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Abstract

This paper describes the tool csp2B which provides a means of combining CSP-like de-
scriptions with standard B specifications. The notation of CSP provides a convenient way
of describing the order in which the operations of a B machine may occur. The function of
the tool is to convert CSP-like specifications into standard machine-readable B specifications
which means that they may be animated and appropriate proof obligations may be generated.
Use of csp2B means that abstract specifications and refinements may be specified purely us-
ing CSP or using a combination of CSP and B. The translation is justified in terms of an
operational semantics.

1 Introduction

In the B method [1], a system is specified as an abstract machine consisting of some state and some
operations acting on that state. Originally B was intended for the development of non-distributed
systems. Influenced by Action Systems [3], recent work has shown how B may be used in the
development of distributed systems [2, 5, 7]. In these approaches; the state of a machine may be
used to model the global state of a distributed system and its operations may represent events
that change the state of the system. Refinement in this approach involves partitioning the global
state amongst the nodes of the system to localise events. Events are guarded by conditions on the
state and may only be executed when their guard is enabled.

However, while B is suitable for modelling distributed activity in terms of events, 1t is weaker
at modelling sequential activity. Typically one has to introduce an abstract ‘program counter’ to
order the execution of actions. This can be a lot less transparent than the way in which one orders
action execution in process algebras such as CSP [9] and CCS [10].

The csp2B tool converts CSP-like descriptions of system behaviour into standard machine-
readable B specifications. The resulting B specifications can be input to a tool such as Atelier
B from Steria and The B-Toolkit from B-Core which means that they may be animated and
appropriate proof obligations may be generated.

The tool supports a CSP-like process notation containing prefixing (=), choice ( [] ) and the
deadlocked process STOP. It does not support an internal nondeterminism operator. Parallel
composition is supported but only at the outermost level, that is, a system can be described using
a parallel composition of purely sequential processes. Interleaving of multiple instances of similar
processes is also supported.

Given a CSP description of a system, the tool generates a B machine containing variables
corresponding to the implicit states of the CSP processes, i.e., abstract program counters. For



each event in the alphabet of the CSP description, a B operation is generated which i1s guarded
appropriately and which updates the abstract program counters appropriately. It is possible to
declare that a CSP description constrains the behaviour of a standard existing B machine, in
which case, a guarded call to the corresponding operation in that existing machine is embedded
in each generated operation.

We take an operational approach to the semantics of the CSP and B combination and show that
the composition of a CSP process with a B machine is compositional with respect to refinement.

Section 2 gives an overview of the tool and how it may be used, while Section 3 discusses the
semantics of the CSP notation used and how it relates to B.

The csp2B tool itself may be downloaded from http://www.ecs.soton.ac.uk/ mjb/csp2B.

2 Tool Overview
The csp2B tool converts CSP-like descriptions of system behaviour into B machines. CSP provides

a very convenient way of specifying the order in which operations may be invoked. Consider the
following C'SP specification of a vending machine (written in the source notation of csp2B!):

MACHINE VendingMachine
ALPHABET Coin Tea Coffee

PROCESS VM = AwaitCoin WHERE

AwaitCoin = Coin — DeliverDrink
DeliverDrink = Tea — AwaitCoin
| Coffee = AwaitCoin
END
END .

This describes a machine that has three operations, Coin, Tea and Coffee (called the alphabet
of the machine) whose behaviour is dictated by a CSP process VM that may be in one of two
states AwaitCown and DeliverDrink. VM specifies that, in the state AwaitCoin, Cown is the
only operation that may be invoked while, in the DeliverDrink state, both the Tea and Coffee
operations may be invoked. VM will initially be in the AwaitCoin state. VM is described by a
mutually recursive set of equations and each recursive call on a right-hand side must be preceded
by at least one event (in the terminology of CSP, each recursive call must be guarded). From
the above CSP description, csp2B will generate the following B machine which contains a single
variable VM and three operations Coin, Tea, and Coffee:

MACHINE VendingMachine

SETS VMState = { AwaitCoin, DeliverDrink }
VARIABLES VM

INVARIANT VM € VMState
INITTALISATION VM := AwaitCoin

OPERATIONS
Coin = SELECT VM = AwaitCoin THEN VM := DeliverDrink END;
Tea = SELECT VM = DeliverDrink THEN VM := AwaitCoin END;
Coffee = SELECT VM = DelwerDrink THEN VM := AwaitCoin END
END .

! The tool supports an ascii version of CSP and the full syntax may be found in [6].



The operations of the generated machine are described using SELECT statements. These provide
a means of specifying reactive systems in which operations are only enabled in certain states. A
statement of the form

SELECT G THEN S END

is enabled only in those states for which the guard G is true. The generated B machine contains a
‘control’ variable named VM, the same as the name of the main process in the CSP description, of
type VMState. The operations are guarded by and make assignments to this variable appropriately.

The semantics of B operations is given in terms of weakest preconditions. For statement S
and postcondition @, [S]Q represents the weakest precondition under which S is guaranteed to
terminate in a state satisfying Q. The guard of a B operation S is defined using [S] as follows?
[2, 11]:

grd(S) = —[95] false .
From this it i1s easy to show that

grd( SELECT G THEN S END) = G A grd(S)
grd(z:=FE) = true.

2.1 Nested Prefixing

Nested prefixing in a CSP description is supported by the tool. For example, the vending machine
could have been specified using a single equation:

AwaitCoin = Coin — (Tea — AwaitCoin [| Coffee — AwaitCoin) .

In this case, the process enters an implicit unnamed state immediately after the Coin event. The
tool will generate a fresh name for each such implicit state in the CSP description. For the above
example, csp2B will generate a fresh name for this state based on the name on the left hand side
of the equation as follows:

SETS VMState = { AwaitCoin, AwaitCoin_1 }

Coin = SELECT VM = AwaitCoin THEN VM := AwaitCoin_1 END .

2.2 Parallel Processes

It 1s possible to have more than one process description in a single CSP specification. For example,
if for some reason we wanted the vending machine to always alternate between delivering tea and
coffee, we could add a process, in this case called Alternate, as follows:

MACHINE VendingMachine
ALPHABET Coin Tea Coffee
PROCESS VM = AwaitCoin WHERE ... END

PROCESS Alternate = Alt
CONSTRAINS Tea C(offee WHERE
Alt = Coffee — Tea — Alt
END
END .

2[S] false represents those initial states in which A could establish any postcondition, i.e., behave miraculously.
An action is said to be enabled when it cannot behave miraculously, i.e., when = [S] false holds.



The (optional) CONSTRAINS clause in the Alternate process signifies that this process description
only constrains the Tea and Coffee operations and places no constraint on when the Coin operation
may occur.

In the generated machine, the operations constrained by more than one process will be com-
posed of several parallel SELECT statements. For example, the Coffee action will be as follows:

Coffee =
SELECT VM = DelwerDrink THEN VM := AwaitCoin END

I
SELECT Alternate = Alt THEN Alternate := Alt_1 END .

The guard of a parallel statement satisfies the following [1]:
grd(S || T) = trm(S) Atrm(T) = grd(S) A grd(T) .

Here, trm(S) is the termination condition of 5. The tool always generates statements from CSP
descriptions whose termination condition is always true (such as the SELECT statements for
Coffee above). In that case, grd(S || T) = grd(S) A grd(T). This means that events common
to several processes will only be enabled when each of those processes is willing to engage in that
event. This corresponds to the CSP notion of parallel composition (see Section 3.4).

2.3 Parameterised Events and Indexing

In the manner of channels in CSP, events may be parameterised by input parameters (Fv?z) or
output parameters (Evly). When translated into B, these parameters will correspond to the input
and output parameters of an operation. Also, processes may be indexed by parameters and these
index parameters become state variables in the generated B machine. As an example of each of
these, consider the following two process equations:

Idle = In?f — Remember(f)
Remember(f) = Out!f — Idle .

In the terminology of CSP, In and Qut are input and output channels respectively. Process Idle
inputs a value f on channel In and then behaves as Remember indexed by f. Remember(f) outputs
the index value on channel Qut and then behaves as Idle.

The input parameter acts as a bound variable and its scope is the syntactic process term which
the event prefixes. The output value may be defined by any B expression. The input and output
parameters must be declared in the alphabet of a CSP specification in the form:

(yl,y2,...) «— OpName(z1: T1,22: T2,...).

The types of the input parameters are needed for the generated B machine, but the output types
are not needed as they are inferred by a B tool. Types are any B expression. The event in the
CSP description corresponding to the above declaration is written in the form

OpNameTx17x27. 1ylly2!...

A file transfer service that inputs files (sequences of bytes) and then outputs them may be
specified as follows:

MACHINE FileTransfer
SETS Buyte
DEFINITIONS File == seq Byte
ALPHABET Send(f : File) f +— Receive
PROCESS Copy = Idle WHERE
Idle = Send?f — Remember(f)
Remember(g : File) = Receivelg — Idle
END
END .



MACHINE FileTransfer
SETS Byte; CopyState = { Idle, Remember }
VARIABLES Copy, g
DEFINITIONS File == seq(Buyte)
INVARIANT Copy € CopyState N g € File
INITTIALISATION Copy := Idle
OPERATIONS
Send(f) =
PRE f € File THEN
SELECT Copy = Idle
THEN Copy := Remember || g := f END
END:
f +— Receive =
SELECT Copy = Remember
THEN Copy := Idle || f:= g END
END

Figure 1: Generated machine for File Transfer.

The indexing variable g in this specification becomes a state variable of type File in the generated
B machine shown in Figure 1. It is called g to distinguish it from the input and output parameter
f of the Send and Receive operations. In the generated B machine, the Send operation assigns the
value of its input parameter f to the variable g while the Receive operation reads from g. Within
a PROCESS description the same indexing variable may be used in several equations and each
occurrence will refer to the same variable in the generated machine.

Note that the Send operation in Figure 1 has a precondition which constrains the input pa-
rameters as well as a guard®. The precondition is required in B to determine the type of the input
parameter.

Idle could also be declared using nested prefixing as follows:

Idle = Send?f — Receivelf — Idle .

In this case, as well as introducing a name for the implicit state immediately after the Send event,
csp2B also introduces a state variable to store the input value f. This is because f remains in
scope until the recursive call to Idle, and, as is the case here, may be referred to. Whenever an
event with an input parameter is not immediately followed by a recursive call, then a new state
variable will be introduced to the generated B machine to store that input parameter.

The actual value for a process index in a recursive call may be any B expression. Furthermore,
IF — THEN — ELSE statements may be used in process descriptions and the guard may be any B
predicate. This is illustrated by the following example:

MACHINE BUFFER(T)
ALPHABET In(z:T) «+— Out
PROCESS [nitBuffer = Buffer([]) WHERE
Buffer(s :seq T) =
IF s=1]
THEN In?z — Buffer([z])
ELSE In?x — Buffer(s 7 [z])
| Outlfirst(s) — Buffer(tail(s))
END
END .

3While a guard represents an enabling condition, a precondition represents a termination condition.



Here, [ ] represents the empty sequence, [z] represents a singleton sequence, and s ™[] represents
the concatenation of s and [z].

Input parameters may also be ‘dot’ parameters, which means that a process is only willing to
accept a particular value as input rather than being willing to accept any value. This is illustrated
by the following CSP example:

Free = Lock?u — Locked(u)

Locked(v : USER) =  Access.v — Locked(v)
[| Unlock.v — Free .

Here, any user u may lock some shared resource. Once it has been locked by u only that user
may access or unlock the resource. A dot argument for an event may be any B expression and
corresponds to an input parameter of an operation. A clause is added to the guard of the generated
operation to constrain the input parameter so that it equals the dot value. For example, the Access
operation generated from the above CSP would be:

Access(u) = SELECT P = Locked A u=v THEN skip END.

In the case that a CSP specification consists of more than one process, each output parameter
of an operation may be determined by at most one of the processes, though different processes
may determine different output parameters for the same operation.

2.4 Interleaving

A process may be defined as an interleaved composition of a set of indexed instances of a process.
This is illustrated in the following example:

MACHINE MultiFile Transfer
ALPHABET Send(u : User, v : User, f: File)
f +— Receive(u : User, v : User)

PROCESS MultiCopy = ||| u,v.Copyl[u,v] WHERE
Copylu,v] = Send.u.v?f — Recewe.u.v!f — Copy[u, v]
END
END .

Here, MultiCopy is defined as the interleaved composition of an indexed set of instances of Copy,
where Copy is indexed by a pair of variables u, v, both of type User. The indexing variables for
the interleaving are placed in square brackets rather than round brackets because they are treated
differently to standard process parameters. In the translation to B, the state of the process 1s
represented by a function from the indexing set to the appropriate control type and an operation
refers to the point in this function determined by its indexing input parameters. With the above
example, two functions, representing the control states and the input parameter f, are generated as
state variables. Both these functions take pairs of users as arguments corresponding to the indexing
parameters of Copy. Fach operation is indexed by a pair of users and accesses the functions at a
point determined by the indexing pair of users. The generated machine is illustrated in Figure 2.

2.5 Conjunction

A CSP machine may be used to constrain the execution order of a standard B machine. Consider
the B machine shown in Figure 3 which contains a variable representing a counter and operations
for incrementing, decrementing and reading the counter.

The ordering of these operations may be further constrained by the CSP specification shown in
Figure 4. This process description forces a user v to lock the counter before it can be manipulated
by v and prevents other users from manipulating it while it is locked by v. Notice that the process



MACHINE MultiFile Transfer
SETS MultiCopyState = { Copy, Copy_1 }
VARIABLES MultiCopy, f_1
INVARIANT
MultiCopy € (User x User) — MultiCopyState A
f-1 € (User x User) — File
INITTALISATION MultiCopy := Au,v.(u € User A v € User | Copy)

OPERATIONS

Send(u, v, f) =
PRE u € User Av € User A f € File THEN
SELECT MultiCopy(u,v) = Copy
THEN MultiCopy(u, v) := Copy_1 || f1(u,v):=f
END
END:
[ +— Receive(u,v) =
PRE u € User A v € User THEN
SELECT MultiCopy(u,v) = Copy_1
THEN MultiCopy(u,v) := Copy || f:=f-1(u,v)
END
END
END

Figure 2: Generated machine for MultiFile Transfer.

description places no constraint on the r parameter of the Inc and Dec operations nor does it
constrain the Read operation.

The CONJOINS clause in Figure 4 signifies that the CSP specification is constraining the B
machine CounterActs. For each event name OpName in the alphabet of the CSP specification,
the conjoined machine should have a corresponding operation called OpName_Act as shown in the
CounterActs machine of Figure 3.

The B machine generated by csp2B from the Counter specification of Figure 4 will include the
CounterActs machine using the machine inclusion mechanism of B. Each operation, OpName, in
the generated machine will include a guarded call to the corresponding OpName_Act operation of
the included machine. That is, if S represents the composition of the statements generated from
the various CSP processes for OpName and T represents the call to the corresponding operation
of the conjoined machine, then OpName will have the form:

S || SELECT grd(S) THEN T END.
For example, the Inc operation in the B machine generated from Counter will be as follows:

Inc(u,z) =
PRE ue USER A z €N THEN
SELECT Locking = Locked A u=v THEN skip END
|
SELECT Locking = Locked AN w = v THEN Inc_Act(z) END
END;

bl

The guarding of the call in the generated operation ensures that the composite statement is



MACHINE CounterActs(USER)
VARIABLES ¢

INVARIANT ce N
INITIALISATION ¢:=0

OPERATIONS
Lock_Act(u) = PRE u € USER THEN skip END;
Inc_Act(u,z) = PRE u€ USERAz €N THEN c¢:=c¢+ 2z END;

Dec_Act(u,z) =
PRE v e USER Az €N THEN
SELECT ¢ >« THEN c¢:=c¢—z END
END;

bl

Unlock_Act(u) = PRE w € USER THEN skip END;
y ¢— Read_Act(u) = PRE we€ USER THEN y:=c¢ END

END

Figure 3: B part of counter specification.

enabled exactly when both S and T are enabled since, provided trm(S) = true:
grd( S || SELECT g¢rd(S) THEN T END ) = grd(S) A grd(T) .

S is generated by csp2B and it will always be the case that trm(S) = true®.

2.6 Variable Access

The variables of the conjoined machine may be referred to (read only) in any expressions of the
CSP specification. For example, consider the BUFFER_Acts machine of Figure 5. This machine
is conjoined with the BUFFER CSP specification of Figure 6 which means that its variable s may
be referred to in the CSP process. In the CSP specification, s is referenced in the guard of the
IF-statement defining the behaviour of Buffer and in the expression determining the output value
for the Qut channel.

2.7 Refinements

A CSP description may be a refinement of another (CSP or B) machine. As in B, the keyword
REFINEMENT is used instead of MACHINE and the REFINES clause must identify the machine
being refined.

The abstraction invariant for the refinement may be placed in the INVARIANT clause of the
CSP machine. Before devising the abstraction invariant, it is usually convenient to generate the
B machine from the CSP machine. This will make explicit the control states and state transitions
generated from the CSP description. These may then be used in the abstraction invariant for the
refinement.

4Strictly speaking, a statement constructed by csp2B will terminate only when its input parameters are correctly
typed.



MACHINE Counter

CONJOINS  CounterActs(USER)

SETS USER

ALPHABET  Lock(u : USER) Unlock(u : USER)
Inc(u : USER, z :N) Dec(u: USER, z :N)
y +— Read(u : USER)

PROCESS Locking = Free
CONSTRAINS Lock(u) Ine(u) Dec(u) Unlock(v) WHERE
Free = Lock?u — Locked(u)
Locked(v : USER) =
Inc.v — Locked(v)
[| Dec.v = Locked(v)
[| Unlock.v — Free
END
END

Figure 4: CSP part of counter specification.

MACHINE BUFFER_Acts(T)
VARIABLES s

INVARIANT s € seq T
INITIALISATION s :=]

OPERATIONS
In_Act(z) = PRE z € T THEN s:=s" [z] END;

Out_Act = PRE s # ][] THEN s :=tail(s) END
END

Figure 5: B part of buffer.

Figures 7 and 8 give an example of a refinement of this form. The CSP part is described in
Figure 7 and this specification is conjoined with the B machine of Figure 8. This is a refinement of
the File Transfer machine of Figure 1 and it transfers a file byte-by-byte instead of in one step. In
the refinement, an incoming file is stored in the variable afile while an outgoing file comes from the
variable bfile. The contents of afile are gradually transferred to bfile using a byte-wise transmission
protocol. The CSP part describes the ordering of events whereby both sides in a transmission agree
to start a transmission (OpenReq followed by OpenResp), then transfer each bit using a succession
of Trans events and then finish the transmission. Operations such as OpenReq that do not appear
in the abstract specification FileTransfer nor in the conjoined machine FileTransferRefinement
are all skip actions and have been omitted here.

The refinement invariant used to prove the refinement 1s included in the CSP specification of
Figure 7. This invariant refers to the abstract and concrete control variables (Copy and Byte Wise
respectively) and, when deriving the invariant, it was useful to be able to perform the translation
of the CSP description in order to see an explicit representation of its state and state transitions.
The invariant 1s then added to the CSP specification and the translation performed again. The
invariant is copied over into the generated B machine and is used by the proof obligation generator
of a B tool.



MACHINE BUFFER(T)
CONJOINS BUFFER_Acts(T)
ALPHABET In(z € 1T) z +— Out

PROCESS [nitBuffer = Buffer
CONSTRAINS In  y+— Out WHERE
Buffer =

IF s=1]

THEN In — Buffer

ELSE In — Buffer [| Outlfirst(s) — Buffer
END

END

Figure 6: CSP part of buffer.

3 Semantic Issues

In [9], Hoare takes a denotational approach to the semantics of CSP by defining the Failure-
Divergences model for processes. It is also possible to take an operational approach by considering
processes as Labelled Transition Systems (LTS) in the manner of Milner’s CCS [10]. The B
machine generated from a CSP specification may be viewed as an LTS and, for this reason we,
take an operational approach to justifying the semantics of the csp2B translation. Roscoe [12]
shows how the denotational and operational models of CSP are linked.

In the absence of CSP processes being allowed to access the state variables of conjoined B
machines, the semantics is entirely compositional. That is, the semantics of the combination of
several CSP processes conjoined with a B machine (viewed as an LTS) is precisely CSP parallel
composition. This entails monotonicity of refinement allowing the B machine to be refined inde-
pendently. However, as we shall see, this compositionality fails when sharing of state variables
occurs. First we consider the case where no sharing of variables occurs and look at normal forms
for CSP processes and how they define an LTS.

3.1 Normal Form

In the notation supported by csp2B, a process is described by a set of equations of the form
[Z‘(U) = Pz' s

where [I; is a process identifier and P; is a process term which may contain several process identi-
fiers. A process term P is said to be in normal form either if P = STOP or if P is a choice in which
each branch is a boolean-guarded event prefixing a recursive call to another process identifier, that

18,

P==0 0 0 @,

where each @Q; is of the form
IF G THEN a—I(e).

Here I must be the identifier on the left of a process equation and not a more complicated process
term. The event a may contain input, output and dot parameters. We assume that choice is
associative and commutative.

There is an important syntactic restriction in csp2B which requires that all recursive calls are
prefixed by an event and this includes recursive calls in the branches of an IF-statement. This
ensures that any set of syntactically-correct process equations may be transformed to normal form.

10



MACHINE FileTransferRefinement
REFINES FileTransfer
CONJOINS  FileTransferRefinementActs(Byte)

INVARIANT
(ByteWise € {BW1, BW>} = g = afile) A
(ByteWise = Transfer = g = bfile ™ afile) A
(ByteWise = Transfer_1 = g = bfile)
A
(Copy = Idle < ByteWise € {BW, Transfer2}) A
(Copy = Remember < ByteWise € {BW_1, BW_2, Transfer, Transfer_1})

ALPHABET Send(f : File)  f +— Receive
OpenReq OpenResp TransBlock EndTrans Ack

PROCESS ByteWise = BW WHERE
BW = Send — OpenReq — OpenResp — Transfer
Transfer —=
IF afile =[]
THEN FEndTrans — Receive — Ack — BW
ELSE TransBlock — Transfer
END
END

Figure 7: CSP part of FileTransfer refinement.

IF-statements are distributed through a term using the following transformations:

IF ¢ THEN P ELSE @ = (IF ¢ THEN P) [] (IF =G THEN Q)
IF ¢ THEN (P [] Q) = (IF G THEN P) [| (IF G THEN Q)
IF ¢ THEN (IF H THEN P) = (IF GAH THEN P).
Nested prefixing is normalised by introducing new equations. An equation of the form
Ilv) = (IF G THEN «a—=P) [ @,
where P is not a process identifier, 1s replaced by the pair of equations
Ilv) = (IF G THEN a— J(v,w)) [] Q
J(v,w)y = P

Here, J is some fresh process identifier and w is the list of input parameters in the event a (with
renaming to fresh variables where necessary to avoid name clashes). The introduction of w is
necessary because P may refer to any input parameters of a.
Terms involving STOP are simplified as follows:
IF G THEN SToP =  STOP
STOP [| P = P.
In the case that a set of process equations has different parameter lists, then the parameter
lists are extended to the merge of all the parameters. For example, a pair of process equations
I(v) = a—J(e)
J(w)y = b=1I(f),

11



MACHINE File TransferRefinementActs(Byte)

VARIABLES dfile, bfile

INVARIANT afile € File N\ bfile € File

OPERATIONS
Send_Act(f) = PRE f € File THEN afile := f END;
f +— Recewe_Act = [ .= bfile;
OpenResp_Act = bfile .= ];

TransBlock_Act = bfile := bfile ™ (first afile) || afile := tail(afile)

END
Figure 8: B part of FileTransfer refinement.
becomes
Iv,w) = a—=J(v,e)
Jw,w)y = b=I(f,w).

3.2 Labelled Transition Systems

A process specification consisting of a set of normal-form equations defines an LTS. The state
space is the cartesian product of the set of process identifiers with the type of the indexing
parameters. We continue to write elements of this state space as I(v). The labels of the LTS are
the parameterised event names. A label may consist of several components c.7.5.k and an event
of the form c.:7y!k stands for the set of labels { c.i.j.k | j € Y }, where Y is the type of input
parameter y. The LTS may make a transition labelled a.i.j.k from state I(v) to I'(v'), written

1) “H ) M
if the set of normalised equation contains an equation of the form
I(v) = --- [] TF G(v) THEN a.i?ytk —>1(V) [ -+, (2)
and G(v) holds and v = V[y :=j] .

In converting a CSP specification to B, csp2B normalises the set of equations as described pre-
viously and then constructs a B machine corresponding to the L'TS. The state space is represented
by the state variables of the machine, the labels are represented by the operation names (along
with input and output parameters) and the transitions are represented by the operations. The B
machine contains state variables (v) corresponding to the list of indexing parameters as well as a
special control variable (p) typed over the set of process identifiers from the left hand sides of the
equations. For each event name a in the alphabet of the CSP process, the B machine contains an
operation of the form

z— a(z,y) = Sq ,

where S, 1s constructed in the following manner: For each occurrence of event a in a normalised
CSP process equation of the form (2), the B operation has a SELECT branch of the form:

SELECT G(v)Ap=IAz=1¢ THEN p,v,z:=1'/V,k END . (3)

12



The clause = 1 ensures that the input value £ matches the dot value 7. All the branches of 5,
are composed using the B choice operator S [| T

We briefly outline why the LTS defined by the set of normalised equations is the same as the
LTS defined by the constructed B machine. In order to define when a transition is allowed by a B
operation, we use the notion of conjugate weakest precondition defined as follows [11]:

(SHeo=-[51-a.

(5)Q represents the weakest precondition under which it is possible for S to establish @ (as
opposed to the guarantee provided by [S]@). If the machine contains an operation of the form

24— a(r,y) = S,
then the transition
I(w) 5" 1 () (4
is possible in state I(w) provided
(p,v,myy:=Twi,5; Sq) (pv,z=1 wk) (5)

holds. That is, it is possible for S, to establish an outcome in which p and v equal I'(w’) and z
equals k£ when p, v, z, y are initialised appropriately.

Now, a process equation of the form (2) enables a transition of the form (4) in state I(w)
when G(w) holds. Using (5), it is easy to show that this is precisely the same condition under
which the choice branch (3) allows this transition. Furthermore transition (4) is allowed if there is
some occurrence of event a in some normalised CSP process equation. Likewise, the constructed
B operation allows the transition if there is some choice branch that allows it which follows from:

$IMe = He v I(na. (6)

Thus the transition relation ““%" defined by the set of normalised CSP process equations 1s the
same as the transition relation defined by the constructed B machine.

3.3 Interleaving

The csp2B tool supports interleaving of processes at the outermost level only. This interleaving
has the form ||| ¢.P[i{] where all of the instances P[i] behave in a similar way except for the
indexing of event labels by i. Such an interleaving represents multiple instance of P[¢] running in
parallel where the parallel instances do not interact with each other in any way. This interleaving
is modelled as a single large LTS whose state is modelled by replicated instances of the state that
a single P[i] would normally have. Thus, if the LTS for a single P[i] would normally have a state
space X and ¢ ranges over an indexing set I, then the state space of the large LTS is I — X. This
is the basis for the translation to B of interleaving described in Section 2.4.

3.4 Compositionality

The parallel composition of two LTS’s P and @ is an LTS P || @ formed by taking the cartesian
product of their state spaces and merging common actions. If @ is common to P and @, then
their composition has a transition labelled @ as defined by the following rule:

IS 1 eP AN JTHT eqQ

(7)
(I,J) 5% (I',J) € P|| Q.

This models synchronised parallelism since both P and ¢ must be in states that enable a for a to
be enabled in P || Q. Events that are present in only one of the processes result in transitions that
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have no effect on the other process. Thus, if a is an event of P but not of @), then the composition
has a transition defined by the following rule:

I ep

(I,J)-%(I',J) € P|| Q.

Similarly for the case where a is an event of @ only.

When generating a B machine from parallel processes and a conjoined machine, csp2B composes
the appropriate statements using the B parallel operator. Thus, given two parallel processes P
and @, csp2B constructs an operation of the form S || T for the generated B machine, where 5 is
constructed from P and T is constructed from @ in the usual way. The following result about the
B parallel operator 1s important in showing that this corresponds to the LTS definition of parallel
composition: Let S be a statement that assigns to z only and let 7" be a statement that assigns
to y only. Let M be a predicate that depends on x only and let N be a statement that depends
on y only. If trm(S) = trm(T) = true, then

SN TYMAN) = (SYM A (T)N . (8)

Using this result, it is easy to show that the relationship between transitions allowed by S and T
and those allowed by S || T is precisely that of (7). Thus, in the absence of variable sharing, the
parallel composition used by csp2B corresponds to the CSP definition of parallelism.

An important consequence of this result i1s that, since CSP parallel composition is monotonic
with respect to refinement, a conjoined machine may be refined separately while maintaining the
refinement of the overall system. Refinement of CSP processes is defined in terms of the Failures-
Divergences model. Based on [11, 13], [5] defines the Failures-Divergences semantics of B machines
and shows that refinement of B machines corresponds to refinement at the Failures-Divergences
level®.

3.5 Divergence and Nontermination

In the above presentation, we have assumed that systems never diverge. This will always be the
case for CSP processes written in the notation supported by csp2B since it does not contain a
hiding operator. However, Morgan [11] shows that it is appropriate to equate nontermination
of operations with divergent behaviour and the operations of a conjoined B machine may be
nonterminating in some states, e.g., operations of the form PRE M THEN S END. This
situation may be dealt with by introducing a special bottom state modelling divergence to the
LTS model along with several extra transition rules. Alternatively, one may directly define the
failures and divergences of a B machine using conjugate weakest-precondition formulae in the
manner of [11]. (We have found this latter approach to be the most convenient.) Either way
one can show that the correspondence between CSP parallelism, and the composition used in
the construction of B machines by csp2B, holds. Such a proof is presented in detail in [4]. We
presented an LTS-style justification in this paper since it is simpler (though less comprehensive)
and portrays the essence of the translation.

The potential presence of nontermination in a conjoined operation makes it essential to guard
calls to the conjoined machine, i.e., if S 1s the operation constructed from a CSP process and T
is a call to the conjoined machine, then the operation in the generated B machine has the form:

S || SELECT grd(S) THEN T END . (9)

If T was not guarded by grd(5), then the composition of S and T would be enabled in any state
in which 7 is nonterminating, even if S is not enabled in that state. This arises from the definition
of S'|| T, and we have, for example, that

SELECT false THEN skip END || abort = abort .

5Strictly speaking, for this correspondence to hold, an extra condition on refinement of B machines is introduced
which requires that the guard of an abstract operation implies the guard of a concrete operation.
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Guarding T avoids the possibility of the composition being enabled in states where 5 is not
enabled. It is not necessary to guard S since it is constructed from a nondivergent CSP process
and will therefore be fully terminating.

3.6 Variable Sharing

In the case where a CSP process refers to the state variables of a conjoined machine, the composi-
tionality result no longer holds. This is because the CSP processes cannot be given an independent
CSP semantics if they refer to variables outside their control. Interaction between processes in
CSP is based purely on interaction via synchronised events and allowing them to access the state of
another machine would allow for stronger interaction that just synchronisation over shared events.

In the case where sharing of variables occurs, the semantics of the whole system is given by
normalising the CSP processes in the usual way and collapsing the results, along with the conjoined
machine, into a single large LTS. This single large then needs to be refined as a whole. Of course
the modularity provided by B for structuring developments can still be availed of, and the whole
system does not have to be represented as a single B machine, rather its semantics are those of a
single L'TS.

4 Conclusions

We have presented an outline of the functionality of the csp2B tool and provided an operational-
semantic justification for the way in which it translates CSP to B. The supported CSP notation
provides a powerful way of describing ordering constraints for reactive system development and
enhances the standard B notation. The tool provides a useful extension to the B Method and can
easily be used in conjunction with existing B tools.

An interesting feature of the tool is that it accepts expressions, types and predicates written
in standard B notation, copying them directly to the generated B machine. This means that it
supports quite a rich CSP notation.

There are features of CSP that are not supported by the tool, namely internal nondeterministic
choice, event hiding and arbitrary (i.e., not just at the outermost level) parallel composition and
interleaving. Supporting these features would result in a lot of complexity in the generated B
machines. For example, extra flag variables would have to be introduced to model the CSP
internal choice operator. Some of these features can be achieved directly in the B part of a
specification. Internal choice can be modelled in the B part using nondeterministic constructs of
B. Alternatively, one could take a CCS-like approach and represent the internal choice of P and
Q) as the process

(t=P) [ (—=Q),

where ¢ is regarded as a hidden event. Event hiding may be modelled using the notion of internal
operations in B machines as introduced in [5]. The tool has been applied to a larger example (a
form of distributed database) [8] than those presented here and the restrictions in the supported
CSP notation did not prove a hindrance.
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