A MINIMALIST HARDWARE ARCHITECTURE FOR
USING COMMERCIAL MICROCONTROLLERSIN SPACE

D. W. Caldwell’, D. A. Rennels

"“*Jet Propulsion Laboratory
"Avionic Systems Engineering Section
“*Avionic Equipment Section
4800 Oak Grove Drive, Pasadena, CA 91109
doug.caldwell @j pl.nasa.gov

ABSTRACT

Microcontroll ers provide very dense functionality for
embedded applicaions ranging from telephores to
automohiles. The accetance of these devices for
space @plicaions has been hindered by their
manufadure which often uses multi ple semiconductor
fabricaion tedhniques and thereby compromises
radiation tolerance If such concerns could be
mitigated, microcortrollers would provide a
substantial increase in performance for builders of
spacecaft eledronics.

This paper presents hardware considerations for using
commercial microcontrollers in space aplicaions.
The motivations for starting with commercial devices
and the oncens assciated with their use ae
presented. The alvantages of software versus
hardware voting schemes to mitigate single-event
effeds are discused. Interprocess communicaions
approaches and schemes for improving 1/O robustness
are presented.

INTRODUCTION

Microcortrollers are highly integrated computer
systems on a cip: a processor and various suppat
functions uch as program memory, scratchpad RAM,
discrete 1/0, A/D converters, serial communications,
courter/timers, and watchdog timers (WDT). While
some microcontrollers have been used in space their
applicdion has been more like that of small computers
augmented with external memory and 1I/O devices,
very inexpensive commodity devices have not been
widely used because of their lower radiation tolerance

16" Digital Avionics Systems Conference

*University of California, Los Angeles
School of Engineering and Applied Science
Department of Computer Science
Los Angeles, CA 90024
rennels@cs.ucla.edu

Our research explores how to use mmmercial devices
cost-effedively to suppat distributed, moduar
spacecaft architedures. Rather than develop a single
representative system, we seek to crede a ‘toobox’ of
techniques which can be broadly applied to many
microcontrollers and which provide a designer with
approadies that can be tailored for a particular
applicaion. Hardware minimization is balanced with
reliability gains, neither is considered the sole
objedive. We seek solutions which have obviously
lower implementation and deployment costs compared
with the state-of-the-art, and which have red-estate
(mas9, power and reliability charaderistics smilar to
those of current design pradice

This reseach considers primarily the space single-
event eff eds environment, where ahigh transient error
rate is expeded and where latchup condtions may
occur that require a microcortroller modue to be
immediately powered down to prevent permanent
fallure. We ae datempting a minimalist approad
where fault-tolerance must be gplied at minimal cost
whilst providing fault recovery under difficult
condtions. This paper presents awork in-progress we
have spent the last nine months on the design o a
fault-tolerant microcontroller node, and we will soon
start the implementation d designs to validate
functionality and fault-tolerance

MOTIVATION

Most discusdons of the desirability of using
commercial comporents focus on the low cost of such
devices, bu this is only a small part of the picture
since parts typicdly contribute asmall fradion to the
cost of afielded spacesystem.

2830 October 1997 (pre-pubicétion)

The primary motivation for using commercial
microcontrollers is their high functional density and
low power. Rad-hard microcontrollers must generaly
saaifice functional density since the fabricdion
tedhndogies required to implement the different on-
chip functions such as program memory implemented
with EPROM cdls and A/D converters are generaly
incompatible with rad-hard proceses. Also, the
plethora of device types which allows the designer to
choose an appropriate set of 1/0 functions for a given
appliction coud na be replacel with rad-hard
devices owing to their high nonreairring
development costs.

Additionally, commercial devices are suppated by a
wide range of development tods, which evolve with
device families and thus incorporate the latest
software development paradigms.

Systems Consider ations

Distributed vs. Centralized I/O Signal Processng.
Historicdly, many simple sensors and aduators are
serviced by one set of front-end eledronics; in the
degenerate case, a cetral computer suppats1/O onits
locd bus and signals are distributed using the system
cable harness This approadh incurs sgnificant
(usualy unguantified) cost pendties for system
engineging, integration and test due to the st of
managing the dedicaed, pdnt-to-point interfaces;
ead interface must be defined, tradked and tested.
Although uriquenessis an intrinsic property of low-
level devices, allowing this unigueness to propagate
throughou the system substantialy increases g/stem
complexity.

Distributed 1/0 functions and associated front-end a
readive procesing can be managed more dficiently,
a higher levels of abstradion, and with more
standardization; providing, for instance, engineaing-
units conversion and padketization o data for seria
communicaion wing a standard protocol. Locd
processng can reduce transmitted data volume, and
can provide dramaticdly lower latency than can be
acommodated by a ceatral computer with multi-
tasking software.

In contrast to this approach, there is a disturbing

tendency toward pladng in a ceitra computer
virtualy every function which can be implemented in

16" Digital Avionics Systems Conference

software. This drategy arises from the belief that it
simplifies <ftware management and reduces
computer cost and paver. In fad, it probably has the
reverse dfed. By forcing software dements with
disparate needs to run in the same ewironment,
development costs are increased. For example, bath
Mars Pathfinder and Deep Space One perform power
management in a ceitral general-purpose computer,
relying on system software to manage low-voltage
situations on the main power bus. In bah cases, there
is justifiable concern abou the speed with which the
software can read to criticd situations. To combat
software @sts, higher performance omputers are
required to provide larger margins © as to alow
processng cycles for the inevitable aosscougding
interadions which will i nevitably be discovered.

Implementing Distributed Functionality. Locd data
handling requires me form of data processor. Small
nodes may implement the requisite functionality as a
relatively simple state macine in a field-
programmable gate aray (FPGA) or as oftware on a
microcontroller.

The accetance of FPGAs has dramaticaly changed
the spacecaft avionics development process allowing
the aedaion d complex applicaionspedfic logic
which can be reaily changed, thereby reducing parts
court and cevelopment time. These dtributes are dso
true for microcontrollers. Although a function
implemented by an FPGA will generaly be much
faster than if it is implemented in a microcontroller,
far more complexity can be catured in the software of
amicrocontroller. Functions such as engineaing units
conversion and sophisticaed fault-protedion
algorithms are simply impradicd in FPGAs.
Microcortrollers fill the gap between genera-purpose
computers and FPGAs; they are more like small
computers than are FPGASs but their applicability is
more like FPGAs than general-purpose mmputers.

Partitioned Architedures. As on-board software
grows increasingly complex, there will be a ontinuing
discrepancy between the capabilities and costs of
commercial and rad-hard general-purpose mwmputers.
Simultaneously, demand for higher performance will
increase. One gproad to this problem isto partition
the spacecaft information system. Generaly, high-
level functions such as on-board autonamy and data
reduction are where the greaest amournt of software

2830 October 1997 (pre-pubicétion)

growth is occurring since the demands for these ae
increasing more rapidly than the basic housekeeing
and attitude oontrol tasks. The former functions
(autonamy and chta reduction) have very week red-
time anstraints compared with spacecaft hedth
functions. This property can be exploited by basing
the @mputers which perform we&ly red-time
operations on commercial high-performance
computers, proteded with chedkpointing and roll bad,
and accepting the occasional service interruptions
caused by transient upsets.

In such an architedure, the spacecaft software
functions would be partitioned using a combination d
hardware and software tedhniques; operations criticd
to spacecaft hedth and safety would be suppated
with very high red-time reliability, allowing less
criticd, lessred time computations to be performed
with less robustness Performing readive /O
processng with dstributed microcontrollers in ore
such technique.

Computational Efficiency. It is aso worth
considering that nat al computation is creaed equal.
A general-purpose 32-bit computer like the MFC!
delivers abou 22 MIPS (at 20 MHz) and consumes
7.5W -- an efficiency of abou 3 MIPSW. The 16-bit
80C196CA [1] delivers about two MIPS' (at 20 MHZ)
while cnsuming 375 mW, yielding 5 MIPSW --
roughly equivalent to the MFC when considering the
types of code which are likely to be implemented on
the 196. A rather starting example is the 8-bit
PIC16C73A [2] which delivers 5 MIPS(at 20 MHz) at
abou 60 mW (typicd) for a whopgng 80 MIPSW!
For a large dassof applicaions, this processr is far
more dficient than a central computer. This
comparisonistabulated in Table 1.

! The Mars Pathfinder Flight Computer built by Lockheed-
Martin Federal Systems.

% The MFC RAD6000and the PIC microcontroller are both
RISC macdines, thus the reported values are relatively
acarate. The 8xC196 family has a CISC instruction set
which is much more difficult to analyze, with instruction
exeaution varying between 3 and 33 state times. The given
figure is an estimate based on asaming that the compiler
will emit predominately the simpler instructions, as is
predicted by the RISC paradigm. The 2 MIPS figure
corresponds to an average of 5 state times at 20 MHz.

16" Digital Avionics Systems Conference

One might argue that this is not a fair comparison
because aspacecaft computer like the MFC has far
more cgability than a microcontroller. However,
both have dl the atributes of a “computer” and from
the perspedive of typicd computations on 8bit sensor
or aduator datatheir processngislargely comparable.

Table1. Computational Efficiency Comparison.

>
2 -
o S5 |8
2 g (8| 2253
< a o ” 2 || T®
2 £ o S o 2| co
3 /<) e 2 = o | E2
= o = O = a | o>
[bits] | [MHzZ] [[MIPS]| [W] [[MIPSIW]
LMFS MFC 32 20 22 |7.50 3
Intel 87C196CA 16 20 2.0 |0.38 5
Dallas DS87C520 8 33 8.3 |0.15 55
Microchip |PIC16C73A | 8 20 5 0.06 83

CHALLENGES

Four decades of fault-tolerance reseach for space
applicaions provides the designer with a variety of
ways to make a microcontroller robuwst in the space
environment [3]. Balancing cost and reliability is nor
trivial.

An obvious choice is redundant microcontrollers
running identicd red-time gplicaions ftware with
lock-step comparison a voting for error detedion and
corredion. While it might appea that lock-step
exeattion and herdware voting is the most
straightforward approad, the highly integrated nature
of microcontroll ers makes this approach guestionable.
Variations between A/D converters will result in
different values being real. Even with lockstep
devices, digital edges have finite transition times and
eat microcontroller has its own inpu thresholds ©
edges will be seen at different times. There will be a
tendency to dverge even with perfed operation.
Also, with more than two processors, it would be
valuableto be ale bring awayward processor badk on
line withou stopping the others -- clealy not posdble
with lock-step operation.

Thus, in ou implementation approad, rocesors run
with their own locd oscill ators, with a combination o

2830 October 1997 (pre-pubicétion)

software voting and simple external hardware to
combine signals.

Interesting design problems occur because the highly
integrated microcontroller provides many functions
that canna be modified, yet must be covered by fault-
tolerance Some of these design problemsinclude:

* Interadive Consistency. Consistent computations
for voting or comparison must be guaranteed even
though individual microcontrollers may read
different values for the “same” inpu. [4]

e Error Latency. Error latency shoud be bounded,
but there is no access to the internals of the
microcontroll er and there is essentially no internal
cheking -- not even memory parity. Thus,
periodic internal testing must be interleaved with
normal operation.

» Circuit Isolation. In order to use the same external
interconreds for varying numbers of redunchnt
microcontrollers, the inpus and ouputs are
conreded (bused) to al of them. Thus,
protedion must be suppdied against shorts,
babhling and badk-driving unpowvered devices.

* Fast I/O. Red microcontroller applicaions do
more than pdl analog inpus and generate an
occasional output; they often read high-speal
timers or generate output waveforms (e.g., PWM)
on time scdes inappropriate for software
consistency determination. Thus, techniques are
needed which allow these signals to be generated
corredly withou frequent software interadions.

In this reseach, systems containing from one to four
procesors are being investigated using two testbeds.
One gproad is aimed at general-purpose gplicdion
and high fault coverage. The other, described herein,
is tail ored toward spacecaft applicaions; the focus is
single-event effeds rather than randam parts fail ures,
trying to minimize the resources consumed by fault-
tolerancefeaures.

Space limitations predude a detailed description o
the software fault-tolerance implementation (to be
presented in [5]). The remainder of this paper
describes the physicd architedure necessry to
suppat such software dgorithms.

16" Digital Avionics Systems Conference

System

A System Power
Communications v

—————ﬂ——f System Interface Boundary ——«l ——————————————————————————

Systems
Communications
Buffers & Other
Support Circuits

———ﬂ——f Fault Containment Region ——«l ————————————————————————

Common e

1o Power
Control

71

Node |
Power [—» to Other Loads
Control [—>

Isolation
Functions

External
Conflict

Resolution

C RESET C RESET C RESET

Processor 2 Processor n

I I I I I I

110 110 110 110 110
Isolation Isolation Isolation Isolation Isolation

T 1 H

Check Channel :)

110
Isolation

Normal 1/0 Channels :)

Common
110
Isolation
Functions

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} Processor 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Node-Specific
Microcontroller-
Managed Functions

Figure 1. Physical Architecture.

PHYSICAL ARCHITECTURE

Figure 1 is the astrad block diagram of a spacecaft
functional element (e.g., an IMU) containing a fault-
tolerant group d microcortrollers. At the top d the
figure, the system to which the functional element is
attached is shown as nothing more than a source of
power and communicdions. The I/O of multiple
procesors are mbined and poteded by 1/O
isolation; external conflict resolution may reset or
power-cycle the devices.

The processors (microcontrollers) provide fault-
tolerant attributes to the system. The implemented
software achitedureis dightly asymmetricd in that a
Master device mordinates fault-tolerance anong one
or more Checkers. The Master might be considered to
be the microcontroller of the system while Cheders
determine the vali dity of its computations.

2830 October 1997 (pre-pubicétion)

If a microcontroller disagrees with its pees, it can be
commanded off-line and lrought badk on-line if it can
be succesqully restarted. Devices are not staticdly
asdigned so the operating mode of ead device
(Master, Chedker or Off-Line) isfluid.

Normal 1/0

The primary use of microcontroller 1/O is to interad
with the sensors and aduators which define the
functionality of the dement. This analog and dgital
1/0, which is provided to accomplish desired noce
functionality even withou fault-tolerance, is cdled
Normal I/O. An important part of this research is to
describe how Normal 1/O is proteded against faults
and hav processng is proteded from faulted 1/0. As
shown in Figure 1, Normal 1/O is isolated from the
rest of the functional element and from the
microcortrollers. 1/O isolation o ead processor
alows individual devices to be turned df in suppat
of SEL mitigation. Common I/O isolation proteds
circuits outside the fault containment region. A novel
method for proteding I/O ports against upsets is
described shortly.

Check 1/0

Some of the microcontroller’s pins are used as Check
/O to suppat fault-tolerant aspeds of the nocde.
These provide three functions: the Master Channel,
the Status Channel and the Assgnment Channel.

The Master Channel is the primary data path for
communications between the Master and ahers. It is
used by the software fault-tolerance functions to
exchange 1/0 values or other interna state data. It
may be parallel or serial, bussed o point-to-point,
broadcast or direded. Although the Master Channel
may be implemented in various ways, use of a simple
serial channel minimizes 1/0O pins. Sophisticated
serial 1/O like 1°C may be used, as may be UARTS or
even software-implemented serial channels. The
consumption o 1°C or UART hardware resources
must be balanced with their simplicity and speed. In
al cases, communicaion latency may be minimized
by computing a syndrome (e.g., chedksum) over a
large block of data and chedking only the syndrome,
not the data itself.

The Status Channel is used for simple signaling which
is independent of the Master Channel. Status may be

16" Digital Avionics Systems Conference

used to signal the validation d data passed on the
Master Channel. In the minimalist approad, two I/0
pins per microcontroller are reserved for the Status
Channel to invoke external conflict resolution when
normal communicdions and rewmvery tedniques
using the Master Channel fail. The only mechanisms
avail able for this purpose ae individua (or multiple)
procesor resets and individual (or multiple) power-
cycling of the devices. The Microcortroller Power
Control block of Figure 1 alows the devices to be
power cycled and also provides SEL mitigation
functions.

The quasi-static Assignment Channel indicaes which

device will ad as Master, which will be adive

Chedkers, and which will be off line. It must satisfy

the foll owing requirements:

¢ A unique master can and will be seleded given at
least two operational processors;

¢ The seledion scheme is nat susceptible to race
condtions;

e A master-cgpable unit rejoining the system will
not affed ongoing processng (e.g., by demanding
mastership).

The asdgnment strategy seleded is first-come, first-
claim with conflict resolution wsing hardwired nocke
IDs. The /O requirements may be minimized if some
configurations are disallowed. For instance, in athree
procesor system, operation with any two may be
alowed bu not with orly one. In this case, ore unit
need na assert mastership since it will always be
paired with ore of the other two. Thus, the mastership
seledion agorithm need orly seled between two
master-cgpable units and resolve ariflicts between
those two. In this example, orly two 1/O pins are
required to implement the Assgnment Channel.

[/O ISOLATION AND VOTING

To alow devices to be turned df in suppat of SEL
mitigation, they must be prevented from being
parasiticdly powered through their inpu protedion
circuits. Complete isolation might be dfeded using
an adive devicelike the MAX367 Signal-Line Circuit
Protedors [6] but a aurrent-limiting resistor on ead
I/O pin suffices.

In addition to being isolated, ouput ports must be
voted. Although the Master will ascertain from the

2830 October 1997 (pre-pubicétion)

Chedkers whether its computed results are arred, it
canna be the sole generator of output because its
output port flip-flops are susceptible to upset. Instea,
both the Master and its Cheders must output their
versions of truth and these must be voted externally.
A straightforward approach would use digital voting
circuits, bu these do nd adlow ports to be
bidiredional and do consume significant red-estate.
The minimalist implements an analog voter using the
current-limiting resistors required to prevent bad-
driving unpavered devices, where the majority vote
drives the output above or below the midpant voltage.

This approadh is overly simplistic since voltage levels
generated under fault condtions are not compatible
with standard logic families. A single output fault in a
threeprocesor system will generate avoltage which
is either /3 o 2/3 of V¢, a single fault in a four-
processor system will generate ather 1/4 or 3/4 Vcc.
Althowh 2/3 or 3/4 of a standard 5V suppy (even at
4.5V) is alegitimate TTL logic high, nologic family
considers 1/3 or even /4 of Vcto be alegal low.

Self-Checking Ports

The problem may be adressed by exploiting the
microcortroller’s [/O port structure. For most devices,
I/0 pins are bidiredional and it takes two condtions
to ouput a high level on an I/O pin; the output flip-
flop must be a “1” and the I/O pin must be configured
as an ouput. There ae threeother state pairs which
do nd result in an adive high level being output. One
of these states corresponds to neither of the requisite
condtions for “high” being met: the output flip-flop
contains a “0" and the 1/0O pin is configured as an
inpu. This point lies Hamming distance two away
from the adive-one state; if the wrred output is zero,
two flip-flops of one device must be incorred to
generate an adive high. If an external resistor is used
to pdl the output down when the pin is in the
{output=0, dredion=inpu} state, then the only legal
high state lies two faults away from a legitimate low
state. While pullups are generaly preferred in logic
design to puldowns, this gems from the aility of N-
channel devices to sink more aurrent than P-channels
and thus gedals the high-to-low transition -- a
requirement not needed for the relatively slow
microcortroller pins used to control the red world.
The pulldown resistor also serves to drive the output
to a safe state during initi ali zation.

16" Digital Avionics Systems Conference

Table 2 shows the four posgble @mbinations;
diagonal entries correspond to states with Hamming
distance two. As noted in italics, the solution is
imperfed; asingle bit error can result in an adive low
output with probability 0.25. Similarly, the inpu
protedion circuits of an unpavered device will sink
current. Either of these cases will result in a signal
which is clealy “high” but not necessarily compatible
with agiven logic family.

These dfeds can be handed in ore of threeways:

¢ Use low-threshdd inpu devices (e.g., the TTL-
compatible inpus of the PIC microcontrollers or
the HCT family, bah with V,; = 2.0V);

e Use diode isolation to prevent current from
flowing into the microcontroller (although this
predudes bidiredional port operation);

¢ Use transmisgon gates (analog switches) which
are turned of when the microcontroller is
unpowered.

The diode network option forms a diode-OR function
and could be replacae by an OR gate (with inpu
pulups). Essntialy, a number of self-cheding
registers (the dual bits of the output port) try to
generate adive ones and any internally-chedked pat
which succeels sts the output value for the ensemble.

Coverage Limitations: Computational Errors

The technique relies on making it very difficult for a
port SEU to result in an adive high fault; if any adive
high exists, we aaume that it was corred. But this
only proteds the 1/O port bits; it does not prevent a
bad computation by the Master or a Chedker to drive
the output to a bad state. If the corred output value is
a zero bu a single processor deddes to ouput a low-
impedance one, the one processor will override ay
number of high-impedance zeros. Thisisa common-
mode failure and must be aldressed by the software-
implemented fault-tolerance functions which use the
Master Channel. Single-bit errors which occur in the
short window after software voting and kefore port
output are simil arly uncovered.

One alditional side-effed of this I/0O voting approach
is that an ouput will be high from the time that the
first deviceoutputs a high urtil the last devicereleases
it. The pulse widening is equal to the maximum clock
skew between any two processors.

2830 October 1997 (pre-pubicétion)

Table?2. 1/0 Pin Statesfor SEU-Tolerance with Active One.

Tri-State Enable Bit (PIC Microcorntroll er Interpretation)

0 (Configure a Output)

Output
Value
1 (Configure a Inpu)
Valid State: 0.
Output = hi-Z.

External pull-down yields a “zero.”

Invalid State.

Output = low-Z, logic-zer o voltage.
If fault is incorrea 1/0O configuration state, low
voltage output matches desired state (helps the
external pull-down).
If fault is incorred output bit, a majority is
generating low-Z, logic-one \oltage; a push-
pull conflict exists. “Voted” node state depends
on logic thresholds (high and low) of recéver.

Invalid State.

Output = hi-Z.
Fault is either incorrea /O corfiguration o
incorred output bit; output is tri-state. Corred
state of the voted nock will be forced by other

Valid State: 1.

Output = low-Z, logic-one voltage.
Output overrides external pull-down.
(But an ouput-bit fault in another
microcortroll er resultsin a push-pull conflict.)

microcontroll ers and the external pull-down.

Coverage Limitations: Double-Bit Errors

The previous techniques provide an ouput structure
which can tolerate power regycling for SEL mitigation
and also for single bit-errors in the output registers.
However, this latter charaderistic provides only some
tolerance to SEU in the registers themselves, the
approach is nat tolerant to doube bit-errors in the port
registers (half of which result in incorred output
state).

Latent faults in pat registers can lead to doube-bit
errors, a @ncern since static outputs are vulnerable
100% of operating time. Periodic scrubking can be
used to deted errors but the aror rate can be reduced
only so far; scrubking too frequently increases the
probability of introdwcing a wmmon-mode “doule-
bit error” (as noted previously) as aresult of a single-
bit error during the scrubking computation.

Scrubking requires additional information to
determine what the corred output shoud be. The port
state may be stored redundantly in RAM or may be
determined by reading the port bits themselves. The
latter approach requires that both the output bit and
the nfiguration Kt be independently readable, a
fedure which is aso valuable for validation

16" Digital Avionics Systems Conference

experiments to determine the probability of 1/0 port
flip-flop upset. The PIC microcontrollers[2] have this
cgpability, as do the Intel 87C196Kx, Jx and CA [1];
many older parts do nd.

If the expeded error rate dter scrubhing is dill too
high (e.g., for safety-criticd functions), hardware
interlocks may be used wherein a aiticd function
must be enabled by an independent control signal.
Interlocks are particularly valuable for atwo procesor
(self-chedking pair) configuration since a single-bit
error will aways result in ambiguity if only two
devices are being voted. An I/O pin on ead
microcontroller used as an interlock in such a system
will result in the equivalent of four microcontrollers
participating in the state vote.

Scrubbing may be avoided entirely in seleded cases.
For some outputs, there is either no reed to ded with
the problem or no pradica way of deding with it. As
an example, it is impradicd to apply any form of
software fault-tolerance to, say, a 2400 Hz PWM
signal or a 9600 laud serial channel. Fortunately,
these frequently-modified signals are essentially self-
scrubling; the short time before the state is driven to a
new state makes doulle bit-errors very unlikely.

2830 October 1997 (pre-pubicétion)

EXPERIMENTS

In order to force an oucome which will be valuable to
the spacecaft avionics community and to provide a
testbed for evaluating the dfediveness of the
techniques, some experimental designs will be built
which are representative of space system elements.
These gplicaion examples are sufficiently complex
to provide insights into red problems while
sufficiently simple that their implementation shoud
not distrad from the investigation. The sdleded
applicaions will use different numbers of controllers
to implement their reliability goals and thus provide
examples of different processor configurations
including a tripleemoduar redundant configuration, a
self-cheding pair configuration which is designed for
block redundancy, and a distributed computing
system. The eamples also span 1/O requirements
from simple bi-level and analog voting to puse train
generation, event timing, and serial communicaions.
Example problems to be considered include an inertial
measurement unit, a propusior/pyro switching unit,
and a distributed sun sensor.

The prototypicd example gplicaions will use the
Microchip PIC16C73A [2]. Its functiondlity, while
relatively limited, is afficient to implement the
chasen appli cations but these same limitations force a
frugal approach to fault-tolerance -- it would be very
easy to use dl the I/O pins just implementing fault-
tolerance. Because this microcortroller family does
not provide acces to its internal address and data
busses (unlike other famili es), any temptation to use
too much I/O and then renstruct it externaly is
removed. Finally, ore of the aithors knows of
avionics praditioners interested in this chip so results
of this reseach shoud be immediately valuable to
them.

CONCLUSIONS

We have described the initial steps toward a generic
approach to implementing cost-effedive fault-
tolerance aigmentations of commercial
microcontrollers in demanding applicaions sich as
spacecaft control systems. The described
experimental designs, to be implemented in late 1997,
are epeded to provide us with the insights to
determine the dfedivenessof these techniques.

16" Digital Avionics Systems Conference

ACKNOWLEDGMENTS

This work was suppated by the Jet Propusion
Laboratory, California Institute of Techndogy, uncer
a ontrad with the Nationa Aeronautics and Space
Administration and by the Office of Naval Reseach,
under grant #N0001496-1-0837 at the University of
Cdlifornia, Los Angeles.

REFERENCES

[1] “8XC196&KX, 8XC1965x, 87C196CA
Microcontroller Family User's Manua.” Intel
Corporation, June 1995.

[2] “PIC16/17 Microcontroller Data Book.”
Microchip Techndogy, Inc. 19931996.

[3] V.P.Nédson,B.D. Carroll. “Tutorial: Fault-
Tolerant Computing.” |EEE Computer Society
Press 1987.

[4 S G. Frison, J. H. Wendey. Interactive
Consistency and Its Impact on TMR Systemsin
Dig. Int. Symp. Fault Tolerant Computing,
FTCS-12,June 1982, pp. 22&33.

[5] D.A. Renndls, D.W. Caldwell, R. Hwang, M.
Mesarina. “A Fault-Tolerant Embedded
Microcontroller Testbed.” 1997 Padfic Rim
Fault-Tolerance Conference, Taipei, Taiwan.
15-16 Dec1997.

[6] “1996 New Releases Data Book, Volume V.”
Maxim Integrated Products, 1996.

2830 October 1997 (pre-pubicétion)

