
DRAFT for comment; not for citation 1

Using PovMap2
A USER’s GUIDE

Qinghua Zhao

Peter Lanjouw

The World Bank

DRAFT for comment; not for citation 2

Table of Contents

Preface

PART 1 INTRODUCTION

Introduction

Three stage of Poverty Mapping

Statistical model

Poverty/Inequality measurements

Brief history of Poverty Mapping Software

What is new in PovMap2

Workflow in Poverty Mapping

PART 2 CONCEPTS AND COMPONENTS

Data Array

Hierarchical ID

Relational among Variables without using Relational Database

Continues Variable vs. Categorical Variable

Operation to categorical Variable

Data Grid

File and their Types

PART 3 USING POVMAP2.0

Workflow and Navigator

Importing External Data

Create PovMap Project

Screen Checker: Finding Candidate Variable Pairs

 Matching and undo a matching

 Comparing Variables in Survey and in Census

 Summary Statistics of Selected Variable

 Creating Expression and Variable

Using Categorical Variable

Generating Compounded Variable

DRAFT for comment; not for citation 3

 Aggregate census data and make it available in survey

Using Functions

 Rules of Interlocking

 Batch Processing with Script

Screen Consumption Model

 Define per-capita household consumption

 From Variable to Repressor

 Analysis Provided

 OLS

 Forward Regression

 Backward Regression

 Stepwise Regression

 Correlation

 Means

 Viewing Repressors

 Testing for Over-fitting

 Interactive model building

 Importing from Existing Model

 Testing for over-fitting problem

 Testing for model structure change (F-test)

Screen Cluster Effect

 Cluster Effect or No Cluster Effect

 Distribution of Cluster Effect

 Setting Outliers

 Examine cluster effect table

Screen Household Effect Model

 Definition of the dependent variable in alpha model

 What is _YHAT_ and Why

 Special treatment if error term is too small

 Does household effect exist?

Screen Idiosyncratic Effect

 Analyzing Idiosyncratic Outputs

DRAFT for comment; not for citation 4

 Distribution of Idiosyncratic Effect

 Examine household effect table

Simulation setting

 Poverty Line

 Weighting with Household Size

 Trimming

 Yhat

 Beta vector and Alpha vector

 Cluster

 Simulation setting

 Number of replications

 Initial random seed

 Aggregation level

 Request YDump and/or PDump

Partial Perturbation Method (Classical Method)

 Result of Simulation

 Output

Log File

YDump and PDump

Tools and Utilities

Viewing Data Array

Exporting Data Array

Subsetting Data Array

Appending Data Array

Changing ID

Project Setting

Checking ID matching

PART 4 SPECIAL TOPICS

Guideline for Modeling

Trimming

DRAFT for comment; not for citation 5

Random Seed

Cluster Effect at Higher Level

PART 5 APPENDIX

Function Details

 Arithmetic functions

 Logical expressions

 Aggregation functions

 Special functions

 Recode

 If

 Truncation

Example of Using Functions

System Requirement

Updating Online

Getting help

FAQ

DRAFT for comment; not for citation 6

PART 1 INTRODUCTION

What is Poverty Mapping

"Poverty mapping" is a newly developed method to estimate the welfare level and the
degree of inequality at lower aggregation levels such as township or ward. It uses a model
of household expenditure from a survey dataset to estimate household welfare and apply
it to a census dataset which does not include household expenditure or income
information. Poverty indicators at the community level are then formed as aggregates.

Three stages of Poverty Mapping

Poverty Mapping consists of three stages. In the first stage, the census and survey data are
examined for compatibility. Only the variables with same definition and distribution are
allowed to be used in the second stage or the modeling stage. In the modeling stage, a
series of regressions are run to model the expenditure and decompose the random
unexplained components. Once a believable welfare estimation model is obtained, the
poverty mapper will then apply it to the third stage known as the simulation stage. The
simulation stage uses the model parameters and performs repeated drawings on different
random components to bootstrap the household expenditure. The estimated household
welfare is then aggregated on different levels.

Statistical model

Users of this manual should always refer to the paper by Elbers, Lanjouw and Lanjouw
(2001) for theoretical background and statistical inference.

The computing of poverty mapping begins during the estimation of the expenditure
function. For simplicity, we assume per capita expenditure of a household is the basic left
hand side variable and the word ‗cluster‘ is an aggregation level in the survey and census
datasets.

(1) chchchch uyEy ][lnln x

where
 c is the subscript for the cluster
 h is the subscript for the household within cluster c.

 chy
 is the per capita expenditure of household h in cluster c.

 chx is the household characteristics for household h in cluster c.
a linear approximation of model (1) is then written as:

(2) chchch uy  βx 'ln (also referred to as Beta model)

since survey data is just a sub sample of the whole population, the location information is
not available for all regions in the census data. Thus, we cannot include the location
variable in the survey model. Therefore, the residual of (2) must contains the location
variance.

DRAFT for comment; not for citation 7

(3) chcchu  

Here c is the cluster component and ch is the household component. As mentioned

above, the estimate of c for each cluster in the census dataset is not applicable, therefore

we must estimate the deviation of c . Taking the arithmetic expectation of (3) over cluster
c

(4) .. cccu  
Hence

Assuming c and ch are normally distributed and independent each other, Elbers et al

gave a estimate of variance of the distribution of the locational effect c :

(5)

When the location effect c does not exist, equation (3) is reduced to chchu  .

According to Elbers et al, the remaining residual ch can be fitted with a logistic model and

will regress a transformed ch
 on household characteristics:

(6)
 (also referred to as Alpha model)

where A set to equal 1.05*max{
2

ch }. The variance estimator for ch can be solved as

(7)

The result from above indicates a violation of assumptions for using the OLS in model (2),

so a GLS regression is needed. In GLS the variance-covariance matrix is a diagonal block

matrix with structure:

(8) 











































c

c

c

c

Overall, the procedure for stage 1 of the poverty mapping computation can be listed as:
s1. estimate “Beta” model (2)

s2. calculate the location effect c (3)

s3. calculate the variance estimator
)var(2

 (4)

DRAFT for comment; not for citation 8

s4. prepare the residual term ch
 for estimating “Alpha” model (6)

s5. estimate GLS model with (8)
s6. use a singular value decomposition to break down the variance-covariance matrix
from previous step. This will be used for generating a vector of a normally distributed
random variable such that the joint variance-covariance matrix will be in the form of (8)
s7. read in census data, eliminate records containing missing values, generate all
census variables needed for both Beta and Alpha models.
s8. save all datasets needed for the simulation (the "PDA" file).

Bootstrapping

The fully specified simulation model is defined as follows:

(9) chcchchy  ~~~
'~ln  x

where)ˆ,ˆ(~
~

 N

c

~ is a random variable (could be normally distributed or T-distributed) with a

variance defined in (5)

 ch~ is a random variable (either normally distributed or T-distributed) with a

variance defined in (7) , B=)~~
exp(T

chZ and)ˆ,ˆ(~~
 N

Trimming could be applied to the random variable
c

~ and ch~ as well as to random vector


~

 and ~ . In the case of a normal distributed random variable, a range (-1.96, 1.96) will

make 10% of random --N(0,1)--drawing to be redrawn. For random vector of size m, the

vector will be redrawn if the mode of the vector (a 2 distributed random variable) is

outside the specified range.

Poverty/Inequality measurements

After estimating chy~ln , several poverty and inequality measures will be computed. They

include Generalized Entropy class :

























  1

11
)(

2






y

y
w

W
GE i

i

 ( 

DRAFT for comment; not for citation 9


y

y
w

W
GE i

i log
1

)0(and 
y

y

y

y
w

W
GE ii

i log
1

)1(

Atkinson class of measures :

cc

i
i

y

y
w

W
cA

























 

1
1

1

1
1)((cc

and Gini index:

  






)1(5.0

)1(

2

1

1
iiii wyw

yWWW

W
Gini  where iii w  1

In the above definitions, iw is the weight of household i and W is the total population.

Brief history of Poverty Mapping Software

Creation of the software tool for Poverty mapping began in early 2000 when Peter
Lanjouw completed a pilot program written in SAS. He used a partial perturbation
method which was later called ‗classical method‘. In 2001 Gabriel Demombynes, along
with Peter Lanjouw, Jenny Lanjouw and Chris Elber, developed another SAS version
which used a simultaneous drawing method in bootstrapping. Due to the limitation of the
SAS language, these nicely written SAS codes suffered greatly in their performance. It was
soon clear that the SAS language was not adequate enough to bootstrap complicated
larger datasets in practice. At this point Qinghua Zhao was delegated to devise an
alternative. The focus then was purely on the bootstrapping module. By mid-2003, a
usable package,version 1.1, was published and used in many countries. This version and
its predecessor 1.2.4, have played an important role in poverty mapping activities all
around the world. Version 1 can complete the simulation of 100 replications on 1 million
observations in 4 to 5 minutes. However, all processes of stage 1 and 2 have to be done
with other statistical packages and are very time consuming. At the same time, demand
for poverty mapping rose in many countries and thus a package to complete all stages of
poverty mapping seamlessly was needed. In response to this demand, PovMap2 was
designed and the beta version was delivered in early 2006. Today, corrections and
enhancement in PovMap2 are still taking place.

What’s new in PovMap2

 A single platform for processing all computational needs in poverty mapping.
Eliminating possible errors when using commercial statistical packages.

DRAFT for comment; not for citation 10

 Ability to read and process variables or formulas quickly. In this database the
information of a record is not stored sequentially, which is very different from a
traditional relational database. However, the concept of a record can still be used
here. Our new database engine can read/write variables much more quickly.

 A new mixed mode data access is provided. It will allow users to mix household
variables with the district aggregation in the same formula without first producing
the district aggregation database.

 A correctly implemented mixed model variable access will also make it possible to
store the variables of higher aggregation levels much more efficiently. This is
crucial since large amounts of district level variables are needed in modeling.

 Introduction of categorical variables. A categorical variable is equivalent to a set of
dummies. The provision of categorical variables eases the task of comparing them
and/or its cross product. Limited operation allowed for the categorical variable
insures the correctness of categorical variable manipulation. Adding, subtracting,
or dividing two categorical variables is prohibited. While multiplication of two
factors is interpreted and implemented as making new categorical variables of
paired values. In contrast, a traditional database treats all numeric variables
equally, whether or not they are categorical or continuous variables, thus
mistakenly adding a categorical variable with a continuous variable is possible in
most statistical packages or databases.

 Variable comparability is strictly enforced; only variables compatible in survey and
census are allowed to enter the regression stage. This will greatly reduce potential
errors.

 Since the regression uses only the record with no missing value, it is very important
for researchers to know how many records will become unavailable as the result of
data processing. It is quite difficult in traditional statistical software to produce
such a report but users will be able to do it in PovMap2.

 While users are exploring the data within PovMap2, all the actions will be recorded
in the form of a script log. The script log can be used or modified at a later date., or
to be used in another dataset.

 PovMap2 has a content sensitive help system.

 Advanced data processing and tabulation function. User can use PovMap2 to finish
all computation needs without switching to other software tools.

Dataflow in Poverty Mapping

The following chart illustrates the dataflow of poverty mapping. The majority of it is
processed in the ‗checker‘ screen of PovMap2. The box labeled ―Consumption prediction
model‖ consists of four screens which need to be handled sequentially.

DRAFT for comment; not for citation 11

Raw census data

Census data

aggregate

Cluster data

Raw survey data

Survey data

import

import

import

create new

create new

Cluster

aggregation

Cluster

info

distribut

e
merge

merge distribut

e

Matched survey data

Matched census data

Consumption

 model

Cluster effect

Idiosyncratic

 model

Household effect

Consumption

prediction model

Simulation Outputs

DRAFT for comment; not for citation 12

PART 2 CONCEPTS AND COMPONENTS

Aggregation level and Hierarchical ID

A typical expenditure prediction model contains not only household information, but
characteristics of villages and counties where the households reside. In order to link
information of different levels into the household level, proper keys must be used
throughout the data preparation stage. PovMap2 has adopted a compounded structure
for ID, each section of the ID represents a different level of aggregation. For example, a
hierarchical ID may look like

 SSCCDDDHHHH

Where SS is a two digits code for stratum, CC is two digits code for county within stratum
SS, DDD is a three digits code for enumeration district within stratum SS and county CC,
and the HHHH is the household ID within that district. We can construct the identifier for
other levels by truncating this ID to different lengths. For example, SSCCDDD would be
the district identifier, SSCC, the county identifier and SS is the stratum identifier. Please
note that truncation of SSCCDDDHHHH into SSCCD or SSCCDDDHH may not provide
correct level.

In PovMap2 the hierarchical ID is stored as a double precision number. Suppose the
dataset (survey and census) has multiple identifiers such as STRATUM (ranged from 1 to
9), COUNTY (ranged from 1 to 99), DISTRICT (ranged from 1 to 125), VILLAGE (ranged
from 1 to 38) and HOUSEHOLD (range from 1 to 23539). A compounded ID at district
level can be created with

 DISTID=(STRATUM*100+COUNTY)*1000+DISTRICT ,

 or

 DISTID=STRATUM*100000+COUNTY*1000+DISTRICT.

a compounded village ID could be defined as

VID=((STRATUM*100+COUNTY)*1000+DISTRICT)*100+ VILLAGE

Similarly, the household ID could be defined as

HID=(((STRATUM*100+COUNTY)*1000+DISTRICT)*100+VILLAGE)*100000+HO
USEHOLD,

 or

HID=STRATUM*1000000000000+COUNTY*10000000000

+DISTRICT*10000000+VILLAGE*100000+HOUSEHOLD,

It looks like

DRAFT for comment; not for citation 13

 SCCDDDVVHHHHH

Users of PovMap2 can also use an automatic formation

STRATUM \ COUNTY \ DISTRICT \ VILLAGE \ HOUSEHOLD

to define the compounded ID. PovMap2 will first figure out the range of each identifier
and then determine the correct multipliers to form an expression for the compounded
identifier.

It is strongly recommended that users of PovMap2 use the same definition to construct the
compounded ID for census and survey data. Because identifiers in survey data may have
smaller ranges, using the automatic ID formation may result in a different definition, e.g.
SCCDDDVVHHHHH for census but SCCDDVVHHHH for survey. To avoid that from
happening, an explicit formula may be specified as following:

STRATUM:1\COUNTY:2\DISTRICT:2\VILLAGE :2\HOUSEHOLD:4

The exact definition of the range of hierarchical ID is ‗any integer number in the range of -
9007199254740991 to 9007199254740992 or -2^53+1 to 2^53‘. This limitation is due to the
internal use of double precision variables as the carrier of hierarchical IDs. Please note
that use of a decimal point in a hierarchical ID is not preferred because the operation of
'shift' works only on an integer. As for using the negative part of this spectrum, be
advised that it is hard to read, inconvenient and thus not recommended.

Data array

A Data array is similar to ‗table‘ in a relational database. It contains multiple columns,
each one storing one variable. The header of a data array defines the attributes of each
column. Variables defined in the header part of a data array could be vector, expression
and/or alias. Vector corresponds to a sequence of data on the disk but expression and alias
do not occupy any storage space. When expression or alias is evaluated, it is stored in a
vector in the memory, not on the disk.

All external datasets have to be converted into a data array in PovMap2. Each PovMap
contains a hierarchical ID, and each variable in a data array may be either continuous or
categorical in type. The data array is sorted by its hierarchical ID at the time of conversion
and cannot be altered afterwards.

Regardless of the difference in data structure, the concept of record or observation is still
valid in a data array.

Relation without relational database

Even though the data engine of PovMap2 is not a relational database, it does perform the
typical relational databases‘ function as long as the relation between the two data arrays is

DRAFT for comment; not for citation 14

defined with a common compounded ID. Image a dataset at the household level is linked
with a dataset at the village level with village identifier VID. A SQL statement may look
like:

 Select household.vid, household.hid, household.x, village.y

 from household join village where household.vid=village.vid

In PovMap2, this is done through the use of aggregation and distribution. Aggregation is a
relation from multiple to one, and distribution is from one to multiple. When two data
arrays are connected with a common key (in this case VID), both data arrays are surveyed
to form a multiplication factor. A multiplication factor determines the number of cells to
be aggregated or the number of cells to be repeated in distribution.

Users of SQL system should be familiar with the concept of ‗left join‘, ‗right join‘ or ‗inner
join‘. If we consider household level data as in the ‗left‘, then PovMap2 only provides left
join since a record with missing household variables is useless.

PovMap2 Project

A PovMap2 project always uses four data arrays. The reference to these data arrays and
the linkage between them is stored in a special file with file extension PMP. Please do not
alter the content of the PMP file.

The four data arrays are organized to store:

 Survey household level data --each record is for one household in survey.

 Survey cluster level data—each record is for one cluster in survey.

 Census household level data—each record is for one household in census.

 Census cluster level data—each record is for one cluster in census.

10100101
10100101
…
10100101
10100102
10100102
…
10100102

00001
00002
…
00289
00001
00002
…
00008

 VID HID

100
120
..
 80
900
950
…
760

 X

10100101
10100102

 VID

135.31
855.34

 Y

+
10100101
10100101
…
10100101
10100102
10100102
…
10100102

00001
00002
…
00289
00001
00002
…
00008

 VID HID

100
120
..
 80
900
950
…
760

 X

135.31
135.31
…
135.31
855.34
855.34
…
855.34

 Y

household

village

DRAFT for comment; not for citation 15

Combining the information on the section concerning hierarchical ID and the relation
between data arrays, we can then construct a hypothetical example:

 In this example, each data array has an internal hierarchical ID (which is always noted as
ID). The format for survey household level is a combination of cluster id (as in the
cluster part of survey data arrays) and a household ID within each cluster

 ClusterID*10000+HouseholdID

With shift-to-right four digits, the ID in the household level becomes a cluster ID. On the
census side, the hierarchical ID has a same structure but with more observations. In a real
case scenario, the ID structure of survey and census need not be the same, as one could
have ClusterID*1000+HouseholdID in survey and ClusterID*100000+HouseholdID in
census. The match between survey and census can still be done as long as the ClusterID in
survey and census are a match.

1010010100001
1010010100002

…

1010010100289
1010010200001

1010010200002

…
1010010200008

 ID

100
120

..

 80
900

950

…

760

 X

10100101

10100102

 ID

135.31
855.34

 Y

+
100

120

..
 80

900

950
…

760

 X

135.31

135.31

…
135.31

855.34

855.34
…

855.34

 Y

Household

Cluster

1010010100001

1010010100002
…

1010010100289

1010010200001
1010010200002

…

1010010200008

 ID

1010010100001

1010010100002
…

1010010100289

1010010200001
1010010200002

…

1010010200008

…

9080776600001

…
9080776605555

 ID

100

120
..

 80

900
950

…

760

…

121

…
 82

 X

10100101
10100102

…

90807766

 ID

135.31
855.34

…

73.45

 Y

+
100

120

..
 80

900

950
…

760

…
121

…

 82

 X

135.31

135.31

…
135.31

855.34

855.34
…

855.34

…
73.45

…

73.45

 Y

Household

Cluster

1010010100001

1010010100002
…

1010010100289

1010010200001
1010010200002

…

1010010200008
…

9080776600001

…
9080776605555

 ID

Survey

Census

Combined

Combined

DRAFT for comment; not for citation 16

From this example, we can see a PovMap2 project file needs to store additional
information on how the household and cluster files are linked. That is the number of digits
to shift in survey and census.

In its simplistic form, a PovMap2 project need only have a survey household data array,
census household data array, digits to shift for survey data to link to cluster level, and the
digits to shift for census data. The cluster level data array will be constructed
automatically. By default, the name of the cluster level file is a concatenation of the
household file and ―_cluster‖.

Continue variable vs. Categorical variable

Variables in a PovMap2 data array have two different types—continuous variable and
categorical variable. Continuous variables are those that take value from a continuous
domain. Weight, height, income and spending are typical continuous variables. On the
other hand, categorical variables take value from a specific set, typically a few integer
values. Gender (1=male, 2-female) or Education (0-illiterate, 1-elementary, 2-middle school,
3-high school, 4-college, 5-post graduate) are typical categorical variables. In most cases,
categorical variables take a handful integer values, but exceptions do exist. Commonly
used Standard Industry Classification (SIC) code
(http://www.census.gov/epcd/www/sic.html) is also a categorical variable but its value
may range from two digits to four digits. There are some variables that can be treaded as
continuous as well as categorical depending on the interpretation. For example, ‗years of
education‘ can be treaded in either way. Users of PovMap2 can identify the variable type
to be explicitly continuous or categorical. PovMap2 also tries to guess the variable type
during dataset import. Variables with limited integer values (limited in range of 0 to 15 by
default) are consider to be a categorical while anything else is continuous. If SIC3 or SIC4
is used in the dataset, users should change the type to categorical manually.

Operator to Categorical variable

Categorical variables are also different from continuous variables in what kind of
operation can be applied to them. Valid operations to continuous variables include +,-,*,/
and functions like Log or Exp. Valid operations to categorical variables are limited.
Addition, subtraction, or division of two categorical variables have no meaning (image
what would be the meaning of Gender/Education ?). Invalid operation to categorical
variable will cause an exception and the execution will not be conducted.

The valid operation of categorical variables include: a) interaction, b) comparison
operation and c) arithmetic operation with a constant. Categorical variables that interact
with a continuous variable will be explained separately. In following example, categorical
variable Gender has value

1 Male

2 Female

DRAFT for comment; not for citation 17

categorical variable HeadSector is the two digits SIC code describing what industry the
head of household is working, its values are:

7 Agriculture

10 Mining

15 Construction

20 Transportation/Public Utilities

40 Manufacturing

50 Wholesale Trade

52 Retail Trade

60 Finance, Insurance and Real Estate

70 Services

99 Unclassified

a) The interaction of two categorical variables is shown below. The internal value of
interaction result is constructed with appropriate concatenation. Thus the order of
interaction matters, HeadSector*Gender has different internal value than Gender*HeadSector.

 Gender HeadSector Meaning Gender*HeadSector eadSector*Gender

1 15 A male working in construction 115 151

2 52 A female working in retail 252 522

1 10 a male in mining industry 110 101

1 15 a male working in construction 115 151

2 70 a female in service sector 270 702

b) The comparison expression for categorical variable is obvious: HeadSector=10 will
identify all heads of household working in the mining industry.
(HeadSector=70)&(Gender=2) will identify all females who work in the service sector. It can
also be expressed as Gender*HeadSector=270 or HeadSector*Gender=702. Since Recode
function is a compound comparison function, it can be applied to categorical variables but
the user has to provide the label, i.e. the labels does not become involved in the
computation.

c) There may be additional situations in using categorical variables, such as converting a 4
digit SIC code to two digits. It would be convenient if we could do SIC2=int(SIC4/100).
This brings up the third usage on categorical variables: arithmetic operation of categorical
variables and a constant is allowed and the outcome is a numeric value. Users have to
reset the type to categorical and provide a label to it manually.

DRAFT for comment; not for citation 18

Interact numeric value with categorical variable

In preparing data for regression, a special operation between a continuous and categorical
variable is allowed. Because a categorical variable is equivalent to a group of dummy
variables, the interaction of a continuous and a categorical variable is defined as the
product of the continuous variable and set of dummies.

For example, WorkingYears is a continuous variable measuring the number of years
worked. Putting it in an income model

y=a + b*WorkingYears + c*Male (Male is defined as Gender=1)

This implies there is an increment of b dollar regardless of gender for each additional
working year, and being male, there is always c dollar difference compare to the female
regardless the experience. By introducing the interaction part Male*WorkingYears and
Female*WorkingYears, the regression become

 y=a+ d*Male*WorkingYears + e*Female*WorkingYears

This model allows for more flexibility. In PovMap2, the continuous variable x interacts
with the categorical variable c and is implemented as n vectors: x*(c=code1),
x*(c=code2), x*(c=code3)…x*(c=coden) where n is the number of categories of c.

Labeling categorical variable

The label for categorical variable is crucial for understand its meaning. Users of PovMap2
can specify labels in the provided text box in the following format:

 1=Male

 2=Female

The integer value on the left is the internal value of that categorical variable, and any text
(including the space between two words not including the leading and padding space) on
the right side of equal sign is the label. Wrapping label to next line is not allowed. When
two already labeled categorical variables are interacted, the label will look like
Male*Construction, or Female*Service.

Please note that labeling in PovMap is different than applying format to variables (as in
SAS or Stata). Users may have to repeatedly define 1=Yes 2=No for each occurrence of a
yes/no question. Use of clipboard will make it much easier.

DRAFT for comment; not for citation 19

Missing value

Missing value widely exists in statistical datasets. PovMap2 data arrays also allow for
missing values. Arithmetic operations involving missing values always have a missing
value. Similar to SAS, missing values are greater than any ‗non-missing‘ value.

DRAFT for comment; not for citation 20

PART 3 OPERATING POVMAP V2.0

Import datasets

External datasets must be converted to PovMap2 data arrays before further use. The
supported data format includes Stata, dBase, fixed column ASCII and tab (or comma)
delimited formats, and, any datasets that can be read with an ODBC driver. To be able to
read a non-ODBC dataset, PovMap 2 will use the file extension to identify the dataset type.
Here are the file extensions associated with the supported non-ODBC dataset:

 .dta Stata dataset (version 2 to 8)

 .dbf dBase III, dBase IV, FoxPro dBase file

 .csv comma separated value ASCII file with field name in first row

.dat fixed format ASCII file along with .dct file to describe the field
attributes

Please note that you must determine the hierarchical ID before you start importing any
dataset.

To start importing a dataset, click menu item Tools->Import…, you will see the following
screen:

Click on the ―Variable Info‖ button. Here you will see the names of all variables in the
middle section. By default, all variables are selected, and the order of variables shown is
the same order as in the dataset. Users can change the order of variable list by right-
clicking within the empty space in the variable list. A pop up box will appear to let you
sort by name or check/uncheck all.

DRAFT for comment; not for citation 21

Right-click to change order and select/unselect variables

The box in the lower-right corner labeled ‗Categorical threshold‘ provides a ‗cut-off‘ point
for identifying categorical variables during importing. Any variable representing a whole
number and being less than the threshold will automatically be marked as a categorical
variable. This is designed to save the user from having to repeatedly set the variable type.
Users can set the variable type to zero to disable the ‗auto-categorizing‘ (assuming there is
no negative integer). This setting can easily be changed in ‗checker‘ screen.

 Notes on importing DTA, DBF files: DTA and DBF files contain header information.
PovMap2 can read variable definitions from these headers and thus do not require
additional auxiliary files.

 Notes on importing comma delimited files (i.e. CSV files): Variable names must be
provided on the first line, separated by a comma. CSV files typically do not have a
fixed length, thus each line is treated as one record. Data cells are delimited by a
comma or tab.

Empty data cells will be read as missing. The number of data cells in each line should
not exceed the number of variables defined on the first line. If the number of data cells
on a line is less then the variables defined, the missing value will be assign to all
missing cells.

 In order to read a fixed format text file (i.e. TXT, DAT, or ASC), an auxiliary file should
be provided to define all variables. This file should have the extension .DCT (dictionary
file):

nhid1,nhid2,nhid3,agric,lownfrm

10901512,1030111,5,1,0

10901512,1030211,8,1,0

10901512,1030311,,4,

DRAFT for comment; not for citation 22

The format of the above file is a reduced form of a dictionary file used by a popular
database conversion tool, DBMSCOPY. Users can utilize the DBMSCOPY dictionary
file directly within PovMap2. The format should consist of each line beginning with a
space. This will make it compatible with DBMSCopy. The four columns represent the
starting column; width of a variable; type of variable; and variable name, respectively.

 For reading a SAS dataset, users must have the SAS system and SAS ODBC driver
installed on their computers. For further details please refer to the following document:
http://support.sas.com/techsup/technote/ts626.html

The SAS ODBC driver is very different from MS-Access driver. First it is necessary to
identify the library location. Now assume you have data file

C:\Projects\PovMap\Census\CenData.sas7bdat

and C:\Projects\PovMap\Survey\SurveyData.sas7bdat.

First thing to do is to create a system data source name (DSN) with Windows‘ ODBC
definition utility. This DSN name will be used as library reference. A library reference
in SAS is defined by a LibName statement which maps a directory to a library name.
SAS users are accustomed to the following code; which is very similar to what we need
to specify in PovMap2:

To define DSN, open the Windows ODBC driver set up utility. The following
illustration consists of three screen shots of the SAS OBDC driver configuration.

Libname myLib “Projects\PovMap\Census”;

Data one;

 Set mylib. CenData;

 1 11 l nhid1

 13 11 l nhid2

 25 4 b nhid3

 30 4 b agric

 34 8 R earning

http://support.sas.com/techsup/technote/ts626.html

DRAFT for comment; not for citation 23

The name in the libraries box is a library name that refers to a location (directory) as in
the ‗Host File‘ box.

To use SAS datasets in PovMap, click Tools->Import->Advanced, then insert the dataset
reference. The following screen shot resembles a Libname statement.

 For all other datasets, PovMap2 will be able to read them as long as they have a
corresponding ODBC driver.

DRAFT for comment; not for citation 24

Creating PovMap Project

To create a poverty mapping project, click File->New Project and you will be prompted to
fill in the Creating New Project form:

Where project file (type PMP) will store all information about this project.

Click Next to proceed where you will then need to specify how data arrays are linked
inside this project. Please refer to section ―PovMap2 Project‖ to gain a better
understanding of the data linkage. Besides the survey and census household file names,
you must also provide a number to shift the ID of the household file to match the ID of the
cluster file. This needs to be done for both survey and census respectively.

With the provided information, PovMap2 will examinant, for survey and census
separately, the ‗mergebility ‗of data arrays. The summary of ID matching is shown next
screen-shut. We can read from there the ID at household level in survey ranges from
22561021 to 488327719, each observation in survey household file has its own ID (as in the
min=1 and mix=1 on ‗cluster size‘). After shifting household ID 6 digits to the right, the ID
will groups to size of 10 and range from 22 to 488. Similar reading is for census data.

DRAFT for comment; not for citation 25

If you find the summary ID matching is not what you expected, go back to review the
information in the previous screen.

It should be noted that the ID in household level file need not to be household ID, one can
use hierarchical ID at cluster or village instead. The only setback of doing so is that when
user view the data array, they can only tell ‗this is the third record in that cluster‘ but they
can‘t tell which household that is. In this case, the number of shift to form cluster ID can
simply be 0.

Next screen to emerge is to assign the weight. Survey data are typically weighted but
census data are typically not weighted.

By now all the conditions for setting up a project are ready. The information can‘t be
altered (except the weighting). If the mistake were made such as the shift of ID, user has to
start over.

DRAFT for comment; not for citation 26

Screen Checker -- Finding Candidate Variable Pairs

Paring up survey variable and census variables is done by ‗Checker‘ screen. Following
screen shut shows the components of checker.

Checker allows users to recode/create variables, compare descriptive statistics of the
survey and census data, edit variable properties, and set the variables that will be used in
the regression. Matching independent variables in the survey and census can be done

manually using , or by inserting the independent variables into the window
(under certain condition). In order to be set (included) into the model, variables in the
survey and the census must have the same type. If the variable in survey and census has
different name, PovMap will prompt for the common name. Once set into the model, the
variables are referred to as ―matched‖. The matched variables to be included in the model
are shown on the right side of the check screen.

 Identifying a variable‘s type (continuous or categorical) is a unique feature of PovMap, a

variable‘s type can be changed using the window when necessary. Using the ―draw‖
 feature, a visual comparison of survey and census variables can be conducted,

displaying frequencies and cumulative distributions respectively for categorical and
continuous variables. Multiple visual representations enable users to exanimate potential
―matched‖ variables, button is for ‗unlocking‘ the matching.

The graphic button on the center of screen provide different charting combinations, Two

radio buttons let you set the charting mode to PDF+CDF mode or to CDF vs. PDF

DRAFT for comment; not for citation 27

mode. In the following charts, the far-left chart has survey‘s CDF and PDF plotted on the
upper part and CDF and PDF of census plotted on the lower part.

 PDF + CDF mode PDF vs. CDF mode

In the contrast, the charts on the right superimpose CDF of survey and census on the
upper part and PDF of survey and census on the lower chart.

Detail Explanation of Checker Screen

1. Comparing Variables in Survey and in Census

For helping diagnostic the likelihood of selected variable pair, PovMap2 provides a
statistics on the upper right corner of the screen.

When comparing two categorical variables in the survey and census, PovMap displays
the chi-square statistic, which compares the survey frequencies to census frequencies.
The significance of the chi-square statistic indicates whether the survey and census
have similar frequency distributions, and is one method for determining if the variable
should be included in the analysis.

When two continuous variables is compared, PovMap calculates the Kolmogorov-
Smirnov (KStwo) statistic, which is a measure of the correlation between the
cumulative probability distribution functions in the survey and census. The distance
measure provided with the KStwo is the maximum distance between the survey and
census distribution; small values suggest that the survey variable is representative of
census variable. The KStwo value represents the significance of the distance measure,
which when significant, theoretically suggests that the survey is not representative of
the population for the chosen variable.1

1 For a detailed discussion of how to interpret the chi-square and KStwo statistics, see chapter 14.3 in the
Numeric Recipes in C website: http://www.nrbook.com/a/bookcpdf.php

DRAFT for comment; not for citation 28

Important reminder on the comparing categorical variable with chi-square test: the
values of two categorical variables may not have the same meaning even through they
take same value, e.g. value ‗1‘ of variable GENDER may mean ‗Male‘ while value ‗1‘ in
OWNTV may mean ‗owning a TV‘. Comparing of any two variables should not be
done blindly.

2. Summary Statistics of Selected Variable

For any selected pair of variable, the buttons on the center of the screen can be used to
check the value, frequency table (for categorical variable), univariate table for

continues variable. Button and

 both open a same popup
screen with four tabs, the
difference between them is the
default tab.

In order to accelerate the computation of distributional analysis for continuous
variables, a ‗bin count‘ method is used. It is accurate enough for diagnostic purpose.
This method uses 500 bins to cover whole range of the continuous variable with equal
interval. The interval is optimally rounded to a proper value to avoid value with long
decimal (e.g. 1.24976531832).

3. Set and un-set a pair

When the variable pair being compared is satisfactory, you can use button

 to add them into the matched
variable list. This will popup a dialog- box
to show you the possible drop of
effective records in following regression
analysis due to the missing value in the
variable you are adding.

If the survey variable and census variable
have different name, the dialog box will
have an additional text box about the
common name you are going to use. In this
case, a new variable will be created and the
original variable will not be changed
(original variable is read only. Always !).

Un-set (un-pair, un-match) a variable is straight forward, click button to select
what variable pair to be removed from the paired list. This action did not delete the
variable from the data array.

DRAFT for comment; not for citation 29

4. Rules of Interlocking

In order to avoid conflict, complex rules are implemented. You may see some buttons
or text boxes in the checker screen locked, grayed-out or blocked, that is because the
internal locking rules. The rules may be too complicate to list them all but following
principal can help you understand them:

 Expression does not take disk space but variable always occupy disk space.

 When an expression is saved with button , they will be evaluated and a
variable will be create to hold all the value. In the ‗Definition‘ box, the formula of
this expression will be kept and further editing is disabled.

 Anything in the matched list is variable (occupy disk space).

 Original variable should not be altered (change, delete) but non-original variable
can be deleted.

 Categorical variable has to be integer type.

 Variable or expression can not be paired if they are different type.

 Each variable can be paired only once. If A is paired with B, then B (or A) can‘t be
paired to C.

 Variable with single value can‘t be used for charting

 The property of a paired variable (type, value…) can‘t be changed, un-set them
before making changes.

 Variable in the cluster section will be evaluated in the household level on demand.

5. Generating Compounded Variable

The paired variable can be used to generate
higher order compound mechanically.
Three compound methods are provided:
Manual, All compound and Only polynomial
basis.

Denote the paired variables as {xi} where
i=1,2,,,m. selection of All compound will produce {Xi*Xj} where i,j=1,2,,,m and j>=i.
Selection of Only polynomial basis will produce {Xi2, Xi3,.. Xik}, where k is the highest
order. Selection of Manual will show an additional screen to let you select a subset of
{Xi}

DRAFT for comment; not for citation 30

Since the compound is only applied to the paired variable, the definition of each pair
should be already carefully confirmed, thus, the compound dialog has an button

, click it to let PovMap2 select the variable for you when variable pair in the
compound list satisfy a pre-specified level.

6. Aggregate census data and make it available in survey

It is often needed to make aggregation of census variable such as average ownership
of TV or percentage of people with higher education at cluster (or county, district even
province/state) level. Typical procedure of making such operation in common
statistical package like SAS or Stata involves making aggregation into another dataset
and then merge it back. In PovMap2, thanks to the required sorting order, this can be

done instantly with button .

The dialog screen will let you specify
whether the aggregation should be
distribute to survey data arrays, user can
also change the level of aggregation
higher. The later is very useful to produce
the province/state average.

If your aggregation would be based on a
order incompatible to the hierarchical ID
such as urban/rural or the variable of
terrain type, the items inside the ‗Based on
other variable‘ can be activated and filled,
whatever variable selected can be used
(directly or with shift) to determine the
grouping of this aggregation.

Obvious, aggregating census variable into
survey‘s cluster level requires the hierarchical ID in census and survey to be
compatible. Otherwise, the survey data array will receive all missings.

DRAFT for comment; not for citation 31

7. Merge in external dataset

To merge in an external dataset, user should convert the dataset into PovMap2‘s data
array and then click menu item
Project->Merge Cluster Vars. Merge in data
arrays to household level is not
allowed because it is unlikely to
happen.

The operation of this dialog screen is very
similar to the aggregation function. The
only different in the data flow is
instead of aggregating household data
to cluster level the cluster level data are
read from external data array.

8. Set multiple pairs by import

In response to user‘s request about setting a group of variables in pair, PovMap2 can
accept a list of variable names in text mode then parse it to individual name and set it

in pair. Click button and a dialog box as in the next picture. The
conditions for using this function are

1) Variable name must exist in both Survey and Census;

2) Variable in either Survey or Census must NOT be constant, or, max=min;

3) Variables in Survey and Census must have the same type.

Otherwise, PovMap2 will try to
change the numerical variable to
categorical. If it fails for some
reasons, such as, variable
contains decimal, or any huge
value, user can choose to either
reject that name of change to
continue variable.

DRAFT for comment; not for citation 32

9. Batch job with script

All the tasks of creating new expression, saving as variable and matching them up can
also be done in batch mode. By default, your Poverty Mapping project will open a log
file. All the actions that change the data array will be recorded as script. The script can
be reused.

DRAFT for comment; not for citation 33

Screen 2 -- Consumption Model

Overview

PovMap2‘s second page, consumption model, is also referred above as the ―beta‖ model.
Functions built into this screen are for finding a best consumption prediction model with
survey data. The basic elements handled here are regressors. Regressor could be a
continue variable, or a group of dummies generated from a categorical variable. User can
view the regressor, make mean table and correlation table or running regression analysis.
Multiple model selection methods are available including OLS, forward selection,
backward selection and setepwise selection. An experimental ‗overfitting‘ diagnostic
method is also available. The result of latest regression can be stored into a handy ‗Model
Pad‘ for further comparison or for model testing.

Detail

1. LHS, RHS and Regressor

User must specify the LHS variable, or dependent variable, as well as the RHS
regressors.

Regressor could be a continuous variable, or a group of dummies generated from a
categorical variable. The name of dummy regressor is a concatenation of the name of
categorical variable, an underscope sign and the value. In principal, a categorical
variable with k different values will spend-off k dummy regressors(i.e. no omitted
dummy). However, categorical variable with value 0 and 1 will be treated slightly

DRAFT for comment; not for citation 34

different—only dummy for value 1 will be used as a regressor. This approach makes
the regressor list much more intuitive and readable when the data array has a lot of
dummy variables.

2. Four states check box

The check box in the regressor list is a special type, it has four
status: unchecked (white background), unchecked and locked
(gray background), checked (checked with white background)
and checked and locked (checked with gray background). Basically, it is combination
of checked/unchecked and locked/unlocked. The
regressor in a locked mode will remain its
status during model selection, while
unlocked regressor may be added to or
removed from the model.

To lock a regressor, right click over the
regressor and then select lock or unlock.
Button will release all locks in the
regressor list. Button will remove
all checked regressor from the model if
they are not locked.

2. Analyzing mean table and correlation table

Selecting Mean of Selected from the task dropdown and click button, a mean
table will be shown as follows, which include all selected regressors and the

LHS variable. The columns with heading 0.05,0.1, 0.25, 0.5, 0.75, 0.9, 0.95 are the
percentage deciles. This table is a ‗sortable‘ table, user can click on the column header
to sort the result.

Similarly, user can make correlation table. It is also a ‗sortable‘ table. It is useful to
checking the correlation among regressors.

DRAFT for comment; not for citation 35

3. Regression analysis and model selection

To build a good consumption prediction, user can choose from OLS regression,
Forward selection, backward selection or stepwise selection.

OLS

This method is the default and provides no model selection capability. All the
regressors selected in RHS list will be used for estimation. It is possible to see an
―Matrix is un-inversable‖ error message when the regressors selected is co-related.

Forward Selection

The forward-selection technique begins with
regressors already selected. For each of the
regressors, this method calculates F statistics that reflect the regressor ‗s contribution to
the model if it is included. The p-values for these F statistics are compared to the value
in Entry box. If no F statistic has a significance level greater than the Entry value, the
forward selection stops. Otherwise, the forward method adds the regressor that has the
largest F statistic to the model. The forward method then calculates F statistics again
for the regressors still remaining outside the model, and the evaluation process is
repeated. Thus, regressors are added one by one to the model until no remaining
regressor produces a significant F statistic. Once a regressor is in the model, it stays.

Backward elimination

The backward elimination technique begins by calculating F statistics for a model,
including all of the regressors. Then the regressors are deleted from the model one by
one until all the regressors remaining in the model produce F statistics significant at the
value specified in the Stay box. At each step, the regressor showing the smallest
contribution to the model is deleted.

Stepwise selection

The stepwise method is a modification of the forward-selection technique and differs in
that regressors already in the model do not necessarily stay there. The stepwise method
looks at all the regressors already included in the model and deletes any regressor that
does not produce an F statistic significant at the Stay box. Only after this check is made
and the necessary deletions accomplished can another regressor be added to the model.
The stepwise process ends when none of the regressors outside the model has an F
statistic significant at the value in Entry box and every regressor in the model is
significant at the Stay level, or when the regressor to be added to the model is the one
just deleted from it.

Single step model selection

All the model selection methods descried above have correspondent Single Step
variations. This, associated with the regressor locking function, provide most flexibility
in model building.

4. Testing for over-fitting problem

DRAFT for comment; not for citation 36

This function is an experimental component. It is designed to determine if the
explanatory power of the beta model is dependent on the idiosyncrasies of the
particular sample. The test generates a set of sub-samples and runs regressions
analysis of same model on each of them, the sub-sample is formed by excluding
observations related to certain categorical variable. The statistical summary of the
regressions are collected in one table. When over-fitting is not present, regression
statistics and parameters should be roughly the same. Large differences between
models, however, suggest that the model is over-fit to a specific characteristic of the
whole sample. For example, if the cluster ID is the examined categorical variable, large
differences in R2‘s and parameter coefficients suggest that the model fit of the entire
sample is dependent on idiosyncrasies within a specific cluster or clusters.

5. Viewing data and Excluding outliers

User can use view data to browse through the survey data array. All the effective
observations are shown in the data grid. If some of the rows need to be excluded, user
can right-click on the row header and select Set outlier to mark it as an outlier, a blue
dot will show up on the right of scroll bar and the outlier row will also be mark with
same color. This mark is useful to re-allocating the outlier record: all you need is to
drag the slider on the scrollbar to near the dot and the outlier record will show up on
the data grid.

DRAFT for comment; not for citation 37

Screen 3 -- Cluster Effect

Overview

This page displays components of the cluster-level effect and enables users to disable the
―locational effect‖ and determine the distribution of locational component, which will be
applied to the census data during the simulation. Specifically, this screen displays 1) the
residuals plotted of all household color coded by cluster, 2) a detail of locational effect per

cluster, 3) a scatter plot of actual (Y) and estimated (Ŷ) values for each household, and 4) a
and cumulative distribution of the cluster effect.

Detail Explanation of Cluster Effect Screen

1) The Residual Plot organizes the model residuals by cluster. The mean and median
residual for each cluster are displayed by green and red vertical lines, respectively.
The distribution of the residuals is displayed on a three-tone salmon-colored
gradient by percentiles. From lightest to darkest, the distributions shown represent
the 0-100th, 10th – 90th, and 25th – 75th percentiles.

DRAFT for comment; not for citation 38

2) The Prediction Plot is a scatter plot of the actual (Y) and estimated (Ŷ) values for
each household, where the y-axis represents the actual and the x-axis represents the
estimated dependent variable.

3) The illustration of the cumulative distribution of the model‘s predicted values (Ŷ)
enables users to identify and visually choose a normal or t distribution using

 scroll bar. Users should choose the distribution that most closely
matches the shape of the cumulative distribution of their model. Representing the
sum of the difference between the predicted and pre-set (normal or t) cumulative
distributions, the likelihood statistic is a tool for choosing the most appropriate
distribution. Generally speaking, the smaller the likelihood statistic, the more
similar the distributions. The selected distribution will be stored by PovMap and
used in the simulation process. As anthropometric indicators for a population are
typically normally distributed,

4) When location effect is not desired, a check box on the upper-center can be used to
ask PovMap2 to turn off the locational effect. Intuitively, if the residual plot is
homogeneous across all clusters, they may not be much cluster effect to model. This
can also be seen from the ratio of variance of eta to the mean squared error (MSE).
The ratio tells how much of total variation (measured by MSE) can be interpreted
by the cluster effect. If this ratio become negative (which is mathematically
impossible but computational feasible due to the accumulation of computing error),
user must disable the locational effect in order to continue to next screen.

5) On the X-Y plot, user can right click over a point
then select from three choices Set Outlier, Unset
outlier and Unset all outliers to declare the select data
point to be outlier (see detail on consumption model
screen). The outliers marked this way have the same
behave as the outliers marked in the data grid of
consumption model screen, they will be used on
next regression if the Drop outliers box is checked.
User can also find a text box with light yellow

b
a
c
k
g

round showing up to the upper-left of the data point, this is the Y values in the
neighborhood of selected point. Similarly, in the residual plot, user can also declare
outliers.

However, dropping cases should not be done by visual examination only, this is not
a statistically defensible procedure. Outliers should be removed from the data, if at
all, based on robustness of the regression.

DRAFT for comment; not for citation 39

DRAFT for comment; not for citation 40

Screen 4 -- Idiosyncratic Model

Overview

Also referred to as the alpha model, the idiosyncratic model estimates household effect. As
the household variance is not constant, and is allowed to vary with some explanatory
variables, it is considered a model of heteroskedasticity. The dependent variable,
annotated as _ALPHALHS_ (i.e. alpha-left-hand-side variable), is affected only by
variables whose value affects the variance of the error term, and we have no basis for
deciding a priori which variables will have variances that vary systematically with the
value of the variable. Thus it is logical to estimate the parameters using stepwise
regression, in contrast to the beta model. Following models of heteroskedasticity,
potential regressors are generated from matched variables and additional interaction

terms involving Ŷ and Ŷ 2 (Ŷ is the predicted consumption level from beta model).

Details

1. Unlike the Beta model screen, the button Add to Model Pad does not exist. That
button is designed for making statistical inference on whether to partition the
sample, it is not the task to be done in this screen.

2. For not modeling the idiosyncratic effect, use Clear All to empty the model.

DRAFT for comment; not for citation 41

Screen 5 -- Household Effect

Overview

The household effect screen examines how much heteroskedastic variation can be
explained by idiosyncratic model. It includes 1) the alpha residuals plot, 2) a table with
Beta and Alpha estimates by household, 3) a scatter plot of the actual (alphaY) and

estimated (alphaŶ) for each household, and 4) cumulative distribution of the estimated
error term.

Despite all the information provided, only minor adjustments can be made to the model in
the household effects screen. Specifically, only the distribution of the error term can be
determined using the slider bar.

Details

1. As in the cluster effect, noting the likelihood statistic can help determine which
distribution is appropriate. The likelihood statistic has the same meaning as in the
cluster effect, showing sum of the difference between the predicted and pre-set
(normal or t) cumulative distributions.

2. There is no outlier setting function in this screen.

DRAFT for comment; not for citation 42

Screen 6 -- Simulation

Overview

The simulation process in PovMap refers to the point in poverty mapping when the
parameter and error estimates from the survey are applied to the census data. The
simulation screen allows users to modify simulation settings by 1) changing the
distribution of cluster effect and idiosyncratic effect, 2) setting trimming parameters for
simulation, 3) specify the simulation parameters, 4) specifying additional information for
output, and 5) identifying the type and level of simulation. In addition, all the settings
could be reformatted into a text mode configuration file similar to PCF file in PovMap
version 1.

Details

1. Household size must be identified before simulation started. Household size acted
as a weight to the household data in census, this ensures the simulation result to
representing the total population.

2. The distributions of the cluster and household effect are loaded from earlier screens
(slider control in the cluster effect screen and house effect screen). Also available on
the dropdown list is the Semi parametric distribution, it draws from the pool of
residuals in survey. The household effect has one more type of random component

DRAFT for comment; not for citation 43

–hierarchical semi parametric. It must be coupled with the use of Semi Parametric
random component in the cluster effect. In this mode, when cluster effect picked up
the ith cluster, the household effect will be drawn from all household residuals in
cluster i.

3. Number of replication -- Number of simulation. A required field. Preset to 100
times.

4. Poverty line. A required field. Its value could be a number or a variable name which
stores a ‗flexible‘ poverty line, i.e. a poverty line may vary over region, cluster or
even household.

5. Min Y imputed – The lower boundary for
trimming simulated LHS variable. Preset to Auto
(n.nnn) where n.nnn is lower bound of Y value
in survey. Click button will bring up a dialog
box like the one on the right. The choice None
will remove any limitation on the minimum
value of imputed Y. When Auto is used, the
lower bound of Y value in survey dataset will be
used. This value is shown on the right but no
editing is allowed). If Value is selected, then the value box will be fully editable and
user can specify a desired value in the box.

6. Maximum Y imputed – similar to the minimum Y imputed, but the maximum
value.

7. Beta – the acceptant probability of Beta vector. Default to None or 1. If we denote

this number as p0, and solve for x0 such that 2(x0,df)= p0, then the redrawing of Beta
vector occur when |beta |> x0 . This is because Beta vector is drawn from normal
distribution such that its mean equals to the estimated Beta and its covariance
matrix equals to the covariance matrix of Beta, there is small chance, during the
drawing, the drawn Beta vector become too strange and cause the imputed Y

completely out of range. Since the mold of Beta is a 2 distributed random variable,
redrawn when |beta |> x0 could eliminate extreme value.

8. Alpha – the acceptant probability of Alpha vector. Treated in the way similar to Beta
vector.

9. Eta – trimming for cluster effect. Defaulkt to None. Specifies the range for cluster
effect (location effect) trimming. Similar to item 6 (Min Y imputed). The selection
Auto corresponds to the range (-v, v) where v is the largest absolute value of cluster
effect in survey.

10. Epsilon – trimming og household effect. Default to None. Similar to item 10 (Eta).

11. Estimated Y – trimming for simulated y including all random components. Default
to None. Its value determines a range (ymin, ymax). Any simulated y will be excluded
(set to missing) outside of this range. Please note that this number must be in the
real term.

DRAFT for comment; not for citation 44

12. Indices – Indices of poverty and inequality measurements. At least one indices
show be selected. For General Entropy measurements, user specific value is
provided. The value 1.5 will interpreted to GE1.5. The Alkinson measurements have
similar arrangement. On the Distribution box, user can select from (10 20 30 40 50 60
70 80 90), (20 40 60 80 100), (1 5 10 25 50 75 90 95 99), :10 or :20. Notation ‗:10‘ means
the distribution will be shown in 10 equal interval groups. User can also type in
different percentile values in similar fashion.

13. Number of replication – Default to 100.

14. Initial random seed -- This determines what is the first random number used in the
bootstrap. Preset to 1234567. All random components will be affected. When
omitted or set to 0, internally produced fully random number will be used. This
seed is derived by the system clock in 1/1000 second resolution. Thus no two
simulations will be equal if seed is set to 0. A small button nearby could be
used to retrieve the random see used in the last simulation, which could be very
useful in determine a proper trimming.

15. Aggregation Level – Specify at what level the simulations is run and aggregated.
Grouping is form when the shifted hierarchical ID changes. When n=0, the
hierarchical ID will be used and aggregation is for each districted ID value. When
n>0, the ID in census dataset will be shifted n digits to the right to produce a shorter
ID that represents an aggregation on higher level, new aggregation will be
outputted when this value changes. For example, if ID is the form SCCDDD
(multiple household share same district ID. Cluster is at district level), then
SIMULATION=3 will produce a estimates at the county level (SCC). Multi-level
simulation can be requested by values like 0 3 5, which estimates at district level
(SCCDDD), county level (SCC) and stratum level (S).

16. Additional shift for cluster effect – for simulating cluster effect on higher level than
cluster. Default to 0. It is often needed to simulate cluster effect on ‗above cluster‘
level. This option let user specify where the cluster effect should be drawn. Using
the hierarchical ID SCCDDD as an example, if county is a more appropriate
clustering level, use 3 in this box.

17. Simulation method – specifying the method. Currently have Simultaneous drawing
and Classical (Partial) Drawing. Other two options is still under development. See
Peter Lanjouw‘s notes on this topic on Special topic section.

18. Output file name – the name of output file from simulation, This name will also
affect other auxiliary files (see below).

19. Y in Logarithmic form – indicating the LHS variable is in log form thus, the real
term should be computed with exponential transformation. Default to Yes.

20. Saving all poverty/inequality indices – for requesting all poverty/inequality
measurements to be saved in a file. The output file is in the same directory and has
the same file name as the output file except the file extension is ‗pdump‘.

DRAFT for comment; not for citation 45

21. Saving all estimated Y – for requesting all estimated y to be saved in a file. The
output is a PovMap2 data array in the same directory as the output file and its file
name is made of output file name and ‗_ydump‘. This data array can be easily
converted to Stata or other file format. User could also adding other variables into
the ydump file by selecting from the variable list in ‗Along with the following variables’.
The selected variable will be listed in the text box but editing in the box is
prohibited.

22. Using Script tab. Script tab is design to provide user with a script based simulation
configuration similar to the PCF file in the version 1 of PovMap. A button

 can be used to convert all interactive specifications in Config tab as a
text based configuration file. User can modify the configuration to achieve
additional functions, mainly in submitting multiple simulation runs without human
intervention. When user want to run simulation 10 times (say 10 simulations each
consists of 100 replications), they can repeat the Simulation= clause 10 times as
show in next box:

Outputfile=C:\Projects\PovMap\Projct1\PM001x.pou

nSim=100

CDist=T(11) *** distribution of location

(clustering) effect ***

HDist=N *** distribution of household effect ***

PovLine=45676

Indices=FGT0

seed=1234567

IsLog=YES

ydump=YES

Simulation=6

Simulation=6

Simulation=6

Simulation=6

Simulation=6

Simulation=6

Simulation=6

Simulation=6

Simulation=6

End

DRAFT for comment; not for citation 46

Screen 7: Result from Simulation

Overview

The simulation result screen has maximum four tabs, 1) summary, 2) results, 3) yDump
output and 4) pDump output.

1. The summary page provides a overview on the model, simulation setting and
random number generation log. It is intended to cover all aspects not included in
the result tab.

2. The results page is a big spreadsheet. Each row summaries the simulation result of
an aggregation group which is determinded by Aggregation Levelss. The columns
include the number of household or individual in each, the min/max imputed Y‘s,
and the average and standard error of the estimated LHS variable, each requested
indices takes two column: one for the average and the other for the standard error
(across all simulations).

Details

1. Unit – the ID of one aggregation group. Representing all households that have the
same ‗shifted‘ hierarchical ID.

2. nHHLDs – number of households in that aggregation group.

3. nDroppedHH – number of household excluded from the simulation. It is
determined once each run before all simulations to eliminate household with ‗bad‘

predictor. (i.e. a out of bound X* where ‗out-of-bound‘ is related to the trimming of
imputed y)

4. nIndividuals – total number of individual in that aggregation group.

5. nSim – the number of simulation

6. Min_Y – the minimum of estimated y of all replications in that aggregation group.

7. Max_Y -- the maximum of estimated y of all replications in that aggregation group

8. Mean – average of mean value of estimated y of all replications

9. StdErr – average of standard error of estimated y

DRAFT for comment; not for citation 47

2.8 Tools and facilities

2.8.1 Viewing data array

2.8.2 Exporting data array

2.8.3 General provision of grid operation

2.8.4 Concatenation of data arrays

2.8.5 Additional sorting order

2.8.6 Project property

2.8.7 Save to another project t

2.8.8 Compact and repair data array

DRAFT for comment; not for citation 48

__

PART 4 SPECIAL TOPICS

Guideline for Data Preparation

This note is provided by Peter Lanjouw as a basic outline of the steps that are involved in
implementing the poverty mapping methodology. We try to give an intuitive flavor of
what is involved in each of the steps that need to be carried out, rather than being perfectly
precise. The note should be read in parallel with the more rigorous methodological
discussion provided in Elbers, Lanjouw and Lanjouw (2002) ‗Micro Level Estimation of
Welfare‘ Policy Researh Working Paper 2911, the World Bank. We assume familiarity
with the broad outlines of the poverty mapping methodology.

The text below illustrates a number of points with reference to certain country examples
(usually Morocco). The specific country context invariably influences how the poverty
map methodology is implemented. The aim of the examples is to provide some feel of the
kind of in-country background against which various decisions and assumptions have to
be made.

The data preparation stage is concerned with identifying the common variables that exist
between the household survey and the population census. These variables will form the
―bridge‖ that allow us to predict consumption levels into the population census. For the
poverty mapping exercise to be valid, it is crucial that these linking variables are
identically defined in the two datasets. This cannot be simply assessed by looking at the
respective questionnaires.

Steps to be followed in preparing the data:

1. Comparing census and survey variables

a) Calculate means of ―candidate‖ variables in the survey

 ―Candidate‖ variables are those for which both the survey and census instruments
ask identical, or very similar, questions on. These variables are ―candidates‖ for
inclusion in the prediction models estimated in the next stage, subject to them being
truly the same in the two questionnaires. To establish whether the questions are
indeed soliciting information on the same point, it is important to closely scrutinize
the wording of questions in the questionnaires. But this is not enough; it is also
important to calculate some basis summary statistics on these variables in both data
sources, to check whether they are indeed trying to get at the same thing.

 In most settings there are generally four or five classes of variables from which the
set of ―candidates‖ are constructed. First, both survey and census questionnaires
generally include questions on the demographic characteristics of households – size
of family, age of members, gender, relationship to head, and so on. Second,
household survey and population census questionnaires generally ask about the
education levels of all family members. Such information can be very useful for the
poverty mapping project in that these provide a window on the human capital of

DRAFT for comment; not for citation 49

the household – an important correlate with economic welfare. Third, survey and
census questionnaires typically ask about the occupational status of family
members, sometimes even soliciting detailed information about specific sectors of
employment and precise activity of each working-age family member. Fourth, it is
common to find cases where the census and survey questionnaires provide detailed
information on a variety of housing characteristics, ranging from materials with
which the house has been built, to access to a variety of utilities. Finally, it is not
unheard of to find cases where census and survey questionnaires provide some
details on the household ownership of some consumer durables. It is important,
where possible, to produce a set of candidate variables which draws from all five
classes of variables. Experience shows that this greatly improves prospects for
obtaining models with high explanatory power.

 Construction of candidate variables should attempt to capture as well as possible
the economic welfare of households. This implies that one needs to look well
beyond variables defined at the level of the household head. For example, it is
possible that the household head is a pensioner but that he or she lives together
with one or more grown-up family members who have their own specific
occupations and who contribute to household income (and thus consumption). To
capture this feature of the household, it may be necessary to construct candidate
variables such as dummy variables on occupations of other family members, with
an eye towards capturing in particular those cases where there are other family
members with well paying jobs. This would help to distinguish such households
from those where the household head is a pensioner, and no other family members
contribute to household income either. The latter type of household is clearly very
likely to be poorer than the former.

 ―Candidate‖ variables should be defined at the level of possible responses to
specific questions. For example, in the case of a question on the type of water
supply used by a household, one candidate variable might be defined as: ―drinking
water supply=private well‖; another might be defined as ―drinking water=cistern
truck‖; and so on.

 Where candidate variables are not categorical (e.g. household size, dependency
ratios, etc.) also construct percentile distributions. These percentile distributions
permit close comparison between the census and surveys of the tails of the
respective distributions.

 Candidate variables may be constructed by combining information from various
variables. For instance, household welfare and (delayed) school enrollment are
likely to be correlated. Delayed enrollment can be captured by calculating an
‗education deficit‘ as age-6-number of years in school.

 Use sampling weights in these calculations. When comparing against population
statistics from the census, it is important that the survey means be calculated so as
to reflect population, not sample, moments.

DRAFT for comment; not for citation 50

b) Calculate means at the level of ―domains‖, not only the national level.

 Means and percentile distributions should be calculated at the level of geographical
disaggregation at which the regression models in stage 2 will be estimated. This
level of geographical disaggregation can be designated a ―domain‖. How these
domains are defined depends on the sampling design of the household survey. A
domain should generally represent a stratum (or an aggregation of strata) in the
household survey and should be large enought to include a sufficient number of
households for the next stage regression analysis (preferably 300-600 households).

In some settings, such as Morocco, the household survey sample has been stratified
down to the regional level, and distinguishes as well between urban and rural areas
within each region. There are about 16 regions in Morocco, and given the limited
sample size of the household survey (about 5000 households) this implies that there
are some regions in which only few households were sampled (less than 100) One
proposal might be to combine the 16 regions in Morocco into 6-8 ―domains‖ which
are built on the basis of 2-3 geographically contiguous regions. The issue to
consider when contemplating this option concerns what is being assumed when
contiguous regions are combined into a single domain. When a single model is
being estimated for the domain, it will essentially be assumed that parameter
estimates on regressors in the regions that make up the domain are the same across
the regions. Whether this is reasonable or not can be tested explicitly on the basis of
Chow tests of structural differences across sub-samples. Note, a degree of
flexibility can also be maintained by including regional dummies in the model
estimated for the domain, and by interacting with these dummies with at least some
of the household characteristics.

Note, it is important that separate rural and urban domains should be defined.

c) Means and percentile distributions to be calculated with the census data for each
domain.

 Census data to be divided into the same domains as defined above.

 For continuous variables like household size, calculating percentile distributions –
even when the survey and census means are comparable, remains important. In
Uganda for instance, mean household size was identical between the survey and
census. Yet the survey distribution had much thinner tails than that for the census.
In one stratum for instance, the fraction of one person households was 18.4%
according to the census and 16.3% according to the survey. Further investigation
pointed towards a problem with the replacement of non-responding households.
As non-responders are more likely to be small, these households are under-
represented in the survey, unless the replacement scheme takes household size into
account. As this was not the case, it was decided to adjust the survey weights. The
reweighing procedure followed is known as poststratification adjustment. It
ensures that the weighed relative frequency distribution among mutually exclusive
and exhaustive categories in the survey corresponds precisely to the relative

DRAFT for comment; not for citation 51

distribution among those same categories in the census. A danger of reweighing
along one dimension –household size in this case, is that other survey variables that
are representative using the ‗old‘ weights become unrepresentative once the
weights have been adjusted. In the Ugandan case however, reweighing increased
the number of variables that passed the census-survey comparison test.

d) Census and survey means to be scrutinized carefully for comparability.

 Where the survey and census year do not correspond to exactly the same period, it
is not reasonable to expect the two means to coincide exactly. This implies that
statistical tests of equality of the two means may not be that meaningful – even
where equality is rejected there may still be a case for using the variable in question
simply because during the intervening time period there has been some change in
values of the indicator in question. For the purpose of the poverty mapping
methodology the fact that there has been some change in the value of the indicator
over time (levels of education have improved somewhat, or access to public utilities
has gradually expanded, etc.) does not necessarily invalidate it from use in the
procedure. The key assumption that does then need to be imposed, however, is
that the basic conditional correlation between welfare and this indicator remains
unchanged over the time period. This assumption cannot generally be directly
tested. Whether it is a reasonable one to make depends on knowledge one has of
the underlying processes which have taken place over time (relative price shifts,
etc.)

 Rather than comparing census and survey means for strict equality the key issue
here is to get a sense of whether the variables are capturing the same thing. Does
the census apply a different definition of what constitutes household membership?
Do the census and survey employ the same definition of household head? Are
occupation codes the same? Sometimes the way questions are posed results in
different types of responses. For example, suppose that the census asks about
source of potable water and allows for only three possible responses: private well;
cistern truck; other. The household survey may ask the same question but allow for
a much larger variety of possible responses. This could result in the situation that
even when one looks at the ―private well‖ response, the two data sources suggest
that different percentages of the population have this as main source of drinking
water. Simply because more options were available in the survey than were in the
census, responses to even supposedly comparable options are no longer
comparable. It is important to check for this possibility by careful scrutiny of all
possible responses. Only those that really seem to be capturing the same basic
features of the data can be designated as ―candidate‖ variables for the next stage
regression models.

 In Morocco, the population census data has not been entered for the entire
population (even though each household in the population was covered). Rather,
for reasons of cost and time, information from a sample of the entire population
census questionnaires was entered and analyzed. In total, data for about 1,000,000

DRAFT for comment; not for citation 52

households were entered, representing around 20% of the population. The
sampling structure of the census sub sample is not a simple random sample.
Rather, a scheme was applied whereby for communes with less than 500
households all data were entered; for communes comprising 500-1200 households
50% of the household questionnaires were entered; for communes of 1200-3000
households 25% of household questionnaires were entered; and for communes
larger than 3000 households 10% of questionnaires were entered. The
computerized census data file includes expansion factors with each household that
reflect this sampling structure. When calculating census means and percentiles, it is
necessary to used these weights so as to produce meaningful summary statistics at
the level of the domains described above.

2. Constructing commune (or cluster) -level variables from the census and ancillary
sources

 Alongside the household level variables, the regression models in the second stage
will also include some variables that are not at the household-level, but rather at the
level of the cluster (or primary sampling unit) that underpins the household survey.
Most household surveys are based on a complex sample design that involves both
stratification and clustering. For example, prior to drawing the sample of
households the country is first divided into a number of mutually exclusive strata
(rural and urban areas, regions, etc.). Then within each stratum, a series of clusters
(groupings of households) are drawn randomly. Finally, within each drawn
cluster, a sample of households is drawn.

 One of the important concerns in the second stage regression modeling exercise is
the question of whether the econometric model is able to capture intra-cluster
correlation across households in welfare. It is possible, for example, that within a
specific cluster, households are all typically less well off, or better off, than similar
looking households in other clusters. This could be due to cluster-level factors such
as whether or not land is irrigated in that cluster, whether household in a particular
cluster have access to certain public goods and infrastructure, and so on. While
many of the cluster-level characteristics of interest may not be readily observed in
the census and survey data that are available for analysis, it may be possible to
proxy these factors by including a number of such cluster-level variables in the
regression model. The way that this is approached in this methodology, is to use a
two pronged strategy:

I. Means and proportions are constructed in the population census at the level of
the cluster that underpins the household survey. In many countries the cluster
in the survey is equivalent to the census tract in the population census and so
these means and proportions are constructed at the census tract level. Once a
census-tract database of means and proportions has been constructed in the
census, the means for the relevant clusters can be merged with the household
survey and these census means can thereby be added to the list of ―candidate
variables‖ for the second stage analysis. Parameter estimates obtained from

DRAFT for comment; not for citation 53

the second stage analysis can then be applied to all of the cluster means in the
census.

II. Ancillary datasets may be available that provide summary statistics at the local
level for the country as a whole. The BADOC dataset in Morocco provides a
wide variety of statistics at the commune level for all communes in Morocco.
This database can be added to both the census and the household survey and
in this way all BADOC variables can also be included as ―candidate variables‖
for the the second stage analysis.

 In the Morocco application an important issue arises with regards to the fact that
the household survey concept of cluster does not coincide exactly with the census
tract in the population census. Rather, the survey cluster, called the ―primary unit‖,
is comprised of a 2-3 census tracts. It is important therefore to construct means in
the population census not at the census tract level, but at the ―primary unit‖ level
and to use these for analysis in the subsequent stages. For this to be possible it will
be necessary to insert a code for the primary unit into the population census based
on exactly the same scheme used to construct the primary units in the sampling
frame from which the survey‘s sampling units were drawn.

 Note, although it was important to check for common definitions between the
census and survey for variables at the household level, the census mean variables
can be constructed for any and all variables in the census, whether or not they
appear in the survey at all. The point here is that these census means will be
inserted into the household survey dataset prior to estimating the consumption
models (see below) and thus there will be no issue associated with comparability
between the census and survey. Indeed, the more that these types of variables are
used in the estimations the more comparability gets imposed, and the less we will
need to appeal to our assumptions of comparability and stability.

Guideline for Consumption model estimation

This note is provided by Peter Lanjouw as basic outline of estimating the econometric
model of consumption (or income) on those variables determined to be common between
the census and survey is estimated. It is important to stress that this estimation should not
be approached in the way that economists would generally approach estimating a
consumption model. It is clear that even if there is a sizeable set of ―candidate‖ variables
determined to be commonly defined between the census and the survey, there are many
important determinants of welfare that are unlikely to be included amongst the candidate
variables. Thus, the model that will be estimated is likely to suffer from omitted variable
bias. In addition, there are a number of variables that are included in the set of candidate
variables that would be better viewed not as determinants of economic wellbeing but quite
possibly as the reverse: having been caused by consumption or income levels. Hence the
estimated model may also suffer from problems of reverse causality. Both of these sources
of what is conventionally termed as endogeneity are likely to be present in the model to be
estimated. In conventional economic analysis this would be viewed as problematic as it

DRAFT for comment; not for citation 54

would hamper the interpretation of the parameter estimates from the model. In our
setting, however, these issues are not of concern. The key point to recognize is that our
objective in this modeling exercise is not to obtain parameter estimates on regressors that
can be readily interpreted and given economic meaning. Rather, our concern is to specify
a model that will allow us to forecast consumption as well as possible. That our parameter
estimates suffer from omitted variable bias, for example, is entirely desirable because this
means that the parameter estimate is capturing not only the correlation between
consumption and the specific regressor in question, but is also reflecting the influence of
variables that we have not been able to include in the specification. The better we are able
to capture the influence of these omitted variables, the better the fit we will get from our
model. An important analog of this discussion is that we should not seriously judge the
quality of the model we are estimating by scrutinizing the parameter estimates on various
regressions and invoking some general notion of whether or not these are ―reasonable‖
based on experience with conventional economic models in other settings. It is not
unheard of that our consumption model will get significant parameter estimates on
regressors with even the sign being opposite to what one might conventionally expect.

Steps to follow in modeling consumption.

1. Insert census means and ancillary variables (such as the BADOC variables mentioned
above) into the household survey dataset for those clusters and communes that occur in
the household survey dataset.

2. Construct a series of interaction terms and higher order terms with the household level
variables in the survey dataset. For example, household size can be squared cubed, logged
etc, education dummies can be interacted with occupation dummies, interactions with
province dummies can be created (provided that for each province there are observations
in the survey) and so on. It is recommended that such obvious interactions are created at
the first stage and that their census-survey distributions are compared.

 Experience shows that it is often useful to interact as well some household level
variables with the census means and BADOC variables.

 Even when all interacted terms individually pass the census-survey comparison
test, it does not follow automatically that in interaction they pass the test as well.
Outlier welfare predictions may result from interactions giving extreme results.
This occurs especially with interactions with census means and the maximum
census mean for the survey is small relative to the maximum census mean in the
census. Ideally before including any interaction, a means test should be carried out.
In practice many interactions are created during the second stage and most of them
are fine. But if suspect results occur this is one place to check. The output from the
prediction stage program provides census and survey means as well as their
maxima and is a good place to look for outlying interaction terms.

DRAFT for comment; not for citation 55

3. The consumption model use OLS to estimate a model of consumption, y, on a selection
of household characteristics (not census means or BADOC variables) denoted x.

 A separate model will be estimated for each domain that has been defined in the
data preparation stage.

 After having constructed a variety of interaction and higher order household
characteristics, and having added census means and BADOC variables at the
primary unit and commune level, the list of ―candidate variables‖ is likely to have
become very large. Given the interest in estimating separate models for each
―domain‖ the degrees of freedom in the household survey dataset are usually quite
limited, and so a subset of variables will need to be selected from among the eligible
―candidate variables‖.

 We apply a variety of criteria in our effort to settle on a reasonable specification:

i. A key indicator to look at when selecting variables for inclusion in the household
regression model is their contribution to the overall R2 of the regression model. It
is generally hoped that in the end it will be possible to produce a regression
specification for each domain that results in an R2 that is as high as 0.5 or more.
This is often the case, but not always. We have found that the procedure
generally becomes quite unsuccessful if the R2 remains below 0.35 (although the
issue really has to do with the degree to which the poverty map will ultimately be
disaggregated – the more disaggregated the intended poverty map, the more
important that the R2 be high).

ii. Of course, increasing the number of regressors in the model cannot reduce the R2
(although the adjusted R2 may well fall). But a second, equally important,
criterion to satisfy is that parameter estimates on variables that are accepted for
inclusion in the regression should be quite precise (with probability values of, say,
0.15 or less - 0.05 is a good probability value to start with). This criterion tends to
reduce sharply the variables that are accepted in the model specification.

iii. In general, it is very rare for the final model specification to include more than 40
household level variables. Often successful specifications include less than 20.
Parsimony in the specification is desirable as experience suggests that this helps to
keep one source of error in the final welfare estimates, the model error, low.

iv. It is good practice to check the variance inflation factors of each of the variables.
High values (more than 5-10) are an indication of a strong correlation between
two variables included in the model. Dropping one of the variables will make the
model more robust without affecting the R2 much.

 Sing model selection procedure. As in many of the statistical software programs that
offer a variety of selection procedures for choosing regressors from among a large pool
of potential variables on the basis of user-specified criteria. PovMap2 also allows the
analyst to select regressors based on their contribution to the R2 of the model, or

DRAFT for comment; not for citation 56

alternatively based on the degree of statistical significance on their coefficients (with
the analyst also able to specify whether selection should be forward or backward, and
what should be the total number of regressors to be chosen). These procedures are
quite helpful in searching for a model specification but on their own they are rarely
sufficient to determine the final specificiation. As mentioned above, the goal is to
simultaneously obtain a good fit and precisely estimated coefficients. There is also a
general sense that the specification should include variables from the five broad classes
described earlier. Experience thus suggests that these packaged selection procedures
should be used in association with judgment from the analyst.

 Given that it can be difficult to assess whether a particular model specification is
satisfactory or not, due to the various criteria that have to be balanced, there are two
additional checks that can be carried out to help with model assessment:

i. If the domain for which the model is being estimated is reasonably large, it can be
useful to draw a sub-sample from the domain and estimate the model for that
sub-sample. Parameter estimates from the estimated model can subsequently be
applied to the remaining sub-sample and predicted mean consumption can then
be compared to actual mean consumption. If the model is appropriate the ―out of
sample‖ predicted mean consumption should be very close to actual mean
consumption for this sub-sample.

ii. In a similar vein, we can check for problems of ―over fitting‖ by re-estimating the
model repeatedly after dropping clusters from the analysis, one at a time, and
checking whether parameter estimates on regressors of the model are stable in the
face of these slight changes in the sample. If the parameter estimates bounce
around as a result of dropping one or other cluster from the sample, this indicates
that the model specification has become too closely aligned with the specific
structure of the sample. While the usual criteria of R2 and precision of estimates
may look fine, the model may not be appropriate for applying to census data and
predicting consumption for households in the census. Clearly, problems of over
fitting are far more likely when degrees of freedom in the regression are close to
being exhausted. But experience shows that it is important to check for this also
when there still appear to be ample degrees of freedom.

4. Weighting. The question arises, given the complex sampling design that underpins the
household survey, whether the consumption model described above should be estimated
weighted or not. As a general rule, our experience suggests that weighting can be very
valuable in settings where there is wide variation in household expansion factors across
primary sampling units. Even where weighting is not strictly necessary, there do not seem
to be any major costs associated with weighting (apart from some costs associated with
additional programming complexity). So, as a general rule of thumb, it is probably
sensible to do all modeling with weighting.

 There exists a simple test for the need for weighting that has been described by Deaton
(1997). It takes the following form: interact each of the k household variables in the

DRAFT for comment; not for citation 57

proposed specification with the household weight. Re-run the model with this 2*k
specification and test on the basis of an F-test whether the interacted household
variables are jointly significant. If the test rejects that the parameters on the interacted
variables are all jointly zero, then the model should be estimated with weights. As
mentioned above, our experience suggests that we rarely fail to reject interacted
parameter estimates that are jointly zero, and so weighting is the most common
recommendation.

 There are cases where a weighted model is rejected. After a search for a good
unweighted model, this gets rejected as well. In such a situation preference is given to
the weighted model.

5. Choosing cluster-level variables. So far, our discussion has been focused on the model
specification of household level variables. Yet, as already mentioned earlier, it will be
important to add to this basic specification also some variables that capture community-
level characteristics. The basic point is as follows. There is every likelihood that within a
particular cluster (or primary sampling unit) in the household survey there will be
significant within-cluster correlation across households in the error term from the basic
model of y on household-level x variables. The presence of such an important location
effect in the residuals will have the effect of increasing significantly the size of the
standard errors that will accompany our poverty estimates. There is thus a real interest to
capture this location effect in our model specification. If every cluster in the census
occurred in the household survey then the solution would be a straightforward one of
estimating the model with cluster-level fixed effects. However, this option is not available
to us (far more clusters occur in the census than are covered by the household survey) and
so it is important to utilize proxies for these location effects. Our strategy in this regard is
to select a number of cluster-level variables calculated from the census and ancillary data
sources (means, proportions, variances, etc. – see above), include these in the consumption
model, and in this way attempt to capture the location effect. If we are successful in this
regard, the remaining share of the overall residual that can be attributed to a location effect
will have been driven down towards zero, and our subsequent standard errors on the
poverty estimates will be free from this influence.

 There are a very large number of community-level variables that can be calculated
from the census and ancillary data sources and inserted into the household survey
dataset. These can help to dramatically expand the number of candidate variables to
be included in the consumption model. As mentioned above, introducing such
variables has the additional attraction of helping to impose comparability between the
survey and the census, as these community-level variables are, by construction,
identical between the two data sets. However, there is also a potential problem. Over
fitting is much more likely to become an issue when one is dealing with community-
level variables calculated at the cluster level. Recall that the household survey has a
complex sample design. Thus, 10-20 households are typically sampled from a given
cluster. Recall, as well, that a given domain over which the consumption model is
estimated, may cover somewhere between 100-500 households. This implies that the

DRAFT for comment; not for citation 58

consumption model may be estimated across only 10-50 clusters. Clearly, if a large
number of census means are added to the specification (these will vary only across
clusters) then we may rapidly be in a situation of over fitting - where the model
perfectly explains the cluster-level variation in the sample, but does not necessarily
provide a reliable basis for extrapolation to a different dataset.

 A useful rule of thumb to avoid over fitting is to include no more than the square root
of n regressors in the model. When thinking about household level variables n refers
to the number of households in the sample (so that if the domain covers 500
households we wouldn't want to go far beyond 22-23 household level regressors).
When we are thinking about census-mean variables n refers to the number of clusters
in the sample, not the number of households. In a survey domain of 500 households,
where clustering takes the form of 10 households selected per cluster, we have 50
clusters in our domain, and would therefore want to limit our census-mean variables to
no more than 7.

 The question thus arises how to select the best census-mean variables for our
consumption model, bearing in mind that we may not want to include more than, say,
6 or 7 in our specification and we are faced with a very large set of candidate variables.
In approaching this question the key thing to bear in mind is that our aim with the
census mean variables is not so much to add to the overall explanatory power of the
regression model, but rather to remove as much as possible of the intra-cluster
correlation in the residuals on the model estimated on only the household level
variables.

 An effective method to select census-mean variables is to employ the following
approach:

i. First run the basic (weighted) regression of y (log per capita consumption, say) on
household and individual level x variables only.

ii. Take the residuals from the regression in (i) and regress these (also weighted) on a
series of cluster-level dummies. Thus if the domain in question includes, say, 50
clusters, we construct 50 dummy variables, one for each cluster. (Note, suppress
the constant term in this regression, or put in only 49 of the 50 cluster dummies in
the model).

iii. Transpose the row-vector of parameter estimates on the cluster-level dummies
into a column vector. This vector will have the dimension of n*1, where n
represents the number of cluster dummies in the regression estimated in (ii) (50 in
our example).

iv. Regress the column vector of parameter estimates on cluster dummies produced
in (iii) on the full pool of candidate census means and other cluster-level
aggregates from the census and ancillary datasets. This regression should also be
estimated weighted by the sum of household level expansion factors within each
cluster. Use the max R2 selection criterion that is included in the software package
to select the 5 or 6 best cluster-level aggregates calculated form the census or
obtained from ancillary data sources included among the pool of candidate

DRAFT for comment; not for citation 59

variables. (If the max R2 selection criterion is not available in the software
package that is being used, trial and error will be required). Once again, although
the R2 is our focus of attention, we will not want to use cluster-level aggregates
that are not precisely estimated in this regression. So, again, there is a need to
balance R2 with precision.

6. Re-estimating the full consumption model. Once cluster-level variables have been
selected, the full consumption model, including both household-level and cluster-level
variables, can be re-estimated. It may be the case that as a result of adding the cluster-level
variables, one or more of the household-level variables comes to lose their statistical
significance (perhaps because they were picking up cluster-level variation). So some fine-
tuning of the final model may be necessary. Again, the goal here will be to have a
specification that includes only significant parameter estimates, and that has an overall R2
that is satisfactorily high.

7. Specifying a model of heteroskedasticity. The inclusion of cluster level variables in the
model specification is intended to minimize the degree of intra-cluster correlation in the
residuals. It is unlikely that the intra-cluster correlation will have been removed entirely.
That which remains will be reflected in the standard errors produced for the final poverty
estimates. If the cluster-level variables in the model have been reasonably successful,
however, the bulk of the overall residual from the model will now comprise a household
specific disturbance term. In the poverty mapping methodology we do not impose the
assumption that these household specific disturbances are independent and identically
distributed, and allow for heteroskedasticity in these disturbances. Implementation of the
poverty mapping module for the final simulation stage of the poverty mapping procedure
thus requires not only that a consumption model specification be provided by the user, but
also the specification of a model of heteroskedasticity for the household level component
of the disturbance term. Settling on the specification of the heteroskedasticity model
involves the following steps:

• We first purge the residual on the final consumption model of any remaining
cluster-level component. This can be done by regressing this residual on the vector of
cluster dummies. We treat the residual of this second model as the household-specific
component of the overall residual. To avoid confusion let us denote this second residual
as ―household error‖.

 For each household we square the household error term.

 In order to avoid modeling heteroskedasticity in such a way that could end up
predicting a negative squared household error term, we employ a logistic model of
heteroskedasticity which involves transforming the squared household error term
prior to regressing it on a set of household characteristics. The transformation
consists of the following steps.

DRAFT for comment; not for citation 60

i. We identify the highest value of the squared household error term. Multiply
this highest value of the squared household error term by 1.05. Denote this
number as A.

ii. For each household calculate the difference A-squared household error term. By
construction this difference will always be positive.

iii. For each household calculate the ratio of the squared household error term to the
difference calculated in (ii). This term is non-negative and larger; the larger is the
squared household error.

iv. Taking the natural log of the term produced in (iii) produces the dependent
variable for the logistic model of heteroskedasticity.

 There is no theory to guide us in the search for a specification of the
heteroskedasticity model. Once again, we are guided mainly by the dual objectives
of explanatory power and statistical significance of the parameter estimates. We
also want to keep things manageable (and avoid over fitting) by not allowing the
specification to be come too large. The rule of thumb governing the number of
variables to include in the model (no more than the square root of n) can be applied
here too.

 In terms of settling on explanatory variables, it seems clear that all the explanatory
variables included in the consumption model should be candidates. In addition it
seems reasonable to include as well predicted (log) per capita consumption from
the consumption model. Finally, there is no reason why these explanatory variables
should only enter in directly, so we also allow them to interact with all other
variables (for example, household size interacted with predicted consumption, with
age of household head, and so on). All of these variables can then be considered as
valid candidates for inclusion in the heteroskedasticity model.

 We use OLS to regress our dependent variable (define above) on the full set of
candidate variables and select n that best explain the variation in the dependent
variable and that are estimated with a reasonable degree of precision. Once again
this selection can be obtained using packaged selection modules that come with the
statistical software.

DRAFT for comment; not for citation 61

Reference Sources

Elbers, C.; J.O.Lanjouw; P.Lanjouw, 2002; Micro Level Estimation of Welfare. Washington
DC World Bank Policy Research Paper WPS2911, October.

Elbers, C., J.O.Lanjouw, P. Lanjouw, 2004. Imputed Welfare Estimates in Regression Analysis.
Washington DC: World Bank Policy Research Paper WPS 3294, April.

Elbers, C., Fujii, T., Lanjouw, P., Ozler, B., Yin, W. 2007. Poverty alleviation through
geographic targeting: How much does disaggregation help? Journal of Development
Economics 83, 198 – 213.

Foster, J., J.Greer, E. Thorbecke, 1984, A class of Decomposable Poverty Measures.
Econometrica 52:761-66

Fujii, T. 2005, Microlevel Estimation of Child Malnutrition Indicators and its Application in
Cambodia. Washington DC: World Bank Policy Research Working Paper 3662, July 2005

Fujii, T. 2003. Commune level poverty estimates and ground truthing. Report for UN World
Food Programme (mimeo).

Fujii, T., Lanjouw, P., Alayon, S., Montana, L., 2004. Micro-level Estimation of Prevalence of
Child Malnutrition in Cambodia.

Zhao, Q., 2005. User Manual for PovMap 1.1a. Development Research Group. From the
World Bank website, August 12, 2006.
http://iresearch.worldbank.org/PovMap/index.htm

Zhao, Q., 2006a. General guidelines for consumption model estimation. The World Bank
(mimeo).

http://iresearch.worldbank.org/PovMap/index.htm

DRAFT for comment; not for citation 62

APPENDIX: Technical Requirements

The following paragraphs discuss the technical requirements for implementing hunger
mapping using PovMap.

Software and hardware needs

Those wishing to map hunger must understand the technical capacity needed to manage
and manipulate data from various sources. Statistical packages, software conversion
software, GIS software, sizeable computational space (i.e. Random Access Memory) and
storage capabilities are required for efficient construction, management and analysis of the
survey and census data sets.

Common Software Packages

Though PovMap 2.0 has the ability to recode variables, it is probably easier to use a
common statistical analysis package for the construction and ―matching‖ of the survey
and census datasets and for the development of the predictive model. Frequently used
standard statistical packages include SPSS, SAS, and Stata. Both SPSS and Stata were used
by the Tufts Team to recode and organize the datasets and develop and test the model
used to map hunger for the DR, Ecuador, and Panama.

Working with the data

Data sets come in a variety of file types. Each file type (e.g. .dbf, .sav, .dta, .ascii) has its
own specifications and limitations. Though many statistical packages are able to read files
from different sources, file conversion software can be an invaluable tool. The Tufts team
made use of Stat/Transfer 2 to quickly transfer .dbf and .sav files to Stata‘s .dta format.

The large size of census data sets can also cause problems. Census data typically contain
millions of cases. Performing numerous recodes and calculations on census data can be
time consuming and cumbersome. To facilitate the construction of Ecuador‘s data set
(which contains approximately 12 million observations), the Tufts Team utilized Stata on a
64-bit mainframe computing cluster. The increased computing power of a mainframe
computer greatly improved the efficiency of the recoding process. Users of SAS, SPSS and
Stata will be able to perform the same operations on their personal 32-bit personal
computers, but performance and speed will be limited by each computer‘s processing and
memory capabilities.

2 http://www.stattransfer.com/

DRAFT for comment; not for citation 63

System Requirements

Due to the computational power needed to manage large data sets, manipulate geographic
data, and run PovMap, the Tufts Team recommends the following system requirements
for computers. Though most processes can be completed using less robust systems, the
requirements given below will greatly reduce the time needed to run calculations on large
data files.

 2GHz or greater processor

 1GB or greater Random Access Memory (RAM)

 60 GB or greater hard drive

DRAFT for comment; not for citation 64

Appendix A: Expression , Operator and Function

1. Mathematic Functions

ABS(expr)

Returns the absolute value of expr.

ACOS(expr)

Returns the arc cosine of a specified expr. The values of expr can range from -1 through +1.
The values returned by ACOS() range from 0 through pi (3.141592) in radians.

ASIN(expr)

Returns in radians the arc sines of expr. The values of expr can range from +1 through -1,
and the values ASIN() returns can range from -pi/2 through +pi/2 (-1.57079 to 1.57079).

COS(expr)

Returns the cosines of expr, which are specified in radians.

Count()

Returns the number of observations. Value repeats to full-length of vector.

EXP(expr)

Returns the exponential values of expr. On overflow, the function returns missing and on
underflow, EXP() returns 0.

LOG(expr)

Return the natural logarithms of expr. For non-positive value, LOG() returns a missing.

MAX(expr)

Returns the highest value in expr. Ignores missing.

MEAN(expr)

Returns the arithmetic average of all non-missing value.

DRAFT for comment; not for citation 65

MIN(expr)

Returns the smallest value of expr. Ignores missing.

NA()

Returns a vector contains all missing values.

PCTL(expr, p) where p is a constant number, 0≤p≤1.

This function returns a constant vector (all elements have the same value) indicates the p
percentile of expr.

Example: IIF(X>PCTL(X,0.99),NA(),X) will set value of X to missing for cells larger than
the 99 percentile of X.

SIN(expr)

Returns the sines of expr, which are specified in radians.

SQRT(expr)

Returns the square root of the specified expression expr (cannot be negative)

SUM(expr)

Returns the total of values of all elements in specified expression expr. The result value
repeats in full length as expr

WMean(expr,weight)

Mean of expr with explicitly specified weight.

WSum(expr,expr_w)

Sum of expr with explicitly specified weight.

2. Aggregation Functions

CCount()

Returns the number of observations (or, the size) of each cluster.

CCountBy(numDigits)

DRAFT for comment; not for citation 66

Returns the number of observations (or, the size) of each new group formed by truncating

cluster-ID (truncated once when you created new project) numDigits more digits off.

CCountOn(expr_base,numDigits)

Returns the number of observations (or, the size) of each new group formed by truncating
the eval result of expr_base numDigits digits off.

 Example: CcountOn(DIST,0)

CcountOn(ID/100,0)

CcountOn(Gender,0)

CErr(expr)

CErrBy(expr,numDigits)

CErrOn(expr,expr_base,numDigits)

Similar to CCOUNT functions, return the standard error of each group.

CFirst(expr)

CFirstBy(expr,numDigits) where numDigits is a non-negative integer constant.

CFirstOn(expr,expr_base,numDigits)

Repeats the first evaluated expr's value of each cluster (group) within that cluster (group).

You may re-group observations by truncating cluster-ID numDigits MORE digits off, or,

by truncating the eval-result of expr_base numDigits digits off.

CGet(condi_expr,expr)

If the ith value of condi_expr is true (1), gets the ith value of expr and repeats it within
cluster. If there is no 1 at all within a cluster, the cluster of result will be filled with all
missings. If there are more than one 1's of condi_expr found within a cluster, this function
takes the 1st one and ignore the others.

CMax(expr)

CMaxBy(expr,numDigits)

CMaxOn(expr,expr_base,numDigits)

Similar to CCOUNT functions, return the maximum value of each group.

DRAFT for comment; not for citation 67

CMean(expr)

CMeanBy(expr,numDigits)

CMeanOn(expr,expr_base,numDigits)

Similar to CCOUNT functions, return the mean value of each group.

 Example: CMeanBy(X+Y,2)

CMeanOn(X+Y,DIST,2)

CMin(expr)

CMinBy(expr,numDigits)

CMinOn(expr,expr_base,numDigits)

Similar to CCOUNT functions, return the minimum value of each group.

CSum(expr)

CSumBy(expr,numDigits)

CSumOn(expr,expr_base,numDigits)

Similar to CCOUNT functions, return the sum of all values in each group.

WCMean(expr,expr_w)

WCMeanBy(expr,expr_w,numDigits)

WCMeanOn(expr,expr_base,expr_w,numDigits)

This set of functions are different from their un-weighted counter part CMean family by
applying explicit weight.

 Example: WCMean(X+Y,W)

WCMeanBy(X+Y,W,2)

WCMeanOn(X+Y,DIST,W,0)

WCSum(expr,expr_w)

WCSumBy(expr,expr_w,numDigits)

WCSumOn(expr,expr_base,expr_w,numDigits)

Similar to WCMean functions, return the mean of all values in each group.

CSerial(numDigits)

CSerialBy(expr,numDigits)

DRAFT for comment; not for citation 68

CSerial generates a sequential number starting from 1 for each group whose shifted ID
(shifted ID by numDigits) is the same. In CSerialBy, the sequential number starts from 1 in
each group whose shifted ID is the same, then increase by 1 when the value of expr
changes. Both functions are designed for simplifying the ID structure.

3. Testing Functions

IsDup(expr)

Returns a 0-1 vector, in which 1 indicates the element is a duplicate of the prior element of
expr.

IsFirst(expr)

Returns a 0-1 vector, in which 1 means the value of element of expr is the 1st one in a
group of duplication. If an element is different from the prior and the next, also returns
value 1. So, the result actually is the 1's complement of IsDup(), i.e., with the same expr,
where IsDup returns a 1, here we get a 0; a 0, we get a 1, and vice versa.

IsMissing(expr)

Returns a 0-1 vector. 1: if the element of expr is a missing

GMask()

Returns the global mask as a 0-1 vector

LCount() ‗L‘ stands for ‗Left‘

ICount() ‗I‘ stands for ‗Inner‘

RCount() ‗R‘ stands for ‗Right‘

Used when two data array are linked. The one on the left is always at more detail level
than the one on the right. (such as individual  household, or household  village.
The ID on the left and right data array may not be completely matched. LCount will return
the count of each ID group based on the ‗left data array‘. RCount will return the count of
each ID group based on the ‗right data array‘. ICount returns the count of ID existed both
on the ‗left data array‘ and the ‗right data array‘.

4. Conditional Functions

Bounding(expr,L_bound,R_bound) both bounds must be constants.

For each v in expr, return L_bound if v<L_bound; return R_bound if v>R_bound; otherwise,
return value v.

DRAFT for comment; not for citation 69

Categorize(expr)

Cast the expr to be a categorical variable

Encode(expr,Value_Set)

Returns a categorical variable with re-grouped values of expr according to Value_Set (see
definition below)

IIF(condi_expr,true_expr,false_expr)

Returns trye_expr when condi_expr is true (value 1), or false_expr otherwise.

 Example: IIF(IsMissing(X), X1, IIF(Y1 <> 0, 100*X1/Y1, 0))

IIF(Gender="Male", 65, 55)

Int(expr)

Returns the integer part of each element in expr.

Round(expr,decimalPlaces)

Returns expr rounded to a number of decimal places, specified by decimalPlaces. If
decimalPlaces is negative, ROUND() returns a whole number containing zeros equal in
number to decimalPlaces to the left of the decimal point.

 Example: ROUND(17.5274, 0), result is 18

ROUND(17.5274, 2), result is 17.53

ROUND(17.5274, 1), result is 17.5

ROUND(17.5274,-1), result is 20

Seg(expr,start,len)

expr is supposed to be a multi-segment key, this function returns one of its len digits
segment start at start (from right of the expr).

SetMissing(expr,Value_Set)

Returns a vector in which any value of expr beyond the range (specified by Value-Set) will
be set to a missing, but the value within range will remain untouched. NOTE: There
should be only one group in Value-Set

DRAFT for comment; not for citation 70

ValueOf(expr)

Casts the type of expr from categorical variable to numerical variable.

IIF(X>=3 & X<12, X, MissingValue()) can be replaced as SetMissing(X,
{[3,12)}) or X @ {[3,12)}, but

IIF(X>=3.2 & X<11.97, X, MissingValue()) does NOT have the same style
equivalent substitution like SetMissing(X, {[3.2, 11.97)}) or X @ {[3.2, 11.97)}, since
decimal is invalid in

a Value-Set

IIF(X>11.97, 11.97, IIF(X<3.2, 3.2, X)) is equivalent to Bounding(X, 3.2, 11.97) except the
latter is simpler and faster.

5. Operators and its Precedence

Operators of PovMap2 are listed fellow from hight to low:

(,) Forces a different precedence on the expressions

(unary)+, -, !(~) Positive, negative, logical NOT ↓

^ Power

*, /, %, & Multiplication, division, modulo, logical AND

+, -, | addition, subtraction, logical OR

>, >=(=>), <, <=(=<) comparison operators

=(or ==), !=(or <>, ><) equality, inequality

6. Value set

Value set defines the conditions for generating sequential integer 1,2,3,… Definitions are
limited with semi-column. It can be used in the place where the procedure language use a
switch statement (in case of c,c++,Java) or select case statement as in the VB. The formal
definition can be specified as follows:

Value-Set ::= {Group[; Group]}

Group ::= Enumerative-group | Range-group

Enumerative-group ::= Value [, Value]

Range-group ::= >Value Range group

Range-group ::= >=Value

Range-group ::= <Value

Range-group ::= <=Value

DRAFT for comment; not for citation 71

Range-group ::= ...

Range-group ::= LBracket Value,Value RBracket

LBracket ::= (

LBracket ::= [

RBracket ::=)

RBracket ::=]

Value ::= Integer

Value ::= yyyy/mm/dd

y ::= 0..9

m ::= 0..9

d ::= 0..9

It is user‘s responsibility to ensure the definition of groups cover the complete domain,
values not fall in any groups will become a missing. When used in the SetMissing
function, there should be just one group and that group could contain multiple range-
groups and/or enumerative-groups.

Range-groups should not overlap each other, but enumerative-groups can overlap range-
groups, i.e. enumerative groups have higher priority than range groups.

 Examples: EnCode(x, {1,3,5; 2,4,6}) will convert value 1,3,5 to 1 and 2,4,6 to 2

EnCode(x,{<0;[0,10];(10,20];>20}) will convert any value less than 0 to value
1, value 0 to 10 to 2, values larger than 10 and up to value 20 into 3, last,
any value greater than 20 into 4.

Encode(X, {<0;[0,10);...;>=50}] is equivalent to
Encode(X,{<0;[0,10);[10,20);[20,30);[30,40);[40,50);>=50}

Encode(X, {[1,3);...;[10,15);...;>=30}] is equivalent to
encode(X,{[1,3);[3,5);[5,7);[7,9);[10,15);[15,20);[20,25);[25,30);>=30}

Encode(X, {15,[1,10];(10,20]}) will convert all value 15 into 1, all values
between 1 and 10 (inclusively) into 2, any value larger than 10 and less or
equal to 20 as 3, and anything else into missing.

Encode(X, {>0}) is equivalent to IIF(x>0, 1,NA())

Encode(Birthday, {[1970/04/01, 1990/09/30]})

