IKhepera Simulator version 2.0
User Manual

Olivier MICHEL
E-mail: om@alto.unice.fr, Web: http://wwwi3s.unice.fr/ om/
University of Nice — Sophia Antipolis, Laboratoire I35, CNRS
bat. 4, 250, av. A. Einstein 06560 Valbonne, France

March 1, 1996

1 License Agreement

Khepera Simulator is a freeware public domain software written by Olivier MICHEL. The author
cannot be held responsible for any software or hardware damage caused by the use of Khepera
Sitmulator: Use this software at your own risks. Permission is hereby granted to copy this package
for free distribution. The author’s name and this copyright notice must be included in any copy.
Commercial use is forbidden. If you publish any academic paper, book, treatise or other work
based upon experiments conducted using Khepera Simulator, you must cite Khepera Simulator
and include the following reference mentioning the Khepera Simulator’s World Wide Web address:

Olivier Michel. Khepera Simulator Package version 2.0: Freeware mobile robot simulator written
at the University of Nice Sophia—Antipolis by Olivier Michel. Downloadable from the World Wide
Web at http://wwwils.unice.fr/ om/khep-sim.html

I_I_I_I_FI_I_I__FJ (raw| lamd| | ssnp| ran| reme | cossssd| P inde| =< maii) i

Figure 1: Khepera Simulator

2 Introduction

This package allows to write control algorithms (neural networks, classifier system, or anything
else you may imagine) using C or C++ languages. A library of functions is provided that permits
to drive the robot and display results. The simulator runs on Unix workstations and features a
nice X11 colorful graphical interface. Some examples of controllers are given within the package,
including a neural network controller. The simulator also features the ability to drive a real
Khepera robot, so you can very easily transfer your simulation results to the real robot by clicking
on a button.

The screen of the Khepera Simulator is divided into two parts: the “world” part stands on the
left while the “robot” part stands on the right (see figure 1). In the world part, one can observe
the behavior of the robot in its environment whereas in the robot part, one can observe what 1s
going on inside the robot (sensors, motors and controller).

2.1 Description of the world

-

LS L - |
*
- = - = I
s Wy g | I
y L F i . | - |
;o - 1 1
R | :

chaos.world maze.world

Figure 2: Two examples of simulated worlds

Various worlds for the robot are available in the SIM/WORLD/ directory. Press the “load” button
and type the world file name (without the .world extension) to load one of them. Moreover, it is
possible to edit them or to design a new world from scratch by pressing the “new” button. Resulting
worlds can be saved using the “save” button. Bricks, corks or lamps are laid in the environment
resulting in more or less complex mazes (see for example figure 2). The real dimensions of this
simulated environment (comparing to the real robot Khepera) are 1m x lm.

To add an object, select it using the “+” and “~” buttons. If you want to turn an object on
itself (for a brick for example), then press the “turn” button as many times as it is necessary.
Then, to set the object at a location in the world, press the “add” button and drop the object
in the world, then unpress the “add” button.. If you want to remove objects, press the “remove”
button and click on the objects you want to remove. To get out of the remove mode, unpress the
“remove” button. Once the bricks and corks have been laid, it is necessary to press the “scan”
button before the robot could perceive them. It is possible to check what the robot can perceive
by pressing the “!” button.

Figure 3: Khepera (b cm diameter) and its simulated counterpart

2.2 Description of the robot

2.2.1 Presentation

Dedicated to Khepera [3], the simulated mobile robot includes 8 infrared sensors allowing it to
detect by reflexion (small rectangles) the proximity of objects in front of it, behind it, and to the
right and the left sides of it. Each sensor returns a value ranging between 0 and 1023 represented
in color levels. 0 means that no object is perceived while 1023 means that an object is very close
to the sensor (almost touching the sensor). Intermediate values may give an approximate idea
of the distance between the sensor and the object. These sensors can also measure the level of
ambient light (small triangles) all around the robot. They return a value displayed in color levels
close to 500 in the dark and close to 50 in front of a light source. Each motor can take a speed
value ranging between —10 and +10. Red arrows on the motors indicate this speed.

2.2.2 Motor Model

The model of the simulated motors are straight forward: the robot moves accordingly to the speed
set by the the user. A random noise of £10% is added to the amplitude of the motor speed while
a random noise of £5% is added to the direction resulting from the difference of the speeds of the
motors (see function SolveEffectors(...) in source code file robot.h for more details).

2.2.3 Sensor Model

To calculate its distance value output, a simulated sensor explores a set of 15 points in a triangle in
front of it. An output value is computed as a function of the presence (or the absence) of obstacles
at these points. A random noise corresponding to £10% of its amplitude is added to the distance
value output (see function IRSensorDistanceValue(...) in source code file robot.h for more
details).

The light value output is computed accordingly to the distance and the angle between the sensor
and the light source. A +5% noise is added to this value (see function IRSensorLightValue(...)
in source code file robot.h for more details).

2.2.4 Operating the Robot

To set the robot at a given location in the world, press the button “set robot” (in the world part)
and click somewhere in the world (possibly not on an object). The robot may also be oriented in
the direction you like. To do this, press the “command” button and type for example set angle
45 you will see the robot turn to reach the 45 degrees position. Figure 3 shows the simulated

robot at 90 degrees position. If it was looking to the right (resp. to the left), it would have been
at 0 degrees (resp. 180 degrees). If you press the “run” button, sim will call continuously the
user control function RobotStep(robot) (written in C in user.c source file) until the “run” is
unpressed. If you want to observe a step by step run of the robot, then press the “step” button
and the function RobotStep(robot) will be executed once. The “?” button allows to test the
sensors of the robot (especially useful for the real robot).

3 Programming

3.1 Introduction

This section explains how to program your own Khepera controller. It describes the different
files you need to know and starts up with a tutorial example. You will find in the appendix A a
complete list of the C structures and functions necessary to program Khepera Simulator. Appendix
B contains the directory structure of the package.

3.2 Simulator source files: do not modify them

The simulator source files are in the directory SIM/SRC. They must not be modified. This is very
important for further updates of the software. These sources are written in ANSI C. So, if you
want to write your controller in C, compile these sources with a C compiler (gcec -c¢), and if you
prefer C+4, you can also compile these sources with a C4++ compiler (replace gcc —c by g++ -c
in the file makefile), so that it will be easier to link them together (gcc) with your controller.

3.3 User files

3.3.1 Preferences: the .simrc file

The file .simrc is a preference file concerning hardware configurations. It is read by Khepera
Sitmulator each time sim is executed. It’s a hidden file in /SIM directory, so you need to type
something like 1s -a to see it. It contains 3 important parameters which you may edit:

e KHEPERA AVATILABLE: may be TRUE or FALSE, depending if a real Khepera robot is connected
or not.

e SERIAL_PORT: is serial port device to which the robot is connected (if available). Tt could be
/dev/ttya standing for serial port A on a Sun workstation, but it generally depends on the
kind of computer you use. This value is used only when KHEPERA_AVAILABLE is TRUE.

e MONODISPLAY: may be TRUE or FALSE according to the type of screen used. Setting it to
TRUE allows to run Khepera Simulator on a monochrome display.

When calling sim, the option flag -s allows to run Khepera Simulator in “simulation only”
mode (do not make use of the serial link for the real Khepera) even if KHEPERA_AVAILABLE is TRUE.

3.3.2 Controller source files

These files are yours. You can modify them the way you want. You can also add new files (and
consequently modify the associated makefile). They are in SIM/USER directory. A version of the
basic empty controller files 1s available in SIM/EXAMPLES/EXAMPLEO directory. But if you want to
build your own controller, you should start up with example 1 which is the default controller of
the package (also available in SIM/EXAMPLES/EXAMPLE1 directory). This example shows how to
read the inputs and how to write to the outputs of the robot. It implements a very simple control
algorithm. It will be more detailed in the following tutorial section.

3.3.3 User info setup

As a user programmer of Khepera Simulator, you will need an area to display some of your
variables, results, graphs, explanations, etc. This area exists and allow you to write numerical
values, text, drawings, etc. into Khepera Simulator main window. All the information you can
write is divided into directories which contain pages. A default directory of three pages contains
a description of Khepera Simulator. You can switch between directory by pressing the button
“info”. You can turn the pages by pressing the buttons “+” or “-” next to the “info” button.
You can create up to 4 user directories, each one containing up to 255 pages ! In order to define
this, you must edit the file user_info.h which is in USER directory. After that, you will have to
fill in the function DrawUserInfo(struct Robot *robot,char info,char page) where info is
the info directory and page is the current page of this directory. Here are the constants to be
edited in user_info.h header file:

e NUMBER_OF_INFO is the number of user information directories your want. This value must
be between 0 and 4.

e PAGES_INFO._x is the number of pages for the directory number x (x ranging from 1 to 4).
These values must be between 0 and 255.

e TITLE_INFO. x is the title of the directory x (x ranging from 1 to 4).

3.4 A tutorial example
3.4.1 Foreword

Four examples are given within Khepera Simulator package. The are located in the directory
SIM/EXAMPLES/EXAMPLEx where x ranging from 0 to 3 is the number of the example. Example 0
is not really an example of a controller since it contains all the necessary functions for Khepera
Simulator to run, but these functions are empty, resulting in an “empty” controller. Only example
1 will be explained in this tutorial. For all the examples, read the readme files that are in
the directories EXAMPLES/EXAMPLEx. They contain indications about the installation and the
compilation of the examples. Here is a short description of the examples:

e FEzample 0: the “empty” controller example.
e FEzample I: an example of simple control algorithm.

e FErample 2: artificial neural networks and gnuplot. This example shows how to implement
artificial neural networks to drive the robot. It also features a pipe to gnuplot utility in
order to display graphs (here the path of the robot). The neural networks shown here are
resulting from an evolutionary process using genetic algorithms, morphogenesis, and artificial
metabolism described in [2].

o Erample 30 Khepera Simulator multi-agents module developed by Manuel Clergue allows to
control several simulated Khepera robots.

e Erxample 4. Khepera Simulator simulated serial device module. This module is especially
useful if you already developed a program sending serial commands to a real Khepera through
the serial link of your computer. You will just need to redirect the input and output serial
streams to Khepera Simulator pipes files and you will be able to observe the simulated
Khepera driven by your serial commands. A list of the commands supported by Khepera
Simaulator is available in appendix C.

3.4.2 Let’s program a Khepera robot controller !

This tutorial shows the implementation of a very simple control algorithm inspired from Braiten-
berg [1]. The source files are in EXAMPLES/EXAMPLE1/USER/ directory.
First of all, let’s define our algorithm:

repeat
o If the robot perceive no obstacle, then move forwards.
o If an obstacle is perceived on the left hand side of the robot, then turn
to the right.
o If an obstacle is perceived on the right hand side of the robot, then turn
to the left.
until something is detected in the back of the robot.

To program this into Khepera Simulator, we need to translate “perceive no obstacle” into
something dealing with the sensors of the robots. The sensors of the robot are readable through
the variable robot (type struct Robot). The value corresponding to the distance measurement
of the front sensor 2 (see figure 3) is stored in: robot->IRSensor[2] .DistanceValue (type int).
Values range between 0 and 1023. So if this value exceeds a given threshold, say 900 (which will
be defined in COLLISION.TH constant), one can consider that an obstacle has been detected by
this sensor.

In order to drive the motors of the robot, one must write in the variable robot the values
corresponding to the speed of each motor we want to apply. These two integers will be written
in robot->Motor [LEFT] . Value and robot->Motor [RIGHT] .Value. They range between —10 and
+10. We will define as constants in this range a TURN_SPEED and a FORWARD_SPEED.

All the input and output operations must occur within the boolean function StepRobot (struct
Robot #*robot). This function returns FALSE to stop the run of the robot and TRUE otherwise:

#define FORWARD_SPEED 5 /* normal (slow) forward speed */
#define TURN_SPEED 4 /* normal (slow) turn speed */
#define COLLISION_TH 900 /* value of IR sensors to be */

/* considered as collision */

boolean StepRobot(struct Robot *robot)

{

/* front left */
/* sensors */

if ((robot->IRSensor[0].DistanceValue > COLLISION_TH)
(robot->IRSensor[1] .DistanceValue > COLLISION_TH)
(robot->IRSensor[2] .DistanceValue > COLLISION_TH))
/* if there is a collision on the

left side of the robot */

{
robot->Motor [LEFT] .Value
robot->Motor [RIGHT] .Value

¥
else if ((robot->IRSensor[3].DistanceValue > COLLISION_TH)
(robot->IRSensor[4] .DistanceValue > COLLISION_TH)
(robot->IRSensor[5] .DistanceValue > COLLISION_TH))
/* if there is a collision on the

right side of the robot */

TURN_SPEED;
-TURN_SPEED; /* turn right */

{
robot->Motor [LEFT].Value = -TURN_SPEED;
robot->Motor [RIGHT] .Value = TURN_SPEED; /* turn left */
¥
else

{
robot->Motor [LEFT].Value = FORWARD_SPEED;
robot->Motor [RIGHT] .Value = FORWARD_SPEED; /* else go forward (default) */

}

if ((robot->IRSensor[6].DistanceValue > COLLISION_TH)|| /* collision in */
(robot->IRSensor[7] .DistanceValue > COLLISION_TH)) /* the back */

return(FALSE); /#* stop */

else

return(TRUE) ; /* continue */

With this simple code, we have defined a complete robot controller. It will run in a loop when
pressing the “run” button or run once when pressing the “step” button. You can now compile
example 1 on your computer. Normally, it is the default example installed within the package, so
you just need to type make. This will create the object files in SIM/0BJ/ directory and produce
the executable file: sim. Type sim to run Khepera Simulator.

In order to display some text, numerical values, or drawings in the user info area, have a look
at the function DrawUserInfo(...) in the source file user.c which is in SIM/EXAMPLE1/USER/
directory. It seems so simple that T wouldn’t describe it here. A lot of graphical functions are
available to let your imagination as free as possible (see appendix A.3 for more information).

3.5 Multi Agent Package
3.5.1 Overview

The purpose of this extension of the Khepera Simulator is to operate a group of robots instead of
a single robot. This group of robots i1s viewed by the simulator like a single entity, a “C” structure
(Multirobots). Each robots of the entity react according to a user specified behavior. All robots
may have the same behavior or some robots may have a specific behavior, as you need. The actions
of the robots at a defined time are calculated in a synchonous way, that is robots move one after
another.

This package works only with simulated robots.

3.5.2 Implementation

The “C” code concerning Multi Agent can be found in the files multirobots.c and multirobots.h,
placed in the directory CONTRIB. These files define the structure Multirobots and some useful
functions. You may see the file multirobots.h for description of these functions (see appendix D
for a paper version).

The structure is composed of three fields. A field for storing the number of robots of the group.
This number is fixed at the creation of the structure and should not change until the structure
is destroyed. Another field is an array of pointers on robots. These pointers; given by a malloc
operation, should not change. On the contrary, structures pointed by the pointers may change in
the way you want, if they remain Robot structures. The third field is a marker which indicate the
number of the current robot.

The most 1important functions are MultiRobotRun and MultiRobotRunFast, which execute a
cycle of robots move. When you call these functions with a structure Multirobots, they call
StepMultiRobots and FastStepMultiRobots for each robots, each time changing the number of
the current robot.

The functions StepMultiRobots and FastStepMultiRobots receive a structure MultiRobots as
a parameter. They should apply a StepRobot-like function on the current robot. To have robots
with different behaviors, just write several StepRobot-like functions and call them according to
the current robot.

Two versions are provided to allow a run with graphical display (MultiRobotRun) and a faster
run without such display (MultiRobotRunFast).

3.5.3 How to use it?

In the same way you do for the simple simulator, you have to write a file user.c, in which you
define some functions. In addition of the general ones (i.e. those of the simple simulator), you
have to implement two specific functions:

boolean FastStepMultiRobots(struct MultiRobots *multi);
boolean StepMultiRobots(struct MultiRobots *multi);

To use a structure MultiRobots, you have to create it using the function CreateMultiRobots.
This function has the number of robots you want in the group as a parameter.

Then, you may run the robots using the functions MultiRobotRun and HultiRobotRunFast. These
functions, which are defined in multirobots.c, make use of the functions StepMultiRobots and
FastStepHMultiRobots to determinate the behavior of the current robot of the group.

After use, you have to call FreeMultiRobots in order to free memory.

You are greatly encouraged to have a look at the example 3, before coding your own multi agent
simulation.

3.5.4 future works

The major lack of this package is the impossibility to command several real robots. Further ver-
sions of the simulator should allow this feature.

3.6 Author’s Notes

I am are aware that the models for the sensors and for the motors are very simple. I choose
computer efficiency instead of precision, making this simulator suitable for computer expensive
algorithms, especially genetic algorithms.

I do not handle real time problems in the tutorial example presented here because the controller
is very simple and doesn’t need any synchronization. Anyway, it is interesting to know that
at a speed of 10 (on both motors), the simulated robot covers exactly 5 millimeters for one
simulation step, while the real robot cover an unknown distance (depending on many factors
including computer speed, the control algorithm complexity, the serial link, etc.). This may give
ideas to build a system taking care of real time problems.

4 Acknowledgments

I developed this software during my Ph-D at 13S laboratory with professor Jo€lle Biondi and
assistant professor Philippe Collard as Ph-D directors (Mage Team). Manuel Clergue, a Ph-D
student studying genetic algorithms and evolutionary neural networks in our laboratory, was the
first user and beta-tester of this software. He also developed the multi-agents module included in
example 3. T am grateful to all these people for their assistance and some precious advices during
the development of the software. Moreover, I would like to congratulate the designers of the
Khepera robot: Edo Franzi, André Guignard and Francesco Mondada (K-Team SA, Preverenges,
CH) for their brilliant realization.

References

[1] Valentino Braitenberg. Vehicles: Exzperiments in Synthetic Psychology. MIT Press, Cambridge,
1984.

[2] Olivier Michel and Joélle Biondi. Morphogenesis of neural networks. Neural Processing Lelters,
2(1), January 1995.

[3] F. Mondada, E. Franzi, and P. Ienne. Mobile robot miniaturisation: A tool for investigation
in control algorithms. In Third International Symposium on Frperimental Robotics, Kyoto,

Japan, October 1993.

Appendix

A Library of functions

A.1 Data structures

You need to know three C structures to drive Khepera robot which are defined in robot.h file in
SIM/SRC/ directory:

struct Motor

{
double X,Y,Alpha;
short int Value; /* motor speed between -10 and +10 */

};

struct IRSensor

{
double X,Y,Alpha;
short int DistanceValue; /#* typically between O and 1023 */

short int LightValue; /* typically between O and 500 */
};
struct Robot
{
char Name[16];
double X,Y,Alpha; /* X and Y (millimeter), Alpha (rad) */
double Diameter;
u_char State;
struct Motor Motor[2]; /* use RIGHT & LEFT instead of 0 & 1 */
struct IRSensor IRSensor[8]; /* see simulated robot on figure 1 */
};

A.2 Fill-in functions

These functions needs to be fulfilled in order to attach actions to the buttons of the graphical
interface.

void NewRobot(struct Robot *robot)
This function is called when the "NEW ROBOT" buttons is pressed.

void LoadRobot(struct Robot *robot,FILE *file)
This function allows the user to write some data in the robot file, using
the C functions fprintf(file,pattern,data). It is called when the "LOAD
ROBOT" button is pressed.

void SaveRobot(struct Robot *robot,FILE *file)
This function allows to retrieve the data saved by the LoadRobot function
using the C function fscanf(file,pattern,data). It is called when the "SAVE
ROBOT" button is pressed. Both functions need to be updated in the same way
(they must load and save exactly the same datas in the same order).

void RunRobotStart(struct Robot *robot)

10

This function is called once when the "RUN ROBOT'" button is pressed.

boolean StepRobot(struct Robot *robot)
This function is called as long as the "RUN ROBOT" button is down.

void FastStepRobot(struct Robot *robot)
This function is called by FastRunRobot().

void RunRobotStop(struct Robot *robot)
This function is called when the "RUN ROBOT" button is released.

void ResetRobot(struct Robot *robot)
This function is call when the "RESET ROBOT" button is pressed.

void UserCommand(struct Robot *robot,char *text)
This function is called when the "COMMAND" button is pressed. The text
parameter passed to it is the string that the user typed on the keyboard.
It is a powerful way to do anything you want (set parameters, start various
algorithms, etc.).

void DrawUserInfo(struct Robot *robot,char info,char page)
This function is called each time the program needs to redraw the display
of the window. It must contain all the drawings and texts for the user info
box.

void UserInit(struct Robot #*robot)
This function is called at the beginning of the program. It can be used to
make some initializations.

void UserClose(struct Robot *robot)
This function is called at the end of the program. It allows to close some
file eventually open during UserInit() or to free some memory.

A.3 Graphical functions

These functions allow to draw text and graphics in the user info box. The coordinates (0,0)
indicates the upper left corner of the box and the coordinates (500,400) indicates the lower right
corner of the box.

void Color(char color)
Sets the color of the pen. Available colors are:
BLACK, DIM_GREY, GREY_69, GREY, LIGHT_GREY, WHITE, BLUE, BLUE_CYAN, CYAN,
CYAN_GREEN, GREEN, GREEN_YELLOW, YELLOW, YELLOW_RED, RED, MAGENTA,
LIME_GREEN, BROWN, MAROON, GOLD, AQUAMARINE, FIREBRICK, GOLDENROD,
BLUE_VIOLET, CADET_BLUE, CORAL, CORNFLOWER_BLUE, DARK_GREEN,
DARK_OLIVE_GREEN, PEACH_PUFF, PAPAYA_WHIP, BISQUE, AZURE, LAVENDER,
MISTY_ROSE, MEDIUM_BLUE, NAVY_BLUE, PALE_TURQUOISE and SEA_GREEN.

void FillRectangle(int x,int y,int width,int height)
Draws a filled rectangle with the upper left cormer at (x,y).

void DrawLine(int x1, int y1, int x2, int y2)
Draws a line between (x1,y1) and (x2,y2).

11

void DrawPoint(int x,int y)
Draw a point at (x,y).

void DrawRectangle(int x,int y,int width,int height)
Draws an empty rectangle with the upper left cormer at (x,y).

void FillArc(x,y,width,height,anglel,angle2)
Draws a filled arc with the upper left corner at (x,y) between
(anglel / 64) and (angle2 / 64) in degrees.

void DrawArc(x,y,width,height,anglel,angle2)
Draws an empty arc with the upper left corner at (x,y) between
(anglel / 64) and (angle2 / 64) in degrees.

void DrawText(int x,int y,char *text);
Draw text at (x,y)

void UndrawText(int x, int y,char *text);
Undraw text at (x,y)

void WriteComment(char *text)
Write a comment at the comment line.

void EraseComment ()
Erase the comment on the comment line.

void DrawRobot (struct Robot *robot)
Redraw the simulated robot in its environment.

void ShowUserInfo(int info,int page);
Display a page of the user info box.

u_char GetUserInfo()
Returns the current user info number (ranging from 1 to 4).

u_char GetUserInfoPage()
Returns the current page number of user info (ranging from O to 255).

A.4 Other useful functions

These functions should be called by the UserCommand() function or sub-functions.

boolean StopCommand()
returns TRUE is the "COMMAND" button is released.

void FastRunRobot(struct Robot *robot)
runs the simulated robot without displaying it (faster).

boolean RunRobot(struct Robot *robot)
Runs the simulated robot. Returns FALSE if the robot is stopped.

12

B Directory structure

SIM/

multirobots.c

CONTRIB/ multirobots.h Contribution sources files (do not modify)
neural.c
neural.h

DOCS/ manual.ps This manual.

...(manual sources files and other goodies)

install_example0

makefile Example 0: empty user files.
readme

remove_example0

EXAMPLEO/

user.c
user.h
user_info.c

EXAMPLEL/ |— ... Example 1: avery simple controller.
EXAMPLE2/ Example 2: aneural controller.

Example 3: a multi-agent module.
Example 4: asimulated seria device module

sim.o
OoBJ user.o
world.o
... (other object files produced during compilation)

the C/C++ compiler write its object files here.

.—E-ROBOT/ sim saves and loads robots to and from this directory.
... (robot files) (see example 2 for the use of this directory)
— colors.h
SRC/ |—1— context.h robot.c
— gen_typesh robot.h
- gra;;hi csce sim.c these sources files must not be modifyed !
— graphics.h sim.h
— header.h types_h
— include.h user_info.c
— khep_serial.c world.c
— khep-seria.h world.h
USER/ user.c
user.h

these are your own sources files

user_info.c you can modify them as you want.

(other user source files)

WORLD/ home.world

i

maze.world sim saves and loads world to and from this directory.
chaos.world
. ... (world files) . . . L . . .
— .smrc .simrc is the configuration file (especially for hardware configurations)
— makefile your makefile (you can modify it as you need).
— readme The main readmefile.

13

C Khepera Serial Commands

A Configure (not implemented in Khepera Simulator)

B Read software version (not implemented in Khepera Simulator)

D Set speed

Format of the command:
Format of the response:
Effect:

E Read speed

Format of the command:
Format of the response:
Effect:

D, speed_motor_left, speed_motor_right<\n>
d<\n>

Set the speed of the two motors. The unit is the
pulse/10 ms that correspond to 8 millimeters per
second on the real robot.

E</n>

e, speed_motor_left, speed_motor_right<\n>

Read the instantaneous speed of the two motors. The
unit is the pulse/10 ms that correspond to 8
millimeters per second on the real robot.

G Set position (not implemented in Khepera Simulator)

H Read position (not implemented in Khepera Simulator)

N Read proximity sensors

Format of the command:
Format of the response:

Effect:

N</n>

n, val_sens_left_90,val_sens_left_45,val_sens_left_10,
val_sens_right_10,val_sens_right_45,val_sens_right_90,
val_sens_back_right,val_sens_back_left<\n>

Read the 10 bit values of the 8 proximity sensors, from
the front sensor situated at the left of the robot,
turning clockwise to the back-left sensor.

0 Read ambient light sensors

Format of the command:
Format of the response:

Effect:

0</n>

0, val_sens_left_90,val_sens_left_45,val_sens_left_10,
val_sens_right_10,val_sens_right_45,val_sens_right_90,
val_sens_back_right,val_sens_back_left<\n>

Read the 10 bit values of the 8 ambient light sensors,
from the front sensor situated at the left of the
robot, turning clockwise to the back-left sensor.

14

D multirobots.h

/***/

/* File: multirobots.h (Khepera Simulator) */
/* Author: Manuel CLERGUE <clerguem@alto.unice.fr> */
/* Date: Thu Jan 16 14:39:05 1996 */
/* Description: Extension of Khepera Simulator */
/* for multi-agents simulation */
/* Copyright (c) 1995 */
/* 0livier MICHEL */
/* MAGE team, i3S laboratory, */
/* CNRS, University of Nice - Sophia Antipolis, FRANCE */
/* */
/* Copyright (c) 1996 */
/* Manuel CLERGUE */
/* MAGE team, i3S laboratory, */
/* CNRS, University of Nice - Sophia Antipolis, FRANCE */
/* */

/* Permission is hereby granted to copy this package for free distribution. */
/* The author’s name and this copyright notice must be included in any copy. */
/* Commercial use is forbidden. */
[k ke o ok ok ok o ok ook ok o ok sk ok ok o ok o o ok o ok o o ok o ok o o ok o ok ok o ok o ook o ok o ook o ok o ook o ok ook o ok ook o ok o ok ok o ok ok o ok /

#ifndef MULTIROBOTS_H
#define MULTIROBOTS_H

#tdefine D_MAX 50.0 /* max. dist. between 2 robots for mutual perc. */
f#tdefine IR_MAX 1023 /* max. value of IR captors */

/* useful external functions */

extern void DrawLittleRobot(struct Robot *sr,struct Robot *r);

extern void ChooseRandomPosition(struct World *world,double #x,double #y,
double *alpha);

extern u_short IRSensorDistanceValue(struct World #world,short int x,short int y,
double alpha);

extern u_short IRSensorLightValue(struct World #world,short int x,short int vy,

double alpha);

/* The MultiRobots structure manage the use of several robots */
/* Some services are provided with this structure */
/* It is highly recommended to use them (or to create others) */
/* instead of using those of the Robot structure */

struct MultiRobots

{
struct Robot **robots; /* Array of pointers to Robot */
short int current; /# Current Robot being treated -- use this carefully */
short int number; /* Number of Robots in the structure */

};

/* CreateMultiRobots create and initialyze the structure with number Robots */
MultiRobots *CreateMultiRobots(long int number);

/* Free the structure and the Robots */
void FreeMultiRobots(MultiRobots *multirobots);

/* Calculate the influence of the group on the current Robot’s captor (xc,yc,alpha) */

15

/* Used in MultiInitSensors */
ghort int MutualInfluence(short int xc,short int yc,double alpha,
short int value,MultiRobots *multirobots);

/* Calculate the value of IR-Distance captors of the Robots in the structure */
/* Used in MultiRobotRunFast */
void MultiInitSensors(Context *context,MultiRobots *multirobots);

/* This is the most useful service. This is THE one you have to use */

/* in standart situations */

/* There is two version (Fast and Normal) */

/* The fast one (without the display of robots on the screen) use

/* FastStepMultiRobots (MultiRobots *multirobots)*/

/* The other one use StepMultiRobots(MultiRobots *multirobots) */

/* You have to implement these functions in the same way that you have to do it
/* for one robot */

void MultiRobotRunFast (Context *context,MultiRobots *multirobots);

void MultiRobotRun(Context *context,MultiRobots *multirobots);

/* nothing important */
double DistanceBetRobots(Robot *robil,Robot rob2);

/* This service allow you to place the robots at random place in the world */
void PlaceRobots (Context *context,MultiRobots *multirobots);

/* The functions you have to implement */

extern boolean FastStepMultiRobots(struct MultiRobots *multi);
extern boolean StepMultiRobots(struct MultiRobots #multi);
#endif

16

