
csp2B: A Practical Approach To Combining CSP and BMichael ButlerDepartment of Electronics & Computer ScienceUniversity of SouthamptonHigh�eldSouthampton SO17 1BJUnited KingdomM.J.Butler@ecs.soton.ac.ukwww.ecs.soton.ac.uk/~mjbFebruary 14, 2000AbstractThis paper describes the tool csp2B which provides a means of combining CSP-like de-scriptions with standard B speci�cations. The notation of CSP provides a convenient wayof describing the order in which the operations of a B machine may occur. The function ofthe tool is to convert CSP-like speci�cations into standard machine-readable B speci�cationswhich means that they may be animated and appropriate proof obligations may be generated.Use of csp2B means that abstract speci�cations and re�nements may be speci�ed purely us-ing CSP or using a combination of CSP and B. The translation is justi�ed in terms of anoperational semantics.1 IntroductionIn the B method [1], a system is speci�ed as an abstract machine consisting of some state and someoperations acting on that state. Originally B was intended for the development of non-distributedsystems. In
uenced by Action Systems [3], recent work has shown how B may be used in thedevelopment of distributed systems [2, 5, 7]. In these approaches, the state of a machine may beused to model the global state of a distributed system and its operations may represent eventsthat change the state of the system. Re�nement in this approach involves partitioning the globalstate amongst the nodes of the system to localise events. Events are guarded by conditions on thestate and may only be executed when their guard is enabled.However, while B is suitable for modelling distributed activity in terms of events, it is weakerat modelling sequential activity. Typically one has to introduce an abstract `program counter' toorder the execution of actions. This can be a lot less transparent than the way in which one ordersaction execution in process algebras such as CSP [9] and CCS [10].The csp2B tool converts CSP-like descriptions of system behaviour into standard machine-readable B speci�cations. The resulting B speci�cations can be input to a tool such as AtelierB from Steria and The B-Toolkit from B-Core which means that they may be animated andappropriate proof obligations may be generated.The tool supports a CSP-like process notation containing pre�xing (!), choice ( [] ) and thedeadlocked process STOP . It does not support an internal nondeterminism operator. Parallelcomposition is supported but only at the outermost level, that is, a system can be described usinga parallel composition of purely sequential processes. Interleaving of multiple instances of similarprocesses is also supported.Given a CSP description of a system, the tool generates a B machine containing variablescorresponding to the implicit states of the CSP processes, i.e., abstract program counters. For1



each event in the alphabet of the CSP description, a B operation is generated which is guardedappropriately and which updates the abstract program counters appropriately. It is possible todeclare that a CSP description constrains the behaviour of a standard existing B machine, inwhich case, a guarded call to the corresponding operation in that existing machine is embeddedin each generated operation.We take an operational approach to the semantics of the CSP and B combination and show thatthe composition of a CSP process with a B machine is compositional with respect to re�nement.Section 2 gives an overview of the tool and how it may be used, while Section 3 discusses thesemantics of the CSP notation used and how it relates to B.The csp2B tool itself may be downloaded from http://www.ecs.soton.ac.uk/~mjb/csp2B.2 Tool OverviewThe csp2B tool converts CSP-like descriptions of system behaviour into B machines. CSP providesa very convenient way of specifying the order in which operations may be invoked. Consider thefollowing CSP speci�cation of a vending machine (written in the source notation of csp2B1):MACHINE VendingMachineALPHABET Coin Tea Co�eePROCESS VM = AwaitCoin WHEREAwaitCoin = Coin ! DeliverDrinkDeliverDrink = Tea ! AwaitCoin[] Co�ee ! AwaitCoinENDEND :This describes a machine that has three operations, Coin, Tea and Co�ee (called the alphabetof the machine) whose behaviour is dictated by a CSP process VM that may be in one of twostates AwaitCoin and DeliverDrink . VM speci�es that, in the state AwaitCoin, Coin is theonly operation that may be invoked while, in the DeliverDrink state, both the Tea and Co�eeoperations may be invoked. VM will initially be in the AwaitCoin state. VM is described by amutually recursive set of equations and each recursive call on a right-hand side must be precededby at least one event (in the terminology of CSP, each recursive call must be guarded). Fromthe above CSP description, csp2B will generate the following B machine which contains a singlevariable VM and three operations Coin, Tea, and Co�ee:MACHINE VendingMachineSETS VMState = f AwaitCoin; DeliverDrink gVARIABLES VMINVARIANT VM 2 VMStateINITIALISATION VM := AwaitCoinOPERATIONSCoin =̂ SELECT VM = AwaitCoin THEN VM := DeliverDrink END;Tea =̂ SELECT VM = DeliverDrink THEN VM := AwaitCoin END;Co�ee =̂ SELECT VM = DeliverDrink THEN VM := AwaitCoin ENDEND :1The tool supports an ascii version of CSP and the full syntax may be found in [6].2



The operations of the generated machine are described using SELECT statements. These providea means of specifying reactive systems in which operations are only enabled in certain states. Astatement of the formSELECT G THEN S ENDis enabled only in those states for which the guard G is true. The generated B machine contains a`control' variable named VM , the same as the name of the main process in the CSP description, oftype VMState. The operations are guarded by and make assignments to this variable appropriately.The semantics of B operations is given in terms of weakest preconditions. For statement Sand postcondition Q , [S ]Q represents the weakest precondition under which S is guaranteed toterminate in a state satisfying Q . The guard of a B operation S is de�ned using [S ] as follows2[2, 11]: grd(S ) =̂ : [S ] false :From this it is easy to show thatgrd( SELECT G THEN S END ) = G ^ grd(S )grd( x := E ) = true :2.1 Nested Pre�xingNested pre�xing in a CSP description is supported by the tool. For example, the vending machinecould have been speci�ed using a single equation:AwaitCoin = Coin ! (Tea ! AwaitCoin [] Co�ee ! AwaitCoin) :In this case, the process enters an implicit unnamed state immediately after the Coin event. Thetool will generate a fresh name for each such implicit state in the CSP description. For the aboveexample, csp2B will generate a fresh name for this state based on the name on the left hand sideof the equation as follows:SETS VMState = f AwaitCoin; AwaitCoin 1 gCoin =̂ SELECT VM = AwaitCoin THEN VM := AwaitCoin 1 END :2.2 Parallel ProcessesIt is possible to have more than one process description in a single CSP speci�cation. For example,if for some reason we wanted the vending machine to always alternate between delivering tea andco�ee, we could add a process, in this case called Alternate, as follows:MACHINE VendingMachineALPHABET Coin Tea Co�eePROCESS VM = AwaitCoin WHERE ::: ENDPROCESS Alternate = AltCONSTRAINS Tea Co�ee WHEREAlt = Co�ee ! Tea ! AltENDEND :2[S ] false represents those initial states in which A could establish any postcondition, i.e., behave miraculously.An action is said to be enabled when it cannot behave miraculously, i.e., when : [S ] false holds.3



The (optional)CONSTRAINS clause in the Alternate process signi�es that this process descriptiononly constrains the Tea and Co�ee operations and places no constraint on when the Coin operationmay occur.In the generated machine, the operations constrained by more than one process will be com-posed of several parallel SELECT statements. For example, the Co�ee action will be as follows:Co�ee =̂SELECT VM = DeliverDrink THEN VM := AwaitCoin ENDjjSELECT Alternate = Alt THEN Alternate := Alt 1 END :The guard of a parallel statement satis�es the following [1]:grd(S jj T ) = trm(S ) ^ trm(T ) ) grd(S ) ^ grd(T ) :Here, trm(S ) is the termination condition of S . The tool always generates statements from CSPdescriptions whose termination condition is always true (such as the SELECT statements forCo�ee above). In that case, grd(S jj T ) = grd(S ) ^ grd(T ). This means that events commonto several processes will only be enabled when each of those processes is willing to engage in thatevent. This corresponds to the CSP notion of parallel composition (see Section 3.4).2.3 Parameterised Events and IndexingIn the manner of channels in CSP, events may be parameterised by input parameters (Ev?x ) oroutput parameters (Ev !y). When translated into B, these parameters will correspond to the inputand output parameters of an operation. Also, processes may be indexed by parameters and theseindex parameters become state variables in the generated B machine. As an example of each ofthese, consider the following two process equations:Idle = In?f ! Remember(f )Remember(f ) = Out !f ! Idle :In the terminology of CSP, In and Out are input and output channels respectively. Process Idleinputs a value f on channel In and then behaves as Remember indexed by f . Remember(f ) outputsthe index value on channel Out and then behaves as Idle.The input parameter acts as a bound variable and its scope is the syntactic process term whichthe event pre�xes. The output value may be de�ned by any B expression. The input and outputparameters must be declared in the alphabet of a CSP speci�cation in the form:(y1; y2; :::) � OpName(x1 : T1; x2 : T2; :::) :The types of the input parameters are needed for the generated B machine, but the output typesare not needed as they are inferred by a B tool. Types are any B expression. The event in theCSP description corresponding to the above declaration is written in the formOpName?x1?x2?:::!y1!y2!:::A �le transfer service that inputs �les (sequences of bytes) and then outputs them may bespeci�ed as follows:MACHINE FileTransferSETS ByteDEFINITIONS File == seqByteALPHABET Send(f : File) f  � ReceivePROCESS Copy = Idle WHEREIdle = Send?f ! Remember(f )Remember(g : File) = Receive!g ! IdleENDEND : 4



MACHINE FileTransferSETS Byte; CopyState = f Idle;Remember gVARIABLES Copy ; gDEFINITIONS File == seq(Byte)INVARIANT Copy 2 CopyState ^ g 2 FileINITIALISATION Copy := IdleOPERATIONSSend(f ) =PRE f 2 File THENSELECT Copy = IdleTHEN Copy := Remember jj g := f ENDEND;f  � Receive =SELECT Copy = RememberTHEN Copy := Idle jj f := g ENDEND Figure 1: Generated machine for FileTransfer .The indexing variable g in this speci�cation becomes a state variable of type File in the generatedB machine shown in Figure 1. It is called g to distinguish it from the input and output parameterf of the Send and Receive operations. In the generated B machine, the Send operation assigns thevalue of its input parameter f to the variable g while the Receive operation reads from g . Withina PROCESS description the same indexing variable may be used in several equations and eachoccurrence will refer to the same variable in the generated machine.Note that the Send operation in Figure 1 has a precondition which constrains the input pa-rameters as well as a guard3. The precondition is required in B to determine the type of the inputparameter.Idle could also be declared using nested pre�xing as follows:Idle = Send?f ! Receive!f ! Idle :In this case, as well as introducing a name for the implicit state immediately after the Send event,csp2B also introduces a state variable to store the input value f . This is because f remains inscope until the recursive call to Idle, and, as is the case here, may be referred to. Whenever anevent with an input parameter is not immediately followed by a recursive call, then a new statevariable will be introduced to the generated B machine to store that input parameter.The actual value for a process index in a recursive call may be any B expression. Furthermore,IF� THEN � ELSE statements may be used in process descriptions and the guard may be any Bpredicate. This is illustrated by the following example:MACHINE BUFFER(T )ALPHABET In(x : T ) x  � OutPROCESS InitBu�er = Bu�er([ ]) WHEREBu�er(s : seqT ) =IF s = [ ]THEN In?x ! Bu�er([x ])ELSE In?x ! Bu�er(s a [x ])[] Out !�rst(s)! Bu�er(tail(s))ENDEND :3While a guard represents an enabling condition, a precondition represents a termination condition.5



Here, [ ] represents the empty sequence, [x ] represents a singleton sequence, and s a [x ] representsthe concatenation of s and [x ].Input parameters may also be `dot' parameters, which means that a process is only willing toaccept a particular value as input rather than being willing to accept any value. This is illustratedby the following CSP example:Free = Lock?u ! Locked(u)Locked(v : USER) = Access:v ! Locked(v)[] Unlock :v ! Free :Here, any user u may lock some shared resource. Once it has been locked by u only that usermay access or unlock the resource. A dot argument for an event may be any B expression andcorresponds to an input parameter of an operation. A clause is added to the guard of the generatedoperation to constrain the input parameter so that it equals the dot value. For example, the Accessoperation generated from the above CSP would be:Access(u) =̂ SELECT P = Locked ^ u = v THEN skip END:In the case that a CSP speci�cation consists of more than one process, each output parameterof an operation may be determined by at most one of the processes, though di�erent processesmay determine di�erent output parameters for the same operation.2.4 InterleavingA process may be de�ned as an interleaved composition of a set of indexed instances of a process.This is illustrated in the following example:MACHINE MultiFileTransferALPHABET Send(u : User ; v : User ; f : File)f  � Receive(u : User ; v : User)PROCESS MultiCopy = jjj u; v :Copy [u; v ] WHERECopy [u; v ] = Send :u:v?f ! Receive:u:v !f ! Copy [u; v ]ENDEND :Here, MultiCopy is de�ned as the interleaved composition of an indexed set of instances of Copy ,where Copy is indexed by a pair of variables u, v , both of type User . The indexing variables forthe interleaving are placed in square brackets rather than round brackets because they are treateddi�erently to standard process parameters. In the translation to B, the state of the process isrepresented by a function from the indexing set to the appropriate control type and an operationrefers to the point in this function determined by its indexing input parameters. With the aboveexample, two functions, representing the control states and the input parameter f , are generated asstate variables. Both these functions take pairs of users as arguments corresponding to the indexingparameters of Copy . Each operation is indexed by a pair of users and accesses the functions at apoint determined by the indexing pair of users. The generated machine is illustrated in Figure 2.2.5 ConjunctionA CSP machine may be used to constrain the execution order of a standard B machine. Considerthe B machine shown in Figure 3 which contains a variable representing a counter and operationsfor incrementing, decrementing and reading the counter.The ordering of these operations may be further constrained by the CSP speci�cation shown inFigure 4. This process description forces a user v to lock the counter before it can be manipulatedby v and prevents other users from manipulating it while it is locked by v . Notice that the process6



MACHINE MultiFileTransferSETS MultiCopyState = f Copy ; Copy 1 gVARIABLES MultiCopy ; f 1INVARIANTMultiCopy 2 (User � User)! MultiCopyState ^f 1 2 (User �User)! FileINITIALISATION MultiCopy := � u; v :(u 2 User ^ v 2 User j Copy)OPERATIONSSend(u; v ; f ) =̂PRE u 2 User ^ v 2 User ^ f 2 File THENSELECT MultiCopy(u; v) = CopyTHEN MultiCopy(u; v) := Copy 1 jj f 1(u; v) := fENDEND;f  � Receive(u; v) =̂PRE u 2 User ^ v 2 User THENSELECT MultiCopy(u; v) = Copy 1THEN MultiCopy(u; v) := Copy jj f := f 1(u; v)ENDENDEND Figure 2: Generated machine for MultiFileTransfer .description places no constraint on the x parameter of the Inc and Dec operations nor does itconstrain the Read operation.The CONJOINS clause in Figure 4 signi�es that the CSP speci�cation is constraining the Bmachine CounterActs. For each event name OpName in the alphabet of the CSP speci�cation,the conjoined machine should have a corresponding operation called OpName Act as shown in theCounterActs machine of Figure 3.The B machine generated by csp2B from the Counter speci�cation of Figure 4 will include theCounterActs machine using the machine inclusion mechanism of B. Each operation, OpName, inthe generated machine will include a guarded call to the corresponding OpName Act operation ofthe included machine. That is, if S represents the composition of the statements generated fromthe various CSP processes for OpName and T represents the call to the corresponding operationof the conjoined machine, then OpName will have the form:S jj SELECT grd(S ) THEN T END :For example, the Inc operation in the B machine generated from Counter will be as follows:Inc(u; x ) =PRE u 2 USER ^ x 2 N THENSELECT Locking = Locked ^ u = v THEN skip ENDjj SELECT Locking = Locked ^ u = v THEN Inc Act(x ) ENDEND;The guarding of the call in the generated operation ensures that the composite statement is7



MACHINE CounterActs(USER)VARIABLES cINVARIANT c 2 NINITIALISATION c := 0OPERATIONSLock Act(u) =̂ PRE u 2 USER THEN skip END;Inc Act(u; x ) =̂ PRE u 2 USER ^ x 2 N THEN c := c + x END;Dec Act(u; x ) =̂PRE u 2 USER ^ x 2 N THENSELECT c � x THEN c := c � x ENDEND;Unlock Act(u) =̂ PRE u 2 USER THEN skip END;y  � Read Act(u) =̂ PRE u 2 USER THEN y := c ENDEND Figure 3: B part of counter speci�cation.enabled exactly when both S and T are enabled since, provided trm(S ) = true:grd( S jj SELECT grd(S ) THEN T END ) = grd(S ) ^ grd(T ) :S is generated by csp2B and it will always be the case that trm(S ) = true4.2.6 Variable AccessThe variables of the conjoined machine may be referred to (read only) in any expressions of theCSP speci�cation. For example, consider the BUFFER Acts machine of Figure 5. This machineis conjoined with the BUFFER CSP speci�cation of Figure 6 which means that its variable s maybe referred to in the CSP process. In the CSP speci�cation, s is referenced in the guard of theIF-statement de�ning the behaviour of Bu�er and in the expression determining the output valuefor the Out channel.2.7 Re�nementsA CSP description may be a re�nement of another (CSP or B) machine. As in B, the keywordREFINEMENT is used instead of MACHINE and the REFINES clause must identify the machinebeing re�ned.The abstraction invariant for the re�nement may be placed in the INVARIANT clause of theCSP machine. Before devising the abstraction invariant, it is usually convenient to generate theB machine from the CSP machine. This will make explicit the control states and state transitionsgenerated from the CSP description. These may then be used in the abstraction invariant for there�nement.4Strictly speaking, a statement constructed by csp2B will terminate only when its input parameters are correctlytyped. 8



MACHINE CounterCONJOINS CounterActs(USER)SETS USERALPHABET Lock(u : USER) Unlock(u : USER)Inc(u : USER; x : N) Dec(u : USER; x : N)y  � Read(u : USER)PROCESS Locking = FreeCONSTRAINS Lock(u) Inc(u) Dec(u) Unlock(u) WHEREFree = Lock?u ! Locked(u)Locked(v : USER) =Inc:v ! Locked(v)[] Dec:v ! Locked(v)[] Unlock :v ! FreeENDEND Figure 4: CSP part of counter speci�cation.MACHINE BUFFER Acts(T )VARIABLES sINVARIANT s 2 seqTINITIALISATION s := [ ]OPERATIONSIn Act(x ) =̂ PRE x 2 T THEN s := s a [x ] END;Out Act =̂ PRE s 6= [ ] THEN s := tail(s) ENDEND Figure 5: B part of bu�er.Figures 7 and 8 give an example of a re�nement of this form. The CSP part is described inFigure 7 and this speci�cation is conjoined with the B machine of Figure 8. This is a re�nement ofthe FileTransfer machine of Figure 1 and it transfers a �le byte-by-byte instead of in one step. Inthe re�nement, an incoming �le is stored in the variable a�le while an outgoing �le comes from thevariable b�le. The contents of a�le are gradually transferred to b�le using a byte-wise transmissionprotocol. The CSP part describes the ordering of events whereby both sides in a transmission agreeto start a transmission (OpenReq followed by OpenResp), then transfer each bit using a successionof Trans events and then �nish the transmission. Operations such as OpenReq that do not appearin the abstract speci�cation FileTransfer nor in the conjoined machine FileTransferRe�nementare all skip actions and have been omitted here.The re�nement invariant used to prove the re�nement is included in the CSP speci�cation ofFigure 7. This invariant refers to the abstract and concrete control variables (Copy and ByteWiserespectively) and, when deriving the invariant, it was useful to be able to perform the translationof the CSP description in order to see an explicit representation of its state and state transitions.The invariant is then added to the CSP speci�cation and the translation performed again. Theinvariant is copied over into the generated B machine and is used by the proof obligation generatorof a B tool. 9



MACHINE BUFFER(T )CONJOINS BUFFER Acts(T )ALPHABET In(x 2 T ) x  � OutPROCESS InitBu�er = Bu�erCONSTRAINS In y  � Out WHEREBu�er =IF s = [ ]THEN In ! Bu�erELSE In ! Bu�er [] Out !�rst(s)! Bu�erENDEND Figure 6: CSP part of bu�er.3 Semantic IssuesIn [9], Hoare takes a denotational approach to the semantics of CSP by de�ning the Failure-Divergences model for processes. It is also possible to take an operational approach by consideringprocesses as Labelled Transition Systems (LTS) in the manner of Milner's CCS [10]. The Bmachine generated from a CSP speci�cation may be viewed as an LTS and, for this reason we,take an operational approach to justifying the semantics of the csp2B translation. Roscoe [12]shows how the denotational and operational models of CSP are linked.In the absence of CSP processes being allowed to access the state variables of conjoined Bmachines, the semantics is entirely compositional. That is, the semantics of the combination ofseveral CSP processes conjoined with a B machine (viewed as an LTS) is precisely CSP parallelcomposition. This entails monotonicity of re�nement allowing the B machine to be re�ned inde-pendently. However, as we shall see, this compositionality fails when sharing of state variablesoccurs. First we consider the case where no sharing of variables occurs and look at normal formsfor CSP processes and how they de�ne an LTS.3.1 Normal FormIn the notation supported by csp2B, a process is described by a set of equations of the formIi (v) = Pi ;where Ii is a process identi�er and Pi is a process term which may contain several process identi-�ers. A process term P is said to be in normal form either if P = STOP or if P is a choice in whicheach branch is a boolean-guarded event pre�xing a recursive call to another process identi�er, thatis, P = Q1 [] � � � [] Qn ;where each Qi is of the form IF G THEN a ! I (e) :Here I must be the identi�er on the left of a process equation and not a more complicated processterm. The event a may contain input, output and dot parameters. We assume that choice isassociative and commutative.There is an important syntactic restriction in csp2B which requires that all recursive calls arepre�xed by an event and this includes recursive calls in the branches of an IF-statement. Thisensures that any set of syntactically-correct process equations may be transformed to normal form.10



MACHINE FileTransferRe�nementREFINES FileTransferCONJOINS FileTransferRe�nementActs(Byte)INVARIANT(ByteWise 2 fBW1;BW2g ) g = a�le) ^(ByteWise = Transfer ) g = b�le a a�le) ^(ByteWise = Transfer 1 ) g = b�le)(̂Copy = Idle , ByteWise 2 fBW ;Transfer 2g) ^(Copy = Remember , ByteWise 2 fBW 1;BW 2;Transfer ;Transfer 1g)ALPHABET Send(f : File) f  � ReceiveOpenReq OpenResp TransBlock EndTrans AckPROCESS ByteWise = BW WHEREBW = Send ! OpenReq ! OpenResp ! TransferTransfer =IF a�le = [ ]THEN EndTrans ! Receive ! Ack ! BWELSE TransBlock ! TransferENDEND Figure 7: CSP part of FileTransfer re�nement.IF-statements are distributed through a term using the following transformations:IF G THEN P ELSE Q = (IF G THEN P) [] (IF : G THEN Q)IF G THEN (P [] Q) = (IF G THEN P) [] (IF G THEN Q)IF G THEN (IF H THEN P) = (IF G ^ H THEN P) :Nested pre�xing is normalised by introducing new equations. An equation of the formI (v) = (IF G THEN a ! P) [] Q ;where P is not a process identi�er, is replaced by the pair of equationsI (v) = (IF G THEN a ! J (v ;w)) [] QJ (v ;w) = PHere, J is some fresh process identi�er and w is the list of input parameters in the event a (withrenaming to fresh variables where necessary to avoid name clashes). The introduction of w isnecessary because P may refer to any input parameters of a.Terms involving STOP are simpli�ed as follows:IF G THEN STOP = STOPSTOP [] P = P :In the case that a set of process equations has di�erent parameter lists, then the parameterlists are extended to the merge of all the parameters. For example, a pair of process equationsI (v) = a ! J (e)J (w) = b ! I (f ) ;11



MACHINE FileTransferRe�nementActs(Byte)VARIABLES a�le; b�leINVARIANT a�le 2 File ^ b�le 2 FileOPERATIONSSend Act(f ) =̂ PRE f 2 File THEN a�le := f END;f  � Receive Act =̂ f := b�le;OpenResp Act =̂ b�le := [ ];TransBlock Act =̂ b�le := b�le a (�rst a�le) jj a�le := tail(a�le)END Figure 8: B part of FileTransfer re�nement.becomes I (v ;w) = a ! J (v ; e)J (v ;w) = b ! I (f ;w) :3.2 Labelled Transition SystemsA process speci�cation consisting of a set of normal-form equations de�nes an LTS. The statespace is the cartesian product of the set of process identi�ers with the type of the indexingparameters. We continue to write elements of this state space as I (v). The labels of the LTS arethe parameterised event names. A label may consist of several components c:i :j :k and an eventof the form c:i?y !k stands for the set of labels f c:i :j :k j j 2 Y g, where Y is the type of inputparameter y . The LTS may make a transition labelled a:i :j :k from state I (v) to I 0(v 0), writtenI (v) a:i:j :k�! I 0(v 0) ; (1)if the set of normalised equation contains an equation of the formI (v) = � � � [] IF G(v) THEN a:i?y !k ! I 0(V ) [] � � � ; (2)and G(v) holds and v 0 = V [y := j ] .In converting a CSP speci�cation to B, csp2B normalises the set of equations as described pre-viously and then constructs a B machine corresponding to the LTS. The state space is representedby the state variables of the machine, the labels are represented by the operation names (alongwith input and output parameters) and the transitions are represented by the operations. The Bmachine contains state variables (v) corresponding to the list of indexing parameters as well as aspecial control variable (p) typed over the set of process identi�ers from the left hand sides of theequations. For each event name a in the alphabet of the CSP process, the B machine contains anoperation of the form z  � a(x ; y) =̂ Sa ;where Sa is constructed in the following manner: For each occurrence of event a in a normalisedCSP process equation of the form (2), the B operation has a SELECT branch of the form:SELECT G(v) ^ p = I ^ x = i THEN p; v ; z := I 0;V ; k END : (3)12



The clause x = i ensures that the input value x matches the dot value i . All the branches of Saare composed using the B choice operator S [] T .We brie
y outline why the LTS de�ned by the set of normalised equations is the same as theLTS de�ned by the constructed B machine. In order to de�ne when a transition is allowed by a Boperation, we use the notion of conjugate weakest precondition de�ned as follows [11]:hS iQ =̂ : [S ]: Q :hS iQ represents the weakest precondition under which it is possible for S to establish Q (asopposed to the guarantee provided by [S ]Q). If the machine contains an operation of the formz  � a(x ; y) =̂ Sathen the transition I (w) a:i:j :k�! I 0(w 0) (4)is possible in state I (w) providedh p; v ; x ; y := I ;w ; i ; j ; Sa i (p; v ; z = I 0;w 0; k) (5)holds. That is, it is possible for Sa to establish an outcome in which p and v equal I 0(w 0) and zequals k when p; v ; x ; y are initialised appropriately.Now, a process equation of the form (2) enables a transition of the form (4) in state I (w)when G(w) holds. Using (5), it is easy to show that this is precisely the same condition underwhich the choice branch (3) allows this transition. Furthermore transition (4) is allowed if there issome occurrence of event a in some normalised CSP process equation. Likewise, the constructedB operation allows the transition if there is some choice branch that allows it which follows from:hS [] T iQ = hS iQ _ hT iQ : (6)Thus the transition relation a:i:j :k�! de�ned by the set of normalised CSP process equations is thesame as the transition relation de�ned by the constructed B machine.3.3 InterleavingThe csp2B tool supports interleaving of processes at the outermost level only. This interleavinghas the form jjj i :P [i ] where all of the instances P [i ] behave in a similar way except for theindexing of event labels by i . Such an interleaving represents multiple instance of P [i ] running inparallel where the parallel instances do not interact with each other in any way. This interleavingis modelled as a single large LTS whose state is modelled by replicated instances of the state thata single P [i ] would normally have. Thus, if the LTS for a single P [i ] would normally have a statespace � and i ranges over an indexing set I , then the state space of the large LTS is I ! �. Thisis the basis for the translation to B of interleaving described in Section 2.4.3.4 CompositionalityThe parallel composition of two LTS's P and Q is an LTS P k Q formed by taking the cartesianproduct of their state spaces and merging common actions. If a is common to P and Q , thentheir composition has a transition labelled a as de�ned by the following rule:I a�! I 0 2 P ^ J a�! J 0 2 Q(I ; J ) a�! (I 0; J 0) 2 P k Q : (7)This models synchronised parallelism since both P and Q must be in states that enable a for a tobe enabled in P k Q . Events that are present in only one of the processes result in transitions that13



have no e�ect on the other process. Thus, if a is an event of P but not of Q , then the compositionhas a transition de�ned by the following rule:I a�! I 0 2 P(I ; J ) a�! (I 0; J ) 2 P k Q :Similarly for the case where a is an event of Q only.When generating a B machine fromparallel processes and a conjoined machine, csp2B composesthe appropriate statements using the B parallel operator. Thus, given two parallel processes Pand Q , csp2B constructs an operation of the form S jj T for the generated B machine, where S isconstructed from P and T is constructed from Q in the usual way. The following result about theB parallel operator is important in showing that this corresponds to the LTS de�nition of parallelcomposition: Let S be a statement that assigns to x only and let T be a statement that assignsto y only. Let M be a predicate that depends on x only and let N be a statement that dependson y only. If trm(S ) = trm(T ) = true, thenhS jj T i(M ^ N ) = hS iM ^ hT iN : (8)Using this result, it is easy to show that the relationship between transitions allowed by S and Tand those allowed by S jj T is precisely that of (7). Thus, in the absence of variable sharing, theparallel composition used by csp2B corresponds to the CSP de�nition of parallelism.An important consequence of this result is that, since CSP parallel composition is monotonicwith respect to re�nement, a conjoined machine may be re�ned separately while maintaining there�nement of the overall system. Re�nement of CSP processes is de�ned in terms of the Failures-Divergences model. Based on [11, 13], [5] de�nes the Failures-Divergences semantics of B machinesand shows that re�nement of B machines corresponds to re�nement at the Failures-Divergenceslevel5.3.5 Divergence and NonterminationIn the above presentation, we have assumed that systems never diverge. This will always be thecase for CSP processes written in the notation supported by csp2B since it does not contain ahiding operator. However, Morgan [11] shows that it is appropriate to equate nonterminationof operations with divergent behaviour and the operations of a conjoined B machine may benonterminating in some states, e.g., operations of the form PRE M THEN S END. Thissituation may be dealt with by introducing a special bottom state modelling divergence to theLTS model along with several extra transition rules. Alternatively, one may directly de�ne thefailures and divergences of a B machine using conjugate weakest-precondition formulae in themanner of [11]. (We have found this latter approach to be the most convenient.) Either wayone can show that the correspondence between CSP parallelism, and the composition used inthe construction of B machines by csp2B, holds. Such a proof is presented in detail in [4]. Wepresented an LTS-style justi�cation in this paper since it is simpler (though less comprehensive)and portrays the essence of the translation.The potential presence of nontermination in a conjoined operation makes it essential to guardcalls to the conjoined machine, i.e., if S is the operation constructed from a CSP process and Tis a call to the conjoined machine, then the operation in the generated B machine has the form:S jj SELECT grd(S ) THEN T END : (9)If T was not guarded by grd(S ), then the composition of S and T would be enabled in any statein which T is nonterminating, even if S is not enabled in that state. This arises from the de�nitionof S jj T , and we have, for example, thatSELECT false THEN skip END jj abort = abort :5Strictly speaking, for this correspondence to hold, an extra condition on re�nement of B machines is introducedwhich requires that the guard of an abstract operation implies the guard of a concrete operation.14



Guarding T avoids the possibility of the composition being enabled in states where S is notenabled. It is not necessary to guard S since it is constructed from a nondivergent CSP processand will therefore be fully terminating.3.6 Variable SharingIn the case where a CSP process refers to the state variables of a conjoined machine, the composi-tionality result no longer holds. This is because the CSP processes cannot be given an independentCSP semantics if they refer to variables outside their control. Interaction between processes inCSP is based purely on interaction via synchronised events and allowing them to access the state ofanother machine would allow for stronger interaction that just synchronisation over shared events.In the case where sharing of variables occurs, the semantics of the whole system is given bynormalising the CSP processes in the usual way and collapsing the results, along with the conjoinedmachine, into a single large LTS. This single large then needs to be re�ned as a whole. Of coursethe modularity provided by B for structuring developments can still be availed of, and the wholesystem does not have to be represented as a single B machine, rather its semantics are those of asingle LTS.4 ConclusionsWe have presented an outline of the functionality of the csp2B tool and provided an operational-semantic justi�cation for the way in which it translates CSP to B. The supported CSP notationprovides a powerful way of describing ordering constraints for reactive system development andenhances the standard B notation. The tool provides a useful extension to the B Method and caneasily be used in conjunction with existing B tools.An interesting feature of the tool is that it accepts expressions, types and predicates writtenin standard B notation, copying them directly to the generated B machine. This means that itsupports quite a rich CSP notation.There are features of CSP that are not supported by the tool, namely internal nondeterministicchoice, event hiding and arbitrary (i.e., not just at the outermost level) parallel composition andinterleaving. Supporting these features would result in a lot of complexity in the generated Bmachines. For example, extra 
ag variables would have to be introduced to model the CSPinternal choice operator. Some of these features can be achieved directly in the B part of aspeci�cation. Internal choice can be modelled in the B part using nondeterministic constructs ofB. Alternatively, one could take a CCS-like approach and represent the internal choice of P andQ as the process(i ! P) [] (i ! Q);where i is regarded as a hidden event. Event hiding may be modelled using the notion of internaloperations in B machines as introduced in [5]. The tool has been applied to a larger example (aform of distributed database) [8] than those presented here and the restrictions in the supportedCSP notation did not prove a hindrance.References[1] J.-R. Abrial. The B-Book. Cambridge University Press, 1996.[2] J.-R. Abrial and L. Mussat. Introducing dynamic constraints in B. In D. Bert, editor, SecondInternational B Conference, April 1998.[3] R.J.R. Back and R. Kurki-Suonio. Decentralisation of process nets with centralised control. In2nd ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing, pages 131{142,1983. 15
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