other sources in
class 2 by changing the current CPU level to 8,
which is the highest priority (ILVL) in class 2.
Class 1 requests or PEC requests are still
serviced in this case.

ST10X167

65/294

The 24 interrupt sources (excluding PEC
requests) are so assigned to 3 classes of priority
rather than to 7 different levels, as the hardware
support would do.

5.4 - Saving the Status During Interrupt
Service
Before an interrupt request that has been
arbitrated is actually serviced, the status of the
current task is automatically saved on the system
stack. The CPU status (PSW) is saved along with
the location, where the execution of the
interrupted task is to be resumed after returning
from the service routine.
This return location is specified through the
Instruction Pointer (IP) and, in case of a
segmented memory model, the Code Segment
Pointer (CSP). Bit SGTDIS in register SYSCON
control, how the return location is stored.
The system stack receives the PSW first, followed
by the IP (unsegmented) or followed by CSP and
then IP (segmented mode). This optimizes the
usage of the system stack, if segmentation is
disabled.
The CPU priority field (ILVL in PSW) is updated
with the priority of the interrupt request that is to
be serviced, so the CPU now executes on the new
level. If a multiplication or division was in progress
at the time the interrupt request was
acknowledged, bit MULIP in register PSW is set to
‘1’. In this case the return location that is saved on
the stack is not the next instruction in the
instruction flow, but rather the multiply or divide
instruction itself, as this instruction has been
interrupted and will be completed after returning
from the service routine.

Table 9 : Example Software controlled interrupt
classes

ILVL
(Priority)

GLVL
Interpretation

3 2 1 0

15 PEC service on
up to 8
channels

14

13

12 X X X X Interrupt Class
1: 8 sources on
2 levels

11 X X X X

10

9

8 X X X X Interrupt Class
2: 10 sources
on 3 levels

7 X X X X

6 X X

5 X X X X Interrupt Class
3: 6 sources on
2 levels

4 X X

3

2

1

0 No service!

Figure 20 : Task status saved on the system stack

_ _

_ _

_ _

SP

PSW

IP

_ _

PSW

CSP

IP

SP

Low
Addresses

High
Addresses

Status of
Interrupted

Task

SP

a) System stack before
Interrupt Entry

b) System stack after
Interrupt Entry (unsegmented)

b) System stack after
Interrupt Entry (segmented)

ST10X167

66/294

The interrupt request flag of the source that is
being serviced is cleared. The IP is loaded with
the vector associated with the requesting source
(the CSP is cleared in case of segmentation) and
the first instruction of the service routine is fetched
from the respective vector location, which is
expected to branch to the service routine itself.
The data page pointers and the context pointer
are not affected.

When the interrupt service routine is left (RETI is
executed), the status information is popped from
the system stack in the reverse order, taking into
account the value of bit SGTDIS.

5.4.1 - Context Switching

An interrupt service routine usually saves all the
registers it uses on the stack, and restores them
before returning. The more registers a routine
uses, the more time is wasted with saving and
restoring. The ST10X167 allows to switch the
complete bank of CPU registers (GPRs) with a
single instruction, so the service routine executes
within its own, separate context.

The instruction “SCXT CP, #New_Bank” pushes
the content of the context pointer (CP) on the
system stack and loads CP with the immediate
value “New_Bank”, which selects a new register
bank. The service routine may now use its “own
registers”. This register bank is preserved, when
the service routine terminates, its contents are
available on the next call.
Before returning (RETI) the previous CP is simply
POPped from the system stack, which returns the
registers to the original bank.

Note The first instruction following the SCXT
instruction must not use a GPR.

Resources that are used by the interrupting
program must eventually be saved and restored,
(the DPPs and the registers of the MUL/DIV unit).

5.5 - Interrupt Response Times
The interrupt response time defines the time from
an interrupt request flag of an enabled interrupt
source being set until the first instruction (I1)
being fetched from the interrupt vector location.
The basic interrupt response time for the
ST10X167 is 3 instruction cycles (see Figure 21).
All instructions in the pipeline including instruction
N (during which the interrupt request flag is set)
are completed before entering the service routine.
The actual execution time for these instructions
(waitstates) therefore influences the interrupt
response time.
In the Figure 21 the respective interrupt request
flag is set in cycle 1 (fetching of instruction N). The
indicated source wins the prioritization round
(during cycle 2). In cycle 3 a TRAP instruction is
injected into the decode stage of the pipeline,
replacing instruction N+1 and clearing the
source's interrupt request flag to '0'. Cycle 4
completes the injected TRAP instruction (save
PSW, IP and CSP, if segmented mode) and
fetches the first instruction (I1) from the respective
vector location.
All instructions that entered the pipeline after
setting of the interrupt request flag (N+1, N+2) will
be executed after returning from the interrupt
service routine.

Figure 21 : Pipeline diagram for interrupt response time

Pipeline Stage Cycle 1 Cycle 2 Cycle 3 Cycle 4

FETCH N N + 1 N + 2 I1

DECODE N - 1 N TRAP (1) TRAP (2)

EXECUTE N - 2 N - 1 N TRAP

WRITEBACK N - 3 N - 2 N - 1 N

Interrupt Response Time

1
0

IR-Flag

ST10X167

67/294

The minimum interrupt response time is 5 CPU
clock cycles. This requires program execution
from the internal ROM, no external operand read
requests and setting the interrupt request flag
during the last CPU clock cycle of an instruction.
When the interrupt request flag is set during the
first CPU clock cycle of an instruction, the
minimum interrupt response time under these
conditions is 6 CPU clock cycles.
The interrupt response time is increased by all
delays of the instructions in the pipeline that are
executed before entering the service routine
(including N).
– When internal hold conditions between

instruction pairs N-2/N-1 or N-1/N occur, or
instruction N explicitly writes to the PSW or the
SP, the minimum interrupt response time may
be extended by 1 CPU clock cycle for each of
these conditions.

– When instruction N reads an operand from the
internal memory, or when N is a CALL,
RETURN, TRAP, or MOV Rn, [Rm+ #data16]
instruction, the minimum interrupt response time
may additionally be extended by 2 CPU clock
cycles during internal ROM program execution.

In case instruction N reads the PSW and
instruction N-1 has an effect on the condition
flags, the interrupt response time may additionally
be extended by 2 CPU clock cycles.

The worst case interrupt response time during
internal ROM program execution adds to 12 CPU
clock cycles.
Any reference to external locations increases the
interrupt response time due to pipeline related
access priorities. The following conditions have to
be considered:
– Instruction fetch from an external location
– Operand read from an external location
– Result write-back to an external location
Depending on where the instructions, source and
destination operands are located, there are a
number of combinations. Note, however, that only
access conflicts contribute to the delay.
A few examples illustrate these delays:
– The worst case interrupt response time including

external accesses, occurs when instructions N,
N+1 and N+2 are executed from external
memory, instructions N-1 and N require external

operand read accesses, instructions N-3 to N
write back external operands, and the interrupt
vector also points to an external location. In this
case the interrupt response time is the time to
perform 9 Word bus accesses, because
instruction I1 cannot be fetched via the external
bus until all write, fetch and read requests of
preceding instructions in the pipeline are
terminated.

– When the above example has the interrupt
vector pointing into the internal ROM, the
interrupt response time is 7 Word bus accesses
plus 2 CPU clock cycles, because fetching of
instruction I1 from internal ROM can start
earlier.

– When instructions N, N+1 and N+2 are executed
out of external memory and the interrupt vector
also points to an external location, but all
operands for instructions N-3 through N are in
internal memory, then the interrupt response
time is the time to perform 3 Word bus
accesses.

– When the above example has the interrupt
vector pointing into the internal ROM, the
interrupt response time is 1 Word bus access
plus 4 CPU clock cycles.

After an interrupt service routine has been
terminated by executing the RETI instruction, and
if further interrupts are pending, the next interrupt
service routine will not be entered until at least
two instruction cycles have been executed of the
program that was interrupted.

In most cases two instructions will be executed
during this time. Only one instruction will typically
be executed, if the first instruction following the
RETI instruction is a branch instruction (without
cache hit), or if it reads an operand from internal
ROM, or if it is executed out of the internal RAM.

Note A bus access in this context also includes
delays caused by an external READY sig-
nal or by bus arbitration (HOLD mode).

5.5.1 - PEC Response Times

The PEC response time defines the time from an
interrupt request flag of an enabled interrupt
source being set until the PEC data transfer being
started. The basic PEC response time for the
ST10X167 is 2 instruction cycles.

ST10X167

68/294

Figure 22 : Pipeline diagram for PEC response time

In the Figure 22 the respective interrupt request
flag is set in cycle 1 (fetching of instruction N). The
indicated source wins the prioritization round
(during cycle 2). In cycle 3 a PEC transfer
“instruction” is injected into the decode stage of
the pipeline, suspending instruction N+1 and
clearing the source's interrupt request flag to '0'.
Cycle 4 completes the injected PEC transfer and
resumes the execution of instruction N+1. All
instructions that entered the pipeline after setting
of the interrupt request flag (N+1, N+2) will be
executed after the PEC data transfer.
Note When instruction N reads any of the PEC

control registers PECC7...PECC0, while a
PEC request wins the current round of pri-
oritization, this round is repeated and the
PEC data transfer is started one cycle later.

The minimum PEC response time is 3 CPU clock
cycles. This requires program execution from the
internal ROM, no external operand read requests
and setting the interrupt request flag during the
last CPU clock cycle of an instruction. When the
interrupt request flag is set during the first CPU
clock cycle of an instruction, the minimum PEC
response time under these conditions is 4 CPU
clock cycles. The PEC response time is increased
by all delays of the instructions in the pipeline that
are executed before starting the data transfer
(including N).
– When internal hold conditions between

instruction pairs N-2/N-1 or N-1/N occur, the
minimum PEC response time may be extended
by 1 CPU clock cycle for each of these
conditions.

– When instruction N reads an operand from the
internal ROM, or when N is a CALL, RETURN,
TRAP, or MOV Rn, [Rm+ #data16] instruction,

the minimum PEC response time may
additionally be extended by 2 CPU clock cycles
during internal ROM program execution.

– In case instruction N reads the PSW and
instruction N-1 has an effect on the condition
flags, the PEC response time may additionally
be extended by 2 CPU clock cycles.

The worst case PEC response time during
internal ROM program execution adds to 9 CPU
clock cycles. Any reference to external locations
increases the PEC response time due to pipeline
related access priorities. The following conditions
have to be considered:

– Instruction fetch from an external location

– Operand read from an external location

– Result write-back to an external location

Depending on where the instructions, source and
destination operands are located, there are a
number of combinations. Note, however, that only
access conflicts contribute to the delay.

A few examples illustrate these delays:

– The worst case interrupt response time including
external accesses will occur, when instructions
N and N+1 are executed out of external
memory, instructions N-1 and N require external
operand read accesses and instructions N-3,
N-2 and N-1 write back external operands. In
this case the PEC response time is the time to
perform 7 Word bus accesses.

– When instructions N and N+1 are executed out of
external memory, but all operands for instructions
N-3 through N-1 are in internal memory, then the
PEC response time is the time to perform 1 Word
bus access plus 2 CPU clock cycles.

Pipeline Stage Cycle 1 Cycle 2 Cycle 3 Cycle 4

FETCH N N + 1 N + 2 N + 2

DECODE N - 1 N PEC N + 1

EXECUTE N - 2 N - 1 N PEC

WRITEBACK N - 3 N - 2 N - 1 N

PEC Response Time

1
0

IR-Flag

ST10X167

69/294

Once a request for PEC service has been
acknowledged by the CPU, the execution of the
next instruction is delayed by 2 CPU clock cycles
plus the additional time it might take to fetch the
source operand from internal ROM or external
memory and to write the destination operand over
the external bus in an external program
environment.

Note A bus access in this context also includes
delays caused by an external READY sig-
nal or by bus arbitration (HOLD mode).

5.6 - External Interrupts

Although the ST10X167 has no dedicated
interrupt input pins, it provides many possibilities
to react on external asynchronous events by using
a number of I/O lines for interrupt input. The
interrupt function may either be combined with the
pin’s main function or may be used instead of it, if
the main pin function is not required. Interrupt
signals may be connected to:

– CC31IO...CC0IO, the capture input / compare
output lines of the CAPCOM units,

– T4IN, T2IN, the timer input pins,

– CAPIN, the capture input of GPT2.

For each of these pins either a positive, a
negative, or both a positive and a negative
external transition can be selected to cause an
interrupt or PEC service request. The edge
selection is performed in the control register of the
peripheral device associated with the respective
port pin.

The peripheral must be programmed to a specific
operating mode to allow generation of an interrupt
by the external signal. The priority of the interrupt

request is determined by the interrupt control
register of the respective peripheral interrupt
source, and the interrupt vector of this source will
be used to service the external interrupt request.

Note In order to use any of the listed pins as
external interrupt input, it must be
switched to input mode via its direction
control bit DPx.y in the respective port
direction control register DPx (see
Table 10).

When port pins CCxI/O are used as external
interrupt input pins, bit field CCMODx in the
control register of the corresponding capture/
compare register CCx must select capture mode.

When CCMODx is programmed to 001b, the
interrupt request flag CCxIR in register CCxIC will be
set on a positive external transition at pin CCxI/O.

When CCMODx is programmed to 010b, a
negative external transition will set the interrupt
request flag. When CCMODx=011b, both a
positive and a negative transition will set the
request flag. In all three cases, the contents of the
allocated CAPCOM timer will be latched into
capture register CCx, independent whether the
timer is running or not. When the interrupt enable
bit CCxIE is set, a PEC request or an interrupt
request for vector CCxINT will be generated (see
Table 10).

Pins T2IN or T4IN can be used as external
interrupt input pins when the associated auxiliary
timer T2 or T4 in block GPT1 is configured for
capture mode. This mode is selected by
programming the mode control fields T2M or T4M
in control registers T2CON or T4CON to 101b.

Table 10 : Pins to be used as external interrupt inputs

Port Pin Original Function Control Register

P2.0-15/CC0-15I/O CAPCOM Register 0-15 Capture Input CC0-CC15

P8.0-7/CC16-23I/O CAPCOM Register 16-23 Capture Input CC16-CC23

P1H.4-7/CC24-27I/O CAPCOM Register 24-27 Capture Input CC24-CC27

P7.4-7/CC28-31I/O CAPCOM Register 28-31 Capture Input CC28-CC31

P3.7/T2IN Auxiliary timer T2 input pin T2CON

P3.5/T4IN Auxiliary timer T4 input pin T4CON

P3.2/CAPIN GPT2 capture input pin T5CON

ST10X167

70/294

The active edge of the external input signal is
determined by bit fields T2I or T4I. When these
fields are programmed to X01b, interrupt request
flags T2IR or T4IR in registers T2IC or T4IC will
be set on a positive external transition at pins
T2IN or T4IN, respectively. When T2I or T4I are
programmed to X10b, then a negative external
transition will set the corresponding request flag.
When T2I or T4I are programmed to X11b, both a
positive and a negative transition will set the
request flag.
In all three cases, the contents of the core timer
T3 will be captured into the auxiliary timer
registers T2 or T4 based on the transition at pins
T2IN or T4IN. When the interrupt enable bit T2IE
or T4IE are set, a PEC request or an interrupt
request for vector T2INT or T4INT will be
generated.
Pin CAPIN differs slightly from the timer input pins
as it can be used as external interrupt input pin
without affecting peripheral functions.
When the capture mode enable bit T5SC in
register T5CON is cleared to '0', signal transitions
on pin CAPIN will only set the interrupt request
flag CRIR in register CRIC, and the capture
function of register CAPREL is not activated.
So register CAPREL can still be used as reload
register for GPT2 timer T5, while pin CAPIN
serves as external interrupt input. Bit field CI in
register T5CON selects the effective transition of
the external interrupt input signal.
When CI is programmed to 01b, a positive
external transition will set the interrupt request

flag. CI=10b selects a negative transition to set
the interrupt request flag, and with CI=11b, both a
positive and a negative transition will set the
request flag.
When the interrupt enable bit CRIE is set, an
interrupt request for vector CRINT or a PEC
request will be generated.
Note The non-maskable interrupt input pin NMI

and the reset input RSTIN provide another
possibility for the CPU to react on an
external input signal. NMI and RSTIN are
dedicated input pins, which cause hard-
ware traps.

5.6.1 - Fast External Interrupts
The input pins that may be used for external
interrupts are sampled every 8 CPU clock cycles
this means that the external events are scanned
and detected in timeframes of 8 CPU clock cycles.
The ST10X167 provides 8 interrupt inputs that are
sampled every CPU clock cycle so external
events are captured faster than with standard
interrupt inputs.
The upper 8 pins of Port2 (CC8-15 I/O on
P2.8-P2.15) can individually be programmed to
this fast interrupt mode. In this mode the trigger
transition (rising, falling or both) can also be
selected. The External Interrupt Control register
EXICON controls this feature for all 8 pins.
The EXxIN pins can also be used to exit power
down mode if bit PWDCFG in the SYSCON
register is set. Power reduction modes are
detailled in Chapter 19 - Power Reduction Modes.

EXICON (F1C0h / E0h) ESFR Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXI7ES EXI6ES EXI5ES EXI4ES EXI3ES EXI2ES EXI1ES EXI0ES

RW RW RW RW RW RW RW RW

Bit Function

EXIxES
(x=7...0)

External Interrupt x Edge Selection Field (x=3...0)

0 0: Fast external interrupts disabled: standard mode
EXxIN pin not taken in account for entering/exiting Power Down mode.

0 1: Interrupt on positive edge (rising)
Enter Power Down mode if EXiIN = ‘0’, exit if EXxIN = ‘1’ (ref as ‘high’ active level)

1 0: Interrupt on negative edge (falling)
Enter Power Down mode if EXiIN = ‘1’, exit if EXxIN = ‘0’ (ref as ‘low’ active level)

1 1: Interrupt on any edge (rising or falling)
Always enter Power Down mode, exit if EXxIN level changed.

ST10X167

71/294

These fast external interrupts use the interrupt
nodes and vectors of the CAPCOM channels
CC8-CC15, so the capture/compare function
cannot be used on the respective Port2 pins (with
EXIxES ≠ 00b). However, general purpose I/O is
possible in all cases.
Note The fast external interrupt inputs are sam-

pled every 8 CPU clock cycle. The inter-
rupt request arbitration and processing is
executed every 4 CPU clock cycles.

5.7 - Trap Functions
Traps interrupt the current execution like standard
interrupts do. However, trap functions offer the
possibility to bypass the interrupt system
prioritization process in cases where immediate
system reaction is required. Trap functions are not
maskable and always have priority over interrupt
requests on any priority level.
The ST10X167 provides two different kinds of trap
mechanisms. Hardware traps are triggered by
events that occur during program execution (like
illegal access or undefined opcode), software
traps are initiated via an instruction within the
current execution flow.

5.7.1 - Software Traps
The TRAP instruction is used to cause a software
call to an interrupt service routine. The trap
number that is specified in the operand field of the
trap instruction determines which vector location
in the address range from 00’0000h through
00’01FCh will be branched to.
Executing a TRAP instruction causes the same
effect as servicing the interrupt at the same
vector. PSW, CSP (in segmentation mode), and IP
are pushed on the internal system stack and a
jump is taken to the specified vector location.
When segmentation is enabled and a trap is
executed, the CSP for the trap service routine is
set to code segment 0. No Interrupt Request flags
are affected by the TRAP instruction.
The interrupt service routine called by a TRAP
instruction must be terminated with a RETI (return
from interrupt) instruction to ensure correct
operation.
Note The CPU level in register PSW is not modi-

fied by the TRAP instruction, so the service
routine is executed on the same priority
level from which it was invoked. Therefore,
the service routine entered by the TRAP
instruction can be interrupted by other traps
or higher priority interrupts, other than
when triggered by a hardware trap.

5.7.2 - Hardware Traps

Hardware traps are issued by faults or specific
system states that occur during the runtime of a
program (not identified at assembly time). A
hardware trap may also be triggered intentionally,
for example to emulate additional instructions by
generating an Illegal Opcode trap.

The ST10X167 distinguishes eight different
hardware trap functions. When a hardware trap
condition has been detected, the CPU branches
to the trap vector location for the respective trap
condition.

Depending on the trap condition, the instruction
which caused the trap is either completed or
cancelled (it has no effect on the system state)
before the trap handling routine is entered.

Hardware traps are non-maskable and always
have priority over every other CPU activity. If
several hardware trap conditions are detected
within the same instruction cycle, the highest
priority trap is serviced (see Section 5.1 - Interrupt
System Structure).

PSW, CSP (in segmentation mode), and IP are
pushed on the internal system stack and the CPU
level in register PSW is set to the highest possible
priority level (level 15), disabling all interrupts. The
CSP is set to code segment zero, if segmentation
is enabled. A trap service routine must be
terminated with the RETI instruction.

The eight hardware trap functions of the
ST10X167 are divided into two classes:

– Class A traps : These traps share the same trap
priority, but have an individual vector address.

– External Non-Maskable Interrupt (NMI)

– Stack Overflow

– Stack Underflow trap

– Class B traps : These traps share the same trap
priority, and the same vector address.

– Undefined Opcode

– Protection Fault

– Illegal Word Operand Access

– Illegal Instruction Access

– Illegal External Bus Access Trap

The bit-addressable Trap Flag Register (TFR)
allows a trap service routine to identify the kind of
trap which caused the exception. Each trap
function is indicated by a separate request flag.
When a hardware trap occurs, the corresponding
request flag in register TFR is set to '1'.

ST10X167

72/294

TFR (FFACh / D6h) SFR Reset Value: 0000h

Note The trap service routine must clear the
respective trap flag, otherwise a new trap
will be requested after exiting the service
routine. Setting a trap request flag by soft-
ware causes the same effects as if it had
been set by hardware.

The reset functions (hardware, software,
watchdog) may be regarded as a type of trap.
Reset functions have the highest system priority
(trap priority III).
Class A traps have the second highest priority
(trap priority II), on the 3rd rank are class B traps,
so a class A trap can interrupt a class B trap. If
more than one class A trap occur at a time, they
are prioritized internally, with the NMI trap on the
highest and the stack underflow trap on the lowest
priority.
All class B traps have the same trap priority (trap
priority I). When several class B traps get active at
a time, the corresponding flags in the TFR register
are set and the trap service routine is entered.
Since all class B traps have the same vector, the
priority to service simultaneous class B traps is

determined by the software in the trap service
routine.

If a class A trap occurs during the execution of a
class B trap service routine, class A trap will be
serviced immediately. During the execution of a
class A trap service routine, no class B trap will be
serviced until the class A trap service routine is
exited with a RETI instruction. In this case, the
occurrence of the class B trap condition is stored
in the TFR register, but the IP value of the
instruction which caused this trap is lost.

If an Undefined Opcode trap (class B) occurs
simultaneously with an NMI trap (class A), both
the NMI and the UNDOPC flag is set, the IP of the
instruction with the undefined opcode is pushed
onto the system stack, but the NMI trap is
executed. After return from the NMI service
routine, the IP is popped from the stack and
immediately pushed again because of the
pending UNDOPC trap.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NMI STK
OF

STK
UF

- - - - - UND
OPC

- - - PRT
FLT

ILL
OPA

ILL
INA

ILL
BUS

RW RW RW RW RW RW RW RW

Bit Function

ILLBUS Illegal External Bus Access Flag

An external access has been attempted with no external bus defined.

ILLINA Illegal Instruction Access Flag

A branch to an odd address has been attempted.

ILLOPA Illegal Word Operand Access Flag

A Word operand access (read or write) to an odd address has been attempted.

PRTFLT Protection Fault Flag

A protected instruction with an illegal format has been detected.

UNDOPC Undefined Opcode Flag

The currently decoded instruction has no valid ST10X167 opcode.

STKUF Stack Underflow Flag

The current stack pointer value exceeds the content of register STKUN.

STKOF Stack Overflow Flag

The current stack pointer value falls below the content of register STKOV.

NMI Non Maskable Interrupt Flag

A negative transition (falling edge) has been detected on pin NMI.

ST10X167

73/294

5.7.3 - External NMI Trap
Whenever a high to low transition on the
dedicated external NMI pin (Non-Maskable
Interrupt) is detected, the NMI flag in register TFR
is set and the CPU will enter the NMI trap routine.
The IP value pushed on the system stack is the
address of the instruction following the one after
which normal processing was interrupted by the
NMI trap.
Note The NMI pin is sampled with every CPU

clock cycle to detect transitions.

5.7.4 - Stack Overflow Trap
Whenever the stack pointer is decremented to a
value which is less than the value in the stack
overflow register STKOV, the STKOF flag in
register TFR is set and the CPU will enter the
stack overflow trap routine. Which IP value will be
pushed onto the system stack depends on which
operation caused the decrement of the SP.
When an implicit decrement of the SP is made
through a PUSH or CALL instruction, or upon
interrupt or trap entry, the IP value pushed is the
address of the following instruction. When the SP
is decremented by a subtract instruction, the IP
value pushed represents the address of the
instruction after the instruction following the
subtract instruction.
For recovery from stack overflow it must be
ensured that there is enough excess space on the
stack for saving the current system state (PSW, IP,
in segmented mode also CSP) twice. Otherwise, a
system reset should be generated.

5.7.5 - Stack Underflow Trap
Whenever the stack pointer is incremented to a
value which is greater than the value in the stack
underflow register STKUN, the STKUF flag is set
in register TFR and the CPU will enter the stack
underflow trap routine. Again, the IP value pushed
onto the system stack depends on which
operation caused the increment of the SP. When
an implicit increment of the SP is made through a
POP or return instruction, the IP value pushed is
the address of the following instruction.
When the SP is incremented by an add
instruction, the pushed IP value represents the
address of the instruction after the instruction
following the add instruction.

5.7.6 - Undefined Opcode Trap
When the instruction currently decoded by the
CPU does not contain a valid ST10X167 opcode,
the UNDOPC flag is set in register TFR and the

CPU enters the undefined opcode trap routine.
The IP value pushed onto the system stack is the
address of the instruction that caused the trap.

This can be used to emulate non-implemented
instructions. The trap service routine can examine
the faulting instruction to decode operands for
non-implemented opcodes based on the stacked
IP. In order to resume processing, the stacked IP
value must be incremented by the size of the
undefined instruction, which is determined by the
user, before a RETI instruction is executed.

5.7.7 - Protection Fault Trap

The format of the protected instructions is 4 Byte
wide. Byte 1 and 2 are complementary values.
Byte 3 and 4 are identical to Byte 1. For example
the format of SRST instruction is B7h 48h B7h
B7h. If the format of a protected instruction going
to be executed does not fulfill this coding, the
PRTFLT flag in register TFR is set and the CPU
enters the protection fault trap routine. The
protected instructions include DISWDT, EINIT,
IDLE, PWRDN, SRST, and SRVWDT. When the
protection fault trap occurs, the IP value pushed
onto the system stack is the address of the faulty
instruction.

5.7.8 - Illegal Word Operand Access Trap

Whenever a Word operand read or write access is
attempted to an odd Byte address, the ILLOPA
flag in register TFR is set and the CPU enters the
illegal Word operand access trap routine. The IP
value pushed onto the system stack is the
address of the instruction following the one which
caused the trap.

5.7.9 - Illegal Instruction Access Trap

Whenever a branch is made to an odd Byte
address, the ILLINA flag in register TFR is set and
the CPU enters the illegal instruction access trap
routine. The IP value pushed onto the system
stack is the illegal odd target address of the
branch instruction.

5.7.10 - Illegal External Bus Access Trap

Whenever the CPU requests an external
instruction fetch, data read or data write, and no
external bus configuration has been specified, the
ILLBUS flag in register TFR is set and the CPU
enters the illegal bus access trap routine.

The IP value pushed onto the system stack is the
address of the instruction following the one which
caused the trap.

ST10X167

74/294

6 - PARALLEL PORTS

6.1 - Introduction

The ST10X167 has up to 111 parallel I/O lines,
organized into,

– Eight 8 Bit I/O ports (PORT0 made of P0H and
P0L, PORT1 made of P1H and P1L, Port4,
Port 6, Port 7, Port8),

– One 15 Bit I/O port (Port3),

– One 16 Bit input port (Port5),

– One 16 Bit I/O port (Port2).

These port lines may be used for general purpose
Input/Output, controlled via software, or may be
used implicitly by ST10X167’s integrated periph-
erals or the External Bus Controller.

All port lines are Bit addressable, and all input/out-
put lines are individually (Bit wise) programmable
as inputs or outputs via direction registers (except
Port5). The I/O ports are true bidirectional ports
which are switched to high impedance state when
configured as inputs.

The output drivers of five I/O ports (2, 3, 6, 7, 8)
can be configured (pin by pin) for push-pull opera-
tion or open-drain operation via control registers.
The logic level of a pin is clocked into the input
latch once per CPU clock cycle, regardless
whether the port is configured for input or output.

A write operation to a port pin configured as an
input causes the value to be written into the port
output latch, while a read operation returns the
latched state of the pin itself. A read-modify-write
operation reads the value of the pin, modifies it,
and writes it back to the output latch.

Writing to a pin configured as an output
(DPx.y=‘1’) causes the output latch and the pin to
have the written value, since the output buffer is
enabled. Reading this pin returns the value of the
output latch. A read-modify-write operation reads
the value of the output latch, modifies it, and

writes it back to the output latch, thus also modify-
ing the level at the pin.

6.1.1 - Open Drain Mode

Some of I/O Ports of ST10X167 provide Open
Drain Control. It is used to switch the output driver
of a port pin from a push-pull configuration to an
open drain configuration. In push-pull mode a port
output driver has an upper and a lower transistor,
thus it can actively drive the line either to a high or
a low level. In open drain mode the upper transis-
tor is always switched off, and the output driver
can only actively drive the line to a low level.
When writing a ‘1’ to the port latch, the lower tran-
sistor is switched off and the output enters a
high-impedance state.

The high level must then be provided by an exter-
nal pull-up device. With this feature, it is possible
to connect several port pins together to a
AND-wired configuration, saving external glue
logic and/or additional software overhead for
enabling/disabling output signals.

This feature is implemented for ports P2, P3, P6,
P7 and P8 (see respective sections), and is con-
trolled through the respective Open Drain Control
Registers ODPx.

These registers allow the individual Bitwise selec-
tion of the open drain mode for each port line. If
the respective control Bit ODPx.y is ‘0’ (default
after reset), the output driver is in the push / pull
mode. If ODPx.y is ‘1’, the open drain configura-
tion is selected. Note that all ODPx registers are
located in the ESFR space (see Figure 24).

ST10X167

75/294

Figure 23 : SFRs and pins associated with the parallel ports

6.1.2 - Input Threshold Control
The standard inputs of the ST10X167 determine
the status of input signals according to TTL levels.

In order to accept and recognize noisy signals,
CMOS-like input thresholds can be selected
instead of the standard TTL thresholds for all pins
of Port2, Port3, Port7 and Port8. These special
thresholds are defined above the TTL thresholds

and feature a defined hysteresis to prevent the
inputs from toggling while the respective input sig-
nal level is near the thresholds.

The Port Input Control register PICON is used to
select these thresholds for each Byte of the indi-
cated ports, the 8 Bit ports P7 and P8 are con-
trolled by one Bit each while ports P2 and P3 are
controlled by two Bit each.

Figure 24 : Output drivers in push-pull mode and in open drain mode

Data Input / Output Registers Direction Control Registers

15

-

14

-

13

-

12

-

11

-

10

-

9

-

8

-

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YP0L DP0L E

15

-

14

-

13

-

12

-

11

-

10

-

9

-

8

-

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

Y

15

-

14

-

13

-

12

-

11

-

10

-

9

-

8

-

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YPICON E

Threshold / Open Drain Control

- - - - - - - - Y Y Y Y Y Y Y YP0H

- - - - - - - - Y Y Y Y Y Y Y YP1L

- - - - - - - - Y Y Y Y Y Y Y YP1H

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YP2

Y - Y Y Y Y Y Y Y Y Y Y Y Y Y YP3

- - - - - - - - Y Y Y Y Y Y Y YP4

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YP5

- - - - - - - - Y Y Y Y Y Y Y YP6

- - - - - - - - Y Y Y Y Y Y Y YP7

- - - - - - - - Y Y Y Y Y Y Y YP8

DP0H E - - - - - - - - Y Y Y Y Y Y Y Y

DP1L E - - - - - - - - Y Y Y Y Y Y Y Y

DP1H E - - - - - - - - Y Y Y Y Y Y Y Y

DP2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

DP3 Y - Y Y Y Y Y Y Y Y Y Y Y Y Y Y

DP4 - - - - - - - - Y Y Y Y Y Y Y Y

DP6 - - - - - - - - Y Y Y Y Y Y Y Y

DP7 - - - - - - - - Y Y Y Y Y Y Y Y

DP8 - - - - - - - - Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YODP2 E

- - Y - Y Y Y Y Y Y Y Y Y Y Y YODP3 E

- - - - - - - - Y Y Y Y Y Y Y YODP6 E

- - - - - - - - Y Y Y Y Y Y Y YODP7 E

- - - - - - - - Y Y Y Y Y Y Y YODP8 E

Bit is linked to a function
Bit has no function or is not implemented
Register is in ESFR internal memory space

Y
-
E

:
:
:

Q

Push-Pull Output Driver

Q

Open Drain Output Driver

External
Pullup

ST10X167

76/294

PICON (F1C4h / E2h) ESFR Reset Value: - - 00h

All options for individual direction and output mode control are available for each pin, independent of the
selected input threshold. The input hysteresis provides stable inputs from noisy or slowly changing exter-
nal signals.

6.1.3 - Alternate Port Functions
Each port line has one associated programmable
alternate input or output function. PORT0 and
PORT1 may be used as the address and data
lines when accessing external memory.
Port4 outputs the additional segment address Bit
A23/19/17...A16 in systems where more than
64K Byte of memory are to be accessed directly.
Port6 provides the optional chip select outputs
and the bus arbitration lines.
Port2, Port7 and Port8 are associated with the
capture inputs or compare outputs of the CAP-
COM units and/or with the outputs of the PWM
module.
Port2 is also used for fast external interrupt inputs
and for timer 7 input.
Port3 includes alternate input/output functions of
timers, serial interfaces, the optional bus control
signal BHE/WRH and the system clock output
(CLKOUT). Port5 is used for the analog input
channels to the A/D converter or timer control sig-
nals.

If an alternate output function of a pin is to be
used, the direction of this pin must be pro-
grammed for output (DPx.y=‘1’), except for some
signals that are used directly after reset and are
configured automatically. Otherwise the pin
remains in the high-impedance state and is not
effected by the alternate output function. The
respective port latch should hold a ‘1’, because its
output is ANDed with the alternate output data
(except for PWM output signals).

If an alternate input function of a pin is used, the
direction of the pin must be programmed for input
(DPx.y=‘0’) if an external device is driving the pin.
The input direction is the default after reset. If no
external device is connected to the pin, however,
one can also set the direction for this pin to output.
In this case, the pin reflects the state of the port
output latch. Thus, the alternate input function
reads the value stored in the port output latch.
This can be used for testing purposes to allow a
software trigger of an alternate input function by
writing to the port output latch.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - P8LIN P7LIN - - P3HIN P3LIN P2HIN P2LIN

RW RW RW RW RW RW

Bit Function

PxLIN Port x Low Byte Input Level Selection

0: Pins Px.7...Px.0 switch on standard TTL input levels
1: Pins Px.7...Px.0 switch on special threshold input levels

PxHIN Port x High Byte Input Level Selection

0: Pins Px.15...Px.8 switch on standard TTL input levels
1: Pins Px.15...Px.8 switch on special threshold input levels

Figure 25 : Hysteresis for special input thresholds

Input level

Bit state

Hysteresis

ST10X167

77/294

On most of the port lines, the user software is
responsible for setting the proper direction when
using an alternate input or output function of a pin.

This is done by setting or clearing the direction
control Bit DPx.y of the pin before enabling the
alternate function.

There are port lines, however, where the direction
of the port line is switched automatically.

For instance, in the multiplexed external bus
modes of PORT0, the direction must be switched
several times for an instruction fetch in order to
output the addresses and to input the data.

Obviously, this cannot be done through instruc-
tions. In these cases, the direction of the port line
is switched automatically by hardware if the alter-
nate function of such a pin is enabled.

To determine the appropriate level of the port out-
put latches check how the alternate data output is
combined with the respective port latch output.

There is one basic structure for all port lines with
only an alternate input function. Port lines with
only an alternate output function, however, have
different structures due to the way the direction of
the pin is switched and depending on whether the
pin is accessible by the user software or not in the
alternate function mode.

All port lines that are not used for these alternate
functions may be used as general purpose I/O
lines. When using port pins for general purpose
output, the initial output value should be written to
the port latch prior to enabling the output drivers,
in order to avoid undesired transitions on the out-
put pins. This applies to single pins as well as to
pin groups (see examples below).

Note When using several BSET pairs to control
more pins of one port, these pairs must be
separated by instructions, which do not
reference the respective port (see “Partic-
ular Pipeline Effects” in chapter “The Cen-
tral Processing Unit”).

6.2 - Port0

The two 8 Bit ports P0H and P0L represent the higher and lower part of PORT0, respectively. Both halves
of PORT0 can be written (for example via a PEC transfer) without effecting the other half.

If this port is used for general purpose I/O, the direction of each line can be configured via the correspond-
ing direction registers DP0H and DP0L.

P0L (FF00h / 80h) SFR Reset Value: - - 00h

P0H (FF02h / 81h) SFR Reset Value: - - 00h

SINGLE_Bit: BSET P4.7 ; Initial output level is “high”

BSET DP4.7 ; Switch on the output driver

Bit_GROUP: BFLDH P4, #24H, #24H ; Initial output level is “high”

BFLDH DP4, #24H, #24H ; Switch on the output drivers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - P0L.7 P0L.6 P0L.5 P0L.4 P0L.3 P0L.2 P0L.1 P0L.0

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - P0H.7 P0H.6 P0H.5 P0H.4 P0H.3 P0H.2 P0H.1 P0H.0

RW RW RW RW RW RW RW RW

Bit Function

P0X.y Port data register P0H or P0L Bit y

ST10X167

78/294

DP0L (F100h / 80h) ESFR Reset Value: - - 00h

DP0H (F102h / 81h) ESFR Reset Value: - - 00h

6.2.1 - Alternate Functions of PORT0

When an external bus is enabled, PORT0 is used
as data bus or address/data bus.

Note that an external 8 Bit de-multiplexed bus only
uses P0L, while P0H is free for I/O (provided that
no other bus mode is enabled).

PORT0 is also used to select the system start-up
configuration. During reset, PORT0 is configured
to input, and each line is held high through an
internal pull-up device.

Each line can now be individually pulled to a low
level (see DC-level specifications in the respective
Data Sheets) through an external pull-down
device. A default configuration is selected when
the respective PORT0 lines are at a high level.
Through pulling individual lines to a low level, this
default can be changed according to the needs of
the applications.

The internal pull-up devices are designed such
that an external pull-down resistors (see Data
Sheet specification) can be used to apply a cor-
rect low level.

These external pull-down resistors can remain
connected to the PORT0 pins also during normal
operation, however, care has to be taken such that
they do not disturb the normal function of PORT0
(this might be the case, for example, if the external
resistor is too strong).

With the end of reset, the selected bus configura-
tion will be written to the BUSCON0 register. The
configuration of the high Byte of PORT0, will be
copied into the special register RP0H.

This read-only register holds the selection for the
number of chip selects and segment addresses.
Software can read this register in order to react

according to the selected configuration, if required.
When the reset is terminated, the internal pull-up
devices are switched off, and PORT0 will be
switched to the appropriate operating mode.

During external accesses in multiplexed bus
modes PORT0 first outputs the 16 Bit intra-seg-
ment address as an alternate output function.
PORT0 is then switched to high-impedance input
mode to read the incoming instruction or data.

In 8 Bit data bus mode, two memory cycles are
required for Word accesses, the first for the low
Byte and the second for the high Byte of the Word.
During write cycles PORT0 outputs the data Byte
or Word after outputting the address. During exter-
nal accesses in de-multiplexed bus modes PORT0
reads the incoming instruction or data Word or out-
puts the data Byte or Word (see Figure 26).

When an external bus mode is enabled, the direc-
tion of the port pin and the loading of data into the
port output latch are controlled by the bus control-
ler hardware. The input of the port output latch is
disconnected from the internal bus and is
switched to the line labeled “Alternate Data Out-
put” via a multiplexer. The alternate data can be
the 16 Bit intra-segment address or the 8/16 Bit
data information. The incoming data on PORT0 is
read on the line “Alternate Data Input”. While an
external bus mode is enabled, the user software
should not write to the port output latch, otherwise
unpredictable results may occur. When the exter-
nal bus modes are disabled, the contents of the
direction register last written by the user becomes
active.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - DP0L.7 DP0L.6 DP0L.5 DP0L.4 DP0L.3 DP0L.2 DP0L.1 DP0L.0

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - DP0H.7 DP0H.6 DP0H.5 DP0H.4 DP0H.3 DP0H.2 DP0H.1 DP0H.0

RW RW RW RW RW RW RW RW

Bit Function

DP0X.y Port direction register DP0H or DP0L Bit y

DP0X.y = 0: Port line P0X.y is an input (high-impedance)

DP0X.y = 1: Port line P0X.y is an output

ST10X167

79/294

Figure 26 : PORT0 I/O and alternate functions

The Figure 27 shows the structure of a PORT0 pin.

Figure 27 : Block diagram of a PORT0 pin

PORT0

P0H

P0L

Alternate Functions a) b) c) d)

General
Purpose

Input / Output

8 Bit
Demultiplexed

Bus

16 Bit
Demultiplexed

Bus

8 Bit
Multiplexed

Bus

16 Bit
Multiplexed

Bus

D7

D6

D5

D4

D3

D2

D1

D0

P0L.7

P0L.6

P0L.5

P0L.4

P0L.3

P0L.2

P0L.1

P0L.0

P0H.7

P0H.6

P0H.5

P0H.4

P0H.3

P0H.2

P0H.1

P0H.0

D7

D6

D5

D4

D3

D2

D1

D0

D15

D14

D13

D12

D11

D10

D9

D8

AD7

AD6

AD5

AD4

AD3

AD2

AD1

AD0

A15

A14

A13

A12

A11

A10

A9

A8

AD7

AD6

AD5

AD4

AD3

AD2

AD1

AD0

AD15

AD14

AD13

AD12

AD11

AD10

AD9

AD8

Direction
Latch

Write DP0H.y / DP0L.y

Read DP0H.y / DP0L.y

Port Output
Latch

Write P0H.y / P0L.y

Read P0H.y / P0L.y

In
te

rn
al

 B
u

s

MUX

0

1

MUX

0

1

Alternate
Data
Output

MUX

0

1Alternate
Direction

Input
Latch

Clock

P0H.y
P0L.yOutput

Buffer

y = 7...0

Alternate
Function
Enable

Port Data
Output

ST10X167

80/294

6.3 - Port1
The two 8 Bit ports P1H and P1L represent the higher and lower part of PORT1, respectively. Both halves
of PORT1 can be written (for example via a PEC transfer) without effecting the other half. If this port is
used for general purpose I/O, the direction of each line can be configured via the corresponding direction
registers DP1H and DP1L.

P1L (FF04h / 82h) SFR Reset Value: - - 00h

P1H (FF06h / 83h) SFR Reset Value: - - 00h

DP1L (F104h / 82h) ESFR Reset Value: - - 00h

DP1H (F106h / 83h) ESFR Reset Value: - - 00h

6.3.1 - Alternate Functions of PORT1

When a de-multiplexed external bus is enabled,
PORT1 is used as address bus.
Note that de-multiplexed bus modes use PORT1
as a 16 Bit port. Otherwise all 16 port lines can be
used for general purpose I/O. The upper four pins
of PORT1 (P1H.7...P1H.4) also are capture input
lines for the CAPCOM2 unit (CC27-24 I/O).

As all other capture inputs, the capture input func-
tion of pins P1H.7...P1H.4 can also be used as
external interrupt inputs with a sample rate of 8
CPU clock cycles.

As a side effect, the capture input capability of
these lines can also be used in the address bus
mode. Hereby changes of the upper address lines
could be detected and trigger an interrupt request
in order to perform some special service routines.
External capture signals can only be applied if no
address output is selected for PORT1.
During external accesses in de-multiplexed bus
modes PORT1 outputs the 16 Bit intra-segment
address as an alternate output function.
During external accesses in multiplexed bus
modes, when no BUSCON register selects a
de-multiplexed bus mode, PORT1 is not used and
is available for general purpose I/O.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - P1L.7 P1L.6 P1L.5 P1L.4 P1L.3 P1L.2 P1L.1 P1L.0

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - P1H.7 P1H.6 P1H.5 P1H.4 P1H.3 P1H.2 P1H.1 P1H.0

RW RW RW RW RW RW RW RW

Bit Function

P1X.y Port data register P1H or P1L Bit y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - DP1L.7 DP1L.6 DP1L.5 DP1L.4 DP1L.3 DP1L.2 DP1L.1 DP1L.0

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - DP1H.7 DP1H.6 DP1H.5 DP1H.4 DP1H.3 DP1H.2 DP1H.1 DP1H.0

RW RW RW RW RW RW RW RW

Bit Function

DP1X.y Port direction register DP1H or DP1L Bit y
DP1X.y = 0: Port line P1X.y is an input (high-impedance)
DP1X.y = 1: Port line P1X.y is an output

ST10X167

81/294

Figure 28 : PORT1 I/O and alternate functions

When an external bus mode is enabled, the direc-
tion of the port pin and the loading of data into the
port output latch are controlled by the bus control-
ler hardware. The input of the port output latch is
disconnected from the internal bus and is
switched to the line labeled “Alternate Data Out-
put” via a multiplexer. The alternate data is the 16
Bit intra-segment address.

While an external bus mode is enabled, the user
software should not write to the port output latch,
otherwise unpredictable results may occur. When
the external bus modes are disabled, the contents
of the direction register last written by the user
becomes active.
The Figure 29 shows the structure of a PORT1
pin.

PORT1

P1H

P1L

Alternate Functions a)

General Purpose
Input/Output

8/16 Bit
Demultiplexed Bus

b)

CAPCOM2
Capture Inputs

P1H.7

P1H.6

P1H.5

P1H.4

P1H.3

P1H.2

P1H.1

P1H.0

P1L.7

P1L.6

P1L.5

P1L.4

P1L.3

P1L.2

P1L.1

P1L.0

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

CC27IO

CC26IO

CC25IO

CC24IO

Figure 29 : Block diagram of a PORT1 pin

Direction
Latch

Write DP1H.y / DP1L.y

Read DP1H.y / DP1L.y

Port Output
Latch

Write P1H.y / P1L.y

Read P1H.y / P1L.y

In
te

rn
a

l B
us

MUX

0

1

MUX

0

1

MUX

0

1“1”

Input
Latch

Clock

P1H.y
P1L.yOutput

Buffer

y = 7...0

Alternate
Function
Enable

Port Data
Output

Alternate
Data
Output

ST10X167

82/294

6.4 - Port2

If this 16 Bit port is used for general purpose I/O, the direction of each line can be configured via the cor-
responding direction register DP2. Each port line can be switched into push-pull or open drain mode via
the open drain control register ODP2.

P2 (FFC0h / E0h) SFR Reset Value: 0000h

DP2 (FFC2h / E1h) SFR Reset Value: 0000h

ODP2 (F1C2h / E1h) ESFR Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P2.15 P2.14 P2.13 P2.12 P2.11 P2.10 P2.9 P2.8 P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0

RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

P2.y Port data register P2 Bit y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DP2.15 DP2.14 DP2.13 DP2.12 DP2.11 DP2.10 DP2.9 DP2.8 DP2.7 DP2.6 DP2.5 DP2.4 DP2.3 DP2.2 DP2.1 DP2.0

RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

DP2.y Port direction register DP2 Bit y

DP2.y = 0: Port line P2.y is an input (high-impedance)

DP2.y = 1: Port line P2.y is an output

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ODP2

.15

ODP2

.14

ODP2

.13

ODP2

.12

ODP2

.11

ODP2

.10

ODP2

.9

ODP2

.8

ODP2

.7

ODP2

.6

ODP2

.5

ODP2

.4

ODP2

.3

ODP2

.2

ODP2

.1

ODP2

.0

RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

ODP2.y Port2 Open Drain control register Bit y

ODP2.y = 0: Port line P2.y output driver in push-pull mode

ODP2.y = 1: Port line P2.y output driver in open drain mode

ST10X167

83/294

6.4.1 - Alternate Functions of Port2

All Port2 lines (P2.15...P2.0) can be configured
capture inputs or compare outputs
(CC15IO...CC0IO) for the CAPCOM1 unit.

When a Port2 line is used as a capture input, the
state of the input latch, which represents the state
of the port pin, is directed to the CAPCOM unit via
the line “Alternate Pin Data Input”. If an external
capture trigger signal is used, the direction of the
respective pin must be set to input. If the direction
is set to output, the state of the port output latch
will be read since the pin represents the state of
the output latch. This can be used to trigger a
capture event through software by setting or
clearing the port latch. Note that in the output
configuration, no external device may drive the
pin, otherwise conflicts would occur.

When a Port2 line is used as a compare output
(compare modes 1 and 3), the compare event (or
the timer overflow in compare mode 3) directly
effects the port output latch. In compare mode 1,
when a valid compare match occurs, the state of
the port output latch is read by the CAPCOM
control hardware via the line “Alternate Latch Data
Input”, inverted, and written back to the latch via
the line “Alternate Data Output”. The port output
latch is clocked by the signal “Compare Trigger”
which is generated by the CAPCOM unit. In
compare mode 3, when a match occurs, the value
'1' is written to the port output latch via the line
“Alternate Data Output”. When an overflow of the
corresponding timer occurs, a '0' is written to the
port output latch. In both cases, the output latch is
clocked by the signal “Compare Trigger”. The

direction of the pin should be set to output by the
user, otherwise the pin will be in the
high-impedance state and will not reflect the state
of the output latch.

As can be seen from the port structure
(Figure 31), the user software always has free
access to the port pin even when it is used as a
compare output. This is useful for setting up the
initial level of the pin when using compare mode 1
or the double-register mode. In these modes,
unlike in compare mode 3, the pin is not set to a
specific value when a compare match occurs, but
is toggled instead.

When the user wants to write to the port pin at the
same time a compare trigger tries to clock the out-
put latch, the write operation of the user software
has priority. Each time a CPU write access to the
port output latch occurs, the input multiplexer of
the port output latch is switched to the line con-
nected to the internal bus. The port output latch
will receive the value from the internal bus and the
hardware triggered change will be lost.

As all other capture inputs, the capture input func-
tion of pins P2.15...P2.0 can also be used as
external interrupt inputs with a sample rate of 8
CPU clock cycles.

The upper eight Port2 lines (P2.15...P2.8) also
support Fast External Interrupt inputs
(EX7IN...EX0IN).

P2.15 in addition is the input for CAPCOM2 timer
T7 (T7IN).

The Table 11 summarizes the alternate functions
of Port2.

Table 11 : Port2 alternate functions

P.2 Pin Alt Function a) Alternate Function b) Alternate Function c)

P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7
P2.8
P2.9

P2.10
P2.11
P2.12
P2.13
P2.14
P2.15

CC0IO
CC1IO
CC2IO
CC3IO
CC4IO
CC5IO
CC6IO
CC7IO
CC8IO
CC9IO

CC10IO
CC11IO
CC12IO
CC13IO
CC14IO
CC15IO

-
-
-
-
-
-
-
-

EX0IN Fast External Interrupt 0 Input
EX1IN Fast External Interrupt 1 Input
EX2IN Fast External Interrupt 2 Input
EX3IN Fast External Interrupt 3 Input
EX4IN Fast External Interrupt 4 Input
EX5IN Fast External Interrupt 5 Input
EX6IN Fast External Interrupt 6 Input
EX7IN Fast External Interrupt 7 Input

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

T7IN Timer T7 External Count Input

ST10X167

84/294

Figure 30 : Port2 I/O and alternate functions

The pins of Port2 combine internal capture input bus data with compare output alternate data output
before the port latch input.

Figure 31 : Block diagram of a Port2 pin

Port2

Alternate Functions a)

General Purpose
Input/Output

CAPCOM1
Capture Input / Compare Output

b)

Fast External
Interrupt Input

c)

CAPCOM2
Timer T7 Input

CC7IO

CC6IO

CC5IO

CC4IO

CC3IO

CC2IO

CC1IO

CC0IO

CC15IO

CC14IO

CC13IO

CC12IO

CC11IO

CC10IO

CC9IO

CC8IO

EX7IN

EX6IN

EX5IN

EX4IN

EX3IN

EX2IN

EX1IN

EX0IN

T7IN

P2.7

P2.6

P2.5

P2.4

P2.3

P2.2

P2.1

P2.0

P2.15

P2.14

P2.13

P2.12

P2.11

P2.10

P2.9

P2.8

Open Drain
Latch

Write 0DP2.y

Read 0DP2.y

Direction
Latch

Write DP2.y

Read DP2.y

In
te

rn
al

 B
us

MUX

0

1

Alternate data input

Input
Latch

Clock

P2.y
CCyIO

Output
Buffer

x = 7..0

Alternate
Data
Output

MUX

0

1
Output
Latch

≥ 1Write Port P2.y
Compare Trigger

Read P2.y

Fast external interrupt input

y = 15...0

EXxIN

ST10X167

85/294

6.5 - Port3
If this 15 Bit port is used for general purpose I/O,
the direction of each line can be configured by the
corresponding direction register DP3. Most port
lines can be switched into push-pull or open drain

mode by the open drain control register ODP3
(pins P3.15, P3.14 and P3.12 do not support open
drain mode).
Due to pin limitations register Bit P3.14 is not con-
nected to an output pin.

P3 (FFC4h / E2h) SFR Reset Value: 0000h

DP3 (FFC6h / E3h) SFR Reset Value: 0000h

ODP3 (F1C6h / E3h) ESFR Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P3.15 - P3.13 P3.12 P3.11 P3.10 P3.9 P3.8 P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0

RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

P3.y Port data register P3 Bit y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DP3.15 - DP3.13 DP3.12 DP3.11 DP3.10 DP3.9 DP3.8 DP3.7 DP3.6 DP3.5 DP3.4 DP3.3 DP3.2 DP3.1 DP3.0

RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

DP3.y Port direction register DP3 Bit y

DP3.y = 0: Port line P3.y is an input (high-impedance)

DP3.y = 1: Port line P3.y is an output

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - ODP3.13 - ODP3.11ODP3.10ODP3.9ODP3.8 ODP3.7 ODP3.6 ODP3.5 ODP3.4 ODP3.3 ODP3.2 ODP3.1 ODP3.0

RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

ODP3.y Port3 Open Drain control register Bit y

ODP3.y = 0: Port line P3.y output driver in push-pull mode

ODP3.y = 1: Port line P3.y output driver in open drain mode

ST10X167

86/294

6.5.1 - Alternate Functions of Port3
The pins of Port3 are used for various functions which include external timer control lines, the two serial
interfaces and the control lines BHE / WRH and CLKOUT.

Table 12 : Port3 alternative functions

Port3 Pin Alternate Function

P3.0

P3.1

P3.2

P3.3

P3.4

P3.5

P3.6

P3.7

P3.8

P3.9

P3.10

P3.11

P3.12

P3.13

P3.14

P3.15

T0IN CAPCOM1 Timer 0 Count Input

T6OUT Timer 6 Toggle Output

CAPIN GPT2 Capture Input

T3OUT Timer 3 Toggle Output

T3EUD Timer 3 External Up/Down Input

T4IN Timer 4 Count Input

T3IN Timer 3 Count Input

T2IN Timer 2 Count Input

MRST SSC Master Receive / Slave Transmit

MTSR SSC Master Transmit / Slave Receive

TxD0 ASC0 Transmit Data Output

RxD0 ASC0 Receive Data Input

BHE/WRH Byte High Enable / Write High Output

SCLK SSC Shift Clock Input/Output

--- No pin assigned

CLKOUT System Clock Output

Figure 32 : Port3 I/O and alternate functions

Port3

No Pin

Alternate Functions a) b)

General Purpose
Input/Output

P3.7

P3.6

P3.5

P3.4

P3.3

P3.2

P3.1

P3.0

P3.15

P3.13

P3.12

P3.11

P3.10

P3.9

P3.8

T2IN

T3IN

T4IN

T3EUD

T3OUT

CAPIN

T6OUT

T0IN

CLKOUT

SCLK

BHE

RxD0

TxD0

MTSR

MRST

WRH

ST10X167

87/294

The port structure of the Port3 pins depends on
their alternate function (see Figure 33).
When the on-chip peripheral associated with a
Port3 pin is configured to use the alternate input
function, it reads the input latch, which represents
the state of the pin, via the line labeled “Alternate
Data Input”. Port3 pins with alternate input func-
tions are:
T0IN, T2IN, T3IN, T4IN, T3EUD and CAPIN.
When the on-chip peripheral associated with a
Port3 pin is configured to use the alternate output
function, its “Alternate Data Output” line is ANDed
with the port output latch line. When using these
alternate functions, the user must set the direction
of the port line to output (DP3.y=1) and must set
the port output latch (P3.y=1). Otherwise the pin is
in its high-impedance state (when configured as

input) or the pin is stuck at '0' (when the port out-
put latch is cleared). When the alternate output
functions are not used, the “Alternate Data Out-
put” line is in its inactive state, which is a high level
('1'). Port3 pins with alternate output functions are:
T6OUT, T3OUT, TxD0 and CLKOUT.

When the on-chip peripheral associated with a
Port3 pin is configured to use both the alternate
input and output function, the descriptions above
apply to the respective current operating mode.
The direction must be set accordingly. Port3 pins
with alternate input/output functions are: MTSR,
MRST, RxD0 and SCLK.

Note Enabling the CLKOUT function automati-
cally enables the P3.15 output driver. Set-
ting Bit DP3.15 = ’1’ is not required.

Figure 33 : Block diagram of Port3 pin with alternate input or alternate output function

Open Drain
Latch

Write 0DP3.y

Read 0DP3.y

Direction
Latch

Write DP3.y

Read DP3.y

In
te

rn
al

 B
us

MUX

0

1

Alternate Data Input

Input
Latch

Clock

P3.y
Output
Buffer

y = 13, 11...0

Port Output
Latch

Read P3.y

Write P3.y

&

Alternate
Data Input

Port Data
Output

ST10X167

88/294

Pin P3.12 (BHE/WRH) is another pin with an alter-
nate output function, however, its structure is
slightly different (see Figure 34). After reset the
BHE or WRH function must be used depending on
the system start-up configuration. In either of
these cases, there is no possibility to program any
port latches before. Thus, the appropriate alter-
nate function is selected automatically. If BHE/
WRH is not used in the system, this pin can be

used for general purpose I/O by disabling the
alternate function (BYTDIS = ‘1’ / WRCFG=’0’).
Note Enabling the BHE or WRH function auto-

matically enables the P3.12 output driver.
Setting Bit DP3.12=’1’ is not required.
During bus hold pin P3.12 is switched
back to its standard function and is then
controlled by DP3.12 and P3.12. Keep
DP3.12 =’0’ in this case to ensure floating
in hold mode.

6.6 - Port4

If this 8 Bit port is used for general purpose I/O, the direction of each line can be configured via the
corresponding direction register DP4.

P4 (FFC8h / E4h) SFR Reset Value: - - 00h

Figure 34 : Block diagram of pins P3.15 (CLKOUT) and P3.12 (BHE/WRH)

Direction
Latch

Write DP3.x

Read DP3.x

Port Output
Latch

Write P3.x

Read P3.x

In
te

rn
a

l B
us

MUX

0

1

MUX

0

1
Alternate
Data
Output

MUX

0

1“1”

Input
Latch

Clock

P3.12/BHE
P3.15/CLKOUTOutput

Buffer

x = 15, 12

Alternate
Function
Enable

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - P4.7 P4.6 P4.5 P4.4 P4.3 P4.2 P4.1 P4.0

RW RW RW RW RW RW RW RW

Bit Function

P4.y Port data register P4 Bit y

ST10X167

89/294

DP4 (FFCAh / E5h) SFR Reset Value: - - 00h

6.6.1 - Alternate Functions of Port4

During external bus cycles that use segmentation
(for address space above 64K Byte) a number of
Port4 pins may output the segment address lines.
The number of pins that is used for segment
address output determines the external address
space which is directly accessible. The other pins
of Port4 (if any) may be used for general purpose
I/O. If segment address lines are selected, the
alternate function of Port4 may be necessary to
access for external memory directly after reset.
For this reason Port4 will be switched to this alter-
nate function automatically.

The number of segment address lines is selected
via PORT0 during reset. The selected value can
be read from Bitfield SALSEL in register RP0H
(read only) in order to check the configuration
during run time.
Devices with a CAN interface use 2 pins of Port4
to interface the CAN module to an external CAN
transceiver. In this case the number of possible
segment address lines is reduced.
The Table 13 summarizes the alternate functions
of Port4 depending on the number of selected
segment address lines (coded via Bitfield
SALSEL).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - DP4.7 DP4.6 DP4.5 DP4.4 DP4.3 DP4.2 DP4.1 DP4.0

RW RW RW RW RW RW RW RW

Bit Function

DP4.y Port direction register DP4 Bit y

DP4.y = 0: Port line P4.y is an input (high-impedance)

DP4.y = 1: Port line P4.y is an output

Table 13 : Port4 Alternate Functions

P.4 Pin
Standard Function

SALSEL = 01
64K Byte

Alternate. Function
SALSEL = 11

256K Byte

Alternate Function
SALSEL = 00

1M Byte

Alternate Function
SALSEL = 10

16M Byte

P4.0
P4.1
P4.2
P4.3
P4.4
P4.5
P4.6
P4.7

General purpose I/O
General purpose I/O
General purpose I/O
General purpose I/O
General purpose I/O
General purpose I/O
General purpose I/O
General purpose I/O

Segment address A16
Segment address A17
General purpose I/O
General purpose I/O
General purpose I/O
General purpose I/O
General purpose I/O
General purpose I/O

Segment address A16
Segment address A17
Segment address A18
Segment address A19
General purpose I/O
General purpose I/O
General purpose I/O
General purpose I/O

Segment address A16
Segment address A17
Segment address A18
Segment address A19
Segment address A20
Segment address A21
Segment address A22
Segment address A23

Figure 35 : Port4 I/O and alternate functions

Port4

Alternate Functions a) b)

P4.7

P4.6

P4.5

P4.4

P4.3

P4.2

P4.1

P4.0

-

-

-

-

-

-

-

-

A23

A22

A21

A20

A19

A18

A17

A16

-

-

-

-

-

-

-

-

P4.7

CAN_TxD

CAN_RxD

P4.4

A19

A18

A17

A16

-

-

-

-

-

-

-

-

General Purpose Input / Output

ST10X167

90/294

Figure 36 : Block diagram of a Port4 pin

6.7 - Port5
This 16 Bit input port can only read data. There is no output latch and no direction register. Data written
to P5 will be lost.

P5 (FFA2h / D1h) SFR Reset Value: XXXXh

Direction
Latch

Write DP4.y

Read DP4.y

Port Output
Latch

Write P4.y

Read P4.y

In
te

rn
al

 B
us

MUX

0

1

MUX

0

1
Alternate
Data
Output

MUX

0

1“1”

Input
Latch

Clock

P4.y
Output
Buffer

y = 7...0

Alternate
Function
Enable

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P5.15 P5.14 P5.13 P5.12 P5.11 P5.10 P5.9 P5.8 P5.7 P5.6 P5.5 P5.4 P5.3 P5.2 P5.1 P5.0

R R R R R R R R R R R R R R R R

Bit Function

P5.y Port data register P5 Bit y (Read only)

ST10X167

91/294

6.7.1 - Alternate Functions of Port5
Each line of Port5 is also connected to the input multiplexer of the Analog/Digital Converter. All port lines
(P5.15...P5.0) can accept analog signals (AN15...AN0) that can be converted by the ADC. No special pro-
gramming is required for pins that shall be used as analog inputs. The upper 6 pins of Port5 also serve as
external timer control lines for GPT1 and GPT2.
The Table 14 summarizes the alternate functions of Port5.

Table 14 : Port5 alternate functions

Port5 Pin Alternate Function a) Alternate Function b)

P5.0

P5.1

P5.2

P5.3

P5.4

P5.5

P5.6

P5.7

P5.8

P5.9

P5.10

P5.11

P5.12

P5.13

P5.14

P5.15

Analog Input AN0

Analog Input AN1

Analog Input AN2

Analog Input AN3

Analog Input AN4

Analog Input AN5

Analog Input AN6

Analog Input AN7

Analog Input AN8

Analog Input AN9

Analog Input AN10

Analog Input AN11

Analog Input AN12

Analog Input AN13

Analog Input AN14

Analog Input AN15

-

-

-

-

-

-

-

-

-

-

T6EUD Timer 6 external Up/Down Input

T5EUD Timer 5 external Up/Down Input

T6IN Timer 6 Count Input

T5IN Timer 5 Count Input

T4EUD Timer 4 external Up/Down Input

T2EUD Timer 2 external Up/Down Input

Figure 37 : Port5 I/O and alternate functions

P5.15

P5.14

P5.13

P5.12

P5.11

P5.10

P5.9

P5.8

P5.7

P5.6

P5.5

P5.4

P5.3

P5.2

P5.1

P5.0

Port5

AN15

AN14

AN13

AN12

AN11

AN10

AN9

AN8

AN7

AN6

AN5

AN4

AN3

AN2

AN1

AN0

Alternate Functions a)

General Purpose Input

T2EUD

T4EUD

T5IN

T6IN

T5EUD

T6EUD

b)

A/D Converter Input

ST10X167

92/294

Port5 pins have a special port structure (see Figure 38), first because it is an input only port, and second
because the analog input channels are directly connected to the pins rather than to the input latches.

6.8 - Port6
If this 8 Bit port is used for general purpose I/O, the direction of each line can be configured via the
corresponding direction register DP6. Each port line can be switched into push-pull or open drain mode
via the open drain control register ODP6.

P6 (FFCCh / E6h) SFR Reset Value: - - 00h

DP6 (FFCEh / E7h) SFR Reset Value: - - 00h

Figure 38 : Block diagram of a Port5 pin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - P6.7 P6.6 P6.5 P6.4 P6.3 P6.2 P6.1 P6.0

RW RW RW RW RW RW RW RW

Bit Function

P6.y Port data register P6 Bit y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - DP6.7 DP6.6 DP6.5 DP6.4 DP6.3 DP6.2 DP6.1 DP6.0

RW RW RW RW RW RW RW RW

Bit Function

DP6.y Port direction register DP6 Bit y

DP6.y = 0: Port line P6.y is an input (high-impedance)

DP6.y = 1: Port line P6.y is an output

Read Port P5.y

In
te

rn
a

l B
us

Input
Latch

Clock

P5.y/ANy

Read
Buffer

to Sample + Hold
Circuit

Channel
Select

Analog
Switch

y = 15...0

ST10X167

93/294

ODP6 (F1CEh / E7h) ESFR Reset Value: - - 00h

6.8.1 - Alternate Functions of Port6
A programmable number of chip select signals (CS4...CS0) derived from the bus control registers
(BUSCON4...BUSCON0) can be output on 5 pins of Port6. The other 3 pins may be used for bus arbitra-
tion to accommodate additional masters in a ST10X167 system.
The number of chip select signals is selected via PORT0 during reset. The selected value can be read
from Bitfield CSSEL in register RP0H (read only) in order to check the configuration during run time.

The Table 15 summarizes the alternate functions of Port6 depending on the number of selected chip
select lines (coded via Bitfield CSSEL).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - ODP6.7 ODP6.6 ODP6.5 ODP6.4 ODP6.3 ODP6.2 ODP6.1 ODP6.0

RW RW RW RW RW RW RW RW

Bit Function

ODP6.y Port6 Open Drain control register Bit y

ODP6.y = 0: Port line P6.y output driver in push-pull mode

ODP6.y = 1: Port line P6.y output driver in open drain mode

Table 15 : Port6 alternate functions

Port6 Pin Alternate Function
CSSEL = 10

Alternate Function
CSSEL = 01

Alternate Function
CSSEL = 00

Alternate Function
CSSEL = 11

P6.0

P6.1

P6.2

P6.3

P6.4

General purpose I/O

General purpose I/O

General purpose I/O

General purpose I/O

General purpose I/O

Chip select CS0

Chip select CS1

General purpose I/O

General purpose I/O

General purpose I/O

Chip select CS0

Chip select CS1

Chip select CS2

General purpose I/O

General purpose I/O

Chip select CS0

Chip select CS1

Chip select CS2

Chip select CS3

Chip select CS4

P6.5

P6.6

P6.7

HOLD External hold request input

HLDA Hold acknowledge output

BREQ Bus request output

Figure 39 : Port6 I/O and alternate functions

Port6

Alternate Function a)
-

-

-

-

-

-

-

-

P6.7

P6.6

P6.5

P6.4

P6.3

P6.2

P6.1

P6.0

-

-

-

-

-

-

-

-

BREQ

HLDA

HOLD

CS4

CS3

CS2

CS1

CS0

General Purpose Input / Output

ST10X167

94/294

The chip select lines of Port6 have an internal
weak pull-up device. This device is switched on
under the following conditions:

– Always during reset

– If the Port6 line is used as a chip select output,
and the ST10X167 is in Hold mode
(invoked through HOLD), and the respective pin
driver is in push-pull mode (ODP6.x = ‘0’).

This feature is implemented to drive the chip
select lines high during reset in order to avoid mul-
tiple chip selection, and to allow another master to
access the external memory via the same chip
select lines (AND-wired), while the ST10X167 is
in Hold mode.
With ODP6.x = ‘1’ (open drain output selected),
the internal pull-up device will not be active during
Hold mode; external pull-up devices must be used
in this case. When entering Hold mode the CS
lines are actively driven high for one clock phase,

then the output level is controlled by the pull-up
devices (if activated).
After reset the CS function must be used, if
selected so. In this case there is no possibility to
program any port latches before. Thus the alter-
nate function (CS) is selected automatically in this
case.
Note The open drain output option can only be

selected via software earliest during the
initialization routine; at least signal CS0
will be in push-pull output driver mode
directly after reset (see Figure 40).

The bus arbitration signals HOLD, HLDA and
BREQ are selected with Bit HLDEN in register
PSW. When the bus arbitration signals are
enabled via HLDEN, also these pins are switched
automatically to the appropriate direction. Note
that the pin drivers for HLDA and BREQ are auto-
matically enabled, while the pin driver for HOLD is
automatically disabled (see Figure 41).

Figure 40 : Block diagram of Port6 Pins with an alternate output function

MUX

0

1

"0"

Open Drain
Latch

Write 0DP6.y

Read 0DP6.y

Direction
Latch

Write DP6.y

Read DP6.y

In
te

rn
al

 B
us

MUX

0

1

Input
Latch

Clock

P6.y
Output
Buffer

y = (0...4, 6, 7)

Port Output
Latch

Read P6.y

Write P6.y
Alternate
Data
Output MUX

0

1

MUX

0

1"1"

MUX

Alternate
Function
Enable

ST10X167

95/294

Figure 41 : Block diagram of Pin P6.5 (HOLD)

6.9 - Port7
If this 8 Bit port is used for general purpose I/O, the direction of each line can be configured via the
corresponding direction register DP7. Each port line can be switched into push-pull or open drain mode
via the open drain control register ODP7.

P7 (FFD0h / E8h) SFR Reset Value: - - 00h

Open Drain
Latch

Write 0DP6.5

Read 0DP6.5

Direction
Latch

Write DP6.5

Read DP6.5

In
te

rn
al

 B
u
s

MUX

0

1

Input
Latch

Clock

P6.5/HOLD
Output
Buffer

Port Output
Latch

Read P6.5

Write P6.5

Alternate Data Input

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - P7.7 P7.6 P7.5 P7.4 P7.3 P7.2 P7.1 P7.0

RW RW RW RW RW RW RW RW

Bit Function

P7.y Port data register P7 Bit y

ST10X167

96/294

DP7 (FFD2h / E9h) SFR Reset Value: - - 00h

ODP7 (F1D2h / E9h) ESFR Reset Value: - - 00h

6.9.1 - Alternate Functions of Port7

The upper 4 lines of Port7 (P7.7...P7.4) are used
as capture inputs or compare outputs
(CC31IO...CC28IO) for the CAPCOM2 unit.

How CAPCOM2 unit is connected to Port7 lines
and how to handle them by software is similar to
the Port2 lines description.

As all other capture inputs, the capture input func-
tion of pins P7.7...P7.4 can also be used as exter-
nal interrupt inputs with a sample rate of 8 CPU
clock cycles.

The lower 4 lines of Port7 (P7.3...P7.0) supports
outputs of the PWM module (POUT3...POUT0).
At these pins the value of the respective port out-
put latch is XORed with the value of the PWM out-
put rather than ANDed, as the other pins do. This
allows to use the alternate output value either as it
is (port latch holds a ‘0’) or invert its level at the pin
(port latch holds a ‘1’).
Note that the PWM outputs must be enabled via
the respective PENx Bit in PWMCON1.
The Table 16 summarizes the alternate functions
of Port7.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - DP7.7 DP7.6 DP7.5 DP7.4 DP7.3 DP7.2 DP7.1 DP7.0

RW RW RW RW RW RW RW RW

Bit Function

DP7.y Port direction register DP7 Bit y

DP7.y = 0: Port line P7.y is an input (high-impedance)
DP7.y = 1: Port line P7.y is an output

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - ODP7.7 ODP7.6 ODP7.5 ODP7.4 ODP7.3 ODP7.2 ODP7.1 ODP7.0

RW RW RW RW RW RW RW RW

Bit Function

ODP7.y Port7 Open Drain control register Bit y

ODP7.y = 0: Port line P7.y output driver in push-pull mode

ODP7.y = 1: Port line P7.y output driver in open drain mode

Table 16 : Port7 alternate functions

Port7 Pin Alternate Function

P7.0
P7.1
P7.2
P7.3
P7.4
P7.5
P7.6
P7.7

POUT0 PWM mode channel 0 output
POUT1 PWM mode channel 1 output
POUT2 PWM mode channel 2 output
POUT3 PWM mode channel 3 output
CC28 I/O Capture input / compare output channel 28
CC29 I/O Capture input / compare output channel 29
CC30 I/O Capture input / compare output channel 30
CC31 I/O Capture input / compare output channel 31

ST10X167

97/294

The structure of Port7 differ in the way the output latches are connected to the internal bus and to the pin
driver (see Figure 43 and Figure 44).

Pins P7.3...P7.0 (POUT3...POUT0) XOR the alternate data output with the port latch output, which allows
to use the alternate data directly or inverted at the pin driver.

Figure 42 : Port7 I/O and alternate functions

Figure 43 : Block diagram of Port7 pins P7.3...P7.0

Port7

-

-

-

-

-

-

-

-

CC31IO

CC30IO

CC29IO

CC28IO

POUT3

POUT2

POUT1

POUT0

Alternate FunctionGeneral Purpose Input/Output

-

-

-

-

-

-

-

-

P7.7

P7.6

P7.5

P7.4

P7.3

P7.2

P7.1

P7.0

Open Drain
Latch

Write 0DP7.y

Read 0DP7.y

Direction
Latch

Write DP7.y

Read DP7.y

In
te

rn
al

 B
us

MUX

0

1

Input
Latch

Clock

P7.y/POUTy
Output
Buffer

y = (0...3)

Port Output
Latch

Read P7.y

Write P7.y

=1
Port Data
Output

XOR

Alternate
Data
Output

ST10X167

98/294

Pins P7.7...P7.4 (CC31IO...CC28IO) combine internal bus data and alternate data output before the port
latch input, as do the Port2 pins.

Figure 44 : Block diagram of Port7 pins P7.7...P7.4

Open Drain
Latch

Write 0DP7.y

Read 0DP7.y

Direction
Latch

Write DP7.y

Read DP7.y

In
te

rn
al

 B
us

MUX

0

1

Alternate Latch Data Input

Input
Latch

Clock

P7.y
CCzIOOutput

Buffer

Alternate
Data
Output

MUX

0

1
Output
Latch

≥ 1
Write Port P7.y

Compare Trigger

Read P7.y

y = (4...7)
z = (28...31)

Alternate Pin Data Input

ST10X167

99/294

6.10 - Port8
If this 8 Bit port is used for general purpose I/O, the direction of each line can be configured via the
corresponding direction register DP8. Each port line can be switched into push-pull or open drain mode
via the open drain control register ODP8.

P8 (FFD4h / EAh) SFR Reset Value: - - 00h

DP8 (FFD6h / EBh) SFR Reset Value: - - 00h

ODP8 (F1D6h / EBh) ESFR Reset Value: - - 00h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - P8.7 P8.6 P8.5 P8.4 P8.3 P8.2 P8.1 P8.0

RW RW RW RW RW RW RW RW

Bit Function

P8.y Port data register P8 Bit y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - DP8.7 DP8.6 DP8.5 DP8.4 DP8.3 DP8.2 DP8.1 DP8.0

RW RW RW RW RW RW RW RW

Bit Function

DP8.y Port direction register DP8 Bit y

DP8.y = 0: Port line P8.y is an input (high-impedance)

DP8.y = 1: Port line P8.y is an output

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - ODP8.7 ODP8.6 ODP8.5 ODP8.4 ODP8.3 ODP8.2 ODP8.1 ODP8.0

RW RW RW RW RW RW RW RW

Bit Function

ODP8.y Port8 Open Drain control register Bit y

ODP8.y = 0: Port line P8.y output driver in push-pull mode

ODP8.y = 1: Port line P8.y output driver in open drain mode

ST10X167

100/294

6.10.1 - Alternate Functions of Port8

All Port8 lines (P8.7...P8.0) support capture inputs
or compare outputs (CC23IO...CC16IO) for the
CAPCOM2 unit (see Table 17). The use of the
port lines by the CAPCOM unit, its accessibility

via software and the precautions are the same as
described for the Port2 lines.
As all other capture inputs, the capture input func-
tion of pins P8.7...P8.0 can also be used as exter-
nal interrupt inputs with a sample rate of 8 CPU
clock cycles.

Table 17 : Port8 alternate functions

Port8 Pin Alternate Function

P8.0

P8.1

P8.2

P8.3

P8.4

P8.5

P8.6

P8.7

CC16IO Capture input / compare output channel 16

CC17IO Capture input / compare output channel 17

CC18IO Capture input / compare output channel 18

CC19IO Capture input / compare output channel 19

CC20IO Capture input / compare output channel 20

CC21IO Capture input / compare output channel 21

CC22IO Capture input / compare output channel 22

CC23IO Capture input / compare output channel 23

Figure 45 : Port8 I/O and alternate functions

Port8

-

-

-

-

-

-

-

-

CC23IO

CC22IO

CC21IO

CC20IO

CC19IO

CC18IO

CC17IO

CC16IO

Alternate Function a)

General Purpose Input / Output

-

-

-

-

-

-

-

-

P8.7

P8.6

P8.5

P8.4

P8.3

P8.2

P8.1

P8.0

ST10X167

101/294

The pins of Port8 combine internal bus data and alternate data output before the port latch input, as do
the Port2 pins.

Figure 46 : Block diagram of Port8 pins

Open Drain
Latch

Write 0DP8.y

Read 0DP8.y

Direction
Latch

Write DP8.y

Read DP8.y

In
te

rn
al

 B
us

MUX

0

1

Alternate Latch Data Input

Input
Latch

Clock

P8.y
CCzIOOutput

Buffer

Alternate
Data
Output

MUX

0

1
Output
Latch

≥ 1
Write Port P8.y

Compare Trigger

Read P8.y

y = (0...7)
z = (16...23)

Alternate Pin Data Input

ST10X167

102/294

7 - DEDICATED PINS

Most of the input/output or control signals of the
ST10X167 are realized as alternate functions of
pins of the parallel ports. There is, however, a
number of signals that use separate pins,

including the oscillator, special control signals and
the power supply.
The Table 18 summarizes the dedicated pins of
the ST10X167.

Table 18 : Summary of dedicated pins

Pin(s) Function

ALE Address Latch Enable: controls external address latches that provide a stable address in multi-
plexed bus modes. ALE is activated for every external bus cycle independent of the selected bus
mode. It is also activated for bus cycles with a de-multiplexed address bus. When an external bus is
enabled (if one or more of the BUSACT Bit is set) also X-Peripheral accesses will generate an
active ALE signal.

ALE is not activated for internal accesses, like accesses to ROM, to Flash, to the internal RAM and
to the special function registers. In single chip mode, when no external bus is enabled (no BUSACT
Bit set), ALE will also remain inactive for X-Peripheral accesses

RD External Read Strobe: controls the output drivers of external memory or peripherals when the
ST10X167 reads data from these external devices. During reset and during Hold mode an internal
pull-up ensures an inactive high level on the RD output.

WR/WRL External Write/Write Low Strobe: controls the data transfer from the ST10X167 to an external mem-
ory or peripheral device. This pin may either provide an general WR signal activated for both Byte
and Word write accesses, or specifically control the low Byte of an external 16 Bit device (WRL)
together with the signal WRH (alternate function of P3.12/BHE). During reset and during Hold mode
an internal pull-up ensures an inactive (high) level on the WR/WRL output.

READY/READY Ready Input: receives a control signal from an external memory or peripheral device that is used to
terminate an external bus cycle, provided that this function is enabled for the current bus cycle.
READY/READY may be used as synchronous READY/READY or may be evaluated asynchro-
nously. For the ST10F167 the polarity is always READY. For the ST10C167 and ST10R167 the
polarity can be set to READY or READY by setting Bit 13 in the BUSCON register.

EA External Access Enable: determines, if the ST10X167 after reset starts fetching code from the inter-
nal Memory area (EA=’1’) or via the external bus interface (EA=’0’).

NMI Non-Maskable Interrupt Input: allows to trigger a high priority trap via an external signal. It can be
used as power fail input or to validate the PWRDN instruction that switches the ST10X167 into
power-down mode.

RSTIN Reset Input: puts the ST10X167 into the reset default configuration either at power-up or external
events like a hardware failure or manual reset. The input voltage threshold of the RSTIN pin is
raised compared to the standard pins in order to minimize the noise sensitivity of the reset input.

RSTOUT Reset Output: provides a special reset signal for external circuitry. RSTOUT is activated at the
beginning of the reset sequence, triggered via RSTIN, a watchdog timer overflow or by the SRST
instruction. RSTOUT remains active (low) until the EINIT instruction is executed. This allows to ini-
tialize the controller before the external circuitry is activated.

XTAL1, XTAL2 Oscillator Input/Output: connect the internal clock oscillator to the external crystal. An external clock
signal may be fed to the input XTAL1, leaving XTAL2 open.

VDD, VSS Digital Power Supply and Ground (6 pins each): provides the power supply for the digital logic of the
ST10X167. All VDD pins and all VSS pins must be connected to the power supply and ground,
respectively.

VPP Flash Programming Voltage for ST10F167 or Exit from powerdown for ST10C167 and ST10R167
devices: If a Fast External Interrupt pin (EX3IN..EX0IN) is used to exit from Power Down mode, an
external RC circuit should be connected to the Vpp pin. The discharging of the external capacitor
causes a delay that allows the oscillator and PLL circuits to stabilize before the clock signal is deliv-
ered to the CPU and peripherals see Figure 47. For more information on exiting power down mode
refer to Chapter 19 - Power Reduction Modes.

ST10X167

103/294

Vpp external RC circuit is used for exiting power-down mode with external interrupt and for power-up
asynchronous reset.

Figure 47 : Vpp external RC circuit for ST10C167 and ST10R167

ST10C167

Vpp/RPD

VDD

C1

R1 200KΩ-1MΩ typical

1µF typical

ST10R167

ST10X167

104/294

8 - THE EXTERNAL BUS INTERFACE

The on-chip peripherals and on-chip RAM and
ROM / Flash Memory only cover a small fraction
of the ST10X167 address space. The external bus
interface gives access to external peripherals and
additional volatile and non-volatile memory. It
provides a number of configurations and can be
tailored to fit perfectly into a given application
system (see Figure 48).

Accesses to external memory or peripherals are
executed by the integrated External Bus
Controller (EBC). The function of the EBC is
controlled via the SYSCON register and the
BUSCONx and ADDRSELx registers. The
BUSCONx registers specify the external bus
cycles in terms of address (mux/demux), data (16
Bit/8 Bit), chip selects and length (waitstates /
READY control / ALE / RW delay). These
parameters are used for accesses within a
specific address area which is defined via the
corresponding register ADDRSELx. The four pairs
BUSCON1/ADDRSEL1...BUSCON4/ADDRSEL4
allow to define four independent “address
windows”, while all external accesses outside

these windows are controlled via register
BUSCON0.

8.1 - Single Chip Mode

Single chip mode is entered, when pin EA is high
during reset. In this case register BUSCON0 is
initialized with 0000h, which also resets Bit
BUSACT0, so no external bus is enabled.

In single chip mode the ST10X167 operates only
with and out of internal resources. No external bus
is configured and no external peripherals and/or
memory can be accessed. Also no port lines are
occupied for the bus interface.

When running in single chip mode, however,
external access may be enabled by configuring an
external bus under software control. Single chip
mode allows the ST10X167 to start execution out
of the internal program memory (Masked ROM /
Flash Memory).

Any attempt to access a location in the external
memory space in single chip mode results in the
hardware trap ILLBUS.

ST10X167

105/294

Figure 48 : SFRs and port pins associated with the external bus interface

Bit is linked to a function
Bit has no function or is not implemented
Register is in ESFR internal memory space

Y
-
E

:
:
:

Ports & Direction Control Alternate Functions

Address Registers

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YP0L/P0H

ADDRSEL1

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

Y

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YP1L/P1H

- - Y - - - - - - - - - - - - -DP3

- - Y - - - - - - - - - - - - -P3

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YP4

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YODP6 E

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YDP6

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YP6

ADDRSEL2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

ADDRSEL3 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

ADDRSEL4 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

P0L/P0H PORT0 Data Registers
P1L/P1H PORT1 Data Registers
DP3 Port3 Direction Control Register
P3 Port3 Data Register
P4 Port4 Data Register
ODP6 Port6 Open Drain Control Register
DP6 Port6 Direction Control Register
P6 Port 6 Data Register

ADDRSELx Address Range Select Register 1...4
BUSCONx Bus Mode Control Register 0...4
SYSCON System Control Register
RP0H Port P0H Reset Configuration Register

PORT0 EA
PORT1 RSTIN
ALE READY
RD
WR/WRL
BHE/WRH

Mode Registers

Control Registers

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YBUSCON0

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YBUSCON1

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YBUSCON2

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YBUSCON3

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YBUSCON4

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YSYSCON

- - - - - - - - Y Y Y Y Y Y Y YRP0H

ST10X167

106/294

8.2 - External Bus Modes
When the external bus interface is enabled (Bit
BUSACTx=’1’) and configured (Bitfield BTYP), the
ST10X167 uses a subset of its port lines together
with some control lines to build the external bus.

The bus configuration (BTYP) for the address
windows (BUSCON4...BUSCON1) is selected by
software, usually during the initialization of the
system.
The bus configuration (BTYP) for the default
address range (BUSCON0) is selected via
PORT0 during reset, provided that pin EA is low
during reset. Otherwise BUSCON0 may be
programmed via software just like the other
BUSCON registers.
The 16M Byte address space of the ST10X167 is
divided into 256 segments of 64K Byte each. The
16 Bit intra-segment address is output on PORT0
for multiplexed bus modes or on PORT1 for
demultiplexed bus modes.
When segmentation is disabled, only one
64K Byte segment can be used and accessed.
Otherwise, additional address lines may be output
on Port4, and/or several chip select lines may be
used to select different memory banks or
peripherals. These functions are selected during
reset via Bitfields SALSEL and CSSEL of register
RP0H, respectively.

Note Bit SGTDIS of register SYSCON defines,
if the CSP register is saved during inter-
rupt entry (segmentation active) or not
(segmentation disabled).

8.2.1 - Multiplexed Bus Modes

In the multiplexed bus modes the 16 Bit
intra-segment address and data use PORT0. The
address is time-multiplexed with the data and has
to be latched externally.

The width of the required latch depends on the
selected data bus width, an 8 Bit data bus
requires a Byte latch (the address Bit A15...A8 on
P0H do not change, while P0L multiplexes
address and data), a 16 Bit data bus requires a
Word latch (the least significant address line A0 is
not relevant for Word accesses).

The upper address lines (An...A16) are
permanently output on Port4 (if segmentation is
enabled) and do not require latches.

The EBC initiates an external access by
generating the Address Latch Enable signal (ALE)
and then placing an address on the bus. The
falling edge of ALE triggers an external latch to
capture the address.

After a period of time during which the address
must have been latched externally, the address is
removed from the bus. The EBC now activates the
respective command signal (RD, WR, WRL,
WRH). Data is driven onto the bus either by the
EBC (for write cycles) or by the external memory/
peripheral (for read cycles). After a period of time,
which is determined by the access time of the
memory/peripheral, data become valid.

Read cycles: Input data is latched and the
command signal is now deactivated. This causes
the accessed device to remove its data from the
bus which is then tri-stated again.

Write cycles: The command signal is now
deactivated. The data remain valid on the bus until
the next external bus cycle is started.

BTYP
Encoding

External Data
Bus Width

External Address
Bus Mode

0 0 8 Bit Data Demultiplexed Addresses

0 1 8 Bit Data Multiplexed Addresses

1 0 16 Bit Data Demultiplexed Addresses

1 1 16 Bit Data Multiplexed Addresses

ST10X167

107/294

Figure 49 : Multiplexed bus cycle

8.2.2 - Demultiplexed Bus Modes

In the demultiplexed bus modes the 16 Bit
intra-segment address is permanently output on
PORT1, while the data uses PORT0 (16 Bit data)
or P0L (8 Bit data).

The upper address lines are permanently output
on Port4 (if selected via SALSEL during reset).
No address latches are required.

The EBC initiates an external access by placing
an address on the address bus. After a
programmable period of time the EBC activates
the respective command signal (RD, WR, WRL,
WRH).

Data is driven onto the data bus, either by the
EBC (for write cycles), or by the external memory/
peripheral (for read cycles). After a period of time
which is determined by the access time of the
memory/peripheral, data become valid.

Read cycles: Input data is latched and the
command signal is now deactivated. This causes
the accessed device to remove its data from the
data bus which is then tri-stated again.

Write cycles: The command signal is now
deactivated. If a subsequent external bus cycle is
required, the EBC places the respective address
on the address bus. The data remain valid on the
bus until the next external bus cycle is started.

Bus Cycle

Address

Address Data/Instr.

Address Data

Segment (P4)

ALE

BUS (P0)

RD

BUS (P0)

WR

ST10X167

108/294

Figure 50 : Demultiplexed bus cycle

8.2.3 - Switching Between the Bus Modes

The EBC allows dynamic switching between
different bus modes, this means that subsequent
external bus cycles may be executed in different
ways. Certain address areas may use multiplexed
or demultiplexed buses or use READY control or
predefined waitstates.

A change of the external bus characteristics can
be initiated in two different ways:

– Reprogramming the BUSCON and/or
ADDRSEL registers allows to either change
the bus mode for a given address window, or
change the size of an address window that uses
a certain bus mode. Reprogramming allows to
use a great number of different address
windows (more than BUSCONs are available)
on the expense of the overhead for changing the
registers and keeping appropriate tables.

– Switching between predefined address
windows automatically selects the bus mode
that is associated with the respective window.
Predefined address windows allow to use
different bus modes without any overhead, but
restrict their number to the number of
BUSCONs. However, as BUSCON0 controls all
address areas, which are not covered by the
other BUSCONs, this allows to have gaps
between these windows, which use the bus
mode of BUSCON0.

PORT1 will output the intra-segment address
when any of the BUSCON registers selects a
demultiplexed bus mode, even if the current bus
cycle uses a multiplexed bus mode. This means
that an external address decoder can be
connected to PORT1 only, while using it for all
kinds of bus cycles.

Note Never change the configuration for an
address area that currently supplies the
instruction stream. Due to the internal pipe-
lines it is very difficult to determine the first
instruction fetch that will use the new con-
figuration. Only change the configuration
for address areas that are not currently
accessed. This applies to BUSCON regis-
ters as well as to ADDRSEL registers.

The use of the BUSCON/ADDRSEL registers is
controlled via the issued addresses. When an
access (code fetch or data) is initiated, the
respective generated physical address defines, if
the access is made internally, uses one of the
address windows defined by ADDRSEL4...1, or
uses the default configuration in BUSCON0. After
initializing the active registers, they are selected
and evaluated automatically by interpreting the
physical address. No additional switching or
selecting is necessary during run time, except
when more than the four address windows plus
the default is to be used.

Bus Cycle

Address

Data/Instr.

Data

Segment (P4)

ALE

BUS (P0)

RD

BUS (P0)

WR

Segment (P1)

ST10X167

109/294

Switching from demultiplexed to multiplexed
bus mode represents a special case. The bus
cycle is started by activating ALE and driving the
address to Port4 and PORT1 as usual, if another
BUSCON register selects a demultiplexed bus.
However, in the multiplexed bus modes the
address is also required on PORT0. In this special
case the address on PORT0 is delayed by one
CPU clock cycle, which delays the complete
(multiplexed) bus cycle and extends the
corresponding ALE signal (see Figure 51).
This extra time is required to allow the previously
selected device (via demultiplexed bus) to release
the data bus, which would be available in a
demultiplexed bus cycle.

8.2.4 - External Data Bus Width
The EBC can operate on 8 Bit or 16 Bit wide
external memory/peripherals. A 16 Bit data bus
uses PORT0, while an 8 Bit data bus only uses
P0L, the lower Byte of PORT0. This saves on
address latches, bus transceivers, bus routing and
memory cost on the expense of transfer time. The
EBC can control Word accesses on an 8 Bit data
bus as well as Byte accesses on a 16 Bit data bus.
Word accesses on an 8 Bit data bus are
automatically split into two subsequent Byte
accesses, where the low Byte is accessed first,
then the high Byte. The assembly of Byte to
Words and the disassembly of Words into Byte is

handled by the EBC and is transparent to the CPU
and the programmer.

Byte accesses on a 16 Bit data bus require that
the upper and lower half of the memory can be
accessed individually. In this case the upper Byte
is selected with the BHE signal, while the lower
Byte is selected with the A0 signal. So the two
Byte of the memory can be enabled independent
from each other, or together when accessing
Words.

When writing Byte to an external 16 Bit device,
which has a single CS input, but two WR enable
inputs (for the two Byte), the EBC can directly
generate these two write control signals. This
saves the external combination of the WR signal
with A0 or BHE. In this case pin WR serves as
WRL (write low Byte) and pin BHE serves as
WRH (write high Byte). Bit WRCFG in register
SYSCON selects the operating mode for pins WR
and BHE. The respective Byte will be written on
both data bus halves.

When reading Byte from an external 16 Bit device,
whole Words may be read and the ST10X167
automatically selects the Byte to be input and
discards the other. However, care must be taken
when reading devices that change state when
being read, like FIFOs, interrupt status registers,
etc. In this case individual Byte should be selected
using BHE and A0.

Figure 51 : Switching from demultiplexed to multiplexed bus mode

Data/Instr. Address Data/Instr.

AddressData Data

Demultiplexed
Bus Cycle Idle State

Multiplexed
Bus Cycle

Address(P1)
Segment (P4)

ALE

BUS(P0)

RD

BUS(P0)

WR

Address Address

ST10X167

110/294

Note PORT1 gets available for general purpose
I/O, when none of the BUSCON registers
selects a demultiplexed bus mode.

8.2.5 - Disable / Enable Control for Pin BHE
(BYTDIS)
Bit BYTDIS is provided for controlling the active
low Byte High Enable (BHE) pin. The function of
the BHE pin is enabled, if the BYTDIS Bit contains
a '0'. Otherwise, it is disabled and the pin can be
used as standard I/O pin. The BHE pin is implicitly
used by the External Bus Controller to select one
of two Byte-organized memory chips, which are
connected to the ST10X167 via a Word-wide
external data bus. After reset the BHE function is
automatically enabled (BYTDIS = '0'), if a 16 Bit
data bus is selected during reset, otherwise it is
disabled (BYTDIS=’1’). It may be disabled, if Byte
access to 16 Bit memory is not required, and the
BHE signal is not used.

8.2.6 - Segment Address Generation
During external accesses the EBC generates a
(programmable) number of address lines on
Port4, which extend the 16 Bit address output on
PORT0 or PORT1, and so increase the accessible
address space. The number of segment address
lines is selected during reset and coded in Bit field
SALSEL in register RP0H (see table below).

Note The total accessible address space may
be increased by accessing several banks
which are distinguished by individual chip
select signals.

8.2.7 - CS Signal Generation
During external accesses the EBC can generate a
(programmable) number of CS lines on Port6,
which allows to directly select external peripherals

or memory banks without requiring an external
decoder. The number of CS lines is selected
during reset and coded in Bit field CSSEL in
register RP0H (see table below).

The CS outputs are associated with the
BUSCONx registers and are driven active (low)
for any access within the address area defined for
the respective BUSCON register.

For any access outside this defined address area
the respective CS signal will go inactive (high). At
the beginning of each external bus cycle the
corresponding valid CS signal is determined and
activated. All other CS lines are deactivated
(driven high) at the same time.

Note The CS signals will not be updated for an
access to any internal address area (for
example when no external bus cycle is
started), even if this area is covered by the
respective ADDRSELx register. An access
to an on-chip X-Peripheral deactivates all
external CS signals. Upon accesses to
address windows without a selected CS line
all selected CS lines are deactivated.

The chip select signals allow to operate in four
different modes, which are selected via Bit
CSWENx and CSRENx in the respective
BUSCONx register.

Bus Mode Transfer Rate
(Speed factor for Byte/Word/DWord access) System Requirements Free I/O Lines

8 Bit Multiplexed Very low (1.5 / 3 / 6) Low (8 Bit latch, Byte bus) P1H, P1L

8 Bit Demultipl. Low (1 / 2 / 4) Very low (no latch, Byte bus) P0H

16 Bit Multiplexed High (1.5 / 1.5 / 3) High (16 Bit latch, Word bus) P1H, P1L

16 Bit Demultipl. Very high (1 / 1 / 2) Low (no latch, Word bus) ---

SALSEL Segment
address lines

Directly accessible
address space

1 1 Two: A17...A16 256K Byte (Default
without pull-downs)

1 0 Eight: A23...A16 16M Byte (Maximum)

0 1 None 64K Byte (Minimum)

0 0 Four: A19...A16 1M Byte

CSSEL Chip Select Lines Note

1 1 Five: CS4...CS0 Default without pull-downs

1 0 None Port6 pins free for I/O

0 1 Two: CS1...CS0

0 0 Three: CS2...CS0

CSWENx CSRENx Chip Select Mode

0 0 Address Chip Select (Default
after Reset, mode for CS0)

0 1 Read Chip Select

1 0 Write Chip Select

1 1 Read/Write Chip Select

ST10X167

111/294

Address chip select signals remain active until
an access to another address window. An address
chip select becomes active with the falling edge of
ALE and becomes inactive with the falling edge of
ALE of an external bus cycle that accesses a
different address area. No spikes will be
generated on the chip select lines.

Read or write chip select signals remain active
only as long as the associated control signal (RD
or WR) is active.

This also includes the programmable read/write
delay. Read chip select is only activated for read
cycles, write chip select is only activated for write
cycles, read/write chip select is activated for both
read and write cycles (write cycles are assumed,
if any of the signals WRH or WRL becomes
active).

These modes save external glue logic, when
accessing external devices like latches or drivers
that only provide a single enable input.

Note CS0 provides an address chip select
directly after reset (except for single chip
mode) when the first instruction is fetched.

Internal pull-up devices hold all CS lines high
during reset. After the end of a reset sequence the
pull-up devices are switched off and the pin
drivers control the pin levels on the selected CS
lines. Not selected CS lines will enter the
high-impedance state and are available for
general purpose I/O.

The pull-up devices are also active during bus
hold on the selected CS lines, while HLDA is
active and the respective pin is switched to
push-pull mode. Open drain outputs will float
during bus hold. In this case external pull-up
devices are required or the new bus master is
responsible for driving appropriate levels on the
CS lines.

8.2.8 - Segment Address Versus Chip Select

Note : This feature is not available for the
ST10F167.

The external bus interface supports many
configurations for the external memory. By
increasing the number of segment address lines,
a linear address space of 256K Byte, 1M Byte or
16M Byte can be addressed.

It is possible to implement a large memory area
and to access a great number of external devices
using an external decoder. By increasing the
number of CS line, accesses can be made to

memory banks or peripherals without external
glue logic.

These two features may be combined to optimize
the overall system performance. Enabling 4
segment address lines and 5 chip select lines to
give access to five memory banks of 1M Byte
each, so the available address space is 5M Byte
(without glue logic).

Note Bit SGTDIS of register SYSCON defines
whether the CSP register is saved during
interrupt entry (segmentation active) or
not (segmentation disabled).

8.3 - Programmable Bus Characteristics

Important timing characteristics of the external
bus interface have been made user
programmable to allow to adapt it to a wide range
of different external bus and memory
configurations with different types of memories
and/or peripherals.

The following parameters of an external bus cycle
are programmable:

– ALE control defines the ALE signal length and
the address hold time after its falling edge

– Memory cycle time (extendable with 1...15
waitstates) defines the allowable access time

– Memory tri-state time (extendable with 1
waitstate) defines the time for a data driver to float

– Read/write delay time defines when a command
is activated after the falling edge of ALE

– READY polarity is programmable for ST10C167
and ST10R167 only

– READY control defines, if a bus cycle is
terminated internally or externally

– Programmable chip select timing control for
ST10C167 and ST10R167 only

Note Internal accesses are executed with maxi-
mum speed and therefore are not pro-
grammable. External accesses use the
slowest possible bus cycle after reset. The
bus cycle timing may then be optimized by
the initialization software.

ST10X167

112/294

Figure 52 : Programmable external bus cycle

8.3.1 - ALE Length Control
The length of the ALE signal and the address hold
time after its falling edge are controlled by the
ALECTLx Bit in the BUSCON registers. When Bit
ALECTL is set to ‘1’, external bus cycles
accessing the respective address window will
have their ALE signal prolonged by half a CPU
clock cycle. Also the address hold time after the
falling edge of ALE (on a multiplexed bus) will be

prolonged by half a CPU clock, so the data
transfer within a bus cycle refers to the same
CLKOUT edges as usual (the data transfer is
delayed by one CPU clock cycle). This allows
more time for the address to be latched.

Note ALECTL0 is ‘1’ after reset to select the
slowest possible bus cycle, the other
ALECTLx are ‘0’ after reset.

ALE

ADDR

RD / WR

DATA

ALECTL MCTC MTTC

ALE

ADDR

RD / WR

DATA

Figure 53 : ALE length control

Segment (P4)

ALE

BUS (P0)

RD

BUS (P0)

WR

Normal Multiplexed Bus Cycle Lengthened Multiplexed Bus Cycle

Address Address

Address Data/Instr. Address Data/Instr.

Address Data Address Data

1 Setup

2 Hold

1 Setup

2 Hold

ST10X167

113/294

8.3.2 - Programmable Memory Cycle Time

The ST10X167 allows the user to adjust the controller's external bus cycles to the access time of the
respective memory or peripheral. This access time is the total time required to move the data to the
destination. It represents the period of time during which the controller’s signals do not change.

The external bus cycles of the ST10X167 can be extended for a memory or a peripheral, which cannot
keep pace with the controller’s maximum speed some waitstates are introduced during the access (see
Figure). During these memory cycle time waitstates, the CPU is idle, if this access is required for the
execution of the current instruction. The memory cycle time waitstates can be programmed in increments
of one CPU clock within a range from 0 to 15 (default after reset) via the MCTC fields of the BUSCON
registers. 15-(MCTC) waitstates will be inserted.

8.3.3 - Programmable Memory Tri-state Time

The ST10X167 allows the user to adjust the time between two subsequent external accesses to address
slow external device. The tri-state time MTTC starts, when the external device has released the bus after
deactivation of the read command (RD).

The output of the next address on the external bus can be delayed for a memory or peripheral, which needs
more time to switch off its bus drivers, by introducing a waitstate after the previous bus cycle (see Figure 55).

During this memory tri-state time waitstate, the CPU is not idle, so CPU operations will only be slowed
down if a subsequent external instruction or data fetch operation is required during the next instruction
cycle.

The memory tri-state time waitstate requires one CPU clock and is controlled via the MTTCx Bit of the
BUSCON registers. A waitstate will be inserted, if Bit MTTCx is ‘0’ (default after reset).

External bus cycles in multiplexed bus modes implicitly add one tri-state time waitstate in addition to the
programmable MTTC waitstate.
Any MTTC waitstates are applicable to both read and write cycles.

Figure 54 : Memory cycle time

ST10X167

114/294

Figure 55 : Memory tri-state time

8.3.4 - Read / Write Signal Delay

The ST10X167 allows the user to adjust the
timing of the read and write commands to account
for timing requirements of external peripherals.

The read/write delay controls the time between
the falling edge of ALE and the falling edge of the
command. Without read/write delay the falling
edges of ALE and command(s) are coincident
(except for propagation delays). With the delay
enabled, the command(s) become active half a
CPU clock cycle after the falling edge of ALE.

The read/write delay does not extend the memory
cycle time, and does not slow down the controller
in general.
In multiplexed bus modes, however, the data
drivers of an external device may conflict with the
ST10X167’s address, when the early RD signal is
used. Therefore multiplexed bus cycles should
always be programmed with read/write delay.
The read/write delay is controlled via the RWDCx
Bit in the BUSCON registers. The command(s)
will be delayed, if Bit RWDCx is ‘0’ (default after
reset).

Figure 56 : Read/write delay

1) The data drivers from the previous bus cycle should be disabled when the RD signal becomes active.

ST10X167

115/294

8.3.5 - READY Polarity

For the ST10C167 and ST10R167, the active level of
the ready pin can be set to READY or READY by
the RDYPOL Bit 13 in the BUSCON register. For
the ST10F167 the active level is fixed on READY.

8.3.6 - READY / READY Controlled Bus Cycles

For ST10C167 and ST10R167 the active level of the
ready pin can be set to READY or READY by the
RDYPOL Bit in the BUSCON register.

For situations where the programmable waitstates
are not enough, or where the response (access)
time of a peripheral is not constant, the ST10X167
provides external bus cycles that are terminated
by a READY or READY input signal (synchronous
or asynchronous). In this case the ST10X167 first
inserts a programmable number of waitstates
(0...7) and then monitors the READY or READY
line to determine the actual end of the current bus
cycle. The external device drives READY or
READY low in order to indicate that data has been
latched (write cycle) or are available (read cycle).

For the ST10C167 and ST10R167, when the READY
or READY function is enabled for a specific
address window, each bus cycle in this window
must be terminated with the active level defined by
the RDYPOL Bit in the associated BUSCON
register (see Figure 57).

The READY/READY function is enabled by the
RDYENx Bit in the BUSCON registers. When this
function is selected (RDYENx = ‘1’), only the lower
3 Bit of the respective MCTC Bit field define the
number of inserted waitstates (0...7), while the
MSB of Bit field MCTC selects the READY
operation:

MCTC.3 = ‘0’: Synchronous READY/READY, the
READY/READY signal must meet setup and hold
times. MCTC.3 = ‘1’: Asynchronous READY/
READY, the READY/READY signal is
synchronized internally.

The synchronous READY/READY (SREADY /
SREADY) provides the fastest bus cycles, but
requires setup and hold times to be met. The
CLKOUT signal should be enabled and may be
used by the peripheral logic to control the READY/
READY timing in this case.

The asynchronous READY/READY (AREADY /
AREADY) is less restrictive, but requires
additional waitstates caused by the internal
synchronization. As the asynchronous READY/
READY is sampled earlier (see Figure 57)
programmed waitstates may be necessary to
provide proper bus cycles (see also notes on
“normally-ready” peripherals below).

Figure 57 : READY/READY controlled bus cycles

ALE

RD/WR

SREADY

AREADY

SREADY 1

AREADY 1

Bus Cycle with active READY or READY Bus Cycle Extended via READY or READY

1.WS 2.WS 1.WS 2.WS

Evaluation (sampling) of the READY/READY input

Note 1. Not available for ST10F167

ST10X167

116/294

A READY/READY signal (especially asynchro-
nous READY/READY) that has been activated by
an external device may be deactivated in
response to the trailing (rising) edge of the
respective command (RD or WR).

Note When the READY/READY function is
enabled for a specific address window,
each bus cycle within this window must be
terminated with an active READY/READY
signal. Otherwise the controller hangs
until the next reset. A time-out function is
only provided by the watchdog timer.

Combining the READY function with
predefined waitstates is advantageous in two
cases:

– Memory components with a fixed access time
and peripherals operating with READY/READY
may be grouped into the same address window.
The (external) waitstate control logic in this case
would activate READY/READY either upon the
memory’s chip select or with the peripheral’s
READY/READY output. After the predefined
number of waitstates the ST10X167 will check
its READY/READY line to determine the end of
the bus cycle. For a memory access it will below
already (see Figure 57), for a peripheral access
it may be delayed. As memories tend to be
faster than peripherals, there should be no
impact on system performance.

– When using the READY/READY function with
so-called “normally-ready” peripherals, it may
lead to erroneous bus cycles, if the READY/
READY line is sampled too early. These

peripherals pull their READY/READY output
low, while they are idle. When they are
accessed, they deactivate READY/READY until
the bus cycle is complete, then drive it low
again. If, however, the peripheral deactivates
READY/READY after the first sample point of
the ST10X167, the controller samples an active
READY/READY and terminates the current bus
cycle, which, of course, is too early. By inserting
predefined wait-states the first READY/READY
sample point can be shifted to a time, where the
peripheral has safely controlled the READY/
READY line (after 2 wait-states in the
Figure 57).

Note For the ST10X167 the active level of the
ready pin is set to READY. For the
ST10C167 and ST10R167 the active level
of the ready pin can be set to READY or
READY by the RDYPOL Bit in the BUS-
CON register.

8.3.7 - Programmable Chip Select Timing
Control

The position of the CS lines can be changed for
the ST10C167 and ST10R167. By default (after
reset), the CS lines change half a CPU clock cycle
after the rising edge of ALE. With the CSCFG Bit
set in the SYSCON register, the CS lines change
with the rising edge of ALE, therefore the CS lines
change at the same time that the address lines
are changed.

This feature is not available for the ST10F167.

ST10X167

117/294

Figure 58 : Chip select delay

8.4 - Controlling the External Bus Controller
A set of registers controls the functions of the
EBC. General features like the usage of interface
pins (WR, BHE), segmentation and internal
Memory mapping are controlled by the SYSCON
register.
The properties of a bus cycle like chip select
mode, usage of READY, length of ALE, external
bus mode, read/write delay and waitstates are
controlled by BUSCON4...BUSCON0 registers.
Four of these registers (BUSCON4...BUSCON1)
have an associated address select register

(ADDRSEL4...ADDRSEL1) which allows to
specify up to four address areas and the individual
bus characteristics within these areas. All
accesses that are not covered by these four areas
are then controlled via BUSCON0. This allows to
use memory components or peripherals with
different interfaces within the same system, while
optimizing accesses to each of them.

Note BUSCON4...BUSCON0 Bit SGTDIS con-
trols the correct stack operation (push/pop
of CSP or not) during traps and interrupts.

Normal CS

RD

Address (P1)

ALE

Segment (P4)

Normal Demultiplexed

Bus Cycle

ALE Lengthen Demultiplexed

Bus Cycle

 Early CS

WR

Read/Write

Delay

Data Data

Data Data
BUS (P0)

BUS (P0)

Read/Write

Delay

ST10X167

118/294

SYSCON (FF12h / 89h) SFR Reset Value: 0X00h 1

Note 1. Reset value is 0XX0h for ST10F167.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STKSZ ROM
S1

SGT
DIS

ROM
EN

BYT
DIS

CLK
EN

WR
CFG

CS
CFG

PWD
CFG

OWD
DIS

BDR
STEN

XPEN VISI
BLE

XPER-
SHARE

RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

XPER-SHARE XBUS Peripheral Share Mode Control

‘0’: External accesses to XBUS peripherals are disabled
‘1’: XBUS peripherals are accessible via the external bus during hold mode

VISIBLE Visible Mode Control

‘0’: Accesses to XBUS peripherals are done internally
‘1’: XBUS peripheral accesses are made visible on the external pins

XPEN XBUS Peripheral Enable Bit
For ST10C167 and ST10R167 this Bit is used to enable XRAM and XCAN.
For ST10F167 this Bit is used to enable XRAM only as XCAN is always enabled.
‘0’: Accesses to the on-chip XRAM are disabled, external bus cycles instead.
‘1’: External bus cycles are executed for accesses to the XRAM area.

BDRSTEN
not allocated

in ST10F167

Bidirectional Reset Enable

‘0’: RSTIN pin is an input pin only. SW Reset or WDT Reset have no effect on this pin
‘1’: RSTIN pin is a bidirectional pin. This pin is pulled low during 1024 TCL during reset sequence.

OWDDIS
not allocated

in ST10F167

Oscillator Watchdog Disable Control

‘0’: Oscillator Watchdog (OWD) is enabled. If PLL is bypassed, the OWD monitors XTAL1 activity. If
there is no activity on XTAL1 for at least 1 µs, the CPU clock is switched automatically to PLL’s
base frequency (around 5MHz).
‘1’: OWD is disabled. If the PLL is bypassed, the CPU clock is always driven by XTAL1 signal. The
PLL is turned off to reduce power supply current.

PWDCFG
not allocated

in ST10F167

Power Down Mode Configuration Control

‘0’: Power Down Mode can only be entered during PWRDN instruction execution if NMI pin is low,
otherwise the instruction has no effect. To exit Power Down Mode, an external reset must occurs
by asserting the RSTIN pin.
‘1’: Power Down Mode can only be entered during PWRDN instruction execution if all enabled fast
external interrupt EXxIN pins are in their inactive level. Exiting this mode can be done by asserting
one enabled EXxIN pin.

CSCFG
not allocated

in ST10F167

Chip Select Configuration Control

‘0’: Latched Chip Select lines, CSx change 1 TCL after rising edge of ALE
‘1’: Unlatched Chip Select lines, CSx change with rising edge of ALE

WRCFG Write Configuration Control (Inverted copy of WRC bit of RP0H)

‘0’: Pins WR and BHE retain their normal function
‘1’: Pin WR acts as WRL, pin BHE acts as WRH

CLKEN System Clock Output Enable (CLKOUT)

‘0’: CLKOUT disabled, pin may be used for general purpose I/O
‘1’: CLKOUT enabled, pin outputs the system clock signal

BYTDIS Disable/Enable Control for Pin BHE (Set according to data bus width)

‘0’: Pin BHE enabled
‘1’: Pin BHE disabled, pin may be used for general purpose I/O

ST10X167

119/294

The layout of the five BUSCON registers is
identical. Registers BUSCON4...BUSCON1,
which control the selected address windows, are
completely under software control, while register
BUSCON0, which is also used for the very first
code access after reset, is partly controlled by

hardware, and it is initialized via PORT0 during
the reset sequence.
This hardware control allows to define an
appropriate external bus for systems, where no
internal program memory is provided. Bit 13 is not
available to the ST10F167.

BUSCON0 (FF0Ch / 86h) SFR Reset Value: 0XX0h

BUSCON1 (FF14h / 8Ah) SFR Reset Value: 0000h

BUSCON2 (FF16h / 8Bh) SFR Reset Value: 0000h

BUSCON3 (FF18h / 8Ch) SFR Reset Value: 0000h

BUSCON4 (FF1Ah / 8Dh) SFR Reset Value: 0000h

ROMEN Internal Memory Enable (Set according to pin EA during reset)

‘0’: Internal ROM memory disabled, accesses to the ROM memory area use the external bus
‘1’: Internal ROM memory enabled, access to the internal ROM memory (see Table 45 on
page 276)

SGTDIS Segmentation Disable/Enable Control

‘0’: Segmentation enabled (CSP is saved/restored during interrupt entry/exit)
‘1’: Segmentation disabled (Only IP is saved/restored)

ROMS1 Internal Memory Mapping

‘0’: Internal ROM memory area mapped to segment 0 (00’0000h...00’7FFFh)
‘1’: Internal ROM memory area mapped to segment 1 (01’0000h...01’7FFFh)

STKSZ System Stack Size
Selects the size of the system stack (in the internal RAM) from 32 to 1024 Words

Bit Function

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSWEN0 CSREN0 RDYPOL0 RDYEN0 - BUSACT0 ALECTL0 - BTYP MTTC0 RWDC0 MCTC

RW RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSWEN1 CSREN1 RDYPOL1 RDYEN1 - BUSACT1 ALECTL1 - BTYP MTTC1 RWDC1 MCTC

RW RW RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSWEN2 CSREN2 RDYPOL2 RDYEN2 - BUSACT2 ALECTL2 - BTYP MTTC2 RWDC2 MCTC

RW RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSWEN3 CSREN3 RDYPOL3 RDYEN3 - BUSACT3 ALECTL3 - BTYP MTTC3 RWDC3 MCTC

RW RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSWEN4 CSREN4 RDYPOL4 RDYEN4 - BUSACT4 ALECTL4 - BTYP MTTC4 RWDC4 MCTC

RW RW RW RW RW RW RW RW RW

ST10X167

120/294

Note BUSCON0 is initialized with 0000h, if pin EA is high during reset. If pin EA is low during reset, Bit
BUSACT0 and ALECTL0 are set (1) and Bit field BTYP is loaded with the bus configuration
selected via PORT0.

ADDRSEL1 (FE18h / 0Ch) SFR Reset Value: 0000h

ADDRSEL2 (FE1Ah / 0Dh) SFR Reset Value: 0000h

Bit Function

MCTC Memory Cycle Time Control (Number of memory cycle time waitstates)
0 0 0 0: 15 waitstates (Number of waitstates = 15 - [MCTC])
. . .
1 1 1 1: No waitstates

RWDCx Read/Write Delay Control for BUSCONx
‘0’: With read/write delay, the CPU inserts 1 TCL after falling edge of ALE
‘1’: No read/write delay, RW is activated after falling edge of ALE

MTTCx Memory Tristate Time Control
‘0’: 1 waitstate
‘1’: No waitstate

BTYP External Bus Configuration
0 0: 8 Bit Demultiplexed Bus
0 1: 8 Bit Multiplexed Bus
1 0: 16 Bit Demultiplexed Bus
1 1: 16 Bit Multiplexed Bus
Note: For BUSCON0 BTYP is defined via PORT0 during reset.

ALECTLx ALE Lengthening Control
‘0’: Normal ALE signal
‘1’: Lengthened ALE signal

BUSACTx Bus Active Control
‘0’: External bus disabled
‘1’: External bus enabled (within the respective address window, see ADDRSEL)

RDYENx READY Input Enable
‘0’: External bus cycle is controlled by Bit field MCTC only
‘1’: External bus cycle is controlled by the READY input signal

RDYPOLx
not allocated

in ST10F167

Ready Active Level Control
‘0’: Active level on the READY pin is low, bus cycle terminates with a ‘0’ on READY pin,
‘1’: Active level on the READY pin is high, bus cycle terminates with a ‘1’ on READY pin.

CSRENx Read Chip Select Enable
‘0’: The CS signal is independent of the read command (RD)
‘1’: The CS signal is generated for the duration of the read command

CSWENx Write Chip Select Enable
‘0’: The CS signal is independent of the write command (WR,WRL,WRH)
‘1’: The CS signal is generated for the duration of the write command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RGSAD RGSZ

RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RGSAD RGSZ

RW RW

ST10X167

121/294

ADDRSEL3 (FE1Ch / 0Eh) SFR Reset Value: 0000h

ADDRSEL4 (FE1Eh / 0Fh) SFR Reset Value: 0000h

Note Register BUSCON0 controls the complete
external address space, except for the 4
windows supported by BUSCON1 to
BUSCON4. So there is no need of
ADDRSEL0 register.

8.4.1 - Definition of Address Areas
The four register pairs BUSCON4/
ADDRSEL4...BUSCON1/ADDRSEL1 allow to
define 4 separate address areas within the
address space of the ST10X167. Within each of
these address areas external accesses can be
controlled by one of the four different bus modes,
independent of each other and of the bus mode

specified in register BUSCON0. Each ADDRSELx
register in a way cuts out an address window,
within which the parameters in register BUSCONx
are used to control external accesses.

The range start address of such a window defines
the upper address Bit, which are not used within
the address window of the specified size (see
Table 19).

For a given window size, only those upper
address Bit of the start address are used (marked
“R”), which are not implicitly used for addresses
inside the window. The lower Bit of the start
address (marked “x”) are disregarded.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RGSAD RGSZ

RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RGSAD RGSZ

RW RW

Bit Function

RGSZ Range Size Selection

Defines the size of the address area controlled by the respective BUSCONx/ADDRSELx register
pair. See Table 19.

RGSAD Range Start Address

Defines the upper Bit of the start address (A23...) of the respective address area. See Table 19.

Table 19 : Definition of address areas

Bit field RGSZ Resulting Window Size Relevant Bit (R) of Start Address (A23...A12)

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 x x

4K Byte
8K Byte

16K Byte
32K Byte
64K Byte
128K Byte
256K Byte
512K Byte
1M Byte
2M Byte
4M Byte
8M Byte

Reserved

R R R R R R R R R R R R
R R R R R R R R R R R x
R R R R R R R R R R x x
R R R R R R R R R x x x
R R R R R R R R x x x x
R R R R R R R x x x x x
R R R R R R x x x x x x
R R R R R x x x x x x x
R R R R x x x x x x x x
R R R x x x x x x x x x
R R x x x x x x x x x x
R x x x x x x x x x x x

ST10X167

122/294

8.4.2 - Address Window Arbitration

This feature does not exist for the ST10F167.
For each access the EBC compares the current
address with all address select registers
(programmable ADDRSELx and hardwired
XADRSx). This comparison is done in four levels.
– The hardwired XADRSx registers are evaluated

first. A match with one of these registers directs
the access to the respective X-Peripheral using
the corresponding XBCONx register and
ignoring all other ADDRSELx registers.

– Registers ADDRSEL2 and ADDRSEL4 are
evaluated before ADDRSEL1 and ADDRSEL3,

respectively. A match with one of these registers
directs the access to the respective external
area using the corresponding BUSCONx
register and ignoring registers ADDRSEL1/3
(see Figure 59).

– A match with registers ADDRSEL1 or
ADDRSEL3 directs the access to the respective
external area using the corresponding XBCONx
register.

– If there is no match with any XADRSx or
ADDRSELx register the access to the external
bus uses register BUSCON0.

Note Only the indicated overlaps are defined. All other overlaps lead to erroneous bus cycles.
ADDRSEL4 may not overlap ADDRSEL2 or ADDRSEL1. The hardwired XADRSx registers are
defined non-overlapping.

RP0H (F108h / 84h) SFR Reset Value: - - XXh

Figure 59 : Address window arbitration

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - CLKCFG SALSEL CSSEL WRC

R R R R

Active
Window

Inactive
Window

BUSCON0

BUSCON1

BUSCON2

XBCON0

BUSCON3

BUSCON4

ST10X167

123/294

Notes 1. In ST10X167, RP0H.[7..0] Bit are loaded only during a
long hardware reset.

2. The maximum depends on the duty cycle of the external
clock signal. The maximum input frequency is 25MHz when
using an external crystal oscillator, however, higher
frequencies can be applied with an external clock source.

8.4.3 - Precautions and Hints

– The external bus interface is enabled as long as
at least one of the BUSCON registers has its
BUSACT Bit set.

– PORT1 will output the intra-segment address as
long as at least one of the BUSCON registers
selects a demultiplexed external bus, even for
multiplexed bus cycles.

– Not all address areas defined via registers
ADDRSELx may overlap each other. The
operation of the EBC will be unpredictable in
such a case. See Section 8.4.2 - Address
Window Arbitration.

– The address areas defined via registers
ADDRSELx may overlap internal address areas.
Internal accesses will be executed in this case.

– For any access to an internal address area the
EBC will remain inactive (see EBC Idle State).

8.5 - EBC Idle State

When the external bus interface is enabled, but no
external access is currently executed, the EBC is
idle. As long as only internal resources (from an
architecture point of view) like IRAM, GPRs or
SFRs, etc. are used the external bus interface
does not change (see Table 20).

Accesses to on-chip X-Peripherals are also
controlled by the EBC. However, even though an
X-Peripheral appears like an external peripheral to
the controller, the respective accesses do not
generate valid external bus cycles.

Due to timing constraints address and write data
of an XBUS cycle are reflected on the external
bus interface (see Table 20). The address
mentioned above includes Port1, Port 4, BHE and
ALE which also pulses for an XBUS cycle. The
external CS signals on Port 6 are driven inactive
(high) because the EBC switches to an internal
XCS signal.

Bit Function

WRC 1 Write Configuration Control (Set according to pin P0H.0 during reset)

‘0’: Pins WR acts as WRL, pin BHE acts as WRH

‘1’: Pins WR and BHE retain their normal function

CSSEL 1 Chip Select Line Selection (Number of active CS outputs)

0 0: 3 CS lines: CS2...CS0

0 1: 2 CS lines: CS1...CS0

1 0: No CS lines at all

1 1: 5 CS lines: CS4...CS0 (Default without pull-downs)

SALSEL Segment Address Line Selection (Number of active segment address outputs)

0 0: 4 Bit segment address: A19...A16

0 1: No segment address lines at all

1 0: 8 Bit segment address: A23...A16

1 1: 2 Bit segment address: A17...A16 (Default without pull-downs)

CLKCFG P0H.7-5 CPU Frequency
fCPU = fXTAL x F

Notes

1 1 1 fXTAL x 4 fXTAL x 4 Default configuration 1

1 1 0 fXTAL x 3 fXTAL x 4

1 0 1 fXTAL x 2 fXTAL x 4

1 0 0 fXTAL x 5 fXTAL x 4

0 1 1 fXTAL x 1 fXTAL x 1 Direct drive

0 1 0 fXTAL x 1.5 fXTAL x 1

0 0 1 fXTAL x 0.5 fXTAL x 1 CPU clock via prescaler 2

0 0 0 fXTAL x 2.5 fXTAL x 1

ST10X167

124/294

The external control signals (RD and WR or WRL/WRH if enabled) remain inactive (high) (see
Table 20).

8.6 - External Bus arbitration
In high performance systems it may be efficient to
share external resources like memory banks or
peripheral devices among more than one
controller. The ST10X167 supports this approach
with the possibility to arBitrate the access to its
external bus, and to the external devices.
This bus arbitration allows an external master to
request the ST10X167’s bus via the HOLD input.
The ST10X167 acknowledges this request via the
HLDA output and will float its bus lines in this
case. The CS outputs provide internal pull-up
devices.
The new master may now access the peripheral
devices or memory banks via the same interface
lines as the ST10X167. During this time the
ST10X167 can keep on executing, as long as it
does not need access to the external bus. All
actions that just require internal resources like
instruction or data memory and on-chip
peripherals, may be executed in parallel.
When the ST10X167 needs access to its external
bus while it is occupied by another bus master, it
demands it via the BREQ output.
The external bus arbitration is enabled by setting
Bit HLDEN in register PSW to ‘1’. In this case the
three bus arbitration pins HOLD, HLDA and BREQ
are automatically controlled by the EBC
independent of their I/O configuration. Bit HLDEN
may be cleared during the execution of program

sequences, where the external resources are
required but cannot be shared with other bus
masters. In this case the ST10X167 will not
answer to HOLD requests from other external
masters. If HLDEN is cleared while the ST10X167
is in hold state (code execution from internal RAM/
ROM) this hold state is left only after HOLD has
been deactivated again. In this case the current
hold state continues and only the next HOLD
request is not answered.

Connecting two ST10X167’s in this way would
require additional logic to combine the respective
output signals HLDA and BREQ. This can be
avoided by switching one of the controllers into
slave mode where pin HLDA is switched to input.

This allows to directly connect the slave controller
to another master controller without glue logic.
The slave mode is selected by setting Bit DP6.7
to’1’. DP6.7=’0’ (default after reset) selects the
Master Mode.

Note The pins HOLD, HLDA and BREQ keep
their alternate function (bus arbitration)
even after the arbitration mechanism has
been switched off by clearing HLDEN.
All three pins are used for bus arbitration
after Bit HLDEN was set once.

Table 20 : Status of the external bus interface during EBC idle state

Pins Internal accesses only XBUS accesses

PORT0 Tristate (floating) Tristate (floating) for read accesses
XBUS write data for write accesses

PORT1 Last used external address
(if used for the bus interface)

Last used XBUS address
(if used for the bus interface)

Port 4 Last used external segment address
(on selected pins)

Last used XBUS segment address
(on selected pins)

Port 6 Active external CS signal corresponding to last
used address

Inactive (high) for selected CS signals

BHE Level corresponding to last external access Level corresponding to last XBUS access

ALE Inactive (low) Pulses as defined for X-Peripheral

RD Inactive (high) Inactive (high)

WR/WRL Inactive (high) Inactive (high)

WRH Inactive (high) Inactive (high)

ST10X167

125/294

8.6.1 - Connecting Bus Masters
When multiple ST10X167’s or a ST10X167 and
another bus master shall share external resources
some glue logic is required that defines the
currently active bus master and also enables a
ST10X167 which has surrendered its bus
interface to regain control of it in case it must
access the shared external resources.
This glue logic is required if the other bus master
does not automatically remove its hold request
after having used the shared resources.
When two ST10X167 are connected in this way
the external glue logic can be left out. In this case
one of the controllers must be operated in its
master mode (default after reset, DP6.7=’0’) while
the other one must be operated in its slave mode
(selected with DP6.7=’1’).
In slave mode the ST10X167 inverts the direction
of its HLDA pin and uses it as an input, while the
master’s HLDA pin remains an output. This
approach does not require any additional glue
logic for the bus arbitration (see Figure 60).
When the bus arbitration is enabled (HLDEN=’1’)
the three corresponding pins are automatically
controlled by the EBC. Normally the respective
port direction register Bit retain their reset value
which is’0’. This selects master mode where the

device operates compatible with earlier versions.
slave mode is enabled by intentionally switching
pin BREQ to output (DP6.7=’1’) which is neither
required for Master Mode nor for earlier devices.

8.6.2 - Entering the Hold State

Access to the ST10X167’s external bus is
requested by driving its HOLD input low. After
synchronizing this signal the ST10X167 will
complete a current external bus cycle (if any is
active), release the external bus and grant access
to it by driving the HLDA output low. During hold
state the ST10X167 treats the external bus
interface as follows:

– Address and data bus(es) float to tri-state

– ALE is pulled low by an internal pull-down device

– Command lines are pulled high by internal
pull-up devices (RD, WR/WRL, BHE/WRH)

– CSx outputs are pulled high (push-pull mode) or
float to tri-state (open drain mode)

Should the ST10X167 require access to its
external bus during hold mode, it activates its bus
request output BREQ to notify the arbitration
circuitry. BREQ is activated only during hold
mode. It will be inactive during normal operation
(see Figure 61).

Figure 60 : Sharing external resources using slave mode

BREQ

HLDA

HOLD

BREQ

HLDA

HOLD

ST10X167 in
Master Mode

ST10X167 in
Slave Mode

ST10X167

126/294

Figure 61 : External bus arbitration, releasing the bus

Note The ST10X167 will complete the currently
running bus cycle before granting bus
access as indicated by the broken lines.
This may delay hold acknowledge com-
pared to this figure. The figure above
shows the first possibility for BREQ to get
active. During bus hold pin P3.12 is
switched back to its standard function and
is then controlled by DP3.12 and P3.12.
Keep DP3.12 = ’0’ in this case to ensure
floating in hold mode.

8.6.3 - Exiting the Hold State
The external bus master returns the access rights
to the ST10X167 by driving the HOLD input high.
After synchronizing this signal the ST10X167 will
drive the HLDA output high, actively drive the

control signals and resume executing external bus
cycles if required. Depending on the arbitration
logic, the external bus can be returned to the
ST10X167 under two circumstances:
– The external master does no more require

access to the shared resources and gives up its
own access rights.

– The ST10X167 needs access to the shared
resources and demands this by activating its
BREQ output.

The arbitration logic may then deactivate the other
master’s HLDA and so free the external bus for
the ST10X167, depending on the priority of the
different masters.
Note The Hold State is not terminated by clear-

ing Bit HLDEN.

HOLD

HLDA

BREQ

CSx

Other
Signals

Figure 62 : External bus arbitration, (regaining the bus)

HOLD

HLDA

BREQ

CSx

Other
Signals

ST10X167

127/294

Note The falling BREQ edge shows the last
chance for BREQ to trigger the indicated
regain-sequence. Even if BREQ is
activated earlier the regain-sequence is
initiated by HOLD going high. BREQ and
HOLD are connected via an external
arbitration circuitry. Please note that
HOLD may also be deactivated without
the ST10X167 requesting the bus.

8.7 - The XBUS Interface

The ST10X167 provides an on-chip interface (the
XBUS interface), which allows to connect
integrated costumer / application specific
peripherals to the standard controller core.

The XBUS is an internal representation of the
external bus interface, it works in the same way.

The current XBUS interface is prepared to support
up to 3 X-Peripherals.

For each peripheral on the XBUS (X-Peripheral)
there is a separate address window controlled by
an XBCON and an XADRS register.

As an interface to a peripheral in many cases is
represented by just a few registers, the XADRS
registers select smaller address windows than the
standard ADDRSEL registers.

As the register pairs control integrated peripherals
rather than externally connected ones, they are
fixed by mask programming rather than being user
programmable.

X-Peripheral accesses provide the same choices
as external accesses, so these peripherals may
be Bytewide or Wordwide, with or without a
separate address bus.

Interrupt nodes and configuration pins are
provided for X-Peripherals to be integrated.

ST10X167

128/294

9 - THE GENERAL PURPOSE TIMER UNITS

The general purpose timer units GPT1 and GPT2
are flexible multifunctional timer structures which
may be used for timing, event counting, pulse
width measurement, pulse generation, frequency
multiplication, and other purposes. They
incorporate five 16 Bit timers that are grouped into
the two timer blocks GPT1 and GPT2.

Block GPT1 contains 3 timers/counters with a
maximum resolution of 8 CPU clock cycles, while
block GPT2 contains 2 timers/counters with a
maximum resolution of 4 CPU clock cycles and a
16 Bit Capture/Reload register (CAPREL). Each
timer in each block may operate independently in
a number of different modes such as gated timer
or counter mode, or may be concatenated with
another timer of the same block.

The auxiliary timers of GPT1 may optionally be
configured as reload or as capture registers for
the core timer. In the GPT2 block, the additional
CAPREL register supports capture and reload
operation with extended functionality, and its core
timer T6 may be concatenated with timers of the
CAPCOM units (T0, T1, T7 and T8). Each block
has alternate input/output functions and specific
interrupts associated with it.

9.1 - Timer Block GPT1

From a programmer's point of view, the GPT1
block is composed of a set of SFRs. Those
portions of port and direction registers which are
used for alternate functions by the GPT1 block are
named by "Y" in Figure 63.

All three timers of block GPT1 (T2, T3, T4) can
run in 3 basic modes: timer, gated timer, and
counter mode, and all timers can count either up

or down. Each timer has an associated alternate
input function pin on Port3, which serves as the
gate control in gated timer mode, or as the count
input in counter mode. The count direction (Up /
Down) can be programmed by software or can be
dynamically altered by a signal at an external
control-input pin. Each overflow/underflow of core
timer T3 can be indicated on an alternate output
function pin. The auxiliary timers T2 and T4 can,
additionally, be concatenated with the core timer,
or used as capture or reload registers for the core
timer.

In incremental interface mode, the GPT1 timers
(T2, T3, T4) can be directly connected to the
incremental position sensor signals A and B by
their respective inputs TxIN and TxEUD. Direction
and count signals are internally derived from
these two input signals - so the contents of the
respective timer Tx corresponds to the sensor
position. The third position sensor signal TOP0
can be connected to an interrupt input.

The current contents of each timer can be read or
modified by the CPU by accessing the
corresponding timer registers T2, T3, or T4
located in the non Bitaddressable SFR space.
When any of the timer registers is written to by the
CPU in the state immediately before a timer
increment, decrement, reload, or capture, the
CPU write operation has priority. This is to
guarantee correct results.

ST10X167

129/294

Figure 63 : SFRs and port pins associated with timer block GPT1

Ports & Direction Control Alternate Functions Data Registers

15

-

14

-

13

-

12

-

11

-

10

-

9

-

8

-

7

Y

6

Y

5

Y

4

Y

3

Y

2

-

1

-

0

-ODP3 E T2

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

Y

- - - - - - - - Y Y Y Y Y - - -DP3

- - - - - - - - Y Y Y Y Y - - -P3

Y Y - - - - - - - - - - - - - -P5

T3 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

T4 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Control Registers Interrupt Control

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YT2CON

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YT3CON

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YT4CON

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T2IC

- - - - - - - - Y Y Y Y Y Y Y YT3IC

T2 GPT1 Timer 2 Register
T3 GPT1 Timer 3 Register
T4 GPT1 Timer 4 Register
T2IC GPT1 Timer 2 Interrupt Control Register
T3IC GPT1 Timer 3 Interrupt Control Register
T4IC GPT1 Timer 4 Interrupt Control Register

T2IN/P3.7 T2EUD/P5.15
T3IN/P3.6 T3EUD/P3.4
T4IN/P3.5 T4EUD/P5.14
T3OUT/P3.3

ODP3 Port 3 Open Drain Control Register
DP3 Port 3 Direction Control Register
P3 Port 3 Data Register
T2CON GPT1 Timer 2 Control Register
T3CON GPT1 Timer 3 Control Register
T4CON GPT1 Timer 4 Control Register

- - - - - - - - Y Y Y Y Y Y Y YT4IC

- - - - - - - - Y Y Y Y Y Y Y Y

Bit is linked to a function
Bit has no function or is not implemented
Register is in ESFR internal memory space

Y
-
E

:
:
:

ST10X167

130/294

Figure 64 : GPT1 block diagram

9.1.1 - GPT1 Core Timer T3
The core timer T3 is configured and controlled via its Bitaddressable control register T3CON.

T3CON (FF42h / A1h) SFR Reset Value: 0000h

Note 1. For the effects of Bit T3UD and T3UDE refer to the direction Table 21.

2n n=3...10

2n n=3...10

2n n=3...10

T2EUD

T2IN

CPU Clock

CPU Clock

CPU Clock

T3EUD

T4IN

T3IN

T4EUD

T2
Mode
Control

T3
Mode
Control

T4
Mode
Control

GPT1 Timer T2

GPT1 Timer T3

GPT1 Timer T4

T3OTL

Reload

Capture

U/D

U/D

Reload

Capture

Interrupt
Request

Interrupt
Request

Interrupt
Request

T3OUT

U/D

P5.15

P3.7

P3.6

P3.4

P3.5

P5.14

P3.3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - T3OTL T3OE T3UDE T3UD T3R T3M T3I

RW RW RW RW RW RW RW RW RW RW RW

Bit Function

T3I Timer 3 Input Selection - Depends on the operating mode, see respective sections.

T3M Timer 3 Mode Control (Basic Operating Mode)

0 0 0: Timer Mode
0 0 1: Counter Mode
0 1 0: Gated Timer with Gate active low
0 1 1: Gated Timer with Gate active high
1 1 0: Incremental interface mode (not for ST10F167)
1 1 1: Reserved Do not use this combination.

T3R Timer 3 Run Bit : T3R = ‘0’:Timer / Counter 3 stops - T3R = ‘1’:Timer / Counter 3 runs

T3UD Timer 3 Up / Down Control 1

T3UDE Timer 3 External Up/Down Enable 1

T3OE Alternate Output Function Enable

T3OE = ‘0’: Alternate Output Function Disabled - T3OE = ‘1’:Alternate Output Function Enabled

T3OTL Timer 3 Output Toggle Latch - Toggles on each overflow / underflow of T3. Can be set or reset by
software.

ST10X167

131/294

Timer 3 Run Bit

The timer can be started or stopped by software
through Bit T3R (Timer T3 Run Bit). If T3R=‘0’, the
timer stops. Setting T3R to ‘1’ will start the timer.
In gated timer mode, the timer will only run if
T3R=‘1’ and the gate is active (high or low, as
programmed).

Count Direction Control

The count direction of the core timer can be
controlled either by software or by the external
input pin T3EUD (Timer T3 External Up/Down
Control Input), which is the alternate input function
of port pin P3.4.

These options are selected by Bit T3UD and
T3UDE in control register T3CON. When the up/
down control is done by software (Bit T3UDE=‘0’),
the count direction can be altered by setting or
clearing Bit T3UD.

When T3UDE=‘1’, pin T3EUD is selected to be
the controlling source of the count direction.
However, Bit T3UD can still be used to reverse the
actual count direction, as shown in the Table 21.

If T3UD=‘0’ and pin T3EUD is at low level, the
timer is counting up. With a high level at T3EUD
the timer is counting down.

If T3UD=‘1’, a high level at pin T3EUD specifies
counting up, and a low level specifies counting
down. The count direction can be changed
regardless of whether the timer is running or not.

When pin T3EUD/P3.4 is used as external count
direction control input, it must be configured as
input, its corresponding direction control Bit DP3.4
must be set to ‘0’.

Note The direction control works the same for
core timer T3 and for auxiliary timers T2
and T4. Therefore the pins and Bit are
named Tx...

Timer 3 Output Toggle Latch

An overflow or underflow of timer T3 will clock the
toggle Bit T3OTL in control register T3CON.
T3OTL can also be set or reset by software.

Bit T3OE (Alternate Output Function Enable) in
register T3CON enables the state of T3OTL to be
an alternate function of the external output pin
T3OUT/P3.3. For that purpose, a ‘1’ must be
written into port data latch P3.3 and pin T3OUT/
P3.3 must be configured as output by setting
direction control Bit DP3.3 to ‘1’. If T3OE=‘1’, pin
T3OUT then outputs the state of T3OTL. If
T3OE=‘0’, pin T3OUT can be used as general
purpose I/O pin.

In addition, T3OTL can be used in conjunction
with the timer over/underflows as an input for the
counter function or as a trigger source for the
reload function of the auxiliary timers T2 and T4.

For this purpose, the state of T3OTL does not
have to be available at pin T3OUT, because an
internal connection is provided for this option.

Timer 3 in Timer Mode

Timer mode for the core timer T3 is selected by
setting Bit field T3M in register T3CON to ‘000b’.
In this mode, T3 is clocked with the internal
system clock (CPU clock) divided by a
programmable pre-scaler, which is selected by Bit
field T3I.

The input frequency fT3 for timer T3 and its
resolution rT3 are scaled linearly with lower clock
frequencies fCPU, as can be seen from the
following formula:

Table 21 : GPT1 core timer T3 count direction
control

Pin
TxEUD

Bit
TxUDE

Bit
TxUD

Count
Direction

X 0 0 Count Up

X 0 1 Count Down

0 1 0 Count Up

1 1 0 Count Down

0 1 1 Count Down

1 1 1 Count Up

fT3 =
fCPU

8 x 2(T3I)

rT3 [µs] =
fCPU [MHz]

8 x 2(T3I)

ST10X167

132/294

Figure 65 : Core timer T3 in timer mode

The timer resolutions which result from the selected pre-scaler option are listed in the Table 22. This table
also applies to the Gated Timer Mode of T3 and to the auxiliary timers T2 and T4 in timer and gated timer
mode.

Refer to the device datasheet for a table of timer
input frequencies, resolution and periods for the
range of pre-scaler options.

Timer 3 in Gated Timer Mode

Gated timer mode for the core timer T3 is selected
by setting Bit field T3M in register T3CON to
‘010b’ or ‘011b’. Bit T3M.0 (T3CON.3) selects the
active level of the gate input. In gated timer mode
the same options for the input frequency as for the
timer mode are available.

However, the input clock to the timer in this mode
is gated by the external input pin T3IN (Timer T3
External Input), which is an alternate function of
P3.6. To enable this operation pin T3IN/P3.6 must
be configured as input, and direction control Bit
DP3.6 must contain ‘0’ (see Figure 66). If
T3M.0=‘0’, the timer is enabled when T3IN shows
a low level. A high level at this pin stops the timer.
If T3M.0=‘1’, pin T3IN must have a high level in
order to enable the timer. In addition, the timer can

be turned on or off by software using Bit T3R. The
timer will only run, if T3R=‘1’ and the gate is
active. It will stop, if either T3R=‘0’ or the gate is
inactive.

Note A transition of the gate signal at pin T3IN
does not cause an interrupt request.

Timer 3 in Counter Mode

Counter mode for the core timer T3 is selected by
setting Bit field T3M in register T3CON to ‘001b’.
In counter mode timer T3 is clocked by a transition
at the external input pin T3IN, which is an
alternate function of P3.6.

The event causing an increment or decrement of
the timer can be a positive, a negative, or both a
positive and a negative transition at this pin. Bit
field T3I in control register T3CON selects the
triggering transition (see Table 23).

Table 22 : GPT1 timer resolutions

Timer Input Selection T2I / T3I / T4I

000b 001b 010b 011b 100b 101b 110b 111b

Pre-scaler factor 8 16 32 64 128 256 512 1024

Resolution in CPU clock cycles 8 16 32 64 128 256 512 1024

X

T3l

CPU
Clock

T3R

MUX

T3UDE

Core Timer T3 T3IR Interrupt
Request

T3OTL

T3OE

T3OUT
Up/Down

XOR 1

0

T3UD

T3EUD
P3.4

P3.3

ST10X167

133/294

Figure 66 : Core timer T3 in gated timer mode

Figure 67 : Core timer T3 in counter mode

Table 23 : GPT1 core timer T3 (counter mode) input edge selection

T3I Triggering Edge for Counter Increment / Decrement

0 0 0 None. Counter T3 is disabled

0 0 1 Positive transition (rising edge) on T3IN

0 1 0 Negative transition (falling edge) on T3IN

0 1 1 Any transition (rising or falling edge) on T3IN

1 X X Reserved. Do not use this combination

X

T3l

CPU
Clock

T3R

MUX

T3UDE

Core Timer T3 T3IR
Interrupt
Request

T3OTL

T3OE

T3OUT
Up/Down

XOR 1

0

T3UD

T3EUD

T3M

T3IN

P3.3

P3.4

P3.6

T3l T3R

MUX

T3UDE

Core Timer T3 T3IR
Interrupt
Request

T3OTL

T3OE

T3OUT
Up/Down

XOR 1

0

T3UD

T3EUD

T3IN

Edge
Select

P3.6

P3.4

P3.3

ST10X167

134/294

For counter operation, pin T3IN/P3.6 must be
configured as input, and direction control Bit
DP3.6 must be ‘0’. The maximum input frequency
which is allowed in counter mode is fCPU / 16.

To ensure that a transition of the count input signal
which is applied to T3IN is correctly recognized,
its level should be held high or low for at least
8 CPU clock cycles before it changes.

Timer 3 in Incremental Interface Mode

Note: This function is not available for ST10F167.

Incremental interface mode for the core timer T3
is selected by setting Bit field T3M in register
T3CON to ‘110b’. In incremental interface mode
the two inputs associated with timer T3 (T3IN
T3EUD) are used to interface to an incremental
encoder. T3 is clocked by each transition on one
or both of the external input pins which gives
2-fold or 4-fold resolution to the encoder input
(see Figure 68).

Bitfield T3I in control register T3CON selects the
triggering transitions (see Table 24). In this mode
the sequence of the transitions of the two input
signals is evaluated and generates count pulses
as well as the direction signal.

So T3 is modified automatically according to the
speed and the direction of the incremental
encoder and its contents, therefore, always
represent the encoder’s current position.

The incremental encoder can be connected
directly to the MCU without external interface
logic. In a standard system, however, comparators
will be employed to convert the encoder’s
differential outputs (as A and A) to digital signals
(as A) digital signals. this greatly increases noise
immunity.

The third encoder output "Top0" which indicates
the mechanical zero position, may be connected
to an external interrupt input and trigger a reset
timer T3 (for example, via PEC transfer from
ZEROS) (see Figure 69).

Figure 68 : Core timer T3 in incremental interface mode

Table 24 : GPT1 core timer T3 (incremental interface mode) input edge selection

T3I Triggering Edge for Counter Increment/Decrement

000 None. Counter stops

001 Any transition (rising or falling edge) on T3IN

010 Any transition (rising or falling edge) on T3EUD

011 Any transition (rising or falling edge) on T3 input (T3IN or T3EUD)

1XX Reserved. Do not use this combination

edge detect

phase detect

T3

MUX

T3IR

T3OTL

T3R

T3OUT

T3OE

XOR

Up/Down

T3UD

T3EUD

T3IN
P3.6

P3.4

P3.3

ST10X167

135/294

Figure 69 : Connection of the encoder to the ST10X167

For incremental interface operation the following
conditions must be met
– Bitfield T3M must be ‘110b’
– Both pins T3IN and T3EUD must be configured

as input, at the respective direction control Bit
with ‘0’.

– Bit T3EUD must be ‘1’ to enable automatic
direction control.

The maximum allowed input frequency in
incremental interface mode is fCPU / 16. To ensure

correct recognition of the transition of any input
signal, its level should be held high or low for at
least 8 CPU clock cycles.

In incremental interface mode, the count direction
is automatically derived from the sequence in
which the input signals change.

This corresponds to the rotation direction of the
connected sensor. The table below summarizes
the possible combinations.

T3input

T3input

Interrupt

ST10X167

A

B

T0

A
A

B
B

T0
T0

E
N

C
O

D
E

R

Signal Conditioning

Level on respective
other input

T3IN Input T3EUD Input

Rising Falling Rising Falling

High Down Up Up Down

Low Up Down Down Up

ST10X167

136/294

The Figure 70 gives examples of T3’s operation, visualizing count signal generation and direction control.
It also shows how input jitter is compensated. This might occur if the sensor stays near to one of the
switching points.

Figure 70 : Evaluation of the incremental encoder signals

Figure 71 : Evaluation of the incremental encoder signals

forward jitter backward jitter forward

T3IN

T3EUD

Contents
of T3

up down up

Note: This example shows the timer behavior assuming that T3 counts upon any transition on any
 input, T3I=’011b’

forward jitter backward jitter forward

T3IN

T3EUD

Contents
of T3

up down up

Note: This example shows the timer behavior assuming that T3 counts upon any transition on T3IN
 input, T3I=’001b’

ST10X167

137/294

Note Timer 3 operating in incremental interface
mode automatically provides information
on the sensor’s current position. Dynamic
information (speed, acceleration, deceler-
ation) may be obtained by measuring the
incoming signal periods. This is facilitated
by an additional special capture mode for
timer T5.

9.1.2 - GPT1 Auxiliary Timers T2 and T4
Both auxiliary timers T2 and T4 have exactly the
same functionality. They can be configured like
timer, gated timer, or counter mode with the same
options for the timer frequencies and the count
signal as the core timer T3. In addition to these

3 counting modes, the auxiliary timers can be
concatenated with the core timer, or they may be
used as reload or capture registers in conjunction
with the core timer. The auxiliary timers have no
output toggle latch and no alternate output
function.

The individual configuration for timers T2 and T4
is determined by their Bitaddressable control
registers T2CON and T4CON, which are both
organized identically.

Note that functions which are present in all the 3
timers of block GPT1 are controlled in the same
Bit positions and in the same manner in each of
the specific control registers.

T2CON (FF40h / A0h) SFR Reset Value: 0000h

T4CON (FF44h / A2h) SFR Reset Value: 0000h

Note 1. For the effects of Bit TxUD and TxUDE refer to the direction Table 24 in T3 section.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - T2UDE T2UD T2R T2M T2I

RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - T4UDE T4UD T4R T4M T4I

RW RW RW RW RW

Bit Function

TxI Timer x Input Selection Depends on the Operating Mode, see respective sections.

TxM Timer x Mode Control (Basic Operating Mode)

0 0 0: Timer Mode
0 0 1: Counter Mode
0 1 0: Gated Timer with Gate active low
0 1 1: Gated Timer with Gate active high
1 0 0: Reload Mode
1 0 1: Capture Mode
1 1 0: Incremental interface mode (not for ST10F167)

1 1 X: Reserved. Do not use this combination

TxR Timer x Run Bit

TxR = ‘0’: Timer / Counter x stops
TxR = ‘1’: Timer / Counter x runs

TxUD Timer x Up / Down Control 1

TxUDE Timer x External Up/Down Enable 1

ST10X167

138/294

Count Direction Control for Auxiliary Timers

The count direction of the auxiliary timers can be
controlled in the same way as for the core timer
T3. The description and the table apply
accordingly.

Timers T2 and T4 in Timer Mode or Gated
Timer Mode

When the auxiliary timers T2 and T4 are
programmed to timer mode or gated timer mode,
their operation is the same as described for the
core timer T3. The descriptions, figures and tables
apply accordingly with one exception: There is no
output toggle latch and no alternate output pin for
T2 and T4.

Timers T2 and T4 in Counter Mode

Counter mode for the auxiliary timers T2 and T4 is
selected by setting Bit field TxM in the respective
register TxCON to ‘001b’. In counter mode timers
T2 and T4 can be clocked either by a transition at
the respective external input pin TxIN, or by a

transition of timer T3’s output toggle latch T3OTL
(see Figure 72).
The event causing an increment or decrement of a
timer can be a positive, a negative, or both a
positive and a negative transition at either the
respective input pin, or at the toggle latch T3OTL.
Bit field TxI in the respective control register
TxCON selects the triggering transition (see
Table 25).
Note Only transitions of T3OTL which are caused

by the overflows/underflows of T3 will trigger
the counter function of T2/T4. Modifications
of T3OTL via software will NOT trigger the
counter function of T2 / T4.

For counter operation, pin TxIN must be
configured as input, the respective direction
control Bit must be ‘0’. The maximum input
frequency which is allowed in counter mode is
fCPU / 8. To ensure that a transition of the count
input signal which is applied to TxIN is correctly
recognized, its level should be held for at least 8
CPU clock cycles before it changes.

Figure 72 : Auxiliary timer in counter mode

Table 25 : GPT1 auxiliary timer (counter mode) input edge selection

T2I / T4I Triggering Edge for Counter Increment / Decrement

X 0 0 None. Counter Tx is disabled

0 0 1 Positive transition (rising edge) on TxIN

0 1 0 Negative transition (falling edge) on TxIN

0 1 1 Any transition (rising or falling edge) on TxIN

1 0 1 Positive transition (rising edge) of output toggle latch T3OTL

1 1 0 Negative transition (falling edge) of output toggle latch T3OTL

1 1 1 Any transition (rising or falling edge) of output toggle latch T3OTL

Txl TxR

MUX

TxUDE

Auxiliary Timer Tx TxIR
Interrupt
Request

Up/Down

XOR 1

0

TxUD

TxEUD

TxIN

x = 2,4

Edge
Select

P3.7,
P3.5

P5.15,
P5.14

ST10X167

139/294

Timer Concatenation

Using the toggle Bit T3OTL as a clock source for
an auxiliary timer in counter mode concatenates
the core timer T3 with the respective auxiliary
timer. Depending on which transition of T3OTL is
selected to clock the auxiliary timer, this
concatenation forms a 32 Bit or a 33 Bit timer/
counter.

– 32 Bit timer/counter : If both a positive and a
negative transition of T3OTL is used to clock the
auxiliary timer, this timer is clocked on every
overflow/underflow of the core timer T3. Thus,
the two timers form a 32 Bit timer.

– 33 Bit timer/counter : If either a positive or a
negative transition of T3OTL is selected to clock
the auxiliary timer, this timer is clocked on every
second overflow/underflow of the core timer T3.
This configuration forms a 33 Bit timer (16 Bit
core timer+T3OTL+16 Bit auxiliary timer).

The count directions of the two concatenated
timers are not required to be the same. This offers
a wide variety of different configurations.

T3 can operate in timer, gated timer or counter
mode in this case (see Figure 73).

Auxiliary Timer in Reload Mode

Reload mode for the auxiliary timers T2 and T4 is
selected by setting Bit field TxM in the respective
register TxCON to ‘100b’. In reload mode the core
timer T3 is reloaded with the contents of an
auxiliary timer register, triggered by one of two
different signals. The trigger signal is selected the
same way as the clock source for counter mode
(see Table 25). A transition of the auxiliary timer’s
input or the output toggle latch T3OTL may trigger
the reload.

Note When programmed for reload mode, the
respective auxiliary timer (T2 or T4) stops
independent of its run flag T2R or T4R.

Note 1. Line only affected by over/underflows of T3, but NOT by software modifications of T3OTL.

Figure 73 : Concatenation of core timer T3 and an auxiliary timer

Txl TxR

Auxiliary Timer Tx TxIR
Interrupt
Request

T3OTL

Edge
Select

x = 2,4

T3OE

T3IR Interrupt

1

Core Timer T3

T3R Up/Down

X

T3l

CPU
Clock

Request

T3OUT
P3.3

ST10X167

140/294

Figure 74 : GPT1 auxiliary timer in reload mode

Note 1) Line only affected by over/underflows of T3, but NOT by
software modifications of T3OTL.

Upon a trigger signal T3 is loaded with the
contents of the respective timer register (T2 or T4)
and the interrupt request flag (T2IR or T4IR) is
set.
Note When a T3OTL transition is selected for

the trigger signal, also the interrupt
request flag T3IR will be set upon a trig-
ger, indicating T3’s overflow or underflow.
Modifications of T3OTL via software will
NOT trigger the counter function of T2/T4.

The reload mode triggered by T3OTL can be used
in a number of different configurations. Depending
on the selected active transition the following
functions can be performed:

– If both a positive and a negative transition of
T3OTL is selected to trigger a reload, the core
timer will be reloaded with the contents of the
auxiliary timer each time it overflows or
underflows. This is the standard reload mode
(reload on overflow/underflow).

– If either a positive or a negative transition of
T3OTL is selected to trigger a reload, the core
timer will be reloaded with the contents of the
auxiliary timer on every second overflow or
underflow.

– Using this “single-transition” mode for both
auxiliary timers allows to perform very flexible

pulse width modulation (PWM). One of the
auxiliary timers is programmed to reload the
core timer on a positive transition of T3OTL, the
other is programmed for a reload on a negative
transition of T3OTL. With this combination the
core timer is alternately reloaded from the two
auxiliary timers.

Figure 75 shows an example for the generation of
a PWM signal using the alternate reload
mechanism.

T2 defines the high time of the PWM signal
(reloaded on positive transitions) and T4 defines
the low time of the PWM signal (reloaded on
negative transitions).

The PWM signal can be output on T3OUT with
T3OE=‘1’, P3.3=‘1’ and DP3.3=‘1’. With this
method the high and low time of the PWM signal
can be varied in a wide range.

Note The output toggle latch T3OTL is software
accessible and may be changed, if
required, to modify the PWM signal. How-
ever, this will NOT trigger the reload of T3.

Avoid selecting the same reload trigger
event for both auxiliary timers as both
reload registers will try to load the core
timer at the same time. If this happens, T2
is disregarded and the contents of T4 is
reloaded.

Txl

Reload Register Tx

TxIR
Interrupt
Request

Source/Edge
Select

x = 2, 4

Core Timer T3

Up/Down

Input
Clock T3IR Interrupt

Request

T3OTL

T3OE

T3OUT
P3.3

TxIN
P3.7

1)

P3.5

ST10X167

141/294

Figure 75 : GPT1 timer reload configuration for PWM generation

Note 1) Lines only affected by over/underflows of T3, but NOT by
software modifications of T3OTL.

Auxiliary Timer in Capture Mode

Capture mode for the auxiliary timers T2 and T4 is
selected by setting Bit field TxM in the respective
register TxCON to ‘101b’.

In capture mode the contents of the core timer are
latched into an auxiliary timer register in response
to a signal transition at the respective auxiliary
timer's external input pin TxIN.

The capture trigger signal can be a positive, a
negative, or both a positive and a negative
transition.

The two least significant Bit of Bit field TxI
are used to select the active transition (see table
in the counter mode section), while the most
significant Bit TxI.2 is irrelevant for capture
mode. It is recommended to keep this Bit cleared
(TxI.2 = ‘0’).

Note When programmed for capture mode, the
respective auxiliary timer (T2 or T4) stops
independent of its run flag T2R or T4R.

T2l

T4l

Reload Register T2

T2IR
Interrupt

Core Timer T3

Up/Down

Input
Clock T3OTL

Interrupt
T3IR

T3OE

T3OUT
P3.3

Reload Register T4

T4IR Interrupt

1)

1) Request

Request

Request

ST10X167

142/294

Figure 76 : GPT1 auxiliary timer in capture mode

Upon a trigger (selected transition) at the
corresponding input pin TxIN the contents of the
core timer are loaded into the auxiliary timer
register and the associated interrupt request flag
TxIR will be set.
Note The direction control Bit DP3.7 (for T2IN)

and DP3.5 (for T4IN) must be set to '0',
and the level of the capture trigger signal
should be held high or low for at least 8
CPU clock cycles before it changes to
ensure correct edge detection.

9.1.3 - Interrupt Control for GPT1 Timers
When a timer overflows from FFFFh to 0000h
(when counting up), or when it underflows from
0000h to FFFFh (when counting down), its
interrupt request flag (T2IR, T3IR or T4IR) in
register TxIC will be set. This will cause an
interrupt to the respective timer interrupt vector
(T2INT, T3INT or T4INT) or trigger a PEC service,
if the respective interrupt enable Bit (T2IE, T3IE or
T4IE in register TxIC) is set. There is an interrupt
control register for each of the three timers.

T2IC (FF60h / B0h) SFR Reset Value: - - 00h

T3IC (FF62h / B1h) SFR Reset Value: - - 00h

T4IC (FF64h / B2h) SFR Reset Value: - - 00h

Note Please refer to the general Interrupt Control Register description for an explanation of the control
fields.

Txl

Capture Register Tx

TxIR
Interrupt
Request

Edge
Select

x = 2, 4

Core Timer T3

Up/Down

Input
Clock T3IR Interrupt

Request

T3OTL

T3OE

T3OUT
P3.3

TxIN
P3.7
P3.5

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - T2IR T2IE ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - T3IR T3IE ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - T4IR T4IE ILVL GLVL

RW RW RW RW

ST10X167

143/294

9.2 - Timer Block GPT2

From a programmer's point of view, the GPT2
block is represented by a set of SFRs. The I/O of
port and direction registers which are used for
alternate functions by the GPT2 block are noted
"Y" in Figure 77.

Timer block GPT2 supports high precision event
control with a maximum resolution of 4 CPU clock
cycles. It includes the two timers T5 and T6, and
the 16 Bit capture/reload register CAPREL. Timer
T6 is referred to as the core timer, and T5 is
referred to as the auxiliary timer of GPT2.

Each timer has an alternate associated input pin
which serves as the gate control in gated timer
mode, or as the count input in counter mode. The
count direction (Up / Down) may be programmed
via software or may be dynamically altered by a

signal at an external control input pin. An overflow/
underflow of T6 is indicated by the output toggle
Bit T6OTL whose state may be output on an
alternate function port pin. In addition, T6 may be
reloaded with the contents of CAPREL.

The toggle Bit also supports the concatenation of
T6 with auxiliary timer T5, while concatenation of
T6 with the timers of the CAPCOM units is
provided through a direct connection.

Triggered by an external signal, the contents of T5
can be captured into register CAPREL, and T5
may optionally be cleared. Both timer T6 and T5
can count up or down, and the current timer value
can be read or modified by the CPU in the non
Bitaddressable SFRs T5 and T6.

ST10X167

144/294

Figure 77 : SFRs and port pins associated with timer block GPT2

Ports & Direction Control Alternate Functions Data Registers

15

-

14

-

13

-

12

-

11

-

10

-

9

-

8

-

7

-

6

-

5

-

4

-

3

-

2

Y

1

Y

0

-ODP3 E T2

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

Y

- - - - - - - - - - - - - Y Y -DP3

- - - - - - - - - - - - - Y Y -P3

- - Y Y Y Y - - - - - - - - - -P5

T6 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

CAPREL Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Control Registers Interrupt Control

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YT5CON

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YT6CON

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T5IC

- - - - - - - - Y Y Y Y Y Y Y YT6IC

- - - - - - - - Y Y Y Y Y Y Y YCRIC

- - - - - - - - Y Y Y Y Y Y Y Y

ODP3 Port 3 Open Drain Control Register
DP3 Port 3 Direction Control Register
P3 Port 3 Data Register
P5 Port 5 Data Register
T5CON GPT2 Timer 5 Control Register
T6CON GPT2 Timer 6 Control Register

T5IN/P5.13 T5EUD/P5.11
T6IN/P5.12 T6EUD/P5.10
CAPIN/P3.2 T6OUT/P3.1

T5 GPT2 Timer 5 Register
T6 GPT2 Timer 6 Register
CAPREL GPT2 Capture/Reload Register
T5IC GPT2 Timer 5 Interrupt Control Register
T6IC GPT2 Timer 6 Interrupt Control Register
CRIC GPT2 CAPREL Interrupt Control Register

Bit is linked to a function
Bit has no function or is not implemented
Register is in ESFR internal memory space

Y
-
E

:
:
:

ST10X167

145/294

Figure 78 : GPT2 block diagram

9.2.1 - GPT2 Core Timer T6

The operation of the core timer T6 is controlled by its Bitaddressable control register T6CON.

T6CON (FF48h / A4h) SFR Reset Value: 0000h

2n n=2...9

2n n=2...9

T5EUD

T5IN

CPU Clock

CPU Clock

T6IN

T6EUD

T5
Mode
Control

T6
Mode
Control

GPT2 Timer T5

GPT2 Timer T6

U/D

Interrupt
Request

Up/Down

GPT2 CAPREL

T6OTL T6OUT

CAPIN

Reload Interrupt
Request

to CAPCOM

Timers

Capture

Clear

Interrupt
Request

P5.11

P5.13

P5.12

P3.2

P5.10

P3.1

T0, T1, T7, T8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T6SR - - - - T6OTL T6OE T6UDE T6UD T6R T6M T6I

RW RW RW RW RW RW RW RW

ST10X167

146/294

Note 1. For the effects of Bit T6UD and T6UDE refer to the
direction Table 26.

Timer 6 run Bit
The timer can be started or stopped by software
through Bit T6R (Timer T6 Run Bit). If T6R=‘0’, the
timer stops. Setting T6R to ‘1’ will start the timer.
In gated timer mode, the timer will only run if
T6R=‘1’ and the gate is active (high or low, as
programmed).

Count Direction Control
The count direction of the core timer can be
controlled either by software, or by the external
input pin T6EUD (Timer T6 External Up/Down
Control Input), which is the alternate input function
of port pin P5.10. These options are selected by

Bit T6UD and T6UDE in control register T6CON.
When the up/down control is done by software (Bit
T6UDE=‘0’), the count direction can be altered by
setting or clearing Bit T6UD. When T6UDE=‘1’,
pin T6EUD is selected to be the controlling source
of the count direction.

However, Bit T6UD can still be used to reverse the
actual count direction, as shown in the Table 26. If
T6UD=‘0’ and pin T6EUD shows a low level, the
timer is counting up. With a high level at T6EUD
the timer is counting down. If T6UD=‘1’, a high
level at pin T6EUD specifies counting up, and a
low level specifies counting down. The count
direction can be changed regardless of whether
the timer is running or not.

Note The direction control works the same for core timer T6 and for auxiliary timer T5. Therefore the
pins and Bit are named Tx...

Bit Function

T6I Timer 6 Input Selection

Depends on the Operating Mode, see respective sections.

T6M Timer 6 Mode Control (Basic Operating Mode)

0 0 0: Timer Mode
0 0 1: Counter Mode
0 1 0: Gated Timer with Gate active low
0 1 1: Gated Timer with Gate active high
1 X X: Reserved. Do not use this combination.

T6R Timer 6 Run Bit

T6R = ‘0’: Timer / Counter 6 stops
T6R = ‘1’: Timer / Counter 6 runs

T6UD Timer 6 Up / Down Control 1

T6UDE Timer 6 External Up/Down Enable 1

T6OE Alternate Output Function Enable

T6OE = ‘0’: Alternate Output Function Disabled
T6OE = ‘1’: Alternate Output Function Enabled

T6OTL Timer 6 Output Toggle Latch

Toggles on each overflow / underflow of T6. Can be set or reset by software.

T6SR Timer 6 Reload Mode Enable

T6SR = ‘0’: Reload from register CAPREL Disabled
T6SR = ‘1’: Reload from register CAPREL Enabled

Table 26 : GPT2 core timer T6 count direction control

Pin TxEUD Bit TxUDE Bit TxUD Count Direction

X 0 0 Count Up

X 0 1 Count Down

0 1 0 Count Up

1 1 0 Count Down

0 1 1 Count Down

1 1 1 Count Up

ST10X167

147/294

Timer 6 Output Toggle Latch
An overflow or underflow of timer T6 will clock the
toggle Bit T6OTL in control register T6CON.
T6OTL can also be set or reset by software. Bit
T6OE (Alternate Output Function Enable) in
register T6CON enables the state of T6OTL to be
an alternate function of the external output pin
T6OUT/P3.1. For that purpose, a ‘1’ must be
written into port data latch P3.1 and pin T6OUT/
P3.1 must be configured as output by setting
direction control Bit DP3.1 to ‘1’. If T6OE=‘1’, pin
T6OUT then outputs the state of T6OTL. If
T6OE=‘0’, pin T6OUT can be used as general
purpose I/O pin.
In addition, T6OTL can be used in conjunction
with the timer over/underflows as an input for the
counter function of the auxiliary timer T5. For this
purpose, the state of T6OTL does not have to be

available at pin T6OUT, because an internal
connection is provided for this option.

An overflow or underflow of timer T6 can also be
used to clock the timers in the CAPCOM units. For
this purpose, there is a direct internal connection
between timer T6 and the CAPCOM timers.

Timer 6 in Timer Mode

Timer mode for the core timer T6 is selected by
setting Bit field T6M in register T6CON to ‘000b’.
In this mode, T6 is clocked with the internal
system clock divided by a programmable
pre-scaler, which is selected by Bit field T6I. The
input frequency fT6 for timer T6 and its resolution
rT6 are scaled linearly with lower clock
frequencies fCPU, as can be seen from the
following formula:

The timer resolutions which result from the selected pre-scaler option are listed in the Table 27. This table
also applies to the Gated Timer Mode of T6 and to the auxiliary timer T5 in timer and gated timer mode.

Refer to the device datasheet for a table of timer input frequencies, resolution and periods for the range of
pre-scaler options.

Figure 79 : Block diagram of core timer T6 in timer mode

Table 27 : GPT2 timer resolution

Timer Input Selection T5I / T6I

000b 001b 010b 011b 100b 101b 110b 111b

Pre-scaler factor 4 8 16 32 64 128 256 512

Resolution in CPU clock cycles 4 8 16 32 64 128 256 512

fT6 =
fCPU

4 x 2(T6I)
rT6 [µs] =

fCPU [MHz]

4 x 2(T6I)

T6R

MUX

T6UDE

Core Timer T6 T6IR
Interrupt
Request

T6OTL

T6OE

T6OUT
Up/Down

XOR 1

0

T6UD

T6EUD

T6l

Edge
Select

T6IN

P5.10

P5.12

P3.1

ST10X167

148/294

Timer 6 in Gated Mode
Gated timer mode for the core timer T6 is selected
by setting Bit field T6M in register T6CON to
‘010b’ or ‘011b’. Bit T6M.0 (T6CON.3) selects the
active level of the gate input. In gated timer mode
the same options for the input frequency as for the
timer mode are available. However, the input clock
to the timer in this mode is gated by the external
input pin T6IN (Timer T6 External Input), which is
an alternate function of P5.12 (see Figure 80). If
T6M.0=‘0’, the timer is enabled when T6IN shows
a low level. A high level at this pin stops the timer.
If T6M.0=‘1’, pin T6IN must have a high level in
order to enable the timer. In addition, the timer can
be turned on or off by software using Bit T6R. The
timer will only run, if T6R=‘1’ and the gate is

active. It will stop, if either T6R=‘0’ or the gate is
inactive.

Note A transition of the gate signal at pin T6IN
does not cause an interrupt request.

Timer 6 in Counter Mode

Counter mode for the core timer T6 is selected by
setting Bit field T6M in register T6CON to ‘001b’.
In counter mode timer T6 is clocked by a transition
at the external input pin T6IN, which is an
alternate function of P5.12. The event causing an
increment or decrement of the timer can be a
positive, a negative, or both a positive and a
negative transition at this pin. Bit field T6I in
control register T6CON selects the triggering
transition (see Table 28).

Figure 80 : Block diagram of core timer T6 in gated timer mode

Figure 81 : Block diagram of core timer T6 in counter mode

X

T6l

CPU
Clock

T6R

MUX

T6UDE

Core Timer T6 T6IR
Interrupt
Request

T6OTL

T6OE

T6OUT
Up/Down

XOR 1

0

T6UD

T6EUD

T6M

T6IN
P5.12

P5.10

P3.1

Gate
Control

Edge
Select

T6R

MUX

T6UDE

Core Timer T6 T6IR
Interrupt
Request

T6OTL

T6OE

T6OUT
Up/Down

XOR 1

0

T6UD

T6EUD

T6M

T6IN
P5.12

P5.10

P3.1

ST10X167

149/294

The maximum input frequency which is allowed in
counter mode is fCPU / 8. To ensure that a
transition of the count input signal which is applied
to T6IN is correctly recognized, its level should be
held high or low for at least 4 CPU clock cycles
before it changes.

GPT2 Auxiliary Timer T5

The auxiliary timer T5 can be configured for timer,
gated timer, or counter mode with the same
options for the timer frequencies and the count
signal as the core timer T6. In addition to these 3
counting modes, the auxiliary timer can be
concatenated with the core timer.

The auxiliary timer has no output toggle latch and
no alternate output function. The individual
configuration for timer T5 is determined by its
Bitaddressable control register T5CON. Note that
functions which are present in both timers of block
GPT2 are controlled in the same Bit positions and
in the same manner in each of the specific control
registers.

T5CON (FF46h / A3h) SFR Reset Value: 0000h

Note 1. For the effects of Bit TxUD and TxUDE refer to the direction Table 26.

Table 28 : GPT2 core timer T6 (counter mode)
input edge selection

T6I Triggering Edge for Counter Increment /
Decrement

0 0 0 None. Counter T6 is disabled

0 0 1 Positive transition (rising edge) on T6IN
0 1 0 Negative transition (falling edge) on T6IN
0 1 1 Any transition (rising or falling edge) on T6IN
1 X X Reserved. Do not use this combination

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T5SC T5CLR CI - CT3 - T5UDE T5UD T5R - T5M T5I

RW RW RW RW RW RW RW RW RW

Bit Function

T5I Timer 5 Input Selection

Depends on the Operating Mode, see respective sections.

T5M Timer 5 Mode Control (Basic Operating Mode)

0 0: Timer Mode
0 1: Counter Mode
1 0: Gated Timer with Gate active low
1 1: Gated Timer with Gate active high

T5R Timer 5 Run Bit

T5R = ‘0’: Timer / Counter 5 stops
T5R = ‘1’: Timer / Counter 5 runs

T5UD Timer 5 Up / Down Control 1

T5UDE Timer 5 External Up/Down Enable 1

CT3 Capture Trigger 3

0: Capture triggered from CAPIN pin
1: Capture triggered from T3 input pin

CI Register CAPREL Input Selection

0 0: Capture disabled
0 1: Positive transition (rising edge) on CAPIN
1 0: Negative transition (falling edge) on CAPIN
1 1: Any transition (rising or falling edge) on CAPIN

T5CLR Timer 5 Clear Bit

T5CLR = ‘0’:Timer 5 not cleared on a capture
T5CLR = ‘1’:Timer 5 is cleared on a capture

T5SC Timer 5 Capture Mode Enable

T5SC = ‘0’: Capture into register CAPREL Disabled
T5SC = ‘1’: Capture into register CAPREL Enabled

ST10X167

150/294

Count Direction Control for Auxiliary Timer
The count direction of the auxiliary timer can be
controlled in the same way as for the core timer
T6. The description and the table apply
accordingly.

Timer T5 in Timer Mode or Gated Timer Mode
When the auxiliary timer T5 is programmed to
timer mode or gated timer mode, its operation is
the same as described for the core timer T6. The
descriptions, figures and tables apply accordingly
with one exception: There is no output toggle latch
and no alternate output pin for T5.

Timer T5 in Counter Mode
Counter mode for the auxiliary timer T5 is
selected by setting Bit field T5M in register
T5CON to ‘001b’. In counter mode timer T5 can
be clocked either by a transition at the external
input pin T5IN, or by a transition of timer T6’s
output toggle latch T6OTL.

The event causing an increment or decrement of
the timer can be a positive, a negative, or both a
positive and a negative transition at either the
input pin, or at the toggle latch T6OTL (see
Figure 82).

Bit field T5I in control register T5CON selects the
triggering transition (see Table 29).

Note Only state transitions of T6OTL which are
caused by the overflows/underflows of T6
will trigger the counter function of T5.
Modifications of T6OTL via software will
NOT trigger the counter function of T5.

The maximum input frequency allowed in counter
mode is fCPU / 4. To ensure that a transition of the
count input signal which is applied to T5IN is
correctly recognized, its level should be held high
or low for at least 4 CPU clock cycles before it
changes.

Figure 82 : Block diagram of auxiliary timer T5 in counter mode

Table 29 : GPT2 auxiliary timer (counter mode) input edge selection

T5I Triggering Edge for Counter Increment / Decrement

X 0 0 None. Counter T5 is disabled

0 0 1 Positive transition (rising edge) on T5IN

0 1 0 Negative transition (falling edge) on T5IN

0 1 1 Any transition (rising or falling edge) on T5IN

1 0 1 Positive transition (rising edge) of output toggle latch T6OTL

1 1 0 Negative transition (falling edge) of output toggle latch T6OTL

1 1 1 Any transition (rising or falling edge) of output toggle latch T6OTL

T5R

MUX

T5UDE

Auxiliary Timer T5 T5IR
Interrupt
Request

Up/Down

XOR 1

0

T5UD

T5EUD

T5l

Edge
Select

T5IN
P5.13

P5.11

ST10X167

151/294

Timer Concatenation
Using the toggle Bit T6OTL as a clock source for
the auxiliary timer in counter mode concatenates
the core timer T6 with the auxiliary timer.
Depending on which transition of T6OTL is selected
to clock the auxiliary timer, this concatenation forms
a 32 Bit or a 33 Bit timer / counter.
– 32 Bit Timer/Counter: If both a positive and a

negative transition of T6OTL is used to clock the
auxiliary timer, this timer is clocked on every
overflow/underflow of the core timer T6. Thus,
the two timers form a 32 Bit timer.

– 33 Bit Timer/Counter: If either a positive or a
negative transition of T6OTL is selected to clock
the auxiliary timer, this timer is clocked on every
second overflow/underflow of the core timer T6.
This configuration forms a 33 Bit timer (16 Bit
core timer+T6OTL+16 Bit auxiliary timer).

The count directions of the two concatenated
timers are not required to be the same. This offers
a wide variety of different configurations. T6 can
operate in timer, gated timer or counter mode in
this case (see Figure 83).

GPT2 Capture / Reload Register CAPREL in
Capture Mode
This 16 Bit register can be used as a capture
register for the auxiliary timer T5. This mode is
selected by setting Bit T5SC=‘1’ in control register
T5CON. Bit CT3 selects the external input pin
CAPIN or the input pins of timer T3 as the source
for a capture trigger. Either a positive, a negative,
or both a positive and a negative transition at this
pin can be selected to trigger the capture function

or transitions on input T3IN or input T3EUD or
both inputs T3IN and T3EUD. The active edge is
controlled by Bit field CI in register T5CON. The
maximum input frequency for the capture trigger
signal at CAPIN is fCPU / 4. To ensure that a
transition of the capture trigger signal is correctly
recognized, its level should be held for at least 4
CPU clock cycles before it changes.

When the timer T3 capture trigger is enabled
(CT3=’1’) the CAPREL register captures the
contents of T5 upon transitions of the selected
input(s). These values can be used to measure
T3’s input signals. This is useful when T3
operates in incremental interface mode, in order
to derive dynamic information (speed,
acceleration, deceleration) from the input signals.

When a selected transition at the external input pin
(CAPIN, T3IN, T3EUD) is detected, the contents of
the auxiliary timer T5 is latched into register
CAPREL, and interrupt request flag CRIR is set.
With the same event, timer T5 can be cleared to
0000h. This option is controlled by Bit T5CLR in
register T5CON. If T5CLR=‘0’, the contents of timer
T5 are not affected by a capture. If T5CLR=‘1’,
timer T5 is cleared after the current timer value has
been latched into register CAPREL.

Note Bit T5SC only controls whether a capture
is performed or not. If T5SC=‘0’, the input
pin CAPIN can still be used to clear timer
T5 or as an external interrupt input. This
interrupt is controlled by the CAPREL
interrupt control register CRIC (see
Figure 84).

Note 1) Line only affected by over/underflows of T6, but NOT by software modifications of T6OTL.

Figure 83 : Concatenation of core timer T6 and auxiliary timer T5

T5l T5R

Auxiliary Timer T5 T5IR
Interrupt
Request

T6OTL

Edge
Select

T6OE

T6IR
Interrupt

1)

Core Timer T6

T6R Up/Down

X

T6l

CPU
Clock

T6OUT

Request

P3.1

ST10X167

152/294

Figure 84 : GPT2 register CAPREL in capture mode

GPT2 Capture / Reload Register CAPREL in
Reload Mode
This 16 Bit register can be used as a reload
register for the core timer T6. This mode is
selected by setting Bit T6SR=‘1’ in register
T6CON. The event causing a reload in this mode
is an overflow or underflow of the core timer T6.

When timer T6 overflows from FFFFh to 0000h or
when it underflows from 0000h to FFFFh, the
value stored in register CAPREL is loaded into
timer T6. This will not set the interrupt request flag
CRIR associated with the CAPREL register.
However, interrupt request flag T6IR will be set
indicating the overflow/underflow of T6.

Cl

Edge
Select

T5CLR

CAPIN
P3.2

T5SC

Auxiliary Timer T5

CAPREL Register

CRIR

T5IR
Interrupt
Request

Interrupt
Request

Up/Down

Input
Clock

T3IN
P3.6

T3EUD
P3.4

Figure 85 : GPT2 register CAPREL in reload mode

T6SR

CAPREL Register

T6OTL

InterruptCore Timer T6

Up/Down

Input
Clock

T6IR

T6OE

To CAPCOM

T6OUT
P3.1

Request

Timers

ST10X167

153/294

GPT2 Capture / Reload Register CAPREL in
Capture-and-Reload Mode
Since the reload function and the capture function
of register CAPREL can be enabled individually
by Bit T5SC and T6SR, the two functions can be
enabled simultaneously by setting both Bit. This
feature can be used to generate an output
frequency that is a multiple of the input frequency
(see Figure 86).
This combined mode can be used to detect
consecutive external events which may occur
periodically, but where a finer resolution, that
means, more 'ticks' within the time between two
external events is required.
For this purpose, the time between the external
events is measured using timer T5 and the
CAPREL register.
For example, Timer T5 runs in timer mode
counting up with a frequency of fCPU / 32. The
external events are applied to pin CAPIN. When
an external event occurs, the timer T5 contents
are latched into register CAPREL, and timer T5 is
cleared (T5CLR=‘1’).

Thus, register CAPREL always contains the
correct time between two events, measured in
timer T5 increments. Timer T6, which runs in timer
mode counting down with a frequency of fCPU / 4,
uses the value in register CAPREL to perform a
reload on underflow. This means, the value in
register CAPREL represents the time between
two underflows of timer T6, now measured in
timer T6 increments. Since timer T6 runs 8 times
faster than timer T5, it will underflow 8 times within
the time between two external events.

Thus, the underflow signal of timer T6 generates 8
'ticks'. Upon each underflow, the interrupt request
flag T6IR will be set and Bit T6OTL will be toggled.
The state of T6OTL may be output on pin T6OUT.
This signal has 8 times more transitions than the
signal which is applied to pin CAPIN.

The underflow signal of timer T6 can furthermore
be used to clock one or more of the timers of the
CAPCOM units, which gives the user the
possibility to set compare events based on a finer
resolution than that of the external events.

Figure 86 : GPT2 register CAPREL in capture-and-reload mode

Cl

Edge
Select T5CLR

CAPIN
P3.2

T5SC

Auxiliary Timer T5

CAPREL Register

CRIR

T5IR
Interrupt
Request

Interrupt
Request

Up/Down

Input
Clock

Core Timer T6

T6OTL
T6OUT
P3.1

T6IR
Interrupt
Request

To CAPCOM
Timers

Up/Down

Input
Clock

T6SR T6OE

T0, T1, T7, T8

ST10X167

154/294

9.2.2 - Interrupt Control for GPT2 Timers and
CAPREL
When a timer overflows from FFFFh to 0000h
(when counting up), or when it underflows from
0000h to FFFFh (when counting down), its
interrupt request flag (T5IR or T6IR) in register
TxIC will be set. Whenever a transition according
to the selection in Bit field CI is detected at pin
CAPIN, interrupt request flag CRIR in register

CRIC is set. Setting any request flag will cause an
interrupt to the respective timer or CAPREL
interrupt vector (T5INT, T6INT or CRINT) or
trigger a PEC service, if the respective interrupt
enable Bit (T5IE or T6IE in register TxIC, CRIE in
register CRIC) is set. There is an interrupt control
register for each of the two timers and for the
CAPREL register.

T5IC (FF66h / B3h) SFR Reset Value: --00h

T6IC (FF68h / B4h) SFR Reset Value: --00h

CRIC (FF6Ah / B5h) SFR Reset Value: --00h

Note Please refer to Interrupt Control Registers for explanation of the control fields.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - T5IR T5IE ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - T6IR T6IE ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - CRIR CRIE ILVL GLVL

RW RW RW RW

ST10X167

155/294

10 - ASYNCHRONOUS/SYNCHRONOUS SERIAL INTERFACE

The Asynchronous/Synchronous Serial Interface
ASC0 provides serial communication between the
ST10X167 and other microcontrollers, micropro-
cessors or external peripherals.

In synchronous mode, data are transmitted or
received synchronously to a shift clock which is
generated by the ST10X167. In asynchronous
mode, 8- or 9Bit data transfer, parity generation,
and the number of stop Bit can be selected. Parity,

framing, and overrun error detection is provided to
increase the reliability of data transfers.
Transmission and reception of data is
double-buffered.

For multiprocessor communication, a mechanism
to distinguish address from data Byte is included.
Testing is supported by a loop-back option. A 13
Bit Baud rate generator provides the ASC0 with a
separate serial clock signal.

ST10X167

156/294

Figure 87 : SFRs and port pins associated with ASC0

The operating mode of the serial channel ASC0 is controlled by its Bit-addressable control register S0CON.
This register contains control Bit for mode and error check selection, and status flags for error identification.

Ports & Direction Control Alternate Functions Data Registers

15

-

14

-

13

-

12

-

11

Y

10

Y

9

-

8

-

7

-

6

-

5

-

4

-

3

-

2

-

1

-

0

-ODP3 E S0BG

15

-

14

-

13

-

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

Y

- - - - Y Y - - - - - - - - - -DP3

- - - - Y Y - - - - - - - - - -P3

S0TBUF Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

SORBUF Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Control Registers Interrupt Control

15

Y

14

Y

13

Y

12

Y

11

-

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YS0CON

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S0TIC

- - - - - - - - Y Y Y Y Y Y Y YS0RIC

- - - - - - - - Y Y Y Y Y Y Y YS0EIC

- - - - - - - - Y Y Y Y Y Y Y Y

RXD0 / P3.11
TXD0 / P3.10

ODP3 Port3 Open Drain Control Register
DP3 Port3 Direction Control Register
S0BG ASC0 Baud rate Generator/Reload Register
S0TBUF ASC0 Transmit Buffer Register
S0TIC ASC0 Transmit Interrupt Control Register
S0TBIC ASC0 Transmit Buffer Interrupt Control Register

P3 Port3 Data Register
S0CON ASC0 Control Register
S0RBUF ASC0 Receive Buffer Register (read only)
S0RIC ASC0 Receive Interrupt Control Register
S0EIC ASC0 Error Interrupt Control Register

- - - - - - - - Y Y Y Y Y Y Y YS0TBIC E

Bit is linked to a function
Bit has no function or is not implemented
Register is in ESFR internal memory space

Y
-
E

:
:
:

ST10X167

157/294

S0CON (FFB0h / D8h) SFR Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S0R S0LB S0BRS S0ODD - S0OE S0FE S0PE S0OEN S0FEN S0PEN S0REN S0STP S0M

RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

S0M ASC0 Mode Control

0 0 0: 8 Bit data synchronous operation
0 0 1: 8 Bit data asynchronous operation
0 1 0: Reserved. Do not use this combination
0 1 1: 7 Bit data + parity asynchronous operation
1 0 0: 9 Bit data asynchronous operation
1 0 1: 8 Bit data + wake up Bit asynchronous operation
1 1 0: Reserved. Do not use this combination
1 1 1: 8 Bit data + parity asynchronous operation

S0STP Number of Stop Bit Selection asynchronous operation

0: One stop Bit
1: Two stop Bit

S0REN Receiver Enable Bit

0: Receiver disabled
1: Receiver enabled

(Reset by hardware after reception of Byte in synchronous mode)

S0PEN Parity Check Enable Bit asynchronous operation

0: Ignore parity
1: Check parity

S0FEN Framing Check Enable Bit asynchronous operation

0: Ignore framing errors
1: Check framing errors

S0OEN Overrun Check Enable Bit

0: Ignore overrun errors
1: Check overrun errors

S0PE Parity Error Flag

Set by hardware on a parity error (S0PEN=’1’). Must be reset by software.

S0FE Framing Error Flag

Set by hardware on a framing error (S0FEN=’1’). Must be reset by software.

S0OE Overrun Error Flag

Set by hardware on an overrun error (S0OEN=’1’). Must be reset by software.

S0ODD Parity Selection Bit

0: Even parity (parity Bit set on odd number of ‘1’s in data)
1: Odd parity (parity Bit set on even number of ‘1’s in data)

S0BRS Baud rate Selection Bit

0: Divide clock by reload-value + constant (depending on mode)
1: Additionally reduce serial clock to 2/3rd

S0LB Loopback Mode Enable Bit

0: Standard transmit/receive mode
1: Loopback mode enabled

S0R Baud rate Generator Run Bit

0: Baud rate generator disabled (ASC0 inactive)
1: Baud rate generator enabled

ST10X167

158/294

A transmission is started by writing to the Transmit
Buffer register S0TBUF (via an instruction or a
PEC data transfer).

Only the number of data Bit which is determined
by the selected operating mode will actually be
transmitted. Bit written to positions 9 through 15 of
register S0TBUF are always insignificant. After a
transmission has been completed, the transmit
buffer register is cleared to 0000h.

Data transmission is double-buffered, so a new
character may be written to the transmit buffer
register, before the transmission of the previous
character is complete. This allows the
transmission of characters back-to-back without
gaps.

Data reception is enabled by the Receiver Enable
Bit S0REN. After reception of a character has
been completed, the received data and, if
provided by the selected operating mode, the
received parity Bit can be read from the
(read-only) Receive Buffer register S0RBUF.

Bit in the upper half of S0RBUF which are not
valid in the selected operating mode will be read
as zeros.

Data reception is double-buffered, so that
reception of a second character may already
begin before the previously received character
has been read out of the receive buffer register.

In all modes, receive buffer overrun error
detection can be selected through Bit S0OEN.

When enabled, the overrun error status flag S0OE
and the error interrupt request flag S0EIR will be
set when the receive buffer register has not been
read by the time reception of a second character
is complete. The previously received character in
the receive buffer is overwritten.

The Loop-Back option (selected by Bit S0LB)
allows the data currently being transmitted to be
received simultaneously in the receive buffer.

This may be used to test serial communication
routines at an early stage without having to
provide an external network. In loop-back mode
the alternate input/output functions of the Port3
pins are not necessary.

Note Serial data transmission or reception is
only possible when the Baud rate Gen-
erator Run Bit S0R is set to ‘1’. Other-
wise the serial interface is idle.
Do not program the mode control field
S0M in register S0CON to one of the
reserved combinations to avoid unpre-
dictable behavior of the serial interface.

10.1 - Asynchronous Operation

Asynchronous mode supports full-duplex commu-
nication, where both transmitter and receiver use
the same data frame format and the same Baud
rate. Data is transmitted on pin TXD0/P3.10 and
received on pin RXD0/P3.11. These signals are
alternate functions of Port 3 pins.

ST10X167

159/294

Figure 88 : Asynchronous mode of serial channel ASC0

Asynchronous Data Frames
8 Bit data frames either consist of 8 data Bit
D7...D0 (S0M=’001b’), or of 7 data Bit D6...D0
plus an automatically generated parity Bit
(S0M=’011b’). Parity may be odd or even,
depending on Bit S0ODD in register S0CON. An
even parity Bit will be set, if the modulo-2-sum of

the 7 data Bit is ‘1’. An odd parity Bit will be
cleared in this case. Parity checking is enabled via
Bit S0PEN (always OFF in 8 Bit data mode). The
parity error flag S0PE will be set along with the
error interrupt request flag, if a wrong parity Bit is
received. The parity Bit itself will be stored in Bit
S0RBUF.7.

2
CPU
Clock

S0R

Baud Rate Timer

Reload Register

16

Clock

Serial Port Control

Shift Clock

S0M S0STP S0FE S0OES0PE

S0REN

S0FEN

S0PEN

S0OEN

S0LB

S0RIR

S0TIR

S0EIR

Receive Interrupt
Request

Transmit Interrupt
Request

Error Interrupt
Request

Transmit Shift
Register

Receive Shift
Register

TXD0

Transmit Buffer
Register S0TBUF

Receive Buffer
Register S0RBUF

SamplingMUX
0

1

RXD0

Internal Bus

P3.10

P3.11

Figure 89 : Asynchronous 8 Bit data frames

2nd

Stop
Bit

Start
Bit

D0
(LSB)

D1 D2 D3 D4 D5 D6 D7 /
Parity

(1st)

Stop
Bit

ST10X167

160/294

9 Bit data frames either consist of 9 data Bit
D8...D0 (S0M=’100b’), of 8 data Bit D7...D0 plus
an automatically generated parity Bit
(S0M=’111b’) or of 8 data Bit D7...D0 plus
wake-up Bit (S0M=’101b’). Parity may be odd or
even, depending on Bit S0ODD in register
S0CON. An even parity Bit will be set, if the
modulo-2-sum of the 8 data Bit is ‘1’. An odd
parity Bit will be cleared in this case. Parity
checking is enabled via Bit S0PEN (always OFF in
9 Bit data and wake-up mode). The parity error
flag S0PE will be set along with the error interrupt
request flag, if a wrong parity Bit is received. The
parity Bit itself will be stored in Bit 8 of S0RBUF.

In wake-up mode received frames are only
transferred to the receive buffer register, if the 9th
Bit (the wake-up Bit) is ‘1’. If this Bit is ‘0’, no
receive interrupt request will be activated and no
data will be transferred.

This feature may be used to control
communication in multi-processor system when
the master processor wants to transmit a block of
data to one of several slaves, it first sends out an
address Byte which identifies the target slave. An
address Byte differs from a data Byte in that the
additional 9th Bit is a '1' for an address Byte and a
'0' for a data Byte, so no slave will be interrupted
by a data 'Byte'. An address 'Byte' will interrupt all
slaves (operating in 8 Bit data + wake-up Bit
mode), so each slave can examine the 8 LSBs of
the received character (the address).

The addressed slave will switch to 9 Bit data mode
(by clearing Bit S0M.0), which enables it to also
receive the data Byte that will be coming (having
the wake-up Bit cleared). The slaves that were not
being addressed remain in 8 Bit data + wake-up
Bit mode, ignoring the following data Byte (see
Figure 90).

Asynchronous transmission begins at the next
overflow of the divide-by-16 counter (see
Figure 90), provided that S0R is set and data has
been loaded into S0TBUF. The transmitted data
frame consists of three basic elements:
– the start Bit,
– the data field (8 or 9 Bit, LSB first, including a

parity Bit, if selected),
– the delimiter (1 or 2 stop Bit).
Data transmission is double buffered. When the
transmitter is idle, the transmit data loaded into
S0TBUF is immediately moved to the transmit
shift register thus freeing S0TBUF for the next
data to be sent. This is indicated by the transmit
buffer interrupt request flag S0TBIR being set.
S0TBUF may now be loaded with the next data,
while transmission of the previous one is still
going on.
The transmit interrupt request flag S0TIR will be
set before the last Bit of a frame is transmitted,
that means before the first or the second stop Bit
is shifted out of the transmit shift register.
The transmitter output pin TXD0/P3.10 must be
configured for alternate data output, P3.10=’1’
and DP3.10=’1’.
Asynchronous reception is initiated by a falling
edge (1-to-0 transition) on pin RXD0, provided
that Bit S0R and S0REN are set. The receive data
input pin RXD0 is sampled at 16 times the rate of
the selected Baud rate. A majority decision of the
7th, 8th and 9th sample determines the effective
Bit value. This avoids erroneous results that may
be caused by noise.
If the detected value is not a '0' when the start Bit
is sampled, the receive circuit is reset and waits
for the next 1-to-0 transition at pin RXD0. If the
start Bit proves valid, the receive circuit continues
sampling and shifts the incoming data frame into
the receive shift register.

Figure 90 : Asynchronous 9 Bit data frames

2nd

Stop
Bit

Start
Bit

D0
(LSB)

D1 D2 D3 D4 D5 D6 9th
Bit

(1st)

Stop
Bit

D7

• Data Bit D8

• Parity

• Wake-up Bit

ST10X167

161/294

When the last stop Bit has been received, the
content of the receive shift register is transferred
to the receive data buffer register S0RBUF.
Simultaneously, the receive interrupt request flag
S0RIR is set after the 9th sample in the last stop
Bit time slot (as programmed), regardless whether
valid stop Bit have been received or not. The
receive circuit then waits for the next start Bit
(1-to-0 transition) at the receive data input pin.

The receiver input pin RXD0/P3.11 must be
configured for input, using direction control
register DP3.11=’0’.

Asynchronous reception is stopped by clearing Bit
S0REN. A currently received frame is completed
including the generation of the receive interrupt
request and an error interrupt request, if
appropriate. Start Bit that follow this frame will not
be recognized.

Note In wake-up mode received frames are
only transferred to the receive buffer
register, if the 9th Bit (the wake-up Bit) is
‘1’. If this Bit is ‘0’, no receive interrupt
request will be activated and no data will
be transferred.

10.2 - Synchronous Operation
Synchronous mode supports half-duplex
communication, basically for simple I/O expansion
via shift registers. Data is transmitted and
received via pin RXD0/P3.11, while pin TXD0/
P3.10 outputs the shift clock. These signals are
alternate functions of Port3 pins. Synchronous
mode is selected with S0M=’000b’.
8 data Bit are transmitted or received
synchronous to a shift clock generated by the
internal Baud rate generator. The shift clock is
only active as long as data Bit are transmitted or
received.

Figure 91 : Synchronous mode of serial channel ASC0

2
CPU
Clock

S0R

Baud Rate Timer

Reload Register

4

Clock

Serial Port Control

Shift Clock

S0M = 000b S0OE

S0REN

S0OEN

S0LB

S0RIR

S0TIR

S0EIR

Receive Interrupt
Request

Transmit Interrupt
Request

Error Interrupt
Request

Transmit Shift
Register

Receive Shift
Register

Transmit Buffer
Register S0TBUF

Receive Buffer
Register S0RBUF

MUX
0

1

Internal Bus

Receive

TDX0

Transmit

RXD0

P3.10

P3.11

ST10X167

162/294

Synchronous transmission begins within 4 CPU
clock cycles after data has been loaded into
S0TBUF, provided that S0R is set and S0REN=’0’
(half-duplex, no reception). Data transmission is
double buffered. When the transmitter is idle, the
transmit data loaded into S0TBUF is immediately
moved to the transmit shift register thus freeing
S0TBUF for the next data to be sent. This is
indicated by the transmit buffer interrupt request
flag S0TBIR being set. S0TBUF may now be
loaded with the next data, while transmission of
the previous one is still going on. The data Bit are
transmitted synchronous with the shift clock. After
the Bit time for the 8th data Bit, both pins TXD0
and RXD0 will go high, the transmit interrupt
request flag S0TIR is set, and serial data
transmission stops.

Pin TXD0/P3.10 must be configured for alternate
data output, P3.10=’1’ and DP3.10=’1’, in order to
provide the shift clock. Pin RXD0/P3.11 must also
be configured for output (P3.11=’1’ and
DP3.11=’1’) during transmission.

Synchronous reception is initiated by setting Bit
S0REN=’1’. If Bit S0R=1, the data applied at pin
RXD0 are clocked into the receive shift register
synchronous to the clock which is output at pin
TXD0. After the 8th Bit has been shifted in, the
content of the receive shift register is transferred
to the receive data buffer S0RBUF, the receive
interrupt request flag S0RIR is set, the receiver
enable Bit S0REN is reset, and serial data
reception stops.

Pin TXD0/P3.10 must be configured for alternate
data output, P3.10=’1’ and DP3.10=’1’, in order to
provide the shift clock. Pin RXD0/P3.11 must be
configured as alternate data input (DP3.11=’0’).

Synchronous reception is stopped by clearing Bit
S0REN. A currently received Byte is completed
including the generation of the receive interrupt
request and an error interrupt request, if
appropriate. Writing to the transmit buffer register
while a reception is in progress has no effect on
reception and will not start a transmission.

If a previously received Byte has not been read
out of the receive buffer register at the time the
reception of the next Byte is complete, both the
error interrupt request flag S0EIR and the overrun
error status flag S0OE will be set, if the overrun
check has been enabled by S0OEN.

10.3 - Hardware Error Detection

To improve the safety of serial data exchange, the
serial channel ASC0 provides an error interrupt

request flag, which indicates the presence of an
error, and three (selectable) error status flags in
register S0CON, which indicate which error has
been detected during reception. Upon completion
of a reception, the error interrupt request flag
S0EIR will be set simultaneously with the receive
interrupt request flag S0RIR, if one or more of the
following conditions are met:

– If the framing error detection enable Bit S0FEN
is set and any of the expected stop Bit is not
high, the framing error flag S0FE is set,
indicating that the error interrupt request is due
to a framing error (Asynchronous mode only).

– If the parity error detection enable Bit S0PEN is
set in parity Bit receive modes, and the parity
check on the received data Bit proves false, the
parity error flag S0PE is set, indicating that the
error interrupt request is due to a parity error
(Asynchronous mode only).

– If the overrun error detection enable Bit S0OEN
is set and the last character received was not
read out of the receive buffer by software or
PEC transfer at the time the reception of a new
frame is complete, the overrun error flag S0OE
is set indicating that the error interrupt request is
due to an overrun error (Asynchronous and
synchronous mode).

10.4 - ASC0 Baud Rate Generation

The serial channel ASC0 has its own dedicated 13
Bit Baud rate generator with 13 Bit reload
capability, allowing Baud rate generation
independent of the GPT timers. The Baud rate
generator is clocked by fCPU / 2. The timer is
counting downwards and can be started or stopped
through the Baud rate Generator Run Bit S0R in
register S0CON. Each underflow of the timer
provides one clock pulse to the serial channel. The
timer is reloaded with the value stored in its 13 Bit
reload register each time it underflows. The
resulting clock is again divided according to the
operating mode and controlled by the Baud rate
Selection Bit S0BRS. If S0BRS=’1’, the clock signal
is additionally divided to 2/3rd of its frequency (see
formulas and table). So the Baud rate of ASC0 is
determined by the CPU clock, the reload value, the
value of S0BRS and the operating mode
(asynchronous or synchronous).

Register S0BG is the dual-function Baud rate
Generator/Reload register. Reading S0BG returns
the content of the timer (Bit 15...13 return zero),
while writing to S0BG always updates the reload
register (Bit 15...13 are insignificant).

ST10X167

163/294

An auto-reload of the timer with the content of the
reload register is performed each time S0BG is
written to. However, if S0R=’0’ at the time the write
operation to S0BG is performed, the timer will not
be reloaded until the first instruction cycle after
S0R=’1’.

Asynchronous Mode Baud rates

For asynchronous operation, the Baud rate
generator provides a clock with 16 times the rate
of the established Baud rate. Every received Bit is
sampled at the 7th, 8th and 9th cycle of this clock.
The Baud rate for asynchronous operation of
serial channel ASC0 and the required reload
value for a given Baud rate can be determined by
the following formulas:

(S0BRL) represents the content of the reload
register, taken as unsigned 13 Bit integer,
(S0BRS) represents the value of Bit S0BRS (‘0’ or
‘1’), taken as integer.

Using the above equation, the maximum Baud
rate can be calculated for any given clock speed.
The device datasheet gives a table of values for
Baud rate vs reload register value for SOBRS=0
and SOBRS=1.

Synchronous Mode Baud Rates

For synchronous operation, the Baud rate
generator provides a clock with 4 times the rate of
the established Baud rate. The Baud rate for

synchronous operation of serial channel ASC0
can be determined by the following formula:

(S0BRL) represents the content of the reload
register, taken as unsigned 13 Bit integers,
(S0BRS) represents the value of Bit S0BRS (‘0’ or
‘1’), taken as integer.

Using the above equation, the maximum Baud
rate can be calculated for any given clock speed.

10.5 - ASC0 Interrupt Control

Four Bit addressable interrupt control registers
are provided for serial channel ASC0. Register
S0TIC controls the transmit interrupt, S0TBIC
controls the transmit buffer interrupt, S0RIC
controls the receive interrupt and S0EIC controls
the error interrupt of serial channel ASC0. Each
interrupt source also has its own dedicated
interrupt vector. S0TINT is the transmit interrupt
vector, S0TBINT is the transmit interrupt vector,
S0RINT is the receive interrupt vector, and
S0EINT is the error interrupt vector.

The cause of an error interrupt request (framing,
parity, overrun error) can be identified by the error
status flags in control register S0CON.

Note In contrary to the error interrupt request
flag S0EIR, the error status flags S0FE/
S0PE/S0OE are not reset automatically
upon entry into the error interrupt ser-
vice routine, but must be cleared by soft-
ware.

S0TIC (FF6Ch / B6h) SFR Reset Value: - - 00h

S0RIC (FF6Eh / B7h) SFR Reset Value: - - 00h

BAsync =
fCPU

16 x [2 + (S0BRS)] x [(S0BRL) + 1]

S0BRL = (
fCPU

16 x [2 + (S0BRS)] x BAsync
) - 1

BSync =

S0BRL = (
fCPU

4 x [2 + (S0BRS)] x BSync
) - 1

fCPU

4 x [2 + (S0BRS)] x [(S0BRL) + 1]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - S0TIR S0TIE ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - S0RIR S0RIE ILVL GLVL

RW RW RW RW

ST10X167

164/294

S0EIC (FF70h / B8) SFR Reset Value: - - 00h

S0TBIC (F19Ch / CEh) ESFR Reset Value: - - 00h

Note Please refer to Section 5.1.3 - Interrupt
Control Registers for an explanation of
the control fields.

Using the ASC0 Interrupts
For normal operation (besides the error interrupt)
the ASC0 provides three interrupt requests to
control data exchange via this serial channel:
– S0TBIR is activated when data is moved from

S0TBUF to the transmit shift register.
– S0TIR is activated before the last Bit of an

asynchronous frame is transmitted, or
after the last Bit of a synchronous
frame has been transmitted.

– S0RIR is activated when the received frame is
moved to S0RBUF.

While the task of the receive interrupt handler is
quite clear, the transmitter is serviced by two
interrupt handlers. This provides advantages for
the servicing software.
For single transfers is sufficient to use the
transmitter interrupt (S0TIR), which indicates that

the previously loaded data has been transmitted,
except for the last Bit of an asynchronous frame.

For multiple back-to-back transfers it is
necessary to load the following piece of data at
last until the time the last Bit of the previous frame
has been transmitted. In asynchronous mode this
leaves just one Bit-time for the handler to respond
to the transmitter interrupt request, in
synchronous mode it is impossible at all.

Using the transmit buffer interrupt (S0TBIR) to
reload transmit data gives the time to transmit a
complete frame for the service routine, as
S0TBUF may be reloaded while the previous data
is still being transmitted.

As shown in the Figure 92, S0TBIR is an early
trigger for the reload routine, while S0TIR
indicates the completed transmission. Software
using handshake therefore should rely on S0TIR
at the end of a data block to make sure that all
data has really been transmitted.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - S0EIR S0EIE ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - S0TBIR S0TBIE ILVL GLVL

RW RW RW RW

Figure 92 : ASC0 interrupt generation

Idle Idle

S
ta

rt

S
ta

rt

S
ta

rt

S
to

p

S
to

p

S
to

p

S0TBIR S0TBIR S0TBIR

S0TIR S0TIR S0TIR

S0RIR S0RIR S0RIR

Idle Idle

S0TBIR S0TBIR S0TBIR

S0TIR S0TIR S0TIR

S0RIR S0RIR S0RIR

Asynchronous Mode

Synchronous Mode

ST10X167

165/294

11 - HIGH-SPEED SYNCHRONOUS SERIAL INTERFACE

The High-Speed Synchronous Serial Interface
SSC provides flexible high-speed serial
communication between the ST10X167 and other
microcontrollers, microprocessors or external
peripherals.

The SSC supports full-duplex and half-duplex
synchronous communication. The serial clock
signal can be generated by the SSC itself (master
mode) or be received from an external master
(slave mode). Data width, shift direction, clock
polarity and phase are programmable. This allows
communication with SPI-compatible devices.
Transmission and reception of data is
double-buffered. A 16 Bit Baud rate generator
provides the SSC with a separate serial clock
signal.

The high-speed synchronous serial interface can
be configured in three ways, it can be used with
other synchronous serial interfaces (the ASC0
in synchronous mode), or configured in like
master / slave or multimaster interconnections or
operate like the popular SPI interface. It can
communicate with shift registers (I/O expansion),
peripherals (EEPROMs etc.) or other controllers
(networking). The SSC supports half-duplex and
full-duplex communication. Data is transmitted or
received on pins MTSR/P3.9 (Master Transmit /
Slave Receive) and MRST/P3.8 (Master Receive /
Slave Transmit). The clock signal is output or input
on pin SCLK/P3.13. These pins are alternate
functions of Port3 pins.

ST10X167

166/294

Figure 93 : SFRs and port pins associated with the SSC

Ports & Direction Control Alternate Functions Data Registers

15

-

14

-

13

Y

12

-

11

-

10

-

9

Y

8

Y

7

-

6

-

5

-

4

-

3

-

2

-

1

-

0

-ODP3 E SSCBR E

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

Y

- - Y - - - Y Y - - - - - - - -DP3

- - Y - - - Y Y - - - - - - - -P3

SSCTB E Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

SSCRB E Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Control Registers Interrupt Control

15

Y

14

Y

13

-

12

Y

11

Y

10

Y

9

Y

8

Y

7

-

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YSSCCON

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SSCTIC

- - - - - - - - Y Y Y Y Y Y Y YSSCRIC

- - - - - - - - Y Y Y Y Y Y Y YSSCEIC

- - - - - - - - Y Y Y Y Y Y Y Y

SCLK / P3.13
MTSR / P3.9
MRST / P3.8

ODP3 Port3 Open Drain Control Register
DP3 Port3 Direction Control Register
SSCBR SSC Baud Rate Generator/Reload Register
SSCTB SSC Transmit Buffer Register (write only)
SSCTIC SSC Transmit Interrupt Control Register

P3 Port3 Data Register
SSCCON SSC Control Register
SSCRB SSC Receive Buffer Register (read only)
SSCRIC SSC Receive Interrupt Control Register
SSCEIC SSC Error Interrupt Control Register

Bit is linked to a function
Bit has no function or is not implemented
Register is in ESFR internal memory space

Y
-
E

:
:
:

ST10X167

167/294

Figure 94 : Synchronous serial channel SSC block diagram

The operating mode of the serial channel SSC is controlled by its Bit-addressable control register
SSCCON. This register serves for two purposes:
– During programming (SSC disabled by SSCEN=’0’) it provides access to a set of control Bit.
– During operation (SSC enabled by SSCEN=’1’) it provides access to a set of status flags. Register

SSCCON is shown below in each of the two modes.

Baud Rate Generator

SSC Control
Block

Internal Bus

Clock Control
CPU
Clock

Slave Clock

Master Clock

SCLK

Shift
Clock

Status Control

Receive Interrupt Request

Transmit Interrupt Request

Error Interrupt Request

16-Bit Shift Register

Pin
Control

MTSR

MRST

Transmit Buffer
Register SSCTB

Receive Buffer
Register SSCRB

P3.13

P3.9

P3.8

ST10X167

168/294

SSCCON (FFB2h / D9h) SFR Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SSC
EN=0

SSC
MS

- SSC
AREN

SSC
BEN

SSC
PEN

SSC
REN

SSC
TEN

- SSC
PO

SSC
PH

SSC
HB

SSCBM

RW RW RW RW RW RW RW RW RW RW RW

Bit Function (Programming Mode, SSCEN = ‘0’)

SSCBM SSC Data Width Selection

0: Reserved. Do not use this combination.
1...15: Transfer Data Width is 2...16 Bit [(SSCBM)+1]

SSCHB SSC Heading Control Bit

0: Transmit/Receive LSB First
1: Transmit/Receive MSB First

SSCPH SSC Clock Phase Control Bit

0: Shift transmit data on the leading clock edge, latch on trailing edge
1: Latch receive data on leading clock edge, shift on trailing edge

SSCPO SSC Clock Polarity Control Bit

0: Idle clock line is low, leading clock edge is low-to-high transition
1: Idle clock line is high, leading clock edge is high-to-low transition

SSCTEN SSC Transmit Error Enable Bit

0: Ignore transmit errors
1: Check transmit errors

SSCREN SSC Receive Error Enable Bit

0: Ignore receive errors
1: Check receive errors

SSCPEN SSC Phase Error Enable Bit

0: Ignore phase errors
1: Check phase errors

SSCBEN SSC Baudrate Error Enable Bit

0: Ignore baudrate errors
1: Check baudrate errors

SSCAREN SSC Automatic Reset Enable Bit

0: No additional action upon a baudrate error
1: The SSC is automatically reset upon a baudrate error

SSCMS SSC Master Select Bit

0: Slave Mode. Operate on shift clock received via SCLK.
1: Master Mode. Generate shift clock and output it via SCLK.

SSCEN SSC Enable Bit = ‘0’

Transmission and reception disabled. Access to control Bits.

ST10X167

169/294

SSCCON (FFB2h / D9h) SFR Reset Value: 0000h

Note The target of an access to SSCCON
(control Bit or flags) is determined by the
state of SSCEN prior to the access.
Writing C057h to SSCCON in
programming mode (SSCEN=’0’) will
initialize the SSC (SSCEN was ‘0’) and
then turn it on (SSCEN=’1’).
When writing to SSCCON, make sure that
reserved locations receive zeros.

The shift register of the SSC is connected to both
the transmit pin and the receive pin via the pin
control logic (see Figure 94). Transmission and
reception of serial data is synchronized and takes
place at the same time, so the same number of
transmitted Bit is also received. Transmit data is
written into the Transmit Buffer SSCTB. It is
moved to the shift register as soon as this is
empty. An SSC-master (SSCMS=’1’) immediately
begins transmitting, while an SSC-slave
(SSCMS=’0’) will wait for an active shift clock.
When the transfer starts, the busy flag SSCBSY is
set and a transmit interrupt request (SSCTIR) will
be generated to indicate that SSCTB may be
reloaded again. When the programmed number of
Bit (2...16) has been transferred, the contents of

the shift register are moved to the Receive Buffer
SSCRB and a receive interrupt request (SSCRIR)
will be generated. If no further transfer is to take
place (SSCTB is empty), SSCBSY will be cleared
at the same time. Software should not modify
SSCBSY, as this flag is hardware controlled. Only
one SSC can be master at a given time.
The transfer of serial data Bit can be programmed
in the following ways:
– The data width can be chosen from 2 Bit to 16

Bit.
– Transfer may start with the LSB or the MSB.
– The shift clock may be idle low or idle high.
– Data Bit may be shifted with the leading or

trailing edge of the clock signal.
– The Baud rate may be set for a range of values

(refer to Section 11.3 - Baud Rate Generation
for the formula to calculate values or to the
device datasheet for specific values).

– The shift clock can be generated (master) or
received (slave).

This allows the adaptation of the SSC to a wide
range of applications, where serial data transfer is
required.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SSC
EN=1

SSC
MS

- SSC
BSY

SSC
BE

SSC
PE

SSC
RE

SSC
TE

- - - - SSCBC

RW RW RW RW RW RW RW R

Bit Function (Operating Mode, SSCEN = ‘1’)

SSCBC SSC Bit Count Field

Shift counter is updated with every shifted Bit. Do not write to

SSCTE SSC Transmit Error Flag

1: Transfer starts with the slave’s transmit buffer not being updated

SSCRE SSC Receive Error Flag

1: Reception completed before the receive buffer was read

SSCPE SSC Phase Error Flag

1: Received data changes around sampling clock edge

SSCBE SSC Baud rate Error Flag

1: More than factor 2 or 0.5 between Slave’s actual and expected Baud rate

SSCBSY SSC Busy Flag: Set while a transfer is in progress. Do not write to

SSCMS SSC Master Select Bit

0: Slave Mode. Operate on shift clock received via SCLK.
1: Master Mode. Generate shift clock and output it via SCLK.

SSCEN SSC Enable Bit = ‘1’

Transmission and reception enabled. Access to status flags and M/S control.

ST10X167

170/294

The data width selection supports the transfer of
frames of any length, from 2 Bit “characters” up to
16 Bit “characters”. Starting with the LSB
(SSCHB=’0’) allows communication with ASC0
devices in synchronous mode like serial
interfaces. Starting with the MSB (SSCHB=’1’)
allows operation compatible with the SPI
interface.

Regardless which data width is selected and
whether the MSB or the LSB is transmitted first,
the transfer data is always right aligned in
registers SSCTB and SSCRB, with the LSB of the
transfer data in Bit 0 of these registers. The data
Bit are rearranged for transfer by the internal shift
register logic. The unselected Bit of SSCTB are
ignored, the unselected Bit of SSCRB will be not
valid and should be ignored by the receiver
service routine.

The clock control allows the adaptation of
transmit and receive behavior of the SSC to a
variety of serial interfaces. A specific clock edge
(rising or falling) is used to shift out transmit data,
while the other clock edge is used to latch in
receive data. Bit SSCPH selects the leading edge
or the trailing edge for each function. Bit SSCPO
selects the level of the clock line in the idle state.
So for an idle-high clock the leading edge is a
falling one, a 1-to-0 transition. The Figure 95 is a
summary.

11.1 - Full-Duplex Operation
The different devices are connected through three
lines. The definition of these lines is always
determined by the master: The line connected to
the master's data output pin MTSR is the transmit
line, the receive line is connected to its data input
line MRST, and the clock line is connected to pin
SCLK. Only the device selected for master
operation generates and outputs the serial clock
on pin SCLK. All slaves receive this clock, so their
pin SCLK must be switched to input mode
(DP3.13=’0’). The output of the master’s shift
register is connected to the external transmit line,
which in turn is connected to the slaves’ shift
register input.
The output of the slaves’ shift register is
connected to the external receive line in order to
enable the master to receive the data shifted out
of the slave. The external connections are
hard-wired, the function and direction of these
pins is determined by the master or slave
operation of the individual device.
Note The shift direction shown in the Figure 96

applies for MSB-first operation as well as
for LSB-first operation.

When initializing the devices in this configuration,
select one device for master operation
(SSCMS=’1’), all others must be programmed for
slave operation (SSCMS=’0’). Initialization
includes the operating mode of the device's SSC
and also the function of the respective port lines
(see Section 11.2.1 - Port Control).

Figure 95 : Serial clock phase and polarity options

Serial Clock
SCLK

Transmit Data Last
Bit

Latch
Data

Shift Data

First
Bit

Pins
MTSR / MRST

SSCPO SSCPH

0

0

1

1

0

1

0

1

ST10X167

171/294

Figure 96 : SSC full duplex configuration

The data output pins MRST of all slave devices
are connected together onto the one receive line
in this configuration. During a transfer each slave
shifts out data from its shift register. There are two
ways to avoid collisions on the receive line due to
different slave data:

Only one slave drives the line , it enables the
driver of its MRST pin. All the other slaves have to
program there MRST pins to input. So only one
slave can put its data onto the master's receive
line. Only receiving of data from the master is
possible. The master selects the slave device
from which it expects data either by separate
select lines, or by sending a special command to
this slave. The selected slave then switches its

MRST line to output, until it gets a de-selection
signal or command.
The slaves use open drain output on MRST .
This forms a And-wired connection. The receive
line needs an external pull-up in this case.
Corruption of the data on the receive line sent by
the selected slave is avoided, when all slaves
which are not selected for transmission to the
master only send ones (‘1’). Since this high level is
not actively driven onto the line, but only held
through the pull-up device, the selected slave can
pull this line actively to a low level when
transmitting a zero Bit. The master selects the
slave device from which it expects data either by
separate select lines, or by sending a special
command to this slave.

Shift Register

MTSR

CLK

MRST

Clock

Master Device #1

Transmit

Receive

Clock

MTSR

MRST

CLK
Clock

Shift Register

Device #2 Slave

MTSR

MRST

CLK
Clock

Shift Register

Device #2 Slave

ST10X167

172/294

After performing all necessary initialization of the
SSC, the serial interfaces can be enabled. For a
master device, the alternate clock line will now go
to its programmed polarity. The alternate data line
will go to either '0' or '1', until the first transfer will
start. After a transfer the alternate data line will
always remain at the logic level of the last
transmitted data Bit.

When the serial interfaces are enabled, the
master device can initiate the first data transfer by
writing the transmit data into register SSCTB. This
value is copied into the shift register (which is
assumed to be empty at this time), and the
selected first Bit of the transmit data will be placed
onto the MTSR line on the next clock from the
Baud rate generator (transmission only starts, if
SSCEN=’1’). Depending on the selected clock
phase, also a clock pulse will be generated on the
SCLK line.

With the opposite clock edge the master at the
same time latches and shifts in the data detected
at its input line MRST. This “exchanges” the
transmit data with the receive data. Since the
clock line is connected to all slaves, their shift
registers will be shifted synchronously with the
master's shift register, shifting out the data
contained in the registers, and shifting in the data
detected at the input line. After the
pre-programmed number of clock pulses (via the
data width selection) the data transmitted by the
master is contained in all slaves’ shift registers,
while the master's shift register holds the data of
the selected slave. In the master and all slaves the
content of the shift register is copied into the
receive buffer SSCRB and the receive interrupt
flag SSCRIR is set.

A slave device will immediately output the
selected first Bit (MSB or LSB of the transfer data)
at pin MRST, when the content of the transmit
buffer is copied into the slave's shift register. It will
not wait for the next clock from the Baud rate
generator, as the master does. The reason for this
is that, depending on the selected clock phase,
the first clock edge generated by the master may
be already used to clock in the first data Bit. So
the slave's first data Bit must already be valid at
this time.

Note A transmission and a reception takes
place at the same time, regardless
whether valid data has been transmitted
or received. This is different from
asynchronous reception on ASC0.

The initialization of the SCLK pin on the master
requires some attention in order to avoid

undesired clock transitions, which may disturb the
other receivers. The state of the internal alternate
output lines is '1' as long as the SSC is disabled.
This alternate output signal is ANDed with the
respective port line output latch. Enabling the
SSC with an idle-low clock (SSCPO=’0’) will drive
the alternate data output and (via the AND) the
port pin SCLK immediately low. To avoid this, use
the following sequence:

– Select the clock idle level (SSCPO=’x’)

– Load the port output latch with the desired clock
idle level (P3.13=’x’)

– Switch the pin to output (DP3.13=’1’)

– Enable the SSC (SSCEN=’1’)

– If SSCPO=’0’: enable alternate data output
(P3.13=’1’)

The same mechanism as for selecting a slave for
transmission (separate select lines or special
commands) may also be used to move the role of
the master to another device in the network. In
this case the previous master and the future
master (previous slave) will have to toggle their
operating mode (SSCMS) and the direction of
their port pins (see description above).

11.2 - Half Duplex Operation

In a half duplex configuration only one data line is
necessary for both receiving and transmitting of
data. The data exchange line is connected to both
pins MTSR and MRST of each device, the clock
line is connected to the SCLK pin.

The master device controls the data transfer by
generating the shift clock, while the slave devices
receive it. Due to the fact that all transmit and
receive pins are connected to the one data
exchange line, serial data may be moved between
arbitrary stations.

Similar to full duplex mode there are two ways to
avoid collisions on the data exchange line:

– Only the transmitting device may enable its
transmit pin driver

– The non-transmitting devices use open drain
output and only send ones.

Since the data inputs and outputs are connected
together, a transmitting device will clock in its own
data at the input pin (MRST for a master device,
MTSR for a slave). By these means any
corruptions on the common data exchange line
are detected, where the received data is not equal
to the transmitted data.

ST10X167

173/294

Figure 97 : SSC half duplex configuration

Continuous Transfers

When the transmit interrupt request flag is set, it
indicates that the transmit buffer SSCTB is empty
and ready to be loaded with the next transmit data.
If SSCTB has been reloaded by the time the
current transmission is finished, the data is
immediately transferred to the shift register and the
next transmission will start without any additional
delay. On the data line there is no gap between the
two successive frames, so two Byte transfers
would look the same as one Word transfer. This
feature can be used to interface with devices which
can operate with or require more than 16 data Bit
per transfer. It is just a matter of software, how long
a total data frame length can be. This option can
also be used to interface to Byte wide and Word
wide devices on the same serial bus.

Note Of course, this can only happen in multiples
of the selected basic data width, since it
would require disabling/enabling of the SSC
to reprogram the basic data width on-the-fly.

11.2.1 - Port Control
The SSC uses three pins of Port3 to communicate
with the external world. Pin P3.13/SCLK serves
as the clock line, while pins P3.8/MRST (Master
Receive / Slave Transmit) and P3.9/MTSR
(Master Transmit / Slave Receive) serve as the
serial data input/output lines. The operation of
these pins depends on the selected operating
mode (master or slave). In order to enable the
alternate output functions of these pins instead of
the general purpose I/O operation, the respective
port latches have to be set to '1', since the port
latch outputs and the alternate output lines are
ANDed. When an alternate data output line is not
used (function disabled), it is held at a high level,
allowing I/O operations via the port latch. The
direction of the port lines depends on the
operating mode. The SSC will automatically use
the correct alternate input or output line of the
ports when switching modes. The direction of the
pins, however, must be programmed by the user,
as shown in the tables.

Shift Register

MTSR

CLK

MRST

Clock

Master Device #1

Clock

MTSR

CLK
Clock

Shift Register

Device #2 Slave

MTSR

MRST

CLK
Clock

Shift Register

Device #3 Slave

MRST

Common
Transmit/
Receive
Line

ST10X167

174/294

Using the open drain output feature helps to avoid bus contention problems and reduces the need for
hardwired hand-shaking or slave select lines. In this case it is not always necessary to switch the direction
of a port pin. The table below summarizes the required values for the different modes and pins.

Note In the table above, an 'x' means that the
actual value is irrelevant in the respective
mode, however, it is recommended to set
these Bit to '1', so they are already in the
correct state when switching between
master and slave mode.

11.3 - Baud Rate Generation
The serial channel SSC has its own dedicated 16
Bit Baud rate generator with 16 Bit reload
capability, allowing Baud rate generation
independent from the timers.
The Baud rate generator is clocked by fCPU/2. The
timer is counting downwards and can be started
or stopped through the global enable Bit SSCEN
in register SSCCON. Register SSCBR is the
dual-function Baud Rate Generator/Reload
register. Reading SSCBR, while the SSC is
enabled, returns the content of the timer. Reading
SSCBR, while the SSC is disabled, returns the
programmed reload value. In this mode the
desired reload value can be written to SSCBR.
Note Never write to SSCBR, while the SSC is

enabled.
The formulas below calculate the resulting Baud
rate for a given reload value and the required
reload value for a given Baud rate:

(SSCBR) represents the content of the reload
register, taken as unsigned 16 Bit integer.
Refer to the device datasheet for a table of Baud
rates, reload values and resulting Bit times.

11.4 - Error Detection Mechanisms
The SSC is able to detect four different error
conditions. Receive Error and Phase Error are
detected in all modes, while Transmit Error and
Baud rate Error only apply to slave mode. When

an error is detected, the respective error flag is
set. When the corresponding Error Enable Bit is
set, also an error interrupt request will be
generated by setting SSCEIR (see figure below).
The error interrupt handler may then check the
error flags to determine the cause of the error
interrupt. The error flags are not reset
automatically (like SSCEIR), but rather must be
cleared by software after servicing. This allows
servicing of some error conditions via interrupt,
while the others may be polled by software.

Note The error interrupt handler must clear the
associated (enabled) error flag(s) to
prevent repeated interrupt requests.

A Receive Error (Master or Slave mode) is
detected, when a new data frame is completely
received, but the previous data was not read out
of the receive buffer register SSCRB. This
condition sets the error flag SSCRE and, when
enabled via SSCREN, the error interrupt request
flag SSCEIR. The old data in the receive buffer
SSCRB will be overwritten with the new value and
is irretrievably lost.

A Phase Error (Master or Slave mode) is
detected, when the incoming data at pin MRST
(master mode) or MTSR (slave mode), sampled
with the same frequency as the CPU clock,
changes between one sample before and two
samples after the latching edge of the clock signal
(see “Clock Control”). This condition sets the error
flag SSCPE and, when enabled via SSCPEN, the
error interrupt request flag SSCEIR.

A Baud Rate Error (Slave mode) is detected,
when the incoming clock signal deviates from the
programmed Baud rate by more than 100%, it
either is more than double or less than half the
expected Baud rate. This condition sets the error
flag SSCBE and, when enabled via SSCBEN, the
error interrupt request flag SSCEIR. Using this
error detection capability requires that the slave's
Baud rate generator is programmed to the same
Baud rate as the master device.

Pin
Master Mode Slave Mode

Function Port Latch Direction Function Port Latch Direction

P3.13 / SCLK Serial Clock Output P3.13=’1’ DP3.13=’1’ Serial Clock Input P3.13=’x’ DP3.13=’0’

P3.9 / MTSR Serial Data Output P3.9=’1’ DP3.9=’1’ Serial Data Input P3.9=’x’ DP3.9=’0’

P3.8 / MRST Serial Data Input P3.8=’x’ DP3.8=’0’ Serial Data Output P3.8=’1’ DP3.8=’1’

Baud rateSSC =
fCPU

2 x [(SSCBR) + 1]

SSCBR = (
fCPU

2 x Baud rateSSC
) - 1

ST10X167

175/294

This feature detects false additional, or missing
pulses on the clock line (within a certain frame).
Note If this error condition occurs and Bit

SSCAREN=’1’, an automatic reset of the
SSC will be performed in case of this
error. This is done to re-initialize the SSC,
if too few or too many clock pulses have
been detected.

A Transmit Error (Slave mode) is detected, when
a transfer was initiated by the master (shift clock
gets active), but the transmit buffer SSCTB of the
slave was not updated since the last transfer. This
condition sets the error flag SSCTE and, when
enabled via SSCTEN, the error interrupt request
flag SSCEIR. If a transfer starts while the transmit
buffer is not updated, the slave will shift out the
'old' contents of the shift register, which normally
is the data received during the last transfer.
This may lead to the corruption of the data on the
transmit/receive line in half-duplex mode (open
drain configuration), if this slave is not selected for
transmission. This mode requires that slaves not
selected for transmission only shift out ones, so
their transmit buffers must be loaded with 'FFFFh'
prior to any transfer.
Note A slave with push-pull output drivers,

which is not selected for transmission, will

normally have its output drivers switched.
However, in order to avoid possible
conflicts or misinterpretations, it is
recommended to always load the slave's
transmit buffer prior to any transfer (see
Figure 98).

11.5 - SSC Interrupt Control

Three interrupt control registers are provided for
serial channel SSC. Register SSCTIC controls the
transmit interrupt, SSCRIC controls the receive
interrupt and SSCEIC controls the error interrupt
of serial channel SSC. Each interrupt source also
has its own dedicated interrupt vector. SCTINT is
the transmit interrupt vector, SCRINT is the
receive interrupt vector, and SCEINT is the error
interrupt vector.

The cause of an error interrupt request (receive,
phase, Baud rate, transmit error) can be identified
by the error status flags in control register
SSCCON.

Note In contrary to the error interrupt request
flag SSCEIR, the error status flags
SSCxE are not reset automatically upon
entry into the error interrupt service
routine, but must be cleared by software.

Figure 98 : SSC error interrupt control

SSCTE

Register SSCCON

SSCTE
&

Transmit
Error

SSCRE

SSCRE
&Receive

Error

SSCPE

SSCPE
&

SSCBE

SSCBE
&

Phase
Error

Baudrate
Error

≥ 1

SSCEIE

SSCEIR
&

Error
Interrupt
SSCEINT

Register SSCEIR

ST10X167

176/294

SSCTIC (FF72h / B9h) SFR Reset Value: --00h

SSCRIC (FF74h / BAh) SFR Reset Value: --00h

SSCEIC (FF76h / BBh) SFR Reset Value: --00h

Note Please refer to Section 5.1.3 - Interrupt Control Registers for an explanation of the control fields.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - SSC
TIR

SSC
TIE

ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - SSC
RIR

SSC
RIE

ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - SSC
EIR

SSC
EIE

ILVL GLVL

RW RW RW RW

ST10X167

177/294

12 - WATCHDOG TIMER

The watchdog timer (WDT) provides recovery
from software or hardware failure. If the software
fails to service this timer before an overflow
occurs, an internal reset sequence is initiated.

This internal reset will also pull the RSTOUT pin
low, this resets the peripheral hardware which
might have caused the malfunction. When the
watchdog timer is enabled and is serviced
regularly to prevent overflows, the watchdog timer
supervises program execution. Overflow only
occurs if the program does not progress properly.

The watchdog timer will time out, if a software
error was due to hardware related failures. This
prevents the controller from malfunctioning for
longer than a user-specified time.

The watchdog timer provides two registers:

– Read-only timer register that contains the
current count.

– Control register for initialization.

The watchdog timer is a 16 Bit up counter which
can be clocked with the CPU clock (fCPU) either
divided by 2 or divided by 128. This 16 Bit timer is
realized as two concatenated 8 Bit timers (see
Figure 100).

The upper 8 Bit of the watchdog timer can be
preset to a user-programmable value by a
watchdog service access, in order to program the
watchdog expire time. The lower 8 Bit are reset on
each service access.

12.1 - Operation of the Watchdog Timer
The current count value of the Watchdog Timer is contained in the Watchdog Timer Register WDT, which
is a Bitaddressable read-only register. The operation of the Watchdog Timer is controlled by its
Bitaddressable Watchdog Timer Control Register WDTCON. This register specifies the reload value for
the high Byte of the timer, selects the input clock prescaling factor and provides a flag that indicates a
watchdog timer overflow.

Figure 99 : SFRs and port pins associated with the watchdog timer

Figure 100 : Watchdog timer block diagram

Data Registers Control Registers

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YWDT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WDTCON Y Y Y Y Y Y Y Y - - - - - - Y Y

Reset Indication Pin

RSTOUT

Bit is linked to a function
Bit has no function or is not implemented
Register is in ESFR internal memory space

Y
-
E

:
:
:

÷ 2

÷ 128

MUX

WDTIN

WDT Low Byte WDT High Byte WDTR

Reset

WDTREL

Clear

WDT Control

fCPU

RSTOUT

ST10X167

178/294

WDTCON (FFAEh / D7h) SFR Reset Value: 000Xh

Note The reset value will be 0002h, if the reset
was triggered by the watchdog timer
(overflow). It will be 0000h otherwise.

After any software reset, external hardware reset
(see note), or watchdog timer reset, the watchdog
timer is enabled and starts counting up from
0000h with the frequency fCPU / 2. The input
frequency may be switched to fCPU / 128 by
setting Bit WDTIN. The watchdog timer can be
disabled via the instruction DISWDT (Disable
Watchdog Timer). Instruction DISWDT is a
protected 32 Bit instruction which will ONLY be
executed during the time between a reset and
execution of either the EINIT (End of Initialization)
or the SRVWDT (Service Watchdog Timer)
instruction. Either one of these instructions
disables the execution of DISWDT.

When the watchdog timer is not disabled via
instruction DISWDT, it will continue counting up,
even during Idle Mode. If it is not serviced via the
instruction SRVWDT by the time the count reaches
FFFFh the watchdog timer will overflow and cause
an internal reset. This reset will pull the external
reset indication pin RSTOUT low. It differs from a
software or external hardware reset in that Bit
WDTR (Watchdog Timer Reset Indication Flag) of
register WDTCON will be set. A hardware reset or
the SRVWDT instruction will clear this Bit. Bit
WDTR can be examined by software in order to
determine the cause of the reset.

A watchdog reset will also complete a running
external bus cycle before starting the internal
reset sequence if this bus cycle does not use
READY or samples READY active (low) after the
programmed waitstates. Otherwise the external
bus cycle will be aborted.

After a hardware reset that activates the Bootstrap
Loader the watchdog timer will be disabled.

To prevent the watchdog timer from overflowing, it
must be serviced periodically by the user
software. The watchdog timer is serviced with the
instruction SRVWDT, which is a protected 32 Bit
instruction. Servicing the watchdog timer clears
the low Byte and reloads the high Byte of the
watchdog time register WDT with the preset value
in Bit field WDTREL, which is the high Byte of
register WDTCON. Servicing the watchdog timer
will also reset Bit WDTR.

After being serviced the watchdog timer continues
counting up from the value [(WDTREL) x 28].
Instruction SRVWDT has been encoded in such a
way that the chance of unintentionally servicing
the watchdog timer (eg. by fetching and executing
a Bit pattern from a wrong location) is minimized.
When instruction SRVWDT does not match the
format for protected instructions, the Protection
Fault Trap will be entered, rather than the
instruction be executed.

The time period for an overflow of the watchdog
timer is programmable in two ways:

– The input frequency to the watchdog timer can
be selected via Bit WDTIN in register WDTCON
to be either fCPU / 2 or fCPU / 128.

– The reload value WDTREL for the high Byte of
WDT can be programmed in register WDTCON.

The period PWDT between servicing the watchdog
timer and the next overflow can therefore be
determined by the following formula:

Refer to the device datasheet for a table of
watchdog timer ranges. For security, you are
advised to rewrite WDTCON each time before the
watchdog timer is serviced.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WDTREL - - - - - - WDTR WDTIN

RW RW RW

Bit Function

WDTIN Watchdog Timer Input Frequency Selection

‘0’: Input frequency is fCPU / 2
‘1’: Input frequency is fCPU / 128

WDTR Watchdog Timer Reset Indication Flag

Set by the watchdog timer on an overflow.
Cleared by a hardware reset or by the SRVWDT instruction.

WDTREL Watchdog Timer Reload Value (for the high Byte)

PWDT =
fCPU

2 [1 + (WDTIN) x 6] x [216 - (WDTREL) x 28]

ST10X167

179/294

13 - BOOTSTRAP LOADER

The built-in bootstrap loader of the ST10X167
provides a mechanism to load the startup
program through the serial interface after reset. In
this case, no external or internal ROM Memory is
required for the initialization code starting at
location 00’0000h.

The bootstrap loader moves code/data into the
internal RAM, but can also transfer data via the
serial interface into an external RAM using a
second level loader routine. ROM Memory
(internal or external) is not necessary, but it may
be used to provide lookup tables or “core-code”
like a set of general purpose subroutines for I/O
operations, number crunching, system
initialization, etc. (see Figure 101).

The bootstrap loader can be used to load the
complete application software into ROMless
systems, to load temporary software into
complete systems for testing or calibration, or to
load a programming routine for Flash devices.

The BSL mechanism can be used for standard
system startup as well as for special occasions

like system maintenance (firmer update) or
end-of-line programming or testing.

Entering the bootstrap loader

The ST10X167 enters BSL mode when pin P0L.4
is sampled low at the end of a hardware reset. In
this case the built-in bootstrap loader is activated
independent of the selected bus mode. The
bootstrap loader code is stored in a special
Boot-ROM. No part of the standard mask Memory
or Flash Memory area is required for this.

After entering BSL mode and the respective
initialization the ST10X167 scans the RXD0 line
to receive a zero Byte, one start Bit, eight ‘0’ data
Bits and one stop Bit. From the duration of this
zero Byte it calculates the corresponding Baud
rate factor with respect to the current CPU clock,
initializes the serial interface ASC0 accordingly
and switches pin TxD0 to output.

Using this Baud rate, an identification Byte is
returned to the host that provides the loaded
data.This identification Byte identifies the device
to be booted. Refer to the datasheet for specific
device information.

Figure 101 : Bootstrap loader sequence

RSTIN

TxD0

Internal Boot Memory (BSL) routine 32 Byte user software

2)

3)

RxD0

CSP:IP

4)

6)

P0L.4

1) BSL initialization time

2) Zero Byte (1 start Bit, eight ‘0’ data Bits, 1 stop Bit), sent by host.

3) Identification Byte, sent by ST10X167.

4) 32 Byte of code / data, sent by host.

5) Caution: TxD0 is only driven a certain time after reception of the zero Byte .

6) Internal Boot ROM.

1)

5)

ST10X167

180/294

When the ST10X167 has entered BSL mode, the following configuration is automatically set (values that
deviate from the normal reset values, are marked):

In this case, the watchdog timer is disabled, so the
bootstrap loading sequence is not time limited.
Pin TXD0 is configured as output, so the
ST10X167 can return the identification Byte.

Even if the internal Flash is enabled, no code can
be executed out of it.

The hardware that activates the BSL during reset
may be a simple pull-down resistor on P0L.4 for
systems that use this feature upon every
hardware reset. A switchable solution (via jumper
or an external signal) can be used for systems
that only temporarily use the bootstrap loader
(see Figure 102).

After sending the identification Byte the ASC0
receiver is enabled and is ready to receive the
initial 32 Byte from the host. A half duplex
connection is therefore sufficient to feed the BSL.

Memory Configuration After Reset
The configuration (and the accessibility) of the
ST10X167’s memory areas after reset in
Bootstrap-Loader mode differs from the standard
case. Pin EA is not evaluated when BSL mode is
selected, and accesses to the internal Flash area
are partly redirected, while the ST10X167 is in
BSL mode (see Figure 103). All code fetches are
made from the special Boot-ROM, while data
accesses read from the internal user ROM. Data
accesses will return undefined values on
ROMless devices.
The code in the Boot-ROM is not an invariant
feature of the ST10X167. User software should
not try to execute code from the internal ROM
area while the BSL mode is still active, as these
fetches will be redirected to the Boot-ROM. The
Boot-ROM will also “move” to segment 1, when
the internal ROM area is mapped to segment 1
(see Figure 103).

Watchdog Timer: Disabled Register SYSCON: 0E00h

Context Pointer CP: FA00h Register STKUN: FA40h

Stack Pointer SP: FA40h Register STKOV: FA0Ch 0<->C

Register S0CON: 8011h Register BUSCON0: acc. to startup configuration

Register S0BG: acc. to ‘00’ Byte P3.10 / TXD0: ‘1’

DP3.10: ‘1’

Figure 102 : Hardware provisions to activate the BSL

RPOL.4
8kΩ max.

Circuit 1

POL.4 POL.4

Normal Boot

BSL

External
Signal

RPOL.4
8kΩ max.

Circuit 2

ST10X167

181/294

Figure 103 : Memory configuration after reset

Loading the Startup Code

After sending the identification Byte the BSL
enters a loop to receive 32 Byte via ASC0. These
Byte are stored sequentially into locations
00’FA40h through 00’FA5Fh of the internal RAM.
So up to 16 instructions may be placed into the
RAM area. To execute the loaded code the BSL
then jumps to location 00’FA40h, which is the first
loaded instruction.

The bootstrap loading sequence is now
terminated, the ST10X167 remains in BSL mode,
however. Most probably the initially loaded routine
will load additional code or data, as an average
application is likely to require substantially more
than 16 instructions. This second receive loop
may directly use the pre-initialized interface ASC0
to receive data and store it to arbitrary
user-defined locations.

This second level of loaded code may be the final
application code. It may also be another, more
sophisticated, loader routine that adds a
transmission protocol to enhance the integrity of
the loaded code or data. It may also contain a
code sequence to change the system
configuration and enable the bus interface to store
the received data into external memory.

This process may go through several iterations or
may directly execute the final application. In all
cases the ST10X167 will still run in BSL mode,
that means with the watchdog timer disabled and
limited access to the internal ROM area.

All code fetches from the internal ROM area
(00’0000h...00’7FFFh or 01’0000h...01’7FFFh, if
mapped to segment 1) are redirected to the
special Boot-ROM. Data fetches access will
access the internal Boot-ROM of the ST10X167, if
any is available, but will return undefined data on
ROMless devices.

Exiting Bootstrap Loader Mode

In order to execute a program in normal mode, the
BSL mode must be terminated first. The
ST10X167 exits BSL mode upon a software reset
(ignores the level on P0L.4) or a hardware reset
(P0L.4 must be high). After a reset the ST10X167
will start executing from location 00’0000h of the
internal ROM or the external memory, as
programmed via pin EA.

 16M Byte 16M Byte 16M Byte

BSL mode active Yes (P0L.4=’0’) Yes (P0L.4=’0’) No (P0L.4=’1’)

EA pin high low according to application

Code fetch from

internal ROM area

Boot-ROM access Boot-ROM access User ROM access

Data fetch from

internal ROM area

User ROM access User ROM access User ROM access

internal ROM
enabled

B
o

ot
-R

O
M

us
er

 R
O

M access to

external
bus
disabled

access to

 int.
RAM

1

0

25
5

internal ROM
enabled

B
oo

t-
R

O
M

us
er

 R
O

M access to

external
bus
enabled

access to

 int.
RAM

1

0

25
5

Depends on reset
configuration

us
er

 R
O

M

 int.
RAM

25
5

1

0

Depends on reset
configuration
(EA, P0)

ST10X167

182/294

Choosing the Baud rate for the BSL
The calculation of the serial Baud rate for ASC0
from the length of the first zero Byte that is
received, allows the operation of the bootstrap
loader of the ST10X167 with a wide range of Baud
rates. However, the upper and lower limits have to
be kept, in order to insure proper data transfer.

The ST10X167 uses timer T6 to measure the
length of the initial zero Byte. The quantization
uncertainty of this measurement implies the first
deviation from the real Baud rate, the next
deviation is implied by the computation of the
S0BRL reload value from the timer contents. The
formula below shows the association:

For a correct data transfer from the host to the
ST10X167 the maximum deviation between the
internal initialized Baud rate for ASC0 and the real
Baud rate of the host should be below 2.5%. The
deviation (FB, in percent) between host Baud rate
and ST10X167 Baud rate can be calculated via
the formula below:

Note Function (FB) does not consider the
tolerances of oscillators and other devices
supporting the serial communication.

This Baud rate deviation is a nonlinear function
depending on the CPU clock and the Baud rate of
the host. The maxima of the function (FB)
increase with the host Baud rate due to the
smaller Baud rate pre-scaler factors and the
implied higher quantization error (see Figure 104).

The minimum Baud rate (BLow in the Figure 104)
is determined by the maximum count capacity of
timer T6, when measuring the zero Byte, and it
depends on the CPU clock. Using the maximum
T6 count 216 in the formula the minimum Baud
rate can be calculated. The lowest standard Baud
rate in this case would be 1200 Baud. Baud rates
below BLow would cause T6 to overflow. In this
case ASC0 cannot be initialized properly.

The maximum Baud rate (BHigh in the
Figure 104) is the highest Baud rate where the
deviation still does not exceed the limit, so all
Baud rates between BLow and BHigh are below the
deviation limit. The maximum standard Baud rate
that fulfills this requirement is 19200 Baud.

Higher Baud rates , however, may be used as
long as the actual deviation does not exceed the
limit. A certain Baud rate (marked ’I’ in Figure 104)
may violate the deviation limit, while an even
higher Baud rate (marked ’II’ in Figure 104) stays
very well below it. This depends on the host
interface.

fCPU
32 S0BRL 1+()×
--BST10X167 =

S0BRL T6 36–
72

--------------------= T6
9
4

fCPU
BHost
-----------------×=,

FB
BContr BHost–

BContr
-- 100×= % ,

FB 2.5≤ %

Figure 104 : Baud rate deviation between host and ST10X167

BLow

2.5%

FB

BHigh

I

II

BHOST

ST10X167

183/294

14 - THE CAPTURE / COMPARE UNITS

The ST10X167 provides two, almost identical,
Capture / Compare (CAPCOM) units which differ,
only in the way they are connected to the I/O pins.
They provide 32 channels which interact with
4 timers. The CAPCOM units capture the
contents of a timer on specific internal or external
events, or they compare a timer’s content with
given values and modify output signals in case of

a match. They support generation and control of
timing sequences on up to 16 channels per unit
with a minimum of software intervention. For
programming, the term 'CAPCOM unit' refers to a
set of SFRs associated to the peripheral,
including the port pins which may be used for
alternate input / output functions including their
direction control Bit.

S
T

10X
167

1
84/29

4

F
igure 105 : S

F
R

s a
nd P

ort P
in

s associated w
ith the C

A
P

C
O

M
 units

Ports & Direction Control Alternate Functions Data Registers

15

-

14

-

13

-

12

-

11

-

10

-

9

-

8

-

7

Y

6

Y

5

Y

4

Y

3

-

2

-

1

-

0

-DP1H E T0

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

Y

- - - - - - - - Y Y Y Y - - - -P1H

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YODP2 E

T0REL Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

T1 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Control Registers Interrupt Control

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YT01CON

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T0IC

- - - - - - - - Y Y Y Y Y Y Y YT1IC

- - - - - - - - Y Y Y Y Y Y Y YT7IC E

- - - - - - - - Y Y Y Y Y Y Y Y

CC0IO/P2.0...CC15IO/P2.15
CC16IO/P8.0...CC23IO/P8.7
CC24IO/P1H.4...CC27IO/P1H.7
CC28IO/P7.4...CC31IO/P7.7

TxREL CAPCOM Timer x Reload Register
Tx CAPCOM Timer x Register
CC0...15 CAPCOM1 Register 0...15
CC16...31 CAPCOM2 Register 16...31
CCM0...3 CAPCOM1 Mode Control Register 0...3
CCM4...7 CAPCOM2 Mode Control Register 4...7
CC0...15IC CAPCOM1 Interrupt Control Register 0...15
CC16..31ICCAPCOM2 Interrupt Control Register 16...31

ODPx Port x Open Drain Control Register
DPx Port x Direction Control Register
Px Port x Data Register

T01CON CAPCOM1 Timers T0 and T1 Control Register
T78CON CAPCOM2 Timers T7 and T8 Control Register
T0IC/T1IC CAPCOM1 Timer 0/1 Interrupt Control Register
T7IC/T8IC CAPCOM2 Timer 7/8 Interrupt Control Register

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YDP2

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YP2

- - - - - - - - - - - - - - - YODP3 E

- - - - - - - - - - - - - - - YDP3

- - - - - - - - - - - - - - - YP3

- - - - - - - - Y Y Y Y - - - -ODP7 E

- - - - - - - - Y Y Y Y - - - -DP7

- - - - - - - - Y Y Y Y - - - -P7

- - - - - - - - Y Y Y Y Y Y Y YODP8 E

- - - - - - - - Y Y Y Y Y Y Y YDP8

- - - - - - - - Y Y Y Y Y Y Y YP8

T1REL Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

T7 E Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

T7REL E Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

T8 E Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

T8REL E Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

CC0-3 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

CC4-7 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

CC8-11 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

CC12-15 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

CC16-19 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

CC20-23 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

CC24-27 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

CC28-31 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YT78CON

CCM0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

CCM1 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

CCM2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

CCM3 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

CCM4 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

CCM5 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

CCM6 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

CCM7 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

- - - - - - - - Y Y Y Y Y Y Y YT8IC E

- - - - - - - - Y Y Y Y Y Y Y YCC0IC-3IC

- - - - - - - - Y Y Y Y Y Y Y YCC4IC-7IC

- - - - - - - - Y Y Y Y Y Y Y YCC8IC-11IC

- - - - - - - - Y Y Y Y Y Y Y YCC12IC-15IC

- - - - - - - - Y Y Y Y Y Y Y YCC16IC-19IC E

- - - - - - - - Y Y Y Y Y Y Y YCC20IC-23IC E

- - - - - - - - Y Y Y Y Y Y Y YCC24IC-27IC E

- - - - - - - - Y Y Y Y Y Y Y YCC28IC-31IC E

Bit is linked to a function
Bit has no function or is not implemented
Register is in ESFR internal memory space

Y
-
E

:
:
:

ST10X167

185/294

A CAPCOM unit handles high speed I/O tasks
such as pulse and waveform generation, pulse
width modulation, or recording of the time at which
specific events occur. It also allows the
implementation of up to 16 software timers. The
maximum resolution of the CAPCOM units is
calculated with the formula in Chapter Section
14.1 - CAPCOM Timers and is specified in the
device datasheet.
Each CAPCOM unit consists of two 16 Bit timers
(T0 / T1 in CAPCOM1, T7 / T8 in CAPCOM2),
each with its own reload register (TxREL), and a
bank of sixteen dual purpose 16 Bit capture /
compare registers (CC0 through CC15 in
CAPCOM1, CC16 through CC31 in CAPCOM2).
The input clock for the CAPCOM timers is
programmable to several pre-scaled values of the
CPU clock, or it can be derived from an overflow /
underflow of timer T6 in block GPT2. T0 and T7
may also operate in counter mode (from an
external input) where they can be clocked by
external events.

Each capture / compare register may be
programmed individually for capture or compare
function, and each register may be allocated to
either timer of the associated unit. Each capture /
compare register has one port pin associated with
it which serves as an input pin for the capture
function or as an output pin for the compare
function (except for CC27...CC24 on
P1H.7...P1H.4, which only provide the capture
function). The capture function causes the current
timer contents to be latched into the respective
capture / compare register triggered by an event
(transition) on its associated port pin. The
compare function may cause an output signal
transition on that port pin whose associated
capture / compare register matches the current
timer contents. Specific interrupt requests are
generated upon each capture / compare event or
upon timer overflow.

Figure 106 shows the basic structure of the two
CAPCOM units.

Note The CAPCOM2 unit provides 16 capture inputs, but only 12 compare outputs.

Figure 106 : CAPCOM unit block diagram

Tx
Input

Control

2n n = 3...10

GPT2 Timer T6

TxIN

CPU
Clock

Mode
Control

(Capture
or

Compare)

16
Capture inputs

Compare outputs

Ty
Input

Control

2n n = 3...10

GPT2 Timer T6
Over / Underflow

CPU
Clock

Reload Register TxREL

CAPCOM Timer Tx

Interrupt
Request

Sixteen 16-bit
(Capture/Compare)

Registers

Over / Underflow

CAPCOM Timer Ty

Reload Register TyREL

16
Capture / Compare
Interrupt Requests

Interrupt
Request

x = 0, 7

y = 1, 8

ST10X167

186/294

14.1 - CAPCOM Timers
The primary use of the timers T0 / T1 and T7 / T8 is to provide two independent time bases for the
capture / compare registers of each unit, but they may also be used independent of the capture / compare
registers. The basic structure of the four timers is identical, while the selection of input signals is different
for timers T0 / T7 and timers T1 / T8.

Note When an external input signal is connected to the input lines of both T0 and T7, these timers
count the input signal synchronously. Thus the two timers can be regarded as one timer whose
contents can be compared with 32 capture registers.

The functions of the CAPCOM timers are controlled via the Bit-addressable 16 Bit control registers
T01CON and T78CON. The high-Byte of T01CON controls T1, the low-Byte of T01CON controls T0, the
high-Byte of T78CON controls T8, the low-Byte of T78CON controls T7. The control options are identical
for all four timers (except for external input).

Figure 107 : Block diagram of CAPCOM timers T0 and T7

Figure 108 : Block diagram of CAPCOM timers T1 and T8

X

Txl

CPU
Clock

TxR

MUXGPT2 Timer T6
Over / Underflow

Edge Select

TxIN

Txl

Txl TxM

Input
Control

Reload Register TxREL

CAPCOM Timer Tx TxIR
Interrupt
Request

x = 0, 7

X

Txl

CPU
Clock

TxR

MUX
GPT2 Timer T6

Over / Underflow

TxM

Reload Register TxREL

CAPCOM Timer Tx TxIR
Interrupt
Request

x = 1, 8

ST10X167

187/294

T01CON (FF50h / A8h) SFR Reset Value: 0000h

T78CON (FF20h / 90h) SFR Reset Value: 0000h

Note 1) This selection is available for timers T0 and T7. Timers
T1 and T8 will stop at this selection!

The run flags T0R, T1R, T7R and T8R enable or
disable the timers. The following description of the
timer modes and operation always applies to the
enabled state of the timers, the respective run
flag is assumed to be set to '1'.

In all modes, the timers are always counting
upward. The current timer values are accessible
for the CPU in the timer registers Tx, which are
non Bitaddressable SFRs. When the CPU writes
to a register Tx in the state immediately before the
respective timer increment, a reload is to be
performed, the CPU write operation has priority
and the increment or reload is disabled to
garantee correct timer operation.

Timer Mode
The Bit TxM in SFRs T01CON and T78CON
selects the timer mode or the counter mode. In
timer mode (TxM=‘0’), the input clock of a timer is

derived from the internal CPU clock divided by a
programmable pre-scaler.

The different options of the pre-scaler of each
timer are selected separately by the Bit fields TxI.

The input frequencies fTx for Tx are determined as
a function of the CPU clock as follows, where (TxI)
represents the contents of the Bit field TxI:

When a timer overflows from FFFFh to 0000h it is
reloaded with the value stored in its respective
reload register TxREL.

The reload value determines the period PTx
between two consecutive overflows of Tx as
follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- T1R - - T1M T1I - T0R - - T0M T0I

RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- T8R - - T8M T8I - T7R - - T7M T7I

RW RW RW RW RW RW

Bit Function

TxI Timer / Counter x Input Selection

Timer Mode (TxM=’0’)Input Frequency = fCPU / 2[(TxI)+3]

See also table below for examples.
Counter Mode (TxM=’1’):X00 Overflow / Underflow of GPT2 Timer 6

X01 Positive (rising) edge on pin TxIN 1)

X10 Negative (falling) edge on pin TxIN 1)

X11 Any edge (rising and falling) on pin TxIN 1)

TxM Timer / Counter x Mode Selection
‘0’: Timer Mode (Input derived from internal clock)
‘1’: Counter Mode (Input from External Input or T6)

TxR Timer / Counter x Run Control
‘0’: Timer / Counter x is disabled
‘1’: Timer / Counter x is enabled

fTx =
fCPU

2[(TxI)+3]

PTx =
fCPU

[216 - (TxREL)] x 2[(TxI)+3]

ST10X167

188/294

The timer resolutions against pre-scaler option in TxI are listed in the table below.

Refer to the device datasheet for a table of timer
input frequencies, resolution and periods for each
pre-scaler option in TxI.

After a timer has been started by setting its run
flag (TxR) to '1', the first increment will occur
within the time interval which is defined by the
selected timer resolution. All further increments
occur exactly after the time defined by the timer
resolution.
When both timers of a CAPCOM unit are to be
incremented or reloaded at the same time T0 is
always serviced one CPU clock before T1, T7
before T8, respectively.

Counter Mode

The Bit TxM in SFRs T01CON and T78CON
select between timer or counter mode for the
respective timer. In Counter mode (TxM=‘1’) the
input clock for a timer can be derived from the
overflows / underflows of timer T6 in block GPT2.
In addition, timers T0 and T7 can be clocked by
external events. Either a positive, a negative, or
both a positive and a negative transition at pin
T0IN (alternate input function of port pin P3.0) or
T7IN (alternate input function of port pin P2.15),
respectively, can be selected to cause an
increment of T0 / T7.

When T1 or T8 is programmed to run in counter
mode, Bit field TxI is used to enable the
overflows / underflows of timer T6 as the count
source. This is the only option for T1 and T8, and
it is selected by the combination TxI=X00b. When
Bit field TxI is programmed to any other
combination, the respective timer (T1 or T8) will
stop.

When T0 or T7 is programmed to run in counter
mode, Bit field TxI is used to select the count
source and transition (if the source is the input
pin) which should cause a count trigger (see
description of TxyCON for the possible
selections).

Note In order to use pin T0IN or T7IN as exter-
nal count input pin, the respective port pin

must be configured as input, and the cor-
responding direction control Bit (DP3.0 or
DP2.15) must be cleared ('0').
If the respective port pin is configured as
output, the associated timer may be
clocked by modifying the port output
latches P3.0 or P2.15 via software, for
example for testing purposes.

The maximum external input frequency to T0 or
T7 in counter mode is fCPU / 16. To ensure that a
signal transition is properly recognized at the
timer input, an external count input signal should
be held for at least 8 CPU clock cycles before it
changes its level again. The incremented count
value appears in SFR T0 / T7 within 8 CPU clock
cycles after the signal transition at pin TxIN.

Reload

A reload of a timer with the 16 Bit value stored in
its associated reload register in both modes is
performed each time a timer would overflow from
FFFFh to 0000h. In this case the timer does not
wrap around to 0000h, but rather is reloaded with
the contents of the respective reload register
TxREL. The timer then resumes incrementing
starting from the reloaded value.

The reload registers TxREL are not
Bit-addressable.

14.2 - CAPCOM Unit Timer Interrupts

Upon a timer overflow the corresponding timer
interrupt request flag TxIR for the respective timer
will be set. This flag can be used to generate an
interrupt or trigger a PEC service request, when
enabled by the respective interrupt enable Bit
TxIE.

Each timer has its own Bitaddressable interrupt
control register (TxIC) and its own interrupt vector
(TxINT). The organization of the interrupt control
registers TxIC is identical with the other interrupt
control registers.

Timer Input Selection TxI

000b 001b 010b 011b 100b 101b 110b 111b

Pre-scaler for fCPU 8 16 32 64 128 256 512 1024

Resolution in
CPU clock cycles

8 16 32 64 128 256 512 1024

ST10X167

189/294

T0IC (FF9Ch / CEh) SFR Reset Value: --00h

T1IC (FF9Eh / CFh) SFR Reset Value: --00h

T7IC (F17Ah / BEh) ESFR Reset Value: --00h

T8IC (F17Ch / BFh) ESFR Reset Value: --00h

Note Refer to the General Interrupt Control
Register description for an explanation
of the control fields.

14.3 - Capture / Compare Registers
The 16 Bit capture / compare registers CC0
through CC31 are used as data registers for
capture or compare operations with respect to
timers T0 / T1 and T7 / T8. The capture / compare
registers are not Bitaddressable.
Each of the registers CC0...CC31 may be
individually programmed for capture mode or one
of 4 different compare modes (except for
CC24...CC27), and may be allocated individually
to one of the two timers of the respective
CAPCOM unit (T0 or T1, and T7 or T8,

respectively). A special combination of compare
modes additionally allows the implementation of a
'double-register' compare mode.

When capture or compare operation is disabled
for one of the CCx registers, it may be used for
general purpose variable storage.

The functions of the 32 capture / compare
registers are controlled by 8 Bit addressable 16Bit
mode control registers named CCM0...CCM7
which are all organized identically (see description
below).

Each register contains Bit for mode selection and
timer allocation of four capture / compare
registers.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - T0IR T0IE ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - T1IR T1IE ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - T7IR T7IE ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - T8IR T8IE ILVL GLVL

RW RW RW RW

ST10X167

190/294

Capture / compare mode registers for the CAPCOM1 unit (CC0...CC15)

CCM0 (FF52h / A9h) SFR Reset Value: 0000h

CCM1 (FF54h / AAh) SFR Reset Value: 0000h

CCM2 (FF56h / ABh) SFR Reset Value: 0000h

CCM3 (FF58h / ACh) SFR Reset Value: 0000h

Capture / compare mode registers for the CAPCOM2 unit (CC16...CC31)

CCM4 (FF22h / 91h) SFR Reset Value: 0000h

CCM5 (FF24h / 92h) SFR Reset Value: 0000h

CCM6 (FF26h / 93h) SFR Reset Value: 0000h

CCM7 (FF28h / 94h) SFR Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACC3 CCMOD3 ACC2 CCMOD2 ACC1 CCMOD1 ACC0 CCMOD0

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACC7 CCMOD7 ACC6 CCMOD6 ACC5 CCMOD5 ACC4 CCMOD4

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACC11 CCMOD11 ACC10 CCMOD10 ACC9 CCMOD9 ACC8 CCMOD8

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACC15 CCMOD15 ACC14 CCMOD14 ACC13 CCMOD13 ACC12 CCMOD12

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACC19 CCMOD19 ACC18 CCMOD18 ACC17 CCMOD17 ACC16 CCMOD16

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACC23 CCMOD23 ACC22 CCMOD22 ACC21 CCMOD21 ACC20 CCMOD20

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACC27 CCMOD27 ACC26 CCMOD26 ACC25 CCMOD25 ACC24 CCMOD24

RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACC31 CCMOD31 ACC30 CCMOD30 ACC29 CCMOD29 ACC28 CCMOD28

RW RW RW RW RW RW RW RW

ST10X167

191/294

14.3.1 - Selection of Capture Modes and Compare Modes

The detailed discussion of the capture and
compare modes is valid for all the capture /
compare channels, so registers, Bit and pins are
only referenced by the place holder ‘x’.

Note Capture / compare channels 24...27
generate an interrupt request but do not
provide an output signal. The resulting
exceptions are indicated in the following
subsections.
A capture or compare event on channel
31 may be used to trigger a channel
injection on the ST10X167’s A / D con-
verter if enabled.

14.4 - Capture Mode

In response to an external event the content of the
associated timer (T0 / T1 or T7 / T8, depending on
the used CAPCOM unit and the state of the
allocation control Bit ACCx) is latched into the
respective capture register CCx. The external
event causing a capture can be programmed to be
either a positive, a negative, or both a positive or a
negative transition at the respective external input
pin CCxIO.

The triggering transition is selected by the mode
Bit CCMODx in the respective CAPCOM mode
control register. In any case, the event causing a
capture will also set the respective interrupt
request flag CCxIR, which can cause an interrupt
or a PEC service request, when enabled (see
Figure 109).

In order to use the respective port pin as external
capture input pin CCxIO for capture register CCx,
this port pin must be configured as input, the
corresponding direction control Bit by setting to
‘0’. To ensure that a signal transition is properly
recognized, an external capture input signal
should be held for at least 8 CPU clock cycles
before it changes its level.

During these 8 CPU clock cycles the capture input
signals are scanned sequentially. When a timer is
modified or incremented during this process, the
new timer contents will already be captured for the
remaining capture registers within the current
scanning sequence. If pin CCxIO is configured as
output, the capture function may be triggered by
modifying the corresponding port output latch via
software, like for testing purposes.

Bit Function

CCMODx Mode Selection for Capture / Compare Register CCx

The available capture / compare modes are listed in the table below.

ACCx Allocation Bit for Capture / Compare Register CCx

‘0’: CCx allocated to Timer T0 (CAPCOM1) / Timer T7 (CAPCOM2)

‘1’: CCx allocated to Timer T1 (CAPCOM1) / Timer T8 (CAPCOM2)

CCMODx Selected Operating Mode

0 0 0 Disable Capture and Compare Modes

The respective CAPCOM register may be used for general variable storage.

0 0 1 Capture on Positive Transition (Rising Edge) at Pin CCxIO

0 1 0 Capture on Negative Transition (Falling Edge) at Pin CCxIO

0 1 1 Capture on Positive and Negative Transition (Both Edges) at Pin CCxIO

1 0 0 Compare Mode 0:Interrupt Only

Several interrupts per timer period. Enables double-register compare mode for registers
CC8...CC15 and CC24...CC31.

1 0 1 Compare Mode 1:Toggle Output Pin on each Match

Several compare events per timer period. This mode is required for double-register compare mode
for registers CC0...CC7 and CC16...CC23.

1 1 0 Compare Mode 2:Interrupt Only

Only one interrupt per timer period.

1 1 1 Compare Mode 3:Set Output Pin on each Match

Reset output pin on each timer overflow. Only one interrupt per timer period.

ST10X167

192/294

Figure 109 : Capture mode block diagram

14.5 - Compare Modes
The compare modes allow triggering of events
(interrupts and / or output signal transitions) with
minimum software overhead.
In all compare modes, the 16 Bit value stored in
compare register CCx (in the following also
referred to as 'compare value') is continuously
compared with the contents of the allocated timer
(T0 / T1 or T7 / T8). If the current timer contents
match the compare value, an appropriate output
signal, which is based on the selected compare
mode, can be generated at the corresponding
output pin CCxIO (except for CC24IO...CC27IO)
and the associated interrupt request flag CCxIR is
set, which can generate an interrupt request (if
enabled).
As for capture mode, the compare registers are
also processed sequentially during compare
mode. When any two compare registers are
programmed to the same compare value, their

corresponding interrupt request flags will be set to
'1' and the selected output signals will be
generated within 8 CPU clock cycles after the
allocated timer is incremented to the compare
value.

Further compare events on the same compare
value are disabled until the timer is incremented
again or written to by software. After a reset,
compare events for register CCx will only become
enabled, if the allocated timer has been
incremented or written to by software and one of
the compare modes described in the following has
been selected for this register.

The different compare modes which can be
programmed for a given compare register CCx
are selected by the mode control field CCMODx in
the associated capture / compare mode control
register. In the following, each of the compare
modes, including the special 'double-register'
mode, is discussed in detail.

CCMODx

Edge
Select

CCxIO

Capture Register CCx

CAPCOM Timer Ty TyIR
Interrupt
Request

Input
Clock

x = 31...0
y = 0, 1, 7, 8

CCxIR
Interrupt
Request

Table 30 : Summary of compare modes

Compare Modes Function

Mode 0 Interrupt-only compare mode;
several compare interrupts per timer period are possible

Mode 1 Pin toggles on each compare match;
several compare events per timer period are possible

Mode 2 Interrupt-only compare mode;
only one compare interrupt per timer period is generated

Mode 3 Pin set ‘1’ on match; pin reset ‘0’ on compare time overflow;
only one compare event per timer period is generated

Double
Register Mode

Two registers operate on one pin; pin toggles on each compare match;
several compare events per timer period are possible.

ST10X167

193/294

14.5.1 - Compare Mode 0
This is an interrupt-only mode which can be used
for software timing purposes. Compare mode 0 is
selected for a given compare register CCx by
setting Bit field CCMODx of the corresponding
mode control register to ‘100b’.
In this mode, the interrupt request flag CCxIR is
set each time a match is detected between the
content of compare register CCx and the
allocated timer.
Several of these compare events are possible
within a single timer period, when the compare

value in register CCx is updated during the timer
period.

The corresponding port pin CCxIO is not affected
by compare events in this mode and can be used
as general purpose I/O pin.

If compare mode 0 is programmed for one of the
registers CC8...CC15 or CC24...CC31, the
double-register compare mode becomes enabled
for this register if the corresponding bank 1
register is programmed to compare mode 1 (see
section “Double- Register Compare Mode”).

Note The port latch and pin remain unaffected in compare mode 0.

Figure 110 : Compare mode 0 and 1 block diagram

Capture Register CCx

CAPCOM Timer Ty TyIR

Interrupt
Request

Input
Clock

x = 31...0
y = 0, 1, 7, 8

CCxIR

Comparator

CCMODx

Port Latch
Toggle

(Mode 1)

CCxIO

Interrupt
Request

ST10X167

194/294

In the example below, the compare value in
register CCx is modified from cv1 to cv2 after
compare events #1 and #3, and from cv2 to cv1
after events #2 and #4, etc. This results in periodic
interrupt requests from timer Ty, and in interrupt
requests from register CCx which occur at the
time specified by the user through cv1 and cv2
(see Figure 111).

14.5.2 - Compare Mode 1
Compare mode 1 is selected for register CCx by
setting Bit field CCMODx of the corresponding
mode control register to ‘101b’.
When a match between the content of the
allocated timer and the compare value in register
CCx is detected in this mode, interrupt request
flag CCxIR is set to ‘1’, and in addition the
corresponding output pin CCxIO (alternate port
output function) is toggled. For this purpose, the
state of the respective port output latch (not the
pin) is read, inverted, and then written back to the
output latch.
Compare mode 1 allows several compare events
within a single timer period. An overflow of the
allocated timer has no effect on the output pin, nor
does it disable or enable further compare events.
In order to use the respective port pin as compare
signal output pin CCxIO for compare register CCx
in compare mode 1, this port pin must be

configured as output, and the corresponding
direction control Bit must be set to ‘1’. With this
configuration, the initial state of the output signal
can be programmed or its state can be modified at
any time by writing to the port output latch.

In compare mode 1 the port latch is toggled upon
each compare event (see Figure 111).

Note If the port output latch is written to by
software at the same time it would be
altered by a compare event, the soft-
ware write will have priority. In this case
the hardware-triggered change will not
become effective.

If compare mode 1 is programmed for one of the
registers CC0...CC7 or CC16...CC23 the
double-register compare mode becomes enabled
for this register if the corresponding bank 1
register is programmed to compare mode 0 (see
section “Double-Register Compare Mode”).

Note If the port output latch is written to by
software at the same time it would be
altered by a compare event, the soft-
ware write will have priority. In this case
the hardware-triggered change will not
become effective.
On channels 24...27 compare mode 1
will generate interrupt requests but no
output function is provided.

Figure 111 : Timing example for compare modes 0 and 1

*) Output pin CCxIO only effected in mode 1. No changes in mode 0.
x = 31...0
y = 0, 1, 7, 8

TyIR CCxIR CCxIR TyIR CCxIR CCxIR TyIR

Interrupt
Requests:

t

Contents of Ty

FFFFh

Compare Value cv2

Compare Value cv1

Reload Value <TyREL>

0000h

Event #1
CCx: = cv2

Event #2
CCx: = cv1

Event #3
CCx: = cv2

Event #4
CCx: = cv1

ST10X167

195/294

14.5.3 - Compare Mode 2
Compare mode 2 is an interrupt-only mode similar
to compare mode 0, but only one interrupt request
per timer period will be generated. Compare
mode 2 is selected for register CCx by setting Bit
field CCMODx of the corresponding mode control
register to ‘110b’.
When a match is detected in compare mode 2 for
the first time within a timer period, the interrupt
request flag CCxIR is set to ‘1’. The
corresponding Port2 pin is not affected and can
be used for general purpose I/O. However, after

the first match has been detected in this mode, all
further compare events within the same timer
period are disabled for compare register CCx until
the allocated timer overflows. This means, that
after the first match, even when the compare
register is reloaded with a value higher than the
current timer value, no compare event will occur
until the next timer period.

In the example below, the compare value in
register CCx is modified from cv1 to cv2 after
compare event #1. Compare event #2, however,
will not occur until the next period of timer Ty.

Note The port latch and pin remain unaffected in compare mode 2.

Figure 112 : Compare mode 2 and 3 block diagram

Figure 113 : Timing example for compare modes 2 and 3

Capture Register CCx

CAPCOM Timer Ty TyIR

Interrupt
Request

Input
Clock

x = 31...0
y = 0, 1, 7, 8

CCxIR

Comparator

CCMODx

Port Latch(Mode 3) CCxIO

Interrupt
Request

Set

Reset

*) Output pin CCxIO only effected in mode 3. No changes in mode 2.
x = 31...0
y = 0, 1, 7, 8

TyIR CCxIR TyIR CCxIR TyIR

Interrupt
Requests:

Contents of Ty
FFFFh

Compare Value cv2

Compare Value cv1

Reload Value <TyREL>

0000h

Event #1
CCx: = cv2

Event #2
CCx: = cv1

State of
CCxIO:

t

1

0

ST10X167

196/294

14.5.4 - Compare Mode 3
Compare mode 3 is selected for register CCx by
setting Bit field CCMODx of the corresponding
mode control register to ‘111b’. In compare
mode 3 only one compare event will be generated
per timer period.
When the first match within the timer period is
detected the interrupt request flag CCxIR is set to
‘1’ and also the output pin CCxIO (alternate port
function) will be set to ‘1’. The pin will be reset to
‘0’, when the allocated timer overflows.
If a match was found for register CCx in this
mode, all further compare events during the
current timer period are disabled for CCx until the
corresponding timer overflows. If, after a match
was detected, the compare register is reloaded
with a new value, this value will not become
effective until the next timer period.
In order to use the respective port pin as compare
signal output pin CCxIO for compare register CCx
in compare mode 3 this port pin must be
configured as output and the corresponding
direction control Bit must be set to ‘1’. With this
configuration, the initial state of the output signal
can be programmed or its state can be modified at
any time by writing to the port output latch.
In compare mode 3 the port latch is set upon a
compare event and cleared upon a timer overflow
(see Figure 113).
However, when compare value and reload value
for a channel are equal the respective interrupt
requests will be generated, only the output signal

is not changed (set and clear would coincide in
this case).

Note If the port output latch is written to by
software at the same time it would be
altered by a compare event, the soft-
ware write will have priority. In this case
the hardware-triggered change will not
become effective.
On channels 24...27 compare mode 1
will generate interrupt requests but no
output function is provided.

14.5.5 - Double Register Compare Mode

In double-register compare mode two compare
registers work together to control one output pin.
This mode is selected by a special combination of
modes for these two registers.

For double-register mode the 16 capture /
compare registers of each CAPCOM unit are
regarded as two banks of 8 registers each.
Registers CC0...CC7 and CC16...CC23 form
bank 1 while registers CC8...CC15 and
CC24...CC31 form bank 2 (respectively). For
double-register mode a bank 1 register and a
bank 2 register form a register pair. Both registers
of this register pair operate on the pin associated
with the bank 1 register (pins CC0IO...CC7IO and
CC16IO...CC23IO).

The relationship between the bank 1 and bank 2
register of a pair and the effected output pins for
double-register compare mode is listed in the
Table 31.

Table 31 : Register pairs for double-register compare mode

CAPCOM1 Unit CAPCOM2 Unit

Register Pair
Associated Output

Pin

Register Pair
Associated Output

Pin
Bank 1 Bank 2 Bank 1 Bank 2

CC0 CC8 CC0IO CC16 CC24 CC16IO

CC1 CC9 CC1IO CC17 CC25 CC17IO

CC2 CC10 CC2IO CC18 CC26 CC18IO

CC3 CC11 CC3IO CC19 CC27 CC19IO

CC4 CC12 CC4IO CC20 CC28 CC20IO

CC5 CC13 CC5IO CC21 CC29 CC21IO

CC6 CC14 CC6IO CC22 CC30 CC22IO

CC7 CC15 CC7IO CC23 CC31 CC23IO

ST10X167

197/294

The double-register compare mode can be
programmed individually for each register pair. In
order to enable double-register mode the
respective bank 1 register (see Table 31) must be
programmed to compare mode 1 and the
corresponding bank 2 register (see Table 31)
must be programmed to compare mode 0.

If the respective bank 1 compare register is
disabled or programmed for a mode other than
mode 1 the corresponding bank 2 register will
operate in compare mode 0 (interrupt-only mode).

In the following, a bank 2 register (programmed to
compare mode 0) will be referred to as CCz while
the corresponding bank 1 register (programmed
to compare mode 1) will be referred to as CCx.

When a match is detected for one of the two
registers in a register pair (CCx or CCz) the
associated interrupt request flag (CCxIR or

CCzIR) is set to ‘1’ and pin CCxIO corresponding
to bank 1 register CCx is toggled. The generated
interrupt always corresponds to the register that
caused the match.

Note If a match occurs simultaneously for
both register CCx and register CCz of
the register pair, pin CCxIO will be tog-
gled only once but two separate com-
pare interrupt requests will be
generated, one for vector CCxINT and
one for vector CCzINT.

In order to use the respective port pin as compare
signal output pin CCxIO for compare register CCx
in double-register compare mode, this port pin
must be configured as output, and the
corresponding direction control Bit must be set to
‘1’. With this configuration, the output pin has the
same characteristics as in compare mode 1.

In this configuration example, the same timer allocation was chosen for both compare registers, but each
register may also be individually allocated to one of the two timers of the respective CAPCOM unit. In the
timing example for this compare mode (below) the compare values in registers CCx and CCz are not
modified.

Figure 114 : Double register compare mode block diagram

Compare Register CCx

Comparator

CAPCOM Timer Ty

Comparator

Compare Register CCz

Input
Clock TyIR

Mode 0
CCMODz

CCzIR
Interrupt
Request

Interrupt
Request ≥ 1

CCMODx
Mode 1

Toggle
Port Latch CCxIO

CCxIO

x = 23...16, 7...0
y = 0, 1, 7, 8
z = 31...24, 15...8

CCxIR
Interrupt
Request

ST10X167

198/294

The pins CCzIO (which are not selected for double-register compare mode) may be used for general
purpose I/O.

14.6 - Capture / Compare Interrupts
Upon a capture or compare event, the interrupt
request flag CCxIR for the respective capture /
compare register CCx is set to ‘1’. This flag can be
used to generate an interrupt or trigger a PEC
service request when enabled by the interrupt
enable Bit CCxIE.
Capture interrupts can be regarded as external
interrupt requests with the additional feature of
recording the time at which the triggering event
occurred (see also section “External Interrupts”).

Note Each of the 32 capture / compare
registers (CC0...CC31) has its own
Bitaddressable interrupt control register
(CC0IC...CC31IC) and its own interrupt
vector (CC0INT...CC31INT). These
registers are organized the same way as
all other interrupt control registers. The
figure below shows the basic register
layout, and the table lists the associated
addresses.

CCxIC (see Table 32) SFR/ESF Reset Value: --00h

Note Refer to"Interrupt control registers" chapter for more details of the control fields.

Figure 115 : Timing example for double register compare mode

x = 23...16, 7...0 y = 0, 1, 7, 8 z = 31...24, 15...8

FFFFh

Compare Value cv2

Compare Value cv1

Reload Value <TyREL>

0000h

1

0

Interrupt
Requests:

Contents of Ty

State of CCxIO:

t

TyIR CCxIR CCxIR TyIR CCxIR CCxIR TyIR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - CCxIR CCxIE ILVL GLVL

RW RW RW RW

ST10X167

199/294

Table 32 : CAPCOM unit interrupt control register addresses

CAPCOM1 Unit CAPCOM2 Unit

Register Address Register Space Register Address Register Space

CC0IC FF78h / BCh SFR CC16IC F160h / B0h ESFR

CC1IC FF7Ah / BDh SFR CC17IC F162h / B1h ESFR

CC2IC FF7Ch / BEh SFR CC18IC F164h / B2h ESFR

CC3IC FF7Eh / BFh SFR CC19IC F166h / B3h ESFR

CC4IC FF80h / C0h SFR CC20IC F168h / B4h ESFR

CC5IC FF82h / C1h SFR CC21IC F16Ah / B5h ESFR

CC6IC FF84h / C2h SFR CC22IC F16Ch / B6h ESFR

CC7IC FF86h / C3h SFR CC23IC F16Eh / B7h ESFR

CC8IC FF88h / C4h SFR CC24IC F170h / B8h ESFR

CC9IC FF8Ah / C5h SFR CC25IC F172h / B9h ESFR

CC10IC FF8Ch / C6h SFR CC26IC F174h / BAh ESFR

CC11IC FF8Eh / C7h SFR CC27IC F176h / BBh ESFR

CC12IC FF90h / C8h SFR CC28IC F178h / BCh ESFR

CC13IC FF92h / C9h SFR CC29IC F184h / C2h ESFR

CC14IC FF94h / CAh SFR CC30IC F18Ch / C6h ESFR

CC15IC FF96h / CBh SFR CC31IC F194h / CAh ESFR

ST10X167

200/294

15 - PULSE WIDTH MODULATION MODULE

The Pulse Width Modulation (PWM) Module of the
ST10X167 generates up to 4 independent PWM
signals. The minimum PWM signal frequency
depends on the width (16 Bit) and the resolution
(CLK/1 or CLK/64) of the PWM timers. The
maximum PWM signal frequency assumes that
the PWM output signal changes with every cycle
of the respective timer. In a real application, the
maximum PWM frequency will depend on the
required resolution of the PWM output signal (see
Figure 116).

The pulse width modulation module has 4
independent PWM channels. Each channel has a
16 Bit up/down counter PTx, a 16 Bit period
register PPx with a shadow latch, a 16 Bit pulse
width register PWx with a shadow latch, two
comparators, and the necessary control logic.

The operation of all four channels is controlled by
two common control registers, PWMCON0 and
PWMCON1, and the interrupt control and status is
handled by one interrupt control register PWMIC,
which is also common for all channels (see
Figure 117).

ST10X167

201/294

Figure 116 : SFRs and port pins associated with the PWM module

Ports & Direction Control Alternate Functions Data Registers

15

-

14

-

13

-

12

-

11

-

10

-

9

-

8

-

7

-

6

-

5

-

4

-

3

Y

2

Y

1

Y

0

YODP7 E PP0 E

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

Y

- - - - - - - - - - - - Y Y Y YDP7

- - - - - - - - - - - - Y Y Y YP7

PW0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

PP1 E Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Control Registers Interrupt Control

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YPT0 E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PWMCON0

- - - - - - - - Y Y Y Y Y Y Y YPWMIC E

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

PW1 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

PP2 E Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

PW2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

PP3 E Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

PW3 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YPT1 E

ODP7 Port7 Open Drain Control Register
DP7 Port7 Direction Control Register
P7 Port7 Data Register
PWMIC PWM Interrupt Control Register

POUT0/P7.0
POUT1/P7.1
POUT2/P7.2
POUT3/P7.3

PPx PWM Period Register x
PWx PWM Pulse Width Register x
PTx PWM Counter Register x
PWMCONx PWM Control Register 0/1

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YPT2 E

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YPT3 E

PWMCON1 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Bit is linked to a function
Bit has no function or is not implemented
Register is in ESFR internal memory space

Y
-
E

:
:
:

ST10X167

202/294

Figure 117 : PWM channel block diagram

15.1 - Operating Modes

The PWM module provides four different
operating modes:

– Mode 0 standard PWM generation (edge
aligned PWM) available on 4 channels

– Mode 1 Symmetrical PWM generation (center
aligned PWM) available on all four channels

– Burst mode combines channels 0 and 1

– Single shot mode available on channels 2 and 3

Note The output signals of the PWM module are
XORed with the outputs of the respective
port output latches. After reset these
latches are cleared, so the PWM signals
are directly driven to the port pins. By set-
ting the respective port output latch to ‘1’
the PWM signal may be inverted (XORed
with ‘1’) before being driven to the port pin.
The descriptions below refer to the stan-
dard case after reset, which is direct drive.

15.1.1 - Mode 0: Standard PWM Generation
(Edge Aligned PWM)

Mode 0 is selected by clearing the respective Bit
PMx in register PWMCON1 to ‘0’. In this mode the
timer PTx of the respective PWM channel is
always counting up until it reaches the value in the
associated period shadow register. Upon the next
count pulse the timer is reset to 0000h and
continues counting up with subsequent count
pulses.

The PWM output signal is switched to high level
when the timer contents are equal to or greater

than the contents of the pulse width shadow
register.

The signal is switched back to low level when the
respective timer is reset to 0000h, that means
below the pulse width shadow register. The period
of the resulting PWM signal is determined by the
value of the respective PPx shadow register plus
1, counted in units of the timer resolution.

PWM_PeriodMode0 = [PPx] + 1

The duty cycle of the PWM output signal is
controlled by the value in the respective pulse
width shadow register. This mechanism allows the
selection of duty cycles from 0% to 100%
including the boundaries.

For a value of 0000h the output will remain at a
high level, representing a duty cycle of 100%. For
a value higher than the value in the period register
the output will remain at a low level, which
corresponds to a duty cycle of 0%.

The Figure 118 illustrates the operation and
output waveforms of a PWM channel in mode 0
for different values in the pulse width register. This
mode is referred to as Edge Aligned PWM,
because the value in the pulse width shadow
register only effects the positive edge of the
output signal. The negative edge is always fixed
and related to the clearing of the timer.

PPx Period Register

Comparator

PTx
16-Bit Up/Down Counter

Shadow Register

PWx Pulse Width Register

Input

Run
Control

Clock 1

Clock 2

Comparator

*

*

*

Up/Down/
Clear Control

Match

Output Control
Match

Write Control

* User readable & writeable register

Enable
POUTx

x = 3...0

ST10X167

203/294

Figure 118 : Operation and output waveform in mode 0

7
6

7
6

5

3
4

2
1

0

7
6

5

3
4

2
1

0
1

0

PPx
Period=7

PTx Count
Value

PWx Pulse
Width=0

PWx=1

PWx=2

PWx=4

PWx=6

PWx=7

PWx=8

Latch Shadow Registers
Interrupt Request

LSR LSR

Duty Cycle

100%

87.5%

75%

50%

25%

12.5%

0%

LSR

ST10X167

204/294

15.1.2 - Mode 1: Symmetrical PWM Generation
(Center Aligned PWM)
Mode 1 is selected by setting the respective Bit
PMx in register PWMCON1 to ‘1’. In this mode the
timer PTx of the respective PWM channel is
counting up until it reaches the value in the
associated period shadow register. Upon the next
count pulse the count direction is reversed and the
timer starts counting down now with subsequent
count pulses until it reaches the value 0000h.
Upon the next count pulse the count direction is
reversed again and the count cycle is repeated
with the following count pulses.
The PWM output signal is switched to a high level
when the timer contents are equal to or greater
than the contents of the pulse width shadow
register while the timer is counting up. The signal

is switched back to a low level when the
respective timer has counted down to a value
below the contents of the pulse width shadow
register. So in mode 1 this PWM value controls
both edges of the output signal.

Note that in mode 1 the period of the PWM signal
is twice the period of the timer:

PWM_PeriodMode1 = 2 x ([PPx] + 1)

The Figure 119 illustrates the operation and
output waveforms of a PWM channel in mode 1
for different values in the pulse width register. This
mode is referred to as Center Aligned PWM,
because the value in the pulse width shadow
register effects both edges of the output signal
symmetrically.

Figure 119 : Operation and output waveform in mode 1

1

7
6

5

3
4

2
1

0
1

0

PPx
Period=7

PTx Count
Value

PWx Pulse
Width=0

PWx=1

PWx=2

PWx=4

PWx=6

PWx=7

PWx=8

Latch Shadow Registers
Interrupt Reques

Change Count LSR

Duty Cycle

100%

87.5%

75%

50%

25%

12.5%

0%

0

2

7
6

5
4

3
2

1

Direction
LSR

ST10X167

205/294

15.1.3 - Burst Mode
Burst mode is selected by setting Bit PB01 in
register PWMCON1 to ‘1’. This mode combines
the signals from PWM channels 0 and 1 onto the
port pin of channel 0.
The output of channel 0 is replaced with the
logical AND of channels 0 and 1. The output of
channel 1 can still be used at its associated output
pin (if enabled).
Each of the two channels can either operate in
mode 0 or 1.

Note It is guaranteed by design, that no
spurious spikes will occur at the output
pin of channel 0 in this mode. The output
of the AND gate will be transferred to the
output pin synchronously to internal
clocks.
XORing of the PWM signal and the port
output latch value is done after the
ANDing of channel 0 and 1 (see
Figure 120).

Figure 120 : Operation and output waveform in burst mode

PP0
Period
Value

PT0
Count
Value

Channel 0

PP1

PT1

Channel 0

Channel 1

Resulting
Output
POUT0

ST10X167

206/294

15.1.4 - Single Shot Mode
Single shot mode is selected by setting the
respective Bit PSx in register PWMCON1 to ‘1’.
This mode is available for PWM channels 2 and 3.
In this mode the timer PTx of the respective PWM
channel is started via software and is counting up
until it reaches the value in the associated period
shadow register. Upon the next count pulse the
timer is cleared to 0000h and stopped via
hardware, (the respective PTRx Bit is cleared).
The PWM output signal is switched to high level

when the timer contents are equal to or greater
than the contents of the pulse width shadow
register. The signal is switched back to low level
when the respective timer is cleared, because it is
below the pulse width shadow register.

Thus starting a PWM timer in single shot mode
produces one single pulse on the respective port
pin, provided that the pulse width value is between
0000h and the period value. In order to generate a
further pulse, the timer has to be started again via
software by setting Bit PTRx (see Figure 121).

Figure 121 : Operation and output waveform in single shot mode

7
6

5

3
4

2
1

0

PPx
Period=7

PTx Count
Value

PWx Pulse
Width=4

Set PTRx
by Software PTRx Reset

by Hardware
PTx stopped

7
6

5

3
4

2
1

0

Set PTRx
by Software

LSR

for Next Pulse

6
5

3
4

2
1

0

PPx
Period=7

PTx Count
Value

PWx Pulse
Width=4

7
6

5
4

tD

Retrigger after

 Write PWx value to PTx

1
0

7
6

5
4

tD

Trigger before Pulse has started :
Write PWx value to PTx;

LSR

tWtW

Shortens Delay Time tD

Pulse has started :

ST10X167

207/294

After starting the timer (with PTRx = ‘1’) the output
pulse may be modified via software. Writing to
timer PTx changes the positive and/or negative
edge of the output signal, depending on whether
the pulse has already started (the output is high)
or not (the output is still low). This (multiple)
re-triggering is always possible while the timer is
running, after the pulse has started and before the
timer is stopped.

Loading counter PTx directly with the value in the
respective PPx shadow register will abort the
current PWM pulse upon the next clock pulse
(counter is cleared and stopped by hardware).

By setting the period (PPx), the timer start value
(PTx) and the pulse width value (PWx)
appropriately, the pulse width (tw) and the optional
pulse delay (td) may be varied in a wide range
(see Figure 121).

15.2 - PWM Module Registers

The PWM module is controlled via two sets of
registers. The waveforms are selected by the
channel specific registers PTx (timer), PPx
(period) and PWx (pulse width). Three common
registers control the operating modes and the
general functions (PWMCON0 and PWMCON1)
of the PWM module as well as the interrupt
behavior (PWMIC).

Up/down Counters PTx

Each counter PTx of a PWM channel is clocked
either directly by the CPU clock or by the CPU
clock divided by 64. Bit PTIx in register
PWMCON0 selects the respective clock source. A

PWM counter counts up or down (controlled by
hardware), while its respective run control Bit
PTRx is set. A timer is started (PTRx = ’1’) via
software and is stopped (PTRx = ’0’) either via
hardware or software, depending on its operating
mode. Control Bit PTRx enables or disables the
clock input of counter PTx rather than controlling
the PWM output signal.

Note For the register locations please refer to
Table 33.

This table summarizes the PWM frequencies that
result from various combinations of operating
mode, counter resolution (input clock) and pulse
width resolution.

Period Registers PPx

The 16 Bit period register PPx of a PWM channel
determines the period of a PWM cycle and the
frequency of the PWM signal. This register is
buffered with a shadow register.

The shadow register is loaded from the respective
PPx register at the beginning of every new PWM
cycle, or upon a write access to PPx, while the
timer is stopped. The CPU accesses the PPx
register while the hardware compares the
contents of the shadow register with the contents
of the associated counter PTx.

When a match is found between counter and PPx
shadow register, the counter is either reset to
0000h, or the count direction is switched from
counting up to counting down, depending on the
selected operating mode of that PWM channel.
For the register locations refer to the Table 34.

Table 33

Input Clock and
Mode (Counter

resolution)

8 Bit PWM
resolution

10 Bit PWM
resolution

12 Bit PWM
resolution

14 Bit PWM
resolution

16 Bit PWM
resolution

fCPU Mode 0 fcpu/28 fcpu/210 fcpu/212 fcpu/214 fcpu/216

fCPU / 64 Mode 0 fcpu/64x28 fcpu/64x210 fcpu/64x212 fcpu/64x214 fcpu/64x216

fCPU Mode 1 fcpu/2x28 fcpu/2x210 fcpu/2x212 fcpu/2x214 fcpu/2x216

fCPU / 64 Mode 1 fcpu/2x64x28 fcpu/2x64x210 fcpu/2x64x212 fcpu/2x64x214 fcpu/2x64x216

ST10X167

208/294

Pulse Width Registers PWx

This 16 Bit register holds the actual PWM pulse
width value which corresponds to the duty cycle of
the PWM signal. This register is buffered with a
shadow register.

The CPU accesses the PWx register while the
hardware compares the contents of the shadow
register with the contents of the associated
counter PTx. The shadow register is loaded from
the respective PWx register at the beginning of

every new PWM cycle, or upon a write access to
PWx, while the timer is stopped.
When the counter value is greater than or equal to
the shadow register value, the PWM signal is set,
otherwise it is reset. The output of the
comparators may be described by the boolean
formula:
PWM output signal = [PTx] > [PWx shadow latch].

This type of comparison allows a flexible control of
the PWM signal. For the register locations refer to
the Table 34.

PWM Control Register PWMCON0

Register PWMCON0 controls the function of the timers of the four PWM channels and the channel
specific interrupts. Having the control Bit organized in functional groups allows to start or to stop all the 4
PWM timers simultaneously with one Bitfield instruction.

PWMCON0 (FF30h / 98h) SFR Reset Value: 0000h

Table 34 : PWM module channel specific register addresses

Register Address Reg. Space Register Address Reg. Space

PW0 FE30h / 18h SFR PT0 F030h / 18h ESFR

PW1 FE32h / 19h SFR PT1 F032h / 19h ESFR

PW2 FE34h / 1Ah SFR PT2 F034h / 1Ah ESFR

PW3 FE36h / 1Bh SFR PT3 F036h / 1Bh ESFR

These registers are not Bit-addressable.

PP0 F038h / 1Ch ESFR

PP1 F03Ah / 1Dh ESFR

PP2 F03Ch / 1Eh ESFR

PP3 F03Eh / 1Fh ESFR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PIR3 PIR2 PIR1 PIR0 PIE3 PIE2 PIE1 PIE0 PTI3 PTI2 PTI1 PTI0 PTR3 PTR2 PTR1 PTR0

RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

PTRx PWM Timer x Run Control Bit
‘0’: Timer PTx is disconnected from its input clock
‘1’: Timer PTx is running

PTIx PWM Timer x Input Clock Selection
‘0’: Timer PTx clocked with CLKCPU

‘1’: Timer PTx clocked with CLKCPU / 64

PIEx PWM Channel x Interrupt Enable Flag
‘0’: Interrupt from channel x disabled
‘1’: Interrupt from channel x enabled

PIRx PWM Channel x Interrupt Request Flag
‘0’: No interrupt request from channel x
‘1’: Channel x interrupt pending (must be reset via software)

ST10X167

209/294

PWM Control Register PWMCON1
Register PWMCON1 controls the operating modes and the outputs of the four PWM channels. The basic
operating mode for each channel (standard=edge aligned, or symmetrical=center aligned PWM mode) is
selected by the mode Bit PMx. Burst mode (channels 0 and 1) and single shot mode (channel 2 or 3) are
selected by separate control Bit. The output signal of each PWM channel is individually enabled by Bit
PENx. If the output is not enabled the respective pin can be used for general purpose I/O and the PWM
channel can only be used to generate an interrupt request.

PWMCON1 (FF32h / 99h) SFR Reset Value: 0000h

15.3 - Interrupt Request Generation
Each of the four channels of the PWM module can
generate an individual interrupt request. Each of
these “channel interrupts” can activate the
common “module interrupt”, which actually
interrupts the CPU. This common module
interrupt is controlled by the PWM Module
Interrupt Control register PWMIC. The interrupt
service routine can determine the active channel
interrupt(s) from the channel specific interrupt
request flags PIRx in register PWMCON0.
The interrupt request flag PIRx of a channel is set
at the beginning of a new PWM cycle, when
loading the shadow registers. This indicates that
registers PPx and PWx are now ready to receive a
new value. If a channel interrupt is enabled via its

respective PIEx Bit, also the common interrupt
request flag PWMIR in register PWMIC is set,
provided that it is enabled via the common
interrupt enable Bit PWMIE.

Note The channel interrupt request flags (PIRx in
register PWMCON0) are not automatically
cleared by hardware upon entry into the
interrupt service routine, so they must be
cleared via software. The module interrupt
request flag PWMIR is cleared by hardware
upon entry into the service routine,
regardless of how many channel interrupts
were active. However, it will be set again if
during execution of the service routine a
new channel interrupt request is generated.

PWMIC (F17Eh / BFh) ESFR Reset Value: --00h

Note Refer to the general Interrupt Control Register description for an explanation of the control fields.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PS3 PS2 - PB01 - - - - PM3 PM2 PM1 PM0 PEN3 PEN2 PEN1 PEN0

RW RW RW RW RW RW RW RW RW RW RW

Bit Function

PENx PWM Channel x Output Enable Bit
‘0’: Channel x output signal disabled, generate interrupt only
‘1’: Channel x output signal enabled

PMx PWM Channel x Mode Control Bit
‘0’: Channel x operates in mode 0, i.e. edge aligned PWM
‘1’: Channel x operates in mode 1, i.e. center aligned PWM

PB01 PWM Channel 0/1 Burst Mode Control Bit
‘0’: Channels 0 and 1 work independently in respective standard mode
‘1’: Outputs of channels 0 and 1 are ANDed to POUT0 in burst mode

PSx PWM Channel x Single Shot Mode Control Bit
‘0’: Channel x works in respective standard mode
‘1’: Channel x operates in single shot mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - PWM
IR

PWM
IE

ILVL GLVL

RW RW RW RW

ST10X167

210/294

15.4 - PWM Output Signals

The output signals of the four PWM channels
(POUT3...POUT0) are alternate output functions
on Port7 (P7.3...P7.0). The output signal of each
PWM channel is individually enabled by control Bit
PENx in register PWMCON1.

The PWM signals are XORed with the respective
port latch outputs before being driven to the port
pins.

This allows driving the PWM signal directly to the
port pin (P7.x=’0’) or drive the inverted PWM
signal (P7.x=’1’) (see Figure 122).

Note Using the open drain mode on Port 7
allows the combination of two or more
PWM outputs through a Wired-AND
configuration, using an external pull-up
device. This provides sort of a burst
mode for any PWM channel.

Software Control of the PWM Outputs

In an application the PWM output signals are
generally controlled by the PWM module.
However, it may be necessary to influence the
level of the PWM output pins via software either to
initialize the system or to react on some

extraordinary condition, like a system fault or an
emergency.

Clearing the timer run Bit PTRx stops the
associated counter and leaves the respective
output at its current level.

The individual PWM channel outputs are
controlled by comparators according to the
formula:

PWM output signal = [PTx] > [PWx shadow latch].

So whenever software changes registers PTx, the
respective output will reflect the condition after the
change. Loading timer PTx with a value greater
than or equal to the value in PWx immediately
sets the respective output, a PTx value below the
PWx value clears the respective output.

By clearing or setting the respective Port7 output
latch the PWM channel signal is driven directly or
inverted to the port pin.

Clearing the enable Bit PENx disconnects the
PWM channel and switches the respective port
pin to the value in the port output latch.

Note To prevent further PWM pulses from
occurring after such a software interven-
tion the respective counter must be
stopped first.

Figure 122 : PWM output signal generation

Latch P7.3

PWM 3

Pin P7.3

Latch P7.2

PWM 2

Pin P7.2

Latch P7.1

PWM 1

Pin P7.1

Latch P7.0

PWM 0

Pin P7.0

X
O

R
X

O
R

X
O

R
X

O
R

&

PENx PB01

ST10X167

211/294

16 - ANALOG / DIGITAL CONVERTER

The ST10X167 provides an Analog / Digital
Converter with 10 Bit resolution and a sample &
hold circuit on-chip. A multiplexer selects between
up to 16 analog input channels (alternate
functions of Port5) either via software (fixed
channel modes) or automatically (auto scan
modes). An automatic self-calibration adjusts the
ADC module to changing temperatures or process
variations. The ADC supports the following
conversion modes:
– Fixed channel single conversion

produces just one result from the selected
channel

– Fixed channel continuous conversion
repeatedly converts the selected channel

– Auto scan single conversion
produces one result from each of a selected
group of channels

– Auto scan continuous conversion
repeatedly converts the selected group of
channels

– Wait for ADDAT read mode
start a conversion automatically when the
previous result was read

– Channel injection mode
insert the conversion of a specific channel into a
group conversion (auto scan)

A set of SFRs and port pins provide access to
control functions and results of the ADC.

Figure 123 : SFRs and port pins associated with the A/D converter

Ports & Direction Control Alternate Functions Data Registers

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

YP5 ADDAT

15

Y

14

Y

13

Y

12

Y

11

-

10

-

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

Y

ADDAT2 E Y Y Y Y - - Y Y Y Y Y Y Y Y Y Y

Control Registers Interrupt Control

15

Y

14

Y

13

Y

12

Y

11

Y

10

Y

9

Y

8

Y

7

Y

6

-

5

Y

4

Y

3

Y

2

Y

1

Y

0

YADCON

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADCIC - - - - - - - - Y Y Y Y Y Y Y Y

ADEIC - - - - - - - - Y Y Y Y Y Y Y Y

ADCIC A/D Converter Interrupt Control Register
(End of Conversion)

ADEIC A/D Converter Interrupt Control Register
(Overrun Error / Channel Injection)

AN0/P5.0... AN15/P5.15

P5 Port5 Data Register
ADDAT A/D Converter Result Register
ADDAT2 A/D Converter Channel Injection Result Register
ADCON A/D Converter Control Register

Bit is linked to a function
Bit has no function or is not implemented
Register is in ESFR internal memory space

Y
-
E

:
:
:

ST10X167

212/294

The external analog reference voltages VAREF and VAGND are fixed. The separate supply for the ADC
reduces the interference with other digital signals.
The sample time as well as the conversion time is programmable, so the ADC can be adjusted to the
internal resistances of the analog sources and/or the analog reference voltage supply.

16.1 - Mode Selection and Operation
The analog input channels AN0...AN15 are
alternate functions of Port5 which is a 16 Bit
input-only port. The Port5 lines may either be
used as analog or digital inputs. No special action
is required to configure the Port5 lines as analog
inputs.

The functions of the A/D converter are controlled
by the Bit-addressable A/D Converter Control
Register ADCON.

Its Bit fields specify the analog channel to be
acted upon, the conversion mode, and also reflect
the status of the converter.

ADCON (FFA0h / D0h) SFR Reset Value: 0000h

Figure 124 : Analog / digital converter block diagram

ADCON

Conversion
Control

ADCIR

ADEIR

Interrupt
Request

10-Bit
Converter

Result Register ADDAT

Result Register ADDAT2

VAREF VAGND

S + HMUX
16

Analog
Input Channels

AN0
P5.0

AN15
P5.15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADCTC ADSTC AD
CRQ

AD
CIN

AD
WR

AD
BSY

ADST - ADM ADCH

RW RW RW RW RW R RW RW RW

ST10X167

213/294

Note *) ADSTC and ADCTC control the con-
version timing. Refer to Section 16.2
Conversion Timing Control.

Bit field ADCH specifies the analog input channel
which is to be converted (first channel of a
conversion sequence in auto scan modes). Bit
field ADM selects the operating mode of the A/D
converter. A conversion (or a sequence) is then
started by setting Bit ADST.
Clearing ADST stops the A/D converter after a
certain operation which depends on the selected
operating mode.

The busy flag (read-only) ADBSY is set, as long
as a conversion is in progress.

The result of a conversion is stored in the result
register ADDAT, or in register ADDAT2 for an
injected conversion.

Note Bit field CHNR of register ADDAT is
loaded by the ADC to indicate which
channel the result refers to. Bit field
CHNR of register ADDAT2 is loaded by
the CPU to select the analog channel,
which is to be injected.

ADDAT (FEA0h / 50h) SFR Reset Value: 0000h

ADDAT2 (F0A0h / 50h) ESFR Reset Value: 0000h

Bit Function

ADCH ADC Analog Channel Input Selection

ADM ADC Mode Selection

0 0: Fixed Channel Single Conversion
0 1: Fixed Channel Continuous Conversion
1 0: Auto Scan Single Conversion
1 1: Auto Scan Continuous Conversion

ADST ADC Start Bit

ADBSY ADC Busy Flag
ADBSY = 1: a conversion is active

ADWR ADC Wait for Read Control

ADCIN ADC Channel Injection Enable

ADCRQ ADC Channel Injection Request Flag

ADSTC ADC Sample Time Control *)

ADCTC ADC Conversion Time Control *)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CHNR - - ADRES

RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CHNR - - ADRES

RW RW

Bit Function

ADRES A/D Conversion Result (10 Bit)

CHNR Channel Number (4 Bit, identifies the converted analog channel)

ST10X167

214/294

A conversion is started by setting Bit ADST=‘1’.
The busy flag ADBSY will be set and the
converter then selects and samples the input
channel, which is specified by the channel
selection field ADCH in register ADCON. The
sampled level will then be held internally during
the conversion.

When the conversion of this channel is complete,
the 10 Bit result together with the number of the
converted channel is transferred into the result
register ADDAT and the interrupt request flag
ADCIR is set. If Bit ADST is reset via software,
while a conversion is in progress, the A/D
converter will stop after the current conversion
(fixed channel modes) or after the current
conversion sequence (auto scan modes).

Setting Bit ADST while a conversion is running,
will abort this conversion and start a new
conversion with the parameters specified in
ADCON.

Note Stop and restart (see above) are triggered
by Bit ADST changing from ‘0’ to ‘1’,
ADST must be ‘0’ before being set.

While a conversion is in progress, the mode
selection field ADM and the channel selection
field ADCH may be changed. ADM will be
evaluated after the current conversion. ADCH will
be evaluated after the current conversion (fixed
channel modes) or after the current conversion
sequence (auto scan modes).

16.1.1 - Fixed Channel Conversion Modes

These modes are selected by programming the
mode selection field ADM in register ADCON to
‘00b’ (single conversion) or to ‘01b’ (continuous
conversion). After starting the converter through
Bit ADST, the busy flag ADBSY will be set and the
channel specified in Bit field ADCH will be
converted. After the conversion is complete, the
interrupt request flag ADCIR will be set.

In single conversion mode the converter will
automatically stop and reset Bit ADBSY and
ADST.

In continuous conversion mode the converter
will automatically start a new conversion of the
channel specified in ADCH. ADCIR will be set
after each completed conversion. When Bit ADST
is reset by software, while a conversion is in
progress, the converter will complete the current
conversion and then stop and reset Bit ADBSY.

16.1.2 - Auto Scan Conversion Modes
These modes are selected by programming the
mode selection field ADM in register ADCON to
‘10B’ (single conversion) or to ‘11B’ (continuous
conversion).

Auto Scan modes automatically convert a
sequence of analog channels, beginning with the
channel specified in Bit field ADCH and ending
with channel 0, without requiring software to
change the channel number.
After starting the converter through Bit ADST, the
busy flag ADBSY will be set and the channel
specified in Bit field ADCH will be converted.

After the conversion is complete, the interrupt
request flag ADCIR will be set and the converter
will automatically start a new conversion of the
next lower channel. ADCIR will be set after each
completed conversion. After conversion of
channel 0 the current sequence is complete.

In single conversion mode the converter will
automatically stop and reset Bit ADBSY and
ADST.

In continuous conversion mode the converter
will automatically start a new sequence beginning
with the conversion of the channel specified in
ADCH.

When Bit ADST is reset by software, while a
conversion is in progress, the converter will
complete the current sequence (including
conversion of channel 0) and then stop and reset
Bit ADBSY.

ST10X167

215/294

Figure 125 : Auto scan conversion mode example

16.1.3 - Wait for ADDAT Read Mode
If in default mode of the ADC a previous
conversion result has not been read out of register
ADDAT by the time a new conversion is complete,
the previous result in register ADDAT is lost
because it is overwritten by the new value, and the
A/D overrun error interrupt request flag ADEIR will
be set.
In order to avoid error interrupts and the loss of
conversion results especially when using
continuous conversion modes, the ADC can be
switched to “Wait for ADDAT Read Mode” by
setting Bit ADWR in register ADCON.
If the value in ADDAT has not been read by the
time the current conversion is complete, the new
result is stored in a temporary buffer and the next

conversion is suspended (ADST and ADBSY will
remain set in the meantime, but no
end-of-conversion interrupt will be generated).
After reading the previous value from ADDAT the
temporary buffer is copied into ADDAT
(generating an ADCIR interrupt) and the
suspended conversion is started. This mechanism
applies to both single and continuous conversion
modes.

While in standard mode continuous conversions
are executed at a fixed rate (determined by the
conversion time), in “Wait for ADDAT Read Mode”
there may be delays due to suspended
conversions. However, this only affects the
conversions, if the CPU (or PEC) cannot keep
track with the conversion rate.

Conversion #2 #1 #0 #3 #2

#x #3 #2 #3#1 #0

#x #3 #2 #1 #3

Write ADDAT
ADDAT Full

Generate Interrupt
Request

Read of ADDAT;
Result of Channel:

ADDAT Full;
Channel 0
Result Lost

Overrun Error Interrupt Request

#3
of Channel:

Figure 126 : Wait for read mode example

#3 #2 #1 #0 #3Conversion

#x #3 #2 #0#1

#x #3 #2 #1 #0

Write ADDAT
ADDAT Full

Generate Interrupt
Request

Read of ADDAT;
Result of Channel:

Wait

Temp-Latch Full

#3

#1

Hold Result in
Temp-Latch

of Channel:

ST10X167

216/294

16.1.4 - Channel Injection Mode
Channel Injection Mode allows the conversion of a
specific analog channel (also while the ADC is
running in a continuous or auto scan mode)
without changing the current operating mode.
After the conversion of this specific channel, the
ADC continues with the original operating mode.

Channel Injection mode is enabled by setting Bit
ADCIN in register ADCON and requires the Wait
for ADDAT Read Mode (ADWR=‘1’). The channel
to be converted in this mode is specified in Bit field
CHNR of register ADDAT2.

These 4 Bit in ADDAT2 are not modified by the A/
D converter, but only the ADRES Bit field. Since
the channel number for an injected conversion is
not buffered, Bitfield CHNR of ADDAT2 must
never be modified during the sample phase of an
injected conversion, otherwise the input
multiplexer will switch to the new channel. It is
recommended to only change the channel
number with no injected conversion running (see
Figure 127).

A channel injection can be triggered in two ways:

– Setting the Channel Injection Request Bit
ADCRQ via software a compare or a capture
event of Capture/Compare register CC31 of the
CAPCOM2 Unit, which also sets Bit ADCRQ.

– Triggering a channel injection at a specific time
on the occurrence of a predefined count value of
the CAPCOM timers or on a capture event of
register CC31. This can be either the positive,
negative, or both the positive and the negative
edge of an external signal. In addition, this

option allows recording the time of occurrence of
this signal.

Note The channel injection request Bit
ADCRQ will be set on any interrupt
request of CAPCOM2 channel CC31,
regardless whether the channel injec-
tion mode is enabled or not. It is recom-
mended to always clear Bit ADCRQ
before enabling the channel injection
mode. While an injected conversion is in
progress, no further channel injection
request can be triggered. The Channel
Injection Request flag ADCRQ remains
set until the result of the injected conver-
sion is written to the ADDAT2 register.
If the converter was idle before the
channel injection, and during the
injected conversion the converter is
started by software for normal conver-
sions, the channel injection is aborted,
and the converter starts in the selected
mode (as described above). This can be
avoided by checking the busy Bit
ADBSY before starting a new operation.

After the completion of the current conversion (if
any is in progress) the converter will start (inject)
the conversion of the specified channel. When the
conversion of this channel is complete, the result
will be placed into the alternate result register
ADDAT2, and a Channel Injection Complete
Interrupt request will be generated, which uses
the interrupt request flag ADEIR (for this reason
the Wait for ADDAT Read Mode is required).

Figure 127 : Channel injection example

#x #x-1 #x-2 #x-3 #x-4Conversion

#x+1 #x #x-1 #x-3

#x+1

Write ADDAT

ADDAT Full

Read ADDAT

#x-4

#...

#x-2

#x #x-1 #x-2 #x-3 #x-4

#y

Write ADDAT2

Channel Injection
Request by CC31

Interrupt Request
ADEINT

Injected Conversion
of Channel #y

ADDAT2 Full

Read ADDAT2

of Channel:

ST10X167

217/294

If the temporary data register used in Wait for ADDAT Read Mode is full, the respective next conversion
(standard or injected) will be suspended. The temporary register can hold data for ADDAT (from a
standard conversion) or for ADDAT2 (from an injected conversion).

Figure 128 : Channel injection example with wait for read

#x #x-1 #x-2 #x-3Conversion

#x+1 #x #x-1 #x-2

#x+1

Write ADDAT

ADDAT Full

Read ADDAT

#x-3

#...

#x #x-1 #x-2 #x-3

#y
Channel Injection
Request by CC31

Injected Conversion
of Channel #y Write ADDAT2

#y

Interrupt
Request

#z #y

ADDAT2 Full

Read ADDAT2

Temp-Latch Full

#x #x-1 #x-2 #x-3Conversion

#x+1 #x #x-1 #x-2

#x+1

Write ADDAT

ADDAT Full

Read ADDAT

#x-3

#...

#x #x-2 #x-3

#y

Channel Injection
Request by CC31

Write ADDAT2

Interrupt Request
ADEINT

#y

ADDAT2 Full

Read ADDAT2

#x-1

Temp-Latch Full

Wait until ADDAT2
is read

of Channel:

of Channel:

#z

ADEINT

Wait until
ADDAT2 is

read

ST10X167

218/294

16.2 - Conversion Timing Control

When a conversion is started, first the
capacitances of the converter are loaded via the
respective analog input pin to the current analog
input voltage. The time to load the capacitances is
referred to as sample time. Next the sampled
voltage is converted to a digital value in 10
successive steps, which correspond to the 10 Bit
resolution of the ADC. The next 4 steps are used
for an internal self-calibration of the converter
module. During these 14 steps the internal
capacitances are repeatedly charged and
discharged via the VAREF pin.

The current that has to be drawn from the sources
for sampling and changing charges depends on
the time that each respective step takes, because
the capacitors must reach their final voltage level
within the given time, at least with a certain
approximation. The maximum current, however,
that a source can deliver, depends on its internal
resistance.

The time that the two different actions during
conversion take (sampling, and converting) can
be programmed within a certain range in the
ST10X167 relative to the CPU clock. The absolute
time that is consumed by the different conversion
steps therefore is independent of the general
speed of the controller. This allows adjusting the
A/D converter of the ST10X167 to the properties
of the system:

Fast conversion can be achieved by
programming the respective times to their
absolute possible minimum. This is preferable for
scanning high frequency signals. The internal
resistance of analog source and analog supply
must be sufficiently low, however.

High internal resistance can be achieved by
programming the respective times to a higher
value, or the possible maximum.

This is preferable when using analog sources and
supply with a high internal resistance in order to
keep the current as low as possible. The
conversion rate in this case may be considerably
lower, however.

The conversion times are programmed via the
upper four Bit of register ADCON. Bit field ADCTC
(conversion time control) selects the basic
conversion clock, used for the 14 steps of
converting. The sample time is a multiple of this
conversion time and is selected by Bit field
ADSTC (sample time control). The table below

lists the possible combinations. The timings refer
to the unit TCL, where fCPU = 1/2TCL.

A complete conversion will take 14tCC + 2tSC +
4TCL. This time includes the conversion itself, the
sample time and the time required to transfer the
digital value to the result register.

Note The decoding of Bit field ADCTC provides
compatibility with ST10F166 designs for the
default value (00 at after reset).

16.3 - Calibration
A full calibration sequence is performed after
a reset . This full calibration lasts 40 000 CPU
clock cycles. During this time, the busy flag
ADBSY is set to indicate the operation. Normal
conversion may be performed during this time.
The duration of the calibration sequence is then
extended by the time consumed by the
conversions.
Note: After a power-on reset, the total unadjusted
error (TUE) of the ADC might be worse than ±2
LSB (max. ±4 LSB). During the full calibration
sequence, the TUE is constantly improved until at
the end of the calibration, TUE is within the
specified limits of ±2 LSB.
One calibration cycle is performed after each
conversion. Each calibration cycle takes 4 ADC
clock cycles. These operation cycles ensure
constant updating of the ADC’s accuracy,
compensating for changing operating conditions.
A complete conversion cycle takes 16 ADC clock
cycles (2 ADC clocks sample phase, 10 ADC
clocks conversion phase, 4 ADC clocks calibration
phase).

16.4 - A/D Converter Interrupt Control
At the end of each conversion, interrupt request
flag ADCIR in interrupt control register ADCIC is
set. This end-of-conversion interrupt request may
cause an interrupt to vector ADCINT, or it may
trigger a PEC data transfer which reads the
conversion result from register ADDAT it can be
stored it into a table in the internal RAM for later
evaluation.

ADCTC
Conversion

clock tCC
ADSTC

Sample
clock tSC

00 TCL x 24 00 tCC

01 Reserved, do not use 01 tCC x 2

10 TCL x 96 10 tCC x 4

11 TCL x 48 11 tCC x 8

ST10X167

219/294

The interrupt request flag ADEIR in register ADEIC will be set, either if a conversion result overwrites a
previous value in register ADDAT (error interrupt in standard mode), or if the result of an injected
conversion has been stored into ADDAT2 (end-of-injected-conversion interrupt). This interrupt request
may be used to cause an interrupt to vector ADEINT, or it may trigger a PEC data transfer.

ADCIC (FF98h / CCh) SFR Reset Value: --00h

ADEIC (FF9Ah / CDh) SFR Reset Value: --00h

Note Refer to Section 5.1.3 - Interrupt Control Registers for explanation of the control fields.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - ADC
IR

ADC
IE

ILVL GLVL

RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - ADE
IR

ADE
IE

ILVL GLVL

RW RW RW RW

ST10X167

220/294

17 - ON-CHIP CAN INTERFACE

The CAN module is always enabled on the
ST10F167. The CAN module may be enabled or
disabled with ST10C167 or ST10R167 by
programming the XPEN Bit in the SYSCON
register.

The integrated CAN Module handles the
autonomous transmission and reception of CAN
frames in accordance with the CAN specification
V2.0 part B (active), the on-chip CAN Module can
receive and transmit standard frames with 11 Bit
identifiers and extended frames with 29 Bit
identifiers.

The CAN provides Full CAN functionality on up to
15 full sized message objects (8 data Byte each).
Message object 15 may be configured for
Basic CAN functionality with a double-buffered
receive object.

Full CAN and Basic CAN modes both provide
separate masks for acceptance filtering,
accepting identifiers in Full CAN mode and
disregarding identifiers in Basic CAN mode.

All message objects can be updated
independently from the other objects and are
equipped with buffers for the maximum message
length of 8 Byte.

The Bit timing is derived from the XCLK and is
programmable up to a data rate of 1M Baud (at
25 MHz CPU clock). The CAN Module uses two
pins of Port 4 to interface to a bus transceiver.

17.1 - The CAN Controller

The CAN module combines several functional
blocks that work in parallel. These units and the
functions they provide are described below.

Each of the message objects has a unique
identifier and its own set of control and status Bit.
Each object can be configured for transmit or
receive direction, except the last message which
is a double receive buffer with a special mask
register.

An object with its direction set as transmit can be
configured to be automatically sent whenever a
remote frame with a matching identifier (taking
into account the respective global mask register)
is received over the CAN bus.

By requesting the transmission of a message with
the direction set as receive, a remote frame can
be sent to request that the appropriate object be
sent by some other node.

Each object has separate transmit and receive
interrupts and status Bit, giving the CPU full
flexibility in detecting when a remote/data frame
has been sent or received.

Two acceptance filtering masks can be
programmed for general purpose, one for
identifiers of 11 Bit and one for identifiers of 29 Bit.
However, the CPU must configure Bit XTD
(Normal or Extended Frame Identifier) for each
valid message, to determine whether a standard
or extended frame will be accepted.

The last message object has its own
programmable mask for acceptance filtering,
allowing a large number of infrequent objects to
be handled by the system.

ST10X167

221/294

Figure 129 : CAN block diagram

Tx/Rx Shift Register

The Transmit / Receive Shift Register holds the
destuffed Bit stream from the bus line to give
parallel access to the whole data or remote frame
for the acceptance match test and the parallel
transfer of the frame to and from the Intelligent
Memory.

Bit Stream Processor

The Bit Stream Processor (BSP) is a sequencer,
controlling the sequential data stream between
the Tx/Rx Shift Register, the CRC Register, and
the bus line. The BSP also controls the EML and
the parallel data stream between the Tx/Rx Shift
Register and the Intelligent Memory such that the
processes of reception, arbitration, transmission,
and error signalling are performed according to
the CAN protocol. Note that the automatic
retransmission of messages which have been
corrupted by noise or other external error
conditions on the bus line is handled by the BSP.

Cyclic Redundancy Check Register

This register generates the Cyclic Redundancy
Check (CRC) code to be transmitted after the data
Byte and checks the CRC code of incoming
messages. This is done by dividing the data
stream by the code generator polynomial.

Error Management Logic

The Error Management Logic (EML) is
responsible for the fault confinement of the CAN
device. Its counters, the Receive Error Counter
and the Transmit Error Counter, are incremented
and decremented by commands from the Bit
Stream Processor. According to the values of the
error counters, the CAN controller is set into the
states: error active, error passive and busoff.

The CAN controller is error active, if both error
counters are below the error passive limit of 128.

It is error passive, if at least one of the error
counters equals or exceeds 128.

to XBUS

EML

Clocks

Messages Handlers Control

Messages

(to all)

CRC

BTL - Configuration

Timing
Generator

BTL

Register

Intelligent
Memory

Interrupt

BSP

Register
Status

CAN_TxD CAN_RxD

Status + Control

Tx/Rx Shift Register

P4.6 P4.5

ST10X167

222/294

It goes busoff, if the Transmit Error Counter equals
or exceeds the busoff limit of 256. The device
remains in this state until the busoff recovery
sequence is finished.
Additionally, there is the Bit EWRN in the Status
Register, which is set, if at least one of the error
counters equals or exceeds the error warning limit
of 96. EWRN is reset, if both error counters are
less than the error warning limit.

Bit Timing Logic
This block (BTL) monitors the busline input
CAN_RxD and handles the busline related Bit
timing according to the CAN protocol.
The BTL synchronizes on a recessive to dominant
busline transition at Start of Frame (hard
synchronization) and on any further recessive to
dominant busline transition, if the CAN controller
itself does not transmit a dominant Bit
(resynchronization).
The BTL also provides programmable time
segments to compensate for the propagation
delay time and for phase shifts and to define the
position of the Sample Point in the Bit time. The
programming of the BTL depends on the Baud
rate and on external physical delay times.

Intelligent Memory
The Intelligent Memory (CAN/RAM Array)
provides storage for up to 15 message objects of

maximum 8 data Byte length. Each of these
objects has a unique identifier and its own set of
control and status Bit. After the initial
configuration, the Intelligent Memory can handle
the reception and transmission of data without
further CPU actions.

17.2 - Register and Message Object
Organization

All registers and message objects of the CAN
controller are located in the special CAN address
area of 256 Byte, which is mapped into segment 0
and uses addresses 00’EF00h through 00’EFFFh.
All registers are organized as 16 Bit registers,
located on Word addresses. However, all registers
may be accessed Byte wise in order to select
special actions without effecting other
mechanisms.

Note The address map shown in Figure 130 lists
the registers which are part of the CAN
controller. There are also ST10X167
specific registers that are associated with
the CAN Module. These registers, however,
control the access to the CAN Module
rather than its function.

ST10X167

223/294

Figure 130 : CAN module address map

Control / Status Register (EF00h) XReg Reset Value: XX01h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BOFF E

WRN

- RXOK TXOK LEC TST CCE 0 0 EIE SIE IE INIT

R R RW RW RW RW RW R R RW RW RW RW

EF00h

EF02h

EF04h

EF06h

EF08h

EF0Ch

Message Object 15

Message Object 14

Message Object 13

Message Object 12

Message Object 11

Message Object 10

Message Object 9

Message Object 8

Message Object 7

Message Object 6

Message Object 5

Message Object 4

Message Object 3

Message Object 2

Message Object 1

General Registers

CAN Address Area General Registers

EF00h

EF10h

EF20h

EF30h

EF40h

EF50h

EF60h

EF70h

EF80h

EF90h

EFA0h

EFB0h

EFC0h

EFD0h

EFE0h

EFF0h

Control / Status
Register

Interrupt
Register

Bit Timing
Register

Global Mask
Short

Global Mask
Long

Mask of
Last Message

ST10X167

224/294

Table 35 : CAN Control/Status register

Bit Function (Control Bit)

INIT Initialization

1: Software initialization of the CAN controller. While init is set, all message transfers are stopped.
Setting init does not change the configuration registers and does not stop transmission or
reception of a message in progress. The init Bit is also set by hardware, following a busoff
condition; the CPU then needs to reset init to start the bus recovery sequence. see Figure 139.

0: Disable software initialization of the CAN controller; on INI completion, the CAN waits for 11
consecutive recessive Bit before taking part in bus activities.

IE Interrupt Enable - Does not affect status updates.

1: Global interrupt enable from CAN module.

0: Global interrupt disable from CAN module.

SIE Status Change Interrupt Enable

1: Enables interrupt generation when a message transfer (reception or transmision is successfully
completed) or CAN bus error is detected and registered in LEC is the status partition.

0: Disable status change interrupt.

EIE Error Interrupt Enable

1: Enables interrupt generation on a change of Bit BOFF or EWARN in the status partition.

0: Disable error interrupt.

CCE Configuration Change Enable

1: Allows CPU access to the Bit timing register

0: Disables CPU access to the Bit timing register

TST Test Mode (Bit 7)

Make sure that Bit 7 is cleared when writing to the Control Register. Writing a 1 during normal operation
may lead erroneous device behaviour.

LEC Last Error Code

This field holds a code which indicates the type of the last error occurred on the CAN bus. If a message has
been transferred (reception or transmission) without error, this field will be cleared. Code “7” is unused and
may be written by the CPU to check for updates.

0: No Error

1: Stuff Error: More than 5 equal Bit in a sequence have occurred in a part of a received message
where this is not allowed.

2: Form Error: A fixed format part of a received frame has the wrong format.

3: AckError: The message this CAN controller transmitted was not acknowledged by another node

4: Bit1Error: During the transmission of a message (with the exception of the arbitration field), the
device wanted to send a recessive level (“1”), but the monitored bus value was dominant

5: Bit0Error: During the transmission of a message (or acknowledge Bit, active error flag, or overload
flag), the device wanted to send a dominant level (“0”), but the monitored bus value was recessive.
During busoff recovery this status is set each time a sequence of 11 recessive Bit has been
monitored. This enables the CPU to monitor the proceeding of the busoff recovery sequence
(indicating the bus is not stuck at dominant or continuously disturbed).

6: CRCError: The CRC check sum was incorrect in the message received.

TXOK Transmitted Message Successfully

Indicates that a message has been transmitted successfully (error free and acknowledged by at least one
other node), since this Bit was last reset by the CPU (the CAN controller does not reset this Bit!).

ST10X167

225/294

Note Reading the upper half of the Control
Register (status partition) will clear the
Status Change Interrupt value in the
Interrupt Register, if it is pending. Use Byte
accesses to the lower half to avoid this.

17.3 - CAN Interrupt Handling

The on-chip CAN Module has one interrupt
output, which is connected (through a
synchronization stage) to a standard interrupt
node in the ST10X167 in the same manner as all
other interrupts of the standard on-chip
peripherals. The control register for this interrupt
is XP0IC (located at address F186h/C3h in the
ESFR range). The associated interrupt vector is
called XP0INT at location 100h (trap number 40h).
With this configuration, the user has all control
options available for this interrupt, such as
enabling/disabling, level and group priority, and
interrupt or PEC service (see note below).
As for all other interrupts, the interrupt request flag
XP0IR in register XP0IC is cleared automatically
by hardware when this interrupt is serviced (either
by standard interrupt or PEC service).

Note As a rule, CAN interrupt requests can be
serviced by a PEC channel. However,
because PEC channels only can execute
single predefined data transfers (there are
no conditional PEC transfers), PEC service

can only be used, if the respective request
is known to be generated by one specific
source, and that no other interrupt request
will be generated in between. In practice
this seems to be a rare case.

Since an interrupt request of the CAN Module can
be generated due to different conditions, the
appropriate CAN interrupt status register must be
read in the service routine to determine the cause
of the interrupt request. The Interrupt Identifier
INTID (a number) in the Interrupt Register
indicates the cause of an interrupt. When no
interrupt is pending, the identifier will have the
value 00h. If the value in INTID is not 00h, then
there is an interrupt pending. If Bit IE in the
Control Register is set, also the interrupt line to
the CPU is activated. The interrupt line remains
active until either INTID gets 00h (after the
interrupt requester has been serviced) or until IE
is reset (if interrupts are disabled).

The interrupt with the lowest number has the
highest priority. If a higher priority interrupt (lower
number) occurs before the current interrupt is
processed, INTID is updated and the new
interrupt overrides the last one. The Table 36 lists
the valid values for INTID and their corresponding
interrupt sources.

Interrupt Register (EF02h) XReg Reset Value: --XXh

RXOK Received Message Successfully

Indicates that a message has been received successfully, since this Bit was last reset by the CPU (the CAN
controller does not reset this Bit!).

EWRN Error Warning Status

Indicates that at least one of the error counters in the EML has reached the error warning limit of 96.

BOFF Busoff Status

Indicates when the CAN controller is in busoff state (see EML).

Bit Function (Control Bit)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED INTID

R

Bit Function

INTID Interrupt Identifier
This number indicates the cause of the interrupt. When no interrupt is pending, the value will be “00”.

ST10X167

226/294

Table 36 : INTID values and Corresponding Interrupt Sources

Notes 1) Bit INTPND of the corresponding message object has to
be cleared to give messages with a lower priority the
possibility to update INTID or to reset INTID to 00h (idle
state).

2) A message interrupt code is only displayed, if there is no
other interrupt request with a higher priority.

Bit Timing Configuration

According to the CAN protocol specification, a Bit
time is subdivided into four segments:
Sync segment, propagation time segment, phase
buffer segment 1 and phase buffer segment 2.

Each segment is a multiple of the time quantum tq
with tq

 = (BRP + 1)

x 2 x tXCLK

The Synchronization Segment (Sync seg) is
always 1 tq long. The Propagation Time Segment
and the Phase Buffer Segment1 (combined to
Tseg1) defines the time before the sample point,
while Phase Buffer Segment2 (Tseg2) defines the
time after the sample point. The length of these
segments is programmable (except Sync-Seg).
Note For exact definition of these segments

please refer to the CAN Specification.

INTID Cause of the Interrupt

00 Interrupt Idle: There is no interrupt request pending.

01 Status Change Interrupt: The CAN controller has updated (not necessarily changed) the status in the
Control Register. This can refer to a change of the error status of the CAN controller (EIE is set and BOFF
or EWRN change) or to a CAN transfer incident (SIE must be set), like reception or transmission of a
message (RXOK or TXOK is set) or the occurrence of a CAN bus error (LEC is updated). The CPU may
clear RXOK, TXOK, and LEC, however, writing to the status partition of the Control Register can never
generate or reset an interrupt. To update the INTID value the status partition of the Control Register must
be read.

02 Message 15 Interrupt: Bit INTPND in the Message Control Register of message object 15 (last message)
has been set.
The last message object has the highest interrupt priority of all message objects. 1)

(2+N) Message N Interrupt: Bit INTPND in the Message Control Register of message object ‘N’ has been set
(N = 1...14). 1) 2)

Figure 131 : Bit timing definition

Seg TSeg1 TSeg2

1 Bit time

1 time quantum sample point transmit point

Sync
Seg
Sync

ST10X167

227/294

Bit Timing Register (EF04h) XReg Reset Value: UUUUh

Note This register can only be written, if the
configuration change enable Bit (CCE) is
set.

Mask Registers
Messages can use standard or extended
identifiers. Incoming frames are masked with their
appropriate global masks. Bit IDE of the incoming
message determines whether the standard 11 Bit
mask in Global Mask Short or the 29 Bit extended
mask in Global Mask Long is to be used. Bit
holding a “0” mean “don’t care”, so do not

compare the message’s identifier in the
respective Bit position.

The last message object (15) has an additional
individually programmable acceptance mask
(Mask of Last Message) for the complete
arbitration field. This allows classes of messages
to be received in this object by masking some Bit
of the identifier.

Note The Mask of Last Message is ANDed with
the Global Mask that corresponds to the
incoming message.

Global Mask Short (EF06h) XReg Reset Value: UFUUh

Upper Global Mask Long (EF08h) XReg Reset Value: UUUUh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 TSEG2 TSEG1 SJW BRP

R RW RW RW RW

Bit Function

BRP Baud Rate Prescaler
For generating the Bit time quanta the CPU frequency is divided by 2 x (BRP+1).

SJW (Re)Synchronization Jump Width
Adjust the Bit time by maximum (SJW+1) time quanta for re-synchronization.

TSEG1 Time Segment before sample point
There are (TSEG1+1) time quanta before the sample point. Valid values for TSEG1 are “2...15”.

TSEG2 Time Segment after sample point
There are (TSEG2+1) time quanta after the sample point. Valid values for TSEG2 are “1...7”.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID20...18 1 1 1 1 1 ID28...21

RW R R R R R RW

Bit Function

ID28...18 Identifier (11 Bit)
Mask to filter incoming messages with standard identifier.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID20...13 ID28...21

RW RW

ST10X167

228/294

Lower Global Mask Long (EF0Ah) XReg Reset Value: UUUUh

Upper Mask of Last Message (EF0Ch) XReg Reset Value: UUUUh

Lower Mask of Last Message (EF0Eh) XReg Reset Value: UUUUh

17.4 - The Message Object

The message object is the primary means of
communication between CPU and CAN controller.
Each of the 15 message objects uses 15
consecutive Byte (see Figure 132) and starts at
an address that is a multiple of 16.

Note All message objects must be initialized by
the CPU, even those which are not going to
be used, before clearing the INIT Bit..

Each element of the Message Control Register is
made of two complementary Bit.

This special mechanism allows the selective
setting or resetting of specific elements (leaving
others unchanged) without requiring
read-modify-write cycles. None of these elements
will be affected by reset.

The Table 37 shows how to use and to interpret
these 2 Bit fields.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID4...0 0 0 0 ID12...5

RW R R R RW

Bit Function

ID28...0 Identifier (29 Bit)
Mask to filter incoming messages with extended identifier.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID20...18 ID17...13 ID28...21

RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID4...0 0 0 0 ID12...5

RW R R R RW

Bit Function

ID28...0 Identifier (29 Bit)
Mask to filter the last incoming message (Nr. 15) with standard or extended identifier (as configured).

Figure 132 : Message object address map

Message Control

Arbitration

Message Config.

+0

+2

+4

+6

+8

+10

+12

+14

Object Start Address

Data0

Reserved

Data1Data2

Data3Data4

Data5Data6

Data7

Table 37 : Functions of complementary Bit of message control register

Value Function on Write Meaning on Read

00 Reserved Reserved

01 Reset element Element is reset

10 Set element Element is set

11 Leave element unchanged Reserved

ST10X167

229/294

Message Control Register (EFn0h) XReg Reset Value: UUUUh

Notes 1. In message object 15 (last message) these Bit are hardwired to “0” (inactive) in order to prevent transmission of message 15.

2. When the CAN controller writes new data into the message object, unused message Byte will be overwritten by non specified
values. Usually the CPU will clear this Bit before working on the data, and verify that the Bit is still cleared once it has finished working
to ensure that it has worked on a consistent set of data and not part of an old message and part of the new message.
For transmit-objects the CPU will set this Bit along with clearing Bit CPUUPD. This will ensure that, if the message is actually being
transmitted during the time the message was being updated by the CPU, the CAN controller will not reset Bit TXRQ. In this way Bit
TXRQ is only reset once the actual data has been transferred.

3. When the CPU requests the transmission of a receive-object, a remote frame will be sent instead of a data frame to request a
remote node to send the corresponding data frame. This Bit will be cleared by the CAN controller along with Bit RMTPND when the
message has been successfully transmitted, if Bit NEWDAT has not been set. If there are several valid message objects with pending
transmission request, the message with the lowest message number is transmitted first.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RMTPND TXRQ MSGLST
CPUUPD

NEWDAT MSGVAL TXIE RXIE INTPND

RW RW RW RW RW RW RW RW

Bit Function

INTPND Interrupt Pending
Indicates, if this message object has generated an interrupt request (see TXIE and RXIE), since
this Bit was last reset by the CPU, or not.

RXIE Receive Interrupt Enable
Defines, if Bit INTPND is set after successful reception of a frame.

TXIE Transmit Interrupt Enable
Defines, if Bit INTPND is set after successful transmission of a frame. 1

MSGVAL Message Valid
Indicates, if the corresponding message object is valid or not. The CAN controller only operates on
valid objects. Message objects can be tagged invalid, while they are changed, or if they are not
used at all.

NEWDAT New Data
Indicates, if new data has been written into the data portion of this message object by CPU
(transmit-objects) or CAN controller (receive-objects) since this Bit was last reset, or not. 2

MSGLST
(Receive)

Message Lost (This Bit applies to receive-objects only)
Indicates that the CAN controller has stored a new message into this object, while NEWDAT was
still set, i.e. the previously stored message is lost.

CPUUPD
(Transmit)

CPU Update (This Bit applies to transmit-objects only)
Indicates that the corresponding message object may not be transmitted now. The CPU sets this
Bit in order to inhibit the transmission of a message that is currently updated, or to control the
automatic response to remote requests.

TXRQ Transmit Request
Indicates that the transmission of this message object is requested by the CPU or via a remote
frame and is not yet done. TXRQ can be disabled by CPUUPD. 1 3

RMTPND Remote Pending (Used for transmit-objects)
Indicates that the transmission of this message object has been requested by a remote node, but
the data has not yet been transmitted. When RMTPND is set, the CAN controller also sets TXRQ.
RMTPND and TXRQ are cleared, when the message object has been successfully transmitted.

ST10X167

230/294

17.5 - Arbitration Registers
The arbitration Registers are used for acceptance
filtering of incoming messages and to define the
identifier of outgoing messages. A received
message is stored into the valid message object
with a matching identifier and DIR=”0” (data
frame) or DIR=”1” (remote frame).
Extended frames can be stored only in message
objects with XTD=”1”, standard frames only in
message objects with XTD=”0”. For matching, the
corresponding global mask has to be considered
(in case of message object 15 also the Mask of
Last Message). If a received message (data frame
or remote frame) matches with more than one
valid message object, it is stored into that with the
lowest message number.
When the CAN controller stores a data frame, not
only the data Byte, but the whole identifier and the
data length code are stored into the
corresponding message object (standard
identifiers have Bit ID17...0 filled with “0”). This is
implemented to keep the data Byte connected
with the identifier, even if arbitration mask

registers are used. When the CAN controller
stores a remote frame, only the data length code
is stored into the corresponding message object.
The identifier and the data Byte remain
unchanged.
There must not be more than one valid message
object with a particular identifier at any time. If Bit
are masked by the Global Mask Registers (“don’t
care”), then the identifiers of the valid message
objects must differ in the remaining Bit which are
used for acceptance filtering.
If a received data frame is stored into a message
object, the identifier of this message object is
updated. If some of the identifier Bit are set to
“don’t care” by the corresponding mask register,
these Bit may be changed in the message object.
If a remote frame is received, the identifier in
transmit-object remain unchanged, except for the
last message object (which cannot start a
transmission). Here, the identifier Bit
corresponding to the “don’t care” Bit of the last
message object’s mask may be overwritten by the
incoming message.

Upper Arbitration Reg (EFn2h) XReg Reset Value: UUUUh

Lower Arbitration Reg (EFn4h) XReg Reset Value: UUUUh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID20...18 ID17...13 ID28...21

RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID4...0 0 0 0 ID12...5

RW R R R RW

Bit Function

ID28...0 Identifier (29 Bit) Identifier of a standard message (ID28...18) or an extended message (ID28...0).
For standard identifiers Bit ID17...0 are “don’t care”.

ST10X167

231/294

Message Configuration and Data
The following fields hold a description of the
message within this object. The data field
occupies the following 8 Byte positions after the
Message Configuration Register.
Note There is no “don’t care” option for Bit XTD

and DIR. So incoming frames can only
match with corresponding message
objects, either standard (XTD=0) or

extended (XTD=1). Data frames only match
with receive-objects, remote frames only
match with transmit-objects.
When the CAN controller stores a data
frame, it will write all the eight data Byte into
a message object. If the data length code
was less than 8, the remaining Byte of the
message object will be overwritten by non
specified values.

Message Configuration Register (EFn6h) XReg Reset Value:--UUh

Note The first data Byte occupies the upper half of the message configuration register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(Data Byte 0) DLC DIR XTD 0 0

RW RW RW RW R R

Bit Function

XTD Extended Identifier
Indicates, if this message object will use an extended 29 Bit identifier or a standard 11 Bit identifier.

DIR Message Direction
DIR=”1”: transmit. On TXRQ, the respective message object is transmitted. On reception of a remote
frame with matching identifier, the TXRQ and RMTPND Bit of this message object are set.

DIR=”0”: receive. On TXRQ, a remote frame with the identifier of this message object is transmitted. On
reception of a data frame with matching identifier, that message is stored in this message object.

DLC Data Length Code
Valid values for the data length are 0...8.

ST10X167

232/294

Data Area

The data area of message object n covers
locations 00’EFn7h through 00’EFnEh (locations
00’EFnFh is reserved).

Message data for message object 15 (last
message) will be written into a two-message-
alternating buffer to avoid the loss of a message, if

a second message has been received, before the
CPU has read the first one.

Handling of Message Objects
The following diagrams summarize the necessary
actions to transmit and receive data over the CAN
bus. The CAN and CPU activities are described
including the servicing program.

Figure 133 : CAN controller handling of message objects in transmit direction

Bus free ?

NEWDAT := 0
load message

into buffer

Transmission
successful?

NEWDAT=1
TXRQ := 0

RMTPND := 0

INTPND := 1

Send message

yes

no

yes

yes

yes

yes

yes

no

no

no

TXRQ := 1
RMTPND := 1

no

no

INTPND := 1

yes

no

0: reset
1: set

RXIE = 1

TXRQ=1
CPUUPD=0

TXIE = 1

Received remote frame
with same identifier as
this message object ?

ST10X167

233/294

Figure 134 : CPU handling of message objects in transmit direction

TXRQ := 1

yes

no

Initialisation

TXRQ := 0
RMTPND := 0

NEWDAT := 0

CPUUPD := 1

RXIE := (application specific)
TXIE := (application specific)

Power Up

CPUUPD := 1

(all Bit undefined)

Identifier := (application specific)

DLC := (application specific)
Direction := transmit

INTPND := 0

Update : Start

write / calculate message contents

CPUUPD := 0

NEWDAT := 1

Update

Update : End

no yes

MSGVAL := 1
XTD := (application specific)

0: reset
1: set

want to send ?

update message ?

ST10X167

234/294

Figure 135 : CAN controller handling of message objects in receive direction

Bus idle ?

TXRQ=1

CPUUPD=0

NEWDAT := 0
load identifier and
control into buffer

Transmission
successful?

TXRQ := 0

RMTPND := 0

TXIE = 1

INTPND := 1

Send remote frame

yes

no

yes

yes

yes

yes

no

no

Store message

no

RXIE = 1

INTPND := 1

yes

no

RMTPND := 0

no

NEWDAT = 1
yes

MSGLST := 1 no

0: reset
1: set

TXRQ := 0
NEWDAT := 1

Received frame with
same identifier as this

message object ?

ST10X167

235/294

Figure 136 : CPU handling of the last message object

no

Initialisation

Power Up

NEWDAT = 1 ?

(all Bit undefined)

Process : Start process message contents

NEWDAT := 0
Process

Process : End
yes

Restart Process

0: reset
1: set

RMTPND := 0

NEWDAT := 0

MSGLST := 0

RXIE := (application specific)

Identifier := (application specific)

DLC := (value of DLC in transmitter)

Direction := receive

INTPND := 0

MSGVAL := 1

XTD := (application specific)

ST10X167

236/294

Figure 137 : CPU handling of message objects in receive direction

no

no

Initialisation

Power Up (all Bit undefined)

Process : Start

process message contents

NEWDAT := 0

Process

Process : End
yes

yes

Restart Process

0: reset
1: set

TXRQ := 0
RMTPND := 0

NEWDAT := 0

MSGLST := 0

RXIE := (application specific)
TXIE := (application specific)

Identifier := (application specific)

DLC := (value of DLC in transmitter)
Direction := receive

INTPND := 0

MSGVAL := 1

XTD := (application specific)

NEWDAT = 1 ?

TXRQ := 1

request update ?

ST10X167

237/294

Figure 138 : Handling of the last message object’s alternating buffer

Buffer 1 = released

Buffer 2 = released

CPU access to Buffer 2

Buffer 1 = released

Buffer 2 = allocated

CPU access to Buffer 2

Buffer 1 = allocated

Buffer 2 = released

CPU access to Buffer 1

Buffer 1 = allocated

Buffer 2 = allocated

CPU access to Buffer 1

Buffer 1 = allocated

Buffer 2 = allocated

CPU access to Buffer 2

Store received
message into
Buffer 1
MSGLST is set

Store received
message into
Buffer 2
MSGLST is set

CPU releases
Buffer 2

CPU releases
Buffer 1

Store received
Message
into Buffer 1

Store received
Message
into Buffer 2

CPU allocates Buffer 2 Store received Message
into Buffer 1

CPU releases Buffer 2 CPU releases Buffer 1

Reset

Allocated : NEWDAT = 1 OR RMTPND = 1
Released : NEWDAT = 0 AND RMTPND = 0

ST10X167

238/294

Figure 139 : CAN controller handling of bus recovery sequence

busoff =1

init :=1

init=0?

Bit0 error :=1

128
occurence of

idle bus?

busoff :=0

No

No

No

Yes

Yes

Yes

received
1 sequence

of 11
recessive

Bit

ST10X167

239/294

Figure 140 : CPU handling of bus recovery

17.6 - Initialization and Reset

The on-chip CAN Module is connected to the
XBUS Reset signal XRESET. This signal is
activated, when the ST10X167’s reset input is
activated, when a software reset is executed and
in case of a watchdog reset. Activating the
CAN Module’s reset line triggers a hardware
reset.

This hardware reset

– Sets the CAN_TxD output to “1” (recessive).

– Clears the error counters.

– Resets the busoff state.

– Switches the Control Register’s low Byte to 01h.

– Leaves the Control Register’s high Byte and the
Interrupt Register undefined.

– Does not change the other registers including
the message objects (notified as UUUU).

Note The first hardware reset after power-on
leaves the unchanged registers in an
undefined state.
The value 01h in the Control Register’s low
Byte prepares for software initialization.

Software Initialization
The Software Initialization is enabled by setting Bit
INIT in the Control Register. This can be done by
the CPU via software, or automatically by the CAN
controller on a hardware reset, or if the EML
switches to busoff state.

While INIT is set:

– All message transfer from and to the CAN bus is
stopped.

– The CAN bus output CAN_TxD is “1”
(recessive).

– The control Bit NEWDAT and RMTPND of the
last message object are reset.

– The counters of the EML are left unchanged.

Setting Bit CCE in addition, allows changing the
configuration in the Bit Timing Register.

To initialize the CAN Controller, the following
actions are required:

– Configure the Bit Timing Register (CCE
required).

– Set the Global Mask Registers.

– Initialize each message object.

init :=0

LEC :=7

Bit0 error =1?

wait end of recoverybus is stuck

No

Yes

busoff=1 and init=1

ST10X167

240/294

If a message object is not needed, it is sufficient to
clear its message valid Bit (MSGVAL), so it is
defined as not valid. Otherwise, the whole
message object has to be initialized.
After the initialization sequence has been
completed, the CPU clears the INIT Bit.
To change the configuration of a message object
during normal operation, the CPU first clears Bit
MSGVAL, which defines it as not valid. When the
configuration is completed, MSGVAL is set again.

Accessing the On-chip CAN Module
The CAN Module is implemented as an
X-Peripheral and is therefore accessed like an
external memory or peripheral, so the registers of
the CAN Module can be read and written using 16
Bit or 8 Bit direct or indirect MEM addressing
modes. Since the XBUS, to which the
CAN Module is connected, also represents the
external bus, CAN accesses follow the same rules
and procedures as accesses to the external bus.
CAN accesses cannot be executed in parallel to
external instruction fetches or data read/writes,
but are arbitrated and inserted into the external
bus access stream.
Accesses to the CAN Module use de-multiplexed
addresses and a 16 Bit data bus (Byte accesses
possible). Two wait states give an access time of
8TCL (4 CPU clock cycles). No tristate waitstate is
used.
The CAN address area starts at 00’EF00h and
covers 256 Byte. A dedicated hardwired XADRS/
XBCON register pair selects the respective
address window, so none of the programmable
register pairs must be sacrificed in order to access
the on-chip CAN Module.
Locating the CAN address area to address
00’EF00h in segment 0 has the advantage that
the CAN Module is accessible via data page 3,
which is the 'system' data page, accessed usually
through the 'system' data page pointer DPP3. In
this way, the internal addresses, such like SFRs,
internal RAM, and the CAN registers, are all
located within the same data page and form a
contiguous address space.

Power Down Mode
If the ST10X167 enters Power Down Mode, the
XCLK signal will be turned off which will stop the
operation of the CAN Module. Any message
transfer is interrupted. In order to ensure that the
CAN controller is not stopped while sending a

dominant level (“0”) on the CAN bus, the CPU
should set Bit INIT in the Control Register prior to
entering Power Down Mode. The CPU can check,
if a transmission is in progress by reading Bit
TXRQ and NEWDAT in the message objects and
Bit TXOK in the Control Register. After returning
from Power Down Mode via hardware reset, the
CAN Module has to be reconfigured.

17.7 - CAN Application Interface

The on-chip CAN Module of the ST10X167 does
not incorporate the physical layer connection to
the CAN bus. This must be provided externally.

The module’s CAN controller is connected to this
physical layer (the CAN bus) via two signals:

A logic low level (“0”) is interpreted as the
dominant CAN bus level, a logic high level (“1”) is
interpreted as the recessive CAN bus level.

Note If CAN module is used, Port 4 cannot be
programmed to output all the 8 segment
address lines. Thus, only up to 4 segments
address lines can be used, reducing the
external memory space to 5M Byte.

CAN Signal Port Pin Function

CAN_RXD Port4.5 Receive data from the
physical layer of the CAN bus.

CAN_TXD Port4.6 Transmit data to the physical
layer of the CAN bus.

Figure 141 : Connection to the CAN bus

CAN_TxD

CAN_RxD

CAN

Physical

Interface

Layer

ST10X167

C
A

N
 B

u
s

ST10X167

241/294

18 - SYSTEM RESET

Internal system reset initializes a device into a
defined default state. System reset is invoked,
either by asserting a hardware reset signal on pin
RSTIN (Hardware Reset Input), by executing the
SRST instruction (Software Reset), or by an
overflow of the Watchdog Timer. A bi-directional
reset can be implemented on the ST10C167 and
ST10R167.

Synchronous reset can be used for all derivatives
of the ST10X167. Asynchronous reset can be
used by the ST10C167 and ST10R167 to exit
from power down by external interrupt.

For the ST10C167 and ST10R167:

– Asynchronous reset is invoked by asserting
RSTIN and forcing Vpp low.

– Synchronous reset is invoked by asserting
RSTIN and forcing Vpp high.

RSTOUT is activated once the reset conditions
are detected, and remains active until the
execution of EINIT . The CPU and peripherals are
set in their predefined default state.

After the internal reset condition is removed, the
microcontroller starts program execution from
memory location 00’0000h in code segment zero.
This start location typically holds a branch
instruction to the start of a software initialization
routine for the application specific configuration of
peripherals and CPU special function registers.

The internal reset circuitry is explained in
Figure 142.

Figure 142 : Internal (simplified) Reset Circuitry

RSTOUT

EINIT Instruction

Trigger

Clr

Clock

Reset State
Machine

Internal
Reset
Signal

Reset Sequence
(512 CPU Clock Cycles)

SRST instruction
watchdog overflow

RSTIN

VDD

BDRSTEN

VDD

VPP (Flash device) VPP

Weak pull-down
(~200µA)

From/to Exit
Powerdown
Circuit

Asynchronous
Reset

Clr

Q

Set

ST10X167

242/294

18.1 - Types of Reset
Whenever one of the reset conditions occurs, the
microcontroller is reset into its predefined default
state through an internal reset procedure. When a
reset is initiated, pending internal hold states are
cancelled. An external bus cycle is aborted,
except for a watchdog reset (see description).
After that the bus pin drivers and the I/O pin
drivers are switched off (tristate). RSTOUT is
activated depending on the reset source.
The internal reset procedure takes 516 CPU clock
cycles (1032 for asynchronous reset) to perform a
complete reset sequence. The reset sequence
starts on a watchdog timer overflow, an SRST
instruction or when the reset input signal RSTIN is
sampled low (hardware reset). The internal reset
condition is active :
– Only during the RSTIN input pulse

(asynchronous mode), ensure that the duration
meets circuit requirements (see Section 18.1.3 -
Asynchronous Hardware Reset).

– At least for the duration of the reset sequence
and then until the RSTIN input is inactive
(synchronous mode).

When this internal reset condition is removed, the
reset configuration is latched from PORT0, and
pins ALE, RD and WR are driven to their inactive
levels.
Bit ADP which selects the Adapt mode is latched
with the rising edge of RSTIN.

18.1.1 - ST10F167 Synchronous Hardware Reset
This synchronous hardware reset is only
applicable to ST10F167.
Synchronous hardware reset is triggered when
the reset input signal RSTIN is sampled low AND
the Vpp pin sampled high. When a synchronous
reset is initiated, all pending internal hold states
are cancelled and the current internal access

cycle (if any) is completed. Except in the case of a
watchdog reset, external bus cycles are aborted.
Following this, the internal reset sequence starts,
the bus pin drivers and the I/O pin drivers are
switched off (tristate), and the PORT0 pins are
internally pulled high. The RSTIN pin is driven low
for the duration of the reset sequence, which is
516 CPU clock cycles.
To ensure the recognition of the RSTIN signal
(latching), it must be held low for at least 2 CPU
clock cycles. Also shorter RSTIN pulses may
trigger a hardware reset, if they coincide with the
latch’s sample point. However, it is recommended
to keep RSTIN low for at least 1 ms. After the
reset sequence has been completed, the RSTIN
input is sampled. When the reset input signal is
active at that time the internal reset condition is
extended until RSTIN gets inactive.
During a synchronous hardware reset the PORT0
inputs for the reset configuration need some time
to settle on the required levels, especially if the
hardware reset aborts a read operation form an
external peripheral. During this settling time the
configuration may intermittently be wrong. In such
a case also the PLL clock selection may be wrong.
It is therefore strongly recommended to provide
an external reset pulse of at least 1 ms in order to
allow the PLL to settle on the desired CPU clock
frequency.
The input RSTIN provides an internal pullup
device equalling a resistor of 50 KΩ to 150 KΩ
(the minimum reset time must be determined by
the lowest value). Simply connecting an external
capacitor is sufficient for an automatic power-on
reset (see b) in Figure 143). RSTIN may also be
connected to the output of other logic gates (see
a) in Figure 143).
Note A power-on reset requires an active time of

two reset sequences (1036 CPU clock
cycles) after a stable clock signal is available
(plus, about 10...50 ms to allow the on-chip
oscillator to stabilize).

18.1.2 - ST10C167 - ST10R167 Synchronous
Hardware Reset
This synchronous hardware reset is only
applicable to ST10C167 - ST10R167.
Synchronous hardware reset is triggered when
the reset input signal RSTIN is sampled low AND
the Vpp pin sampled high. To ensure the
recognition of the RSTIN signal (latching), it must
be held low for at least 2 CPU clock cycles. Also
shorter RSTIN pulses may trigger a hardware
reset, if they coincide with the latch’s sample
point.

Figure 143 : External reset circuitry

:

ST10X167

VDD

Reset
+

&

a) Generated Warm reset.
b) Automatic Power-on reset

External
Reset
Sources

External
Hardware

RSTOUT

RSTIN

ST10X167

243/294

When a synchronous reset is initiated, all pending
internal hold states are cancelled and the current
internal access cycle (if any) is completed. Except
in the case of a watchdog reset, external bus
cycles are aborted. Following this, the internal
reset sequence starts, the bus pin drivers and the
I/O pin drivers are switched off (tristate), and the
PORT0 pins are internally pulled high.

After such a reset, the configuration on Port0 pins
is relatched. The configuration needs some time
to settle to the required levels, especially if the
hardware reset aborts a read operation from an
external peripheral. During this settling time the
configuration may intermittently be wrong. In such
a case also the PLL clock selection may be wrong.
It is therefore strongly recommended to
provide an external reset pulse of at least 1 ms
in order to allow the PLL to settle on the
desired CPU clock frequency.

The input RSTIN provides an internal pullup
device equalling a resistor of 50 KΩ to 150 KΩ
(the minimum reset time must be determined by
the lowest value). Simply connecting an external
capacitor is sufficient for an automatic power-on
reset (see b) in Figure 143). RSTIN may also be
connected to the output of other logic gates (see
a) in Figure 143).

18.1.3 - Asynchronous Hardware Reset

Note This feature does not exist for the ST10F167
device. Asynchronous hardware reset must
be used for power on reset of ST10C167
and ST10R167.

Asynchronous reset is invoked by asserting
RSTIN and forcing Vpp low.

While the RSTIN pin is asserted, a weak internal
pull-down is turned on the Vpp pin. When an
asynchronous reset is initiated, the microcontrol-
ler is immediately (asynchronously) reset into its
predefined default state and therefore does not
require a stabilized clock signal on XTAL1 pin.
When this asynchronous reset condition is
removed, the microcontroller starts program exe-
cution from memory location 00’0000h in code
segment zero. RSTIN pin must be held low for the
whole duration of the circuit internal reset
sequence, once the input clock is stabilised and
once the PLL synchronised. For application using
“exit from power down by external interrupt”, this
mode is detected by the ST10 during power-up.
Constraints on reset duration on the RSTIN pin
are the same as for synchronous reset (1ms for
PLL; 10 to 50 ms for on-chip oscillator).

18.1.4 - Software Reset
The reset sequence can be triggered at any time
by the protected instruction SRST (Software
Reset). This instruction can be executed
deliberately within a program, e.g. to leave
bootstrap loader mode, or upon a hardware trap
that reveals a system failure.
Note A software reset disregards the configuration

of P0L.5...P0L.0 and sets Bit “BSL” inactive.

18.1.5 - Watchdog Timer Reset
When the watchdog timer is not disabled during
the initialization or serviced regularly during pro-
gram execution it will overflow and trigger the
reset sequence. Other than hardware and soft-
ware reset, the watchdog reset completes a run-
ning external bus cycle if this bus cycle either
does not use READY at all, or if READY is sam-
pled active (low) after the programmed waitstates.
When READY is sampled inactive (high) after the
programmed waitstates, the running external bus
cycle is aborted. Then the internal reset sequence
is started.
Note A watchdog reset disregards the configura-

tion of P0L.5...P0L.0 and sets Bit “BSL” inac-
tive”. The watchdog reset cannot occur while
the ST10X167 is in bootstrap loader mode!

18.1.6 - Bi-Directional Reset
Note This feature does not exist for the ST10F167

device.
Bi-directional reset converts SW or WDT resets to
hardware reset:
– Circuit behaviour is the same as for hardware

reset (reset sequence, system start-up
configuration from POH and POL)

– Reset sequence is visible at the RSTIN pin.
Bi-directional reset is disabled during and after
hardware reset and is enabled by setting
BDRSTEN Bit 3 of the SYSCON register. In
bi-directional reset mode, the RSTIN pin is pulled
low for the duration of the internal reset sequence.
Bidirectional reset activates the RSTIN pin for the
duration of an internal reset sequences caused by
a WDT reset or a SW Reset, i.e. bidirectional reset
transforms an internal WDT reset or SW reset into
an external hardware reset with a minimum
duration of 516 CPU cycles (if Vpp is high).
Consequently, during a WDT reset or SW reset the
device behaves as if it was in external hardware
reset. Note, the state of the Vpp pin will determin
whether the reset is asynchronous or synchronous.
The hardware implementation is shown in Figure
144. The PORT0 sample timing for bidirectional
reset is shown in Figure 145.

ST10X167

244/294

NOTES:

1. After the execution of the EINIT instruction the
bidirectional reset configuration can not be
changed.

2. WDTCON Bit 1 of the WDTR register is
cleared after a hardware reset.

3. The PORT0 configuration is transparent and
latched as for a power-on or PDW Reset.

4. The bootstrap loader can be started by a WDT
reset or SW Reset if the bidirectional reset is
enabled and P0L.4 is low.

5. If bidirectional reset is enabled then the RSTIN
pin may only be connected to external reset
devices with an open drain output driver. A

connection to a push-pull output driver can
damage the RSTIN input.

18.2 - Pins After Reset
After the reset sequence the different groups of
pins of the ST10X167 are activated in different
ways depending on their function. Bus and control
signals are activated immediately after the reset
sequence according to the configuration latched
from PORT0, so either external accesses can
take place or the external control signals are
inactive.
The general purpose I/O pins remain in input
mode (high impedance) until reprogrammed via
software (see Figure 146). The RSTOUT pin
remains active (low) until the end of the
initialization routine (see description).

Figure 144 : Bi-directional reset hardware implementation

Figure 145 : PORT0 sample timing

VDD

Vss

Reset node

BiDirRes

ST10R167

ST10C167

RSTIN

PORT0

RSTIN

IRS

tP0fix

Software reset and watchdog timer reset (bidirectional reset enabled):

not transparent transparent

1024 TCL

BiDirRes

10 TCL

SW or WDT reset

ST10X167

245/294

Figure 146 : Synchronous reset

Reset output pin
The RSTOUT pin generates a reset signal for the
system components besides the controller itself.
RSTOUT is driven active (low) at the beginning of
any reset sequence (triggered by hardware, the
SRST instruction or a watchdog timer overflow).
RSTOUT stays active (low) beyond the end of the
internal reset sequence until the protected EINIT
(End of Initialization) instruction is executed (see
Figure 146). This allows the complete
configuration of the controller including its on-chip
peripheral units before releasing the reset signal
for the external peripherals of the system.

Note RSTOUT will float as long as pins P0L.0 and
P0L.1 select emulation mode or adapt mode.

Watchdog timer operation after reset
The watchdog timer starts running after the
internal reset has completed. It will be clocked
with the internal system clock divided by 2, and its

default reload value is 00h, so a watchdog timer
overflow will occur 131072 CPU clock cycles after
completion of the internal reset, unless it is
disabled, serviced or reprogrammed meanwhile.
When the system reset is triggered, a watchdog
timer overflow, the WDTR (Watchdog Timer Reset
Indication) flag in register WDTCON is set to '1'.
This indicates the cause of the internal reset to
the software initialization routine. WDTR is reset
to '0' by an external hardware reset or by servicing
the watchdog timer. After the internal reset has
completed, the operation of the watchdog timer
can be disabled by the DISWDT (Disable
Watchdog Timer) instruction. This instruction has
been implemented as a protected instruction. For
further security, its execution is only enabled in the
time period after a reset until either the SRVWDT
(Service Watchdog Timer) or the EINIT instruction
has been executed. Thereafter the DISWDT
instruction will have no effect.

When the internal reset condition is prolonged by RSTIN, the activation of the output signals is delayed until the end of the internal
reset condition.
1) Current bus cycle is completed or aborted.
2) Switches asynchronously with RSTIN, synchronously upon software or watchdog reset.
3) The reset condition ends here. The ST10 starts program execution.
4) Activation of the I/O pins is controlled by software.
5) Execution of the EINIT instruction.
6) This duration designates the internal reset sequence, which starts after a low level is sampled on RSTIN. Internal reset duration is
1024 TCL.

6)

1)

2)

2) 3)

4)

5)

Internal Reset Condition Initialization

RSTIN

RD, WR

ALE

Bus

I/O

RSTOUT

6)

Internal Reset Condition Initialization

RSTIN

3)

ST10X167

246/294

Reset values for the ST10X167 registers

During the reset sequence the registers of the
ST10X167 are preset with a default value. Most
SFRs, including system registers and peripheral
control and data registers, are cleared to zero, so
all peripherals and the interrupt system are off or
idle after reset. A few exceptions to this rule
provide a first pre-initialization, which is either
fixed or controlled by input pins.

DPP1: 0001h (points to data page 1)

DPP2: 0002h (points to data page 2)

DPP3: 0003h (points to data page 3)

CP: FC00h

STKUN: FC00h

STKOV: FA00h

SP: FC00h

WDTCON: 0002h, if reset was triggered by a
watchdog timer overflow,
0000h otherwise

S0RBUF: XXh (undefined)

SSCRB: XXXXh (undefined)

SYSCON: 0XX0h (set according to reset
configuration)

BUSCON0: 0XX0h (set according to reset
configuration)

RP0H: XXh (reset levels of P0H)

ONES: FFFFh (fixed value)

The internal ram after reset

The contents of the internal RAM are not affected
by a system reset. However, after a power-on
reset, the contents of the internal RAM are
undefined. This implies that the GPRs (R15...R0)
and the PEC source and destination pointers
(SRCP7...SRCP0, DSTP7...DSTP0) which are
mapped into the internal RAM are also
unchanged after a warm reset, software reset or
watchdog reset, but are undefined after a
power-on reset.

Ports and external bus configuration during
reset

During the internal reset sequence all of the
ST10X167's port pins are configured as inputs by
clearing the associated direction registers, and
their pin drivers are switched to the high
impedance state. This ensures that the ST10X167
and external devices will not try to drive the same
pin to different levels. Pin ALE is held low through
an internal pull-down, and pins RD and WR are
held high through internal pull-ups. Also the pins
selected for CS output will be pulled high.

The registers SYSCON and BUSCON0 are
initialized according to the configuration selected
via PORT0. The reset configurations are
summarized in Table 38 and Table 39.

When an external start is selected (pin EA=’0’):

– The Bus-Type field (BTYP) in register
BUSCON0 is initialized according to P0L.7 and
P0L.6.

– Bit BUSACT0 in register BUSCON0 is set to ‘1’.

– Bit ALECTL0 in register BUSCON0 is set to ‘1’.

– Bit ROMEN in register SYSCON will be cleared
to ‘0’.

– Bit BYTDIS in register SYSCON is set according
to the data bus width.

When an internal start is selected (pin EA=’1’):

– Register BUSCON0 is cleared to 0000h.

– Bit ROMEN in register SYSCON will be set to ‘1’.

– Bit BYTDIS in register SYSCON is cleared, and.
BHE is disabled.

The other Bit of register BUSCON0, and the other
BUSCON registers are cleared. This default
initialization selects the slowest possible external
accesses using the configured bus type. The
Ready function is disabled at the end of the
internal system reset.

When the internal reset has completed, the
configuration of PORT0, PORT1, Port4, Port6 and
of the BHE signal (High Byte Enable, alternate
function of P3.12) depends on the bus type which
was selected during reset. When any of the
external bus modes was selected during reset,
PORT0 (and PORT1) will operate in the selected
bus mode. Port4 will output the selected number
of segment address lines (all zero after reset) and
Port6 will drive the selected number of CS lines
(CS0 will be ‘0’, while the other active CS lines will
be ‘1’). When no memory accesses above 64 K
are to be performed, segmentation may be
disabled.

When the on-chip bootstrap loader is activated
and sampled during reset, pin TxD0 (alternate
function of P3.10) is switched to output mode after
the reception of the zero Byte. All other pins
remain in the high-impedance state until they are
changed by software or peripheral operation.

ST10X167

247/294

Application-specific initialization routine
After the internal reset condition is removed the
ST10X167 fetches the first instruction from
location 00’0000h, which is the first vector in the
trap/interrupt vector table, the reset vector.
4 Words (locations 00’0000h through 00’0007h)
are provided in this table to start the initialization
after reset. As a rule, this location holds a branch
instruction to the actual initialization routine that
may be located anywhere in the address space.
Note When the Bootstrap Loader Mode is acti-

vated and sampled during a hardware reset
the ST10X167 does not fetch instructions
from location 00’0000h but it waits data via
serial interface ASC0.

If single chip mode is selected during reset, the
first instruction is fetched from the internal ROM.
Otherwise it is fetched from external memory.
When internal ROM access is enabled after reset
in single chip mode (Bit ROMEN=’1’ in register
SYSCON), the software initialization routine may
enable and configure the external bus interface
before the execution of the EINIT instruction.
When external access is enabled after reset, it
may be desirable to reconfigure the external bus
characteristics, because the SYSCON register is
initialized during reset to the slowest possible
memory configuration.
To decrease the number of instructions required
to initialize the ST10X167, each peripheral is
programmed to a default configuration upon reset,
but is disabled from operation. These default
configurations can be found in the descriptions of
the individual peripherals.
During the software design phase, portions of the
internal memory space must be assigned to
register banks and system stack. When initializing
the stack pointer (SP) and the context pointer
(CP), it must be ensured that these registers are
initialized before any GPR or stack operation is
performed. This includes interrupt processing,
which is disabled upon completion of the internal
reset, and should remain disabled until the SP is
initialized.
Note Traps (NMI) may occur, even though the

interrupt system is still disabled.
In addition, the stack overflow (STKOV) and the
stack underflow (STKUN) registers should be
initialized. After reset, the CP, SP, and STKUN
registers all contain the same reset value
00’FC00h, while the STKOV register contains
00’FA00h. With the default reset initialization, 256
Words of system stack are available, where the
system stack selected by the SP grows

downwards from 00’FBFEh, while the register
bank selected by the CP grows upwards from
00’FC00h.

Based on the application, the user may wish to
initialize portions of the internal memory before
normal program operation. Once the register bank
has been selected by programming the CP
register, the desired portions of the internal
memory can easily be initialized via indirect
addressing.

At the end of the initialization, the interrupt system
may be globally enabled by setting Bit IEN in
register PSW. Care must be taken not to enable
the interrupt system before the initialization is
complete.

The software initialization routine should be
terminated with the EINIT instruction. This
instruction has been implemented as a protected
instruction. Execution of the EINIT instruction
disables the action of the DISWDT instruction,
disables write accesses to register SYSCON (see
note) and causes the RSTOUT pin to go high.
This signal can be used to indicate the end of the
initialization routine and the proper operation of
the microcontroller to external hardware.

Note All configurations regarding register
SYSCON (enable CLKOUT, stacksize, etc.)
must be selected before the execution of
EINIT.

18.2.1 - System Start-up Configuration

Although most programmable features are either
selected during the initialization phase or
repeatedly during program execution, there are
some features that must be selected earlier
because they are used for the first access of the
program execution (for example internal or
external start selected via EA).

These selections are made during reset by the
pins of PORT0 which are read at the end of the
internal reset sequence. During reset, internal
pull-up devices are active on the PORT0 lines so
their input level is high, if the respective pin is left
open or is low, or if the respective pin is connected
to an external pull-down device. With the coding of
the selections, as shown below, in many cases the
default option, (high level), can be used.

The value on the upper Byte of PORT0 (P0H) is
latched into register RP0H upon reset, the value
on the lower Byte (P0L) directly influences the
BUSCON0 register (bus mode) or the internal
control logic of the ST10X167.

ST10X167

248/294

Not all Port0 Bit are latched after the end of an
internal reset. Depending on the reset type,
different Bit are latched.
When RSTIN goes active, the PORT0
configuration input pins are not transparent for the
first 1024 TCL.

After that time only, the PORT0 pins are
transparent and will be latched when internal
reset signal becomes inactive (see Figures 144,
145 and 146). To avoid unexpected behavior, the
level of the PORT0 configuration input pins should
not change while PORT0 is transparent.

Notes 1. Not latched from Port0.

2. Bit set if EA pin is 1.

Table 38 : Port0 Latched Configuration for the Different Resets

X Pin is sampled
- Pin is not sampled

PORT0
C

lo
ck

 O
pt

io
ns

S
eg

m
. A

dd
r.

 L
in

es

C
hi

p
S

el
ec

ts

W
R

 c
on

fig
.

B
us

 T
yp

e

R
es

er
ve

d

B
S

L

R
es

er
ve

d

R
es

er
ve

d

A
da

pt
 M

od
e

E
m

u
M

od
e

Sample event

P
0H

.7

P
0H

.6

P
0H

.5

P
0H

.4

P
0H

.3

P
0H

.2

P
0H

.1

P
0H

.0

P
0L

.7

P
0L

.6

P
0L

.5

P
0L

.4

P
0L

.3

P
0L

.2

P
0L

.1

P
0L

.0

Software Reset - - - X X X X X X X - - - - - -

Watchdog Reset - - - X X X X X X X - - - - - -

Short Hardware Reset - - - X X X X X X X X X X X X X

Long Hardware Reset X X X X X X X X X X X X X X X X

Power-On Reset X X X X X X X X X X X X X X X X

Table 39 : Port0 Bit latched into the different registers after hardware reset

Port0 Bit
nber h7 h6 h5 h4 h3 h2 h1 h0 I7 I6 I5 I4 I3 I2 I1 I0

Port0 Bit
Name

CLKCFG CLKCFG CLKCFG SALSEL SALSEL CSSEL CSSEL WRC BUSTYP BUSTYP R BSL R R ADP EMU

SYSCON X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 WRCFG X 1 X 1 X 1 X 1 X 1 X 1 X 1

RPOH - - - - - - - - CLKCFG CLKCFG CLKCFG SALSEL SALSEL CSSEL CSSEL WRC

BUSCON0 BUS

ACT0 2
ALE

CTL0 2
BUSTYP BUSTYP

Internal
Logic

To Clock Generator To Port4 Logic To Port6 Logic - - - - Internal - - Internal Internal

ST10X167

249/294

RP0H (F108h / 84h) SFR Reset Value: --XXh

Notes 1. The Bidirectional Reset functionality has no impact on the System Startup Configuration latching.
If the PLL factor or the input clock frequency is changed when PORT0 is transparent, then the PLL needs a PLL synchronization lock
time (typical value is 500 µs).
2. The maximum depends on the duty cycle of the external clock signal. The maximum input frequency is 25MHz when the external
crystal oscillator, however, higher frequencies can be applied with an external clock source.

Pins controlling the operation of the internal logic
and the reserved pins are evaluated only during a
hardware triggered reset sequence.

The pins that influence the configuration of the
ST10X167 are evaluated during any reset
sequence, even during software and watchdog
timer triggered resets.

The configuration via P0H is latched in register
RP0H for subsequent evaluation by software.
Register RP0H is described in chapter “The
External Bus Interface”.

Note The reserved pins, named R in the row
"Port0 Bit Name" of Table 39, must remain
high during reset in order to ensure proper
operation of the ST10X167. The load on
those pins must be small enough for the
internal pull-up device to keep their level
high, or external pull-up devices must
ensure the high level.

The following describes the different selections
that are offered for reset configuration.
The default modes refer to pins at high level,
without external pull-down devices connected.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - CLKCFG SALSEL CSSEL WRC

R R R R

Bit Function

WRC Write Configuration Control

‘0’: Pins WR acts as WRL, pin BHE acts as WRH

‘1’: Pins WR and BHE retain their normal function
CSSEL Chip Select Line Selection (Number of active CS outputs)

0 0: 3 CS lines: CS2...CS0

0 1: 2 CS lines: CS1...CS0

1 0: No CS lines at all

1 1: 5 CS lines: CS4...CS0 (Default without pull-downs)
SALSEL Segment Address Line Selection (Number of active segment address outputs)

0 0: 4 Bit segment address: A19...A16

0 1: No segment address lines at all

1 0: 8 Bit segment address: A23...A16

1 1: 2 Bit segment address: A17...A16 (Default without pull-downs)
CLKCFG P0H.7-5 ST10C167 - ST10R167

fCPU = fXTAL x F
ST10F167
fCPU = fXTAL x F

Notes

1 1 1 fXTAL x 4 fXTAL x 4 Default configuration 1

1 1 0 fXTAL x 3 fXTAL x 4

1 0 1 fXTAL x 2 fXTAL x 4

1 0 0 fXTAL x 5 fXTAL x 4

0 1 1 fXTAL fXTAL x 1 Direct drive

0 1 0 fXTAL x 1.5 fXTAL x 1

0 0 1 fXTAL x 0.5 fXTAL x 1 CPU clock via prescaler 2

0 0 0 fXTAL x 2.5 fXTAL x 1

ST10X167

250/294

Emulation mode
When low during reset, pin P0L.0 (EMU) selects
the Emulation Mode. This mode allows the access
to integrated XBus peripherals via the external
bus interface pins in application specific version of
the ST10X167. In addition also the RSTOUT pin
floats to tristate rather to be driven low. When the
emulation mode is latched the CLKOUT output is
automatically enabled. This mode is used for
special emulator purposes and is not used in
basic ST10X167 devices, so in this case P0L.0
should be held high.

Default: Emulation Mode is off.

Adapt mode
Pin P0L.1 (ADP) selects the Adapt Mode, when
low during reset. In this mode the ST10X167 goes
into a passive state, which is similar to its state
during reset.
The pins of the ST10X167 float to tristate or are
deactivated via internal pull-up/pull-down devices,
as described for the reset state. In addition also the
RSTOUT pin floats to tristate rather than be driven
low, and the on-chip oscillator is switched off.
This mode allows switching a ST10X167 that is
mounted to a board virtually off, so an emulator
may control the board’s circuitry, even though the
original ST10X167 remains in its place. The
original ST10X167 also may resume to control the
board after a reset sequence with P0L.1 high.
Default: Adapt Mode is off.
Note When XTAL1 is fed by an external clock

generator (while XTAL2 is left open), this
clock signal may also be used to drive the
emulator device.
However, if a crystal is used, the emulator
device’s oscillator can use this crystal only, if
at least XTAL2 of the original device is dis-
connected from the circuitry (the output
XTAL2 will still be active in Adapt Mode).

Bootstrap loader mode
Pin P0L.4 (BSL) activates the on-chip bootstrap
loader, when low during hardware reset. The
bootstrap loader allows moving the start code into
the internal RAM of the ST10X167 via the serial
interface ASC0. The MCU will remain in bootstrap
loader mode until a hardware reset with P0L.4
high or a software reset. The bootstrap loader
acknowledge Byte is C5h.
Default: The ST10X167 starts fetching code from
location 00’0000h, the bootstrap loader is off.

External bus type
Pins P0L.7 and P0L.6 (BUSTYP) select the
external bus type during reset, if an external start

is selected via pin EA. This allows the
configuration of the external bus interface of the
ST10X167 even for the first code fetch after reset.
The two Bit are copied into Bit field BTYP of
register BUSCON0. P0L.7 controls the data bus
width, while P0L.6 controls the address output
(multiplexed or demultiplexed). This Bit field may
be changed via software after reset, if required.

PORT0 and PORT1 are automatically switched to
the selected bus mode. In multiplexed bus modes
PORT0 drives both the 16 Bit intra-segment
address and the output data, while PORT1
remains in high impedance state as long as no
demultiplexed bus is selected via one of the
BUSCON registers. In demultiplexed bus modes
PORT1 drives the 16 Bit intra-segment address,
while PORT0 or P0L (according to the selected
data bus width) drives the output data.
For a 16 Bit data bus BHE is automatically
enabled, for an 8 Bit data bus BHE is disabled via
Bit BYTDIS in register SYSCON.

Default: 16 Bit data bus with multiplexed
addresses.

Note If an internal start is selected via pin EA,
these two pins are disregarded and Bit field
BTYP of register BUSCON0 is cleared.

Write configuration

Pin P0H.0 (WRC) selects the initial operation of
the control pins WR and BHE during reset. When
high, this pin selects the standard function, which
is WR control and BHE. When low, it selects the
alternate configuration, WRH and WRL. Thus
even the first access after a reset can go to a
memory controlled via WRH and WRL. This Bit is
latched in register RP0H and its inverted value is
copied into Bit WRCFG in register SYSCON.

Default: Standard function (WR control and BHE).

BTYP
Encoding

External Data
Bus Width

External Address
Bus Mode

0 0 8 Bit Data Demultiplexed
Addresses

0 1 8 Bit Data Multiplexed
Addresses

1 0 16 Bit Data Demultiplexed
Addresses

1 1 16 Bit Data Multiplexed
Addresses

ST10X167

251/294

Chip select lines

Pins P0H.2 and P0H.1 (CSSEL) define the
number of active chip select signals during reset.

This allows to select which pins of Port6 drive
external CS signals and which are used for
general purpose I/O. The two Bit are latched in
register RP0H.

Default: All 5 chip select lines active (CS4...CS0).

Note The selected number of CS signals cannot
be changed via software after reset.

Segment address lines

Pins P0H.4 and P0H.3 (SALSEL) define the
number of active segment address lines during
reset. This determines which pins of Port4 are
used as address line or as I/O line. The two Bit are
latched in register RP0H.

Depending on the system architecture the
required address space is chosen and accessible
right from the start, so the initialization routine can
directly access all locations without prior
programming.

The required pins of Port4 are automatically
switched to address output mode.

Even if not all segment address lines are enabled
on Port4, the ST10X167 internally uses its
complete 24 Bit addressing mechanism.

This allows the restriction of the width of the
effective address bus, while still deriving CS
signals from the complete addresses.

Default: 2 Bit segment address (A17...A16)
allowing access to 256K Byte.

Note The selected number of segment address
lines cannot be changed via software after
reset.

Clock generation control

Pins P0H.7, P0H.6 and P0H.5 (CLKCFG) select
the clock generation mode (on-chip PLL) during
reset. The oscillator clock either directly feeds the
CPU and peripherals (direct drive) or it is fed to
the on-chip PLL which then provides the CPU
clock signal (selectable multiple of the oscillator
frequency). These Bit are latched in register
RP0H.

Notes 1. The external clock input range refers to a CPU clock range of 10 to 25 MHz.
2. The maximum depends on the duty cycle of the external clock signal.
3. Default: On-chip PLL is active with a factor of 1:4.
4. Watch the different requirements for frequency and duty cycle of the oscillator input clock for
the possible selections.

CSSEL Chip Select Lines Note

1 1 Five: CS4...CS0 Default without
pull-downs

1 0 None Port6 pins free for I/O

0 1 Two: CS1...CS0

0 0 Three: CS2...CS0

SALSEL Segment
Address Lines

Directly accessible
Address Space

1 1 Two: A17...A16 256K Byte (Default
without pull-downs)

1 0 Eight: A23...A16 16M Byte (Maximum)
0 1 None 64K Byte (Minimum)
0 0 Four: A19...A16 1M Byte

P0.15-13 (P0H.7-5) ST10C167 ST10R167
fCPU = fXTAL x F

ST10F167
fCPU = fXTAL x F Notes

000: 2.5 x fOSC 1 x fOSC

001: 0.5 x fOSC 1 x fOSC Prescaler (not for ST10F167)

010: 1.5 x fOSC 1 x fOSC

011: 1 x fOSC 1 x fOSC Direct drive

100: 5 x fOSC 4 x fOSC

101: 2 x fOSC 4 x fOSC

110: 3 x fOSC 4 x fOSC

111: 4 x fOSC 4 x fOSC Default configuration

ST10X167

252/294

19 - POWER REDUCTION MODES

Two different power reduction modes have been
implemented in the ST10X167.
– Idle mode: the CPU is stopped, while the

peripherals continue their operation. Idle mode
can be terminated by any reset or interrupt
request.

– Power down mode: both the CPU and the
peripherals are stopped. Power Down mode can
only be terminated by a hardware reset in
protected mode or by an external interrupt.

Note All external bus actions are completed
before Idle or Power Down mode is
entered. However, Idle or Power Down
mode is not entered if READY is
enabled but has not been activated
(driven low) during the last bus access.

19.1 - Idle Mode
The power consumption of the ST10X167
microcontroller can be decreased by entering Idle
mode. In this mode all peripherals, including the
watchdog timer, continue to operate normally, only
the CPU operation is halted.
Idle mode is entered after the IDLE instruction has
been executed and the instruction before the IDLE
instruction has been completed. To prevent
unintentional entry into Idle mode, the IDLE
instruction has been implemented as a protected
32 Bit instruction.
Idle mode is terminated by interrupt request from
any enabled interrupt source whose individual
Interrupt Enable flag has been set before the Idle
mode was entered, regardless of Bit IEN.
For a request selected for CPU interrupt service
the associated interrupt service routine is entered
if the priority level of the requesting source is
higher than the current CPU priority and the
interrupt system is globally enabled. After the
RETI (Return from Interrupt) instruction of the

interrupt service routine is executed, the CPU
continues executing the program with the
instruction following the IDLE instruction.
Otherwise, if the interrupt request cannot be
serviced because of a too low priority or a globally
disabled interrupt system, the CPU immediately
resumes normal program execution with the
instruction following the IDLE instruction.

For a request which was programmed for PEC
service, a PEC data transfer is performed if the
priority level of this request is higher than the current
CPU priority and if the interrupt system is globally
enabled. After the PEC data transfer has been
completed the CPU remains in Idle mode. Otherwise,
if the PEC request cannot be serviced because of a
too low priority or a globally disabled interrupt
system, the CPU does not remain in Idle mode but
continues program execution with the instruction
following the IDLE instruction (see Figure 147).

Idle mode can also be terminated by a
Non-Maskable Interrupt, with a high to low
transition on the NMI pin. After Idle mode has
been terminated by an interrupt or NMI request,
the interrupt system performs a round of
prioritization to determine the highest priority
request. In the case of an NMI request, the NMI
trap will always be entered.

Any interrupt request whose individual Interrupt
Enable flag was set before Idle mode was entered
will terminate Idle mode regardless of the current
CPU priority. The CPU will not go back into Idle
mode when a CPU interrupt request is detected,
even when the interrupt was not serviced because
of a higher CPU priority or a globally disabled
interrupt system (IEN=’0’). The CPU will only go
back into Idle mode when the interrupt system is
globally enabled (IEN=’1’) and a PEC service on
a priority level higher than the current CPU level is
requested and executed.

Note An interrupt request which is individually enabled and assigned to priority level 0 will terminate Idle
mode. The associated interrupt vector will not be accessed, however.

Figure 147 : Transitions between Idle mode and active mode

Active
Mode

Idle
Mode

IDLE instruction

CPU Interrupt Request

Denied PEC Request
Executed

PEC Request

denied

accepted

ST10X167

253/294

The watchdog timer may be used to monitor the Idle mode: an internal reset will be generated if no interrupt
or NMI request occurs before the watchdog timer overflows. To prevent the watchdog timer from overflowing
during Idle mode it must be programmed to a reasonable duration interval before Idle mode is entered.

19.2 - Power Down Mode
To reduce power consumption, the microcontroller can be switched to Power Down mode. Clocking of all
internal blocks is stopped. The contents of the internal RAM are preserved by the voltage supplied by the
VDD pins. The watchdog timer is stopped.
There are two different operating power down modes:
– Protected Power Down Mode (ST10F167 can only use protected power down mode)
– Interruptible Power Down Mode (not available for ST10F167).
The power down mode is selected by Bit 5 - PWDCFG in SYSCON register.

SYSCON (FF12h / 89h) SFR Reset Value: 0X00h 1

Note 1. Reset value is 0XX0h for ST10F167.

Note Register SYSCON cannot be changed
after execution of the EINIT instruction.

19.2.1 - Protected Power Down Mode

This mode is selected by setting Bit PWDCFG in
the SYSCON register to ‘0’ (not needed for
ST10F167).

Entering power down mode can only be
achieved if the NMI (Non Maskable Interrupt) pin
is externally pulled low, while the PWRDN
instruction is executed.

This feature can be used in conjunction with an
external power failure signal which pulls the NMI
pin low when a power failure is imminent. The
microcontroller will enter the NMI trap routine, this
routine can save the internal state into the RAM.
After the internal state has been saved, the trap
routine may set a flag or write a certain Bit pattern
into specific RAM locations, and then execute the
PWRDN instruction. If the NMI pin is still low at
this time, Power Down mode will be entered,
otherwise program execution continues. During

power down, the voltage at the VDD pins can be
lowered to 2.5 V while preserving the contents of
the internal RAM.

Exiting power down mode can only be achieved
by external hardware reset.

The initialization routine (executed upon reset)
checks the identification flag or Bit pattern within
the RAM to determine whether the controller was
initially switched on, or whether it was properly
restarted from power down mode.

19.3 - Interruptible Power Down Mode

This mode is selected by setting the Bit PWDCFG
in register SYSCON to ‘1’. This mode is not
available for ST10F167.

Entering power down mode can only be
achieved if enabled Fast External Interrupt pins 0
to 3 (EXxIN pins, alternate functions of Port2 pins,
with x = 7...0) are in their inactive level. This
inactive level is configured with the EXIxES Bit
field in the EXICON register, as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STKSZ ROM
S1

SGT
DIS

ROM
EN

BYT
DIS

CLK
EN

WR
CFG

CS

CFG

PWD

CFG

OWD

DIS

BDR
STEN

XPEN VISI
BLE

XPER-
SHARE

RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Bit Function

PWDCFG

not allocated in
ST10F167

Power Down Mode Configuration Control

‘0’: Power Down Mode can only be entered during PWRDN instruction execution if NMI pin is low,
otherwise the instruction has no effect. To exit Power Down Mode, an external reset must occurs
by asserting the RSTIN pin.
‘1’: Power Down Mode can only be entered during PWRDN instruction execution if all enabled
Fast External Interrupt (EXxIN) pins are in their inactive level. Exiting this mode can be done by
asserting one enabled EXxIN pin.

ST10X167

254/294

EXICON (F1C0h / E0h) ESFR Reset Value: 0000h

Exiting Power Down Mode
During power down mode, the CPU, the
peripheral clocks and the oscillator and PLL clock
are stopped. Power down mode can be exited by
asserting, either RSTIN, or one of the enabled
EXxIN pins (Fast External Interrupt).

RSTIN must be held low until the oscillator and
PLL have stabilized.

EXxIN inputs are normally sampled interrupt
inputs. However, the power down mode circuitry
uses them as level-sensitive inputs.

An EXxIN (x = 3...0) Interrupt Enable Bit (Bit
CCxIE in respective CCxIC register) need not to
be set to bring the device out of power down
mode.

An external RC circuit must be connected, as
shown Figure 148.

To exit Power Down mode with external interrupt,
an EXxIN pin has to be asserted for at least 40 ns
(x = 7...0).

This signal enables the internal oscillator and PLL
circuitry, and also turns on the weak pull-down
(see Figure 149).

The discharging of the external capacitor provides
a delay that allows the oscillator and PLL circuits
to stabilize before the internal CPU and peripheral
clocks are enabled.

When the Vpp voltage drops below the threshold
voltage (about 2.5 V), the Schmitt trigger clears
Q2 flip-flop, therefore enabling the CPU and

peripheral clocks, the device resumes code
execution.

If the Interrupt was enabled (Bit CCxIE=’1’ in the
respective CCxIC register) before entering Power
Down mode, the device executes the interrupt
service routine, and then resumes execution after
the PWRDN instruction (see note below).

If the interrupt was disabled, the device executes
the instruction following PWRDN instruction, and
the Interrupt Request Flag (Bit CCxIR in the
respective CCxIC register) remains set until it is
cleared by software.

Note Due to internal pipeline, the instruction
that follows the PWRDN instruction is
executed before the CPU performs a
call of the interrupt service routine.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXI7ES EXI6ES EXI5ES EXI4ES EXI3ES EXI2ES EXI1ES EXI0ES

RW RW RW RW RW RW RW RW

Bit Function

EXIxES
(x=7...0)

External Interrupt x Edge Selection Field (x=7...0)

0 0: Fast external interrupts disabled: standard mode
EXxIN pin not taken in account for entering/exiting Power Down mode.

0 1: Interrupt on positive edge (rising)
Enter Power Down mode if EXiIN = ‘0’, exit if EXxIN = ‘1’ (ref as ‘high’ active level)

1 0: Interrupt on negative edge (falling)
Enter Power Down mode if EXiIN = ‘1’, exit if EXxIN = ‘0’ (ref as ‘low’ active level)

1 1: Interrupt on any edge (rising or falling)
Always enter Power Down mode, exit if EXxIN level changed.

Figure 148 : Delay with RC on Vpp pin

Vpp

VDD

C1

R1 220 k-1MΩ Typ

1µF Typ

ST10C167
ST10R167

ST10X167

255/294

Figure 149 : Simplified powerdown exit circuitry

Figure 150 : Powerdown exit sequence when using an external interrupt (PLL x 2)

D Q

Q

VDD

enter cd

external
interrupt

reset

stop pll
stop oscillator

Vdd

D Q

Qcd

System clock

CPU and Peripherals clocks

Vpp

VDD

exit_pwrd

en_clk_n

pull-up

weak pull-down
(~ 200 µA)

powerdown
Q1

Q2

Not applicable to ST10F167

CPU clk

internal Powerdown

External

Vpp

ExitPwrd

XTAL1

signal

Interrupt

(internal)

~ 2.5 V

delay for oscillator/pll

stabilizationNot applicable to ST10F167.

ST10X167

256/294

19.4 - Output Pin Status

During Idle mode the CPU clocks are turned off,
while all peripherals continue their operation in the
normal way. Therefore all ports pins, which are
configured as general purpose output pins, output
the last data value which was written to their port
output latches. If the alternate output function of a
port pin is used by a peripheral, the state of the
pin is determined by the operation of the
peripheral. Port pins which are used for bus
control functions go into that state which
represents the inactive state of the respective
function (WR), or to a defined state which is based
on the last bus access (BHE). Port pins which are
used as external address/data bus hold the
address/data which was output during the last
external memory access before entry into Idle
mode under the following conditions:

P0H outputs the high Byte of the last address if a
multiplexed bus mode with 8 Bit data bus is used,
otherwise P0H is floating. P0L is always floating in
Idle mode.

PORT1 outputs the lower 16 Bit of the last
address if a demultiplexed bus mode is used,
otherwise the output pins of PORT1 represent the
port latch data.

PORT4 outputs the segment address for the last
access on those pins that were selected during
reset, otherwise the output pins of Port4 represent
the port latch data.

During power down mode the oscillator and the
clocks to the CPU and to the peripherals are
turned off. Like in Idle mode, all port pins which
are configured as general purpose output pins
output the last data value which was written to
their port output latches.

When the alternate output function of a port pin is
used by a peripheral the state of this pin is
determined by the last action of the peripheral
before the clocks were switched off.

The Table 40 summarizes the state of all
ST10X167 output pins during Idle and Power
Down mode.

Notes 1. High if EINIT was executed before entering Idle or Power Down mode, Low otherwise.
2. For multiplexed buses with 8 Bit data bus.

3. For demultiplexed buses.
4. The CS signal that corresponds to the last address remains active (low), all other enabled CS signals remain inactive (high). By
accessing an on-chip X-Periperal prior to entering a power save mode all external CS signals can be deactivated.

Table 40 : Output pin state during idle and powerdown modes

ST10X167
Output Pin(s)

Idle Mode Power Down Mode

No
external bus

External bus
enabled

No
external bus

External bus
enabled

ALE Low Low Low Low

RD, WR High High High High

CLKOUT Active Active High High

RSTOUT 1 1 1 1

P0L Port Latch Data Floating Port Latch Data Floating

P0H Port Latch Data A15...A8 2 / Float Port Latch Data A15...A8 2 / Float

PORT1 Port Latch Data Last Address 3 /
Port Latch Data

Port Latch Data Last Address 3 /
Port Latch Data

Port 4 Port Latch Data Port Latch Data/Last
segment

Port Latch Data Port Latch Data/Last
segment

BHE Port Latch Data Last value Port Latch Data Last value

HLDA Port Latch Data Last value Port Latch Data Last value

BREQ Port Latch Data High Port Latch Data High

CSx Port Latch Data Last value 4 Port Latch Data Last value 4

Other Port
Output Pins

Port Latch Data /
Alternate Function

Port Latch Data /
Alternate Function

Port Latch Data /
Alternate Function

Port Latch Data /
Alternate Function

ST10X167

257/294

20 - REGISTER SET

This section summarizes all registers implemented in the ST10X167, and explains the description format
used in the chapters describing the function and layout of the SFRs.
For easy reference the registers (except for GPRs) are ordered in two ways:
– Ordered by address, to check which register a given address references.
– Ordered by register name, to find the location of a specific register.

20.1 - Register Description Format
In the following chapters, the function and the layout of the SFRs is described in a specific format. The
example below explains this format.
A Word register looks like this:

REG_NAME (A16h / A8h) SFR/ESFR/XReg Reset Value: ****h

A Byte register looks like this:

REG_NAME (A16h / A8h) SFR/ESFR/XReg Reset Value: --**h

Elements:

REG_NAME Name of this register

A16h / A8h Long 16 bit address / Short 8 bit address

SFR/ESFR/XReg Register space (SFR, ESFR or External/XBUS Register)

(* *) * * Register contents after reset

0/1: defined

X’: undefined (undefined (’X’) after power up)

U’: unchanged

hwbit bit that are set/cleared by hardware are written in bold

20.2 - General Purpose Registers (GPRs)

The GPRs form the register bank that the CPU works with. This register bank may be located anywhere
within the internal RAM via the Context Pointer (CP). Due to the addressing mechanism, GPR banks can
only reside within the internal RAM. All GPRs are bit-addressable.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res. res. res. res. res. write
only

hw
bit

read
only

std
bit

hw
bit

bitfield bitfield

W RW R RW RW RW RW

Bit Function

bit(field) name Explanation of bit(field) name

Description of the functions controlled by this bit(field).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - std bit hw bit bit field bit field

RW RW RW RW

ST10X167

258/294

Table 41 : General purpose registers (GPRs)

The first 8 GPRs (R7...R0) may also be accessed Bytewise. Other than with SFRs, writing to a GPR Byte
does not affect the other Byte of the respective GPR. The respective halves of the Byte-accessible
registers receive special names:

Name Physical
Address

8 bit
Address Description Reset

Value

R0 (CP) + 0 F0h CPU General Purpose (Word) Register R0 UUUUh

R1 (CP) + 2 F1h CPU General Purpose (Word) Register R1 UUUUh

R2 (CP) + 4 F2h CPU General Purpose (Word) Register R2 UUUUh

R3 (CP) + 6 F3h CPU General Purpose (Word) Register R3 UUUUh

R4 (CP) + 8 F4h CPU General Purpose (Word) Register R4 UUUUh

R5 (CP) + 10 F5h CPU General Purpose (Word) Register R5 UUUUh

R6 (CP) + 12 F6h CPU General Purpose (Word) Register R6 UUUUh

R7 (CP) + 14 F7h CPU General Purpose (Word) Register R7 UUUUh

R8 (CP) + 16 F8h CPU General Purpose (Word) Register R8 UUUUh

R9 (CP) + 18 F9h CPU General Purpose (Word) Register R9 UUUUh

R10 (CP) + 20 FAh CPU General Purpose (Word) Register R10 UUUUh

R11 (CP) + 22 FBh CPU General Purpose (Word) Register R11 UUUUh

R12 (CP) + 24 FCh CPU General Purpose (Word) Register R12 UUUUh

R13 (CP) + 26 FDh CPU General Purpose (Word) Register R13 UUUUh

R14 (CP) + 28 FEh CPU General Purpose (Word) Register R14 UUUUh

R15 (CP) + 30 FFh CPU General Purpose (Word) Register R15 UUUUh

Table 42 : General purpose registers (GPRs) Bit wise addressing

Name Physical
Address

8 bit
Address Description Reset

Value

RL0 (CP) + 0 F0h CPU General Purpose (Byte) Register RL0 UUh

RH0 (CP) + 1 F1h CPU General Purpose (Byte) Register RH0 UUh

RL1 (CP) + 2 F2h CPU General Purpose (Byte) Register RL1 UUh

RH1 (CP) + 3 F3h CPU General Purpose (Byte) Register RH1 UUh

RL2 (CP) + 4 F4h CPU General Purpose (Byte) Register RL2 UUh

RH2 (CP) + 5 F5h CPU General Purpose (Byte) Register RH2 UUh

RL3 (CP) + 6 F6h CPU General Purpose (Byte) Register RL3 UUh

RH3 (CP) + 7 F7h CPU General Purpose (Byte) Register RH3 UUh

RL4 (CP) + 8 F8h CPU General Purpose (Byte) Register RL4 UUh

RH4 (CP) + 9 F9h CPU General Purpose (Byte) Register RH4 UUh

RL5 (CP) + 10 FAh CPU General Purpose (Byte) Register RL5 UUh

RH5 (CP) + 11 FBh CPU General Purpose (Byte) Register RH5 UUh

RL6 (CP) + 12 FCh CPU General Purpose (Byte) Register RL6 UUh

RH6 (CP) + 13 FDh CPU General Purpose (Byte) Register RH6 UUh

RL7 (CP) + 14 FEh CPU General Purpose (Byte) Register RL7 UUh

RH7 (CP) + 15 FFh CPU General Purpose (Byte) Register RH7 UUh

ST10X167

259/294

20.3 - Special Function Registers Ordered by
Name
The following table lists all SFRs which are
implemented in the ST10X167 in alphabetical
order.
Bit-addressable SFRs are marked with the letter

“b” in column “Name”.
SFRs within the Extended SFR-Space (ESFRs)
are marked with the letter “E” in column “Physical
Address”. Registers within on-chip X-Peripherals
(CAN) are marked with the letter “X” in column
“Physical Address”

Table 43 : Special function registers ordered by name

Name Physical
Address

8 bit
Address Description Reset

Value

ADCIC b FF98h CCh A/D Converter End of Conversion Interrupt Control Register 0000h

ADCON b FFA0h D0h A/D Converter Control Register 0000h

ADDAT FEA0h 50h A/D Converter Result Register 0000h

ADDAT2 F0A0h E 50h A/D Converter 2 Result Register 0000h

ADDRSEL1 FE18h 0Ch Address Select Register 1 0000h

ADDRSEL2 FE1Ah 0Dh Address Select Register 2 0000h

ADDRSEL3 FE1Ch 0Eh Address Select Register 3 0000h

ADDRSEL4 FE1Eh 0Fh Address Select Register 4 0000h

ADEIC b FF9Ah CDh A/D Converter Overrun Error Interrupt Control Reg 0000h

BUSCON0 b FF0Ch 86h Bus Configuration Register 0 0XX0h

BUSCON1 b FF14h 8Ah Bus Configuration Register 1 0000h

BUSCON2 b FF16h 8Bh Bus Configuration Register 2 0000h

BUSCON3 b FF18h 8Ch Bus Configuration Register 3 0000h

BUSCON4 b FF1Ah 8Dh Bus Configuration Register 4 0000h

CAPREL FE4Ah 25h GPT2 Capture/Reload Register 0000h

CC8IC b FF88h C4h EX0IN Interrupt Control Register 0000h

CC0 FE80h 40h CAPCOM Register 0 0000h

CC0IC b FF78h BCh CAPCOM Register 0 Interrupt Control Register 0000h

CC1 FE82h 41h CAPCOM Register 1 0000h

CC1IC b FF7Ah BDh CAPCOM Register 1 Interrupt Control Register 0000h

CC2 FE84h 42h CAPCOM Register 2 0000h

CC2IC b FF7Ch BEh CAPCOM Register 2 Interrupt Control Register 0000h

CC3 FE86h 43h CAPCOM Register 3 0000h

CC3IC b FF7Eh BFh CAPCOM Register 3 Interrupt Control Register 0000h

CC4 FE88h 44h CAPCOM Register 4 0000h

CC4IC b FF80h C0h CAPCOM Register 4 Interrupt Control Register 0000h

CC5 FE8Ah 45h CAPCOM Register 5 0000h

CC5IC b FF82h C1h CAPCOM Register 5 Interrupt Control Register 0000h

CC6 FE8Ch 46h CAPCOM Register 6 0000h

CC6IC b FF84h C2h CAPCOM Register 6 Interrupt Control Register 0000h

CC7 FE8Eh 47h CAPCOM Register 7 0000h

CC7IC b FF86h C3h CAPCOM Register 7 Interrupt Control Register 0000h

ST10X167

260/294

CC8 FE90h 48h CAPCOM Register 8 0000h

CC8IC b FF88h C4h CAPCOM Register 8 Interrupt Control Register 0000h

CC9 FE92h 49h CAPCOM Register 9 0000h

CC9IC b FF8Ah C5h CAPCOM Register 9 Interrupt Control Register 0000h

CC10 FE94h 4Ah CAPCOM Register 10 0000h

CC10IC b FF8Ch C6h CAPCOM Register 10 Interrupt Control Register 0000h

CC11 FE96h 4Bh CAPCOM Register 11 0000h

CC11IC b FF8Eh C7h CAPCOM Register 11 Interrupt Control Register 0000h

CC12 FE98h 4Ch CAPCOM Register 12 0000h

CC12IC b FF90h C8h CAPCOM Register 12 Interrupt Control Register 0000h

CC13 FE9Ah 4Dh CAPCOM Register 13 0000h

CC13IC b FF92h C9h CAPCOM Register 13 Interrupt Control Register 0000h

CC14 FE9Ch 4Eh CAPCOM Register 14 0000h

CC14IC b FF94h CAh CAPCOM Register 14 Interrupt Control Register 0000h

CC15 FE9Eh 4Fh CAPCOM Register 15 0000h

CC15IC b FF96h CBh CAPCOM Register 15 Interrupt Control Register 0000h

CC16 FE60h 30h CAPCOM Register 16 0000h

CC16IC b F160h E B0h CAPCOM Register 16 Interrupt Control Register 0000h

CC17 FE62h 31h CAPCOM Register 17 0000h

CC17IC b F162h E B1h CAPCOM Register 17 Interrupt Control Register 0000h

CC18 FE64h 32h CAPCOM Register 18 0000h

CC18IC b F164h E B2h CAPCOM Register 18 Interrupt Control Register 0000h

CC19 FE66h 33h CAPCOM Register 19 0000h

CC19IC b F166h E B3h CAPCOM Register 19 Interrupt Control Register 0000h

CC20 FE68h 34h CAPCOM Register 20 0000h

CC20IC b F168h E B4h CAPCOM Register 20 Interrupt Control Register 0000h

CC21 FE6Ah 35h CAPCOM Register 21 0000h

CC21IC b F16Ah E B5h CAPCOM Register 21 Interrupt Control Register 0000h

CC22 FE6Ch 36h CAPCOM Register 22 0000h

CC22IC b F16Ch E B6h CAPCOM Register 22 Interrupt Control Register 0000h

CC23 FE6Eh 37h CAPCOM Register 23 0000h

CC23IC b F16Eh E B7h CAPCOM Register 23 Interrupt Control Register 0000h

CC24 FE70h 38h CAPCOM Register 24 0000h

CC24IC b F170h E B8h CAPCOM Register 24 Interrupt Control Register 0000h

CC25 FE72h 39h CAPCOM Register 25 0000h

CC25IC b F172h E B9h CAPCOM Register 25 Interrupt Control Register 0000h

CC26 FE74h 3Ah CAPCOM Register 26 0000h

Table 43 : Special function registers ordered by name (continued)

Name Physical
Address

8 bit
Address Description Reset

Value

ST10X167

261/294

CC26IC b F174h E BAh CAPCOM Register 26 Interrupt Control Register 0000h

CC27 FE76h 3Bh CAPCOM Register 27 0000h

CC27IC b F176h E BBh CAPCOM Register 27 Interrupt Control Register 0000h

CC28 FE78h 3Ch CAPCOM Register 28 0000h

CC28IC b F178h E BCh CAPCOM Register 28 Interrupt Control Register 0000h

CC29 FE7Ah 3Dh CAPCOM Register 29 0000h

CC29IC b F184h E C2h CAPCOM Register 29 Interrupt Control Register 0000h

CC30 FE7Ch 3Eh CAPCOM Register 30 0000h

CC30IC b F18Ch E C6h CAPCOM Register 30 Interrupt Control Register 0000h

CC31 FE7Eh 3Fh CAPCOM Register 31 0000h

CC31IC b F194h E CAh CAPCOM Register 31 Interrupt Control Register 0000h

CCM0 b FF52h A9h CAPCOM Mode Control Register 0 0000h

CCM1 b FF54h AAh CAPCOM Mode Control Register 1 0000h

CCM2 b FF56h ABh CAPCOM Mode Control Register 2 0000h

CCM3 b FF58h ACh CAPCOM Mode Control Register 3 0000h

CCM4 b FF22h 91h CAPCOM Mode Control Register 4 0000h

CCM5 b FF24h 92h CAPCOM Mode Control Register 5 0000h

CCM6 b FF26h 93h CAPCOM Mode Control Register 6 0000h

CCM7 b FF28h 94h CAPCOM Mode Control Register 7 0000h

CP FE10h 08h CPU Context Pointer Register FC00h

CRIC b FF6Ah B5h GPT2 CAPREL Interrupt Control Register 0000h

CSP FE08h 04h CPU Code Segment Pointer Register (read only) 0000h

DP0L b F100h E 80h P0L Direction Control Register 00h

DP0H b F102h E 81h P0h Direction Control Register 00h

DP1L b F104h E 82h P1L Direction Control Register 00h

DP1H b F106h E 83h P1h Direction Control Register 00h

DP2 b FFC2h E1h Port2 Direction Control Register 0000h

DP3 b FFC6h E3h Port3 Direction Control Register 0000h

DP4 b FFCAh E5h Port4 Direction Control Register 00h

DP6 b FFCEh E7h Port6 Direction Control Register 00h

DP7 b FFD2h E9h Port7 Direction Control Register 00h

DP8 b FFD6h EBh Port8 Direction Control Register 00h

DPP0 FE00h 00h CPU Data Page Pointer 0 Register (10 bit) 0000h

DPP1 FE02h 01h CPU Data Page Pointer 1 Register (10 bit) 0001h

DPP2 FE04h 02h CPU Data Page Pointer 2 Register (10 bit) 0002h

DPP3 FE06h 03h CPU Data Page Pointer 3 Register (10 bit) 0003h

EXICON b F1C0h E E0h External Interrupt Control Register 0000h

Table 43 : Special function registers ordered by name (continued)

Name Physical
Address

8 bit
Address Description Reset

Value

ST10X167

262/294

IDCHIP F07Ch E 3Eh Device Identifier Register (not in ST10F167) Ref dsheet

IDMANUF F07Eh E 3Fh Manufacturer Identifier Register (not in ST10F167) 0020h

IDMEM F07Ah E 3Dh On-chip Memory Identifier Register (not in ST10F167) Ref dsheet

IDPROG F078h E 3Ch Programming Voltage Identifier Register (not in ST10F167) Ref dsheet

MDC b FF0Eh 87h CPU Multiply Divide Control Register 0000h

MDH FE0Ch 06h CPU Multiply Divide Register – High Word 0000h

MDL FE0Eh 07h CPU Multiply Divide Register – Low Word 0000h

ODP2 b F1C2h E E1h Port2 Open Drain Control Register 0000h

ODP3 b F1C6h E E3h Port3 Open Drain Control Register 0000h

ODP6 b F1CEh E E7h Port6 Open Drain Control Register 00h

ODP7 b F1D2h E E9h Port7 Open Drain Control Register 00h

ODP8 b F1D6h E EBh Port8 Open Drain Control Register 00h

ONES FF1Eh 8Fh Constant Value 1’s Register (read only) FFFFh

P0L b FF00h 80h Port0 Low Register (Lower half of PORT0) 00h

P0H b FF02h 81h Port0 High Register (Upper half of PORT0) 00h

P1L b FF04h 82h Port1 Low Register (Lower half of PORT1) 00h

P1H b FF06h 83h Port1 High Register (Upper half of PORT1) 00h

P2 b FFC0h E0h Port2 Register 0000h

P3 b FFC4h E2h Port3 Register 0000h

P4 b FFC8h E4h Port4 Register (8 bit) 00h

P5 b FFA2h D1h Port5 Register (read only) XXXXh

P6 b FFCCh E6h Port6 Register (8 bit) 00h

P7 b FFD0h E8h Port7 Register (8 bit) 00h

P8 b FFD4h EAh Port8 Register (8 bit) 00h

PECC0 FEC0h 60h PEC Channel 0 Control Register 0000h

PECC1 FEC2h 61h PEC Channel 1 Control Register 0000h

PECC2 FEC4h 62h PEC Channel 2 Control Register 0000h

PECC3 FEC6h 63h PEC Channel 3 Control Register 0000h

PECC4 FEC8h 64h PEC Channel 4 Control Register 0000h

PECC5 FECAh 65h PEC Channel 5 Control Register 0000h

PECC6 FECCh 66h PEC Channel 6 Control Register 0000h

PECC7 FECEh 67h PEC Channel 7 Control Register 0000h

PICON F1C4h E E2h Port Input Threshold Control Register 0000h

PP0 F038h E 1Ch PWM Module Period Register 0 0000h

PP1 F03Ah E 1Dh PWM Module Period Register 1 0000h

PP2 F03Ch E 1Eh PWM Module Period Register 2 0000h

PP3 F03Eh E 1Fh PWM Module Period Register 3 0000h

Table 43 : Special function registers ordered by name (continued)

Name Physical
Address

8 bit
Address Description Reset

Value

ST10X167

263/294

PSW b FF10h 88h CPU Program Status Word 0000h

PT0 F030h E 18h PWM Module Up/Down Counter 0 0000h

PT1 F032h E 19h PWM Module Up/Down Counter 1 0000h

PT2 F034h E 1Ah PWM Module Up/Down Counter 2 0000h

PT3 F036h E 1Bh PWM Module Up/Down Counter 3 0000h

PW0 FE30h 18h PWM Module Pulse Width Register 0 0000h

PW1 FE32h 19h PWM Module Pulse Width Register 1 0000h

PW2 FE34h 1Ah PWM Module Pulse Width Register 2 0000h

PW3 FE36h 1Bh PWM Module Pulse Width Register 3 0000h

PWMCON0 b FF30h 98h PWM Module Control Register 0 0000h

PWMCON1 b FF32h 99h PWM Module Control Register 1 0000h

PWMIC b F17Eh E BFh PWM Module Interrupt Control Register 0000h

RP0H b F108h E 84h System Start-up Configuration Register (Rd. only) XXh

S0BG FEB4h 5Ah Serial Channel 0 Baud Rate Generator Reload Register 0000h

S0CON b FFB0h D8h Serial Channel 0 Control Register 0000h

S0EIC b FF70h B8h Serial Channel 0 Error Interrupt Control Register 0000h

S0RBUF FEB2h 59h Serial Channel 0 Receive Buffer Register (read only) XXh

S0RIC b FF6Eh B7h Serial Channel 0 Receive Interrupt Control Register 0000h

S0TBIC b F19Ch E CEh Serial Channel 0 Transmit Buffer Interrupt Control Register 0000h

S0TBUF FEB0h 58h Serial Channel 0 Transmit Buffer Reg (write only) 00h

S0TIC b FF6Ch B6h Serial Channel 0 Transmit Interrupt Control Register 0000h

SP FE12h 09h CPU System Stack Pointer Register FC00h

SSCBR F0B4h E 5Ah SSC Baud rate Register 0000h

SSCCON b FFB2h D9h SSC Control Register 0000h

SSCEIC b FF76h BBh SSC Error Interrupt Control Register 0000h

SSCRB F0B2h E 59h SSC Receive Buffer (read only) XXXXh

SSCRIC b FF74h BAh SSC Receive Interrupt Control Register 0000h

SSCTB F0B0h E 58h SSC Transmit Buffer (write only) 0000h

SSCTIC b FF72h B9h SSC Transmit Interrupt Control Register 0000h

STKOV FE14h 0Ah CPU Stack Overflow Pointer Register FA00h

STKUN FE16h 0Bh CPU Stack Underflow Pointer Register FC00h

SYSCON b FF12h 89h CPU System Configuration Register 0xx0h

T0 FE50h 28h CAPCOM Timer 0 Register 0000h

T01CON b FF50h A8h CAPCOM Timer 0 and Timer 1 Control Register 0000h

T0IC b FF9Ch CEh CAPCOM Timer 0 Interrupt Control Register 0000h

T0REL FE54h 2Ah CAPCOM Timer 0 Reload Register 0000h

T1 FE52h 29h CAPCOM Timer 1 Register 0000h

Table 43 : Special function registers ordered by name (continued)

Name Physical
Address

8 bit
Address Description Reset

Value

ST10X167

264/294

T1IC b FF9Eh CFh CAPCOM Timer 1 Interrupt Control Register 0000h

T1REL FE56h 2Bh CAPCOM Timer 1 Reload Register 0000h

T2 FE40h 20h GPT1 Timer 2 Register 0000h

T2CON b FF40h A0h GPT1 Timer 2 Control Register 0000h

T2IC b FF60h B0h GPT1 Timer 2 Interrupt Control Register 0000h

T3 FE42h 21h GPT1 Timer 3 Register 0000h

T3CON b FF42h A1h GPT1 Timer 3 Control Register 0000h

T3IC b FF62h B1h GPT1 Timer 3 Interrupt Control Register 0000h

T4 FE44h 22h GPT1 Timer 4 Register 0000h

T4CON b FF44h A2h GPT1 Timer 4 Control Register 0000h

T4IC b FF64h B2h GPT1 Timer 4 Interrupt Control Register 0000h

T5 FE46h 23h GPT2 Timer 5 Register 0000h

T5CON b FF46h A3h GPT2 Timer 5 Control Register 0000h

T5IC b FF66h B3h GPT2 Timer 5 Interrupt Control Register 0000h

T6 FE48h 24h GPT2 Timer 6 Register 0000h

T6CON b FF48h A4h GPT2 Timer 6 Control Register 0000h

T6IC b FF68h B4h GPT2 Timer 6 Interrupt Control Register 0000h

T7 F050h E 28h CAPCOM Timer 7 Register 0000h

T78CON b FF20h 90h CAPCOM Timer 7 and 8 Control Register 0000h

T7IC b F17Ah E BEh CAPCOM Timer 7 Interrupt Control Register 0000h

T7REL F054h E 2Ah CAPCOM Timer 7 Reload Register 0000h

T8 F052h E 29h CAPCOM Timer 8 Register 0000h

T8IC b F17Ch E BFh CAPCOM Timer 8 Interrupt Control Register 0000h

T8REL F056h E 2Bh CAPCOM Timer 8 Reload Register 0000h

TFR b FFACh D6h Trap Flag Register 0000h

WDT FEAEh 57h Watchdog Timer Register (read only) 0000h

WDTCON FFAEh D7h Watchdog Timer Control Register 000xh

XP0IC b F186h E C3h CAN Module Interrupt Control Register 0000h

XP1IC b F18Eh E C7h X-Peripheral 1 Interrupt Control Register 0000h

XP2IC b F196h E CBh X-Peripheral 2 Interrupt Control Register 0000h

XP3IC b F19Eh E CFh PLL unlock Interrupt Control Register 0000h

ZEROS b FF1Ch 8Eh Constant Value 0’s Register (read only) 0000h

Table 43 : Special function registers ordered by name (continued)

Name Physical
Address

8 bit
Address Description Reset

Value

ST10X167

265/294

20.4 - Registers Ordered by Address
The following table lists all SFRs which are
implemented in the ST10X167 ordered by their
physical address. Bit-addressable SFRs are
marked with the letter “b” in column “Name”.

SFRs within the Extended SFR-Space (ESFRs)
are marked with the letter “E” in column “Physical
Address”. Registers within on-chip X-Peripherals
(CAN) are marked with the letter “X” in column
“Physical Address”.

Table 44 : Registers ordered by address

Name Physical
Address

8 bit
Address Description Reset

Value

PT0 F030h E 18h PWM Module Up/Down Counter 0 0000h

PT1 F032h E 19Hh PWM Module Up/Down Counter 1 0000h

PT2 F034h E 1Ah PWM Module Up/Down Counter 2 0000h

PT3 F036h E 1Bh PWM Module Up/Down Counter 3 0000h

PP0 F038h E 1Ch PWM Module Period Register 0 0000h

PP1 F03Ah E 1Dh PWM Module Period Register 1 0000h

PP2 F03Ch E 1Eh PWM Module Period Register 2 0000h

PP3 F03Eh E 1Fh PWM Module Period Register 3 0000h

T7 F050h E 28h CAPCOM Timer 7 Register 0000h

T8 F052h E 29h CAPCOM Timer 8 Register 0000h

T7REL F054h E 2Ah CAPCOM Timer 7 Reload Register 0000h

T8REL F056h E 2Bh CAPCOM Timer 8 Reload Register 0000h

IDPROG F078h E 3Ch Programming Voltage Identifier Register (not in ST10F167) Ref dsheet

IDMEM F07Ah E 3Dh On-chip Memory Identifier Register (not in ST10F167) Ref dsheet

IDCHIP F07Ch E 3Eh Device Identifier Register (not in ST10F167) Ref dsheet

IDMANUF F07Eh E 3Fh Manufacturer Identifier Register (not in ST10F167) 0020h

ADDAT2 F0A0h E 50h A/D Converter 2 Result Register 0000h

SSCTB F0B0h E 58h SSC Transmit Buffer (write only) 0000h

SSCRB F0B2h E 59h SSC Receive Buffer (read only) XXXXh

SSCBR F0B4h E 5Ah SSC Baud rate Register 0000h

DP0L b F100h E 80h P0L Direction Control Register 00h

DP0H b F102h E 81h P0H Direction Control Register 00h

DP1L b F104h E 82h P1L Direction Control Register 00h

DP1H b F106h E 83h P1H Direction Control Register 00h

RP0H b F108h E 84h System Start-up Configuration Register (Read only) XXh

CC16IC b F160h E B0h CAPCOM Register 16 Interrupt Control Register 0000h

CC17IC b F162h E B1h CAPCOM Register 17 Interrupt Control Register 0000h

CC18IC b F164h E B2h CAPCOM Register 18 Interrupt Control Register 0000h

CC19IC b F166h E B3h CAPCOM Register 19 Interrupt Control Register 0000h

CC20IC b F168h E B4h CAPCOM Register 20 Interrupt Control Register 0000h

CC21IC b F16Ah E B5h CAPCOM Register 21 Interrupt Control Register 0000h

CC22IC b F16Ch E B6h CAPCOM Register 22 Interrupt Control Register 0000h

ST10X167

266/294

CC23IC b F16Eh E B7h CAPCOM Register 23 Interrupt Control Register 0000h

CC24IC b F170h E B8h CAPCOM Register 24 Interrupt Control Register 0000h

CC25IC b F172h E B9h CAPCOM Register 25 Interrupt Control Register 0000h

CC26IC b F174h E BAh CAPCOM Register 26 Interrupt Control Register 0000h

CC27IC b F176h E BBh CAPCOM Register 27 Interrupt Control Register 0000h

CC28IC b F178h E BCh CAPCOM Register 28 Interrupt Control Register 0000h

T7IC b F17Ah E BEh CAPCOM Timer 7 Interrupt Control Register 0000h

T8IC b F17Ch E BFh CAPCOM Timer 8 Interrupt Control Register 0000h

PWMIC b F17Eh E BFh PWM Module Interrupt Control Register 0000h

CC29IC b F184h E C2h CAPCOM Register 29 Interrupt Control Register 0000h

XP0IC b F186h E C3h CAN Module Interrupt Control Register 0000h

CC30IC b F18Ch E C6h CAPCOM Register 30 Interrupt Control Register 0000h

XP1IC b F18Eh E C7h X-Peripheral 1 Interrupt Control Register 0000h

CC31IC b F194h E CAh CAPCOM Register 31 Interrupt Control Register 0000h

XP2IC b F196h E CBh X-Peripheral 2 Interrupt Control Register 0000h

S0TBIC b F19Ch E CEh Serial Channel 0 Transmit Buffer Interrupt Control Register 0000h

XP3IC b F19Eh E CFh PLL unlock Interrupt Control Register 0000h

EXICON b F1C0h E E0h External Interrupt Control Register 0000h

ODP2 b F1C2h E E1h Port2 Open Drain Control Register 0000h

PICON F1C4h E E2h Port Input Threshold Control Register 0000h

ODP3 b F1C6h E E3h Port3 Open Drain Control Register 0000h

ODP6 b F1CEh E E7h Port6 Open Drain Control Register 00h

ODP7 b F1D2h E E9h Port7 Open Drain Control Register 00h

ODP8 b F1D6h E EBh Port8 Open Drain Control Register 00h

DPP0 FE00h 00h CPU Data Page Pointer 0 Register (10 bit) 0000h

DPP1 FE02h 01h CPU Data Page Pointer 1 Register (10 bit) 0001h

DPP2 FE04h 02h CPU Data Page Pointer 2 Register (10 bit) 0002h

DPP3 FE06h 03h CPU Data Page Pointer 3 Register (10 bit) 0003h

CSP FE08h 04h CPU Code Segment Pointer Register (read only) 0000h

MDH FE0Ch 06h CPU Multiply Divide Register – High Word 0000h

MDL FE0Eh 07h CPU Multiply Divide Register – Low Word 0000h

CP FE10h 08h CPU Context Pointer Register FC00h

SP FE12h 09h CPU System Stack Pointer Register FC00h

STKOV FE14h 0Ah CPU Stack Overflow Pointer Register FA00h

STKUN FE16h 0Bh CPU Stack Underflow Pointer Register FC00h

ADDRSEL1 FE18h 0Ch Address Select Register 1 0000h

ADDRSEL2 FE1Ah 0Dh Address Select Register 2 0000h

Table 44 : Registers ordered by address (continued)

Name Physical
Address

8 bit
Address Description Reset

Value

ST10X167

267/294

ADDRSEL3 FE1Ch 0Eh Address Select Register 3 0000h

ADDRSEL4 FE1Eh 0Fh Address Select Register 4 0000h

PW0 FE30h 18h PWM Module Pulse Width Register 0 0000h

PW1 FE32h 19h PWM Module Pulse Width Register 1 0000h

PW2 FE34h 1Ah PWM Module Pulse Width Register 2 0000h

PW3 FE36h 1Bh PWM Module Pulse Width Register 3 0000h

T2 FE40h 20h GPT1 Timer 2 Register 0000h

T3 FE42h 21h GPT1 Timer 3 Register 0000h

T4 FE44h 22h GPT1 Timer 4 Register 0000h

T5 FE46h 23h GPT2 Timer 5 Register 0000h

T6 FE48h 24h GPT2 Timer 6 Register 0000h

CAPREL FE4Ah 25h GPT2 Capture/Reload Register 0000h

T0 FE50h 28h CAPCOM Timer 0 Register 0000h

T1 FE52h 29h CAPCOM Timer 1 Register 0000h

T0REL FE54h 2Ah CAPCOM Timer 0 Reload Register 0000h

T1REL FE56h 2Bh CAPCOM Timer 1 Reload Register 0000h

CC16 FE60h 30h CAPCOM Register 16 0000h

CC17 FE62h 31h CAPCOM Register 17 0000h

CC18 FE64h 32h CAPCOM Register 18 0000h

CC19 FE66h 33h CAPCOM Register 19 0000h

CC20 FE68h 34h CAPCOM Register 20 0000h

CC21 FE6Ah 35h CAPCOM Register 21 0000h

CC22 FE6Ch 36h CAPCOM Register 22 0000h

CC23 FE6Eh 37h CAPCOM Register 23 0000h

CC24 FE70h 38h CAPCOM Register 24 0000h

CC25 FE72h 39h CAPCOM Register 25 0000h

CC26 FE74h 3Ah CAPCOM Register 26 0000h

CC27 FE76h 3Bh CAPCOM Register 27 0000h

CC28 FE78h 3Ch CAPCOM Register 28 0000h

CC29 FE7Ah 3Dh CAPCOM Register 29 0000h

CC30 FE7Ch 3Eh CAPCOM Register 30 0000h

CC31 FE7Eh 3Fh CAPCOM Register 31 0000h

CC0 FE80h 40h CAPCOM Register 0 0000h

CC1 FE82h 41h CAPCOM Register 1 0000h

CC2 FE84h 42h CAPCOM Register 2 0000h

CC3 FE86h 43h CAPCOM Register 3 0000h

CC4 FE88h 44h CAPCOM Register 4 0000h

Table 44 : Registers ordered by address (continued)

Name Physical
Address

8 bit
Address Description Reset

Value

ST10X167

268/294

CC5 FE8Ah 45h CAPCOM Register 5 0000h

CC6 FE8Ch 46h CAPCOM Register 6 0000h

CC7 FE8Eh 47h CAPCOM Register 7 0000h

CC8 FE90h 48h CAPCOM Register 8 0000h

CC9 FE92h 49h CAPCOM Register 9 0000h

CC10 FE94h 4Ah CAPCOM Register 10 0000h

CC11 FE96h 4Bh CAPCOM Register 11 0000h

CC12 FE98h 4Ch CAPCOM Register 12 0000h

CC13 FE9Ah 4Dh CAPCOM Register 13 0000h

CC14 FE9Ch 4Eh CAPCOM Register 14 0000h

CC15 FE9Eh 4Fh CAPCOM Register 15 0000h

ADDAT FEA0h 50h A/D Converter Result Register 0000h

WDT FEAEh 57h Watchdog Timer Register (read only) 0000h

S0TBUF FEB0h 58h Serial Channel 0 Transmit Buffer Register(write only) 00h

S0RBUF FEB2h 59h Serial Channel 0 Receive Buffer Register (read only) XXh

S0BG FEB4h 5Ah Serial Channel 0 Baud Rate Generator Reload Reg 0000h

PECC0 FEC0h 60h PEC Channel 0 Control Register 0000h

PECC1 FEC2h 61h PEC Channel 1 Control Register 0000h

PECC2 FEC4h 62h PEC Channel 2 Control Register 0000h

PECC3 FEC6h 63h PEC Channel 3 Control Register 0000h

PECC4 FEC8h 64h PEC Channel 4 Control Register 0000h

PECC5 FECAh 65h PEC Channel 5 Control Register 0000h

PECC6 FECCh 66h PEC Channel 6 Control Register 0000h

PECC7 FECEh 67h PEC Channel 7 Control Register 0000h

P0L b FF00h 80h Port0 Low Register (Lower half of PORT0) 00h

P0H b FF02h 81h Port0 High Register (Upper half of PORT0) 00h

P1L b FF04h 82h Port1 Low Register (Lower half of PORT1) 00h

P1H b FF06h 83h Port1 High Register (Upper half of PORT1) 00h

BUSCON0 b FF0Ch 86h Bus Configuration Register 0 0XX0h

MDC b FF0Eh 87h CPU Multiply Divide Control Register 0000h

PSW b FF10h 88h CPU Program Status Word 0000h

SYSCON b FF12h 89h CPU System Configuration Register 0xx0h

BUSCON1 b FF14h 8Ah Bus Configuration Register 1 0000h

BUSCON2 b FF16h 8Bh Bus Configuration Register 2 0000h

BUSCON3 b FF18h 8Ch Bus Configuration Register 3 0000h

BUSCON4 b FF1Ah 8Dh Bus Configuration Register 4 0000h

Table 44 : Registers ordered by address (continued)

Name Physical
Address

8 bit
Address Description Reset

Value

ST10X167

269/294

ZEROS b FF1Ch 8Eh Constant Value 0’s Register (read only) 0000h

ONES FF1Eh 8Fh Constant Value 1’s Register (read only) FFFFh

T78CON b FF20h 90h CAPCOM Timer 7 and 8 Control Register 0000h

CCM4 b FF22h 91h CAPCOM Mode Control Register 4 0000h

CCM5 b FF24h 92h CAPCOM Mode Control Register 5 0000h

CCM6 b FF26h 93h CAPCOM Mode Control Register 6 0000h

CCM7 b FF28h 94h CAPCOM Mode Control Register 7 0000h

PWMCON0 b FF30h 98h PWM Module Control Register 0 0000h

PWMCON1 b FF32h 99h PWM Module Control Register 1 0000h

T2CON b FF40h A0h GPT1 Timer 2 Control Register 0000h

T3CON b FF42h A1h GPT1 Timer 3 Control Register 0000h

T4CON b FF44h A2h GPT1 Timer 4 Control Register 0000h

T5CON b FF46h A3h GPT2 Timer 5 Control Register 0000h

T6CON b FF48h A4h GPT2 Timer 6 Control Register 0000h

T01CON b FF50h A8h CAPCOM Timer 0 and Timer 1 Control Register 0000h

CCM0 b FF52h A9h CAPCOM Mode Control Register 0 0000h

CCM1 b FF54h AAh CAPCOM Mode Control Register 1 0000h

CCM2 b FF56h ABh CAPCOM Mode Control Register 2 0000h

CCM3 b FF58h ACh CAPCOM Mode Control Register 3 0000h

T2IC b FF60h B0h GPT1 Timer 2 Interrupt Control Register 0000h

T3IC b FF62h B1h GPT1 Timer 3 Interrupt Control Register 0000h

T4IC b FF64h B2h GPT1 Timer 4 Interrupt Control Register 0000h

T5IC b FF66h B3h GPT2 Timer 5 Interrupt Control Register 0000h

T6IC b FF68h B4h GPT2 Timer 6 Interrupt Control Register 0000h

CRIC b FF6Ah B5h GPT2 CAPREL Interrupt Control Register 0000h

S0TIC b FF6Ch B6h Serial Channel 0 Transmit Interrupt Control Register 0000h

S0RIC b FF6Eh B7h Serial Channel 0 Receive Interrupt Control Register 0000h

S0EIC b FF70h B8h Serial Channel 0 Error Interrupt Control Register 0000h

SSCTIC b FF72h B9h SSC Transmit Interrupt Control Register 0000h

SSCRIC b FF74h BAh SSC Receive Interrupt Control Register 0000h

SSCEIC b FF76h BBh SSC Error Interrupt Control Register 0000h

CC0IC b FF78h BCh CAPCOM Register 0 Interrupt Control Register 0000h

CC1IC b FF7Ah BDh CAPCOM Register 1 Interrupt Control Register 0000h

CC2IC b FF7Ch BEh CAPCOM Register 2 Interrupt Control Register 0000h

CC3IC b FF7Eh BFh CAPCOM Register 3 Interrupt Control Register 0000h

CC4IC b FF80h C0h CAPCOM Register 4 Interrupt Control Register 0000h

CC5IC b FF82h C1h CAPCOM Register 5 Interrupt Control Register 0000h

Table 44 : Registers ordered by address (continued)

Name Physical
Address

8 bit
Address Description Reset

Value

ST10X167

270/294

CC6IC b FF84h C2h CAPCOM Register 6 Interrupt Control Register 0000h

CC7IC b FF86h C3h CAPCOM Register 7 Interrupt Control Register 0000h

CC8IC b FF88h C4h EX0IN Interrupt Control Register 0000h

CC8IC b FF88h C4h CAPCOM Register 8 Interrupt Control Register 0000h

CC9IC b FF8Ah C5h CAPCOM Register 9 Interrupt Control Register 0000h

CC10IC b FF8Ch C6h CAPCOM Register 10 Interrupt Control Register 0000h

CC11IC b FF8Eh C7h CAPCOM Register 11 Interrupt Control Register 0000h

CC12IC b FF90h C8h CAPCOM Register 12 Interrupt Control Register 0000h

CC13IC b FF92h C9h CAPCOM Register 13 Interrupt Control Register 0000h

CC14IC b FF94h CAh CAPCOM Register 14 Interrupt Control Register 0000h

CC15IC b FF96h CBh CAPCOM Register 15 Interrupt Control Register 0000h

ADCIC b FF98h CCh A/D Converter End of Conversion Interrupt Control Register 0000h

ADEIC b FF9Ah CDh A/D Converter Overrun Error Interrupt Control Reg 0000h

T0IC b FF9Ch CEh CAPCOM Timer 0 Interrupt Control Register 0000h

T1IC b FF9Eh CFh CAPCOM Timer 1 Interrupt Control Register 0000h

ADCON b FFA0h D0h A/D Converter Control Register 0000h

P5 b FFA2h D1h Port5 Register (read only) XXXXh

TFR b FFACh D6h Trap Flag Register 0000h

WDTCON FFAEh D7h Watchdog Timer Control Register 000xh

S0CON b FFB0h D8h Serial Channel 0 Control Register 0000h

SSCCON b FFB2h D9h SSC Control Register 0000h

P2 b FFC0h E0h Port2 Register 0000h

DP2 b FFC2h E1h Port2 Direction Control Register 0000h

P3 b FFC4h E2h Port3 Register 0000h

DP3 b FFC6h E3h Port3 Direction Control Register 0000h

P4 b FFC8h E4h Port4 Register (8 bit) 00h

DP4 b FFCAh E5h Port4 Direction Control Register 00h

P6 b FFCCh E6h Port6 Register (8 bit) 00h

DP6 b FFCEh E7h Port6 Direction Control Register 00h

P7 b FFD0h E8h Port7 Register (8 bit) 00h

DP7 b FFD2h E9h Port7 Direction Control Register 00h

P8 b FFD4h EAh Port8 Register (8 bit) 00h

DP8 b FFD6h EBh Port8 Direction Control Register 00h

Table 44 : Registers ordered by address (continued)

Name Physical
Address

8 bit
Address Description Reset

Value

ST10X167

271/294

20.5 - Special Notes

PEC Pointer Registers

The source and destination pointers for the peripheral event controller are mapped to a special area
within the internal RAM. Pointers that are not occupied by the PEC may therefore be used like normal
RAM. During Power Down mode or any short reset the PEC pointers are preserved.

The PEC and its registers are described in chapter “Interrupt and Trap Functions”.

GPR Access in the ESFR Area

The locations 00’F000h...00’F01Eh within the ESFR area are reserved and provide access to the current
register bank via short register addressing modes. The GPRs are mirrored to the ESFR area which allows
access to the current register bank even after switching register spaces (see example below).

MOV R5, DP3 ;GPR access via SFR area

EXTR #1

MOV R5, ODP3 ;GPR access via ESFR area

Writing Byte to SFRs

All special function registers may be accessed Word wise or Bytewise (some of them even Bit wise).
Reading Byte from Word SFRs is a non-critical operation. However, when writing Byte to Word SFRs the
complementary Byte of the respective SFR is cleared with the write operation.

20.6 - Identification Registers

The ST10F167 does not have identification registers. The ST10C167 and ST10R167 have four
Identification registers, mapped in ESFR space. These registers contain:

– A manufacturer identifier.

– A chip identifier with its revision.

– A internal ROM / Flash and size identifier.

– Programming voltage description.

IDMANUF (F07Eh / 3Fh) ESFR Reset Value: 0400h

IDCHIP (F07Ch / 3Eh) ESFR Reset Value: UUUUh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MANUF 0 0 0 0 0

R

Bit Function

MANUF Manufacturer Identifier

0400h: STMicroelectronics manufacturer (JTAG worldwide normalization).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDCHIP

R

Bit Function

IDCHIP Device Identifier

Refer to datasheet for values.

ST10X167

272/294

IDMEM (F07Ah / 3Dh) ESFR Reset Value: UUUUh

IDPROG (F078h / 3Ch) ESFR Reset Value: UUUUh

Note 1. Not implemented for ST10F167.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEMTYP MEMSIZE

R R

Bit Function

MEMSIZE Internal Memory Size

Refer to datasheet for values. Internal Memory size is 4 x (MEMSIZE) (in K Byte).

MEMTYP Internal Memory Type

Refer to datasheet for values.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PROGVPP PROGVDD

R R

Bit Function

PROGVDD Programming Vdd Voltage. 00h for ST10C167 and ST10R167 1

PROGVPP Programming Vpp Voltage. 00h for ST10C167 and ST10R167 1

ST10X167

273/294

21 - SYSTEM PROGRAMMING

Constructs for modularity, loops, and context
switching have been built into the ST10X167
instruction set. Many commonly used instruction
sequences have been simplified. The following
programming features are available to the
programmer.

Instructions Provided as Subsets of
Instructions
In many cases, instructions found in other
microcontrollers are provided as subsets of more
powerful instructions in the ST10X167.
This provides the same functionality, while
decreasing the hardware requirement and
decreasing decode complexity. These instructions
can be built in macros to aid assembly
programming.
Directly substitutable instructions are known
instructions from other microcontrollers that can
be replaced by the following instructions of the
ST10X167:

Modification of system flags is performed by
using Bit set or Bit clear instructions (BSET,
BCLR). All Bit and Word instructions can access
the PSW register, so no instructions like CLEAR
CARRY or ENABLE INTERRUPTS are required.
External memory data access does not require
special instructions to load data pointers or
explicitly load and store external data.
The ST10X167 provides a Von-Neumann memory
architecture and its on-chip hardware

automatically detects accesses to internal RAM,
GPRs, and SFRs.

Multiplication and Division

Multiplication and division of Words and double
Words is provided through multiple cycle
instructions implementing a Booth algorithm.
Each instruction implicitly uses the 32 Bit register
MD (MDL = lower 16 Bit, MDH = upper 16 Bit).

The MDRIU flag (Multiply or Divide Register In
Use) in register MDC is set whenever either half of
this register is written to or when a multiply/divide
instruction is started. It is cleared whenever the
MDL register is read.

Because an interrupt can be acknowledged
before the contents of register MD are saved, this
flag is required to alert interrupt routines, which
require the use of the multiply/divide hardware, so
they can preserve register MD.

This register, however, only needs to be saved
when an interrupt routine requires use of the MD
register and a previous task has not saved the
current result. This flag is easily tested by the
Jump-on Bit instructions.

Multiplication or division is simply performed by
specifying the correct (signed or unsigned)
version of the multiply or divide instruction. The
result is then stored in register MD.

The overflow flag (V) is set if the result from a
multiply or divide instruction is greater than 16 Bit.
This flag can be used to determine whether both
Word halves must be transferred from register
MD.

The high portion of register MD (MDH) must be
moved into the register file or memory first, in
order to ensure that the MDRIU flag reflects the
correct state.

Substituted
Instruction

ST10X167
Instruction Function

CLR Rn AND Rn, #0h Clear register

CPLB Bit BMOVN Bit, Bit Complement Bit

DEC Rn SUB Rn, #1h Decrement register

INC Rn ADD Rn, #1h Increment register

SWAPB Rn ROR Rn, #8h Swap Byte within
Word

ST10X167

274/294

The following instruction sequence performs an unsigned 16 by 16 Bit multiplication:

The above save sequence and the restore sequence after COPYL are only required if the current routine
could have interrupted a previous routine which contained a MUL or DIV instruction. Register MDC is also
saved because it is possible that a previous routine's Multiply or Divide instruction was interrupted while in
progress. In this case the information about how to restart the instruction is contained in this register.
Register MDC must be cleared to be correctly initialized for a subsequent multiplication or division. The
old MDC contents must be popped from the stack before the RETI instruction is executed.

For a division the user must first move the dividend into the MD register. If a 16/16Bit division is specified,
only the low portion of register MD must be loaded.

The result is also stored into register MD. The low portion (MDL) contains the integer result of the division,
while the high portion (MDH) contains the remainder.

The following instruction sequence performs a 32 by 16Bit division:

...

SAVE: JNB MDRIU, START ;Test if MD was in use.

SCXT MDC, #0010H ;Save and clear control register,
leaving MDRIU set

;(only req for interrupted multiply/
divide instructions)

BSET SAVED ;Indicate the save operation

PUSH MDH ;Save previous MD contents...

PUSH MDL ;...on system stack

START: MULU R1, R2 ;Multiply 16·16 unsigned, Sets MDRIU

JMPR cc_NV, COPYL ;Test for only 16 Bit result

MOV R3, MDH ;Move high portion of MD

COPYL: MOV R4, MDL ;Move low portion of MD, Clears MDRIU

RESTORE: JNB SAVED, DONE ;Test if MD registers were saved

POP MDL ;Restore registers

POP MDH

POP MDC

BCLR SAVED ;Multiplication is completed, program
continues

DONE: ...

MOV MDH, R1 ;Move dividend to MD register. Sets MDRIU

MOV MDL, R2 ;Move low portion to MD

DIV R3 ;Divide 32/16 signed, R3 holds the
divisor

JMPR cc_V, ERROR ;Test for divide overflow

MOV R3, MDH ;Move remainder to R3

MOV R4, MDL ;Move integer result to R4. Clears MDRIU

ST10X167

275/294

Whenever a multiply or divide instruction is
interrupted while in progress, the address of the
interrupted instruction is pushed onto the stack
and the MULIP flag in the PSW of the interrupting
routine is set. When the interrupt routine is exited
with the RETI instruction, this Bit is implicitly
tested before the old PSW is popped from the
stack. If MULIP=’1’ the multiply/divide instruction
is re-read from the location popped from the stack
(return address) and will be completed after the
RETI instruction has been executed.

Note The MULIP flag is part of the context of
the interrupted task . When the interrupt-
ing routine does not return to the inter-
rupted task (for example when a scheduler
switches to another task) the MULIP flag
must be set or cleared according to the con-
text of the task that is switched to.

BCD Calculations

No direct support for BCD calculations is provided
in the ST10X167. BCD calculations are performed
by converting BCD data to binary data, performing
the desired calculations using standard data
types, and converting the result back to BCD data.
Due to the enhanced performance of division
instructions binary data is quickly converted to
BCD data through division by 10d. Conversion
from BCD data to binary data is enhanced by
multiple Bit shift instructions. This provides similar
performance compared to instructions directly
supporting BCD data types, while no additional
hardware is required.

21.1 - Stack Operations

The ST10X167 supports two types of stacks. The
system stack is used implicitly by the controller
and is located in the internal RAM. The user stack
provides stack access to the user in either the
internal or external memory. Both stack types
grow from high memory addresses to low memory
addresses.

Internal System Stack

A system stack is provided to store return vectors,
segment pointers, and processor status for
procedures and interrupt routines. A system
register, SP, points to the top of the stack. This
pointer is decremented when data is pushed onto
the stack, and incremented when data is popped.

The internal system stack can also be used to
temporarily store data or pass it between
subroutines or tasks. Instructions are provided to
push or pop registers on/from the system stack.
However, in most cases the register banking

scheme provides the best performance for
passing data between multiple tasks.

Note The system stack allows the storage of
Words only. Byte must either be converted
to Word or the respective other Byte must
be disregarded. Register SP can only be
loaded with even Byte addresses (The LSB
of SP is always '0').

Detection of stack overflow/underflow is
supported by two registers, STKOV (Stack
Overflow Pointer) and STKUN (Stack Underflow
Pointer). Specific system traps (Stack Overflow
trap, Stack Underflow trap) will be entered
whenever the SP reaches either boundary
specified in these registers.

The contents of the stack pointer are compared to
the contents of the overflow register, whenever the
SP is DECREMENTED either by a CALL, PUSH
or SUB instruction. An overflow trap will be
entered, when the SP value is less than the value
in the stack overflow register.

The contents of the stack pointer are compared to
the contents of the underflow register, whenever
the SP is INCREMENTED either by a RET, POP
or ADD instruction. An underflow trap will be
entered, when the SP value is greater than the
value in the stack underflow register.

Note When a value is MOVED into the stack
pointer, NO check against the overflow/
underflow registers is performed.

In many cases the user will place a software reset
instruction (SRST) into the stack underflow and
overflow trap service routines. This is an easy
approach, which does not require special
programming.

However, this approach assumes that the defined
internal stack is sufficient for the current software
and that exceeding its upper or lower boundary
represents a fatal error.

It is also possible to use the stack underflow and
stack overflow traps to cache portions of a larger
external stack. Only the portion of the system
stack currently being used is placed into the
internal memory, thus allowing a greater portion of
the internal RAM to be used for program, data or
register banking. This approach assumes no error
but requires a set of control routines (see below).

Circular (Virtual) Stack
This basic technique allows pushing until the
overflow boundary of the internal stack is reached.
At this point a portion of the stacked data must be
saved into external memory to create space for
further stack pushes.

ST10X167

276/294

This is called “stack flushing”. When executing a
number of return or pop instructions, the upper
boundary (since the stack empties upward to
higher memory locations) is reached. The entries
that have been previously saved in external
memory must now be restored.

This is called “stack filling”. Because procedure
call instructions do not continue to nest infinitely
and call and return instructions alternate, flushing
and filling normally occurs very infrequently. If this
is not true for a given program environment, this
technique should not be used because of the
overhead of flushing and filling.

The basic mechanism is the transformation of
the addresses of a virtual stack area, controlled
via registers SP, STKOV and STKUN, to a defined
physical stack area within the internal RAM via
hardware. This virtual stack area covers all
possible locations that SP can point to, from
00’F000h through 00’FFFEh. STKOV and STKUN
accept the same 4K Byte address range.

The size of the physical stack area within the
internal RAM that effectively is used for standard
stack operations is defined via Bitfield STKSZ in
register SYSCON (see below).

The virtual stack addresses are transformed to physical stack addresses by concatenating the significant
Bit of the stack pointer register SP (see table) with the complementary most significant Bit of the upper
limit of the physical stack area (00’FBFEh). This transformation is done via hardware (see Figure 151).

The reset values (STKOV=FA00h, STKUN=FC00h, SP=FC00h, STKSZ=000b) map the virtual stack area
directly to the physical stack area and allow using the internal system stack without any changes,
provided that the 256 Word area is not exceeded.

Table 45 : Stack Size Selection

(STKSZ) Stack Size
(Words)

Internal RAM Addresses (Words)
of Physical Stack

Significant Bit of
Stack Pointer SP

0 0 0 b 256 00’FBFEh...00’FA00h (Default after Reset) SP.8...SP.0

0 0 1 b 128 00’FBFEh...00’FB00h SP.7...SP.0

0 1 0 b 64 00’FBFEh...00’FB80h SP.6...SP.0

0 1 1 b 32 00’FBFEh...00’FBC0h SP.5...SP.0

1 0 0 b 512 00’FBFEh...00’F800h (not for 1K Byte IRAM) SP.9...SP.0

1 0 1 b --- Reserved. Do not use this combination. ---

1 1 0 b --- Reserved. Do not use this combination. ---

1 1 1 b 1024 00’FDFEh...00’F600h (Note: No circular stack) SP.11...SP.0

Figure 151 : Physical stack address generation

1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

FBFEh

FB80h

FB80h

FBFEh

FB7Eh

FBFEh

FBFEh

64 Words 256 Words

F800h

FA00h

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

FBFEh

F7FEh

FBFEh

(SP)

(SP)

Phys.A.

Phys.A.

Stack Size

After PUSH After PUSH

ST10X167

277/294

The following example demonstrates the circular stack mechanism which is also an effect of this virtual
stack mapping: First, register R1 is pushed onto the lowest physical stack location according to the
selected maximum stack size. With the following instruction, register R2 will be pushed onto the highest
physical stack location although the SP is decremented by 2 as for the previous push operation.

The effect of the address transformation is that the
physical stack addresses wrap around from the end
of the defined area to its beginning. When flushing
and filling the internal stack, this circular stack
mechanism only requires to move that portion of
stack data which is really to be re-used (the upper
part of the defined stack area) instead of the whole
stack area. Stack data that remain in the lower part
of the internal stack need not be moved by the
distance of the space being flushed or filled, as the
stack pointer automatically wraps around to the
beginning of the freed part of the stack area.
Note This circular stack technique is applicable

for stack sizes of 32 to 512 Words (STKSZ
= ‘000b’ to ‘100b’), it does not work with
option STKSZ = ‘111b’, which uses the
complete internal RAM for system stack.
In the latter case the address transforma-
tion mechanism is deactivated.

When a boundary is reached, the stack underflow
or overflow trap is entered, where the user moves
a predetermined portion of the internal stack to or
from the external stack. The amount of data
transferred is determined by the average stack
space required by routines and the frequency of
calls, traps, interrupts and returns. In most cases
this will be approximately one quarter to one tenth
the size of the internal stack. Once the transfer is
complete, the boundary pointers are updated to
reflect the newly allocated space on the internal
stack. Thus, the user is free to write code without
concern for the internal stack limits. Only the
execution time required by the trap routines
affects user programs.
The following procedure initializes the controller
for usage of the circular stack mechanism:
– Specify the size of the physical system stack

area within the internal RAM (Bitfield STKSZ in
register SYSCON).

– Define two pointers, which specify the upper and
lower boundary of the external stack. These
values are then tested in the stack underflow
and overflow trap routines when moving data.

– Set the stack overflow pointer (STKOV) to the
limit of the defined internal stack area plus six
Words (for the reserved space to store two
interrupt entries).

The internal stack will now fill until the overflow
pointer is reached. After entry into the overflow
trap procedure, the top of the stack will be copied
to the external memory. The internal pointers will
then be modified to reflect the newly allocated
space. After exiting from the trap procedure, the
internal stack will wrap around to the top of the
internal stack, and continue to grow until the new
value of the stack overflow pointer is reached.

When the underflow pointer is reached while the
stack is emptied the bottom of stack is reloaded
from the external memory and the internal
pointers are adjusted accordingly.

Linear Stack

The ST10X167 also offers a linear stack option
(STKSZ = ‘111b’), where the system stack may
use the complete internal RAM area. This
provides a large system stack without requiring
procedures to handle data transfers for a circular
stack. However, this method also leaves less RAM
space for variables or code. The RAM area that
may effectively be consumed by the system stack
is defined via the STKUN and STKOV pointers.
The underflow and overflow traps in this case
serve for fatal error detection only. For the linear
stack option all modifiable Bit of register SP are
used to access the physical stack. Although the
stack pointer may cover addresses from 00’F000h
up to 00’FFFEh the (physical) system stack must
be located within the internal RAM and therefore
may only use the address range 00’F600h to
00’FDFEh. It is the user’s responsibility to restrict
the system stack to the internal RAM range.

Note Avoid stack accesses below the IRAM area
(ESFR space and reserved area) and within
address range 00’FE00h and 00’FFFEh
(SFR space).
Otherwise unpredictable results will occur.

MOV SP, #0F802h ; Set SP before last entry of physical stack of 256 Words

... ; (SP) = F802h: Physical stack address = FA02h

PUSH R1 ; (SP) = F800h: Physical stack address = FA00h

PUSH R2 ; (SP) = F7FEh: Physical stack address = FBFEh

ST10X167

278/294

User Stacks
User stacks provide the ability to create task
specific data stacks and to off-load data from the
system stack. The user may push both Byte and
Words onto a user stack, but is responsible for
using the appropriate instructions when popping
data from the specific user stack. No hardware
detection of overflow or underflow of a user stack
is provided. The following addressing modes
allow implementation of user stacks:
[– Rw], Rb or [– Rw], Rw : Pre-decrement Indirect
Addressing. Used to push one Byte or Word onto
a user stack. This mode is only available for MOV
instructions and can specify any GPR as the user
stack pointer.
Rb, [Rw+] or Rw, [Rw+] : Post-increment Index
Register Indirect Addressing. Used to pop one
Byte or Word from user stack. This mode is
available to most instructions with some
restrictions.
For MOV instructions, any word GPR can be used
as user stack pointer.
For arithmetic, logical and compare instructions,
only GPRs R0-R3 can be used.
Rb, [Rw+] or Rw, [Rw+] : Post-increment Indirect
Addressing. Used to pop one Byte or Word from a
user stack. This mode is only available for MOV
instructions and can specify any GPR as the user
stack pointer.

21.2 - Register Banking
Register banking provides the user with an
extremely fast method to switch user context. A
single instruction cycle instruction saves the old
bank and enters a new register bank. Each register
bank may assign up to 16 registers. Each register
bank should be allocated during coding based on
the needs of each task. Once the internal memory
has been partitioned into a register bank space,
internal stack space and a global internal memory
area, each bank pointer is then assigned. Thus,
upon entry into a new task, the appropriate bank
pointer is used as the operand for the SCXT
(switch context) instruction. Upon exit from a task a
simple POP instruction to the context pointer (CP)
restores the previous task's register bank.

21.3 - Procedure Call Entry and Exit
To support modular programming a procedure
mechanism is provided to allow coding of
frequently used portions of code into subroutines.
The CALL and RET instructions store and restore
the value of the instruction pointer (IP) on the
system stack before and after a subroutine is
executed.

Procedures may be called conditionally with
instructions CALLA or CALLI, or be called
unconditionally using instructions CALLR or
CALLS.

Note Any data pushed onto the system stack dur-
ing execution of the subroutine must be
popped before the RET instruction is exe-
cuted.

Passing Parameters on the System Stack

Parameters may be passed via the system stack
through PUSH instructions before the subroutine
is called, and POP instructions during execution of
the subroutine. Base plus offset indirect
addressing also permits access to parameters
without popping these parameters from the stack
during execution of the subroutine. Indirect
addressing provides a mechanism of accessing
data referenced by data pointers, which are
passed to the subroutine. In addition, two
instructions have been implemented to allow one
parameter to be passed on the system stack
without additional software overhead.

The PCALL (push and call) instruction first pushes
the 'reg' operand and the IP contents onto the
system stack and then passes control to the
subroutine specified by the 'caddr' operand.

When exiting from the subroutine, the RETP
(return and pop) instruction first pops the IP and
then the 'reg' operand from the system stack and
returns to the calling program.

Cross Segment Subroutine Calls

Calls to subroutines in different segments require
the use of the CALLS (call inter-segment
subroutine) instruction. This instruction preserves
both the CSP (code segment pointer) and IP on
the system stack.

Upon return from the subroutine, a RETS (return
from inter-segment subroutine) instruction must
be used to restore both the CSP and IP. This
ensures that the next instruction after the CALLS
instruction is fetched from the correct segment.

Note It is possible to use CALLS within the same
segment, but still two Words of the stack are
used to store both the IP and CSP.

Providing Local Registers for Subroutines

For subroutines which require local storage, the
following methods are provided:

Alternate bank of registers: Upon entry into a
subroutine, it is possible to specify a new set of
local registers by executing the SCXT (switch
context) instruction. This mechanism does not
provide a method to recursively call a subroutine.

ST10X167

279/294

Saving and restoring of registers: To provide
local registers, the contents of the registers which
are required for use by the subroutine can be
pushed onto the stack and the previous values be
popped before returning to the calling routine.
This is the most common technique used today
and it does provide a mechanism to support
recursive procedures. This method, however,
requires two instruction cycles per register stored
on the system stack (one cycle to PUSH the
register, and one to POP the register).
Use of the system stack for local registers: It is
possible to use the SP and CP to set up local
subroutine register frames. This enables
subroutines to dynamically allocate local variables
as needed within two instruction cycles.
A local frame is allocated by simply subtracting the
number of required local registers from the SP, and
then moving the value of the new SP to the CP.
This operation is supported through the SCXT
(switch context) instruction with the addressing
mode 'reg, mem'. Using this instruction saves the
old contents of the CP on the system stack and
moves the value of the SP into CP (see example
below). Each local register is then accessed as if it

was a normal register. Upon exit from the
subroutine, first the old CP must be restored by
popping it from the stack and then the number of
used local registers must be added to the SP to
restore the allocated local space back to the
system stack. The system stack is growing
downwards, while the register bank is growing
upwards.

The software to provide the local register bank for the example above Figure 152 is very compact:
After entering the subroutine:

Before exiting the subroutine:

Figure 152 : Local registers

Old
Stack
Area

Newly
Allocated
Register

Bank

R4
R3
R2
R1
R0

Old CP Contents

Old SP

New SP
New CP

New
Stack
Area

SUB SP, #10D ; Free 5 Words in the current system stack

SCXT CP, SP ; Set the new register bank pointer

POP CP ; Restore the old register bank

ADD SP, #10D ; Release the 5 Word of the current system stack

ST10X167

280/294

21.4 - Table Searching

A number of features have been included to decrease the execution time required to search tables. First,
branch delays are eliminated by the branch target cache after the first iteration of the loop. Second, in
non-sequentially searched tables, the enhanced performance of the ALU allows more complicated hash
algorithms to be processed to obtain better table distribution. For sequentially searched tables, the
auto-increment indirect addressing mode and the E (end of table) flag stored in the PSW decrease the
number of overhead instructions executed in the loop.

The two examples below illustrate searching ordered tables and non-ordered tables, respectively:

Note The last entry in the table must be equal to the lowest signed integer (8000h).

21.5 - Peripheral Control and Interface

All communication between peripherals and the CPU is performed either by PEC transfers to and from
internal memory, or by explicitly addressing the SFRs associated with the specific peripherals. After
resetting the ST10X167 all peripherals (except the watchdog timer) are disabled and initialized to default
values. A desired configuration of a specific peripheral is programmed using MOV instructions of either
constants or memory values to specific SFRs. Specific control flags may also be altered via Bit
instructions.

Once in operation, the peripheral operates autonomously until an end condition is reached at which time
it requests a PEC transfer or requests CPU servicing through an interrupt routine. Information may also
be polled from peripherals through read accesses to SFRs or Bit operations including branch tests on
specific control Bit in SFRs. To ensure proper allocation of peripherals among multiple tasks, a portion of
the internal memory has been made Bit addressable to allow user semaphores. Instructions have also
been provided to lock out tasks via software by setting or clearing user specific Bit and conditionally
branching based on these specific Bit.

It is recommended that Bit fields in control SFRs are updated using the BFLDH and BFLDL instructions or
a MOV instruction to avoid undesired intermediate modes of operation which can occur, when BCLR/
BSET or AND/OR instruction sequences are used.

21.6 - Floating Point Support

All floating point operations are performed using software. Standard multiple precision instructions are
used to perform calculations on data types that exceed the size of the ALU. Multiple Bit rotate and logic
instructions allow easy masking and extracting of portions of floating point numbers.

To decrease the time required to perform floating point operations, two hardware features have been
implemented in the CPU core. First, the PRIOR instruction aids in normalizing floating point numbers by
indicating the position of the first set Bit in a GPR. This result can the be used to rotate the floating point
result accordingly.

The second feature aids in properly rounding the result of normalized floating point numbers through the
overflow (V) flag in the PSW. This flag is set when a one is shifted out of the carry Bit during shift right
operations. The overflow flag and the carry flag are then used to round the floating point result based on the
desired rounding algorithm.

MOV R0, #BASE ;Move table base into R0

LOOP: CMP R1, [R0+] ;Compare target to table entry

JMPR cc_SGT, LOOP ;Test whether target has not been found

The last entry in the table must be greater than the largest possible target.

MOV R0, #BASE ;Move table base into R0

LOOP: CMP R1, [R0+] ;Compare target to table entry

JMPR cc_NET, LOOP ;Test whether target is not found AND the
end of table...

;...has not been reached.

ST10X167

281/294

21.7 - Trap / Interrupt Entry and Exit
Interrupt routines are entered when a requesting interrupt has a priority higher than the current CPU
priority level. Traps are entered regardless of the current CPU priority. When either a trap or interrupt
routine is entered, the state of the machine is preserved on the system stack and a branch to the
appropriate trap/interrupt vector is made.

All trap and interrupt routines require the use of the RETI (return from interrupt) instruction to exit from the
called routine.

This instruction restores the system state from the system stack and then branches back to the location
where the trap or interrupt occurred.

21.8 - Inseparable Instruction Sequences
The instructions of the ST10X167 are very efficient (most instructions execute in one instruction cycle)
and even the multiplication and division are interruptible in order to minimize the response latency to
interrupt requests (internal and external). In many microcontroller applications this is vital.

Some special occasions, however, require certain code sequences (like semaphore handling) to be
non-interruptible to function properly.

This can be provided by inhibiting interrupts during the respective code sequence by disabling and
enabling them before and after the sequence.

The necessary overhead may be reduced by means of the ATOMIC instruction which allows locking 1...4
instructions to an inseparable code sequence, during which the interrupt system (standard interrupts and
PEC requests) and Class A Traps (NMI, stack overflow/underflow) are disabled. A Class B Trap (illegal
opcode, illegal bus access, etc.), however, will interrupt the atomic sequence, since it indicates a severe
hardware problem.

The interrupt inhibit caused by an ATOMIC instruction gets active immediately, and no other instruction
will enter the pipeline except the one that follows the ATOMIC instruction, and no interrupt request will be
serviced in between.

All instructions requiring multiple cycles or hold states are regarded as one instruction in this sense
(example MUL is one instruction). Any instruction type can be used within an inseparable code sequence.

21.9 - Overriding the DPP Addressing Mechanism
The standard mechanism to access data locations uses one of the four data page pointers (DPPx), which
selects a 16K Byte data page, and a 14 Bit offset within this data page. The four DPPs allow immediate
access to up to 64K Byte of data. In applications with big data arrays, especially in HLL applications using
large memory models, this may require frequent reloading of the DPPs, even for single accesses.

The EXTP (extend page) instruction allows switching to an arbitrary data page for 1...4 instructions
without having to change the current DPPs.

EXAMPLE: ATOMIC #3 ; The following 3 instructions are locked

; (No NOP required)

MOV R0, #1234H ; Instruction 1 (no other instr. enters the
pipeline!)

MOV R1, #5678H ; Instruction 2

MUL R0, R1 ; Instruction 3: MUL regarded as one
instruction

MOV R2, MDL ; This instruction is out of the scope of
the ATOMIC instruction sequence

EXAMPLE: EXTP R15, #1 ; The override page number is stored in R15

MOV R0, [R14] ; The (14 Bit) page offset is stored in R14

MOV R1, [R13] ; This instruction uses the standard DPP
scheme!

ST10X167

282/294

The EXTS (extend segment) instruction allows switching to a 64K Byte segment oriented data access
scheme for 1...4 instructions without having to change the current DPPs. In this case all 16 Bit of the
operand address are used as segment offset, with the segment taken from the EXTS instruction. This
greatly simplifies address calculation with continuous data like huge arrays in “C”.

Note Instructions EXTP and EXTS inhibit interrupts the same way as ATOMIC.

Short Addressing in the Extended SFR (ESFR) Space

The short addressing modes of the ST10X167 (REG or BitOFF) implicitly access the SFR space. The
additional ESFR space would have to be accessed via long addressing modes (MEM or [Rw]).

The EXTR (extend register) instruction redirects accesses in short addressing modes to the ESFR space
for 1...4 instructions, so the additional registers can be accessed this way, too.

The EXTPR and EXTSR instructions combine the DPP override mechanism with the redirection to the
ESFR space using a single instruction.

Note Instructions EXTR, EXTPR and EXTSR inhibit interrupts the same way as ATOMIC.
The switching to the ESFR area and data page overriding is checked by the development tools or
handled automatically.

Nested Locked Sequences

Each of the described extension instruction and the ATOMIC instruction starts an internal “extension
counter” counting the effected instructions. When another extension or ATOMIC instruction is contained in
the current locked sequence this counter is restarted with the value of the new instruction. This allows the
construction of locked sequences longer than 4 instructions.

Note Interrupt latencies may be increased when using locked code sequences.
PEC requests are not serviced during idle mode, if the IDLE instruction is part of a locked
sequence.

21.10 - Handling the Internal ROM

The mask ROM or Flash Memory versions of the ST10X167 may provide and control a 32K Byte internal
ROM area that may store code as well as data. Access to this internal ROM area is controlled during the
reset configuration and via software. The ROM area may be mapped to segment 0, to segment 1 or may be
disabled at all.

Note The internal ROM area always occupies an address area of 32KByte, even if the implemented
mask ROM or Flash memory is smaller than that (e.g. 8KByte).
Of course the total implemented memory may exceed 32KBytes.

ROM Configuration During Reset

The control input pin EA (External Access) enables the user to define the address area from which the
first instructions after reset are fetched. When EA is low (‘0’) during reset, the internal ROM area is
disabled and the first instructions are fetched from external memory.

When EA is high (‘1’) during reset, the internal ROM area is globally enabled and the first instructions are
fetched from the internal ROM.

Note DO NOT select internal ROM access after reset on ROMless devices.

EXAMPLE: EXTS #15, #1 ; The override seg. is #15
(0F’0000h...0F’FFFFh)

MOV R0, [R14] ; The (16 Bit) segment offset is stored in
R14

MOV R1, [R13] ; This instruction uses the standard DPP
scheme!

ST10X167

283/294

Mapping the Internal ROM Area
After reset the internal ROM area is mapped into
segment 0, the “system segment”
(00’0000h...00’7FFFh) as a default. This is
necessary to allow the first instructions to be
fetched from locations 00’0000h. The ROM area
may be mapped to segment 1
(01’0000h...01’7FFFh) by setting Bit ROMS1 in
register SYSCON.
The internal ROM may now be accessed through
the lower half of segment 1, while accesses to
segment 0 will now be made to external memory.
This adds flexibility to the system software.
The interrupt/trap vector table, which uses
locations 00’0000h through 00’01FFh, is now part
of the external memory and may therefore be
modified, so. the system software may now
change interrupt/trap handlers according to the
current condition of the system.
The internal ROM can still be used for fixed
software routines like I/O drivers, math libraries,
application specific invariant routines, tables, etc.
This combines the advantage of an integrated
non-volatile memory with the advantage of a
flexible, adaptable software system.

Enabling and Disabling the Internal ROM Area
After Reset
If the internal ROM does not contain an
appropriate start-up code, the system may be
booted from external memory, while the internal
ROM is enabled afterwards to provide access to
library routines, tables, etc.
If the internal ROM only contains the start-up
code and/or test software, the system may be
booted from internal ROM, which may then be
disabled, after the software has switched to
executing from external memory, in order to free
the address space occupied by the internal ROM
area, which is now unnecessary.

21.11 - Pits, Traps and Mines
Although handling the internal ROM or Flash
provides powerful means to enhance the overall
performance and flexibility of a system, extreme

care must be taken in order to avoid a system
crash. Instruction memory is the most crucial
resource for the ST10X167 and it must be made
sure that it never runs out of it.
The following precautions help to take advantage
of the methods mentioned above without
jeopardizing system security.

Internal ROM access after reset: When the first
instructions are to be fetched from internal ROM
(EA=‘1’), the memory must contain a valid reset
vector and valid code at its destination.

Mapping the internal ROM to segment 1: Due
to instruction pipelining, any new ROM mapping
will at the earliest become valid for the second
instruction after the instruction which has changed
the ROM mapping. To enable accesses to the
ROM after mapping a branch to the newly
selected ROM area (JMPS) and reloading of all
data page pointers is required.
This also applies to re-mapping the internal ROM
to segment 0.

Enabling the internal ROM after reset: When
enabling the internal ROM after having booted the
system from external memory, note that the
ST10X167 will then access the internal ROM
using the current segment offset, rather than
accessing external memory.

Disabling the internal ROM after reset: When
disabling the internal ROM after having booted the
system from there, note that the ST10X167 will
not access external memory before a jump to
segment 0 (in this case) is executed.

General Rules
When mapping the ROM no instruction or data
accesses should be made to the internal ROM,
otherwise unpredictable results may occur.

To avoid these problems, the instructions that
configure the internal ROM should be executed
from external memory or from the internal RAM.

Whenever the internal ROM is disabled, enabled
or re-mapped the DPPs must be explicitly
(re)loaded to enable correct data accesses to the
internal ROM and/or external memory.

ST10X167

284/294

22 - KEY WORD INDEX

Symbols

(..249
A

Acronyms ...12
Adapt Mode250
ADC .. 24, 211
ADCON ..212
Address

Arbitration122
Area Definition121
Boundaries33
Segment 110, 251

ADDRSELx 121, 122
ALE length112
ALU ..44
Analog/Digital Converter 24, 211
Arbitration

Address122
External Bus124

ASC0

Interrupts163
Auto Scan conversion214

B

Baudrate

ASC0162
Bootstrap Loader182
CAN ..226
SSC ..174

BHE .. 88, 110
Bit

addressable memory29
Handling40
protected40
timing register227

Bootstrap Loader 179, 250
Boundaries ..33
Burst mode (PWM)205
Bus

Arbitration124
CAN22, 220, 240
Demultiplexed107
Idle State123
Mode Configuration 106, 250
Multiplexed106

BUSCONx119

C
CAN Interface 22, 220
CAPCOM ...23

interrupt198
timer186
unit ...183

Capture mode191
Capture Mode (GPT) 141, 151
Capture/Compare unit183
CCM0, CCM1, CCM2, CCM3190
CCM4, CCM5, CCM6, CCM7190
Center aligned PWM204
Chip Select 110, 251
Clock Generator251
Compare modes192
Concatenation of Timers 139, 151
Configuration

Address 110, 251
Bus Mode 106, 250
Chip Select 110, 251
PLL ..251
Reset246
Write Control250

Context Switching66
Control / Status Register223
Conversion

analog/digital211
Auto Scan214
timing control218

Count direction 131, 146
Counter132, 138, 148, 150, 207
CP ...49
CPU ...13
CRIC ...154
CSP ..46

D
Data Page 48, 281

boundaries33
Delay

Read/Write114
Demultiplexed Bus107
Direction

count 131, 146
Disable

Interrupt64

ST10X167

285/294

Segmentation43
Division 52, 273
Double-Register compare196
DP0L, DP0H78
DP1L, DP1H 80, 249
DP2 ..82
DP3 ..85
DP4 ..89
DP6 ..92
DP7 ..96
DP8 ..99
DPP .. 48, 281

E

Edge aligned PWM202
Emulation Mode250
Enable

Interrupt64
Segmentation43

Error Detection

CAN ..221
SSC ..174

EXICON ...71
External

Bus ...18
Bus Characteristics 111–??
Bus Idle State123
Bus Modes 106–110
interrupts69

F

Fast external interrupts70
Flags ??– ..45
Full Duplex170

G

Global Mask Short227
GPR .. 30, 257
GPT ..23
GPT1 ..128
GPT2 ..143

H

Half Duplex172
Hardware

Reset242
Traps 17, 71

Hold State125

I
Idle

State (Bus)123
Idle Mode252
Incremental Interface Mode 134, 151
Input threshold75
Instruction273

Branch36
Pipeline35
Timing41
unseparable281

Interface

CAN 22, 220
serial sync.165
The External Bus Interface104

Internal RAM28
Interrupt

CAPCOM198
Enable/Disable64
external69
fast external70
Handling CAN225
Priority60
Processing 55, 58
Register225
Response Times66
Sources56
System 16, 55
Vectors56

IP ..46
L

Lower Arbitration Reg230
Lower Global Mask Long228
Lower Mask of Last Message228

M
Master mode124
MDC ...53
MDH ...52
MDL ...53
Memory ...17

bit-addressable29
External33
RAM/SFR28
ROM 27, 282
XRAM32

Memory Cycle Time113
Message Configuration Register231

ST10X167

286/294

Message Control Register229
Multiplexed Bus106
Multiplication 52, 273

N

NMI .. 55, 73
O

ODP2 ..82
ODP3 ..85
ODP6 ..93
ODP7 ..96
ODP8 ..99
ONES ..54
Open Drain Mode74

P

P0L,P0H ...77
P1L, P1H ..249
P2 ..82
P3 ..85
P4 ..88
P5 ..90
P6 ..92
P7 ..95
P8 ..99
PEC 16, 17, 31, 62

Response Times67
PECCx ...62
Peripheral ...21
PICON ...76
Pins ..102

in Idle and Power Down mode256
Pipeline ..35

Effects37
PLL ...251
Port ..22

input threshold75
Power Down Mode253
Protected

Bits ...40
PSW ... 43, 61
Pulse Width Modulation24
PWM ...24
PWM Module200
PWMCON0208
PWMCON1209

R

RAM

extension32
internal28

Read/Write Delay114
READY ..115
Register257, 259, 265
Reset ..242

Configuration246
Output245
Values246

ROM ...282
RP0H ..249

S

S0BG ..162
S0CON ..157
S0RBUF 161, 162
S0RIC ...163
S0TBIC, S0EIC164
S0TBUF 160, 162
S0TIC ...163
Segment

Address 110, 251
boundaries33

Segmentation

Enable/Disable43
Serial Interface22

Asynchronous158
CAN 22, 220
Synchronous 161, 165

SFR31, 259, 265
Single Chip Mode104
Single shot mode (PWM)206
Slave mode124
Software

Reset242
Traps ..71

Source

Interrupt56
SP ...51
SSC ..165

Baudrate generation174
Error Detection174
Full Duplex170
Half Duplex172

SSCBR ..174

ST10X167

287/294

SSCCON ..167
SSCEIC ...176
SSCRB, SSCTB172
SSCRIC ...176
SSCTIC ..176
Stack29, 51, 275
Startup Configuration246
STKOV ..51
STKUN ..52
Subroutine278
Synchronous Serial Interface165
SYSCON ..42
System Reset

Startup Configurations247
T

T0 ..186
T01CON ...186
T1 ..186
T2CON ..137
T2IC ..142
T2IC, T3IC, T4IC142
T3CON ..130
T3IC ..142
T4CON ..137
T4IC ..142
T5CON ..149
T5IC ..154
T6CON ..145
T6IC ..154

T7 ..186
T78CON ..186
T8 ..186
Threshold ...75
Timer23, 128, 143

Auxiliary Timer 137, 149
CAPCOM186
Concatenation 139, 151
Core Timer 130, 145

Traps .. 58, 71
Tri-State Time113

U

Unseparable instructions281
Upper Arbitration Reg230
Upper Global Mask Long227
Upper Mask of Last Message228

W

Waitstate

Memory Cycle113
Tri-State113

Watchdog23, 177, 245
WDTCON177

X

XBUS 18, 127
XRAM on-chip32

Z

ZEROS ..54

ST10X167

288/294

23 - INDEX OF REGISTERS

F167 Reset Value: 0XX0h 42
ADCIC (FF98h / CCh) SFR Reset Value: --00h 219
ADCON (FFA0h / D0h) SFR Reset Value: 0000h 212
ADDAT (FEA0h / 50h) SFR Reset Value: 0000h 213
ADDAT2 (F0A0h / 50h) ESFR Reset Value: 0000h 213
ADDRSEL1 (FE18h / 0Ch) SFR Reset Value: 0000h 120
ADDRSEL2 (FE1Ah / 0Dh) SFR Reset Value: 0000h 120
ADDRSEL3 (FE1Ch / 0Eh) SFR Reset Value: 0000h 121
ADDRSEL4 (FE1Eh / 0Fh) SFR Reset Value: 0000h 121
ADEIC (FF9Ah / CDh) SFR Reset Value: --00h 219
Bit Timing Register (EF04h) XReg Reset Value: UUUUh 227
BUSCON0 (FF0Ch / 86h) SFR Reset Value: 0XX0h 119
BUSCON1 (FF14h / 8Ah) SFR Reset Value: 0000h 119
BUSCON2 (FF16h / 8Bh) SFR Reset Value: 0000h 119
BUSCON3 (FF18h / 8Ch) SFR Reset Value: 0000h 119
BUSCON4 (FF1Ah / 8Dh) SFR Reset Value: 0000h 119
CCM0 (FF52h / A9h) SFR Reset Value: 0000h 190
CCM1 (FF54h / AAh) SFR Reset Value: 0000h 190
CCM2 (FF56h / ABh) SFR Reset Value: 0000h 190
CCM3 (FF58h / ACh) SFR Reset Value: 0000h 190
CCM4 (FF22h / 91h) SFR Reset Value: 0000h 190
CCM5 (FF24h / 92h) SFR Reset Value: 0000h 190
CCM6 (FF26h / 93h) SFR Reset Value: 0000h 190
CCM7 (FF28h / 94h) SFR Reset Value: 0000h 190
CCxIC (see Table 32) SFR/ESF Reset Value: --00h 198
Control / Status Register (EF00h) XReg Reset Value: XX01h 223
CP (FE10h / 08h) SFR Reset Value: FC00h 49
CRIC (FF6Ah / B5h) SFR Reset Value: --00h 154
CSP (FE08h / 04h) SFR Reset Value: 0000h 46
DP0H (F102h / 81h) ESFR Reset Value: - - 00h 78
DP0L (F100h / 80h) ESFR Reset Value: - - 00h 78
DP1H (F106h / 83h) ESFR Reset Value: - - 00h 80
DP1L (F104h / 82h) ESFR Reset Value: - - 00h 80
DP2 (FFC2h / E1h) SFR Reset Value: 0000h 82
DP3 (FFC6h / E3h) SFR Reset Value: 0000h 85
DP4 (FFCAh / E5h) SFR Reset Value: - - 00h 89
DP6 (FFCEh / E7h) SFR Reset Value: - - 00h 92
DP7 (FFD2h / E9h) SFR Reset Value: - - 00h 96
DP8 (FFD6h / EBh) SFR Reset Value: - - 00h 99
DPP0 (FE00h / 00h) SFR Reset Value: 0000h 48
DPP1 (FE02h / 01h) SFR Reset Value: 0001h 48
DPP2 (FE04h / 02h) SFR Reset Value: 0002h 48
DPP3 (FE06h / 03h) SFR Reset Value: 0003h 48
EXICON (F1C0h / E0h) ESFR Reset Value: 0000h 70
EXICON (F1C0h / E0h) ESFR Reset Value: 0000h 254
Global Mask Short (EF06h) XReg Reset Value: UFUUh 227
IDCHIP (F07Ch / 3Eh) ESFR Reset Value: UUUUh 271
IDMANUF (F07Eh / 3Fh) ESFR Reset Value: 0400h 271
IDMEM (F07Ah / 3Dh) ESFR Reset Value: UUUUh 272

ST10X167

289/294

IDPROG (F078h / 3Ch) ESFR Reset Value: UUUUh 272
Interrupt Register (EF02h) XReg Reset Value: --XXh 225
IP (---- / --) --- Reset Value: 0000h 46
Lower Arbitration Reg (EFn4h) XReg Reset Value: UUUUh 230
Lower Global Mask Long (EF0Ah) XReg Reset Value: UUUUh 228
Lower Mask of Last Message (EF0Eh) XReg Reset Value: UUUUh 228
MDC (FF0Eh / 87h) SFR Reset Value: 0000h 53
MDH (FE0Ch / 06h) SFR Reset Value: 0000h 52
MDL (FE0Eh / 07h) SFR Reset Value: 0000h 53
Message Configuration Register (EFn6h) XReg Reset Value:--UUh 231
Message Control Register (EFn0h) XReg Reset Value: UUUUh 229
ODP2 (F1C2h / E1h) ESFR Reset Value: 0000h 82
ODP3 (F1C6h / E3h) ESFR Reset Value: 0000h 85
ODP6 (F1CEh / E7h) ESFR Reset Value: - - 00h 93
ODP7 (F1D2h / E9h) ESFR Reset Value: - - 00h 96
ODP8 (F1D6h / EBh) ESFR Reset Value: - - 00h 99
ONES (FF1Eh / 8Fh) SFR Reset Value: FFFFh 54
P0H (FF02h / 81h) SFR Reset Value: - - 00h 77
P0L (FF00h / 80h) SFR Reset Value: - - 00h 77
P1H (FF06h / 83h) SFR Reset Value: - - 00h 80
P1L (FF04h / 82h) SFR Reset Value: - - 00h 80
P2 (FFC0h / E0h) SFR Reset Value: 0000h 82
P3 (FFC4h / E2h) SFR Reset Value: 0000h 85
P4 (FFC8h / E4h) SFR Reset Value: - - 00h 88
P5 (FFA2h / D1h) SFR Reset Value: XXXXh 90
P6 (FFCCh / E6h) SFR Reset Value: - - 00h 92
P7 (FFD0h / E8h) SFR Reset Value: - - 00h 95
P8 (FFD4h / EAh) SFR Reset Value: - - 00h 99
PECCx (FECyh / 6zh, see Table 8) SFR Reset Value: 0000h 62
PICON (F1C4h / E2h) ESFR Reset Value: - - 00h 76
PSW (FF10h / 88h) SFR Reset Value: 0000h 61
PSW (FF10h / 88h) SFR Reset Value: 0000h 44
PWMCON0 (FF30h / 98h) SFR Reset Value: 0000h 208
PWMCON1 (FF32h / 99h) SFR Reset Value: 0000h 209
PWMIC (F17Eh / BFh) ESFR Reset Value: --00h 209
REG_NAME (A16h / A8h) SFR/ESFR/XReg Reset Value: ****h 257
REG_NAME (A16h / A8h) SFR/ESFR/XReg Reset Value: --**h 257
RP0H (F108h / 84h) SFR Reset Value: - - XXh 122
RP0H (F108h / 84h) SFR Reset Value: --XXh 249
S0CON (FFB0h / D8h) SFR Reset Value: 0000h 157
S0EIC (FF70h / B8) SFR Reset Value: - - 00h 164
S0RIC (FF6Eh / B7h) SFR Reset Value: - - 00h 163
S0TBIC (F19Ch / CEh) ESFR Reset Value: - - 00h 164
S0TIC (FF6Ch / B6h) SFR Reset Value: - - 00h 163
SP (FE12h / 09h) SFR Reset Value: FC00h 51
SSCCON (FFB2h / D9h) SFR Reset Value: 0000h 168
SSCCON (FFB2h / D9h) SFR Reset Value: 0000h 169
SSCEIC (FF76h / BBh) SFR Reset Value: --00h 176
SSCRIC (FF74h / BAh) SFR Reset Value: --00h 176
SSCTIC (FF72h / B9h) SFR Reset Value: --00h 176

ST10X167

290/294

STKOV (FE14h / 0Ah) SFR Reset Value: FA00h 51
STKUN (FE16h / 0Bh) SFR Reset Value: FC00h 52
SYSCON (FF12h / 89h) SFR C/R167 Reset Value: 0X00h 42
SYSCON (FF12h / 89h) SFR Reset Value: 0X00h 1 118
SYSCON (FF12h / 89h) SFR Reset Value: 0X00h 1 253
T01CON (FF50h / A8h) SFR Reset Value: 0000h 187
T0IC (FF9Ch / CEh) SFR Reset Value: --00h 189
T1IC (FF9Eh / CFh) SFR Reset Value: --00h 189
T2CON (FF40h / A0h) SFR Reset Value: 0000h 137
T2IC (FF60h / B0h) SFR Reset Value: - - 00h 142
T3CON (FF42h / A1h) SFR Reset Value: 0000h 130
T3IC (FF62h / B1h) SFR Reset Value: - - 00h 142
T4CON (FF44h / A2h) SFR Reset Value: 0000h 137
T4IC (FF64h / B2h) SFR Reset Value: - - 00h 142
T5CON (FF46h / A3h) SFR Reset Value: 0000h 149
T5IC (FF66h / B3h) SFR Reset Value: --00h 154
T6CON (FF48h / A4h) SFR Reset Value: 0000h 145
T6IC (FF68h / B4h) SFR Reset Value: --00h 154
T78CON (FF20h / 90h) SFR Reset Value: 0000h 187
T7IC (F17Ah / BEh) ESFR Reset Value: --00h 189
T8IC (F17Ch / BFh) ESFR Reset Value: --00h 189
TFR (FFACh / D6h) SFR Reset Value: 0000h 72
Upper Arbitration Reg (EFn2h) XReg Reset Value: UUUUh 230
Upper Global Mask Long (EF08h) XReg Reset Value: UUUUh 227
Upper Mask of Last Message (EF0Ch) XReg Reset Value: UUUUh 228
WDTCON (FFAEh / D7h) SFR Reset Value: 000Xh 178
xxIC (yyyyh / zzh) SFR Area Reset Value: 00h 59
ZEROS (FF1Ch / 8Eh) SFR Reset Value: 0000h 54

ST10X167

291/294

24 - REVISION HISTORY

24.1 - Revision of the 28th of August 2000

This is revision 1.1 of this document, released on 28th of August 2000. The differences between previous
revisions and revision 1.1 are:
– page 6, Table of content, chap18 (Previous revision 18.1 to 18.5 / New revision 18.1 to 18.6) reflects

the modifications of the text
– page 10, Abbreviations IRAM on-chip Internal RAM added
– page 11, figure 1,XTAL1-XTAL2, RxD-TxD added
– page 12, figure 2 up date block diagram with XRAM
– page 17, figure 3 updated with P0H.7, POH.6, P0H.5 pins, table 1, addition of footnote
– page 18, chapter 2.4.1: Vdd (all Vcc changed to Vdd)
– page 24, chapter 3, figure 4 updated
– page 26, figure 6 updated
– page 30, figure 8 RAM/SFR area changed from 00’F000h to 00’F600h
– page 40, chapter 4.4.1 Syscon bit OWDDIS PLL base frequency: 2 to 10 MHz, WRCFG bit text updated
– page 47, figure 15 updated, CP register text "Do not set CP below IRAM start address 00’F600h

(2K Byte)
– page 50, chapter 4.4.12, MDC register, bit MS added
– page 55, chapter 5.1., order of comments and note of table6 are inverted
– page 82, figure 31, updated
– page 83, chapter 6.5 text ODP2 changed to ODP3
– page 84, figure 32 pin WRH changed to WRH,
– page 91, chapter 6.8.1, figure 39 updated
– page 96, figure 44, read buffer, Read P2.y changed to Read P7.y
– page 120, figure 59 updated
– page 121, RPOH, Bit WRCFG changed to WRC and "0" is normal state is replaced to "1" and vice versa
– page 134, correction of figure 71
– page 148, correction of figure 82
– page 150, figure 84 addition of T3IN and T3EUD input pins
– page 154, figure 87 bit 11 of S0CON register removed
– page 164, figure 93 bit 7 and 13 of SSCCON register removed
– page 175, figure 99 bits 2 to 7 of WDTCON removed
– page 178, figure 102 RP0L.4 changed to 8 KΩ maximum
– page 183, figure 106 x = 0, 7and y = 1, 8 added
– page 188, CC16..CC32 changed to CC16..CC31
– page 209, figure 123 data bit 10 and 11 removed from ADDAT and ADDAT2 and bit 6 removed from ADCON
– page 222, CAN control status register name of bit test changed to TST
– page 224, table 36, update of notes
– page 227, message control register bit (MSGLST) changed to (MSGLST CPUUPD)
– page 234, figure 136, INTPNDd changed to INTPND
– page 240, chapter 18.1.1, 18.1.2 and 18.1.3 updated
– page 246, table 39 redrawn, table 40 added
– page 248, bootstrap loader acknowledge Byte C5h added
– page 251, SSPEN (bit 2 of SYSCON) changed to XPEN
– page 253, figure 148 update of pull-down current (200µA)
– page 262, table 44 notes removed
– page 269, correction of identification registers
– page 274, table 45 stack size updated for STKSZ = 111b
– page 276, user stack Rb, [Rw+] or Rw, [Rw+] text changed
– pages 282 to 285, update of KEY WORD INDEX

ST10X167

292/294

– page 289, update revision history

24.2 - Revision of the 7th of August 2002
– pages 1, 2 and 294 (cover and last page) have been inserted in the document numbering leading to a

total of 294 pages instead of 290.
– page 130, bits T3M of T3CON register, combination 1XX (Reserved. Do not use this combination) has been

changed to 111 .
– page 149, bit CT3 of T5CON register is bit 10 instead of bit 9 and its functionality when 0 is "Capture

triggered from CAPIN pin".

End of file - 7th of August 2002

ST10X167

293/294

ST10X167

294/294

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result f rom
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specificati ons
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

http://www.st.com

