

WicePlus
C Compiler
forforforfor EMEMEMEM78 Series78 Series78 Series78 Series

MicrocontrollersMicrocontrollersMicrocontrollersMicrocontrollers

USER’S GUIDE

ELAN MICROELECTRONICS CORP.
Mar 2007

Doc. Version 2.1

Trademark Acknowledgments

IBM is a registered trademark and PS/2 is a trademark of IBM.
Windows is a trademark of Microsoft Corporation.

ELAN and ELAN logo are trademarks of ELAN Microelectronics Corporation.

Copyright © 2007 by ELAN Microelectronics Corporation
All Rights Reserved
Printed in Taiwan

The contents of this User’s Guide (publication) are subject to change without further notice. ELAN
Microelectronics assumes no responsibility concerning the accuracy, adequacy, or completeness of this
publication. ELAN Microelectronics makes no commitment to update, or to keep current the information and
material contained in this publication. Such information and material may change to conform to each confirmed
order.

In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or
other inaccuracies in the information or material contained in this publication. ELAN Microelectronics shall not
be liable for direct, indirect, special incidental, or consequential damages arising from the use of such information
or material.

The software (WicePlus) described in this publication is furnished under a license or nondisclosure agreement,
and may be used or copied only in accordance with the terms of such agreement.

ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of
ELAN Microelectronics product in such applications is not supported and is prohibited.
NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY
ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.

ELAN MICROELECTRONICS CORPORATION

Headquarters:

No. 12, Innovation Road 1
Hsinchu Science Park
Hsinchu, Taiwan 30077
Tel: +886 3 563-9977
Fax: +886 3 563-9966
http://www.emc.com.tw

Hong Kong:

Elan (HK) Microelectronics
Corporation, Ltd.

Rm. 1005B, 10/F Empire Centre
68 Mody Road, Tsimshatsui
Kowloon , HONG KONG
Tel: +852 2723-3376
Fax: +852 2723-7780
elanhk@emc.com.hk

USA:

Elan Information
Technology Group

1821 Saratoga Ave., Suite 250
Saratoga, CA 95070
USA
Tel: +1 408 366-8223
Fax: +1 408 366-8220

Shenzhen:

Elan Microelectronics
Shenzhen, Ltd.

SSMEC Bldg., 3F, Gaoxin S. Ave.
Shenzhen Hi-Tech Industrial Park
Shenzhen, Guandong, CHINA
Tel: +86 755 2601-0565
Fax: +86 755 2601-0500

Shanghai:

Elan Microelectronics
Shanghai Corporation,
Ltd.

23/Bldg. #115 Lane 572, Bibo Road
Zhangjiang Hi-Tech Park
Shanghai, CHINA
Tel: +86 021 5080-3866
Fax: +86 021 5080-4600

EM55000Series IDS Reference Manual 3 Nov-00’

DEVELOPMENT NOTE

How do users control Tiny C complier inWicePlus2? Basic, New version Tiny C compiler
is almost the same with previous version. So, users can run the project built in these two
versions. But users have to pay attention to something differences in these two versions.

1. Uninstall WicePlus1.xxx . User have to remove the previous WicePlus version completely.
So, during uninstalling process, users have to choose remove option. After uninstalling, users
have to install WicePlus2. Out new C Compiler is involved in WicePlus2.

2. Delete system.inc and sysdef.inc in user’s project. For example users created a version 1
project prg1.c in the path of D:\develop\. So, there are two Tiny C compiler system files,
system.inc and sysdef.inc, in the same folder. Users have to delete these two files in the path of
D:\develop\.

3. Assign rpage , iopage, bank clearly. In version 1, rpage 0, iopage 0 and bank 0 can be omitted
if you want to declare a variable in these registers. But in version 2, users can’t ignore rpage 0,
iopage 0 and bank 0. Users must declare variable clearly in these “ 0 “ state. Although MCU
has just one rpage , iopage or bank, variables declared in these position must be assigned which
page or bank.

4. We provide a good efficient C compiler. Users can read converse table in page 57.

5. Compiler will dynamic to occupy general common register. Compiler will tell users which
common registers have to save and backup in interrupt service routine. Please reference to sec.
5.10.3.

We hope we provide an ideal tool for developing product. If you have any problems about C
compiler, please mail us with these IP:

myjian@emc.com.tw

 Contents

WicePlus C Compiler User’s Guide Contents •••• 1

Contents
1 Introduction 1

1.1 Overview..1

1.2 System Requirements...1
1.2.1 Host Computer ..1

1.3 Software Installation ..1

1.4 ANSI Compatibility ...1

2 WicePlus Inferface 2
2.1 Overview..2

2.2 WicePlus Sub-Windows...3
2.2.1 The “Project” Window..3
2.2.2 The “Editor” Window ...3
2.2.3 The “Special Register” Window ...4
2.2.4 The “General Registers (Bank)” Window...4
2.2.5 The “Watch” Window ...5
2.2.6 “Data RAM” Window...5
2.2.7 “LCD RAM” Window ..6
2.2.8 “Output” Window ...6

2.3 WicePlus Menu Bar and its Commands ..6
2.3.1 File Menu..7
2.3.2 Edit Menu..7
2.3.3 View Menu..9
2.3.4 Project Menu...9
2.3.5 Debug Menu..10
2.3.6 Tool Menu...11
2.3.7 Option Menu ...12
2.3.8 IDE Menu..12
2.3.9 Window Menu...12
2.3.10 Help Menu ..14

2.4 Toolbar ...14
2.4.1 Toolbar Icons and Functions...15

2.5 Document Bar ..16

2.6 Status Bar ...17

3 Getting Started 18
3.1 Hardware Power-up ...18
3.2 Starting the WicePlus Program..18

3.2.1 Connect Dialog ...18
3.2.2 Code Option Dialog ..19

Contents

2 •••• Contents WicePlus C Compiler User’s Guide

3.3 Create a New Project ...19

3.4 Add and Remove Source Files from/to Project...20

3.4.1 Create and Add a New Source File for the Project20
3.4.2 Add Existing Source Files to the New Project..22
3.4.3 Deleting Source Files from Project...23

3.5 Editing Source Files from Folder/Project..24
3.5.1 Open Source File from Folder for Editing..24
3.5.2 Open Source File from Project for Editing...24

3.6 Compile the Project ...25

3.7 Dumping the Compiled Program to ICE...26

3.8 Debugging a Project ..26

3.8.1 Breakpoints Setup ...27

4 C Fundamental Elements 28
4.1 Comments ..28

4.2 Reserved Words ...29

4.3 Preprocessor Directives ...30
4.3.1 #include...30
4.3.2 #define...31
4.3.3 #if, #else, #elif, #endif ..32
4.3.4 #ifdef, #ifndef ...32

4.4 Literal Constants ..33
4.4.1 Numeric Constant ...33
4.4.2 Character Constant..33
4.4.3 String Constant..34

4.5 Data Type ...35

4.6 Enumeration...35

4.7 Structure and Union ...36

4.8 Array ..37

4.9 Pointer ..37

4.10 Operators ..38
4.10.1 Types of Supported Operators ...38
4.10.2 Prefix of Operators...39

4.11 If-else Statement...40
4.12 Switch Statement..40

4.13 While Statement ...41

4.14 Do-while Statement..41

4.15 For Statement ...42

4.16 Break and Continue Statements ...42

4.17 Goto Statement...43

4.18 Function..43
4.18.1 Function Prototype...43

 Contents

WicePlus C Compiler User’s Guide Contents •••• 3

4.18.2 Function Definition..44

5 Hardware Related Programming 44
5.1 Register Page (rpage)...44
5.2 I/O Control Page (iopage)..45

5.3 Ram Bank...46

5.4 Bit Data Type ...47

5.5 Data/LCD RAM Indirect Addressing ..49

5.6 Allocating C Function to Program ROM...50

5.7 Putting Data in ROM ...51

5.8 Inline Assembler ..52
5.8.1 Reserved Word..52
5.8.2 Use of C Variable in the Inline Assembly...52

5.9 Using Macro...54
5.10 Interrupt Routine ..54

5.10.1 Interrupt Save Procedure..54
5.10.2 Interrupt Service Routine...54
5.10.3 Reserved Common Registers Operation..55

Contents

4 •••• Contents WicePlus C Compiler User’s Guide

Appendix

A Conversion Table 59

A-1 Conversion between C and Assembly Codes...59

B Frequently Asked Questions (FAQ) 68

User’s Guide Revision History

Doc. Version Revision Description Date

1.0 User’s Guide initial version 2005/07/27

 1.1 Add usage of long data to “Note” at section “4.5 Data type” 2005/08/31

1.2 Add Data type int and unsigned int 2006/07/27

2.0 Users have declare clearly in rpage 0, iopage 0 and bank 0 2006/02/12

2.1 1. Add “PAGE @0X0” in interrupt save subroutine

2. Write more detail about backup and restore instruction in example
and note, 5.10

3. Add inline assembly multiple instruction “MUL” for EM78569,
EM78367 and EM78369.

4. Optimized c=(a+b) << 1; unsigned int a, b, c.

5. Add note about using #include “xxx.c” , sec 4.3.

6. Illustrate Multiple- source- file programs, page 26

7. Compiler will dynamic to occupy general common register.
WicePlus will tell users which common registers 0x10~0x1F have
to be save and backup in interrupt service routine, sec 5.10.3

2006/03/27

 Chapter 2

WicePlus C Compiler User’s Guide Introduction •••• 1

Chapter 1

Introduction

1.1 Overview
The EM78 Series C Compiler is a supplementary language translator that
allows user to write his application in C language. User’s source code can then
be translated via this compiler into assembly source code to generate the binary
machine code.

NOTE

■ Please note that WicePlus can only be installed in the predefined directory
(C:\EMC\WicePlus). This restriction is to prevent user from assigning an installation
path that contains space char which may cause serious error while compilation.

■ The file path (.cpj , *.c or *.h) CAN’T contain space in it. I f there are spaces in the
path , error will occurred while compilation .

1.2 System Requirements

1.2.1 Host Computer
The EM78 Series C Compiler requires a host that meets the following
specifications:

� IBM PC (Pentium 100 or higher is recommended) or compatible computers
� Win2000, WinME, NT, or WinXP

� At least 10 MB (or more) free hard disk space

� At least 16MB of RAM. 32MB or more is recommended

� Mouse and USB connectors are highly recommended

1.3 Software Installation
The compiler is included in WicePlus, the EM78 Series Integrated
Development Environment (IDE). When installing WicePlus, the compiler will
also be installed.

1.4 ANSI Compatibility
Compliance with the ANSI standard is limited to free-standing C to
accommodate the unique design characteristics of the EM78 Series
microcontrollers.

Chapter 2

•••• WicePlus Interface WicePlus C Compiler User’s Guide 2

Chapter 2

WicePlus Interface

2.1 Overview
WicePlus is a project oriented integrated development environment (IDE)
system that is used to edit user application programs and generates
emulation/layout files for ELAN's EM78 series (8-bit) microcontrollers.

 Project Window Editor Window Special Registers Window

LCD RAM Window Watch Window

Fig. 2-1 WicePlus Main Window Layout

Data
RAM Window

Output Window

Menu Bar
Toolbar

Status Bar

Gen. Register
(Bank) Window

Document Bar

 Chapter 3

WicePlus C Compiler User’s Guide WicePlus Interface •••• 3

2.2 WicePlus Sub-Windows
The sub-window may be displayed or hidden by clicking on the pertinent
window commands from the View menu (see Section 4.3.3.3)

2.2.1 The “Project” Window

Fig. 2-2 Project Window

The Project window holds the Source,
Header, List, and Map files.

Where:
Source Files (*.c) – are the assembly source
files that are added into the current project.

Header Files (*.h)– are the reference files
required by source
program.

List Files (*.lst) – are the list files .

The Title Bar of the Project window shows your current microcontroller and
project filename.

2.2.2 The “Editor” Window

Fig. 2-3 Editor Window

The Editor window is a
multi- windowed editing tool
for creating, viewing, and
debugging source files.

The Editor ’s major features
are –

� Unlimited file size
� Multiple files can be

opened and displayed at
the same time

� Insert (overstrike) mode for editing

� Undo/Redo

Target
Microcontroller

Project Filename (*.cpj)

Chapter 3

•••• WicePlus Interface WicePlus C Compiler User’s Guide 4

Clipboard support (text can be cut, copied, moved, and pasted onto the
clipboard using a keystroke)

� Drag and drop text manipulation (highlighted text can be dragged and
dropped between any of the IDE windows)

2.2.3 The “Special Register” Window

The Special Register window shows
the updated contents of the registers
and I/O control register depending on
the MCU type

Fig. 2-4 Special Register Window

2.2.4 The “General Registers (Ram Bank)” Window

Fig. 2-5 General Registers (Ram Bank) Window

The General Registers (Ram Bank) window shows the updated contents of
the common ram bank registers.

When value
changes, it is
shown in red

 Chapter 3

WicePlus C Compiler User’s Guide WicePlus Interface •••• 5

2.2.5 The “Watch” Window

Fig. 2-6 Watch Window

In the Watch window, you can add variables that are declared in C. The Watch
window will show the defined C variable information, such as name, contents,
bank, and address.

The step to add a variable to watch window :

1. Reverse the variable . (in such case is “aa”)

2. Click right button of mouse , and a menu popup .

3. Select “Add to Watch” item

2.2.6 “Data RAM” Window

Fig. 2-7 Data RAM Window

The Data RAM window is accessible only if RAM is available form the target
microcontroller currently in use. The Data RAM window shows the contents
of the data RAM.

Chapter 3

•••• WicePlus Interface WicePlus C Compiler User’s Guide 6

2.2.7 “LCD RAM” Window

Fig. 2-8 LCD RAM Window

If supported by the target microcontroller in use, the LCD RAM window will
show the contents of the LCD RAM. “Cx” denotes LCD signal “COM x.”
“Sx” denotes LCD signal “Segment x.”

To modify the contents of the LCD RAM element, double click on the chosen
element (grid block). The color of the elements will change to pink (1) from no
color (0) and vise-versa. Any related messages will be shown in the Output
window.

2.2.8 “Output” Window

Fig. 2-9 Output Window

The Output window displays messages indicating the results (including errors)
of the project compiling just performed, such as assembler, linker, trace log
history, and debugging. The window consists of four tab sub-windows,
namely; Build , Information , Find in Files, and Message, where:

Build – displays assembler/linker related messages and trace logs. Double
click on the error message to link to the corresponding program text line where
the source of error occurs. The pertinent source file is automatically opened in
the Editor window if it is not currently active.

Information – displays debugging related ROM and RAM Bank memory
usage information.

Find in Files – allows you to find identical string (selected from an active file)
in other active or inactive files in your folder. Lines containing the identical
string will display on the Output window complete with its source filename
and directory.

Message – displays the debugging related changes to the LCD RAM window.

2.3 WicePlus Menu Bar and its Commands

 Chapter 3

WicePlus C Compiler User’s Guide WicePlus Interface •••• 7

Fig. 2-10 Menu Bar

2.3.1 File Menu

New… Create a new project or source
file

Open… Open an existing document or
project

Close Close the active document or
project

Save Save current active document

Save As Save current active document
with new filename

Save All Save all opened documents

Open/Save/Close
 Project

Open/Save/Close the active
project

Print Print active file

Print Preview Preview printed format of active
file

Print Setup… Define printer settings

Recent Files View the record of the recently
used file

Recent Projects View the record of the recently
used project

Fig. 2-11 File Menu

Exit Exit from WicePlus Program

2.3.2 Edit Menu

Undo Cancel the last editing action

Redo Repeat the last editing action

Cut/Copy/Paste Same as standard clipboard
function

Select ALL Select all contents of the active
window

Go to Line… Move cursor to the defined line
number within the active window

Find… Find the defined strings in the
active window

Find in Files Find the defined string in the active
and inactive files

Chapter 3

•••• WicePlus Interface WicePlus C Compiler User’s Guide 8

Undo Cancel the last editing action

Redo Repeat the last editing action

Cut/Copy/Paste Same as standard clipboard
function

Select ALL Select all contents of the active
window

Go to Line… Move cursor to the defined line
number within the active window

Find… Find the defined strings in the
active window

Find in Files Find the defined string in the active
and inactive files

Replace… Same as standard “find and
replace” editing functions

Bookmarks Bookmark the line at cursor
position

Index
Bookmarks

Clear all bookmarks or assign an
index value (0~9) to the bookmarks
in order to easily access (jump)
them using the “Go to Index
Bookmarks ” command below

Go to Index
Bookmarks

Jump to bookmark with “x” index
value

 Chapter 3

WicePlus C Compiler User’s Guide WicePlus Interface •••• 9

2.3.3 View Menu

Project Show/hide Project window

Special Registers Show/hide Special Register
window

General Registers
(Bank)

Show/hide General Register
(Bank) window

Data RAM Show/hide Data RAM
window (if supported by the
target chip)

LCD Data Show/hide LCD Data
window (if supported by the
target chip)

Output Show/hide Output window
Fig. 2-13 View Menu

 Watch Show/hide Watch window

Assembly Code Show/hide Assembly Code in/from Editor window

Toolbars Show/hide Standard, Build, or both toolbars

Status Bar Show/hide Status bar

Document Bar Show/hide Document bar

2.3.4 Project Menu

New… Create a new project

Open Open an existing project

Save Save the active project
together with all related files

Close Close the active Project
window

Add Files to
Project…

Add the existing source file
into project

Delete Files from
Project…

Remove source file from
project

Fig.2-14 Project Menu
Compile Compile the active file in the

Editor window

Rebuild All Compile all files

Dump to ICE Dump the program code to ICE

Chapter 3

•••• WicePlus Interface WicePlus C Compiler User’s Guide 10

2.3.5 Debug Menu

Go Run program starting from the
current program counter until a
breakpoint is matched

Free Run Run program starting from the
current program counter until
the OK button of the “Stop
Running” dialog is clicked

Reset Perform ICE reset (register
contents are displayed with
initial values)

Step Into Execute instructions step-by
-step (with register contents
updated simultaneously)

Fig.2-15 Debug Menu

Step Over Execute instructions as “Step
Into” (see above), but the CALL
instruction will execute as “step
over”

Go to Cursor Run program starting from the current program
counter up to the location where the cursor is
anchored (applies to ICE debug mode only)

Continue step into Execute instructions as “Step Into” but
continuously. Users can see the change of
registers. It is not the same as Go.

Run from Select Line

Run program starting from the line where the
cursor is.

Stop Stop running status

Toggle Breakpoint Set or remove a breakpoint

Show All Breakpoints Show all breakpoints set-up data in the Output
window

Clear All Breakpoints Clear all breakpoints

 Chapter 3

WicePlus C Compiler User’s Guide WicePlus Interface •••• 11

2.3.6 Tool Menu

Connect Define printer port
connection with ICE (default
is 378H)

Check ICE
Memory

Check available memory
from ICE

Fig. 2-16 Tool Menu

Get Checksum
from Project

Obtain checksum from the
compiled program

Get Code=1FFF size Obtain the occupied program rom size and
empty size

Compute Execution Time Compute the execution time
between two breakpoints.

Chapter 3

•••• WicePlus Interface WicePlus C Compiler User’s Guide 12

2.3.7 Option Menu

ICE Code Setting Set code option for the
selected microcontroller

Variable Radix Select between decimal or
hex option

Font… Define font for Editor
windows (fonts for other
windows are fixed)

Environment Setting To set WicePlus environment
variable, for example,
whether list file is created or
not, whether map file is
created or not and the number
of editor window.

Fig. 2-17 Option Menu

Debug Option Setting To set debugger variables
options

View Setting GUI view setting, such as
column on and off in Editor.

2.3.8 IDE Menu

C Select C language editing

Fig. 2-18 IDE Menu

Assembly Select Assembly language
editing

2.3.9 Window Menu
New Window Open a new (or split) Editor

window

Cascade Rearrange all Editor window
active files so that they appear
overlapping in sequence with
their respective title bar fully
visible

 Chapter 3

WicePlus C Compiler User’s Guide WicePlus Interface •••• 13

New Window Open a new (or split) Editor
window

Cascade Rearrange all Editor window
active files so that they appear
overlapping in sequence with Tile Vertical Rearrange all opened Editor
windows vertically

Tile Horizontal Rearrange all opened Editor
windows horizontally

Arrange Icons Arrange all opened file filenames in a single line
formation (minimized into multiple file icons) at the
bottom of the Editor window.

NOTE
This command is effective only after clicking the
Minimized button () at the right end of the WicePlus
window Menu bar.

Close All Close all opened files

Chapter 3

•••• WicePlus Interface WicePlus C Compiler User’s Guide 14

2.3.10 Help Menu

User’s Manual Open the WicePlus User’s
Manual .

Fig. 2-20a Help Menu

About… Shows the current version of
WicePlus program and other
information including a “read
me” file on recent changes of
the WicePlus

Fig. 2-20b About Dialog

2.4 Toolbar

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Fig. 2-21a WicePlus Main Window (Standard) Toolbar

 20 21 22 23 24 25 26 27 28 29 30 31 32

Fig. 2-21b WicePlus Main Window (Build) Toolbar

 Chapter 3

WicePlus C Compiler User’s Guide WicePlus Interface •••• 15

2.4.1 Toolbar Icons and Functions

Corresponding hot key is enclosed in parenthesis:

1

Open: open an existing file (Ctrl + O)

2

Save: save current active document (Ctrl + S)

3

Cut: remove the selected string to clipboard (Shift + Del)

4

Copy: copy the selected string to clipboard (Ctrl + C)

5

Paste: paste the string from clipboard (Ctrl + V)

6

Undo: cancel the last editing action (Alt + Backspace)

7

Redo: cancel the last “undo” (restore the “undone” editing
 action)

8

Open/Hide Workspace: display/hide toggle for Project window

9

Open/Hide Output: display/hide toggle for Output window

10

Find: find string from within entire active file (Ctrl + F)

11

Find Down: find string from cursor position toward the end of file

12
Find Up: find string from cursor position toward the beginning of

file

13

Find from Files: find string from inactive files

14

Bookmark: bookmark the line at cursor position

15

Jump Down to Bookmark: jump to next bookmark from cursor
position toward the end of file

16

Jump Up to Bookmark: jump to next bookmark from cursor
position toward the beginning of file

17

Clear Bookmarks: clear all bookmarks

18

Print: print the active file (Ctrl + P)

19

About: about compiler version and other information

20

Compile: compile the active file in the Editor window (Alt + F7)

21

Rebuild All: compile all files in the project (Alt + F9)

Chapter 3

•••• WicePlus Interface WicePlus C Compiler User’s Guide 16

22

Free Run: auto dump and execute program with the breakpoints
 ignored (F10)

23

Go: auto dump and execute program with the effect of the
 breakpoints (F5)

24

Run to Cursor: auto dump and execute program, then stop at the
 cursor position while ignoring the breakpoint (F4)

25

Step Over: auto dump and execute program step by step
 excluding the subroutines (F8)

26

Step Into: auto dump and execute program step by step
 including subroutines (F7)

27

Reset: reset the ICE (F6)

28

Insert/Remove Breakpoint: insert/remove toggle for breakpoints

29

Remove All Breakpoints: remove all breakpoints

30

Stop: stop running

2.5 Document Bar

Fig. 2-22 WicePlus Main Window Document Bar

The Document bar displays the file icons representing each of the opened files
in the Editor window. Click the icon of the pertinent file that you wish to
activate (place in front of the Editor window to perform editing). Highlighted
filename is the active file (function is similar with taskbar buttons under
Windows).

Active file

 Chapter 3

WicePlus C Compiler User’s Guide WicePlus Interface •••• 17

2.6 Status Bar

A WicePlus running indicator will be shown in the Status bar while your
project is being compiled.

The Cursor position indicates the cursor location within the text Editor
window.

R/W flag indicates the active file Read/Write status. If Read only, “Read” will
display, otherwise the field is empty.

Keyboard mode displays the status of the following keyboard keys:

� Insert key – OVR is dimmed when overtype mode is off, highlighted
when on.

� Caps Lock key – CAP is dimmed when uppercase character mode is off,
highlighted when on.

� Num Lock key – NUM is dimmed when the numeric keypad calculator
mode is off, highlighted when on.

� Scroll Lock key – SCRL is dimmed when cursor control mode is off,
highlighted when on.

ICEeSA running indicator

Cursor position

Text file OS format

Keyboard mode

R/W flag

Chapter 3

18•••• Getting Started WicePlus C Compiler User’s Guide

Chapter 3
Getting Started

3.1 Hardware Power-up
With the E8-ICE properly connected to target board, PC, and power source,
switch on ICE power and observe its red power LED lights up. If the target
board derives its power from ICE, the yellow LED lights up as well.

Then launch your WicePlus IDE software when ICE and target board power-up
is confirmed to function normally.

3.2 Starting the WicePlusPLUS Program
To start WicePlus Program, click on the WicePlus icon from desktop or from
Windows Start menu. When starting from the Start menu, click Programs, then
look for WicePlus group and click on WicePlus icon.

3.2.1 Connect Dialog

Once the program is started, the main window of the program will initially
display the Connect dialog to prompt you to set the proper connection between
your existing target microcontroller and printer port (default is 378H).

You may also enable the “Check ICE Memory” check box to check the
condition of the ICE memory. “I/O Wait Time” depicts the I/O response speed.
Increase the value for slower speed and decrease for faster speed.

Click OK button when done.

Fig. 3-1 WicePlus Program Connect Dialog

Enable to check ICE
memory condition

Select MCU

Port address
setup

Printer port
speed

 Chapter 3

WicePlus C Compiler User’s Guide Getting Started •••• 19

3.2.2 Code Option Dialog

Fig. 3-2 WicePlus Program Code Dialog

The Code Option dialog is displayed next. Check all items to confirm the
actual status of the ICE and make appropriate changes as required. Then click
OK button.

3.3 Create a New Project
To create a new project, you need to configure your
project with the following steps:
1. From the Menu bar click on File or Project

menu and choose New command from the
resulting pull-down menu.

2. The New dialog (shown below) will then display if
you have clicked the New command from the File
menu. Otherwise, New Project dialog will display
(Fig. 3-5) if the New command is derived from
Project menu.

Fig. 3-5 “New” Dialog Showing Project Tab for Creating New Project
 (Derived from File Menu)

Fig. 3-4 “Project” Menu

6

3

4

7

Fig. 3-3 “File” Menu

5

Chapter 3

20•••• Getting Started WicePlus C Compiler User’s Guide

3. Select Projects tab from the NEW dialog

4. Assign a name for the new project in the Project Name box (suffix .prj will
auto-append to the filename).

5. Locate the folder where you want to store the new project. You may use the
Browse icon to find the appropriate folder.

6. Select the target microcontroller for your project from the Micro
Controller list box.

7. Click OK button after confirming all your choices and inputs.

The new project is created with the defined project name and microcontroller
you have selected is displayed on top of the Project window.

Fig. 3-6 “Project” Window

3.4 Add and Remove Source Files from/to Project
You can either insert existing source files into the new or existing project, or
create new ones with WicePlus text Editor and insert them into the project.

3.4.1 Create and Add a New Source File for the Proj ect

If your source file is yet to be created, you can take advantage of the New dialog
(by clicking New command from the File menu) to create your new source file
and use the WicePlus text editor to compose its content.

Target
Microcontroller Project

Filename (*.cpj)

 Chapter 3

WicePlus C Compiler User’s Guide Getting Started •••• 21

1. Click the File tab of the NEW dialog and select the type of source file you
want to create from the EMC Source File list box, i.e., *.c (default) for
assembly file; *.h for header file.

Fig. 3-7 “New” Dialog Showing Project Tab for Creating a New Source File

2. Check Add to Project check box (default) if you want to automatically add
the new file into your project. Otherwise clear the check box.

3. Assign a filename for the new source file in the File Name box.

4. Locate the folder where you want to store the new source file in your disk.
You may use the Browse icon to find the appropriate folder.

5. Click OK button after confirming your inputs. You will be prompted to
start writing the newly defined source file in the Editor window.

4

2

3

1

5

Chapter 3

22•••• Getting Started WicePlus C Compiler User’s Guide

3.4.2 Add Existing Source Files to the New Project

If your source file is ready, you can immediately insert it into your new project.

1. From the Menu bar, click on Project menu. Choose Add Files to Project
command from the resulting pull-down menu, and then the Open dialog is
displayed.

 Fig. 3-8b “Open” Dialog

2. Browse and select the file (or multiple files) you intend to insert into the
new project.

3. Click OK button after confirming your choice.

Fig. 3-8a “Add Files to Project”
 Command

 Chapter 3

WicePlus C Compiler User’s Guide Getting Started •••• 23

3.4.3 Deleting Source Files from Project

Fig. 3-9a Deleting Project Files Directly from

 “Project” Window

1. From the Project window, select the
file(s) you wish to delete. Then press the
Delete key from your keyboard.

2. You may also click on the
Delete Files from Project…
command from the Project
pull-down menu to delete files
from project.

Fig. 3-9b Deleting Project Files from
“Project”menu.

Chapter 3

24•••• Getting Started WicePlus C Compiler User’s Guide

3.5 Editing Source Files from Folder/Project

3.5.1 Open Source File from Folder for Editing

You can also open an existing source file in the
Editor window for a last minute editing before
adding it into the new project. To do this–

1. From the Menu bar click on File or Project
menu, choose Open command from the
resulting pull-down menu.

2. From the resulting Open dialog (Fig. 3.8b
above) click on the source file and the file is
automatically opened in the Editor window.

To edit source files that are already added into the
Project, see next Section.

3.5.2 Open Source File from Project for Editing

You can edit source files that are already inserted in the project. To do so,
double click the source file you wish to edit from the Project window and the
file will open in the Editor window.

Fig. 3-11 Editing Source File Directly from “Project” window.

Source file
opened for editing

Double click to
open & edit file

Fig. 3-10 Open &Edit Source
 File from “File“ Menu

 Chapter 3

WicePlus C Compiler User’s Guide Getting Started •••• 25

3.6 Compile the Project
With your source file(s) embedded into the
project, you are now ready to compile your
project using the following commands from
Project menu.

� Click Compile command to compile the active
file only (generates *.asm).

� Click Rebuild All command to compile all files in

the project regardless of whether they were

modified or not.

Rebuild All will generate objective (*.bbj) file, list (*.lst) file, binary (*.cds) file.

The compiled files are automatically saved in the same folder where your other
source files are located. Status of the assembly operation can be monitored
from the Output window as shown below.

Fig. 3-13 Output Window Showing Successful Compilation

If error is detected during compilation, pertinent error message will also display
in the Output window with Build tag. Double click on the error message to
link to the source of error (text line) in the corresponding source file displayed
in the Editor window. If the corresponding source file is not currently opened,
it will open automatically.

Double click to
link to the

source of error

Fig. 3-12 Assemble & Link
 Commands

Chapter 3

26•••• Getting Started WicePlus C Compiler User’s Guide

Fig. 3-14 Output Window Showing Compilation Errors

Modify source files to correct the errors and repeat assembling and linking
operations.

3.7 Dumping the Compiled Program
to ICE

With the source files deprived of its errors and
successfully compiled, download your compiled
program to ICE using the Dump to ICE command
from Project drop-down menu or its
corresponding shortcut key (F3).

 Fig. 3-15 “Dump to ICE” Command

3.8 Debugging a Project
With the compiled program successfully
downloaded to ICE, you are now ready to debug
the files. Be sure the ICE is properly connected
to your computer.

Full debugging commands are available from the
Debug Menu (shown with its corresponding
shortcut keys in the drop-down menu at right). A
number of the frequently used debugging icons
are also available from the WicePlus Program
Toolbar.

 Fig. 3-16a Toolbar for Debugging Commands

Toggle Breakpoint – Click with cursor positioned on the line where a breakpoint is
going to be set or removed.

Clear All Breakpoints – Remove all already set breakpoints.

F5

Go – Run program starting from the current program
counter until breakpoint is matched and breakpoint
address is executed.

F6

Reset – Perform hardware reset (register contents are displayed with initial values). ICE will
return to its initial condition.

Fig. 3-16b Debugging Commands
 Drop-Down Menu

 Chapter 3

WicePlus C Compiler User’s Guide Getting Started •••• 27

F7

Step Into – Execute instructions step-by-step (with register contents updated at the same
time).

F8

Step Over – Same as “Step Into” command (see above), but the CALL instruction is
executed as “Go” command.

F10

Free Run – Run program starting from the current program counter until the “Stop” button
of the “Stop Running” dialog is clicked. All defined breakpoints are ignored while the
program is running.

Stop – Stop running

During debugging, the contents of Program Counter, Registers, and RAMs are
read and displayed each time the program is stopped to provide important
interim information during program debugging.

3.8.1 Breakpoints Setting

To assign a breakpoint,
position cursor on the line
where a breakpoint is going to
be set, then double click.
Observe the line highlighted in
brown.

You can also click on the
Insert/ Remove Breakpoint
icon (hand shape) on the
toolbar to set a breakpoint.

Fig. 3-17 Active Source File with a Defined Breakpoint

Likewise, the defined breakpoint is cleared if you double click on it again, or the
hand icon is clicked the second time while the cursor positioned on the defined
breakpoint. To clear all existing breakpoints, click Clear All Breakpoints
command from Debug menu.

Breakpoints

Chapter 4

28 •••• C Fundamental Elements WicePlus C Compiler User’s Guide

Chapter 4

C Fundamental
Elements

4.1 Comments
For a single line comment:

// All data in the line after the comment symbol (twin-slash mark)
will be ignored.

For Multi line comments:

/* … */ All data in the line located within the comment symbols (slash
mark + asterisk) will be ignored.

Comments are used to help you understand the program code. It can be placed
anywhere in the source program. The compiler will ignore the comment part
from the source code, thus no extra memory is required in the program
execution.

Example:

// This is a single line comment

/*

This is the comment line 1

This is the comment line 2 */

 Chapter 4

WicePlus C Compiler User’s Guide C Fundamental Elements •••• 29

4.2 Reserved Words
The reserved words for WicePlus C Compiler are made up of both the ANSI C
conformity reserved words and the EM78 Series unique reserved words. The
following table summarizes all the applicable reserved words for this compiler.

ANSI C Conformity Words

const default goto switch typedef sizeof

break do if short union extern

case else int signed unsigned

char enum long static void

continue for return struct while

EM78 Series Unique Words

indir ind page on off

io iopage _intcall rpage

low_int _asm bit bank

NOTE

■ Double and float are NOT supported by the EM78 Series C Compiler.

■ _asm is added for the EM78 series C compiler.

■ indir, ind, io, iopage, rpage are for MCU hardware definition and declaration.

Chapter 4

30 •••• C Fundamental Elements WicePlus C Compiler User’s Guide

4.3 Preprocessor Directives
Preprocessor directives always begin with a pound sign (#). The directives are
recognized and interpreted by the preprocessor in order to compile the source
code properly.

4.3.1 #include

#include “file_name”:

#include <file_name>:

The preprocessor will search the working
directory to find the file.

The preprocessor will search through the
working directory first to look for the file. If
the file cannot be found in the working
directory, it will search the file from the
directory specified by the environment
variable EMC_INCLUDE.

#include tells the preprocessor to add the contents of a header file into the
source program.

NOTE

■ We don’t suggest users to include c file. Maybe compiler will meet errors it users
include c file.

■ Suppose that uaa is declared global, unsigned int (unsigned int uaa) variable in
headfile.h. Now uaa is used in testcode.c. If you want to use uaa in kkdr.c, first you
have to declare extern unsigned int uaa before you use it in kkdr.c file. The same
way to use in the third or more others c source file that are included in the same
project.

Example 1:
#include <EM78.h>
#include “project.h”
#include “ad.c” // It may meet errors.

Example 2:
unsigned int uaa; //in headfile.h
…
main () //in testcode.c file
{
 uaa=0x21;
…
}

extern unsigned int uaa; //in kkdr.c file
void ()
{

 Chapter 4

WicePlus C Compiler User’s Guide C Fundamental Elements •••• 31

 uaa=0x38;
….
 Uaa=0x43;
}

void ()
{
 uaa=0x29;
}

4.3.2 #define

#define identifier
#define identifier token_list
#define identifier (parameter_list) token_list
#define identifier() token_list

The #define directive is used to define a string constant which will be
substituted into source code by the preprocessor. It makes the source program
more legible.

NOTE

Multi-line macro definition should be cascaded with a backslash (\) in between the
lines. When using assembly code in macro, use ONLY one instruction in a line.

Example:
#define MAXVAUE 10
#define sqr2(x, y) x * x + y * y

Chapter 4

32 •••• C Fundamental Elements WicePlus C Compiler User’s Guide

4.3.3 #if, #else, #elif, #endif

#if constant_expression
#else
#elif constant_expression
#endif

The #if directive is used for conditional compilation. It should be terminated by
#endif. #else can be used to provide an alternative compilation. If necessary,
the program can use #elif for an alternative compilation which should only be
used for valid expressions.

Example:

#define RAM 30
#if (RAM < 10)
 #define MAXVALUE 0
#elif (RAM < 30)
 #define MAXVALUE 10
#else
 #define MAXVALUE 30
#endif

4.3.4 #ifdef, #ifndef
#ifdef identifier
#ifndef identifier

The #ifdef directive is used for conditional compilation of definitions for the
identifier. The #ifndef directive is used when conditionally compiling codes
with the specified symbol not defined. Both these two directives must be
terminated by #endif and can be optionally used with #else.

Example:

#define DEBUG 1
#ifdef (DEBUG)
 #define MAXVALUE 10
#else
 #define MAXVALUE 1000
#endif

 Chapter 4

WicePlus C Compiler User’s Guide C Fundamental Elements •••• 33

4.4 Literal Constants

4.4.1 Numeric Constant

Decimal:

Hexadecimal constant:
Default
Digit prefix with “0x”

Numeric constants can be presented in decimal and hexadecimal, depending on
the prefix modifier. Binary and octonary numerics are not supported.

Example:
12, 34 // Decimal
0x5A, 0xB2 // Hexadecimal

4.4.2 Character Constant

‘character’

Character constants are denoted by a single character enclosed by single quotes.
ANSI C Escape Sequences as shown below are treated as a single character.

ANSI C Escape Sequence

Escape Character Meaning Hexadecimal

\0 Null 00

\a Bell (Alert) 07

\b Backspace 08

\f Form Feed 0C

\n New Line 0A

\r Carriage Return 0D

\t Horizontal Tab 09

\v Vertical Tab 0B

\\ Backslash 5C

\? Question Mark 3F

\’ Single Quote 27

\” Double Quote 22

Example:

‘a’, ‘b’,’c’, /x00

Chapter 4

34 •••• C Fundamental Elements WicePlus C Compiler User’s Guide

4.4.3 String Constant

“character_list”

String constants are series of characters enclosed in double quotes, and which
have an implied null value (‘\0’) after the last character.

NOTE

It takes one more character space for constant string to store the null value.

Example:
“Hello World”
“Elan Micro”

4.5 Data Type
The size and range (maximum and minimum values) of the basic data type are
as shown below.

Type Range Storage Size (Byte)

void N/A None

(signed) char –128 ~ 127 1

unsigned char 0 ~ 255 1

(signed) int -128 ~ 127 1

unsigned int 0 ~ 255 1

(signed) short –32768 ~ 32767 2

unsigned short 0 ~ 65535 2

(signed) long –2147483648 ~ 2147483647 4

unsigned long 0 ~ 4294967295 4

bit 0 ~ 1 1 (Bit)

NOTE

1. Floating and Double types are not supported.

2. See Section 5.4 of Chapter 5for more details on “Bit Data Type.”

3. If user use long data type for multiplication,division,modulus,compare operation ,

 0x20 ~ 0x24 (5 bytes) of bank 0 are occupied by compiler. Therefore , don’t assign
these address to any variable when you do those operations.

When an arithmetic operator, such as, “*”, “/”, and “%” is used with different
data types, conversion of right-aligned variables to left-aligned data type is done
before the operator takes effect. We suggest users use the same data type to
develop program.

 Chapter 4

WicePlus C Compiler User’s Guide C Fundamental Elements •••• 35

Example:
Int I1, I2;
Short S1, S2, S3;
Long L1, L2;
I1 = 0x11;
I2 = 0x22;

S1 = I1 * I2; ���� change to S1 = (short) I1 * (short) I2;
 // If forgot to add “(short)” before I1 and I2, th e final

// result (in S1) will be 1 byte only

S1 = 0x1111;
S2 = 0x02;

L1 = S1 / S2; ���� change to L1 = (long) S1 * (long) S2;
 // If forgot to add “(long)” before S1 and S2, the final

// result (in L1) will be 2 bytes only.

4.6 Enumeration
enum identifier
enum idenftifier {enumeration-list [=int_value]...}
enum {enumeration-list}

Enumeration defines a series of named integer constants. With the definition,
the integer constants are grouped together with a valid name. For each name
enumerated, you can specify a distinct value.

Example:
enum tagLedGroup {LedOff, LedOn} LEDStatus;

Chapter 4

36 •••• C Fundamental Elements WicePlus C Compiler User’s Guide

4.7 Structure and Union
struct (union)-type-name:
struct (union) identifier
struct (union) identifier {member-declaration-list}
struct (union) member-declaration-list

member-declaration-list:
member-declaration
member-declaration-list member-declaration

member-declaration:
member-declaration-specifiers declaration-list

member-declaration-specifiers:
member-declaration-specifier
member-declaration-specifiers member-declaration-sp ecifier

The structure groups related data and each data in the structure can be accessed
through a common name. Unions are groups of variables that share the same
memory space.

NOTE

■ Do not use bit data type in structure and union, in stead, use bit field.

■ Structure and union cannot be used in function parameter.

Example 1:
struct st
{
 unsigned int b0:1;
 unsigned int b1:1;
 unsigned int b2:1;
 unsigned int b3:1;
 unsigned int b4:1;
 unsigned int b5:1;
 unsigned int b6:1;
 unsigned int b7:1;
};
struct st R5@0x05 ; //struct R5 is related to 0x05

Example 2:
struct tagSpeechInfo{
 short rate;
 long size;
} SpeechInfo;

union tagTest{
 char Test[2];
 long RWport;
} Test;

 Chapter 4

WicePlus C Compiler User’s Guide C Fundamental Elements •••• 37

4.8 Array
declarator:
 array-declarator:

array-declarator
 [constant-expression]

array-declarator [constant-expression]

Array is a collection of same type data and can be accessed with the same name.

NOTE

■ If “const” is used to declare an array, the data will be placed at the program ROM.

■ The maximum size of an array is 32 bytes (RAM bank).

Example:
int array1 [3] [10]
char port [4]
const int myarr [2] = {0x11, 0x22};
 // 0x11, 0x22 will be put at program rom

4.9 Pointer
declarator

type-qualifier-list * declarator

A pointer is an index which holds the location of another data or a NULL
constant. All types of pointer occupy 1 byte.

NOTE

Function pointer is not supported.

Example:
int *pt;

Chapter 4

38 •••• C Fundamental Elements WicePlus C Compiler User’s Guide

4.10 Operators

4.10.1 Types of Supported Operators

The supported operators for the C expression are as follows:

� Arithmetic operators
� Increment and decrement operators
� Assignment operators
� Logical operators
� Bitwise operators
� Equality and relational operators
� Compound assignment operators

The table below shows the detailed description of each of the operators:

Arithmetic Operators

Symbol Function Expression

+ addition expr1 + expr2

– subtraction expr1 – expr2

* multiplication expr1 * expr2

/ division expr1 / expr2

% modulo expr1 % expr2

Increment Operators

Symbol Function Expression

++ increase by 1 expr ++

-- decrease by 1 expr --

Assignment Operators

Symbol Function Expression

= equal expr1 = expr2

Bitwise Operators

Symbol Function Expression

& bitwise AND expr1 & epxr2

| bitwise OR expr1 | expr2

~ bitwise NOT ~expr

>> right shift expr1 >> expr2

<< left shift expr1 << expr2

 ^ bitwise XOR expr1^expr2

 Chapter 4

WicePlus C Compiler User’s Guide C Fundamental Elements •••• 39

Equality, Relational, and Logical Operators

Symbol Function Expression Example

< Less than expr < expr x < y

<= Less than or equal expr <= expr x <= y

> Greater than expr > expr x > y

>= Greater than or equal expr >= expr x >= y

== Equality expr == expr x == y

!= Inequality expr != expr x != y

&& Logic AND expr && expr x && y

|| Logic OR expr || expr x || y

! Logic NOT !expr !x

Compound Assignment Operators

Symbol Function Example

+= y=y + x x += y

-= y = y - x x -= y

<<= y = y << x y<<=x

>>= y= y >> x y>>=x

&= y= y & x y&=x

^= y= y ^ x y^=x

|= y= y | x y |= x

4.10.2 Prefix of Operators
Priority Same Level Operators, from Left To Right

Highest () [] - > .
 ! ~ ++ -- -(unary) +(unary) (type_cast) *(indirection) & (address) sizeof

 * / %

 + -

 << >>

 < <= > >=

 == !=

 &

 ^

 |

 &&

 ||

 ?:

 = += -= *= /= %= >>= <<= &= |= ^=

Lowest ,

Chapter 4

40 •••• C Fundamental Elements WicePlus C Compiler User’s Guide

4.11 If-else Statement
if (expression) statement

else statement

“If” statement executes the block of codes associated with it when the evaluated
condition is true. It is optional to have an “else” block which will be executed
when the evaluated condition is false.

Example:
if (flag == 1)
{
 timeout=1;
 flag=0;
}
else timeout=0;

4.12 Switch Statement
switch (expression)
{
 case const-expr: statements
 case const-expr: statements
 default: statements
}

“Switch” statement is flexible to be set with multiple branches depending on a
single evaluated value.

NOTE

The expression will be checked as INT type, thus only 256 cases can be used in a
switch.

Example:
switch (I)
{
 case 0: function0(); break;
 case 1: function1(); break;
 case 2: function2(); break;
 default: funerror();
}

 Chapter 4

WicePlus C Compiler User’s Guide C Fundamental Elements •••• 41

4.13 While Statement
while (expression) statement

“While” statement will check the expression first, if the expression is true it will
then execute the statement.

Example:

while (value != 0)
{
 value--;
 count++;
}

4.14 Do-while Statement
do
{
 statement
} while (expression);

“Do-while” will first execute the statement and then check the expression. If
the expression remains true, then it proceeds to the statement until the
expression becomes FALSE.

Example:

do {
 value --;
 count++;
} while (value != 0);

Chapter 4

42 •••• C Fundamental Elements WicePlus C Compiler User’s Guide

4.15 For Statement
for (expr1; expr2; expr3) statement;

“For” statement is equivalent to the following statement:

expr1;
while (expr2)
{
 statement;
 expr3;
}

“expr1” is executed first. Normally “expr1” will be the initial condition.
“While” statement is executed in the same manner.

Example:
for (i = 0; i < 10; i++)
{
 value = value + i;
}

4.16 Break and Continue Statements
break;
continue;

The “break” statement exits from the innermost loop or switch block. The
“continue” statement on the other hand will skip the remaining part of the loop
and jump to the next iteration of the loop. “Continue” is useful in loop
statements but it cannot be used in switch loops.

Example:
break exampl see switch.

for (i = 0; i < 10; i++)
{
 flag = indata(port);
 if (flag == 0) continue;
 outdata(port);
}

 Chapter 4

WicePlus C Compiler User’s Guide C Fundamental Elements •••• 43

4.17 Goto Statement
goto label;
 …
label: …

“goto” statement is used to jump to any place of a function. It is useful to skip
from a deep loop.

Example:
for (i = 0; i < 10; i++)
 for (j = 0; j < 100; j++)
 for (k = 0; k < 100; k++)
 {
 flag = crccheck(buffer);
 if (flag != 0) goto error;
 outbuf(buffer);
 }
error:
 //clear up buffer;

4.18 Function
Function is the basic block of the C language. It includes function prototype
and function definition.

4.18.1 Function Prototype

<return_type> < function_name> (<parameter_list>);

A “function prototype” should be declared before the function can be called. It
contains the return value, function name, and parameter types.

NOTE

■ The total parameters passed to a function should be a fixed number. The
compiler does not support uncertain parameter_list.

■ Recursive functions are not supported in the compiler.

■ Do not use “struct” or “union” as the parameter for function.

■ Function pointer is not supported.

■ Bit data type cannot be used as a return value.

■ For reduced ram bank wastage ,We suggest users using global variable in function
instead of using argument.

Example (Function Prototype):
unsigned char sum(unsigned char a,unsigned char b);
…

Chapter 4

44 •••• C Fundamental Elements WicePlus C Compiler User’s Guide

4.18.2 Function Definition
<return_type> < function_name> (<parameter_list>)
{
 statements
}

Example (Function Content):
unsigned char sum(unsigned char a,unsigned char b)
{
 return (a+b);
}

Chapter 5

WicePlus C Compiler User’s Guide C Fundamental Elements •••• 44

Chapter 5

Hardware Related
Programming

5.1 Register Page (rpage)
<variable name> @<address>[: rpage <register page number >];

The data type is used to declare a variable at a certain register page. Users have
to declare clearly which register page is, including rpage 0.

NOTE

■ If a variable is declared as “rpage,” it cannot be declared as “bank,” “iopage,” or ”indir”
at the same time.

■ Only global variable can be declared as “rpage” data type.

■ Although an MCU just has rpage 0 , but <register page number> must be assigned.

Example:
unsigned int myReg1 @0x03: rpage 0;
 // myReg1 is at address 0x03 of register page 0
 // Although the specific register only have one re gister

//page,the register page number cannot be ignored.

unsigned int myReg2 @0x05: rpage 1;
 // myTest is at address 0x05 of register page 1
 // If the specific register have more than one reg ister
 // page, user should point out in which register p age the
 // variable is located.

struct st
{
 unsigned int b0:1;
 unsigned int b1:1;
 unsigned int b2:1;
 unsigned int b3:1;
 unsigned int b4:1;
 unsigned int b5:1;
 unsigned int b6:1;
 unsigned int b7:1;
};
struct st myReg3@0x06: rpage 0;

 Chapter 5

WicePlus C Compiler User’s Guide Hardware Related Pro gramming •••• 45

CONT
R0(A, V)
R1/TCC

R2/PC
R3
R4

R5
R6
R7
R8
R9
RA
RB
RC
RD
RE
RF

myReg2 IOC5
IOC6
IOC7
IOC8
IOC9
IOCA
IOCB
IOCC
IOCD
IOCE
IOCF

rpage 0 rpage 1 ... iopage 0 ioage 1 ...

myReg3

myReg1

5.2 I/O Control Page (iopage)
io <variable name> [@<address>[: iopage <io contro l page number>]];

Declare the variable at the register page it is located. Users have to declare
clearly that the io variable is located at which iopage, though there is only one io
control page.

NOTE

■ If a variable is declared as “iopage,” it cannot be declared as “bank,” ”rpage,” or ”IND”
at the same time.

■ Only global variable can be declared as “iopage” data type.

■ Although an MCU just has iopage 0 , but <io control page number > must be assigned.

Example:
io unsigned int myIOC1 @0x05: iopage 0;
 // myIOC1 is at address 0x05 of io control page 0

io unsigned int myIOC2 @0x05: iopage 1;
 // myIOC2 is at address 0x05 of io control page 1

Chapter 5

WicePlus C Compiler User’s Guide C Fundamental Elements •••• 46

CONT
R0(A, V)
R1/TCC

R2/PC
R3
R4

R5
R6
R7
R8
R9
RA
RB
RC
RD
RE
RF

IOC5
IOC6
IOC7
IOC8
IOC9
IOCA
IOCB
IOCC
IOCD
IOCE
IOCF

rpage 0 rpage 1 ...
myIOC1 myIOC2
iopage 0 ioage 1 ...

5.3 Ram Bank
<variable name> [@<address>[: bank <bank number>]];

Declare the variable at which RAM bank it is located. The <bank number > has
to be indicated, including variable is declare at at Bank 0.

NOTE

■ If a variable is declared as “bank,” it cannot be declared as “rpage,” ”iopage,” or ”indir”
at the same time.

■ Only global variable can be declared as “bank” data type.

Example:
unsigned int myData1 @0x22: bank 0;
 // Test is located at default ram bank 0
unsigned int myData2 @0x22: bank 1;
 // myTest is at address 0x22 of ram bank 1
unsigned short myshort @0x20: bank 0;
 // myshort is at address 0x29 and 0x2A of r am bank 2
unsigned long myLong @0x24: bank 1;
 // myLong is at address 0x24~0x27 of ram bank 1

 Chapter 5

WicePlus C Compiler User’s Guide Hardware Related Pro gramming •••• 47

RAM Bank:

B0_2
X

B0_3
X

B1_2
X

B1_3
myData

2

myData
1

myLong

4 5 6 7 8 9 A B C D E F0 1 2 3

5.4 Bit Data Type
bit <variable name> [@<address> [@bitsequence] [: b ank <bank number> / rpage
<page number>]];

Bit data type occupies only one bit.

NOTE

■ Bit data type cannot be used in struct and union. It is recommended to use bitfield
in struct and union, such as:

 union mybit {

 unsigned int b0:1
unsigned int b1:1
unsigned int b2:1
unsigned int b3:1
unsigned int b4:1
unsigned int b5:1
unsigned int b6:1
unsigned int b7:1

 };

■ Bit data type cannot be used in function parameter.

■ Bit data type cannot be used as a return value.

■ Bit data type cannot be operated by arithmetic operator with other data type.

■ Bit data type is not supported in the IO control register.

■ Bit is a reserved word, so DON NOT use it as a name of “struct” or “union”.
■ Only global variable can be declared as “bit” data type.

Chapter 5

WicePlus C Compiler User’s Guide C Fundamental Elements •••• 48

Example:

 bit myBit1; // location of myBit1 is assigned by
// linker

 bit myBit2 @0x03 :rpage 0;
 // if doesn’t declare bit sequence,

// the default location is at bit 0.
// Therefore myBit2 is at bit 0 of
// 0x03 of rpage 0

bit myBit3 @0x04 @5: rpage 1; // myBit3 is at bi t 5 of 0x04, rpage
// 1

bit myBit4 @0x05 @6: rpage 1; // myBit4 is at 0x05 bit 6 of rpage
// 1

bit myBit5 @0x22 @3: bank 1; // myBit5 is at 0x22 b it 3 of ram
// bank 1

0x05

0x06

0x04

rpage 0 rpage 1......
......

.....
.7 0

myBit4 is at 0x05 bit 6 of rpage 1

myBit3 is at 0x04 bit 5

0x03 myBit2 is at 0x03 bit 0

RAM Bank:

B1_2X
B1_3X

4 50 1 2 3 ...

...

7 6 12345 0
myBit5 is at 0x22
bit 3 of RAM bank 1

 Chapter 5

WicePlus C Compiler User’s Guide Hardware Related Pro gramming •••• 49

5.5 Data/LCD RAM Indirect Addressing
indir <variable name> [@<address>[: ind <ind number >]];

Declare the variable at which indirect data RAM or LCD ram is located. The
<ind number > has to be indicated if address is assigned.

If the MCU has Data RAM, use “ind 0” (indirect RAM 0)

If the MCU has an LCD RAM, use “ind 1” (indirect RAM 1)

NOTE

■ If the specified MCU does not support IND bank, the compiler will generate an
error message, e.g., “Symbol ‘WriteIND’ undefined”.

■ Only global variable can be declared as “indir” data type.

■ Indir data type does not support array or point variable.

Example:

indir int nData1;
 //default is “ind 0”, so nData1 is at Data Ram

indir int nData2 @0x30: ind 0;
 //nData2 is at Data Ram because using “ind 0”.

indir int nData3 @0x01: ind 1;
 //nData3 is at LCD Ram because using “ind 1”.

C0
C1
C2
C3
C4
C5
C6
C7

S0 S1 S2 S3 S4 S5 ...

...

LCD RAM:

myData3

myData2

Data RAM:

0x30

...

myData10x00

...

Chapter 5

WicePlus C Compiler User’s Guide C Fundamental Elements •••• 50

5.6 Allocating C Function to Program ROM
<return value> <function name>(<parameter list>) @< address> [: page <page
number>]
{
 ……
}

You can place function at the dedicated address of the program ROM, and use
“page” instruction to allocate which page in the program ROM you wish to
assign.

NOTE

■ Only functions can be declared as “page.”

■ Don not allocate the interrupt save procedure nor interrupt service routine at the
dedicated address of the program ROM.

Example:

void myFun1(int x, int y) @0x33
 // myFun1() is put at 0x33 at ROM page 0 (default page)
{
 ……
}
void myFun2(int x, int y) @0x33: page 1
 //myFun2() is put at 0x33 at ROM page 1
{
 ……
}

Progrom ROM

myFun1()

myFun2()
0x433

0x033

(0x33 of page1)

(0x33 of page0)

Progrom ROM

myFun2()

myFun2()
0x0433

0x???? Function before
allocation

Function after
allocation

(0x33 at page1)

 Chapter 5

WicePlus C Compiler User’s Guide Hardware Related Pro gramming •••• 51

5.7 Putting Data in ROM
const <variable name>;

Some data cannot be altered during program execution. Hence, you need to
store such data into the program ROM to save limited RAM space. The
Compiler uses the “TBL” instruction to incorporate such data into the program
ROM.

NOTE

■ Use constant data type to store data into the ROM.

■ Only global variable can be declared as “const” data type.

■ The maximum size of a constant array variable is 255 bytes.

Example:
const int myData[] = {1, 2, 3, 4, 5};

const char myString[2][3] = {
 “Hi!”,
 “ABC”
};

RETL @0x02
RETL @0x03
RETL @0x04
RETL @0x05

TBL

Program ROM:

RETL @0x01

...
...

RETL @0x69
RETL @0x21
RETL @0x41

myData

myString

RETL @0x42
RETL @0x43

RETL @0x48

NOTE

If the specified MCU does not support TBL instruction, a page has only one ROM data
area (below 0x100); otherwise a page has a maximum of two ROM data areas.

Chapter 5

WicePlus C Compiler User’s Guide C Fundamental Elements •••• 52

5.8 Inline Assembler
The compiler has an in line assembler which allows you to enhance the
functionality of your program.

5.8.1 Reserved Word

The reserved words for the inline assembler are:
_asm
{
 …… //write assembly code here
}

All the assembly instructions (in upper or lower case) of the EM78 series are
supported.

NOTE

■ Registers in 0x10~0x1F are reserved for the C compiler. It is not advisable to use
these reserved words.

■ If user has to switch “rpage,” “iopage,” or “bank” in the inline assembly, the original
“rpage,” “iopage,” or “bank” must be saved at the beginning and restored at the end of
the inline assembly program section. Refer to Example 1 in the next section (Section
5.8.2).

■ If users use 0x10~0x1F in inline assembler, compiler would not report warning or
error message, but it may meet some unexpected errors.

5.8.2 Use of C Variable in the Inline Assembly

The Compiler allows you to access the C variable in the inline assembly as
follows:
mov a, %<variable name> //move variable value to AC C

mov a, @%<variable name> //move address of variable to ACC

Example 1:

_asm
{
// Save procedure of rpage, iopage and bank registe r
 mov a,0x0
 mov %nbuf, a
 mov a, 0x04
 mov %nbuf+1, a
 bs 0x03, 7
 bs 0x03, 6 //Switch to other rpages
 ……
 //Restore procedure of rpage, iopage and bank
 mov a, %nbuf //register
 mov 0x03, a
 mov a, %nbuf + 1
 mov 0x04, a
}

 Chapter 5

WicePlus C Compiler User’s Guide Hardware Related Pro gramming •••• 53

Example 2:
int temp;
temp=0x03; //we suppose temp is at 0x21 of bank 0
_asm {mov a, %temp} //move value 0x03 to ACC
_asm {mov a, @%temp} //move address 0x21 to ACC

Example 3:
unsigned int temp_a @0x20: bank 0;
unsigned int temp_s @0x21: bank 0;
#define status 0x03;
void main()
{
_ asm
 {
 mov %temp_a, a // � mov 0x20, a
 mov a, status // � mov a, 0x03
 mov %temp_s, a // � mov 0x21, a
 }
}

5.9 Using Macro
You can use macro to control the MCU and shorten the program length.

NOTE

■ Use “#define” to declare a macro.

■ Use “\” to join more than one line assembly codes.

■ Do not add any character after “\” (even a block character is not allowed), otherwise an
 error will occur.

Example:

#define SetIO(portnum, value) _asm {mov a, @value} \
 _asm {iow portnum}

Chapter 5

WicePlus C Compiler User’s Guide C Fundamental Elements •••• 54

5.10 Interrupt Routine
To handle Interrupts, two things have to be taken into account:

1. Interrupt Save Procedure: the procedure to save some registers before
executing a service routine. For instance, ACC, R3 should be saved in the
EM78P458 as Interrupts occur. Only inline assembly is allowed under
Interrupt Save Procedure.

2. Interrupt Service Routine: is the action to be taken for Interrupt.

NOTE

■ You may ignore the details on setting interrupts as WicePlus will handle all these
tasks. However, you need to concentrate more on the interrupt service routine.

■ The “page” instructions cannot allocate the same ROM space as interrupt service
routine (see Section 3.6 .

5.10.1 Interrupt Save Procedure
void _intcall <function name>_l(void) @<interrupt v ector address>: low_int <interrupt
vector number>

It should be noted that “_l” (for low level interrupt) must be added after function
name.

5.10.2 Interrupt Service Routine

void _intcall <function name>(void) @int <interrupt vector number>

The <interrupt vector number> means that if there are many interrupt vectors in
the MCU, the sequence 0, 1, 2, 3… is provided to separate each interrupt
vectors.

The compiler will automatically combine the saved procedure and the service
routine in the <interrupt vector number>. That is MCU will jump from
insterrupt save procedure to interrupt service procedure.

 Chapter 5

WicePlus C Compiler User’s Guide Hardware Related Pro gramming •••• 55

NOTE

■ Interrupt Save Procedure and Interrupt Service Routine cannot be assigned with
parameters; otherwise the compiler will generate an error.

■ Interrupt routine only supports one byte data operation (such as “int”, “char”),
otherwise the compiler will generate an error.

■ Under interrupt service routine, you can call other functions. But long data types *, /
and % operation are not allowed in the called function. Refer to Example 3 below.

■ You must write an inline-assembly code to save some registers in the Interrupt Save
Procedure per MCU type. For instance, ACC, R3, R4, and R5 should be saved in
EM78R806B as interrupts occur. If the MCU supports hardware backup control for
the interrupt routine, you may ignore saving the registers in the Interrupt Save
Procedure. Please study the MUC spec about that. It is very important to switch to
program page 0 at the end of Interrupt Save Procedure.

■ Users have to confirm whether the bank of these saving address in interrupt save
procedure is the same as the bank of restoring in interrupt service procedure.

■ Skilled users, who only want to save fewer registers, must take note as to what
operations have been done. (For example, if “*”, “/” or ”%” is not used at the Interrupt
Service Routine program, you can skip to save register 0x1D and 0x1E). The
following table shows certain operations that use special registers. Basing on this
table, you can determine which registers need to be or not to be backed up.

■ Users can’t use these ram spaces that are used to backup ACC, R3, R4, R5 or other
general purpose registers 0x10~0x1F.

5.10.3 Reserved Common Registers Operation

Sixteen common registers (0x10~0x1f) are reserved for certain operation.
When an interrupt occurs, it is strongly recommended that users to backup some
common registers. After Compiled, WicePlus will tell users which registers
have to backup from information window, Output window. In the picture
below, users can see there are five C characters in the line of 0x10. These
positions are 0x10, 0x11, 0x12, 0x13, 0x14. So users have to save these 5
common registers and restore them in interrupt service routine. That is users
have to compile a time to know these message. Character C in the line 0x10
means C compiler occupied in other functions. Compiler will dynamic to use
these in WicePlus 2.

Chapter 5

WicePlus C Compiler User’s Guide C Fundamental Elements •••• 56

Example 1:
Void _intcall INTERRUPT1_l(void) @0x08: low_int 0
{
 // backup ACC, R3, R4, R5
 _asm
 {
 MOV 0X1F, A
 SWAPA 0X4
 BS 0X4, 6// switch to ram bank 3
 BS 0X4, 7
 MOV 0X3F, A
 SWAPA 0X3
 MOV 0X3E, A
 SWAPA 0X5
 MOV 0X3D, A
 PAGE @0X0 // or Use BC to switch program page 0 if the
 } // MCU doesn’t support page instruction

}

void _intcall INTTERRUPT1(void) @int 0

{
 // backup C system
 _asm
 {
 MOV A, 0X10 // use 2 byte C data type, C system backup
 MOV 0X3C, A // now save 0x10~0x19 to 0x3C,0X3B, 0X3A, 0X39,
 MOV A, 0X11 // 0X38, 0X37 in bank 3 because switch to ram
 MOV 0X3B, A // bank 3 in _intcall INTERRUPT1_l
 MOV A, 0X12
 MOV 0X3A, A
 MOV A, 0X13
 MOV 0X39, A
 MOV A, 0X14
 MOV 0X38, A
 }

 Chapter 5

WicePlus C Compiler User’s Guide Hardware Related Pro gramming •••• 57

 // Write your code (inline assembly or C) here
 ……
 // restore C system
 _asm
 {
 BS 0X04, 6 // switch to ram bank 3 to restore correctly
 BS 0X04, 7
 MOV A, 0X3C // use 2 byte C type, C system restor e
 MOV 0X10, A
 MOV A, 0X3B
 MOV 0X11, A
 MOV A, 0X3A
 MOV 0X12, A
 MOV A, 0X39
 MOV 0X13, A
 MOV A, 0X38
 MOV 0X14, A
 }
 // restore ACC, R3, R4, R5 following backup C syst em
 _asm
 {
 SWAPA 0X3D // Users have to confirm whether in ram bank 3
 MOV 0X5, A // or not. If not, have to switch to ram bank
 SWAPA 0X3E // 3 to restore correctly
 MOV 0X3, A
 SWAPA 0X3F
 MOV 0X4, A
 SWAP 0X1F
 SWAPA 0X1F
 }
}

Example 2:

int nBuf[5];
void _intcall INTERRUPT2_l(void) @0x08: low_int 0
{
 // backup ACC, R3, R4, R5
 _asm
 {
 ……
 }
}

Chapter 5

WicePlus C Compiler User’s Guide C Fundamental Elements •••• 58

void _intcall INTERRUPT2(void) @int 0
{
 _asm //save registers
 {
 mov a, 0x10
 mov %nBuf, a
 mov a, 0x11
 mov %nBuf + 1, a
 mov a, 0x12
 mov %nBuf + 2, a
 mov a, 0x13
 mov %nBuf + 3, a
 mov a, 0x14
 mov %nBuf + 4, a
 }
 // do what you want to do as interrupt occurred.
 ……
 _asm //restore registers
 {
 mov a, %Buf
 mov 0x10, a
 mov a, %nBuf + 1
 mov 0x11, a
 mov a, %nBuf+2
 mov 0x12, a
 mov a, %nBuf + 3
 mov 0x13, a
 mov a, %nBuf + 4
 mov 0x14, a
 }
}

Example 3:

void _intcall INTERRUPT3_l(void) @0x08: low_int 0
{
 // backup ACC, R3, R4, R5
 _asm
 {
 ……
 }
}
void _intcall INTERRUPT3(void)@int 0
{
 long ans;
 ……
 ans = LongMult(0x1234, 0x5678);
 ……
}
long LongMult(long a, long b)
{
 return (a * b);
 // multiple operation of long data type is NOT al lowed!

 Appendix A

WicePlus C Compiler User’s Guide Conversion Table •••• 59

Appendix A

Conversion Table

A-1 Conversion between C and Assembly Codes
The assembly code was generated by the WicePlus.

Description C Statement
Example Assembly Code

Conversion Rate
(Compiler’s Code Size / General

User’s Code Size * 100%)

intVar1 = 0xFF; MOV A, @0xFF
MOV %intVar1, A

100% (2 / 2 * 100) Integer Variable

intVar2 = intVar1; MOV A, %intVar1
MOV %intVar2, A

100% (2 / 2 * 100)

charVar1 = 0xFF; MOV A, @0xff
MOV %charVar1, A

100% (2 / 2 * 100) Character Variable

charVar2 = intVar1; MOV A, %charVar1
MOV %charVar2, A

100% (2 / 2 * 100)

shortVar1 = 0x1234; MOV A, @0x34
MOV %shortVar1, A
MOV a, @0x12
MOV %shortVar1+1, A

100% (4 / 4 * 100) Short Variable

shortVar2 = shortVar1; MOV A, %shortVar1
MOV %shortVar2, A
MOV A, %shortVar1+1
MOV %shortVar2+1, A

100% (4 / 4 * 100)

longVar1 = 0x123456; MOV A, @0x56
MOV %longVar1, A
MOV A, @0x34
MOV %longVar1+1, A
MOV A, @0x12
MOV %longVar1+2, A

100% (6 / 6 * 100) Long Variable

longVar2 = longVar1 MOV A, %longVar1
MOV %longVar2, A
MOV A, %longVar1+1
MOV %longVar2+1, A
MOV A, %longVar1+2
MOV %longVar2+2, A

100% (6 / 6 * 100)

Appendix A

60 •••• Conversion Table WicePlus C Compiler User’s Guide

For loop for (i = 0; i < 5; i++)
{

……
}

CLR %i
JMP L2

L1:
……

L2:
INC %i
MOV A, @0x05
SUB A, 0x14
JBS 0x03, 0
JMP L1

100% (7 / 7 * 100)

While statement while (cnt != 1)
{

……
}

L1:
…

MOV A, %cnt
XOR A, @0X01
JBS 0X03,2
JMP L1

100% (4 / 4 * 100)

Do-while statement do
{

……
} while (cnt != 1);

L1:
……
MOV A, %cnt
MOV A, @0x01
XOR A, @0x01
JBS 0x03, 2
JMP L1

100% (4 / 4 * 100)

Do-while statement do
{
 Var_c2++;
}while(-- var_c1);

L1:
INC %var_c2;
DJZ %var_c1;
JMP L1

100%(3/3*100)

If-else statement unsigned int cnt;
if (cnt == 0)
{

……
}
else if (cnt < 5)
{

……
}
else
{

……
}

MOV A, %cnt
JBS 0x03, 2
JMP L1
……
JMP ENDIF

L1:
MOV A,@0X05
SUB A, %cnt
JBC 0x03, 0
JMP ENDIF
……
JMP L2

L2:
……

ENDIF:

100% (10 / 10 * 100)

 Appendix A

WicePlus C Compiler User’s Guide Conversion Table •••• 61

Switch statement unsigned int cnt;
switch(cnt)
{

case 1:
……
break;
case 2:
……
break;
case 3:
……
break;
default:
……
break;

}

MOV A,%cnt
MOV 0X14,A
MOV A,0X14
XOR A,@0x01
JBC 0X03,2
JMP case 2

 MOV A,0X14
 XOR A,@0X02
 JBC 0X03,2
 JMP case 2
 MOV A,0X14
 XOR A,@0X3
 JBC 0X03,2
 JMP case 3
 JMP default

Case 1:
JMP …ENDSWITCH
Case 2:
JMP ENDSWITCH
Case 3:
 JMP ENDSWITCH
Case 4:
 default

ENDSWITCH

106% (18 / 17 * 100)

Function main()
{

int i;
i = fun(3);

return;

}

int fun(int in)
{

return in+1;
}

; using EM78806B
MOV A, @0x03
BANK @0
MOV %in, A
CALL FUN
MOV A, 0x10
BANK @0
MOV %i, A
RET

FUN:
MOV A, 0x14
BANK @0
MOV %temp1, A
MOV A,%in
MOV 0x14,A
MOV 0X10,A
MOV A,@0X01
ADD 0X10, A
MOV A,%temp1
MOV 0X14,A
RET

136% (19 / 14 * 100)

Appendix A

62 •••• Conversion Table WicePlus C Compiler User’s Guide

Const array const int myConst[5] =
{1, 2, 3, 4, 5};

main()
{

int i;

i = myConst[3];

return;

}

; using EM78569

MOV A, @0x3D
MOV 0x19, A
MOV A, @0x1F
MOV 0x1A, A
PAGE @0x0F
CALL 0x280
PAGE @0x00
BC 0x04, 6
BC 0x04, 7
MOV 0x20, A
…
BC 0X03,0
RLCA 0x1A
TBL
…
PAGE @0x0F
JMP 0x2FE
MOV A, 0x19
TBL
….

RETL @0x01
RETL @0x02
RETL @0x03
RETL @0x04
RETL @0x05

162% (21 / 13 * 100)

Register page unsigned int myR5P0
@0x05: rpage 0;
unsigned int myR5P1
@0x05: rpage 1;
unsigned int myR5P2
@0x05: rpage 2;

myR5P0 = 0x12;
myR5P1 = 0x34;
myR5P2 = 0x56;

; using EM78P468N
MOV A, @0x12
BS 0X03,6
MOV 0x05, A

MOV A, @0x34
BS 0x03, 6
BC 0x03, 7
MOV 0x05, A

MOV A, @0x56
BC 0x03, 6
BS 0x03, 7
MOV 0x05, A

100% (11 / 11 * 100)

 Appendix A

WicePlus C Compiler User’s Guide Conversion Table •••• 63

I/O control page io unsigned int myIO6P0
@0x06: rpage 0;
io unsigned int myIO6P1
@0x06: rpage 1;
io unsigned int myIO7P1
@0x07: rpage 1;

myIO6P0 = 0x00;
myIO6P1 = 0xFF;
myIO7P1 = 0x55;

; using EM78569
MOV A, @0x00
BC 0x03, 5
IOW 0x6

MOV A, @0xFF
BS 0x03, 5
IOW 0x6

MOV A, @0x55
IOW 0x7

100% (8 / 8 * 100)

RAM bank unsigned int myData1
@0x20: bank 0;
unsigned int myData2
@0x21: bank 0;
unsigned int myData3
@0x21: bank 1;

myData1 = 1;
myData2 = 2;
myData3 = 3;

; using EM78569
MOV A, @0x01
BC 0x04, 6
BC 0x04, 7
MOV 0x20, A
MOV A, @0x02
MOV 0x21, A
MOV A, @0x03
BS 0x04, 6
BC 0x04, 7
MOV 0x21, A

100% (10 / 10 * 100)

Bit data type bit myB0R6P0
@0x06@0x00: rpage 0;
bit myB2R6P0
@0x06@0x02: rpage 0;

myB0R6P0 = 1;
myB2R6P0 =
myB0R6P0;

BS 0x06, 0
BC 0x06, 2
JBC 0x06, 0
BS 0x06, 2

133% (4 / 3 * 100)

Indirect addressing indir unsigned myData1
@0x30: ind 0;
indir unsigned myData2
@0x05: ind 1;

myData1 = 0x55;
myData2 = 0xAA;

; using EM78806B
MOV A, @0x55
MOV 0x1B, A
MOV A, @0x30
MOV 0x18, A
MOV A, @0x00
MOV 0x19, A
MOV A, @0x00
MOV 0x1A, A
MOV A, 0x1B
CALL INDIR
MOV A, @0xAA
MOV 0x1B, A
MOV A, @0x05
MOV 0x18, A
MOV A, @0x00
MOV 0x19, A
MOV A, @0x01
MOV 0x1A, A
MOV A, 0x1B
CALL INDIR
……

146% (35 / 24 * 100)

Appendix A

64 •••• Conversion Table WicePlus C Compiler User’s Guide

 INDIR:
BC 0x05, 0
MOV 0x1B, A
MOV A, 0x1A
JBS 0x03, 2
JMP 0x081
MOV A, 0x18
IOW 0x9
MOV A, 0x1B
IOW 0xA
RET

LCDRAM:
MOV A, 0x18
 MOV 0x0A, A
 MOV A, 0x1B
 MOV 0x0B, A
 RET

f = e & d;
(f = e ^ d;)
(f = e | d;)

MOV A, %e
AND A, %d
(XOR A, %d)
(OR A, %d)
MOV %f, A

100% (3 / 3 * 100)

f=~e;

COMA %e
MOV %f, A

100%(2/2*100)

f &=e;
(f ^=e;)
(f |= e)

MOV A, %e
AND %f , A
(XOR %f, A)
(OR %f, A)

100%(2/2*100)

f = e >> 1;
BC 0x03, 0
RRCA %e
MOV %f, A

100% (3 / 3 * 100)

Bitwise operation
(all variables are
“unsigned int” data
type)

f = e << 1; MOV A, %e
MOV 0x14, A
BC 0x03, 0
RLCA 0x14
MOV %f, A

100% (3 / 3*100)

 f>>=3; BC 0x03, 0
RRC %f
BC 0x03, 0
RRC %f
BC 0x03, 0
RRC %f

100%(6/6*100)

 f<<=3 BC 0x03, 0
RLC %f
BC 0x03, 0
RLC %f
BC 0x03, 0
RLC %f

100%(6/6*100)

 f>>=4 SWAPA 0x06
AND A, @0x0F
MOV 0x06, A

100%(3/3*100)

 Appendix A

WicePlus C Compiler User’s Guide Conversion Table •••• 65

 f<<=4 SWAPA 0x06
AND A, @0xF0
MOV 0x06, A

100%(3/3*100)

 f>>=6; SWAP 0x06
RRC 0x06
RRCA 0x06
AND A, @0x03
MOV 0x06, A

100%(5/5*100)

 f<<=6; SWAP 0x06
RLC 0x06
RLCA 0x06
AND A, @0xC0
MOV 0x06, A

100%(5/5*100)

 f=(e<<5) | d; MOV A, %e
MOV 0x14, A
SWAP 0x14
RLCA 0x14
AND A, @0xE0
OR A, %d
MOV %f, A

100%(7/7*100)

 f=(f & const.1) | const. 2 MOV A, 0x06
AND A, const. 1
OR A, const. 2
MOV 0x06, A

100%(4/4*100)

Appendix A

66 •••• Conversion Table WicePlus C Compiler User’s Guide

f = e + d;

MOV A, %e
ADD A, %d
MOV %f, A

100% (3 / 3 * 100)

f = e – d; MOV A, %d
SUB A, %e
MOV %f, A

100%(3/3*100)

f++; INC %f 100% (1 / 1 * 100%)

f—; DEC %f 100% (1 / 1 * 100%)

Arithmetic expression
(all variables are “int”
data type)

c = a * b; MOV A, %a
 MOV 0X1C,A
 MOV A, %b
 MOV 0X18, A
 CLRA
L1:
 ADD A, 0X1C
 DJZ 0X18
 JMP L1
 MOV %c, A

100%(9/9*100%)

 c = a / b; MOV A, %a
 MOV 0x1C, A
 MOV A, %b
 CLR 0x18
L1:
 SUB 0x1C, A
 JBC 0x03, 0
 INC 0x18
 JBC 0x03, 0
 JMP 0x3BB
 MOV A, 0x18
 MOV %c, A

100%(11/11*100%)

 Appendix A

WicePlus C Compiler User’s Guide Conversion Table •••• 67

f += e;
(f -= e;)
(f &= e)
(f ^= e)
(f |= e)

MOV A, %e
ADD %f, A
(SUB %f, A)
(AND %f, A)
(XOR %f, A)
(OR %f, A)

100% (2 / 2 * 100%)

f >>= 1; BC 0x03,0
RRC %f

100% (2 / 2 * 100%)

Compound
assignment
(all variables are “int”
data type)

f <<= 1 BC 0x03,0
 RLC %f

100% (2 / 2 * 100%)

 Appendix B

WicePlus C Compiler User’s Guide FAQ •••• 69

Appendix B

Frequently Asked
Questions (FAQ)

Q: What is the maximum number of the function parameters?

A: It depends on the RAM bank size (about 32 or 31 bytes).

Q: In a function, what is the maximum depth of the function call?

A: It depends on the hardware stack depth or size.

Q: What is the maximum array dimension as well as maximum array
element?

A: It depends on the RAM bank size (about 32 or 31 bytes).

Q: Is there any error message when the code exceeds the ROM size?

A: Yes, the linker will report an allocation error.

Q: In a high level interrupt subroutine, can user allocate the address in the
ROM? (e.g., using “page” data type, putting “_asm{ org xxx}” before a
subroutine, etc.)

A: No! This may cause unpredictable error.

Q: Is “static” used in the same way as in ANSI C?

A: Yes.

Q: Is there any error message in case user defines too many variables in
the “const” that exceeds the ROM space?

A: Yes, the linker will report an allocation error.

Q: How do I declare the variable in *.h file and using not only in one .c file?

A: for example, declare in *.h file like that:

 extern io unsigned int DIRPORT6;

and you have to write like below just only one *.c file like that:

 io unsigned int DIRPORT6 @0x06: iopage 0;

Q: Should I change any program page or bank?

Appendix B

70 •••• FAQ WicePlus C Compiler User’s Guide

A: If you just develop your program in C language, you don’t have to change
any program page, register page and ram bank, and so on. But If you use inline
assembly in your program, you have to save and restore about page or bank.

Q: May I know how many stacks I have called?

A: Yes. In C developed environment, after compiling, user can know how many
function call depth in Information, Output Window.

Q: Does C compiler just occupy 0x10~0x1F general purpose ram?

A: Well, almost C compiler just occupies 0x10~0x1F general purpose register.
But If there are some arguments in call functions, compiler will use some
others ram in 0x20~0x3F, bank 0 ~ bank 3. So, we suggest users use global
variables to replace arguments in call function.

 Users always have to note that there are some ram spaces used in interrupt
save procedure and interrupt service procedure. If you don’t use these ram
space again.

