
© Copyright 2002 by ILOG - Printed in France

This document and the software described in this document are the property of ILOG and are protected as ILOG trade secrets. They are furnished under a
license or non-disclosure agreement, and may be used or copied only within the terms of such license or non-disclosure agreement.

No part of this work may be reproduced or disseminated in any form or by any means, without the prior written permission of ILOG S.A.

The following are trademarks or registered trademarks of their respective companies or organizations:
Java, JavaBeans, VisualCafé, JBuilder3, Microsoft and Windows.

All other brand or product names are trademarks or registered trademarks of
their respective companies or organizations.

ILOG JViews

Component Suite 5.5

Gantt User’s Manual

December 2002

C O N T E N T S
Table of Contents

Preface About This Manual . ix

Notes .x

Chapter 1 Introducing the Gantt Module . 11

The Data Model. .11

The Charts .13

Common Features .13

Gantt Chart. .13

Schedule Chart .15

Chapter 2 Basic Concepts. 17

The Data Model Architecture .17

Model-View Separation .18

Data Model Classes .18

The Gantt Beans. .20

Structure. .21

Properties. .22

Chapter 3 Getting Started with the Gantt Module . 23

Basic Steps for Using the Gantt Chart and Schedule Chart Beans 23

Examples .24

Gantt Chart. .24
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L iii

T A B L E O F C O N T E N T S
Schedule Chart .28

Deploying a Gantt Application .29

Time and Duration .29

Date .30

IlvDuration .30

IlvTimeInterval .31

The Gantt Data Model .32

Class Overview .32

Binding the Gantt Chart Beans to the Data Model .33

Populating the Data Model. .33

The Gantt Beans. .39

Chart Visual Properties .39

Expanding, Collapsing, and Hiding/Showing Rows .40

Scrolling in the Gantt Sheet .42

Displaying Gantt Data in the Gantt Sheet .44

Gantt Sheet Architecture .44

Describing the Gantt Sheet .45

Activity Layouts .47

Manipulating Gantt Data with the Gantt Sheet .48

Selecting Activities and Constraints .48

Moving Activity and Reservation Graphics. .49

Duplicating Reservation Graphics .50

Resizing Activity and Reservation Graphics .51

Interacting with the Gantt Sheet Using the Mouse. .51

Chapter 4 Advanced Features. 53

The Custom Gantt Example .53

Running the Custom Gantt Example .54

Customization Overview .54

Customizing the Gantt Data Model. .56

The CustomActivity Class .56

Adding Property Events .57
iv I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

T A B L E O F C O N T E N T S
Creating CustomActivity Instances .61

Customized Activity Rendering .62

The Custom Activity Renderer Factory .63

The Custom Activity Renderer Class .64

Customized Table Columns .66

Tree Column Icons. .66

The PriorityColumn Class .67

Adding the Column to the Table. 71

Chapter 5 Load-on-Demand . 73

Vertical Load-On-Demand. .73

Running the Database Gantt Example. .74

Understanding the Database Gantt Example. .74

Horizontal Load-On-Demand .77

Running the Database Schedule Example .77

Understanding the Database Schedule Example .78

Chapter 6 Schedule Data Serialization and Exchange with SDXL. 81

Schedule Data Exchange Language Overview .82

Scenarios of How SDXL Can Be Used .82

Package For Reading and Writing SDXL. .82

SDXL Example. .83

Serializing Schedule Data .84

Writing an IlvGanttModel to an SDXL File .84

How to Read an IlvGanttModel from an SDXL File .86

Customization of SDXL .88

Overview of ilog.views.gantt.xml .88

Customizing Readers and Writers .90

Schedule Data Exchange Language Specification .92

Activity Elements .93

Resource Elements .94

Constraint Elements. .95
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L v

T A B L E O F C O N T E N T S
Reservation Elements .96

Schedule Element .97

Property Element .98

Chapter 7 Styling . 99

Introduction to Styling. .100

Applying Styles. .100

Disabling Styling. .101

The Gantt and Schedule CSS Examples. .101

Styling the Gantt and Schedule Chart Components. .106

Styling the Gantt Data .108

Styling Activities .109

Styling Constraints .116

Chapter 8 The Gantt Printing Framework . 123

Introduction .123

Simple Example .124

Classes Involved .125

IlvGanttPrintableDocument .125

IlvGanttPrintingController .128

IlvPrintableGanttSheet .129

IlvPrintableTimeScale .129

How it Works .129

Handling Pages .130

Populating a Page .130

Example .130

Chapter 9 Thin-Client Support for Web Applications . 131

Gantt Thin-Client Web Architecture .132

Getting Started With the Gantt Thin Client: An Example .133

The Gantt Servlet Example .133

Installing and Running the Gantt Servlet Example. .134

Developing the Server Side .135
vi I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

T A B L E O F C O N T E N T S
The Servlet Support Class .136

Multi-Threading Issues on the Server Side .138

The Servlet Class. .138

Summary .139

Developing the Client Side .140

Developing a Dynamic HTML Client .140

The DHTML Client for the Gantt Servlet Example .143

Adding Client/Server Interactions .163

The Client Side. .163

The Server Side .165

Actions that Modify Chart Capabilities .166

The IlvGanttServlet and IlvGanttServletSupport Classes .167

The Servlet Parameters .169

Multiple Sessions .170

Appendix A Document Type Definition for SDXL. 173

Glossary . 175

Index . 179
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L vii

T A B L E O F C O N T E N T S
viii I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

P R E F A C E
About This Manual

This manual presents the Gantt module of ILOG JViews and describes how to use its API.

What Is in This Manual

This manual contains the following chapters:

◆ Chapter 1, Introducing the Gantt Module describes the four entities on which the Gantt
module is based.

◆ Chapter 2, Basic Concepts presents the architecture of the data model and the Gantt
Beans.

◆ Chapter 3, Getting Started with the Gantt Module is a detailed presentation of the two
basic examples that illustrate the default implementation of a Gantt chart and a Schedule
chart.

◆ Chapter 4, Advanced Features is based on the third example, which shows some of the
customizing features offered by the Gantt Chart module.

◆ Chapter 5, Load-on-Demand presents a mechanism, called load-on-demand, used for
loading data into memory as it is needed for display.

◆ Chapter 6, Schedule Data Serialization and Exchange with SDXL describes the ILOG
JViews Gantt package that allows users to serialize schedule data to SDXL files.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L ix

N O T E S
◆ Chapter 7, Styling describes the CSS mechanism as applied to control the appearance of
Gantt or Schedule charts.

◆ Chapter 8, The Gantt Printing Framework describes how to use the print framework to
print the Gantt.

◆ Chapter 9, Thin-Client Support for Web Applications describes how to create lightweight
DHTML clients that interact with Gantt applications running on the server.

The appendixes provide auxiliary and reference information as follows:

◆ Appendix A, Document Type Definition for SDXL gives the Document Type Definition
of the SDXL language.

At the end of the manual you will find a Glossary containing definitions of the basic
technical terms used in this manual.

Notes

The following conventions apply throughout this manual:

◆ The terms “Gantt Chart” and “Schedule Chart” refer to the two high-level Beans
provided as default implementations of the Gantt module.

◆ On the other hand, the terms “Gantt chart” and “Schedule chart” refer to two different
ways of representing the scheduling information contained in the data model. See
Chapter 1, Introducing the Gantt Module for more information.
x I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

C H A P T E R

1. In
tro

d
u

cin
g

 th
e

G
an

tt M
o

d
u

le
1

Introducing the Gantt Module

The Gantt module of ILOG JViews consists of a library of JViews graphic framework-based
classes meant to display an abstract data model of scheduling information as a Gantt chart.
A Gantt chart is a type of schedule diagram where data from a table is displayed as
horizontal bars along a time scale.

The Gantt module has been designed with a clear separation between the data model and its
visualization. To reflect this, this chapter is divided as follows:

◆ “The Data Model” presents the scheduling information model whose content is
displayed as Gantt charts.

◆ “The Charts” presents the graphical representation part of the Gantt module.

The Data Model

The data model is the part of the Gantt module that contains the scheduling information you
want to display. Scheduling data consists of four abstract entities:

◆ Activities

◆ Constraints

◆ Resources
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 11

T H E D A T A M O D E L
◆ Reservations

The Gantt module comes with default implementations of these entities. However, if these
are not suited to your particular application, you can create your own user-defined entities/
implementations (see Chapter 4, Advanced Features for a customization example).

Activities

An activity is a task that must be completed. Activities are hierarchical in nature. This means
that a main activity, called parent activity, can be broken down into subactivities, called
child activities.

In addition to its name and identifier, an activity is defined by its start time and end time,
which determine an interval called the duration of the activity. If the start and end times are
identical, the duration is equal to 0. A zero-duration activity is commonly called a milestone.
Typically, milestones are not rendered by the same graphic object as activities with a non-
zero duration.

Constraints

A constraint is a type of condition set between two activities. Constraints can have one of the
following types: start-to-start, start-to-end, end-to-start, or end-to-end. The source activity—
that is, the activity whose start or end controls the start or end of another activity—is called
the From activity. Conversely, the target activity—that is, the activity whose start or end
depends on the start or end of another activity—is called the To activity.

Constraints are represented by arrowed polyline links (see the class
IlvConstraintGraphic).

Resources

Resources are means that enable an activity to be completed. They can be persons, premises,
equipment, and so forth. Like activities, resources are also hierarchical in nature. For
example, if resources are people, the parent resource is a department while the child
resources are the individual employees. Likewise, you may want to group resources by
physical location or by type of machinery.

Reservations

When a resource is assigned to an activity, this assignment is called a reservation. In the
terminology of the Gantt module, a reservation represents the assignment of one resource to
one activity. An activity can have multiple resources reserved and similarly, a resource can
be reserved for more than one activity. The activity that reserves the resource cannot be
changed after the reservation is created.
12 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

T H E C H A R T S

1. In
tro

d
u

cin
g

 th
e

G
an

tt M
o

d
u

le
The Charts

Using the full power of the Gantt module API, you can view a data model containing
scheduling information through a wide variety of graphical representations. The Gantt Chart
and Schedule Chart Beans encapsulate the most commonly used scheduling displays.

The Gantt Chart Bean is designed to show activities while the Schedule Chart Bean is
designed to show resources (see the figures in sections Gantt Chart and Schedule Chart).
This section describes the common features shared by both representations as well as what
differentiates them.

Common Features

Gantt charts are instances of the IlvGanttChart class and Schedule charts are instances of
the IlvScheduleChart classes. Both are subclasses of the IlvHierarchyChart class,
which itself derives from the Swing class JPanel. The charts share the following features
(see Figure 1.1, for example):

◆ The left-hand part of either chart is a table view, an instance of IlvJTable, which is a
subclass of the standard Swing class JTable.

◆ The right-hand part is a Gantt sheet, an instance of the class IlvGanttSheet, which is a
special IlvManagerView object.

◆ Just above the Gantt sheet appears a zoomable time scale (an instance of the class
IlvTimeScale).

◆ A standard, adjustable divider separates the left-hand part from the right-hand part.

Gantt Chart

A Gantt chart is designed to show activities. There is one row for each activity.
The hierarchy table on the left displays activity information from the data model. The Gantt
sheet on the right shows how the activities are positioned on the time scale.

Note: Visualization services provided by the ILOG JViews Gantt module are based solely
on Swing components, which work with light-weight user interfaces.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 13

T H E C H A R T S
Figure 1.1

Figure 1.1 The Gantt Chart Example Application

Each row represents an activity. Each column of the table displays a property of the activity.
Each row in the Gantt sheet contains an activity graphic (an instance of the class
IlvActivityGraphic) that represents the duration of the activity. A row can also display
other properties of the activity, such as start time and end time.

In the default implementation, activities with no children are displayed as simple horizontal
bars labeled with the activity name. Activities with children are displayed as horizontal bars
of a different color, delimited by special symbols at the end. These attributes are completely
customizable.

In a Gantt sheet, constraints between activities are represented by directional polyline links.
The type of the constraint determines how the link is attached to the activity graphics.

In the default implementation of the Gantt chart, resources and reservations are not
represented in the Gantt sheet. Instead, the resources reserved by each activity are displayed
in the Resources column of the table.

Table view of the data model (IlvJTable) Gantt sheet (IlvGanttSheet)

End-to-start
constraint

Parent
activity

Root
activity

End timeStart time

Divider

Child activity

Hierarchy of activities

Expand/Collapse icon

Time scale (IlvTimeScale)
14 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

T H E C H A R T S

1. In
tro

d
u

cin
g

 th
e

G
an

tt M
o

d
u

le
Schedule Chart

A Schedule chart is designed to show how resources are scheduled. There is one row for
each resource. The resource table on the left displays resource information from the data
model. The Gantt sheet on the right shows the resource reservations.

Figure 1.2

Figure 1.2 The Schedule Chart Example Application

Each row represents a resource. Each column in the table displays a property of the resource.
Each row in the Gantt sheet contains 0, 1, or more reservation graphics to represent the
activities for which the matching resource has been reserved.

Because the same resource can be reserved for more than one activity during the same time
span (see Reservations on page 12), it could happen that several reservation graphics occupy
the same horizontal area in the same row. To address this problem, a specific activity layout
algorithm is used to position the bars for best legibility. Four different layout algorithms are
provided to manage potentially overlapping reservation graphics. See Activity Layouts on
page 47 for more information.

In the general case, one activity may reserve several resources and appear as several
reservation graphics in the Schedule Chart. For this reason, constraints between activities are
not displayed by default in the Schedule Chart. Constraint links can be displayed in the
Schedule Chart if each activity reserves at most 1 resource.

In the next chapter, you will learn more about the architecture of the data model and the
Gantt Beans.

Expand/Collapse icon

Table view of the data
Gantt sheet (IlvGanttSheet)

Divider

model (IlvJTable)

Hierarchy of resources Reservation

Time scale (IlvTimeScale)
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 15

T H E C H A R T S
16 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

C H A P T E R

2. B
asic C

o
n

cep
ts
2

Basic Concepts

In the previous chapter, you learned that the Gantt module offers predefined Beans to get
both activity-oriented and resource-oriented Gantt representations of an abstract data model
based on four entities: activities, constraints, resources, and reservations. You are now going
to learn more about these basic concepts.

This chapter is divided as follows:

◆ The Data Model Architecture

◆ The Gantt Beans

The Data Model Architecture

Figure 2.1 shows how the separable model architecture of the Gantt module allows different
data model implementations to be bound to different visualizations.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 17

T H E D A T A M O D E L A R C H I T E C T U R E
Figure 2.1

Figure 2.1 Gantt Module Architecture

Model-View Separation

The traditional design of user-interface objects divides each component into three parts:
model, view, and controller (hence its name of MVC architecture). In this classic design, the
model manages the data or values represented by the component, the view manages the way
the component is displayed, and the controller handles user interaction with the component.
The Gantt module is based on the Swing variant of MVC called separable model
architecture. This design provides all the benefits of complete model-view separation while
being easier to use because it bundles the view and controller parts together.

Just as each Swing component defines the abstract model interface that it represents, the
Gantt module defines an abstract scheduling data interface that it is able to represent. We
refer to this interface or one of its concrete implementations as the Gantt data model. If you
are familiar with the standard Swing set of components, you are then also familiar with this
concept. For example, the JList component is a visualization of data defined by the
abstract ListModel interface. In a similar manner, the Gantt module displays data defined
by the abstract IlvGanttModel interface. This interface is described in the next section.

Data Model Classes

The data model is completely abstract and is defined by the IlvGanttModel interface. This
interface acts as an intelligent container for four other abstract interfaces that represent the
scheduling data itself: IlvActivity, IlvConstraint, IlvResource, and
IlvReservation. All five interfaces are included in the ilog.views.gantt package.
A brief description of each follows:
18 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

2. B
asic C

o
n

cep
ts

T H E D A T A M O D E L A R C H I T E C T U R E
◆ IlvGanttModel interface: defines the overall Gantt data model and is a container for
the other four entities.

◆ IlvActivity interface: represents an activity or task that must be completed in the
schedule.

◆ IlvConstraint interface: represents an activity-to-activity scheduling constraint.

◆ IlvResource interface: represents a resource that can be allocated to an activity to
enable its completion.

◆ IlvReservation interface: represents the allocation of a resource to an activity.

Figure 2.2 shows the relationships between the five interfaces that compose the Gantt data
model:

Figure 2.2

Figure 2.2 Relationships Between Gantt Data Model Interfaces

For each of these abstract interfaces, three levels of implementation are available to the user.
An abstract implementation is provided as a starting point for your own custom data model
designs. These classes provide the basic event notification framework, but no property or
data storage. How to extend these abstract classes and create your own custom data model is
an advanced topic not covered in this manual. You can, however, see a demonstration of this
by examining the Database examples that are installed in:

<installdir>/demos/gantt/database

Reminder: You can read section The Data Model on page 11 for a reminder of the basic
entities.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 19

T H E G A N T T B E A N S
Also provided are two concrete data model implementations that are completely memory-
based. The first is the simple default data model implementation used throughout the
examples, except for the Database and CSS examples. The second is a general data model
implementation that supports user-defined properties and is used in the CSS example.
A summary of the provided data model interfaces and implementation classes is shown in
Table 2.1. The data model interfaces are included in the ilog.views.gantt package. The
abstract and default data model implementations are included in the
ilog.views.gantt.model package. The general data model implementation is included
in the ilog.views.gantt.model.general package. How to extend the concrete data
model implementations is an advanced topic not covered in this section (see Chapter 4,
Advanced Features for a customization example).

There are no hard-coded dependencies between the data model implementation classes. This
means that you can choose to use as much of the provided data models as you need while
subclassing just the portion that you need to customize for your application.

The Gantt Beans

The ILOG JViews Gantt module features two high-level Beans, called Gantt Chart Bean and
Schedule Chart Bean. Their API is based on the classes IlvScheduleChart and
IlvGanttChart, both subclasses of IlvHierarchyChart. Chapter 3, Getting Started
with the Gantt Module, provides more detail on the API of these three classes.

The Beans encapsulate the Gantt library. Although the library can be used without the
Beans, you will find it easier to rely on these Beans. Together with the IlvGanttModel
interface, the two Beans make up the three main classes of the Gantt module API.

Table 2.1 Gantt Data Model Interfaces and Provided Implementations

Data Model Interface Abstract Implementation
Default Memory-Based

Implementation
General Memory-Based

Implementation

IlvGanttModel IlvAbstractGanttModel IlvDefaultGanttModel

IlvActivity IlvAbstractActivity IlvSimpleActivity IlvGeneralActivity

IlvResource IlvAbstractResource IlvSimpleResource IlvGeneralResource

IlvConstraint IlvAbstractConstraint IlvSimpleConstraint IlvGeneralConstraint

IlvReservation IlvAbstractReservation IlvSimpleReservation IlvGeneralReservation

Note: You can create your own data model in its entirety, but we recommend using the
abstract classes as a starting point. See the Database examples to see how to do this.
20 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

2. B
asic C

o
n

cep
ts

T H E G A N T T B E A N S
Structure

The full Gantt library allows you to arrange user interface components, such as tables, trees,
time scales, and Gantt sheets in almost any layout to display the Gantt data. The
coordination of the user interface components is handled by the IlvGanttConfiguration
class (ilog.views.gantt package). The Beans can be described as a predefined
combination of a configuration (IlvGanttConfiguration), a table (IlvJTable), a Gantt
sheet (IlvGanttSheet), and a time scale (IlvTimeScale) as illustrated in Figure 2.3:

Figure 2.3

Figure 2.3 Structure of Gantt Beans
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 21

T H E G A N T T B E A N S
Properties

Gantt Beans have several properties that control their appearance, such as font, background
and foreground color, and hiding or showing the table. The data model is attached to the
Beans through the setGanttModel method, inherited by IlvGanttChart and
IlvScheduleChart from their base class IlvHierarchyChart (ilog.views.gantt
package).

However, more detailed properties such as column width or column order can be handled
through the API of the table itself. To do so, you can retrieve a reference to the table through
the getTable method, inherited from the base class IlvHierarchyChart.

The object returned by this method is an instance of the class IlvJTable, which is a
subclass of the standard Swing class JTable. Therefore, any customization allowed on a
JTable object is also possible on IlvJTable objects.

Similarly, detailed properties of the Gantt sheet, such as the visual aspect of the vertical and
horizontal grids, can be manipulated through the API of the sheet itself. You can retrieve a
reference to the sheet through the getGanttSheet method of the Bean, also inherited from
the base class IlvHierarchyChart.

In the next chapter, you will start with two examples and learn more about:

◆ the time API,

◆ the data model API,

◆ the Gantt Beans.
22 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

C H A P T E R

3. G
ettin

g
 S

tarted
 w

ith

th
e G

an
tt M

o
d

u
le
3

Getting Started with the Gantt Module

In this chapter, you will start with two examples and learn more about the time API, the data
model API, the Gantt Beans, and the specific features of the Gantt sheet.

This chapter covers the following topics:

◆ Basic Steps for Using the Gantt Chart and Schedule Chart Beans

◆ Examples

◆ Time and Duration

◆ The Gantt Data Model

◆ The Gantt Beans

Basic Steps for Using the Gantt Chart and Schedule Chart Beans

As mentioned in Chapter 1, Introducing the Gantt Module, the Gantt Chart and Schedule
Chart Beans provide two different views of a Gantt data model. The basic steps needed to
incorporate either chart into the code of your application are very similar:

1. Import the necessary Gantt packages.

2. Create a Gantt data model object by instantiating the interface IlvGanttModel and fill
it with activities, constraints, resources, and reservations.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 23

E X A M P L E S
3. Instantiate a Gantt Chart Bean from the IlvGanttChart class or a Schedule Chart Bean
from the IlvScheduleChart class.

4. Attach the data model to the chart instance.

5. Customize the default settings and appearance of the chart, if necessary.

6. Add the chart instance to the user interface of your application or applet.

Two basic sample Java applications are provided to illustrate these steps. The first example,
GanttExample.java, demonstrates how to use the activity-oriented Gantt chart while the
second example, ScheduleExample.java, demonstrates how to use the resource-oriented
Schedule chart. Section Examples describes the common steps that are necessary to compile
and run both applications, and provides the sample code. You can use either of these
applications as a starting point for your own work with the Gantt module. In fact, these basic
chart applications are used as the basis for all the other examples supplied with the Gantt
module.

Examples

This section describes how to run the two chart examples supplied with the Gantt module
and shows how the source code for the examples implements the six basic steps.

Gantt Chart

The basic steps for using the Gantt Chart Bean are illustrated in an example Java application
provided. The source code file of the example is named GanttExample.java and can be
found in the directory:

<installdir>/demos/gantt/charts

To run the example, ensure that the Ant utility is properly configured. If not, see the
instructions on how to configure Ant for ILOG JViews in:

<installdir>/html/installation.html

Then, you can go to the directory where the example is installed and type:

ant rungantt

to run the example as an application.

Most of the code in the Gantt Chart example is to handle the menus and status bar for the
application. The small portion of code necessary to construct and display the chart itself is
outlined here:

...
import ilog.views.gantt.*;
import ilog.views.gantt.model.*;
24 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

3. G
ettin

g
 S

tarted
 w

ith

th
e G

an
tt M

o
d

u
le

E X A M P L E S
 ...
public class GanttExample extends JApplet
{
 protected IlvGanttChart gantt;
 ...
 public init(Container container)
 {
 super.init(container);
 // Creates the Gantt chart
 gantt = new IlvGanttChart();
 // Creates the Gantt data model
 IlvGanttModel model = createGanttModel();
 // Sets the data model of the Gantt chart
 gantt.setGanttModel(model);
 ...
 // Add the Gantt chart to the panel
 container.add(gantt, BorderLayout.CENTER);
 ...
 }
 ...
 protected IlvGanttModel createGanttModel()
 {
 IlvGanttModel model = new IlvDefaultGanttModel();
 populateGanttModel(model);
 return model;
 }

 protected void populateGanttModel(IlvGanttModel model)
 {
 ... /* Add activities to the data model here */
 }
 ...
 // Initialize example when run as an applet.
 public void init()
 {
 init(getContentPane());
 }

 public static void main (String[] args)
 {
 JFrame frame = new JFrame("Gantt Chart Example");
 GanttExample ganttChart = new GanttExample();
 ganttChart.init(frame.getContentPane());

 // Exit when the main frame is closed.
 frame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
 frame.addWindowListener(new WindowAdapter()
 {
 public void windowClosed(WindowEvent e)
 {
 System.exit(0);
 }
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 25

E X A M P L E S
 });

 // Pack the main frame and make it visible.
 frame.pack();
 frame.setVisible(true);
 }
 ...
}

Step 1 – Importing the Gantt Chart Packages

In the GanttExample.java file, we first import the packages that are common to all the
Gantt examples:

import shared.*;
import shared.data.*;
import shared.swing.*;

Then we import the Gantt Chart package that we need:

import ilog.views.gantt.*;
import ilog.views.gantt.action.*;
import ilog.views.gantt.model.*;
import ilog.views.gantt.property.*;
import ilog.views.gantt.swing.*;

We also import the various Swing and AWT packages necessary to build the rest of the user
interface of the example:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

Both the Gantt Chart example and the Schedule Chart example (see Schedule Chart on
page 28) derive from a common superclass, AbstractExample, that is itself a subclass of
AbstractExample. These classes contain the code that is shared between all the Gantt
examples. Because the example is written so that it can be run both as an applet or as an
application, AbstractExample extends the Swing class JApplet and GanttExample
provides a static main method to launch the frame window:

public class GanttExample extends AbstractGanttExample
{
 ...
public static void main(String[] args)
{

 GanttExample ganttChart = new GanttExample();
 JFrame frame = new ExampleFrame(ganttChart);
 frame.setVisible(true);
 }
 ...
}

26 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

3. G
ettin

g
 S

tarted
 w

ith

th
e G

an
tt M

o
d

u
le

E X A M P L E S
Step 2 – Creating the Gantt Data Model

We create and populate the data model in the createGanttModel method of the
AbstractGanttExample superclass. In this manner, all of the Gantt examples create the
same data model unless they specifically override this method:

IlvGanttModel model = createGanttModel();
...
protected IlvGanttModel createGanttModel()
{
 ...
}

In the createGanttModel method, we first instantiate the class
IlvDefaultGanttModel:

IlvGanttModel model = new IlvDefaultGanttModel();

This creates an empty in-memory data model. The next step is to populate the data model
with scheduling information, which is done in the populateGanttModel method. More
information about this task is provided in section The Gantt Data Model on page 32.

As an introduction, here is how you might add the first two activities to the data model:

Step 3 – Creating the Gantt Chart Bean Instance

Next, you create an instance of the Gantt Chart Bean by implementing the createChart()
method:

protected IlvHierarchyChart createChart()
{
 return new IlvGanttChart();
}

Step 4 – Binding the Gantt Chart to the Data Model

Binding the Gantt Chart Bean to the data model enables the chart to display the contents of
the data model:

chart.setGanttModel(model);

Step 5 – Customizing the Chart

The chart is customized in the customizeChart() method. In the GanttExample.java
file, we perform 5 basic customizations:

1. Several activities are expanded so that all their children are initially visible. For example:

chart.expandAllRows(anActivity);

2. The width of the table columns are increased. For example:

IlvActivity rootActivity = new IlvSimpleActivity(...);
model.setRootActivity(rootActivity);
IlvActivity childActivity = new IlvSimpleActivity(...);
model.addActivity(childActivity, rootActivity);
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 27

E X A M P L E S
chart.getTable().getColumn("Name").setPreferredWidth(175);

3. The time interval initially displayed by the chart is set:

chart.setVisibleTime(aDate);
chart.setVisibleDuration(new IlvDuration(...));

4. An instance of WeekendGrid is set as the background vertical grid of the chart:

chart.getGanttSheet().setVerticalGrid(new WeekendGrid());

5. Animation of zoom-in and zoom-out is enabled:

 chart.setVisibleIntervalAnimationSteps(4);

It is easy to perform other customizations of the chart also. For example, you could change
the default height of the displayed rows:

chart.setRowHeight(25);

Or change the font used to label the horizontal time scale:

chart.setTimeScaleFont(new Font(...));

Step 6 – Adding the Gantt Chart to the User Interface

The Gantt Chart must now be displayed. We add it to the center of the container panel
provided as the argument to the init method, which we have set to have a BorderLayout
attribute:

container.add(gantt, BorderLayout.CENTER);

The container panel will be the contentPane of the JApplet when the example is run as an
applet or it will be the contentPane of the frame when the example is run as an
application.

Schedule Chart

The basic steps for using the Schedule Chart Bean are illustrated in another example Java
application. They are almost exactly the same as those for the Gantt Chart Bean, described in
the Gantt Chart section. The source code of the example is named
ScheduleExample.java and can be found in the same directory:

<installdir>/demos/gantt/charts

To run the example, ensure that the Ant utility is properly configured. If not, see the
instructions on how to configure Ant for ILOG JViews in:

<installdir>/html/installation.html

Then, go to the directory where the example is installed and type:

ant runschedule

to run the example as an application.
28 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

3. G
ettin

g
 S

tarted
 w

ith

th
e G

an
tt M

o
d

u
le

T I M E A N D D U R A T I O N
The Schedule Chart example is almost identical to the Gantt Chart example. The main
difference is that an IlvScheduleChart object is created instead of an IlvGanttChart
object. Here are the key lines of code that are different in the Schedule Chart example:

Deploying a Gantt Application

The classes for the Gantt module are located in the JAR file:

<installdir>/classes/gantt.jar

The graphic presentations of the Gantt module are based upon the ILOG JViews Graphics
Framework.You will also need to include these classes located in:

<installdir>/classes/jviews.jar

The jviewsall.jar File

The jviewsall.jar file is supplied to allow you to easily integrate all the ILOG JViews
Beans into the palette of your favorite IDE. See the instructions in Chapter “Graphics
Framework JavaBeans” of the Graphics Framework User’s Manual for more details on
how to do this. It includes:

◆ all the classes from the files jviews.jar and gantt.jar,

◆ all the other ILOG JViews modules.

Time and Duration

Throughout the Gantt module, time is represented by the standard java.util.Date class,
duration by IlvDuration, and time intervals by IlvTimeInterval. This section
discusses how to instantiate and use these classes.

 ...
public class ScheduleExample extends AbstractExample
{
 ...
 protected IlvHierarchyChart createChart()
 {
 return new IlvScheduleChart();
 }
 ...
public static void main(String[] args)
{

 ScheduleExample scheduleChart = new ScheduleExample();
 JFrame frame = new ExampleFrame(scheduleChart);
 frame.setVisible(true);
 }

 ...
}

I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 29

T I M E A N D D U R A T I O N
Date

The standard java.util.Date class is capable of representing an instant in time with
millisecond precision, starting from January 1, 1970. As of JDK 1.1, all methods that can
modify a Date instance have been deprecated. The Gantt module considers dates to be
immutable and a separate java.util.Calendar object must be used to perform date
arithmetic. Some useful arithmetic methods, such as add and subtract, are bundled into
the utility classes IlvCalendarUtil and IlvTimeUtil. These methods always return a
new Date instance instead of modifying the original object.

You can create a Date instance using one of the following constructors:

Date()

Date(long millis)

The following methods can be used to compare or perform arithmetic on dates:

Date IlvTimeUtil.add(Date date, IlvDuration delta)

Date IlvTimeUtil.subtract(Date date, IlvDuration delta)

IlvDuration IlvTimeUtil.subtract(Date date1, Date date2)

Date IlvCalendarUtil.min(Date a, Date b)

Date IlvCalendarUtil.max(Date a, Date b)

Here is an example of how to create a Date that represents 8:00 am on April 4, 2001:

Calendar calendar = Calendar.getInstance();
calendar.clear();
calendar.set(2001, Calendar.APRIL, 4, 8, 0);
Date date = calendar.getTime();

IlvDuration

The IlvDuration class creates duration objects that represent a length of time with
millisecond precision. Like Date, IlvDuration is an immutable class. Therefore, to create
a different duration, you must create a new IlvDuration object. The class IlvDuration
has a single constructor that takes the length of time expressed in milliseconds:

IlvDuration(long millis)

Note: Note, that an instance of the java.util.Calendar class initializes all its time
fields to the current time. You must explicitly clear those Calendar fields that you want set
to zero. In the previous example, calling the clear method ensures that the second and
millisecond fields of the Calendar object are set to zero.
30 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

3. G
ettin

g
 S

tarted
 w

ith

th
e G

an
tt M

o
d

u
le

T I M E A N D D U R A T I O N
The IlvDuration class also has several convenient static constants that represent
commonly used time spans:

IlvDuration.ONE_SECOND

IlvDuration.ONE_MINUTE

IlvDuration.ONE_HOUR

IlvDuration.ONE_DAY

IlvDuration.ONE_WEEK

There are also several methods you can use to perform arithmetic on durations:

Date add(Date date)

IlvDuration add(IlvDuration delta)

IlvDuration subtract(IlvDuration delta)

IlvDuration multiply(int multiplier)

Here is an example of how to create a duration of three weeks:

IlvDuration threeWeeks = IlvDuration.ONE_WEEK.multiply(3);

IlvTimeInterval

The IlvTimeInterval class creates time objects that represent an interval of time between
a start time and an end time. You can create time intervals by using the constructors:

IlvTimeInterval(Date start, Date end)

IlvTimeInterval(Date start, IlvDuration duration)

Here is an example of how to create a time interval that starts on February 15, 2001 and lasts
for one week:

Calendar calendar = Calendar.getInstance();
calendar.clear();
calendar.set(2001, Calendar.FEBRUARY, 15);
Date start = calendar.getTime();
IlvTimeInterval interval = new IlvTimeInterval(start,
 IlvDuration.ONE_WEEK);

Unlike the Date and IlvDuration classes, the IlvTimeInterval class is mutable. You
can manipulate a time interval using the following methods:

Date getStart()

void setStart(Date t)

Date getEnd()
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 31

T H E G A N T T D A T A M O D E L
void setEnd(Date t)

void setInterval(Date start, Date end)

void setInterval(Date start, IlvDuration duration)

IlvDuration getDuration()

void setDuration(IlvDuration duration)

boolean overlaps(IlvTimeInterval interval)

boolean contains(Date time)

The Gantt Data Model

As explained in section The Data Model Architecture on page 17, the Gantt module data
model is designed with complete model-view separation.

This section is divided as follows:

◆ “Class Overview” discusses the overall architecture of the Gantt data model.

◆ “Binding the Gantt Chart Beans to the Data Model” illustrates how to bind the Gantt
Chart Beans to the data model.

◆ “Populating the Data Model” explains how to populate the data model with scheduling
information.

Class Overview

The scheduling data displayed by the Gantt Chart and Schedule Chart Beans are defined by
the abstract IlvGanttModel interface, which defines the overall data model and acts as an
intelligent container for the other four data model entities (see Figure 2.1 on page 18),
namely:

◆ Activities are defined by the IlvActivity interface.

◆ Resources are defined by the IlvResource interface.

◆ Activity-to-activity constraints are defined by the IlvConstraint interface.

◆ Assignment of a resource to an activity is defined by the IlvReservation interface.

This section shows you how to:

◆ Bind a Gantt chart or Schedule chart to a data model.

◆ Populate the data model with scheduling data.
32 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

3. G
ettin

g
 S

tarted
 w

ith

th
e G

an
tt M

o
d

u
le

T H E G A N T T D A T A M O D E L
Binding the Gantt Chart Beans to the Data Model

As illustrated in section Examples, use the following method to bind an IlvGanttChart or
IlvScheduleChart object to a data model:

void setGanttModel(IlvGanttModel ganttModel)

You can obtain the current data model of the chart by using the method:

IlvGanttModel getGanttModel()

Both methods are members of the IlvHierarchyChart class, which is the common
superclass of both charts.

Populating the Data Model

The data model can be populated before or after a chart has been bound to it. Initial data will
be immediately displayed by the chart when it binds to the data model. Data populated after
the chart has been bound will cause the chart to update dynamically to reflect the new data in
the data model. Because of this, if you have a large dataset we recommend that you populate
your data model before the chart is bound. This will provide the best performance.

Activities and Resources

Activities are defined by the IlvActivity interface and resources by the IlvResource
interface. Both are stored in a hierarchical structure within the data model and are
subinterfaces of the IlvHierarchyNode interface. Each activity can have 0, 1, or more
child activities. Similarly, each resource can have 0, 1, or more child resources. An activity
or resource with at least one child is called a parent activity or resource. Conversely, an
activity or resource with no children is called a leaf activity or resource. The hierarchical
trees of activities and resources must start somewhere and we call these the root activity and
root resource. Each activity and resource in the data model is a child of its parent, except for
the roots, which have no parent.

Note: All the data model interfaces and provided implementations are independent of the
exact implementation of the other portions of the data model. For example, an
IlvDefaultGanttModel object can store your own custom IlvActivity
implementation as easily as it would an instance of IlvSimpleActivity. This allows you
to customize only those portions of the data model that are necessary for your particular
application.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 33

T H E G A N T T D A T A M O D E L
The first step in populating a data model with activities is to establish the root
IlvActivity object:

At this point, you can now add more activities to the data model using either of the following
IlvGanttModel methods:

void addActivity(IlvActivity newActivity, IlvActivity parent)

void addActivity(IlvActivity newActivity, IlvActivity parent, int)

For example, here we add a child activity to the root activity that was created in the data
model:

In an identical manner, the first step in populating the data model with resources is to
establish the root IlvResource object:

At this point, you can now add more resources to the data model using either of the
following IlvGanttModel methods:

void addResource(IlvResource newResource, IlvResource parent)

void addResource(IlvResource newResource, IlvResource parent, int)

For example, here we add a child resource to the root resource just added to the data model:

IlvGanttModel ganttModel = new IlvDefaultGanttModel();
IlvActivity rootActivity = new IlvSimpleActivity(...);
ganttModel.setRootActivity(rootActivity);

IlvActivity childActivity = new IlvSimpleActivity(...);
ganttModel.addActivity(childActivity, rootActivity);

IlvGanttModel ganttModel = new IlvDefaultGanttModel();
IlvResource rootResource = new IlvSimpleResource(...);
ganttModel.setRootResource(rootResource);

IlvResource childResource = new IlvSimpleResource(...);
ganttModel.addResource(childResource, rootResource);
34 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

3. G
ettin

g
 S

tarted
 w

ith

th
e G

an
tt M

o
d

u
le

T H E G A N T T D A T A M O D E L
By continuing to add activities and resources in this manner, you can populate the Gantt data
model with your scheduling data. The following IlvGanttModel methods allow you to
manipulate the activities and resources within the data model:

The Activity and Resource Factories

The previous section shows how you can populate the data model by explicitly instantiating
concrete implementations of the IlvActivity and IlvResource interfaces. In this case,
the code created instances of IlvSimpleActivity and IlvSimpleResource, the default
implementations provided with the Gantt module. However, the Gantt Chart and Schedule
Chart Beans provide a more flexible way to create activities and resources, based on the
factory design pattern.

The IlvHierarchyChart class, which is the superclass of both IlvGanttChart and
IlvScheduleChart, contains an activity factory defined by the IlvActivityFactory
interface. This interface has only one method:

IlvActivity createActivity(IlvTimeInterval interval)

In the Gantt examples, whenever you create a new activity using the mouse, the interactor
asks the chart factory to create the actual IlvActivity object by calling this method (see
Manipulating Gantt Data with the Gantt Sheet on page 48 for more information on
interactors). By default, the chart activity factory is an instance of
IlvSimpleActivityFactory. However, you can use the following
IlvHierarchyChart methods to change this:

IlvActivityFactory getActivityFactory()

void setActivityFactory(IlvActivityFactory factory)

In this manner, the decision as to what type of activity to create is dissociated from the
interactor, which only determines when the activity should be created based upon mouse
events.

The activity factory can also be used to remove the hard-coded dependency on a specific
IlvActivity implementation from your own code. For example, instead of writing:

Table 3.1 IlvGanttModel Methods for Populating a Data Model with Activities and Resources

Activities Resources

addActivity (two signatures) addResource (two signatures)

getRootActivity getRootResource

moveActivity moveResource

removeActivity (two signatures) removeResource (two signatures)

setRootActivity setRootResource
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 35

T H E G A N T T D A T A M O D E L
IlvActivity rootActivity = new IlvSimpleActivity(...);

as in the previous section, you could write the following code:

The Gantt Chart examples use this technique to populate the data model.

In addition to an activity factory, the class IlvScheduleChart also inherits a resource
factory from the class IlvHierarchyChart. This factory is defined by the
IlvResourceFactory interface. Like the activity factory, this interface has only one
method:

IlvResource createResource()

By default, the chart resource factory is an instance of IlvSimpleResourceFactory.
However, you can use the following IlvHierarchyChart methods to change this:

IlvResourceFactory getResourceFactory()

void setResourceFactory(IlvResourceFactory factory)

You can use the resource factory to create resource objects for your data model:

Constraints

You can create a constraint between two activities (see Constraints on page 12). A constraint
is defined by the IlvConstraint interface. It also has a type, defined by the
IlvConstraintType class whose four static constants define the supported constraint
types:

◆ IlvConstraintType.START_START

◆ IlvConstraintType.START_END

◆ IlvConstraintType.END_START

◆ IlvConstraintType.END_END

IlvActivityFactory activityFactory = myChart.getActivityFactory();
IlvActivity rootActivity = activityFactory.createActivity(...);

Note: The class IlvSimpleActivityFactory creates each new activity with a default
name and identifier of “New Activity”. You will probably want to modify these default
attributes before adding the new activity to your data model.

IlvResourceFactory resourceFactory = myChart.getResourceFactory();
IlvResource rootResource = resourceFactory.createResource();

Note: The IlvSimpleResourceFactory class creates each new resource with a default
name and identifier of “New Resource”. You will probably want to modify these default
attributes before adding the new resource to your data model.
36 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

3. G
ettin

g
 S

tarted
 w

ith

th
e G

an
tt M

o
d

u
le

T H E G A N T T D A T A M O D E L
The IlvConstraintType class has a private constructor, so that no other instances can be
created. Think of this feature as the Java equivalent of a C++ enumerated type. Before you
can add a constraint to the Gantt data model, the two activities involved must already be
members of the data model. For example:

If either of the constrained activities is removed from the data model, the constraint will also
be removed. This avoids “loose” constraints and maintains the invariant whereby a
constraint always links two activities in the same Gantt data model.

The following IlvGanttModel methods allow you to manipulate the constraints within the
data model:

void addConstraint(IlvConstraint newConstraint)

void removeConstraint(IlvConstraint constraint)

Iterator constraintIterator()

Iterator constraintIteratorFromActivity(IlvActivity fromActivity)

Iterator constraintIteratorToActivity(IlvActivity toActivity)

The Constraint Factory

As with activities and resources, the IlvHierarchyChart class also contains a constraint
factory, defined by the IlvConstraintFactory interface. Like activity and resource
factories, this interface has only one method:

IlvConstraint createConstraint(IlvActivity from,
 IlvActivity to,
 IlvConstraintType type)

By default, the chart constraint factory is an instance of the
IlvSimpleConstraintFactory class. However, you can use the following methods of
the class IlvHierarchyChart to change this:

IlvConstraintFactory getConstraintFactory()

void setConstraintFactory(IlvConstraintFactory factory)

IlvGanttModel ganttModel = new IlvDefaultGanttModel();
IlvActivity rootActivity = new IlvSimpleActivity(...);
ganttModel.setRootActivity(rootActivity);
IlvActivity child1 = new IlvSimpleActivity(...);
ganttModel.addActivity(child1, rootActivity);
IlvActivity child2 = new IlvSimpleActivity(...);
ganttModel.addActivity(child2 rootActivity);
// Create a constraint between child1 and child2
IlvConstraint constraint =
 new IlvSimpleConstraint(child1, child2, IlvConstraintType.END_START);
ganttModel.addConstraint(constraint);
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 37

T H E G A N T T D A T A M O D E L
You can use the constraint factory to create constraint objects for your data model:

Reservations

A reservation is created between a resource and an activity. Another way to think of this is
that the activity has “reserved” the resource for its execution. A reservation is defined by the
IlvReservation interface. Before you can add a reservation to the Gantt data model, both
the resource and the activity must already be members of the data model. For example:

If either the activity or the resource is removed from the data model, the reservation will also
be removed. This avoids “loose” reservations and maintains the invariant whereby a
reservation always links an activity to a resource in the same Gantt data model. The
following IlvGanttModel methods allow you to manipulate the reservations within the
data model:

void addReservation(IlvReservation newReservation)

void removeReservation(IlvReservation reservation)

Iterator reservationIterator()

Iterator reservationIterator(IlvActivity activity)

Iterator reservationIterator(IlvResource resource)

Iterator reservationIterator(IlvResource resource,

 IlvTimeInterval interval)

The Reservation Factory

As in The Activity and Resource Factories on page 35 and The Constraint Factory on
page 37, the IlvHierarchyChart class also contains a reservation factory, defined by the
IlvReservationFactory interface. As with the other equivalent interfaces, this interface
has only one method:

IlvConstraintFactory constraintFactory = myChart.getConstraintFactory();
IlvConstraint constraint =
 constraintFactory.createConstraint
 (activity1, activity2, IlvConstraintType.END_START);

IlvGanttModel ganttModel = new IlvDefaultGanttModel();
IlvActivity rootActivity = new IlvSimpleActivity(...);
ganttModel.setRootActivity(rootActivity);
IlvActivity childActivity = new IlvSimpleActivity(...);
ganttModel.addActivity(childActivity, rootActivity);
IlvResource rootResource = new IlvSimpleResource(...);
ganttModel.setRootResource(rootResource);
IlvResource childResource = new IlvSimpleResource(...);
ganttModel.addResource(childResource, rootResource);
// Create a reservation between childActivity and childResource
IlvReservation r = new IlvSimpleReservation(childResource, childActivity);
ganttModel.addReservation(r);
38 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

3. G
ettin

g
 S

tarted
 w

ith

th
e G

an
tt M

o
d

u
le

T H E G A N T T B E A N S
IlvReservation createReservation(IlvResource resource,

 IlvActivity activity)

By default, the chart reservation factory is an instance of the
IlvSimpleReservationFactory class.

However, you can use the following methods of the IlvHierarchyChart class to change
this:

IlvReservationFactory getReservationFactory()

void setReservationFactory(IlvReservationFactory factory)

You can use the reservation factory to create reservation objects for your data model:

The Gantt Beans

This section discusses the Gantt and Schedule Chart Beans that are provided with this
module. Both IlvGanttChart and IlvScheduleChart are subclasses of the common
base class IlvHierarchyChart. Therefore, both chart Beans have a similar architecture
and have many properties and attributes in common.

This section is divided as follows:

◆ “Chart Visual Properties” discusses such properties as color, font, scroll bar, and so on.

◆ “Expanding, Collapsing, and Hiding/Showing Rows” describes the properties of the
hierarchical structure of activities or resources.

◆ “Scrolling in the Gantt Sheet” describes the API for horizontal and vertical scrolling in
the Gantt sheet.

Chart Visual Properties

The Gantt and Schedule Chart Beans have many properties that control their visual
appearance. For example, to change the font used in the column headers of the table, you can
use:

myChart.setTableHeaderFont(new Font(...));

Or, if you want to change the foreground color of the horizontal time scale to blue you can
use:

myChart.setTimeScaleForeground(Color.blue);

IlvReservationFactory reservationFactory = myChart.getReservationFactory();
IlvReservation reservation =
 reservationFactory.createReservation(aResource, anActivity);
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 39

T H E G A N T T B E A N S
Here is a list of the IlvHierarchyChart methods that control the visual properties of the
charts:

Expanding, Collapsing, and Hiding/Showing Rows

The IlvGanttChart class displays the hierarchical structure of activities such that each
row represents one activity. Similarly, the IlvScheduleChart class displays the
hierarchical tree of resources so that each row represents a resource. In both charts, rows are
numbered from 0 starting with the root activity or resource. Row numbering ignores vertical

Table 3.2 Methods for Control of Chart Visual Properties

Property Methods

Background color Color getTableBackground()
void setTableBackground(Color color)
Color getTableHeaderBackground()
void setTableHeaderBackground(Color color)
Color getGanttSheetBackground()
void setGanttSheetBackground(Color color)
Color getTimeScaleBackground()
void setTimeScaleBackground(Color color)

Fonts Font getTableFont()
void setTableFont(Font font)
Font getTableHeaderFont()
void setTableHeaderFont(Font font)
Font getTimeScaleFont()
void setTimeScaleFont(Font font)

Foreground color Color getTableForeground()
void setTableForeground(Color color)
Color getTableHeaderForeground()
void setTableHeaderForeground(Color color)
Color getTimeScaleForeground()
void setTimeScaleForeground(Color color)

Grid Color getTableGridColor()
void setTableGridColor(Color color)

Row height int getRowHeight()
void setRowHeight(int rowHeight)

Divider int getDividerLocation()
void setDividerLocation(int location)
int getDividerSize()
void setDividerSize(int size)
boolean isDividerOpaqueMove()
void setDividerOpaqueMove(boolean opaqueMove)
40 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

3. G
ettin

g
 S

tarted
 w

ith

th
e G

an
tt M

o
d

u
le

T H E G A N T T B E A N S
scrolling and is not affected by the current vertical scrolling position of the chart. For the rest
of this discussion, we will refer to the activities in an IlvGanttChart and to the resources
in an IlvScheduleChart as data nodes. This will allow us to talk about the common
behavior of both charts in a concise manner. We also define the following terms related to
the visibility of data nodes and the rows they are displayed on:

◆ An expanded data node is one that is visible and shows its children, making them visible
also.

◆ A collapsed data node is one that hides its children. A collapsed node may or may not be
visible, depending on whether its parent node itself is expanded or not. If a data node has
no children, its expanded or collapsed status is undefined.

◆ A visible data node is a child of an expanded parent. It is represented by a row, but the
user will see that row only if the display area is large enough.

◆ A displayed data node is one that is both visible—that is, its parent node is expanded—
and currently within the display area, where it can be seen.

◆ A hidden data node is the opposite of visible. It is a child of a collapsed parent and is not
represented by a row.

Figure 3.1

Figure 3.1 Expanded/Collapsed and Visible/Display Statuses

Note: Scrolling through a window changes the display status of a row, not its visibility
status.

The first two child activities of this expanded data node are both visible
and displayed. You can tell from the scroll bar that the data node has more
visible child activities that are not displayed.

Expanded
data node

Collapsed data node.
(Its child activities are
hidden.)
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 41

T H E G A N T T B E A N S
You can use the IlvHierarchyChart methods listed in Table 3.3 to access and control the
expand, collapse, and visibility status of the rows in a chart.

The actual value used by the API will be an activity for an IlvGanttChart and a resource
for an IlvScheduleChart.

Scrolling in the Gantt Sheet

Horizontal Scrolling

The time interval displayed by the Gantt sheet and the time scale above it can be modified
by using the following methods:

Date getVisibleTime()

void setVisibleTime(Date time)

IlvDuration getVisibleDuration()

void setVisibleDuration(IlvDuration duration)

Reminder: IlvHierarchyNode is the abstract superclass of both activities and resources.

Table 3.3 Methods to Control the Collapse, Expand, and Visibility Status

Property Methods

IlvHierarchyNode getRootRow()

Expand/
Collapse

boolean isRowExpanded(IlvHierarchyNode row)
void expandRow(IlvHierarchyNode row)
void expandAllRows()
void expandAllRows(IlvHierarchyNode row)
void collapseRow(IlvHierarchyNode row)

Visibility int getVisibleRowCount()
int getVisibleRowIndex(IlvHierarchyNode row)
IlvHierarchyNode getVisibleRow(int rowIndex)
boolean isRowVisible(IlvHierarchyNode row)
Iterator visibleRowsIterator(IlvHierarchyNode rootRow)
void makeRowVisible(IlvHierarchyNode row)
Rectangle getVisibleRowBounds(int row)
Rectangle getVisibleRowBounds(IlvHierarchyNode row)
int getVisibleRowIndexAtPosition(int position)
IlvHierarchyNode getVisibleRowAtPosition(int position)

Displayed int getDisplayedRowIndexAtPosition(int position)
IlvHierarchyNode getDisplayedRowAtPosition(int position)
void makeRowDisplayed(IlvHierarchyNode row)
42 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

3. G
ettin

g
 S

tarted
 w

ith

th
e G

an
tt M

o
d

u
le

T H E G A N T T B E A N S
IlvTimeInterval getVisibleInterval()

void setVisibleInterval(Date time, IlvDuration duration)

Date getMinVisibleTime()

void setMinVisibleTime(Date min)

Date getMaxVisibleTime()

void setMaxVisibleTime(Date max)

For example, you can scroll a chart horizontally to the beginning of an activity:

In the Gantt and Schedule charts, a horizontal scroll bar is displayed below the Gantt sheet.
By default, the scroll bar is visible. You can change this by using the following methods of
the class IlvHierarchyChart:

boolean isHorizontalScrollBarVisible()

void setHorizontalScrollBarVisible(boolean visible)

The horizontal scroll bar has two operating modes:

◆ In the default unbounded mode, there is no upper or lower limit to the scrolling. This is
indicated by the getMinVisibleTime and getMaxVisibleTime methods returning
null. The user can use the scroll bar to move forward or backwards in time without
limit. However, the scroll bar slider remains in the center of the scroll bar and retains a
fixed size.

◆ Bounded mode is enabled when the methods setMinVisibleTime and
setMaxVisibleTime have been called with non-null values. In this mode, the scroll
bar is limited to the specified time interval and the slider size and position is proportional
to the displayed time span.

Vertical Scrolling

Vertical scrolling of the Gantt and Schedule charts can be performed using the vertical scroll
bar on the right side of the Gantt sheet. By default, this scroll bar is visible only when it is
needed. You can use the following methods to change this behavior:

int getVerticalScrollBarPolicy()

void setVerticalScrollBarPolicy(int policy)

The class IlvHierarchyChart has three static constants that define the supported scroll
bar policies:

◆ IlvHierarchyChart.VERTICAL_SCROLLBAR_AS_NEEDED

IlvActivity activity = ...
IlvTime startTime = activity.getStartTime();
myChart.setVisibleTime(startTime);
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 43

D I S P L A Y I N G G A N T T D A T A I N T H E G A N T T S H E E T
◆ IlvHierarchyChart.VERTICAL_SCROLLBAR_NEVER

◆ IlvHierarchyChart.VERTICAL_SCROLLBAR_ALWAYS

For example, if you want the vertical scroll bar to be always visible, you can write:

myChart.setVerticalScrollBarPolicy(myChart.VERTICAL_SCROLLBAR_ALWAYS);

You can use the following methods to scroll the chart vertically:

int getMaxVerticalPosition()

int getVerticalPosition()

void setVerticalPosition(int position)

int getVerticalExtent()

Displaying Gantt Data in the Gantt Sheet

The Gantt sheet is the right part of a Gantt Chart or Schedule Chart Bean and as such, it is an
important graphic component. It is designed both for the graphical display of the Gantt data
in a Gantt model and as an interactive interface that allows end users to manipulate the Gantt
data by means of interactors implemented for this purpose.

This section is divided as follows:

◆ Gantt Sheet Architecture illustrates the architecture of the Gantt sheet and introduces
some important concepts related to the Gantt sheet. The main purpose of this subsection
is to outline how the Gantt data appears in a Gantt sheet.

◆ Describing the Gantt Sheet illustrates several predefined interactors designed for the
Gantt sheet. This subsection shows end users how to manipulate Gantt data displayed in
a Gantt sheet.

◆ Activity Layouts describes the four layouts you can choose from to handle the way
activity graphics are arranged in the Gantt rows of a Schedule chart.

Gantt Sheet Architecture

The right part of a Gantt chart or Schedule chart is a graphic component called the Gantt
sheet, which is an instance of the class IlvGanttSheet. The Gantt sheet is illustrated in
sections Activity Gantt Sheet on page 45 and Resource Gantt Sheet on page 46.

The Gantt sheet is a user interface component designed for two main purposes:

◆ to display the data of a given Gantt model graphically, namely:

● activities and constraints in a Gantt chart, or
44 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

3. G
ettin

g
 S

tarted
 w

ith

th
e G

an
tt M

o
d

u
le

D I S P L A Y I N G G A N T T D A T A I N T H E G A N T T S H E E T
● reservations in a Schedule chart.

◆ to let end users interact with the current instance of the IlvGanttModel interface by
means of a number of interactors developed for this purpose.

Gantt Rows

A Gantt sheet consists of several rows, which are instances of the IlvGanttRow class.
Rows have the following properties:

◆ They can be enumerated by a call to one of the methods getGanttRowCount or
ganttRowIterator of the IlvGanttSheet class.

◆ They can be visible or hidden. When some rows are hidden, you can use the methods
getVisibleGanttRowCount and getVisibleGanttRowAt to enumerate the visible
ones.

◆ A Gantt row contains one or more activity graphics to represent activities.

Activity Graphics

Activity graphics are instances of the class IlvActivityGraphic. They are designed to
represent the associated activity, which can be accessed by calling the method
getActivity. An activity graphic is drawn as the result of a call to an activity renderer (see
section Activity Renderers). The activity renderer defined for an activity graphic can be
accessed or changed by the getActivityRenderer and setActivityRenderer
methods of the IlvActivityGraphic class. (See Figure 3.2).

Activity Renderers

Activity renderers are objects that implement the IlvActivityRenderer interface to
render activities. These objects work in association with the IlvActivityGraphic class;
when an activity graphic needs to be drawn, the draw method of the
IlvActivityRenderer interface is called.

Describing the Gantt Sheet

The data of a given Gantt model is rendered differently depending on whether the Gantt
sheet is in a Gantt chart or in a Schedule chart.

Activity Gantt Sheet

In a Gantt chart, a Gantt row is configured to display only one activity. In other words, there
cannot be more than one activity graphic in a Gantt row and the activity graphic cannot be
moved to another row.

In a Gantt chart, the Gantt sheet is also configured to show constraints (instances of the
interface IlvConstraint) by default. See Constraints on page 12 for details.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 45

D I S P L A Y I N G G A N T T D A T A I N T H E G A N T T S H E E T
In a Gantt data model, two activities can be linked by a constraint. In the Gantt sheet,
constraints are represented by instances of the class IlvConstraintGraphic.

For a given constraint graphic, the associated IlvConstraint object can be obtained by
calling the method getConstraint. If one or both of the two activity graphics are not
visible, the constraint graphic will not be visible either.

Figure 3.2

Figure 3.2 Gantt Sheet in a Gantt Chart

Resource Gantt Sheet

In a Schedule chart, the Gantt sheet shows how each resource listed on the left has been
scheduled. In other words, the Gantt rows in a Schedule chart display resource reservations.
Because a resource can be reserved for more than one activity on a given time span, there
can be more than one reservation on one row.

Figure 3.3

Figure 3.3 Gantt Sheet in a Schedule Chart

Reservation graphics are instances of the class IlvReservationGraphic. They are
designed to render the reservation of resources, which are instances of the interface
IlvReservation. The class IlvReservationGraphic is a subclass of the class
IlvActivityGraphic. For a given reservation graphic, the associated IlvReservation
object can be accessed by calling the method getReservation.

IlvConstraintGraphic object

IlvActivityGraphic objects
(child activity and parent activity)

IlvGanttRow object

IlvReservationGraphic objects

IlvGanttRow objects
46 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

3. G
ettin

g
 S

tarted
 w

ith

th
e G

an
tt M

o
d

u
le

D I S P L A Y I N G G A N T T D A T A I N T H E G A N T T S H E E T
In the general case, one activity may reserve several resources and appear as several
reservation graphics in the Schedule Chart. For this reason, constraints between activities are
not displayed by default in the Schedule Chart. If each activity reserves at most 1 resource,
constraint links can be displayed in the Schedule Chart by calling the
setDisplayingConstraints method.

Activity Layouts

As explained in section Resource Gantt Sheet on page 46, a Gantt row in a Schedule chart is
configured to render one or more resource reservations corresponding to one or more
activities. If the default layout is enabled and the same resource is reserved for more than
one activity, the multiple reservation graphics may overlap on the corresponding row. To
avoid this and ensure a neat arrangement of the reservation graphics, you can choose among
three other layout algorithms. The following layouts are presented:

◆ Simple Layout

◆ Pretty Layout

◆ Tile Layout

◆ Cascade Layout

Simple Layout

All activity graphics on a given Gantt row have the same y position. They are all aligned on
the top of the Gantt row and have the same height. The layout does not change the stacking
order of the activity graphics (z axis).

Pretty Layout

Figure 3.4 shows the result of the Pretty layout option (see the fourth row, for example). The
overlapping reservation graphics are arranged with a slight vertical offset. Also, the
reservation graphics are stacked so that the higher one (the one that has the greater y
position) is displayed behind the lower one and both reservation graphics are visible.

Figure 3.4

Figure 3.4 Reservation Graphics in Pretty Layout

Slightly offset
reservation
graphics
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 47

M A N I P U L A T I N G G A N T T D A T A W I T H T H E G A N T T S H E E T
Cascade Layout

The Cascade layout is similar to the Pretty layout except that it does not change the stacking
order (z axis) of the activity graphics.

Tile Layout

Figure 3.5 shows activity graphics in Tile layout. Compare the fourth row with the one in
Figure 3.4. The concurrent reservation graphics are placed at different y positions. The
height of each reservation graphic is calculated so that it does not overlap.

Figure 3.5

Figure 3.5 Reservation Graphics in Tile Layout

Manipulating Gantt Data with the Gantt Sheet

Several predefined interactors are implemented in the Gantt sheet for the following
purposes:

◆ Selecting Graphics

◆ Moving Activity and Reservation Graphics

◆ Duplicating Reservation Graphics

◆ Resizing Activity and Reservation Graphics

◆ Interacting with the Gantt Sheet Using the Mouse

Selecting Activities and Constraints

Before you can manipulate a graphic object, you need to select it. Figure 3.6 shows a
selected activity graphic and a selected constraint graphic.

Tiled
reservation
graphics
48 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

3. G
ettin

g
 S

tarted
 w

ith

th
e G

an
tt M

o
d

u
le

M A N I P U L A T I N G G A N T T D A T A W I T H T H E G A N T T S H E E T
Figure 3.6

Figure 3.6 Selected Activity Graphic and Constraint Graphic

Installing the Selection Interactor

A predefined interactor, IlvGanttSelectInteractor, handles the graphic selection. To
install this interactor, call the pushInteractor method of the Gantt sheet. When a new
Gantt sheet is created the selection interactor is already pre-installed, so the end user does
not need to install it “manually”.

Selecting Graphics

Once the selection interactor is installed in the Gantt sheet, there are three ways to select
activity, reservation, or constraint graphics.

◆ To select a single graphic object, click it with the left mouse button. Any other
previously selected object will be deselected.

◆ To select several graphic objects, you can also drag a selection rectangle around them
using the left mouse button. Be careful not to click a graphic when you start dragging the
rectangle. All the graphic objects inside the rectangle will be selected.

◆ To extend the selection when one object is already selected (multiple selection), Shift-
click the next object you want to select. As long as you hold down the Shift key, each
click on a graphic switches it between selected and deselected.

To access selected graphics, call the method getSelectedGraphics of the class
IlvHierarchyChart.

Moving Activity and Reservation Graphics

You can selected activity graphics or reservation graphics by dragging the mouse.

Activity Graphic Move Interactor

When you begin dragging a selected graphic, the Gantt selection interactor calls the method
getMoveSelectionInteractor of the class IlvGanttSelectInteractor to create a
move interactor as an instance of the class IlvActivityGraphicMoveInteractor. The
new move interactor is then attached to the Gantt sheet and becomes active. Notice that the
shape of the move cursor changes.

Selection handles
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 49

M A N I P U L A T I N G G A N T T D A T A W I T H T H E G A N T T S H E E T
The move interactor will be detached from the Gantt sheet when you release the mouse
button.

Moving Activity Graphics

In a Gantt chart, activity graphics can only be moved horizontally. This means that you
cannot move an activity graphic from one row to another.

Figure 3.7

Figure 3.7 Moving a Selected Activity Graphic

Moving Reservation Graphics

In a Schedule chart, reservation graphics can be moved horizontally or vertically.

◆ Moving a reservation graphic horizontally changes the start time and end time of the
associated activity.

◆ Moving a reservation graphic vertically—that is, from one row to another—means
dissociating the selected reservation from its current resource and assigning it to a new
resource.

Duplicating Reservation Graphics

In a Schedule chart, you can duplicate reservation graphics. To do so, press the Ctrl key and
drag the selected reservation graphic. The mouse cursor turns into a hand and a copy of the
selected reservation graphic is created when you release the mouse button.

Figure 3.8

Figure 3.8 Duplicating a Reservation Graphic

To abort duplication while you are dragging the mouse, press the Escape key.

Note: Constraint graphics cannot be moved in any direction.
50 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

3. G
ettin

g
 S

tarted
 w

ith

th
e G

an
tt M

o
d

u
le

M A N I P U L A T I N G G A N T T D A T A W I T H T H E G A N T T S H E E T
Resizing Activity and Reservation Graphics

A selected activity or reservation graphic is marked by two handles. You can resize a
selected graphic by dragging any of the handles to the left or to the right to make the bar
longer or shorter. In doing so, you change the start time and/or end time of the associated
activity.

Figure 3.9

Figure 3.9 Resizing a Selected Activity Graphic

Interacting with the Gantt Sheet Using the Mouse

Creating Activities and Reservations

In a Schedule chart, you can also create activity and reservation graphics using the mouse.
To do so, you must install the appropriate interactor to the Gantt sheet:

1. Create an instance of the class IlvMakeActivityInteractor.

2. Attach this interactor to the Gantt sheet by calling the pushInteractor method of the
Gantt sheet.

Once the interactor is installed, you can create an activity or a reservation by drawing a
rectangle in the Gantt sheet. The interactor first creates a new instance of IlvActivity and
then assigns the new activity to the resource where you clicked by creating a new instance of
IlvReservation.

To create the new activity or reservation, the interactor uses the activity factory or the
reservation factory registered with the Gantt sheet. See the methods getActivityFactory
and the getReservationFactory of the IlvGanttSheet class.

Creating Constraints

In a Gantt chart, you can create constraints using the mouse. To do so, you must install the
appropriate interactor to the Gantt sheet:

1. Create an instance of the class IlvMakeConstraintInteractor.

2. Attach the interactor to the Gantt sheet by calling the pushInteractor method of the
Gantt sheet.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 51

M A N I P U L A T I N G G A N T T D A T A W I T H T H E G A N T T S H E E T
Once the interactor is installed, you can use it to create IlvConstraint objects.

3. Click the source activity graphic (also called From activity).

Click the left end or right end depending on whether you want to constrain the start time
or the end time of the source activity. When you move the mouse, a “ghost” line follows
the pointer.

4. Click the target activity graphic (also called To activity).

Click the left end or right end depending on whether you want to link the source activity
to the start time or the end time of the target activity. As soon as you release the mouse
button, the arrowed polyline link representing the constraint appears between the two
activities.

To create constraints, the interactor uses the constraint factory registered with the Gantt
sheet. See the getConstraintFactory method of the class Gantt sheet.
52 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

C H A P T E R

4. A
d

van
ced

 F
eatu

res
4

Advanced Features

This chapter leads you through several overviews and tutorials on how to do advanced
customizations of the Gantt module. The following topics are covered:

◆ The Custom Gantt Example

◆ Customizing the Gantt Data Model

◆ Customized Activity Rendering

◆ Customized Table Columns

You can see a demonstration of advanced activity rendering using the Java2D API by
examining the Java2D example located in:

<installdir>/demos/gantt/java2d

The Java2D example is not covered in this manual.

The Custom Gantt Example

The Custom Gantt Chart example is supplied with the Gantt module to illustrate several
advanced customization techniques that can be applied to the charts. The
CustomGanttExample.java example application extends the GanttExample.java
example, previously discussed in section Gantt Chart on page 24. This application file
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 53

T H E C U S T O M G A N T T E X A M P L E
simplifies the source code so that it only contains the customizations that override the
default behavior of the Gantt chart. This section is divided as follows:

◆ Running the Custom Gantt Example shows you how to run the Custom Gantt example.

◆ Customization Overview gives a brief overview of the customized portions of the chart,
which are discussed in more detail in subsequent sections.

Running the Custom Gantt Example

The source code file of the Custom Gantt example application is named
CustomGanttExample.java and can be found in the directory:

<installdir>/demos/gantt/customData

To run the example, ensure that the Ant utility is properly configured. If not, see the
instructions on how to configure Ant for ILOG JViews in:

<installdir>/html/installation.html

Then, go to the directory where the example is installed and type:

ant run

to run the example as an application.

Customization Overview

When the Custom Gantt example launches, the application looks like this:
54 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

4. A
d

van
ced

 F
eatu

res

T H E C U S T O M G A N T T E X A M P L E
Figure 4.1

Figure 4.1 The Custom Gantt Chart Example Application

This example illustrates several techniques that you can use to customize the Gantt and
Schedule charts for your own application needs. The following customizations are discussed
in subsequent sections:

◆ A numerical priority property has been added to each activity in the Gantt data model.
See Customizing the Gantt Data Model on page 56.

◆ Each leaf activity is rendered with a customized graphic, which represents the activity
priority as a horizontal yellow bar. See Customized Activity Rendering on page 62.

◆ Each parent activity is displayed in the tree column with a custom icon that depends on
whether the activity is expanded or collapsed. See Customized Table Columns on
page 66.

◆ A column has been added to the table to display the priority level of each activity.
Column rendering has been customized so that priority levels are displayed in different
colors depending on their value. A slider has been substituted for the default text field
mechanism for editing the priority values. See Customized Table Columns on page 66.

Priority sliderThe color of the priority level
changes depending on its value.

The length of the yellow bar is
proportional to the activity priority level.

Custom icons on parent activity rows
show expanded and collapsed rows.

Constraint graphics show different
colors, line widths, and connection types.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 55

C U S T O M I Z I N G T H E G A N T T D A T A M O D E L
Customizing the Gantt Data Model

This section takes you through a tutorial on how a priority property was added to each
activity in the Custom Gantt Chart example (see the figure in Customization Overview on
page 54). You can later apply the concepts set out hereafter to add your own properties to
activities, resources, constraints, or reservations.

The CustomActivity Class

We start by extending the class IlvSimpleActivity. This gives us a memory-based
activity implementation to which we can add additional properties. Our activity
implementation is located in the file:

<installdir>/demos/gantt/customData/CustomActivity.java

First, we import the core Gantt package:

import ilog.views.gantt.*;

so that we can reference the classes IlvSimpleActivity, IlvTimeInterval, and so on.
We also duplicate all of the IlvSimpleActivity constructors. At this point,
CustomActivity does not provide any additional functionality and its skeleton looks like
this:

Note: Although this tutorial illustrates how to extend the IlvSimpleActivity class in
order to add a custom property, you may find that the IlvGeneralActivity class
provides all the functionality that you need.

import ilog.views.gantt.*;

public class CustomActivity extends IlvSimpleActivity {

 public CustomActivity (String id, String name, IlvTimeInterval interval) {
 super(id, name, interval);
 }

 public CustomActivity (String id, String name, Date start, Date end) {
 super(id, name, start, end);
 }

 public CustomActivity (String id, String name, Date start,
 IlvDuration duration) {
 super(id, name, start, duration);
 }

}

56 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

4. A
d

van
ced

 F
eatu

res

C U S T O M I Z I N G T H E G A N T T D A T A M O D E L
We now add the priority as a private integer property to the class and provide public
accessors and modifiers:

We have also decided that valid priority values must be within the range from 1 to 10.
As a consequence:

◆ We create two constants that define the minimum and maximum allowed priority values,
and

public static final int HIGHEST_PRIORITY = 1;
public static final int LOWEST_PRIORITY = 10;

◆ We modify the setPriority method accordingly:

public void setPriority (int priority) {
 int newPriority =
 Math.min(LOWEST_PRIORITY, Math.max(HIGHEST_PRIORITY, priority));
 this.priority = newPriority;
}

Adding Property Events

We have now added a priority property to the CustomActivity class, but there is currently
no way for the Gantt chart display mechanism to know when the priority of an activity has
changed so that the display can be updated. This is done by creating an event class that
CustomActivity will fire whenever its priority is modified. Our PriorityEvent class is
implemented in the file:

<installdir>/demos/gantt/customData/PriorityEvent.java

The PriorityEvent class extends the ActivityPropertyEvent class, which is the
superclass of all property events fired by activity implementations. As you can guess, the
following superclasses should be used when creating your own property events:

private int priority = 5;

public int getPriority () {
 return priority;
}

public void setPriority (int priority) {
 this.priority = priority;
}

Note: Another way of constraining the priority values would be to throw an
IllegalArgumentException when the user attempts to set an invalid priority value, but
trimming the value to fit within the allowed limits suits the needs of the example better.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 57

C U S T O M I Z I N G T H E G A N T T D A T A M O D E L
◆ ActivityPropertyEvent to extend activity events;

◆ ResourcePropertyEvent to extend resource events;

◆ ConstraintPropertyEvent to extend constraint events;

◆ ReservationPropertyEvent to extend reservation events.

The ActivityPropertyEvent class is designed to notify interested listeners of a change
in an Object-type property value. However, the priority property we have created is a
primitive int type. Therefore, we design our PriorityEvent extension to convert the int
priority value back and forth to an Integer for storage within the event:

Next, we need to modify the setPriority method of the CustomActivity class so that it
will fire a PriorityEvent to all interested listeners whenever the priority value is changed.
The first thing to remember is that listeners do not register to receive events directly from
each instance of IlvActivity. Rather, listeners register with the Gantt data model by using
the addActivityListener method. The same is true for resources, constraints, and
reservations.

public class PriorityEvent extends ActivityPropertyEvent {

 public PriorityEvent(CustomActivity activity,
 int oldPriority,
 int newPriority,
 boolean aboutToChangeEvent) {
 super(activity,
 new Integer(oldPriority),
 new Integer(newPriority),
 aboutToChangeEvent);
 }

 public int getOldPriority() {
 return ((Integer)getOldValue()).intValue();
 }

 public int getNewPriority() {
 return ((Integer)getNewValue()).intValue();
 }

 public void setNewPriority(int priority) {
 setNewValue(new Integer(priority));
 }

}

58 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

4. A
d

van
ced

 F
eatu

res

C U S T O M I Z I N G T H E G A N T T D A T A M O D E L
The following methods of the class IlvGanttModel can be used to register and unregister
listeners for various data model events:

The class CustomActivity inherits the fireEvent method from the class
IlvAbstractActivity. This method routes an event from the activity to the data model,
and then to all registered listeners. Each abstract implementation of the four data model
entities has a similar fireEvent method that subclasses can use to route events properly to
interested listeners. The methods are:

IlvAbstractActivity.fireEvent(ActivityEvent e)

IlvAbstractResource.fireEvent(ResourceEvent e)

IlvAbstractConstraint.fireEvent(ConstraintEvent e)

IlvAbstractReservation.fireEvent(ReservationEvent e)

Table 4.1 Methods for Registering or Unregistering Listeners

Listeners Methods

Activity hierarchy void addActivityHierarchyListener(ActivityHierarchyListener
aListener)
void removeActivityHierarchyListener(ActivityHierarchyListener
aListener)

Activities void addActivityListener(ActivityListener aListener)
void removeActivityListener(ActivityListener aListener)

Resource hierarchy void addResourceHierarchyListener(ResourceHierarchyListener
aListener)
void removeResourceHierarchyListener(ResourceHierarchyListener
aListener)

Resources void addResourceListener(ResourceListener aListener)
void removeResourceListener(ResourceListener aListener)

Constraints void addConstraintListener(ConstraintListener aListener)
void removeConstraintListener(ConstraintListener aListener)

Reservations void addReservationListener(ReservationListener aListener)
void removeReservationListenerReservationListener aListener)
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 59

C U S T O M I Z I N G T H E G A N T T D A T A M O D E L
Here is our new setPriority method, which now fires a PriorityEvent once the
priority value of the activity has been modified:

Notice that the last argument to the PriorityEvent constructor is false. This creates an
event to signal that the priority value has been changed, whereas if that last argument were
set to true, this would signal an about-to-change event. This type of event is discussed in
the next section.

About-to-Change Events

For many data model properties, including the priority property of our CustomActivity
class, it is desirable to notify interested listeners just before a property value is about to be
notified. This gives listeners an opportunity to constrain the proposed new value of the
property or to veto the property change completely. We call this an about-to-change event.
To create such an event, set the last argument to the event constructor to true.

public void setPriority (int priority) {
 int newPriority =
 Math.min(LOWEST_PRIORITY, Math.max(HIGHEST_PRIORITY, priority));
 // Don’t fire any events unless the priority value actually changes.
 if (this.priority == newPriority)
 return;
 // Save the old priority value for constructing the changed event
 int prevPriority = this.priority;
 // Set the new priority value
 this.priority = newPriority;
 // Create the priority changed event and fire it.
 PriorityEvent changedEvent =
 new PriorityEvent(this, prevPriority, newPriority, false);
 fireEvent(changedEvent);
}

60 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

4. A
d

van
ced

 F
eatu

res

C U S T O M I Z I N G T H E G A N T T D A T A M O D E L
Here is the final version of our setPriority method with the addition of firing a priority
about-to-change event:

Creating CustomActivity Instances

Now that the CustomActivity class is fully developed, we need to have the example
application create instances of this class rather than instances of the default
IlvSimpleActivity class. This is done by creating an IlvActivityFactory
implementation that instantiates CustomActivity objects, and then by telling the chart to
use this factory instead of the default.

We have designed the activity factory to be a nested class of CustomActivity called
CustomActivity.Factory. The factory has a single method, createActivity, which
creates an instance of CustomActivity upon request by the application. Here is the code:

public void setPriority (int priority) {
 int newPriority =
 Math.min(LOWEST_PRIORITY, Math.max(HIGHEST_PRIORITY, priority));
 // Don’t fire any events unless the priority value is modified.
 if (this.priority == newPriority)
 return;
 // Create the priority about-to-change event and fire it.
 PriorityEvent aboutToChangeEvent =
 new PriorityEvent(this, this.priority, newPriority, true);
 fireEvent(aboutToChangeEvent);
 // Check if a listener vetoed the property modification
 if (aboutToChangeEvent.isVetoed())
 return;
 // Save the old priority value for constructing the changed event
 int prevPriority = this.priority;
 // Use the potentially constrained value from the
 // about-to-change event to set the new priority
 this.priority = aboutToChangeEvent.getNewPriority();
 // Create the priority changed event and fire it.
 PriorityEvent changedEvent =
 new PriorityEvent(this, prevPriority, newPriority, false);
 fireEvent(changedEvent);
}

public class CustomActivity extends IlvSimpleActivity {
 ...
 public static class Factory implements IlvActivityFactory {

 public IlvActivity createActivity (IlvTimeInterval interval) {
 return new CustomActivity("CA", "Custom Activity", interval);
 }
 }
 ...
}

I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 61

C U S T O M I Z E D A C T I V I T Y R E N D E R I N G
We then tell the Custom Gantt Chart example to use our new factory by overriding its
populateGanttModel method:

Customized Activity Rendering

The Custom Gantt Chart example represents the CustomActivity instances in our data
model with customized rendering. We can summarize the rendering as follows:

◆ Parent activities are rendered in the default manner, by a light blue bar and dark blue end
markers. The renderer is an instance of the class IlvActivitySummary.

◆ Leaf activities are rendered as a composite of the default IlvActivityBar, which
displays the name of the activity, with a thin yellow activity bar whose length is
proportional to the priority level of the activity (see the figure in Customization
Overview on page 54 and Figure 4.2). We use the IlvActivityCompositeRenderer
class to create a renderer that groups the two simpler renderers into one.

Figure 4.2

Figure 4.2 Rendering of CustomActivity Instances

In addition to customizing the activities, we must create both a customized renderer for the
leaf activities and an activity renderer factory that will create the correct renderer upon
request. We then tell the Custom Gantt Chart example to use the new activity renderer
factory by calling its setActivityRendererFactory method. The rest of this section is
divided as follows:

◆ The Custom Activity Renderer Factory discusses the renderer factory and the way it is
attached to the chart.

◆ The Custom Activity Renderer Class discusses the customized activity renderer that the
factory creates for the charted leaf activities.

protected void populateGanttModel(IlvGanttModel model) {
 // Change the default activity factory
 gantt.setActivityFactory(new CustomActivity.Factory());
 ...
 // Call super to create data model entities from the current factories
 super.populateGanttModel(model);
}

62 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

4. A
d

van
ced

 F
eatu

res

C U S T O M I Z E D A C T I V I T Y R E N D E R I N G
The Custom Activity Renderer Factory

The factory that creates activity renderers for the Custom Gantt Chart example is an inner
class of CustomGanttExample called CustomActivityRendererFactory. This class is
an extension of the IlvDefaultActivityRendererFactory class. As such, it inherits a
default renderer for parent activities. The skeleton of the factory is given here:

As you can see from the bold lines in the code sample, the main factory method,
createActivityRenderer, returns the renderer of its superclass for parent activities. This
will be the default IlvActivitySummary renderer that displays the blue bar with end
markers. For leaf activities, createActivityRenderer returns a custom renderer that is
initialized in the factory constructor. The next section, The Custom Activity Renderer Class,
goes into the details of how to create this renderer.

We then tell the Custom Gantt Chart example to use our new factory before any activities are
initially rendered. This is done in the populateGanttModel method because we know that
the chart has been created, but the data model has not been populated with activities yet:

public class CustomGanttExample extends GanttExample {
 ...
 class CustomActivityRendererFactory
 extends IlvDefaultActivityRendererFactory {

 // The custom renderer for leaf activities
 IlvActivityCompositeRenderer renderer;

 public CustomActivityRendererFactory () {
 renderer = new CustomActivityRenderer();
 }

 // This is the main factory method which creates renderers for the chart.
 public IlvActivityRenderer createActivityRenderer(IlvActivity activity) {
 // Return the default renderer for parent activities
 if (activity.getChildCount() > 0)
 return super.createActivityRenderer(act);
 // Return the customized renderer for leaf activities
 return renderer;
 }
 }
}

protected void populateGanttModel(IlvGanttModel model) {
 ...
 // Change the default activity renderer factory.
 gantt.setActivityRendererFactory(new CustomActivityRendererFactory());
 // Call super to create data model entities which will be rendered
 // according to the current factories
 super.populateGanttModel(model);
}

I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 63

C U S T O M I Z E D A C T I V I T Y R E N D E R I N G
The Custom Activity Renderer Class

We start creating our custom renderer by extending the class
IlvActivityCompositeRenderer. This allows us to create a renderer as a grouping of
simpler renderers. Our custom renderer implementation is located in the file:

<installdir>/demos/gantt/customData/CustomActivityRenderer.java

We add the 2 bars in the constructor of the CustomActivityRenderer class. A standard
IlvActivityBar renderer is added to the composite to create the upper bar. By default,
this displays the name of the activity on a pink background. The only customization is to add
a bottom margin in order to make room for the lower yellow bar.

The lower bar is a PriorityBar object, which is a subclass of IlvActivityBar. Its
background color is set to yellow and a top margin is added, which is the space occupied by
the upper bar. The skeleton of the CustomActivityRenderer class looks like this:

When any type of graphic is selected in the Gantt sheet, an instance of IlvSelection is
created to visually represent the selected state. When an IlvActivityGraphicObject is
selected, it asks its renderer to create the IlvSelection instance by calling the
IlvActivityRenderer.makeSelection method. All the IlvActivityRenderer
implementations provided in the Gantt module return an instance of
IlvActivityGraphicSelection, which extends from IlvSelection. The
IlvActivityGraphicSelection class visually represents the selected state of an activity
by displaying 2 squares at either end of the activity graphic, centered in the vertical
direction.

In the case of our CustomActivityRenderer, the standard
IlvActivityGraphicSelection would display the 2 squares centered vertically in the
blank space between the two horizontal bars. In order to display the selection squares
centered vertically along the upper bar, we override the makeSelection method of the
CustomActivityRenderer:

public class CustomActivityRenderer extends IlvActivityCompositeRenderer
{
 public CustomActivityRenderer()
 {
 IlvActivityBar mainBar = new IlvActivityBar();
 mainBar.setBottomMargin(0.3f);
 addRenderer(mainBar);

 IlvActivityBar priorityBar = new PriorityBar();
 priorityBar.setTopMargin(0.75f);
 priorityBar.setBackground(Color.yellow);
 addRenderer(priorityBar);
 }
64 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

4. A
d

van
ced

 F
eatu

res

C U S T O M I Z E D A C T I V I T Y R E N D E R I N G
The PriorityBar class is a subclass of IlvActivityBar and is defined as an inner class
of CustomActivityRenderer. We set its displayed property to null so that no text is
rendered:

For the length of the PriorityBar to be rendered proportionally to the priority value of the
CustomActivity object, we override the getBounds method. We also override the
isRedrawNeeded method so that the activity is redrawn automatically whenever its priority
value changes. These 2 methods look like this:

 public IlvSelection makeSelection(IlvActivityGraphic g)
 {
 return new IlvActivityGraphicSelection(g)
 {
 public IlvPoint getHandle(int i, IlvTransformer t)
 {
 IlvActivityGraphic ag = (IlvActivityGraphic)getObject();
 IlvActivityCompositeRenderer renderer =
(IlvActivityCompositeRenderer)ag.getActivityRenderer();
 // The definition rectangle of the activity graphic gives us the x
position of
 // the start and end times.
 IlvRect definitionBox = ag.getDefinitionRect(t);
 // The bounding box of the upper bar gives us its y position.
 IlvRect boundingBox = renderer.getRendererAt(0).getBounds(ag, t);
 IlvPoint p = new IlvPoint();
 float y = boundingBox.y + boundingBox.height/2;
 switch(i) {
 case 0:
 p.move(definitionBox.x, y);
 break;
 case 1:
 p.move(definitionBox.x + definitionBox.width, y);
 break;
 }
 return p;
 }
 };
 }

class PriorityBar extends IlvActivityBar
{
 public PriorityBar()
 {
 setDisplayedProperty(null);
 }
}

I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 65

C U S T O M I Z E D T A B L E C O L U M N S
Finally, we override the getToolTipText method so that when the user pauses the mouse
over the priority bar, the priority value of the CustomActivity will be displayed:

public String getToolTipText(IlvActivityGraphic ag, IlvPoint p, IlvTransformer
t)
 {
 CustomActivity activity = (CustomActivity)ag.getActivity();
 return "Priority " + activity.getPriority();
 }
priobar.setDisplayedProperty(null);
priobar.setBackground(Color.yellow);
renderer.addRenderer(priobar);

Customized Table Columns

In this section, we show you how to customize an existing column in the table portion of the
Gantt or Schedule chart and also how to define a new type of column and add it to the table.
We start by showing how to customize the tree icons in the Name column. Then we show
how to create the Pri column, which displays the priority value of each custom activity.

Tree Column Icons

The first column in the table is an instance of the IlvTreeColumn class. This type of
column uses a render that implements the standard Swing TreeCellRenderer interface to
display its contents. As in the Swing JTree component, the default renderer that the column
uses is a Swing DefaultTreeCellRenderer object. The following code shows how we
customize the expanded and collapsed icons for parent activities in the column:

IlvTreeColumn treeColumn = gantt.getTable().getTreeColumn("Name");
DefaultTreeCellRenderer renderer =
 (DefaultTreeCellRenderer)treeColumn.getRenderer();
renderer.setOpenIcon(new ImageIcon(...));
renderer.setClosedIcon(new ImageIcon(...));

 public IlvRect getBounds(IlvActivityGraphic ag, IlvTransformer t)
 {
 IlvRect bounds = super.getBounds(ag, t);
 CustomActivity activity = (CustomActivity)ag.getActivity();
 bounds.width = (1.0f * bounds.width * activity.getPriority()) /
CustomActivity.LOWEST_PRIORITY;
 return bounds;
 }

 public boolean isRedrawNeeded(ActivityEvent evt)
 {
 return super.isRedrawNeeded(evt) ||
 (evt instanceof PriorityEvent && ((PriorityEvent)evt).isChangedEvent());
 }
66 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

4. A
d

van
ced

 F
eatu

res

C U S T O M I Z E D T A B L E C O L U M N S
The PriorityColumn Class

New custom columns can be added to the table by creating an implementation of the
IlvJTableColumn interface and adding it to the chart table. Our custom table-column
implementation is located in the file:

<installdir>/demos/gantt/customData/PriorityColumn.java

This class is an extension of IlvAbstractJTableColumn and thereby implements the
IlvJTableColumn interface. We start out by duplicating each of the superclass
constructors and adding an init method, which is where we will customize various aspects
of the column.

The basic skeleton of the class looks like this:

An IlvJTableColumn object is a wrapper around a standard Swing
javax.swing.table.TableColumn object. The underlying TableColumn object is
responsible for rendering and editing each cell within the column. However, because the
standard TableColumn object considers row indices, the IlvJTableColumn wrapper
maps the column to work in terms of IlvHierarchyNode data nodes (that is, activities and
resources) instead. The TableColumn object also provides hooks so that the column can
refresh automatically in response to data model events.

Our custom PriorityColumn has two purposes:

◆ rendering the priority of each custom activity as a numeric string. The color of the text
should change depending on the value.

◆ permitting the user to edit the priority values using a standard JSlider component.

When an instance of IlvAbstractJTableColumn (and hence of PriorityColumn) is
initially constructed, it creates an underlying Swing TableColumn object that has no cell
renderer or cell editor set. This means that the column cells will be rendered and edited using

public class PriorityColumn extends IlvAbstractJTableColumn {

 public PriorityColumn (Object headerValue) {
 super(headerValue);
 init();
 }

 public PriorityColumn (Object headerValue, int width) {
 super(headerValue, width);
 init();
 }

 private void init () {
 ...
 }

}

I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 67

C U S T O M I Z E D T A B L E C O L U M N S
the class-based default settings of the table. Typically, this means that a JLabel object will
be used for rendering text and a JTextField object will be used for editing. To obtain the
customized rendering and editing behavior we want instead, we have to create a
TableCellRenderer and TableCellEditor object for the column explicitly.

Support Methods

Before we review the column renderer and editor, some IlvJTableColumn methods must
be implemented in the class PriorityColumn:

◆ The method getValue returns the priority for an activity. Because priorities are stored
as primitive int values, we wrap the priority in an Integer object.

◆ The method setValue sets the priority for an activity. The priority will be passed in as
an Integer because of the way we coded getValue.

◆ The method isEditable is overridden to return true so that the priority values can be
edited.

These three methods look like this:

The Cell Renderer

The renderer of the priority column is created in the createRenderer method as an
extension of the Swing DefaultTableCellRenderer class. Only two methods are
overridden:

◆ The method setValue is overridden to use a NumberFormat to format the priority
value into a text string for display.

◆ The method getTableCellRendererComponent is overridden to center the text in the
column and to set the text color based upon the priority value.

public Object getValue (IlvHierarchyNode activity) {
 if (activity instanceof CustomActivity)
 return new Integer(((CustomActivity)activity).getPriority());
 else
 return null;
}

public void setValue (IlvHierarchyNode activity, Object value) {
 // Should never happen, but we'll check anyway
 if (!(activity instanceof CustomActivity && value instanceof Integer))
 return;
 ((CustomActivity)activity).setPriority(((Integer)value).intValue());
}

public boolean isEditable (IlvHierarchyNode activity) {
 return activity instanceof CustomActivity;
}

68 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

4. A
d

van
ced

 F
eatu

res

C U S T O M I Z E D T A B L E C O L U M N S
The new additions to PriorityColumn look like this:

Now that we can create a customized renderer for the column, we tell the underlying
TableColumn object to use it in the init method:

The last part we must define with regard to rendering the priority values is to have the
PriorityColumn automatically refresh any activities whose value has changed. This
change will be signalled from the Gantt data model by the PriorityEvent that we created
in section Adding Property Events on page 57. When the column is added to the table, its

private NumberFormat formatter = NumberFormat.getInstance();

private TableCellRenderer createRenderer () {
 DefaultTableCellRenderer renderer = new DefaultTableCellRenderer() {

 private Color darkGreen = Color.green.darker();

 protected void setValue (Object value) {
 if (!(value instanceof Integer))
 setText("");
 else
 setText(formatter.format(value));
 }

 public Component getTableCellRendererComponent
 (JTable table, Object value,
 boolean isSelected,
 boolean hasFocus,
 int row, int column) {
 Component comp = super.getTableCellRendererComponent
 (table, value, isSelected, hasFocus, row, column);
 if (value instanceof Integer) {
 int intVal = ((Integer) value).intValue();
 Color color;
 if (intVal <= 2)
 color = Color.red;
 else if (intVal <= 4)
 color = Color.orange;
 else if (intVal <= 7)
 color = darkGreen;
 else
 color = Color.blue;
 comp.setForeground(color);
 }
 return comp;
 }
 };
 renderer.setHorizontalAlignment(JLabel.CENTER);
 return renderer;
}

private void init () {
 TableColumn swingColumn = getTableColumn();
 swingColumn.setCellRenderer(createRenderer());
 ...
}

I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 69

C U S T O M I Z E D T A B L E C O L U M N S
setGanttConfiguration method will be called. We use this opportunity to register the
column to receive the desired PriorityEvent notifications. To act as an event listener, the
column must implement the GenericEventListener interface and its inform method. In
the inform method, the column calls the cellUpdated method of its superclass to refresh
the activity whose priority has changed. The relevant code looks like this:

The Cell Editor

To be able to use a Swing JSlider as the editor for the priority column, we have created a
subclass of JSlider that implements the TableCellEditor interface. This class is named
SliderEditor and is a nested inner class of PriorityColumn. All methods of the class
SliderEditor are simple implementations of the TableCellEditor interface.

We then create the editor in the createEditor method of the class PriorityColumn and
tell the underlying TableColumn object to use it in the init method:

public class PriorityColumn extends IlvAbstractJTableColumn
 implements GenericEventListener {

 private IlvGanttConfiguration ganttConfig;

 public void setGanttConfiguration (IlvGanttConfiguration ganttConfig) {
 // When the column is removed from the table, unregister from
 // all notifications.
 if (this.ganttConfig != null)
 this.ganttConfig.removeListener(this);
 this.ganttConfig = ganttConfig;
 // When the column is added to the table, register for PriorityEvent's.
 if (this.ganttConfig != null)
 this.ganttConfig.addListener(this, PriorityEvent.class);
 }

 // GenericEventListener implementation
 public void inform (java.util.EventObject event) {
 // We only register for PriorityEvent's, but be safe anyway.
 if (!(event instanceof PriorityEvent))
 return;
 PriorityEvent pEvent = (PriorityEvent) event;
 // Make sure that the event is not a pre about-to-change event.
 // It would do no harm, but would be an unnecessary repaint.
 if (pEvent.isChangedEvent())
 cellUpdated((IlvHierarchyNode)event.getSource());
 }

}

private TableCellEditor createEditor () {
 return new SliderEditor();
}

private void init () {
 TableColumn swingColumn = getTableColumn();
 ...
 swingColumn.setCellEditor(createEditor());
}

70 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

4. A
d

van
ced

 F
eatu

res

C U S T O M I Z E D T A B L E C O L U M N S
Adding the Column to the Table

Now that we have designed the PriorityColumn class, we need to add an instance of it to
the table. This is done by adding the column to the IlvJTable instance of the chart, which
can be obtained from its getTable method. In the Custom Gantt Chart example, this is
implemented in the addCustomTableColumns method:

protected void addCustomTableColumns () {
 IlvJTable table = gantt.getTable();
 table.addColumn(new PriorityColumn("Pri"));
}

I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 71

C U S T O M I Z E D T A B L E C O L U M N S
72 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

C H A P T E R

5. L
o

ad
-o

n
-D

em
an

d

5

Load-on-Demand

The Gantt module provides a mechanism for loading data into memory as it is needed for
display. This mechanism is called load-on-demand and is very valuable when visualizing
large scheduling data sets. The Gantt load-on-demand mechanism consists of two separate
parts. The first is called “vertical load-on-demand” and can be used to defer loading of row
data in both the Gantt and Schedule charts. The second is called “horizontal load-on-
demand” and is available only in the resource-oriented Schedule chart. It allows you to defer
loading of reservation data based upon the current visible time interval being displayed.

This chapter covers the following topics:

◆ Vertical Load-On-Demand and the Database Gantt example.

◆ Horizontal Load-On-Demand and the Database Schedule example.

Vertical Load-On-Demand

Vertical load-on-demand refers to the ability to defer loading of row-oriented information
until it is needed for display. This means activity data for a Gantt chart and resource data for
a Schedule chart. Vertical load-on-demand is facilitated by the design of the Gantt module
and also requires appropriate design of the IlvGanttModel implementation. The default
in-memory data model implementation, IlvDefaultGanttModel, does not support load-
on-demand. The Database examples are provided to illustrate the basics of creating a load-
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 73

V E R T I C A L L O A D - O N - D E M A N D
on-demand data model implementation. The classes provided in these examples can be
customized for your own use, or they can serve as a source of ideas for your own
implementation.

Running the Database Gantt Example

The source code file of the Database Gantt example application is named
DBGanttExample.java and can be found in the directory:

<installdir>/demos/gantt/database

To run the example, ensure that the Ant utility is properly configured. If not, see the
instructions on how to configure Ant for ILOG JViews in:

<installdir>/html/installation.html

Then, go to the directory where the example is installed and type:

ant rungantt

to run the example as an application.

Understanding the Database Gantt Example

The Database Gantt example application visualizes a read-only relational database
containing scheduling data. The Gantt chart is bound to an instance of the
DBROGanttModel class. This data model implementation is designed to query a relational
database defined by the GanttDBRO interface. The GanttModelDBROWrapper class
implements the GanttDBRO interface by simulating a database view of an existing Gantt
data model. The key class relationships are shown in Figure 5.1:
74 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

5. L
o

ad
-o

n
-D

em
an

d

V E R T I C A L L O A D - O N - D E M A N D
Figure 5.1

Figure 5.1 The Class Relationships of the Database Gantt Example

The DBROGanttModel data model implementation is designed to load scheduling data on-
demand from an underlying relational database defined by the GanttDBRO interface. The
GanttDBRO interface defines 4 inner interfaces that define the record structure of the
activity, resource, constraint, and reservation data:

Data Model Entity Database Record Interface

Activities GanttDBRO.ActivityRecord

Resources GanttDBRO.ResourceRecord

Constraints GanttDBRO.ConstraintRecord

Reservations GanttDBRO.ReservationRecord
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 75

V E R T I C A L L O A D - O N - D E M A N D
Each data model entity has a String lookup key that is unique among its instances. For
activities and resources, this can be the same as the ID property, but it is not required. The
GanttDBRO interface defines the following database query methods:

The GanttModelDBROWrapper class simulates a GanttDBRO database by creating in-
memory tables and keys from an existing Gantt data model. When you open an XML
schedule data file in the Database Gantt Example, a standard IlvDefaultGanttModel is
created from the data. This data model is then wrapped by an instance of
GanttModelDBROWrapper that is bound to a DBROGanttModel instance. The object
relationships look like this:

Figure 5.2

Figure 5.2 Object Relationships of the Database Gantt Example

Activities String queryRootActivityKey()
ActivityRecord queryActivity(String key)
String queryActivityParent(String key)
String[] queryActivityChildren(String key)

Resources String queryRootResourceKey()
ActivityRecord queryResource(String key)
String queryResourceParent(String key)
String[] queryResourceChildren(String key)

Constraints String[] queryConstraints()
String[] queryConstraintsFromActivity(String activityKey)
String[] queryConstraintsToActivity(String activityKey)
ConstraintRecord queryConstraint(String key)

Reservations String[] queryReservations()
String[] queryReservationsForActivity(String activityKey)
String[] queryReservationsForResource(String resourceKey)
String[] queryReservationsForResource(String resourceKey,
 Date start,
 Date end)
ReservationRecord queryReservation(String key)
76 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

5. L
o

ad
-o

n
-D

em
an

d

H O R I Z O N T A L L O A D - O N - D E M A N D
When an activity row is first displayed in the Gantt chart, the chart calls the
queryActivityChildren() method of the database. This is to determine whether the
activity is a parent or a leaf row so that it can be rendered properly. The keys of the activity’s
children are then cached in the DBROGanttModel. Then, when the activity row is expanded,
the chart will call the queryActivity() method of the database for each newly visible
child row. This is to obtain the activity properties that are displayed. You can monitor this
behavior by selecting Display Database Queries from the File menu. This will log all
accesses from the DBROGanttModel to the GanttModelDBROWrapper database
implementation onto the system console.

In order to achieve the same vertical load-on-demand capabilities for your application, you
can create an implementation of the GanttDBRO interface that connects to the source of your
scheduling data. Your scheduling data schema should be organized as 4 separate tables for
activity, resource, constraint, and reservation records and each table must have a primary
key string that uniquely identifies each record. You can use the source code for the
GanttModelDBROWrapper class to get ideas on how to design your implementation. Once
you have created a GanttDBRO implementation, you can bind it to a DBROGanttModel
instance and then to your chart, as follows:

IlvGanttModel dbModel = new DBROGanttModel(aGanttDBRO);
aChart.setGanttModel(dbModel);

Horizontal Load-On-Demand

Horizontal load-on-demand is a capability of the resource-oriented Schedule chart to defer
loading of reservation data based upon the currently visible time interval. As the chart is
scrolled or zoomed horizontally to display different time intervals, the Schedule chart
queries the data model for new reservations that need to be displayed. The Database
Schedule example application illustrates this feature.

Running the Database Schedule Example

The source code file of the Database Schedule example application is named
DBScheduleExample.java and can be found in the directory:

<installdir>/demos/gantt/database

To run the example, ensure that the Ant utility is properly configured. If not, see the
instructions on how to configure Ant for ILOG JViews in:

<installdir>/html/installation.html

Then, go to the directory where the example is installed and type:

ant runschedule
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 77

H O R I Z O N T A L L O A D - O N - D E M A N D
to run the example as an application.

Understanding the Database Schedule Example

The Database Schedule example application visualizes the same relational database of
scheduling data as the Database Gantt example (see Figure 5.2). Therefore, the Schedule
chart performs vertical load-on-demand of resource-oriented row information in the same
manner that the Gantt chart defers loading activity-oriented row information. In addition, the
Database Schedule example application illustrates the horizontal load-on-demand capability
of the Schedule chart. Here are the IlvScheduleChart methods that control this feature:

boolean isReservationCachingEnabled()

void setReservationCachingEnabled(boolean enabled)

float getReservationCacheLoadThreshold()

void setReservationCacheLoadThreshold(float loadThreshold)

float getReservationCacheLoadFactor()

void setReservationCacheLoadFactor(float loadFactor)

By default, the reservation caching property of an IlvScheduleChart is disabled. The
Database Schedule example explicitly enables reservation caching in its
createGanttModel method:

schedule.setReservationCachingEnabled(true)

Once reservation caching is enabled, the Schedule chart uses the values of its
reservationCacheLoadThreshold and reservationCacheLoadFactor properties to
determine how often and by how much it should query the data model for reservations that
need to be displayed as the chart is scrolled horizontally. Both values are floating point
numbers that are multiplied by the current visible duration displayed by the chart. The load
threshold indicates how far the chart must be scrolled before it queries the data model for
fresh reservations to display. The load factor determines the time duration that the chart will
use when it queries the data model for new reservations.

The relationship between these settings is best understood by referring to the following
figure:
78 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

5. L
o

ad
-o

n
-D

em
an

d

H O R I Z O N T A L L O A D - O N - D E M A N D
The Schedule chart is initially displayed with a visible duration of 4 days, from November
20 through November 23. The chart’s reservationCacheLoadThreshold is set to its
default value of 0.25 and the reservationCacheLoadFactor is set to its default value of
1.5. When the chart is first displayed, it will query the data model for all reservations
assigned to the visible resource rows and for which the reserved activity intersects the time
interval of November 14 through November 29, a total of 16 days. The chart does this by
invoking the IlvGanttModel.reservationIterator (IlvResource resource,
IlvTimeInterval interval) method. The time interval for which the chart queries the
data model is computed as:

from: visibleStartTime – (visibleDuration * reservationCacheLoadFactor)

to: visibleEndTime + (visibleDuration * reservationCacheLoadFactor)

If the reservationCacheLoadFactor is set to its minimum value of 0, the chart will only
query the data model for the exact visible time interval. The larger the load factor, the larger
the time span that the chart will query the data model each time. In the above example, the
reservations named “Detailing”, “Burn-in Testing”, and “Write up requirements” have all
been loaded into the chart’s internal cache, even though “Detailing” and “Burn-in Testing”
are not currently visible. The reservation named “Prepare Demo”, to the far right side, is not
currently cached by the chart because it is outside the computed time interval.

The Schedule chart’s reservationCacheLoadThreshold determines the trigger point at
which the chart will query the data model for fresh reservations to display. In this example,
the default value of 0.25 multiplied by a visibleDuration of 4 days gives a trigger
threshold of 1 day. This means that when the chart is scrolled horizontally to within 1 day of
the time span currently cached, the chart will query the data model for new reservations to
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 79

H O R I Z O N T A L L O A D - O N - D E M A N D
display based upon the reservationCacheLoadFactor formula presented earlier. Here is
the sequence of events in more detail:

1. The chart is initially displayed with a visible time interval of November 20 through
November 23, a total of 4 days. The chart caches reservations for the time interval of
November 14 through November 29, a total of 16 days.

2. The chart is scrolled forward in time to the 4 day visible time interval of November 25
through November 28.

3. The chart is scrolled forward a bit more, so that the beginning of November 29 just
becomes visible. This triggers the reservationCacheLoadThreshold and the chart
queries the data model for the reservations based upon the
reservationCacheLoadFactor and the currently visible time interval. This will be
the 16 days centered around November 25 through November 29, and is computed to be
the time interval of November 19 through December 4. However, the reservations for
November 19 through November 29 are already cached by the chart. Therefore, the chart
only queries the data model for the reservations in the time interval of November 30
through December 4.

The same logic is applied to load reservations from the data model when the Schedule chart
is scrolled backwards in time, is zoomed, or the visible time interval is changed by invoking
the appropriate APIs. You can monitor how the Database Schedule example application
queries the data model by selecting Display Database Queries from the File menu. This will
log all queries to the system console.
80 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

C H A P T E R

6. S
ch

ed
u

le D
ata

E
xch

an
g

e L
an

g
u

ag
e

6

Schedule Data Serialization and
Exchange with SDXL

The ILOG JViews Gantt package allows users of the Gantt to serialize schedule data to
Schedule Data Exchange Language (SDXL) files. This is accomplished using the classes in
the ilog.views.gantt.xml package.

This chapter describes SDXL and how to use this language to serialize schedule data. The
chapter contains the following sections:

◆ Schedule Data Exchange Language Overview. This section gives an overview of the
language. It presents the design criteria of the language as well as some scenarios on how
it can be used.

◆ Serializing Schedule Data. This section describes how to serialize (write and read)
IlvGanttModel objects by using the ilog.views.gantt.xml package.

◆ Customization of SDXL. This section shows how to extend SDXL to meet the needs of
the users. It also shows how to customize the default readers and writers provided by the
ilog.views.gantt.xml package.

◆ Schedule Data Exchange Language Specification. This section defines SDXL in detail.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 81

S C H E D U L E D A T A E X C H A N G E L A N G U A G E O V E R V I E W
Schedule Data Exchange Language Overview

The Gantt Chart (IlvGanttChart) and the Schedule Chart (IlvScheduleChart) are
designed to visualize and to edit schedule data in a Gantt model (IlvGanttModel). Users
of the Gantt Chart and the Schedule Chart need first to save their schedule data and then to
exchange the schedule data with other users.

SDXL is an application of W3C XML. It is designed to meet the following needs:

◆ Serialize the schedule data (IlvGanttModel) represented by an IlvGanttChart or an
IlvScheduleChart. This allows users to save their schedule data to SDXL files and to
load the saved schedule data from SDXL files.

◆ Exchange the schedule data with other programs developed with or without ILOG
JViews. Since SDXL is an application of W3C XML, it can be easily read by other
programs that are capable of reading XML files. It can also be translated to other formats
by using technologies such as XSL.

Scenarios of How SDXL Can Be Used

Since SDXL is a flexible XML application, its usage is not limited in scope. However, to
give a general idea, we can imagine the following scenarios:

◆ You use an ILOG JViews Gantt program to manage your projects. The program is heavy
because it is connected to a database and uses the database to store the schedule data.
SDXL can help distribute this schedule data. You can save your schedules into SDXL
files and distribute them by means of a lightweight ILOG JViews Gantt program that
does not need database connections.

◆ You use an ILOG JViews Gantt program to manage your schedules. You can save your
schedules into SDXL files. An optimization program loads the SDXL files and runs
optimization algorithms to make your schedules more efficient. Then, you reload the
optimized schedules by using your ILOG JViews Gantt program in order to visualize
them.

Package For Reading and Writing SDXL

The package named ilog.views.gantt.xml contains all the classes allowing you to
serialize schedule data to SDXL files:
82 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

S C H E D U L E D A T A E X C H A N G E L A N G U A G E O V E R V I E W

6. S
ch

ed
u

le D
ata

E
xch

an
g

e L
an

g
u

ag
e

Figure 6.1

Figure 6.1 Package ilog.views.gantt.xml and Related Packages

Figure 6.1 shows how the ilog.views.gantt.xml package can serialize schedule data
contained in an IlvGanttModel to SDXL files. The ilog.views.gantt.xml package is
based on java.io and JAXP (Java API for XML Processing) since it has to use java.io
APIs and JAXP to read and write SDXL files.

In order to use the ilog.views.gantt.xml package, you need not only the jar files for the
ILOG JViews Gantt package but also the following extra jar files:

◆ jaxp.jar

◆ crimson.jar

You can find these files in the <installdir>/classes directory.

These two jar files are parts of the JAVA API for XML Processing (JAXP) Optional Package
that provides basic features for reading, manipulating, and generating XML documents
through pure Java APIs. It is a thin and lightweight API that provides a standard way to
seamlessly integrate any XML-compliant parser with a Java application. See http://
java.sun.com/xml/download.html, for more information.

SDXL Example

You can examine the following file for an example of SDXL:

<installdir>/data/gantt/sdxl.sdxl
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 83

S E R I A L I Z I N G S C H E D U L E D A T A
Serializing Schedule Data

The following sections show how to use the main classes of the ilog.views.gantt.xml
package. You will learn first how to write an IlvGanttModel to an SDXL file and then
how to read back an IlvGanttModel from an SDXL file.

You can find examples on how to use the ilog.views.gantt.xml package in the
<installdir>/demos/gantt/xml directory. The two examples that show how to
serialize schedule data are XMLGanttExample.java and XMLScheduleExample.java.
See <installdir>/demos/gantt/xml/index.html for more information.

Writing an IlvGanttModel to an SDXL File

To write the contents of an IlvGanttModel to an SDXL file, follow these recommended
steps:

1. Use JAXP to create an instance of org.w3c.dom.Document.

2. Use the ilog.views.gantt.xml package to create an instance of
IlvGanttDocumentWriter.

3. Use the IlvGanttDocumentWriter to write your IlvGanttModel to the document
you created in Step 1.

4. Use the java.io package to create a java.io.OutputStream object for the SDXL
file you want to write to.

5. Use the ilog.views.gantt.xml package to create an instance of
IlvGanttStreamWriter.

6. Use the stream writer to write the document to the output stream you created in Step 4.

These 6 steps are now described in more detail:

Creating an org.w3c.dom.Document

This section shows you how to use the javax.xml.parsers package to create an
org.w3c.dom.Document instance.

First you need to import the packages:

import javax.xml.parsers.*;
import org.w3c.dom.*;

Get an instance of the DocumentBuilderFactory:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

Get an instance of DocumentBuilder from the DocumentBuilderFactory:

DocumentBuilder builder = factory.newDocumentBuilder();
84 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

S E R I A L I Z I N G S C H E D U L E D A T A

6. S
ch

ed
u

le D
ata

E
xch

an
g

e L
an

g
u

ag
e

Use the DocumentBuilder to create the document object:

Document document = builder.newDocument();

See the <installdir>/demos/gantt/xml/XMLGanttActions.java file for a concrete
implementation.

Create an IlvGanttDocumentWriter

The ilog.views.gantt.xml package of ILOG JViews provides the
IlvGanttDocumentWriter class. This section shows you how to create an instance of this
class.

First import the package:

import ilog.views.gantt.xml.*;

Then, create the IlvGanttDocumentWriter:

IlvGanttDocumentWriter documentWriter = new IlvGanttDocumentWriter();

The document writer is ready to write an IlvGanttModel to a document.

Writing a Gantt Model to a Document

The IlvGanttDocumentWriter has a method called writeGanttModel. You can call
this method to write your Gantt model:

documentWriter.writeGanttModel(document, yourGanttModel);

The document argument is the document object you created in the previous step. The
yourGanttModel argument is the IlvGanttModel you want to write to the document.

Creating an OutputStream

You can use the java.io package to create an OutputStream. First import the java.io
package:

import java.io

Then, create an OutputStream for the file you want to write to:

String filename = “c:\mysdxl.xml”;
FileOutputStream outstream = new FileOutputStream(filename);

Here filename is the name of the SDXL file you want to write to.

Note: This section presented one way of creating an org.w3c.dom.Document. You may,
of course, use other ways to create document objects.

Note: This section presented one way of creating an OutputStream but you may, of
course, use other ways.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 85

S E R I A L I Z I N G S C H E D U L E D A T A
Creating a Stream Writer

After creating the OutputStream, you need a utility class that helps you write the
document to the stream. The ilog.views.gantt.xml package provides a stream writer
named IlvGanttStreamWriter. You can directly create an instance of this class and use it
to write your document.

Import the ilog.views.gantt.xml package:

import ilog.views.gantt.xml

Then, create the stream writer:

IlvGanttStreamWriter streamWriter = new IlvGanttStreamWriter();

The stream writer is now ready to write a document object to an OutputStream.

Writing a Document to an OutputStream

Now that you have the OutputStream and the document, call the writeDocument method
of the stream writer created in the previous step to write the document to the
OutputStream.

streamWriter.writeDocument(outstream, document);

Then, close the output stream:

outstrem.close();

Your IlvGanttModel is now written to an SDXL file.

How to Read an IlvGanttModel from an SDXL File

To read the contents of an SDXL file to an IlvGanttModel, follow these recommended
steps:

1. Use JAXP to create an InputSource for the file you want to read.

2. Use JAXP to parse the InputSource in order to get an org.w3c.dom.Document.

3. Use the ilog.views.gantt.xml package to create an instance of
IlvGanttDocumentReader.

4. Create a target IlvGanttModel to receive the schedule data and use the
IlvGanttDocumentReader to read the document created in Step 2 to the
IlvGanttModel created in Step 4.

These steps are now seen in more detail.

Creating an InputSource

You can use JAXP to create an InputSource for the SDXL file you want to read.

First you need to import the package:
86 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

S E R I A L I Z I N G S C H E D U L E D A T A

6. S
ch

ed
u

le D
ata

E
xch

an
g

e L
an

g
u

ag
e

import org.xml.sax.*;

Suppose you want to read an SDXL file named /nfs/works/myschedule.xml:

String url = “file:///nfs/works/myschedule.xml”;

You can create directly an InputSource for the file to read:

InputSource source = new InputSource(url);

The input source is ready to be parsed by a JAXP parser.

Parsing an InputSource

The DocumentBuilder provided by JAXP can parse an input source. You can create an
instance of the builder and use it to parse the input source.

First import the packages:

import javax.xml.parsers.*;
import org.w3c.dom.*;

Get an instance of the DocumentBuilderFactory:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

Get an instance of DocumentBuilder from the DocumentBuilderFactory:

DocumentBuilder builder = factory.newDocumentBuilder();

Use the DocumentBuilder to parse the input source:

Document document = builder.parse(source);

You now need an IlvGanttDocumentReader to read the document.

Creating an IlvGanttDocumentReader

The ilog.views.gantt.xml package of ILOG JViews provides the
IlvGanttDocumentReader class. This section shows you how to create an instance of this
class.

First import the package:

import ilog.views.gantt.xml.*;

Then, create the IlvGanttDocumentReader:

IlvGanttDocumentReader documentReader = new IlvGanttDocumentReader();

The document reader is ready to read a document.

Note: This section presented one way of creating an InputSource but you may, of course,
use other ways.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 87

C U S T O M I Z A T I O N O F S D X L
Reading a Gantt Model from a Document

The IlvGanttDocumentReader has a method called readGanttModel. You can call this
method to read a Gantt model from a document. Before reading the document you must
create a target IlvGanttModel to receive the schedule data.

First import the ilog.views.gantt and ilog.views.gantt.model packages:

import ilog.views.gantt.*;
import ilog.views.gantt.model.*;

Then, create a default Gantt model:

IlvGanttModel model = new IlvDefaultGanttModel();

Read the Gantt model from the document:

documentReader.readGanttModel(document, model);

The document argument is the document object you created in the previous step.

Your IlvGanttModel has now been read from an SDXL file.

Handling Exceptions While Reading SDXL Files

Exceptions might be encountered during the reading of the document. The exceptions are
reported by IlvGanttReaderException objects. Here is an example of how to handle
such exceptions:

try {
 docReader.readGanttModel(document, model);
} catch(IlvGanttReaderException e) {
 //…
}

Customization of SDXL

The ilog.views.gantt.xml package provides the basic readers and writers to serialize
schedule data. If you customize the Gantt model, you might need to customize the
ilog.views.gantt.xml package in order to serialize the customized Gantt model. This
section shows you how to customize the default readers and writers provided by the
ilog.views.gantt.xml package.

Overview of ilog.views.gantt.xml

The ilog.gantt.views.xml package is designed to serialize schedule data defined by the
following classes:

◆ IlvSimpleActivity and IlvGeneralActivity

◆ IlvSimpleResource and IlvGeneralResource
88 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

C U S T O M I Z A T I O N O F S D X L

6. S
ch

ed
u

le D
ata

E
xch

an
g

e L
an

g
u

ag
e

◆ IlvSimpleReservation and IlvGeneralReservation

◆ IlvSimpleConstraint and IlvGeneralConstraint

◆ IlvDefaultGanttModel

If your Gantt model is exclusively defined by these classes, the ilog.views.gantt.xml
package contains all the classes you need to serialize your schedule data.

Table 6.1 lists by level the readers and writers available in the package. An interface is given
for each reader or writer. This interface defines the functionality the reader or the writer
must implement. One of the benefits of using interfaces is that you can interchange readers
or writers that implement the same interface. This makes the package flexible and
customizable.

For each reader and writer, the package provides 2 default implementations. The “simple”
implementations read and write the default data model classes, and the “general”
implementations read and write the data model classes that support user-defined properties.
These can be used as-is.

Table 6.1 Default Readers and Writers in ilog.views.gantt.xml

Level Functions Interfaces
Default Implementations in the
ilog.views.gantt.xml package

Level 1: Element
readers and
writers

Read/write an
activity, a resource,
a reservation, or a
constraint from/to
an element

IlvActivityReader
IlvActivityWriter
IlvResourceReader
IlvResourceWriter
IlvReservationReader
IlvReservationWriter
IlvConstraintReader
IlvConstraintWriter

IlvSimpleActivityReader
IlvSimpleActivityWriter
IlvSimpleResourceReader
IlvSimpleResourceWriter
IlvSimpleReservationReader
IlvSimpleReservationWriter
IlvSimpleConstraintReader
IlvSimpleConstraintWriter
IlvGeneralActivityReader
IlvGeneralActivityWriter
IlvGeneralResourceReader
IlvGeneralResourceWriter
IlvGeneralReservationReader
IlvGeneralReservationWriter
IlvGeneralConstraintReader
IlvGeneralConstraintWriter

Level 2:
Document reader
and writer

Read/write a Gantt
model from/to a
document

IlvGanttDocumentReader
IlvGanttDocumentWriter

Level 3: Stream
writer

Write a document
to an
OutputStream

 IlvGanttStreamWriter
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 89

C U S T O M I Z A T I O N O F S D X L
The readers and writers are arranged by levels. Level 1 is the lowest level and level 3 is the
highest. In most of these cases, the readers and writers of level N are based on the readers
and writers of level N-1. For example, to read a Gantt model from a document, the
IlvGanttDocumentReader (level 2) uses element readers (level 1), that is,
IlvSimpleActivityReader, IlvSimpleResourceReader,
IlvSimpleReservationReader, and IlvSimpleConstraintReader.

IlvGanttDocumentReader is at the highest level (level 2) among the readers. This reader
can read an IlvGanttModel from a document. The document is the unique input of the
package. To read a Gantt model the user must provide a document object. (See section How
to Read an IlvGanttModel from an SDXL File on page 86 for information on how to create a
document from an SDXL file by using JAXP.)

IlvGanttStreamWriter is at the highest level (level 3) among the writers. It is capable of
writing an IlvGanttModel to an OutputStream. The OutputStream is the unique
output point of the package. Users who want to write an SDXL file should provide an
OutputStream. (See section Writing an IlvGanttModel to an SDXL File on page 84 for
information on how to create an OutputStream for an SDXL file by using the java.io
package.

Customizing Readers and Writers

The default readers and writers provided by the JViews Gantt module are enough to serialize
default Gantt models. If you created a customized Gantt model, such as the
<installdir>/demos/gantt/customData example, you need to customize the default
readers and writers in order to serialize the customized schedule data.

All level readers and writers are customizable. You can customize them either by creating
subclasses of the default readers and writers implemented, or by writing you own readers or
writers that implement the reader or writer interfaces. Now we will see how to customize the
IlvSimpleActivityReader and IlvSimpleActivityWriter by subclassing them.

In the <installdir>/demos/gantt/customData example, we have created a
customized activity called CustomActivity that is a subclass of IlvSimpleActivity.
CustomActivity has one more property than IlvSimpleActivity. This property is the
priority. Now we will see how to make a reader and a writer for the CustomActivity:

We create a writer for the CustomActivity by creating a subclass of
IlvSimpleActivityWriter:

/**
 * This class extends an <code>IlvSimpleActivityWriter</code>.
 * The method <code>writeActivity()</code> is overridden to
 * write a <code>CustomActivity</code> instead of an
 * <code>IlvSimpleActivity</code>.
 */
public class CustomActivityWriter
90 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

C U S T O M I Z A T I O N O F S D X L

6. S
ch

ed
u

le D
ata

E
xch

an
g

e L
an

g
u

ag
e

 extends IlvSimpleActivityWriter
{
 /**
 * Overrides the method <code>writeActivity()</code>
 * to write a <code>CustomActivity</code> instead of an
 * <code>IlvSimpleActivity</code>.
 * @param elem The element to write to.
 * @param activity The activity to write.
 */
 public void writeActivity(Element elem, IlvActivity activity,
 IlvGanttDocumentWriter.Context writeContext)
 throws Exception
 {
 if(!(activity instanceof CustomActivity))
 throw new Exception("A CustomActivity expected.");

 super.writeActivity(elem, activity);
 int priority = ((CustomActivity)activity).getPriority();
 elem.setAttribute("priority", Integer.toString(priority));
 }
}

This writer is capable of writing a CustomActivity to a customized SDXL file:

<activity id="A-3.1.2" name="Detailing" start="11-10-2000 6:21:33"
 end="14-10-2000 6:21:33" priority="5" />

You should notice that the activity element has an extra property named priority. You
have to define a new DTD for the customized SDXL file.

To read back the customized activity, we create a reader for the CustomActivity by
creating a subclass of IlvSimpleActivityReader:

/**
 * This class extends an <code>IlvSimpleActivityReder</code>.
 * The method <code>readActivity()</code> is overridden to
 * read a <code>CustomActivity</code> instead of an
 * <code>IlvSimpleActivity</code>.
 */
public class CustomActivityReader
 extends IlvSimpleActivityReader
{
 /**
 * Overrides this method to read a <code>CustomActivity</code>
 * instead of an <code>IlvSimpleActivity</code>.
 * @param elem The element to read from.
 * @return The new activity.
 */
 public IlvActivity readActivity(Element elem,
 IlvGanttDocumentReader.Context readContext)
 throws IlvGanttReaderException
 {
 CustomActivity activity = (CustomActivity)super.readActivity(elem);
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 91

S C H E D U L E D A T A E X C H A N G E L A N G U A G E S P E C I F I C A T I O N
 String priority = elem.getAttribute("priority");
 if(priority==null)
 throw new IlvGanttReaderException(elem,
 "Attribute \"priority\" not found");

 activity.setPriority(Integer.valueOf(priority).intValue());

 return activity;
 }

 /**
 * Overrides to create a <code>CustomActivity</code>
 * instead of an <code>IlvSimpleActivity</code>.
 */
 protected IlvActivity createActivity(String id,
 String name,
 Date start,
 Date end
)
 {
 return new CustomActivity(id, name, start, end);
 }
}

For more details on how to use these customized readers and writers, refer to the following
files in <installdir>/demos/gantt/xml:

◆ CustomActivityReader.java

◆ CustomActivityWriter.java

◆ XMLCustomGanttExample.java

See <installdir>/demos/gantt/xml/index.html for more details.

Schedule Data Exchange Language Specification

SDXL is an application of the W3C XML language. It is designed to serialize all the
contents of a given IlvGanttModel. It describes scheduling data in terms of the following
elements:

◆ Activity Elements

◆ Resource Elements

◆ Constraint Elements

◆ Reservation Elements

◆ Schedule Element

◆ Property Element
92 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

S C H E D U L E D A T A E X C H A N G E L A N G U A G E S P E C I F I C A T I O N

6. S
ch

ed
u

le D
ata

E
xch

an
g

e L
an

g
u

ag
e

See also Appendix A, Document Type Definition for SDXL for the Document Type
Definition of the SDXL language.

Activity Elements

There are 3 types of activity elements:

◆ Activity Element - for simple activities.

◆ Activity Group Element- for parent activities.

◆ Activities Element- for the root of the activities.

Activity Element
<!ELEMENT activity (activity|property)*>
<!ATTLIST activity
 id ID #REQUIRED
 name %Text; #REQUIRED
 start %Datetime; #REQUIRED
 end %Datetime; #REQUIRED >

Example:

<activity
 id="A1"
 name="Gather Requirements"
 start="09/12/1999 10:15:50"
 end="24/12/1999 10:15:50"
/>

The activity element is used to serialize an IlvActivity object. An activity element
is defined by 4 attributes:

◆ id - The ID of a given activity must be unique within the set of all activities and
resources in the schedule.

◆ name - The name of the activity.

◆ start - The start time of the activity.

◆ end - The end time of the activity.

and can have any number of property elements.

Activity Group Element

An activity group is defined in the same way as a simple activity except that it contains
nested simple activity elements. Use this element to serialize parent activities:

<activity id="a1" name="name1" start=”1/1/1999” end=”1/9/99”>
 <activity id="a2" name="n2" start=”1/1/99” end=”1/3/99”/>
 <activity id="a3" name="n3" start=”1/3/99” end=”1/5/99”/>
 <activity id="a4" name="n4" start=”1/5/99” end=”1/9/99”/>
</activity>
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 93

S C H E D U L E D A T A E X C H A N G E L A N G U A G E S P E C I F I C A T I O N
Activities Element
<!ELEMENT activities (activity)+>
<!ATTLIST activities
 dateFormat %Text; #IMPLIED >

An activities element groups all activity elements in a schedule element. In other
words, there is only one activities element in a schedule element.

<activities dateFormat=”d/M/yy”>
 <activity id="a1" name="n1" start=”1/1/99” end=”1/9/99”>
 <activity id="a2" name="n2" start=”1/1/99” end=”1/3/99”/>
 <activity id="a3" name="n3" start=”1/3/99” end=”1/5/99”/>
 </activity>
 <activity id="a4" name="n4" start=”1/5/99” end=”1/9/99”/>
</activities>

The dateformat attribute defines the date format used for activities.

Resource Elements

There are 3 types of resource elements:

◆ Resource Element - for simple resources.

◆ Resource Group Element - for parent resources.

◆ Resources Element - for the root of the resources.

Resource Element
<!ELEMENT resource (resource|property)*>
<!ATTLIST resource
 id ID #REQUIRED
 name %Text; #REQUIRED
 quantity %Text; #IMPLIED >

Example:

<resource
 id="MS"
 name="Michael Smith"
 quantity="1.0"
/>

The resource element is used to serialize IlvResource objects. It is defined by 3
attributes:

◆ id - The ID of a given resource must be unique within the set of all activities and
resources in the schedule.

◆ name - The name of the resource.

◆ quantity - The quantity of the resource.
94 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

S C H E D U L E D A T A E X C H A N G E L A N G U A G E S P E C I F I C A T I O N

6. S
ch

ed
u

le D
ata

E
xch

an
g

e L
an

g
u

ag
e

and can have any number of property elements.

Resource Group Element

A resource group is defined in the same way as a simple resource except that it contains
simple resource elements:

<resource id="MKT" name="Marketing" quantity="1.0" >
 <resource id="BM" name="Bill McDonald" quantity="1.0" />
 <resource id="SJ" name="Steve Knoll" quantity="1.0" />
 <resource id="MD" name="Michael Smith" quantity="1.0" />
 <resource id="LG" name="Luc Dupont" quantity="1.0" />
</resource>

Resources Element
<!ELEMENT resources (resource)+>
<!ATTLIST resources >

A resources element groups all resource elements in a schedule element. In other words,
there is only one resources element in a schedule element.

<resources>
 <resource id="r1" name="name1" quantity="1.0" >
 <resource id="r2" name="name2" quantity="1.0" />
 <resource id="r3" name="name3" quantity="1.0" />
 <resource id="r4" name="name4" quantity="1.0" />
 </resource>
 <resource id="r5" name="name5" quantity="1.0" />
 <resource id="r6" name="name6" quantity="1.0" />
</resources>

Constraint Elements

◆ Constraint Element - for simple constraints.

◆ Constraints Element - for the root of the constraints.

Constraint Element
<!ELEMENT constraint (property)*>
<!ATTLIST constraint
 from %ActivityID; #REQUIRED
 to %ActivityID; #REQUIRED
 type %ConstraintType; #REQUIRED >

Example:

<constraint
 from="activity1"
 to="activity2"
 type="endstart"
/>
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 95

S C H E D U L E D A T A E X C H A N G E L A N G U A G E S P E C I F I C A T I O N
The constraint element is used to serialize IlvConstraint objects. It is defined by 3
attributes:

◆ from - The ID of the from activity. The activity must be a valid activity in the same
SDXL file.

◆ to - The ID of the to activity. The activity must be a valid activity in the same SDXL file.

◆ type - The type of the constraint. It must be one the following: “Start-Start”, “Start-
End”, “End-Start”, “End-End”.

and can have any number of property elements.

Constraints Element
<!ELEMENT constraints (constraint)+>
<!ATTLIST constraints >

A constraints element groups all constraint elements in a schedule element. In other
words, there is only one constraints element in a schedule element.

<constraints>
 <constraint from="a2" to="a3" type="End-Start" />
 <constraint from="a3" to="a4" type="End-Start" />
 <constraint from="a2" to="a4" type="End-Start" />
</constraints>

Reservation Elements

◆ Reservation Element - for simple reservations.

◆ Reservations Element - for the root of the reservations.

Reservation Element
<!ELEMENT reservation (property)*>
<!ATTLIST reservation
 activity %ActivityID; #REQUIRED
 resource %ResourceID; #REQUIRED >

Example:

<reservation
 activity="id-of-activity1"
 resource="id-of-resource1"
/>

The reservation element is used to describe an IlvReservation object. A
reservation element is defined by 2 attributes:

◆ activity - The ID of the activity. The activity must be a valid activity in the same file.

◆ resource - The ID of the resource. The resource must be a valid resource in the same
file.
96 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

S C H E D U L E D A T A E X C H A N G E L A N G U A G E S P E C I F I C A T I O N

6. S
ch

ed
u

le D
ata

E
xch

an
g

e L
an

g
u

ag
e

and can have any number of property elements.

Reservations Element
<!ELEMENT reservations (reservation)+>
<!ATTLIST reservations >

A reservations element groups all reservation elements in a schedule element. In other
words, there is only one reservations element in a schedule element.

<reservations>
 <reservation activity="a1" resource="r1" />
 <reservation activity="a2" resource="r2" />
 <reservation activity="a3" resource="r3" />
</reservations>

Schedule Element

<!ELEMENT schedule (title?, desc?, resources?, activities?,
 constraints?, reservations?) >
<!ATTLIST schedule
 version %Text; #REQUIRED >

Example:

<schedule version=”1.0”>
 <activities> … </activities>
 <resources> … </resources>
 <constraints> … </constraints>
 <reservations> … </reservations>
</schedule>

The schedule element is the root element that contains other elements defined in these
document. It is designed to describe the contents of a given IlvGanttModel. A schedule
element contains the following:

◆ An activities element.

◆ A resources element.

◆ A constraints element.

◆ A reservations element.

The version attribute indicates the version of this SDXL.

Title and Desc Elements
<!ELEMENT title (#PCDATA)>
<!ELEMENT desc (#PCDATA)>

The title element and the desc element are used to specify extra information on the
schedule element.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 97

S C H E D U L E D A T A E X C H A N G E L A N G U A G E S P E C I F I C A T I O N
Property Element

<!ELEMENT property (#PCDATA)>
<!ATTLIST property
 name %Text; #REQUIRED
 javaClass %Text; #IMPLIED >

The property element is used to specify user defined properties added to the
IlvGeneral* objects of the Gantt data model. It is defined by the 2 following attributes:

◆ name - The property name, which is required.

◆ javaClass - The property class name, which is not required.

The property value is the data section of this element.
98 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

C H A P T E R

7 . S
tylin

g

7

Styling

The Gantt module allows you to customize the appearance of a chart by applying cascading
style sheets (CSS). The example in the <installdir>/demos/gantt/css directory
illustrates how styling works and contains several style sheet samples.

This chapter describes the styling capabilities of the Gantt module and covers the following
topics:

◆ Introduction to Styling

◆ Styling the Gantt and Schedule Chart Components

◆ Styling the Gantt Data
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 99

I N T R O D U C T I O N T O S T Y L I N G
Introduction to Styling

The appearance of a Gantt or Schedule chart can be controlled with CSS. CSS are
introduced in the ILOG JViews Stylable Data Mapper (SDM) User’s Manual. The following
sections introduce the use of style sheets within the Gantt module, as follows:

◆ Applying Styles

◆ Disabling Styling

◆ The Gantt and Schedule CSS Examples

Applying Styles

The IlvHierarchyChart class, the common superclass of IlvGanttChart and
IlvScheduleChart, implements the IlvStylable interface. This interface defines
several methods that can be used to control styling. Here is an example of the typical code
involved in applying a style sheet to a chart:

try {
 chart.setStyleSheets(new String[]{“simple.css”});
} catch (IlvStylingException x) {
 System.err.println("Cannot load style sheets: " + x.getMessage());
}

Here is a list of the IlvHierarchyChart methods that can be used to control styling:

When style sheets are set on a chart, the initial state of the chart is saved internally. When
new style sheets are set or styling is disabled completely, the chart is first restored to its
saved state. Then, the new style sheets are interpreted in order to customize the chart. This
ensures that when you set new style sheets, they will customize the chart beginning from a
known state. This also prevents undesired compound customizations that would result from
successively applying multiple sets of style sheets. As a consequence, you should keep two
points in mind when you apply style sheets to a Gantt or Schedule chart and you use Java
code to customize a chart by calling its APIs:

Table 7.1 Methods for Controlling Styling

Where Used Methods

Style Sheets String getStyleSheet()
void setStyleSheet(String)
String getStyleSheets(int)
void setStyleSheets(int, String)
String[] getStyleSheets()
void setStyleSheets(String[])

Debugging int getStyleSheetDebugMask
void setStyleSheetDebugMask(int)
100 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

7 . S
tylin

g

I N T R O D U C T I O N T O S T Y L I N G
◆ If the Java code customizes the chart before you set style sheets, the style sheets may
override or suppress the Java customization. When you set new style sheets or disable
styling completely, the customization performed by the Java code is restored, because it
was saved as part of the state of the chart.

◆ If the Java code customizes the chart after you set style sheets, the Java code may
override or suppress customizations performed by the style sheets. When you set new
style sheets or disable styling completely, the customization performed by the Java code
is lost because it was not saved as part of the state of the chart.

Disabling Styling

You can globally disable styling by passing null to the setStyleSheets(String[])
method of IlvHierarchyChart. This tells the chart that no styles are specified and it
removes any overhead related to styling. Note that this is different from setting an empty
style sheet on the chart, since the chart will still try to match CSS rules in this case.

The Gantt and Schedule CSS Examples

The Gantt and Schedule CSS examples are provided with the Gantt module to show how
you can use CSS to customize the appearance of your charts.

Running the CSS Examples

The files and source code of the Gantt and Schedule CSS examples can be found in the
directory:

<installdir>/demos/gantt/css

To run the examples, ensure that the Ant utility is properly configured. If not, see the
instructions on how to configure Ant for ILOG JViews in:

<installdir>/html/installation.html

Then, go to the directory where the example is installed and type:

ant rungantt

to run the Gantt CSS example as an application

or type:

ant runschedule

to run the Schedule CSS example as an application.

Scheduling Data for the CSS Examples

The Gantt and Schedule CSS examples display scheduling data that is initially loaded from
the XML file:

<installdir>/demos/gantt/css/data/data.xml
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 101

I N T R O D U C T I O N T O S T Y L I N G
This XML scheduling data file defines activities that contain additional user-defined
properties. These properties can be used during styling to match against CSS declarations or
for display in activity renderers. For example, here is a part of the data file that defines two
activities:

<activity id="A-1.1.1" name="Compile customer list" start="6-10-2000 4:53:58"
end="7-10-2000 4:53:58">
<property name="type">marketing</property>
<property name="completion">0.90</property>

</activity>
<activity id="A-1.1.2" name="Contact customers" start="7-10-2000 4:53:58"
end="9-10-2000 4:53:58">
<property name="completion">1.0</property>

</activity>

Both activities contain a completion property that has a numeric value from 0 to 1. In
addition, the first activity contains a property named type that has the value "marketing".
The CSS examples read the XML file and populate the Gantt data model with instances of
IlvGeneralActivity, IlvGeneralResource, IlvGeneralConstraint, and
IlvGeneralReservation. Although you can apply styling to any Gantt data model
implementation, you can only reference user-defined properties in your style sheets if you
use the general implementations that are provided in the
ilog.views.gantt.model.general package. To read the XML file and create the data
model objects, you need to customize an IlvGanttDocumentReader like this:

IlvGanttModel model = new IlvDefaultGanttModel();
IlvGanttDocumentReader docReader = new IlvGanttDocumentReader();
docReader.setActivityReader(new IlvGeneralActivityReader());
docReader.setConstraintReader(new IlvGeneralConstraintReader());
docReader.setReservationReader(new IlvGeneralReservationReader());
docReader.setResourceReader(new IlvGeneralResourceReader());
Document document = ...use JAXP to read XML file into document...
docReader.readGanttModel(document, model);

A First Style Sheet

This section describes the contents of a simple style sheet and how it customizes a Gantt
chart. You can follow and test this by performing the following steps:

1. Create an empty CSS file in the data directory of the Gantt and Schedule CSS
examples. The file must have a .css extension:

<installdir>/demos/gantt/css/data/gantt/my-first-stylesheet.css

Note: For more details on how to read an IlvGanttModel from an XML data file, see
Chapter 6, Schedule Data Serialization and Exchange with SDXL.
102 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

7 . S
tylin

g

I N T R O D U C T I O N T O S T Y L I N G
2. Run the Gantt CSS example (see Running the CSS Examples on page 101) and your new
style sheet will appear in the list of available style sheets. The Gantt CSS example makes
available all the style sheets in the data/gantt directory. Similarly, the Schedule CSS
example makes available all the style sheets it finds in the data/schedule directory.

3. While the Gantt CSS example is running, load the empty CSS file into the text editor of
your choice.

4. Every time you edit the CSS file in your text editor, save your changes. You can then test
the changes you have made by switching to the Gantt CSS example and reapplying the
style sheet to the chart. Reselect your style sheet from the list of available style sheets.

In the CSS file, first specify some properties of the Gantt chart:

chart {
rowHeight: 25;
ganttSheetToolTipsEnabled: true;
dividerOpaqueMove: true;

}

This increases the default row height of the chart, ensures that tooltips are enabled in the
Gantt sheet, and enables opaqueMove mode for the vertical divider that separates the table
from the sheet.

Next, add some CSS rules that give the table header and the time scale an attractive
background color and a bold font:

table {
headerFont: arial,bold,14;
headerBackground: linen;

}

timeScale {
font: arial,bold,14;
background: linen;

}

Figure 7.1 shows how the Gantt chart looks with this style sheet.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 103

I N T R O D U C T I O N T O S T Y L I N G
Figure 7.1

Figure 7.1 Gantt Chart After Application of the Initial Style Sheet

Finally, style the activity and constraint graphics by adding additional CSS rules. Specify
that all activities are to be displayed as a simple rectangle. The ID of each activity will be
displayed in the center of the rectangle in a small font. The color of the constraint links will
be changed to a shade of brown that matches well with the rest of the theme:

activity {
class: 'ilog.views.gantt.graphic.renderer.IlvBasicActivityBar';
background: cornsilk;
label: "@id";
font: arial,plain,10;

}

constraint {
class: 'ilog.views.gantt.graphic.IlvConstraintGraphic';
foreground: saddlebrown;
}

Figure 7.2 shows how the Gantt chart looks now with the completed style sheet.
104 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

I N T R O D U C T I O N T O S T Y L I N G

7 . S
tylin

g

Figure 7.2

Figure 7.2 Gantt Chart After Application of the Completed Style Sheet

Two Kinds of Rules

From this example of a style sheet, you can distinguish two sets of CSS rules:

◆ Rules that customize the appearance of the chart and its constituent GUI components.
These rules are applied to the properties of the chart and its child components, such as
the table, the time scale, and the Gantt sheet. These rules are described in section Styling
the Gantt and Schedule Chart Components.

◆ Rules that control how Gantt data model entities, such as activities, constraints, and
reservations, are rendered in the Gantt sheet. These rules are described in Styling the
Gantt Data.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 105

S T Y L I N G T H E G A N T T A N D S C H E D U L E C H A R T C O M P O N E N T S
Styling the Gantt and Schedule Chart Components

This section describes how style sheets can be used to customize the appearance of the Gantt
and Schedule chart components and their sub-elements. The following table lists the CSS
elements that are defined to reference the different parts of the chart components:

Table 7.2 The Gantt and Schedule Chart CSS Elements

CSS Element
Type and ID

Description Target Object Class Bean Properties Type

chart The Gantt or
Schedule
chart
component

IlvGanttChart
IlvScheduleChart

constraintLayerVisible
displayingConstraints
dividerBorder
dividerLocation
dividerOpaqueMove
dividerSize
ganttSheetBackground
ganttSheetToolTipsEnabled
ganttSheetVisible
horizontalScrollBarVisible
maxVisibleTime
minVisibleTime
rowHeight
tableBackground
tableFont
tableForeground
tableGridColor
tableHeaderBackground
tableHeaderFont
tableHeaderForeground
tableVisible
timeScaleBackground
timeScaleFont
timeScaleForeground
verticalPosition
visibleDuration
visibleIntervalAnimationSteps
visibleTime

boolean
boolean
Border
int
boolean
int
Color
boolean
boolean
boolean
Date
Date
int
Color
Font
Color
Color
Color
Font
Color
boolean
Color
Font
Color
int
IlvDuration
int
Date

IlvScheduleChart activityLayout
reservationCacheLoadFactor
reservationCacheLoadThreshold
reservationCachingEnabled

enum
float
float
boolean
106 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

S T Y L I N G T H E G A N T T A N D S C H E D U L E C H A R T C O M P O N E N T S

7 . S
tylin

g

These elements can be used to modify the Bean properties of the corresponding target
object. For example, here is how you can control the row height of the chart and the colors
and fonts of the table and the time scale:

sheet The Gantt
sheet

IlvGanttSheet antialiasing
background
backgroundPatternLocation
defaultGhostColor
defaultXORColor
horizontalGrid
verticalGrid

boolean
Color
URL
Color
Color
IlvGanttGridRenderer
IlvGanttGridRenderer

horizontalGrid The
horizontal
grid of the
Gantt sheet

IlvHorizontalGa
nttGrid

evenRowsBackground
filled
foreground
oddRowsBackground

Color
boolean
Color
Color

verticalGrid The vertical
grid of the
Gantt sheet

IlvVerticalGant
tGrid

foreground Color

timeScale The time
scale

IlvTimeScale background
font
foreground

Color
Font
Color

table The Gantt
table

IlvJTable background
columnMargin
columns
font
foreground
gridColor
headerBackground
headerFont
headerForeground
showsRootHandles

Color
int
String
Font
Color
Color
Color
Font
Color
boolean

Note: Many of the Gantt examples provided in the distribution, including the Gantt and
Schedule CSS Examples, override the default IlvVerticalGanttGrid with an instance
of WeekendGrid. This class is provided in the demos/gantt/shared/src/shared
directory. You can review the source code to determine the additional Bean properties that
this class provides.

Table 7.2 The Gantt and Schedule Chart CSS Elements

CSS Element
Type and ID

Description Target Object Class Bean Properties Type
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 107

S T Y L I N G T H E G A N T T D A T A
chart {
 rowHeight: 25;
}

table {
 headerFont: arial,bold,14;
 headerBackground: linen;
}

timeScale {
 font: arial,bold,14;
 background: linen;
}

The CSS ID is the same as the CSS element type for each of the chart components.
Therefore, the following CSS rules are equivalent to the ones above. Here, we specify the ID
of each chart component, instead of its type, as the selector for each rule:

#chart {
 rowHeight: 25;
}

#table {
 headerFont: arial,bold,14;
 headerBackground: linen;
}

#timeScale {
 font: arial,bold,14;
 background: linen;
}

Styling the Gantt Data

Style sheets can also be used to specify the rendering attributes of activities and constraints
in the Gantt sheet. The selector for each CSS rule specifies the activities or constraints in the
Gantt data model that are being rendered. The target object to which the CSS declarations
are applied is usually an instance of IlvActivityRenderer when styling activities or an
instance of IlvConstraintGraphic when styling constraints. This is explained in more
detail in the following sections.

Styling the Gantt data works best when you use the general data model implementation
classes provided in the ilog.views.gantt.model.general package. These classes
support user-defined properties. This allows the CSS engine to match properties of the data

Note: The chart components have no assigned CSS classes or pseudoclasses.
108 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

S T Y L I N G T H E G A N T T D A T A

7 . S
tylin

g

model objects against CSS attribute selectors and to perform model indirection when
evaluating the CSS declarations. See the sections “Selector” and “Model Indirection” in the
SDM User’s Manual for more details.

Styling Activities

The activity element type identifies activities in the Gantt data model that will be styled by
the CSS engine. The target object to which the CSS declarations will be applied can be an
instance of IlvActivityRenderer, IlvActivityRendererFactory, or IlvGraphic.
The class of the target object must always be specified and is declared in the style sheet
using the reserved class property name. This is explained in more detail in the “Class
Property Name” section of the SDM User’s Manual. Here is an extremely simple CSS rule
that will display all activities using an IlvBasicActivityBar renderer:

activity {
class: 'ilog.views.gantt.graphic.renderer.IlvBasicActivityBar';

}

As shown previously, you can then add additional declarations to the CSS rule that specify
bean properties of the IlvBasicActivityBar target object that you want to customize:

activity {
 class : 'ilog.views.gantt.graphic.renderer.IlvBasicActivityBar';
 thickness : 3;
 background : yellow;
}

The following table summarizes the CSS elements, tokens, and functions that are applicable
when styling activities. Additional detail about each item in the table is discussed in the
subsequent sections.

Note: If you do not use the IlvGeneralActivity and IlvGeneralConstraint data
model implementations, you will not be able to use attribute selectors or perform model
indirection in your style sheets.

Table 7.3 Styling Activities With CSS

Model Object
An instance of IlvActivity.
An IlvGeneralActivity provides the most flexibility.

Model Indirection
Properties of IlvGeneralActivity.
Not supported for other IlvActivity implementations.

Target Object Class
IlvActivityRenderer or
IlvActivityRendererFactory or
IlvGraphic.

CSS Element Type activity
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 109

S T Y L I N G T H E G A N T T D A T A
Activity Renderer Target Objects

As shown in Table 7.3, Styling Activities With CSS, the target object to which the CSS
declarations will be applied can be an instance of IlvActivityRenderer,
IlvActivityRendererFactory, or IlvGraphic. If you specify an IlvGraphic class,
it will be instantiated and then wrappered in an IlvActivityGraphicRenderer by the
Gantt CSS engine. Most IlvGraphic implementations provided in the JViews distribution
do not have zero argument constructors. Therefore, you will need to specify the required
constructor arguments in the CSS declaration. Here is an example that shows how to specify
a filled IlvRectangle graphic as an activity renderer:

activity {
 class : 'ilog.views.graphic.IlvRectangle(definitionRect)';
 definitionRect : @=dummyRect;
 fillOn : true;
 background : lightseagreen;
}

#dummyRect {
 class : ilog.views.IlvRect;
}

Notice how we provide a dummy IlvRect object as an argument to the IlvRectangle
constructor. The initial value of this rectangle is unimportant because the Gantt library will
subsequently resize the graphic to represent the time duration of the activity.

If you specify an IlvActivityRendererFactory as your target object, the Gantt CSS
engine will ask the factory to create the activity renderer. However, we do not recommend

CSS ID
The ID property of the activity:
IlvActivity.getID() or
IlvGeneralActivity.getProperty(“id”).

CSS Declaration Properties Bean properties of the target object.

CSS Classes
The tags property of IlvGeneralActivity:
IlvGeneralActivity.getProperty(“tags”)
Not supported for other IlvActivity implementations.

CSS Pseudoclasses

parent
leaf
milestone
selected

CSS Attribute Selectors
Properties of IlvGeneralActivity.
Not supported for other IlvActivity implementations.

CSS Custom Functions
formatDate()
formatDuration()

Table 7.3 Styling Activities With CSS
110 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

S T Y L I N G T H E G A N T T D A T A

7 . S
tylin

g

that you use the renderer factories that are provided in the distribution because they are not
well suited to CSS styling. This is because the provided factories create renderer instances
that are shared among activities. In an application that does not use CSS styling, this
minimizes object creation and memory usage. However, this also defeats the ability of the
Gantt CSS engine to apply individualized rendering customizations. If you have written your
own activity renderer factory that does not share renderer instances, then it should work well
with CSS styling.

In most cases, you will simply specify an IlvActivityRenderer implementation as your
target object. The following table lists the renderers provided in the distribution that provide
the most flexibility when used with CSS styling:

Table 7.4 Renderers For CSS Styling of Activities

Renderer Bean Properties Type

IlvBasicActivityBar background
bottomMargin
font
foreground
label
style
thickness
toolTipText
topMargin

Color
float
Font
Color
String
enum
int
String
float

IlvBasicActivityLabel background
bottomMargin
font
foreground
horizontalAlignment
label
offset
toolTipText
topMargin
verticalAlignment

Color
float
Font
Color
enum
String
float
String
float
enum

IlvBasicActivitySymbol alignment
background
bottomMargin
foreground
shape
toolTipText
topMargin

enum
Color
float
Color
enum
String
float

IlvActivityCompositeRenderer renderer IlvActivityRend
erer
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 111

S T Y L I N G T H E G A N T T D A T A
Of course, other renderers provided in the distribution can also be specified in the style
sheet, as well as any custom activity renderers that you have written yourself. The following
example shows how to use an IlvActivityCompositeRenderer to create a more
complex renderer from simpler ones:

activity {
 class : 'ilog.views.gantt.graphic.renderer.IlvActivityCompositeRenderer';
 renderer[0] : @#bar;
 renderer[1] : @#startSymbol;
 renderer[2] : @#endSymbol;
}

#bar {
 class : 'ilog.views.gantt.graphic.renderer.IlvBasicActivityBar';
 background : powderblue;
 bottomMargin : 0.3;
}

#startSymbol {
 class : 'ilog.views.gantt.graphic.renderer.IlvBasicActivitySymbol';
 alignment : START;
}

#endSymbol {
 class : 'ilog.views.gantt.graphic.renderer.IlvBasicActivitySymbol';
 alignment : END;
}

Activity ID Selectors

As shown in Table 7.3 on page 109, the ID property of activities in the Gantt data model can
be used as CSS ID selectors. For example, if your data model has an activity with an ID of
“A7345”, you could specify a rule that customizes the rendering of that specific activity like
this:

#A7345 {
 class : 'ilog.views.gantt.graphic.renderer.IlvBasicActivityBar';
 background : orange;
 label : 'I am a special activity';
}

There are several things you should be cautious of when you use ID selectors in your style
sheet:

◆ Each activity should have an ID that is unique across all elements of the data model.

◆ Activity ID selectors can only be specified in the style sheet using alphanumeric
characters. The activities defined in section Scheduling Data for the CSS Examples on
page 101 have IDs that contain non-alphanumeric characters, such as the hyphen.
Therefore, this data model is not suitable for use with CSS ID selectors.
112 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

S T Y L I N G T H E G A N T T D A T A

7 . S
tylin

g

◆ For performance reasons, the Gantt CSS engine assumes that CSS element IDs are
immutable. Therefore, if the ID of an activity in your data model changes, the Gantt CSS
engine will not automatically re-interpret the ID selector rules. Although we do not
recommend that you create a data model implementation where the ID of data elements
change dynamically, you can overcome this limitation by reapplying the style sheet and
thereby forcing its complete re-interpretation.

IlvGeneralActivity Properties

If your Gantt data model uses the IlvGeneralActivity implementation, you will have
the most flexibility when you write CSS declarations to style activities.
IlvGeneralActivity allows you to specify predefined and user-defined activity
properties as CSS attribute selectors. It also allows you to perform model indirection in the
value part of your CSS declarations. The provided examples, described in The Gantt and
Schedule CSS Examples on page 101, populate their data model with
IlvGeneralActivity instances.You can therefore use these examples to test and
experiment with the styling features described in this section.

IlvGeneralActivity Model Indirection

An introduction to CSS model indirection is provided in the ILOG JViews Stylable Data
Mapper (SDM) User’s Manual. If your Gantt data model uses instances of
IlvGeneralActivity, you can use the @ construct on the right side of your declarations
to reference properties of the activity. As an example, here is a rule that labels the
IlvBasicActivityBar renderer with the ID of the activity. The tooltip is rendered using
HTML formatting and displays the activity name and ID on separate lines, bold, and
centered:

activity {
 class : 'ilog.views.gantt.graphic.renderer.IlvBasicActivityBar';
 background : powderblue;
 label : '@id';
 toolTipText : '@|"<html><center>"+@id+"
"+@name+"</center></html>"';
}

IlvGeneralActivity Attribute Selectors

An introduction to CSS attribute selectors is provided in the ILOG JViews Stylable Data
Mapper (SDM) User’s Manual. Properties of the IlvGeneralActivity instances in your
data model can be used to match against attribute values in your CSS rule selectors. For
example, here are some cascaded rules from the provided activity-completion.css
style sheet that show a typical use of attribute selectors:

activity {
 class : 'ilog.views.gantt.graphic.renderer.IlvBasicActivityBar';
 label : '@id';
 background : firebrick;
 foreground : burlywood;
}

activity[completion > '0'] {
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 113

S T Y L I N G T H E G A N T T D A T A
 label : '@|@id+", "+@completion';
}

activity[completion >= '0.25'] {
 background : coral;
 foreground : black;
}

activity[completion >= '0.5'] {
 background : lightsalmon;
}

activity[completion >= '0.75'] {
 background : khaki;
}

activity[completion >= '0.9'] {
 background : lemonchiffon;
}

activity[completion >= '0.95'] {
 background : honeydew;
}

activity[completion >= '1'] {
 background : lawngreen;
}

The first rule establishes the default rendering for all activities to be an
IlvBasicActivityBar that is labeled with the ID of the activity. As explained in
Scheduling Data for the CSS Examples on page 101, the default data model of the provided
examples defines a numeric “completion” property for some of the activities. The style sheet
uses the value of the completion property to select which of the subsequent rules will be
cascaded and will further refine the rendering of the activity. If the activity’s completion
value is greater than zero, the label will contain the activity ID and the completion value.
The remaining rules set the background color of the activity bar based upon how the activity
matches against several completion threshold levels.

IlvGeneralActivity CSS Classes

The Gantt CSS engine interprets the “tags” property of an IlvGeneralActivity as the
space-separated list of the CSS classes it belongs to. For example, the default data model of
the provided examples defines a tags value of “critical” for some of the activities:

<activity id="A-1.3" name="Requirements Defined" start="21-10-2000 0:0:0"
 end="21-10-2000 0:0:0">
 <property name="tags">critical</property>
</activity>

You can then specify the following rules that will highlight all activities that are members of
the “critical” class in a different color:
114 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

S T Y L I N G T H E G A N T T D A T A

7 . S
tylin

g

activity {
 class : 'ilog.views.gantt.graphic.renderer.IlvBasicActivityBar';
 background : powderblue;
 label : '@id';
}

activity.critical {
 background : plum;
}

Activity CSS Pseudoclasses

As shown in Table 7.3, Styling Activities With CSS, the Gantt CSS engine defines several
activity pseudoclasses that you can use in your rule selectors. These are:

◆ parent - Indicates that the activity has at least 1 child activity.

◆ leaf - The opposite of parent, indicates that the activity has no children.

◆ milestone - Indicates that the activity has zero duration.

◆ selected - Indicates that the activity is selected.

Most of the previous CSS examples we have given use an IlvBasicActivityBar renderer
for all activities. You may have already noticed that this renderer becomes nearly invisible
when it attempts to render a milestone activity that has zero duration. The following rules
illustrate how we can provide a symbol renderer for these activities by using the milestone
pseudoclass in our selector:

activity {
 class : 'ilog.views.gantt.graphic.renderer.IlvBasicActivityBar';
 background : powderblue;
 label : '@id';
}

activity:milestone {
 class : ‘ilog.views.gantt.graphic.renderer.IlvBasicActivitySymbol’;
 shape : DIAMOND;
 foreground : yellow;
 label : @;
}

The formatDate and formatDuration Functions

As shown in Table 7.3 on page 109, the Gantt CSS engine provides 2 predefined functions
you can use as part of an expression in your style sheet: formatDate and
formatDuration. The formatDate function lets you format a Date property value using

Note: We have used the special @ value to ignore the label property declaration that the
milestone rule has inherited.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 115

S T Y L I N G T H E G A N T T D A T A
a standard pattern string defined by the java.text.SimpleDateFormat class. The syntax
of this function is:

formatDate(<SimpleDateFormat pattern>, <Date>)

Here is an example declaration used to set the tooltip to the formatted start time of the
activity:

toolTipText : '@|"Start: " + formatDate("MM/dd/yy",@startTime)';

Similarly, the formatDuration function lets you format an IlvDuration value using an
IlvDurationFormat constant. The syntax of this function is:

formatDuration(<IlvDurationFormat constant>, <IlvDuration>)

Here is an example declaration used to set the tooltip to the formatted duration of the
activity:

toolTipText: '@|"Duration: " + formatDuration(LARGEST_UNIT_MEDIUM, @duration)';

You can see more complex usage of these functions by examining the
standard-look.css style sheet that is provided in the demos/gantt/css/data
directory.

Styling Constraints

The constraint element type identifies constraints in the Gantt data model that will be
styled by the CSS engine. The target object to which the CSS declarations will be applied
can be an instance of IlvConstraintGraphic or IlvConstraintGraphicFactory.
The class of the target object must always be specified and is declared in the style sheet
using the reserved class property name. Here is an extremely simple CSS rule that will
render all constraints using the standard IlvConstraintGraphic class:

constraint {
class: 'ilog.views.gantt.graphic.IlvConstraintGraphic';

}

We can then add additional declarations to the CSS rule that specify bean properties of the
IlvConstraintGraphic target object that we want to customize:

constraint {
 class : 'ilog.views.gantt.graphic.IlvConstraintGraphic';
 foreground : green;
 lineWidth : 2;
}

116 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

S T Y L I N G T H E G A N T T D A T A

7 . S
tylin

g

The following table summarizes the CSS elements, tokens, and functions that are applicable
when styling constraints. Additional detail about each item in the table is discussed in the
subsequent sections.

Constraint Graphic Target Objects

As shown in Table 7.5, Styling Constraints With CSS, the target object to which the CSS
declarations will be applied can be an instance of IlvConstraintGraphic or
IlvConstraintGraphicFactory. If you specify an IlvConstraintGraphicFactory
as your target object, the Gantt CSS engine will ask the factory to create the constraint
graphic. In most cases, you will simply specify an IlvConstraintGraphic as your target

Table 7.5 Styling Constraints With CSS

Model Object
An instance of IlvConstraint.
An IlvGeneralConstraint provides the most flexibility.

Model Indirection
Properties of IlvGeneralConstraint.
Not supported for other IlvConstraint implementations.

Target Object Class
IlvConstraintGraphic or
IlvConstraintGraphicFactory

CSS Element Type constraint

CSS ID
The ID property of IlvGeneralConstraint:
IlvGeneralConstraint.getProperty(“id”).
Not supported for other IlvConstraint implementations.

CSS Declaration Properties Bean properties of the target object.

CSS Classes
The tags property of IlvGeneralConstraint:
IlvGeneralConstraint.getProperty(“tags”).
Not supported for other IlvConstraint implementations.

CSS Pseudo Classes selected

CSS Attribute Selectors
Properties of IlvGeneralConstraint.
Not supported for other IlvConstraint implementations.

CSS Custom Functions
activityProperty()
formatDate()
formatDuration()
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 117

S T Y L I N G T H E G A N T T D A T A
object. The following table lists the Bean properties of IlvConstraintGraphic that can
be customized with CSS styling:

Constraint ID Selectors

Constraints in the Gantt data model do not define an ID property as part of the basic
IlvConstraint interface. However, if you are using the IlvGeneralConstraint
implementation, the id property will be interpreted as the CSS ID attribute and can be used
in ID selectors. For example, if your data model defines the following constraint in its XML
data file:

<constraint from="A723" to="A39" type="End-Start">
 <property name=”id”>C86</property>
</constraint>

You could then specify a rule that customizes the rendering of that specific constraint like
this:

#C86 {
 class : 'ilog.views.gantt.graphic.IlvConstraintGraphic';
 foreground : magenta;
 toolTipText : 'I am a special constraint';
}

Table 7.6 Constraint Graphic Bean Properties

Bean Properties
Bean
Properties

Allowed Values

connectionType enum TIME_INTERVAL_CONNECTION
BOUNDING_BOX_CONNECTION

endCap int ilog.views.IlvStroke.CAP_BUTT
ilog.views.IlvStroke.CAP_ROUND
ilog.views.IlvStroke.CAP_SQUARE

foreground Color

horizontalExtremitySegmentLength float

lineJoin int ilog.views.IlvStroke.JOIN_BEVEL
ilog.views.IlvStroke.JOIN_MITER
ilog.views.IlvStroke.JOIN _ROUND

lineStyle float

lineWidth float

oriented boolean

toolTipText String
118 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

S T Y L I N G T H E G A N T T D A T A

7 . S
tylin

g

IlvGeneralConstraint Properties

If your Gantt data model uses the IlvGeneralConstraint implementation, you will have
the most flexibility when you write CSS declarations to style constraints.
IlvGeneralConstraint allows you to specify predefined and user-defined constraint
properties as CSS attribute selectors. It also allows you to perform model indirection in the
value part of your CSS declarations. The provided examples, described in The Gantt and
Schedule CSS Examples on page 101, populate their data model with
IlvGeneralConstraint instances. You can therefore use these examples to test and
experiment with the styling features described in this section.

IlvGeneralConstraint Model Indirection

As shown in Table 7.5, Styling Constraints With CSS, if your Gantt data model uses
instances of IlvGeneralConstraint, you can use the @ construct on the right side of
your declarations to reference properties of the constraint. As an example, here is a rule that
sets the tooltip of the constraint graphic to be its type, such as End-Start, Start-Start, and so
on. The tooltip is rendered using HTML formatting and displays the constraint type in bold:

constraint {
 class : 'ilog.views.gantt.graphic.IlvConstraintGraphic';
 foreground : green;
 lineWidth : 2;
 toolTipText : '@|"<html>"+@constraintType+"</html>"';
}

IlvGeneralConstraint Attribute Selectors

Properties of the IlvGeneralConstraint instances in your data model can also be used to
match against attribute values in your CSS rule selectors. For example, you could add the
following cascaded constraint rules to the previous example in order to display different
constraint types in different colors:

constraint {
 class : 'ilog.views.gantt.graphic.IlvConstraintGraphic';
 foreground : green;
 lineWidth : 2;
 toolTipText : '@|"<html>"+@constraintType+"</html>"';
}

constraint[constraintType="Start-Start"] {
 foreground : magenta;
}

constraint[constraintType="Start-End"] {
 foreground : blue;

Note: The same limitations discussed in section Activity ID Selectors on page 112 apply to
constraint ID selectors.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 119

S T Y L I N G T H E G A N T T D A T A
}

constraint[constraintType="End-End"] {
 foreground : orange;
}

IlvGeneralConstraint CSS Classes

The Gantt CSS engine interprets the “tags” property of an IlvGeneralConstraint as the
space-separated list of the CSS classes it belongs to. This is identical in concept to
IlvGeneralActivity CSS Classes on page 114. For example, let us set the tags property of a
constraint in our data model so that the constraint belongs to the delay and critical
classes:

anIlvGeneralConstraint.setProperty(“tags”, “delay critical”);

We can then add a rule to the style sheet that highlights all constraints that are both delayed
and that are critical in a different color:

constraint.critical.delay {
 foreground : red;
 lineWidth : 5;
}

Constraint CSS Pseudoclasses

As shown in Table 7.5, Styling Constraints With CSS, the Gantt CSS engine defines the
selected pseudoclass that you can use in your rule selectors. Here is an example of some
rules that increase the width of the constraint graphic to indicate when it is selected:

constraint {
 class : 'ilog.views.gantt.graphic.IlvConstraintGraphic';
 foreground : green;
 lineWidth : 1;
}

constraint:selected {
 lineWidth : 3;
}

The activityProperty Function

As shown in Table 7.5, Styling Constraints With CSS, the Gantt CSS engine provides 3
predefined functions that you can use as part of an expression in your style sheet. We already
discussed two of the functions in The formatDate and formatDuration Functions on
page 115. The activityProperty function lets you refer to a property of the constraint’s
from activity or to activity. The syntax of this function is:

activityProperty(<IlvGeneralActivity>, <property name>)

Here is an example declaration used to set the tooltip of the constraint graphic to contain the
names of the constraint’s from and to activities:

toolTipText : '@|"<html>From: "+activityProperty(@fromActivity,"name")+"
To:
120 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

S T Y L I N G T H E G A N T T D A T A

7 . S
tylin

g

 "+activityProperty(@toActivity,"name")+"</html>"';

You can see more complex usage of this function by examining the standard-look.css
style sheet that is provided in the demos/gantt/css/data directory.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 121

S T Y L I N G T H E G A N T T D A T A
122 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

C H A P T E R

8. G
an

tt P
rin

tin
g

8

The Gantt Printing Framework

The IlvGanttChart and IlvScheduleChart classes are UI components designed to
display your projects on screen. To distribute and to exchange the projects, you may need to
print the projects on paper. You may also need to print not only the visible part of the
projects but also the part that is not visible.

The Gantt package provides APIs that allow you to print the Gantt or Schedule charts in a
document (single or multiple pages) without scrolling the UI. These APIs collectively are
referred to as the Gantt printing framework

Introduction

The Gantt printing framework extends the basic JViews printing framework to add support
to IlvGanttChart and IlvScheduleChart objects. The generic classes of the
ilog.views.util.print package have been subclassed to handle specific Gantt
properties.

These classes are:

Note: Before reading this chapter you should familiarize yourself with the Printing
Framework User’s Manual.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 123

S I M P L E E X A M P L E
◆ A Gantt printing controller, instance of the IlvGanttPrintingController class, that
controls the printing process.

◆ A Gantt printable document, instance of the IlvGanttPrintableDocument class, that
defines the printing configuration and contains the Gantt data you want to print in a set of
pages.

◆ A Gantt sheet printable object, instance of the IlvPrintableGanttSheet class, that is
used to print a portion of an IlvGanttSheet.

◆ A time scale printable object, instance of the IlvPrintableTimeScale class, that is
used to print a portion of an IlvTimeScale.

Simple Example

Run the example given in the print demo. The source code of this example can be found in
the <installdir>/demos/gantt/print/src/print directory. For clarity reasons,
only the source code related to the Gantt printing is detailed here.

To create an instance of an IlvGanttPrintingController, proceed as follows:

IlvGanttChart gant = …;
IlvGanttPrintingController printController =
 new IlvGanttPrintingController(gantt);

Then, invoke on that instance the action you want to see performed, such as print(),
setupDialog(), or printPreview() as shown here:

printController.printPreview((java.awt.Frame)gantt.getTopLevelAncestor());

The following picture shows the result of the demo:
124 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

8. G
an

tt P
rin

tin
g

C L A S S E S I N V O L V E D
Figure 8.1

Figure 8.1 The Print Preview Dialog Box

Classes Involved

The following classes are involved in the Gantt printing framework:

◆ IlvGanttPrintableDocument

◆ IlvGanttPrintingController

◆ IlvPrintableGanttSheet

◆ IlvPrintableTimeScale

IlvGanttPrintableDocument

The Gantt printable document stores the printed document structure and defines a set of
parameters to customize the printing (the printed data window, which part of the Gantt is
printed, how the Gantt fits on the page, and so on). The printable document is responsible for
creating and populating the pages.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 125

C L A S S E S I N V O L V E D
Here are the different properties you can customize for printing:

◆ Divider position

Defines the position on the page that separates the table and the Gantt sheet (the value
must be between 0 and 1).

◆ Number of pages per band

The Gantt printing framework provides support for multipage printing through the pages
per band property. This represents the number of pages you want printed between the
start and the end date.

◆ Repeat table

Indicates whether the table should be printed repeatedly on every page.

◆ Start date

The start date of the first printed page. This defines the beginning of the printed data.

◆ End date

The end date for the last printed page in a band. This defines the end of the printed data.

◆ Number of columns of the table

Indicates the number of table columns to be printed.

The following table summarized the IlvGanttPrintableDocument properties:

Note: All these properties are also accessible from the Gantt Print Setup dialog box, which
you can invoke by calling setupDialog() on the IlvGanttPrintingController.

Property Methods
Default Value when
Automatically Created

Divider position. getDividerPosition
setDividerPosition

0.5

End date of the last page in a
band.

getEnd
setEnd

The chart visible time +
the chart visible duration

Number of pages per band. getPagesPerBand
setPagesPerBand

2

Whether the table is printed
repeatedly on every page.

getRepeatTable
setRepeatTable

False
126 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

8. G
an

tt P
rin

tin
g

C L A S S E S I N V O L V E D
The default settings are shown here:

Figure 8.2

Figure 8.2 Default Print Settings

With these settings you get 2 pages in the Print Preview window. You can see that the table,
with its 6 columns, is only displayed on the first page occupying 50% of the page size.
Figure 8.1 shows the first page while Figure 8.3 shows the second page:

Start date of the first page. getStart
setStart

The chart visible time

Number of columns of the
table.

getTableColumnCount
setTableColumnCount

The chart table column count

Property Methods
Default Value when
Automatically Created
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 127

C L A S S E S I N V O L V E D
Figure 8.3

Figure 8.3 The 2nd Page of the Print Preview Dialog Box

IlvGanttPrintingController

The printing controller controls the printing process. It initiates the printer job, handles the
Setup and Preview dialog boxes, and configures the document accordingly.

The configuration of the document can be done:

◆ Automatically, by using the following constructor:

public IlvGanttPrintingController(IlvHierarchyChart chart)

In this case, a printable document is created with the pages oriented in landscape, two
pages per band, and all the columns of the Gantt table printed on the first page only
(occupying half of the page size). See Figure 8.1.

◆ Through code, by creating a Gantt printable document and setting the parameters as
described in section IlvGanttPrintableDocument.
128 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

8. G
an

tt P
rin

tin
g

H O W I T W O R K S
IlvPrintableGanttSheet

The IlvPrintableGanttSheet represents the concrete Gantt sheet object that can be
printed. It implements the IlvPrintable interface (for more information, see the Printing
Framework User’s Manual), and lets you print the IlvGanttSheet within a region of the
printable area of an IlvPage.

The way the Gantt fills the region is determined by the different document properties.
Consequently, users do not need to use this object if they want to print a Gantt using the
parameters provided by the Setup dialog box.

Users need to use this class if they want to control their IlvPrintableDocument by
creating pages and adding their IlvPrintableObject (see the Printing Framework User’s
Manual).

IlvPrintableTimeScale

The IlvPrintableTimeScale represents the concrete time scale object that can be
printed. It implements the IlvPrintable interface, and lets you print a portion of the
IlvTimeScale.

The way the Gantt fills the region is determined by the different document properties.
Consequently users do not need to use this object if they want to print a Gantt using the
parameters provided by the Setup dialog box.

Users need to use this class if they want to control their IlvPrintableDocument by
creating pages and adding their IlvPrintableObject (see the Printing Framework User’s
Manual).

How it Works

A printing task is initiated and processed by an IlvGanttPrintingController instance.
It can be done either by code (using the IlvPrintingController.print(boolean)
method) or from a GUI request using the Setup or Preview dialog (by means of the
IlvPrintingController.printPreview(Window) and
IlvPrintingController.setupDialog(Window, boolean, boolean) methods).

When a printing task is initiated, the document associated with the printing controller is
prepared for printing: pages are initialized with the printable objects and added to the
document.

Note: See section IlvGanttPrintingController for a description of how a document is
associated with the IlvGanttPrintingController.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 129

E X A M P L E
Handling Pages

Pages of a Gantt document are instances of the ilog.views.util.print.IlvPage class.
They handle a collection of printable objects, instances of
ilog.views.util.print.IlvPrintableObject.

Populating a Page

Pages created by an IlvGanttPrintableDocument are populated in the
IlvGanttPrintableDocument.createPages() method. You may override the
createPages method if you want to add additional printable objects to the page.

The createPages implementation uses the following printable objects:

● ilog.views.util.print.IlvPrintableTableHeader, if there are columns to
print

● ilog.views.util.print.IlvPrintableTable, if there are columns to print

● ilog.views.gantt.print.IlvPrintableTimeScale

● ilog.views.gantt.print.IlvPrintableGanttSheet

● ilog.views.util.print.IlvPrintableRectangle

Example

For a more complex example, you should look in the chart tablemodel demo in the
<installdir>/demos/chart/tablemodel directory, and read the Printing chapter in
the Charts User’s Manual.
130 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

C H A P T E R

9. T
h

in
-C

lien
t S

u
p

p
o

rt
9

 Thin-Client Support for Web Applications

In the chapters so far, we have discussed how the Gantt Chart module can be used on the
client side where you develop Java applets or applications. The Gantt module can also be
used on the server side. Some Web applications require that the client stay very light, with
most of the functionality residing in the server. The thin-client support in the Gantt module
allows you to create such types of applications easily. You can use the power of the ILOG
JViews Gantt module to build Gantt or Schedule charts on the Web server. You can then use
the Gantt thin-client support on your Web browser to display and interact with those images
created by the server.

In this chapter we will see how to use the Gantt packages and classes on both the server side
and the client side. The topics are:

◆ Gantt Thin-Client Web Architecture

◆ Getting Started With the Gantt Thin Client: An Example

◆ Developing the Server Side

◆ Developing the Client Side

◆ Adding Client/Server Interactions

◆ The IlvGanttServlet and IlvGanttServletSupport Classes
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 131

G A N T T T H I N - C L I E N T W E B A R C H I T E C T U R E
Gantt Thin-Client Web Architecture

The Gantt thin-client web application support is based on the Java servlet technology.
Servlets are Java programs that run on a Web server. They act as a middle layer between
HTTP requests coming from a Web browser or other HTTP clients (such as applets or
applications) and the application or databases on the Web server. The job of the servlet is to
read and interpret HTTP requests coming from an HTTP client program and to generate a
resulting document that in most cases is an HTML page. For more information about servlet
technology, you can visit the JavaSoft site http://java.sun.com/products/servlet.
This site also provides information about the Web servers that support Java servlets.

For the predefined Gantt thin client, the content created by the servlet is primarily a JPEG or
PNG image. The servlet generates the images from a Gantt Chart server side application that
is almost identical to the client side Gantt Chart applications we have discussed in previous
chapters. The servlet acts as an intermediate layer. It interprets the HTTP requests from the
thin client running in the user’s browser, generates images of the Gantt Chart server side
application, and delivers the images in HTTP responses back to the client. In turn, the Gantt
Chart server side application may obtain the scheduling information that it displays from
XML files, databases, or other application-specific data. This basic architecture is illustrated
in Figure 9.1:

Figure 9.1

Figure 9.1 Gantt Thin-Client Web Application Architecture

The JViews Gantt thin-client support contains the following:

◆ An abstract servlet class that can generate images from a Gantt Chart display.

◆ A set of browser-independent Dynamic HTML scripts written in JavaScript that can be
used on the client side to display and interact with the images created on the server side.
132 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

9. T
h

in
-C

lien
t S

u
p

p
o

rt

G E T T I N G S T A R T E D W I T H T H E G A N T T T H I N C L I E N T : A N E X A M P L E
Getting Started With the Gantt Thin Client: An Example

Creating a Gantt thin-client application consists of two steps: developing the server side and
developing the client side. The Gantt Servlet example, provided with the distribution,
illustrates these steps.

The Gantt Servlet Example

The Gantt Servlet example can be found in the following directory:

<installdir>/demos/gantt/servlet

This example allows you to show a standard Gantt Chart of scheduling information in a thin-
client context.

Figure 9.2

Figure 9.2 The Gantt Servlet Example

The Gantt Servlet example is composed of the following:

◆ The server side, which consists of 3 Java files located in the directory:

<installdir>/demos/gantt/servlet/src
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 133

G E T T I N G S T A R T E D W I T H T H E G A N T T T H I N C L I E N T : A N E X A M P L E
These files are:

◆ The DHTML client, which consists of:

● The HTML starting page:

<installdir>/demos/gantt/servlet/web/index.html

● The set of JViews common JavaScript DHTML components, located in:

<installdir>/classes/thinclient/javascript

and the images needed for these components in:

<installdir>/classes/thinclient/javascript/images

● The set of Gantt JavaScript DHTML components, located in:

<installdir>/classes/thinclient/javascript/gantt

and the images needed for these components in:

<installdir>/classes/thinclient/javascript/gantt/images

Installing and Running the Gantt Servlet Example

To run the Gantt Servlet example requires a Web server and a Web browser that support
Dynamic HTML. The Web server must support the Servlet API 2.1 or later.

The Gantt Servlet example contains a WAR file (Web Archive):

<installdir>/demos/gantt/servlet/gantt.war

that allows you to easily install the example on the Web server of your choice. You can
check the latest list of servers that support servlets at

http://java.sun.com/products/servlet/industry.html

For your convenience, we have supplied the Tomcat web server with the ILOG JViews
distribution. The Gantt Servlet Example is pre-installed in Tomcat and is ready to run.
TOMCAT is the official reference implementation of the Servlet and JSP specifications. To
get more information on Tomcat go to http://jakarta.apache.org/tomcat/.

File Description

GanttChartServlet.java A servlet that produces JPEG images from a
standard IlvGanttChart component.

SimpleProjectDataModel.java A Gantt data model that contains the project
scheduling information.

WeekendGrid.java A customized vertical grid that is used with the
IlvGanttChart to highlight weekend periods.
134 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

9. T
h

in
-C

lien
t S

u
p

p
o

rt

D E V E L O P I N G T H E S E R V E R S I D E
Browsers that support DHTML are Netscape Communicator 4.x (on Windows and UNIX
platforms), and Internet Explorer 5.0 and higher (on Windows platforms).

Here are the steps for running the example on the Tomcat web server supplied with the
ILOG JViews installation:

1. Set the JAVA_HOME environment variable to point to your Java Development Kit
installation.

2. Go to the Tomcat bin directory located in <installdir>/tools/tomcat/bin,
where <installdir> is the directory in which ILOG JViews is installed.

3. Depending on your system, run the startup.bat or startup.sh script to run the
Tomcat server.

4. Launch a Web browser and open the page: http://localhost:8080/gantt

5. For additional details, consult the ILOG JViews installation and setup instructions in:

<installdir>/html/installation.html

Your browser then shows the Gantt Servlet example.

Developing the Server Side

The server side of a Gantt thin-client application is composed of two main parts: the Gantt
application itself, which can be any type of Gantt Chart or Schedule Chart built upon the
Gantt module components and APIs, and a Servlet that interprets requests from the client to
generate images of the chart. Here is an overview of the key classes and their relationships:

Figure 9.3

Figure 9.3 Overview of Key Server-Side Classes

The server-side classes are colored to indicate their packaging:
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 135

D E V E L O P I N G T H E S E R V E R S I D E
◆ The yellow class, HTTPServlet, is part of the standard Java Servlet API. It is located in
the javax.servlet.http package and is the abstract base class for all HTTP servlet
implementations.

◆ The blue classes are members of the Gantt module API. The abstract classes
IlvGanttServlet and IlvGanttServletSupport belong to the
ilog.views.gantt.servlet package. IlvGanttServlet is an abstract servlet that
responds to HTTP requests to generate images of a Gantt Chart or a Schedule Chart.
IlvGanttServlet is a very simple class that delegates all its real work to an instance
of IlvGanttServletSupport. This allows you to easily integrate the full capabilities
of the Gantt server-side classes into your own servlet implementations.

◆ The green classes belong to the Gantt Servlet Example and are located in the file:

<installdir>/demos/gantt/servlet/src/GanttChartServlet.java

GanttChartServlet is the concrete servlet implementation for the server side of the
example. Its concrete inner support class, GanttChartServlet.ServletSupport,
generates images of a standard Gantt Chart in response to HTTP requests.

To analyze these parts, we will see how the server side is built in the Gantt Servlet example.

The Servlet Support Class

The Gantt Servlet example displays a standard Gantt Chart containing project scheduling
information. The IlvGanttServletSupport class does all the work on the server side to
generate images of the chart in response to HTTP requests. The concrete implementation for
this example is the IlvGanttChartServlet.ServletSupport inner class, located in the
file:

<installdir>/demos/gantt/servlet/src/GanttChartServlet.java

The getChart Method

The method:

public IlvHierarchyChart getChart(HttpServletRequest,

 IlvServletRequestParameters)

 throws ServletException

is the only abstract method of the IlvGanttServletSupport class. It should return the
IlvGanttChart or IlvScheduleChart that will be used to satisfy an HTTP request. The
request is given as a parameter to the getChart method, so it is possible to provide charts to
the client that are session-specific. The servlet support class of the example has been
simplified to use a single Gantt Chart instance to satisfy all HTTP requests. This means that
every client will see the same data.

The Example Code

First, we include the import statements that are required to use the Java Servlet API:
136 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

9. T
h

in
-C

lien
t S

u
p

p
o

rt

D E V E L O P I N G T H E S E R V E R S I D E
import javax.servlet.*;
import javax.servlet.http.*;

Then we include the import statements that are required for the Gantt module and the Gantt
server side classes:

import ilog.views.gantt.*;
import ilog.views.gantt.servlet.*;

The servlet support class of the example is very simple, and consists of only 2 methods:

class ServletSupport extends IlvGanttServletSupport
{
 private IlvHierarchyChart _chart;

 /**
 * Creates the Gantt chart that will be used by the servlet to satisfy HTTP
 * requests.
 */
 private IlvHierarchyChart createChart()
 {
 IlvHierarchyChart chart = new IlvGanttChart();
 IlvGanttModel ganttModel = new SimpleProjectDataModel();
 chart.setGanttModel(ganttModel);
 chart.getGanttSheet().setVerticalGrid(new WeekendGrid());
 ... more chart customizations ...
 return chart;
 }

 /**
 * Returns the chart used for the specified request. This implementation
 * always returns the same chart.
 * @param request The current HTTP request.
 * @param params The parameters parsed from the request.
 */
 public IlvHierarchyChart getChart(HttpServletRequest request,
 IlvServletRequestParameters params)
 throws ServletException
 {
 synchronized(this) {
 if (_chart == null) {
 _chart = createChart();
 }
 }
 return _chart;
 }
}

As you can see, the steps necessary to create a chart on the server side are almost identical to
those we have discussed in earlier chapters for developing client-side Java applications and
applets. In summary, you will need to:

1. Create a concrete subclass of IlvGanttServletSupport.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 137

D E V E L O P I N G T H E S E R V E R S I D E
2. Implement the getChart method to return an instance of IlvGanttChart or
IlvScheduleChart.

3. Connect the chart to your application data model and customize the appearance of the
chart as you desire.

Multi-Threading Issues on the Server Side

We now need to briefly discuss the threading issues involved when using GUI components,
such as the IlvGanttChart and IlvScheduleChart, on the server side. The Web server
run-time environment is inherently multi-threaded. However, the Gantt chart components,
like all Swing GUI components, are not multi-thread safe. There is also a further design
constraint of Swing GUI components. After the Web server has sent an image of a chart to
the client for the first time, all modifications to the visual properties of the chart must be
performed on the AWT event dispatch thread. The AWT event dispatch thread will never be
the same thread that the HTTP request is being serviced on.

In general, the IlvGanttServletSupport base class handles all these threading issues for
you. It ensures that all requests to modify a chart and generate its image are moved from the
HTTP request thread onto the AWT event dispatch thread as necessary. In the
createChart method of the servlet support class, we are able to customize the visual
properties of the chart on the HTTP request thread because the chart has not been sent to the
client yet. However, note the use of the synchronized block in the getChart method.
This is necessary to ensure that only a single chart instance is ever created in the multi-
threaded Web server environment.

The Servlet Class

The IlvGanttServlet class is a simple HTTP servlet implementation that delegates all its
work to its associated support class. It contains a single abstract method:

protected IlvGanttServletSupport createServletSupport()

This method must return the single support instance that will service the HTTP requests sent
to the servlet. The implementation of this class for the example is located in the file:

<installdir>/demos/gantt/servlet/src/GanttChartServlet.java

It consists of only the createServletSupport method:

public class GanttChartServlet extends IlvGanttServlet
{
 /**
 * Creates the servlet support object to which this servlet delegates HTTP
 * request handling.
 */
 protected IlvGanttServletSupport createServletSupport()
 {
 IlvGanttServletSupport support = new ServletSupport();
138 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

9. T
h

in
-C

lien
t S

u
p

p
o

rt

D E V E L O P I N G T H E S E R V E R S I D E
 ... customize the support class ...
 return support;
 }
}

Summary

As you have seen, creating the server side of the Gantt Chart web application is very simple.
The servlet can now answer HTTP requests from a client by sending JPEG images of the
chart. If you have the Tomcat server running that is supplied with the ILOG JViews
distribution, you can try typing the following HTTP request in your Web browser:

http://localhost:8080/gantt/

GanttChartServlet?request=image&width=400&height=300

This produces the following image:

In this request, we ask the servlet named GanttChartServlet to produce an image of size
400 x 300 showing the entire IlvGanttChart component. In most cases you do not have to
know the servlet parameters because the client side Dynamic HTML objects provided by the
Gantt module will take care of the HTTP requests for you.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 139

D E V E L O P I N G T H E C L I E N T S I D E
Developing the Client Side

After creating the server side, you can create the client side of your Gantt Web application.
The Gantt thin-client support allows you to easily build a client based on Dynamic HTML
that will run on Web browsers that support DHTML. You build an HTML web page for the
DHTML client using predefined JavaScript components.

Developing a Dynamic HTML Client

The static nature of HTML limits the interactivity of Web pages. Dynamic HTML allows
you to create Web pages that are more interactive and engaging. It gives content providers
new controls and allows them to manipulate the contents of HTML pages through scripting.
To learn more about Dynamic HTML, you can visit the following Web sites:

◆ The Microsoft Web Workshop:

http://msdn.microsoft.com/workshop/

◆ The Netscape DevEdge pages on DHTML:

http://developer.netscape.com/tech/dynhtml/index.html

The ILOG JViews Gantt module provides a set of browser-independent Dynamic HTML
components written in JavaScript that allow you to build your DHTML pages very easily.
The JavaScript files are located in the 2 directories:

◆ <installdir>/classes/thinclient/javascript

Contains the JViews common JavaScript DHTML components.

◆ <installdir>/classes/thinclient/javascript/gantt

Contains the Gantt JavaScript DHTML components

Common DHTML Components

The common JavaScript DHTML components are located in the directory:

<installdir>/classes/thinclient/javascript

Here is an overview of the common DHTML component classes and their relationships:

Warning: Keep in mind that not all versions of Web browsers support DHTML. The ILOG
JViews DHTML scripts have been tested on Internet Explorer 5.x and higher (on Windows
platforms, and Netscape Communicator 4.x (on Windows and UNIX platforms).
140 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

9. T
h

in
-C

lien
t S

u
p

p
o

rt

D E V E L O P I N G T H E C L I E N T S I D E
Figure 9.4

Figure 9.4 Common DHTML Components

Here is the list of common JavaScript files and a brief description of each:

Table 9.1 Common DHTML Script Files

Script File Description

IlvUtil.js Dynamic HTML tools and functions used by other
scripts. This file must always be included. This file
defines the IlvObject and IlvPanel classes.

IlvEmptyView.js Defines the class IlvEmptyView, the base class
for all view components that have a size and
position on the HTML page.

IlvImageView.js Defines the IlvImageView and
IlvImageEventView classes.

IlvGlassView.js Defines the IlvGlassView class.

IlvResizableView.js Defines the IlvResizableView class, the base
class for all view components that can be
interactively resized. This is the base class for
IlvGanttView.

IlvAbstractView.js Defines the IlvAbstractView class, the base
class for IlvGanttComponentView.

IlvInteractor.js Defines the IlvInteractor class, the base
class for all view interactors.

IlvButton.js Defines the IlvButton class, a simple DHTML
button.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 141

D E V E L O P I N G T H E C L I E N T S I D E
The full reference documentation of each component can be found in the Dynamic HTML
Component Reference located in:

<installdir>/doc/jscript/index.html

Gantt DHTML Components

The Gantt JavaScript DHTML components are located in the directory:

<installdir>/classes/thinclient/javascript/gantt

Here is an overview of the Gantt DHTML component classes and their relationships:

Figure 9.5

Figure 9.5 Gantt DHTML Components

IlvToolBar.js Defines the IlvToolBar class, a DHTML toolbar
that can contain IlvButtons.

IlvInteractorButton.js Defines the IlvInteractorButton class, a
subclass of IlvButton that can set an interactor
on a view.

IlvScrollbar.js Defines the DHTML scroll bar classes
IlvScrollBar, IlvVScrollBar, and
IlvHScrollBar.

Table 9.1 Common DHTML Script Files (Continued)

Script File Description
142 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

9. T
h

in
-C

lien
t S

u
p

p
o

rt

D E V E L O P I N G T H E C L I E N T S I D E
Here is the list of Gantt JavaScript files and a brief description of each:

The full reference documentation of each component can be found in the Dynamic HTML
Component Reference located in:

<installdir>/doc/jscript/index.html

The DHTML Client for the Gantt Servlet Example

We will now create a Dynamic HTML client for the Gantt Servlet example, starting with a
very simple example and including most of the DHTML components. The full HTML file
for the Gantt Servlet example is located in:

<installdir>/demos/gantt/servlet/web/index.html

Table 9.2 Gantt DHTML Script Files

Script File Description

gantt.js A file containing all the scripts for all the
Gantt and Common components. You import
this file into your Web page instead of
importing all the individual components.

IlvGanttView.js Defines the main Gantt view classes
IlvGanttView,
IlvGanttComponentView,
IlvGanttTableView, and
IlvGanttSheetView.

IlvGanttTableScrollInteractor.js Defines the class
IlvGanttTableScrollInteractor, an
interactor that lets you pan and scroll an
IlvGanttTableView.

IlvGanttSheetScrollInteractor.js Defines the class
IlvGanttSheetScrollInteractor, an
interactor that lets you pan and scroll an
IlvGanttSheetView.

IlvRowExpandCollapseInteractor.js Defines the class
IlvRowExpandCollapseInteractor, an
interactor that lets you expand and collapse
rows in an IlvGanttTableView or an
IlvGanttSheetView.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 143

D E V E L O P I N G T H E C L I E N T S I D E
Web Application Directory Structure

Before we start using the Gantt DHTML components to build our client, we must first
decide on the directory structure that the users will see when they visit our Web Application
with their browser. This does not, and should not, match the location of the example and
JavaScript files in the ILOG JViews distribution. The Gantt Servlet example is deployed to
use the following directory structure:

The Ant build file for the Gantt Servlet example:

<installdir>/demos/gantt/servlet/build.xml

creates this directory structure in the gantt.war Web Archive.

The IlvGanttView DHTML Component

The IlvGanttView component (located in the IlvGanttView.js file) is the main Gantt
DHTML component. This component queries the servlet and displays the resulting image of
the chart.

First, we must include the JavaScript files that are required to use the IlvGanttView
component:

◆ IlvUtil.js

◆ IlvEmptyView.js

◆ IlvImageView.js

◆ IlvGlassView.js

◆ IlvResizableView.js

◆ IlvAbstractView.js

◆ IlvScrollbar.js

◆ IlvGanttView.js

Instead of including the individual .js files of each component, you can add the file:

<installdir>/classes/thinclient/gantt/gantt.js

This file is a concatenation of all the .js files required for developing DHML thin clients in
the Gantt module.
144 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

9. T
h

in
-C

lien
t S

u
p

p
o

rt

D E V E L O P I N G T H E C L I E N T S I D E
Here is a simple HTML page that creates an IlvGanttView:

<HTML>
<HEAD>
<META HTTP-EQUIV="Expires" CONTENT="Mon, 01 Jan 1990 00:00:01 GMT">
<META HTTP-EQUIV="Pragma" CONTENT="no-cache">
</HEAD>

<script TYPE="text/javascript" src="script/IlvUtil.js" ></script>
<script TYPE="text/javascript" src="script/IlvEmptyView.js"></script>
<script TYPE="text/javascript" src="script/IlvImageView.js"></script>
<script TYPE="text/javascript" src="script/IlvGlassView.js"></script>
<script TYPE="text/javascript" src="script/IlvResizableView.js"></script>
<script TYPE="text/javascript" src="script/IlvAbstractView.js"></script>
<script TYPE="text/javascript" src="script/IlvScrollbar.js"></script>
<script TYPE="text/javascript" src="script/IlvGanttView.js"></script>

<script TYPE="text/javascript">
function init()
{
 chartView.init();
}

function handleResize()
{
 if (document.layers)
 window.location.reload()
}
</script>
<body onload="init()" onunload=”ilvDispose()”
 onresize="handleResize()" bgcolor="#ffffff">
<script TYPE="text/javascript">
 // The Gantt chart servlet.
 var servletName = "/gantt/GanttChartServlet";

 // Position of the Gantt Chart.
 var chartX = 25;
 var chartY = 25;
 var chartH = 350;
 var chartW = 700;

 var chartView = new IlvGanttView(chartX, chartY, chartW, chartH);
 chartView.setServletURL(servletName);
 chartView.toHTML();
</script>
</body>
</html>

In this example we start by importing the needed JavaScript files:

<script TYPE="text/javascript" src="script/IlvUtil.js" ></script>
<script TYPE="text/javascript" src="script/IlvEmptyView.js"></script>
<script TYPE="text/javascript" src="script/IlvImageView.js"></script>
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 145

D E V E L O P I N G T H E C L I E N T S I D E
<script TYPE="text/javascript" src="script/IlvGlassView.js"></script>
<script TYPE="text/javascript" src="script/IlvResizableView.js"></script>
<script TYPE="text/javascript" src="script/IlvAbstractView.js"></script>
<script TYPE="text/javascript" src="script/IlvScrollbar.js"></script>
<script TYPE="text/javascript" src="script/IlvGanttView.js"></script>

The JavaScript files must be placed in the head of the page. Note that the scripts are included
from the relative script subdirectory. Remember that when we build the Web application,
the HTML Web pages will be placed in the upper directory and the scripts will be in the
script directory.

In the body of the page, we create an IlvGanttView located in (25, 25) on the HTML page.
The size is 350 x 700. This view displays images produced by the servlet
GanttChartServlet. Note the toHTML method that creates the HTML necessary for the
component.

This example also defines two JavaScript functions:

◆ The init function, called on the onload event of the page, initializes the
IlvGanttView by calling its init method.

◆ The handleResize function, called on the onresize event of the page, will reload the
page if the browser is Netscape Communicator 4 or higher. This is necessary for a correct
resizing of Dynamic HTML content on Communicator.

Once the image is loaded from the server, the page looks like this:

Note: The global ilvDispose function must be called in the onunload event of the
HTML page. This function disposes of all the resources acquired by the JViews DHTML
components.
146 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

9. T
h

in
-C

lien
t S

u
p

p
o

rt

D E V E L O P I N G T H E C L I E N T S I D E
The Message Panel

We will now add a Dynamic HTML panel below our main view. A DHTML panel is an area
of the page that can contain some HTML content. We will use the DHTML panel to display
status messages as the user interacts with the Gantt view. We create the message panel using
the class IlvHTMLPanel, defined in the IlvUtil.js file.

The body of the page is now:

<body onload="init()" onunload=”ilvDispose()”
 onresize="handleResize()" bgcolor="#ffffff">
<script TYPE="text/javascript">
 // The Gantt chart servlet.
 var servletName = "/gantt/GanttChartServlet";

 // Position of the Gantt Chart.
 var chartX = 25;
 var chartY = 25;
 var chartH = 350;
 var chartW = 700;

 var chartView = new IlvGanttView(chartX, chartY, chartW, chartH);
 chartView.setServletURL(servletName);
 chartView.toHTML();

 var messagePanel = new IlvHTMLPanel('');
 messagePanel.setBackgroundColor('#B6D5DA');
 messagePanel.setVisible(true);
 chartView.setMessagePanel(messagePanel);

Note: The lines added are in bold.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 147

D E V E L O P I N G T H E C L I E N T S I D E
 var layoutPage = function(chart) {
 messagePanel.setBounds(chart.getLeft(),
 chart.getTop() + chart.getHeight() + 15,
 chart.getWidth(),
 45);
 }
 layoutPage(chartView);
 chartView.addSizeListener(layoutPage);

</script>
</body>

Note that the IlvHTMLPanel does not have a toHTML method, it generates its HTML
content immediately from within its constructor. Also, the IlvHTMLPanel is initially
hidden. You must explicitly call its setVisible method to show it on the page. These are
the main differences between the DHTML “view” components and the DHTML “panel”
components.

We anticipate that we will make the main Gantt view interactively resizable. Therefore, we
have created a layoutPage function that positions the message panel relative to the current
size and position of the main Gantt view:

var layoutPage = function(chart) {
 messagePanel.setBounds(chart.getLeft(),
 chart.getTop() + chart.getHeight() + 15,
 chart.getWidth(),
 45);
 }

We then call layoutPage to perform the initial arrangement of the components:

layoutPage(chartView);

And we add the layoutPage to listen to resize events from the IlvGanttView:

chartView.addSizeListener(layoutPage);

Our web page now looks like this:
148 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

9. T
h

in
-C

lien
t S

u
p

p
o

rt

D E V E L O P I N G T H E C L I E N T S I D E
Interactively Resizing the IlvGanttView

We will now make the main Gantt view interactively resizable by calling the
setResizable method:

var chartView = new IlvGanttView(chartX, chartY, chartW, chartH);
chartView.setServletURL(servletName);
chartView.setResizable(true);
chartView.toHTML();

Our IlvGanttView now displays a resize tool at its lower right corner:

We can now click and drag on the tool to interactively resize the Gantt view. When the resize
operation completes, the layoutPage method is invoked, and the position of the message
panel is updated to match that of the main view.

Decorative Panels

Next, we will add some decorative panels around our main Gantt view to improve the
appearance of the web page. We use an IlvHTMLPanel to display a tiled image pattern as a
background frame:

var backgroundPanel = new IlvHTMLPanel('');
backgroundPanel.setBackgroundImage(ilvImagePath + 'skybg.jpg');
backgroundPanel.setBackgroundColor('#909090');
backgroundPanel.setVisible(true);
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 149

D E V E L O P I N G T H E C L I E N T S I D E
The background panel must be created before the IlvGanttView.toHTML method is
invoked. DHTML components have an implied z-order in the browser that is determined by
the order that their HTML code is created in the page body. The IlvHTMLPanel component
creates its HTML code in its constructor and the IlvGanttView component creates its
HTML code in its toHTML method. By placing the background panel before the Gantt view
in the page body, we ensure that the panel will appear behind the Gantt view.

The ilvImagePath variable, used to define the tiled image for the background panel, is a
global variable defined in IlvUtil.js. It contains the path to the images used by the script
files. Its default value is script/images, which is the location of the image files relative to
the web pages in our Web application.

We also add a small company logo to display on the right side of the message panel. We use
an IlvImageView component instead of an IlvHTMLPanel because we do not want to tile
the logo image:

var logoPanel = new IlvImageView(0, 0, 67, 30,
 ilvImagePath+'ilog-small.gif');
logoPanel.toHTML();

The IlvImageView component has the additional advantage of remaining hidden until its
image is loaded. This is important for a nice appearance when the images take some time to
download from the server due to image size or network latencies. Normally, if an image has
not been loaded from the server yet, the browser will display a box with a red “X” in it:

The IlvImageView component avoids this effect and remains invisible until the image is
available to display.

Finally, we must update the layoutPage method to properly arrange the new panels:

var layoutPage = function(chart) {
 messagePanel.setBounds(chart.getLeft(),
 chart.getTop()+chart.getHeight()+15,
 chart.getWidth()-logoPanel.getWidth()-15,
 logoPanel.getHeight());
 backgroundPanel.setBounds(chart.getLeft() - 10,
 chart.getTop() - 10,
 chart.getWidth()+ 20,
 messagePanel.getTop() +
 messagePanel.getHeight() + 20 -
 chart.getTop());
 logoPanel.setLocation(messagePanel.getLeft() +
 messagePanel.getWidth() + 15,
 messagePanel.getTop());
 }
150 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

9. T
h

in
-C

lien
t S

u
p

p
o

rt

D E V E L O P I N G T H E C L I E N T S I D E
The body of the HTML file now looks like:

<body onload="init()" onunload=”ilvDispose()”
 onresize="handleResize()" bgcolor="#ffffff">
<script TYPE="text/javascript">
 // The Gantt chart servlet
 var servletName = "/gantt/GanttChartServlet";

 // Position of the Gantt Chart.
 var chartX = 25;
 var chartY = 25;
 var chartH = 350;
 var chartW = 700;

 var backgroundPanel = new IlvHTMLPanel('');
 backgroundPanel.setBackgroundImage(ilvImagePath + 'skybg.jpg');
 backgroundPanel.setBackgroundColor('#909090');
 backgroundPanel.setVisible(true);

 var chartView = new IlvGanttView(chartX, chartY, chartW, chartH);
 chartView.setServletURL(servletName);
 chartView.setResizable(true);
 chartView.toHTML();

 var messagePanel = new IlvHTMLPanel('');
 messagePanel.setBackgroundColor('#B6D5DA');
 messagePanel.setVisible(true);
 chartView.setMessagePanel(messagePanel);

 var logoPanel = new IlvImageView(0, 0, 67, 30, ilvImagePath+'ilog-small.gif');
 logoPanel.toHTML();

 var layoutPage = function(chart) {
 messagePanel.setBounds(chart.getLeft(),
 chart.getTop() + chart.getHeight() + 15,
 chart.getWidth() - logoPanel.getWidth() - 15,
 logoPanel.getHeight());
 backgroundPanel.setBounds(chart.getLeft() - 10,
 chart.getTop() - 10,
 chart.getWidth()+ 20,
 messagePanel.getTop() +
 messagePanel.getHeight() + 20 -
 chart.getTop());
 logoPanel.setLocation(messagePanel.getLeft()+messagePanel.getWidth()+15,
 messagePanel.getTop());
 }
 layoutPage(chartView);
 chartView.addSizeListener(layoutPage);

</script>
</body>

You should now see the following Web page:
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 151

D E V E L O P I N G T H E C L I E N T S I D E
IlvToolBar and IlvButton

The IlvButton class is a simple DHTML button component that allows you to call some
JavaScript code when the user clicks on it. The IlvToolBar class is a component that can
be used to arrange IlvButtons vertically or horizontally. We will now add some buttons to
our page to zoom in and out on the chart.

First, we must include the JavaScript files that define the IlvButton and IlvToolBar
classes. Our JavaScript import statements now look like this:

<script TYPE="text/javascript" src="script/IlvUtil.js" ></script>
<script TYPE="text/javascript" src="script/IlvEmptyView.js"></script>
<script TYPE="text/javascript" src="script/IlvImageView.js"></script>
<script TYPE="text/javascript" src="script/IlvGlassView.js"></script>
<script TYPE="text/javascript" src="script/IlvResizableView.js"></script>
<script TYPE="text/javascript" src="script/IlvAbstractView.js"></script>
<script TYPE="text/javascript" src="script/IlvScrollbar.js"></script>
<script TYPE="text/javascript" src="script/IlvGanttView.js"></script>
<script TYPE="text/javascript" src="script/IlvButton.js"></script>
<script TYPE="text/javascript" src="script/IlvToolBar.js"></script>

In the page body, we first create the vertical toolbar and give it the same background image
as the main background panel:

var backgroundPattern = ilvImagePath + 'skybg.jpg';
var toolbar = new IlvToolBar(0, 0);
toolbar.setOrientation(IlvToolBar.VERTICAL);
toolbar.setBackgroundColor('#53537A');
toolbar.setBackgroundImage(backgroundPattern);
152 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

9. T
h

in
-C

lien
t S

u
p

p
o

rt

D E V E L O P I N G T H E C L I E N T S I D E
Notice that we set the initial position of the toolbar to (0, 0) and do not call its toHTML
function immediately. We will wait until the layoutPage function calculates the correct
position of the toolbar and then generate its HTML code. This approach makes the page
more maintainable by encapsulating all the component positioning into the layoutPage
function and eliminates complex initial position calculations when we create each
component.

Next, we create 3 buttons and add them to the toolbar. Each button is defined by its position,
size, three images, and a piece of JavaScript to be executed when the button is clicked. The
actual positioning of each button will be controlled by the toolbar it is contained in, so we
simply set each button’s initial position to (0, 0). The three images used by the button are:

◆ The main image specified in the IlvButton constructor. This is the image used when
the mouse is not over the button and the button is not selected.

◆ The rollover image is used when the mouse is over the button, but the button is not
selected.

◆ The selected image is used when the mouse button is pressed on the button.

The code to create the 3 zoom buttons is:

 // Create the Zoom-In toolbar button.
 var zoomInAction = function() {
 chartView.zoomIn();
 };
 var zoomInButton = new IlvButton(0, 0, 20, 20,
 ilvImagePath+'zoomin-up.gif',
 zoomInAction);
 zoomInButton.setRolloverImage(ilvImagePath+'zoomin-sel.gif');
 zoomInButton.setSelectedImage(ilvImagePath+'zoomin-dn.gif');
 zoomInButton.setToolTipText("Zoom In");
 zoomInButton.setMessage("Press to zoom in");
 zoomInButton.setMessagePanel(messagePanel);
 toolbar.addButton(zoomInButton);

 // Create the Zoom-Out toolbar button.
 var zoomOutAction = function() {
 chartView.zoomOut();
 };
 var zoomOutButton = new IlvButton(0, 0, 20, 20,
 ilvImagePath+'zoomout-up.gif',
 zoomOutAction);
 zoomOutButton.setRolloverImage(ilvImagePath+'zoomout-sel.gif');
 zoomOutButton.setSelectedImage(ilvImagePath+'zoomout-dn.gif');
 zoomOutButton.setToolTipText("Zoom Out");
 zoomOutButton.setMessage("Press to zoom out");
 zoomOutButton.setMessagePanel(messagePanel);
 toolbar.addButton(zoomOutButton);

 // Create the Zoom-To-Fit toolbar button.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 153

D E V E L O P I N G T H E C L I E N T S I D E
 var zoomFitAction = function() {
 chartView.zoomToFit();
 };
 var zoomFitButton = new IlvButton(0, 0, 20, 20,
 ilvImagePath+'zoomfit-up.gif',
 zoomFitAction);
 zoomFitButton.setRolloverImage(ilvImagePath+'zoomfit-sel.gif');
 zoomFitButton.setSelectedImage(ilvImagePath+'zoomfit-dn.gif');
 zoomFitButton.setToolTipText("Zoom To Fit");
 zoomFitButton.setMessage("Press to zoom to fit");
 zoomFitButton.setMessagePanel(messagePanel);
 toolbar.addButton(zoomFitButton);

The zoomInButton simply calls the zoomIn method of the IlvGanttView, the
zoomOutButton calls the zoomOut method, and the zoomFitButton calls the
zoomToFit method. Each button also has a message property. The message will be
automatically displayed in the status window of the browser when the mouse is over the
button. The message can also be displayed in an IlvHTMLPanel positioned on the page.
This is accomplished by setting the messagePanel property of the buttons.

Finally, we must update the layoutPage function to arrange the toolbar on the page and
generate the HTML code for the toolbar:

 var layoutPage = function(chart) {
 messagePanel.setBounds(chart.getLeft(),
 chart.getTop()+chart.getHeight()+15,
 chart.getWidth()- logoPanel.getWidth()-15,
 logoPanel.getHeight());
 backgroundPanel.setBounds(chart.getLeft() - 10,
 chart.getTop() - 10,
 chart.getWidth()+ 20,
 messagePanel.getTop()
 + messagePanel.getHeight()
 + 20
 - chart.getTop());
 logoPanel.setLocation(messagePanel.getLeft()
 + messagePanel.getWidth()
 + 15,
 messagePanel.getTop());
 toolbar.setLocation(backgroundPanel.getLeft()
 + backgroundPanel.getWidth()
 + 15,
 backgroundPanel.getTop());
 }
 layoutPage(chartView);
 chartView.addSizeListener(layoutPage);
 toolbar.toHTML();

The complete body of the page is now:

<body onload="init()" onunload=”ilvDispose()”
 onresize="handleResize()" bgcolor="#ffffff">
<script TYPE="text/javascript">
154 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

9. T
h

in
-C

lien
t S

u
p

p
o

rt

D E V E L O P I N G T H E C L I E N T S I D E
 // The Gantt chart servlet.
 var servletName = "/gantt/GanttChartServlet";
 // The background image.
 var backgroundPattern = ilvImagePath + 'skybg.jpg';

 // Position of the Gantt Chart.
 var chartX = 25;
 var chartY = 25;
 var chartH = 350;
 var chartW = 700;

 var backgroundPanel = new IlvHTMLPanel('');
 backgroundPanel.setBackgroundImage(backgroundPattern);
 backgroundPanel.setBackgroundColor('#909090');
 backgroundPanel.setVisible(true);

 var chartView = new IlvGanttView(chartX, chartY, chartW, chartH);
 chartView.setServletURL(servletName);
 chartView.setResizable(true);
 chartView.toHTML();

 var messagePanel = new IlvHTMLPanel('');
 messagePanel.setBackgroundColor('#B6D5DA');
 messagePanel.setVisible(true);
 chartView.setMessagePanel(messagePanel);

 var logoPanel = new IlvImageView(0, 0, 67, 30,
 ilvImagePath+'ilog-small.gif');
 logoPanel.toHTML();

 var toolbar = new IlvToolBar(0, 0);
 toolbar.setOrientation(IlvToolBar.VERTICAL);
 toolbar.setBackgroundColor('#53537A');
 toolbar.setBackgroundImage(backgroundPattern);

 // Create the Zoom-In toolbar button.
 var zoomInAction = function() {
 chartView.zoomIn();
 };
 var zoomInButton = new IlvButton(0, 0, 20, 20,
 ilvImagePath+'zoomin-up.gif',
 zoomInAction);
 zoomInButton.setRolloverImage(ilvImagePath+'zoomin-sel.gif');
 zoomInButton.setSelectedImage(ilvImagePath+'zoomin-dn.gif');
 zoomInButton.setToolTipText("Zoom In");
 zoomInButton.setMessage("Press to zoom in");
 zoomInButton.setMessagePanel(messagePanel);
 toolbar.addButton(zoomInButton);

 // Create the Zoom-Out toolbar button.
 var zoomOutAction = function() {
 chartView.zoomOut();
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 155

D E V E L O P I N G T H E C L I E N T S I D E
 };
 var zoomOutButton = new IlvButton(0, 0, 20, 20,
 ilvImagePath+'zoomout-up.gif',
 zoomOutAction);
 zoomOutButton.setRolloverImage(ilvImagePath+'zoomout-sel.gif');
 zoomOutButton.setSelectedImage(ilvImagePath+'zoomout-dn.gif');
 zoomOutButton.setToolTipText("Zoom Out");
 zoomOutButton.setMessage("Press to zoom out");
 zoomOutButton.setMessagePanel(messagePanel);
 toolbar.addButton(zoomOutButton);

 // Create the Zoom-To-Fit toolbar button.
 var zoomFitAction = function() {
 chartView.zoomToFit();
 };
 var zoomFitButton = new IlvButton(0, 0, 20, 20,
 ilvImagePath+'zoomfit-up.gif',
 zoomFitAction);
 zoomFitButton.setRolloverImage(ilvImagePath+'zoomfit-sel.gif');
 zoomFitButton.setSelectedImage(ilvImagePath+'zoomfit-dn.gif');
 zoomFitButton.setToolTipText("Zoom To Fit");
 zoomFitButton.setMessage("Press to zoom to fit");
 zoomFitButton.setMessagePanel(messagePanel);
 toolbar.addButton(zoomFitButton);

 var layoutPage = function(chart) {
 messagePanel.setBounds(chart.getLeft(),
 chart.getTop()+chart.getHeight()+15,
 chart.getWidth()- logoPanel.getWidth()-15,
 logoPanel.getHeight());
 backgroundPanel.setBounds(chart.getLeft() - 10,
 chart.getTop() - 10,
 chart.getWidth()+ 20,
 messagePanel.getTop()
 + messagePanel.getHeight()
 + 20
 - chart.getTop());
 logoPanel.setLocation(messagePanel.getLeft()
 + messagePanel.getWidth()
 + 15,
 messagePanel.getTop());
 toolbar.setLocation(backgroundPanel.getLeft()
 + backgroundPanel.getWidth()
 + 15,
 backgroundPanel.getTop());
 }
 layoutPage(chartView);
 chartView.addSizeListener(layoutPage);
 toolbar.toHTML();
</script>
</body>

The page now looks like this with our new vertical toolbar:
156 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

9. T
h

in
-C

lien
t S

u
p

p
o

rt

D E V E L O P I N G T H E C L I E N T S I D E
IlvGanttSheetScrollInteractor

Until now, we have added components and buttons to our page. We will now add an
interactor that allows direct interaction with the image. The
IlvGanttSheetScrollInteractor allows the user to interactively scroll and pan the
image of the Gantt sheet. The IlvGanttView component is composed of 2 child views: an
IlvGanttTableView that displays the image of the table on the left side of the splitter, and
an IlvGanttSheetView that displays the image of the Gantt sheet on the right side of the
splitter. This is shown in Figure 9.5 on page 142. You set interactors separately on the Gantt
table and sheet views. The code to create an IlvGanttSheetScrollInteractor and set
it on the IlvGanttSheetView is very simple:

var sheetView = chartView.getSheetView();
var sheetScrollInteractor = new IlvGanttSheetScrollInteractor();
sheetView.setInteractor(sheetScrollInteractor);

In order to use the IlvGanttSheetScrollInteractor class, we must include the
JavaScript files that define the class and its base class, IlvInteractor:

<script TYPE="text/javascript" src="script/IlvInteractor.js"></script>
<script TYPE="text/javascript"
src="script/IlvGanttSheetScrollInteractor.js"></script>

IlvRowExpandCollapseInteractor

The IlvRowExpandCollapseInteractor can be set on both an IlvGanttTableView
and an IlvGanttSheetView. It allows the user to click on rows in the image to expand and
collapse them. We will set the interactor on the Gantt table view. First, we must include the
JavaScript file that defines the class:
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 157

D E V E L O P I N G T H E C L I E N T S I D E
<script TYPE="text/javascript"
src="script/IlvRowExpandCollapseInteractor.js"></script>

Then we set the interactor on the IlvGanttTableView:

var tableView = chartView.getTableView();
var tableToggleRowInteractor =
 new IlvRowExpandCollapseInteractor('toggleRow');
tableView.setInteractor(tableToggleRowInteractor);

The string ‘toggleRow’ refers to a named action on the server side that this interactor
invokes. On the server side, this action is registered with the servlet support object in the
file:

<installdir>/demos/gantt/servlet/src/GanttChartServlet.java

in the createServletSupport method:

protected IlvGanttServletSupport createServletSupport()
{
 IlvGanttServletSupport support = new ServletSupport();
 support.addServerAction("toggleRow", new IlvRowExpandCollapseAction());
 return support;
}

These types of interactors and how to use them are described in detail in Adding Client/
Server Interactions on page 163.

IlvInteractorButton

The IlvInteractorButton class is a subclass of IlvButton that installs an interactor on
a view. If multiple interactor buttons are defined for the same view, they will behave like
radio buttons. When an interactor button is pressed, it installs its interactor and remains
pressed until another button installs a different interactor.

In our example, we will define an IlvRowExpandCollapseInteractor for the Gantt
sheet view. We will then add 2 interactor buttons to the toolbar that toggle between the scroll
interactor and the new row interactor.

First, we include the JavaScript file that defines the IlvInteractorButton class:

<script TYPE="text/javascript" src="script/IlvInteractorButton.js"></script>

Then, we create the new interactor for the Gantt sheet view:

var sheetView = chartView.getSheetView();
var sheetScrollInteractor = new IlvGanttSheetScrollInteractor();
sheetView.setInteractor(sheetScrollInteractor);
var sheetToggleRowInteractor =
 new IlvRowExpandCollapseInteractor('toggleRow');

Finally, we create the interactor buttons and add them to the toolbar:

// Create the scroll toolbar button for the Gantt sheet.
var sheetPanButton =
158 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

9. T
h

in
-C

lien
t S

u
p

p
o

rt

D E V E L O P I N G T H E C L I E N T S I D E
 new IlvInteractorButton(0, 0, 20, 20,
 ilvImagePath+'move-up.gif',
 sheetScrollInteractor,
 sheetView);
sheetPanButton.setRolloverImage(ilvImagePath+'move-sel.gif');
sheetPanButton.setSelectedImage(ilvImagePath+'move-dn.gif');
sheetPanButton.setToolTipText("Pan Gantt Sheet");
sheetPanButton.setMessage("Scroll and pan the Gantt sheet");
sheetPanButton.setMessagePanel(messagePanel);
toolbar.addButton(sheetPanButton);

// Create the toggle row toolbar button for the Gantt sheet.
var sheetToggleRowButton =
 new IlvInteractorButton(0, 0, 20, 20,
 ilvImagePath+'bluearrow-plusminus-up.gif',
 sheetToggleRowInteractor,
 sheetView);
sheetToggleRowButton.setRolloverImage(ilvImagePath+'bluearrow-
 plusminus-sel.gif');
sheetToggleRowButton.setSelectedImage(ilvImagePath+'bluearrow-
 plusminus-dn.gif');
sheetToggleRowButton.setToolTipText("Expand/Collapse Gantt Sheet Rows");
sheetToggleRowButton.setMessage("Expand/collapse rows in the Gantt sheet");
sheetToggleRowButton.setMessagePanel(messagePanel);
toolbar.addButton(sheetToggleRowButton);

The body of the page is now:

<body onload="init()" onunload=”ilvDispose()”
 onresize="handleResize()" bgcolor="#ffffff">
<script TYPE="text/javascript">
 // The Gantt chart servlet.
 var servletName = "/gantt/GanttChartServlet";
 // The background image.
 var backgroundPattern = ilvImagePath + 'skybg.jpg';

 // Position of the Gantt Chart.
 var chartX = 25;
 var chartY = 25;
 var chartH = 350;
 var chartW = 700;

 var backgroundPanel = new IlvHTMLPanel('');
 backgroundPanel.setBackgroundImage(backgroundPattern);
 backgroundPanel.setBackgroundColor('#909090');
 backgroundPanel.setVisible(true);

 var chartView = new IlvGanttView(chartX, chartY, chartW, chartH);
 chartView.setServletURL(servletName);
 chartView.setResizable(true);
 chartView.toHTML();

 var sheetView = chartView.getSheetView();
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 159

D E V E L O P I N G T H E C L I E N T S I D E
 var sheetScrollInteractor = new IlvGanttSheetScrollInteractor();
 sheetView.setInteractor(sheetScrollInteractor);
 var sheetToggleRowInteractor =
 new IlvRowExpandCollapseInteractor('toggleRow');

 var tableView = chartView.getTableView();
 var tableToggleRowInteractor =
 new IlvRowExpandCollapseInteractor('toggleRow');
 tableView.setInteractor(tableToggleRowInteractor);

 var messagePanel = new IlvHTMLPanel('');
 messagePanel.setBackgroundColor('#B6D5DA');
 messagePanel.setVisible(true);
 chartView.setMessagePanel(messagePanel);

 var logoPanel = new IlvImageView(0, 0, 67, 30,
 ilvImagePath+'ilog-small.gif');
 logoPanel.toHTML();

 var toolbar = new IlvToolBar(0, 0);
 toolbar.setOrientation(IlvToolBar.VERTICAL);
 toolbar.setBackgroundColor('#53537A');
 toolbar.setBackgroundImage(backgroundPattern);

 // Create the scroll toolbar button for the Gantt sheet.
 var sheetPanButton =
 new IlvInteractorButton(0, 0, 20, 20,
 ilvImagePath+'move-up.gif',
 sheetScrollInteractor,
 sheetView);
 sheetPanButton.setRolloverImage(ilvImagePath+'move-sel.gif');
 sheetPanButton.setSelectedImage(ilvImagePath+'move-dn.gif');
 sheetPanButton.setToolTipText("Pan Gantt Sheet");
 sheetPanButton.setMessage("Scroll and pan the Gantt sheet");
 sheetPanButton.setMessagePanel(messagePanel);
 toolbar.addButton(sheetPanButton);

 // Create the toggle row toolbar button for the Gantt sheet.
 var sheetToggleRowButton =
 new IlvInteractorButton(0, 0, 20, 20,
 ilvImagePath+'bluearrow-plusminus-up.gif',
 sheetToggleRowInteractor,
 sheetView);
 sheetToggleRowButton.setRolloverImage(ilvImagePath+'bluearrow-
 plusminus-sel.gif');
 sheetToggleRowButton.setSelectedImage(ilvImagePath+'bluearrow-
 plusminus-dn.gif');
 sheetToggleRowButton.setToolTipText("Expand/Collapse Gantt Sheet Rows");
 sheetToggleRowButton.setMessage("Expand/collapse rows in the Gantt sheet");
 sheetToggleRowButton.setMessagePanel(messagePanel);
 toolbar.addButton(sheetToggleRowButton);

 // Create a toolbar separator.
160 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

9. T
h

in
-C

lien
t S

u
p

p
o

rt

D E V E L O P I N G T H E C L I E N T S I D E
 var separator = new IlvButton(0, 0, 20, 10,
 ilvImagePath+'horzsep.gif');
 toolbar.addButton(separator);

 // Create the Zoom-In toolbar button.
 var zoomInAction = function() {
 chartView.zoomIn();
 };
 var zoomInButton = new IlvButton(0, 0, 20, 20,
 ilvImagePath+'zoomin-up.gif',
 zoomInAction);
 zoomInButton.setRolloverImage(ilvImagePath+'zoomin-sel.gif');
 zoomInButton.setSelectedImage(ilvImagePath+'zoomin-dn.gif');
 zoomInButton.setToolTipText("Zoom In");
 zoomInButton.setMessage("Press to zoom in");
 zoomInButton.setMessagePanel(messagePanel);
 toolbar.addButton(zoomInButton);

 // Create the Zoom-Out toolbar button.
 var zoomOutAction = function() {
 chartView.zoomOut();
 };
 var zoomOutButton = new IlvButton(0, 0, 20, 20,
 ilvImagePath+'zoomout-up.gif',
 zoomOutAction);
 zoomOutButton.setRolloverImage(ilvImagePath+'zoomout-sel.gif');
 zoomOutButton.setSelectedImage(ilvImagePath+'zoomout-dn.gif');
 zoomOutButton.setToolTipText("Zoom Out");
 zoomOutButton.setMessage("Press to zoom out");
 zoomOutButton.setMessagePanel(messagePanel);
 toolbar.addButton(zoomOutButton);

 // Create the Zoom-To-Fit toolbar button.
 var zoomFitAction = function() {
 chartView.zoomToFit();
 };
 var zoomFitButton = new IlvButton(0, 0, 20, 20,
 ilvImagePath+'zoomfit-up.gif',
 zoomFitAction);
 zoomFitButton.setRolloverImage(ilvImagePath+'zoomfit-sel.gif');
 zoomFitButton.setSelectedImage(ilvImagePath+'zoomfit-dn.gif');
 zoomFitButton.setToolTipText("Zoom To Fit");
 zoomFitButton.setMessage("Press to zoom to fit");
 zoomFitButton.setMessagePanel(messagePanel);
 toolbar.addButton(zoomFitButton);

 var layoutPage = function(chart) {
 messagePanel.setBounds(chart.getLeft(),
 chart.getTop()+chart.getHeight()+15,
 chart.getWidth()- logoPanel.getWidth()-15,
 logoPanel.getHeight());
 backgroundPanel.setBounds(chart.getLeft() - 10,
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 161

D E V E L O P I N G T H E C L I E N T S I D E
 chart.getTop() - 10,
 chart.getWidth()+ 20,
 messagePanel.getTop()
 + messagePanel.getHeight()
 + 20
 - chart.getTop());
 logoPanel.setLocation(messagePanel.getLeft()
 + messagePanel.getWidth()
 + 15,
 messagePanel.getTop());
 toolbar.setLocation(backgroundPanel.getLeft()
 + backgroundPanel.getWidth()
 + 15,
 backgroundPanel.getTop());
 }
 layoutPage(chartView);
 chartView.addSizeListener(layoutPage);

 toolbar.toHTML();

</script>
</body>

This results in the following page:

You can now click the first two toolbar buttons to select which interactor is installed on the
Gantt sheet view.
162 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

9. T
h

in
-C

lien
t S

u
p

p
o

rt

A D D I N G C L I E N T / S E R V E R I N T E R A C T I O N S
Adding Client/Server Interactions

The Gantt thin-client support gives you a simplified way to define new actions that should
take place on the server side. For example, suppose you want to allow the user to change the
name of an activity that appears on the generated image. Part of this action, clicking the
image to select the activity, must be done on the client side. Changing the name of the
activity in the Gantt data model must be done on the server side before a new image is
generated. The notion of a “server-side action” exists to perform such behavior. An action is
defined by a name and a set of string parameters.

The Client Side

In a dynamic HTML client, you tell the server to perform an action using the
performAction method of the IlvGanttTableView or IlvGanttSheetView
JavaScript component. Here is an example that asks the server side to execute the action
“setName” with coordinate and string parameters, assuming that view is an
IlvGanttSheetView:

var x = 100;
var y = 50;
var params = new Array();
params[0]=x;
params[1]=y;
params[2]=”New Activity Name”;
view.performAction(“setName”, params);

The performAction method will ask the server for a new image. In the image request,
additional parameters are added so that the server side can execute the action. Thus, the
performAction call results in only one client/server round-trip.

Creating a Custom Interactor

Now let us explore how to create a custom client-side interactor that will allow the user to
click on an activity graphic in the IlvGanttSheetView and ask the server side to execute
the “setName” action. We start by defining our new ActivityNameInteractor class as a
subclass of IlvInteractor. IlvInteractor is the base class for all client-side
interactors that operate on JavaScript view components:

function ActivityNameInteractor() {
 this.superConstructor();
}

ActivityNameInteractor.prototype = new IlvInteractor();
ActivityNameInteractor.prototype.setClassName("ActivityNameInteractor");

Note: In section Actions that Modify Chart Capabilities, we will discuss server actions that
require 2 client/server round trips.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 163

A D D I N G C L I E N T / S E R V E R I N T E R A C T I O N S
Then we override the mouseDown method to convert the mouse coordinates to be relative to
the Gantt sheet and request the server side to perform the “setName” action:

function ActivityNameInteractor() {
 this.superConstructor();
}

ActivityNameInteractor.prototype = new IlvInteractor();
ActivityNameInteractor.prototype.setClassName("ActivityNameInteractor");

ActivityNameInteractor.prototype.mouseDown = function(e) {
 // The JavaScript view component is always stored in the view
 // instance variable of the interactor.
 var view = this.view;
 // The Y position of the mouse event is relative to the top of the DHTML
 // IlvGanttSheetView. The action needs a Y position relative to the top of
 // the Gantt sheet, ignoring the time scale.
 var actionYPos = e.mouseY - view.cap_tableHeaderHeight;
 if (actionYPos < 0) // Mouse is in timescale, so ignore
 return;
 // Create parameters for the setName action and send it to the server side.
 var params = new Array();
 params[0]=e.mouseX;
 params[1]=actionYPos;
 params[2]="New Activity Name";
 view.performAction("setName", params);
}

Notice how we have used the cap_tableHeaderHeight instance variable of the
IlvGanttSheetView to subtract out the height of the time scale. This variable is one of
several that are initialized when the server side sends capabilities information to the view.
The full details of the capabilities request are described in the section The Capabilities
Request on page 169. You can find details on the other instance variables that the view
initializes from the capabilities information in the reference manual for the
IlvGanttComponentView.getCapabilities method. IlvGanttComponentView is
the superclass of IlvGanttSheetView.

We can make our new interactor a little bit safer to use by overriding the setView method.
This method is inherited from IlvInteractor and is invoked automatically when an
interactor is set on or removed from a view. By overriding this method, we can verify that
the view is indeed an instance of IlvGanttSheetView:

function ActivityNameInteractor() {
 this.superConstructor();
}

ActivityNameInteractor.prototype = new IlvInteractor();
ActivityNameInteractor.prototype.setClassName("ActivityNameInteractor");

ActivityNameInteractor.prototype.mouseDown = function(e) {
 // The JavaScript view component is always stored in the view
164 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

9. T
h

in
-C

lien
t S

u
p

p
o

rt

A D D I N G C L I E N T / S E R V E R I N T E R A C T I O N S
 // instance variable of the interactor.
 var view = this.view;
 // The Y position of the mouse event is relative to the top of the DHTML
 // IlvGanttSheetView. The action needs a Y position relative to the top of
 // the Gantt sheet, ignoring the time scale.
 var actionYPos = e.mouseY - view.cap_tableHeaderHeight;
 if (actionYPos < 0) // Mouse is in timescale
 return;
 // Create parameters for the setName action and send it to the server side.
 var params = new Array();
 params[0]=e.mouseX;
 params[1]=actionYPos;
 params[2]="New Activity Name";
 view.performAction("setName", params);
}

ActivityNameInteractor.prototype.setView = function(view) {
 if (view != null && !view.instanceOf(IlvGanttSheetView)) {
 alert("ActivityNameInteractor can only be set on an IlvGanttSheetView");
 }
}

The Server Side

On the server side, we need to detect that an action was requested and execute the action
before the image is generated and sent back to the client. This is done by implementing the
ilog.views.gantt.servlet.IlvServerAction interface. To listen for an action
request from the client and execute the action on the server side, you register the action with
your instance of IlvGanttServletSupport using the addServerAction method.

For the “setName” action, we would add the following lines of code in the
createServletSupport method of the example GanttChartServlet:

 protected IlvGanttServletSupport createServletSupport()
 {
 IlvGanttServletSupport support = new ServletSupport();
 support.addServerAction("setName", new IlvServerAction()
 {
 public void actionPerformed(ServerActionEvent event)
 throws ServletException;
 {
 int x = event.getIntParameter(0);
 int y = event.getIntParameter(1);
 String name = event.getStringParameter(2);
 IlvHierarchyChart chart = event.getChart();
 IlvGraphic graphic = chart.getGanttSheet().getGraphic(new Point(x, y));
 if (graphic instanceof IlvActivityGraphic) {
 IlvActivity activity = ((IlvActivityGraphic)graphic).getActivity();
 activity.setName(name);
 }
 }
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 165

A D D I N G C L I E N T / S E R V E R I N T E R A C T I O N S
 });
 return support;
 }
}});

Actions that Modify Chart Capabilities

The DHTML client maintains certain state information about the server-side
IlvHierarchyChart that it is displaying. We call this basic set of state information
“capabilities”. The capabilities information is sent by the server to the client when the client
side requests it. When the client side requests an updated set of capabilities data, the server
also sends an updated image to the client. The capabilities data includes the number of rows
currently visible, the height of the rows, and other basic state information that allows the
client to intelligently scroll and manipulate the chart images. The full details of the
capabilities request and chart data are described in section The Capabilities Request on
page 169.

Some server actions requested by the client may modify the capabilities state information for
the chart. In this case, the client must be able to request that the server perform the action,
send updated capabilities information to the client, and then send an updated image to the
client. For example, suppose you want to allow the user to click on a row in the table and
toggle the row’s expand/collapse state. As in the previous example, toggling the row must be
performed on the server side. However, expanding and collapsing rows in the server side
chart modifies the capabilities data on how many rows are visible. The client side must be
updated with the new capabilities so that client-side scrolling and row hit testing can be
performed correctly.

We again use the performAction method of the IlvGanttTableView or
IlvGanttSheetView DHTML components to request this type of server action. This time
however, we set the optional third parameter, updateAll, to true. This requests the server
to send updated capabilities to the client, in addition to performing the action and sending an
updated image. Here is some example JavaScript code that asks the server side to execute
the action “toggleRow” with a y-coordinate relative to the first row in the table, assuming
that view is an IlvGanttTableView:

var mouseY = .. mouse pos relative to top of IlvGanttTableView ..
// Take table header into account.
mouseY = mouseY - view.cap_tableHeaderHeight;
// If mouse is in table header, nothing to do
if (mouseY < 0)
return;

// Take vertical scroll position into account.
mouseY = mouseY + view.getVerticalScrollPosition();
var params = new Array();
params[0] = tableYPos;
view.performAction(“toggleRow”, params, true);

As in the previous example, you register the action on the server side using the
IlvGanttServletSupport.addServerAction method. For the “toggleRow” action, we
166 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

9. T
h

in
-C

lien
t S

u
p

p
o

rt

T H E I L V G A N T T S E R V L E T A N D I L V G A N T T S E R V L E T S U P P O R T C L A S S E S
would add the following lines of code in the createServletSupport method of the
example GanttChartServlet:

 protected IlvGanttServletSupport createServletSupport()
 {
 IlvGanttServletSupport support = new ServletSupport();
 support.addServerAction("toggleRow", new IlvServerAction()
 {
 public void actionPerformed(ServerActionEvent event)
 throws ServletException;
 {
 int yPos = event.getIntParameter(0);
 IlvHierarchyChart chart = event.getChart();
 IlvHierarchyNode row = chart.getVisibleRowAtPosition(yPos);
 if (row == null)
 return;
 if (chart.isRowExpanded(row))
 chart.collapseRow(row);
 else
 chart.expandRow(row);
 }
 });
 return support;
 }
}});

The IlvGanttServlet and IlvGanttServletSupport Classes

The server side of a thin-client Gantt web application consists of creating a servlet that can
produce an image and send it to the client. The Gantt thin-client support provides a
predefined servlet to achieve this task. The predefined servlet class is named
IlvGanttServlet. This class, which can be found in the package
ilog.views.gantt.servlet, is an abstract subclass of the HTTPServlet class from the
Java servlet API.

Using the IlvGanttServlet class is an easy way to create a servlet, but it has one main
drawback. You cannot use it to add support for the Gantt thin-client protocol to an existing
servlet. This is the purpose of the IlvGanttServletSupport class. The
IlvGanttServletSupport class implements all the Gantt thin-client server-side
functionality. In fact, the IlvGanttServlet class is just a basic wrapper around an
instance of IlvGanttServletSupport. The doGet method of IlvGanttServlet
simply calls the handleRequest method of its IlvGanttServletSupport instance.

In the same way, you can integrate an instance of IlvGanttServletSupport into your
own servlet to handle the requests coming from the Gantt client side. In our Gantt Servlet
example, the code of the servlet can be rewritten using the IlvGanttServletSupport
class as follows:
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 167

T H E I L V G A N T T S E R V L E T A N D I L V G A N T T S E R V L E T S U P P O R T C L A S S E S
import ilog.views.gantt.*;
import ilog.views.gantt.servlet.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class GanttChartServlet extends HttpServlet
{
 private IlvGanttServletSupport support;

 public void init(ServletConfig config)
 throws ServletException
 {
 super.init(config);
 support = new ServletSupport();
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 if (!support.handleRequest(request, response))
 throw new ServletException("Unrecognized request");
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 doGet(request, response);
 }

}

class ServletSupport extends IlvGanttServletSupport
{
 private IlvHierarchyChart _chart;

 public ServletSupport()
 {
 _chart = createChart();
 }

 private IlvHierarchyChart createChart()
 {
 IlvHierarchyChart chart = new IlvGanttChart();
 IlvGanttModel ganttModel = new SimpleProjectDataModel();
 return chart;
 }

 public IlvHierarchyChart getChart(HttpServletRequest request,
 IlvServletRequestParameters params)
 throws ServletException
168 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

9. T
h

in
-C

lien
t S

u
p

p
o

rt

T H E I L V G A N T T S E R V L E T A N D I L V G A N T T S E R V L E T S U P P O R T C L A S S E S
 {
 return _chart;
 }

}

In this code we have created a new servlet class, GanttChartServlet, that is derived
directly from the HttpServlet class. The doGet method passes the requests to an instance
of the IlvGanttServletSupport class for handling.

The Servlet Parameters

The Gantt servlet support can respond to two different types of HTTP requests, the “image”
request and the “capabilities” request. The image request will return an image from the
Gantt or Schedule chart. The capabilities request will return information to the client, such
as the number of rows visible in the chart, the height of the rows, and the minimum and
maximum times for horizontally scrolling the Gantt sheet. This information allows the client
to know the capabilities of the chart in order to intelligently scroll and manipulate the chart
images. When developing the client side of your application, you will use the DHTML
scripts provided by the Gantt thin-client support. The scripts will create the HTTP request
for you, so you do not really need to write the HTTP request yourself.

The Image Request

The image request produces an image from the chart. Here is an example of a request for the
image of the table portion of a chart, assuming that myservlet is the name of the servlet:

http://host/servlets/myservlet?request=image
 &comp=table
 &width=300
 &height=250

And here is an example for the image of the Gantt sheet portion of a chart:

http://host/servlets/myservlet?request=image
 &comp=sheet
 &width=500
 &height=250
 &startTime=2001,0,1
 &endTime=2001,5,30

The Gantt sheet will display the time period from January 1, 2001 to June 30, 2001. A
detailed listing of the image request parameters can be found in the reference manual for the
IlvGanttServletSupport class.

The Capabilities Request

The capabilities request tells the servlet to return the capabilities information about the chart
to the client. The capabilities request has the following syntax:

http://host/servlets/myservlet?request=capabilities
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 169

T H E I L V G A N T T S E R V L E T A N D I L V G A N T T S E R V L E T S U P P O R T C L A S S E S
 &format=(html|octet-stream)
 [&onload= <a string>]

The format parameter tells the servlet which format should be used to return the
capabilities information. Two formats are supported, HTML or Octet stream.

The HTML format is used when the client is a Dynamic HTML client. In this case, the result
is an empty HTML page that contains some JavaScript code. The JavaScript code is
executed on the client side, and some information variables are then available.

The octet-stream format is used when the client is a Java applet. In this case, the result is a
stream of octets. The data is produced using a java.io.DataOutput and can be read using
a java.io.DataInput.

Full details on the capabilities request and the information returned by the server can be
found in the reference manual for the IlvGanttServletSupport class. Details on how
the client-side DHTML components save and use the capabilities information can be found
in the reference manual for the IlvGanttComponentView.getCapabilities method.

Multiple Sessions

The Gantt Servlet example presented a very simple example that creates a single Gantt chart
for the servlet. This means that all calls to the servlet (that is, all clients) are looking at the
same chart and the same data model. In some applications, you may want to have a chart
and/or a separate data model for each client. In this case, you might use the notion of HTTP
sessions. You can then create a chart and/or a data model and store them as parameters of the
session.

Here we take our Gantt Servlet example and modify it slightly so that each client has its own
chart that is viewing a common data model. This way, each user can toggle rows to expand
and collapse without affecting the charts viewed by the other clients. We use an instance of
the IlvGanttSessionAttribute class to store the chart as an attribute of the HTTP
session. This class handles the details of properly disposing server-side GUI components
when the user session expires. Our updated IlvGanttServletSupport implementation
now looks like this:

class ServletSupport extends IlvGanttServletSupport
{
 private IlvGanttModel _model;

 private IlvHierarchyChart createChart()
 {
 synchronized(this) {
 if (_model == null)
 _model = new SimpleProjectDataModel();
 }

Note: The Gantt thin-client support does not provide a predefined Java applet thin client.
170 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

9. T
h

in
-C

lien
t S

u
p

p
o

rt

T H E I L V G A N T T S E R V L E T A N D I L V G A N T T S E R V L E T S U P P O R T C L A S S E S
 IlvHierarchyChart chart = new IlvGanttChart();
 chart.setGanttModel(_model);
 chart.getGanttSheet().setVerticalGrid(new WeekendGrid());
 ... more chart customizations ...
 return chart;
 }

 /**
 * Returns the chart used for the specified request.
 * @param request The current HTTP request.
 * @param params The parameters parsed from the request.
 */
 public IlvHierarchyChart getChart(HttpServletRequest request,
 IlvServletRequestParameters params)
 throws ServletException
 {
 IlvHierarchyChart chart = null;
 HttpSession session = request.getSession();
 if (session.isNew()) {
 chart = createChart();
 IlvGanttSessionAttribute chartProxy =
 new IlvGanttSessionAttribute(chart);
 session.setAttribute("IlvHierarchyChart", chartProxy);
 } else {
 IlvGanttSessionAttribute chartProxy =
 (IlvGanttSessionAttribute)session.getAttribute("IlvHierarchyChart");
 if (chartProxy != null)
 chart = chartProxy.getChart();
 }
 if (chart == null)
 throw new ServletException("session problem");
 return chart;
 }
}

Note: If you store the chart directly as an attribute of the HTTP session, it will not be
properly garbage collected when the session expires. You must wrapper the chart in an
instance of IlvGanttSessionAttribute to ensure that the chart is properly disposed.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 171

T H E I L V G A N T T S E R V L E T A N D I L V G A N T T S E R V L E T S U P P O R T C L A S S E S
172 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

A P P E N D I X
A

Document Type Definition for SDXL

<!--
 This is the DTD for ILOG JViews Schedule Data Exchange Language.

 Version 5.5, Dec 20, 2002
-->

<!-- ISO date format -->
<!ENTITY % Datetime "CDATA">

<!ENTITY % Text "CDATA">

<!-- Must be an activity ID in the document -->
<!ENTITY % ActivityID "CDATA">

<!-- Must be an resource ID in the document -->
<!ENTITY % ResourceID "CDATA">

<!ENTITY % ConstraintType "(Start-Start|Start-End|End-Start|End-End)">

<!ELEMENT activity (activity|property)*>
<!ATTLIST activity
 id ID #REQUIRED
 name %Text; #REQUIRED
 start %Datetime; #REQUIRED
 end %Datetime; #REQUIRED
 info %Text; #IMPLIED >
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 173

<!ELEMENT activities (activity)+>
<!ATTLIST activities
 dateFormat %Text; #IMPLIED >

<!ELEMENT resource (resource|property)*>
<!ATTLIST resource
 id ID #REQUIRED
 name %Text; #REQUIRED
 quantity %Text; #IMPLIED
 info %Text; #IMPLIED >

<!ELEMENT resources (resource)+>
<!ATTLIST resources>

<!ELEMENT reservation (property)*>
<!ATTLIST reservation
 activity %ActivityID; #REQUIRED
 resource %ResourceID; #REQUIRED
 info %Text; #IMPLIED >

<!ELEMENT reservations (reservation)+>
<!ATTLIST reservations >

<!ELEMENT constraint (property)*>
<!ATTLIST constraint
 from %ActivityID; #REQUIRED
 to %ActivityID; #REQUIRED
 type %ConstraintType; #REQUIRED
 info %Text; #IMPLIED >

<!ELEMENT constraints (constraint)+>
<!ATTLIST constraints >

<!ELEMENT title (#PCDATA)>
<!ELEMENT desc (#PCDATA)>

<!ELEMENT schedule (title?, desc?, resources?, activities?,
 constraints?, reservations?) >
<!ATTLIST schedule
 version %Text; #REQUIRED >

<!ELEMENT property (#PCDATA)>
<!ATTLIST property
 name %Text; #REQUIRED
 javaClass %Text; #IMPLIED >
174 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

G L O S S A R Y
Glossary

about-to-change event When a property value is about to be notified to the model, it is advisable to
notify interested listeners as well so that they have an opportunity to constrain
or even to veto the proposed new property value.

activity A task or occupation that is planned to be completed. A parent activity can be
broken down into several child activities. See also child activity, From
activity, leaf activity, parent activity, root activity, To activity.

activity graphic In a Gantt chart, an instance of the class IlvActivityGraphic used to
represent the associated activity on a row of the Gantt sheet.

activity renderer In a Gantt chart, an object that implements the IlvActivityRenderer
interface to draw activity graphics to represent activities in the Gantt sheet.

bounded mode In the Gantt sheet, an operation mode of the time scale whereby the scroll bar
is limited to the specified time interval. See also unbounded mode.

constraint A condition set between two activities whereby one activity depends on the
other. Constraints are represented by an arrowed polyline object. See also end
to end, end to start, From activity, start to end, start to start, To activity.

constraint graphic In a Gantt chart, an instance of the class IlvConstraintGraphic used to
represent a constraint between two activities.

data model The scheduling information you want to represent as a Gantt chart. One major
feature of the ILOG JViews Gantt Chart module is that the data model is
separated from the visualization part.

data nodes Another way of referring to activities in a Gantt chart or to resources in a
Schedule chart.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 175

G L O S S A R Y
end time An activity property that determines the date and time at which the activity is
planned to finish.

end to end A type of constraint whereby the end of the To activity depends on the end of
the From activity. See also From activity, To activity.

end to start A type of constraint whereby the end of the To activity depends on the start of
the From activity. See also From activity, To activity.

From activity The source activity of a constraint, that is, the activity whose start or end
controls the start or end of another activity as the result of the constraint. See
also activity, To activity.

Gantt chart A type of schedule diagram where data from a table is displayed as horizontal
bars along a time scale.

Gantt sheet The right-hand part of a Gantt chart or Schedule chart, where activities and
constraints (on Gantt charts) or reservations (on Schedule charts) are
represented graphically. IlvGanttSheet objects are instances of a subclass
of IlvManagerView.

leaf activity An activity with no child activity. See also activity, child activity.

leaf resource A resource with no child resource. See also resource, child resource.

load-on-demand A mechanism whereby data is loaded based on whether it is visible.

milestone An activity whose duration is null, that is, whose start time and end time are
simultaneous.

parent activity An activity with at least one child activity. See also activity, child activity.

parent resource A resource with at least one child resource. See also resource, child resource.

print framework A package of classes helping you to print and preview data.

resource Means that enable an activity to be completed: persons, premises, equipment,
and so forth. See also child resource, leaf resource, parent resource.

reservation Booking usage of a resource for the duration of an activity. In the terminology
of the Gantt Chart module, a reservation represents the allocation of one
resource to one activity.

reservation graphic In a Schedule chart, an instance of the class IlvReservationGraphic
(itself a subclass of IlvActivityGraphic) to represent reservation on the
rows of the Gantt sheet. See also activity graphic.
176 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

G L O S S A R Y
root activity The top level of the hierarchical tree of activities.

root resource The top level of the hierarchical tree of resources.

separable model architecture A Swing variant of the traditional MVC design of user-interface objects,
where the view and controller parts are bundled together.

start time An activity property that determines the date and time at which the activity is
planned to begin.

start to end A type of constraint whereby the start of the To activity depends on the end of
the From activity. See also From activity, To activity.

start to start A type of constraint whereby the start of the To activity depends on the start of
the From activity. See also From activity, To activity.

time scale A zoomable range of rows at the top of the Gantt sheet where the time
divisions are represented using various time unit values.

To activity The target activity of a constraint, that is, the activity whose start or end
depends on the start or end of another activity as the result of the constraint.
See also activity, From activity.

unbounded mode In the Gantt sheet, the default operation mode of the time scale whereby there
is no upper or lower limit to the horizontal scrolling. See also bounded mode.
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 177

G L O S S A R Y
178 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

I N D E X
Index

A

about-to-change events 60
abstract interfaces 18, 19
AbstractGanttExample class 26
activities

and reservations 38
changing start/end time 50, 51
creating 51
definition 12
events, extending 58
expanding/collapsing 40
in the Gantt sheet 44
populating the data model 33
rendering 45
rows 45

activity data
record structure 75

activity elements 93
activity factory 35, 51
activity graphics

description 45
introduction 14
layout 47
moving 49, 50
resizing 51
selecting 49
stacking order 47

activity ID selectors 112
activity renderers

customizing 62
factory 63

addActivity method
IlvGanttModel interface 34

addResource method
IlvGanttModel interface 34

allocation. See reservations 176
architecture

of the data model 17
of the Gantt sheet 44

assignment. See reservation 176
attribute selectors 113
AWT packages, importing 26

B

background color property 22, 64
bounded, scroll bar operation mode 43

C

capabilities 166
capabilities request 169
Cascade layout, in Schedule chart 48
cell editor 70
cell renderer 68
cellUpdated method

IlvAbstractJTableColumn class 70
child activity 12

See also activities 12
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 179

I N D E X
child resource 12
See also resources 12

class relationships
database Gantt 75

client side 140
client/server interactions

adding 163
client side 163
server side 165

collapsing activities and resources 40
color, Gantt Beans property 22
columns, customizing 66
common DHTML components

overview 140
constraint data

record structure 75
constraint elements 95
constraint factory 52
constraint graphics

not movable 49
selecting 49

constraints
automatic removal 37
creating 36, 51
definition 12
events, extending 58
factory 37
in the Gantt sheet 44
representation 14, 46
styling 116

createActivity method
IlvActivityFactory interface 35

createConstraint method
IlvConstraintFactory interface 37

createGanttModel method
IlvScheduleChart interface 78

createPages method
IlvGanttPrintableDocument class 130

createReservation method
IlvReservationFactory interface 38

createResource method
IlvResourceFactory interface 36

creating an input source 86
crimson.jar file 83
CSS

applied to charts 99, 100
customizing a Gantt chart 102
declaration 102
examples for customizing charts 101
Gantt and Schedule examples 101
property 103
renderer target objects 110
rule 103, 105
user-defined properties 102

custom icon 55
CustomActivity class

description 56
factory 61
instantiating 61

CustomActivityReader.java file 92
CustomActivityRenderer.java class 64
CustomActivityWriter.java file 92
CustomGanttExample.java sample file 53
customization of SDXL 88
customizing

activity rendering 62
data model 56
Gantt chart 27, 53
readers and writers 90
table columns 66

customizing a chart
Java and style sheets 100

customizing charts
CSS 99, 100, 101

customizing Gantt charts
CSS 102

D

data model
architecture 17, 32
binding the Beans 27, 33
creating 27
customizing 56
general background 18
in memory 27
key features 11
populating 33
table view 13

data nodes 41, 67
180 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

I N D E X
database examples 19
database Gantt example

class relationships 75
running 74
understanding 74

database gantt example
object relationships 76

database Schedule example
running 77

database schedule example
understanding 78

Date Java class 30
days. See duration of an activity 31
declarations

CSS 102
decorative panels 149
default implementations 12
default readers and writers 89
DHTML component

Gantt 142
DHTML components

common 140
IlvAbstractView 141
IlvButton 141, 152
IlvEmptyView 141
IlvGanttComponentView 141
IlvGanttSheetScrollInteractor 143, 157
IlvGanttSheetView 143, 157
IlvGanttTableScrollInteractor 143
IlvGanttTableView 143
IlvGanttView 143, 144
IlvGlassView 141
IlvHTMLPanel 147
IlvImageEventView 141
IlvImageView 141, 150
IlvInteractor 141, 157
IlvInteractorButton 142, 158
IlvObject 141
IlvPanel 141
IlvResizableView 141
IlvRowExpandCollapseInteractor 143, 157
IlvScrollBar 142
IlvTableSheetView 157
IlvToolBar 142, 152

directory

for Gantt chart example 24
for Schedule chart example 28

divider position
printable document 126

draw method
IlvActivityRenderer interface 45

duration of an activity
API 29
definition 12
representation 14

Dynamic HTML
client 140
script files 141

E

end date
printable document 126

end time
changing 50, 51
creating a constraint 52
drawing a constraint 52
introduction 12

end-to-end, constraint type 12, 36
end-to-start, constraint type 12, 36
events

about to change 60
See also property events 57

example
database 19
database Gantt 74
database Schedule 77
Gantt and Schedule charts 24
Gantt printing 124
Gantt Servlet 133

examples
CSS 101

expanding activities and resources 40

F

factories
activities 35
constraints 37
custom activity renderer 63
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 181

I N D E X
CustomActivity class 61
reservations 38
resources 36

files
GanttChartServlet.java 134
GanttExample.java 24
ScheduleExample.java 28
SimpleProjectDataModel.java 134
TableModelDemo.java 130
WeekendGrid.java 134

fireEvent methods 59
font, Gantt Beans property 22
foreground color, Gantt Beans property 22, 39
From activity 12, 52

G

Gantt chart
adding to the user interface 28
creating constraints 51
customizing 27, 53
definition 11
description 13
example 24
Gantt sheet 13, 44
importing packages 26
moving activity graphics 50
reservations 14
resources 14
scrolling 42
table columns 67
See also Schedule chart 13

Gantt Chart Bean
basic steps 23
binding to the data model 27, 33
creating 27
description 13
example 24

Gantt DHTML components 142
overview 142

Gantt model. See data model 44
Gantt servlet

capabilities request 169
image request 169
multiple sessions 170

parameters 169
Gantt Servlet example

description 133
DHTML client 143
message panel 147
running 134

Gantt sheet
architecture 44
definition 13
describing 45
displaying data 44
in Gantt chart 13
in Schedule chart 15
manipulating data 48
scrolling 42

Gantt thin client
client side 140
example 133
server side 135
Web architecture 132

GanttChartServlet.java file 134
GanttExample.java sample file 24, 27

See also CustomGanttExample.java 53
ganttRowIterator method

IlvGanttSheet class 45
GenericEventListener interface

inform method 70
introduction 70

getA

getActivityFactory method
IlvHierarchyChart class 35

getActivityRenderer method
IlvActivityGraphic class 45

getB

getBounds method
IlvActivityRenderer interface 65

getC

getChart method
IlvGanttServletSupport class 136
182 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

I N D E X
getConstraint method
IlvConstraintGraphic class 46

getD

getDividerPosition method
IlvGanttPrintableDocument class 126

getE

getEnd method
IlvGanttPrintableDocument class 126

getG

getGanttModel method
IlvHierarchyChart class 33

getGanttRowCount method
IlvGanttSheet class 45

getGanttSheet method
IlvHierarchyChart class 22

getM

getMax/getMinVisibleTime methods
IlvHierarchyChart class 43

getP

getPagesPerBand method
IlvGanttPrintableDocument class 126

getR

getRepeatTable method
IlvGanttPrintableDocument class 126

getReservation method
IlvReservationGraphic class 46

getReservationCacheLoadFactor method
IlvScheduleChart interface 78

getReservationCacheLoadThreshold method
IlvScheduleChart interface 78

getRootActivity method
IlvGanttModel interface 35

getRootResource method

IlvGanttModel interface 35

getS

getSelectedGraphics method
IlvHierarchyChart class 49

getStart method
IlvGanttPrintableDocument class 127

getT

getTable method
IlvHierarchyChart class 22, 71

getTableColumnCount method
IlvGanttPrintableDocument class 127

getV

getValue method
IlvJTableColumn interface 68

getVisibleGanttRowAt method
IlvGanttSheet class 45

getVisibleGanttRowCount method
IlvGanttSheet class 45

H

hiding the table view 22
hierarchical structure

expanding/collapsing 40
of activities 12, 33
of resources 12, 33

horizontal load-on-demand
description 77

horizontal scrolling 42
hours. See duration 31

I

icon
custom 55
tree column 66

ilog.views.gantt.model.general package
referencing user-defined properties 102

ilog.views.gantt.xml package 82
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 183

I N D E X
IlvA

IlvAbstractActivity class
fireEvent method 59

IlvAbstractConstraint class
fireEvent method 59

IlvAbstractJTableColumn class
cellUpdated method 70

IlvAbstractReservation class
fireEvent method 59

IlvAbstractResource class
fireEvent method 59

IlvAbstractView DHTML component 141
IlvActivity interface 19, 32, 35, 51
IlvActivityCompositeRenderer class 62, 64, 112
IlvActivityFactory interface

createActivity method 35
implementation 61

IlvActivityGraphic class
description 14, 45
getActivityRenderer method 45
setActivityRenderer method 45

IlvActivityGraphicMoveInteractor class 49
IlvActivityGraphicObject class 64
IlvActivityGraphicRenderer class 110
IlvActivityGraphicSelection class 64
IlvActivityRenderer class 108
IlvActivityRenderer interface

description 45
draw method 45
getBounds method 65
isRedrawNeeded method 65

IlvActivityRendererFactory class 109
IlvActivitySummary class 62

IlvB

IlvBasicActivityBar class 109
IlvBasicActivityLabel class 111
IlvBasicActivitySymbol class 111
IlvButton DHTML component 141, 152

IlvC

IlvConstraint interface 19, 32, 36, 45, 52

IlvConstraintFactory interface
createConstraint method 37
description 37

IlvConstraintGraphic class 108
description 46
getConstraint method 46
introduction 12

IlvConstraintType class 36

IlvD

IlvDefaultActivityRendererFactory class 63
IlvDefaultGanttModel class 27, 73
IlvDuration class 30

IlvE

IlvEmptyView DHTML component 141

IlvG

IlvGanttChart class 13, 20, 24, 29, 40, 100
printing 123

IlvGanttComponentView DHTML component 141
IlvGanttConfiguration class 21
IlvGanttDocumentReader class 87, 102

readGanttModel method 88
IlvGanttDocumentWriter class 85

writeGanttModel method 85
IlvGanttModel interface

addActivity method 34
addResource method 34
definition 19
design for load-on-demand 73
getRootActivity method 35
getRootResource method 35
instantiating 23
moveActivity method 35
moveResource method 35
populateModel method 27
removeActivity method 35
removeResource method 35
setRootActivity method 35
setRootResource method 35

IlvGanttPrintableDocument class
184 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

I N D E X
createPages method 130
description 125
getDividerPosition method 126
getEnd method 126
getPagesPerBand method 126
getRepeatTable method 126
getStart method 127
getTableColumnCount method 127
setDividerPosition method 126
setEnd method 126
setPagesPerBand method 126
setRepeatTable method 126
setStart method 127
setTableColumnCount method 127

IlvGanttPrintingController class 124
description 128

IlvGanttReaderException class 88
IlvGanttRow class 45
IlvGanttSelectInteractor class 49
IlvGanttServlet class 136, 138, 167
IlvGanttServletSupport class 136, 167

getChart method 136
IlvGanttSheet class

description 13, 44
ganttRowIterator method 45
getGanttRowCount method 45
getVisibleGanttRowAt method 45
getVisibleGanttRowCount method 45

IlvGanttSheetScrollInteractor DHTML
component 143, 157

IlvGanttSheetView DHTML component 143, 157
IlvGanttStreamWriter class 86, 90
IlvGanttTableScrollInteractor DHTML

component 143
IlvGanttTableView DHTML component 143, 157
IlvGanttView DHTML component 143, 144

decorative panels 149
resizing 149

IlvGeneralActivity class
attribute selectors 113
CSS classes 114
description 102
model indirection 113
properties 113
pseudoclasses 115

IlvGeneralConstraint class 102
attribute selectors 119
CSS Classes 120
model indirection 119
properties 119

IlvGeneralReservation class 102
IlvGeneralResource class 102
IlvGlassView DHTML component 141

IlvH

IlvHierarchyChart class 100
definition 13
getActivityFactory method 35
getGanttModel method 33
getGanttSheet method 22
getMax/getMinVisibleTime methods 43
getSelectedGraphics method 49
getTable method 22, 71
setActivityFactory method 35
setDisplayingConstraints method 47
setGanttModel method 22, 33
setMax/setMinVisibleTime methods 43
static constants 43

IlvHierarchyChartclass
methods for controlling styling 100

IlvHierarchyNode interface 33
IlvHTMLPanel DHTML component 147

IlvI

IlvImageEventView DHTML component 141
IlvImageView DHTML component 141, 150
IlvInteractor DHTML component 141, 157
IlvInteractorButton DHTML component 142, 158

IlvJ

IlvJTable class 13, 21, 22
IlvJTableColumn interface

getValue method 68
implementation 67
isCellEditable method 68
setValue method 68
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 185

I N D E X
IlvM

IlvMakeActivityInteractor class 51
IlvMakeConstraintInteractor class 51
IlvManagerServlet class

image request 169
IlvManagerView class

pushInteractor method 49, 51

IlvO

IlvObject DHTML component 141

IlvP

IlvPanel DHTML component 141
IlvPrintableGanttSheet class 129
IlvPrintableTimeScale class 129
IlvPrintingController class

print method 129
printPreview method 129
setupDialog method 129

IlvR

IlvReservation interface 19, 32, 38, 46, 51
IlvReservationFactory interface

createReservation method 38
description 38

IlvReservationGraphic class
description 46
getReservation method 46

IlvResizableView DHTML component 141
IlvResource interface 19, 32, 35
IlvResourceFactory interface 36
IlvRowExpandCollapseInteractor DHTML

component 143, 157

IlvS

IlvScheduleChart class 13, 20, 24, 29, 40, 100
printing 123

IlvScheduleChart interface
createGanttModel method 78
getReservationCacheLoadFactor method 78

getReservationCacheLoadThreshold method
78

isReservationCachingEnabled method 78
setReservationCacheLoadFactor method 78
setReservationCacheLoadThreshold method

78
setReservationCachingEnabled method 78

IlvScrollBar DHTML component 142
IlvSimpleActivity class 35, 56, 61
IlvSimpleActivityFactory class 35
IlvSimpleConstraintFactory class 37
IlvSimpleReservationFactory class 39
IlvSimpleResource class 35
IlvSimpleResourceFactory class 36
IlvStylable interface 100

IlvT

IlvTimeInterval class 29, 31
IlvTimeScale class 13
IlvToolBar DHTML component 142, 152
IlvTreeColumn class 66

I (continued)

image request 169
inform method

GenericEventListener interface 70
in-memory data model. See data model 27
input source

creating 86
parsing 87

interactors
creating a constraint 51
creating an activity or reservation 35, 51
moving a graphic 49
selecting a graphic 49

interfaces. See abstract interfaces 19
intervals. See time intervals 29
isCellEditable method

IlvJTableColumn interface 68
isRedrawNeeded method

IlvActivityRenderer interface 65
isReservationCachingEnabled method

IlvScheduleChart interface 78
186 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

I N D E X
J

JApplet Swing class 26
Java servlets

creating 138
in the Gantt 132

JAXP 83
jaxp.jar file 83
JPanel Swing class 13
JTable Swing class 13, 22
jviewsall.jar file 29

L

layout. See activity graphics, layout 47
leaf activity

definition 33
rendering 55, 62
See also activities 33

leaf resource 33
links

introduction 12
representation 14

listeners, registering 58
load factor 78
load threshold 78
load-on-demand

database query methods 76
design 73
horizontal 77
introduction 73
vertical 73

M

main method 26
message panel 147
milestone, definition 12
minutes. See duration 31
model indirection 113
model-view separation 18
move interactor 49
moveActivity method

IlvGanttModel interface 35
moveResource method

IlvGanttModel interface 35
moving graphics 49
multiple selection 49
multiple sessions 170
multi-threading

server side 138
MVC design 18

N

notation x
number of columns

printable document 126

O

object relationships
database gantt example 76

occupation. See activities 175
output stream

creating 85
writing a document to 86

P

pages per band
printable document 126

parent activity
definition 12, 33
rendering 62
See also activities 12

parent resource
definition 12, 33
See also resources 12

parsing an input source 87
populateModel method

IlvGanttModel interface 27
Pretty layout, in Schedule chart 47
print

Gantt example 124
print method

IlvPrintingController class 129
printable document

description 125
divider position 126
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 187

I N D E X
end date 126
number of columns 126
pages per band 126
repeat table 126
start date 126

printing controller
configuration 128
description 128

printing framework
Gantt 123

printPreview method
IlvPrintingController class 129

priority
creating as a custom property 56
property events 57

PriorityColumn class 67 to 71
properties

CSS 103
customizing 57
events, adding 57
user-defined and

ilog.views.gantt.model.general
package 102

user-defined in CSS 102
property element 98
pushInteractor method

IlvManagerView class 49, 51

R

reader level 90
readGanttModel method

IlvGanttDocumentReader class 88
record structure 75
removeActivity method

IlvGanttModel interface 35
removeResource method

IlvGanttModel interface 35
renderers. See activity renderers 45
repeat table

printable document 126
reservation data

record structure 75
reservation elements 96
reservation factory 38, 51

reservation graphics
description 46
duplicating 50
introduction 15
layout 15, 47
moving 49, 50
resizing 51
selecting 49

reservations
creating 38, 51
definition 12
events, extending 58
in Gantt chart 14
in Schedule chart 15
in the Gantt sheet 45

resource data
record structure 75

resource elements 94
resource factory 35
resources

as rows in the Gantt sheet 46
definition 12
events, extending 58
expanding/collapsing 40
Gantt sheet 46
in Gantt chart 14
in Schedule chart 15
populating the data model 33
See also reservations 38

root activity 33
See also activities 33

root resource 33
rows

changing height 28
description 45
layout of reservation graphics 15, 47
visibility 40

rules
CSS 103, 105

S

sample files. See files 24
Schedule chart

creating activities and reservations 51
188 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

I N D E X
description 15
example 28
Gantt sheet 15, 44, 46
moving reservation graphics 50
reservations 15
resources 15
scrolling 42
table columns 67

Schedule Chart Bean
basic steps 23
description 13
example 28

schedule data
serializing 84

Schedule Data Exchange Language. See SDXL 82
schedule element 97
ScheduleExample.java sample file 28
scheduling data

XML 102
scheduling data. See data model 11
scrolling

horizontally 42
vertically 43

scrolling in the Gantt sheet 42
SDXL

activity elements 93
constraint elements 95
creating a document 84
creating a stream writer 86
creating an IlvGanttDocumentWriter 85
creating an input source 86
creating an output stream 85
customization 88
customizing readers and writers 90
default readers and writers 89
design criteria 82
example 83
overview 82
parsing an input source 87
property element 98
reader level 90
reading a Gantt model 88
reading from a file 86
reservation elements 96
resource elements 94

scenarios of use 82
schedule element 97
specifications 92
writer level 90
writing a document to an output stream 86
writing a Gantt model to a document 85
writing to a file 84

seconds. See duration 31
selection interactor

creating a move interactor 49
description 48

separable model architecture 18
serializing schedule data 84
server side 135

key classes 135
multi-threading 138

servlet class 138
sessions

multiple 170

setA

setActivityFactory method
IlvHierarchyChart class 35

setActivityRenderer method
IlvActivityGraphic class 45

setD

setDisplayingConstraints method
IlvHierarchyChart class 47

setDividerPosition method
IlvGanttPrintableDocument class 126

setE

setEnd method
IlvGanttPrintableDocument class 126

setG

setGanttModel method
IlvHierarchyChart class 22, 33
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 189

I N D E X
setM

setMax/setMinVisibleTime methods
IlvHierarchyChart class 43

setP

setPagesPerBand method
IlvGanttPrintableDocument class 126

setR

setRepeatTable method
IlvGanttPrintableDocument class 126

setReservationCacheLoadFactor method
IlvScheduleChart interface 78

setReservationCacheLoadThreshold method
IlvScheduleChart interface 78

setReservationCachingEnabled method
IlvScheduleChart interface 78

setRootActivity method
IlvGanttModel interface 35

setRootResource method
IlvGanttModel interface 35

setS

setStart method
IlvGanttPrintableDocument class 127

setT

setTableColumnCount method
IlvGanttPrintableDocument class 127

setU

setupDialog method
IlvPrintingController class 129

setV

setValue method
IlvJTableColumn interface 68

S (continued)

showing the table view 22
Simple layout, in Schedule chart 47
SimpleProjectDataModel.java file 134
source activity. See From activity 12
start date

printable document 126
start time

changing 50, 51
creating a constraint 52
drawing a constraint 52
introduction 12

start-to-end, constraint type 12, 36
start-to-start, constraint type 12, 36
stream writer

creating 86
style sheets

applied to a chart 100
used with Java 100

styling 99 to 121
activities 109
Gantt and Schedule chart components 106
Gantt data 108
globally disabling 101
methods of the IlvHierarchyChart class 100

styling constraints 116
graphic target objects 117
ID selectors 118

subactivity. See child activity 12
Swing packages, importing 26

T

table. See cell editor; cell rendering; columns 66
TableModelDemo.java file 130
target activity. See To activity 12
task. See activities 175
thin client

chart capabilities 166
thin client support for Web applications 131
thin clients

adding client/server interactions 163
client side 140
Dynamic HTML client 140
190 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

I N D E X
Dynamic HTML script files 141
in ILOG JViews 131
server side 135
XML Grapher example 133

server side 136
Tile layout, in Schedule chart 48
time interval

computing 79
time intervals

changing 42
definition 31

time scale
definition 13
scrolling 42

time, API 29
To activity 12, 52
Tomcat 134
tree column icon 66
tree structure. See hierarchical structure 40
TreeCellRenderer interface 66

U

unbounded, scroll bar operation mode 43

V

vertical load-on-demand
description 73
design 73

vertical scrolling 43
VERTICAL_SCROLLBAR_XXX static constants 43
visibility of rows 40

W

web application directory structure 144
WeekendGrid.java file 134
weeks. See duration 31
writeGanttModel method

IlvGanttDocumentWriter class 85
writer level 90

X

XML
scheduling data file 102

XMLCustomGanttExample.java file 92

Z

zero-duration activity 12
I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L 191

I N D E X
192 I L O G J V I E W S 5 . 5 — G A N T T U S E R ’ S M A N U A L

	ILOG JViews 5.5 Gantt User's Manual
	Table of Contents
	About This Manual
	What Is in This Manual

	Introducing the Gantt Module
	The Data Model
	Activities
	Constraints
	Resources
	Reservations

	The Charts
	Common Features
	Gantt Chart
	Schedule Chart

	Basic Concepts
	The Data Model Architecture
	Model-View Separation
	Data Model Classes

	The Gantt Beans
	Structure
	Properties

	Getting Started with the Gantt Module
	Basic Steps for Using the Gantt Chart and Schedule Chart Beans
	Examples
	Gantt Chart
	Schedule Chart
	Deploying a Gantt Application

	Time and Duration
	Date
	IlvDuration
	IlvTimeInterval

	The Gantt Data Model
	Class Overview
	Binding the Gantt Chart Beans to the Data Model
	Populating the Data Model

	The Gantt Beans
	Chart Visual Properties
	Expanding, Collapsing, and Hiding/Showing Rows
	Scrolling in the Gantt Sheet

	Displaying Gantt Data in the Gantt Sheet
	Gantt Sheet Architecture
	Describing the Gantt Sheet
	Activity Layouts

	Manipulating Gantt Data with the Gantt Sheet
	Selecting Activities and Constraints
	Moving Activity and Reservation Graphics
	Duplicating Reservation Graphics
	Resizing Activity and Reservation Graphics
	Interacting with the Gantt Sheet Using the Mouse

	Advanced Features
	The Custom Gantt Example
	Running the Custom Gantt Example
	Customization Overview

	Customizing the Gantt Data Model
	The CustomActivity Class
	Adding Property Events
	Creating CustomActivity Instances

	Customized Activity Rendering
	The Custom Activity Renderer Factory
	The Custom Activity Renderer Class

	Customized Table Columns
	Tree Column Icons
	The PriorityColumn Class
	Adding the Column to the Table

	Load-on-Demand
	Vertical Load-On-Demand
	Running the Database Gantt Example
	Understanding the Database Gantt Example

	Horizontal Load-On-Demand
	Running the Database Schedule Example
	Understanding the Database Schedule Example

	Schedule Data Serialization and Exchange�with SDXL
	Schedule Data Exchange Language Overview
	Scenarios of How SDXL Can Be Used
	Package For Reading and Writing SDXL
	SDXL Example

	Serializing Schedule Data
	Writing an IlvGanttModel to an SDXL File
	How to Read an IlvGanttModel from an SDXL File

	Customization of SDXL
	Overview of ilog.views.gantt.xml
	Customizing Readers and Writers

	Schedule Data Exchange Language Specification
	Activity Elements
	Resource Elements
	Constraint Elements
	Reservation Elements
	Schedule Element
	Property Element

	Styling
	Introduction to Styling
	Applying Styles
	Disabling Styling
	The Gantt and Schedule CSS Examples

	Styling the Gantt and Schedule Chart Components
	Styling the Gantt Data
	Styling Activities
	Styling Constraints

	The Gantt Printing Framework
	Introduction
	Simple Example
	Classes Involved
	IlvGanttPrintableDocument
	IlvGanttPrintingController
	IlvPrintableGanttSheet
	IlvPrintableTimeScale

	How it Works
	Handling Pages
	Populating a Page

	Example

	Thin-Client Support for Web Applications
	Gantt Thin-Client Web Architecture
	Getting Started With the Gantt Thin Client: An Example
	The Gantt Servlet Example
	Installing and Running the Gantt Servlet Example

	Developing the Server Side
	The Servlet Support Class
	Multi-Threading Issues on the Server Side
	The Servlet Class
	Summary

	Developing the Client Side
	Developing a Dynamic HTML Client
	The DHTML Client for the Gantt Servlet Example

	Adding Client/Server Interactions
	The Client Side
	The Server Side
	Actions that Modify Chart Capabilities

	The IlvGanttServlet and IlvGanttServletSupport Classes
	The Servlet Parameters
	Multiple Sessions

	Document Type Definition for SDXL
	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	getA
	getB
	getC
	getD
	getE
	getG
	getM
	getP
	getR
	getS
	getT
	getV
	H
	I
	IlvA
	IlvB
	IlvC
	IlvD
	IlvE
	IlvG
	IlvH
	IlvI
	IlvJ
	IlvM
	IlvO
	IlvP
	IlvR
	IlvS
	IlvT
	I (continued)
	J
	L
	M
	N
	O
	P
	R
	S
	setA
	setD
	setE
	setG
	setM
	setP
	setR
	setS
	setT
	setU
	setV
	S (continued)
	T
	U
	V
	W
	X
	Z

