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PART 1 INTRODUCTION  

What is Poverty Mapping 

"Poverty mapping" is a newly developed method to estimate the welfare level and the 
degree of inequality at lower aggregation levels such as township or ward. It uses a model 
of household expenditure from a survey dataset to estimate household welfare and apply 
it to a census dataset which does not include household expenditure or income 
information.  Poverty indicators at the community level are then formed as aggregates.  

 

Three stages of Poverty Mapping 

Poverty Mapping consists of three stages.  In the first stage, the census and survey data are 
examined for compatibility.  Only the variables with same definition and distribution are 
allowed to be used in the second stage or the modeling stage. In the modeling stage, a 
series of regressions are run to model the expenditure and decompose the random 
unexplained components.  Once a believable welfare estimation model is obtained, the 
poverty mapper will then apply it to the third stage known as the simulation stage.  The 
simulation stage uses the model parameters and performs repeated drawings on different 
random components to bootstrap the household expenditure.  The estimated household 
welfare is then aggregated on different levels. 

 

Statistical model 

Users of this manual should always refer to the paper by Elbers, Lanjouw and Lanjouw 
(2001) for theoretical background and statistical inference. 
 
The computing of poverty mapping begins during the estimation of the expenditure 
function.  For simplicity, we assume per capita expenditure of a household is the basic left 
hand side variable and the word ‗cluster‘ is an aggregation level in the survey and census 
datasets. 

(1) chchchch uyEy  ][lnln x
 

where 
 c is the subscript for the cluster 
 h is the subscript for the household within cluster c. 

 chy
 is the per capita expenditure of household h in cluster c. 

 chx  is the household characteristics for household h in cluster c. 
a linear approximation of model (1) is then written as: 

(2) chchch uy  βx 'ln    (also referred to as Beta model) 

since survey data is just a sub sample of the whole population, the location information is 
not available for all regions in the census data.  Thus, we cannot include the location 
variable in the survey model.  Therefore, the residual of (2) must contains the location 
variance.  
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(3) chcchu    

Here c  is the cluster component and ch  is the household component. As mentioned 

above, the estimate of c  for each cluster in the census dataset is not applicable, therefore 

we must estimate the deviation of c . Taking the arithmetic expectation of (3) over cluster 
c 

(4) .. cccu    
Hence  

 

Assuming  c  and ch are normally distributed and independent each other, Elbers et al 

gave a estimate of variance of the distribution of the locational effect c : 

(5)

 

When the location effect c  does not exist, equation (3) is reduced to chchu  . 
 

According to Elbers et al, the remaining residual ch  can be fitted with a logistic model and 

will regress a transformed ch
 on household characteristics: 

(6)
        (also referred to as Alpha model) 

where A set to equal 1.05*max{
2

ch }. The variance estimator for ch  can be solved as  

(7)
   

The result from above indicates a violation of assumptions for using the OLS in model (2), 

so a GLS regression is needed. In GLS the variance-covariance matrix is a diagonal block 

matrix with structure: 
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Overall, the procedure for stage 1 of the poverty mapping computation can be listed as: 
s1. estimate “Beta” model (2) 

s2. calculate the location effect c  (3)  

s3. calculate the variance estimator 
)var( 2

    (4) 
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s4. prepare the residual term ch
 for estimating “Alpha” model (6) 

s5. estimate GLS model with (8) 
s6. use a singular value decomposition to break down the variance-covariance matrix 
from previous step. This will be used for generating a vector of a normally distributed 
random variable such that the joint variance-covariance matrix will be in the form of (8) 
s7. read in census data, eliminate records containing missing values, generate all 
census variables needed for both Beta and Alpha models.  
s8. save all datasets needed for the simulation (the "PDA" file). 
 

Bootstrapping 

The fully specified simulation model is defined as follows: 

(9)  chcchchy  ~~~
'~ln  x  

where  )ˆ,ˆ(~
~

 N  

 
c

~  is a random variable (could be normally distributed or T-distributed) with a 

variance defined in (5) 

 ch~  is a random variable (either normally distributed or T-distributed) with a 

variance defined in (7) , B= )~~
exp( T

chZ   and  )ˆ,ˆ(~~
 N  

Trimming could be applied to the random variable 
c

~ and ch~  as well as to random vector 


~

 and ~ .  In the case of a normal distributed random variable, a range (-1.96, 1.96) will 

make 10% of random --N(0,1)--drawing to be redrawn.  For random vector of size m, the 

vector will be redrawn if the mode of the vector (a 2 distributed random variable) is 

outside the specified range.  

 

 

Poverty/Inequality measurements 

After estimating chy~ln , several poverty and inequality measures will be computed. They 

include Generalized Entropy class : 
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In the above definitions, iw  is the weight of household i and W is the total population.   

 

Brief history of Poverty Mapping Software 

Creation of the software tool for Poverty mapping began in early 2000 when Peter 
Lanjouw completed a pilot program written in SAS.  He used a partial perturbation 
method which was later called ‗classical method‘.  In 2001 Gabriel Demombynes, along 
with Peter Lanjouw, Jenny Lanjouw and Chris Elber, developed another SAS version 
which used a simultaneous drawing method in bootstrapping. Due to the limitation of the 
SAS language, these nicely written SAS codes suffered greatly in their performance.  It was 
soon clear that the SAS language was not adequate enough to bootstrap complicated 
larger datasets in practice.  At this point Qinghua Zhao was delegated to devise an 
alternative.  The focus then was purely on the bootstrapping module.  By mid-2003, a 
usable package,version 1.1, was published and used in many countries.  This version and 
its predecessor 1.2.4, have played an important role in poverty mapping activities all 
around the world.  Version 1 can complete the simulation of 100 replications on 1 million 
observations in 4 to 5 minutes.  However, all processes of stage 1 and 2 have to be done 
with other statistical packages and are very time consuming.  At the same time, demand 
for poverty mapping rose in many countries and thus a package to complete all stages of 
poverty mapping seamlessly was needed. In response to this demand, PovMap2 was 
designed and the beta version was delivered in early 2006.  Today, corrections and 
enhancement in PovMap2 are still taking place. 

 

What’s new in PovMap2 

 A single platform for processing all computational needs in poverty mapping. 
Eliminating possible errors when using commercial statistical packages. 
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 Ability to read and process variables or formulas quickly.  In this database the 
information of a record is not stored sequentially, which is very different from a 
traditional relational database.  However, the concept of a record can still be used 
here.   Our new database engine can read/write variables much more quickly.  

 A new mixed mode data access is provided.  It will allow users to mix household 
variables with the district aggregation in the same formula without first producing 
the district aggregation database.  

 A correctly implemented mixed model variable access will also make it possible to 
store the variables of higher aggregation levels much more efficiently.  This is 
crucial since large amounts of district level variables are needed in modeling. 

 Introduction of categorical variables. A categorical variable is equivalent to a set of 
dummies.  The provision of categorical variables eases the task of comparing them 
and/or its cross product.  Limited operation allowed for the categorical variable 
insures the correctness of categorical variable manipulation.  Adding, subtracting, 
or dividing two categorical variables is prohibited.  While multiplication of two 
factors is interpreted and implemented as making new categorical variables of 
paired values. In contrast, a traditional database treats all numeric variables 
equally, whether or not they are categorical or continuous variables, thus 
mistakenly adding a categorical variable with a continuous variable is possible in 
most statistical packages or databases.  

 Variable comparability is strictly enforced; only variables compatible in survey and 
census are allowed to enter the regression stage.  This will greatly reduce potential 
errors.  

 Since the regression uses only the record with no missing value, it is very important 
for researchers to know how many records will become unavailable as the result of 
data processing.  It is quite difficult in traditional statistical software to produce 
such a report but users will be able to do it in PovMap2. 

 While users are exploring the data within PovMap2, all the actions will be recorded 
in the form of a script log.  The script log can be used or modified at a later date., or 
to be used in another dataset. 

 PovMap2 has a content sensitive help system. 

 Advanced data processing and tabulation function.  User can use PovMap2 to finish 
all computation needs without switching to other software tools.   

 
Dataflow in Poverty Mapping 

The following chart illustrates the dataflow of poverty mapping.  The majority of it is 
processed in the ‗checker‘ screen of PovMap2.  The box labeled ―Consumption prediction 
model‖ consists of four screens which need to be handled sequentially. 
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PART 2  CONCEPTS AND COMPONENTS 

 

Aggregation level and Hierarchical ID 

A typical expenditure prediction model contains not only household information, but 
characteristics of villages and counties where the households reside.  In order to link 
information of different levels into the household level, proper keys must be used 
throughout the data preparation stage.  PovMap2 has adopted a compounded structure 
for ID, each section of the ID represents a different level of aggregation.  For example, a 
hierarchical ID may look like 
 

    SSCCDDDHHHH  
 

Where SS is a two digits code for stratum, CC is two digits code for county within stratum 
SS, DDD is a three digits code for enumeration district within stratum SS and county CC, 
and the HHHH is the household ID within that district.  We can construct the identifier for 
other levels by truncating this ID to different lengths.  For example, SSCCDDD would be 
the district identifier, SSCC, the county identifier and SS is the stratum identifier.  Please 
note that truncation of SSCCDDDHHHH into SSCCD or SSCCDDDHH may not provide 
correct level.  

 

In PovMap2 the hierarchical ID is stored as a double precision number.  Suppose the 
dataset (survey and census) has multiple identifiers such as STRATUM (ranged from 1 to 
9), COUNTY (ranged from 1 to 99), DISTRICT (ranged from 1 to 125), VILLAGE (ranged 
from 1 to 38) and HOUSEHOLD (range from 1 to 23539).  A compounded ID at district 
level can be created with        
 

  DISTID=(STRATUM*100+COUNTY)*1000+DISTRICT , 

 or  

  DISTID=STRATUM*100000+COUNTY*1000+DISTRICT. 

a compounded village ID could be defined as  

VID=((STRATUM*100+COUNTY)*1000+DISTRICT)*100+ VILLAGE 

Similarly, the household ID could be defined as  

HID=(((STRATUM*100+COUNTY)*1000+DISTRICT)*100+VILLAGE)*100000+HO
USEHOLD, 

 or  

HID=STRATUM*1000000000000+COUNTY*10000000000 

+DISTRICT*10000000+VILLAGE*100000+HOUSEHOLD, 

It looks like 
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  SCCDDDVVHHHHH 

Users of PovMap2 can also use an automatic formation 
 

STRATUM \ COUNTY \ DISTRICT \ VILLAGE \ HOUSEHOLD  
 

to define the compounded ID.  PovMap2 will first figure out the range of each identifier 
and then determine the correct multipliers to form an expression for the compounded 
identifier.   

It is strongly recommended that users of PovMap2 use the same definition to construct the 
compounded ID for census and survey data.  Because identifiers in survey data may have 
smaller ranges, using the automatic ID formation may result in a different definition, e.g. 
SCCDDDVVHHHHH for census but SCCDDVVHHHH for survey.  To avoid that from 
happening, an explicit formula may be specified as following: 

STRATUM:1\COUNTY:2\DISTRICT:2\VILLAGE :2\HOUSEHOLD:4  

The exact definition of the range of hierarchical ID is ‗any integer number in the range of  -
9007199254740991 to 9007199254740992 or -2^53+1 to 2^53‘. This limitation is due to the 
internal use of double precision variables as the carrier of hierarchical IDs.  Please note 
that use of a decimal point in a hierarchical ID is not preferred because the operation of 
'shift' works only on an integer.  As for using the negative part of this spectrum, be 
advised that it is hard to read, inconvenient and thus not recommended. 

 

Data array 

A Data array is similar to ‗table‘ in a relational database.  It contains multiple columns, 
each one storing one variable.  The header of a data array defines the attributes of each 
column.  Variables defined in the header part of a data array could be vector, expression 
and/or alias. Vector corresponds to a sequence of data on the disk but expression and alias 
do not occupy any storage space. When expression or alias is evaluated, it is stored in a 
vector in the memory, not on the disk. 

All external datasets have to be converted into a data array in PovMap2.  Each PovMap 
contains a hierarchical ID, and each variable in a data array may be either  continuous or 
categorical in type.  The data array is sorted by its hierarchical ID at the time of conversion 
and cannot be altered afterwards.   

Regardless of the difference in data structure, the concept of record or observation is still 
valid in a data array. 

  

 

Relation without relational database  

Even though the data engine of PovMap2 is not a relational database, it does perform the 
typical relational databases‘ function as long as the relation between the two data arrays is 
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defined with a common compounded ID.   Image a dataset at the household level is linked 
with a dataset at the village level with village identifier VID.  A SQL statement may look 
like:  

 
 

   Select household.vid, household.hid, household.x, village.y  

   from household join village where household.vid=village.vid 

 

 

 

In PovMap2, this is done through the use of aggregation and distribution. Aggregation is a 
relation from multiple to one, and distribution is from one to multiple.  When two data 
arrays are connected with a common key (in this case VID), both data arrays are surveyed 
to form a multiplication factor.  A multiplication factor determines the number of cells to 
be aggregated or the number of cells to be repeated in distribution. 

Users of SQL system should be familiar with the concept of ‗left join‘, ‗right join‘ or ‗inner 
join‘.  If we consider household level data as in the ‗left‘, then PovMap2 only provides left 
join since a record with missing household variables is useless.  

 

PovMap2 Project 

A PovMap2 project always uses four data arrays.  The reference to these data arrays and 
the linkage between them is stored in a special file with file extension PMP. Please do not 
alter the content of the PMP file.  

The four data arrays are organized to store: 
 

 Survey household level data --each record is for one household in survey. 

 Survey cluster level data—each record is for one cluster in survey. 

 Census household level data—each record is for one household in census. 

 Census cluster level data—each record is for one cluster in census. 

 

10100101 
10100101 
… 
10100101 
10100102 
10100102 
… 
10100102 
 

00001 
00002 
… 
00289 
00001 
00002 
… 
00008 

    VID   HID 

100 
120 
.. 
 80 
900 
950 
… 
760 

 X 

10100101 
10100102 
 

    VID 

135.31 
855.34 
  

   Y 

+ 
10100101 
10100101 
… 
10100101 
10100102 
10100102 
… 
10100102 
 

00001 
00002 
… 
00289 
00001 
00002 
… 
00008 

    VID   HID 

100 
120 
.. 
 80 
900 
950 
… 
760 

 X 

135.31 
135.31 
… 
135.31 
855.34 
855.34 
… 
855.34 

 Y 

household 

village 
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Combining the information on the section concerning hierarchical ID and the relation 
between data arrays, we can then construct a hypothetical example:  

 

 
 In this example, each data array has an internal hierarchical ID (which is always noted as 
$ID$).  The format for survey household level is a combination of cluster id (as in the 
cluster part of survey data arrays) and a household ID within each cluster 
 

   ClusterID*10000+HouseholdID 
 

With shift-to-right four digits, the ID in the household level becomes a cluster ID.  On the 
census side, the hierarchical ID has a same structure but with more observations. In a real 
case scenario, the ID structure of survey and census need not be the same, as one could 
have ClusterID*1000+HouseholdID in survey and ClusterID*100000+HouseholdID in 
census.  The match between survey and census can still be done as long as the ClusterID in 
survey and census are a match. 

1010010100001 
1010010100002 

… 

1010010100289 
1010010200001 

1010010200002 

… 
1010010200008 

 

    $ID$ 

100 
120 

.. 

 80 
900 

950 

… 

760 

 X 

10100101 

10100102 
 

    $ID$ 

135.31 
855.34 

  

   Y 

+ 
100 

120 

.. 
 80 

900 

950 
… 

760 

 X 

135.31 

135.31 

… 
135.31 

855.34 

855.34 
… 

855.34 

 Y 

Household 

Cluster 

1010010100001 

1010010100002 
… 

1010010100289 

1010010200001 
1010010200002 

… 

1010010200008 
 

    $ID$ 

1010010100001 

1010010100002 
… 

1010010100289 

1010010200001 
1010010200002 

… 

1010010200008 

… 

9080776600001 

… 
9080776605555 

 

    $ID$ 

100 

120 
.. 

 80 

900 
950 

… 

760 

… 

121 

… 
 82 

 

 X 

10100101 
10100102 

… 

90807766 
 

    $ID$ 

135.31 
855.34 

… 

73.45 
  

   Y 

+ 
100 

120 

.. 
 80 

900 

950 
… 

760 

… 
121 

… 

 82 
 

 X 

135.31 

135.31 

… 
135.31 

855.34 

855.34 
… 

855.34 

… 
73.45 

… 

73.45 
 

 Y 

Household 

Cluster 

1010010100001 

1010010100002 
… 

1010010100289 

1010010200001 
1010010200002 

… 

1010010200008 
… 

9080776600001 

… 
9080776605555 

 

    $ID$ 

Survey 

Census 

Combined 

Combined 
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From this example, we can see a PovMap2 project file needs to store additional 
information on how the household and cluster files are linked. That is the number of digits 
to shift in survey and census.  

In its simplistic form, a PovMap2 project need only have a survey household data array, 
census household data array, digits to shift for survey data to link to cluster level, and the 
digits to shift for census data.  The cluster level data array will be constructed 
automatically.  By default, the name of the cluster level file is a concatenation of the 
household file and ―_cluster‖. 

 

Continue variable vs. Categorical variable 

Variables in a PovMap2 data array have two different types—continuous variable and 
categorical variable.  Continuous variables are those that take value from a continuous 
domain.  Weight, height, income and spending are typical continuous variables.  On the 
other hand, categorical variables take value from a specific set, typically a few integer 
values. Gender (1=male, 2-female) or Education (0-illiterate, 1-elementary, 2-middle school, 
3-high school, 4-college, 5-post graduate) are typical categorical variables.  In most cases, 
categorical variables take a handful integer values, but exceptions do exist.  Commonly 
used Standard Industry Classification (SIC) code 
(http://www.census.gov/epcd/www/sic.html) is also a categorical variable but its value 
may range from two digits to four digits.  There are some variables that can be treaded as 
continuous as well as categorical depending on the interpretation.  For example, ‗years of 
education‘ can be treaded in either way.  Users of PovMap2 can identify the variable type 
to be explicitly continuous or categorical. PovMap2 also tries to guess the variable type 
during dataset import.  Variables with limited integer values (limited in range of 0 to 15 by 
default) are consider to be a categorical while anything else is continuous.  If SIC3 or SIC4 
is used in the dataset, users should change the type to categorical manually. 

 

Operator to Categorical variable 

Categorical variables are also different from continuous variables in what kind of 
operation can be applied to them.  Valid operations to continuous variables include +,-,*,/ 
and functions like Log or Exp.  Valid operations to categorical variables are limited. 
Addition, subtraction, or division of two categorical variables have no meaning (image 
what would be the meaning of Gender/Education ? ).  Invalid operation to categorical 
variable will cause an exception and the execution will not be conducted. 

The valid operation of categorical variables include: a) interaction, b) comparison 
operation and c) arithmetic operation with a constant.  Categorical variables that interact 
with a continuous variable will be explained separately.  In following example, categorical 
variable Gender has value  

1 Male 

2 Female 
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categorical variable HeadSector is the two digits SIC code describing what industry the 
head of household is working, its values are: 

7 Agriculture  

10 Mining 

15 Construction 

20 Transportation/Public Utilities 

40 Manufacturing 

50 Wholesale Trade 

52 Retail Trade 

60 Finance, Insurance and Real Estate 

70 Services 

99 Unclassified 

a) The interaction of two categorical variables is shown below.  The internal value of 
interaction result is constructed with appropriate concatenation.  Thus the order of 
interaction matters, HeadSector*Gender has different internal value than Gender*HeadSector. 

 

 Gender HeadSector Meaning  Gender*HeadSector eadSector*Gender 

1 15 A male working in construction 115  151 

2 52 A female working in retail 252  522 

1 10 a male in mining industry 110  101 

1 15 a male working in construction 115  151 

2 70 a female in service sector 270  702 

 

b) The comparison expression for categorical variable is obvious: HeadSector=10 will 
identify all heads of household working in the mining industry. 
(HeadSector=70)&(Gender=2) will identify all females who work in the service sector. It can 
also be expressed as Gender*HeadSector=270 or  HeadSector*Gender=702. Since Recode 
function is a compound comparison function, it can be applied to categorical variables but 
the user has to provide the label, i.e. the labels does not become involved in the 
computation. 

 

c) There may be additional situations in using categorical variables, such as converting a 4 
digit SIC code to two digits.  It would be convenient if we could do SIC2=int(SIC4/100).  
This brings up the third usage on categorical variables: arithmetic operation of categorical 
variables and a constant is allowed and the outcome is a numeric value.  Users have to 
reset the type to categorical and provide a label to it manually. 
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Interact numeric value with categorical variable 

In preparing data for regression, a special operation between a continuous and categorical 
variable is allowed.  Because a categorical variable is equivalent to a group of dummy 
variables, the interaction of a continuous and a categorical variable is defined as the 
product of the continuous variable and set of dummies.  

 

For example, WorkingYears is a continuous variable measuring the number of years 
worked.  Putting it in an income model  
 

y=a + b*WorkingYears + c*Male  (Male is defined as Gender=1) 
 

This implies there is an increment of b dollar regardless of gender for each additional 
working year, and being male, there is always c dollar difference compare to the female 
regardless the experience.  By introducing the interaction part Male*WorkingYears and 
Female*WorkingYears, the regression become 
 

   y=a+ d*Male*WorkingYears + e*Female*WorkingYears 
 

This model allows for more flexibility.  In PovMap2, the continuous variable x interacts 
with the categorical variable c and is implemented as n vectors:  x*(c=code1),  
x*(c=code2), x*(c=code3)…x*(c=coden)  where n is the number of categories of c.  

 

Labeling categorical variable 

The label for categorical variable is crucial for understand its meaning.  Users of PovMap2 
can specify labels in the provided text box in the following format: 
  

 1=Male 

 2=Female 

 
The integer value on the left is the internal value of that categorical variable, and any text 
(including the space between two words not including the leading and padding space) on 
the right side of equal sign is the label.  Wrapping label to next line is not allowed.  When 
two already labeled categorical variables are interacted, the label will look like 
Male*Construction, or Female*Service.  

 

Please note that labeling in PovMap is different than applying format to variables (as in 
SAS or Stata). Users may have to repeatedly define 1=Yes 2=No for each occurrence of a 
yes/no question.  Use of clipboard will make it much easier. 
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Missing value 

Missing value widely exists in statistical datasets.  PovMap2 data arrays also allow for 
missing values.  Arithmetic operations involving missing values always have a missing 
value.  Similar to SAS, missing values are greater than any ‗non-missing‘ value.  
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PART 3  OPERATING POVMAP V2.0 

 

Import datasets 

External datasets must be converted to PovMap2 data arrays before further use.  The 
supported data format includes Stata, dBase, fixed column ASCII and tab (or comma) 
delimited formats, and, any datasets that can be read with an ODBC driver.  To be able to 
read a non-ODBC dataset, PovMap 2 will use the file extension to identify the dataset type.  
Here are the file extensions associated with the supported non-ODBC dataset: 

 .dta  Stata dataset (version 2 to 8) 

 .dbf  dBase III, dBase IV, FoxPro dBase file 

 .csv  comma separated value ASCII file with field name in first row 

.dat fixed format ASCII file along with .dct file to describe the field 
attributes 

Please note that you must determine the hierarchical ID before you start importing any 
dataset.  

To start importing a dataset, click menu item Tools->Import…, you will see the following 
screen: 

 

Click on the ―Variable Info‖ button.  Here you will see the names of all variables in the 
middle section.  By default, all variables are selected, and the order of variables shown is 
the same order as in the dataset. Users can change the order of variable list by right-
clicking within the empty space in the variable list.  A pop up box will appear to let you 
sort by name or check/uncheck all. 

 



DRAFT for comment; not for citation  21 

Right-click to change order and select/unselect variables 

 

  

The box in the lower-right corner labeled ‗Categorical threshold‘ provides a ‗cut-off‘ point 
for identifying categorical variables during importing.  Any variable representing a whole 
number and being less than the threshold will automatically be marked as a categorical 
variable.  This is designed to save the user from having to repeatedly set the variable type.  
Users can set the variable type to zero to disable the ‗auto-categorizing‘ (assuming there is 
no negative integer).  This setting can easily be changed in ‗checker‘ screen.  

 Notes on importing DTA, DBF files:   DTA and DBF files contain header information.  
PovMap2 can read variable definitions from these headers and thus do not require 
additional auxiliary files.   

 Notes on importing comma delimited files (i.e. CSV files):  Variable names must be 
provided on the first line, separated by a comma.  CSV files typically do not have a 
fixed length, thus each line is treated as one record.  Data cells are delimited by a 
comma or tab.  

 

Empty data cells will be read as missing.  The number of data cells in each line should 
not exceed the number of variables defined on the first line.  If the number of data cells 
on a line is less then the variables defined, the missing value will be assign to all 
missing cells. 

 In order to read a fixed format text file (i.e. TXT, DAT, or ASC), an auxiliary file should 
be provided to define all variables.  This file should have the extension .DCT (dictionary 
file): 

nhid1,nhid2,nhid3,agric,lownfrm 

10901512,1030111,5,1,0 

10901512,1030211,8,1,0 

10901512,1030311,,4, 
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The format of the above file is a reduced form of a dictionary file used by a popular 
database conversion tool, DBMSCOPY.  Users can utilize the DBMSCOPY dictionary 
file directly within PovMap2.  The format should consist of each line beginning with a 
space.  This will make it compatible with DBMSCopy.  The four columns represent the 
starting column; width of a variable; type of variable; and variable name, respectively.  

 For reading a SAS dataset, users must have the SAS system and SAS ODBC driver 
installed on their computers. For further details please refer to the following document: 
http://support.sas.com/techsup/technote/ts626.html 

The SAS ODBC driver is very different from MS-Access driver.  First it is necessary to 
identify the library location.  Now assume you have data file  

C:\Projects\PovMap\Census\CenData.sas7bdat 

and     C:\Projects\PovMap\Survey\SurveyData.sas7bdat. 

First thing to do is to create a system data source name (DSN) with Windows‘ ODBC 
definition utility.  This DSN name will be used as library reference.  A library reference 
in SAS is defined by a LibName statement which maps a directory to a library name.  
SAS users are accustomed to the following code; which is very similar to what we need 
to specify in PovMap2: 

   

To define DSN, open the Windows ODBC driver set up utility.  The following 
illustration consists of three screen shots of the SAS OBDC driver configuration. 

Libname myLib “Projects\PovMap\Census”; 

Data one; 

 Set mylib. CenData; 

 . . . .  

 

 

     1     11 l nhid1 

    13     11 l nhid2 

    25      4 b nhid3 

  30      4 b agric 

  34      8 R earning 

 

http://support.sas.com/techsup/technote/ts626.html
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The name in the libraries box is a library name that refers to a location (directory) as in 
the ‗Host File‘ box.  

To use SAS datasets in PovMap, click Tools->Import->Advanced, then insert the dataset 
reference.  The following screen shot resembles a Libname statement. 

 

 For all other datasets, PovMap2 will be able to read them as long as they have a 
corresponding ODBC driver.  
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Creating PovMap Project 

To create a poverty mapping project, click File->New Project and you will be prompted to 
fill in the Creating New Project form: 

 

 

Where project file (type PMP) will store all information about this project.  

 

Click Next to proceed where you will then need to specify how data arrays are linked 
inside this project.  Please refer to section ―PovMap2 Project‖ to gain a better 
understanding of the data linkage.  Besides the survey and census household file names, 
you must also provide a number to shift the ID of the household file to match the ID of the 
cluster file.  This needs to be done for both survey and census respectively. 

 

With the provided information, PovMap2 will examinant, for survey and census 
separately, the ‗mergebility ‗of data arrays. The summary of ID matching is shown next 
screen-shut. We can read from there the ID at household level in survey ranges from 
22561021 to 488327719, each observation in survey household file has its own ID (as in the 
min=1 and mix=1 on ‗cluster size‘). After shifting household ID 6 digits to the right, the ID 
will groups to size of 10 and range from 22 to 488. Similar reading is for census data. 
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If you find the summary ID matching is not what you expected, go back to review the 
information in the previous screen. 

It should be noted that the ID in household level file need not to be household ID, one can 
use hierarchical ID at cluster or village instead. The only setback of doing so is that when 
user view the data array, they can only tell ‗this is the third record in that cluster‘ but they 
can‘t tell which household that is. In this case, the number of shift to form cluster ID can 
simply be 0. 

 

Next screen to emerge is to assign the weight. Survey data are typically weighted but 
census data are typically not weighted. 

 

By now all the conditions for setting up a project are ready.  The information can‘t be 
altered (except the weighting). If the mistake were made such as the shift of ID, user has to 
start over.  
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Screen Checker -- Finding Candidate Variable Pairs 

Paring up survey variable and census variables is done by ‗Checker‘ screen. Following 
screen shut shows the components of checker. 

 
Checker allows users to recode/create variables, compare descriptive statistics of the 
survey and census data, edit variable properties, and set the variables that will be used in 
the regression.  Matching independent variables in the survey and census can be done 

manually using ,  or by inserting the independent variables into the  window 
(under certain condition).  In order to be set (included) into the model, variables in the 
survey and the census must have the same type. If the variable in survey and census has 
different name, PovMap will prompt for the common name. Once set into the model, the 
variables are referred to as ―matched‖.  The matched variables to be included in the model 
are shown on the right side of the check screen.     

 Identifying a variable‘s type (continuous or categorical) is a unique feature of PovMap, a 

variable‘s type can be changed using the  window when necessary. Using the ―draw‖ 
 feature, a visual comparison of survey and census variables can be conducted, 

displaying frequencies and cumulative distributions respectively for categorical and 
continuous variables.  Multiple visual representations enable users to exanimate potential 
―matched‖ variables,  button    is for ‗unlocking‘ the matching.  

The graphic button on the center of screen provide different charting combinations, Two 

radio buttons let you set the charting mode to PDF+CDF mode or to CDF vs. PDF 
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mode.  In the following charts, the far-left chart has survey‘s CDF and PDF plotted on the 
upper part and CDF and PDF of census plotted on the lower part. 

               
            PDF + CDF mode                                             PDF vs. CDF mode 

In the contrast, the charts on the right superimpose CDF of survey and census on the 
upper part and PDF of survey and census on the lower chart. 

 

Detail Explanation of Checker Screen 

1. Comparing Variables in Survey and in Census  

For helping diagnostic the likelihood of selected variable pair, PovMap2 provides a 
statistics on the upper right corner of the screen. 

When comparing two categorical variables in the survey and census, PovMap displays 
the chi-square statistic, which compares the survey frequencies to census frequencies. 
The significance of the chi-square statistic indicates whether the survey and census 
have similar frequency distributions, and is one method for determining if the variable 
should be included in the analysis.  

When two continuous variables is compared, PovMap calculates the Kolmogorov-
Smirnov (KStwo) statistic, which is a measure of the correlation between the 
cumulative probability distribution functions in the survey and census. The distance 
measure provided with the KStwo is the maximum distance between the survey and 
census distribution; small values suggest that the survey variable is representative of 
census variable. The KStwo value represents the significance of the distance measure, 
which when significant, theoretically suggests that the survey is not representative of 
the population for the chosen variable.1   

                                                 

1 For a detailed discussion of how to interpret the chi-square and KStwo statistics, see chapter 14.3 in the 
Numeric Recipes in C website: http://www.nrbook.com/a/bookcpdf.php 
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Important reminder on the comparing categorical variable with chi-square test:  the 
values of two categorical variables may not have the same meaning even through they 
take same value, e.g. value ‗1‘ of variable GENDER may mean ‗Male‘ while value ‗1‘ in 
OWNTV may mean ‗owning a TV‘. Comparing of any two variables should not be 
done blindly.  

2. Summary Statistics of Selected Variable 

For any selected pair of variable, the buttons on the center of the screen can be used to 
check the value, frequency table (for categorical variable), univariate table for 

continues variable. Button  and 

 both open a same popup 
screen with four tabs, the 
difference between them is the 
default tab.  

In order to accelerate the computation of distributional analysis for continuous 
variables, a ‗bin count‘ method is used. It is accurate enough for diagnostic purpose. 
This method uses 500 bins to cover whole range of the continuous variable with equal 
interval. The interval is optimally rounded to a proper value to avoid value with long 
decimal (e.g. 1.24976531832).  

 

3. Set and un-set a pair 

When the variable pair being compared is satisfactory, you can use button 

 to add them into the matched 
variable list. This will popup a dialog- box 
to show you the possible drop of 
effective records in following regression 
analysis due to the missing value in the 
variable you are adding. 

 

If the survey variable and census variable 
have different name, the dialog box will 
have an additional text box about the 
common name you are going to use. In this 
case, a new variable will be created and the 
original variable will not be changed 
(original variable is read only. Always !).  

Un-set (un-pair, un-match) a variable is straight forward, click button  to select 
what variable pair to be removed from the paired list. This action did not delete the 
variable from the data array.  
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4. Rules of Interlocking  

In order to avoid conflict, complex rules are implemented. You may see some buttons 
or text boxes in the checker screen locked, grayed-out or blocked, that is because the 
internal locking rules. The rules may be too complicate to list them all but following 
principal can help you understand them: 

 Expression does not take disk space but variable always occupy disk space. 

 When an expression is saved with button , they will be evaluated and a 
variable will be create to hold all the value. In the ‗Definition‘ box, the formula of 
this expression will be kept and further editing is disabled. 

 Anything in the matched list is variable (occupy disk space). 

 Original variable should not be altered (change, delete) but non-original variable 
can be deleted. 

 Categorical variable has to be integer type. 

 Variable or expression can not be paired if they are different type. 

 Each variable can be paired only once. If A is paired with B, then B (or A) can‘t be 
paired to C. 

 Variable with single value can‘t be used for charting 

 The property of a paired variable (type, value…) can‘t be changed, un-set them 
before making changes. 

  Variable in the cluster section will be evaluated in the household level on demand. 

5. Generating Compounded Variable 

The paired variable can be used to generate 
higher order compound mechanically. 
Three compound methods are provided: 
Manual, All compound and Only polynomial 
basis.  

 

Denote the paired variables as {xi} where 
i=1,2,,,m. selection of All compound will produce {Xi*Xj} where i,j=1,2,,,m  and j>=i.  
Selection of Only polynomial basis will produce {Xi2, Xi3,.. Xik}, where k is the highest 
order.  Selection of Manual will show an additional screen to let you select a subset of 
{Xi} 
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Since the compound is only applied to the paired variable, the definition of each pair 
should be already carefully confirmed, thus, the compound dialog has an button 

, click it to let PovMap2 select the variable for you when variable pair in the 
compound list satisfy a pre-specified level. 

 

6. Aggregate census data and make it available in survey 

It is often needed to make aggregation of census variable such as average ownership 
of TV or percentage of people with higher education at cluster (or county, district even 
province/state) level. Typical procedure of making such operation in common 
statistical package like SAS or Stata involves making aggregation into another dataset 
and then merge it back.  In PovMap2, thanks to the required sorting order, this can be 

done instantly with button .  

The dialog screen will let you specify 
whether the aggregation should be 
distribute to survey data arrays, user can 
also change the level of aggregation 
higher. The later is very useful to produce 
the province/state average. 

 

If your aggregation would be based on a 
order incompatible to the hierarchical ID 
such as urban/rural or the variable of 
terrain type, the items inside the ‗Based on 
other variable‘ can be activated and filled, 
whatever variable selected can be used 
(directly or with shift) to determine the 
grouping of this aggregation. 

Obvious, aggregating census variable into 
survey‘s cluster level requires the hierarchical ID in census and survey to be 
compatible. Otherwise, the survey data array will receive all missings. 
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7. Merge in external dataset 

To merge in an external dataset, user should convert the dataset into PovMap2‘s data 
array and then click menu item 
Project->Merge Cluster Vars. Merge in data 
arrays to household level is not 
allowed because it is unlikely to 
happen. 

 

The operation of this dialog screen is very 
similar to the aggregation function. The 
only different in the data flow is 
instead of aggregating household data 
to cluster level the cluster level data are 
read from external data array. 

 

8. Set multiple pairs by import 

In response to user‘s request about setting a group of variables in pair, PovMap2 can 
accept a list of variable names in text mode then parse it to individual name and set it 

in pair.  Click button    and a dialog box as in the next picture.  The 
conditions for using this function are  

1) Variable name must exist in both Survey and Census; 

2) Variable in either Survey or Census must NOT be constant, or, max=min; 

3) Variables in Survey and Census must have the same type. 

Otherwise, PovMap2 will try to 
change the numerical variable to 
categorical. If it fails for some 
reasons, such as, variable 
contains decimal, or any huge 
value, user can choose to either 
reject that name of change to 
continue variable.  
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9. Batch job with script 

All the tasks of creating new expression, saving as variable and matching them up can 
also be done in batch mode. By default, your Poverty Mapping project will open a log 
file. All the actions that change the data array will be recorded as script. The script can 
be reused.  
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Screen 2 --  Consumption Model 

Overview  

PovMap2‘s second page, consumption model, is also referred above as the ―beta‖ model.  
Functions built into this screen are for finding a best consumption prediction model with 
survey data.  The basic elements handled here are regressors. Regressor could be a 
continue variable, or a group of dummies generated from a categorical variable.  User can 
view the regressor, make mean table and correlation table or running regression analysis. 
Multiple model selection methods are available including OLS, forward selection, 
backward selection and setepwise selection. An experimental ‗overfitting‘ diagnostic 
method is also available. The result of latest regression can be stored into a handy ‗Model 
Pad‘ for further comparison or for model testing. 

 

 

Detail  

1. LHS, RHS and Regressor 

User must specify the LHS variable, or dependent variable, as well as the RHS 
regressors.  

Regressor could be a continuous variable, or a group of dummies generated from a 
categorical variable.  The name of dummy regressor is a concatenation of the name of 
categorical variable, an underscope sign and the value. In principal, a categorical 
variable with k different values will spend-off k dummy regressors( i.e. no  omitted 
dummy). However, categorical variable with value 0 and 1 will be treated slightly 
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different—only dummy for value 1 will be used as a regressor. This approach makes 
the regressor list much more intuitive and readable when the data array has a lot of 
dummy variables. 

 

2. Four states check box 

The check box in the regressor list is a special type, it has four 
status: unchecked (white background), unchecked and locked 
(gray background), checked (checked with white background) 
and checked and locked (checked with gray background). Basically, it is combination 
of checked/unchecked and locked/unlocked. The 
regressor in a locked mode will remain its 
status during model selection, while 
unlocked regressor may be added to or 
removed from the model.  

To lock a regressor, right click over the 
regressor and then select lock or unlock. 
Button  will release all locks in the 
regressor list. Button  will remove 
all checked regressor from the model if 
they are not locked. 

 

2. Analyzing mean table and correlation table 

Selecting Mean of Selected from the task dropdown and click   button, a mean 
table will be shown as follows, which include all selected regressors and the  

 

LHS variable. The columns with heading 0.05,0.1, 0.25, 0.5, 0.75, 0.9, 0.95 are the 
percentage deciles. This table is a ‗sortable‘ table, user can click on the column header 
to sort the result. 

Similarly, user can make correlation table. It is also a ‗sortable‘ table. It is useful to 
checking the correlation among regressors. 
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3. Regression analysis and model selection  

To build a good consumption prediction, user can choose from OLS regression, 
Forward selection, backward selection or stepwise selection.   

OLS  

This method is the default and provides no model selection capability. All the 
regressors selected in RHS list will be used for estimation. It is possible to see an 
―Matrix is un-inversable‖ error message when the regressors selected is co-related.  

Forward Selection   

The forward-selection technique begins with 
regressors already selected. For each of the 
regressors, this method calculates F statistics that reflect the regressor ‗s contribution to 
the model if it is included. The p-values for these F statistics are compared to the value 
in Entry box. If no F statistic has a significance level greater than the Entry value, the 
forward selection stops. Otherwise, the forward method adds the regressor that has the 
largest F statistic to the model. The forward method then calculates F statistics again 
for the regressors still remaining outside the model, and the evaluation process is 
repeated. Thus, regressors are added one by one to the model until no remaining 
regressor produces a significant F statistic. Once a regressor is in the model, it stays.  

Backward elimination 

The backward elimination technique begins by calculating F statistics for a model, 
including all of the regressors. Then the regressors are deleted from the model one by 
one until all the regressors remaining in the model produce F statistics significant at the 
value specified in the Stay box. At each step, the regressor showing the smallest 
contribution to the model is deleted.  

Stepwise selection 

The stepwise method is a modification of the forward-selection technique and differs in 
that regressors already in the model do not necessarily stay there. The stepwise method 
looks at all the regressors already included in the model and deletes any regressor that 
does not produce an F statistic significant at the Stay box. Only after this check is made 
and the necessary deletions accomplished can another regressor be added to the model. 
The stepwise process ends when none of the regressors outside the model has an F 
statistic significant at the value in Entry box and every regressor  in the model is 
significant at the Stay level, or when the regressor to be added to the model is the one 
just deleted from it. 

Single step model selection 

All the model selection methods descried above have correspondent Single Step 
variations. This, associated with the regressor locking function, provide most flexibility 
in model building.   

 

4. Testing for over-fitting problem 
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This function is an experimental component. It is designed to determine if the 
explanatory power of the beta model is dependent on the idiosyncrasies of the 
particular sample.  The test generates a set of sub-samples and runs regressions 
analysis of same model on each of them, the sub-sample is formed by excluding 
observations related to certain categorical variable. The statistical summary of the 
regressions are collected in one table. When over-fitting is not present, regression 
statistics and parameters should be roughly the same.  Large differences between 
models, however, suggest that the model is over-fit to a specific characteristic of the 
whole sample. For example, if the cluster ID is the examined categorical variable, large 
differences in R2‘s and parameter coefficients suggest that the model fit of the entire 
sample is dependent on idiosyncrasies within a specific cluster or clusters.     

5. Viewing data and Excluding outliers 

User can use view data to browse through the survey data array. All the effective 
observations are shown in the data grid. If some of the rows need to be excluded, user 
can right-click on the row header and select Set outlier to mark it as an outlier, a blue 
dot will show up on the right of scroll bar and the outlier row will also be mark with 
same color. This mark is useful to re-allocating the outlier record: all you need is to 
drag the slider on the scrollbar to near the dot and the outlier record will show up on 
the data grid. 
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Screen 3 --  Cluster Effect 

Overview 

This page displays components of the cluster-level effect and enables users to disable the 
―locational effect‖ and determine the distribution of locational component, which will be 
applied to the census data during the simulation.  Specifically, this screen displays 1) the 
residuals plotted of all household color coded by cluster, 2) a detail of locational effect per 

cluster, 3) a scatter plot of actual (Y) and estimated (Ŷ)  values for each household, and 4) a 
and cumulative distribution of the cluster effect.   

 

 

Detail Explanation of Cluster Effect Screen 

1) The Residual Plot organizes the model residuals by cluster.  The mean and median 
residual for each cluster are displayed by green and red vertical lines, respectively.  
The distribution of the residuals is displayed on a three-tone salmon-colored 
gradient by percentiles. From lightest to darkest, the distributions shown represent 
the 0-100th, 10th – 90th, and 25th – 75th percentiles.  
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2) The Prediction Plot is a scatter plot of the actual (Y) and estimated (Ŷ)  values for 
each household, where the y-axis represents the actual and the x-axis represents the 
estimated dependent variable.  

3) The illustration of the cumulative distribution of the model‘s predicted values (Ŷ ) 
enables users to identify and visually choose a normal or t distribution using 

 scroll bar.  Users should choose the distribution that most closely 
matches the shape of the cumulative distribution of their model.  Representing the 
sum of the difference between the predicted and pre-set (normal or t) cumulative 
distributions, the likelihood statistic is a tool for choosing the most appropriate 
distribution.  Generally speaking, the smaller the likelihood statistic, the more 
similar the distributions.  The selected distribution will be stored by PovMap and 
used in the simulation process.  As anthropometric indicators for a population are 
typically normally distributed,  

4) When location effect is not desired, a check box on the upper-center can be used to 
ask PovMap2 to turn off the locational effect. Intuitively, if the residual plot is 
homogeneous across all clusters, they may not be much cluster effect to model. This 
can also be seen from the ratio of variance of eta to the mean squared error (MSE).   
The ratio tells how much of total variation (measured by MSE) can be interpreted 
by the cluster effect. If this ratio become negative (which is mathematically 
impossible but computational feasible due to the accumulation of computing error), 
user must disable the locational effect in order to continue to next screen.   

5) On the X-Y plot, user can right click over a point 
then select from three choices Set Outlier, Unset 
outlier and Unset all outliers to declare the select data 
point to be outlier (see detail on consumption model 
screen). The outliers marked this way have the same 
behave as the outliers marked in the data grid of 
consumption model screen, they will be used on 
next regression if the Drop outliers box is checked.  
User can also find a text box with light yellow 

b
a
c
k
g

round showing up to the upper-left of the data point, this is the Y values in the 
neighborhood of selected point. Similarly, in the residual plot,  user can also declare 
outliers.  

However, dropping cases should not be done by visual examination only, this is not 
a statistically defensible procedure.  Outliers should be removed from the data, if at 
all, based on robustness of the regression.  
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Screen 4 -- Idiosyncratic Model  

Overview 

Also referred to as the alpha model, the idiosyncratic model estimates household effect. As 
the household variance is not constant, and is allowed to vary with some explanatory 
variables, it is considered a model of heteroskedasticity.  The dependent variable, 
annotated as _ALPHALHS_ (i.e. alpha-left-hand-side variable), is affected only by 
variables whose value affects the variance of the error term, and we have no basis for 
deciding a priori which variables will have variances that vary systematically with the 
value of the variable. Thus it is logical to estimate the parameters using stepwise 
regression, in contrast to the beta model.  Following models of heteroskedasticity, 
potential regressors are generated from matched variables and additional interaction 

terms involving Ŷ  and Ŷ 2 (Ŷ  is the  predicted consumption level from beta model).   

 

 

Details 

1. Unlike the Beta model screen, the button Add to Model Pad does not exist. That 
button is designed for making statistical inference on whether to partition the 
sample, it is not the task to be done in this screen. 

2. For not modeling the idiosyncratic effect, use Clear All to empty the model.  
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Screen 5 -- Household Effect 

Overview 

The household effect screen examines how much heteroskedastic variation can be 
explained by idiosyncratic model. It includes 1) the alpha residuals plot, 2) a table with 
Beta and Alpha estimates by household, 3) a scatter plot of the actual (alphaY) and 

estimated (alphaŶ)  for each household, and 4) cumulative distribution of the estimated 
error term.  

Despite all the information provided, only minor adjustments can be made to the model in 
the household effects screen.  Specifically, only the distribution of the error term can be 
determined using the slider bar.   

 

 

Details 

1. As in the cluster effect, noting the likelihood statistic can help determine which 
distribution is appropriate.  The likelihood statistic has the same meaning as in the 
cluster effect, showing sum of the difference between the predicted and pre-set 
(normal or t) cumulative distributions.   

2. There is no outlier setting function in this screen.  
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Screen 6 -- Simulation 

Overview 

The simulation process in PovMap refers to the point in poverty mapping when the 
parameter and error estimates from the survey are applied to the census data.  The 
simulation screen allows users to modify simulation settings by 1) changing the 
distribution of cluster effect and idiosyncratic effect, 2) setting trimming parameters for 
simulation, 3) specify the simulation parameters, 4) specifying additional information for 
output, and 5) identifying the type and level of simulation. In addition, all the settings 
could be reformatted into a text mode configuration file similar to PCF file in PovMap 
version 1.  

 

 

Details 

1. Household size must be identified before simulation started. Household size acted 
as a weight to the household data in census, this ensures the simulation result to 
representing the total population.  

2. The distributions of the cluster and household effect are loaded from earlier screens 
(slider control in the cluster effect screen and house effect screen). Also available on 
the dropdown list is the Semi parametric distribution, it draws from the pool of 
residuals in survey.  The household effect has one more type of random component 
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–hierarchical semi parametric. It must be coupled with the use of Semi Parametric 
random component in the cluster effect. In this mode, when cluster effect picked up 
the ith cluster, the household effect will be drawn from all household residuals in 
cluster i.  

3. Number of replication -- Number of simulation. A required field. Preset to 100 
times.  

4. Poverty line. A required field. Its value could be a number or a variable name which 
stores a ‗flexible‘ poverty line, i.e. a poverty line may vary over region, cluster or 
even household.  

5. Min Y imputed – The lower boundary for 
trimming simulated LHS variable. Preset to Auto 
(n.nnn )  where n.nnn is lower bound of Y value 
in survey. Click button  will bring up a dialog 
box like the one on the right. The choice None 
will remove any limitation on the minimum 
value of imputed Y. When Auto is used, the 
lower bound of Y value in survey dataset will be 
used. This value is shown on the right but no 
editing is allowed).  If Value is selected, then the value box will be fully editable and 
user can specify a desired value in the box. 

6. Maximum Y imputed – similar to the minimum Y imputed, but the maximum 
value. 

7. Beta – the acceptant probability of Beta vector. Default to None  or 1. If we denote 

this number as p0,  and solve for x0 such that 2(x0,df)= p0, then the redrawing of Beta 
vector occur when |beta |> x0 . This is because Beta vector is drawn from normal 
distribution such that its mean equals to the estimated Beta  and its covariance 
matrix equals to the covariance matrix of Beta, there is small chance, during the 
drawing, the drawn Beta vector become too strange and cause the imputed Y 

completely out of range.  Since the mold of Beta is a 2 distributed random variable, 
redrawn when |beta |> x0 could eliminate extreme value.  

8. Alpha – the acceptant probability of Alpha  vector. Treated in the way similar to Beta  
vector. 

9.  Eta – trimming for cluster effect. Defaulkt to None. Specifies the range for cluster 
effect (location effect) trimming. Similar to item 6 (Min Y imputed ).  The selection 
Auto corresponds to the range (-v, v) where v is the largest absolute value of cluster 
effect in survey.  

10. Epsilon – trimming og household effect. Default to None. Similar to item 10 (Eta). 

11.  Estimated Y – trimming for simulated y including all random components. Default 
to None. Its value determines a range (ymin, ymax). Any simulated y will be excluded 
(set to missing) outside of this range. Please note that this number must be in the 
real term.  
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12. Indices – Indices of poverty and inequality measurements. At least one indices 
show be selected. For General Entropy measurements, user specific value is 
provided. The value 1.5 will interpreted to GE1.5. The Alkinson measurements have 
similar arrangement.  On the Distribution box, user can select from (10 20 30 40 50 60 
70 80 90), (20 40 60 80 100), (1 5 10 25 50 75 90 95 99), :10 or :20. Notation ‗:10‘ means 
the distribution will be shown in 10 equal interval groups. User can also type in 
different percentile values in similar fashion.  

13. Number of replication – Default to 100.  

14. Initial random seed -- This determines what is the first random number used in the 
bootstrap. Preset to 1234567. All random components will be affected. When 
omitted or set to 0, internally produced fully random number will be used. This 
seed is derived by the system clock in 1/1000 second resolution. Thus no two 
simulations will be equal if seed is set to 0. A small button  nearby could be 
used to retrieve the random see used in the last simulation, which could be very 
useful in determine a proper trimming. 

15. Aggregation Level – Specify at what level the simulations is run and aggregated. 
Grouping is form when the shifted hierarchical ID changes. When n=0, the 
hierarchical ID will be used and aggregation is for each districted ID value. When 
n>0, the ID in census dataset will be shifted n digits to the right to produce a shorter 
ID that represents an aggregation on higher level, new aggregation will be 
outputted when this value changes. For example, if ID is the form SCCDDD 
(multiple household share same district ID. Cluster is at district level), then 
SIMULATION=3 will produce a estimates at the county level (SCC).  Multi-level 
simulation can be requested by values like 0 3 5, which estimates at district level 
(SCCDDD), county level (SCC) and stratum level (S).  

16. Additional shift for cluster effect – for simulating cluster effect on higher level than 
cluster. Default to 0. It is often needed to simulate cluster effect on ‗above cluster‘ 
level.  This option let user specify where the cluster effect should be drawn. Using 
the hierarchical ID SCCDDD as an example, if county is a more appropriate 
clustering level, use 3 in this box. 

17. Simulation method – specifying the method. Currently have Simultaneous drawing 
and Classical (Partial) Drawing. Other two options is still under development. See 
Peter Lanjouw‘s notes on this topic on Special topic section. 

18. Output file name – the name of output file from simulation, This name will also 
affect other auxiliary files (see below). 

19. Y in Logarithmic form – indicating the LHS variable is in log form thus, the real 
term should be computed with exponential transformation. Default to Yes. 

20. Saving all poverty/inequality indices – for requesting all poverty/inequality 
measurements to be saved in a file. The output file is in the same directory and has 
the same file name as the output file except the file extension is ‗pdump‘. 
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21.  Saving all estimated Y – for requesting all estimated y to be saved in a file.  The 
output is a PovMap2 data array in the same directory as the output file and its file 
name is made of output file name and ‗_ydump‘.  This data array can be easily 
converted to Stata or other file format. User could also adding other variables into 
the ydump file by selecting from the variable list in ‗Along with the following variables’. 
The selected variable will be listed in the text box but editing in the box is 
prohibited. 

22. Using Script tab. Script tab is design to provide user with a script based simulation 
configuration similar to the PCF file in the version 1 of PovMap. A button 

 can be used to convert all interactive specifications in Config tab as a 
text based configuration file. User can modify the configuration to achieve 
additional functions, mainly in submitting multiple simulation runs without human 
intervention. When user want to run simulation 10 times (say 10 simulations each 
consists of 100 replications), they can repeat the Simulation= clause 10 times as 
show in next box: 

     

 

Outputfile=C:\Projects\PovMap\Projct1\PM001x.pou 

nSim=100 

CDist=T(11)  *** distribution of location 

(clustering) effect *** 

HDist=N    *** distribution of household effect *** 

PovLine=45676 

Indices=FGT0  

seed=1234567 

IsLog=YES 

ydump=YES 

 

Simulation=6 

Simulation=6 

Simulation=6 

Simulation=6 

Simulation=6 

Simulation=6 

Simulation=6 

Simulation=6 

Simulation=6 

 

End 
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Screen 7: Result from Simulation 

Overview 

The simulation result screen has maximum four tabs, 1) summary, 2) results, 3) yDump 
output and 4) pDump output. 

1. The summary page provides a overview on the model, simulation setting and 
random number generation log. It is intended to cover all aspects not included in 
the result tab.  

2. The results page is a big spreadsheet. Each row summaries the simulation result of 
an aggregation group which is determinded by Aggregation Levelss. The columns 
include the number of household or individual in each, the min/max imputed Y‘s, 
and the average and standard error of the estimated LHS variable, each requested 
indices takes two column: one for the average and the other for the standard error 
(across all simulations).  

 

 

Details 

1. Unit – the ID of one aggregation group. Representing all households that have the 
same ‗shifted‘ hierarchical ID. 

2. nHHLDs – number of households in that aggregation group.  

3. nDroppedHH – number of household excluded from the simulation. It is 
determined once each run before all simulations to eliminate household with ‗bad‘ 

predictor. (i.e. a out of bound X* where ‗out-of-bound‘ is related to the trimming of 
imputed y) 

4. nIndividuals – total number of individual in that aggregation group. 

5. nSim – the number of simulation 

6. Min_Y – the minimum of estimated y  of all replications in that aggregation group. 

7. Max_Y -- the maximum of estimated y  of all replications in that aggregation group 

8. Mean – average of mean value of estimated y  of all replications 

9. StdErr – average of standard error of estimated y 
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2.8 Tools and facilities 

2.8.1 Viewing data array 

2.8.2 Exporting data array 

2.8.3 General provision of grid operation 

2.8.4 Concatenation of data arrays 

2.8.5 Additional sorting order 

2.8.6 Project property 

2.8.7 Save to another project t 

2.8.8 Compact and repair data array 
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__________________________________________________ 

PART 4 SPECIAL TOPICS 

Guideline for Data Preparation 

This note is provided by Peter Lanjouw as a basic outline of the steps that are involved in 
implementing the poverty mapping methodology.  We try to give an intuitive flavor of 
what is involved in each of the steps that need to be carried out, rather than being perfectly 
precise.  The note should be read in parallel with the more rigorous methodological 
discussion provided in Elbers, Lanjouw and Lanjouw (2002)  ‗Micro Level Estimation of 
Welfare‘ Policy Researh Working Paper 2911, the World Bank.  We assume familiarity 
with the broad outlines of the poverty mapping methodology.  

The text below illustrates a number of points with reference to certain country examples 
(usually Morocco).  The specific country context invariably influences how the poverty 
map methodology is implemented.  The aim of the examples is to provide some feel of the 
kind of in-country background against which various decisions and assumptions have to 
be made. 

The data preparation stage is concerned with identifying the common variables that exist 
between the household survey and the population census.  These variables will form the 
―bridge‖ that allow us to predict consumption levels into the population census.  For the 
poverty mapping exercise to be valid, it is crucial that these linking variables are 
identically defined in the two datasets.  This cannot be simply assessed by looking at the 
respective questionnaires.   

 

Steps to be followed in preparing the data: 

1.  Comparing census and survey variables 

a)   Calculate means of ―candidate‖ variables in the survey 

 ―Candidate‖ variables are those for which both the survey and census instruments 
ask identical, or very similar, questions on.  These variables are ―candidates‖ for 
inclusion in the prediction models estimated in the next stage, subject to them being 
truly the same in the two questionnaires.  To establish whether the questions are 
indeed soliciting information on the same point, it is important to closely scrutinize 
the wording of questions in the questionnaires.  But this is not enough; it is also 
important to calculate some basis summary statistics on these variables in both data 
sources, to check whether they are indeed trying to get at the same thing. 

 In most settings there are generally four or five classes of variables from which the 
set of ―candidates‖ are constructed.  First, both survey and census questionnaires 
generally include questions on the demographic characteristics of households – size 
of family, age of members, gender, relationship to head, and so on.  Second, 
household survey and population census questionnaires generally ask about the 
education levels of all family members.  Such information can be very useful for the 
poverty mapping project in that these provide a window on the human capital of 
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the household – an important correlate with economic welfare.  Third, survey and 
census questionnaires typically ask about the occupational status of family 
members, sometimes even soliciting detailed information about specific sectors of 
employment and precise activity of each working-age family member.  Fourth, it is 
common to find cases where the census and survey questionnaires provide detailed 
information on a variety of housing characteristics, ranging from materials with 
which the house has been built, to access to a variety of utilities.  Finally, it is not 
unheard of to find cases where census and survey questionnaires provide some 
details on the household ownership of some consumer durables.  It is important, 
where possible, to produce a set of candidate variables which draws from all five 
classes of variables.  Experience shows that this greatly improves prospects for 
obtaining models with high explanatory power.  

 Construction of candidate variables should attempt to capture as well as possible 
the economic welfare of households.  This implies that one needs to look well 
beyond variables defined at the level of the household head.  For example, it is 
possible that the household head is a pensioner but that he or she lives together 
with one or more grown-up family members who have their own specific 
occupations and who contribute to household income (and thus consumption).  To 
capture this feature of the household, it may be necessary to construct candidate 
variables such as dummy variables on occupations of other family members, with 
an eye towards capturing in particular those cases where there are other family 
members with well paying jobs.  This would help to distinguish such households 
from those where the household head is a pensioner, and no other family members 
contribute to household income either.  The latter type of household is clearly very 
likely to be poorer than the former. 

 ―Candidate‖ variables should be defined at the level of possible responses to 
specific questions.  For example, in the case of a question on the type of water 
supply used by a household, one candidate variable might be defined as: ―drinking 
water supply=private well‖; another might be defined as ―drinking water=cistern 
truck‖; and so on. 

 Where candidate variables are not categorical (e.g. household size, dependency 
ratios, etc.) also construct percentile distributions.  These percentile distributions 
permit close comparison between the census and surveys of  the tails of the 
respective distributions. 

 Candidate variables may be constructed by combining information from various 
variables.  For instance, household welfare and (delayed) school enrollment are 
likely to be correlated. Delayed enrollment can be captured by calculating an 
‗education deficit‘ as age-6-number of years in school. 

 Use sampling weights in these calculations.  When comparing against population 
statistics from the census, it is important that the survey means be calculated so as 
to reflect population, not sample, moments. 
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b) Calculate means at the level of ―domains‖, not only the national level. 

 Means and percentile distributions should be calculated at the level of geographical 
disaggregation at which the regression models in stage 2 will be estimated.  This 
level of geographical disaggregation can be designated a ―domain‖.  How these 
domains are defined depends on the sampling design of the household survey.  A 
domain should generally represent a stratum (or an aggregation of strata) in the 
household survey and should be large enought to include a sufficient number of 
households for the next stage regression analysis (preferably 300-600 households). 

In some settings, such as Morocco, the household survey sample has been stratified 
down to the regional level, and distinguishes as well between urban and rural areas 
within each region.  There are about 16 regions in Morocco, and given the limited 
sample size of the household survey (about 5000 households) this implies that there 
are some regions in which only few households were sampled (less than 100) One 
proposal might be to combine the 16 regions in Morocco into 6-8  ―domains‖ which 
are built on the basis of 2-3 geographically contiguous regions.  The issue to 
consider when contemplating this option concerns what is being assumed when 
contiguous regions are combined into a single domain.  When a single model is 
being estimated for the domain, it will essentially be assumed that parameter 
estimates on regressors in the regions that make up the domain are the same across 
the regions.  Whether this is reasonable or not can be tested explicitly on the basis of 
Chow tests of structural differences across sub-samples.  Note, a degree of 
flexibility can also be maintained by including regional dummies in the model 
estimated for the domain, and by interacting with these dummies with at least some 
of the household characteristics. 

Note, it is important that separate rural and urban domains should be defined. 

 

c)   Means and percentile distributions to be calculated with the census data for each 
domain. 

 Census data to be divided into the same domains as defined above. 

 For continuous variables like household size, calculating percentile distributions –
even when the survey and census means are comparable, remains important. In 
Uganda for instance, mean household size was identical between the survey and 
census. Yet the survey distribution had much thinner tails than that for the census. 
In one stratum for instance, the fraction of one person households was 18.4% 
according to the census and 16.3% according to the survey. Further investigation 
pointed towards a problem with the replacement of non-responding households. 
As non-responders are more likely to be small, these households are under-
represented in the survey, unless the replacement scheme takes household size into 
account. As this was not the case, it was decided to adjust the survey weights. The 
reweighing procedure followed is known as poststratification adjustment. It 
ensures that the weighed relative frequency distribution among mutually exclusive 
and exhaustive categories in the survey corresponds precisely to the relative 
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distribution among those same categories in the census. A danger of reweighing 
along one dimension –household size in this case, is that other survey variables that 
are representative using the ‗old‘ weights become unrepresentative once the 
weights have been adjusted. In the Ugandan case however, reweighing increased 
the number of variables that passed the census-survey comparison test. 

 

d)   Census and survey means to be scrutinized carefully for comparability.   

 Where the survey and census year do not correspond to exactly the same period, it 
is not reasonable to expect the two means to coincide exactly.  This implies that 
statistical tests of equality of the two means may not be that meaningful – even 
where equality is rejected there may still be a case for using the variable in question 
simply because during the intervening time period there has been some change in 
values of the indicator in question.  For the purpose of the poverty mapping 
methodology the fact that there has been some change in the value of the indicator 
over time (levels of education have improved somewhat, or access to public utilities 
has gradually expanded, etc.) does not necessarily invalidate it from use in the 
procedure.  The key assumption that does then need to be imposed, however, is 
that the basic conditional correlation between welfare and this indicator remains 
unchanged over the time period.  This assumption cannot generally be directly 
tested.  Whether it is a reasonable one to make depends on knowledge one has of 
the underlying processes which have taken place over time (relative price shifts, 
etc.) 

 Rather than comparing census and survey means for strict equality the key issue 
here is to get a sense of whether the variables are capturing the same thing.  Does 
the census apply a different definition of what constitutes household membership?  
Do the census and survey employ the same definition of household head?  Are 
occupation codes the same?  Sometimes the way questions are posed results in 
different types of responses.  For example, suppose that the census asks about 
source of potable water and allows for only three possible responses:  private well; 
cistern truck; other.  The household survey may ask the same question but allow for 
a much larger variety of possible responses.  This could result in the situation that 
even when one looks at  the ―private well‖  response,  the two data  sources suggest 
that different percentages of the population have this as main source of  drinking 
water.  Simply because more options were available in the survey than were in the 
census, responses to even supposedly comparable options are no longer 
comparable.  It is important to check for this possibility by careful scrutiny of all 
possible responses.  Only those that really seem to be capturing the same basic 
features of the data can be designated as ―candidate‖ variables for the next stage 
regression models. 

 In Morocco, the population census data has not been entered for the entire 
population (even though each household in the population was covered).  Rather, 
for reasons of cost and time, information from a sample of the entire population 
census questionnaires was entered and analyzed.  In total, data for about 1,000,000 
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households were entered, representing around 20% of the population. The 
sampling structure of the census sub sample is not a simple random sample.  
Rather, a scheme was applied whereby for communes with less than 500 
households all data were entered; for communes comprising 500-1200 households 
50% of the household questionnaires were entered; for communes of 1200-3000 
households 25% of household questionnaires were entered; and for communes 
larger than 3000 households 10% of questionnaires were entered.  The 
computerized census data file includes expansion factors with each household that 
reflect this sampling structure.  When calculating census means and percentiles, it is 
necessary to used these weights so as to produce meaningful summary statistics at 
the level of the domains described above.  

 

2.  Constructing commune (or cluster) -level variables from the census and ancillary 
sources 

 Alongside the household level variables, the regression models in the second stage 
will also include some variables that are not at the household-level, but rather at the 
level of the cluster (or primary sampling unit) that underpins the household survey.  
Most household surveys are based on a complex sample design that involves both 
stratification and clustering.  For example, prior to drawing the sample of 
households the country is first divided into a number of mutually exclusive strata 
(rural and urban areas, regions, etc.).  Then within each stratum, a series of clusters 
(groupings of households) are drawn randomly.  Finally, within each drawn 
cluster, a sample of households is drawn.  

 One of the important concerns in the second stage regression modeling exercise is 
the question of whether the econometric model is able to capture intra-cluster 
correlation across households in welfare.  It is possible, for example, that within a 
specific cluster, households are all typically less well off, or better off, than similar 
looking households in other clusters.  This could be due to cluster-level factors such 
as whether or not land is irrigated in that cluster, whether household in a particular 
cluster have access to certain public goods and infrastructure, and so on.  While 
many of the cluster-level characteristics of interest may not be readily observed in 
the census and survey data that are available for analysis, it may be possible to 
proxy these factors by including a number of such cluster-level variables in the 
regression model.  The way that this is approached in this methodology, is to use a 
two pronged strategy: 

I. Means and proportions are constructed in the population census at the level of 
the cluster that underpins the household survey.  In many countries the cluster 
in the survey is equivalent to the census tract in the population census and so 
these means and proportions are constructed at the census tract level.  Once a 
census-tract database of means and proportions has been constructed in the 
census, the means for the relevant clusters can be merged with the household 
survey and these census means can thereby be added to the list of ―candidate 
variables‖ for the second stage analysis.  Parameter estimates obtained from 
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the second stage analysis can then be applied to all of the cluster means in the 
census. 

II. Ancillary datasets may be available that provide summary statistics at the local 
level for the country as a whole.  The BADOC dataset in Morocco provides a 
wide variety of statistics at the commune level for all communes in Morocco.  
This database can be added to both the census and the household survey and 
in this way all BADOC variables can also be included as ―candidate variables‖ 
for the the second stage analysis. 

 In the Morocco application an important issue arises with regards to the fact that 
the household survey concept of cluster does not coincide exactly with the census 
tract in the population census.  Rather, the survey cluster, called the ―primary unit‖, 
is comprised of a 2-3 census tracts.  It is important therefore to construct means in 
the population census not at the census tract level, but at the ―primary unit‖ level 
and to use these for analysis in the subsequent stages.  For this to be possible it will 
be necessary to insert a code for the primary unit into the population census based 
on exactly the same scheme used to construct the primary units in the sampling 
frame from which the survey‘s sampling units were drawn.  

 Note, although it was important to check for common definitions between the 
census and survey for variables at the household level, the census mean variables 
can be constructed for any and all variables in the census, whether or not they 
appear in the survey at all.  The point here is that these census means will be 
inserted into the household survey dataset prior to estimating the consumption 
models (see below) and thus there will be no issue associated with comparability 
between the census and survey.  Indeed, the more that these types of variables are 
used in the estimations the more comparability gets imposed, and the less we will 
need to appeal to our assumptions of comparability and stability.   

 

Guideline for Consumption model estimation 

This note is provided by Peter Lanjouw as basic outline of estimating the econometric 
model of consumption (or income) on those variables determined to be common between 
the census and survey is estimated.  It is important to stress that this estimation should not 
be approached in the way that economists would generally approach estimating a 
consumption model.  It is clear that even if there is a sizeable set of ―candidate‖ variables 
determined to be commonly defined between the census and the survey, there are many 
important determinants of welfare that are unlikely to be included amongst the candidate 
variables.  Thus, the model that will be estimated is likely to suffer from omitted variable 
bias.  In addition, there are a number of variables that are included in the set of candidate 
variables that would be better viewed not as determinants of economic wellbeing but quite 
possibly as the reverse: having been caused by consumption or income levels.  Hence the 
estimated model may also suffer from problems of reverse causality.  Both of these sources 
of what is conventionally termed as endogeneity are likely to be present in the model to be 
estimated.  In conventional economic analysis this would be viewed as problematic as it 
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would hamper the interpretation of the parameter estimates from the model.  In our 
setting, however, these issues are not of concern.  The key point to recognize is that our 
objective in this modeling exercise is not to obtain parameter estimates on regressors that 
can be readily interpreted and given economic meaning.  Rather, our concern is to specify 
a model that will allow us to forecast consumption as well as possible.  That our parameter 
estimates suffer from omitted variable bias, for example, is entirely desirable because this 
means that the parameter estimate is capturing not only the correlation between 
consumption and the specific regressor in question, but is also reflecting the influence of 
variables that we have not been able to include in the specification.  The better we are able 
to capture the influence of these omitted variables, the better the fit we will get from our 
model.  An important analog of this discussion is that we should not seriously judge the 
quality of the model we are estimating by scrutinizing the parameter estimates on various 
regressions and invoking some general notion of whether or not these are ―reasonable‖ 
based on experience with conventional economic models in other settings.  It is not 
unheard of that our consumption model will get significant parameter estimates on 
regressors with even the sign being opposite to what one might conventionally expect. 

 

Steps to follow in modeling consumption. 

 

1.  Insert census means and ancillary variables (such as the BADOC variables mentioned 
above) into the household survey dataset for those clusters and communes that occur in 
the household survey dataset.  

 

2.  Construct a series of interaction terms and higher order terms with the household level 
variables in the survey dataset.  For example, household size can be squared cubed, logged 
etc, education dummies can be interacted with occupation dummies, interactions with 
province dummies can be created (provided that for each province there are observations 
in the survey) and so on. It is recommended that such obvious interactions are created at 
the first stage and that their census-survey distributions are compared.  

 Experience shows that it is often useful to interact as well some household level 
variables with the census means and BADOC variables. 

 Even when all interacted terms individually pass the census-survey comparison 
test, it does not follow automatically that in interaction they pass the test as well. 
Outlier welfare predictions may result from interactions giving extreme results. 
This occurs especially with interactions with census means and the maximum 
census mean for the survey is small relative to the maximum census mean in the 
census. Ideally before including any interaction, a means test should be carried out. 
In practice many interactions are created during the second stage and most of them 
are fine. But if suspect results occur this is one place to check. The output from the 
prediction stage program provides census and survey means as well as their 
maxima and is a good place to look for outlying interaction terms. 
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3.  The consumption model use OLS to estimate a model of consumption, y, on a selection 
of household characteristics (not census means or BADOC variables) denoted x.   

 A separate model will be estimated for each domain that has been defined in the 
data preparation stage. 

 After having constructed a variety of interaction and higher order household 
characteristics, and having added census means and BADOC variables at the 
primary unit and commune level, the list of ―candidate variables‖ is likely to have 
become very large.  Given the interest in estimating separate models for each 
―domain‖ the degrees of freedom in the household survey dataset are usually quite 
limited, and so a subset of variables will need to be selected from among the eligible 
―candidate variables‖.  

 We apply a variety of criteria in our effort to settle on a reasonable specification: 

i. A key indicator to look at when selecting variables for inclusion in the household 
regression model is their contribution to the overall R2 of the regression model.  It 
is generally hoped that in the end it will be possible to produce a regression 
specification for each domain that results in an R2 that is as high as 0.5 or more.  
This is often the case, but not always.  We have found that the procedure 
generally becomes quite unsuccessful if the R2 remains below 0.35 (although the 
issue really has to do with the degree to which the poverty map will ultimately be 
disaggregated – the more disaggregated the intended poverty map, the more 
important that the R2 be high). 

ii. Of course, increasing the number of regressors in the model cannot reduce the R2 
(although the adjusted R2 may well fall).  But a second, equally important, 
criterion to satisfy is that parameter estimates on variables that are accepted for 
inclusion in the regression should be quite precise (with probability values of, say, 
0.15 or less - 0.05 is a good probability value to start with).  This criterion tends to 
reduce sharply the variables that are accepted in the model specification. 

iii. In general, it is very rare for the final model specification to include more than 40 
household level variables.  Often successful specifications include less than 20.  
Parsimony in the specification is desirable as experience suggests that this helps to 
keep one source of error in the final welfare estimates, the model error, low. 

iv. It is good practice to check the variance inflation factors of each of the variables. 
High values (more than 5-10) are an indication of a strong correlation between 
two variables included in the model. Dropping one of the variables will make the 
model more robust without affecting the R2 much. 

 

 Sing model selection procedure. As in many of the statistical software programs that 
offer a variety of selection procedures for choosing regressors from among a large pool 
of potential variables on the basis of user-specified criteria.  PovMap2 also allows the 
analyst to select regressors based on their contribution to the R2 of the model, or 
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alternatively based on the degree of statistical significance on their coefficients (with 
the analyst also able to specify whether selection should be forward or backward, and 
what should be the total number of regressors to be chosen).  These procedures are 
quite helpful in searching for a model specification but on their own they are rarely 
sufficient to determine the final specificiation.  As mentioned above, the goal is to 
simultaneously obtain a good fit and precisely estimated coefficients.  There is also a 
general sense that the specification should include variables from the five broad classes 
described earlier. Experience thus suggests that these packaged selection procedures 
should be used in association with judgment from the analyst. 

 Given that it can be difficult to assess whether a particular model specification is 
satisfactory or not, due to the various criteria that have to be balanced, there are two 
additional checks that can be carried out to help with model assessment: 

i. If the domain for which the model is being estimated is reasonably large, it can be 
useful to draw a sub-sample from the domain and estimate the model for that 
sub-sample.  Parameter estimates from the estimated model can subsequently be 
applied to the remaining sub-sample and predicted mean consumption can then 
be compared to actual mean consumption.  If the model is appropriate the ―out of 
sample‖ predicted mean consumption should be very close to actual mean 
consumption for this sub-sample. 

ii. In a similar vein, we can check for problems of ―over fitting‖ by re-estimating the 
model repeatedly after dropping clusters from the analysis, one at a time, and 
checking whether parameter estimates on regressors of the model are stable in the 
face of these slight changes in the sample.  If the parameter estimates bounce 
around as a result of dropping one or other cluster from the sample, this indicates 
that the model specification has become too closely aligned with the specific 
structure of the sample.  While the usual criteria of R2 and precision of estimates 
may look fine, the model may not be appropriate for applying to census data and 
predicting consumption for households in the census.  Clearly, problems of over 
fitting are far more likely when degrees of freedom in the regression are close to 
being exhausted.  But experience shows that it is important to check for this also 
when there still appear to be ample degrees of freedom. 

 

4.  Weighting.  The question arises, given the complex sampling design that underpins the 
household survey, whether the consumption model described above should be estimated 
weighted or not.  As a general rule, our experience suggests that weighting can be very 
valuable in settings where there is wide variation in household expansion factors across 
primary sampling units.  Even where weighting is not strictly necessary, there do not seem 
to be any major costs associated with weighting (apart from some costs associated with 
additional programming complexity).  So, as a general rule of thumb, it is probably 
sensible to do all modeling with weighting.  

 There exists a simple test for the need for weighting that has been described by Deaton 
(1997).  It takes the following form:  interact each of the k household variables in the 
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proposed specification with the household weight. Re-run the model with this 2*k 
specification and test on the basis of an F-test whether the interacted household 
variables are jointly significant.  If the test rejects that the parameters on the interacted 
variables are all jointly zero, then the model should be estimated with weights.  As 
mentioned above, our experience suggests that we rarely fail to reject interacted 
parameter estimates that are jointly zero, and so weighting is the most common 
recommendation. 

 There are cases where a weighted model is rejected. After a search for a good 
unweighted model, this gets rejected as well. In such a situation preference is given to 
the weighted model. 

 

5.  Choosing cluster-level variables.  So far, our discussion has been focused on the model 
specification of household level variables.  Yet, as already mentioned earlier, it will be 
important to add to this basic specification also some variables that capture community-
level characteristics.  The basic point is as follows.  There is every likelihood that within a 
particular cluster (or primary sampling unit) in the household survey there will be 
significant within-cluster correlation across households in the error term from the basic 
model of y on household-level x variables.  The presence of such an important location 
effect in the residuals will have the effect of increasing significantly the size of the 
standard errors that will accompany our poverty estimates.  There is thus a real interest to 
capture this location effect in our model specification.  If every cluster in the census 
occurred in the household survey then the solution would be a straightforward one of 
estimating the model with cluster-level fixed effects.  However, this option is not available 
to us (far more clusters occur in the census than are covered by the household survey) and 
so it is important to utilize proxies for these location effects.  Our strategy in this regard is 
to select a number of cluster-level variables calculated from the census and ancillary data 
sources (means, proportions, variances, etc. – see above), include these in the consumption 
model, and in this way attempt to capture the location effect.  If we are successful in this 
regard, the remaining share of the overall residual that can be attributed to a location effect 
will have been driven down towards zero, and our subsequent standard errors on the 
poverty estimates will be free from this influence. 

 There are a very large number of community-level variables that can be calculated 
from the census and ancillary data sources and inserted into the household survey 
dataset.  These can help to dramatically expand the number of candidate variables to 
be included in the consumption model.  As mentioned above, introducing such 
variables has the additional attraction of helping to impose comparability between the 
survey and the census, as these community-level variables are, by construction, 
identical between the two data sets.  However, there is also a potential problem. Over 
fitting is much more likely to become an issue when one is dealing with community-
level variables calculated at the cluster level.  Recall that the household survey has a 
complex sample design.  Thus, 10-20 households are typically sampled from a given 
cluster.  Recall, as well, that a given domain over which the consumption model is 
estimated, may cover somewhere between 100-500 households.   This implies that the 
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consumption model may be estimated across only 10-50 clusters.  Clearly, if a large 
number of census means are added to the specification (these will vary only across 
clusters) then we may rapidly be in a situation of over fitting - where the model 
perfectly explains the cluster-level variation in the sample, but does not necessarily 
provide a reliable basis for extrapolation to a different dataset. 

 A useful rule of thumb to avoid over fitting is to include no more than the square root 
of n regressors in the model.  When thinking about household level variables n refers 
to the number of households in the sample (so that if the domain covers 500 
households we wouldn't want to go far beyond 22-23 household level regressors).  
When we are thinking about census-mean variables n refers to the number of clusters 
in the sample, not the number of households.  In a survey domain of 500 households, 
where clustering takes the form of 10 households selected per cluster, we have 50 
clusters in our domain, and would therefore want to limit our census-mean variables to 
no more than 7. 

 The question thus arises how to select the best census-mean variables for our 
consumption model, bearing in mind that we may not want to include more than, say,  
6 or 7 in our specification and we are faced with a very large set of candidate variables.  
In approaching this question the key thing to bear in mind is that our aim with the 
census mean variables is not so much to add to the overall explanatory power of the 
regression model, but rather to remove as much as possible of the intra-cluster 
correlation in the residuals on the model estimated on only the household level 
variables.   

 An effective method to select census-mean variables is to employ the following 
approach: 

i. First run the basic (weighted) regression of y (log per capita consumption, say) on 
household and individual level x variables only. 

ii. Take the residuals from the regression in (i) and regress these (also weighted) on a 
series of cluster-level dummies.  Thus if the domain in question includes, say, 50 
clusters, we construct 50 dummy variables, one for each cluster. (Note, suppress 
the constant term in this regression, or put in only 49 of the 50 cluster dummies in 
the model). 

iii. Transpose the row-vector of parameter estimates on the cluster-level dummies 
into a column vector.  This vector will have the dimension of n*1, where n 
represents the number of cluster dummies in the regression estimated in (ii) (50 in 
our example).  

iv. Regress the column vector of parameter estimates on cluster dummies produced 
in (iii) on the full pool of candidate census means and other cluster-level 
aggregates from the census and ancillary datasets. This regression should also be 
estimated weighted by the sum of household level expansion factors within each 
cluster. Use the max R2 selection criterion that is included in the software package 
to select the 5 or 6 best cluster-level aggregates calculated form the census or 
obtained from ancillary data sources included among the pool of candidate 
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variables.  (If the max R2 selection criterion is not available in the software 
package that is being used, trial and error will be required).  Once again, although 
the R2 is our focus of attention, we will not want to use cluster-level aggregates 
that are not precisely estimated in this regression.  So, again, there is a need to 
balance R2 with precision. 

 

6.  Re-estimating the full consumption model. Once cluster-level variables have been 
selected, the full consumption model, including both household-level and cluster-level 
variables, can be re-estimated.  It may be the case that as a result of adding the cluster-level 
variables, one or more of the household-level variables comes to lose their statistical 
significance (perhaps because they were picking up cluster-level variation).  So some fine-
tuning of the final model may be necessary.  Again, the goal here will be to have a 
specification that includes only significant parameter estimates, and that has an overall R2 
that is satisfactorily high. 

 

7.  Specifying a model of heteroskedasticity.  The inclusion of cluster level variables in the 
model specification is intended to minimize the degree of intra-cluster correlation in the 
residuals.  It is unlikely that the intra-cluster correlation will have been removed entirely.  
That which remains will be reflected in the standard errors produced for the final poverty 
estimates.  If the cluster-level variables in the model have been reasonably successful, 
however, the bulk of the overall residual from the model will now comprise a household 
specific disturbance term.  In the poverty mapping methodology we do not impose the 
assumption that these household specific disturbances are independent and identically 
distributed, and allow for heteroskedasticity in these disturbances.  Implementation of the 
poverty mapping module for the final simulation stage of the poverty mapping procedure 
thus requires not only that a consumption model specification be provided by the user, but 
also the specification of a model of heteroskedasticity for the household level component 
of the disturbance term.  Settling on the specification of the heteroskedasticity model 
involves the following steps: 

• We first purge the residual on the final consumption model of any remaining 
cluster-level component.  This can be done by regressing this residual on the vector of 
cluster dummies.  We treat the residual of this second model as the household-specific 
component of the overall residual.  To avoid confusion let us denote this second residual 
as ―household error‖. 

 For each household we square the household error term. 

 In order to avoid modeling heteroskedasticity in such a way that could end up 
predicting a negative squared household error term, we employ a logistic model of 
heteroskedasticity which involves transforming the squared household error term 
prior to regressing it on a set of household characteristics.  The transformation 
consists of  the following steps. 
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i. We identify the highest value of the squared household error term.    Multiply 
this highest value of the squared household error term by 1.05.  Denote this 
number as A. 

ii. For each household calculate the difference A-squared household error term.  By 
construction this difference will always be positive. 

iii. For each household calculate the ratio of the squared household error term to the 
difference calculated in (ii).  This term is non-negative and larger; the larger is the 
squared household error.   

iv. Taking the natural log of the term produced in (iii) produces the dependent 
variable for the logistic model of heteroskedasticity.  

 There is no theory to guide us in the search for a specification of the 
heteroskedasticity model.  Once again, we are guided mainly by the dual objectives 
of explanatory power and statistical significance of the parameter estimates.  We 
also want to keep things manageable (and avoid over fitting) by not allowing the 
specification to be come too large.  The rule of thumb governing the number of 
variables to include in the model (no more than the square root of n) can be applied 
here too. 

 In terms of settling on explanatory variables, it seems clear that all the explanatory 
variables included in the consumption model should be candidates.  In addition it 
seems reasonable to include as well predicted (log) per capita consumption from 
the consumption model.  Finally, there is no reason why these explanatory variables 
should only enter in directly, so we also allow them to interact with all other 
variables (for example, household size interacted with predicted consumption, with 
age of household head, and so on).  All of these variables can then be considered as 
valid candidates for inclusion in the heteroskedasticity model. 

 We use OLS to regress our dependent variable (define above) on the full set of 
candidate variables and select n that best explain the variation in the dependent 
variable and that are estimated with a reasonable degree of precision.  Once again 
this selection can be obtained using packaged selection modules that come with the 
statistical software. 
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APPENDIX: Technical Requirements 

 

The following paragraphs discuss the technical requirements for implementing hunger 
mapping using PovMap. 

 

Software and hardware needs 

Those wishing to map hunger must understand the technical capacity needed to manage 
and manipulate data from various sources.  Statistical packages, software conversion 
software, GIS software, sizeable computational space (i.e. Random Access Memory) and 
storage capabilities are required for efficient construction, management and analysis of the 
survey and census data sets.      

 

Common Software Packages  

Though PovMap 2.0 has the ability to recode variables, it is probably easier to use a 
common statistical analysis package for the construction and ―matching‖ of the survey 
and census datasets and for the development of the predictive model.  Frequently used 
standard statistical packages include SPSS, SAS, and Stata. Both SPSS and Stata were used 
by the Tufts Team to recode and organize the datasets and develop and test the model 
used to map hunger for the DR, Ecuador, and Panama.   

 

Working with the data  

Data sets come in a variety of file types.  Each file type (e.g. .dbf, .sav, .dta, .ascii) has its 
own specifications and limitations.  Though many statistical packages are able to read files 
from different sources, file conversion software can be an invaluable tool.  The Tufts team 
made use of Stat/Transfer 2 to quickly transfer .dbf and .sav files to Stata‘s .dta format.    

 

The large size of census data sets can also cause problems.  Census data typically contain 
millions of cases.  Performing numerous recodes and calculations on census data can be 
time consuming and cumbersome.  To facilitate the construction of Ecuador‘s data set 
(which contains approximately 12 million observations), the Tufts Team utilized Stata on a 
64-bit mainframe computing cluster.  The increased computing power of a mainframe 
computer greatly improved the efficiency of the recoding process.  Users of SAS, SPSS and 
Stata will be able to perform the same operations on their personal 32-bit personal 
computers, but performance and speed will be limited by each computer‘s processing and 
memory capabilities.   

 

                                                 

2 http://www.stattransfer.com/ 
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System Requirements  

Due to the computational power needed to manage large data sets, manipulate geographic 
data, and run PovMap, the Tufts Team recommends the following system requirements 
for computers.  Though most processes can be completed using less robust systems, the 
requirements given below will greatly reduce the time needed to run calculations on large 
data files.   

 

 2GHz or greater processor  

 1GB  or greater Random Access Memory (RAM) 

 60 GB or greater hard drive 
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Appendix A: Expression , Operator and Function 

 

1. Mathematic Functions 

ABS(expr)  

Returns the absolute value of expr.    

 

ACOS(expr)  

Returns the arc cosine of a specified expr. The values of expr can range from -1 through +1. 
The values returned by ACOS( ) range from 0 through pi (3.141592) in radians.     

 

ASIN(expr)  

Returns in radians the arc sines of expr. The values of expr can range from +1 through -1, 
and the values ASIN( ) returns can range from -pi/2 through +pi/2 (-1.57079 to 1.57079).    

 

COS(expr)  

Returns the cosines of expr, which are specified in radians.    

 

Count()  

Returns the number of observations. Value repeats to full-length of vector.    

 

EXP(expr)  

Returns the exponential values of expr. On overflow, the function returns missing and on 
underflow, EXP( ) returns 0.    

 

LOG(expr)  

Return the natural logarithms of expr. For non-positive value, LOG( ) returns a missing.    

 

MAX(expr)  

Returns the highest value in expr. Ignores missing.    

 

MEAN(expr)      

Returns the arithmetic average of all non-missing value. 
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MIN(expr)  

Returns the smallest value of expr. Ignores missing.    

 

NA()  

Returns a vector contains all missing values.    

 

PCTL(expr, p)  where p is a constant number, 0≤p≤1.  

This function returns a constant vector (all elements have the same value) indicates the p 
percentile of expr.  

Example: IIF(X>PCTL(X,0.99),NA(),X)  will set value of X to missing for cells larger than 
the 99 percentile of X. 

 

SIN(expr)  

Returns the sines of expr, which are specified in radians.    

 

SQRT(expr)  

Returns the square root of the specified expression expr (cannot be negative)    

 

SUM(expr)  

Returns the total of values of all elements in specified expression expr. The result value 
repeats in full length as expr    

 

WMean(expr,weight)  

Mean of expr with explicitly specified weight.    

 

WSum(expr,expr_w)  

Sum of expr with explicitly specified weight.    

 

2. Aggregation Functions 

CCount() 

Returns the number of observations (or, the size) of each cluster.    

 

CCountBy(numDigits) 
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Returns the number of observations (or, the size) of each new group formed by truncating  

cluster-ID (truncated once when you created new project) numDigits more digits off.    

 

CCountOn(expr_base,numDigits)  

Returns the number of observations (or, the size) of each new group formed by truncating 
the eval result of expr_base numDigits digits off. 

  Example: CcountOn(DIST,0) 

CcountOn($ID$/100,0) 

CcountOn(Gender,0)  

 

CErr(expr) 

CErrBy(expr,numDigits) 

CErrOn(expr,expr_base,numDigits)      

Similar to CCOUNT functions, return the standard error of each group. 

 

CFirst(expr) 

CFirstBy(expr,numDigits)  where numDigits is a non-negative integer constant. 

CFirstOn(expr,expr_base,numDigits)  

Repeats the first evaluated expr's value of each cluster (group) within that cluster (group).  

You may re-group observations by truncating cluster-ID numDigits MORE digits off, or,  

by truncating the eval-result of expr_base numDigits digits off.  

 

CGet(condi_expr,expr)  

If the ith value of condi_expr is true (1), gets the ith value of expr and repeats it within 
cluster. If there is no 1 at all within a cluster, the cluster of result will be filled with all 
missings. If there are more than one 1's of condi_expr found within a cluster, this function 
takes the 1st one and ignore the others.    

 

CMax(expr) 

CMaxBy(expr,numDigits) 

CMaxOn(expr,expr_base,numDigits)      

Similar to CCOUNT functions, return the maximum value of each group. 
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CMean(expr) 

CMeanBy(expr,numDigits) 

CMeanOn(expr,expr_base,numDigits)    

Similar to CCOUNT functions, return the mean value of each group. 

  Example:  CMeanBy(X+Y,2) 

CMeanOn(X+Y,DIST,2)  

 

CMin(expr) 

CMinBy(expr,numDigits) 

CMinOn(expr,expr_base,numDigits)      

Similar to CCOUNT functions, return the minimum value of each group. 

 

CSum(expr) 

CSumBy(expr,numDigits) 

CSumOn(expr,expr_base,numDigits)  

Similar to CCOUNT functions, return the sum of all values in each group. 

 

WCMean(expr,expr_w) 

WCMeanBy(expr,expr_w,numDigits) 

WCMeanOn(expr,expr_base,expr_w,numDigits)  

This set of functions are different from their un-weighted counter part CMean family by 
applying explicit weight.  

  Example:  WCMean(X+Y,W) 

WCMeanBy(X+Y,W,2) 

WCMeanOn(X+Y,DIST,W,0)  

 

WCSum(expr,expr_w) 

WCSumBy(expr,expr_w,numDigits) 

WCSumOn(expr,expr_base,expr_w,numDigits)  

Similar to WCMean functions, return the mean of all values in each group. 

 

CSerial(numDigits) 

CSerialBy(expr,numDigits) 
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CSerial generates a sequential number starting from 1 for each group whose shifted ID 
(shifted ID by numDigits) is the same. In CSerialBy, the sequential number starts from 1 in 
each group whose shifted ID is the same, then increase by 1 when the value of expr 
changes.  Both functions are designed for simplifying the ID structure. 

 

3. Testing Functions 

IsDup(expr)  

Returns a 0-1 vector, in which 1 indicates the element is a duplicate of the prior element of 
expr.    

 

IsFirst(expr)  

Returns a 0-1 vector, in which 1 means the value of element of expr is the 1st one in a 
group of duplication. If an element is different from the prior and the next, also returns 
value 1. So, the result actually is the 1's complement of IsDup(), i.e., with the same expr, 
where IsDup returns a 1, here we get a 0; a 0, we get a 1, and vice versa.    

 

IsMissing(expr)  

Returns a 0-1 vector. 1: if the element of expr is a missing    

 

GMask()  

Returns the global mask as a 0-1 vector    

 

LCount()     ‗L‘ stands for ‗Left‘ 

ICount()     ‗I‘ stands for ‗Inner‘ 

RCount()     ‗R‘ stands for ‗Right‘ 

Used when two data array are linked. The one on the left is always at more detail level 
than the one on the right. (such as individual  household, or household  village.  
The ID on the left and right data array may not be completely matched. LCount will return 
the count of each ID group based on the ‗left data array‘. RCount will return the count of 
each ID group based on the ‗right data array‘. ICount returns the count of ID existed both 
on the ‗left data array‘ and the ‗right data array‘. 

 

4. Conditional Functions  

Bounding(expr,L_bound,R_bound)  both bounds must be constants.     

For each v in expr, return L_bound if v<L_bound; return R_bound if v>R_bound; otherwise, 
return value v.   
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Categorize(expr) 

Cast the expr to be a categorical variable 

     

Encode(expr,Value_Set)   

Returns a categorical variable with re-grouped values of expr according to Value_Set (see 
definition below)  

 

IIF(condi_expr,true_expr,false_expr)  

Returns trye_expr when condi_expr is true (value 1), or false_expr otherwise.   

  Example:  IIF(IsMissing(X), X1, IIF(Y1 <> 0, 100*X1/Y1, 0)) 

IIF(Gender="Male", 65, 55) 

 

Int(expr)  

Returns the integer part of each element in expr.    

 

Round(expr,decimalPlaces)  

Returns expr rounded to a number of decimal places, specified by decimalPlaces. If 
decimalPlaces is negative, ROUND( ) returns a whole number containing zeros equal in 
number to decimalPlaces to the left of the decimal point.  

  Example:  ROUND(17.5274, 0), result is 18 

ROUND(17.5274, 2), result is 17.53 

ROUND(17.5274, 1), result is 17.5 

ROUND(17.5274,-1), result is 20 

 

Seg(expr,start,len)  

expr is supposed to be a multi-segment key, this function returns one of its len digits 
segment start at start (from right of the expr).    

 

SetMissing(expr,Value_Set)  

Returns a vector in which any value of expr beyond the range (specified by Value-Set) will 
be set to a missing, but the value within range will remain untouched. NOTE: There 
should be only one group in Value-Set    
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ValueOf(expr)  

Casts the type of expr from categorical variable to numerical variable. 

 

IIF(X>=3 & X<12, X, MissingValue()) can be replaced as SetMissing(X, 
{[3,12)}) or X @ {[3,12)}, but 

IIF(X>=3.2 & X<11.97, X, MissingValue()) does NOT have the same style 
equivalent substitution like SetMissing(X, {[3.2, 11.97)}) or X @ {[3.2, 11.97)}, since 
decimal is invalid in 

a Value-Set 

IIF(X>11.97, 11.97, IIF(X<3.2, 3.2, X))  is equivalent to   Bounding(X, 3.2, 11.97)  except the 
latter is simpler and faster. 

 

5. Operators and its Precedence  

Operators of PovMap2 are listed fellow from hight to low: 

(, )     Forces a different precedence on the expressions  

(unary)+, -, !(~)   Positive, negative, logical NOT ↓  

^     Power 

*, /, %, &    Multiplication, division, modulo, logical AND  

+, -, |     addition, subtraction, logical OR  

>, >=(=>), <, <=(=<)  comparison operators 

=(or ==), !=( or <>, ><)   equality, inequality   

 

6. Value set 

Value set defines the conditions for generating sequential integer 1,2,3,… Definitions are 
limited with semi-column. It can be used in the place where the procedure language use a 
switch statement (in case of c,c++,Java) or select case statement as in the VB.  The formal 
definition can be specified as follows: 

Value-Set ::= {Group[; Group]} 

Group ::= Enumerative-group | Range-group  

Enumerative-group ::= Value [, Value]  

Range-group ::= >Value Range group  

Range-group ::= >=Value  

Range-group ::= <Value  

Range-group ::= <=Value  
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Range-group ::= ...   

Range-group ::= LBracket Value,Value RBracket 

  

LBracket ::= ( 

LBracket ::= [ 

RBracket ::= ) 

RBracket ::= ] 

Value ::= Integer 

Value ::= yyyy/mm/dd 

y ::= 0..9 

m ::= 0..9 

d ::= 0..9 

It is user‘s responsibility to ensure the definition of groups cover the complete domain, 
values not fall in any groups will become a missing.  When used in the SetMissing 
function, there should be just one group and that group could contain multiple range-
groups and/or enumerative-groups. 

Range-groups should not overlap each other, but enumerative-groups can overlap range-
groups, i.e. enumerative groups have higher priority than range groups. 

 

  Examples: EnCode(x, {1,3,5; 2,4,6})  will convert value 1,3,5 to 1 and 2,4,6 to 2 

EnCode(x,{<0;[0,10];(10,20];>20}) will convert any value less than 0 to value 
1, value 0 to 10 to 2, values larger than 10 and up to value 20 into 3, last, 
any value greater than 20 into 4. 

Encode(X, {<0;[0,10);...;>=50}] is equivalent to 
Encode(X,{<0;[0,10);[10,20);[20,30);[30,40);[40,50);>=50} 

Encode(X, {[1,3);...;[10,15);...;>=30}] is equivalent to 
encode(X,{[1,3);[3,5);[5,7);[7,9);[10,15);[15,20);[20,25);[25,30);>=30} 

Encode(X, {15,[1,10];(10,20]}) will convert all value 15 into 1, all values 
between 1 and 10 (inclusively) into 2, any value larger than 10 and less or 
equal to 20 as 3, and anything else into missing. 

Encode(X, {>0}) is equivalent to IIF(x>0, 1,NA()) 

Encode(Birthday, {[1970/04/01, 1990/09/30]}) 

 

 


