
IFAD
IF

A
D

VDMTools

The VDM++ to Java Code
Generator

How to contact IFAD:

☎ +45 63 15 71 31 Phone

+45 65 93 29 99 Fax

✉ IFAD Mail
Forskerparken 10A
DK - 5230 Odense M

http://www.ifad.dk Web
ftp.ifad.dk Anonymous FTP server

@ toolbox@ifad.dk Technical support
info@ifad.dk General information
sales@ifad.dk Sales and pricing

The VDM++ to Java Code Generator — Revised for V6.8

c© COPYRIGHT 2001 by IFAD

The software described in this document is furnished under a license agreement. The software
may be used or copied only under the terms of the license agreement.

This document is subject to change without notice

The VDM++ to Java Code Generator

Contents

1 Introduction 1

2 The Code Generator - Getting Started 2
2.1 Generating Code Using the VDM++ Toolbox 2
2.2 Interfacing the Generated Code . 4
2.3 Compiling and Running the Java Code 7

3 The Code Generator - Advanced Issues 9
3.1 Options of the VDM++ to Java Code Generator 9
3.2 Implementing Implicit and Preliminary Functions/Operations 12
3.3 Generation of Abstract Classes . 14
3.4 Substituting Parts of the Generated Java Code 16

3.4.1 Entities . 18
3.4.2 Rules for keep tags . 18

3.5 Generating Interfaces . 19
3.6 Limitations . 22

3.6.1 Requirements of VDM++ specifications due to language differences 23
3.6.2 Unsupported Constructs . 26

4 Code Generating VDM++ Specifications 29
4.1 The VDM Java Library . 29
4.2 Code Generating Classes . 30
4.3 Inheritance Structure of the Generated Java Classes 32
4.4 Code Generating Types . 35

4.4.1 Mapping Anonymous VDM++ Types to Java 35
4.4.2 Mapping VDM++ Type Definitions to Java 38
4.4.3 Invariants . 41

4.5 Code Generating Values . 41
4.6 Code Generating Instance Variables . 43
4.7 Code Generating Functions and Operations 44

4.7.1 Explicit Function and Operation Definitions 45
4.7.2 Preliminary Function and Operation Definitions 45
4.7.3 Implicit Function and Operation Definitions 45
4.7.4 Pre and Post Conditions . 46

4.8 Code Generating Expressions and Statements 46
4.9 Name Conventions . 46

5 Code Generation of Concurrent VDM++ Specifications 47
5.1 Introduction . 47
5.2 Overview . 47

5.2.1 Code Generation . 47
5.3 Translation Approach . 47

5.3.1 Core Translation . 48

i

The VDM++ to Java Code Generator

5.3.2 Procedural Threads . 49
5.3.3 Periodic Threads . 49

5.4 Example . 50
5.5 Limitations . 54

A References 55

B Installing the Code Generator 56

C The VDM Java Library 57

D The DoSort Example 58
D.1 VDM+++ Specification of Class DoSort (Sort.rtf) 58
D.2 Java Code of Class DoSort (DoSort.java) 59
D.3 The Handcoded Java Main Program (MainSort.java) 62

ii

The VDM++ to Java Code Generator

1 Introduction

The VDM++ to Java Code Generator supports automatic generation of Java code from
VDM++ specifications. The Code Generator provides a rapid way of implementing
Java applications based on VDM++ specifications.

The Code Generator is an add-on feature to the VDM++ Toolbox. This manual is an
extension to the User Manual for the IFAD VDM++ Toolbox [UserManPP] and gives
an introduction to the VDM++ to Java Code Generator.

This manual is structured in the following way:

Section 2 gives an introduction to the VDM++ to Java Code Generator. It describes
how to invoke the Code Generator from the VDM++ Toolbox and provides guidance on
interfacing the generated Java code. Furthermore, it will be explained how to compile
and run the Java code.

Section 3 presents four more advanced issues. It summarizes the options which can be
chosen when generating Java code from VDM++ specifications. Moreover, it describes
how to handle implicit or preliminary function/operation definitions and it discusses
the possibilities for substituting generated Java code with handwritten code. Finally,
it will list the requirements which a VDM++ specification must fulfil in order to be
translated to compilable and correct Java code.

Section 4 gives a detailed description of the structure of the generated Java code.
In addition, it explains the relation between VDM++ and Java data types, and it
describes some of the design decisions made, when developing the VDM++ to Java
Code Generator, including the name conventions used. This section should be studied
intensively before using the Code Generator professionally.

Finally, in Section 5 an explanation of how to generate code for concurrent specifications
is provided. For such specifications, multithreaded Java code is generated. As well as
instructions on use, an overview of the translation approach is given.

1

The VDM++ to Java Code Generator

2 The Code Generator - Getting Started

To get started using the Code Generator a VDM++ specification should be written in
one or several files.

In the following, the VDM++ specification of a class DoSort will be used in order to
illustrate the Java Code Generator. The specification is listed in Appendix D.1 and it
can be found in file Sort.rtf provided in the distribution. In Section 2.1 it is explained
how to generate Java code for the VDM++ DoSort class using the VDM++ Toolbox.
In Section 2.2 it is explained how to write an application on top of the generated Java
code. In Section 2.3 it is shown how to compile and run the application.

It is recommended that readers go through the steps described in Section 2.1 to 2.3
on their own computer.

2.1 Generating Code Using the VDM++ Toolbox

We will now describe how to use the VDM++ to Java Code Generator from the graph-
ical user interface of the VDM++ Toolbox.

Having started the VDM++ Toolbox, a new project should be created the Sort.rtf
file. Before generating Java code, it has to be ensured, that the VDM++ specification
satisfies the necessary requirements:

• All files of the VDM++ specification in a project must have successfully been
syntax checked in order to generate correct code for any selected class.

• Moreover, the Code Generator can only generate code for classes which are type
correct.1 If a class has not been type checked before and one tries to generate
code for it, it is automatically type checked by the Toolbox.

Syntax and type check the DoSort class as described in the User Manual for the IFAD
VDM++ Toolbox [UserManPP]. The result is shown in Figure 1.

1There exist two classes of well-formedness as explained in [LangManPP]. In the current context
we mean possible well-formed type correctness.

2

The VDM++ to Java Code Generator

Figure 1: The Manager after Syntax and Type Checking

You can now generate code for the DoSort class by clicking on the (Generate Java)
button. In general, more than one file/class can be selected, in which case all of them
are translated to Java.

Figure 2 shows how to generate Java code for the DoSort class. As can be seen, a Java
file called DoSort.java has been code generated. It contains the Java class definition
of DoSort. The DoSort.java file will be written in the directory, where the project file
lies. If no project file exists, the file will be written in the directory, where the VDM++
Toolbox was started.

Figure 3 shows a skeleton of the VDM++ specification and the corresponding generated
Java code for class DoSort. The different parts of the generated code will be explained
in the following sections. The file DoSort.java is shown in full in Appendix D.2.

3

The VDM++ to Java Code Generator

Figure 2: Code generating the DoSort class.

It is also possible to generate Java code from the command-line version of the VDM++
Toolbox. The VDM++ Toolbox is started from the command line with the command
vppde. The -j option is used in order to generate Java code. To code generate the
class DoSort, the following command is executed:

vppde -j Sort.rtf

The specification will be parsed first. If no syntax errors are detected, the specifica-
tion will be type checked for possible well-formedness. Finally, if no type errors are
detected, the specification will be translated into a number of Java files. For the de-
scribed specification, the file DoSort.java containing the DoSort class definition will
be generated.

Note: If a specification contains several classes and the command-line version of The
Code Generator is used, all classes have to be code generated at the same time.

2.2 Interfacing the Generated Code

We have now reached the point, where Java code has been generated from a VDM++
specification. We will now show how to write an interface to the generated DoSort
class in order to compile and run an application.

4

The VDM++ to Java Code Generator

class DoSort

operations
public Sort: seq of int ==> seq of int
Sort(l) ==

...

functions

protected DoSorting: seq of int -> seq of int
DoSorting(l) ==

...

private InsertSorted: int * seq of int -> seq of int
InsertSorted(i,l) ==

...

end DoSort

VDM++

public class DoSort {

// ***** VDMTOOLS START Name=vdmComp KEEP=NO
static UTIL.VDMCompare vdmComp = new UTIL.VDMCompare();

// ***** VDMTOOLS END Name=vdmComp

// ***** VDMTOOLS START Name=Sort KEEP=NO
public Vector Sort (final Vector l) throws CGException{

...
}

// ***** VDMTOOLS END Name=Sort

// ***** VDMTOOLS START Name=DoSorting KEEP=NO
protected Vector DoSorting (final Vector l) throws CGException{

...
}

// ***** VDMTOOLS END Name=DoSorting

// ***** VDMTOOLS START Name=InsertSorted KEEP=NO
private Vector InsertSorted (final Long i, final Vector l)

throws CGException {
...

}
// ***** VDMTOOLS END Name=InsertSorted
}

Figure 3: The VDM++ and the generated Java DoSort class.

5

The VDM++ to Java Code Generator

First of all, we will start by specifying the main program in VDM++.

01 Main() ==
02 let arr = [23,1,42,31] in
03 (dcl res : seq of int = [],
04 dos : DoSort := new DoSort();
05 res = dos.Sort(arr);
06)

We will now implement a Java main program with the same functionality as the above
VDM++ specification. The Java file, containing the main program, should start by
importing all classes of the VDM Java Library package dk.ifad.toolbox.VDM:

import dk.ifad.toolbox.VDM.*;

This saves the need to type fully qualified names for these classes. The VDM Java
Library is described in more detail in Section 4.1. Let us now, step by step, translate
the above listed VDM specification to Java.

Line 02 specifies an integer list. Translated to Java, one will get the following code:

Vector arr = new Vector();
arr.add(new Integer(23));
arr.add(new Integer(1));
arr.add(new Integer(42));
arr.add(new Integer(31));

The Vector class can be found in the java.util package. The Sort method of class
DoSort expects an object of type Vector as input.

Line 03 declares a variable res of type seq of int, which will later be used to contain
the sorted integer sequences. The Java code for this is just:

Vector res = new Vector();

Let us now show how to call the Sort method in class DoSort. Line 04 declares an
object reference dos to an instance of the class DoSort, and line 05 calls the Sort
method of the DoSort class with the integer sequence arr as argument. The result is
assigned to res. Translated to Java, one will get the following code:

System.out.println("Evaluating Sort("+UTIL.toString(arr)+"):");

6

The VDM++ to Java Code Generator

DoSort dos = new DoSort();
res = dos.Sort(arr);
System.out.println(UTIL.toString(res));

The UTIL.toString method, which is part of the VDM Java Library can be used in
order to get a string containing an ASCII representation of a VDM value. This method
is being used here to print relevant log messages to standard output during execution.

The above listed Java code has to be written in a try block in order to handle exceptions
thrown by methods in the generated Java code. The try block is followed by a catch
clause, that catches and handles these exceptions. All exceptions thrown by the
generated Java code are subclasses of the CGException class, which again is part of the
VDM Java Library. Thus the following catch statement is possible:

try {
...
}
catch (CGException e){

System.out.println(e.getMessage());
}

The main program described above is implemented in the file named MainSort.java
and it is listed in full in Appendix D.3.

2.3 Compiling and Running the Java Code

Having handwritten the main program, it is possible to compile and run the Java code.

Java code generated by this version of the VDM++ to Java Code Generator is com-
patible with the Java Development Kit version 1.3.

The main program can be compiled by:

javac MainSort.java

Ensure that your CLASSPATH environment variable includes the VDM Java Library, i.e.,
the VDM.jar file. If you are using the Unix Bourne shell or a compatible shell, you can
do this with the following commands:

CLASSPATH=VDM_Java_Library/VDM.jar:$CLASSPATH
export CLASSPATH

7

The VDM++ to Java Code Generator

Replace VDM Java Library with the name of the directory in which the VDM Java
Library is installed.

If you are working on a Windows-based system the CLASSPATH environment variable
can be updated in autoexec.bat or from the System icon in the Control Panel. Note
that for Windows you must use “;” and not “:” as the delimiter.

The main program MainSort can now be executed. Its output is listed below.

$ java MainSort
Evaluating Sort([23, 1, 42, 31]):
[1, 23, 31, 42]
$

In this section we have presented a brief introduction in how to use the Code Generator.
In the following sections we describe different aspects of the Code Generator in more
detail. Note that from now on, whenever portions of generated code are shown, only
those parts relevant to the topic under discussion will appear in the text.

8

The VDM++ to Java Code Generator

3 The Code Generator - Advanced Issues

Section 2 has given a short introduction to the Code Generator. This section will give
the answer to the following questions:

• Which options can be chosen when generating Java code from VDM++ specifi-
cations? (Section 3.1)

• What can be done if the specification contains implicit or preliminary func-
tions/operations? (Section 3.2)

• What are the possibilities for substituting generated Java code with handwritten
code? (Section 3.4)

• What requirements must a VDM++ specification fulfil to be translated to com-
pilable and correct Java code? (Section 3.6)

3.1 Options of the VDM++ to Java Code Generator

When you generate Java code from your VDM++ specification you can choose one
or more of the following options in order to influence the generated code. To view
the options available, select the Java Code Generator entry from the options menu, as
shown in Figure 4.

9

The VDM++ to Java Code Generator

Figure 4: Selecting Java Code Generator Options

The various options available in the Code Generator are shown in Figure 5. Each of
these options is described below. Note that all of these options are also available in
the command-line version of the Code Generator. The appropriate flags are shown in
brackets after the name of each option below. Default behaviour is also described with
“off” meaning that by default the behaviour specified by the given option is not used,
and “on” meaning such behaviour is used.

Code generate only skeletons, except for types (-s) Specify this option to gen-
erate skeleton classes. A skeleton class is a class containing full type, value and
instance variable definitions, but empty function and operation definitions. De-
fault: off

Code generate only types (-u) Specify this option to only want to generate Java
code for VDM++ type definitions (i.e. functions, operations, instance variables

10

The VDM++ to Java Code Generator

Figure 5: Options for Java Code Generation

and values will not be generated). Default: off.

Code generate integers as Longs (-L) Using this option, it is possible to generate
VDM++ integer values and variables as Java Longs instead of Integers. Default:
off.

Code generate code with concurrency constructs (-e) This option is used to
force the Code Generator to generate code which includes support for concur-
rency. See Section 5 for details of this. Default: on.

Code generate pre and post functions/operations (-k) Specify this option in or-
der to code generate Java methods for pre and post conditions and invariants
them. Default: on

Check pre and post conditions (-P) Specify this option to generate inline checks
of function pre and post conditions, and operation pre conditions. Raise an excep-
tion if a check fails. This implies the previous option as pre and post conditions
must be generated for compilable code to be generated. Default: off.

Package (-z) packagename The default behaviour of the code generator is to write
the generated Java files in the directory, where your project file lies, or if no
project file exists, in the directory, where the VDM++ Toolbox was started. The
files are part of an unnamed default package. Specify this option in order to
generate a specific package which will contain the generated Java classes. The
Code Generator will make a new directory using the given package name contain-
ing the created files and the generated files will include the appropriate package
statement.

11

The VDM++ to Java Code Generator

Select Interfaces (-U) Select classes to be generated as Java interfaces. See Sec-
tion 3.5 for details.

When starting the VDM++ Toolbox from the command line the following command
has to be used:

vppde -j [options] specfile(s)

3.2 Implementing Implicit and Preliminary Functions/Operations

Implicit functions/operations and preliminary functions/operations (specified by “is
not yet specified”) are handled in the same way by the Code Generator. Look at
the following VDM++ class definition containing a preliminary operation definition.

class A
operations
op:() ==> int
op() == is not yet specified;
end A

This class will be generated as follows:

public class A {
protected external_A child = new external_A(this);
private Integer op () throws CGException{

return child.impl_op();
}

};

As can be seen from the code listed above, the class AA contains a protected instance
variable child of type external A. This is the case for all classes containing implicit
functions/operations or preliminary functions/operations (specified by “is not yet
specified”). Though a class may have several of these definitions, there will only
exist one instance of this external class.

The method op will call a method called impl_op on this instance.2 The result of the
impl_op method is returned as the result of the op method.

2impl stands for “to be implemented in Java”.

12

The VDM++ to Java Code Generator

It is then the user’s responsibility to implement the method impl_op in class external A.
The input and output parameters of the method impl_op must be the same as those
of the method op.

If a VDM++ class contains more than one implicit function/operation or preliminary
function/operation (specified by “is not yet specified”), all methods have to be
implemented in class external_<CLASSNAME>.

In order to make it easy for the user to implement the external class file, the Code
Generator generates a file external A.java for it. With the help of this file, the
generated Java code will be compilable. However, a run-time error will occur, when a
preliminary function is called. The file external A.java containing the external A
class is listed below.

public class external_A {
A parent = null;
public external_A (A parentA) {

parent = parentA;
}
public Integer impl_op () throws CGException{

UTIL.RunTime("Preliminary Operation op has been called");
return new Integer(0);

}
};

The easiest way to implement the external A class is to modify the template class, i.e.
the user just has to replace the code

UTIL.RunTime("Preliminary Operation op has been called");
return new Integer(0);

with user-defined code, in the usual way in which user-defined code can replace gener-
ated code. (See Section 3.4 for details.)

Note, that the generated constructor for the external class takes an instance of the
class A as input parameter and assigns it to the variable parent. In this way, the
implementation of preliminary operation definitions can access the public state of the
class A. Java methods for preliminary functions also use this constructor, though they
are not allowed to act on the internal state of a class. They can however call an
operation and thereby act on the internal state indirectly.

Implicitly defined functions and operations are handled in the same way as preliminary
function and operation specifications containing the clause “is not yet specified”.

13

The VDM++ to Java Code Generator

Note, that the external class can contain implicit and preliminary operation and func-
tion definitions. In the generated template, they can be distinguished by the generated
runtime error message:

UTIL.RunTime("Preliminary Operation op has been called");

for a preliminary operation definition called op and

UTIL.RunTime("Implicit Function f has been called");

for an implicit function definition called f, for example.

3.3 Generation of Abstract Classes

A VDM++ class is abstract if it contains preliminary function or operation definitions,
or if it is a subclass of an abstract class, and does not provide implementations for the
abstract functions and operations that have been inherited. Thus being abstract is an
indirect property of a VDM++ class.

In contrast, Java provides a primitive notion of abstract classes. Thus when generating
Java code, those VDM++ classes that are identified as being abstract, will be generated
as abstract Java classes. For example, consider the VDM++ classes A, B and C below:

class A

instance variables
protected m : nat := 1

operations
public op : nat ==> nat
op(n) == is subclass responsibility;

functions
public f : int -> int
f(i) == is subclass responsibility

end A

class B is subclass of A

operations

14

The VDM++ to Java Code Generator

public op : nat ==> nat
op(n) ==

return m + n

end B

class C is subclass of B

functions
public f : int -> int
f(i) == i + 1

end C

Class A contains preliminary functions and operations and is therefore abstract. It
would therefore be code generated as:

public abstract class A {

protected Integer m = null;
public abstract Integer op (final Integer n) throws CGException;
public abstract Integer f (final Integer i) throws CGException;

}

Class B inherits from abstract class A, and does not provide an implementation of the
function f. Therefore it is also abstract:

public abstract class B extends A {

public Integer op (final Integer n) throws CGException {
return new Integer(m.intValue() + n.intValue());

}
}

Finally, since class C inherits from B and provides an implementation of f. It is therefore
a normal class:

public class C extends B {

public Integer f (final Integer i) throws CGException{
return new Integer(i.intValue() + new Integer(1).intValue());

15

The VDM++ to Java Code Generator

}
}

3.4 Substituting Parts of the Generated Java Code

In a typical application, it will be necessary for the generated code to interact with other
code e.g. external libraries and/or handwritten code. To facilitate such interaction, it
is possible to modify the generated code, in such a way that these modifications are
not overwritten if the Code Generator is rerun.

The way this is achieved is through the use of keep tags. These are comments in the
generated Java code, which the Code Generator uses to decide whether a portion of
the code should be overwritten or not.

For example, consider the following example:

class Date

types
public Day = <Mon> | <Tue> | <Wed> | <Thu> | <Fri> | <Sat> | <Sun>;
public Month = <Jan> | <Feb> | <Mar> | <Apr> | <May> | <Jun>

| <Jul> | <Aug> | <Sep> | <Oct> | <Nov> | <Dec>;
public Year = nat

instance variables
d : Day;
m : Month;
y : Year

operations

public SetDate : Day * Month * Year ==> ()
SetDate(nd,nm,ny) ==
(d := nd;

m := nm;
y := ny);

public today : () ==> Date
today() ==

return new Date()
end Date

Since neither VDM++ nor VDM++ Toolbox has a primitive notion of time, it is not

16

The VDM++ to Java Code Generator

possible to give a complete specification of today. In the generated code, today is
generated as follows:

// ***** VDMTOOLS START Name=today KEEP=NO
public Date today () throws CGException{

return (Date) new Date();
}

// ***** VDMTOOLS END Name=today

The comments above and below the function definition represent the keep tag for this
function. In a keep tag the following information is found:

• The name of the entity to which the tag applies (what constitutes an entity is
explained below). This appears immediately after the text Name=.

• A flag indicating whether this entity should be retained or overwritten. This is
given by the text after KEEP=. If it is NO, the entity will be overwritten; if YES it
is retained. The default when a file is generated is NO.

Suppose we wish to modify this function to actually return the current day. This is
possible using the Calendar class provided as part of the Java Development Kit.

// ***** VDMTOOLS START Name=today KEEP=YES
public Date today () throws CGException{

Calendar c = Calendar.getInstance();
Date result = new Date();
Object td = new Object(), tm = new Object();
switch (c.get(Calendar.DAY_OF_WEEK)){
case Calendar.MONDAY:

td = new quotes.Mon();
break;

...
}
switch (c.get(Calendar.MONTH)){
case Calendar.JANUARY:

tm = new quotes.Jan();
break;

...
}
result.SetDate(td, tm, new Integer(c.get(Calendar.YEAR)));
return result;

}
// ***** VDMTOOLS END Name=today

17

The VDM++ to Java Code Generator

First note that the keep tag has been changed to YES. This ensures that the changes
made are preserved. The body of the function is then normal Java code, which is able
to use arbitrary external classes.

In addition to changing existing entities, new entities can be added to the Java file. Sup-
pose we wish to replace the default toString method (inherited from java.lang.Object)
with one tailored to dates. We could add the following to the class definition.

// ***** VDMTOOLS START Name=toString KEEP=YES
public String toString(){

return d.toString() + m.toString() + y.toString();
}

// ***** VDMTOOLS END Name=toString

3.4.1 Entities

An entity is a region in a generated Java file which can be retained using keep tags. It
may be one of the following:

• A top-level class member variable.

• A top-level class method (including constructors).

• An inner class.

• A collection of import declarations.

• A package declaration.

• A header comment i.e. a region at the head of the file, in which comments can
be placed, for instance version control information.

Note that keep tags may also be used with classes generated as interfaces (see Sec-
tion 3.5); in that case the same rules apply, where interface should be read instead of
class.

Three tag names are predefined and always appear in the generated file: HeaderComment
for header comments, package for package declarations and imports for import decla-
rations.

3.4.2 Rules for keep tags

The following rules must be followed when using keep tags.

18

The VDM++ to Java Code Generator

• Each tag name must be unique.

• Keep tags must be flat i.e tags can not be nested.

• Outside a class definition, the only tags that may appear are HeaderComment,
package and imports.

• Added entities must appear within the class definition, but at the top-level. Thus
for instance if a function is added to an inner class, the whole inner class must
be tagged YES.

• The syntax of keep tags is case and white-space sensitive. It must be followed
exactly.

Failure to follow these rules could lead to code being overwritten. However since the
original file is always backed up, this need not be fatal.

3.5 Generating Interfaces

The Code Generator allows generation of Java interfaces [Gosling&00]. A VDM++
class may be generated as an interface if the following conditions apply:

• All of the functions and operations defined in the class have body is subclass
responsibility.

• The class contains no instance variables are defined in the class.

• All types defined in the class are public.

• All values defined in the class can be defined directly (see Section 4.5 for an
explanation of what is meant by directly defined values).

• All superclasses of this class can be generated as interfaces.

For instance, consider the example in Figure 6. The class A clearly fulfils the require-
ments for being generated as an interface, since it has a directly defined value and all
of its functions and operations are is subclass responsibility. Class B can also be
generated as an interface, since it provides just one abstract function, and inherits from
a class that can be generated as an interface. Class C however can not be generated as
an interface, since it declares a non-abstract function.

To select which classes are to be generated as interfaces, click on the Select Interfaces
button in the options dialogue box (as described in Section 3.1). A new dialogue box
opens, as shown in Figure 7.

19

The VDM++ to Java Code Generator

class A

values
public v : nat = 1

operations
public op : nat ==> nat
op(n) == is subclass responsibility

functions
public f : nat -> nat
f(n) == is subclass responsibility

end A

class B is subclass of A

functions
public g : nat -> nat
g(n) == is subclass responsibility

end B

class C is subclass of A

functions
public g : nat -> nat
g(n) == n + 1

end C

Figure 6: Interfaces Example

20

The VDM++ to Java Code Generator

Figure 7: Initial Interface Selection Dialogue

Figure 8: Updated Interface Selection Dialogue

21

The VDM++ to Java Code Generator

Initially, only one class may be generated as an interface - A. If this is selected (by
clicking on the Add button), the dialogue is updated as shown in Figure 8.

Note that since B now appears in the list of possible interfaces. This is because it can
only be generated as an interface if its superclass - A - is an interface. If A is now
removed from the list of select interfaces, B will automatically be removed from the list,
since it no longer satisfies the criteria to be an interface.

Having selected classes to be generated as interfaces, code generation proceeds as nor-
mal. The following code would be generated for A:

public interface A {

// ***** VDMTOOLS START Name=v KEEP=NO
private static final Integer v = new Integer(1);

// ***** VDMTOOLS END Name=v

// ***** VDMTOOLS START Name=op KEEP=NO
public abstract Integer op (final Integer n) throws CGException;

// ***** VDMTOOLS END Name=op

// ***** VDMTOOLS START Name=f KEEP=NO
public abstract Integer f (final Integer n) throws CGException;

// ***** VDMTOOLS END Name=f

}

Interfaces may also be selected using the command-line version of the Toolbox, using
the -U option:

vppde -j -U class{,class} specfiles

If a class, which does not satisfy the above interface critera, is selected as an interface,
the following error message will be generated:

Can not generate class class as an interface - ignored

3.6 Limitations

Not all VDM++ specifications can be code generated to Java. The VDM++ specifi-
cations have to meet certain requirements in order to be translated to compilable and
correct Java code. These limitations are caused mainly by two reasons:

22

The VDM++ to Java Code Generator

• Limitation of the translation algorithm used: VDM++ and Java are two dif-
ferent languages. In a small number of cases the translation of some VDM++
constructs can lead to incorrect Java code. The limitations caused by this fact
are listed in Section 3.6.1. VDM++ specifications, that does not fulfil the listed
requirements, can result in non-compilable and incorrect Java code. The Code
Generator generates a warning/error message when it encounters a VDM++ fea-
ture not translatable to Java.

• Limitation of the domain of the translation: The Code Generator does not sup-
port all VDM++ constructs. Section 3.6.2 summarizes the VDM++ constructs
not supported by the Code Generator. These constructs do not result in uncom-
pilable Java code, but the execution of the generated code for these constructs
will result in run-time errors. The Code Generator will give a warning whenever
an unsupported construct is encountered.

Note that the semantics of Java and VDM++ differ with respect to how private methods
are handled with respect to dynamic dispatch. Consider the following example:

class C
operations
public op1 : () ==> seq of char
op1() == op2();

private op2 : () ==> seq of char
op2() == return "C‘op2"
end C

class D is subclass of C
operations
public op3 : () ==> seq of char
op3() == op1();

private op2 : () ==> seq of char
op2() == return "D‘op2"
end D

In Java, the expression new D().op3() yields the result C‘op2. In VDM++ the same
expression yields "D‘op2".

3.6.1 Requirements of VDM++ specifications due to language differences

The VDM++ specification has to meet the following requirements in order to generate
compilable and correct Java code:

• Type checker warnings as “Missing type information” should be removed, because
they can lead to errors in the generated code. The Code Generator is not able to
generate correct Java types, if type information is missing for a VDM construct.

• Classes, instance variables, types, values, functions and operations may not have
the same name. Moreover, redeclaration of names should be avoided. That means,
the following VDM++ specification for example will result in non-compilable code
because the variable name a is redeclared:

f : int | (int * int) ==> bool

23

The VDM++ to Java Code Generator

f(a) ==
cases a:

2 -> return true,
mk_(a,b) -> return false,
others -> let a = 1 in return true

end;

• Abstract operations/functions must have the same type as the operations/functions
implementing them. Consider the following example:

class A
operations

m: nat ==> nat
m(n) == is not yet specified;

end A

class B is subclass of A
operations

m: nat ==> nat
m(n) = return n+n;

end B

If the type of B‘m did not exactly match that of A‘m, then A‘m would still be
abstract in B, and therefore B would be an abstract class.

• A limited form for multiple inheritance may be used. However, the classes in-
volved have to fulfil the conditions described in Section 3.5.

• If all branches in a case statement contain a return statement, the case statement
must have an others branch. Otherwise the Java compiler generates a “Return
required” error when compiling the generated Java code.

• Dead code should be avoided. Consider the following example:

operations
m : nat ==> nat
m(n) ==

(return n;
a:= 4;

);

The statement a:= 4; will never be executed, which leads to an “Statement not
reached” error when compiling the generated Java code.

• When operation calls in a superclass are qualified by name, the generated code
can be erroneous. Look at the following example:

class A

operations

24

The VDM++ to Java Code Generator

public SetVal : nat ==> ()
SetVal(n) == ...;

end A

class B is subclass of A

operations

public SetVal : nat ==> ()
SetVal(n) == ...

end B

class C is subclass of B

operations

public Test : () ==> ()
Test() ==

(self.SetVal(1);
self.B‘SetVal(1);
self.A‘SetVal(2)

)

end C

class D

instance variables
b : B := new B()

operations

public Test: () ==> ()
Test() ==

(b.SetVal(1);
b.B‘SetVal(5);
b.A‘SetVal(2)

)

end D

Let us start looking at class C: The statement self.SetVal(1) calls the SetVal
operation in class C and will be code generated as this.SetVal(1) in Java. The
statement self.B‘SetVal(1) calls the SetVal operation in class B and will be
code generated as super.SetVal(1) in Java. In Java it is impossible to call
the SetVal() method in class A. The statement self.A‘SetVal(2) will be code

25

The VDM++ to Java Code Generator

generated as super.SetVal(2). If there was no SetVal operation in class B,
this would be correct. However, in the above case, this is not in conformity
with the VDM++ specification. The two operation calls self.B‘SetVal(1) and
self.A‘SetVal(2) will cause the Code Generator to give the warning “Quoted
method call is code generated as a call to super”. The user can then make sure if
the correct method is called.

Let us now look at class D: The statement b.SetVal(1) calls the SetVal operation
in class B and will be code generated as b.SetVal(1) in Java. In Java it is not
possible to invoke overriden methods from outside the class that does the overrid-
ing. There is therefore no way to call the SetVal method in class A. The quoted
operation calls in class D are therefore all code generated as b.SetVal(1). The
code generating will however give the warning “Quoted method call is removed”
in order to inform the user.

• The max (min) values for integer and double types in Java are smaller (bigger)
than the respective values in VDM++. Values, that are not valid in Java lead to
errors when running the generated Java code.

3.6.2 Unsupported Constructs

In this version of the Code Generator the following VDM++ constructs are not sup-
ported:

• Expressions:

– Lambda.

– Compose, iterate and equality for functions.

– Type judgement expressions.

– Higher order functions.

– Local function definitions.

– Function type instantiation expression. However, the code generator sup-
ports function type instantiation expression in combination with apply ex-
pression, as in the following example:

Test:() -> set of int
Test() ==
ElemToSet[int](-1);

ElemToSet[@elem]: @elem +> set of @elem
ElemToSet(e) ==
{e}

26

The VDM++ to Java Code Generator

• Statements:

– Specification statements.

– Start list statements.

• Type binds (see [LangManPP]) in:

– Let-be-st expression/statements.

– Sequence, set and map comprehension expressions.

– Iota and quantified expressions.

As an example the following expression is supported by the Code Generator:

let x in set numbers in x

whereas the following is not (caused by the type bind n: nat):

let x: nat in x

• Patterns:

– Set union pattern.

– Sequence concatenation pattern.

The Code Generator is able to generate compilable code for specifications including
these constructs, but the execution of the code will result in a run-time error if a
branch containing an unsupported construct is executed. Consider the following func-
tion definition:

f: nat -> nat
f(x) ==
if x <> 2 then

x
else

iota x : nat & x ** 2 = 4

The code generated for f will be compiled. The compiled Java code corresponding to
f however will result in a run-time error if f is applied with the value 2, as type binds
in iota expression are not supported.

Note, that The Code Generator will give a warning whenever an unsupported construct
is encountered. Generating code for the function f listed above leads to the Error
window shown in Figure 9.

27

The VDM++ to Java Code Generator

Figure 9: A warning generated by the Code Generator.

28

The VDM++ to Java Code Generator

4 Code Generating VDM++ Specifications

This section will give you a detailed description of the way VDM++ constructs are code
generated, including classes, types, values, instance variables, functions, operations,
expressions and statements. This description should be studied intensively by those
wishing to use the Code Generator professionally.

We will start by giving an introduction to the VDM Java Library, which forms the
basis of code generating VDM++ specifications. Afterwards, we will describe the code
generated for the above mentioned VDM++ constructs, one by one.

4.1 The VDM Java Library

The data refinement of the generated code is based on the VDM Java Library, which
is implemented in the package dk.ifad.toolbox.VDM. Here, we will only give a short
introduction to this library. It is further described by HTML documentation generated
by the javadoc program. In order to get a full understanding of this library you should
read that documentation. See Appendix B for a description about how to generate the
HTML documentation using the javadoc program.

The VDM Java Library provides a fixed implementation of the following VDM++ data
types:

• Product/Tuple Type

• Record Type

For each of these types a class has been implemented providing the same public methods
as the corresponding VDM++ type. These classes are implemented on top of classes
provided by the Java language.

VDM++ data types, which are not listed above (the basic VDM++ data types, sets,
sequences, maps, the Optional type and the ObjectReference type) are represented
by classes/constructs which are part of the Java language itself, or part of the standard
Java Development Kit (JDK) distribution.

In addition to providing an implementation of the above listed VDM++ data types,
the VDM Java Library provides two more classes:

• The UTIL class.

This class contains auxiliary methods, which are used in the generated code and
which can be used by the user when interfacing the generated code. The most
important of these auxiliary methods are listed below:

29

The VDM++ to Java Code Generator

– clone: clones (in-depth) a VDM value. However, VDM++ classes and basic
VDM++ data types are not cloneable.

– equals: compares two VDM values.
– toString: returns a String containing an ASCII representation of a VDM

value.
– RunTime: is called when a run-time error occurs. It throws a VDMRunTimeException,

which is defined in the VDM Java Library.
– NotSupported: is called when an unsupported construct is executed. It

throws a NotSupportedConstructException, which is defined in the VDM
Java Library.

Note: Use always the clone, toString and equals methods of the UTIL class -
and not the methods defined in the Java classes corresponding to VDM++ data
types.

• The CGException class and its subclasses.

The error handling of the VDM Java library is based on Java’s exception handling
mechanism. When an error is detected by the generated Java code or one of
the library methods, an appropriate exception is thrown. All the implemented
errors are subclasses of the class CGException, which again is a subclass of the
java.lang.Exception class. The inheritance structure of the exception classes
is shown in Figure 10.

The different kinds of exceptions are grouped into two types.

– Instances of the VDMRunTimeException class: They are thrown in the gener-
ated Java code. They correspond to run-time errors occuring when executing
VDM++ specifications.

– Instances of the NotSupportedConstructException class: They are thrown
when constructs not supported by the Code Generator are executed.

4.2 Code Generating Classes

For each VDM++ class a corresponding Java class is generated. For each VDM++ class
member, the corresponding item in the Java class will have the same access modifier
as the VDM++ member.

Let us have a closer look at the structure of a Java class generated for a class in the
VDM++ specification.

The generated Java class contains:

• A static comparator, implementing the interface java.util.Comparator in the
Java Development Kit. This is used in tree-based data structures, and implements
the VDM notion of equality.

30

The VDM++ to Java Code Generator

VDMLibRunTimeException NotSupportedConstructException

CGException

Exception

Figure 10: Inheritance structure of the Java classes handling Code Generator excep-
tions.

• Java code implementing VDM++ datatypes. (See Section 4.4)

• Java code implementing VDM++ values. (See Section 4.5)

• Java code implementing VDM++ instance variables. (See Section 4.6)

• A static initializer (if values have to be initialized).

• A constructor (if the class contains instance variable definitions).

• Java methods implementing VDM++ functions. (See Section 4.7)

• Java methods implementing VDM++ operations. (See Section 4.7)

• Code for concurrency (synchronization, threads etc), if that option is selected;
see Section 5.

Consider the resulting skeleton of a generated Java class, generated for a VDM++ class
definition, say A:

public class A {

31

The VDM++ to Java Code Generator

// ***** VDMTOOLS START Name=vdmComp KEEP=NO
static UTIL.VDMCompare vdmComp = new UTIL.VDMCompare();

// ***** VDMTOOLS END Name=vdmComp

...Implementation of VDM++ types...

...Implementation of VDM++ values...

...Implementation of VDM++ instance variables...

// ***** VDMTOOLS START Name=static KEEP=NO
static {

...Initialization of VDM++ values...
}

// ***** VDMTOOLS END Name=static

// ***** VDMTOOLS START Name=A KEEP=NO
public A () {

try { ...
Initialization of VDM++ instance variables...
...

}
catch (Throwable e) { ...

}
}

// ***** VDMTOOLS END Name=A

...Implementation of VDM++ functions...

...Implementation of VDM++ operations...

};

If a VDM++ class is abstract, the generated Java class will also be declared as such.

4.3 Inheritance Structure of the Generated Java Classes

The inheritance structure of the generated Java classes corresponds exactly to the
inheritance structure of the VDM++ classes.

The inheritance structure of the VDM++ classes and the generated Java classes for
the sorting example is shown in Figure 11.

32

The VDM++ to Java Code Generator

Merge
Sort

ExplSort ImplSort DoSort

Sorter

(a) VDM++

Merge
Sort

ExplSort ImplSort DoSort

Sorter

Object

(b) Java

Figure 11: Inheritance structure of the VDM++ classes and the generated Java classes

VDM++ allows classes to have more than one superclass, using multiple inheritance.
Java does not support multiple inheritance. Instead, Java replaces multiple inheritance
with interfaces [Gosling&00]. A class in Java optionally extends one superclass and it
optionally implements one or more interfaces. In order to implement an interface, a
class must first declare the interface in an implements clause, and then it must provide
an implementation for all the abstract methods of the interface. This is actually the real
difference between multiple inheritance in VDM++ and interfaces in Java. In Java, a
class can inherit actual implementations only from one superclass. It can inherit addi-

33

The VDM++ to Java Code Generator

tional abstract methods from interfaces, but it must provide its own implementation
of these methods.

To resolve multiple inheritance at the VDM++ level, the user must select which classes
are to be code generated as interfaces (see Section 3.5 for details of how this is done).
Since Java’s interface model is more simple than the VDM++ multiple inheritance
model, not all cases of multiple inheritance in VDM++ can be suitable resolved. In
such circumstances the VDM++ model must be modified if complete code generation
is desired.

In order to generate Java code for multiple inheritance in VDM++ the superclasses in
VDM++ must fulfil the following conditions:

• Only one superclass may define functions and operation implementations, and
only this superclass may provide instance variables. This class will be code gen-
erated as the single superclass in Java.

• It must be possible to generate all other superclasses as interfaces (see Section 3.5).

Note that if the subclass does not provide implementations for all abstract functions
and operations that are inherited, it will be generated as an abstract class.

Consider the following example of a VDM++ specification, that can be code generated:

class E

instance variables
protected i : nat

end E

class F

values
public n : nat = 3

operations
public getx : () ==> nat
getx() == is subclass responsibility;

end F

class G is subclass of E, F

operations
public getx : () ==> nat
getx() == if true then return n else return i;

34

The VDM++ to Java Code Generator

end G

The listed VDM++ specification fulfils the necessary conditions: Class G is the subclass
of the two classes E and F. Class E defines an instance variable. Therefore it will be code
generated as the single superclass in Java. Class F may be generated as an interface,
since it fulfils the criteria given in Section 3.5.

The generated Java code for G is listed below.

public class G extends E implements F {

static UTIL.VDMCompare vdmComp = new UTIL.VDMCompare();

public Integer getx () throws CGException{
if (new Boolean(true).booleanValue())

return n;
else

return i;
}

};

If the VDM++ specification does not fulfil the above listed requirements, the VDM++
to Java Code Generator will generate incorrect code.

If multiple inheritance at the VDM++ level is not resolved, the Code Generator will
result in the following error:

Error : "Multiple inheritance in this form" is not supported and is not
code generated

Note: The VDM++ expressions Base Class, Class, Same Base Class and Same Class
Membership will have a different semantics for generated Java code compared to the
original VDM++ specification, in the presence of multiple inheritance.

4.4 Code Generating Types

In this section the way VDM++ types are mapped into Java code is described. In
addition, the naming conventions for types are summarized.

4.4.1 Mapping Anonymous VDM++ Types to Java

Anonymous types are types that are not given a name in the VDM++ specification.
The way in which they are code generated is described in the following sections.

35

The VDM++ to Java Code Generator

The Boolean, Numeric and Character Types The Java language package pro-
vides the following “wrapper” classes for the primitive data types double, int, boolean
and char: Double, Integer, Boolean and Character respectively. These classes are
used to represent the following VDM++ datatypes: real, rat, int, nat, nat1, bool,
char. The VDM real and rat types are mapped to the Java class Double. The VDM
nat, nat1 and int types are mapped to the Java class Integer. The VDM bool type
is mapped to the Java class Boolean. The VDM char type is mapped to the Java class
Character.

Note that there is a semantic difference here between VDM++ and Java. In VDM++
the int, nat, nat1 types are subtypes of the real and rat types. This means, that it
is possible to assign an integer to a variable of type real and it is possible to assign a
real to a variable of type int, if its value is an integer value.

In Java objects of type Double and Integer cannot be cast to each other in the
same way. Therefore, two auxiliary Java methods: UTIL.NumberToDouble and UTIL.
NumberToInteger have been provided. The Number class is a superclass to both the
Double and the Integer class.

The Quote Type The Code Generator generates a class definition for every quote
used in the VDM++ specification. All quotes are collected in the quotes package. The
quote <HELLO> will lead to the HELLO class definition in file HELLO.java in the package
quotes:

package quotes;

public class HELLO {

static private int hc = 0;

public HELLO () {
if (hc == 0)

hc = super.hashCode();
}

public int hashCode () {
return hc;

}

public boolean equals (Object obj) {
return obj instanceof HELLO;

}

public String toString () {
return "<HELLO>";

}

36

The VDM++ to Java Code Generator

};

The quote <HELLO> can then be code generated as follows:

new quotes.HELLO()

Note that the hashCode method ensures that every instance of a quote constant has
the same hash code.

The Token Type The Code Generator generates a Token class in the file Token.java
when the VDM++ specification contains a token type:

import dk.ifad.toolbox.VDM.*;

public class Token {

Object vdmValue;

public Token (Object obj) {
vdmValue = obj;

}
public Object GetValue () {

return vdmValue;
}
public boolean equals (Object obj) {

if (!(obj instanceof Token))
return false;

else
return UTIL.equals(this.vdmValue, ((Token) obj).vdmValue);

}
public String toString () {

return "mk_token(" + UTIL.toString(vdmValue) + ")";
}

};

The token value mk_token(<HELLO>) is for example code generated as follows:

new Token(new quotes.HELLO());

The Sequence, Set and Map Types The VDM Sequence (except the seq of char
type), Set and Map types are mapped to the Vector, TreeSet and HashMap classes of
the java.util package. For TreeSets, comparison is based on the comparator defined

37

The VDM++ to Java Code Generator

in the UTIL class provided. These classes respectively implement the interfaces List,
Set and Map, also defined in the java.util package.

The seq of char type is mapped into the Java language class String. Note that for
example the “(seq of char | seq of nat)” and the “seq of (char | nat)” types
are generated as Vector.

The Tuple/Product Type The values of a product type are called tuples. The
class, which models the VDM Tuple Type, is called Tuple and can be found in the
VDM Java Library.

Note, that both the VDM++ types, i.e. int * real and seq of nat * nat are simply
code generated as Tuple.

The Union Type Anonymous VDM++ Union types are supported by the Java
Object class.

The Optional Type The VDM Optional Type is represented by the fact that object
references may be “null” in Java.

The Object Reference Type In Section 4.2 it has been described, how a Java class
is generated for each VDM++ class. In VDM++ an object reference type is denoted
by a class name. The class name in the object reference type must be the name of a
class defined in the specification. Moreover, in VDM++ a value of the object reference
type can be regarded as a reference to an object.

The object reference type corresponds to Java’s class/instance scheme. Java manipu-
lates objects “by reference” as is the case for VDM++.

The Function Type The VDM++ Function Type is not supported in the Code
Generator.

4.4.2 Mapping VDM++ Type Definitions to Java

For VDM++ record types, and union types consisting entirely of records, VDM++ to
Java Code Generator generates inner classes representing the types. For other kinds
of type definition, it is not necessary to generate a Java representation, since all other
type definitions are shallow definitions. That is, they simply represent a new name
for an existing type. In such cases VDM++ to Java Code Generator instead uses the

38

The VDM++ to Java Code Generator

existing type, and the new name is not used. To illustrate this, consider the following
example:

types
A = nat
B = seq of char
C = A | B

The new types will always be equal to the types on the right hand side. Thus, they are
just new names for the existing types on the right hand side. Therefore, the generated
code will use the Java implementation of these right hand side types instead. When
the types A, B or C are used in the VDM++ specification, they will be mapped to the
Java classes Integer, Vector and Object respectively.

However, the Record types and Union types composed of Record types represent deep
type definitions. That is, they introduce new types to the model. Therefore they are
code generated in the manner described below:

• The Composite/Record Type

All record types defined in a VDM++ specification are mapped to class defi-
nitions, that implement the Record interface found in the VDM Java Library.
Fields in a record become variables in the new class.

For example, the following composite type3

public A:: real
k : int

will be code generated as:

public static class A implements Record {

public Double f1;
public Integer k;

public A () {}
public A (Double p1, Integer p2){

f1 = p1;
k = p2;

}
public Object clone () {

return new A(f1,k);
}
public String toString () {

"mk_G‘A(" + UTIL.toString(f1) + "," + UTIL.toString(k) + ")";

3Note: Do not use the compose of syntax to define composite types.

39

The VDM++ to Java Code Generator

}
public boolean equals (Object obj) {

if (!(obj instanceof A))
return false;

else {
A temp = (A) obj;
return UTIL.equals(f1, temp.f1) && UTIL.equals(k, temp.k);

}
}
public int hashCode () {

return (f1 == null ? 0 : f1.hashCode()) +
(k == null ? 0 : k.hashCode());

}
};

For each field in the record, a public instance variable has been added to the
generated class definition. The names of these variables match the names of
the corresponding VDM record field selectors. If a field selector is missing, the
position of the element in the record will be used instead, e.g. f1 in the example
above. If f1 is already used as a field selector, then the character “f” will be
repeatedly appended until a unique field selector is obtained.

• Union Types composed of composite types

Union types, that are composed of composite types are code generated using Java
interfaces. Look at the following VDM++ types:

Item = MenuItem | RemoveItem;
MenuItem = Seperator | Action;
Action:: text: String;
Separator::;
RemoveItem::;

The generated Java code looks as:

public static interface Item {
};

public static interface MenuItem extends Item {
};

private static class Action implements MenuItem , Record {
...

} ;

private static class Separator implements MenuItem , Record {
...

} ;

40

The VDM++ to Java Code Generator

private static class RemoveItem implements Item , Record {
...

} ;

As you can see, the classes generated for Record types implement the interfaces
generated for the Union types.

4.4.3 Invariants

When an invariant is used to restrict a VDM++ type definition in the specification,
an invariant VDM++ function is also available. This invariant function can be called
in the same scope as its associated type definition (see [LangManPP]). When the
option for generating pre and post functions/operations is chosen, the VDM++ to
Java Code Generator generates a Java method definition corresponding to such an
invariant function. As an example, consider the following VDM++ type definition:

public S = set of int
inv s == s <> {}

The method declaration corresponding to the VDM++ function inv S is listed below.

public Boolean inv_S(final TreeSet s) throws CGException {
...
};

Note, that the VDM++ to Java Code Generator does not support dynamic check of
invariants, but invariant functions can be called explicitly.

4.5 Code Generating Values

VDM++ value definitions are translated to static final variables of the generated Java
class. The static keyword is used to indicate that a particular variable is a class vari-
able rather than an instance variable. Moreover, the final keyword indicates, that the
variable is a constant.

Consider the example below:

class A
values
public mk_(a,b) = mk_(3,6);

41

The VDM++ to Java Code Generator

private c : char = ’a’;
protected d = a + 1;
e = 2 + 1;

end A

The generated class variables in the Java class A will look like:

public class A {
public static final Integer a;
public static final Integer b;
private static final Character c = new Character(’a’);
protected static final Integer d;
private static final Integer e = new Integer(new Integer(2).intValue() +

new Integer(1).intValue());
}

If the VDM++ values are initialized by a simple expression, that in addition does
not contain any other VDM++ values, the corresponding Java variables are initialized
“directly”. As the example shows, the variables c and e are intialized directly. The
other variables are initialized in the static initializer of the class. The static initializer
is an initialization method for class variables. It is invoked automatically by the system
when the class is loaded. The instance variables a, b and d are thus initialized in the
static initializer of the generated Java class A. The static initializer for class A is listed
below:

static {
Integer atemp = null;
Integer btemp = null;
Integer dtemp = null;

/** Initialization of class variables a & b */
boolean succ_2 = true;
{

try{
Tuple tmpVal_1 = new Tuple(2);
tmpVal_1 = new Tuple(2);
tmpVal_1.SetField(1, new Integer(3));
tmpVal_1.SetField(2, new Integer(6));
succ_2 = true;
{

Vector e_l_7 = new Vector();
for (
int i_8 = 1; i_8 <= tmpVal_1.Length(); i_8++)

e_l_7.add(tmpVal_1.GetField(i_8));
if (succ_2 = 2 == e_l_7.size()) {

42

The VDM++ to Java Code Generator

atemp = UTIL.NumberToInt(e_l_7.get(0));
btemp = UTIL.NumberToInt(e_l_7.get(2 - 1));

}
}
if (!succ_2)

UTIL.RunTime("Pattern match did not succeed in value definition");
}
catch (Throwable e) {

System.out.println(e.getMessage());
}

}
a = atemp;
b = btemp;

/** Initialization of class variable d */
{

try{
Integer tmpVal_11 = null;
tmpVal_11 = new Integer(a.intValue() + new Integer(1).intValue());
dtemp = tmpVal_11;

}
catch (Throwable e) {

System.out.println(e.getMessage());
}

}
d = dtemp;

}

4.6 Code Generating Instance Variables

The code generation of instance variables is very straightforward. Instance variables
are translated into member variables of the corresponding Java class.

Consider the following instance variable declaration in VDM++:

class A
instance variables
public i : nat;
private k : int := 4;
protected message : seq of char := [];
inv len message <= 30;
j : real := 1;

...
end A

The corresponding Java code generated by the Code Generator in file A.java will

43

The VDM++ to Java Code Generator

become:

public class A {
static UTIL.VDMCompare vdmComp = new UTIL.VDMCompare();
public Integer i = null;
private Integer k = null;
protected String message = null;
private Double j = null;
...

}

Instance variables are initialized when an object is created. In Java, instance variables
are initialized in the constructor methods, which are run when an instance of the class
is created.

Thus, the implementation of the constructor method for class A initializes the instance
variables as shown below:

public class A {
public A () {

try{
k = new Integer(4);
message = UTIL.ConvertToString(new String());
j = UTIL.NumberToReal(new Double(1));

}
catch (Throwable e) {
System.out.println(e.getMessage());

}
}
...

}

Note: Invariant definitions specified in instance variable blocks are ignored by the Code
Generator.

4.7 Code Generating Functions and Operations

In VDM++, functions and operations can be defined both explicitly or implicitly. The
VDM++ to Java Code Generator generates Java methods for both implicit and explicit
function and operation definitions.

In both VDM++ and Java all functions and operations are virtual, so there is no
difference in semantics. The access modifier given to a generated method will be the

44

The VDM++ to Java Code Generator

same as the corresponding VDM++ function or operation. A function or operation
name in a VDM++ specification will be given the same name in the corresponding
Java implementation.

All generated methods throw the CGException exception. This is done in order to
handle exceptions thrown in the generated Java code.

4.7.1 Explicit Function and Operation Definitions

Let us look at an example for code generating explicit VDM++ function and operation
definitions.

The operation definition Sort in the VDM++ class DoSort is explicit and leads to the
following Java method in class DoSort in file DoSort.java:

public Vector Sort (final Vector l) throws CGException{
...

}

4.7.2 Preliminary Function and Operation Definitions

The body of explicit function and operation definitions can be specified in a prelim-
inary manner using the clauses “is subclass responsibility” and “is not yet
specified”.

The “is subclass responsibility” clause indicates that implementation of this
body must be undertaken by any subclasses. Preliminary function/operation spec-
ifications containing the clause “is subclass responsibility” are translated into
abstract methods in Java. A Java class containing an abstract method is an abstract
class. All derived classes will remain abstract until all abstract methods are imple-
mented. In order to generate correct Java code, abstract operations/functions in the
VDM++ specification must have the same input and output parameters as the op-
erations/functions implementing them. Subclasses, which do not implement abstract
methods will be generated as abstract classes.

The “is not yet specified” clause indicates that the implementation of this body
must be undertaken by the user. In section 3.2 it has been described how this is done.

4.7.3 Implicit Function and Operation Definitions

The implementation of implicit functions and operation definitions has to be undertaken
by the user. See Section 3.2 for more information.

45

The VDM++ to Java Code Generator

4.7.4 Pre and Post Conditions

When pre and post conditions are specified for functions, corresponding pre and post
methods can be generated by the VDM++ to Java Code Generator. Moreover, meth-
ods can be generated for pre conditions of operations. Post conditions on operation
specifications, however, are ignored by the VDM++ to Java Code Generator. The
“Code generate pre and post functions/operations” option has to be selected in order
to generate Java method definitions corresponding to pre and post conditions.

The generated pre and post methods take the same access modifier as that of the cor-
responding function or operation. Their name is prefixed by post and pre respectively
and their return type will always be Boolean. The “Check pre and post conditions”
option can be used to generate code that checks pre and post conditions (not including
operation post conditions).

4.8 Code Generating Expressions and Statements

VDM++ expressions and statements are code generated, so that the generated code
behaves as intended by the specification.

The undefined expression and the error statement are translated into a call of the func-
tion UTIL.RunTime, found in the VDM Java Library, which throws a VDMRunTimeException.

4.9 Name Conventions

The naming strategy used by the VDM++ to Java Code Generator is to keep the same
names as those being used in the VDM++ specification. This strategy applies to all
identifiers used in the VDM++ specification. However, underscores (‘_’) and single
quotes (‘’’) appearing in identifiers will be exchanged with underscore-u (‘_u’) and
underscore-q (‘_q’), respectively, in the generated Java code. Moreover, reserved words,
reserved method names, and names of classes in the java.lang package are prefixed
by ‘vdm ’. Problems resulting from the redeclaration of variable names are solved by
postfixing variable names with number. Finally, auxiliary/temporary variable names
are named as name_number.

46

The VDM++ to Java Code Generator

5 Code Generation of Concurrent VDM++ Specifications

5.1 Introduction

VDM++ provides a number of features for specifying systems with concurrently exe-
cuting threads. These allow specification of the functionality of individual threads, and
specification of synchronization for objects shared amongst threads.

Java provides support for threads via the Thread class, and allows synchronization
of shared objects using monitors. However VDM++ provides a more sophisticated
mechanism for synchronizing access, so the translation from VDM++ specifications to
Java is somewhat more subtle than might be expected.

5.2 Overview

In addition to the code generation described in the preceding chapters, the Concurrent
VDM++ to Java Code Generator allows generation of the following constructs:

• procedural threads

• periodic threads

• the start statement

• permission predicates

• mutex synchronization

• history expressions

5.2.1 Code Generation

From the graphical user interface of the VDM++ Toolbox, the “Generate code with
concurrency constructs” option should be selected. From the command line the -e flag
should be used to specify generation of concurrency constructs:

vppde -j -e [other options] specfile(s)

5.3 Translation Approach

Code generation of concurrent VDM++ specifications is less straightforward than code
generation of sequential specifications largely because mechanisms for synchronization

47

The VDM++ to Java Code Generator

need to be implemented. In particular the translation approach needs to ensure that
operation calls honour any synchronization constraints. This implies that the trans-
lation approach needs to provide a means of recording the information required to
evaluate permission predicates, and in particular the history counters for a particular
operation.

In the following we describe the core translation which takes place for each class. We
then describe the extensions to this if a procedural or periodic thread is specified.

The knowledge in these sections is not needed to use the Concurrent VDM++ to Java
Code Generator, so these sections may be safely skipped on first reading. A more
detailed description of the approach is given in [Oppitz99].

5.3.1 Core Translation

In this section we give an overview of the basic approach taken, describing how syn-
chronization is implemented.

Every VDM++ class that is translated has the following included in its Java translation:

• An evaluatePP method

• An inner Sentinel class and a Sentinel member variable named sentinel

Of course, these are all in addition to the existing instance variables, and functions
of the VDM++ class that are translated in the manner described in the preceding
chapters. Operations are translated largely as before, but with one minor adjustment
described below. We now briefly describe each of the Java components listed above.

The evaluatePP method is specified by the EvaluatePP interface in the Concurrent
VDM Java Library which each translated class implements. It takes as argument an
integer representing the name of one of the operations from that VDM++ class, and
returns true or false corresponding to the evaluation of the permission predicate for
that operation (identically true if no permission predicate exists for that operation).

The Sentinel class is used to record history counter information. An operation Op in
the VDM++ class will be translated using the following schema

sentinel.entering(((Op Sentinel) sentinel).Op);
try {

Translation of body of op

}
finally { sentinel.leaving(((Op Sentinel) sentinel).Op);}

48

The VDM++ to Java Code Generator

The call to sentinel.entering updates the #req history counter and then evaluates
the permission predicate for the operation using the evaluatePP method. If the per-
mission predicate evaluates to true, the call to sentinel.entering finishes and the
body executes; otherwise the call blocks, waiting to be notified of any activity with
respect to history counters. Note that there is no notification of any change in the
value of any member variables corresponding to instance variables, even though these
may be used in other permission predicates. However, this just mirrors the semantics of
VDM++ which does not require re-evaluation of permission predicates when instance
variables are altered.

Similarly at the end of the operation there is a call to sentinel.leaving that updates
the appropriate history counters. This is enclosed within a finally statement to ensure
that it is executed whether the body terminates normally or abnormally.

As well as these additions a couple of modifications are also made to the translation
strategy:

• VDM++ instance variables are translated into Java volatile member variables,
since they might be shared amongst several threads.

• The class constructor is extended to initialize the sentinel.

5.3.2 Procedural Threads

If the VDM++ class to be translated contains a procedural thread the core translation
is extended in four ways:

• The translated class implements the Runnable interface from the java.lang pack-
age. This is in addition to implementing the EvaluatePP interface.

• A VDMThread member variable is added; VDMThread is defined as part of the
Concurrent VDM Java Library.

• A run method is implemented in the class’s body, as specified by the Runnable
interface. The body of this method corresponds to the translation of the thread
clause in the VDM++ class.

• A start method is added. It initializes the thread and then starts it using the
thread’s own start method.

5.3.3 Periodic Threads

If the VDM++ class to be translated contains a periodic thread the core translation is
extended in three ways:

49

The VDM++ to Java Code Generator

• A PeriodicThread member variable called perThread is added. PeriodicThread
is defined in the Concurrent VDM Java Library.

• In the constructor perThread is initialized and its threadDef method is defined
to be whichever operation is specified to be executed periodically in the VDM++
class.

• A start method is added. It starts perThread using its invoke method.

5.4 Example

We illustrate the Concurrent VDM++ to Java Code Generator with an example of a
Timer. The Timer maintains instance variables recording the current time, and has
two operations: one for setting the time and one for incrementing the time. The latter
operation is executed every 1000 milliseconds by the class’s periodic thread.

class Timer

instance variables
hour: nat := 0;
min: nat := 0;
sec: nat := 0

operations
IncrementTime: () ==> ()
IncrementTime() == (

sec := sec + 1;
if sec = 60 then (sec := 0; min := min + 1);
if min = 60 then (min := 0; hour := hour + 1);
if hour = 24 then hour := 0;

);

-- This is for use by threads other than the periodic thread
public SetClock: nat * nat * nat ==> ()
SetClock(h,m,s) == (

hour := h;
min := m;
sec := s

);

thread
periodic (1000) (IncrementTime)

50

The VDM++ to Java Code Generator

sync
mutex(IncrementTime, SetClock);

end Timer

Note that IncrementTime and SetClock are mutually exclusive as they both write to
the three instance variables. This is expressed in the class’s sync clause.

The corresponding Java code is listed below. Those parts highlighted in grey are specific
to the translation of concurrency constructs.

51

The VDM++ to Java Code Generator

public class Timer implements EvaluatePP {

static UTIL.VDMCompare vdmComp = new UTIL.VDMCompare();
private volatile Integer hour = null;
private volatile Integer min = null;
private volatile Integer sec = null;
volatile Sentinel sentinel;
PeriodicThread perThread;

class TimerSentinel extends Sentinel {

public final int IncrementTime = 0;
public final int SetClock = 1;
public final int nr_functions = 2;

public TimerSentinel () throws CGException{}

public TimerSentinel (EvaluatePP instance) throws CGException{
init(nr_functions, instance);

}
};

public Boolean evaluatePP (int fnr) throws CGException{
Boolean temp;

switch(fnr) {
case 0: {

temp = new Boolean(UTIL.equals(
new Integer(sentinel.active[((TimerSentinel) sentinel).IncrementTime]

+ sentinel.active[((TimerSentinel) sentinel).SetClock]),
new Integer(0)));

return temp;
} case 1: {

temp = new Boolean(UTIL.equals(
new Integer(sentinel.active[((TimerSentinel) sentinel).IncrementTime]

+ sentinel.active[((TimerSentinel) sentinel).SetClock]),
new Integer(0)));

return temp;
}
}
return new Boolean(true);

}

public void setSentinel () {
try{

sentinel = new TimerSentinel(this);
}
catch (CGException e) {

System.out.println(e.getMessage());
}

}

52

The VDM++ to Java Code Generator

public void start () throws CGException{
perThread.invoke();

}

public Timer () {
try{

perThread = new PeriodicThread(new Integer(1000),perThread){

public void threadDef () throws CGException{
IncrementTime();

}
};
setSentinel();
hour = new Integer(0);
min = new Integer(0);
sec = new Integer(0);

}
catch (Throwable e) {

System.out.println(e.getMessage());
}

}

private void IncrementTime () throws CGException{
sentinel.entering(((TimerSentinel) sentinel).IncrementTime);

try{
sec = UTIL.NumberToInt(UTIL.clone(new Integer(sec.intValue() +

new Integer(1).intValue())));
if (new Boolean(sec.intValue() == new Integer(60).intValue()).booleanValue()) {
sec = UTIL.NumberToInt(UTIL.clone(new Integer(0)));
min = UTIL.NumberToInt(UTIL.clone(new Integer(min.intValue() +

new Integer(1).intValue())));
}
if (new Boolean(min.intValue() == new Integer(60).intValue()).booleanValue()) {
min = UTIL.NumberToInt(UTIL.clone(new Integer(0)));
hour = UTIL.NumberToInt(UTIL.clone(new Integer(hour.intValue() +

new Integer(1).intValue())));
}
if (new Boolean(hour.intValue() == new Integer(24).intValue()).booleanValue())
hour = UTIL.NumberToInt(UTIL.clone(new Integer(0)));

}
finally {

sentinel.leaving(((TimerSentinel) sentinel).IncrementTime);
}

}

public void SetClock (final Integer h, final Integer m, final Integer s) throws CGException{
sentinel.entering(((TimerSentinel) sentinel).SetClock);

try{
hour = UTIL.NumberToInt(UTIL.clone(h));
min = UTIL.NumberToInt(UTIL.clone(m));
sec = UTIL.NumberToInt(UTIL.clone(s));

}
finally {

sentinel.leaving(((TimerSentinel) sentinel).SetClock);
}

}
};

53

The VDM++ to Java Code Generator

5.5 Limitations

When using the Concurrent VDM++ to Java Code Generator the following should be
taken into account:

• In general, Java classes generated by the sequential code generator may only
be used in concurrent systems in an unsynchronized manner since the synchro-
nization mechanism is an integral part of the translated classes rather than an
adjunct. If synchronization is required then the code should be regenerated using
the Code Generator with the concurrency option.

• For periodic threads, it is the specifier’s responsibility to ensure that the execution
time of the operation to be executed periodically is less than the period. Failure
to do so could result in uncaught exceptions.

• The startlist statement is not currently supported by the Concurrent VDM++
to Java Code Generator.

54

The VDM++ to Java Code Generator

A References

[Gosling&00] James Gosling, Bill Joy, Guy Steele and Gilad Bracha. The Java
Langauge Specification, Second Edition. The Java Series, Addison
Wesley, 2000.

[InstallPPMan] The VDM Tool Group. VDM++ Installation Guide. Technical
Report, IFAD, October 2000.

[LangManPP] The VDM Tool Group. The IFAD VDM++ Language. Technical
Report, IFAD, April 2001.
ftp://ftp.ifad.dk /pub/vdmtools/doc/langmanpp letter.pdf.

[Oppitz99] Oliver Oppitz. Concurrency Extensions for the VDM++ to Java
Code Generator of the IFAD VDM++ Toolbox. Master’s thesis,
TU Graz, Austria, April 1999. 151 pages.

[UserManPP] The VDM Tool Group. VDM++ Toolbox User Manual. Technical
Report, IFAD, October 2000.
ftp://ftp.ifad.dk/pub/vdmtools/doc /usermanpp letter.pdf.

55

The VDM++ to Java Code Generator

B Installing the Code Generator

The VDM++ to Java Code Generator is an add-on feature to the VDM++ Toolbox.
Its installation is described in [InstallPPMan]. You will find a directory named

javacg

in its distribution. This directory contains 1 file and 2 other directories:

• VDM.jar: the VDM Java Library (see Appendix C).

• libdoc: containing HTML documentation of the VDM Java Library (see Ap-
pendix C).

• example: containing the DoSort example used to illustrate the Code Generator
in this manual (see Appendix D).

56

The VDM++ to Java Code Generator

C The VDM Java Library

As described in Section 2.2 you must ensure that your CLASSPATH environment variable
includes the VDM Java Library, i.e., the VDM.jar file, in order to be able to run the
generated code. This file can be found in

javacg/

Moreover, the

javacg/libdoc

directory contains HTML documention generated by javadoc of this library.

57

The VDM++ to Java Code Generator

D The DoSort Example

The DoSort example, which is used to illustrate the Code Generator in this manual,
can be found in the directory named javacg/example. The directory contains the
following files:

• Sort.rtf

• sort.vpp

• DoSort.java

• MainSort.java

The java files can be compiled by executing the following command in the javacg/example
directory:

javac -classpath ../VDM.jar DoSort.java MainSort.java

If you are using the Unix Bourne shell or a compatible shell, the main program can be
run be executing the following command:

java -classpath .:../VDM.jar MainSort

If you are working on a Windows-based system, you must use “;” and not “:” as the
delimiter:

java -classpath .;../VDM.jar MainSort

D.1 VDM+++ Specification of Class DoSort (Sort.rtf)

class DoSort

operations
public Sort: seq of int ==> seq of int
Sort(l) ==
return DoSorting(l)

functions

58

The VDM++ to Java Code Generator

protected DoSorting: seq of int -> seq of int
DoSorting(l) ==
if l = [] then

[]
else

let sorted = DoSorting (tl l) in
InsertSorted (hd l, sorted);

private InsertSorted: int * seq of int -> seq of int
InsertSorted(i,l) ==
cases true :

(l = []) -> [i],
(i <= hd l) -> [i] ^ l,
others -> [hd l] ^ InsertSorted(i,tl l)

end

end DoSort

D.2 Java Code of Class DoSort (DoSort.java)

//
// THIS FILE IS AUTOMATICALLY GENERATED!!
//
// Generated at Fri 20-Oct-2000 by the VDM++ JAVA Code Generator
// (v6.6 - Fri 20-Oct-2000)
//
// Supported compilers:
// jdk1.3
//

// ***** VDMTOOLS START Name=HeaderComment KEEP=NO

// ***** VDMTOOLS END Name=HeaderComment

// ***** VDMTOOLS START Name=package KEEP=NO
// ***** VDMTOOLS END Name=package

// ***** VDMTOOLS START Name=imports KEEP=NO

import dk.ifad.toolbox.VDM.*;
import java.util.*;
// ***** VDMTOOLS END Name=imports

59

The VDM++ to Java Code Generator

public class DoSort implements EvaluatePP {

// ***** VDMTOOLS START Name=vdmComp KEEP=NO
static UTIL.VDMCompare vdmComp = new UTIL.VDMCompare();

// ***** VDMTOOLS END Name=vdmComp

// ***** VDMTOOLS START Name=sentinel KEEP=NO
volatile Sentinel sentinel;

// ***** VDMTOOLS END Name=sentinel

// ***** VDMTOOLS START Name=DoSortSentinel KEEP=NO
class DoSortSentinel extends Sentinel {

public final int Sort = 0;

public final int nr_functions = 1;

public DoSortSentinel () throws CGException{}

public DoSortSentinel (EvaluatePP instance) throws CGException{
init(nr_functions, instance);

}

}
// ***** VDMTOOLS END Name=DoSortSentinel
;

// ***** VDMTOOLS START Name=evaluatePP KEEP=NO
public Boolean evaluatePP (int fnr) throws CGException{

return new Boolean(true);
}

// ***** VDMTOOLS END Name=evaluatePP

// ***** VDMTOOLS START Name=setSentinel KEEP=NO
public void setSentinel () {

try{
sentinel = new DoSortSentinel(this);

}
catch (CGException e) {

System.out.println(e.getMessage());
}

}
// ***** VDMTOOLS END Name=setSentinel

// ***** VDMTOOLS START Name=DoSort KEEP=NO

60

The VDM++ to Java Code Generator

public DoSort () {
try{

setSentinel();
}
catch (Throwable e) {

System.out.println(e.getMessage());
}

}
// ***** VDMTOOLS END Name=DoSort

// ***** VDMTOOLS START Name=Sort KEEP=NO
public Vector Sort (final Vector l) throws CGException{

sentinel.entering(((DoSortSentinel) sentinel).Sort);
try{

return (Vector) UTIL.ConvertToList(DoSorting(l));
}
finally {

sentinel.leaving(((DoSortSentinel) sentinel).Sort);
}

}
// ***** VDMTOOLS END Name=Sort

// ***** VDMTOOLS START Name=DoSorting KEEP=NO
protected Vector DoSorting (final Vector l) throws CGException{

Vector varRes_3 = null;

if (new Boolean(UTIL.equals(l, new Vector())).booleanValue())
varRes_3 = new Vector();

else {
Vector sorted = (Vector) UTIL.ConvertToList(DoSorting(

new Vector(l.subList(1, l.size()))));

varRes_3 = (Vector) UTIL.ConvertToList(InsertSorted(
UTIL.NumberToInt(l.get(0)), sorted));

}
return varRes_3;

}
// ***** VDMTOOLS END Name=DoSorting

// ***** VDMTOOLS START Name=InsertSorted KEEP=NO
private Vector InsertSorted (final Integer i, final Vector l)

throws CGException{
Vector varRes_4 = null;

boolean succ_5 = true;

{

61

The VDM++ to Java Code Generator

succ_5 = true;
if (!UTIL.equals(new Boolean(true), new Boolean(UTIL.equals(l,

new Vector()))))
succ_5 = false;

if (succ_5) {
varRes_4 = new Vector();
varRes_4.add(i);

}
}
if (!succ_5) {

succ_5 = true;
if (!UTIL.equals(new Boolean(true), new Boolean((i.intValue())

<= (UTIL.NumberToInt(l.get(0)).intValue()))))
succ_5 = false;

if (succ_5) {
Vector var1_16 = null;

var1_16 = new Vector();
var1_16.add(i);
varRes_4 = (Vector) var1_16.clone();
varRes_4.addAll(l);

}
}
if (!succ_5) {

Vector var1_19 = null;

var1_19 = new Vector();
var1_19.add(UTIL.NumberToInt(l.get(0)));
varRes_4 = (Vector) var1_19.clone();
varRes_4.addAll((Vector) UTIL.ConvertToList(InsertSorted(i,

new Vector(l.subList(1, l.size())))));
}
return varRes_4;

}
// ***** VDMTOOLS END Name=InsertSorted

}
;

D.3 The Handcoded Java Main Program (MainSort.java)

import dk.ifad.toolbox.VDM.*;
import java.util.*;

public class MainSort {

public static void main(String[] args){

62

The VDM++ to Java Code Generator

try{
Vector arr = null;
arr = new Vector();
arr.add(new Integer(23));
arr.add(new Integer(1));
arr.add(new Integer(42));
arr.add(new Integer(31));
DoSort dos = new DoSort();
System.out.println("Evaluating Sort("+UTIL.toString(arr)+"):");
Vector res = dos.Sort(arr);
System.out.println(UTIL.toString(res));
}
catch (CGException e){

System.out.println(e.getMessage());
}

}
}

63

	Introduction
	The Code Generator - Getting Started
	Generating Code Using the VDM++ Toolbox
	Interfacing the Generated Code
	Compiling and Running the Java Code

	The Code Generator - Advanced Issues
	Options of the VDM++ to Java Code Generator
	Implementing Implicit and Preliminary Functions/Operations
	Generation of Abstract Classes
	Substituting Parts of the Generated Java Code
	Entities
	Rules for keep tags

	Generating Interfaces
	Limitations
	Requirements of VDM++ specifications due to language differences
	Unsupported Constructs

	Code Generating VDM++ Specifications
	The VDM Java Library
	Code Generating Classes
	Inheritance Structure of the Generated Java Classes
	Code Generating Types
	Mapping Anonymous VDM++ Types to Java
	Mapping VDM++ Type Definitions to Java
	Invariants

	Code Generating Values
	Code Generating Instance Variables
	Code Generating Functions and Operations
	Explicit Function and Operation Definitions
	Preliminary Function and Operation Definitions
	Implicit Function and Operation Definitions
	Pre and Post Conditions

	Code Generating Expressions and Statements
	Name Conventions

	Code Generation of Concurrent VDM++ Specifications
	Introduction
	Overview
	Code Generation

	Translation Approach
	Core Translation
	Procedural Threads
	Periodic Threads

	Example
	Limitations

	References
	Installing the Code Generator
	The VDM Java Library
	The DoSort Example
	VDM+++ Specification of Class {tt DoSort} ({tt Sort.rtf})
	Java Code of Class {tt DoSort} ({tt DoSort.java})
	The Handcoded Java Main Program ({tt MainSort.java})

