
SICOMP Industrial Microcomputers

(4)J31069-D2037-U001-A3-7618

Technical Description
Order Number: 6AR1943-3AD00-2BA0 December 1999

IMC0x-PLC, Version 2.0

Order Number: 6AR1403-3AD00-2AA0

System Manual

IMC0x-PLC

(4)J31069-D2037-U001-A3-7618

2 IMC0x-PLC, System Manual

Product History of the Technical Description

Revision 1) Record of changes Date

A0 First edition 07/97

A1 Technical Corrections 06/98

A2 V2.0 with PROFIBUS-DP Connection 05/99

A3 Addition of IMC01 information, designation changed to IMC0x-PLC 12/99

1) Corresponds to the 4th block of digits of the drawing number in the footer

Notes:

SICOMP® is a registered trademark of Siemens AG.
IBM AT® and IBM PC® are registered trademarks of the International Business Machines Corp.
INTEL® is a registered trademark of the INTEL Corp.
MS-DOS®, Windows® and Windows NT® are registered trademarks of Microsoft.

All other designations used in this documentation may be trademarks whose use by third parties for their own purposes may
violate the rights of the owner.

Passing on and reproduction of this document, as well as utilization and communication of its contents is prohibited unless
expressly authorized. Offenders will be liable for damages. All rights reserved, particularly in the event a patent is granted or a
utility model is registered.

No responsibility is assumed for circuits, descriptions and tables contained in this document concerning freedom from rights of
third parties. Information in the technical descriptions specifies products but does not guarantee characteristics. The product
described in this documentation may require licensing. Questions should be directed to your local Siemens office.

Availability and technical modifications subject to change without prior notice. ES43/Ka/WW8.0/VS5.0/A4
©Siemens AG 1999, All Rights Reserved

IMC0x-PLC

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 3

Table of Contents

1 General Information about IMC0x-PLC Documentation 1–1

1.1 System Manual Overview 1–2

2 IMC0x-PLC Overview 2–1

2.1 Performance Features 2–1

2.2 Before You Start 2–1
2.2.1 Programmer (PG) 2–1
2.2.2 Controller (PLC) 2–1
2.2.3 The Controller 2–2

2.3 Functional Units 2–3
2.3.1 Control Unit 2–4
2.3.2 Accumulator (ACCUM) 2–4
2.3.3 Counters, Timers and Flags 2–4
2.3.4 Communication Flags 2–4
2.3.5 Process Images 2–4
2.3.6 Input/Output Units 2–4
2.3.7 Program Memory 2–5
2.3.8 MC5 Compiler 2–5
2.3.9 PG Interface 2–5
2.3.10 Shared Memory 2–5

3 Operating Modes 3–1

3.1 Operator Interface and Display Elements 3–2

3.2 Restart 3–2

3.3 Restart (RUN transition) 3–4

3.4 STOP Transition 3–5

3.5 Operating Mode RUN 3–6
3.5.1 Cycle-Driven Processing Level 3–6
3.5.1.1 Scan Time Monitoring 3–7
3.5.1.2 Scan Time Calculation 3–7
3.5.1.3 Diagnosis While Reading/Writing the Process Image (Only with IMC05) 3–8
3.5.2 Timer-driven Processing Level 3–8

3.6 Retentivity 3–11

3.7 Overall Reset 3–11
3.7.1 Overall Reset by Event Flag 3–12
3.7.2 Overall Reset via the PG 3–12
3.7.3 Overall Reset by the System 3–12

3.8 Error Handling 3–12
3.8.1 Runtime Errors 3–13
3.8.1.1 Scan Time Exceeded 3–13
3.8.1.2 Timer Error 3–14
3.8.1.3 Substitution Error 3–14
3.8.1.4 Transfer Error 3–14
3.8.1.5 Calling Nonexistent Blocks 3–14
3.8.1.6 Block Stack Overflow 3–14
3.8.1.7 STS Operation (STEP 5 Command) 3–14

IMC0x-PLC

(4)J31069-D2037-U001-A3-7618

4 IMC0x-PLC, System Manual

3.8.2 IMC0x-PLC -specific Errors 3–15
3.8.2.1 DB 1 Error 3–15
3.8.2.2 Compiling Error 3–15
3.8.2.3 Memory Overflow in Runtime Area 3–16
3.8.2.4 LIR/TIR/TNB Error 3–16
3.8.2.5 Clock Error 3–16
3.8.3 Error Status Word 3–17

4 I/O Addressing 4–1

4.1 Bitwise Addressing 4–1

4.2 Bytewise and Wordwise Addressing 4–2

4.3 Access to the PII 4–2

4.4 Access to the PIQ 4–3

4.5 Direct Access 4–3

4.6 Initializing Outputs 4–5

4.7 Access to Decentral Inputs/Outputs 4–5

5 Testing and Startup Functions 5–1

5.1 Forcing Variables 5–1

5.2 Forcing Outputs 5–2

5.3 Compressing Memory 5–2

5.4 Direct Signal State Reporting (Status Variables) 5–2

5.5 Program-dependent Signal State Reporting 5–2

5.6 Process Monitoring 5–3

5.7 Output of Interrupt Stack (ISTACK) 5–3
5.7.1 Determining the Error Source 5–3
5.7.2 ISTACK Output to PG 5–4
5.7.3 Mnemonics of ISTACK Entries 5–5

5.8 Block Stack Output 5–6

5.9 System Parameter Output 5–9

5.10 Address Output 5–10

5.11 Display Memory Structure 5–11

5.12 Error Reporting with the Error Status Word 5–11

6 Introduction to Programming 6–1

6.1 STEP 5 Programming Language 6–1
6.1.1 Display Modes 6–1
6.1.2 Operand Areas 6–3

6.2 Program Structure 6–3
6.2.1 Linear Programming 6–3
6.2.2 Structured Programming 6–4

6.3 Blocks and their Attributes 6–5
6.3.1 Organization Blocks (OB) 6–6
6.3.1.1 Programming Organization Blocks 6–6

IMC0x-PLC

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 5

6.3.1.2 Calling Organization Blocks 6–6
6.3.2 Program Blocks (PB) and Sequence Blocks (SB) 6–7
6.3.2.1 Programming PBs and SBs 6–7
6.3.2.2 Calling Program and Sequence Blocks 6–7
6.3.3 Function Blocks (FB) 6–8
6.3.3.1 Programming Function Blocks 6–10
6.3.3.2 Calling Function Blocks 6–12
6.3.3.3 Parametrization 6–13
6.3.4 Data Blocks (DB) 6–14
6.3.4.1 Data Blocks DB 0 and DB 1 6–14
6.3.4.2 Generating Data Blocks 6–15
6.3.4.3 Calling Data Blocks 6–15
6.3.5 HLL Blocks 6–17

6.4 Representing Numbers 6–18

7 STEP 5 User Memory 7–1

7.1 MC5 memory 7–1

7.2 DB memory 7–1

7.3 Memory Organization 7–2

7.4 Conversion Program CVSTEPV.EXE 7–2

8 Programming HLL Blocks 8–1

8.1 Block Organization 8–1

8.2 Programming 8–1
8.2.1 Programming the Organization Blocks 8–2
8.2.2 Programming the Function Blocks 8–2
8.2.2.1 Access to Substitution Parameters 8–3
8.2.3 Accessing PLC Data Areas 8–4
8.2.4 Initialization Function for HLL Blocks 8–4

8.3 Linking HLL Blocks 8–5
8.3.1 Linking HLL Blocks during RMOS Generation 8–5
8.3.2 Stack Size of HLL Blocks 8–5
8.3.3 Floating-point Arithmetic 8–5

8.4 Development and Test Environment 8–6
8.4.1 Testing at Assembler Level 8–6
8.4.2 Testing High Level Languages 8–6
8.4.3 Setting Breakpoints 8–6

8.5 HLL Blocks for PROFIBUS-DP Diagnosis (Only with IMC05) 8–7

9 DB 1 Configuration 9–1

9.1 DB 1 Structure 9–1

9.2 Default Values 9–2

9.3 Definition of Communication Flags (MASK01) 9–3

9.4 Definition of Digital Inputs and Outputs (MASK02 and MASK03) 9–4
9.4.1 Definition of Digital Inputs (MASK02) 9–4
9.4.2 Definition of Digital Outputs (MASK03) 9–7

9.5 Definition of Retentive Flags (MASK04) 9–10

IMC0x-PLC

(4)J31069-D2037-U001-A3-7618

6 IMC0x-PLC, System Manual

9.6 Definition of Initialization Values (MASK05) 9–11

9.7 Special Settings (MASK06) 9–12

10 IMC0x-PLC Configuration 10–1

10.1 IMC0x-PLC Memory Areas 10–1

10.2 Start Call x_plc_start 10–2
10.2.1 Structure Definition for Software Parameters 10–2
10.2.2 Structure Definitions for Hardware Parameters 10–6

10.3 Start Call x_plc_init 10–7
10.3.1 Parametrization in the Configuration File SWCPLC.C 10–8

10.4 Error Codes for x_plc_start and x_plc_init 10–10

10.5 I/O Interface PLC_IOIF.ASM 10–12

10.6 Directory Entries 10–12

11 Operator Interface and Display Elements 11–1

11.1 What is an Event Flag? 11–1

11.2 Working with Event Flags 11–1

12 Working with Shared Memory 12–1

12.1 Base Address 12–1

12.2 Structure and Contents 12–1

12.3 Access Control 12–4
12.3.1 Access Control Using the Status and Acknowledgement Bytes 12–4
12.3.2 Access Control Using the RMOS Event Flag 12–4

13 PROFIBUS-DP Link (Only with IMC05) 13–1

13.1 Access to Decentral Inputs/Outputs 13–1

13.2 PROFIBUS-DP Diagnostic Functions 13–2
13.2.1 Diagnostics while Read/Write Accessing the Process Image 13–2
13.2.2 Diagnosis While Reading/Writing I/O Bytes 13–3
13.2.3 HLL Block for the Diagnostic Function 13–3

13.3 DP Configuration for IMC0x-PLC 13–4
13.3.1 Allocation of the Digital Inputs/Outputs (DB 1 Configuration) 13–4
13.3.2 Constants for Error Identifiers 13–4

14 RMOS and PLC Configuration 14–1

14.1 Directory Entries 14–2

14.2 IMC0x-PLC Configuration and Generation Files 14–2

14.3 Configuring and Generating IMC0x-PLC 14–3

15 Compatibility to SIMATIC S5-115U 15–1

15.1 Commands 15–1

15.2 Execution Times 15–1

IMC0x-PLC

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 7

15.3 Program Memory 15–1

15.4 Data Blocks DB 0/DB 1 15–1

15.5 Special Organization Blocks 15–2

15.6 Display of Results 15–2

15.7 ISTACK Display 15–2

15.8 BASP 15–2

15.9 STATUS Block 15–2

15.10 Alarm Blocks 15–3

15.11 Integrated Function Blocks 15–3

15.12 Standard Function Blocks 15–3

15.13 Clock Functions 15–3

15.14 Time Behavior on Loading Blocks in RUN Mode 15–3

15.15 Step/Transition Programming with GRAPH 5 15–3

15.16 Alarm Blocks 15–3

List of Abbreviations A–1

Software Notations B–1

Index I–1

IMC0x-PLC

(4)J31069-D2037-U001-A3-7618

8 IMC0x-PLC, System Manual

General Information about IMC0x-PLC Documentation

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 1–1

1 General Information about IMC0x-PLC
Documentation

The IMC0x-PLC documentation has been split into three sections in the belief that this is the most
helpful way of presenting all the necessary information for different types of users. It has been
prepared with three user groups in mind: firstly, the absolute beginners who want to get a working
grasp of IMC0x-PLC as quickly as possible, secondly, users writing STEP 5 programs who will use it
mainly as a reference work and, lastly, system programmers who also need detailed information on
how IMC0x-PLC fits into the RMOS operating system. We hope this documentation will help all three
groups to begin working confidently with this product in as short a time as possible.

Getting to know
IMC0x-PLC

ReferenceManual

SystemManual

STEP 5 reference IMC0x-PLC configuration,
STEP 5 programming

User
Manual

Figure 1. 1 Target uses for manuals

The User Manual is intended for getting acquainted with and gaining a general overview. The manual
covers all the basics of installing, starting and using the IMC0x-PLC under the RMOS operating
system.

The Reference Manual contains detailed information about STEP 5 commands, STEP 5 operation
codes, the DB 1 configuration, the parameters of the IMC0x-PLC start calls, in short, everything
required for IMC0x-PLC operation, mostly in tabular form. The Reference Manual is thus the standard
reference work for both the application programmer and the system programmer.

The System Manual contains all the information required for operation of the IMC0x-PLC. The manual
describes in detail all the special features and facilities of the IMC0x-PLC.

General Information about IMC0x-PLC Documentation

(4)J31069-D2037-U001-A3-7618

1–2 IMC0x-PLC, System Manual

1.1 System Manual Overview

This manual covers the operation, programming and startup of a programmable logic control (PLC)
based on the RMOS3-PLC software package.

Chapter overview

Chapter 1 explains the documentation concept.

Chapter 2 briefly describes a controller's functional units.

Chapter 3 explains the operating modes and the methods of changing them. It also covers retentivity
and error handling.

Chapter 4 covers STEP 5 I/O addressing.

Chapter 5 describes test and startup functions using SIMATIC STEP 5 programmers.

Chapter 6 is an introduction to STEP 5 programming. It outlines the three display modes and
discusses the modular program structure and the different types of module or block. STEP 5 number
representation is also explained in some detail.

Chapter 7 looks at the user memory available under STEP 5 and at a conversion program which
generates an MC5 binary file.

Chapter 8 covers HLL (high level language) blocks and how they are linked to STEP 5 programs.

Chapter 9 concentrates on data block 1 (abbreviated to DB 1) which always contains the PLC
configuration data. It discusses the different data fields (masks) which make up DB 1 and gives an
example of a typical DB 1.

Chapter 10 covers IMC0x-PLC configuration, memory areas used from IMC0x-PLC and the different
IMC0x-PLC start calls. It also deals with the I/O interfaces and explains how the IMC0x-PLC handles
them.

Chapter 11 covers the IMC0x-PLC operator and display elements. The function of an event flag and
its use in manipulating the IMC0x-PLC is explained.

Chapter 12 is about the shared memory. It covers structure, uses and memory access.

Chapter 13 summarizes all details of the PROFIBUS-DP interface.

In chapter 14 you will find a discussion of aspects of the RMOS configuration which affect the
configuration, installation and operation of the IMC0x-PLC. An important part deals with the driver
responsible for serial communication between the IMC0x-PLC and the programming equipment.

Chapter 15 summarizes the differences between the IMC0x-PLC and a SIMATIC S5-115U.

IMC0x-PLC Overview

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 2–1

2 IMC0x-PLC Overview
You can use the IMC0x-PLC to set up a programmable controller with the SICOMP-IMC05 and the
SICOMP-IMC01. This manual concentrates on the programming language STEP 5, on IMC0x-PLC
operation and on test and startup functions using the programmer. In addition, the manual describes
IMC0x-PLC configuration in an RMOS environment and describes the interfaces to another RMOS
task or to another CPU.

2.1 Performance Features
• 1024 input bits

• 1024 output bits

• 256 flag bytes

• 128 timers

• 128 counters

• 3.2 msec execution time for 1024 binary instructions

• STEP 5 command set corresponds largely to SIMATIC S5-115U CPU 944

2.2 Before You Start

2.2.1 Programmer (PG)

You can write, test and run your application programs on either of these programming systems:

• MS-DOS-compatible PC with Siemens STEP 5 programming package (STEP 5 Basic Package)

• SIMATIC S5 programmer, e.g., PG 720 with STEP 5 from V6.5 or PG 740 with STEP 5 from
V7.12 under Windows 95

2.2.2 Controller (PLC)

You can use the IMC0x-PLC to implement programmable controllers based on the IMC05 or IMC01
compact process computer.

IMC0x-PLC Overview

(4)J31069-D2037-U001-A3-7618

2–2 IMC0x-PLC, System Manual

2.2.3 The Controller

A controller created using the IMC0x-PLC has almost all the functionality of a SIMATIC S5-115U
controller. Because the IMC0x-PLC can be implemented on devices with different order options, it is
obviously impossible to describe the final controller completely. The checklist below tells you where
the controller description must be supplemented or modified:

• Serial interface for connection of the PG
– With IMC05: RS 232-2
– With IMC01: COM1 (RS 232)

• Number and addresses of inputs and outputs

• Memory configuration

• Retentivity

• Use of communication flags

• Integrated HLL blocks

• Reaction to power failure

• Second serial interface
– With IMC05: RS 232-1
– With IMC01: COM2 for printf outputs on the system console (RS 485, semi-duplex)

IMC0x-PLC Overview

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 2–3

2.3 Functional Units

The figure below shows the typical structure of a controller created with the IMC0x-PLC.

RMOS3

User memoryACCUM

Timers
Counters

Flags

Communication
flags

PII PIQ

PG interface

PLC

other Tasks,
e.g.:

Visualization
Operation

Measurement
Control

IMC0x-PLC

Cycle control

PG communication
(e.g. STATUS block)

MC5 compiler

Digital
input/output

DB 1

logical address

physical address

Figure 2. 1 Function units of a PLC

The controller is built up from a number of functional units which are briefly described here:

• Control unit

• Accumulator

• Counters, timers and flags

• Communication flags and shared memory

• Process image

• I/O units

• Program memory

• MC5 compiler

• PG interface

IMC0x-PLC Overview

(4)J31069-D2037-U001-A3-7618

2–4 IMC0x-PLC, System Manual

2.3.1 Control Unit

The control unit is responsible for executing control programs at a level where process control is:

• cycle-driven processing level

• timer-driven processing level

2.3.2 Accumulator (ACCUM)

The accumulator is an arithmetic register. Values from internal counters and timers, for example, are
loaded via the accumulator. The accumulator also performs compare, convert and arithmetic
operations.

2.3.3 Counters, Timers and Flags

The controller makes available internal counters, timers and flags. Flags are memories for storing
signal states and intermediate results. Counters, timers and flags can be set to be retentive, so that
their contents are not lost when power is switched off (see chapter 3.6).

2.3.4 Communication Flags

A contiguous flag area can be defined an output communication flag or an input communication flag.
If another RMOS task or the CPU is in communication with the controller, these communication flags
are available to them for both reading and writing.

This allows data to exchanged between the PLC and its communication partners, or specific
operations of the control program to be synchronized with operations in other tasks.

2.3.5 Process Images

The controller stores the signal states of its inputs and outputs in process images. Process input
images are treated differently from process output images:

• Process input images (PII):
are read only at the beginning of a PLC cycle. During the cycle, the PII data is only accessed to
check that the signal states have remained unchanged while the control program was executing.

• Process output images (PIQ):
are written to only at the end of a PLC cycle. There is no output during the cycle to avoid
changing the outputs unnecessarily with intermediate results from the control program.

2.3.6 Input/Output Units

Logical input units (input bytes) are read and logical output units (output bytes) are read from and
written to peripheral devices. Logical inputs/outputs are allocated to physical inputs/outputs during
DB 1 configuration.

IMC0x-PLC Overview

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 2–5

2.3.7 Program Memory

There are different memory types which can be used to store control programs or to transfer program
data from the PG to the controller:

• battery-buffered SRAM

• User flash memory (subsequently abbreviated as EPROM)

2.3.8 MC5 Compiler

The processor in the controller cannot process MC5 code unless it is compiled, i.e., translated into the
appropriate 80386 code. The MC5 code is compiled into 80386 code at every restart of the PLC (after
power-on or start of the IMC0x-PLC under RMOS), or when a program block is loaded from the PG.

2.3.9 PG Interface

The controller is connected to the PG via a serial interface. The PG is used to load, test and start
control programs and in error diagnosis.

2.3.10 Shared Memory

When the controller communicates with another RMOS task it uses shared memory. The following
data is exchanged via shared memory:

• controller operating mode

• process image PA, i.e., controller input (PII) and output state (PIQ)

• counters and timers

• communication flags to synchronize the controller with other tasks under RMOS

See chapter 12 for details of shared memory structure, configuration and programming.

IMC0x-PLC Overview

(4)J31069-D2037-U001-A3-7618

2–6 IMC0x-PLC, System Manual

Operating Modes

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 3–1

3 Operating Modes
The PLC has two operating modes, RUN and STOP.

• In RUN mode, the process input image is read cyclically, the user program is executed and the
process output image is written.

• In STOP mode, control is stopped and all outputs set to zero.

The transition from STOP to RUN is a restart. After power-on, a restart is executed, so that the
necessary initialization functions are performed.

Power-On/Reset

PLC function PC STOP
RUN-STOP event flag

Compiler error
PROFIBUS-DP error

PG function PC START
RUN-STOP event flag

PG function PC STOP
RUN-STOP event flag
Runtime error
PROFIBUS-DP error

Restart

STOP mode RUN mode

RUN transition

STOP transition

Figure 3. 1 PLC modes and operating mode transition

Operating Modes

(4)J31069-D2037-U001-A3-7618

3–2 IMC0x-PLC, System Manual

3.1 Operator Interface and Display Elements

IMC0x-PLC makes available an event flag group for operator control and indication (see chapter 11).

Control flags - For RUN ↔ STOP change in operating mode
- For overall reset of the PLC
- For error acknowledgment

Indication flags - For RUN and STOP operating modes
- For runtime errors, compiling errors and warnings
- For an overall reset request

The controller displays STOP/RUN modes as follows:

STOP mode The STOP display is active and the RUN display inactive

RUN mode The RUN display is active and the STOP display inactive

3.2 Restart

A controller restart is performed:

• when the power supply is switched on or

• after a hardware reset (from watchdog)

If the controller has retentive memory, the contents of this memory are checked during restart. Should
this check show a loss of data, an overall reset request is automatically initiated. The controller cannot
be switched into RUN mode until this request has been acknowledged and acted upon.

A restart executes all necessary initializations. The transition to RUN mode takes place only when the
following conditions have been met:

• The controller was not stopped - before being switched off - with the PG function PC STOP
(applies only to systems with retentive memory)

• If configured, the control flag must be set for operating mode RUN(see chapter 11)

• Error-free compilation of the MC5 codes (compiler run)

When the controller enters RUN mode for the first time after a restart, OB 22 is called as restart OB. It
can be used to perform initializations.

Operating Modes

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 3–3

no

yes

no yes

1)

Restart

Delete shared memory

Load retentive data (F, T, C)

Retentive data OK?

Request general reset, delete DB memory

Compile DB memory

Load MC5 code 1)

Compile MC5 memory

DB 1 default initialization

DB 1 initialization with data from DB 1

1)Load HLL blocks

Compile MC5 code, compiler run

Delete non-retentive data (PII, PIQ, F, T, C)

PLC RUN ?

STOP mode Start (RUN transition)

Figure 3. 2 Restart operation

1) If retentive mode is configured and retentive data are valid in the SRAM, these are used. Otherwise the
applicable data areas are loaded from the EPROM.

Operating Modes

(4)J31069-D2037-U001-A3-7618

3–4 IMC0x-PLC, System Manual

3.3 Restart (RUN transition)

The restart is executed every time the operating mode changes from STOP to RUN.

Start

Read communication flags (if available)

Disable cycle time monitoring

Enable timer processing

Execute start OB (OB 21/OB 22)

Enable alarms

Enable cycle time monitoring

End

Figure 3. 3 Restart

The restart (RUN transition) is initiated by one of the following events:

• Executing the PG function PC START

• After a restart, if all RUN conditions have been met

• In response to an event flag (see chapter 11)

When the controller enters RUN mode for the first time after a restart, the restart OB 22 is executed.
At each subsequent operating mode change from STOP to RUN, restart OB 21 is executed.

If the most recent controller STOP was initiated by the PG function PC STOP, then it can also be
started again by using the event flag group, independently of the PG function PC START.

3.4 STOP Transition

A transition from RUN to STOP interrupts processing of the control program at the end of a PLC cycle,
all outputs are set to zero. For application-specific requirements, STOP OB (OB 28) should be the last
function to be called.

Operating Modes

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 3–5

The PROFIBUS-DP communication remains, but in state "CLEAR".

Note:
All local and decentral outputs assume the value 0.

STOP transition

Disable alarms

Disable timer processing

Copy retentive data to retentivity memory

Delete and write process image and peripheral area

Delete non-retentive data (flags, timers, counters)

Call STOP OB (OB 28) or error OB

End

Figure 3. 4 STOP transition

The transition to STOP takes place after one of the following events:

• Execution of the PG function PC STOP

• Occurrence of a runtime error which is not caught by an error OB

• Resetting an RMOS event flag (see chapter 11)

• Occurrence of an error at a PROFIBUS-DP station for which "QVZ = J" is specified.

Operating Modes

(4)J31069-D2037-U001-A3-7618

3–6 IMC0x-PLC, System Manual

3.5 Operating Mode RUN

RUN is the operating mode in which control programs are executed. Control programs are executed
at two processing levels:

• Cycle-driven processing level (PLC cycle)

• timer-driven processing level

3.5.1 Cycle-Driven Processing Level

This is the typical processing method for programmable controllers, i.e., read input - process control
program - write to output. The organization block OB 1 is the interface for cyclic processing of a
control program.

PLC cycle

Read PII

Call organization block OB 1

Write PIQ

Copy PII to the shared memory

Copy PIQ, timers, counters, communication output flags
to the shared memory

Read communication input flags from the s hared memory

STOP condition?

STOP transition

no

yes

1)

Figure 3. 5 PLC cycle, cycle-driven processing

1) See chapter 12

The accessibility of all decentral stations configured in the CP data base is monitored during both read
and write accesses to the process image during the PLC cycle.

Operating Modes

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 3–7

3.5.1.1 Scan Time Monitoring

Scan time is another way of saying "the runtime of the control program". It is directly dependent on the
reaction time of the automation system at the cycle-driven processing level.

Scan time monitoring makes it possible to react to unexpected delays in program execution and to
bring the control system into a defined mode. The maximum scan time is usually set in the restart
organization blocks (OB 21 and/or OB 22) by writing a value to system data word SD 96 (see
chapter 5). The value entered here is interpreted as a multiple of 10 msec. The default value for scan
time monitoring is 500 msec. Cycle time monitoring can be switched off by entering a value zero in
system data word 96.

Table 3. 1 Programming scan time monitoring

System data
word

Absolute
address

Time interval Programming Default Setting

SD 96 EAC0 1 ... 0FFFFH * 10 msec
(0 = no scan time monitoring)

0032H
(500 msec)

Within a program, scan time can be retriggered by calling trigger OB 31. This makes it possible to
adjust scan time monitoring to changing runtime situations.

If the set scan time is exceeded, error OB 26 is executed (if it is available) and the scan time
retriggered. If OB 26 was not programmed, the controller switches to STOP mode.

A special case occurs when scan time monitoring is switched off and the user program is in an
endless loop, so that it does not stop. If the operating mode flag is set to STOP, the controller will still
be in RUN mode. In this case, the overall reset flag must be set in order to terminate the PLC cycle,
because all the other conditions which would cause a STOP are only polled at the end of a cycle.
When the reset button is used here, the controller displays the error message "scan time exceeded"
and switches to STOP mode.

3.5.1.2 Scan Time Calculation

The controller provides data on user program runtime in a time base of 1 to 10 msec (resolution
depends on the RMOS clock tick).

The values for current, minimum and maximum scan time are written to system data as listed below.
They can be read with the PG function "output addresses".

System data
word

Absolute
address

Contents/meaning

SD 121 EAF2 Current scan time in msec

SD 122 EAF4 Maximum scan time in msec

SD 123 EAF6 Minimum scan time in msec

Current scan time is also written to the shared memory (see chapter 12). Scan time calculation, which
takes up a certain amount of the processor's time, must be activated by an entry in DB 1 (see
chapter 9). When SD 122 or SD 123 are set to the value 0, a new measurement is started.

Operating Modes

(4)J31069-D2037-U001-A3-7618

3–8 IMC0x-PLC, System Manual

3.5.1.3 Diagnosis While Reading/Writing the Process Image (Only with
IMC05)

During the PLC cycle, accessibility of all decentral stations configured in the DP data base is
monitored. If errors occur, error information is stored in system data words SD 124 to SD 126. See
chapter 3.8.3. These system data words are cleared during the STOP → RUN transition.

Note:
When an error occurs on a station for which "QVZ = J" is specified in the PROFIBUS-DP data base,
IMC0x-PLC assumes STOP status. When "QVZ = N" is specified for one or more stations, the error
code must be evaluated in system data word SD 124 and then cleared.

The error code can contain all the error identifiers of the PROFIBUS-DP link. For the meaning of the
error codes, see the technical description of IMC05-DP.

3.5.2 Timer-driven Processing Level

At the timer-driven processing level a program (block) can be processed cyclically within a time frame
of 10 msec to 10 min, which you specify.

Timer-driven processing uses the organization blocks OB 10 to OB 13 (timer blocks). The time
interval for each of the 4 organization blocks is set by an entry in the system data. The time frame can
be set in steps of 10 msec. Time intervals can be set by commands in the restart organization blocks
and also adjusted during program runtime by programming the system data words SD 100 to SD 97.
Default time interval settings are: OB 13 100 msec and OB 10, OB 11 and OB 12 all set to zero. If a
time interval is set to zero, calls to the corresponding OB are disabled.

If a timer block is activated during runtime by a programmed time interval, the first start of this timer
block will have a fuzziness of 10 msec.

The following table shows how timer OBs are allocated to system data words:

Table 3. 2 Timer block settings

System data
word

Absolute
address

Time interval Programming Default Setting

SD 100 EAC8 OB 10: 0 ... 0FFFFH * 10 msec
(0 = disable OB 10 calls)

0 (disabled)

SD 99 EAC6 OB 11: 0 ... 0FFFFH * 10 msec
(0 = disable OB 11 calls)

0 (disabled)

SD 98 EAC4 OB 12: 0 ... 0FFFFH * 10 msec
(0 = disable OB 12 calls)

0 (disabled)

SD 97 EAC2 OB 13: 0 ... 0FFFFH * 10 msec
(0 = disable OB 13 calls)

000AH
(100 msec)

In the following example, the time interval for OB 13 is programmed in the restart OBs 21 and 22.
Access to the system data word is only possible via function blocks (FB 21).

Operating Modes

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 3–9

Table 3. 3 Setting of a time interval (1 sec period for OB 13 calls)

OB 21 OB 22 FB 21

 JU FB 21

Name : Time ON

 .

 .

 : JU FB 21

Name : Time ON

 .

 .

Name : Time ON

 : L KF 100

 : T RS 97

 : BE

A cyclic program can be interrupted by a timer-driven processing level. The IA command disables
calls to all timer OBs, and the RA command enables them again.

If the processing time for a timer OB is longer than the set time interval (i.e., the timer OB overtakes
itself), then an timer error occurs (see chapter 3.8.1.2). A timer error also occurs when tasks with
higher priority than the timer blocks take up too much processor time, impeding execution of the timer
blocks. If the time OBs are delayed by the IA command, no time interrupt error occurs. To keep
impact on the cyclic program execution as low as possible, execution time for timer-driven processing
level should be kept small.

The flowchart below shows all these relationships:

Operating Modes

(4)J31069-D2037-U001-A3-7618

3–10 IMC0x-PLC, System Manual

START

Restart time interval

Call timer OB

Wait for time interval to elapse

Previous call completed?
no

yes

Timer OB processing
disabled by "IA"?

no

yes

Timer error handling

Wait for "RA"

Figure 3. 6 Calling a program at the timer-driven processing level

Operating Modes

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 3–11

3.6 Retentivity

Retentive data like flags, counters, timers and data blocks are stored in DB memory. The size of this
memory is set during configuration (see chapter 10). For DB memory SRAM must be configured.
Otherwise retentive data storage is not possible.

Since data blocks are generally stored in retentive memory, they are always retentive. Flags, timers
and counters are saved to retentive memory only on a transition to STOP mode, or if there is a power
failure.

Note:
The retentivity of the data blocks depends only on the type of memory configured. On the other
hand, the retentivity of the operand areas - flags, timers and counters - must also be specially set in
the DB 1 configuration. During restart the contents of retentive memory are checked. If there has
been a data loss, an overall reset request is automatically issued.

An entry in the DB 1 configuration (see chapter 9) can define a flag area (FB 0 to FB 127) as retentive
data. These data are retained even when program execution is interrupted and are available when
the operating mode has changed back to RUN. If retentive flags have been configured, the operand
areas C 0 to C 63, T 0 to T 63 are automatically made retentive too.

Note:
An overall reset deletes even retentive data.

3.7 Overall Reset

The "overall reset" function re-initializes the controller. All blocks previously loaded by the PG into
RAM are lost, together with the retentive data blocks. After the overall reset, the MC5 code is loaded
from EPROM again.

An overall reset can be requested in the following ways:

• Via the PG

• Automatically after data loss in retentive memory (after a restart)

• In response to an event flag (see chapter 11)

• Via a new start after a hardware reset.

The reset request is indicated by setting the overall reset flag.

Operating Modes

(4)J31069-D2037-U001-A3-7618

3–12 IMC0x-PLC, System Manual

3.7.1 Overall Reset by Event Flag

The following steps assume that the operating mode flag is at STOP.

1. Set control flag for overall reset.
Indication flag for overall reset request is set.

2. Wait until indication flag for overall reset request is reset.

3. Set control flag for operating mode change to RUN.
Indication flag for RUN operating mode is set.

4. Set control flag for operating mode change to STOP.
Indication flag for STOP operating mode is set.

5. Set control flag for operating mode change to RUN.
PLC begins operation.

If the controller is in RUN mode, an overall reset request made by the control flag does not take effect
until the control flag for operating mode change is set to STOP or the PC STOP function is executed.

3.7.2 Overall Reset via the PG

An overall reset is requested with the function "Delete all blocks" and is executed immediately if the
controller is in STOP mode. No acknowledgement is expected in this case.

After the overall reset the controller remains in STOP mode.

If the controller is in RUN mode the PG request is not passed on to the controller, i.e., it has no effect.

3.7.3 Overall Reset by the System

An overall reset request from the system can happen only with controllers where DB memory has
been configured as retentive memory. An overall reset request must always have a positive
acknowledgement. Only then can controller operation be continued.

An overall reset is requested by the system when the controller is switched on for the first time,
because the required memory areas are not yet initialized. When the size of the MC5 memory
(mc5_size) is changed, an overall reset is also requested.

3.8 Error Handling

Basically there is a difference between runtime errors (compatible to SIMATIC S5-115U, see below)
and IMC0x-PLC-specific error code which is written to a reserved system datum, the error status word
(see chapter 5). All errors are indicated by activating the error display (event flag).

Operating Modes

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 3–13

3.8.1 Runtime Errors

Runtime errors can occur only while a user program is executing, i.e., in RUN mode, because their
source is the STEP 5 program code. Runtime errors are usually read out at the PG by displaying the
ISTACK.

The following runtime errors can occur when the IMC0x-PLC is running:

• scan time exceeded

• timer error

• substitution error

• transfer error

• call of nonexistent block

• block stack overflow

• STS command

Note:
The "SAC" indication always has the value 0 for errors TRF, SUF, STUEB and QVZ (i.e., SAC cannot
be used for error localization here). The incorrect code location can be determined by BEF-REG.

Errors are indicated by setting the error flag. Digital outputs are deleted, processing of the controller
program stops (exception: see chapter 3.8.1.5) and the controller goes into STOP mode.

Before processing can start again, the error must be acknowledged.

Acknowledgement by event flag:

Acknowledgement by event flag is application-specific and must be programmed as part of the
controller realized with the IMC0x-PLC.

With the exception of block stack overflow, timer error and the special case of an STS command, an
error reaction can be programmed for all runtime errors (error OB).

If no STS command (immediate stop) has been programmed in the error OB, the error OB is
processed and then controller program processing is continued without any error display. In effect this
suppresses error display.

If the appropriate error OB is not available, the controller switches into STOP mode as described
above. During transition to STOP mode after a runtime error, the STOP OB (OB 28) is not called.

3.8.1.1 Scan Time Exceeded

Scan time is exceeded when the scan time entered in the system data word SD 96 is exceeded, i.e.,
when the PLC program does not reach the end of a cycle within this time. The scan time monitoring
can be deactivated by entering the value 0 in the system data word SD 96.

3.8.1.2 Timer Error

A timer error occurs when a timer OB overtakes itself, i.e., when it is due to be started again although
the previous processing has not yet finished. When a timer error occurs, the controller goes into
STOP mode. An error OB cannot be programmed for timer errors.

Operating Modes

(4)J31069-D2037-U001-A3-7618

3–14 IMC0x-PLC, System Manual

3.8.1.3 Substitution Error

A substitution error occurs when, in a substitution instruction, the formal operand does not match the
specified actual operand. In the case of a substitution error, the error OB 27 is executed and the
substituted command is omitted. If error OB 27 was not programmed, the controller goes into STOP
mode and the error code is written to the ISTACK.

3.8.1.4 Transfer Error

A transfer error occurs when

• data words are accessed, but no data block was previously called

• during a read/write on a data block, a data word/data byte is addressed which is not part of the
block, i.e., block length is exceeded

• an I DB command is being executed, but the free user memory is insufficient to create a data
block of the specified length.

In the event of a transfer error, the operation which was the source of the error is not executed,
instead error OB 32 is called. If error OB 32 was not programmed, the controller goes into STOP
mode and error code is written to the ISTACK.

3.8.1.5 Calling Nonexistent Blocks

This error occurs when a block call command (JU xx, JC xx) specifies a block which was not
programmed. In this case error OB 19 is called (if it was programmed) instead of the nonexistent
block. The controller does not go into STOP mode, but the error flag is set to indicate an error.

3.8.1.6 Block Stack Overflow

Block nesting depth is restricted to 32. A block stack overflow occurs when the nesting depth of 32
block calls is exceeded (i.e., when the 33rd block is called). When this happens, the controller goes
immediately into STOP mode and the ISTACK error code is entered. It is not possible to program any
other reaction for this error.

The order in which block calls were issued can be displayed with the PG function "OUTPUT
BSTACK".

3.8.1.7 STS Operation (STEP 5 Command)

The STS operation (immediate stop) is actually not an error. In contrast to the STP operation (stop at
end of cycle), the STS operation is generally used in OBs in order to stop the PLC in a defined state.
The STS operation causes an entry to be made in the ISTACK and the controller to go into STOP
mode.

3.8.2 IMC0x-PLC -specific Errors

In addition to runtime errors, there are other errors which are specific to the IMC0x-PLC:

• DB 1 error

• Compiling error

• Memory overflow in runtime area

Operating Modes

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 3–15

• LIR/TIR/TNB error (illegal address area)

• Read/write error in retentive data file

• Clock error

When one of these errors occurs, the IMC0x-PLC goes into STOP mode and sets the error display
(event flag). In general, unless specifically stated otherwise, the IMC0x-PLC can be started again
from the PG, although the error should naturally be corrected first. (The sequence "request overall
reset - negative acknowledgement" will switch the controller into RUN mode without using the PG.

3.8.2.1 DB 1 Error

The DB 1 data block contains configuration data for the IMC0x-PLC, e.g., the allocation of logical
inputs/outputs to physical addresses in the inputs/outputs (see chapter 9).

When a DB 1 containing an error is loaded, then the appropriate error bit in the error status word
SD 104 (see chapter 3.8.3) is set and the IMC0x-PLC goes into STOP mode, or alternatively cannot
be switched into RUN mode. Corrective action in this case is to correct and reload the DB 1. Then
start the IMC0x-PLC using the PG function PC START. The causes of an incorrect DB1 are described
in chapter 5 (DB 1 configuration) of the reference manual.

3.8.2.2 Compiling Error

Each time a new start of the PLC is performed and each time the blocks are loaded via the PG,
compiling is performed again. If illegal commands or command sequences are found, bit 15 of error
status word SD 104 is set. The illegal code in stored in SD 111.

Illegal command sequences are listed below.

• 0 after 0

• Jump with JO =, JZ =, JM =, JU =, JN =, JP = or JC = in a logical chain with the commands A =,
O =, AN =, ON =, AW =, OW =, XOW =, UM, OM, UNM, ONM, UZ, OZ, UNZ, ONZ, A(, O(,), UE,
UA, OE, OA, UNE, UNA, ONE, ONA, UT, OT, O, UNT, ONT.

Note:
The PLC cannot be put into RUN status again by deleting the incorrect block. The PLC can only be
put into RUN status again by deleting the invalid command in the block or after a new error-free block
has been loaded.

Operating Modes

(4)J31069-D2037-U001-A3-7618

3–16 IMC0x-PLC, System Manual

3.8.2.3 Memory Overflow in Runtime Area

The compiler run generates processor code from MC5 code. The 80386 code is written to a special
memory area, the runtime area. The size of the runtime area is a multiple of the size of the MC5 code.

Normally, program size is restricted in the first instance by the amount of memory needed for MC5
code (mc5_size, see chapter 10), i.e., while loading a block the PG reports "Insufficient memory in
controller". Only in exceptional cases, where the 80386 code requires more memory area than
expected will the error "Memory overflow in runtime area" be reported. This also means that memory
for MC5 code is almost completely full. The function "Compress memory" will release unnecessarily
occupied memory area, also in the runtime area. If the problem cannot be solved in this way, i.e.,
there is still insufficient memory, the parameter mc5_size must somehow be set larger. If, on the
other hand, compressing memory released a sufficiently large memory area, then the controller can be
started again from the PG. The controller can be switched back into RUN mode only after
compressing memory.

3.8.2.4 LIR/TIR/TNB Error

This error is reported when the commands LIR/TIR/TNB access addresses which are not available
under the IMC0x-PLC. This error is also reported when the TNB command attempts to copy data
beyond range limits.

3.8.2.5 Clock Error

For the different PLC timer functions the IMC0x-PLC requires a 10 msec clock cycle, which is derived
from the RMOS system clock. At the end of every 10 msec timer interval, the internal timer routine is
called to update, e.g., the times T 0 to T 127. A clock error is reported if this internal timer routine
cannot be processed within a 10 msec time interval, i.e., the timer routine is started again before it has
finished processing. The clock error report is initiated by an internal monitoring function when the
system load (e.g., from interrupts) is too heavy.

Operating Modes

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 3–17

3.8.3 Error Status Word

The error status word SD 104 (address EAD0) is used to report IMC0x-PLC-specific errors.
Information on the cause of the error is entered in the system data words SD 105 to SD 111. These
system data words can be read out with the PG function "Output addresses".

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PB not available

SB not available

FB not available

OB not available

DB 1 error

Timer error

Clock error

Error on writing retentivity file

LIR/TIR/TNB error (illegal address area)

Access outside DB (TRAF)

Substitution error

Scan time exceeded

Memory overflow in runtime area

Block stack overflow (nesting depth > 32)

STOP command encountered / illegal command sequence

MC5 compilation error (illegal opcode)

Figure 3. 7 Error status word SD 104 (address EAD0)

Additional information about errors

Table 3. 4 System data words for error localization

System data
word

Absolute
address

Meaning

SD 104 EAD0 Error status word

SD 105 EAD2 Number of data word in which the error occurred

SD 106 EAD4 Number of data block in which the error occurred (always 0)

SD 107 EAD6 Number of program block in which the error occurred

SD 108 EAD8 Number of sequence block in which the error occurred

SD 109 EADA Number of function block in which the error occurred

SD 110 EADC Number of organization block in which the error occurred

SD 111 EADE Illegal MC5 instruction code

Operating Modes

(4)J31069-D2037-U001-A3-7618

3–18 IMC0x-PLC, System Manual

Table 3. 5 System data words for PROFIBUS-DP diagnostics (only with IMC05)

System data
word

Absolute
address

Meaning

SD 124 EAF8 Error code (return value of the call dpn_out_slv_m or dpn_in_slv_m)

SD 125 EAFA Number of the faulty station

SD 126 EAFC Slave status of the faulty station (slv_state, see Technical Description
IMC05-DP)

I/O Addressing

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 4–1

4 I/O Addressing
Generally, inputs and outputs are addressed via the input process image PII and the output process
image PIQ. In addition, it is possible to access inputs/outputs directly via peripheral accesses, without
taking the route via the process image. The extended peripheral area forms an additional address
area for inputs/outputs which is independent of the process image.

The following I/O operand areas can be used with the IMC0x-PLC:

IB 0 to IB 127 digital inputs, access via the process image

QB 0 to QB 127 digital outputs, access via the process image

PB 0 to PB 127 digital I/O, direct access to digital inputs/outputs

PB 128 to PB 255 and QB 0 to QB 255
extended peripheral areas

Inputs and outputs are allocated to the physical addresses of the appropriate inputs/outputs by means
of entries in SWCPLC.C or in the DB 1 data block. DB 1 programming is covered in chapter 9.

4.1 Bitwise Addressing

Individual bits in the process image are represented by specifying the byte plus the bit number,
separated by a period:

AI 23 .3

Bit number (channel number)

Byte number

Figure 4. 1 Structure of a bit address

Bitwise addressing is used mainly for addressing digital input/output channels.

Note:
Bitwise addressing with peripheral access is not possible.

I/O Addressing

(4)J31069-D2037-U001-A3-7618

4–2 IMC0x-PLC, System Manual

4.2 Bytewise and Wordwise Addressing

Bytewise or wordwise accesses are identified by a B or a W following the operand type (I, Q, P).

For wordwise addressing the lower byte number is specified, e.g.:

• QW 34 corresponds to QB 34 and QB 35

• QW 116 corresponds to QB 116 and QB 117

4.3 Access to the PII

At the start of cyclic program execution, the signal states of the digital inputs are read into the PII.
This ensures that the signal states remain unchanged during execution of the control program.

The PII can be accessed bit-, byte- and wordwise.

PII

Byte 2

Byte 25

Byte 116
Byte 117

Bitwise read
in binary operations:

A I 2.5

Bytewise read
in binary operations:

L IB 25

ACCUM

High.Byte Low.Byte

(00H)

Wordwise read
in binary operations:

L IW 116

ACCUM

High.Byte Low.Byte

01 5

0

02 135 467 Bit no.

1 5

Figure 4. 2 PII access

I/O Addressing

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 4–3

4.4 Access to the PIQ

At the end of cyclic program execution, the digital outputs are transferred from the PIQ to the
peripheral area. This avoids changes to output signal states caused by intermediate results from the
control program.

The PIQ can be accessed bit-, byte- and wordwise.

PIQ

Byte 3

Byte 14

Byte 92
Byte 93

Bitwise write
in binary operations:

= Q 3.3

Bytewise write
in binary operations:

T QB 14

ACCUM

High.Byte Low.Byte

Wordwise write
in binary operations:

T QW 92

ACCUM

High.Byte Low.Byte

015

15 0

Bit no.01234567

Figure 4. 3 PIQ access

4.5 Direct Access

The IMC0x-PLC also allows direct accesses to inputs and outputs. The load operations L PB 0 to
L PB 127 or L PW 0 to L PW 126 access the digital inputs. The transfer operations T PB 0 to T PB 127
or T PW 0 to T PW 126 access the digital outputs. (The physical addresses are the same as for
operations with the operands IB 0 to IB 127 or QB 0 to QB 127.)

The operand areas PB 128 to PB 255 and QB 0 to QB 255 (or PW 128 to PW 254 and QW 0 to
QW 254) are used to access the extended peripheral area. Again, load operations select inputs and
transfer operations select outputs.

I/O Addressing

(4)J31069-D2037-U001-A3-7618

4–4 IMC0x-PLC, System Manual

Transfer operations to the peripheral bytes PB 0 to PB 127 simultaneously update the output process
image (PIQ). This prevents arbitrary resetting of the output when the PIQ is transferred to peripheral
devices. The PII is, however, not updated by load operations.

PII

PIQ

Control program

logical addresses

physical addresses

0 ... 127 128 ... 255

0 ... 127 128 ... 255

logical addresses
physical addresses

DB 1

DB 1

L PB/PYx
L PWx

L PB/PYx
L PWx

T PB/PYx
T PWx

T PB/PYx
T PWx

**

* *

* PY for STEP 5 base package for PC

=
T
T

Q x.x
QB x
QW x

A
L
L

I x.x
IB x
IW x

Figure 4. 4 Direct access to inputs/outputs

Address allocation is managed with entries in the data block DB 1.

I/O Addressing

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 4–5

4.6 Initializing Outputs

The outputs of the IMC05 can be initialized during startup with initial values. There are different ways
in which blocks can be initialized:

• initializing by DB 1 data block

• initializing by SWCPLC.C

• initializing in restart OB 22

Initializing by the DB 1 data block is described in chapter 9.

4.7 Access to Decentral Inputs/Outputs

With IMC05

The IMC0x-PLC uses the following calls of the RMOS-DP interface for data communication with the
decentral I/O stations. See also the technical description of IMC05-DP.

Com05DPStart() Set up a DP entity

dpn_init() Register a DP application

dpn_read_cfg() Determine the configuration of the DP system

dpn_in_slv() Read the input data of one DP slave

dpn_in_slv_m() Read the input data of several DP slaves

dpn_out_slv() Send output data to one DP slave

dpn_out_slv_m() Send output data to several DP slaves

dpn_slv_diag() Request diagnostic data of a slave

The process image is updated with dpn_in_slv_m() and dpn_out_slv_m(). The I/O bytes are
addressed with dpn_in_slv() and dpn_out_slv(). These calls require an execution time of 300
to 400 microseconds to access an I/O byte or I/O word.

Since only all inputs or outputs of one station can be read or written simultaneously, a read or write job
must be triggered for all I/O bytes of that station when direct I/O accesses (with L PY or T PY) are
used.

The I/O bytes written last are stored locally.

IMC0x-PLC supports up to 16 activated PROFIBUS-DP stations. A maximum of 32 bytes are
permitted per station.

The PROFIBUS-DP interface is designed as a driver. This ensures that only one job is processed at a
time when several requests by various tasks are made.

I/O Addressing

(4)J31069-D2037-U001-A3-7618

4–6 IMC0x-PLC, System Manual

With IMC01

With the IMC01, decentral I/O cannot be linked directly to the I/O area of the PLC (in contrast to
IMC05) since the IMC01 has a DP slave and not a DP master.

However, decentral I/O can be processed with the STEP 5 program. This means that a DP interface
must be included in the C program section of the application. See technical description of the
IMC01-BSP.
HLL function blocks can then be used to image the DP input and output areas in a PLC data block, for
example.

Testing and Startup Functions

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 5–1

5 Testing and Startup Functions
The IMC0x-PLC supports all the test and startup functions of SIMATIC STEP 5 programmers:

• Status block

• Status variables

• Forcing variables

• Forcing outputs

• Loading of blocks PLC ↔ PG

• Deleting blocks

• PC-START/STOP

• Controller directory

• Memory compression

• Program-dependent signal state reporting

• Process monitoring

• Output of the interrupt stack (ISTACK)

• Output of the block stack (BSTACK)

• System parameter output

• Address output

• Display memory structure

These functions are described below. You will find more detailed information in the corresponding
programmer manual.

Communication between the PLC and PG is handled by the AS511 protocol using RS 232-2 of the
IMC05 or COM1 of the IMC01. See chapter 5 of the user manual. In the case of different interface
formats, you will have to use an interface converter.

Note:
Transfer speed for serial communication is set to 9600 baud.

5.1 Forcing Variables

This test function lets you change any process variables (operand area I, Q, F, D, T, C). The variables
are changed at the end of a processing cycle. It is not possible to influence signal states directly during
a cycle.

Controlling variables is primarily a way of modifying processing in RUN mode, but it can also be used
effectively in STOP mode. Changed variables are accepted at the RUN transition.

Testing and Startup Functions

(4)J31069-D2037-U001-A3-7618

5–2 IMC0x-PLC, System Manual

5.2 Forcing Outputs

This function lets you address outputs directly so as to test the wiring to peripheral components. You
can also check the allocation of logical output bytes to physical addresses (DB 1 configuration). The
IMC0x-PLC must be in STOP mode for this test function. All outputs used from the IMC0x-PLC then
are reset.

5.3 Compressing Memory

When a block of user memory is deleted, although it then no longer exists logically, it still takes up
memory space. The "Compress memory" function releases this space. Memory is also compressed
automatically every time the CPU is switched on (power-on reset).

Note:
When a compression is triggered by the PG, for example, this may change the physical address of
the data block. Keep this in mind when accessing a data block with a pointer from HLL blocks.

5.4 Direct Signal State Reporting (Status Variables)

While the controller is in RUN mode, this test function reports the state of any specified operand (I, Q,
F, D, T, C). The information is taken from the process image of the specified operand at the end of a
processing cycle. However, if an operand's signal state changes several times during the course of a
processing cycle, this fact cannot be registered by testing in this way.

In STOP mode, the operand area "digital inputs" is not read from the process image, but directly from
the inputs.

5.5 Program-dependent Signal State Reporting

This test function reports current signal states and RLO (result of logic operation) of individual
operands while program code is being processed.

In addition it lets you make corrections to the program. The controller must be in RUN mode for this
test function to operate.

Testing and Startup Functions

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 5–3

5.6 Process Monitoring

This function lets you execute any code block in step mode. Calling this PG function causes program
processing to be halted at a specified point. You specify the halt point - an instruction in the program -
by positioning the cursor on it in the chapter of program code displayed on your monitor. Current
signal states and RLO, up to the specified instruction, are reported. By repeatedly moving the halt
point, you can process any STEP 5 code block step by step.

Process monitoring means that:

• All jump commands are traced

• Block calls are processed without delays. Process monitoring is resumed only after return.
At the end of the block (BE) program execution is automatically ended.

• The process image is not updated from/to the inputs and outputs - outputs are set to zero. If the
controller is switched from STOP to RUN only after process monitoring has been activated, the
input process image is set to zero for the remainder of the program run.

5.7 Output of Interrupt Stack (ISTACK)

Outputting the ISTACK helps to determine the cause of a runtime error. Runtime errors are indicated
by setting the error flag. When a runtime error occurs, the controller switches to STOP mode (the
mode change includes a ISTACK entry) only if the appropriate error OB is not available, or if a STOP
instruction (STS) is programmed.

Note:
ISTACK output by the IMC0x-PLC does not comply completely with S5 conventions. See
chapter 15).

5.7.1 Determining the Error Source

The STEP 5 address counter (SAC) in the ISTACK specifies the absolute start address of the block in
which the runtime error occurred. However, the erroneous STEP 5 instruction in the block cannot
always be identified by means of this address. In this case the SAC indicates the start of the block
and the relative command counter (REL-SAC) will always contain the value 0.

The command register BEF-REG, however, contains the MC5 code of the STEP 5 instruction which
caused the runtime error. By consulting the table in the Reference Manual, chapter 2.6 you will be
able to identify the corresponding STL instruction.

Determining the error source is only relevant, if the error is one of the following:

• substitution error

• transfer error

Testing and Startup Functions

(4)J31069-D2037-U001-A3-7618

5–4 IMC0x-PLC, System Manual

5.7.2 ISTACK Output to PG

The following tables show the ISTACK of the IMC0x-PLC. In contrast to the PG, only the bits
mentioned here are significant. The bold encircled bits have a different meaning.

Table 5. 1 Control bit output

System
data word

Absolute
address

Control bits
7 0

SD 5 EA0A – – BSTSCH SCHTAE ADRBAU – – –

EA0B CA-DE CE-DE – REMAN – – – –

SD 6 EA0C STOZUS STOANZ – – – – BARB BARBEND

EA0D – – MAFEHL EOVH – AF – –

SD 7 EA0E ASPNEP ASPNRA – – ASPNEEP – – –

EA0F KEINAS – – – – – – URLAD

– = not used

Depth: 01

Absolute
address

System
data word Interrupt stack

EB9A ...
EBA0

SD205 ...
SD208

BEF-REG:
BST-STP:

0000
EB07

SAZ:
OB-Nr.:
REL-SAZ:

E30A
1
0000

DB-ADR:
DB-Nr.:

0000

EB96 ...
EB98

SD203 ...
SD204

ACCUM 1: FFF1 ACCUM 2: 00FF

EBA2 ...
EBA8

SD209 ...
SD212

EBAA SD213

Brackets:

Display of
result CC 1 CC 0 OVFL CARRY OR STATUS RLO ERAB

KE1: 000 KE2: 000 KE3: 000 KE4: 000 KE5: 000 KE6: 000

EBAC SD214

EBA9 (UAW)

STOPS - SUF TRAF NNN STS STUE FEST
Cause of
fault:

NAU QVZ - ZYK - PEU BAU ASPFA

Figure 5. 1 ISTACK output

Testing and Startup Functions

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 5–5

5.7.3 Mnemonics of ISTACK Entries

Table 5. 2 Mnemonics of control bits

Abbreviation Meaning

SD System data (from address EA00h)

BSTSCH Block move requested

SCHTAE Block move active (function KOMP:AG)

ADRBAU Address list creation

CA-DA Communication output flags - address list available

CE-DA Communication input flags - address list available

REMAN 0: no retentivity, 1: retentivity active

STOZUS STOP state (external request)

STOANZ STOP display (internal request)

BATPUF Battery buffering ok (always 1)

BARB Process monitoring

BARBEND Process monitoring end request

AF Alarm enabled

ASPNEP User memory is EPROM

ASPNRA User memory is SRAM (buffered)

ASPNEEP User memory is file

KEINAS User memory is RAM (unbuffered)

Table 5. 3 Mnemonics of interrupt indications

Abbreviation Meaning

UAW Interrupt indicator word

STOPS Operating mode switch at STOP

SUF substitution error

TRAF Transfer error during data block commands: DW number > DB length

STS Operation interrupted by PG STOP request or STOP instruction

STUEB Block stack overflow: maximum nesting depth (32) exceeded

QVZ + ZYK Timer error: processing time for timer OB too long

ZYK scan time exceeded

ASPFA Invalid memory module

CC 1 / CC 0 00: ACCUM1 = 0 or 0 moved
01: ACCUM1 > 0 or 1 moved
10: ACCUM1 < 0

OVF Arithmetic overflow (+ or –)

OR OR memory (set by command "O")

STATUS Status of command operand of last executed binary command 1)

RLO Logical result of operation

ERAB Initial request 1)

KE1 ... KE6 Bracketed stack entry 1 to 6 entered for A(and O(

FKT 0: O(
1. A(

BEF-REG Command register

SAC Step address counter

DB-ADR Data block address

Testing and Startup Functions

(4)J31069-D2037-U001-A3-7618

5–6 IMC0x-PLC, System Manual

Table 5. 3 Mnemonics of interrupt indications

Abbreviation Meaning

BST-STP Block stack pointer

OB-NR Organization block number

DB-NR Data block number

REL-SAC Relative step address counter

1) The results in STATUS and ERAB will not be influenced

5.8 Block Stack Output

While a program is executing, the following information on each jump operation is entered in the block
stack:

• the data block which was being processed before the jump command,

• the relative return address, i.e., the address at which program processing must start again after
the jump command has been executed,

• the absolute return address, i.e., the memory address in program memory at which program
processing must start again after the jump command has been executed.

This information can be read out in STOP mode by means of the PG function BSTACK, if the
controller stopped because of an error. BSTACK will thus tell you the state of the block stack at the
point where processing was interrupted by an error.

Example

Program processing was interrupted at FB 2, the controller reported a TRAF error and switched into
STOP mode (the cause was an incorrect DB access, e.g., DB 5 is two words long, DB 3 is ten words
long). You can use the BSTACK, to determine how FB 2 was reached and which block is passing
incorrect parameters. The BSTACK will contain the three (marked) return addresses.

Testing and Startup Functions

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 5–7

PB 1

OB 1 PB 2

PB 3

PB 4

FB 2

00

02

04

06

08

10

xx BE

BE

BE

BE

BE

xx

18

xx

BExx

xx

00

00 C DB5

02 JU PB4

04

00

10

00 C DB3

16

2A L DW4

Interrupt with error message "TRAF"

02 JC FB2

Figure 5. 2 Monitoring program processing via the BSTACK

Testing and Startup Functions

(4)J31069-D2037-U001-A3-7618

5–8 IMC0x-PLC, System Manual

* B S T A C K

B L O C K

P B 4

P B 2
O B 1

R E L . A D D R DB

0 0 1 0
0 0 0 4

0 0 0 6
0 5 0 5

5
5

5

Display

Block type and
block number

Relative
return address

Insignificant codes Number of current
data block

Figure 5. 3 Example of a BSTACK readout

The entry shows that a DB 5 was erroneously accessed via OB 1 → PB 2 → PB 4.

Testing and Startup Functions

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 5–9

5.9 System Parameter Output

The PG function SYSPAR reports the system parameters as shown below.

Table 5. 4 System parameters

No System parameters Content Explanation

1 Baud rate 9600 Baud

2 Input signal states F000

3 Output signal states F080

4 Input process image EF00

5 Output process image EF80 Absolute start address

6 Flag area EE00 in CPU memory

7 Timer area EC00

8 Counter area ED00

9 SD area EA00

10 PLC software release 9F03

11 Program memory D800 End address

12 System memory 0000

13 DB list 0200

14 Bytes in SB list 0200

15 PB list 0200

16 FB list 0200 Length in bytes

17 OB list 0200

18 FX list 0000

19 DX list 0000

20 Length of DB 0 0A00

21 2nd CPU identification EF04

22 Block header length 000A Length in bytes

23 CPU identification PG software
release

U000

Testing and Startup Functions

(4)J31069-D2037-U001-A3-7618

5–10 IMC0x-PLC, System Manual

5.10 Address Output

The PG function "Output addresses" reads out the IMC0x-PLC's STEP 5 memory areas. By checking
these memory areas, you can obtain information about, e.g., error sources cycle times. The size of
the DB memory is specified during configuration (db_size). The PG shows the contents of
nonexistent memory addresses as "XXXX".

Table 5. 5 Memory allocation

Absolute address Content

0000H ... CFFFH DB memory

DC00H ... E5FFH Block address list

EA00H ... EBFFH System data blocks

EC00H ... ECFFH Timers

ED00H ... EDFFH Counters

EE00H ... EEFFH Flags

EF00H ... EFFFH PII/PIQ, process images

F200H ... F2FFH Communication flags in shared memory

Table 5. 6 System data allocation

System data
word

Absolute
address

Meaning

SD 16 ... 31 EA20 ... EA3F Bitmap for logical inputs and outputs (digital and analog)

SD 64 ... 79 EA80 ... EA9F Bitmap for communication output flags

SD 80 ... 95 EAA0 ... EABF Bitmap for communication input flags

SD 96 EAC0 Scan time monitoring

SD 97 EAC2 Time interval for OB 13

SD 98 EAC4 Time interval for OB 12

SD 99 EAC6 Time interval for OB 11

SD 100 EAC8 Time interval for OB 10

SD 104 EAD0 Error status word

SD 105 EAD2 Error DW number

SD 106 EAD4 Error DB number

SD 107 EAD6 Error PB number

SD 108 EAD8 Error SB number

SD 109 EADA Error FB number

SD 110 EADC Error OB number

SD 111 EADE Error opcode

SD 121 EAF2 Current scan time

SD 122 EAF4 Maximum scan time

SD 123 EAF6 Minimum scan time

SD 124 ... 126 EAF8 ... EAFD PROFIBUS-DP diagnostics

SD 128 ... 201 EB00 ... EB93 Block stack

SD 203 ... 238 EB96 ... EBDD Interrupt stack

SD 240 ... 243 EBE0 ... EBE7 Reserved

SD 248 ... 255 EBF0 ... EBFF Reserved for user programs

Testing and Startup Functions

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 5–11

5.11 Display Memory Structure

This function displays the structure and allocation of STEP 5 program memory (MC5 code). Because
the memory is divided into two segments, if you call this function more than once, the display will show
MC5 memory and DB memory alternately.

Note:
Different PGs might show differing values in the memory structure display. The IMC0x-PLC gives
correct values for the basic package STEP 5 from Version 6.5 or 7.02.

5.12 Error Reporting with the Error Status Word

The error status word SD 104 (address EAD0) is used to report IMC0x-PLC-specific errors.
Information on the cause of the error is entered in the system data words SD 105 to SD 111. These
system data words can be read out with the PG function "Output addresses". For Details on the error
status word see chapter 3.8.3.

Testing and Startup Functions

(4)J31069-D2037-U001-A3-7618

5–12 IMC0x-PLC, System Manual

Introduction to Programming

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 6–1

6 Introduction to Programming
This chapter is a general introduction to writing controller programs for the IMC0x-PLC. It covers basic
programming skills and discusses modular program structures using different types of blocks.

6.1 STEP 5 Programming Language

STEP 5 is a programming language especially developed for writing programs to operate the
controllers used in automation technology. STEP 5 is a versatile language allowing you to program
operations ranging from simple binary functions to complex digital functions and basic arithmetic
operations.

6.1.1 Display Modes

A STEP 5 program for the IMC0x-PLC is written in one of three different ways or "display modes". The
mode you chose usually depend on the job you are automating.

Statement list (STL) With a STL, the program to be executed is written as a list of (abbreviated)
commands. A command has the following structure:

Operand

Operation

Parameter

Relative address of statement in block

Operand code

002: A I 0.1

The operation tells the controller what to do with the operand. The parameter
supplies the address of the operand.

Control system flow
chart (CSF)

In flow chart representation, the program is written as a series of logical
operations depicted as boxes.

Ladder diagram
(LAD)

In a LAD, the program is graphically represented by the symbols used in
power supply diagrams.

Programs in CSF and LAD representation can be written only on a programmer with an integrated
monitor (e.g., a PG 750 or PC/AT with the necessary software).

Introduction to Programming

(4)J31069-D2037-U001-A3-7618

6–2 IMC0x-PLC, System Manual

The diagram below shows the same logical AND operation, to solve a very simple automation
problem, in the three display modes STL, CSF and LAD:

• a signal lamp must light up when the make contact S1 is activated and the break contact S2 is
not activated.

• for the controller in the example, the make contact S1 is tested via input I1.1 and the break
contact S2 is tested via the input I1.2. The signal lamp is controlled via output Q2.0.

Circuit diagram STL CSF LAD

&

S1

S2

A I 1.1

A I 1.2

= Q 2.0

I 1.1

I 1.2 Q 2.0

I 1.1 I 1.2 Q 2.0

Figure 6. 1 Display modes

You can chose the best display mode for the control task you are programming. It is also possible to
write separate program blocks in different representation, i.e., you do not have to write the whole
program in a single mode.

Each mode has advantages and disadvantages. STL is the most versatile display mode, but a block
programmed in STL cannot always be simply translated into CSF or LAD. On the other hand, blocks
programmed in LAD or CSF are easily changed into STL.

In STEP 5 there are three types of operations:

• basic operations

• extended operations

• system operations

Introduction to Programming

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 6–3

Table 6. 1 Features of the operation types

Basic operations Extended operations System operations

Application scope All blocks Function blocks only Function blocks only

Display modes STL, CSF, LAD STL STL

Criterion For users with good
system knowledge

You will find detailed information on the different operation types in the Reference Manual, chapter 2.

6.1.2 Operand Areas

STEP 5 programming uses the following operand areas:

I (inputs) Interfaces from the process to the controller via PII

Q (outputs) Interfaces from the controller to the process via PIQ

F (flags) Memory for binary intermediate results

D (data) Memory for digital intermediate results

T (timers) Register for programming timers

C (counters) Register for programming counters

P (peripherals) Direct interface between process and controller (not via the process image)

K (constants) Fixed number values

The operands in an operand area are identified by specific extensions:

IB 7 denotes, e.g., the 7th input byte of the PII

Q 3.2 denotes, the 2nd bit in the 3rd output byte of the PIQ

KF denotes, a fixed-point numeric constant (16-bit integer)

A list of all operations and operands can be found in the Reference Manual, chapter 3.

6.2 Program Structure

Control programs can be linear or structured. These two approaches are explained below.

6.2.1 Linear Programming

For simple control tasks, it is often sufficient to write a control program only in the organization block
OB 1. During processing the OB 1 is called cyclically by the controller.

Note that OB 1 length is restricted to 4096 words, thus limiting the length of the control program.

Introduction to Programming

(4)J31069-D2037-U001-A3-7618

6–4 IMC0x-PLC, System Manual

6.2.2 Structured Programming

To solve complex automation problems, the program is split up into a number of separate modules or
blocks.

There are several advantages:

• long programs can be broken down into simple and easily understandable units

• blocks can be standardized

• blocks which have tested successfully can be used again in other programs. This applies
especially to function blocks (FB)

• self-contained blocks are easier to test and debug

• making changes is simplified

• startup is easier

• subprogram techniques can be used (e.g., a block can be called from several different points in
the program)

Structured programs can include the following block types:

• Organization block (OB)
Organization blocks manage the control program. They form an interface between the
controller's internal operations and the user's control program. OBs manage, inter alia, cyclic
program execution, initialization of the control system or handling of runtime errors (see Table 6.
3).

• Program block (PB)
Program blocks are the self-contained modules which make up a PLC program. These blocks
are called by commands in OBs or FBs. Parameter passing is not possible with PBs. Data can
only be transferred to a PB via a data block.

• Sequence blocks (SB)
Sequence blocks are a special type of program block which contain the program for a sequencer.
They are treated like program blocks.

• Function blocks (FB)
Function blocks are used to program operations which recur frequently. A FB can be called from
an OB, PB or another FB. An FB call can be parametrized, i.e., parameters can be passed with
the call.

• Data blocks (DB)
Data blocks contain STEP 5 data needed by the control programs. Typically these data are set
values, limiting values or text. Data blocks are also used to pass parameters for PBs.

Block calls are statements which invoke other blocks, causing a jump to the specified block.
Organization, program, function and sequence blocks can be nested up to 32 deep.

Note:
When you are calculating nesting depth, remember that some organization blocks are called
automatically (e.g., when a runtime error occurs).

Total nesting depth is the sum of the nesting depths of all the blocks in a program. If the nesting depth
exceeds 32, the controller reports a "block stack overflow" (STUEB) and goes into STOP mode.

Introduction to Programming

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 6–5

OB 1

PB 5

PB 6

FB 1

PB 10

PB 22

PB 184

FB 13

Level 1 Level 2 Level 3 Level 32...

...

...

Figure 6. 2 Nesting depth

6.3 Blocks and their Attributes

The table below sets out the most important information you will need about blocks:

Table 6. 2 Block types

OB PB SB FB DB

Number 255 1)

OB 1 ... 255
256

PB 0 ... 255
256

SB 0 ... 255
256

FB 0 ... 255
254 2)

DB 2 ... 255

Length (max) 8 Kbytes 8 Kbytes 8 Kbytes 8 K –8 bytes 2 Kwords 3)

Operation set
(content)

Basic
operations

Basic
operations

Basic
operations

Basic
operations

Extended
operations

System
operations

Bit patterns,
numbers, texts

Display modes STL, CSF, LAD
4)

STL, CSF, LAD STL, CSF, LAD STL 4)

Block header length 5 words 5 words 5 words 5 words

Block calls JU, JC JU, JC JU, JC JU, JC Q, I

1) OBs in particular are called by the IMC0x-PLC itself (see Table 6. 3)

2) Data blocks DB 0 and DB 1 are reserved.

3) STEP 5 commands only access the data words DW 0 to DW 255.

4) Blocks OB 208 to OB 223 and FB 208 to FB 223 may also be programmed in high level languages.

The maximum length for each block is 4096 words (8 Kbytes). A block consists of a header and a
body. The block header is 5 words long and contains information on the block type, number and
length. The PG creates this header when the block is programmed. Depending on the type of block,
the block body will contain STEP 5 program code or user data. Function blocks have not only a
header, but also additional information for passing parameters.

Introduction to Programming

(4)J31069-D2037-U001-A3-7618

6–6 IMC0x-PLC, System Manual

6.3.1 Organization Blocks (OB)

The organization blocks OB 1 to OB 39 are the interface between the control program and the
controller's internal operations.

The controller processes OBs either event- or timer-driven. OBs are grouped according to their
function as follows (see also chapter):

• OBs for restart program processing

• OB for cyclic program processing

• OBs for timer-driven program processing

• OBs for handling runtime errors

For details on operating modes, see chapter 3.

Table 6. 3 Overview of organization blocks

Organization block Function Meaning

OB 1 Cycle OB Cyclic program scanning

OB 2 – Reserved for future applications

OB 3 – Reserved for future applications

OB 4 – Reserved for future applications

OB 5 – Reserved for future applications

OB 10 Timer OB Timer-driven program scanning

OB 11 Timer OB Timer-driven program scanning

OB 12 Timer OB Timer-driven program scanning

OB 13 Timer OB Timer-driven program scanning

OB 19 Error OB call of nonexistent block

OB 21 Restart OB STOP → RUN operating mode switch

OB 22 Restart OB STOP → RUN operating mode transition after power-on

OB 26 Error OB scan time exceeded

OB 27 Error OB substitution error

OB 28 STOP OB RUN → STOP operating mode switch

OB 31 Trigger OB Scan time triggering

OB 32 Error OB Transfer error

OBs not listed here are reserved and may be assigned functions in future program versions. They
should not be used for user control programs.

6.3.1.1 Programming Organization Blocks

Organization blocks can be programmed in STL, CSF or LAD. They are programmed in the same way
as program blocks. The organization blocks OB 208 to OB 223 can also be programmed in high level
language (see chapter 8). Every organization block, including OB 1, must end with the operation BE.

6.3.1.2 Calling Organization Blocks

Organization blocks can be called, like program blocks from any other block. Conditional and
unconditional calls are possible. Note that certain OBs are initialized with particular functions.

Introduction to Programming

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 6–7

6.3.2 Program Blocks (PB) and Sequence Blocks (SB)

Program blocks are the separate modules of a PLC program. These blocks are called by commands
in OBs or FBs. Parameter passing is not possible with PBs. Data can only be transferred to a PB via
a data block.

Sequence blocks are a special type of program block which contain sequencer program code. They
are treated like program blocks.

6.3.2.1 Programming PBs and SBs

The following description also applies to programming OBs. PBs, SBs and OBs are all programmed in
the same way. Under STEP 5 they can be programmed in STL, LAD and CSF representation. You
start writing a program by entering a block number on the PG:

• Program blocks 0 to 255

• Sequence blocks 0 to 255

• Organization blocks 1 to 39

Then you enter your control program. It must end with the instruction BE. You are restricted to the
basic STEP 5 operation set. The STEP 5 program code for each block may not take up more than
4091 words in program memory, because the block header which is automatically generated by the
PG always takes up 5 words.

Each block should be a self-contained program. Logical operations across block boundaries are not
meaningful.

0

5

4095

PB 25

1st STEP 5 instruction

available block length

BE

Block header

STEP 5 program

Figure 6. 3 Structure of an organization or program block

6.3.2.2 Calling Program and Sequence Blocks

A block call releases a block for processing. Block calls can be programmed in organization, program,
function or sequence blocks. A block call is comparable to a jump to a subprogram and, like jumps,
can be conditional or unconditional.

Introduction to Programming

(4)J31069-D2037-U001-A3-7618

6–8 IMC0x-PLC, System Manual

PB 1

PB 5

PB 6

PB 10

JU PB5
O I5.3

A I1.0
JC PB10

BE BE

BE

A I2.0

A I1.5
JC PB6
A I3.2

Figure 6. 4 Block calls

When the controller encounters the command BE (block end), it performs a jump back to the block
containing the block call, and continues processing with the STEP 5 command immediately following
the block call. After a block call and also after a BE command, the result of logic operation (RLO)
cannot be combined further, because both these commands are RLO-limiting commands.

• Unconditional call: JU xx
The specified block is processed, independent of the result of the previous logic operation.

• Conditional call: JC xx
Whether the specified block is processed or not, depends on the result of the previous logic
operation.

If RLO = 1 the jump command is executed, if RLO = 0 it is not. In both cases the jump command
causes RLO to be set to 1. This dependence on RLO and change of RLO also applies to the
conditional block end command BEC.

6.3.3 Function Blocks (FB)

Function blocks are used to program control functions which either recur frequently or are complex.
Function blocks have some special characteristics which distinguish them from organization, program
and sequence blocks:

• Function blocks can be parametrized, i.e., the block call can include parameters.

• Function blocks can execute extended operations and system operations.

• Function blocks may be written and documented only as STL (statement list), with the exception
of certain FBs which may be written in HLL.

Introduction to Programming

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 6–9

The controller has the following function blocks available:

• FB 0 to FB 207 for programming in STEP 5

• FB 208 to FB 223 for programming in assembler or high level languages (see chapter 8)

• FB 224 to FB 255 are reserved for future use as integrated function blocks.

FB 208 to FB 255 can be programmed in STEP 5, if necessary. However, this option should not be
used, so as to avoid conflicts with HLL blocks or integrated function blocks.

In addition to the block header common to all blocks, function blocks contain other organizational
information.

Memory requirements for the block header plus the additional information are as follows:

• Block header, as for other block types (5 words)

• Block name (5 words)

• Block parameters if assigned (3 words per parameter).

Introduction to Programming

(4)J31069-D2037-U001-A3-7618

6–10 IMC0x-PLC, System Manual

6.3.3.1 Programming Function Blocks

In contrast to other blocks, a function block can contain additional information such as:

• Library number
The block can be given a number between 0 and 65535. This number is completely independent
of symbolic or absolute FB parameters.
A library number should be a unique number which identifies a particular function block
unambiguously. Standard function blocks already have their own product number.

• Name
A function block can be identified by a name up to eight characters long.

To assign parameters you must supply the following block parameter data:

• Block parameter name (formal operands)
Each block parameter is given a name (DECL) which is used as the formal operand in a function
block call and is replaced by an actual operand during program execution. The block parameter
name may have up to four characters, the first of which must be an alphabetic character. You
can program up to 40 parameters per function block.

• Block parameter type
These are the possible parameter types:
I Input
Q Output
D Date
B Block
T Timer
C Counter
In graphical representation, output parameters are shown to the right. All other parameters to the
left of the function symbol.

• Data type
These are the possible data types:
BI for an operand with bit address
BYfor an operand with byte address
W for an operand with word address
K for constants
When assigning parameters all three block parameter specifications must be entered.

Introduction to Programming

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 6–11

Block header

Name

Block parameter

Control program

Memory allocation Program example

NAME: EXAMPLE

...

 :A = IN1
 :A = IN2
 := = OUT1
 ...

Parameter

Name (formal operand)

Type

Format

DCL: IN1 I BI

DCL: IN2 I BI

DCL: OUT1 Q BI

Figure 6. 5 Programming an FB with block parameters

Table 6. 4 Parameter type and data type of block parameters with permitted actual operands

Parameter
type

Parameter format Permitted actual operands

I, Q BI Operands with bit address I x.y Input
Q x.y Output
F x.y Flag

BY Operands with byte address IB x Input byte
QB x Output byte
FB x Flag byte
DL x Left data byte
DR x Right data byte
PB x Peripheral byte

W Operands with word address IW x Input word
QW x Output word
FW x Flag word
DW x Data word
PW x Peripheral word

D KM Binary bit pattern (16 bits)

KY Two absolute values (bytes in the range
of 0 to 255)

KH Hexadecimal value (max. 4 digits)

KS max. 2 alphanumeric characters

KT BCD-coded time value (1.0 to 999.3)

KC BCD-coded counter value (0 o 999)

KF Fixed-point value (–32768 o +32767)

Constants

Introduction to Programming

(4)J31069-D2037-U001-A3-7618

6–12 IMC0x-PLC, System Manual

Table 6. 4 Parameter type and data type of block parameters with permitted actual operands

Parameter
type

Parameter format Permitted actual operands

b No parameter format DB x Data block, called with command
C DBx

FB x Function blocks (only valid without
parameters), called absolutely
(JU FBx)

PB x Program blocks, called absolutely
(JU PBx)

SB x Sequence blocks, called absolutely
(JU SBx)

T No parameter format T Timer: the value is parametrized as
data or programmed as constant in
the function block

C No parameter format C Counter: the value is parametrized
as data or programmed as
constant in the function block

Programming FBs in HLL is described in detail in chapter 8.

6.3.3.2 Calling Function Blocks

A function block is stored in program memory under a particular number - as are all other types of
block - (e.g., FB 47).

Calls to FBs can be included in any block, with the exception of data blocks.

The call consists of:

• Call instruction
JU FBx unconditional call
JC FBx call if RLO = 1

• Parameter list (only if parameters are assigned)

Function blocks programmed in HLL are called in the same way as function blocks programmed in
STL.

Function blocks have to be programmed before they can be called. When you are programming an
FB call, the PG will automatically ask for the FB parameters.

Introduction to Programming

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 6–13

6.3.3.3 Parametrization

The program in the function block specifies how the operands are processed.

After the jump instruction, the operands which the FB is to use (i.e., parameter list) must be specified
in the block in which the FB is called. The valid operands are also called the current operands.

Parameter list

Immediately following the jump instruction, the input and output variables and other data are defined,
i.e., each formal operand is supplied with an actual operand. The length of this parameter list will
depend on the number of formal operands. Thus a parameter list can contain up to 40 actual
operands.

As explained above, when the function block is executed, each formal operand is replaced by an
actual operand supplied by the parameter list. The PG automatically keeps track of the order in which
variables are substituted.

Figure 6. 6 gives an example of how parameters are assigned to a function block.

Other special characteristics of function blocks

The FB call takes up two words of program memory and each parameter takes up one word of
memory.

The identifiers for function block inputs and outputs and their names are stored in the function block
itself. For this reason, before you start programming on the PG, all the function blocks you will be
using in your program must have been loaded to the program diskette (for offline programming) or into
the controller's program memory.

Introduction to Programming

(4)J31069-D2037-U001-A3-7618

6–14 IMC0x-PLC, System Manual

PB 3

 :JU FB5

NAME :EXAMPLE

X1 :I4.1

X2 :F1.3

X3 :Q0.1

 A I5.2

 :JC FB5

NAME :EXAMPLE

X1 :I4.5

X2 :I5.3

X3 :Q0.1

NAME :EXAMPLE

FB 5

DCL :X1 I BI

DCL :X2 I BI

DCL :X3 Q BI

 :A = X1
 :A = X2
 := = X3

 :BE

A I4.1

A F1.3

= Q0.1

A I4.5

A I5.3

= Q0.1

Executed
program

Parameter list for
first call

Parameter list for
second call

Aktual operands

Formal operands

Formal operands

Figure 6. 6 Parameter assignment for a function block

6.3.4 Data Blocks (DB)

Data blocks are used to store the data needed in a user program. No STEP 5 operations are
performed in data blocks. The data entered in a data block may be:

• bit patterns of any sort, e.g., for aggregate states

• numbers (hexadecimal, fixed point) for time values, results of arithmetic operations

• alphanumeric characters, e.g., for message texts

6.3.4.1 Data Blocks DB 0 and DB 1

The data block DB 1 is reserved for initialization functions and must therefore be generated before
controller startup. You can find more detailed information on the DB 1 in chapter 9. Data block DB 0
is generally not used for the IMC0x-PLC.

Introduction to Programming

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 6–15

6.3.4.2 Generating Data Blocks

To generate a data block you start by entering a data block number (e.g., DB 25). A data block is
made up of 16-bit data words, which are entered, beginning with data word 0, in ascending order.

PB 25

Block header

Data words

DW 0

DW 1

DW 2

DW 3

DW n

4 A 3 2

3 F 4 A

0110 0100 0000 1111

’Z’ ’U’

Figure 6. 7 Structure of a data block

Each data word occupies one word of program memory. In addition, the PG generates a block header
for each data block , which takes up a further five words of program memory. A data block may
occupy a maximum of 4096 words in the controller's program memory. If a PG is being used for input
and transfer, the size of the PG's memory must also be considered.

Warning:
Load/transfer commands L/T DW ... can access data up to data word number 255 only. Data blocks
DB 0 and DB 1 are reserved and may not be called by user programs.

6.3.4.3 Calling Data Blocks

Data blocks can only be called unconditionally. Once a data block has been called, this block remains
valid until a new data block is called. A data block (DB) is called from an OB, PB, SB or FB with the
command C DB

Warning:
Before a data word load/transfer can be executed, a data block must have been opened. The data
word being addressed by the command must be in the opened data block. If these conditions are
not met, a transfer error is reported (see chapter 3.8.1).

Example

Transfer the contents of data word 1 from data block DB 10 to data word 1 of data block DB 20.

Introduction to Programming

(4)J31069-D2037-U001-A3-7618

6–16 IMC0x-PLC, System Manual

DB 10

DW 0

DW 1

DW 255

DB 20

DW 0

DW 1

DW 255

:C DB10
:L DW1
:C DB20
:T DW1

Figure 6. 8 Addressing a data block

PB 7 PB 20

JU PB20

BE

C DB10

BE

C DB10

C DB11

Valid range of DB 10

Valid range of DB 11

Figure 6. 9 Valid range of a called data block

A command in a program block has addressed a data block. A subsequent command in the program
block causes a jump to another program block and from this second program block a second data
block is addressed. The second data block is valid only for the second program block. As soon as this
second PB is exited with a jump back to the first PB, then the first data block is valid again

Introduction to Programming

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 6–17

Example

In program block PB 7, a command addresses data block DB 10. Subsequent processing uses data
from this data block.

A call in PB 7 causes a jump to program block PB 20, which is then executed. Data block DB 10 is
still valid. Only when data block DB 11 is called does the data area change and DB 11 become the
current data block. From then, until program block PB 20 has finished executing, data block DB 11 is
valid.

When execution jumps back to program block PB 7, data block DB 10 is valid again.

6.3.5 HLL Blocks

The IMC0x-PLC lets you program blocks in a high level language (e.g., C) and then link them into a
STEP 5 program.

These block types can be programmed in a high level language:

• Organization blocks OB 208 to OB 223

• Function blocks FB 208 to FB 223

Programming, testing and debugging of HLL blocks is described in detail in chapter 8.

Introduction to Programming

(4)J31069-D2037-U001-A3-7618

6–18 IMC0x-PLC, System Manual

6.4 Representing Numbers

STEP 5 lets you represent numbers in the following ways:

• Decimal numbers from -32768 to +32767 (KF)

• Hexadecimal numbers from 0000 to FFFF (KH)

• BCD coded numbers from 0000 to 9999

• Bit patterns (KM)

• Byte constant (KY) from 0,0 to 255,255

Internally, the IMC0x-PLC converts all numbers to 16-bit binary numbers (bit patterns). Negative
numbers are represented as two's complement.

Table 6. 5 Organization of a 16-bit fixed-point number

Word number n

Byte number n (high byte) n +1 (low byte)

Bit number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Meaning 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

Table 6. 6 Examples of the controller’s representing of numbers

Input value Representation in the PLC

KF –50 1111 1111 1100 1110

KH A03F 1010 0000 0011 1111

KY 3,10 0000 0011 0000 1010

STEP 5 User Memory

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 7–1

7 STEP 5 User Memory
For the debugging and startup phase, the PG loads a STEP 5 program into the controller's SRAM
memory. Completed and debugged programs are copied to EPROM.

User memory is split into two areas:

• MC5 memory for MC5 program code

• DB memory for retentive data and data blocks

Type and size of user memory are configurable and the IMC0x-PLC must include this information for a
configured PLC. You can find more information on configuration in chapter 10.

7.1 MC5 memory

This is MC5 memory for SIMATIC S5-115U compatible MC5 code. The maximum size is 32 Kb. The
following memory types are supported:

• EPROM:
The MC5 code is entered in EPROM. Individual blocks can be loaded by the PG into the memory
area which is otherwise reserved for data blocks.

• SRAM:
MC5 code is loaded by the PG.

• Memory area not available:
MC5 code is loaded by the PG into the memory area which is otherwise reserved for data blocks
(only recommended for controllers of limited size).

For details on this memory types see chapter 10.1.

7.2 DB memory

This is the memory area for retentive data and data blocks. The size is configurable between 4 Kbytes
and 32 Kbytes. If the MC5 memory is located in EPROM, this memory can also be used to load
program blocks. The following memory types are supported:

• SRAM:
A power failure, or switching off the power supply, will not result in loss of the retentive data and
data blocks in this memory. During PG restart after power-up, the integrity of the retentive data is
checked. If a data loss has occurred, an overall reset request is issued.

• Dynamically requested RAM, retentivity not available.
At restart the whole retentive memory area is deleted. Data blocks must be generated new each
time by the control program, or loaded by the PG.

STEP 5 User Memory

(4)J31069-D2037-U001-A3-7618

7–2 IMC0x-PLC, System Manual

7.3 Memory Organization

During a restart, data blocks in MC5 memory are copied into DB memory and may then be modified
during subsequent program execution. The changes remain in force until the block is
deleted/overwritten. If the block in question is already present in DB memory then no copy operation
is performed. Data blocks which are generated during program execution (with I DB), are also located
in DB memory.

7.4 Conversion Program CVSTEPV.EXE

Conversion program CVSTEPV.EXE is used to convert a program file generated with STEP 5 into a
binary file with the memory image of the MC5 code. This binary file is transferred to a free, sufficiently
dimensioned memory segment of the user flash memory of the IMC05.

CVSTEPV.EXE generates a 16-bit format file.

Sign-on message

 CVSTEPV Vx.y STEPV FILE CONVERSION

Call syntax

CVSTEPV <source file> [<destination file>] [/e] [/l] [/s]

Option /e Generate EPROM block type

When conversion as RAM block type is used, the DBs are loaded from the
current MC5 code during the restart after POWER OFF.

Note:
The /e option is mandatory for both the IMC05 and the IMC01.

Option /s The file is split into LOW byte and HIGH byte.

Note:
The /s option cannot be used for either the IMC05 or the IMC01.

If no destination file is specified, the source file name is used with the extension BIN or LOW/HIG.

Example

CVSTEPV STEPTEST.S5D /e

generates the file STEPTEST.BIN

STEP 5 User Memory

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 7–3

If the program is called without parameters, the sign-on message and the call syntax are displayed:

CVSTEPV Vx.y STEPV FILE CONVERSION

 USAGE: CVSTEPV [options] <source file> [<destination file>]

 e: Generate EPROM block type (Default: RAM block type)
 l: Display the list of sorted blocks
 s: File splitting low byte/high byte

Specifying an illegal source file results in a message:

 Illegal file <source file>

Transferring a STEP 5 file back to the PG

After a program has been loaded, individual blocks are usually changed on the PLC, and then the
entire program is transferred again from the PLC to the program file. This means that the STEP 5 file
contains more than one block with the same number.

If such a file is to be processed with CVSTEPV.EXE, all invalid blocks must be removed beforehand.
Starting with V7.02, the STEP 5 software has the "compress program file" function.

To remove the invalid blocks with an older software version, a new file must be created on the PG.
This is done in the following way:

• Perform an overall reset on the PLC.
If necessary, first save the current status of the STEP 5 program to the PG.

• Load the STEP 5 program into the PLC.

• Select a new program file on the PG, e.g., CVSTEPST.S5D.

• Copy the STEP 5 program from the PLC to the new file.

• Convert this file with CVSTEPV.EXE.

• Delete the file CVSTEPST.S5D!

STEP 5 User Memory

(4)J31069-D2037-U001-A3-7618

7–4 IMC0x-PLC, System Manual

Programming HLL Blocks

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 8–1

8 Programming HLL Blocks
Using the HLL (High Level Language) interface, you can program blocks in a high level language
(e.g., C) or in assembler and then link them into a STEP 5 program as a function extension.
Programming in a high level language or assembler is often more efficient than STEP 5 and also
offers an extended address area.

8.1 Block Organization

The following organization and function blocks are available for programming in assembler or a high
level language:

• OB 208 to OB 223

• FB 208 to FB 223

If you are programming FB 208 to FB 223 as HLL blocks, you must still enter the proper STEP 5 block
headers at the PG, to ensure that block calls can be programmed. Apart from the block headers,
STEP 5 should not be used in the blocks OB 208 to OB 223 and FB 208 to FB 223 so as to avoid
conflict with HLL blocks.

FB block headers can be transferred to the PLC. If the relevant HLL blocks exist, the HLL code is
always executed. If HLL blocks exist, the addresses of STEP 5 function blocks are not entered in the
address list.

8.2 Programming

The blocks must be programmed as C functions and linked with a startup code programmed in
assembler. The following files are provided for this purpose.

• Sample file: HLLCODE.C (for contents, see below)

• Startup code in Assembler: HSTART.ASM (for CADUL)

• Batch file for generation: GEN_HLLC.BAT (for CADUL)

The HLLCODE.C file contains blocks OB 208, OB 209, FB 208 and FB 209. The functions of these
HLL blocks are implemented in C-code sample applications whose scope is described in the function
header.
FB 208 is used with the IMC05 for PROFIBUS-DP diagnosis. With the IMC01, it is disabled with
Define. FB 209 is a blank function. For testing purposes, the printf function can be used to output
character strings on the system console, for example.

In HSTART*.ASM, one table each is defined for the OBs and the FBs which must be preset with the
addresses of the HLL blocks. 0 is entered for nonexistent blocks.

Programming HLL Blocks

(4)J31069-D2037-U001-A3-7618

8–2 IMC0x-PLC, System Manual

8.2.1 Programming the Organization Blocks

Organization blocks are assigned as parameter a pointer to the current data block. An HLL program
can access this data block, as shown in this example in C:

void ob_208 (unsigned short *db_p)

{

 static unsigned short x;

 x = db_p [0];

 .

 .

 .

}

For OBs in ASM386 the address of the current data block is passed in registers ES:ESI and the data
block length in register EDI.

To clear the STACK the assembler program must end with RET 8 (RETURN FAR).

8.2.2 Programming the Function Blocks

Function blocks are assigned as parameter a pointer to a table of substitution parameters. An HLL
program can access this parameter, as shown in this example in C:

void fb_208 (unsigned char *subs_p)

{

 static unsigned short x;

 static unsigned short y;

 x = subs_p [0];

 y = subs_p [2];

 .

 .

 .

}

For FBs in ASM386 the pointer to the substitution parameters is passed in registers ES:ESI.

To clear the STACK the assembler program must end with RET 8 (RETURN FAR).

Before a function block call can be programmed in a STEP 5 block, the FB in question must exist in
the PG, because the PG generates a mask for parameter assignment for the FB call. For each of the
function block calls FB 208 to FB 223 a function block (block header only) with the correct substitution
parameters must have been generated on the PG.

Programming HLL Blocks

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 8–3

8.2.2.1 Access to Substitution Parameters

The substitution parameters contain in coded form the reference to the transfer parameters. Each
substitution parameter has an identifier and an index.

Bit 15 ... Bit 8 Bit 7 ... Bit 0

Index Identifier

From this the transfer parameter can be reconstructed in the HLL block in accordance with the
following table.

Table 8. 1 Decoding of the substitution parameters

Identifier Index Parameter Example

Cyh (y = 0 ... 7) x ≤ 7Fh Input I x.y 14C4h → I 20.4

Cyh (y = 0 ... 7) x ≥ 80h Output Q (x–80h).y 94C7h → Q 20.7

8yh (y = 0 ... 7) x Flag F x.y 1485h → F 20.5

4Ah x ≤ 7Fh Input byte IB x 1E4Ah → IB 30

4Ah x ≥ 80h Output byte QB (x–80h) 9E4Ah → QB 30

0Ah x Flag byte FB x 280Ah → FB 40

22h x Data byte left DL x 1E22h → DL 30

2Ah x Data byte right DR x 1E2Ah → DR 30

72h x Peripheral byte PB/PY 1) x 2872h → PB 40

52h x ≤ 7Fh Input word IW x 3252h → IW 50

52h x ≥ 80h Output word QW (x–80h) 8A52h → QW 10

12h x Flag word FW x 1712h → FW 23

32h x Data word DW x 1732h → DW 23

7Ah x Peripheral word PW x 177Ah → PW 23

2Dh x Data block DB x 162Dh → DB 22

3Dh x Function block FB x 163Dh → FB 22

75h x Program block PB x 1675h → PB 22

7Dh x Sequence block SB x 0A7Dh → SD 10

6Dh x Organization block OB x 0A6Dh → OB 10

02h x Time T x 4802h → T 72

42h x Counter C x 2742h → C 39

1) PY at PG with S5-DOS

The thus determined transfer parameters can then be used to access the appropriate PLC data areas.

Note:
If constant values are transferred to an HLL block, these values are not substituted in the call. For
this reason, the type of constants must be known to the applicable function since decoding in
accordance with this table would produce an incorrect result.

Programming HLL Blocks

(4)J31069-D2037-U001-A3-7618

8–4 IMC0x-PLC, System Manual

8.2.3 Accessing PLC Data Areas

To enable HLL blocks to access PLC data areas or PLC functions, the IMC0x-PLC initializes the
pointer hll_if_p, which is defined in the file HLLCODE.C. The associated data types are in the
include file HLLTYPES.H. This pointer gives HLL blocks access to the following PLC data areas and
PLC functions:

PII, input process image (IB 0 ... 127 / IW 0 ... 126)

PIQ, output process image (QB 0 ... 127 / QW 0 ... 126)

Flag (FB 0 ... 255 / FW 0 ... 254)

Timers (T 0 ... 127)

Counter (C 0 ... 127)

shared memory (see file PLC.H)

Read peripheral byte (PB 0 ... 255)

Write peripheral byte (PB 0 ... 255)

Read peripheral byte in Q area (QB 0 ... 255)

Write peripheral byte in Q area (QB 0 ... 255)

Read address of a data block (DB 0 ... 255)

To access a data block, a function must read back a pointer to the data block. The number of the data
block is passed as a parameter.

The function returns a NULL pointer if the data block does not exist. The data block length can be
read from the block header. Examples of access to PLC data areas can be found in the file
HLLCODE.C.

8.2.4 Initialization Function for HLL Blocks

Linking HLL blocks often involves initializing data before an HLL block can be executed.

If HLL blocks have been programmed, then the IMC0x-PLC, during startup, calls the initialization
function hll_init in the file HLLCODE.C. This function normally contains no commands, however
you may insert any commands you wish, e.g., request memory, initialize data structures, synchronize
with other tasks, etc.

hll_init is called as the last function during IMC0x-PLC startup, and the IMC0x-PLC can only
switch into RUN mode once the function has ended.

hll_init can return a user-defined error status in the range 0 to 255, the IMC0x-PLC ORs a value
not equal to zero with 100H and returns it as the error status of x_plc_start or x_plc_init. The
IMC0x-PLC can only be switched into RUN mode when hll_init has completed without an error.

Programming HLL Blocks

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 8–5

8.3 Linking HLL Blocks

When x_plc_start is called from x_plc_init (see chapter 10.2 or chapter 10.3) the
memory_mode and hll_memory parameters must be specified appropriately.

8.3.1 Linking HLL Blocks during RMOS Generation

The program code for HLL blocks must be linked during RMOS generation. The IMC0x-PLC is started
with the call x_plc_start and the following parameters:

plc_sw.memory_mode = 0xX3XX; /* PTR_TYPE */

plc_sw.hll_memory.ptr = &hll_block_table;

The object block HSTART.OBJ and HLLCODE.OBJ must be linked during RMOS generation. The
sample application is automatically compiled by batch files GENSYSC5.BAT or GENDP.BAT (IMC05)
or GENSYSC1.BAT (IMC01). If the GEN_HLLC.BAT batch file is started alone, HSTART.OBJ and
HLLCODE.OBJ must be linked again to the system.

The files HSTART.ASM and HLLCODE.C must be compiled with the following switches:

AS386 HSTART.ASM -VSYMUPPER -DSTART=1

CC386 HLLCODE.C -VCOMPACT -I%RBASE%\INC @CC.CMD

8.3.2 Stack Size of HLL Blocks

When you are programming HLL blocks, remember that the available stack is limited. CRUN calls in
particular make heavy demands on the stack.

When HLL blocks are called at cycle-driven processing level (OB 1) and at the timer-driven processing
level (OB 10 to OB 13) they are processed at task level. RMOS system calls (SVCs) and CRUN calls
can be programmed.

Available stack size is

• approx. 400 32-bit words

8.3.3 Floating-point Arithmetic

The IMC0x-PLC command set does not contain floating-point commands. However, floating-point
arithmetic can be executed in HLL blocks.

Note:
With the IMC01, floating point arithmetic can only be implemented with an emulation since the IMC01
does not have a coprocessor.

A numeric library must be linked in when the RMOS system is generated (see chapter 14) so that
floating point operations can be performed in HLL blocks with the numeric coprocessor (80387). In
addition, the IMC0x-PLC must be informed by the flag PLC_NPX in the parameter memory_mode that
there are floating-point commands in the HLL blocks (see chapter 10).

In the generation batch file GEN-HLLC.BAT (for CADUL) the compiler option -VNDP must be
activated, if the numeric coprocessor is used.

Programming HLL Blocks

(4)J31069-D2037-U001-A3-7618

8–6 IMC0x-PLC, System Manual

8.4 Development and Test Environment

To program HLL blocks you need the same development environment as for generating reloadable
tasks at RMOS (CADUL). The programs can be transferred to the user flash memory of the IMC05 or
IMC01.

8.4.1 Testing at Assembler Level

At assembler level, HLL blocks are tested with the help of the RMOS debugger. For details on the
debugger see RMOS documentation.

8.4.2 Testing High Level Languages

A very convenient tool for testing HLL blocks at high level language level is the source-level debugger
from CADUL (separate product). This debugger runs on a host system and is connected to the target
system via RS232 connection. The host system is an AT-compatible PC. For details on the source-
level debugger see RMOS documentation.

Note:
If you want to connect a debugger with the IMC01, the system console must be moved to COM1. To
do this, set variable imc1_sysconsole = COM1 in the RMCONF.C file. If you do this, no AS511
will be available.

8.4.3 Setting Breakpoints

When testing remember that before entering a GO command, you set one or more breakpoints which
will be encountered after the HLL block has been called. Remember also that HLL blocks are only
called in RUN mode.

When the controller encounters a breakpoint in an HLL block, the PLC processing cycle is interrupted
and then resumed again with the GO command after a set time. To prevent the IMC0x-PLC then
going into STOP mode because of an exceeded scan time, scan time monitoring should first be
switched off. Before the source-level debugger is exited, all breakpoints must be deleted.

Note:
When a breakpoint is encountered in an HLL block, the communication with the PG is interrupted.

Programming HLL Blocks

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 8–7

8.5 HLL Blocks for PROFIBUS-DP Diagnosis (Only with
IMC05)

In the controller program (i.e., STEP5 program), diagnostic data of a certain station can be fetched by
calling an HHL block (i.e., FB 208) which is included. This requires that this HLL block is linked during
RMOS generation.

FB 208 calls the dpn_slv_diag() function. The following parameters are transferred in consecutive
flag words.

• Station number

• Number of diagnostic bytes to be read

• First flag byte for storage of the diagnostic data

The number and layout of the diagnostic bytes depends on the type of station. This is described in the
technical description of IMC05-DP.

The diagnostic data are only available on stations for which "provide diagnostic data" has been
configured in the PROFIBUS-DP data base.

Block body for the FB 208 (HLL block for diagnostics)

FB 208

Network 1

Name : PLCL2DP

DCL : STNR I/Q/D/B/T/C: A B/BY/W/D: W

 DIAG I/Q/D/B/T/C: A B/BY/W/D: W

 STS I/Q/D/B/T/C: A B/BY/W/D: W

 : BE

For a sample call for FB 208, see chapter 13.2.

Programming HLL Blocks

(4)J31069-D2037-U001-A3-7618

8–8 IMC0x-PLC, System Manual

DB 1 Configuration

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 9–1

9 DB 1 Configuration
If the application configuration does not use the SWCPLC.C data block DB 1 is required. The DB 1 is
divided into data fields, which contain the following application-specific data:

• Allocation of input, output and peripheral bytes to the physical addresses of inputs and outputs

• For initializing outputs

• For defining communication flags

• For defining retentive flags

• For special settings

DB 1 is configured in the SWCPLC.C file. Adaptation of MASK01 to MASK06 in the x_plc_init
function must be performed in this file.

During a restart the DB 1 is loaded automatically by the controller. The controller then configures itself
according to the values specified in DB 1. The data in DB 1 are generally come into effect on a restart
and also when the DB 1 is loaded with the PG, but only after a transition from STOP to RUN.

Since DB1 is allocated for the IMC0x-PLC differently from the SIMATIC S5, programming with the aid
of a mask (I/O assignment) is not possible as it would be with STEP 5 programmers.

Allocation of the decentral inputs/outputs to the logical I/O operands does not require configuration in
DB 1. This allocation is stored with the COM PROFIBUS configuration tool in the DP data base (e.g.,
NONAME.2BF).

9.1 DB 1 Structure

A data field is identified by a header and an end identifier:

Header ID Meaning

MASK01 Header for defining communication flags

MASK02 Header for defining local input

MASK03 Header for defining local output

MASK04 Header for defining retentive flags

MASK05 Header ID for initialization of local outputs

MASK06 Header for special settings

In MASK02 and MASK03 the number of input/output bytes is defined and thus the length of the cyclic
read/write of the input/output process image.

The initializations in MASK05 and MASK06 are executed on each transition from STOP to RUN.

DB 1 Configuration

(4)J31069-D2037-U001-A3-7618

9–2 IMC0x-PLC, System Manual

9.2 Default Values

If no DB 1 is available, or the relevant data field has not been programmed, the following default
values are used:

Section Default Setting

MASK01 Communication flags not defined

MASK02/MASK03 Input/output bytes will not be read/written

MASK04 Retentive flags not defined

MASK05 No initialization values defined

MASK06 • Scan time calculation disabled (see chapter 3.5.1.2)

• No initial reset of outputs

The information which is passed to the IMC0x-PLC by loading the DB 1 can be passed directly on
program start by SWCPLC.C. DB 1 can still be loaded subsequently. This has the effect of making
DB 1 values the default values when the IMC0x-PLC is started.

If DB 1 does not contain individual data fields, the settings from default DB 1 are always used for the
SWCPLC.C

DB 1 Configuration

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 9–3

9.3 Definition of Communication Flags (MASK01)

The data field for defining of communication flags is structured as follows:

’M’ : ’A’

’S’ : ’K’

’0’ : ’1’

CE00h

Start index x

End index y

CA00h

Start index x

End index y

EEEEh

Header for the definition of communication flags

ID for communication input flags

ID for communication output flags

End ID

Area definition from FB x to FB y
(x, y: 0 ... 255; y >= x)

Area definition from FB x to FB y
(x, y: 0 ... 255; y >= x)

Figure 9. 1 Data field for communication flags

These entries are made in SWCPLC.C as shown below.

/*------------------------[parameter definitions]------------------------*/

/*------------------*/

/* [MASK01] */

/*------------------*/

#define MASK1_SWITCH 1 /* Koppelmerker: 0 = not used */

 /* 1 = used */

 /* MB y >= x : 0-255 input and/or output */

 /* if used define input and/or output: */

#define MASK1_INPUT 1 /* 0= not used, 1: used */

#define MASK1_OUTPUT 1 /* -"- , -"- */

...

/*----------------------------------*/

/* [MASK01] - Link area (MB) */

/*----------------------------------*/

#define MASK1_KP_TYP_INPUT 0xce00 /* Koppelmerker-Input */

#define MASK1_KP_TYP_OUTPUT 0xca00 /* Koppelmerker-Output */

 if (mask1)

 {

 plc_mask(MASK1);

 plc_link(MASK1_KP_TYP_INPUT, 10, 20, CONT);

 plc_link(MASK1_KP_TYP_OUTPUT, 30, 40, FINISH);

 }

DB 1 Configuration

(4)J31069-D2037-U001-A3-7618

9–4 IMC0x-PLC, System Manual

9.4 Definition of Digital Inputs and Outputs (MASK02 and
MASK03)

9.4.1 Definition of Digital Inputs (MASK02)

In the first half, the operand areas accessed by PB 128 to PB 255 (extended peripheral area) are
assigned to physical inputs.

In the second half, the digital inputs are assigned to physical inputs:

• IB 0 to IB 127 (via process image) or

• PB 0 to PB 127 (without process image)

’M’ : ’A’

’S’ : ’K’

’0’ : ’2’

Number PB n

EEEEh

Header for the definition of digital inputs

End ID

Number of addresses for the inputs in the peripheral area (n: 0 ... 128)

I/O mode PB128 I/O mode of the first peripheral byte

Address PB128 Address of the first peripheral byte

.

.

.

I/O mode PB(128+n-1) I/O mode of the nth peripheral byte

Address PB(128+n-1) Address of the nth peripheral byte

Number IB m Number of addresses for the inputs in the PII (m: 0 ... 128)

I/O mode IB0 I/O mode of the first input byte

Address IB0 Address of the first input byte

.

.

.

I/O mode IB(m-1) I/O mode of the mth input byte

Address IB(m-1) Address of the mth input byte

Figure 9. 2 Data field for inputs

The value for the number of input bytes, IB m, also defines the length of the input process image. The
input bytes must be entered without gaps starting at address 0 (i.e., unused input bytes must be
entered with dummy definitions).

DB 1 Configuration

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 9–5

These entries are made in SWCPLC.C as shown below.

With IMC05

/*------------------*/

/* [MASK02] */

/*------------------*/

#define MASK2_SWITCH 1 /* Input bytes: 0 = not used */

 /* 1 = used */

#define MASK2_PB_ANZ 0 /* Number of peripheral bytes for input */

 /* in extended peripheral area PB0 - PB127 */

#define MASK2_EB_ANZ 8 /* Number of digital input bytes EB0 - EB127 */

...

/*----------------------------------*/

/* [MASK02] - INPUT-Bytes (PB,EB) */

/*----------------------------------*/

#define DIG_INPUT_01_08 0

#define DIG_INPUT_09_16 8

#define DIG_INPUT_17_24 16

#define DIG_INPUT_25_32 24

#define DIG_INPUT_33_40 32

#define DIG_INPUT_41_48 40

#define DIG_INPUT_49_56 48

#define DIG_INPUT_57_64 56

 if (mask2)

 {

 plc_par_mask(MASK2);

 plc_par_peab_count(MASK2_PB_ANZ); /* nr. of PB*/

 if (mask2_pb)

 {

 plc_par_peab(DIG_INPUT_01_08, CONT); /* PB128 */

 plc_par_peab(DIG_INPUT_09_16, CONT); /* PB129 */

 }

 plc_par_peab_count(MASK2_EB_ANZ); /* nr. of EB*/

 if (mask2_eb)

 {

 plc_par_peab(DIG_INPUT_01_08, CONT); /* EB0 */

 plc_par_peab(DIG_INPUT_09_16, CONT); /* EB1 */

 plc_par_peab(DIG_INPUT_17_24, CONT); /* EB2 */

 plc_par_peab(DIG_INPUT_25_32, CONT); /* EB3 */

 plc_par_peab(DIG_INPUT_33_40, CONT); /* EB4 */

 plc_par_peab(DIG_INPUT_41_48, CONT); /* EB5 */

 plc_par_peab(DIG_INPUT_49_56, CONT); /* EB6 */

 plc_par_peab(DIG_INPUT_57_64, FINISH); /* EB7 */

 }

 } /* end if ... mask_len > 0 */

DB 1 Configuration

(4)J31069-D2037-U001-A3-7618

9–6 IMC0x-PLC, System Manual

With IMC01

/*------------------*/

/* [MASK02] */

/*------------------*/

#define MASK2_SWITCH 1 /* Input bytes: 0 = not used */

 /* 1 = used */

#define MASK2_PB_ANZ 0 /* Number of peripheral bytes for input */

 /* in extended peripheral area PB0 - PB127 */

#define MASK2_EB_ANZ 8 /* Number of digital input bytes EB0 - EB127 */

...

/*----------------------------------*/

/* [MASK02] - INPUT-Bytes (PB,EB) */

/*----------------------------------*/

#define DIG_INPUT_01_08 0

#define DIG_INPUT_09_16 8

#define DIG_INPUT_17_24 16

 if (mask2)

 {

 plc_par_mask(MASK2);

 plc_par_peab_count(MASK2_PB_ANZ); /* nr. of PB*/

 if (mask2_pb)

 {

 plc_par_peab(DIG_INPUT_01_08, CONT); /* PB128 */

 plc_par_peab(DIG_INPUT_09_16, CONT); /* PB129 */

 }

 plc_par_peab_count(MASK2_EB_ANZ); /* nr. of EB*/

 if (mask2_eb)

 {

 plc_par_peab(DIG_INPUT_01_08, CONT); /* EB0 */

 plc_par_peab(DIG_INPUT_09_16, CONT); /* EB1 */

 plc_par_peab(DIG_INPUT_17_24, FINISH); /* EB2 */

 }

 } /* end if ... mask_len > 0 */

DB 1 Configuration

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 9–7

9.4.2 Definition of Digital Outputs (MASK03)

In the first half, the operand areas accessed by PB 128 to PB 255 (extended peripheral area) are
assigned to physical outputs.

In the second half, the digital outputs are assigned to the physical outputs:

• QB 0 to QB 127 (via process image) or

• PB 0 to PB 127 (without process image)

’M’ : ’A’

’S’ : ’K’

’0’ : ’3’

Number PB n

EEEEh

Header for the definition of digital outputs

End ID

Number of addresses for the outputs in the peripheral area (n: 0 ... 128)

I/O mode PB128 I/O mode of the first peripheral byte

Address PB128 Address of the first peripheral byte

.

.

.

I/O mode PB(128+n-1) I/O mode of the nth peripheral byte

Address PB(128+n-1) Address of the nth peripheral byte

Number QB m Number of addresses for the outputs in the PIQ (m: 0 ... 128)

I/O mode QB0 I/O mode of the first output byte

Address QB0 Address of the first output byte

.

.

.

I/O mode QB(m-1) I/O mode of the mth output byte

Address QB(m-1) Address of the mth output byte

Figure 9. 3 Data field for outputs

The value for the number of input bytes, QB m, also defines the length of the input process image.
The output bytes must be entered without gaps starting at address 0 (i.e., unused output bytes must
be entered with dummy definitions).

Note:
Where initialization values for the outputs are defined (see MASK05), these are written to the
extended peripheral area starting at PB 128 to correspond in number and sequence.

DB 1 Configuration

(4)J31069-D2037-U001-A3-7618

9–8 IMC0x-PLC, System Manual

These entries are made in SWCPLC.C as shown below.

With IMC05

/*------------------*/

/* [MASK03] */

/*------------------*/

#define MASK3_SWITCH 1 /* output bytes: 0 = not used */

 /* 1 = used */

#define MASK3_PB_ANZ 0 /* Number of peripheral bytes for output */

 /* in extended peripheral area PB128 - PB255 */

#define MASK3_AB_ANZ 6 /* Number of digital output bytes AB0 - AB127*/

...

/*----------------------------------*/

/* [MASK03] - OUTPUT-Bytes (PB,AB) */

/*----------------------------------*/

#define DIG_OUTPUT_01_08 0

#define DIG_OUTPUT_09_16 8

#define DIG_OUTPUT_17_24 16

#define DIG_OUTPUT_25_32 24

#define DIG_OUTPUT_33_40 32

#define DIG_OUTPUT_41_48 40

 if (mask3)

 {

 plc_par_mask(MASK3);

 plc_par_peab_count(MASK3_PB_ANZ); /* nr. of PB*/

 if (mask3_pb)

 {

 plc_par_peab(DIG_OUTPUT_01_08, CONT); /* PB128 */

 if (mask3_ab)

 plc_par_peab(DIG_OUTPUT_09_16, CONT); /* PB129 */

 else

 plc_par_peab(DIG_OUTPUT_09_16, FINISH); /* PB129 */

 }

 plc_par_peab_count(MASK3_AB_ANZ); /* nr. of AB*/

 if (mask3_ab)

 {

 plc_par_peab(DIG_OUTPUT_01_08, CONT); /* AB0 */

 plc_par_peab(DIG_OUTPUT_09_16, CONT); /* AB1 */

 plc_par_peab(DIG_OUTPUT_17_24, CONT); /* AB2 */

 plc_par_peab(DIG_OUTPUT_25_32, CONT); /* AB3 */

 plc_par_peab(DIG_OUTPUT_33_40, CONT); /* AB4 */

 plc_par_peab(DIG_OUTPUT_41_48, FINISH); /* AB5 */

 }

 } /* end if ... mask_len > 0 */

DB 1 Configuration

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 9–9

With IMC01

/*------------------*/

/* [MASK03] */

/*------------------*/

#define MASK3_SWITCH 1 /* output bytes: 0 = not used */

 /* 1 = used */

#define MASK3_PB_ANZ 0 /* Number of peripheral bytes for output */

 /* in extended peripheral area PB128 - PB255 */

#define MASK3_AB_ANZ 6 /* Number of digital output bytes AB0 - AB127*/

...

/*----------------------------------*/

/* [MASK03] - OUTPUT-Bytes (PB,AB) */

/*----------------------------------*/

#define DIG_OUTPUT_01_08 0

#define DIG_OUTPUT_09_16 8

 if (mask3)

 {

 plc_par_mask(MASK3);

 plc_par_peab_count(MASK3_PB_ANZ); /* nr. of PB*/

 if (mask3_pb)

 {

 plc_par_peab(DIG_OUTPUT_01_08, CONT); /* PB128 */

 if (mask3_ab)

 plc_par_peab(DIG_OUTPUT_09_16, CONT); /* PB129 */

 else

 plc_par_peab(DIG_OUTPUT_09_16, FINISH); /* PB129 */

 }

 plc_par_peab_count(MASK3_AB_ANZ); /* nr. of AB*/

 if (mask3_ab)

 {

 plc_par_peab(DIG_OUTPUT_01_08, CONT); /* AB0 */

 plc_par_peab(DIG_OUTPUT_09_16, FINISH); /* AB1 */

 }

 } /* end if ... mask_len > 0 */

DB 1 Configuration

(4)J31069-D2037-U001-A3-7618

9–10 IMC0x-PLC, System Manual

9.5 Definition of Retentive Flags (MASK04)

The data field for the definition of retentive flags has the following structure:

’M’ : ’A’

’S’ : ’K’

’0’ : ’4’

Start index x

End index y

EEEEh

Header for definition of retentive flags

End ID

Area definition from FB x to FB y
(x, y: 0 ... 127; y >= x)

Figure 9. 4 Data field for retentive flags

When retentive flags are entered then the timers T0 to T63 and counters C0 to C63 will automatically
be retentive too (see chapter 3.6).

These entries are made in SWCPLC.C as shown below.

/*------------------*/

/* [MASK04] */

/*------------------*/

#define MASK4_SWITCH 1 /* Remanente Merker: 0 = not used */

 /* 1 = used */

 /* MB y >= x : MB 0-127 */

...

/*----------------------------------*/

/* [MASK04] - REMANENT AREA */

/*----------------------------------*/

 if (mask4)

 {

 plc_par_mask(MASK4);

 plc_par_rema(0,127);

 } / end if ... mask_len > 0 /

DB 1 Configuration

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 9–11

9.6 Definition of Initialization Values (MASK05)

The initialization values for the digital outputs may be entered.

The values are entered in the logical addresses PB 128 to PB 255 (see MASK03) to correspond in
number and sequence.

This results in easy initialization; the addresses for the outputs must, however, be entered sequentially
in MASK03.

’M’ : ’A’

’S’ : ’K’

’0’ : ’5’

Number n

EEEEh

Header for definition of initialization values

End ID

Number of initialization values

INIT value 0 first initialization value

.

.

.

INIT value n-1 nth initialization value

Figure 9. 5 Data field for initialization values

Regardless of its position in DB 1, MASK05 is always processed at the end of the initialization.

These entries are made in SWCPLC.C as shown below.

/*------------------*/

/* [MASK05] */

/*------------------*/

#define MASK5_SWITCH 1 /* Init values of : 0 = not used */

 /* PB 128 - PB 255 1 = used */

...

/*--*/

/* [MASK05] - INIT VALUES OF PERIPHERIAL BYTES */

/* (see nr. of PB defined in MASK3) */

/*--*/

 if (mask5)

 {

 plc_par_mask(MASK5);

 plc_par_pb_init(1, CONT);

 plc_par_pb_init(2, CONT);

 plc_par_pb_init(4, FINISH);

 } / end if ... mask_len > 0 /

DB 1 Configuration

(4)J31069-D2037-U001-A3-7618

9–12 IMC0x-PLC, System Manual

9.7 Special Settings (MASK06)

Special settings are made in a configuration data word. The following diagrams show the data field
structure for the special settings and the significance of individual bits of the configuration data word:

’M’ : ’A’

’S’ : ’K’

’0’ : ’6’

Configuration DW

EEEEh

Header for configuration data word

End ID

Bit pattern, see below

Figure 9. 6 Data field for the configuration data word

Structure of the configuration data word

Bit 15 ... 2 1 0 Meaning

Scan time calculation

0: disabled
1. enabled

Initial deletion of outputs

0: disabled
1. enabled

Reserved

Note:
The function "Initial delete" initializes all output boards to zero, corresponding to the configuration in
MASK03 (after restart).

DB 1 Configuration

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 9–13

These entries are made in SWCPLC.C as shown below.

/*------------------*/

/* [MASK06] */

/*------------------*/

#define MASK6_SWITCH 1 /* command settings: 0 = not used */

 /* 1 = used */

...

/*--*/

/* [MASK06] - CONFIGURATION DATA WORD */

/* cycle flag, enable IO init, PG communication */

/*--*/

#define ENABLE_COUNT_CYCLE_TIME 0x0001

#define ENABLE_CLEAR_DIG_OUTPUT 0x0002

#define ENABLE_PG_COMMUNICATION 0x0030

#define DISABLE_COUNT_CYCLE_TIME 0x0000

#define DISABLE_CLEAR_DIG_OUTPUT 0x0000

#define DISABLE_PG_COMMUNICATION 0x0000

 if (mask6)

 {

 plc_par_mask(MASK6);

 plc_par_cdw(DISABLE_COUNT_CYCLE_TIME,

 DISABLE_CLEAR_DIG_OUTPUT,

 DISABLE_PG_COMMUNICATION);

 }

DB 1 Configuration

(4)J31069-D2037-U001-A3-7618

9–14 IMC0x-PLC, System Manual

IMC0x-PLC Configuration

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 10–1

10 IMC0x-PLC Configuration
The IMC0x-PLC is configured by means of parameters, which are transferred with the nested start
calls x_plc_init and x_plc_start.

10.1 IMC0x-PLC Memory Areas

Configuring memory areas is one of the most important aspects of the IMC0x-PLC configuration. In
the simplest case, all memory areas are taken from the HEAP. However, if the MC5 code is in
EPROM, or if SRAM is used to store retentive data, memory area addresses must be supplied. The
five different memory areas are explained below.

There are five different memory areas:

MC5 memory Memory area for PLC program / MC5 code (0 ... 32 Kbytes). The following
memory types are supported:

Memory type MC5 code Reloadable blocks

EPROM: Must be converted with option /e
(see chapter 7.4), is fixed in
EPROM.

Blocks are reloaded to the DB
memory and are retentive there if
the DB memory is retentive.

SRAM Is loaded from the PG. Also reload to SRAM

not available Is loaded from the PG into
DB memory.

Also reload to DB memory

DB memory Memory area for retentive data, data blocks and for reloadable program
blocks, (4 ... 32 Kbytes).

The following memory types are supported:

• SRAM:

• Dynamically requested RAM. No retentivity.

HLL memory Memory area for HLL blocks (0 ... arbitrary size).

The HLL blocks can only be stored in the EPROM.

Shared memory Memory area for data exchange with another RMOS task (1 kByte).

The following memory types are supported:

• Dynamically requested RAM.

• Reserved memory area in SRAM.

IMC0x-PLC Configuration

(4)J31069-D2037-U001-A3-7618

10–2 IMC0x-PLC, System Manual

80386 memory Dynamically requested RAM area for generated 80386 code.

The size of this memory area results from the size of the MC5 memory
(mc5_size) and the size of the DB memory (db_size):

Size of the 80386 memory = 8 * mc5_size + 6 * db_size

10.2 Start Call x_plc_start

x_plc_start is called from SWCPLC.C. The referenced structures must also be preset with the
required configuration parameters in this file. This function causes the PLC tasks to be dynamically
created, cataloged and started.

The return value will tell you whether the call was executed successfully (see chapter 10.4).

Call syntax

#include <plc.h>

unsigned int far x_plc_start (SW_DATA *plc_sw,

 HW_DATA *plc_hw,

 PLCINIT_FCT init_fct);

Call parameters

plc_sw This data structure contains the parameters for the software configuration. ,
e.g., task priorities.

plc_hw This data structure contains the parameters for the hardware configuration.

init_fct This parameter is for code optimization. This parameter should specify the
macro PLC_NO_FILEIO which is defined in PLC.H (in this case no file
operation functions are linked).

Return values

See chapter 10.4.

10.2.1 Structure Definition for Software Parameters

typedef struct {

 WORD16 priority_1;

 WORD16 priority_2;

 WORD16 idle_time;

 WORD16 flag_id;

 WORD16 memory_mode;

 WORD32 mc5_size;

 WORD32 db_size;

 union

 {

 BYTE * ptr;

 WORD32 addr;

 }mc5_memory;

 union

 {

IMC0x-PLC Configuration

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 10–3

 BYTE * ptr;

 WORD32 addr;

 }db_memory;

 union

 {

 BYTE * ptr;

 WORD32 addr;

 }hll_memory;

 WORD32 shared_memory;

 } SW_DATA;

Meaning of the structure elements

priority_1 Priority of the PLC cycle task, 3 ... 245.

The overall reset task priority is priority_1 – 1 and the communication task
priority is priority_1 + 1.

priority_2 Priority of PLC timer tasks, 5 ... 247.

These tasks must be specified a priority as high as possible (higher than
priority_1 but smaller than 248). For details on priority assignment see
chapter 14.1.

idle_time Pause length for the PLC task in msec (=processing time for other tasks with
lower priority), 0 ... 255.

After the idle_time has elapsed, the PLC task again becomes active, but
the task switch takes place only at the next RMOS timer interrupt. The
precise length of idle_time in practice, thus also depends on the RMOS
system clock. The PLC cycle is extended by the effective idle_time.
idle_time is thus included in the scan time calculation and must not be
overlooked in specifying the time interval for scan time monitoring.

flag_id RMOS event flag group ID for PLC operating mode display or operating mode
selection, 0 ... 31

0 means that the event flag group is not processed. For bit allocation see
chapter 11.2.

IMC0x-PLC Configuration

(4)J31069-D2037-U001-A3-7618

10–4 IMC0x-PLC, System Manual

memory_mode Bit coded information for memory configuration:

15 12 11 10 8 7 4 3 0 Meaning of the bits

mc5_memory_mode

0000: no additional MC5 memory
0010: EPROM address (linear)
0100: EPROM address (physical)
All others reserved

db_memory_mode

0000: no retentivity
0010: SRAM address (linear)
0100: SRAM address (physical)
All others reserved

hll_memory_mode

000: not used
011: Pointer to HLL blocks in EPROM
All others reserved

Flag PLC_NPX

0: no floating-point instructions in HLL blocks
1: HLL blocks contain floating-point instructions

shared_memory_mode

0000: no shared memory
0001: dynamical requested RAM
0010: SRAM address (linear)
All others reserved

The following definitions in the header file PLC.H are used to set the memory
type in the parameter memory_mode:

#define NULL_TYPE 0x0000#define ALOC_TYPE

0x0001

#define MAP_TYPE 0x0002

#define PTR_TYPE 0x0003

#define MAP_TYPE_PHYS 0x0004#define PLC_NPX

0x0008

The definitions can be used to preset the parameter memory_mode with
symbolic names. This requires that the PLC_NPX flag be set for floating point
support in HLL blocks, e.g.:

plc_sw.memory_mode =

 (NULL_TYPE<<12) | /* Type of shared_memory */

 ((PTR_TYPE | PLC_NPX)<<8) | /* Type of hll_memory */

 (NULL_TYPE<<4) | /* Type of db_memory */

 MAP_TYPE; /* Type of mc5_memory */

If memory_mode = 0x0000, required memory is assigned for MC5 code and
data from the heap administered for RMOS.

If memory_mode = 0x0000 and mc5_size = 0 and transfer of blocks via the
PG interface, these are stored in DB memory (i.e., db_size must be
initialized with sufficient space).

mc5_size Length of memory area for MC5 code, 0 ... 0xFFFF.

IMC0x-PLC Configuration

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 10–5

db_size Length of retentive memory areas (retentive flags, timers, counters and data
blocks), 0x0400 ... 0xFFFF.

Remember that the first 512 bytes of DB memory are reserved for retentive
flags, counters and timers. The first DB is located in retentive memory starting
at base address db_memory + 552 bytes.

MC5 memory The meaning of this parameter depends on the value of memory_mode:

memory_mode Meaning

xxx0h No additional memory area for MC5 code is available, i.e. all blocks
are loaded into DB memory.

xxx2h mc5_memory is the linear address of an EPROM or SRAM
memory area containing the MC5 code.

xxx4h mc5_memory is the physical address of an EPROM or SRAM
memory area containing the MC5 code.

DB memory The meaning of this parameter depends on the value of memory_mode:

memory_mode Meaning

xx0xh No retentivity, the required RAM memory is dynamically requested.

xx2xh db_memory is the linear address of a SRAM memory area.

xx4xh db_memory is the physical address of a SRAM memory area.

HLL memory The meaning of this parameter depends on the value of memory_mode:

memory_mode Meaning

x0xxh No HLL blocks are available, hll_memory is not evaluated.

x3xxh / xBxxh hll_memory is a pointer (selector:offset) to the table 1) for the HLL
blocks in the EPROM (hll_block_table).

1) The table is stored in HSTART.ASM. See chapter 8.

If HLL blocks are used, the flag PLC_NPX must be set:
(memory_mode=XXXX|1XXX|XXXX|XXXXB)

Shared memory The meaning of this parameter depends on the value of memory_mode:

memory_mode Meaning

0xxxh Shared memory is not available, i.e., no data exchange with
another task takes place using this memory area.

1xxxh shared_memory is a dynamically requested memory area, i.e., the
parameter shared_memory is not used. The memory required for
data exchange with other tasks is dynamically requested by the
IMC0x-PLC. The global pointer x_plc_shared_mem_p enables
other tasks to access shared memory.

2xxxh shared_memory is the address of a memory area (e.g., dual-port
RAM).

IMC0x-PLC Configuration

(4)J31069-D2037-U001-A3-7618

10–6 IMC0x-PLC, System Manual

10.2.2 Structure Definitions for Hardware Parameters

Parameters for the hardware configuration are organized in the following structure:

typedef struct {

 WORD16 in_mode;

 WORD16 in_addr;

 WORD16 out_mode;

 WORD16 out_addr;

 WORD16 mask_reg;

 WORD16 int_mask;

 WORD16 pic_base;

 WORD16 pit_vector;

 WORD32 mmio_addr;

 WORD16 mmio_mode;

 WORD16 mem161_io;

 WORD16 db1_len;

 WORD16 * db1_p;

 } HW_DATA;

Meaning of the structure elements

in_mode Reserved, must always be 0x4000

in_addr Reserved, must always be 0x00

out_mode Reserved, must always be 0x4000

out_addr Reserved, must always be 0x00

mask_reg Reserved, must always be 0xA1

int_mask Reserved, must always be 0x00

pic_base Reserved, must always be 0x70

pit_vector Reserved, must always be 0x00

mmio_addr Reserved, must always be 0x00

mmio_mode Reserved, must always be 0x00

mem161_io Reserved, must always be 0x0320

db1_len Length of the DB 1 data structure in words.

db1_p Pointer to the DB 1 data structure.

IMC0x-PLC Configuration

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 10–7

10.3 Start Call x_plc_init

This function is defined in SWCPLC.C and is called from RMCONF.C. It enters all required
parameters into the appropriate data structures and then calls the x_plc_start function.

Call syntax

extern unsigned int _FIXED _FAR x_plc_init (char *inifile);

The *inifile parameter is not evaluated.

IMC0x-PLC Configuration

(4)J31069-D2037-U001-A3-7618

10–8 IMC0x-PLC, System Manual

10.3.1 Parametrization in the Configuration File SWCPLC.C

With IMC05

/*---[plc_sw_data]---*/

 plc_sw.priority_1 = 241; /* pri of cycle task, pri+1 of com task */

 plc_sw.priority_2 = 243; /* pri of alarm task and time task */

 plc_sw.idle_time = 10; /* pause of cycle task in ms */

 plc_sw.flag_id = 0; /* eventflag group */

 plc_sw.memory_mode = 0x0322; /* memory_mode:

 !!!+----- mc5_memory_mode(NULL_TYPE,MAP_TYPE)

 !!+------ db_memory_mode (NULL_TYPE,MAP_TYPE)

 !+------- hll_memory_mode(NULL_TYPE,PTR_TYPE)

 +-------- reserved

 0 = NULL_TYPE,2 = MAP_TYPE,3 = PTR_TYPE */

 plc_sw.mc5_size = 0xC000; /* length of mc5 code = 48 KByte */

 plc_sw.db_size = 0x8000; /* length of remanent data = 32 KByte */

 plc_sw.mc5_memory.addr = 0x5e0000; /* lin. address of mc5 flash memory */

 /* => use address offset > 0x400000 */

 /* with flash-loader */

 plc_sw.db_memory.addr = 0x0f8000; /* lin. address of remanent memory */

 plc_sw.hll_memory.ptr = &hll_block_table; /* phys. address of hll table */

 plc_sw.shared_memory = 0x0000; /* reserved */

/*---[plc_hw_data]---*/

 /* Note: direct IO not available !!! */

 plc_hw.in_mode = 0x4000; /* MMIO_MODE and NO_IO */

 plc_hw.in_addr = 0; /* not used if NO_IO */

 plc_hw.out_mode = 0x4000; /* MMIO_MODE and NO_IO */

 plc_hw.out_addr = 0; /* not used if NO_IO */

 plc_hw.mask_reg = 0; /* io-address maskregister, not used */

 plc_hw.int_mask = 0; /* int mask for alarm-obs */

 /* !!! not used !!! => has to be: 0 */

 plc_hw.pic_base = 0; /* pic base for alarm ints, not used */

 plc_hw.pit_vector = 0; /* reserved */

 plc_hw.mmio_addr = 0; /* reserved */

 plc_hw.mmio_mode = 0; /* reserved */

 plc_hw.mem161_io = 0; /* reserved */

 plc_hw.db1_len = DB1_LEN; /* see definition above */

 plc_hw.db1_p = &plc_db1[0]; /* local db1 struc with */

 /* parameters (see below) */

The sections MASK01 to MASK06 and the parameters they contain are entered in the same way as in
data block DB 1 (see chapter 9).

IMC0x-PLC Configuration

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 10–9

With IMC01

/*---[plc_sw_data]---*/

 plc_sw.priority_1 = 241; /* pri of cycle task, pri+1 of com task */

 plc_sw.priority_2 = 243; /* pri of alarm task and time task */

 plc_sw.idle_time = 10; /* pause of cycle task in ms */

 plc_sw.flag_id = 0; /* eventflag group */

 plc_sw.memory_mode = 0x0322; /* memory_mode:

 !!!+----- mc5_memory_mode(NULL_TYPE,MAP_TYPE)

 !!+------ db_memory_mode (NULL_TYPE,MAP_TYPE)

 !+------- hll_memory_mode(NULL_TYPE,PTR_TYPE)

 +-------- reserved

 0 = NULL_TYPE,2 = MAP_TYPE,3 = PTR_TYPE */

 plc_sw.mc5_size = 0xC000; /* length of mc5 code = 48 KByte */

 plc_sw.db_size = 0x8000; /* length of remanent data = 32 KByte */

 plc_sw.mc5_memory.addr = 0x3FA0000; /* lin. address of mc5 flash memory */

 /* => use address offset > 0x3E0000 */

 /* with flash-loader */

 plc_sw.db_memory.addr = 0x0f8000; /* lin. address of remanent memory */

 plc_sw.hll_memory.ptr = &hll_block_table; /* phys. address of hll table */

 plc_sw.shared_memory = 0x0000; /* reserved */

/*---[plc_hw_data]---*/

 /* Note: direct IO not available !!! */

 plc_hw.in_mode = 0x4000; /* MMIO_MODE and NO_IO */

 plc_hw.in_addr = 0; /* not used if NO_IO */

 plc_hw.out_mode = 0x4000; /* MMIO_MODE and NO_IO */

 plc_hw.out_addr = 0; /* not used if NO_IO */

 plc_hw.mask_reg = 0; /* io-address maskregister, not used */

 plc_hw.int_mask = 0; /* int mask for alarm-obs */

 /* !!! not used !!! => has to be: 0 */

 plc_hw.pic_base = 0; /* pic base for alarm ints, not used */

 plc_hw.pit_vector = 0; /* reserved */

 plc_hw.mmio_addr = 0; /* reserved */

 plc_hw.mmio_mode = 0; /* reserved */

 plc_hw.mem161_io = 0; /* reserved */

 plc_hw.db1_len = DB1_LEN; /* see definition above */

 plc_hw.db1_p = &plc_db1[0]; /* local db1 struc with */

 /* parameters (see below) */

The sections MASK01 to MASK06 and the parameters they contain are entered in the same way as in
data block DB 1 (see chapter 9).

IMC0x-PLC Configuration

(4)J31069-D2037-U001-A3-7618

10–10 IMC0x-PLC, System Manual

10.4 Error Codes for x_plc_start and x_plc_init

The functions x_plc_start and x_plc_init return an error status as return value. This code is
defined in the header file PLC.H.

Table 10. 1 Error codes for x_plc_start and x_plc_init

Error Error code hex Meaning

E_PLC_OK 0x00 The function was executed successfully.

E_PLC_START 0x01 One of the tasks could not be started.

E_PLC_CREATE 0x02 One of the tasks could not be created, because the maximum
number of dynamic tasks (see Software Configuration, Number of
SMRs) was exceeded or because no GDT slot was free.

E_PLC_ALOC 0x03 There is insufficient free memory in the HEAP.

E_PLC_PARAM 0x04 The value for memory configuration (parameter memory_mode in
the x_plc_start call, or in the file SWCPLC.C) is invalid.

E_PLC_DESC 0x05 No GDT entries free.

E_PLC_DRIV 0x06 The AS511 driver is not configured.

E_PLC_MASK 0x07 Reserved

E_PLC_INTR 0x08 Reserved

E_PLC_CATALOG 0x09 One of the tasks could not be cataloged because the resource
directory is full.

E_PLC_CFG_OPEN 0x0A Nonexistent configuration file SWCPLC.C.

E_PLC_CFG_READ 0x0B I/O error on reading the configuration file SWCPLC.C.

E_PLC_TIC 0x0C An illegal value was configured for the RMOS system clock. Legal
values are 1 msec, 2 msec, 5 msec, 10 msec.

E_PLC_PRIO 0x0D One of the parameters priority_1 or priority_2 (in the
x_plc_start call, or in the file SWCPLC.C) is illegal.

E_PLC_STL_READ 0x0E Error while loading an HLL block (configuration error).

E_PLC_STL_FORMAT 0x0F Error while loading an HLL block (configuration error).

E_PLC_MC5_SIZE 0x10 The value entered for the parameter mc5_size is too large
(maximum 0FFFFH).

E_PLC_DB_SIZE 0x11 The value entered for the parameter db_size is too large
(maximum 0FFFFH).

E_PLC_FILE_SIZE 0x12 Error while reading the MC5 code file. The file length is larger than
the available memory area (parameter mc5_size).

E_PLC_DB_CPY 0x13 Insufficient memory area for copying data blocks from MC5
memory to DB memory.

E_PLC_MC5_OPEN 0x14 Error while opening the MC5 code file. The specified drive cannot
be mounted or a subdirectory does not exist. The error message is
not issued, if a valid path was specified but the file to be read is
nonexistent.

E_PLC_MC5_READ 0x15 Error while reading the MC5 code file (I/O error).

E_PLC_DB_OPEN 0x16 Error while opening the file for writing retentive data.

E_PLC_DB_READ 0x17 Error while reading the file for writing retentive data (I/O error).

E_PLC_DB1_WRITE 0x18 Error while writing the file for writing retentive data (I/O error).

E_PLC_DB1_DATA 0x19 Error in the DB 1 data structure. The end identifier (0EEEEH)
could not be found.

E_PLC_FLG_ID 0x1A Invalid event flag group ID (flag_id).

IMC0x-PLC Configuration

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 10–11

Error on PROFIBUS-DP connection (only with IMC05)

The exact cause of the error can be determined with the x_plc_dp_error (unsigned int) error
variables.

Table 10. 2 Error codes on the PROFIBUS-DP link

Error Error code hex Meaning

E_PLC_L2_VECTOR 0x1B Error during installation of the unit or the interrupt handle.
x_plc_dp_error contains the error status of the
RcCom05DPInitUnit() call.

E_PLC_L2_INIT 0x1C Error during installation of the driver. x_plc_dp_error contains
the error status of the RcCom05DPInit() call.

E_PLC_DP_START 0x1D Error during startup of the DP driver. x_plc_dp_error contains
the error status of the Com201Start() call.

E_PLC_DP_INIT 0x1E Error during registration of the DP application. x_plc_dp_error
contains the error status of the dpn_init() call.

E_PLC_DP_OPEN 0x1F Error during opening of the DP data base (CRUN call fopen).
x_plc_dp_error contains the CRUN error number.

E_PLC_DP_READ 0x20 Error during reading of the DP data base. x_plc_dp_error
contains the CRUN error number.

E_PLC_DUP_IO 0x21 An I/O address is configured as both local and decentral.

E_PLC_DP_CFG 0x22 Error during determination of the slave configuration of the DP
system, x_plc_dp_error contains the error status of the
dpn_read_cfg() call.

E_PLC_DP_MAX32 0x23 More than 32 slave stations are configured in the data base.

E_PLC_DP_BASE 0x24 Error during evaluation of the DP data base (e.g., no data base
generated with COM PROFIBUS)

IMC0x-PLC Configuration

(4)J31069-D2037-U001-A3-7618

10–12 IMC0x-PLC, System Manual

Error Variable x_plc_error

The error variable x_plc_error (data definition in PLC.H) is used to write additional error codes for
the RMOS taskloader or for RMOS-CRUN. The contents of this error variable can be used to supply
supplementary error information on the console.

For the return values below, the error variable x_plc_error will contain the error code errno from
the RMOS-CRUN library (see RMOS documentation, CRUN):

• E_PLC_MC5_OPEN (0x14)

• E_PLC_DB_OPEN (0x16)

• E_PLC_MC5_READ (0x15)

• E_PLC_DB_READ (0x17)

• E_PLC_DB_WRITE (0x18)

Error variable x_plc_dp_error (only with IMC05)

The error variable x_plc_dp_error (data definition in PLC.H) is used to write additional error codes
for the function x_plc_init. The contents of this error variable can be used to evaluate the error
status of the particular call or output it on the console.

10.5 I/O Interface PLC_IOIF.ASM

Configuring the hardware for the IMC0x-PLC is handled as far as possible with the parameters
(plc_hw) which are loaded with the call x_plc_start/x_plc_init. In addition, certain IMC0x-PLC
functions which directly access hardware are supplied as source code in the file PLC_IOIF.ASM. This
file's object code is normally in the library RM3PLC.LIB. If you have to modify this file, then the file
must be recompiled and linked as an independent object code module called PLC_IOIF.OBJ, ahead of
the library RM3PLC.LIB (linking in this order is essential).

The file PLC_IOIF.ASM contains the following functions:

x_plc_vector_table Reserved function. Do not call.

x_plc_mask_pic Reserved function. Do not call.

x_plc_free_pic Reserved function. Do not call.

x_plc_save The IMC0x-PLC installs an NMI handler (if this option is configured) to save
retentive data in the event of a power failure (power fail signal). At this point
the NMI handler can be extended for extra data saving.

10.6 Directory Entries

The call x_plc_start or x_plc_init generates various tasks and enters them in the RMOS
catalog. Each of these tasks is assigned a priority via parameters priority_1 and priority_2.
The directory entries are listed in chapter 14.1 .

Operator Interface and Display Elements

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 11–1

11 Operator Interface and Display Elements
The IMC0x-PLC has two interfaces to handle operating and display elements for an application (see
chapters 10.5). Manipulation/indication can be performed via an RMOS event flag group.

An event flag group can be used for operating mode selection/display by another RMOS task. In this
way the RUN/STOP operation of the IMC0x-PLC can be controlled by another RMOS task. The ID of
the event flag group is configurable. The ID 0 indicates that the event flag group is not used.

11.1 What is an Event Flag?

An event flag is a single bit in memory used for communication between different RMOS tasks by
virtue of being set or reset. Event flags are grouped to form event flag groups made up of 32 bits.
Each individual flag is accessed by specifying the event flag group ID combined with a 32-bit mask.
The event flag group ID for the IMC0x-PLC is configurable (0 to 31). ID 0 means that no flag in the
event flag group is accessed. The event flag group can be used, e.g., to allow another RMOS task to
control IMC0x-PLC RUN/STOP operations. You will find more information, e.g., about the RMOS
system calls for event flag operations, in the RMOS documentation.

11.2 Working with Event Flags

The IMC0x-PLC's event flag group is used to allow some other RMOS task to control operating mode
selection and/or display. The lower value byte (Bit 0 to 7) is used for PLC operating mode display for
the other task. The higher value byte (Bit 8 to 15) is used for operating mode selection RUN/STOP, or
overall reset, or error acknowledgement. (An overall reset is only possible in STOP mode.)

Bit allocation in the IMC0x-PLC event flag group

Display flags (low-order byte)

Bit 7 6 5 4 3 2 1 0 Meaning

RUN display

STOP display

Overall reset requested

Error display

Warning display

ACCESS bit

Not used

Operator Interface and Display Elements

(4)J31069-D2037-U001-A3-7618

11–2 IMC0x-PLC, System Manual

Control flags (high-order byte)

Bit 15 14 13 12 11 10 9 8 Meaning

0 STOP
1 RUN

1 Perform overall reset

1 Acknowledge error

Not used

The ACCESS bit is used to control access to shared memory (see chapter 12). It is interpreted as
follows:

ACCESS bit=0 Local access to shared memory by another task is prohibited.

ACCESS bit=1 Local access to shared memory by another task is allowed. (The ACCESS bit
always has the opposite state to bit 0 in the acknowledgement byte). After
accessing shared memory, the task must reset the ACCESS bit.

Working with Shared Memory

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 12–1

12 Working with Shared Memory
The shared memory allows you to monitor internal processing sequences and to display the status of
input and output process images (PII and PIQ), counters and timers (process visualization). The
shared memory is also the location of the communication flags, used to synchronize other processes
with the IMC0x-PLC. On the IMC0x-PLC side, a flag area can be defined as communication flag.

The shared memory is a common local memory area and is used to exchange data, either with
another RMOS task. The shared memory address is configurable (see chapter 10). Its size is 1 Kb.

12.1 Base Address

The shared memory base address is identical for both tasks. The memory is dynamically requested
by the IMC0x-PLC. Another task can access this memory by using the global pointer
x_plc_shared_mem_p.

12.2 Structure and Contents

The following table shows the contents of the shared memory. The addresses are relative to the base
address.

Address offset Meaning

3FFH Acknowledgement byte

3FEH Status byte

3FAH ... 3FCH Reserved

3F8H ... 3F9H Current scan time (in msec)

3F6H ... 3F7H Version number

280H ... 3F5H Reserved

180H ... 27FH 256 bytes communication flags defined as input flags or output flags

140H ... 17FH 32 counter words (64 bytes)

100H ... 13FH 32 timer words (64 bytes)

80H ... 0FFH 128 bytes process image of outputs (PIQ)

00H ... 7FH 128 bytes process image of inputs (PII)

The structure of the shared memory is defined in the header file PLC.H.

Note that some time can elapse between system power-up after a reset and the IMC0x-PLC start;
during this time the contents of shared memory are undefined. After the IMC0x-PLC start, the shared
memory is first deleted and then written to, for the first time, towards the end of the first PLC cycle.
shared memory entries are valid only as long as the status byte contains the identification 01.

Working with Shared Memory

(4)J31069-D2037-U001-A3-7618

12–2 IMC0x-PLC, System Manual

The shared memory entries are as follows:

Status byte The status byte shows the operating state of the controller and the
IMC0x-PLC. Possible entries and their meaning are set out in the table below:

Status byte Meaning

00 State immediately after reset, the data in shared memory are
deleted.

01 The controller is in the PLC cycle, the data in shared memory are
valid.

02 The controller is in STOP mode. The data in shared memory
originate from the last PLC cycle and are not updated anymore.

Acknowledgement
byte

The contents of the acknowledgement byte regulate access rights to shared
memory - and to the communication area in particular - for the IMC0x-PLC
and for the task which is communicating with it. This avoids conflicts in
shared memory accessing and the data inconsistencies which would result.
(For details of the access mechanism see chapter 12.3).

Acknowledge
ment byte

Meaning

00 Access to shared memory is permitted only for the task
communication with the IMC0x-PLC:

This code is entered by the IMC0x-PLC after reading/writing the
IMC0x-PLC data, enabling access to shared memory for the task.
The IMC0x-PLC thereafter does not access shared memory again,
until an acknowledgement (01) is entered by another task.
Immediately after reset, the data in shared memory are deleted.

01 Access to shared memory is permitted only for the IMC0x-PLC:

This code is entered by a task after reading the data in shared
memory, or after writing the input communication flag. The
IMC0x-PLC accesses shared memory only after acknowledgement
by another task.

Current scan time This is the current scan time in msec units. The current scan time is the time
taken by the most recent PLC cycle. The scan time is entered only if scan
time calculation was specified in DB 1 configuration. If this was not the case,
the value will always be 0.

Version number This is the IMC0x-PLC version number. On IMC0x-PLC startup the current
version number is written to the shared memory as a 16-bit word:

Version
number

Meaning (Version)

0104H V1.4

0200H V2.0

Working with Shared Memory

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 12–3

Communication flag During DB 1 configuration, a start index/end index is set up to identify an area
from FB 0 to FB 255 as communication flag input and output. In the same
way, the communication flags are mapped in shared memory (within the
communication flag area in shared memory).

The following data areas are copied from the internal data areas to shared
memory at the end of a PLC cycle:

• process image of inputs (PII)

• Process image of outputs (PIQ)

• Counter

• Timers

Note:
Although the IMC0x-PLC updates the contents of shared memory, it does so always only at the
request of the other task (see "Access Control" below).

Working with Shared Memory

(4)J31069-D2037-U001-A3-7618

12–4 IMC0x-PLC, System Manual

12.3 Access Control

There are two mechanisms for regulating access to shared memory:

• Reading/writing the acknowledgement byte

• Setting/resetting the RMOS event flag (ACCESS bit)

12.3.1 Access Control Using the Status and Acknowledgement Bytes

Here access to shared memory is a handshake process synchronized by means of the status byte and
acknowledgement byte:

• The IMC0x-PLC copies the RUN/STOP status to the status byte. Following an operating mode
transition from STOP to RUN, the communication input flags are read from shared memory and
after the first PLC cycle the PLC data are written to shared memory. (If communication input
flags are defined, these must already have been set in STOP mode by another task.) The
acknowledgement byte is then reset from 1 to 0 thus enabling the other task to access shared
memory.

• Another task can now read data from the shared memory and, if necessary write new data to the
communication input flags. Afterwards the task must set the acknowledgement byte from 0 to 1.
The IMC0x-PLC will not access shared memory until the task has set the acknowledgement byte.

• The IMC0x-PLC updates the data in shared memory after each PLC cycle, but only if the
acknowledgement byte was previously set to 1.

• During an operating mode transition from RUN to STOP, the IMC0x-PLC resets the
acknowledgement byte, thus enabling the other task to access shared memory.

Another task can access shared memory after each PLC cycle. The task can select any time frame by
means of the acknowledgement mechanism. The task must ensure, by cyclically setting the
acknowledgement byte, that data in the shared memory are updated by the IMC0x-PLC. A task
access is only allowed once the IMC0x-PLC has reset the acknowledgement byte.

12.3.2 Access Control Using the RMOS Event Flag

If the shared memory is being used as local memory for data exchange with another RMOS task,
access can be synchronized either via the acknowledgement byte or via the ACCESS bit in the event
flag group.

The access mechanism is the same as that using the status and acknowledgement byte, except that
the value of the ACCESS bit is reversed.

The ACCESS bit is Bit 4 of the event flag group. The flag group ID is passed at IMC0x-PLC start
(Chapter 11.2 explains the contents of the event flag group).

PROFIBUS-DP Link (Only with IMC05)

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 13–1

13 PROFIBUS-DP Link (Only with IMC05)

13.1 Access to Decentral Inputs/Outputs

The PROFIBUS-DP connection consists of the PROFIBUS-DP driver (RMOS driver) and the DP
interface (procedural interface). The logical assignment of the inputs/outputs (IB, QB and PB) to the
decentral I/O stations is performed with the DP data base which is created with the COM PROFIBUS
configuration tool. The following calls are used by the DP interface for data communication with the
decentral I/O stations.

Com05DPStart() Set up a DP entity

dpn_init() Register a DP application

dpn_read_cfg() Determine the configuration of the DP system

dpn_in_slv() Read the input data of one DP slave

dpn_in_slv_m() Read the input data of several DP slaves

dpn_out_slv() Send output data to one DP slave

dpn_out_slv_m() Send output data to several DP slaves

dpn_slv_diag() Request diagnostic data of a slave

The process image is updated with dpn_in_slv_m() and dpn_out_slv_m(). The I/O bytes are
addressed with dpn_in_slv() and dpn_out_slv(). The number of stations, the address
assignment, and the number of decentral I/O bytes per station are determined with dpn_read_cfg()
and direct access to the DP data base via CRUN. If the IMC0x-PLC goes into STOP status, DP
communication remains activated. The IMC0x-PLC supports up to 16 activated DP stations of the 126
maximum possible DP stations of the DP bus system (calls dpn_in_slv_m() and
dpn_out_slv_m() only permit 16 DP stations). Up to 32 bytes are supported per DP station.

The DP connection can be used to simultaneously read or write-access only all outputs/inputs of one
station. When direct I/O accesses are used (T PB / L PB), a read/write job must be triggered for all I/O
bytes of the applicable station. The I/O bytes written last are stored locally. The initialization values
for the outputs are set to zero in accordance with SINEC L2 (IM 308). When writing an I/O byte, this
can be used to write all output channels of a station without reading the station.

Accesses to the decentral I/O bytes are performed by the IMC0x-PLC with dpn_in_slv() and
dpn_out_slv() calls. However, these calls may only be executed at the task level.

The time blocks are always executed at the task level regardless of the PROFIBUS-DP interface. In
principle, access to I/O bytes in the time blocks is possible.

The PROFIBUS-DP interface requires that the execution time for an access to an I/O byte/I/O word is
approximately 300 to 400 µsec. Since the DP interface is implemented as a driver, it ensures that only
one job is processed although several DP requests have been made by different tasks.

PROFIBUS-DP Link (Only with IMC05)

(4)J31069-D2037-U001-A3-7618

13–2 IMC0x-PLC, System Manual

13.2 PROFIBUS-DP Diagnostic Functions

13.2.1 Diagnostics while Read/Write Accessing the Process Image

While the process image is being read during the PLC cycle, accessibility of all decentral stations
configured in the DP data base is checked with the dpn_in_slv_m() call. If an error occurs, the
error code from dpn_in_slv_m() is stored in system data word SD 124 (EAF8H). Since the
IMC0x-PLC evaluates the data base and thus only addresses stations which are also configured in the
data base, dpn_in_slv_m is always concluded with no errors. slv_state of all stations can be
evaluated to determine whether all configured stations are actually connected. The read/write-access
of the process image is only correct when the current operating status of DP slave slv_state of all
stations indicates that these are in the data transfer phase. Thus all slv_state are evaluated when
the process image is read.

If a DP slave indicates with slv_state that it is not in the data transfer phase, SD 124 is set to
"STATION_ERROR" (value 0x01). The incorrect station number can be read from system data word
SD 125 (EAFAH). The first incorrect slv_state of a station is stored in system data word SD 126
(EAFCH).

Table 13. 1 Information in slv_state of dpn_in_slv_m()

Literal Value Meaning

DPN_SLV_STAT_OFFLINE 0x00 Slave not in the data transfer phase (startup)

DPN_SLV_STAT_NOT_ACTIVE 0x01 Slave not activated in the data base

DPN_SLV_STAT_READY 0x02 Slave in the data transfer phase

DPN_SLV_STAT_READY_DIAG 0x03 Slave in the data transfer phase. Diagnostic data are
available.

DPN_SLV_STAT_NOT_READY 0x04 Slave not in the data transfer phase

DPN_SLV_STAT_NOT_READY_DIAG 0x05 Slave not in the data transfer phase. Diagnostic data
are available.

When the process image is written, a check is only made to determine whether an error code
occurred during the dpn_out_slv_m() call. If so, the error code is stored in SD 124. SD 125 and
SD 126 have no meaning.

The startup phase of the IMC0x-PLC (call x_plc_init) is always concluded without errors
regardless of whether the stations could be addressed. Whether the IMC0x-PLC switches to the RUN
state depends on the QVZ setting in the DP data base. The QVZ setting is set for each station
separately in the DP data base. As already mentioned above, the prerequisite for transition to the
RUN state is that all configured stations are actually present (i.e., no error has occurred for
dpn_in_slv_m() or dpn_out_slv_m()). If a DP slave has the setting 'QVZ = J' in the DP data
base, a switch to RUN status is not made when one of the above described errors occurs. If all DP
slaves have the setting 'QVZ = N' a switch to RUN status is made.

An error during DP communication while the IMC0x-PLC is in RUN status is indicated by a value other
than 0 in system data word SD 124. With the setting 'QVZ = J' the IMC0x-PLC goes into STOP status
when an error occurs. With the setting 'QVZ = N' system data word SD 124 should be evaluated by
the user program so that an error can be determined.

Note:
These data words are only deleted when an operating mode change from STOP to RUN occurs.

PROFIBUS-DP Link (Only with IMC05)

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 13–3

13.2.2 Diagnosis While Reading/Writing I/O Bytes

The same error evaluation is used for reading/writing the I/O bytes as for reading/writing the process
image.

Depending on the QVZ setting, a switch to STOP status is made when an error occurs.

13.2.3 HLL Block for the Diagnostic Function

By calling an HLL block (FB 208) included with the IMC0x-PLC, diagnostic data can be obtained with
the controller program (STEP 5 program).

By calling HLL block FB 208, the station diagnosis can be requested in the controller program for a
certain station with the call dpn_slv_diag(). The station number and the desired number of
diagnostic bytes are transferred as parameters in two consecutive flag words and the first flag byte of
several consecutive flag bytes (usually 3 to 16 flag words) for the storage of the diagnostic data. The
return status, slv_state and the number of diagnostic bytes available are stored with the
dpn_slv_diag() call in three additional consecutive flag words. The layout of the consecutive flag
words (usually 3 to 16 flag words) with the diagnostic data depends on the station type and is
specified in /DPPROG/. The diagnostic data are only available for a station when "provide diagnostic
data" is configured in the DP data base. Diagnostic data for standard slaves and non-standard slaves
(ET200U and ET200B) are supported. The IMC05-DP converts diagnostic data from non-standard
slaves in accordance with conventions. The length of the diagnostic data is typically in the range of
6 to 32 bytes. The maximum length is 244 bytes.

Note:
The HLL block for diagnostics only stores the diagnostic data in the flag words. The IMC05-DP is
responsible for correct provision of the data.

Sample call for FB 208 (HLL block for diagnosis):

 L 124 Error for DP connection ?

 L KH 0000 AKKU1= 0

 !=F Equal ?

 JZ = M1 No error

 L 125 Load station number

 T FW 10 Load station number in flag word 10

 L KH 0032 AKKU1= 32

 T FW 12 Load number of diagnostic bytes in FW 12

Name : PLCL2DP

 JU FB 208

STNR : FW 10 Station number in flag word 10

DIAG : FB 20 Diagnostic data in FY 20 to FY 51

STS : FW 52 Status of diagnostic block in FW 52, 54

 Number of valid diag. bytes in FW 56

 L FW 52 Load return status

 L KH 0000 AKKU1= 0

 ><F Unequal ?

 JZ = M2 Error: Wrong station address

 L FW 54 Load slv_state

 L KH 003 AKKU1= "data and diagnostic data valid"

 !=F Equal ?

 JZ = M33 Diagnostic data available

PROFIBUS-DP Link (Only with IMC05)

(4)J31069-D2037-U001-A3-7618

13–4 IMC0x-PLC, System Manual

 L KH 005 AKKU1= "only diagnostic data valid"

 ><F Unequal ?

 JZ = M3 No diagnostic data available

M33: Diagnostic data available

 L FW 20 Load diagnostic data

 ...

M3: No diagnostic data available

 ...

M2: Wrong station address

 ...

M1: No error for SINEC DP connection

 ...

FB 208 is contained in the included example (HLLCODE.C) for the HLL blocks. The diagnostic data of
a station are requested by the HLL block with dpn_slv_diag().

On the PG, the 'Status Variable' and 'Force Outputs' functions can be used to access the decentral
input/output stations. If an error occurs during these accesses, the error information is stored in the
system data starting at SD 124 (starting at EAF8) where they can be read with the PG.

13.3 DP Configuration for IMC0x-PLC

13.3.1 Allocation of the Digital Inputs/Outputs (DB 1 Configuration)

Allocation of the decentral inputs/outputs to the logical I/O operands is not stored in the DB 1, but in
the DP data base (e.g., NONAME.2BF). This data base is created with the COM PROFIBUS
configuration tool. It describes the configuration of the DP bus system. The decentral I/O must be
addressed linearly (i.e., no page frame addressing). In the following, the name NONAME.2BF is used
as the file name for the DP data base. The name is specified with the configuration tool. During the
startup phase of the IMC0x-PLC (call x_plc_init), the address allocation of the local I/O is set up
first and then the decentral I/O. If an I/O byte is configured as both local and decentral, configuration
is aborted with the error E_PLC_DUP_IO for x_pic_init.

The local I/O bytes must start at address 0, and the decentral I/O bytes must be located after the local
I/O bytes. Similarly, the local input/output bytes should start at address 0, and the decentral
input/output bytes should be located after the local input/output bytes. Blank entries between the local
and decentral I/O bytes are ignored.

13.3.2 Constants for Error Identifiers

Literal Value Meaning

DPN_NO_ERROR 0x00 No error

DPN_ACCESS_ERROR 0x80 An attempt was made to transfer more than one
signaling job for a handle.

DPN_APPL_LIMIT_ERROR 0x81 The maximum permissible number of DP applications
was exceeded. Up to 32 DP applications are permitted
per unit of the DP driver.

PROFIBUS-DP Link (Only with IMC05)

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 13–5

DPN_LENGTH_ERROR 0x84 Structure element .length of the structure
dpn_interface is outside the permissible value
range. The data length does not match the configured
values.

DPN_MODE_ERROR 0x87 The function call cannot be processed in the current
operating mode, or a state was skipped while changing
the operating mode.

DPN_NO_DBASE_ERROR 0x88 No entries or incorrect entries in the DP data base

DPN_REFERENCE_ERROR 0x8B The structure element .reference of the structure
dpn_interface is invalid.

DPN_SLV_STATE_ERROR 0x8E The structure element .slv_state of the structure
dpn_interface is invalid.

DPN_STAT_NR_ERROR 0x8F The structure element .stat_nr of the structure
dpn_interface is invalid (e.g., DP slave not
configured in the DP data base).

DPN_WRONG_BOARD_ERROR 0x91 The structure element .reference.board of the
structure dpn_interface is invalid.

DPN_SYS_STATE_ERROR 0x92 The structure element .sys_state of the structure
dpn_interface is invalid.

DPN_GLB_CTRL_ERROR 0x93 Invalid value range for control command for call of the
dpn_global_crtl() function.

DPN_BOARD_ERROR 0x94 Hardware error

The following constants have only been defined to ensure source code compatibility with the DP
programming interface of the CP5412(A2) product. These error identifiers do not occur with the DP
driver.

DPN_CENTRAL_ERROR
DPN_CLOSE_ERROR
DPN_MEM_BOARD_ERROR
DPN_MEM_HOST_ERROR
DPN_OPEN_ERROR
DPN_RECEIVE_ERROR
DPN_REFERENCE_DIFF_ERROR
DPN_SEND_ERROR
DPN_USER_DATA_ERROR
DPN_WD_EXPIRED_ERROR

PROFIBUS-DP Link (Only with IMC05)

(4)J31069-D2037-U001-A3-7618

13–6 IMC0x-PLC, System Manual

RMOS and PLC Configuration

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 14–1

14 RMOS and PLC Configuration
The distribution package contains the standard RMOS configuration files for generating the
IMC0x-PLC. The IMC0x-PLC makes no special demands on the RMOS configuration. All the
required system resources, except the AS511 driver for communication with the PG, are dynamically
requested during the IMC0x-PLC start. The IMC0x-PLC parameters are passed with the IMC0x-PLC
start call, independent of the RMOS configuration. The IMC0x-PLC memory areas are either
requested dynamically from the HEAP as required, or they are allocated directly via physical
addresses. The IMC0x-PLC returns an error status, if there is not enough free memory in the HEAP.
RMOS clock time must be set to either 1, 2, 5, or 10 msec, so that the IMC0x-PLC's 10 msec clock
time can be derived from it.

If you are adapting an existing RMOS configuration to include the IMC0x-PLC, you should pay special
attention to the following:

• Start call x_plc_start/x_plc_init in the initialization task

• AS511 driver for PG communication

• Adequate HEAP size for dynamically requested memory areas

• RMOS clock time (1, 2, 5 or 10 msec)

• RMOS SVCs

• File management system (FISY, optional)

Notes:
The interrupt for RMOS clock time must have a higher hardware-based priority than
priority_2 + 8.

RMOS and PLC Configuration

(4)J31069-D2037-U001-A3-7618

14–2 IMC0x-PLC, System Manual

14.1 Directory Entries

The call x_plc_start/x_plc_init generates and catalogs a number of tasks. Each of these tasks
is assigned a priority via parameters priority_1 and priority_2. The memory area required for
a stack size per task of approx. 2 kbytes is taken from the HEAP.

Task type Name Priority

PLC cycle task PLC_EXE_CYCL priority_1

Communication task PLC_COM_PG priority_1 + 1

Overall reset task PLC_CLEARALL priority_1 – 1

PLC timer task OB 10 PLC_TIM_OB10 priority_2

PLC timer task OB 11 PLC_TIM_OB11 priority_2 + 1

PLC timer task OB 12 PLC_TIM_OB12 priority_2 + 2

PLC timer task OB 13 PLC_TIM_OB13 priority_2 + 3

PLC ERROR_OB task PLC_ERROR_OB priority_2 + 4

Reserved PLC_INT_OB2 priority_2 + 8

Reserved PLC_INT_OB3 priority_2 + 7

Reserved PLC_INT_OB4 priority_2 + 6

Reserved PLC_INT_OB5 priority_2 + 5

PG driver PLC_AS511 -

Loader Result Segment PLC_LRS_XXXX -

Note:
The driver (AS511) for communication with the PG catalogs itself during RMOS startup.

The loader result segment of HLL blocks is not cataloged.

14.2 IMC0x-PLC Configuration and Generation Files

The following subdirectories contain the configuration files for generating the IMC0x-PLC.

• SYSIMC5\PLCIMC5 and SYSIMC5\PLCIMC5\SRC for IMC05

• SYSIMC1\PLCIMC1 and SYSIMC1\PLCIMC1\SRC for IMC01

Table 14. 1 Configuration files for generating IMC0x-PLC

File name Meaning

RMCONF.C RMOS configuration file (contains the initialization task)

GENSYSC5.BAT or
GENDP.BAT

Batch files for system generation with CADUL for IMC05 (with or without
PROFIBUS-DP connection)

GENSYSC1.BAT Batch file for system generation with CADUL for IMC01

RM3PC15.BLD Builder file

SWCPLC.C IMC0x-PLC - configuration file (see chapter 10.3.1)

RMOS and PLC Configuration

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 14–3

14.3 Configuring and Generating IMC0x-PLC

The IMC0x-PLC is configured in the SWCPLC.C file. Blocks [plc_sw] and [plc_hw] must be
configured there in function x_plc_init as described in chapter 10.

Assignment of the serial interfaces for IMC05

Interface Allocation

RS232-1 RMOS-BYTE driver with 19200 baud

RS232-2 AS511 communication driver of the IMC0x-PLC with 9600 baud

Assignment of the serial interfaces for IMC01

Interface Allocation

COM1 (RS 232) AS511 communication driver of the IMC0x-PLC with 9600 baud

COM2 (RS 485) RMOS-BYTE driver with 19200 baud
Since the interface only provides semi-duplex mode on the hardware side, only
printf outputs can be made here.

The following batch files are available for generating an RMOS system with IMC0x-PLC.

For IMC05 in directory SYSIMC5\PLCIMC5

• GENSYSC5.BAT: Generates a system without DP connection

• GENDP.BAT: Generates a system with PROFIBUS-DP connection

For IMC01 in directory SYSIMC1\PLCIMC1

• GENSYSC1.BAT: Generates a system

These batch files are called as follows without parameters. They generate the RM3_PC15.SYS
system file in the same directory.

The system file is transferred to the IMC05 or IMC01 with batch file FLASHPLC.BAT or
FLASHDP.BAT (only IMC05), or with the IMC05/IMC01 service programs.

The batch file FLASHPLC.BAT is called without parameters. FLASHDP.BAT can be called with the
following parameters.

Parameter Transferred Components

ALL All components (RMOS3, any existing HLL blocks, user program, MC5 program and
DP data base). If no parameter is specified, this setting is used.

MC5 Only MC5 program

DB Only DP data base

RMOS and PLC Configuration

(4)J31069-D2037-U001-A3-7618

14–4 IMC0x-PLC, System Manual

Compatibility to SIMATIC S5-115U

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 15–1

15 Compatibility to SIMATIC S5-115U
This is an overview of the functions which differ from the SIMATIC S5-115U controller.

15.1 Commands

The following commands are implemented in the IMC0x-PLC additionally.

• xF (multiplication)

• :F (division)

The following commands are not, or not fully, S5-compatible:

• The command BI (process block parameters indirectly) is not implemented.
(An actual operand is interpreted as MC5 code in a BI command.)

• For the commands LIR, TIR, TNB (data transfer with indirect addressing), the address area is
restricted and an access to the peripheral boards is not possible.

• The commands LDI, TDI (access to the second memory bank, MC5 memory) is not implemented.

• The processing operations (DO FW, DO DW) may not be immediately followed by any of the
following operations.
TNB, JU =, JC =, JZ =, JN =, JP =, JO =

• SU command - set bit
(With the SIMATIC S5-115U, the timer can be started by SU T7.15. With the IMC0x-PLC,
although this command will cause the relevant bit to be set, it will not start the timer.)

• Jumps into sequences of logical instructions are not permitted.

15.2 Execution Times

Execution times for the different commands are specified in the operation list (see Reference Manual).

15.3 Program Memory

Under the IMC0x-PLC, the following memory areas are available for user programs:

• 4 Kbytes to 32 Kbytes for data blocks (DB memory)

• 0 Kbytes to 48 Kbytes for program blocks (MC5 memory)

15.4 Data Blocks DB 0/DB 1

The data block DB 0 (address list) is not supported by the IMC0x-PLC. The data block DB 1 is
reserved for initialization functions and has a special format compared with SIMATIC S5-115U (see
chapter 9).

15.5 Special Organization Blocks

An operating mode transition from RUN to STOP executes STOP OB (OB 28), if this has been
programmed.

Compatibility to SIMATIC S5-115U

(4)J31069-D2037-U001-A3-7618

15–2 IMC0x-PLC, System Manual

15.6 Display of Results

The result displays do not conform completely to S5:

Display byte

CC 1 CC 0 OV Free OR STATUS RLO ERAB/

ERAB/ Initial request is not displayed.

STATUS the value of the last binary operand is not supported by the IMC0x-PLC. It
can, however, usually be deduced from other values (RLO).

OR Internal display for "AND before OR operation" is not displayed.

15.7 ISTACK Display

The following control bits or interrupt displays have no significance under the IMC0x-PLC:

Control bits:

NEUSTA, BATPUF, LADFNI, SYNFEH, NINEU, PROEND, MAFEHL, UAFEHL, NAUAS, QUITT,
SPABBR, PBSSCH, PADRFE, ASPLUE, RAMAFE, SUMF

Interrupt displays:

NNN, FEST, NAU, QVZ, KOLIF, SYSFE PEU, BAU, ASPFA, STATUS, ERAB, URLAD

(see chapter 5.7.3).

15.8 BASP

The signal BASP ("Block command output") is not supported by the IMC0x-PLC. The output bytes in
the extended peripheral area become inactive at an operating mode transition from RUN to STOP,
during process control or as a result of a runtime error.

15.9 STATUS Block

The IMC0x-PLC does not support status processing with specification of a block list (nesting); on the
PG status processing may only be called without nesting. Status processing with nesting means that
the program status is displayed only if the block was called in a prescribed sequence (e.g., OB 1 →
FB 11 → FB 20).

15.10 Alarm Blocks

If processing of an alarm block takes longer than the set time interval, an alarm error is reported in the
error status word EAD0 and the IMC0x-PLC switches to STOP mode. Processing of an alarm block
can be interrupted by an alarm with higher priority.

Compatibility to SIMATIC S5-115U

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual 15–3

15.11 Integrated Function Blocks

The integrated function blocks of the SIMATIC S5-115U CPU 944 are not included in the IMC0x-PLC.

15.12 Standard Function Blocks

The standard function blocks for the SIMATIC S5-115U have not been tested for the IMC0x-PLC, to
some extent they are not executable. (The GRAPH 5 function blocks are not executable.)

15.13 Clock Functions

The CPU 943/CPU 944 clock functions are not supported.

15.14 Time Behavior on Loading Blocks in RUN Mode

When program blocks (OBs, PB, SBs, FBs) are loaded with the PG, the blocks must be compiled.
When the IMC0x-PLC is in RUN mode, the compiler run is fitted in between two PLC cycles, i.e., the
start of the next PLC cycle is delayed by the time taken for the compiler run. There is thus no
guarantee of loading blocks without stalling.

It takes approximately 75 msec to compile a block 1024 words long.

15.15 Step/Transition Programming with GRAPH 5

Step/transition programming with GRAPH 5 is not supported because GRAPH 5 function blocks are
not executable under the IMC0x-PLC.

15.16 Alarm Blocks

Alarm blocks are not available with IMC0x-PLC.

Compatibility to SIMATIC S5-115U

(4)J31069-D2037-U001-A3-7618

15–4 IMC0x-PLC, System Manual

Appendix A

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual A–1

A List of Abbreviations

Abbreviation Meaning

ACCUM 1 Accumulator 1

ACCUM 2 Accumulator 2

ASCII American Standard Code for Information Interchange

BARB Program check (PG function ISTACK)

BARBEND Request for end (PG function ISTACK)

BEF-REG Instruction register (ISTACK)

BF Byte constant (fixed-point number –128 ... +127)

BSTACK Block stack

BST-STP Block stack pointer (ISTACK)

C Counter (0 ... 127, for bit test and set operations 0.0 ... 127.15)

CC 0 Condition code 0

CC 1 Condition code 1

CPU Central processing unit

CSF Control system flowchart display mode

D Data bit (0.0 ... 255.15)

DB Data block (1 ... 255)

DB-ADR Data block address (ISTACK)

DL Left byte of data word (0 ... 255)

DR Right byte of data word (0 ... 255)

DW Data word (0 ... 255)

F Flag

FB Function block (0 ... 255)

FW Flag word (0 ... 254)

FY Flag byte

HLL High level language

I Input (0.0 ... 127.7)

IB Input byte (0 ... 127)

IMC Industrial Micro Computers

ISTACK STEP 5 interrupt stack

IW Input word (0 ... 126)

KB Constant (1 byte 0 ... 255)

KC Constant (counter 0 ... 999)

KE1 ... KE6 Nesting stack entry 1 ... 6 (ISTACK)

Appendix A

(4)J31069-D2037-U001-A3-7618

A–2 IMC0x-PLC, System Manual

KF Constant (fixed-point number -32768 ... +32767)

KH Constant (hexadecimal 0 ... FFFF)

KM Constant (arbitrary 16-bit pattern)

KS Constant (2 arbitrary alphanumeric characters)

KT Constant (time value 0.0 ... 999.3)

KY Constant (2 bytes 0 ... 255 per byte)

LAD Ladder display mode

MC5 code S5 machine code, control code

MC5 S5 machine code

MMIO Memory Mapped Input / Output

NAU Power failure (ISTACK)

NEUSTA Restart (ISTACK)

NR Block number (OB, PB, SB, FB, DB ISTACK)

OB Organization block (1 ... 255)

OP-Code Operation code

OV Overflow (set, for example, after number range overrun in arithmetic
operations

PB Program block (0 ... 255)

PG Programmer

PII Process image of inputs

PIQ Process image of outputs

PLC Programmable Logic Controller

PLC cycle PLC operating mode, read in - process - read out

PW Peripheral word (0 ... 254)

PY or PB Peripheral byte (PG-dependent name 0 ... 255)

Q Output (0.0 ... 127.7)

QB Output byte (0 ... 127)

QB Peripheral byte in the Q-area (0 ... 255)

QVZ Acknowledgment delay

QW Output word (0 ... 126)

QW Peripheral word in the Q-area (0 ... 254)

REL-SAC Relative STEP 5 address counter

RLO Result of logic operation

SAC STEP 5 address counter

SB Sequence block (0 ... 255)

SD System data area (for load and transfer operations 0 ... 255,
for bit test and set operations 0.0 ... 255.15)

STL Statement list display mode

Appendix A

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual A–3

STOANZ Stop display (ISTACK)

STOZUS Stop display (ISTACK)

STUEB Stack overflow (runtime error)

SUF Substitution error (runtime error)

SVC Supervisor call - RMOS system call

T Timer (0 ... 127, for bit test and set operations 0.0 ... 127.15)

TRAF Transfer error (runtime error)

ZYK Scan time overrun (ISTACK)

Appendix A

(4)J31069-D2037-U001-A3-7618

A–4 IMC0x-PLC, System Manual

Appendix B

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual B–1

B Software Notations
In this documentation the following notational conventions are used:

Commands
Commands are used to control the program execution in interactive or batch mode. In this text, commands are
printed in Courier 1) font. A command consists of at least one element.

Elements are constants or variables. They are composed of letters, digits and special characters (e.g., * ? .).

UPPER CASE Constant Upper case elements are constants. They must be entered as
shown, but upper or lower case letters can be used.

1847 Constants Numbers are always constants.

X Variables Lower case elements are variables which must be replaced by actual
values.

() \ : ; > Special characters Special characters and blanks are used as delimiters to separate one
element from the next and must be entered.

Meta characters specify the use of elements characters within commands. Meta characters are not entered.

Representation Function Explanation

< > Delimiters Variables are enclosed by pointed brackets.

[] Optional Elements in square brackets are optional.

 a a|b|c
 b
 c

Selection One element must be selected from elements which are enclosed by
braces or separated by vertical lines.

... Repetition Ellipses indicate an optional repetition of the previous element.

1) Program listings are also printed in Courier font. Listings are case sensitive and do not follow the general
notational rules for commands. The programming language, C for instance, differentiates between upper
case and lower case letters.

Data Types
Data type Length at RMOS3

char 8 bits

BYTE, char 8 bits

short 16 bits

WORD, short 16 bits

int 32 bits

WORD, int 32 bits

long 32 bits

DWORD, long 32 bits

word32 32 bits

pointer far 48 bits

pointer near 32 bits

enum 32 bits

float 32 bits

double 64 bits

Appendix B

(4)J31069-D2037-U001-A3-7618

B–2 IMC0x-PLC, System Manual

Index

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual I–3

I Index

8

80386 memory 10–2

A

Accumulator 2–4

Actual operands 6–10

B

Basic operations 6–2

BCD numbers 6–18

Bit patterns 6–18

Block stack

output 5–6

overflow 3–14

Block types 6–5

Blocks

calling 6–7

nesting depth 3–14

C

Clock error 3–16

Communication flags 2–4

definition 9–1

Compiler

MC5 2–5, 3–16

Compiling error 3–15

Compress memory 5–2

Configuration 10–1

Configuration file 10–8

Constants 6–18

Control bits

mnemonic 5–5

output 5–4

Controller 2–1

Conversion 7–2

Counters 2–4

retentivity 3–11

CSF 6–1

CVSTEPV.EXE 7–2

Cycle time

exceeded 3–13

cycle-driven 3–6

D

Data blocks 6–14

retentivity 3–11

DB 1

default values 9–2

error 3–15

structure 9–1

DB memory 10–1

configuration 10–5

Decimal numbers 6–18

Directory entries 14–2

Display Elements 11–1

Display modes 6–1

Display of results 15–2

E

EPROM 2–5

Error codes 10–10

Error variable 10–12

Event flags 11–1

group ID 10–3

Execution time 15–1

Extended operations 6–2

F

Flags 2–4

retentivity 3–11

Flash memory 2–5

FLASHDP.BAT 14–3

FLASHPLC.BAT 14–3

Floating-point arithmetic 8–5

Flow chart 6–1

Formal operands 6–10, 6–13

Index

(4)J31069-D2037-U001-A3-7618

I–4 IMC0x-PLC, System Manual

Function blocks 6–8

HLL 8–2

G

GENDP.BAT 14–3

GENSYSC1.BAT 14–3

GENSYSC5.BAT 14–3

H

Hexadecimal numbers 6–18

High level language programming 8–1

HLL blocks 8–1

HLL Blocks 6–17

HLL memory 10–1

configuration 10–5

HLLCODE.C 8–1

HSTART.ASM 8–1

I

Initialization 3–2, 3–11

Input/output 2–4

address allocation 9–1

addressing 4–1

decentral 4–5

direct access 4–3

initialization 4–5

Installation see User Manual

Interrupt stack 5–3

ISTACK

output 5–4

L

LAD 6–1

Ladder diagram 6–1

Library number 6–10

LIR error 3–16

M

MASK01 to MASK06 9–1

MC5 code 2–5, 7–2

memory structure 5–11

MC5 compiler 2–5

MC5 memory 10–1

configuration 10–5

Memory areas 10–1

Memory configuration 10–4

Memory organization 7–2

N

Nesting depth 6–5

O

OB 1 3–6

OB 10 to OB 13 3–8

OB 21 3–4

OB 22 3–2

OB 28 3–5

OB 31 3–7

Operands 6–3

Operating modes 3–1

Operator interface 11–1

Organization blocks 6–6

cycle OB 3–6

error OB 3–13

HLL 8–2

start OBs 3–2, 3–4

STOP OB 3–5

timer OBs 3–8

trigger OB 3–7

Overall reset 3–11

P

Pause length of PLC task 10–3

Peripheral area

extended 4–1

Periphery

address allocation 9–1

decentral 4–5

PG 2–1

PG functions 5–1

PG interface 2–5

Index

(4)J31069-D2037-U001-A3-7618

IMC0x-PLC, System Manual I–5

PII 2–4

access 4–2

PIQ 2–4

access 4–3

PLC 2–1

Priority of the PLC tasks 10–3

Process images 2–4, 4–1

decentral 4–5

Process monitoring 5–3

Processing levels 3–6

cycle-driven 3–6

timer-driven 3–8

Program blocks 6–7

Program memory 2–5

Programmer 2–1

Programming language STEP 5 6–1

R

Representing numbers 6–18

Restart 3–1, 3–2, 3–4

Retentivity 3–11

RUN mode 3–1, 3–6

RUN transition 3–4

Runtime errors 3–13

S

Scan time 3–7

calculation 3–7

monitoring 3–7

Sequence blocks 6–7

Shared memory 2–5, 10–1, 12–1

configuration 10–5

contents 12–1

SIMATIC 15–1

Start calls

error codes 10–10

x_plc_init 10–7

x_plc_start 10–2

Startup functions 5–1

Statement list 6–1

Status variables 5–2

STEP 5 6–1

memory allocation 5–10

STL 6–1

STOP mode 3–1

STOP transition 3–5

STS operation 3–14

Substitution error 3–14

Substitution parameters 8–3

SWCPLC.C 10–8

System data

allocation 5–10

error localization 3–17

System data words 3–17

System file 14–3

System operations 6–2

T

Testing functions 5–1

Timer blocks 3–8

Timer error 3–14

Timer OBs 3–8

timer-driven 3–8

Timers 2–4

retentivity 3–11

TIR error 3–16

TNB error 3–16

Transfer error 3–14

U

User memory 7–1

X

x_plc_init 10–7

error codes 10–10

x_plc_start 10–2

error codes 10–10

Index

(4)J31069-D2037-U001-A3-7618

I–6 IMC0x-PLC, System Manual

