Treats and Tricks, or use SimGrid

Martin Quinson

SimGrid User Days 2010, Cargese

SIM 153K1D

Qutline

@ Wannabe User Manual
Configuring and Installing
Configuring your simulators
Trace Replay
Some “Do not ...

”

advices

@ The bindings
Java
Lua
Ruby

@ Surviving in C

@ Conclusion

Martin Quinson Treats and Tricks, or use SimGrid

2/26

How to install the tool

In release 3.3.4 and before
> Grab it: https://gforge.inria.fr/project/showfiles.php?group_id=12
> . /configure && make && sudo make install

In release 3.4 and afterward
» Grab it; cmake . && make && sudo make install-simgrid

Get it from SVN
> svn checkout svn://scm.gforge.inria.fr/svn/simgrid/simgrid /trunk simgrid
» cd simgrid
> cmake . && make && sudo make install-simgrid

From autotools to cmake
» So, yeah, we moved from autoconf to cmake for release 3.4
> It offers a better user interface, with ccmake (demo)

» If allows for software quality dashboards (demo)

Martin Quinson Treats and Tricks, or use SimGrid Wannabe User Manual

3/26

https://gforge.inria.fr/project/showfiles.php?group_id=12

Configuring your simulators

Every simulator using SimGrid accepts a set of options
- -help: get some help (demo)
- -help-models: long help on models (3.4-only; demo)
- -log: configure the verbosity
- -cfg: change some settings
Note: SMPI-specific settings, are only visible in SMPI simulators

The log argument
> It's similar to Log4J, but in C
> You can increase the amount of output for some specific parts of SimGrid
» Example: See everything by using —log=root.thres:debug (demo)
> List of all existing channels: doc/html/group__XBT__log__cats.html

Martin Quinson Treats and Tricks, or use SimGrid Wannabe User Manual 4/26

Trace Replay: Separate your applicative workload

C code

static void action_blah(xbt_dynar_t parameters) { ... }
static void action_blih(xbt_dynar_t parameters) { ... }
static void action_bluh(xbt_dynar_t parameters) { ... }

int main(int argc, char *argv[]) {
MSG_global_init(&argc, argv);
MSG_create_environment (argv[1]);
MSG_launch_application(argv[2]);
/* No need to register functions as usual: actions started anyway */
MSG_action_register("blah", blah);
MSG_action_register("blih", blih);
MSG_action_register("bluh", bluh);

MSG_action_trace_run(argv[3]); // The trace file to run

Deployment

<?xml version=’1.0’7> Trace file
<!DOCTYPE platform SYSTEM "simgrid.dtd">
<platform version="2">
<process host="Tremblay" function="toto"/>
<process host="Jupiter" function="tutu"/>
<process host="Fafard" function="tata"/>
</platform>

tutu blah toto 1el0
toto blih tutu
tutu bluh 12

toto blah 12

Martin Quinson Treats and Tricks, or use SimGrid Wannabe User Manual 5/26

Trace Replay (2/2)

Separating the trace of each process
> Because it's sometimes more convinient (for MPI, you'd have to merge them)
» Simply pass NULL to MSG_action_trace_run()

> Pass the trace file to use as argument to each process in deployment

<?xml version=’1.0’7>
<!DOCTYPE platform SYSTEM "simgrid.dtd">
<platform version="2">
<process host="Tremblay" function="toto">
<argument value="actions_toto.txt"/>
</process>
<process host="Jupiter" function="tutu">
<argument value="actions_tutu.txt"/>
</process>
</platform>

Action Semantic
» This mecanism is completely agnostic: attach the meaning you want to events
> In examples/actions/action.c, we have pre-written event functions for:

» Basics: send, recv, sleep, compute
» MPI-specific: isend, irecv, wait, barrier, reduce, bcast, allReduce

Martin Quinson Treats and Tricks, or use SimGrid Wannabe User Manual 6/26

SimGrid is not a Simulator

Input ‘ 1 Simulator
Ly J tats)
Parameters | | pplication ,'4 stats

i 3 | :
. Applicative | ' | ; . C o
' Workload |~ Simulation Kernel j) :

ﬁ : 77777777777777777777777777]
L / 7777777 I 777777 \ 777777 | visu)
Platform J AvailibilityJ ApplicationJ

Topology Changes | Deployment

That’s a Generic Simulation Framework

Martin Quinson Treats and Tricks, or use SimGrid Wannabe User Manual 7/26

Qutline

@ Wannabe User Manual
Configuring and Installing
Configuring your simulators
Trace Replay
Some “Do not ...

”

advices

Martin Quinson Treats and Tricks, or use SimGrid Wannabe User Manual 8/26

Do not mix results between releases!

Main issue: The events order does change

» Models don't change, only the order of events occuring at the same time
It may/will change your application’s behavior if

> In a master/slaves sending tasks in a round/robin

» In a scheduling algorithm considering the ready tasks in order

» In almost every application, actually

Why that?

» We improve the data structure used for future event set
» We sort the events to not traverse the ones which cannot be done yet
» We do lazy evaluation

v

Side note
» When this happens, there is a big fat warning in the Changelog

> (you should read it anyway, don't wait for the next SUD to get infos)
Optimistic note

» The MSG interface not changed since 2002 (backward compatibility)
> At least with MSG_USE_DEPRECATED

Martin Quinson Treats and Tricks, or use SimGrid Wannabe User Manual 9/26

Do not use the <cluster> tag

But you got it already, right?

» We know the issue, will fix it at some point

Martin Quinson Treats and Tricks, or use SimGrid Wannabe User Manual 10/26

Stop using MSG task put / MSG task get! Now!

Solving the rendez-vous issues in task exchanges

» MSG have a strange interaface somehow mimicking BSD sockets ports

» You send to host:port, as in BSD
> but 2 people could send to the same (which is somehow ok)
> and 2 people could get from the same (which is annoying)

» Now, we have a much cleaner interface, based on mailboxes

Mailboxes

» Mailboxes are represented by a string (whatever you would like)

» You send stuff to a mailbox; you receive stuff from a mailbox

» Where in network the sender and receiver are do not matter for rendez-vous
» The communication timings of course take their locations into account
| 4

This makes the user code ways easier

v

| know that the examples were not all updated yet, sorry

v

Read examples/msg/masterslave/masterslave mailbox.c, ignore others

Martin Quinson Treats and Tricks, or use SimGrid Wannabe User Manual 11/26

The cleaner Master/Workers in MSG with mailboxes

The master has a large number of tasks to dispatch to its workers for execution

int master(int argc, char *argv[1) {

int number_of_tasks = atoi(argv[1]); double task_comp_size = atof (argv[2]);
double task_comm_size = atof(argv[3]); int workers_count = atoi(argv[4]);
char mailbox[80]; char buff[64];

int i;

/* Dispatching (dumb round-robin algorithm) */
for (i = 0; i < number_of_tasks; i++) {
sprintf (buff, "Task_%d", i);
task = MSG_task_create(sprintf_buffer, task_comp_size, task_comm_size, NULL);
sprintf (mailbox, "worker-%d",i % workers_count);
INFO2("Sending %s” to mailbox %s¥, task->name, mailbox);
MSG_task_send(task, mailbox);
¥

/* Send finalization message to workers */
INFOO("All tasks dispatched. Let’s stop workers");
for (i = 0; i < workers_count; i++) {
sprintf (mailbox,"slave-%1d",i % slaves_count);
MSG_task_send (MSG_task_create("finalize", 0, 0, 0), mailbox);
¥

INFOO("Goodbye now!"); return O;
}

Martin Quinson Treats and Tricks, or use SimGrid Wannabe User Manual 12/26

The MSG master/workers example: the worker

int worker (int argc, char *argv[1) {

m_task_t task; int errcode;
int id = atoi(argv[1]);
char mailbox[80];

sprintf (mailbox, "worker-%d",id) ;

while(1) {
errcode = MSG_task_receive(&task, mailbox);

xbt_assertO(errcode == MSG_OK, "MSG_task_get failed");

if (!strcmp(MSG_task_get_name(task),"finalize")) {
MSG_task_destroy(task);
break;

}

INFO1("Processing ’%s’", MSG_task_get_name(task));
MSG_task_execute (task) ;
INFO1("’%s’> done", MSG_task_get_name(task));
MSG_task_destroy(task) ;

}

INFOO("I’m done. See you!");
return 0;

}

Martin Quinson Treats and Tricks, or use SimGrid

Wannabe User Manual

13/26

The MSG master/workers example: deployment file

Specifying which agent must be run on which host, and with which arguments

XML deployment file

<?xml version=’1.0’7>
<!DOCTYPE platform SYSTEM "surfxml.dtd">
<platform version="2">

<!-- The master process (with some arguments) -->
<process host="Tremblay" function="master">
<argument value="6"/> <!-- Number of tasks -->
<argument value="50000000"/> </-- Computation size of tasks -->
<argument value="1000000"/> <!/-- Communication size of tasks -->
<argument value="3"/> <!-- Number of workers —-->
</process>
<!-- The worker process (argument: mailboxz number to use) -->

<process host="Jupiter" function="worker"><argument value="0"/></process>
<process host="Fafard" function="worker"><argument value="1"/></process>
<process host="Ginette" function="worker"><argument value="2"/></process>

</platform>

Thanks to mailboxes, the master don't have to know where the slaves live
(nor the contrary)

Martin Quinson Treats and Tricks, or use SimGrid Wannabe User Manual 14/26

The MSG master/workers example: the main()

Putting things together

int main(int argc, char *argv[1) {
MSG_global_init (&argc,argv) ;

/* Declare all existing agent, binding their name to their function */
MSG_function_register("master", &master);
MSG_function_register("worker", &worker);

/* Load a platform instance */
MSG_create_environment ("my_platform.xml") ;
/* Load a deployment file */
MSG_launch_application("my_deployment.xml") ;

/* Launch the simulation (until its end) */
MSG_main();

INFO1("Simulation took %g seconds",MSG_get_clock());

Martin Quinson Treats and Tricks, or use SimGrid Wannabe User Manual 15/26

Qutline

@ The bindings
Java
Lua
Ruby

Martin Quinson Treats and Tricks, or use SimGrid

The bindings

16/26

The bindings

Some people don't like coding in C
» We have some Java bindings since 2008 at least
» We have some Lua bindings
» We have some Ruby bindings

Why these languages?
» Every potential intern knows Java (I guess)
> Lucas (the office next to mine) is a very effective Ruby lobbyist

» Lua is said to allow very efficient bindings with C

“Will you add my favorite language?”
» We could, but it's rather time consuming (threading mess, at least)
> I'm not willing to start a collection here (Medhi's time is limited)

= Patch welcome (and | wish you good luck; we see it in next SUD)

Martin Quinson Treats and Tricks, or use SimGrid The bindings 17/26

The bindings

Some people don't like coding in C

» We have some Java bindings since 2008 at least
> We have some Lua bindings since March 23. 2010
» We have some Ruby bindings since ... April 7. 2010

Why these languages?
» Every potential intern knows Java (I guess)
> Lucas (the office next to mine) is a very effective Ruby lobbyist

» Lua is said to allow very efficient bindings with C

“Will you add my favorite language?”
» We could, but it's rather time consuming (threading mess, at least)
> I'm not willing to start a collection here (Medhi's time is limited)

= Patch welcome (and | wish you good luck; we see it in next SUD)

Martin Quinson Treats and Tricks, or use SimGrid The bindings 17/26

Master/slaves in Java (1/2)

import simgrid.msg.*;
public class BasicTask extends simgrid.msg.Task {
public BasicTask(String name, double computeDuration, double messageSize) {
super (name, computeDuration, messageSize) ;
}
}

public class FinalizeTask extends simgrid.msg.Task {
public FinalizeTask() {
super ("finalize",0,0);
}
}

public class Worker extends simgrid.msg.Process {
public void main(String[] args)
throws TransferFailureException, HostFailureException,
TimeoutException, TaskCancelledException {
String id = args[0];

while (true) {
Task t = Task.receive("worker-" + id);
if (t instanceof FinalizeTask)

break;
BasicTask task = (BasicTask)t;
Msg.info("Processing ’" + task.getName() + "’");
task.execute();
Msg.info("’" + task.getName() + "’ done ");
}
Msg.info("Received Finalize. I’m done. See you!");

o}

v

Martin Quinson Treats and Tricks, or use SimGrid The bindings 18/26

Master/slaves in Java (2/2)

import simgrid.msg.*;
public class Master extends simgrid.msg.Process {
public void main(String[] args) throws MsgException {
int numberOfTasks = Integer.valueOf (args[0]).intValue();
double taskComputeSize = Double.valueOf (args[1]).doubleValue();
double taskCommunicateSize = Double.valueOf (args[2]).doubleValue();
int workerCount = Integer.valueOf (args[3]).intValue();

Msg.info("Got "+ workerCount + " workers and " + numberOfTasks + " tasks.");

for (int i = 0; i < numberOfTasks; i++) {
BasicTask task = new BasicTask("Task_" + i ,taskComputeSize,taskCommunicateSize);
task.send("worker-" + (i % workerCount));

Msg.info("Send completed for the task " + task.getName() +
" on the mailbox ’worker-" + (i % workerCount) + "’");
}
Msg.info("Goodbye now!");

The rest of the story
> No need to write the glue (thanks to Java introspection)
» The XML files are exactly the same (beware of capitalization for deployment)

» OQutput very similar too
Martin Quinson Treats and Tricks, or use SimGrid The bindings 19/26

Master/slaves in Lua (1/2)

function Master(...)
nb_task = argl[i];
comp_size = argl2];
comm_size = arg[3];
slave_count = arg[4]

-- Dispatch the tasks
for i=1,nb_task do

tk = simgrid.Task.new("Task "..i,comp_size,comm_size);

alias = "slave "..(i%slave_count);

simgrid.info("Master sending ’" .. simgrid.Task.name(tk) .."’ To ’" .. alias .."’");

simgrid.Task.send(tk,alias);

simgrid.info("Master done sending ’".. simgrid.Task.name(tk) .."’ To ’" .. alias .."’");
end

-- Sending Finalize Message To Others

for i=0,slave_count-1 do
alias = "slave "..i;
simgrid.info("Master: sending finalize to "..alias);
finalize = simgrid.Task.new("finalize",comp_size,comm_size);
simgrid.Task.send(finalize,alias)

end

end

Some more polishing is needed

> We'd prefer tk:send(alias) instead of simgrid.Task.send(tk,alias)

Martin Quinson Treats and Tricks, or use SimGrid The bindings 20/26

Master/slaves in Lua (2/2)

The slave

function Slave(...)
local my_mailbox="slave "..arg[1]

while true do
local tk = simgrid.Task.recv(my_mailbox);

if (simgrid.Task.name(tk) == "finalize") then
simgrid.info("Slave ’" ..my_mailbox.."’ got finalize msg");
break
end
simgrid.Task.execute (tk)
end
simgrid.info("Slave " ..my_mailbox.."’: I’m Done . See You 000 g

end

Setting up your experiment

require "simgrid"
simgrid.platform("my_platform.xml")
simgrid.application("my_deployment.xml")
simgrid.run()

simgrid.info("Simulation’s over.See you.")
simgrid.clean()

Martin Quinson Treats and Tricks, or use SimGrid The bindings

21/26

Master /slaves in Ruby (1/2)

Some mandatory headers

require ’simgrid’
include MSG

The master

class Master < MSG::Process
def main(args)

number0fTask = Integer (args[0])

taskComputeSize = Float(args[1])

taskCommunicationSize = Float(args[2])

slaveCount = Integer(args[3])

for i in 0..numberOfTask-1
task = Task.new("Task_"+ i.to_s, taskComputeSize , taskCommunicationSize);
mailbox = "slave " + (iY%slaveCount).to_s
MSG::info("Master Sending "+ task.name + " to " + mailbox)
task.send(mailbox)
MSG: :info("Master Done Sending " + task.name + " to " + mailbox)

end

for i in 0..slaveCount-1
mailbox = "slave " + i.to_s
finalize_task = Task.new("finalize",0,0)
finalize_task.send(mailbox)

end

end
end

Martin Quinson Treats and Tricks, or use SimGrid The bindings 22/26

Master /slaves in Ruby (2/2)

The slave

class Slave < MSG::Process
def main(args)
mailbox = "slave " + args[0]
while true
task = Task.receive(mailbox)
if (task.name == "finalize")
break
end
task.execute
MSG: :debug("Slave ’" + mailbox + "’ done executing task "+ task.name + ".")
end
MSG: :info("I’m done, see you")
end
end

Setting up your experiment

MSG.createEnvironment ("platform.xml")
MSG.deployApplication("deploy.xml")

MSG.run

puts "Simulation time : " + MSG.getClock .to_s
MSG.exit

Some more polishing is needed

» Exceptions on timeout/host failure and so on?

Martin Quinson Treats and Tricks, or use SimGrid The bindings 23/26

MSG bindings: performance

What about performance loss for Java?

(Warning: these values are 2 years old)

» Small platforms: ok

» Larger ones: not quite. ..

workers | 109 500 | 1,000 | 5,000 | 10,000
tasks
1,000 | native 16 19 21 2| 074
java 41 .59 .94 7.6 27.
10,000 | native 3 52 54 83| 11
java | 16 1.9 238 | 13. 40.
100,000 native 3.7 3.8 4.0 4.4 4.5
java | 14, 13. 15. 29. 77.
1,000,000 | native | 36. 37. 38. 41 40.
java | 121, | 130. | 134. | 163. | 200.

What about the others?

» It's too recent, | didn't had time to rerun the full benchs

> Very preliminary results for Master/slaves (10 slaves; 200,000 tasks):

C (native) 7s » That's improvable
Lua 10.5s > It's garbage-collected
Ruby 45s » User stack is dynamic in lua&ruby(?)
Java 47s = better scalability?
Martin Quinson Treats and Tricks, or use SimGrid The bindings 24/26

XBT from 10,000 feets

C is a basic language: we reinvented the wheel for you

—— Logging support: Log4C
XBT_LOG_NEW_DEFAULT_CATEGORY (test,
"my own little channel");
XBT_LOG_NEW_SUBCATEGORY (details, test,
"Another channel");

INFO1("Value: %d", variable);
CDEBUG3(details,"blah %d %f %d", x,y,2);

— Exception support
xbt_ex_t e;
TRY {
block
} CATCH(e) {
block /* DO NOT RETURN FROM THERE */
}

Debugging your code

» Ctrl-C once: see processes’ status
> Press it twice (in 5s): kill simulator

xbt_backtrace_display_current ()
Backtrace (displayed in thread 0x90961cO0):
---> In master() at masterslave_mailbox.c:35
---> 1In ?? ([0x4a69ba5])

Martin Quinson Treats and Tricks, or use SimGrid

Advanced data structures
» Hash tables (Perl's ones)

» Dynamic arrays, FIFOs
» SWAG (don't use); Graphs

String functions
> bprintf: malloc()ing sprintf

» trim, split, subst, diff
» string buffers

Threading support

» Portable wrappers (Lin, Win, Mac, Sim)
» Synchro (mutex, conds, semaphores)

Other

Mallocators

Configuration support

Unit testing (check src/testall)
Integration tests (tesh: testing shell)

v

vyy

Surviving in C 25/26

Conclusion: Finding the documentation

Martin Quinson Treats and Tricks, or use SimGrid Conclusion 4 26/26 >

Conclusion: Finding the documentation

User manuals are for wimps
> Real Men read some slides 'cause they are more concise
» They read the examples, pick one modify it to fit their needs
» They may read 2 or 5% of the reference guide to check the syntax

» In doubt, they just check the source code

Martin Quinson Treats and Tricks, or use SimGrid Conclusion

26/26

Conclusion: Finding the documentation

User manuals are for wimps
> Real Men read some slides 'cause they are more concise
» They read the examples, pick one modify it to fit their needs
» They may read 2 or 5% of the reference guide to check the syntax

» In doubt, they just check the source code

lusers don't read the manual either
» Proof: that's why the RTFM expression were coined out

» Instead, they always ask same questions to lists, and get pointed to the FAQ

Martin Quinson Treats and Tricks, or use SimGrid Conclusion 26/26

Conclusion: Finding the documentation

User manuals are for wimps
> Real Men read some slides 'cause they are more concise
» They read the examples, pick one modify it to fit their needs
» They may read 2 or 5% of the reference guide to check the syntax

» In doubt, they just check the source code

lusers don't read the manual either
» Proof: that's why the RTFM expression were coined out

» Instead, they always ask same questions to lists, and get pointed to the FAQ

So, where is all SimGrid documentation?

» The SimGrid tutorial is a 200 slides presentation
(motivation, models, example of use, internals)

> Almost all features of UAPI are demoed in an example (coverage testing)
> The reference guide contains a lot in introduction sections (about XBT)
» The FAQ contains a lot too (installing, visu, XML, exotic features)

» The code is LGPL anyway

Martin Quinson Treats and Tricks, or use SimGrid Conclusion 26/26

	Wannabe User Manual
	Configuring and Installing
	Configuring your simulators
	Trace Replay
	Some ``Do not ...'' advices

	The bindings
	Java
	Lua
	Ruby

	Surviving in C
	Conclusion

