
16th Digital Avionics Systems Conference 1 28-30 October 1997 (pre-publication)

 A MINIMALIST HARDWARE ARCHITECTURE FOR
USING COMMERCIAL MICROCONTROLLERS IN SPACE

D. W. Caldwell*, D. A. Rennels+

*+Jet Propulsion Laboratory
*Avionic Systems Engineering Section

*+Avionic Equipment Section
4800 Oak Grove Drive, Pasadena, CA 91109

doug.caldwell@jpl.nasa.gov

+University of California, Los Angeles
School of Engineering and Applied Science

Department of Computer Science
Los Angeles, CA 90024

rennels@cs.ucla.edu

ABSTRACT
Microcontrollers provide very dense functionality for
embedded applications ranging from telephones to
automobiles. The acceptance of these devices for
space applications has been hindered by their
manufacture which often uses multiple semiconductor
fabrication techniques and thereby compromises
radiation tolerance. If such concerns could be
mitigated, microcontrollers would provide a
substantial increase in performance for builders of
spacecraft electronics.

This paper presents hardware considerations for using
commercial microcontrollers in space applications.
The motivations for starting with commercial devices
and the concerns associated with their use are
presented. The advantages of software versus
hardware voting schemes to mitigate single-event
effects are discussed. Interprocess communications
approaches and schemes for improving I/O robustness
are presented.

INTRODUCTION
Microcontrollers are highly integrated computer
systems on a chip: a processor and various support
functions such as program memory, scratchpad RAM,
discrete I/O, A/D converters, serial communications,
counter/timers, and watchdog timers (WDT). While
some microcontrollers have been used in space, their
application has been more li ke that of small computers
augmented with external memory and I/O devices;
very inexpensive commodity devices have not been
widely used because of their lower radiation tolerance.

Our research explores how to use commercial devices
cost-effectively to support distributed, modular
spacecraft architectures. Rather than develop a single
representative system, we seek to create a “toolbox” of
techniques which can be broadly applied to many
microcontrollers and which provide a designer with
approaches that can be tailored for a particular
application. Hardware minimization is balanced with
reliabilit y gains; neither is considered the sole
objective. We seek solutions which have obviously
lower implementation and deployment costs compared
with the state-of-the-art, and which have real-estate
(mass), power and reliabilit y characteristics similar to
those of current design practice.

This research considers primarily the space single-
event effects environment, where a high transient error
rate is expected and where latchup conditions may
occur that require a microcontroller module to be
immediately powered down to prevent permanent
failure. We are attempting a minimalist approach
where fault-tolerance must be applied at minimal cost
whilst providing fault recovery under diff icult
conditions. This paper presents a work in-progress; we
have spent the last nine months on the design of a
fault-tolerant microcontroller node, and we will soon
start the implementation of designs to validate
functionality and fault-tolerance.

MOTIVATION
Most discussions of the desirabilit y of using
commercial components focus on the low cost of such
devices, but this is only a small part of the picture
since parts typically contribute a small fraction to the
cost of a fielded space system.

16th Digital Avionics Systems Conference 2 28-30 October 1997 (pre-publication)

The primary motivation for using commercial
microcontrollers is their high functional density and
low power. Rad-hard microcontrollers must generally
sacrifice functional density since the fabrication
technologies required to implement the different on-
chip functions such as program memory implemented
with EPROM cells and A/D converters are generally
incompatible with rad-hard processes. Also, the
plethora of device types which allows the designer to
choose an appropriate set of I/O functions for a given
application could not be replaced with rad-hard
devices owing to their high non-recurring
development costs.

Additionally, commercial devices are supported by a
wide range of development tools, which evolve with
device famili es and thus incorporate the latest
software development paradigms.

Systems Considerations
Distributed vs. Centralized I/O Signal Processing.
Historically, many simple sensors and actuators are
serviced by one set of front-end electronics; in the
degenerate case, a central computer supports I/O on its
local bus and signals are distributed using the system
cable harness. This approach incurs significant
(usually unquantified) cost penalties for system
engineering, integration and test due to the cost of
managing the dedicated, point-to-point interfaces;
each interface must be defined, tracked and tested.
Although uniqueness is an intrinsic property of low-
level devices, allowing this uniqueness to propagate
throughout the system substantiall y increases system
complexity.

Distributed I/O functions and associated front-end or
reactive processing can be managed more eff iciently,
at higher levels of abstraction, and with more
standardization; providing, for instance, engineering-
units conversion and packetization of data for serial
communication using a standard protocol. Local
processing can reduce transmitted data volume, and
can provide dramatically lower latency than can be
accommodated by a central computer with multi -
tasking software.

In contrast to this approach, there is a disturbing
tendency toward placing in a central computer
virtually every function which can be implemented in

software. This strategy arises from the belief that it
simpli fies software management and reduces
computer cost and power. In fact, it probably has the
reverse effect. By forcing software elements with
disparate needs to run in the same environment,
development costs are increased. For example, both
Mars Pathfinder and Deep Space One perform power
management in a central general-purpose computer,
relying on system software to manage low-voltage
situations on the main power bus. In both cases, there
is justifiable concern about the speed with which the
software can react to criti cal situations. To combat
software costs, higher performance computers are
required to provide larger margins so as to allow
processing cycles for the inevitable cross-coupling
interactions which will i nevitably be discovered.

Implementing Distributed Functionality. Local data
handling requires some form of data processor. Small
nodes may implement the requisite functionality as a
relatively simple state machine in a field-
programmable gate array (FPGA) or as software on a
microcontroller.

The acceptance of FPGAs has dramatically changed
the spacecraft avionics development process, allowing
the creation of complex application-specific logic
which can be readily changed, thereby reducing parts
count and development time. These attributes are also
true for microcontrollers. Although a function
implemented by an FPGA will generally be much
faster than if it is implemented in a microcontroller,
far more complexity can be captured in the software of
a microcontroller. Functions such as engineering units
conversion and sophisticated fault-protection
algorithms are simply impractical in FPGAs.
Microcontrollers fill t he gap between general-purpose
computers and FPGAs; they are more li ke small
computers than are FPGAs but their applicabilit y is
more li ke FPGAs than general-purpose computers.

Partitioned Architectures. As on-board software
grows increasingly complex, there will be a continuing
discrepancy between the capabiliti es and costs of
commercial and rad-hard general-purpose computers.
Simultaneously, demand for higher performance will
increase. One approach to this problem is to partition
the spacecraft information system. Generally, high-
level functions such as on-board autonomy and data
reduction are where the greatest amount of software

16th Digital Avionics Systems Conference 3 28-30 October 1997 (pre-publication)

growth is occurring since the demands for these are
increasing more rapidly than the basic housekeeping
and attitude control tasks. The former functions
(autonomy and data reduction) have very weak real-
time constraints compared with spacecraft health
functions. This property can be exploited by basing
the computers which perform weakly real-time
operations on commercial high-performance
computers, protected with checkpointing and rollback,
and accepting the occasional service interruptions
caused by transient upsets.

In such an architecture, the spacecraft software
functions would be partitioned using a combination of
hardware and software techniques; operations criti cal
to spacecraft health and safety would be supported
with very high real-time reliabilit y, allowing less-
criti cal, less-real time computations to be performed
with less robustness. Performing reactive I/O
processing with distributed microcontrollers in one
such technique.

Computational Eff iciency. It is also worth
considering that not all computation is created equal.
A general-purpose 32-bit computer li ke the MFC1

delivers about 22 MIPS (at 20 MHz) and consumes
7.5W -- an eff iciency of about 3 MIPS/W. The 16-bit
80C196CA [1] delivers about two MIPS2 (at 20 MHz)
while consuming 375 mW, yielding 5 MIPS/W --
roughly equivalent to the MFC when considering the
types of code which are li kely to be implemented on
the 196. A rather startling example is the 8-bit
PIC16C73A [2] which delivers 5 MIPS (at 20 MHz) at
about 60 mW (typical) for a whopping 80 MIPS/W!
For a large class of applications, this processor is far
more eff icient than a central computer. This
comparison is tabulated in Table 1.

1 The Mars Pathfinder Flight Computer built by Lockheed-
Martin Federal Systems.

2 The MFC RAD6000 and the PIC microcontroller are both
RISC machines, thus the reported values are relatively
accurate. The 8xC196 family has a CISC instruction set
which is much more diff icult to analyze, with instruction
execution varying between 3 and 33 state times. The given
figure is an estimate based on assuming that the compiler
will emit predominately the simpler instructions, as is
predicted by the RISC paradigm. The 2 MIPS figure
corresponds to an average of 5 state times at 20 MHz.

One might argue that this is not a fair comparison
because a spacecraft computer li ke the MFC has far
more capabilit y than a microcontroller. However,
both have all the attributes of a “computer” and from
the perspective of typical computations on 8-bit sensor
or actuator data their processing is largely comparable.

Table 1. Computational Efficiency Comparison.

M
an

u
fa

ct
u

re
r

C
o

m
p

u
te

r

W
o

rd
 S

iz
e

C
lo

ck
 F

re
q

u
en

cy

T
h

ro
u

g
h

p
u

t

P
o

w
er

, t
yp

ic
al

E
ff

ic
ie

n
cy

,
ty

p
ic

al

[bits] [MHz] [MIPS] [W] [MIPS/W]

LMFS MFC 32 20 22 7.50 3
Intel 87C196CA 16 20 2.0 0.38 5
Dallas DS87C520 8 33 8.3 0.15 55
Microchip PIC16C73A 8 20 5 0.06 83

CHALLENGES
Four decades of fault-tolerance research for space
applications provides the designer with a variety of
ways to make a microcontroller robust in the space
environment [3]. Balancing cost and reliabilit y is non-
trivial.

An obvious choice is redundant microcontrollers
running identical real-time applications software with
lock-step comparison or voting for error detection and
correction. While it might appear that lock-step
execution and hardware voting is the most
straightforward approach, the highly integrated nature
of microcontrollers makes this approach questionable.
Variations between A/D converters will result in
different values being read. Even with lockstep
devices, digital edges have finite transition times and
each microcontroller has its own input thresholds so
edges will be seen at different times. There will be a
tendency to diverge even with perfect operation.
Also, with more than two processors, it would be
valuable to be able bring a wayward processor back on
line without stopping the others -- clearly not possible
with lock-step operation.

Thus, in our implementation approach, processors run
with their own local oscill ators, with a combination of

16th Digital Avionics Systems Conference 4 28-30 October 1997 (pre-publication)

software voting and simple external hardware to
combine signals.

Interesting design problems occur because the highly
integrated microcontroller provides many functions
that cannot be modified, yet must be covered by fault-
tolerance. Some of these design problems include:

• Interactive Consistency. Consistent computations
for voting or comparison must be guaranteed even
though individual microcontrollers may read
different values for the “same” input. [4]

• Error Latency. Error latency should be bounded,
but there is no access to the internals of the
microcontroller and there is essentially no internal
checking -- not even memory parity. Thus,
periodic internal testing must be interleaved with
normal operation.

• Circuit Isolation. In order to use the same external
interconnects for varying numbers of redundant
microcontrollers, the inputs and outputs are
connected (bussed) to all of them. Thus,
protection must be supplied against shorts,
babbling and back-driving unpowered devices.

• Fast I/O. Real microcontroller applications do
more than poll analog inputs and generate an
occasional output; they often read high-speed
timers or generate output waveforms (e.g., PWM)
on time scales inappropriate for software
consistency determination. Thus, techniques are
needed which allow these signals to be generated
correctly without frequent software interactions.

In this research, systems containing from one to four
processors are being investigated using two testbeds.
One approach is aimed at general-purpose application
and high fault coverage. The other, described herein,
is tailored toward spacecraft applications; the focus is
single-event effects rather than random parts failures,
trying to minimize the resources consumed by fault-
tolerance features.

Space limitations preclude a detailed description of
the software fault-tolerance implementation (to be
presented in [5]). The remainder of this paper
describes the physical architecture necessary to
support such software algorithms.

Normal I /O Channels

External
Confl ict

Resolut ion

µC
Power
Control

Processor 2

Node-Speci f ic
Microcontrol ler-

Managed Funct ions

Check Channels

Vcc RESET

System Power

Processor nProcessor 1

I/O
Isolation

Vcc RESET Vcc RESET

C o m m o n
I/O

Isolation
Funct ions

Node
Power
Control

System Interface Boundary

C o m m o n
I/O

Isolation
Funct ions

System
Communicat ions

Systems
Communicat ions
Buffers & Other
Support Circuits

Fault Containment Region

to Other Loads

I/O
Isolation

I/O
Isolation

I/O
Isolation

I/O
Isolation

I/O
Isolation

Figure 1. Physical Architecture.

PHYSICAL ARCHITECTURE
Figure 1 is the abstract block diagram of a spacecraft
functional element (e.g., an IMU) containing a fault-
tolerant group of microcontrollers. At the top of the
figure, the system to which the functional element is
attached is shown as nothing more than a source of
power and communications. The I/O of multiple
processors are combined and protected by I/O
isolation; external confli ct resolution may reset or
power-cycle the devices.

The processors (microcontrollers) provide fault-
tolerant attributes to the system. The implemented
software architecture is slightly asymmetrical in that a
Master device coordinates fault-tolerance among one
or more Checkers. The Master might be considered to
be the microcontroller of the system while Checkers
determine the validity of its computations.

16th Digital Avionics Systems Conference 5 28-30 October 1997 (pre-publication)

If a microcontroller disagrees with its peers, it can be
commanded off -line and brought back on-line if it can
be successfully restarted. Devices are not statically
assigned so the operating mode of each device
(Master, Checker or Off -Line) is fluid.

Normal I/O
The primary use of microcontroller I/O is to interact
with the sensors and actuators which define the
functionality of the element. This analog and digital
I/O, which is provided to accomplish desired node
functionality even without fault-tolerance, is called
Normal I/O. An important part of this research is to
describe how Normal I/O is protected against faults
and how processing is protected from faulted I/O. As
shown in Figure 1, Normal I/O is isolated from the
rest of the functional element and from the
microcontrollers. I/O isolation of each processor
allows individual devices to be turned off in support
of SEL mitigation. Common I/O isolation protects
circuits outside the fault containment region. A novel
method for protecting I/O ports against upsets is
described shortly.

Check I/O
Some of the microcontroller’ s pins are used as Check
I/O to support fault-tolerant aspects of the node.
These provide three functions: the Master Channel,
the Status Channel and the Assignment Channel.

The Master Channel is the primary data path for
communications between the Master and others. It is
used by the software fault-tolerance functions to
exchange I/O values or other internal state data. It
may be parallel or serial, bussed or point-to-point,
broadcast or directed. Although the Master Channel
may be implemented in various ways, use of a simple
serial channel minimizes I/O pins. Sophisticated
serial I/O li ke I2C may be used, as may be UARTs or
even software-implemented serial channels. The
consumption of I2C or UART hardware resources
must be balanced with their simplicity and speed. In
all cases, communication latency may be minimized
by computing a syndrome (e.g., checksum) over a
large block of data and checking only the syndrome,
not the data itself.

The Status Channel is used for simple signaling which
is independent of the Master Channel. Status may be

used to signal the validation of data passed on the
Master Channel. In the minimalist approach, two I/O
pins per microcontroller are reserved for the Status
Channel to invoke external confli ct resolution when
normal communications and recovery techniques
using the Master Channel fail . The only mechanisms
available for this purpose are individual (or multiple)
processor resets and individual (or multiple) power-
cycling of the devices. The Microcontroller Power
Control block of Figure 1 allows the devices to be
power cycled and also provides SEL mitigation
functions.

The quasi-static Assignment Channel indicates which
device will act as Master, which will be active
Checkers, and which will be off line. It must satisfy
the following requirements:
• A unique master can and will be selected given at

least two operational processors;
• The selection scheme is not susceptible to race

conditions;
• A master-capable unit rejoining the system will

not affect ongoing processing (e.g., by demanding
mastership).

The assignment strategy selected is first-come, first-
claim with confli ct resolution using hardwired node
IDs. The I/O requirements may be minimized if some
configurations are disallowed. For instance, in a three
processor system, operation with any two may be
allowed but not with only one. In this case, one unit
need not assert mastership since it will always be
paired with one of the other two. Thus, the mastership
selection algorithm need only select between two
master-capable units and resolve confli cts between
those two. In this example, only two I/O pins are
required to implement the Assignment Channel.

I/O ISOLATION AND VOTING
To allow devices to be turned off in support of SEL
mitigation, they must be prevented from being
parasiti cally powered through their input protection
circuits. Complete isolation might be effected using
an active device li ke the MAX367 Signal-Line Circuit
Protectors [6] but a current-limiting resistor on each
I/O pin suff ices.

In addition to being isolated, output ports must be
voted. Although the Master will ascertain from the

16th Digital Avionics Systems Conference 6 28-30 October 1997 (pre-publication)

Checkers whether its computed results are correct, it
cannot be the sole generator of output because its
output port flip-flops are susceptible to upset. Instead,
both the Master and its Checkers must output their
versions of truth and these must be voted externally.
A straightforward approach would use digital voting
circuits, but these do not allow ports to be
bidirectional and do consume significant real-estate.
The minimalist implements an analog voter using the
current-limiting resistors required to prevent back-
driving unpowered devices, where the majority vote
drives the output above or below the midpoint voltage.

This approach is overly simplistic since voltage levels
generated under fault conditions are not compatible
with standard logic famili es. A single output fault in a
three-processor system will generate a voltage which
is either 1/3 or 2/3 of VCC; a single fault in a four-
processor system will generate either 1/4 or 3/4 VCC.
Although 2/3 or 3/4 of a standard 5V supply (even at
4.5V) is a legitimate TTL logic high, no logic family
considers 1/3 or even 1/4 of VCC to be a legal low.

Self-Checking Ports
The problem may be addressed by exploiting the
microcontroller’ s I/O port structure. For most devices,
I/O pins are bidirectional and it takes two conditions
to output a high level on an I/O pin; the output flip-
flop must be a “1” and the I/O pin must be configured
as an output. There are three other state pairs which
do not result in an active high level being output. One
of these states corresponds to neither of the requisite
conditions for “high” being met: the output flip-flop
contains a “0” and the I/O pin is configured as an
input. This point lies Hamming distance two away
from the active-one state; if the correct output is zero,
two flip-flops of one device must be incorrect to
generate an active high. If an external resistor is used
to pull the output down when the pin is in the
{ output=0, direction=input} state, then the only legal
high state lies two faults away from a legitimate low
state. While pullups are generally preferred in logic
design to pulldowns, this stems from the abilit y of N-
channel devices to sink more current than P-channels
and thus speeds the high-to-low transition -- a
requirement not needed for the relatively slow
microcontroller pins used to control the real world.
The pulldown resistor also serves to drive the output
to a safe state during initiali zation.

Table 2 shows the four possible combinations;
diagonal entries correspond to states with Hamming
distance two. As noted in itali cs, the solution is
imperfect; a single bit error can result in an active low
output with probabilit y 0.25. Similarly, the input
protection circuits of an unpowered device will sink
current. Either of these cases will result in a signal
which is clearly “high” but not necessaril y compatible
with a given logic family.

These effects can be handled in one of three ways:
• Use low-threshold input devices (e.g., the TTL-

compatible inputs of the PIC microcontrollers or
the HCT family, both with V IH = 2.0 V);

• Use diode isolation to prevent current from
flowing into the microcontroller (although this
precludes bidirectional port operation);

• Use transmission gates (analog switches) which
are turned off when the microcontroller is
unpowered.

The diode network option forms a diode-OR function
and could be replaced by an OR gate (with input
pullups). Essentially, a number of self-checking
registers (the dual bits of the output port) try to
generate active ones and any internally-checked port
which succeeds sets the output value for the ensemble.

Coverage Limitations: Computational Errors
The technique relies on making it very diff icult for a
port SEU to result in an active high fault; i f any active
high exists, we assume that it was correct. But this
only protects the I/O port bits; it does not prevent a
bad computation by the Master or a Checker to drive
the output to a bad state. If the correct output value is
a zero but a single processor decides to output a low-
impedance one, the one processor will override any
number of high-impedance zeros. This is a common-
mode failure and must be addressed by the software-
implemented fault-tolerance functions which use the
Master Channel. Single-bit errors which occur in the
short window after software voting and before port
output are similarly uncovered.

One additional side-effect of this I/O voting approach
is that an output will be high from the time that the
first device outputs a high until the last device releases
it. The pulse widening is equal to the maximum clock
skew between any two processors.

16th Digital Avionics Systems Conference 7 28-30 October 1997 (pre-publication)

Table 2. I/O Pin States for SEU-Tolerance with Active One.

Output
Value

Tri-State Enable Bit (PIC Microcontroller Interpretation)

1 (Configure as Input) 0 (Configure as Output)

0

Valid State: 0.
Output = hi-Z.

External pull -down yields a “zero.”

Invalid State.
Output = low-Z, logic-zero voltage.

If fault is incorrect I/O configuration state, low
voltage output matches desired state (helps the
external pull -down).
I f fault is incorrect output bit, a majority is
generating low-Z, logic-one voltage; a push-
pull confli ct exists. “Voted” node state depends
on logic thresholds (high and low) of receiver.

1

Invalid State.
Output = hi-Z.

Fault is either incorrect I/O configuration or
incorrect output bit; output is tri-state. Correct
state of the voted node will be forced by other
microcontrollers and the external pull -down.

Valid State: 1.
Output = low-Z, logic-one voltage.

Output overrides external pull -down.
(But an output-bit fault in another
microcontroller results in a push-pull confli ct.)

Coverage Limitations: Double-Bit Errors
The previous techniques provide an output structure
which can tolerate power recycling for SEL mitigation
and also for single bit-errors in the output registers.
However, this latter characteristic provides only some
tolerance to SEU in the registers themselves; the
approach is not tolerant to double bit-errors in the port
registers (half of which result in incorrect output
state).

Latent faults in port registers can lead to double-bit
errors, a concern since static outputs are vulnerable
100% of operating time. Periodic scrubbing can be
used to detect errors but the error rate can be reduced
only so far; scrubbing too frequently increases the
probabilit y of introducing a common-mode “double-
bit error” (as noted previously) as a result of a single-
bit error during the scrubbing computation.

Scrubbing requires additional information to
determine what the correct output should be. The port
state may be stored redundantly in RAM or may be
determined by reading the port bits themselves. The
latter approach requires that both the output bit and
the configuration bit be independently readable, a
feature which is also valuable for validation

experiments to determine the probabilit y of I/O port
flip-flop upset. The PIC microcontrollers [2] have this
capabilit y, as do the Intel 87C196Kx, Jx and CA [1];
many older parts do not.

If the expected error rate after scrubbing is still t oo
high (e.g., for safety-criti cal functions), hardware
interlocks may be used wherein a criti cal function
must be enabled by an independent control signal.
Interlocks are particularly valuable for a two processor
(self-checking pair) configuration since a single-bit
error will always result in ambiguity if only two
devices are being voted. An I/O pin on each
microcontroller used as an interlock in such a system
will result in the equivalent of four microcontrollers
participating in the state vote.

Scrubbing may be avoided entirely in selected cases.
For some outputs, there is either no need to deal with
the problem or no practical way of dealing with it. As
an example, it is impractical to apply any form of
software fault-tolerance to, say, a 2400 Hz PWM
signal or a 9600 baud serial channel. Fortunately,
these frequently-modified signals are essentially self-
scrubbing; the short time before the state is driven to a
new state makes double bit-errors very unlikely.

16th Digital Avionics Systems Conference 8 28-30 October 1997 (pre-publication)

EXPERIMENTS
In order to force an outcome which will be valuable to
the spacecraft avionics community and to provide a
testbed for evaluating the effectiveness of the
techniques, some experimental designs will be built
which are representative of space system elements.
These application examples are suff iciently complex
to provide insights into real problems while
suff iciently simple that their implementation should
not distract from the investigation. The selected
applications will use different numbers of controllers
to implement their reliabilit y goals and thus provide
examples of different processor configurations
including a triple-modular redundant configuration, a
self-checking pair configuration which is designed for
block redundancy, and a distributed computing
system. The examples also span I/O requirements
from simple bi-level and analog voting to pulse train
generation, event timing, and serial communications.
Example problems to be considered include an inertial
measurement unit, a propulsion/pyro switching unit,
and a distributed sun sensor.

The prototypical example applications will use the
Microchip PIC16C73A [2]. Its functionality, while
relatively limited, is suff icient to implement the
chosen applications but these same limitations force a
frugal approach to fault-tolerance -- it would be very
easy to use all the I/O pins just implementing fault-
tolerance. Because this microcontroller family does
not provide access to its internal address and data
busses (unlike other famili es), any temptation to use
too much I/O and then reconstruct it externally is
removed. Finally, one of the authors knows of
avionics practitioners interested in this chip so results
of this research should be immediately valuable to
them.

CONCLUSIONS
We have described the initial steps toward a generic
approach to implementing cost-effective fault-
tolerance augmentations of commercial
microcontrollers in demanding applications such as
spacecraft control systems. The described
experimental designs, to be implemented in late 1997,
are expected to provide us with the insights to
determine the effectiveness of these techniques.

ACKNOWLEDGMENTS
This work was supported by the Jet Propulsion
Laboratory, Cali fornia Institute of Technology, under
a contract with the National Aeronautics and Space
Administration and by the Off ice of Naval Research,
under grant #N00014-96-1-0837 at the University of
Cali fornia, Los Angeles.

REFERENCES
[1] “8XC196Kx, 8XC196Jx, 87C196CA

Microcontroller Family User's Manual.” Intel
Corporation, June 1995.

[2] “PIC16/17 Microcontroller Data Book.”
Microchip Technology, Inc. 1995/1996.

[3] V. P. Nelson, B. D. Carroll . “Tutorial: Fault-
Tolerant Computing.” IEEE Computer Society
Press, 1987.

[4] S. G. Frison, J. H. Wensley. Interactive
Consistency and Its Impact on TMR Systems in
Dig. Int. Symp. Fault Tolerant Computing,
FTCS-12, June 1982, pp. 228-233.

[5] D.A. Rennels, D.W. Caldwell , R. Hwang, M.
Mesarina. “A Fault-Tolerant Embedded
Microcontroller Testbed.” 1997 Pacific Rim
Fault-Tolerance Conference, Taipei, Taiwan.
15-16 Dec 1997.

[6] “1996 New Releases Data Book, Volume V.”
Maxim Integrated Products, 1996.

