
A Java Framework for
Broadcast Encryption Algorithms

Master’s Thesis in Information Theory

by

Tobias Hesselius and Tommy Savela

LiTH-ISY-EX-3563-2004

Linköping 2004

A Java Framework for
Broadcast Encryption Algorithms

Master’s Thesis in Information Theory

at the Linköping Institute of Technology

by

Tobias Hesselius and Tommy Savela

LiTH-ISY-EX-3563-2004

Supervisor: Kristin Anderson
Examiner: Viiveke F̊ak
Linköping 2004-09-10

Avdelning, Institution
Division, Department

Institutionen för systemteknik
581 83 LINKÖPING

Datum
Date
2004-09-10

Språk
Language

Rapporttyp
Report category

ISBN

 Svenska/Swedish
X Engelska/English

 Licentiatavhandling
X Examensarbete

ISRN LITH-ISY-EX-3563-2004

 C-uppsats
 D-uppsats

Serietitel och serienummer
Title of series, numbering

ISSN

 Övrig rapport

URL för elektronisk version
http://www.ep.liu.se/exjobb/isy/2004/3563/

Titel
Title

Ett ramverk i Java för prestandatest av broadcast-krypteringsalgoritmer

A Java Framework for Broadcast Encryption Algorithms

Författare
 Author

Tobias Hesselius, Tommy Savela

Sammanfattning
Abstract
Broadcast encryption is a fairly new area in cryptology. It was first addressed in 1992, and the
research in this area has been large ever since. In short, broadcast encryption is used for efficient
and secure broadcasting to an authorized group of users. This group can change dynamically, and
in some cases only one-way communication between the sender and receivers is available. An
example of this is digital TV transmissions via satellite, in which only the paying customers can
decrypt and view the broadcast.

The purpose of this thesis is to develop a general Java framework for implementation and
performance analysis of broadcast encryption algorithms. In addition to the actual framework a
few of the most common broadcast encryption algorithms (Complete Subtree, Subset Difference,
and the Logical Key Hierarchy scheme) have been implemented in the system.

This master’s thesis project was defined by and carried out at the Information Theory division at
the Department of Electrical Engineering (ISY), Linköping Institute of Technology, during the first
half of 2004.

Nyckelord
Keyword
broadcast encryption, Subset Difference, Complete Subtree, Logical Key Hierarchy, simulation

Abstract

Broadcast encryption is a fairly new area in cryptology. It was first addressed in
1992, and the research in this area has been large ever since. In short, broadcast
encryption is used for efficient and secure broadcasting to an authorized group
of users. This group can change dynamically, and in some cases only one-way
communication between the sender and receivers is available. An example of this
is digital TV transmissions via satellite, in which only the paying customers can
decrypt and view the broadcast.

The purpose of this thesis is to develop a general Java framework for implemen-
tation and performance analysis of broadcast encryption algorithms. In addition to
the actual framework a few of the most common broadcast encryption algorithms
(Complete Subtree, Subset Difference, and the Logical Key Hierarchy scheme) have
been implemented in the system.

This master’s thesis project was defined by and carried out at the Information
Theory division at the Department of Electrical Engineering (ISY), Linköping
Institute of Technology, during the first half of 2004.

Acknowledgements

Thanks to our examiner Viiveke F̊ak and supervisor Kristin Anderson for giving
us this very interesting project, and for (hopefully) approving it. A special thanks
to Kristin for having the time and patience to answer all the questions we had
about this, for us, new area in cryptology.

We would also like to thank the Department of Electrical Engineering (ISY)
for providing an office and lots of free coffee for the duration of this project.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 2
1.3 Method . 2
1.4 Outline . 3

2 Theory 5
2.1 Introduction . 5
2.2 Stateless Subset-Cover Algorithms 7

2.2.1 Complete Subtree . 9
2.2.2 Subset Difference . 11
2.2.3 Security . 15

2.3 Stateful Algorithms . 16
2.3.1 Logical Key Hierarchy . 16

2.4 Complexity Analysis . 20

3 System Overview 23
3.1 Introduction . 23
3.2 Requirements . 23
3.3 Design . 24

3.3.1 Notable Classes . 26
3.3.2 Cryptography . 27

3.4 System Extension . 28
3.4.1 Adding an Algorithm . 28
3.4.2 Adding a Simulation . 29

3.5 External Dependencies . 29

4 Results 31
4.1 System . 31
4.2 Simulation . 31
4.3 Limitations . 33

i

4.4 Advantages . 39

5 Summary 41
5.1 Evaluation . 41
5.2 Applications . 41
5.3 Future Work . 41

References 43

A Glossary 45

B User Manual 47
B.1 Server . 47

B.1.1 Menu Bar . 48
B.1.2 Algorithm Display . 48
B.1.3 Control Panel . 49
B.1.4 Statistics Panel . 49
B.1.5 Client Panel . 49
B.1.6 Client . 50

B.2 Statistics Chart . 50
B.3 Simulations . 51

C Batch Files 53
C.1 Introduction . 53
C.2 Batch File Structure . 54
C.3 Batch Command Syntax . 54

C.3.1 beaf . 54
C.3.2 algorithm string . 55
C.3.3 users enumeration . 55
C.3.4 parameter number enumeration 55
C.3.5 parameters enumeration enumeration ... enumeration . . . 55
C.3.6 simulation . 55
C.3.7 do . 56

D Class Descriptions 57

ii

Chapter 1

Introduction

This chapter contains the background, purpose and method of this master thesis,
and an outline of the report.

1.1 Background

In 1992 [1], Shimson Berkovits introduced the subject of broadcast encryption,
and the subject was later formalized by Amos Fiat and Moni Naor in 1993 [2].
The subject of broadcast encryption has received much attention since then, and
several algorithms have been presented.

Broadcast encryption solves the problem how to efficiently do a secure broad-
cast to an authorized set of users. The set of users can change dynamically, for
example when a customer in a digital TV network starts or ends a subscription
to a channel. The network communication between the broadcaster and the users
are often one-way.

Another application of broadcast encryption is for content protection of record-
able media such as DVD (see [9]). In this case the content is stored on a medium
that may be accessed several years later. This situation does not allow any direct
communication between the recorder and the player. The content protection for
DVDs today uses a shared-secret scheme called CSS (Content Scrambling System).
This system was broken in 1999 when a person found the shared secret. If broad-
cast encryption had been used instead, this attack would not be as severe, since
the new DVDs would switch encryption keys and the attack would no longer be
effective.

When deciding on an algorithm for a specific scenario where broadcast encryp-
tion is needed, there is one important fact to remember: The efficiency of the
algorithms will vary depending on the conditions of the scenario. Some of the im-
portant factors can be estimated, like maximum number of users. Another factor

1

1.2. PURPOSE

is if the set of authorized users will be fairly static or change often (the mobility
of the users). It is therefore desirable to select the algorithm that has the best
performance for the specific scenario.

The space and time complexities for the algorithms can often be calculated.
But these estimates do not take into account how often users are added or removed
or how the users are organized. This might significantly affect the performance of
the algorithms.

To easily compare different types of algorithms it would be preferred to perform
practical simulations of each algorithm to see how they behave in each specific
scenario, and then compare the simulation output. This problem is the incentive
for this thesis.

1.2 Purpose

The purpose of this thesis is to provide an environment for implementation and
analysis of broadcast encryption algorithms. This Java framework should include
the basic building blocks needed to easily develop and test new algorithms or im-
prove already existing ones. The specific requirements for the system is presented
in section 3.2.

1.3 Method

This thesis work was initiated in February 2004. The guidelines for the project
were discussed and a preliminary timeline was constructed. It was decided that
this thesis would be complete in September 2004 at the latest, although most of
the work should be done before the summer.

The main phases for this project are:

1. Gathering of information and theoretical background.

2. Working out the requirements of the project.

3. Designing the system.

4. Implementing and testing the system.

5. Writing the report.

The writing of the report is an ongoing activity throughout the entire duration
of the project. It is also estimated that the design and implementation will go
through several iterations before reaching the final product. This will be the most
time-consuming part of the project.

2

1.4. OUTLINE

1.4 Outline

Chapter 1: Introduction explains the background and purpose of this thesis,
along with the planned demarcations and method.

Chapter 2: Theory provides the theory behind broadcast encryption and gives
a description of some of the most interesting algorithms.

Chapter 3: System Overview describes the system specifications and how it is
designed, and how to extend the system with new algorithms and simulation
types.

Chapter 4: Results shows how the final program looks and a few examples of
simulation output created by the program. The limitations and advantages
of this program is also discussed.

Chapter 5: Summary contains a brief evaluation of the results presented in this
report and summarizes the application areas and benefits of this system.
Ideas about future work is also mentioned.

3

1.4. OUTLINE

4

Chapter 2

Theory

This chapter contains an overview of the broadcast encryption area in general, and
more detailed descriptions of the algorithms implemented in this system.

2.1 Introduction

Broadcasting means transmitting information through a medium that is accessible
to multiple receivers. A radio transmission for instance uses air as a medium,
and everyone with a radio receiver is able to listen to the broadcast. Usually
this communication is one-way, meaning that the receivers are not able to send
anything back to the broadcast center.

In some applications it is desirable to secure the content of the broadcasted
message so that only the authorized users are able to read it. In broadcast encryp-
tion theory these users are said to be privileged, and the non authorized users are
said to be revoked. The terms receivers and users are sometimes used interchange-
ably. The difference is that all the receivers can access the broadcast message, but
only the privileged users can access the content of the message.

The broadcast message is usually divided into a header and a body part. The
body contains the protected content and the header contains information needed
to access the content (key material and user memberships). The header is the
most important part when analysing these algorithms.

The most simple broadcast encryption scheme would be to encrypt the message
once for each privileged user and then broadcast all encrypted messages. This
is obviously a very inefficient scheme in terms of processing time and broadcast
message size. The aim of all intelligent schemes is to reduce the processing time at
both the broadcast center and at the receivers, to reduce the broadcast message
size and to reduce the storage size at the receivers. The broadcast message size
is dependent on the number of encrypted messages it contains, but also on the

5

2.1. INTRODUCTION

size of the header for the broadcast message. The header often contains critical
information such as encrypted keys and information about which receivers can
decrypt the message.

A broadcasting algorithm encrypts a message so that multiple users can decrypt
it. This can be done in many ways depending on which algorithm is used. To send
a message to multiple users means grouping them together. The way in which this
is done is critical to the performance of the algorithm. The method of grouping
might be dynamic or predefined. In the second case, performance will be affected
by how the privileged and revoked users are ordered within the set. It is thus very
important that grouping is done in an intelligent manner.

In the dynamic case, one way to do this is to build a key graph that is a set
of encryption keys ordered in a graph (see section 2.3.1 for more details). The
authorized users are added to this graph, and the keys are distributed. When
a user is added or removed from the authorized set a rekeying strategy is used,
changing the appropriate keys in the graph and transmitting the new keys to
the subscribed users. The strategy is constructed in a way so that it guarantees
that the newly added user can decrypt the following transmissions, and that any
removed user’s keys are made unusable. This is called the Logical Key Hierarchy
scheme and is described later in this chapter.

In many cases, one does not want to force the user to be connected to the
broadcast network at all times. In the example of digital TV, the user must still
be able to watch the subscribed channels after the receiver has been turned off
during the night or unplugged from the network for a period of time. This means
that the broadcast center cannot send rekeying information when a user is added
or removed, since this information might be lost for some receivers that require
this information to function properly.

This is the same problem we get when the receivers are stateless, meaning that
the receivers cannot update their state (or keys) between sessions. All information
needed to decrypt the message (given the information in the current broadcast) has
to be stored in the receivers from start. This is again the case for many digital TV
networks, where the user usually receives a smartcard containing the decryption
keys when starting a channel subscription for the first time.

The storage size requirement for the receiver is a very important factor in a
good broadcast encryption scheme. This is because the receiver’s secure storage
space is often very limited, e.g the memory capacity of a smartcard, or the avail-
able memory in a mobile telephone. At the same time, many of the applications
for broadcast encryption require the receivers to store a large number of keys.
Fortunately there are algorithms to effectively deal with these problems.

6

2.2. STATELESS SUBSET-COVER ALGORITHMS

2.2 Stateless Subset-Cover Algorithms

The algorithms that will be presented here are stateless, which means that the
initialization step for the receivers only needs to be performed once. After that,
the receivers will be able to decrypt any message, as long as they are privileged,
without having to update any of their stored information.

Two algorithms will be explained in this chapter: Complete Subtree and Subset
Difference. These algorithms are flexible with respect to the number of revoked
users, r, which means that the storage size at the receiver is not a function of r.
This is an important characteristic of the algorithms because it allows dynamic
changes in user access rights without having to update the receivers.

It has also been proven that the Subset Difference algorithm offers a substantial
improvement over other methods (see section 2.4) in terms of efficiency. This
improvement is due to the fact that the key assignment is computational rather
than information-theoretic. For a more detailed discussion and proof see [3].

These algorithms give a pre-defined grouping of the users. Each group is called
a subset, S, and a user can be a member of several subsets. To distinguish these
subsets each subset is assigned an index. In the Complete Subtree algorithm this
index is simply an integer, i, refering to a node in a binary tree. In the Subset
Difference algorithm this index is a pair of integers, (i, j), refering to two nodes.

The cover, C, is defined as the set of subsets that precisely contain all the
privileged users, U , and none of the revoked users, R. The terms user and receiver
will be used interchangeably in the following sections. The subsets in a cover are
always disjoint, which means that a user belongs to at most one subset in the
cover. This is not essential for the algorithms to work, but rather a consequence
of how the subsets are organized, as will be seen later.

The cover and set of privileged users can be expressed as shown below. The
notation is for the Complete Subtree algorithm but can easily be rewritten to
comply with the Subset Difference algorithm.

C = {Si1 , Si1 , . . . , Sim}

U =
m⋃

j=1

Sij

Each subset is associated with a secret key, L. This key is only known to those
users that belong to that subset. The initialization step encompasses sending the
secret keys to the receiver and these keys make up the secret information stored at
the receiver. Actually the secret information does not have to consist of the keys
directly, rather it must contain the information needed to be able to deduce all the
keys, which might be much more efficient (as in the Subset Difference algorithm).

7

2.2. STATELESS SUBSET-COVER ALGORITHMS

Encryption Functions

All of these algorithms share the need for two basic encryption functions. The
first function is denoted FK(M) and is used to encrypt the message, M , which is
the content of the broadcast message. This message may be of substantial length,
which suggests that F should be very fast. A good choice is to let F be a stream
cipher.

The second function is denoted EL(K) and is used to encrypt a secret key, K.
These keys are short and of constant length, which means that a slower encryption
function might be used for E. Furthermore, usually only one decryption is needed
at the receiver. Typically, a block cipher is used for E.

Steiner Tree

To find the cover for a set of privileged users, these algorithms use the Steiner tree
[10] for the set of revoked users. This is simply the tree stripped from all privileged
users. It is created by marking the edges between the revoked users and the root
node. In figure 2.1 the revoked users are marked by dark circles, the privileged
users are marked by grey squares and the Steiner tree is drawn with a dashed line.

Figure 2.1: Steiner tree for revoked users.

8

2.2. STATELESS SUBSET-COVER ALGORITHMS

2.2.1 Complete Subtree

In this algorithm the subsets can be graphically represented as sets of nodes in a
binary tree. Each user is a leaf in the tree. A subset Si with node index i is then
defined as containing all users that are descendants of this node. In figure 2.2 five
users are revoked, which results in a cover that contains four subsets: S3, S9, S21

and S6. The privileged trees are marked by a light gray color.

Figure 2.2: Steiner tree and subset-cover for the Complete Subtree algorithm. The
users at node 22-26 are revoked.

The tree is always complete (all the leaves are at the same depth, and all
internal nodes have degree 2), so the number of leaves N in the tree is always a
power of two. This is the upper bound for the number of users in the system. Of
course the system might only utilize a portion of this. The total number of subsets
is 2N −1 and each subset Si is specified by an index i ∈ {0, ..., 2N − 2} (see figure
2.2).

Initialization

To begin with, the broadcast center must generate random keys for each subset in
the tree. Each user is then supplied with its secret information, through a private
back-channel. For example, this secret information might be sent to the user on a
smartcard or coded into the receiver when it is manufactured.

A receiver must be able to deduce all the secret keys for the subsets it belongs
to, from the secret information it has been given from the broadcast center. In
the Complete Subtree scheme the secret information is simply the keys for all the

9

2.2. STATELESS SUBSET-COVER ALGORITHMS

subsets the user belongs to, in other words, all the subsets from the leaf to the
root node. The size of the secret information is therefore O(log(N) + 1).

The Steiner tree for the set of revoked can easily be used to generate the cover:
simply add all the subsets that are at distance one from the Steiner tree graph.
These subsets do not belong to the Steiner tree and therefore all users of those
subsets must be privileged.

Encryption

The purpose of encrypting the message is that only the privileged users should be
able to read it. These users are all enveloped by the subset-cover. This means
that they are a member of one subset in the cover and therefore have the key to
that subset. The broadcast center uses these keys to encrypt the message in the
following way:

1. Choose a random session key K and encrypt the message using an encryption
function FK(M).

2. For each subset in the cover, encrypt the session key using an encryption
function ELi

(K), where Li is the secret key associated with that subset.

3. Add the encrypted keys along with their indexes to the broadcast message
header and the encrypted message to the broadcast message body.

Only the privileged users will be able to decrypt the session key since none of
the revoked users have a subset key in the cover.

Decryption

Decryption is a simple matter since the receiver has stored all the keys that it needs
to decrypt. The only problem is to search if the user belongs to any subset specified
in the broadcast message header. When a subset is found the corresponding key
can be retrieved from the secret information in constant time. The decryption can
be divided into these steps:

1. Search the header for a subset Si that the user belongs to.

2. Retrive the subset key Li from the secret information.

3. Decrypt the session key K using E−1
Li

(ELi
(K)) = K.

4. Decrypt the message using F−1
K (FK(M)) = M .

10

2.2. STATELESS SUBSET-COVER ALGORITHMS

One way to check if the user belongs to a subset is to trace the path from the
user to the root, and check if any of the subsets along the path are in the header.
Another more efficient way is to represent the index by a binary bitset , where a
left node is represented by a 0 and a right node is represented by a 1. For example
the subset with index 9 would be represented by the bitset 010. To check if a user
belongs to a subset, simply check if the subset bitset is a suffix in the user bitset.

2.2.2 Subset Difference

This algorithm has many similarities with the Complete Subtree algorithm. It may
also be represented as a binary tree with the users as the leaves, although as will
be shown, this algorithm is more efficient in describing the subset cover. This
is mainly because a user may belong to substantially more subsets than in the
previous algorithm.

In the Subset Difference algorithm the subsets are defined by two nodes in the
tree. The subset Si,j is defined as containing all users that are descendants of node
i, but not descendants of node j. This can be written as Si,j = Si \ Sj.

Figure 2.3: Subset-cover for the Subset Difference algorithm. The users at node
18 and 20-25 are revoked.

In figure 2.3 seven users are revoked, which results in a cover that contains four
subsets: S3,18, S9,20, S2,5 and S12,25. The subsets can be seen as shaded triangles
in the tree. The light gray color marks a privileged tree and the dark gray color
marks a revoked tree.

11

2.2. STATELESS SUBSET-COVER ALGORITHMS

Labels

The number of possible keys in this algorithm is substantially larger than in the
previous algorithm, O(N) instead of O(log(N)). In general this amount of keys
is impossible to store directly at the receiver. Instead a structure called label is
introduced. Each node is associated with a label, I, and all possible subset keys
can then be derived from these few labels.

A label is a random set of bits that are generated during the initialization
step of the algorithm (just like the keys in the Complete Subtree algorithm are
generated).

To derive the subset keys a pseudo-random sequence generator, G : {0, 1}n →
{0, 1}3n, is used. This generator is a strong one-way function that triples the
input length. It is crucial for the security of the algorithm that this function is not
invertible. The output of this function is divided into three parts: left, right and
middle. The left and right parts are called intermediate labels, denoted Ii,j, and
are used when initializing the receivers. For simplicity, the generator is sometimes
seen as a combination of three separate functions: GL, GR and GM , producing the
left, right and middle part of the output.

When generating a subset key the generator is applied to a label in a recursive
manner. In figure 2.4 the procedure of generating the key for subset S1,9 and S2,12

is illustrated (with two separate notations). The label for node 2, I2, is used to
start with. It is passed through the generator G to produce the output W2. Since
node 12 is a descendant of the left child of node 2, the left part of W2 is passed
through the generator to give the output W2,5. In the next iteration, node 12 is a
descendant of the right child of node 5, so the right part of W2,5 is used to generate
the output W2,12. To get the key L2,12, the middle part of W2,12 is extracted.

This reduces the amount of information to store in the receivers since one label
may be used to derive all subset keys that originate from that label.

Initialization

Creating the cover is slightly more complex than in the Complete Subtree algo-
rithm. It requires a recursive algorithm that operates on the Steiner tree. The
subsets can be traced in the tree by starting at a node that has out-degree one, and
ending at a node that has an even out-degree (zero or two). This creates chains
in the tree that, for a subset Si,j in the cover, start at node i and end at node j.

In figure 2.5 these chains circle the four subsets in the cover. For example, the
chain starting at node 2 and ending at node 5 creates the subset S2,5. The Steiner
tree at node 2 has an out-degree of one and the node at 5 has an even out-degree.

The broadcast center must also randomly select labels for all the nodes in the
tree. Then it must supply the receivers with the labels they need to derive all the

12

2.2. STATELESS SUBSET-COVER ALGORITHMS

Figure 2.4: Key and label generation for the Subset Difference algorithm.

subset keys for the subsets they belong to. This must be done in a way so that the
security of the algorithm is not compromised, in other words, the receiver must
not be able to derive keys for subsets that it does not belong to. For example, the
user at node 11 in figure 2.4 must not receive label I2 since it could then derive
the subset key L2,11.

In figure 2.6 all the intermediate labels that the user at node 11 need are
marked by dashed lines and the nodes just outside the path to the root are circled.
These labels make up the secret information for the user at node 11. Since G is
irreversible the user cannot obtain the original node labels from these intermediate
labels. In the general case, if a user u belongs to a subset Si, then that user must
be able to derive all subset keys for subsets of the form Si,j, where u /∈ Sj. By
giving the user the intermediate labels of the form Ii,j the user can derive all the
keys it could possibly need.

Encryption

The encryption scheme is exactly like in the Complete Subtree algorithm, except
that the subsets and keys are indexed by the pair (i, j). The encryption of a
message M can be divided into these steps:

1. Choose a random session key K and encrypt the message using an encryption
function FK(M).

13

2.2. STATELESS SUBSET-COVER ALGORITHMS

Figure 2.5: Steiner tree and subset-cover for the Subset Difference algorithm.

2. For each subset Si,j in the cover, encrypt the session key using an encryption
function ELi,j

(K), where Li,j is the secret key associated with Si,j.

3. Add the encrypted keys along with their indexes to the broadcast message
header and the encrypted message to the broadcast message body.

Decryption

The decryption step is exactly like in the Complete Subtree algorithm, except
that finding the subset key is a little more complicated. Once the user has found
which subset it belongs to the key for that subset must be derived from its secret
information. These means finding the intermediate label and deriving the key from
this label, as explained in section 2.2.2. The decryption can be divided into these
steps:

1. Search the header for a subset Si,j that the user belongs to.

2. Find the intermediate label in the secret information from which to derive
the subset key.

3. Derive the subset key Li,j from intermediate label.

4. Decrypt the session key K using E−1
Li,j

(ELi,j
(K)) = K.

5. Decrypt the message using F−1
K (FK(M)) = M .

14

2.2. STATELESS SUBSET-COVER ALGORITHMS

Figure 2.6: Secret labels for user at node 11 in the Subset Difference algorithm.

2.2.3 Security

The security of these two algorithms is said to be broken if an adversary that
is not a privileged user is able to decrypt a broadcast message. The adversary
may collect the secret information of all revoked users in his attempt to break the
scheme. He may also be able to influence the choice of messages encrypted (chosen
plaintext). Even with this kind of attack it is improbable that an adversary can
distinguish an encryption of a chosen plaintext from an encryption of a random
string (assuming a good choice of encryption functions F and E).

For the security of these algorithms to hold they must fulfill a property called
key-indistinguishability. This means that a subset key L cannot be distinguish from
a random key, by all the revoked users. This is trivially true for the Complete
Subtree algorithm, since each subset key is chosen at random. For a detailed
discussion on why this implies the security of the Subset Difference algorithm, see
[3].

During the initialization step the secret information must be delivered to the
users through a secure back-channel. If an adversary obtains this information then
the security of the algorithm is temporarily compromised until the affected users
have been revoked.

15

2.3. STATEFUL ALGORITHMS

2.3 Stateful Algorithms

As opposed to the stateless algorithms, a stateful algorithm requires that the
receivers have to be able to update the stored keys, usually when users are added
or removed from the privileged user set. This usually also means that an privileged
receiver has to be connected to the broadcast network at all times, in order not to
lose any key update messages that might be sent. This is the case with the Logical
Key Hierarchy scheme that is explained below.

2.3.1 Logical Key Hierarchy

The Logical Key Hierarchy (LKH) scheme was first presented in 1997 by a group
led by Chung Kei Wong [5]. The basic idea of LKH is to build a graph that contains
a set of encryption keys (this graph is called a key graph), and add the privileged
users to it. When adding or removing a user, the keys in the graph are updated
in a way that guarantees that a newly added user cannot use the obtained keys to
decrypt previous broadcasts (called backward access control), and that a removed
user’s keys can no longer be used for decrypting future broadcasts (called forward
access control). Each time the key graph is reconstructed the newly changed keys
are distributed to a subset of the users. This also means that as opposed to the
Complete Subtree and Subset Difference algorithms, the LKH scheme does not
work with stateless receivers.

Below is a more detailed description of how the key graph is constructed and
how adding and removing a user is done.

Structure of the Key Graph

The key graph is a directed acyclic graph with two types of nodes: the u-nodes
representing users and the k-nodes representing keys. Each k-node is assigned a
unique random key. At first the graph does not contain any nodes except for the
root node. More nodes are added dynamically when a user wants to join the graph,
as explained below.

For simplicity we assume that the graph is constructed as a tree with degree d.
The tree degree is the maximum number of incoming edges of a node in the tree.
An example of this can be seen in figure 2.7.

Adding and Removing Users

The broadcast center that handles the graph is called the server. When a user
sends a join request to the server, the server and user first authenticate each other
using a protocol such as SSL. If the user is authenticated and accepted to join

16

2.3. STATEFUL ALGORITHMS

Figure 2.7: A key tree of degree 3 with 9 users, thus the tree is full. ui represents
user i, and kui is the user’s individual key.

the group, a u-node and the corresponding k-node that contains the individual key
(that will only be known to the server and this user, see figure 2.7) are created. This
individual key is then securely transmitted to the user, for example by broadcasting
it encrypted with the user’s public key.

The next step is to find the joining point (the node to which the individual key
is added as a child) of the new user. If there is a k-node that has room for more
children (the node degree is less than the tree degree), this node is selected as the
joining point. If not, a new subtree is created and added to the key tree as shown
in figure 2.8. After the joining point has been decided, the new user is added to
that node as a child.

The new user should then be given all keys in the path from (and including) the
root to the joining point. Since each user will need to store all keys from the root
to the individual key, the required storage space is O(h), where h is the number of
nodes from the root to the individual key (the height of the tree). However, using
the existing keys from the key tree will allow the new user to decrypt previous
broadcasts. To avoid this, all k-nodes on the path from the joining point to the
root have to be assigned new keys. After generating new keys the broadcast
center needs to distribute all modified keys to the users that are descendants of
the modified k-nodes. This will also include the newly added user. By doing this,
backward access control is guaranteed.

17

2.3. STATEFUL ALGORITHMS

Figure 2.8: The previously full key tree extended with one more user. The new
nodes and edges are dashed.

To accomplish this the server sends rekeying messages to the users, containing
one or more encrypted keys. The chosen rekeying strategy decides how to do
this. Some examples of rekeying strategies are user-oriented rekeying, key-oriented
rekeying and group-oriented rekeying. These strategies differ in how to construct
and send the rekey messages, primarily in what key to use when encrypting the
modified keys. In short, the differences are as follows:

User-oriented rekeying constructs a rekey message for each user, that contains
exactly the new keys needed by that user. The keys are encrypted using a
key held by the user, and then distributed to that user.

Key-oriented rekeying encrypts each key individually. All updated keys are
encrypted with each of its children and distributed to the user set of that
child. The user set of a key is the set of users that share that key.

Group-oriented rekeying constructs a single rekey message containing all up-
dated keys encrypted with the child nodes’ keys. This message is then dis-
tributed to the entire group.

See [5] for more details on these strategies.

18

2.3. STATEFUL ALGORITHMS

Removing a user is done in a similar way. First the corresponding u- and k-
nodes are removed from the graph. To prevent the removed user from decrypting
future broadcasts, new keys are calculated for all k-nodes in the path from the
leaving point to the root. These new keys are then distributed to the remaining
users in the same way as described above. This guarantees forward access control.

Individual vs Batch Rekeying

The above algorithm for adding and removing users from the key tree is called
individual rekeying. The name comes from the fact that rekey messages are sent
after each individual join/leave. However, individual rekeying has two problems.
The first problem is that this algorithm is very inefficient when doing a large
amount of join/leaves, since rekey messages are sent after each request. This is
often not needed, especially if the message broadcasts happen rarely compared to
the frequency of join/leave requests. The other problem is an out-of-sync problem
between keys and data (see [7] for a discussion about this problem).

A solution for the first problem would be to collect all join/leave requests that
arrive over a period of time (the rekey interval), and process all of them at the
same time. Rekey messages are then created from the resulting key tree, after
all requests have been processed. This reduces the number of rekey sessions from
J +L (the number of joining and leaving users) to 1. The batch rekeying algorithm
presented in [7] does this by defining a set of rules for how to add and remove users
from the tree, and by using node markings to decide what node keys needs to be
updated. This algorithm is described below:

• J = L: All leavers are replaced by the joiners. All nodes from the replace-
ment locations to the root are marked UPDATE.

• J < L: Replace the J shallowest leavers with the J joiners. Mark all nodes
from the replacement locations to the root UPDATE. Mark the remaining
leavers DELETE. If a node’s children are all marked DELETE, mark it
DELETE as well. Mark all the nodes lying on the path from a node marked
DELETE to the root UPDATE.

• J > L = 0: Find a shallowest leaf node v and remove it from the tree. Create
a new tree T that has all joiners and v as leaf nodes. Attach this tree to the
old location of v. Mark all T ’s internal nodes NEW and mark all the nodes
from the root to the parent of v’s old location UPDATE.

• J > L > 0: Replace all leavers with joiners. Find the shallowest leaf node
v of the replaced nodes and remove it from the tree. Construct a new tree
T that has the remaining joiners and v as leaf nodes. Attach the tree to the

19

2.4. COMPLEXITY ANALYSIS

old location of v. Mark all T ’s internal nodes NEW and mark all the nodes
from the root to the parent of v’s old location UPDATE.

After doing this, all nodes marked DELETE are removed from the tree. Rekey-
ing messages are then created according to the selected rekeying strategy, using
the nodes marked NEW or UPDATE. For examples and more discussions about
this algorithm, see [7].

Some relaxed versions of batch rekeying exists, for example the simple-batch
algorithm in [8]. This algorithm offers nearly the same performance as the batch
rekeying, while having a less complex implementation.

Encryption/Decryption

When broadcasting a message to all privileged users, the message can simply be
encrypted with the root key. Since the authorized users (and only those) already
have the current root key from the rekeying messages, they can decrypt the mes-
sage without doing any additional computation. Thus the complexity for both
encrypting and decrypting a broadcast is O(1). In the same way, it is also possible
to encrypt a message to only a group of users that share a group key by encrypting
with this shared key.

Security

One problem with using rekey messages is that a user could masquerade as the
server and send unauthorized rekeying messages. To prevent this, a message digest
such as MD5 can be calculated for each rekeying message and each digest signed
with the server’s private key. The signed digest is then transmitted along with the
rekeying message. However, this would require as many digital signature opera-
tions as there are messages. Since digital signature operations are computationally
expensive [6], it would be preferred to reduce the amount of these operations in
some way. Wong, Gouda and Lam presented in [5] and [6] techniques to reduce the
number of digital signatures to one per set of rekeying messages, greatly improving
performance, especially for user- and key-oriented rekeying.

2.4 Complexity Analysis

In table 2.1 the efficiency of a few of the most common encryption schemes are
listed. The most important factors when evaluating a broadcast encryption scheme
are broadcast message size, storage space at the receivers (sometimes also at broad-
cast center) and processing time.

20

2.4. COMPLEXITY ANALYSIS

The first trivial scheme simply encrypts one time for each privileged user. The
user only needs to store one secret key. The second trivial scheme assumes the user
has a key for every possible combination of users. The k-resilient scheme was first
introduced by Fiat and Naor in 1993 and is secure from an attack from a coalition
of k users (see [2]). The Layered Subset Difference scheme is an extension of the
Subset Difference scheme and can handle very large user sets (see [4]).

Scheme Message Size Storage Size Processing Time

Trivial 1 O(N − r) O(1) -

Trivial 2 O(1) O(2N) -

k-Resilient[2] k2log2(k)log(N) klog(k)log(N) -

Complete Subtree O(rlog(N
r
)) O(log(N)) O(log(log(N)))

Subset Difference O(r) O(1
2
log2(N)) O(log(N))

LSD[4] O(r/ε) O(log1+ε(N)) O(log(N))

LKH (Key Tree) O(1) O(h) O(1)

NP[13] O(t) O(1) O(t)

CS+[14] O(rloga(
N
r
) + r) O(1) O(2aloga(N))

SD+[14] O(r) O(1) O(N)

Table 2.1: Complexities of different broadcast encryption schemes. N is total
number of users, r is number of revoked users, k is size of adversary coalition, ε is
small positive value, d is degree of key tree, t is threshold of collusion, a is arity of
tree in Asano scheme

As seen in table 2.1, the Logical Key Hierarchy scheme has lower complexity
than CS and SD. However, these complexities are only for the actual message
broadcast and does not include the LKH rekeying messages. The average cost
per join/leave operation for LKH when using individual rekeying in a key tree
of degree d is O(d/(d − 1)) (see [5] for the theory behind this). If the set of
authorized users is fairly static (the users have low mobility), LKH should give
better performance. In a more dynamic case the number of rekeying messages will
increase, thus increasing the overall complexity of LKH. The task to compare the
effectiveness of the algorithms is much more complex in this case, see [11] and [8]
for practical performance comparisons between stateless and stateful algorithms.

21

2.4. COMPLEXITY ANALYSIS

22

Chapter 3

System Overview

This chapter describes the development from specification to implementation and
gives an overview of the design and graphical user interface of the system. The
chapter ends with a detailed description of how to extend the system.

3.1 Introduction

The purpose of this project is to develop a framework in which different broad-
cast encryption algorithms can be implemented and tested. The system currently
implements all the algorithms discussed in the previous chapter. It is an essen-
tial criterion for the system that it can be extended and handle a wide array of
algorithms.

One of the requirements for this project was that the system should be imple-
mented in Java. The entire project is implemented in a Java package named beaf,
which stands for Broadcast Encryption Algorithm Framework.

The idea of this framework is to provide a class hierarchy that can be used as
a basis to develop new algorithms. In fact, to add a new algorithm to the system
the developer only needs to implement two classes. The framework also provides
an application environment with a graphical user interface. Through this interface
the developer is presented with the basic functionality needed to interact with the
algorithms.

3.2 Requirements

In the beginning, the purpose of this project was to create a framework for im-
plementing algorithms and perhaps interacting with the algorithms. This did not
seem adequate since it did not give much detailed information about the algo-
rithms. The most interesting aspects of a broadcast encryption algorithm are its

23

3.3. DESIGN

security, efficiency, resource requirements, and limitations. The system should
therefore provide feedback on these properties.

All the algorithms share the concept of multiple users that may or may not be
privileged. Handling these users and defining which ones are privileged has also
been made an integral part of the system.

The following is a list of the requirements that the system was designed for:

• It should be possible to simulate a broadcasting environment with a broad-
casting center and receivers.

• It should support a graphical representation of the algorithms.

• It should be possible to define which users are privileged and which ones are
revoked.

• It should be possible to dynamically modify the parameters for the algo-
rithms.

• It should be possible to gather statistical information on the algorithms.

• It should be possible to display the statistical information in a graph.

• It should be possible to run simulations on the algorithms with predefined
input.

• It should contain implementations of the Complete Subtree, Subset Differ-
ence, and Logical Key Hierarchy algorithms.

3.3 Design

In order to support a broad array of algorithms the system must be very general.
At the top of the hierarchy is the base class for all broadcast encryption algorithms,
the BroadcastEncryptionAlgorithm class. This class is subclassed to specialize the
behavior of the algorithm. As is shown in figure 3.1, the class BinaryTreeAlgorithm
is a subclass to BroadcastEncryptionAlgorithm, and holds some common function-
ality for the classes CompleteSubtreeAlgorithm and SubsetDifferenceAlgorithm.

The server and client side versions of the algorithms are implemented in dif-
ferent classes to better separate the encryption and decryption functionality. The
client side functionality of the algorithms are all implemented in subclasses of
BroadcastDecryptionAlgorithm, see figure 3.2.

The framework uses polymorphism to easily handle the different algorithms.
This is a necessary design decision since all the algorithms must be run in the same

24

3.3. DESIGN

Figure 3.1: The structure of the algorithm classes, server side.

Figure 3.2: The structure of the algorithm classes, client side.

25

3.3. DESIGN

environment. This is what makes the system flexible: Adding a new algorithm does
not change the existing framework.

To provide algorithm-specific user interfaces, the framework uses a document-
view model between the algorithm and it’s user interface. This is done by allowing
the algorithms to subclass the AlgorithmPanel class and implement the specific
user interface functionality to it, see figure 3.3. The AlgorithmFactory handles the
coupling of the algorithm and it’s panel, to allow for easy construction of both
objects.

Figure 3.3: The structure of the algorithm user interface classes.

The broadcasting scenario implies a server/client architecture. The main ap-
plication is simulating the broadcast center, or server side of the connection. The
client application may also be run to simulate a receiver, although this is not
necessary for the main application to function.

3.3.1 Notable Classes

In this section a few of the most important classes are presented and discussed. A
more detailed description of the existing classes are provided in appendix D.

BroadcastEncryptionAlgorithm

This is the base class for all algorithms. It declares the functions that must be
implemented in its descendants. For instance, algorithms must implement the
initialize method, which is called to initialize the algorithm and send essential
information to the clients, before sending any broadcasts. The algorithms must
also implement broadcast, which sends a broadcast message to all clients.

26

3.3. DESIGN

BroadcastDecryptionAlgorithm

This base class is used for implementing the client side version of an algorithm,
and is used by the Client class for decrypting the messages sent by the server.

AlgorithmPanel

This is the base class for representing the algorithms in a graphical interface. By
subclassing this class, an algorithm can show algorithm specific information and
allow user interaction with the algorithm.

AlgorithmFactory

This is a factory class for generating an instance of an algorithm, together with
the corresponding AlgorithmPanel.

Server and Client

The Server and Client classes use TCP/IP sockets to establish direct communica-
tion. All connected clients are registered at the server, so that when an algorithm
does a broadcast, it is automatically sent to all connected clients.

Statistics

The Statistics class is used for storing generated performance data (statistics)
from algorithms and simulations. One example of data that is being generated
and reported by the CS and SD algorithms is the number of subsets for a specific
user configuration. These statistics can later be used for complexity analysis.

The application contains one instance of this class, and the data reported to
this object is presented in the statistics panel and chart, see appendix B.

Simulation

The Simulation class has several methods for performing different types of sim-
ulations on the algorithms. This includes a batch file mode that is capable of
performing a series of simulations with given parameters. See appendix C for a
description of the batch files.

3.3.2 Cryptography

This application uses the standard Java packages java.security and javax.crypto for
encryptions and other cryptographic operations. In addition to the standard Java

27

3.4. SYSTEM EXTENSION

API documentation, see [12] for a good overview of these packages and examples
on how to use them.

These standard packages lack some encryption algorithms, for example AES,
but the existing algorithms (DES and 3DES among others) were considered enough
for this system. If other algorithms are required in the future, some external
package supporting those algorithms will have to be provided.

3.4 System Extension

This section describes how some of the probable extensions of the system should
be done.

3.4.1 Adding an Algorithm

The system can easily be extended with new algorithms. To do this, the following
steps should be performed:

1. Subclass BroadcastEncryptionAlgorithm and implement the server side func-
tionality of the algorithm.

2. Subclass AlgorithmPanel and implement the algorithm specific user interface
(this is an optional step).

3. Modify AlgorithmFactory to be able to create instances of the above classes.

4. Subclass BroadcastDecryptionAlgorithm and implement the client side func-
tionality of the algorithm (if decryption capability is wanted).

5. Modify Client to be able to handle the new decryption algorithm.

Below is a more detailed description of how to do the above steps. All created
classes should be put in a specific package for that algorithm, like beaf.lkh.

Subclass BroadcastEncryptionAlgorithm

This is the major part of the implementation of an algorithm. Subclass Broad-
castEncryptionAlgorithm and implement the server-side functionality of the al-
gorithm. The provided interface includes retrieval and setting of algorithm pa-
rameters, updating the algorithm with new user configurations, and methods for
server-client communication. See the Javadoc for details on what methods to
implement, and functional descriptions of those methods.

28

3.5. EXTERNAL DEPENDENCIES

Subclass AlgorithmPanel

If any type of algorithm specific in- or output is wanted in the user interface,
subclass AlgorithmPanel and implement the interface to it. The corresponding
algorithm object will be provided during construction to allow the panel to com-
municate with the algorithm directly.

Modify AlgorithmFactory

Modify the AlgorithmFactory class to be able to create objects of the above al-
gorithm and panel classes. The methods to modify are getInstance and getAvail-
ableAlgorithms.

Subclass BroadcastDecryptionAlgorithm

Subclass the BroadcastDecryptionAlgorithm class and implement the client-side
behaviour of the algorithm. See the Javadoc for details on what methods have
to be implemented. In short, the algorithm will receive control and broadcast
messages sent by the server-side algorithm, and it is up to this class to process
the algorithm specific messages (server-client control messages are automatically
filtered and not visible to this class).

Modify Client

Modify the algorithm allocation code in the process method of the Client class to
be able to allocate the newly created BroadcastDecryptionAlgorithm object.

3.4.2 Adding a Simulation

Additional simulation types can be added to the system. To do this, implement
new methods (and corresponding working thread) in the Simulation class. Please
see the existing random method and its working thread (RandomThread) for de-
tails.

3.5 External Dependencies

The system uses two non-standard libraries to improve the usability and reduce
the development time. These packages are:

JFreeChart [16], a library for chart drawing. This is used by the Statistics-
ChartFrame class to draw the actual chart. It can also generate PNG-image
output of the charts.

29

3.5. EXTERNAL DEPENDENCIES

EPSGraphics [17], a library for generating EPS output from a subclassed
Graphics2D-object. This is used by the StatisticsChartFrame class in con-
junction with the JFreeChart classes to generate EPS output of the charts.

Both of these libraries are published under the GNU General Public Licence.

30

Chapter 4

Results

This chapter shows how the final program looks and a few examples of simulation
output created by the program. Also the major limitations and advantages of this
program is discussed.

4.1 System

The program (see figure 4.1) looks like a typical windows application. From the
menu it is possible to choose which algorithm to display, the size of the algorithm
and other parameters. A simulation can also be started from the menu on the
current algorithm or from a file. This will generate statistics data which can be
viewed in a special chart window.

In the main GUI of the application the algorithm is displayed and several
buttons to interact with the algorithm are available depending on the algorithm
chosen. The general usage of a broadcasting algorithm is to broadcast data to its
clients and this can be done by clicking the broadcast button. A message will then
be shown in the client window telling the user if the message was received and
decrypted correctly.

The algorithms that are implemented allows the user to interact with them.
For instance, it is possible to add/remove users to/from the algorithm and see how
the algorithm updates it’s structures.

See appendix B for a more detailed description of the user interface and program
functionality.

4.2 Simulation

A few examples of output generated by the program are shown in figures 4.2, 4.3,
4.4, 4.5 and 4.6. They are generated by executing a broadcast scenario in which

31

4.2. SIMULATION

Figure 4.1: The main GUI of the system.

32

4.3. LIMITATIONS

the broadcast center sends messages to one receiver. During this process statistics
about the algorithm is gathered.

In figure 4.2 the cover sizes for the Complete Subtree algorithm and the Subset
Difference algorithm are compared. In these algorithms this is the same as the
message header size. The message size should be O(rlog(N

r
)) for the Complete

Subtree algorithm and O(r) for the Subset Difference algorithm (see table 2.1).
Since N

r
= 10 in this example the only difference between the message sizes is a

constant factor.
By averaging the cover sizes (for user sizes from 128 to 16384) in figure 4.2

for the Subset Difference algorithm an expected message size of about 1.06r is
obtained. This is small compared to the average 1.38r suggested in [3]. However
this average is quite dependant on the scenario and the user sizes tested.

In figure 4.3 the secret sizes (or number of keys/labels at the receivers) are
plotted. The Subset Difference algorithm has a greater secret size which is also
seen in table 2.1.

The Subset Difference algorithm always performs better than the Complete
Subtree algorithm in terms of cover size, as can be seen in figure 4.4. In this
example the user size is set to 1024 and the number of revoked users is increased
for each simulation.

Figures 4.5 and 4.6 show some results of the LKH algorithm. Figure 4.5 shows
the average number of rekey messages sent per update, for a span of user sizes.
As expected (see [5]) the group-oriented rekeying constantly produces one rekey
message per update, while the user- and key-oriented strategies generate a larger
number of messages.

Figure 4.6 displays the number of encryptions made per update. Since the user-
oriented strategy encrypts the updated keys with the individual keys, the number
of encryptions are significantly larger compared to the key- and group-oriented
strategies. Since the key- and group-oriented strategies basically function in the
same way, except for the construction of the rekey message, they have an equal
number of encryptions per update. This is again correct according to [5].

4.3 Limitations

The system has some limitations as explained below:

Algorithm Size. All the algorithms have upper limits to the number of users
they can contain, depending on how much memory is available. On the
testing machine the limits for CS were 218 users, for SD 217 users and for
LKH approximately 214 users.

Performance. Since the system is written in Java, performance may not be as

33

4.3. LIMITATIONS

Figure 4.2: Comparison between Complete Subtree and Subset Difference and the
generated cover size for different user sizes, where 10% of the users are revoked
(using a random spread).

34

4.3. LIMITATIONS

Figure 4.3: Comparison between Complete Subtree and Subset Difference and the
secret size (storage size at receiver) for different user sizes. (This size is constant
for each user size.)

35

4.3. LIMITATIONS

Figure 4.4: Comparison between Complete Subtree and Subset Difference and the
generated cover size for different number of revoked users. The maximum number
of revoked users is 1024.

36

4.3. LIMITATIONS

Figure 4.5: Comparison of the number of rekey messages per join/leave for different
LKH rekey strategies. Key tree degree is 4.

37

4.3. LIMITATIONS

Figure 4.6: Comparison of the number of encryptions per join/leave for different
LKH rekey strategies. Key tree degree is 4.

38

4.4. ADVANTAGES

good as had it been written in another language. The main problem is
the fact that while the Java garbage collection mechanism is convenient, it
sometimes slows down program execution at random occations.

This is especially true when running simulations on the algorithms which
allocate and deallocate large amounts of memory. To decrease the number
of deallocations the algorithms attempt to reuse as many objects as possible.

Algorithm Timing. This is another, more specific, problem with the existing
Java version. The resolution of the Java time measurement function Sys-
tem.currentTimeMillis is insufficient. The reason is that the time resolution
is dependent on the Java Virtual Machine and/or the operating system. In
some cases the resolution of System.currentTimeMillis is as low as 50 mil-
liseconds (see [15]).

This means that the algorithm processing time measurement might be very
unreliable. On some systems all measured times below 50 milliseconds will
be truncated to 0, thus giving close to unusable results in some cases. This
problem will hopefully be remedied in the next version of Java (1.5), since
that version will introduce time measurement functions with resolution in
nanoseconds.

Simulated Broadcasting. The client-server architecture does not currently use
true broadcasting or multicasting, but instead uses a single socket connection
(unicast) to each user. This implies that it is not currently meaningful to
gather network traffic statistics to use for any type of analysis. This will
also reduce system and network performance if a large number of clients are
connected simultaneously.

LKH Algorithm Functionality. The current implementation of LKH lacks one
detail. The possibility to do a single signature per set of rekey messages is
currently not implemented. Instead all rekey messages are signed individu-
ally.

For user- and key-oriented rekeying it might therefore be desirable to com-
pletely disable the signing of rekey messages, to lessen the impact of this
flaw. This is done by selecting None as signature algorithm in the LKH
parameters. Since group-oriented rekeying only sends a single rekey message
(and thus only requires one signature), this flaw can be ignored for the cases
where this rekeying strategy is used.

4.4 Advantages

Some advantages of this system are described below:

39

4.4. ADVANTAGES

Algorithm Comparison. The possibility to execute simulations on different al-
gorithms in the same framework, and show the result in a common chart,
can be used to do performance comparisons of algorithms that are too differ-
ent to allow for easy theoretical comparisons (for example the CS algorithm
compared to LKH). This is the main advantage of this system.

Extension. The framework makes it easy to implement additional broadcast en-
cryption algorithms. Only a few classes have to be implemented and modified
when adding a new algorithm, see section 3.4.

Algorithm Support. The framework does not put much restrictions on the al-
gorithms so most types of algorithms can be implemented. Both stateless
and stateful algorithms can be added, as demonstrated by the currently im-
plemented algorithms.

Visualization. The graphical interface makes it possible to visualize the algo-
rithms in real-time to better understand how they work. An example of
this is the possibility to see how the subsets are structured in the Complete
Subtree and Subset Difference algorithms.

Client/Server Architecture. The client/server architecture used by the system
is very similar to a real broadcasting environment, where data is actually
being sent over a network. This means that the simulation results should be
similar to a real-life scenario.

Multiple Platform Support. Because the system is written completely in Java
it can be executed on any platform that implements a Java Virtual Machine.

40

Chapter 5

Summary

This chapter contains a brief evaluation of the results presented in this report and
summarizes the application areas and benefits of this system.

5.1 Evaluation

The focus of this project has for the most part been to develop a good environment
for testing broadcasting algorithms. The results in chapter 4 show that the theory
behind the algorithms is correct and that this system can be used to gather other
theoretical results about the algorithms.

The requirements for this system that were stated during the start of this
project (see section 3.2) have all been fulfilled and the program is complete in this
aspect.

5.2 Applications

The primary use of this system is to test algorithm performance by running a
series of simulations to emulate real usage scenarios. By doing so for more than
one algorithm, the algorithms’ performance can be compared and visualized using
graphs. Besides running simulations, the algorithms can also be experimented
with in real-time through the algorithms’ own graphical user interface. This might
be used for demonstrational purposes.

5.3 Future Work

Below are a few suggestions for how the system can be improved:

41

5.3. FUTURE WORK

Additional Algorithms. Additional algorithms could be implemented, tested
and compared to the other algorithms already in the system.

Additional Simulations. Additional simulation types could be implemented to
allow simulations of more real-life scenarios, where the user set varies in a
certain way. See [8] for some examples of possible simulation types.

Real Broadcasting. To better simulate network conditions, the server could be
rewritten so that it uses real broadcasting when communicating with the
clients. This would allow for accurate measurements of the real network
loads generated by the different algorithms.

42

References

[1] Shimson Berkovits: How to broadcast a secret. Advances in Cryptology: EU-
ROCRYPT ’91, pages 536-541. Springer-Verlag, 1992.

[2] Amos Fiat, Moni Naor: Broadcast encryption. Advances in Cryptology:
CRYPTO’93, LNCS 773, pages 480-491. Springer-Verlag, 1994.

[3] Dalit Naor, Moni Naor, Jeff Lotspiech: Revocation and Tracing Schemes for
Stateless Receivers. Advances in Cryptology - CRYPTO ’01, volume 2139 of
Lecture Notes in Computer Science, pages 41-62. Springer Verlag, 2001.

[4] Dani Halevy, Adi Shamir: The LSD Broadcast Encryption Scheme, The Weiz-
mann Institute of Science, 2002.

[5] Chung Kei Wong, Mohamed Gouda, Simon S. Lam: Secure Group Com-
munications Using Key Graphs. Technical Report TR-97-23, Department of
Computer Sciences, The University of Texas at Austin, 1997.

[6] C. K. Wong and Simon S. Lam: Keystone: A group key management service.
Proceedings of the International Conference on Telecommunications, 2000.

[7] X. Steve Li, Y. Richard Yang, Mohamed G. Gouda, and Simon S. Lam: Batch
rekeying for secure group communications. Proceedings of Tenth International
World Wide Web Conference (WWW10), Hong Kong, China, May 2001.

[8] Mattias Johansson: Practical Evaluation of Revocation Schemes. Master’s
Thesis in Computer Science, TRITA-NA-E04058, Royal Institute of Technol-
ogy, Sweden, 2004.

[9] Jeffrey Lotspiech, Stefan Nusser, Florian Pestoni: Broadcast Encryption’s
Bright Future. IEEE Computer vol. 35, pages 57-63, 2002.

[10] E. W. Weisstein. “Steiner Tree”. MathWorld - A Wolfram Web Resource.
URL: http://mathworld.wolfram.com/SteinerTree.html

43

REFERENCES

[11] W. Chen, L. R. Dondeti: Performance comparison of stateful and stateless
group rekeying algorithms. Proceedings of the Fourth International Workshop
on Networked Group Communication - NGC ’02, October 2002.

[12] Nick Galbreath: Cryptography for Internet and Database Applications - De-
veloping Secret and Public Key Techniques with Java. ISBN 0-471-21029-3,
Wiley Publishing Inc., 2002.

[13] M. Naor and B. Pinkas: Effcient Trace and Revoke Schemes. Financial Cryp-
tography FC 2000, LNCS 1962, pages 1-20.

[14] T. Asano: A Revocation Scheme with Minimal Storage at Receivers. ASI-
ACRYPT 2002, LNCS 2501, pages 433-450.

[15] Vladimir Roubtsov: My kingdom for a good timer! Reach sub-
millisecond timing precision in Java. JavaWorld, January 2003.
URL: http://www.javaworld.com/javaworld/javaqa/2003-01/01-qa-0110-
timing.html

[16] JFreeChart. URL: http://www.jfree.org/jfreechart/

[17] EPSGraphics. URL: http://www.jibble.org/epsgraphics/

44

Appendix A

Glossary

Batch Rekeying An algorithm for updating the LKH key graph with several
join/leave requests before sending rekey messages. More efficient than indi-
vidual rekeying.

Body The part of a broadcast message that contains the encrypted message.

Broadcast Distributing encrypted/unencrypted data through a public or shared
media.

Client The receiver in a broadcast scenario.

Cover A set of subsets in a subset-cover algorithm.

CS The Complete Subset algorithm.

DES Data Encryption Standard. A 56-bit block cipher.

Header The part of a broadcast message that contains key and access rights
information.

Individual Key A k-node in a key graph which is only known to a specific user
and the server. Every user in the key graph has an individual key.

Individual Rekeying When the LKH algorithm sends rekeying messages after
each join/leave request. Less efficient than batch rekeying.

Intermediate Label A label that is used by the SD algorithm.

k-node A node in a key graph that represents an encryption key.

Key Graph The graph that contains the encryption keys for the LKH algorithm.

45

Key Tree A key graph that is constructed as a tree.

Label A bitset that is used to generate keys in the SD algorithm.

LKH The Logical Key Hierarchy algorithm.

LSD The Layered Subset Difference algorithm.

Polymorphism A design technique which hides the implementation of a compo-
nent behind a generic interface.

Privileged Access right for users that are permitted to access broadcast message.

Rekeying Message A message sent by the LKH algorithm when the key graph
has been updated, to update the clients’ encryption keys.

Rekeying Strategy A rekeying strategy is used by the LKH algorithm to decide
how to construct and transmit the rekeying messages.

Revoked Access right for users that do not have access to broadcast message.

SD The Subset Difference algorithm.

Secret Information Secure information in the receiver (usually key material).

Server The sender in a broadcast scenario. Also called broadcast center.

Session Key The key used to encrypt the broadcast message.

Smartcard A Java-enabled memory chip that protects confidentiality of content.

Stateful Opposite of stateless.

Stateless Characteristic of an algorithm that does not need to update its secret
information when the access rights are updated.

Steiner tree A subset of a tree graph which also is a tree.

Subset A set of privileged users.

u-node A node in a key graph that represents a user.

46

Appendix B

User Manual

This appendix describes the user interface and system functionality in more detail.

B.1 Server

The user interface is divided into five functional parts: the menu bar, and the
algorithm, control, statistics and client panels (see figure B.1).

Figure B.1: Functional layout of the server GUI.

47

B.1. SERVER

B.1.1 Menu Bar

The menu bar controls the general functionality of the application: Changing
algorithm, setting algorithm parameters, storing and loading of user configurations
and executing simulations.

The Algorithm menu is used to change the current algorithm, setting the num-
ber of users, and changing algorithm parameters. The (x y) prefix, where x and y
are integers, in the parameters submenu are used when setting a parameter in a
batch file, see sections C.3.4 and C.3.5.

The User Configuration menu is used for generating random user configura-
tions, and for loading and storing the current configuration. This can be used for
commonly used configurations, to avoid having to set the configuration manually
every time it should be used.

The Simulation menu is used for executing simulations, see section B.3 for
information about the individual simulation types.

B.1.2 Algorithm Display

The next part of the user interface is the algorithm display, used by the algorithms
to present algorithm-specific information. Figure B.2 shows an example of a exist-
ing algorithm UI (in this case for the Subset Difference algorithm). Each algorithm
can have a unique user interface, and we leave out the details.

Figure B.2: The user interface for the Subset Difference algorithm.

48

B.1. SERVER

B.1.3 Control Panel

Below the algorithm frame is the control panel (figure B.3). This contains general
algorithm controls that are applicable to most algorithms. This includes adding
and removing authorized users, and forcing the application to initialize or broad-
cast with the current algorithm state.

The Add and Remove buttons are used in conjunction with the Users text field
to the left of them, to add and remove users from the current privileged set. To
do this, enter a string describing what user(s) to add or remove in the form ”5, -3,
8-12, 20-”, and click Add or Remove. Any number of combinations of these are
allowed, for example ”1-5, 10-15, 20-25, 8, 9”.

The Initialize button forces the current algorithm to re-initialize with the cur-
rent user configuration. This will rebuild the internal data of most algorithms.
This function can be used for testing purposes, but is normally not used. Any
client that connects to the server will automatically receive initialization data
without the user having to do this manually.

The Broadcast button will broadcast the string entered in the text field to
the right of it. The framework does this by calling the BroadcastEncryptionAlgo-
rithm.broadcast method.

Figure B.3: The control panel.

B.1.4 Statistics Panel

At the bottom of the user interface are the statistics and client panels, see figure
B.4. The statistics panel is used for displaying the statistics generated by the
simulations and algorithms.

The ”arrow” buttons and the number list can be used to look on specific sim-
ulation outputs, and the Delete and Delete All is used to delete the current or all
existing statistics.

B.1.5 Client Panel

The client panel (figure B.4) displays the output of a client that is run locally
as a separate thread. This client can be disabled at will, for example when it is
preferred that the server has full access to the available processing power.

49

B.2. STATISTICS CHART

The output displayed in this panel is the same as would be from a client
executed separately (see section B.1.6), except that the algorithm timing statistics
reported might be somewhat higher, due to sharing the processing power with the
server application (compared to running a client on a separate machine). This is
important to remember when accurate algorithm timing is wanted, and the local
client should be disabled with the checkbox at the bottom of the panel on these
occations.

Figure B.4: The statistics (left) and client (right) panels.

B.1.6 Client

The client is, apart from the locally run client in the main application, available
in two versions: as an applet (figure B.5), and as a command line version. Both
versions displays nearly the same output, the difference is that the applet version
also shows what types of packets are received, and not just the output from the
algorithm itself.

The command line version takes the address of the server as an argument, while
the applet version has a text box available for this.

B.2 Statistics Chart

The statistics chart (figure B.6) can be accessed from the main menu. This is
a separate window that can draw charts from the collected statistics data. Sev-
eral options are available for selection of what should be drawn, and for some
customizations of the chart.

(the chart UI will be changed soon, detailed description of the statistics chart
will be added after that is done)

50

B.3. SIMULATIONS

Figure B.5: The client applet user interface.

B.3 Simulations

The application can perform different types of simulations on the algorithms. This
can be done either by using the Simulation menu (see section B.1.1), or executing a
batch file. A batch file is simply a text file describing what simulations to execute,
and what parameters to use when doing this. See appendix C for a description of
the batch files.

The available simulation types are described below:

Random. A random simulation will generate randomly generated user configu-
rations, with the specified probability P for a user being revoked, and do
this for the specified number of iterations. The statistics output from the
simulation will be the mean value of the statistics values generated by the
algorithm at each iteration.

The user configuration will contains exactly the specified amount of revoked
users. Thus, if P is set to 0.3, exactly 30% of the users will be revoked for
every iteration.

Neighbour Dependent. A neighbour dependent simulation will generate ran-
dom user configurations where the probability of a user being revoked de-
pends on the state of the previous user. The input probabilities are the
probability for the first user being revoked, the probability for a user being

51

B.3. SIMULATIONS

Figure B.6: The statistics chart frame.

revoked if the previous user is revoked, and finally the probability for a user
being revoked if the previous user is privileged. This will be done for the
specified number of iterations, and the output from the simulation will, as
with the random simulation, be the mean value of the statistics generated
by the algorithm at each iteration.

52

Appendix C

Batch Files

This appendix describes the structure and syntax of the batch files.

C.1 Introduction

The BEAF batch language is created to allow the user to run a series of simulations
within given parameter limits. An example of this could be to perform the following
simulation:

1. For both the CS and SD algorithms...

2. For 64, 128, 256 and 512 users...

3. Perform ”random” simulations of 1000 iterations each and the probability
for a user being revoked from 0% to 100% with 10% increments.

The batch file contents for this simulation would be:

beaf

algorithm complete subtree

users (from 64 to 512 mult 2)

simulation random (from 0.0 to 1.0 add 0.1) 1000

do

algorithm subset difference

do

The general structure of a batch file, and the meaning and syntax of all batch
commands are described in the following sections.

53

C.2. BATCH FILE STRUCTURE

C.2 Batch File Structure

A batch file has the following structure:

• The first non-comment and non-blank line in a batch file has to be the word
beaf to identify the file as a batch file.

• The batch file can contain an unlimited amount of batch commands.

• Both single- and multi-line comments are allowed using Java-style comments,
namely // for single line and /* ... */ for multi line comments.

• Empty lines are allowed and ignored by the parser.

• Both upper- and lowercase characters are allowed (the parser treats all char-
acters as lowercase).

Many of the commands can take enumerations as parameters. An enumeration
works much like a Java for-loop, describing the start, stop and increment values
of the enumeration. The syntax for the enumerations are as follows (observe the
parenthesis):

(from X to Y add Z)

(from X to Y mult Z)

X

Where X, Y and Z are numbers. Note that a single value is valid input for an
enumeration.

C.3 Batch Command Syntax

All available batch commands are described below, in order of appearance in a
normal batch file. Some notes about the command arguments: string-parameters
accept any alphanumeric string, number only accepts a single value (no enumer-
ations), and enumeration accepts all types of enumerations (the syntax of an
enumeration is described in the previous section).

C.3.1 beaf

This is the batch file identifier that must be on the first non-comment and non-
empty line in the batch file. If not, the file will not be recognized as a valid batch
file.

54

C.3. BATCH COMMAND SYNTAX

C.3.2 algorithm string

The algorithm command sets the current algorithm to use in the simulations.
Subsequent algorithm commands will override the previous algorithm commands,
and clear all previous parameter/parameters settings (see sections C.3.4 and
C.3.5).

Example: algorithm Subset Difference

C.3.3 users enumeration

This command defines the maximal number of users used in the following simula-
tions. Should be a power of two.

Example: users 1024 will set the maximum users to 1024. users (from 512

to 4096 mult 2) will iterate the user size from 512 to 4096 by multiplying the
size by two each iteration.

C.3.4 parameter number enumeration

The parameter command will set the parameter specified by the first argument
to the value of the second argument. For possible parameter values, see the Al-
gorithm/Parameters menu in the main application. Subsequent parameter com-
mands will override the previous if they set the same parameter. Also note that
the algorithm command will clear all previous calls to parameter.

Example: parameter 0 3 will set parameter 0 to 3. parameter 1 (from 0

to 2 add 1) will iterate parameter 1 from 0 to 2 in the following simulations.

C.3.5 parameters enumeration enumeration ... enumeration

The parameters (observe the ’s’) command sets all algorithm parameters at once.
The number of arguments is the same as the number of possible parameters for
the current algorithm. Subsequent parameters will override the previous. Also
note that the algorithm command will clear all previous calls to parameters.

Example: Setting all parameters for an algorithm that has four parameters can
be done with parameters 1 0 (from 0 to 3 add 1) 3. This will set parameter
0 to 1, parameter 2 to 0, parameter 3 will iterate through the values 0-3 when
doing a simulation, and parameter 3 will be set to 3.

C.3.6 simulation

The simulation command sets the current simulation type with specified pa-
rameters. The parameters depends on the simulation type, as described below.

55

C.3. BATCH COMMAND SYNTAX

See section B.3 for descriptions of the simulation types. Subsequent simulation

commands will override the previous.

simulation random enumeration enumeration will perform a simulation of
type “random” where the first argument is the probability for a user be-
ing revoked, and the second argument is the number of iterations.

Example: simulation random 0.3 1000

simulation neighbour enumeration enumeration enumeration enumeration
will perform a simulation of type “neighbour dependent” where the first
argument is the probability for user 0 being revoked, the second argument
is the probability for a user being revoked if the previous neighbour is
revoked, the third is the probability for a user being revoked if the previous
neighbour is privileged, and the last argument is the number of iterations
for this simulation.

Example: simulation neighbour 0.5 0.8 0.8 1000

C.3.7 do

The do command will execute the current simulation. Since a simulation does not
execute until the do command, this can be used to perform the same type of simu-
lation for multiple algorithms, without having to repeat the user and simulation

commands.
Example:

algorithm complete subtree

users 1024

simulation random 0.1 100

do

algorithm subset difference

do

56

Appendix D

Class Descriptions

This appendix contains a listing of the most important public classes in BEAF and
a description of each class. For a more detailed documentation check the generated
javadoc for the project.

Class Description
AlgorithmFactory This class is used by the framework to create instances of

all the implemented algorithms. The factory provides a
BroadcastEncryptionAlgorithm and an AlgorithmPanel,
which is used by the framework to execute and display
the algorithm. When implementing a new algorithm this
class should be extended to support the new algorithm.

AlgorithmPanel This is the base class for all classes that want to have a
graphical representation of the algorithm.

BinaryTreeAlgorithm An abstract class providing a representation of a binary
tree that can be used by subclasses to this class. The class
contains a Node class which contains information about
the nodes parent, left and right child etc.

BinaryTreeDisplayPanel A panel containg both a binary tree panel and other GUI-
components such as buttons and checkboxes. This panel
is subclassed for the Complete Subtree and the Subset
Difference algorithm.

BinaryTreePanel A panel for drawing a graphical representation of a binary
tree. This panel is subclassed for the Complete Subtree
and the Subset Difference algorithm. It defines methods
for drawing the tree, indexes and the users.

Table D.1: Overview of package beaf.

57

Class Description
BroadcastDecryption-
Algorithm

The base class for all broadcast decryption algorithms.
It defines methods for initializing the algorithm and for
decrypting messages on the clients.

BroadcastEncryption-
Algorithm

The base class for all broadcast encryption algorithms.
It defines methods for initializing the algorithm and for
broadcasting messages to the clients. It also provides a
general interface for getting and setting parameters for
the algorithms.

BroadcastMessage A broadcast message sent by a broadcast encryption al-
gorithm to the clients. It contains a header part and a
body part. The header contains algorithm- specific infor-
mation to decrypt the message. The body only consists
of an encrypted message.

ClientPanel JPanel that runs a Client thread and displays the out-
put from the client in a text area. The client thread is
activated and deactivated by a checkbox.

Header The base class for the header in a broadcast message.
The data in this header is specific for the algorithm in
use. This class provides an array of data items that can
be used by subclasses.

Index An index to a node in a binary tree. The internal rep-
resentation of this index allows for very fast binary tree
operations such as determining if a node is a descendant
to another node.

MainApplication The entry point and main application of BEAF. It ini-
tializes the server, the algorithm objects and creates the
main GUI of the application.

MainFrame The application’s main GUI class.
Message Contains the data that is transfered in a broadcast mes-

sage. This may be either plaintext or ciphertext. The
integrity of the data may be checked using a CRC-
algorithm. This can also be used to check that the mes-
sage is decrypted properly.

Packet This class is used by the entire framework for when send-
ing data over the network. The packet type defines the
contents of the packet and determines how to interpret
the data object.

Table D.2: Overview of package beaf, continued.

58

Class Description
Server A thread that handles all communication with the clients.

The server listens to a port and accepts incoming con-
nections. It also provides an interface for sending and
receiving data to and from the clients.

Simulation Class containing all the available simulations. Each sim-
ulation has a its own thread to execute the simulation,
so that it does not lock the application GUI updates (the
progress dialog for example). All methods will show an
input dialog for simulation data when called.

Statistics This class is used for storing statistics data. All al-
gorithms and simulations reports their specific statis-
tics when executing. When reporting a statistic with
addValue(...), please use the existing STATISTIC xyz
strings as statistic title if possible, to allow for compari-
sion of statistics between different algorithms.

StatisticsChartFrame This is the GUI for representing and interacting with the
chart. It displays the information in a Statistics object.

StatisticsPanel This object shows the data stored in a Statistics object.
Stopwatch Allows timing of the execution of any block of code.
UserConfiguration This class is used to define the access rights of a set of

users. A user can either be privileged or revoked. The
first user always has index 0. It also defines methods for
saving/loading the configuration to/from a file.

VirtualServer This class simulates the behaviour of a real server without
using any TCP sockets or object serialization. It automat-
ically contains one client with id=0. This class is good to
use when running big simulations since it increases per-
formance of the algorithms.

Table D.3: Overview of package beaf, continued.

59

Class Description
Client This class handles all communication with the server. It

checks incoming packets and routes them to the correct
decryption algorithm.

ClientApplet This is the GUI for the client application which can be
run in any browser. It displays algorithm output and
connection status.

CompleteSubtreeClient This class implements the Complete Subtree decryption
algorithm on the client. It is directly dependant on the
CompleteSubtreeAlgorithm class.

LKHClient This class implements the LKH decryption algorithm on
the client. It is directly dependant on the LKHAlgorithm
class.

SubsetDifferenceClient This class implements the Subset Difference decryption
algorithm on the client. It is directly dependant on the
SubsetDifferenceAlgorithm class.

Table D.4: Overview of package beaf.client.

Class Description
CompleteSubtree-
Algorithm

This class implements the Complete Subtree algorithm. It
can handle any number of users depending on how much
memory is available. (It needs approximately 32 bytes per
node.) The encryption method for both subset keys and
broadcast message is DES.

CompleteSubtree-
DisplayPanel

A panel containing both a Complete Subtree algorithm
panel and other GUI-components such as buttons and
checkboxes.

CompleteSubtreeHeader The broadcast message header for the Complete Subtree
algorithm. The header contains a list of items; one for
each subset in the cover. Each header item contains a
subset index and an encrypted key for that subset.

CompleteSubtreePanel A panel containing the GUI-representation of the Com-
plete Subtree algorithm. It defines methods for drawing
the subset-cover and allows the user to click on a node to
switch the access right between privileged and revoked.

Table D.5: Overview of package beaf.cs.

60

Class Description
Label A label in the Subset Difference algorithm. This label

is represented as a a 64-bit data block, which is used as
key-material for a DES-key. An instance of this class may
also be used to derive new intermediate labels through the
use of a pseudo-random generator. This class provides a
dummy implementation of this generator, which is only
used for testing purposes. Note: The 64-bit data is not
parity adjusted.

Subset A subset in the Subset Difference algorithm. Contains an
index pair (i,j) that reference two nodes in a binary tree.
Node i must be an ancestor to node j for the subset to be
valid.

SubsetDifference-
Algorithm

This class implements the Subset Difference algorithm. It
can handle any number of users depending on how much
memory is available. (It needs approximately 32 bytes per
node.) The encryption method for both subset keys and
broadcast message is DES.

SubsetDifference-
DisplayPanel

A panel containing both a Subset Difference algorithm
panel and other GUI-components such as buttons and
checkboxes.

SubsetDifferenceHeader The broadcast message header for the Subset Difference
algorithm. The header contains a list of items; one for
each subset in the cover. Each header item contains a
subset and an encrypted key for that subset.

SubsetDifferencePanel A panel containing the GUI-representation of the Subset
Difference algorithm. It defines methods for drawing the
subset-cover and allows the user to click on a node to
switch the access right between privileged and revoked.

Table D.6: Overview of package beaf.sd.

61

Class Description
LKHAlgorithm This class implements the Logical Key Hierarchy algo-

rithm for the special case where the key graph is a tree or
a star. Several parameters is available to set the algorithm
behaviour.

LKHKey Used by the LKH algorithm to represent a k-node’s key,
including description if the key is encrypted or not, and
if the key is an individual key.

LKHKeyTree This class represents a key tree to be used with the LKH
algorithm. The special case of where the tree is a star
node (a root node with unlimited maximum degree) is
also handled.

LKHPacket Packet class that is used by the LKH algorithm.
LKHPanel The AlgorithmPanel for the LKH algorithm.

Table D.7: Overview of package beaf.lkh.

62

På svenska

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
under en längre tid från publiceringsdatum under förutsättning att inga extra-
ordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för
ickekommersiell forskning och för undervisning. Överföring av upphovsrätten
vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i
den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se
förlagets hemsida http://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for your own use and to
use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be
mentioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its WWW home page: http://www.ep.liu.se/

© Tobias Hesselius, Tommy Savela

	Introduction
	Background
	Purpose
	Method
	Outline

	Theory
	Introduction
	Stateless Subset-Cover Algorithms
	Complete Subtree
	Subset Difference
	Security

	Stateful Algorithms
	Logical Key Hierarchy

	Complexity Analysis

	System Overview
	Introduction
	Requirements
	Design
	Notable Classes
	Cryptography

	System Extension
	Adding an Algorithm
	Adding a Simulation

	External Dependencies

	Results
	System
	Simulation
	Limitations
	Advantages

	Summary
	Evaluation
	Applications
	Future Work

	References
	Glossary
	User Manual
	Server
	Menu Bar
	Algorithm Display
	Control Panel
	Statistics Panel
	Client Panel
	Client

	Statistics Chart
	Simulations

	Batch Files
	Introduction
	Batch File Structure
	Batch Command Syntax
	beaf
	algorithm string
	users enumeration
	parameter number enumeration
	parameters enumeration enumeration ... enumeration
	simulation
	do

	Class Descriptions

