#) j0LICH

FORSCHUNGSZENTRUM

~ JURECA ~

User's Manual
for the Batch System - Slurm

[Slurm integrated with Parastation]

Author Chrysovalantis Paschoulas
Support sc@fz-juelich.de

Contributors Dorian Krause, Philipp Thornig, Eric Gregory, Matthias Nicolai, Theodoros
Stylianos Kondylis, Ulrich Detert

Document version 2.0.1 (2015-Nov-03)

Table of Contents

1 ClUSEET INFOITNALION.....ccvieieiieiieeieeieeete ettt ettt e e te e teete e st e ebe e saeesae e saessseessaassseesseessseesseesnnsaeesnnens 1
1.1 INHTOAUCHION. ..ttt ettt ettt ettt e b e st s b et s st e s bt et e et e sbe e sabeeeabeeearaesane 1
1.2 CIUSEET INOGES.uvieeiiieeeiieeriteerie e et e st e ettt e st eesbe e e sitee s s bt e s sseesssseessseesnsaeesnsseessssaaeessnssssaeeesnnnns 1
1.3 Data Management - FIleSYSIOIMIS.eirutiriiriiieniierieerite et et sttt e st ste et e st e e sebeeessnseeesnnees 2
1.4 ACCESS 10 the CIUSLET......ciiuieiiiieieiieeette ettt et e ste e e sateesstae e s bt e esssaeessbaeessssaaaessnsasaseeessnnnnns 2
1.5 Shell ENVIFONMENL.....cc.ciiiiiiritiiieienterierteeitesteete sttt sstesre et st esbe e sbe st e saeebesseesseesnesaeesseesnneenns 3
1.6 IMOULES. ..ttt ettt e st e e s ta e e st eessbaeessbaeesabaessssaeesssee s sbaeesbeesennsnraaaeeans 3
Modules and Toolchains hierarchy............cccoovueiriiiiiiiiiee e 3
Using the module COMMANG..........coooiiiiiiiiiiiieiieeeeeeteest ettt sae e s sre e s saaeessaaeeeeesaannaeas 4
ACCESSING Old SOIWATE.....c..eiiiiiiiieeieetee ettt ettt s et e st e et e e s bbeeesbbeeesasbeeas 5
1.7 COMIPILETS.c..utiiiiieieiieeeie ettt et e et e s bt e st eestteessbaeesssaeenssaeessaessssaesssaesssssseeessnsnssaeesannnns 6
Compilation EXAMPIES.......ccocuiiiiiiiiiiiieieeeeet ettt ettt sttt et e st sae e st e b e s beeaees 6
1.8 Batch model & ACCOUNTINEG......ccccviiriuiiiiiieieiieirtteeeie e et e esteessteessateessaeessaeesssaessssaeesssssseeessnnans 7
2 Batch SYStem — SIUIMML.....ceiiiiiiieiiieiieeieete ettt ettt e et e st e e bt e st e bt e sabe e beesabeebeesateenbaeesnseaeas 8
2.1 SIUITII OVEIVIEW..ceuutiiiiieieiieeeiteesiteesieeesteeesireessateesssteessaeessseesssseessssaessssassssseeessssssseesssssssseeesenns 8
2.2 SIUrm CONfIGUIALION.....cccutiiitirieeiieete ettt ettt et et e st e et e e st e e bt e sabesbeesatesbeesseesabeesstesasaeeas 9
2.3 PaTTiTIONS. . .eeiieeeeiiieee ettt ettt e e e st e e e sttt eesssabteeeesabteeessasseeeeesasbaeeesssseaeesnsnsaeesesanrenaee 10
2.4 Slurm's AccoUNting Database.........cccueiruieriiiinieeiieieeeet ettt ettt sttt e st e s aeee s 11
2.5 JOD LimitS — QOS....coooiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt e e et e e e e e e e e e et aaaa 11
2.6 GeneriC Resources - GRES......coo ittt e e e e e e e e s e e 12
JOD SUDIMISSION FAlLOT...ccuviiiiiieiiiiiiiiecieece ettt s st e e sia e e s aae e e s s s eabaeeeessnssnnaaas 13
2.7 PIIOTITIES....eiiiiiiiiiiiiiiiiiiiitectc ettt aa e s bt e b e e s ab e e s b e e s ba s e e s e sabbaaeeessnnnnes 14
2.8 JOD ENVITONIMENL.....ccoiiiiiiiiieiiiieiiieeeieeeiteeeitte e st e esitessaeessteesssteesssseessseesssaesssseessssesssseesnsseesnns 15
2.9 ST ...ttt ettt ettt et b e et h e bbbt b et e bt e b e et e b et s ae e naeenee 15
UsSINg SMT 0N JURECAL.....co ottt ettt ettt e e s st e e e s sasae e e s sabtaeeeeeeeeesessssssnnnnsnsnnes 16
How t0 profit from SIMTcc.oiiiiiiieiee ettt ettt et e st e s bbe e st e e s saneas 16
2.10 ProCeSSOT AffINILY....cceeeiieiiieiieeiiieeieeie ettt et e et e e e e steeste e s beestaeesbeesseessseeseasssaensseesnssees 16
Default processor affilityocc.eerieriienieneeee ettt e 17
BiNAING t0 SOCKELS.ciiiiiiieiieiiiteiriteeriee et erte e sttt e st e e s steeesaaeesabeeesaseeesssaessssaessssessssseessssesssseeenns 18
ManUal PINMINEG.eiruieeiieieeieete ettt ettt et e st e s bt e st e s be e s st e e bt e sabesbaesabeesseesasessaesasneeennns 18
DiSabling PINMING.......ciiiiiiiiieieiieeriieeree ettt e st e st e e st e e s beessbeessasaesssssbaeesssnsssseaeessssnssees 19
3 Slurm User COMIMANGS........ceevuierierriieeieeriteeieesiteeteesitesteesteesteesseesbeesttessseesstesbeessaessesessseesssaeeanan 20
3.1 LiSt Of COMIMANGS....ccuuiritieiieeiierieeieenieeiteesteeiteesteesteesstesseesssessseesssessseesssessseesssessssssessssseessnses 20
3.2 AllOCation COMIMANGS.utieuieetierieeittenieeritesteesteesteesteesbeesbtesstee st esaseesseesssessseesseesaseeesnssaeesnses 21
SDALCH & SAILOC. ... tiiiiiiiiiieet ettt ettt e st e s ate e s ateesataesnaeesnnae 21
Generic Resources — GRES..........oiiiiieetteee ettt e st e s 24
3.3 SPaWNINgG COMIMANMS. ...ccuvtirrireeritieeriiteeniiteesitteesteeesteeessreeesseesssseessssessssseessseesssseesssseesssseesssseessnns 25
] 1)1 ST P PP 25
3.4 QUETY COMIMANAS.ceirvieirrieiiiieeisieeeitee ettt e esteeeseteessseeesseeesseesssseesssseesssseessssesssssesssssesnsssesssssnns 26
SUEUIL. ...ceeeeereeeeeureeeeeeirteeeeenreeeseartteeeesateeeasbsaeesesssaeeseeasaaeeaasnsaaeesesnsteesensateeeeassaeessnnnnnnrssssnaeaeeens 26
SVEBW .t teeetteee ettt e ettt e e e ettt e e ettt e e e et a e e e e s bt a e e e bt t e e e e bt aee e e bt e e e e bt e e e e e ataeeeeabaeeeennraeeeaaannnnranaaee 27
SITIEO. ¢ b e st sh et ettt st s e e b e e b e s ane 27
SITIAD e uvveeeeeuurreeeenurreeeasaseeeeesssaeeesassteeesasseeeesssseeessssaeesssasseeeesssssaessssseeesssassaeeessssseesssssseeesssnsnnnnnnns 29

]) U L0 SO P PP OPOPPPPPPPP 30

SCOMITOL. c.tteeuteeetee et e et e et e e et e e st eeste e e s beesabee s tbeesasaeeessteeassaeesssaeesnsaeessaesssaeessnnsssaeessnnnssneeeens 30

SSIATE. ...ttt ettt e b e et sh e et b e bt et e e st e e e bt e e beenanee 31

SCOMITOL. .. teeuteeeetee et e et e et e e ettt e st eesbe e e s bee e aaeeetbeessaeeessseeassaeesssaeensseeanssaeenssaeessnssssaaessnssnssneeeenn 34

3.6 JOb Utility COMMANAS......ceeiviiriiieiieiierieeriteeie et ete et st e et e s teesbeeste e st esabeesaessbessseesssesnsaesnnnees 34

ST 11 =T 1 OO STRRRPPUPURRRPPRP 34

E] 72| PP PP PP OPPP 35

3.7 Job Accounting COMIMANGS.........ceerueerrierriierriieeniteessiteessteeessseeessseeesseessssesssssesssssesssssesssssesssssnns 36

T [ST PP PP RPPPTR 36
SACCEIITIET e vveeereerteeeeriuteeeeeaurteeesaausteesesnsteeessssseeessssstaesesssaeessasssaeessssaeessssasaeeessssseeessssseeessssnnssnsnnn 37

3.8 Custom commands from JSC.......cccuiiiiiiiiiiiiieieiiteeeete ettt ettt ettt be e st e e senes 38
LIVIEW ..ttt ettt e st e e st e e s te e e st e et b e e e et e e et e e e bt e e e baeeebaeeaatteeeenaraaaaeeennnrraans 38
(_CPUQUOTA. ..eeeeeeuuereeeeeirtteeeeitteeseeureeeseunrteeseusaeeesesnraeeseesateessassnaessessraeeseassteesannssaessennsanesesnnsneessns 39

O ¥ Y (ol 1 T 0] 01T U OO RSP RRRRPPPUPPO 40
4.1 JOD SCIIPt @XAMPIES....c.utiiiiiriiieiierieeteete ettt sttt s bt et e st e e st e sabeesbeessabteessssaeesnnsaeesnseas 41
SETIAL JOD...eeieiiieeeeee ettt e e st e e s e e e s aaeeenaaeeeaaee e araaaaeenn 41
Paralle] JOD.....eieiieeieeee ettt sttt e e s be e aaesnbe e e baeeeane 41
(@513 110Y 1o o OSSR U PRSPPI 41

IMIPT JOD... ettt sttt et e b e st e a et h e bt et sat e bt b e e e beeeneeea 42

MPT JODS With SIMT ...ttt sttt ste et e e st e e s ba e e s baessssaeesasaeeessssasaesssnnnnns 42
HYDIIA JODS....coneieieee ettt ettt ettt s bt et e st e st e st e e st e e beesabe s abaaeeans 43
Hybrid joDS With SIMT...cc.uuiiiiiiiicieecteeceeseete ettt st e et e e s sbae e sae e e sbaessasaaaeessnnnnns 43

INEEL IMIPT JODIS....ciniieiieeeieete ettt sttt et et s e e bt e st e e st e st e e baessseessasbeesnnsaeeannns 44

4.2 JOD SEBPS..uuteeuieieiiieeeiteeniteesiteeesitteesteeesttee e ate e e bte e st e e e bt e e bae e abae et eeeaateeeateeeantaaaeeeennraaaaeeennne 44
4.3 DependenCy ChaiNS........cceeciiriiiriieiiieeieerte ettt st e et e s te e bt e sbe s bt e sbeesstesssessssesasesssnsaaesnns 45
A4 JOD ATTAYS.ceiutiiieieeiiieeeiiee et e este e et e e e stteestaee s teeessteeessseeesssaesssseessssessssseessaeesssaeessseeessseeenssneaeenns 46
4.5 MPMD ...ttt ettt sttt sttt st b et b et ae ettt eeht bt et s aeesbeenaeereeea 47

5 INEETACHIVE JODS....uiiiiiiiiiiieeeieeecieeestt ettt eet e st e e st e e s bt e e s te e s s bt e ssaseessasaessssaesesssnssaaessssssssaeessnnnnns 48
5.1 INLETaCtiVE SESSION.....ciiiuiiiiiiiiiiiiiiiiieire ettt e a e s b e s an e e s nnne e 48
5.2 X FOIWAIAINIG. .. .eeeeutieeiiieiiieeeiieeeiteeeiteesteeseieessiteessieeessateessaseessseesssseessseeesssssaesssnssssseesssnssssnees 49

6 From Moab/Torque t0 SIUIMM......ccc.iiiiiriieiienieeieeeieeit ettt ettt ste e st e bt e saae s esbaeesabeeesssnaeesnneas 50
6.1 Differences between the SYStEMIS.......cccvieiiiiiiiriieiiierieeie ettt te e e be e e sbe s e e e esnes 50
6.2 User Commands COMPATISON......ccecuerrueeriueeruierierrieesieesstessessseessessseesssessseesssessseesssessseesssesssassnnns 51

7 EXAIMIPLES. .. uetiiiiieeeiieeeiee ettt e e st e e st e e st e e s bt e e st e e et e e et b e e e ab e e e tbe e e aaeeeateeebeee e bt eeebaeeantrraeeeeans 52
7.1 TemPIate JOD-SCIIPLS. .ccuteruieriirrieeitterteeite et et et e e et e st e e ate s bt e saeesbeesatessbeessbeeesasbeeesasseeenasneeas 52
7.2 IMIOQUIES.....coneveeeiieeeiteeetee ettt ettt et e e st e e s be e e sataeesabeessabeesssaeesssseesssaeenssaesnssaessseaeeesnnsssnes 52
7.3 COMPILAtION. c..utiitiiiieeiteeee ettt ettt et e st e st e e bt e st e e st e s b e e ateesbeessaesbaesensbaesnnnees 57
7.4 JOD SUDIMIISSION. ..cciutiiiiiiieriiieeiiieeeitteeetteeeit e et e st e s ste e s s teesateeesteesssseesssseesssaaeessanssssaeessnsnssneens 58
7.5 JOD COMUTOL....ciiiiiiiiiiiteteetetee ettt sttt ettt et b et s e b e et e s st e b e e bt e e smaeeenaeenneas 59
7.6 QUETY COMIMANAS.cceuveerrureeririeerireeerireeesteeesteessreessstesssseesssseesssseesssseesssssessssessssseesssseessseesssssssees 59
7.7 Accounting COMIMANGS..........ceecutirieriiienieriieentesrteesteesteestesteesitesseessaesseesstessseessssseessssseessssseens 62

8 CRANGEIOE. ... ceiueieeieieite ettt ettt et e st e e e st e s s ae e et b e e et e e et e e et b e e e aa e e e aaee e e ntaaeeeeennrraaeeeans 64

1 Cluster Information

1.1 Introduction

After more than five years of successful operation the JUROPA general-purpose supercomputer has
been shutoff on the 24th of June 2015. The successor JURECA (Juelich Research on Exascale Cluster
Architectures) is projected to reach a peak performance of about 1.8 PFLOPS per second once fully
installed. In order to minimize the service interruption for users the system is installed in two phases.
The first phase was consisted by 260 compute nodes and since 2nd of November 2015 the second
phase is available and in production including in total 1884 compute nodes.

The JURECA system is based on Intel Xeon E5-2680 v3 Haswell CPUs with 12 cores per CPU and
utilizes the scalable V-class server architecture of T-Platforms. Compute nodes are dual-socket systems,
with 24 cores per node. Different sizes of DDR4 memory will be offered in the full system. The normal
(thin) nodes are equipped with 128 GiB memory. For applications with higher memory demands two
other types of nodes with 256 GiB per node and 512 GiB per node are available. Accelerated
applications can take advantage of the compute nodes equipped with NVIDIA K80 GPUs. Several
login nodes are available. Additionally, visualization nodes with large main memory and latest
generation NVIDIA K40 GPUs for pre-/post-processing are available. The JURECA compute nodes are
interconnected with Mellanox EDR 100 Gbps technology organized in a fully non-blocking fat tree.

The WORK and HOME filesystems are mounted from JUST storage cluster offering site-wide access
to user data. JURECA also features major advances in the software stack. The system is launched with
the latest CentOS 7 Linux enterprise distribution, a Parastation MPI implementation with MPI-3
support and a hierarchical module environment for the simplified usage of the software offerings by
JSC. The batch system on JURECA is the open-source Slurm workload manager together with the
Parastation resource management, which has been a core element of the JUROPA software stack.

1.2 Cluster Nodes

The available compute nodes of JURECA are:

Type Hostname CPU Cores(SMT) | RAM Resources
(Node Num.)
Thin jrc[0036-0455,0491-0940,1138- 2x Intel Xeon 24 (48) 128 GB mem128
Compute 1382,1395-1884] E5-2680 v3 (Haswell) DDR4
(1605) @ 2.5GHz
Fat type-1 jrc[1010-1137] 2x Intel Xeon 24 (48) 256 GB mem128, mem256
(128) E5-2680 v3 (Haswell) DDR4
@ 2.5GHz
Fat type-2 jrc[0946-1009] 2x Intel Xeon 24 (48) 512 GB mem512
(64) E5-2680 v3 (Haswell) DDR4
@ 2.5GHz
GPUs jrc[0001-0035,0456-0490,0941-0945] 2x Intel Xeon 24 (48) 128 GB mem128, gpu:4
(75) E5-2680 v3 (Haswell) DDR4 s 3
@ 25GHz (2x Nvidia K80)
Visualization jrC[1383-1392] 2x Intel Xeon 24 (48) 512 GB mem5 12’ gpu:2
type-1 E5-2680 v3 (Haswell) DDR4 idi
(10) @ 2.5GHz (2x Nvidia K40)
Visualization jrc[1393-1394] 2x Intel Xeon 24 (48) 1TB mem1024, gpu:2
type-2 ES5-2680 v3 (Haswell) DDR4 i3
(2) @ 2.5GHz (2x Nvidia K40)

1

JURECA's login nodes:

(TYI:; External Hostname Internal Hostname CPU Cores(SMT) RAM

Node

Num.)

Login jureca.fz-juelich.de jri[01-12] 2x Intel Xeon 24 (48) 128 GB

(12) jureca[01-12].fz-juelich.de E5-2680 v3 (Haswell) DDR4
@ 2.5GHz

The external hostname “jureca.fz-juelich.de” is an alias for redirecting to the login nodes in a round-
robin fashion.

1.3 Data Management - Filesystems

On JURECA we provide GPFS shared filesystems. We provide home, scratch and archive file-systems,
which have different purposes. The home filesystems are supposed to be used for user's data storage
with the safety of backups (TSM backup), the scratch filesystem should be used as a fast storage for the
data produced by the jobs (no backup and purged regularly) and the archive ones are to be used for
long-term data archiving. Here is a small matrix with all filesystems available to the users:

Filesystem Mount Point | Description
GPFS $WORK /work Scratch filesystem — without backup
GPFS $HOME /homea Home filesystems — with TSM backup
/homeb
/homec
GPFS $ARCH /arch Archiving filesystems — with TSM backup. Available only on the
/arch2 login nodes.
GPFS $DATA /data Special filesystem used only by certain groups — with TSM backup
User local binaries (GPFS) | /usr/local Software repository available via module commands

The GPFS filesystems on JURECA are mounted from JUST storage cluster. JUQUEEN and JUDGE
users should be aware that they will work in the same $SHOME and $WORK directories as on these
production machines. Please note that JSC has already done an automatic migration of all user data
from Lustre to GPFS for $HOME and $WORK directories. The old home can be found under “~/juropa/”.

1.4 Access to the Cluster

Users can have access to the login nodes of the system only through SSH connections. There are 12
login nodes in total. There is configured a round-robin shared hostname between the login nodes:
jureca.fz-juelich.de. The users can still connect to specific login nodes by using the individual
hostname of each node: jureca[01-12].fz-juelich.de For example, to connect to the system, users must
execute from their workstation the following command:

$ ssh username@jureca.fz-juelich.de

or to a specific login node (the second one for example):

$ ssh username@jureca02.fz-juelich.de

mailto:username@jureca02.fz-juelich.de
mailto:username@jureca.fz-juelich.de
mailto:username@jureca.zam.kfa-juelich.de
mailto:username@jureca.zam.kfa-juelich.de
mailto:username@jureca.zam.kfa-juelich.de
mailto:username@jureca.zam.kfa-juelich.de

It is not possible to login by suppling username/password credentials. Instead, password-free login
based on SSH key exchange is required. The public/private ssh key pair has to be generated on the
workstation you are using for accessing JURECA. On Linux or UNIX-based systems, the key pair can
be generated by executing:

$ ssh-keygen -t [dsa|rsa]

It is required to protect the SSH key with a non-trivial pass phrase to fulfill the FZJ security policy. The
generated public ssh key contained in the file “id_dsa.pub” or “id_rsa.pub” on user's workstation
must be uploaded through the web interface from Dispatch when initially applying for a user account
on JURECA system. This SSH key afterwards will be automatically stored in the file
“$SHOME/ .ssh/authorized keys” on the cluster.

1.5 Shell Environment

The default shell for all users on JURECA is BASH (/bin/bash). After a successful login, user's shell
environment is defined in files “$HOME/.bash_profile” and “$HOME/.bashrc”. Since the GPFS
filesystems are shared between different clusters in JSC, that means the users' home directories are also
shared on all system where the users have access to. This makes it more difficult for the users to create
the correct or desired shell environment for each system. In order to solve this issue, a file has been
created on all systems which contains a string with the system's name. The file is:

/etc/FzJ/systemname

This file is available on all login and compute nodes. The users can read this file and depending on the
system they are logged-in they can set the desired environment. On JURECA the string that is stored in
that file is “jureca”.

1.6 Modules

The installed software on JURECA is organized through a hierarchy of modules. Loading a module
adapts your environment variables to give you access to a specific set of software and its dependencies.
The hierarchical organization of the modules ensures that you get a consistent set of dependencies, for
example all built with the same compiler version or all relying on the same implementation of MPI.
The module hierarchy is built upon toolchains. Toolchain modules in the lowest level contain just a
compiler suite (like Intel compilers icc and ifort). Toolchains in the second level contain a compiler
suite and a compatible implementation of MPI. The third and highest level contains "full toolchains",
with a compiler suite, an MPI implementation, and compatible mathematical libraries such as
SCALAPACK. An application is only accessible to the user when its module is loaded. You can load
the application module only when the toolchain modules containing its dependencies are loaded first.

Modules and Toolchains hierarchy

If you know the dependencies of the application you would like to run, you can simply load a
Toolchain module bundle from one of the three levels: Compilers, Compilers+MPI, or FullToolchains.

Here is a quick reference to the tools provided by each toolchain module:

Type Modules available

Compilers GCC: Gnu compilers with frontends for C, C++, Objective-C, Fortran, Java & Ada
ifort: Intel Fortran compiler

icc: Intel C and C++ compilers

iccifort: icc/ifort (Intel C and Fortran compilers together)

Compilers+MPI |gpsmpi2: GCC + Parastation MPICH MPI
ipsmpi2: icc/ifort + Parastation MPICH MPI
iimpi: icc/ifort + Intel MPI

FullToolchains | gpsolf: gpsmipi + OpenBLAS, FFTW and ScaLAPACK
intel-para: ipsmpi2 + Intel Math Kernel Library (imkl)
intel: iimpi + Intel Math Kernel Library (imkl)

Using the module command

Users should load, unload and query modules though the module command. Several useful module
commands are:

Command Description

module avail Shows the available toolchains and what modules are compatible
to load right now according to the currently loaded toolchain.

module load <modname>/<modversion> Loads a specific module. Default version if it is not given.

module list Lists what modules are currently loaded.

module unload <modname>/<modversion> |{Unloads a module.

module purge Unloads all modules

module spider <modname> Finds the location of a module within the module hierarchy.

As we said above, in order to load a desired application module it is necessary first to load the correct
toolchain. Therefore, preparing the module environment includes two steps:

1. First, load one of the available toolchains. The intel-para toolchain (from the Fulltoolchains) has
the most supported software at this moment.

2. Second, load other application modules, which where built with currently loaded toolchain.
Following we will give some examples of the module command:

List the available toolchains:

$ module avail
———————————————————— /usr/local/software/jureca/TC/FullToolchains ——=—————————m———o—e—e——o
gpsolf/2015.06 intel/2015.07 (D) intel-para/2015.06 intel-para/2015.07 (D)

————————————————————— /usr/local/software/jureca/TC/Compilers+MPIl ————————m—mmemmmmmmmo—e
gpsmpi/2015.06 iimpi/2015.07 (D) ipsmpi/2015.06-mt ipsmpi/2015.07-mt

——————————————————————— /usr/local/software/jureca/TC/Compilers ———-————————m—mmm—mm————o
GCC/5.1.0 (D) icc/2015.3.187 (D) iccifort/2015.3.187 (D)

Load a toolchain (without version the default is used):

$ module load intel-para

List all loaded modules from the current toolchain:

$ module list
Currently Loaded Modules:

1) zlib/.1.2.8 7) GCC-bare/.4.9.3 13) ifort/2015....

2) binutils/.2.25 8) popt/.1l.16 14) psmpi/5.1.4-1

3) ncurses/.5.9 9) pscom/.5.0.45-1 15) imk1/11.2.3.187

4) libatomic_ops/.7.4.2 10) ipsmpi/2015.07 16) intel-para/2015.07
5) gc/.7.4.2 11) iccifort/2015.3.187-GCC-bare-4.9.3

6) util-wrapper/1l.1 12) icc/2015.3.187-GCC-bare-4.9.3

List all application modules available for the current toolchain:

$ module avail
-—-- /usr/local/software/jureca/Stage2/modules/all/Toolchain/intel-para/2015.07 -----
ABINIT/7.10.2
ASE/3.8.1.3440-Python-2.7.10
Autoconf/2.69
Automake/1.13
Automake/1.15 (D)
Bison/3.0.2
Boost/1.58.0-Python-2.7.10
BuildEnv/defaults
CD0O/1.6.9
CMake/3.1.3

Get information about a package:

$ module spider Boost # or module spider Boost/1.56.0

Load an application module:

$ module load Boost/1.56.0

Unload all currently loaded modules:

$ module purge

Accessing Old Software

Software on JURECA is organized in stages. By default only the most recent stage with up-to-date
software is available. To access older (or in development) versions of software installations, you must
manually extend your module path using the command:

$ module use /usr/local/software/jureca/<Other-Stage>

1.7 Compilers

On JURECA we offer some wrappers to the users, in order to compile and execute parallel jobs using
MPI. Different wrappers are provided depending on the MPI version that is used. Users can choose the
compiler's version using the module command (see the modules section).

The following table shows the names of the MPI wrapper procedures for the Intel compilers as well as
the names of compilers themselves. The wrappers build up the MPI environment for your compilation
task, so please always use the wrappers instead of the compilers:

Programming Language Compiler Parastation MPI Wrapper | Intel MPI Wrapper
Fortran 90 ifort mpif90 mpiifort

Fortran 77 ifort mpif77 mpiifort

C++ icpc mpicxx mpicpc

C icc mpicc mpiicc

In the following table we present some useful compiler options that are commonly used:

Option Description

—openmp Enables the parallelizer to generate multi-threaded code based on the OpenMP
directives.

-9 Creates debugging information in the object files. This is necessary if you want to
debug your program.

-0[0-3] Sets the optimization level.

-L A path can be given in which the linker searches for libraries

-D Defines a macro.

-U Undefines a macro.

-I Allows to add further directories to the include file search path.

-H Gives the include file order. This options is very useful if you want to find out which
directories are used and in which order they are applied.

-SOX Stores useful information like compiler version, options used etc. in the executable.

-ipo Inter-procedural optimization.

-axCORE-AVX2 Indicates the processor for which code is created.

-help Gives a long list of quite a big amount of options.

Compilation Examples
Compile an MPI program in C++:
$ mpicxx -02 -o mpi_prog program.cpp

Compile a hybrid MPI/OpenMP program in C:

$ mpicc -openmp -o mpi_prog program.c

1.8 Batch model & Accounting

Following, we present the main policies concerning the batch model and accounting that are applied on
JURECA:

Job scheduling according to priorities. The jobs with the highest priorities will be scheduled
next.

Backfilling scheduling algorithm. The scheduler checks the queue and may schedule jobs with
lower priorities that can fit in the gap created by freeing resources for the next highest priority
jobs.

No node-sharing. The smallest allocation for jobs is one compute node. Running jobs do not
disturb each other.

For each project a Linux group is created where the users belong to. Each user has available
contingent from one project only.

CPU-Quota modes: monthly and fixed. The projects are charged on a monthly base or get a
fixed amount until it is completely used.

Contingent/CPU-Quota states for the projects: normal, low-contingent, no-contingent.

Contingent priorities: normal > lowcont > nocont. Users without contingent get a penalty to the
priorities of their jobs, but they are still allowed to submit and run jobs.

2 Batch System - Slurm

2.1 Slurm Overview

Slurm is the Batch System (Workload Manager) of JURECA cluster. Slurm (Simple Linux Utility for
Resource Management) is a free open-source resource manager and scheduler. It is a modern,
extensible batch system that is widely deployed around the world on clusters of various sizes. A Slurm
installation consists of several programs and daemons.

The Slurm control daemon (slurmctld) is the central brain of the batch system, responsible for
monitoring the available resources and scheduling batch jobs. The slurmctld runs on an administrative
node with a special setup to ensure availability of the services in case of hardware failures. Most user
programs such as srun, sbatch, salloc and scontrol interact with the slurmctld. For the purpose of job
accounting slurmctld communicates with Slurm database daemon (slurmdbd).

Slurm stores all the information about users, jobs and accounting data in its own database. The
functionality of accessing and managing these data is implemented in slurmdbd. In our case, slurmdbd
is configured to use a MySQL database as the back-end storage. To interact with slurmdbd and get
information from the accounting database, Slurm provides commands like sacct and sacctmgr.

In contrast to the Moab/Torque combination where Moab provides scheduling and Torque performs
resource management (like batch job start or node health monitoring) Slurm combines the functionality
of the batch system and resource management. For this purpose Slurm provides the slurmd daemon
which runs on the compute nodes and interacts with slurmctld. For the executing of user processes,
slurmstepd instances are spawned by slurmd to shepherd the user processes. On JURECA cluster no
slurmd/slurmstepd daemons are running on the compute nodes. Instead the process management is
performed by psid the management daemon from the Parastation Cluster Suite which has a proven
track record on the JUROPA system. Similar to the architecture of the JUROPA resource management
system, where a psid plugin called psmom replaces the Torque daemon on the compute nodes, a plugin
of psid called psslurm replaces slurmd on the compute nodes of JURECA. Therefore only one daemon
is required on the compute nodes for the resource management which minimizes jitter (which can affect
large-scale applications). For the end-users, there is no real difference visible because of this
integration between Slurm and Parastation. Currently, psslurm is under active development by ParTec
and JSC in the context of the JuRoPA collaboration.

The Batch System manages the compute nodes, which are the main resource entity of the cluster.
Slurm groups the compute nodes into partitions. These partitions are the equivalent of queues in
Moab. It is possible for different partitions to overlap, which means that the compute nodes can belong
to multiple partitions. Also partitions can be configured with certain limits for the jobs that will be
executed. Jobs are the allocations of resources by the users in order to execute tasks on the cluster for a
specified period of time. Slurm introduces also the concept of job-steps, which are sets of (possibly
parallel) tasks within the jobs. One can imagine job-steps as smaller allocations or jobs within the job,
which can be executed sequentially or in parallel during the main job allocation.

In Figure 1 we present the architecture of the daemons and their interactions with the user commands
of Slurm.

o o — — — —— — ———

Commands

sbatch

scancel

squeue

salloc

scontrol

I
I
I
I
sinfo |
I
I
I
I

sattach | : < e ;

sstat |

sbhcast | sgather |

|
[
psslurm :

psid |

i i I
Login Nodes Compute Node Ni

2.2 Slurm Configuration

High-Availability for the main controllers slurmctld and slurmdbd.
Backfilling scheduling algorithm.

No node-sharing.

Job scheduling according to priorities.

Accounting mechanism: slurmdbd with MySQL database as back-end storage.

User and job limits enforced by QoS (Quality of Service) and some hard-limits configured in the
partition settings. There is a QoS for each contingent state: normal, lowcont, nocont and
suspended. Users without contingent are set to a different QoS and get a penalty for their job
priorities.

No preemption configured. Running jobs cannot be preempted.

Prologue and Epilogue, with pshealthcheck from Parastation. The prologue checks the status of
the nodes at job start and Epilogue cleans up the nodes after job completion.

Same limits/configurations for batch and interactive jobs (no difference between batch and
interactive jobs for Slurm, different behavior than Moab).

9

2.3 Partitions

In Slurm multiple nodes can be grouped into partitions which are sets of nodes with associated limits
(for wall-clock time, job size, etc.). These limits are hard-limits for the jobs and can not be overruled by
the specified limits in QoS's. Partitions may overlap and nodes may belong to more than one partition,
making partitions serve as general purpose queues, like queues in Moab. The following table shows
the partitions on JURECA (Phase 1) with their configured maximum limits and default values:

Partition (attr.) Limit Value
devel Maximum wall-clock time for each job 2 hours
(interactive jobs) Default wall-clock time for each job 30 minutes
(thin nodes) o) .
Minimum/Maximum number of nodes per job 1/ 8 nodes
Default number of nodes for each job 1 node

Max. number of running/submitted jobs per user

QoS dependent

batch Maximum job wall-clock time (normal/nocont) 1 day / 6 hours
(default partition) Default wall-clock time for each job 1 hour
(batch jobs)

(thin + fat type-1)

Minimum/Maximum number of nodes per job
Default number of nodes for each job

Max. number of running/submitted jobs per user

1/ 128 nodes
1 node

QoS dependent

mem512 Maximum job wall-clock time (normal/nocont) 1 day / 6 hours
(mem. bounded jobs) Default wall-clock time for each job 1 hour
(fat type-2) - : .
Minimum/Maximum number of nodes per job 1/ 32 nodes
Default number of nodes for each job 1 node
Max. number of running/submitted jobs per user QoS dependent
gpus Maximum job wall-clock time (normal/nocont) 1 day / 6 hours
(gpu acc. jobs) Default wall-clock time for each job 1 hour
(2x Nvidia K80) .) .
Minimum/Maximum number of nodes per job 1/ 32 nodes
Default number of nodes for each job 1 node
Max. number of running/submitted jobs per user QoS dependent
vis Maximum job wall-clock time (normal/nocont) 1 day / 6 hours
(gpu acc. jobs) Default wall-clock time for each job 1 hour
(2x Nvidia K40) . : .
Minimum/Maximum number of nodes per job 1/ 4 nodes
Default number of nodes for each job 1 node
Max. number of running/submitted jobs per user QoS dependent
large Same as batch except the max-nodes limit.

(overlaps with batch) Note: Normally it will be in state DOWN.

maint

Used by admins during offline maintenance.

10

The devel partition is intended for small interactive jobs focused on development and application
optimizations. The batch partition is intended for the normal production jobs. The default partition is
batch which includes the thin and the fat type-1 compute nodes. The mem512 partition is intended for
memory bounded jobs and includes the fat type-2 nodes. The gpus partition includes the nodes that are
equipped with 2 Nvidia K80 GPUs (Note: 4x nvidia devices/GPUs available on each node, because
each K80 card has 2 GPUs inside). The vis partition includes both visualization node types with 512
GB and 1024 GB memory and they are equipped with 2 Nvidia K40 GPUs. The large partition includes
the same nodes as batch and is intended to be used later for very large jobs. The maint partition is not
for normal usage, because it is used only by admins usually during off-line maintenance.

2.4 Slurm's Accounting Database

Slurm manages its own data in two different ways. First, there is a runtime engine in memory, backed-
up with state files that is managed by slurmctld and second, there is the MySQL database that is
managed by slurmdbd. Slurm stores all the important information in its MySQL database, like: cluster
information, events, accounts, users, associations, QoS and job history. An association is the
combination of cluster, account, user and partition. Associations are stored in a tree-like hierarchical
structure starting with the root node with the accounts as its children and users as children of the
accounts. In each association it is possible to specify fair-share, job limits and QoS.

To interact with slurmdbd and get accounting information from the database Slurm provides the
commands sacct and sacctmgr.

2.5 Job Limits — QoS

As we describe above, the limits of the partitions are the hard-limits that put an upper limit for the jobs.
However, the actual job limits are enforced by the limits specified in both partitions and Quality-of-
Services, which means that first the QoS limits are checked/enforced, but these limits can never go over
the partition limits.

One QoS is configured for each possible contingent status: normal, lowcont, nocont. These QoSs play
the most important role to define the job priorities. By defining those QoSs the available range of
priorities is separated into three sub-ranges, one for each contingent mode. Also one more QoS is
defined with the name suspended which will be given to all associations that belong to users/projects
that have ended and/or are not allowed to submit jobs anymore. Following we present the list with the
configured Quality-of-Services:

Name Priority | Flags MaxNodes/Job |MaxWall/Job |MaxJobs/User | MaxSubmittedJobs
normal 100,000 | DenyOnLimit| *Partition* | *Partition* (1d) 32 4096
lowcont 50,000 |DenyOnLimit| *Partition* |*Partition* (6h) 4096
nocont 0 |DenyOnLimit| *Partition* |*Partition™ (6h) 4096
suspended 0 | DenyOnLimit 0 - 0

Note: For the entries that have *Partition® as value, it means that the limits are inherited from the
Partitions where the jobs are running, in parenthesis you can see the configured QoS limits .

11

Each association in Slurm's database belongs to one user only. In each association there are two entries
regarding the QoSs. One entry with the list of available QoSs and another entry with the Default-QoS
(used when QoS is not specified with options). In every association only one available QoS is defined
(same as default) for each user depending on the contingent status. This is implemented in JSC's
accounting mechanism and the users are not allowed to change their QoS. The limits are enforced to
the users by setting the correct QoS for their association according to their contingent. Job limits are
enforced by that QoS in combination with the partition limits. If the users request allocations over the
limits then the submission will fail (flag DenyOnLimit).

2.6 Generic Resources - GRES

Slurm provides the functionality to define generic resources (GRES) for each node type. These generic
resources can be used during job submissions in order to allocate nodes with specific resources or
features. Slurm can be configured also to deny allocations which don't specify any GRES for certain
nodes or partitions and this feature is used for the some of JURECA's partitions like gpus and mem512.
The GRES configuration can be used also to extract important accounting information about the types
of resources that the users are requesting/allocating.

The following table includes all configured generic resources on JURECA:

GRES Name Description

mem128 128 GB memory on node
mem256 256 GB memory on node
mem512 512 GB memory on node
mem1024 1024 GB memory on node
gpu Node equipped with GPUs

The following table show the GRES that are configured for each node type:

Node Type List of GRES

thin mem128

fat type-1 mem128, mem256

fat type-2 mem128, mem256, mem512

gpu mem128, gpu:4

vis type-1 mem128, mem?256, mem512, gpu:2

vis type-2 mem128, mem?256, mem512, mem1024, gpu:2

As it is shown on the previous table, Slurm allows to define multiple resources for each type of nodes.
The mem* GRES is not consumable and it has one count, but for the gpu GRES it is configured a
number which defines how many GPUs are available for each node type.

12

The following table shows the partitions and the list of GRES for the nodes that are included in them:

Partition List of GRES

devel mem128

batch mem128, mem?256

memb512 memb512 (+ mem128, mem256)

gpu mem128, gpu:4

vis mem512, mem1024, gpu:2 (+ mem128, mem256)
large mem128, mem256

maint mem128, mem256, mem512, mem1024, gpu:[2,4]

During job submissions, Slurm will deny any submission when a user requests a GRES that is not
configured for the desired partition or set of nodes.

Job Submission Filter

During job submission, a submission filter is configured to take certain actions depending on the
partition and the resources that are allocated. Here is the list of the configured rules for this filter:

* When a job is submitted in the gpus partition then deny submission if no gpu GRES was
requested.

* When a job is submitted in the mem512 partition then deny submission if no mem512 GRES
was requested.

* By default, when a job is submitted and has no memXXX GRES requested then add mem128 in
the GRES list of the job. This helps us for our accounting statistics.

The GRES can be defined during submission with option “--gres=<comma separated list of gres>”
of the commands sbatch and salloc. In chapter 3.2 examples will be given on how to use the GRES
option during submissions.

13

2.7 Priorities

Slurm schedules the jobs according to their priorities, which means that the jobs with the highest
priorities will be executed next. With the backfilling algorithm though, jobs (usually small) with lower
priorities can be schedule next if they can fit and run on the available resources before the next high-
priority job is scheduled to start. Slurm has a very simple and well defined priority mechanism that
allows us to define exactly the batch model we want. Following, we present how Slurm calculates the
priorities for each job:

Job _priority = (PriorityWeightAge) * (age_factor) +
(PriorityWeightFairshare) * (fair-share_factor) +
(PriorityWeightJobSize) * (job_size factor) +
(PriorityWeightPartition) * (partition_factor) +
(PriorityWeightQOS) * (Q0S_ factor)

Slurm uses five factors to calculate the job priorities: Age, Fairshare, Job-Size, Partition and QoS. The
possible range of values for the factors is between 0.0 (min) and 1.0 (max). For each factor we have
defined a weight that is used in the job-priority equation. Following is the list of weights we have
configured:

Weight Value

WeightQOS 100,000
WeightAge 32,500
WeightJobSize 14,500
WeightFairshare 3,000
WeightPartition 0

It is clear now that QoS plays an important role for the calculation of the priorities. With the different
QoSs that have been defined, it is possible to create different priority ranges according to the
contingent of the users. Below follows a table with the priority ranges for each contingent mode:

Contingent Status | Priority Ranges

normal 100,001 — 150,000
lowcont 50,001 — 100,000
nocont 0 -50,000
suspended —

For each contingent state the available range for priorities is 50k and is calculated from three factors: a)
job age, b) job size and c) fair-share. In current setup, the partition factor is not used which means no
difference in the priorities between different partitions.

14

2.8 Job Environment

On the compute nodes the whole shell environment is passed to the jobs during submission. With some
options of the allocation commands, users can change this default behavior. The users can load
modules and prepare the desired environment before job submission, and then this environment will be
passed to the jobs that will be submitted. Of course, a good practice is to include module commands
inside the job-scripts, in order to have full control of the environment of the jobs.

2.9 SMT

Similar to the Intel Nehalem processors in JUROPA, the Haswell processors in JURECA offer the
possibility of Simultaneous Multi-Threading (SMT) in the form of the Intel Hyper-Threading (HT)
Technology. With HT enabled each (physical) processor core can execute two threads or tasks
simultaneously. The operating system thus lists a total of 48 logical cores or Hardware Threads (HWT).
Therefore a maximum of 48 processes can be executed on each compute node without overbooking.

Each compute node on JURECA consists of two CPUs, located on socket zero and one, with 12
physical cores. These cores are numbered 0 to 23 and the hardware threads are named 0 to 47 in a
round-robin fashion. Figure 2 depicts a node schematically and illustrates the naming convention.

Node

Figure 2.
15

Using SMT on JURECA

The Slurm batch system on JURECA does not differentiate between physical cores and hardware
threads. In the Slurm terminology each hardware thread is a CPU. For this reason each compute node
reports a total of 48 CPUs in the scontrol show node output. Therefore whether or not threads share a
physical core depends on the total number of tasks per node (--ntasks-per-node and --cpus-per-task)
and the process pinning.

The use of the last 24 hardware threads can be disabled with the option --hint=nomultithread of
srun command. This option leads to overbooking of the same logical cores as soon as more than 24
threads are executed. For most application, this option is not beneficial and the default value should be
used (--hint=multithread).

In chapter “4.1 Job script examples”, there are some examples about SMT.

How to profit from SMT

Processes which are running on the same physical core will share several of the resources available to
that particular core. Therefore, applications will profit most from SMT if processes running on the
same core which are complementary in their usage of resources (e.g., complementary computation and
memory-access phases). On other hand, processes with similar resource usage may compete for
bandwidth or functional units and hamper each other. We recommend to test whether your code profits
from SMT or not.

In order to test whether your application benefits from SMT one should compare the timings of two
runs on the same number of physical cores (i.e., number of nodes specified with --nodes should be the
same for both jobs): One job without SMT (t1) and one job with SMT (¢2). If t2 is lower than tI your
application benefits from SMT. In practice, t1/t2 will be less than 1.5 (e.g., a runtime improvement of
maximal 50% will be achieved through SMT). However, applications may show a smaller benefit or
even slow down when using SMT.

Please note that the process binding may have a significant impact on the measured run times t1 and t2.

2.10 Processor Affinity

Each JURECA compute node features 24 physical and 48 logical cores. The Linux operating system on
each node has been designed to balance the computational load dynamically by migrating processes
between cores where necessary. For many high performance computing applications, however,
dynamic load balancing is not beneficial since the load can be predicated a priori and process migration
may lead to performance loss on the JURECA compute nodes which fall in the category of Non-
Uniform Memory Access (NUMA) architectures. To avoid process migration, processes can be pinned
(or bound) to a logical core through the resource management system. A pinned process (or thread) is
bound to a specific set of cores (which may be a single or multiple logical cores) and will only run on
the cores in this set.

16

1 (the default) each

each task/process will be assigned to a set of cores
task, see Figure 4.

b
per

cores is not supported on JURECA and will be rejected.

the available options of srun are standard across all Slurm installations, the implementation of process

affinity is done in plugins and thus may differ between installations. On JURECA a custom pinning
implementation is used. In contrast to other options, the processor affinity options need to be directly
passed to srun and must not be given to shatch or salloc. In particular, the option cannot be specified in

the header of a batch script.
prevented - all tasks in a job step are pinned to a set of cores which heuristically determines the optimal

core set based on the job step specification. In job steps with --cpus-per-task
task is pinned to a single logical core as shown in Figure 3. In job steps with a --cpus-per-task

count larger than one (e.g., threaded applications)

Since the majority of applications benefit from strict pinning that prevents migration - unless explicitly
with cardinality matching the value of --cpus

Slurm allows users to modify the process binding by means of the --cpu_bind option of srun. While

Note: The option --cpu bind
Default processor affinity

..........................l..........l..........
...l........I.l........I.Il.......l.l.l......l.l
..
...........ll....................I...........O..
s0cocOOCOCROCROOROOCROCRRCRRCOROOCRORORRRRYl...
HO0000000C000OCOOO0000000000000000000000
2000000000000 OROROOOGOIGROIBOIBOOORBRORD
sdco0OOROOOOGOOOOOORROOORROOROOOOORRRORYS
eo000OOOOOCOOOIROOOOOOCOOROROOOOORORRD LA A AR AR 2l
eo0OOOOOOOCOIOGCOOOOOOOOOOOROOOOOOOORODRYS
I XXX RN RN RN RS RNSN RSN RRSNSENRN SR X
KOOOOOOOCOCOPCOOPOOROOROO00OOOOORORRDYO
eo0OROOOOOOOOIOROOOOOOOOOROOOORORORRBORY

00000 ROOROOOOOROOROOROROOOORRODN
oo ROGBOOOOIOOBRORORIROOBOIRORY
00O ROSROOCGOOOOROSRORREEOORRRS
0000 OOOOOOOCOIGCOOOODOROROROBRORY

eoc00OOOOOOOOOROOROOROOORROS ecocococooOOOOOORS
eo0OOOOOCOOCOOOOOOOOORORROOOY ocococoOOOOOOOORORS
0000000 OCOOOOIODORORORORROROY osesdooeOOROOBOIRS
e0000OOCOCOOCROOORORRRRRRRY ecocdcocOOOORROORRY
*.I.l........I.l........l. esoodcoROOOOOOOORY
0000000000 COGOIROOROIGOINPe 200000 COICOIOOOIROIROIRORD
..........Il...........‘. sococOOROOBOOOODOORRORY
l..........I........O.l.. eococOcOCOOOOOOORORRY
edco0OOOOOOOOIOOOOOROPoos e eocO0COOOOOOOOOOOOORORY
...................'...........l........'.......
*....I.-............O..........................I.
.....'.'........l"........'.'........-.'I......

......i...................'.....................
.....-.........‘l........l.l........-.l........-
escOeOOOOCOPIGOIOQoOROOCRPICRICOIOOOOORRORROROORRRRRRRY
.I..........l..........l.ll.......l...l......l..
*..l.
..........I.C........I..........I........I.Il...
l..........I..................."I........'.I...
..........O..............l......................
.......l.i.'......l.'..........l........l.......
....l.'.t........l..............................
*.....i.'........l.l........'.l........-.'......'
....i.i...................'.....................
...l'...........l........l.l.......l-ll......ll-
....l...l.
.I.O........l..........l.ll.......l...l....l....

...............................l................
I....“...I.“.....“..I..“.....ﬂ.....“....I“I....

A42.
17

Figure 3.
indicates that the task can be scheduled on the corresponding core. For the purpose of presentation,

JURECA node. Each column corresponds to a logical core and each row to a task/process. A red dot
stars are used to highlight cores/tasks 0, 6, 12, 18, ..

In Figure 3 we have the visualization of the processor affinity of a 48 tasks job-step on a single

* * * * * *
S0000000000000C0000000000C0000000000000000
0000000000000 0000000000000 0000000000000000000008
ecscseccoccsc o oD escscooceseoeeoROOOOOROROORORe
sscocsosccccccceooDDDDBDecccscocsonososononoeoee
sececcsccscccccccscoces sPDDDDDecsscscscsscssnene
sscocscsscsssoccccsccccocococoscPDO0Drecocococrne
¥00000000000000000000000000000000000¢00000D000000e
0000000000000 0000000000000000000000000000

Figure 4.

In Figure 4 we have the visualization of the processor affinity of a 8 tasks job-step with the option
--cpus-per-task=6 (a hybrid MPI/OpenMP job with 8 MPI processes and OMP NUM THREADS=6).
Pinning of the individual threads spawned by each task is not in the hand of the resource management
system but managed by the runtime (e.g., the OpenMP runtime library).

Note: It is important to specify the correct --cpus-per-task count to ensure an optimal pinning for
hybrid applications.

The processor affinity masks generated with the options --cpu_bind=rank and --cpu_bind=threads
coincide with the default binding scheme.

Note: The distribution of processes across sockets can be affect with the option -m of srun command.
Please see the man page of srun for more information.

Binding to sockets

With the option --cpu_bind=sockets processes can be bound to sockets, see Figure 5.

* * * * * * * *
seeccssse s s 00000000000 sesss00e
seccccccoe e eJRO00000000Deeccccec0ee e

Figure 5.

In Figure 5 we have the visualization of the processor affinity for a two tasks job-step with the option
--cpu_bind=sockets. This option can be further combined with --hint=nomultithread to restrict
task zero to cores 0 to 11 and task two to cores 12 to 23.

On JURECA, locality domains coincide with sockets so that options --cpu bind=ldoms and
--cpu_bind=sockets give the same results.

Manual pinning

For advanced use cases it can be desirable to manually specify the binding masks or core sets for each
task. This is possible using the options --cpu_bind=map_cpu and —cpu_bind=mask_cpu.
For example, the following command spawns two tasks pinned to core 1 and 5, respectively:

srun -n 2 --cpu_bind=map cpu:1l,5

18

The next command spawns two tasks pinned to cores 0 and 1 (0x3 = 3 = 20 + 21) and cores 2 and 3
(oxc = 11 = 22 + 23), respectively:

srun -n 2 --cpu_bind=mask cpu:0x3,0xC

Disabling pinning

Processor binding can be disabled using the argument --cpu_bind=none to srun. In this case, each
thread may execute on any of the 48 logical cores and the scheduling of the processes is up to the
operating system. On JURECA the options --cpu_bind=none and --cpu_bind=boards achieve the same
result.

19

3 Slurm User Commands

In this section we will give first a list of all commands with a short description and then later we will
describe with more details the functionality of each command, giving also some examples.

3.1 List of Commands

Slurm offers a variety of user commands for all the necessary actions concerning the jobs. With these
commands the users have a rich interface to allocate resources, query job status, control jobs, manage
accounting information and to simplify their work with some utility commands.

Here is the list of all Slurm's user commands:

salloc is used to request interactive jobs/allocations. When the job is started a shell (or other
program specified on the command line) is started on the submission host (login node). From the shell
srun can be used to interactively spawn parallel applications. The allocation is released when the user
exits the shell.

sattach is used to attach standard input, output, and error plus signal capabilities to a currently
running job or job step. One can attach to and detach from jobs multiple times.

sbatch is used to submit a batch script (which can be a bash, Perl or Python script). The script will be
executed on the first node in the allocation chosen by the scheduler. The working directory coincides
with the working directory of the shatch directory. Within the script one or multiple srun commands
can be used to create job steps and execute (MPI) parallel applications. Note: mpiexec is not supported
on JURECA. srun is the only supported method to spawn MPI applications. In the future the mpirun
command from Intel MPI may be supported.

scancel is used to cancel a pending or running job or job step. It can also be used to send an arbitrary
signal to all processes associated with a running job or job step.

sbcast is used to transfer a file to all nodes allocated for a job. This command can be used only
inside a job script.

sgather is used to transfer a file from all allocated nodes to the currently active job. This command
can be used only inside a job script.

scontrol is primarily used by the administrators to view or modify Slurm configuration, like
partitions, nodes, reservations, jobs, etc. However it provides also some functionality for the users to
manage jobs or query and get some information about the system configuration.

sinfo is used to retrieve information about the partitions, reservations and node states. It has a wide
variety of filtering, sorting, and formatting options.

smap graphically shows the state of the partitions and nodes using a curses interface. We recommend
llview as an alternative which is supported on all JSC machines.

sprio can be used to query job priorities.

squeue allows to query the list of pending and running jobs. By default it reports the list of pending
jobs sorted by priority and the list of running jobs sorted separately according to the job priority.

20

srun is used to initiate job steps mainly within a job or start an interactive job. srun has a wide variety
of options to specify resource requirements. A job can contain multiple job steps executing sequentially
or in parallel on independent or shared nodes within the job's node allocation.

sshare is used to retrieve fair-share information for each user.
sstat allows to query status information about a running job.
sview is a graphical user interface to get state information for jobs, partitions, and nodes.

sacct is used to retrieve accounting information about jobs and job steps. For older jobs sacct queries
the accounting database.

sacctmgr is primarily used by the administrators to view or modify accounting information in
Slurm's database. However, it allows also the users to query some information about their accounts and
other accounting information.

Note: Man pages exist for all daemons, commands, and API functions. The command option “--help”
also provides a brief summary of the available options.

3.2 Allocation Commands

sbatch & salloc

The commands sbatch and salloc can be used to allocate resources. sbatch is used for batch jobs. The
arguments for the sbatch command is the allocation options followed by the jobscript. sbatch gets the
allocation options either from the command line or from the job script (using #SBATCH directives).
salloc is used to allocate resources for interactive jobs.

Command format:
sbatch [options] jobscript [args...]

salloc [options] [<command> [command args]]

Here we present some useful options only for shatch command:

Option Description
-a <indexes> Submit a job array (set of jobs). Each job can be
--array=<indexes> identified by its index number.

--export=<env variables | ALL | NONE> | Specify which environment variables will be passed to
the job. Default is ALL.

--ignore-pbs Ignore any "#PBS" options in the job script.
--wrap=<command string> Wraps a command in a simple "sh" shell script.

-d <dependency_list> Delay the start of the job wuntil the specified
--dependency=<dependency_list> dependencies have been satisfied.

21

These three commands (sbatch, salloc and srun) share many allocation options. The most useful and
commonly used allocation options are explained in following table:

Option

Description

—--begin=<time>

Delay and schedule job after the specified time.

——cores—per—socket=<cores>

Allocate nodes with at least the specified number of
cores per socket.

-c <ncpus>
--cpus-per-task=<ncpus>

Number of logical CPUs (hardware threads) per task.
This option is only relevant for hybrid/OpenMP jobs.

-D <directory>

Set the working directory of the job.

-e <filename pattern>
—--error=<filename pattern>

Path to the job's standard error. Slurm supports format
strings containing replacement symbols such as %j
(job ID).

--gres=<list of gres>

Comma separated list of GRES.

-H
--hold

Job will be submitted in a held state (zero priority).
Can be released with “scontrol release <job_id>".

-i <filename pattern>
—-input=<filename pattern>

Connect the jobscript’s standard input directly to the
specified file.

-J <jobname>
—-job-name=<jobname>

Set the name of the job.

--mail-user

Define the mail address to receive mail notification.

—--mail-type

Define when to send a mail notifications. Valid
options: BEGIN, END, FAIL, REQUEUE or ALL.

-N <minnodes[-maxnodes]>

--nodes=<minnodes[-maxnodes]>

Number of compute nodes used by the job. Can be
omitted if --ntasks and --ntasks-per-node is given.

-n <number>
--ntasks=<number>

Number of tasks (MPI processes). Can be omitted if
--nodes and --ntasks-per-node is given.

--ntasks-per-core=<ntasks>

Number of tasks that will run on each CPU.

--ntasks-per-node=<ntasks>

Number of tasks per compute node.

-0 <filename pattern>

—--output=<filename pattern>

Path to the job's standard output. Slurm supports
format strings containing replacement symbols such as
%j (job ID).

-p <partition_ names>

--partition=<partition names>

Partition to be used. The argument can be either devel,
batch, etc on JURECA. If omitted, batch is the default.

--reservation=<name>

Allocate resources from the specified reservation.

-t <time>
--time=<time>

Maximal wall-clock time of the job.

--tasks-per-node=<n>

Same as --ntasks-per-node.

Note: srun can also be used to start interactive jobs but we suggest to use salloc. srun should be used
only to start job steps and spawn the processes (like MPI tasks) inside an allocation.

22

Implied allocation options

Depending on the combination of the allocation options that are used during submission, some other
allocation options can be omitted because they are implied and the system calculates them
automatically or the default values are used. Following there is table with these combinations:

Used options Implied options (can be omitted)
--nodes & --ntasks --ntasks-per-node
--nodes & --ntasks-per-node --ntasks
--nodes --ntasks (default is 1 task per node)
--ntasks --nodes & --ntasks-per-node
Examples:

Submit a job requesting 2 nodes for 1 hour, with 24 tasks per node (implied value of ntasks: 48):

sbatch -N2 --ntasks-per-node=24 --time=1:00:00 jobscript

Submit a job-script allocating 4 nodes with 16 tasks in total (implied: 4 tasks per node) for 30 minutes:

sbatch -N4 -nl6 -t 30 jobscript

Submit a job array of 4 jobs with 1 node per job, with the default walltime:

sbatch --array=0-3 -N1 jobscript

Submit a job-script in the batch partition requesting 64 nodes for 2 hours:

sbatch -N64 -p batch -t 2:00:00 jobscript

Submit a job without a job-script but wrapping a shell command:

sbatch -N4 -n4 --wrap="srun hostname"

Submit a job requesting the execution to start after the specified date:

sbatch --begin=2015-01-11T12:00:00 -N2 --time 2:00:00 jobscript

Submit a job requesting all available mail notifications to the specified email address:

sbatch -N2 --mail-user=myemail@address.com --mail-type=ALL jobscript

Specify a job name and the standard output/error files:

sbatch -N1 -J myjob -o MyJob-%j.out -e MyJob-%j.err jobscript

Start an interactive job and allocate 4 nodes for 1 hour:

salloc -N4 --time=60

Start an interactive job with srun and allocate 1 node for 10 minutes in devel partition:

srun -N1 -p devel -t 10 --pty -u /bin/bash -i

23

Generic Resources — GRES

As we described in chapter 2.6, generic resources has been configured for each node type. In order to
request nodes with specific GRES resources the option “--gres” must be used during submissions.
The following tables shows the combinations of GRES types that are available for each partition:

Partition List of GRES
devel MAY: --gres=meml28
batch MAY: --gres=meml28 OR --gres=mem256
mem512 MUST: --gres=mem512
gpu MAY: --gres=meml28
MUST: --gres=gpu:[l-4]
VIS MAY: --gres=mem512 OR --gres=meml024
MUST: --gres=gpu:[1l-2]
knge MAY: --gres=meml28 OR --gres=mem256
maint MAY: --gres=meml28 OR --gres=mem256 OR --gres=mem512 OR

--gres=meml024 OR —gres=gpu:[2,4]

Examples:
Submit a job requesting 2 nodes in devel partition (by default GRES mem128 will be added):

sbatch -N2 -p devel jobscript

Submit a job requesting 32 nodes in batch partition (by default GRES mem128 will be added):

sbatch -N32 -p batch jobscript

Submit a job requesting 8 nodes in batch partition with 256 GB memory:

sbatch -N8 -p batch --gres=mem256 jobscript

Submit a job requesting 4 nodes in mem512 partition (will be denied if no --gres=memb512 is given):

sbatch -N4 -p mem512 --gres=mem512 jobscript

Submit a job requesting 8 nodes and 2 GPUs per node in gpus partition (must give --gres=gpu:X):

sbatch -N8 -p gpus —gres=gpu:2 cuda-jobscript

Submit a job requesting 32 nodes and 4 GPUs per node in gpus partition:

sbatch -N32 -p gpus —gres=gpu:4 jobscript

Submit a job requesting the 2 fat visualization nodes with 2 GPUs per node in vis partition:

sbatch -N32 -p vis --gres=meml024,gpu:2 jobscript

24

3.3 Spawning commands

srun

With srun the users can spawn any kind of application, process or task inside a job allocation. It can be
a shell command, any single-/multi-threaded executable in binary or script format, MPI application or
hybrid application with MPI and OpenMP. When no allocation options are defined with srun command
the options from sbatch or salloc are inherited.

srun should be used either,
1. Inside a job script submitted by sbatch.
2. Or after calling salloc.

Note: To start an application with Parastation MPI, the users should use only srun and not mpiexec. For
Intel MPI, mpirun is not supported yet but it will be later.

Command format:

srun [options...] executable [args...]

The allocation options of srun for the job-steps are (almost) the same as for sbatch and salloc (please
see the table above with allocation options). There are also some useful options only for srun:

Option Description
--forward-x Enable X11 forwarding only for interactive jobs.
--multi-prog <filename> Run different programs with different arguments for
each task specified in a text file.
--pty Execute the first task in pseudo terminal mode.
-r <num> Execute a jobstep inside allocation with relative index
--relative=<num> of a node.
--exclusive Allocate distinct cores for each task.
Examples:

Spawn 48 tasks on 4 nodes (12 tasks per node) for 30 minutes:

srun -N4 -n48 -t 30 executable

Spawn 12 tasks on 2 nodes (6 tasks per node), specifying in a file the executables for each task:

srun -nl2 -N2 --multi-prog ./tasks.conf

./tasks.conf:
0-5 hostname
6-11 ./executable?2

Inside a job-script, execute 6 tasks on 1 node without sharing cores with other job-steps:

srun --exclusive -n6 -N1 mpi-prog

25

3.4 Query Commands

squeue

With squeue, we can see the current status information of the queued and running jobs.

Command format:

squeue [OPTIONS...]

Some of the most useful squeue options are:

Option

Description

-A <account list>
--account=<account_list>

List jobs for the specified accounts.

-a Show information about jobs and job-steps for all
--all partitions.

-r Optimized display for job arrays.

—--array

-h Do not print the header of the output.

--noheader

-i <seconds>
--iterate=<seconds>

Repeatedly print information at the specified interval.

-1
--long

Report more information.

-0 <output_format>
-—-format=<output_ format>

Specify the information that will be printed (columns).
Please read the man pages for more information.

-p <part_list>
--partition=<part_list>

List jobs only from the specified partitions.

-R <reservation name>
--reservation <reservation name>

List jobs only for the specified reservation.

-5 <sort_list>
--sort=<sort_ list>

Specify the order of the listed jobs.

--start

Print the expected start time for each job in the queue.

-t <state_list>
--states=<state_list>

List jobs only with the specified state (failed, pending,
running, etc).

-u <user_ list>
--user=<user list>

Examples:
Repeatedly print queue status every 4 seconds:

squeue -i 4

Show jobs in the devel partition:

squeue -p devel

Print the jobs of the specified user.

26

Show jobs that belong to a specific user:

squeue -u user0l

Print queue status with a custom format, showing only job ID, partition, user and job state:

squeue --format="%.18i %.9P %.8u %.2t"

Normally, the jobs will pass through several states during their life-cycle. Typical job states from
submission until completion are: PENDING (PD), RUNNING (R), COMPLETING (CG) and COMPLETED
(CD). However there are plenty of possible job states for Slurm. The following table describes the most
common states:

State Code | State Name Description

CA CANCELLED Job was explicitly cancelled by the user or an administrator. The job may or
may not have been initiated.

CD COMPLETED Job has terminated all processes on all nodes.

CF CONFIGURING |Job has been allocated resources, but is waiting for them to become ready for
use.

CG COMPLETING Job is in the process of completing. Some processes on some nodes may still
be active. Usually Slurm is running job's epilogue during this state.

F FAILED Job terminated with non-zero exit code or other failure condition.

NF NODE_FAIL Job terminated due to failure of one or more allocated nodes.

PD PENDING Job is awaiting resource allocation.

R RUNNING Job currently has an allocation. Note: Slurm is always running the prologue at
the beginning of each job before the actual execution of user's application.

TO TIMEOUT Job terminated upon reaching its walltime limit.

sview

With sview, we get a graphical overview of the cluster. It shows information about system
configuration, partitions, nodes, jobs, reservations. Some actions also are possible through the GUI. No
options are available for sview. Users can just call the command and they will get the graphical
window.

sinfo

With sinfo, we can get information and check the current state of partitions, nodes and reservations.
This command is useful for checking the availability of the nodes.

Command format:

sinfo [OPTIONS...]

27

Some of the most useful sinfo options are:

Option Description
-a Show information about all partitions.
--all
-d Show information only for the non-responding (dead)
--dead nodes.

-i <seconds>

--iterate=<seconds>

Repeatedly print information at the specified interval.

-1
--long

Report more information.

-n <nodes>
--nodes=<nodes>

Show information only about the specified nodes.

-N
--Node

Show information in a node-oriented format.

-0 <output_ format>

--format=<output format>

Specify the information that will be printed (columns).
Please read the man pages for more information.

-p <partition>

—--partition=<partition>

Show information in a node-oriented format.

-r Show information only for the responding nodes.
—--responding

-R List the reasons why nodes are not in a healthy state.
--list-reasons

-s List partitions without many details for the nodes.
--summarize

-t <states>
--states=<states>

List nodes only with the specified state (e.g. allocated,
down, drain, idle, maint, etc).

=T
--reservation

Examples:

Show information about nodes in idle state:

sinfo -t idle

Show information about the reservations.

Show information about partitions and nodes in a summarized way:

sinfo -s

List all reservations:

sinfo -R

Show jobs that belong to a specific user:

sinfo -T

Show information for partition devel:

sinfo -p devel

28

Depending on the options, the srun command will print the states of the partitions and the nodes. The
partitions may be in state UP, DOWN or INACTIVE. The UP state means that a partition will accept new
submissions and the jobs will be scheduled. The DOWN state allows submissions to a partition but the
jobs will not be scheduled. The INACTIVE state means that not submissions are allowed.

The nodes also can be in various states. Node state code may be shortened according to the size of the
printed field. A node can have also a combination of states, like IDLE+MAINT. The following table
shows the most common node states:

Shortened State | State Name Description

alloc ALLOCATED The node has been allocated.

comp COMPLETING |The job associated with this node is in the state of COMPLETING.

down DOWN The node is unavailable for use.

drain DRAINING & While in DRAINING state any running job on the node will be
DRAINED allowed to run until completion. After that and in DRAIN state the

node will be unavailable for use.

idle IDLE The node is not allocated to any jobs and is available for use.

maint MAINT The node is currently in a reservation with a flag of "maintenance".

resv RESERVED The node is in an advanced reservation and not generally available.

smap

With smap, we can get a graphical overview of the cluster. It shows information about the nodes and
the jobs that are running on them.

Command format:

smap [OPTIONS...]

Some of the most useful smap options are:

Option Description
-c Send output to the command-line, without using
——commandline curses.
-D <option> Define the display mode of smap. Please read the man
--display=<option> pages for more information.
-h Do not print the header of the output.
—--noheader
-H Show information about hidden partitions and their
--show_hidden jobs.
-i <seconds> Repeatedly print information at the specified interval.
--iterate=<seconds>
-n <node_list> Show information only for the specified nodes.
--nodes <node_list>

29

Sprio

With sprio, we can check the priorities of all pending jobs in the queue.

Command format:

sprio [OPTIONS...]

Some of the most useful sprio options are:

Option Description
-h Do not print the header of the output.
—--noheader
-Jj <job_id_list> Show information only about the requested jobs.
--jobs=<job id list>
-1 Report more information.
--long
-n Print the the normalized priority factors of the jobs.
——-norm
-0 <output_format> Specify the information that will be printed (columns).
--format=<output_format> Please read the man pages for more information.
-u <user_list> Show information about the jobs of the specified users.
--user=<user_ list>
-w Print the configured weights for each factor.
--weights

Examples:

Show information about priorities of all queued jobs in a long format:
sprio -1

Show priority information for job 777:
sprio -j 777

Show the priorities of all jobs that belong to the specified user:
sprio -u userl

Show priority information in a custom format, printing only job ID, priority and user:

sprio -o "%.7i %.10Y %.8u"

scontrol

This command is primarily used by the administrators to manage Slurm's configuration. However it
provides also some functionality for the users to manage jobs or query and get some information about
the system configuration. Here we present the way to query and get various information with scontrol:

30

Command format:

scontrol [OPTIONS...] [COMMAND...]

Some of the most useful scontrol query commands are:

Command Description

show hostlist <host_list> Return a compressed regular expression for the given
comma separated host list.

show hostlistsorted <host_list> Return a compressed and sorted regular expression for
the given comma separated host list.

show hostnames <host_regex> Expand the given regular expression to a full list of
hosts.

show job [<job_id>] Show information about all jobs or about the specified
job.

show node [<node_name>] Show information about all nodes or about the

specified node.

show partition [<partition_name>] Show information about all partitions or about the
specified one.

show reservation [<reservation_name>] Show information about all reservations or about the
specified one.

show step [<step_id>] Show information about all jobsteps or about the
specified one.

Examples:
Expand and print a list of hostnames for the specified range:

scontrol show hostname jrc[0106-0115]

Show information about the job 777:

scontrol show job 777

Show information about the node jrc0117:

scontrol show node jrc0117

Show information about the partition batch:

scontrol show partition batch

sshare

With sshare, we can retrieve fairshare information and check the current value of the fairshare factor
that is used to calculate the priorities of the jobs.

Command format:

sshare [OPTIONS...]

31

Some of the most useful options of sshare are:

Option

Description

-A <account_list>
--accounts=<account_list>

Show information for the specified accounts. By
default users belong only to one account.

-h Do not display the header in the beginning of the
--noheader output.
-1 Show more information.
--long
-p Print information in a parsable way. Delimit output
--parsable with “”, with a “|” in the end.
-P Print information in a parsable way. Delimit output
--parsable2 with “|”, without a “|” in the end.

Examples:

Print information about the user's shares in a long format:

sshare -1

Print information about the user's shares in a parsable way:

sshare -P

Print information about the user's shares without the initial header in the output:

sshare -n

32

3.5 Job Control Commands

scancel

With scancel, we can signal or cancel jobs, job arrays or job steps.

Command format:

scancel [OPTIONS...] [Jjob_id[_array id][.step_id]...]

Some of the most useful options of the scancel command are:

Option

Description

-A <account>
—-—account=<account>

Restrict the operation only to the jobs under the
specified account.

-b Send a signal to the batch job shell and its child
--batch processes.

-i Enables interactive mode. User must confirm for each
—-interactive

operation.

-n <job name>
--name=<job_name>

Cancel a job with the specified name.

-p <partition_name>
--partition=<partition name>

Restrict the operation only to the jobs that are running
in the specified partition.

-R <reservation_ name>
--reservation=<reservation_name>

Restrict the operation only to the jobs that are running
using the specified reservation.

-s <signal name>
--signal=<signal name>

Send a signal to the specified job(s).

-t <Jjob_state name>
--state=<job state name>

Restrict the operation only to the jobs that have the
specified state. Please check the man page.

-u <user_name>
——user=<user_name>

Examples:
Cancel jobs with ID 777 and 778:
scancel 777 778

Cancel jobs with the specified names:

scancel -n testjobl testjob2

Cancel job(s) only from the specified user. If no job ID
is given then cancel all jobs of this user.

Cancel all jobs in queue (pending, running, etc.) from user1:

scancel -u userl

Cancel all jobs in partition devel that belong to user1:

scancel -p devel -u userl

Cancel all jobs from user1 that are in pending state:

scancel -t PENDING -u userl

33

scontrol

The scontrol command can be also used to manage and do some actions on the jobs:

Command Description
hold <job_list> Prevent a pending job from being started.
release <job list> Release a previously held job, so it can start.
notify <job_id> <message> Send message to the standard error (stderr) of a job.
Examples:

Put jobs 777 and 778 in hold:

scontrol hold 777 778

Release job 777 from hold:

scontrol release 777

3.6 Job Utility Commands

sattach

With sattach, we can attach to a running job-step and get or manage the IO streams of the tasks in that
job-step. By default (without options) it attaches to the standard output/error streams.

Command format:

sattach [options] <jobid.stepid>

Some of the most useful options of sattach are:

Option Description
--input-filter[=]<task number> Transfer the standard input or print the standard
--output-filter[=]<task number> output/error only from the specified task.
—--error-filter[=]<task number>
-1 Add the task number in the beginning of each line of
--label standard output/error.
--layout Print the task layout information of the job-step

without attaching to its I/O streams.

--pty Run task number zero in pseudo terminal.

Examples:

Attach to the output of job 777 and job-step 1:
sattach 777.1

Attach to the output of job 777 and job-step 2, adding the task ID in the beginning of each line:
sattach -1 777.2

34

sstat

With sstat, we can get various status information about running job-steps, for example minimum,
maximum and average values for metrics like CPU time, Virtual Memory (VM) usage, Resident Set
Size (RSS), Disk I/0, Tasks number, etc.

Command format:

sstat [OPTIONS...]

Some of the most useful options of sstat are:

Option Description
-a Show information about all steps for the specified job.
--allsteps
-e Show the list of fields that can be specified with the “--
--helpformat format” option.
-i Show information about the pids for each jobstep.
—-pidformat

-j <job(.step)>
--jobs <job(.step)>

Show information for the specified jobs or jobsteps.

-n
--noheader

Do not display the header in the beginning of the
output.

-o <field list>
--format=<field list>
--fields=<field list>

Specify the comma separated list of fields that will be
displayed in the output. Available fields can be found
with “-e” option or in the man pages.

-p
--parsable
-P
--parsable?2

Examples:

Display default status information for job 777:

sstat -j 777

Print information in a parsable way. Output will be
delimited with “|”.

Display the defined metrics for job 777 in parsable format:

sstat -P --format=JobID,AveCPU,AvePages,AveRSS,AveVMSize -j 777

35

3.7 Job Accounting Commands

sacct

With sacct, we can get accounting information and data for the jobs and jobsteps that are stored in
Slurm's accounting database. Slurm stores the history of all jobs in the database but each user has

permissions to check only his/her own jobs.

Command format:

sacct [OPTIONS...]

Some of the most useful options of sacct are:

Option Description
b Show a brief listing, with the fields: jobid, status and
--brief exitcode.
-e Show the list of fields that can be specified with the “--
--helpformat format” option.

-E <end_time>
--endtime=<end time>

List jobs with any state (or with specified states using
option “--state”) before the given date. Please check
the man pages for the available time formats.

-j <job(.step)>
—-jobs=<job(.step)>

Show information only for the specified jobs/job-steps.

-1 Show full report with all available fields for each
--long reported job/job-step.

-n Do not display the header in the beginning of the
—--noheader

output.

-N <node_list>
--nodelist=<node list>

Show information only for jobs that ran on the
specified nodes.

--name=<jobname list>

Show information about jobs with the specified names.

-o <field list>
--format=<field list>

Specify the list of fields that will be displayed in the
output. Available fields can be found with “-e” option
or in the man pages.

-r <partition name>
--partition=<partition_name>

Show information only for jobs that ran in the
specified partitions. Default is all partitions.

-s <state_list>
--state=<state_list>

Filter and show information only about jobs with the
specified states, like completed, cancelled, failed, etc.
Please check the man pages for the full list of states.

-5 <start_time>
--starttime=<start time>

List jobs with any state (or with specified states using
option “--state) after the given date. The default value
is 00:00:00 of current date. Check man page for date
formats.

-X
--allocations

Show information only for jobs and not for job-steps.

36

Examples:
Show job information in long format for default period (starting from 00:00 today until now):
sacct -1

Show job only information (without jobsteps) starting from the defined date until now:

sacct -S 2014-10-01T07:33:00 -X

Show job and jobstep information printing only the specified fields:

sacct -S 2014-10-01 --format=jobid,elapsed,nnodes,state

sacctmgr

The sacctmgr command is mainly used by the administrators to view or modify accounting information
and data in the accounting database. This command provides also an interface with limited permissions
to the users for some querying actions.

Command format:

sacctmgr [OPTIONS...] [COMMAND...]

Some of the most useful commands for sacctmgr are:

Command Description
show/list* cluster Show cluster information.
show association [where user=<name>] List all visible associations or the ones for the

specified user.

show event [where node=<node_name>] List all events for all or for the specified nodes.
show gos [where name=<qgos_name>] List all or the specified QoS.
show user Show some user information, like privileges, etc.

* “show” and “list” commands are the same for sacctmgr.
Examples:
Show cluster information:

sacctmgr show cluster

Show the association of userl:

sacctmgr show association where user=userl

Print all QoSs:

sacctmgr show gos

Show the privileges of my user:

sacctmgr show user

37

3.8 Custom commands from JSC

llview

Ilview is a cluster monitoring tool implemented in JSC that shows a graphical overview of the cluster.
The nodes are grouped and presented per rack, and different coloring is used per job for each allocation
on the nodes. The GUI shows the list of all current jobs in the queue, and gives also information about
the utilization of the cluster.

Below in Figure 6 there is a screenshot of Ilview:

File Options Step 60 s M active Q Searcnlpaschoul Flmar|.' Last Update | 07/30/1511:27:02 nextin| 06s Source WWW | Help

Nodes | Running | Waiting |

4 13182/12384,
T ree: -138, 6 nds (3070 nshd)
L L #3obs [it): 85/705
Juixs13]zm nun nn s nnnnnnn nnnn | [CBUsT Userid | cpuh [wall | Class | Spec [TEnd]
O M cmo D peceeee Tt on e o R
= B 49. 42 3iek6000 1.8h of 4:30 batch n0l.p0l.t01 14:11 ¥
[T
e O 50. 42 jiek6000 1.8h of 4:30 batch nol.pol.t01 14:11
EEE T B S1. 40 3iek6000 1.8h of 4:30 batch nOl.p0l.t01 14:11
EF T B 52. 40 3iek6000 1.8h of 4:30 batch n0l.p0l.£01 14:11
= B 53. 38 jiek6000 1.8k of 4:30 batch nOl.p0L.t0L 14:11
I St isiseaas e R aan A} M 54. 38 3iek6000 1.8h of 4:30 batch nOl.p0l.t01 14:11
e T O 0 ss. 36 jiek&000 1.8h of 4:30 batch n0l.p01.£01 14:11
[T [l S6. 36 3iek6000 1.8h of 4:30 batch n0l.p0l.t01 14:11
[T T
o aRaR s mRnch Rt hataca] B 57. 34 3iek6000 1.8h of 4:30 batch nOl.p0l.£01 14:11
[ES AR AR R [s8. 34 jiek6000 1.8k of 4:30 batch n0l.p0l.t01 14:11
[T I B 59. 32 3iek6000 1.8h of 4:30 batch nOl.p0l.t01 14:11
[E T T T B &0. 32 jieké0on 1.2h of 4:30 batch nol.p0l.t01 14:11
E T T I
LT . al. 30 jiek&000 1.8h of 4:30 batch n0l.p01.£01 14:11
e T B 62. 30 3iek6000 1.8h of 4:30 batch nOl.p0l.t01 14:11
| E T T [E T T T W ss. 28 jiek6000 1.8h of 4:30 batch n0l.p0l.t01 14:11
[T E T
——— — — B 64. 28 jiek6000 1.8h of 4:30 batch nol.p0l.t0l 14:11
E T e M T m| 26 3i=k8000
[TITTTTITTITTIIIT Ceele I T =
[T 28 LTI
E T TOI CEES e T
[[T [T
[O [T ITIOT
E I [T T
[ENRR RN R DR AR R RR AR [T
ES I [T
=TT [T T
= T [I
| T T E T
[[T I
[[T I
=TT E T
E E T T I
= T | E T
(I e T
T E T
oo s e nmanannnn e nmans vl o anRRRNRRRNR NS nR pn R
LI e I
= T O e T OO
jcomm s e nunanannnnnn nunans Qs viojcom snnsnnnR RN RN nRnnn A
[N C288m LTI
(IO e = I
(= I [T 2
[T [T ITIOT
|G En s nn R nannnn [T T 209
[LTI [T
(= T [T 198
[T [T T -
18
= T [T
| T O |__ NENRNINNENENANANNNNERNEE) 17¢}
= [I &
e T E T Ep
(= E T T I f s
LT T TTTTTTITTTTTCTT] | E T 4%
B T TITTTTITI e T nl
[T E T : 1324
[0 vwicems s nm s e oo e oo N RN R AR AR AR R
1= PR (50 T .12
|0 0 [15555 51 i i i i 3| O 011010100 000 80 0 2 11
CORUSTN [T e N
C0E = T Qe LT @
[0 v s nsn nununssnnnnnn vanuns Qe vew/com annnRRRRRRR NS nRnRR R A
08T ITTIITIIIH (28ge TP]
Rack03 nack0s
b
3
#2 updates, NN e -
a
Machine: cluster (jzb01) | peak - FFLOFS B
Memory: TE, dcpus: | type = cluster »
apeed - Gz type - , |Date/Time: 07/30/15 11:27:02 "
FErames - |Usable Nodes: 258

Figure 6.

38

g_cpuquota

Job accounting is done via a central database in JSC and the information about JURECA jobs will be
completed once per day around midnight, based on information obtained from Slurm Accounting
Database. Users get information about their current quota-test status or the usage of single jobs by
using the command q_cpuquota.

Command format:

g_cpuquota [OPTIONS...]

Some useful options of the q_cpuquota commnd are:

Option Description

-2 Print usage information.

-h <cluster> Show information for the specified system (e.g. JURECA).
-J <jobID> Show accounting information for the specified job.

-t <time> Show information about jobs in the specified time period.
-d <number> Show information about jobs of the last specified days.

39

4 Batch Jobs

Users submit batch applications (usually bash scripts) using the sbatch command. In the job scripts, in
order to define the sbatch parameters #SBATCH directives must be used. The script is executed on the
first compute node in the allocation. To execute parallel MPI tasks users call srun within their script.
With srun users can also create job-steps. A job step can allocate the whole or a subset of the already
allocated resources from sbatch. With these commands Slurm offers a mechanism to allocate resources
for a certain walltime and then run many parallel jobs in that frame. The following table describes the
most common or necessary allocation options that can be defined in a job script:

Option Default value Description

#SBATCH --nodes=<number> 1 | Number of nodes for the allocation.

#SBATCH -N <number>

#SBATCH --ntasks=<number> 1 |Number of tasks (MPI processes). Can be omitted if
#SBATCH -n <number> --nodes and —ntasks-per-node are given.

#SBATCH --ntasks-per-node=<num> 1 |Number of tasks per node. If keyword omitted the
#SBATCH --tasks-per-node=<num> default value is used, but there are still available

maximum 56 CPUs per node for current allocation.

#SBATCH --cpus-per-task=<num> 1 |Number of threads/VCores per task. Used only for
#SBATCH -c <num> OpenMP or hybrid jobs.

#SBATCH --output=<path> slurm-<jobID>.out | Path to the file for the standard output.

#SBATCH -0 <path>

#SBATCH --error=<path> slurm-<jobID>.out | Path to the file for the standard error.

#SBATCH -e <path>

#SBATCH --time=<walltime> Depends on the | Requested walltime limit for the job.

#SBATCH -t<walltime> partition

#SBATCH --partition=<name> batch | Partition to run the job. Currently available: batch and
#SBATCH -p <name> devel partitions.

#SBATCH --mail-user=<email> username | Email address for notifications.

#SBATCH --mail-type=<mode> NONE | Event types for email notifications.

#SBATCH --job-name=<jobname> jobscript's name |Job name.

#SBATCH -J <jobname>

#SBATCH --gres=<list> mem128 | Generic resources.

Multiple srun calls can be placed in a single batch script. Options such as --nodes, --ntasks and
--ntasks-per-node are by default taken from the sbatch arguments but can be overwritten for each srun
invocation. If --nasks-per-node is omitted or set to a value higher than 24 then SMT (simultaneous
multi-threading) will be enabled. Each compute node has 24 physical cores and 48 logical cores.

As we described before, the job script is submitted using:

sbatch [OPTIONS] <jobscript>

On success, sbatch writes the job ID to standard out.

Note: In case some allocation options are defined in both command-line and inside the job-script, then
the options that were given as arguments in the command-line will be used and the options in the job-
script will be ignored.

40

4.1 Job script examples

Serial job

Example 1: Here is a simple example where some system commands are executed inside the job script.
This job will have the name “TestJob”. One compute node will be allocated for 30 minutes. Output will
be written in the defined files. The job will run in the default partition batch.

#!/bin/bash

#SBATCH -J TestJob
#SBATCH -N 1

#SBATCH -o TestJob-%j.out
#SBATCH -e TestJob-%j.err
#SBATCH --time=30

sleep 5
hostname

Parallel job

In order to start a parallel job, users have to use the srun command that will spawn processes on the
allocated compute nodes of the job. Options given to srun will override the allocation option from
sbatch. In case of no srun options the defined options (with #SBATCH) or the defaults will be used.

Example 2: Here is a simple example of a job script where we allocate 4 compute nodes for 1 hour.
Inside the job script, with the srun command we request to execute on 2 nodes with 1 process per node
the system command hostname in a time-frame of 10 minutes.

#!/bin/bash

#SBATCH -J TestJob
#SBATCH -N 4

#SBATCH -o TestJob-%j.out
#SBATCH -e TestJob-%j.err
#SBATCH --time=60

srun -N2 --ntasks-per-node=1 -t 10 hostname

OpenMP job

Example 3: In this example the job will execute an OMP application named “omp-prog”. The
allocation is for 1 node and by default, since there is no node-sharing, all CPUs of the node are
available for the application. The output filenames are also defined and a walltime of 2 hours is
requested. Note: It is important to define and export the variable OMP_NUM_THREADS that will be
used by the executable.

#!/bin/bash

#SBATCH -J TestOMP
#SBATCH -N 1

#SBATCH -o TestOMP-%j.out
#SBATCH -e TestOMP-%j.err
#SBATCH --time= 02:00:00

export OMP_NUM THREADS=48

/home/user/test/omp-prog

41

MPI job

Example 4: In the following example, an MPI application will start 96 tasks on 4 nodes running 24
tasks per node (no SMT) requesting a walltime limit of 15 minutes in batch partition. Each MPI task
will run on a separate core of the CPU.

#!/bin/bash

#SBATCH --nodes=4

#SBATCH --ntasks=96

#SBATCH --output=mpi-out.$%]j
#SBATCH --error=mpi-err.%j
#SBATCH --time=00:15:00
#SBATCH --partition=batch

srun -N4 --ntasks-per-node=24 ./mpi-prog

MPI jobs with SMT

On each node there are 28 real cores available and, with SMT enabled, 48 virtual cores. In order to
enable SMT the users just have to request from Slurm to allocate more than 24 CPUs on each compute
node. Following there are some examples where SMT is enabled:

Example 5: In this example we have an MPI application starting 1536 tasks in total on 32 nodes using
48 logical CPUs (hardware threads) per node (SMT enabled) requesting a time period of 20 minutes.
The batch partition is used.

#!/bin/bash -x

#SBATCH --nodes=32

#SBATCH --ntasks=1536

#SBATCH --ntasks-per-node=48 # can be omitted #
#SBATCH --output=mpi-out.$%j

#SBATCH --error=mpi-err.%j

#SBATCH --time=00:20:00

#SBATCH --partition=batch

srun ./mpi-prog

Example 6: In this example, the job script will start the program “mpi-prog” on 4 nodes using 48 MPI
tasks per node, where two MPI tasks will be executed on each physical core.

#!/bin/bash

#SBATCH --nodes=4

#SBATCH --ntasks=192 # can be omitted #
#SBATCH --ntasks-per-node=48

#SBATCH --output=mpi-out.$%]

#SBATCH --error=mpi-err.%j

#SBATCH --time=00:15:00

#SBATCH --partition=batch

srun ./mpi-prog

42

Hybrid Jobs

Example 7: In this example, a hybrid MPI/OpenMP job is presented. This job will allocate 5 compute
nodes for 2 hours. The job will have 30 MPI tasks in total, 6 tasks per node and 4 OpenMP threads per
task. On each node 24 cores will be used (no SMT enabled). Note: It is important to define the
environment variable OMP_NUM_THREADS and this must match with the value that was given to the
option “~-cpus-per-task”.

#!/bin/bash

#SBATCH -J TestJob
#SBATCH -N 5

#SBATCH -0 TestJob-%j.out
#SBATCH -e TestJob-%j.err
#SBATCH --time= 02:00:00
#SBATCH —partition=batch

export OMP_NUM THREADS=4

srun -N 5 --ntasks-per-node=6 --cpus-per-task=4 ./hybrid-prog

Example 8: In this example, there is a hybrid application which will start 2 tasks per node on 4
allocated nodes and starting 12 threads per node (no SMT). In order to set the environment variable
“OMP_NUM_THREADS”, Slurm's variable “sLurM cpus_PER TASK” is used which is defined by the option
“__cpus-per-task”.

#!/bin/bash

#SBATCH -N 4

#SBATCH -n 8 # can be omitted #
#SBATCH --ntasks-per-node=2
#SBATCH --cpus-per-task=6
#SBATCH --output=mpi-out.$%]j
#SBATCH --error=mpi-err.%j
#SBATCH --time=00:20:00

#SBATCH --partition=batch

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}
srun ./hybrid-prog

Hybrid jobs with SMT

Example 9: This example shows a hybrid application that will start 4 tasks per node on 3 allocated
nodes and starting 12 threads per task, using in total 48 cores per node (SMT enabled).

#!/bin/bash

#SBATCH --nodes=3

#SBATCH --ntasks=12

#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=12
#SBATCH --output=mpi-out.$%j
#SBATCH --error=mpi-err.%j
#SBATCH --time=00:20:00

export OMP_NUM THREADS=${SLURM CPUS PER TASK}
srun ./hybrid-prog

43

>

Example 10: This example presents a hybrid application which will execute “hybrid-prog” on 3

nodes using 2 MPI tasks per node and 24 OpenMP threads per task (48 CPUs per node).

#!/bin/bash

#SBATCH --nodes=3

#SBATCH --ntasks=6

#SBATCH --ntasks-per-node=2
#SBATCH --cpus-per-task=24
#SBATCH --output=mpi-out.$%j
#SBATCH --error=mpi-err.%j
#SBATCH --time=00:20:00
#SBATCH --partition=batch

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}
srun ./hybrid-prog

Intel MPI jobs

In order to run Intel MPI jobs user can use srun. The mpirun command is currently not supported. That
means for now the users can not export and use the environment variables from Intel MPI, because
srun does not work with them. Users will be informed when mpirun will be supported.

4.2 Job steps

In a previous chapter we described job-steps as small allocations or jobs inside the current job. Each
call of srun will create a new job-step. It is up to the users to decide how they will create job-steps. It is
possible to have one job-step after another using all the allocated nodes each time, or to have many job-
steps running in parallel. Instead of submitting many single-node jobs, known as farming, it is
suggested to the users to do farming using job-steps inside a single job. In this case, since all CPUs are
available to the job, the only bounding factor is the memory per task (and the walltime). The users will
be accounted for all the nodes of the allocation regardless if all nodes are used for job-steps or not.

Example 11: In the following example it is presented how to execute MPI programs in different job-
steps sequentially inside a job allocation. In total 4 nodes are allocated for 2 hours. In this job 3 job-
steps will be created. The first job-step will run on 4 nodes having 1 MPI task per node for 20 minutes.
After that the second job-step will be executed on 3 nodes with 24 MPI tasks per node for 1 hour. And
in the end the last job-step will run on 4 nodes with 48 MPI tasks per node using all virtual cores on
each node (SMT) and it will finish when the MPI application will be completed or will be canceled by
the scheduler if it will reach the walltime limit.

#!/bin/bash

#SBATCH --nodes=4

#SBATCH --output=mpi-out.$%]j
#SBATCH --error=mpi-err.%j
#SBATCH --time=02:00:00

srun -N4 --ntasks-per-node=1 --time=00:20:00 ./mpi-progl
srun -N3 --ntasks-per-node=24 --time=01:00:00 ./mpi-prog2
srun -N4 --ntasks-per-node=48 ./mpi-prog3

44

Example 12: In the following example we show a job script where two different job-steps are initiated
within one job. In total 24 cores are allocated on two nodes. Each job step uses 24 cores on each
compute node. With the option “--exclusive” we ensure that distinct CPUs (Virtual Cores) are
allocated for each job-step. Here the job-steps will be executed in parallel (in order to put the processes
on the background “&” is needed in the end of each command line and then the “wait” shell command
after the srun commands will ensure that the job will wait until all job-steps are completed):

#!/bin/bash

#SBATCH --nodes=2

#SBATCH --output=mpi-out.$%j
#SBATCH --error=mpi-err.%j
#SBATCH --time=00:20:00

srun -N1 --exclusive -n 24 ./mpi-progl &
srun -N1 --exclusive -n 24 ./mpi-prog2 &

wait

4.3 Dependency Chains

Slurm supports dependency chains which are collections of batch jobs with defined dependencies,
similar to job chains of Moab on JUROPA. Job dependencies can be defined using the --dependency
argument of sbatch. The format is:

sbatch --dependency=<type>:<jobID> <jobscript>
sbatch -d <type>:<jobID> <jobscript>

The available dependency types for job-chains are: after, afterany, afternotok and afterok. For more
information please check the man page of sbatch.

Example 13: Below is an example of a job-script for the handling of job chains. The script submits a
chain of “sNo_oF JoBs”. A job will only start after successful completion of its predecessor. Please
note that a job which exceeds its time-limit is not marked successful.

#!/bin/bash -x
submit a chain of jobs with dependency

number of jobs to submit
NO_OF JOBS=<no of jobs>

define jobscript
JOB_SCRIPT=<jobscript>

echo "sbatch §${JOB_SCRIPT}"
JOBID=$ (sbatch ${JOB SCRIPT} 2>&l | awk '{print $(NF)}')

I=0

while [${I} -le ${NO OF JOBS}]; do
echo "sbatch -d afterok:${JOBID} ${JOB_SCRIPT}"
JOBID=$ (sbatch -d afterok:${JOBID} ${JOB_SCRIPT} 2>&l | awk '{print $(NF)}')
let I=${I}+1

done

45

4.4 Job Arrays

Slurm supports job-arrays and offers a mechanism to easily manage these collections of jobs. Job
arrays are only supported for the sbatch command and, as we described previously, they can be defined
using the options “--array” or “-a”. To address a job-array, Slurm provides a base array ID and an array
index unique for each job. The format for specifying an array job is first the base array jobID followed
by “_” and then the array index:

‘ <base job id> <array index> ‘

Slurm exports two environment variables that can be used in the job script to identify each array-job:

SLURM_ARRAY JOB_ID # base array job ID
SLURM_ARRAY TASK ID # array index

Some additional options are available to specify the stdin, stdout, and stderr file names: option “sa”
will be replaced by the value of sLurM ARRAY JoB ID and option “sa” will be replaced by the value
of SLURM_ARRAY TASK_ID.

Also each job in an array has its own normal unique job ID. This ID is exported in the environment
variable

| SLURM_JOBID |

Example 14: In the following example, the job-script will create a job array of 4 jobs with indices 0-3.
Each job will run on 1 node with walltime of 1 hour and will execute a different bash script
(script [0-3].sh).

#!/bin/bash

#SBATCH --nodes=1

#SBATCH --output=prog-%A %a.out
#SBATCH --error=prog-%A_%a.err
#SBATCH --time=01:00:00

#SBATCH --array=0-3

./script_${SLURM_ARRAY TASK_ID}.sh

Example 15: In the following job-script a job array of 20 jobs will be submitted with indices 1-20.
Each job will run on a separate node with 2 hours walltime limit. Some may be running and some may
be waiting in the queue. For this job array all jobs will execute the same binary “prog” with different
input files (input_[1-20].txt):

#!/bin/bash -x

#SBATCH --nodes=1

#SBATCH --output=prog-%A %a.out
#SBATCH --error=prog-%A %a.err
#SBATCH --time=02:00:00

#SBATCH --array=1-20

#SBATCH --partition=batch

srun -N1 --ntasks-per-node=1 ./prog input ${SLURM ARRAY TASK ID}.txt

46

4.5 MPMD

Slurm supports the MPMD model (Multiple Program Multiple Data Execution Model) that can be used
for MPI applications, where multiple executables can have one common MPI_COMM WORLD
communicator. For this purpose Slurm provides the option “--multi-prog” for the srun command only.
This option expects a configuration text file as an argument and the format is:

‘ srun [OPTIONS..] --multi-prog <text-file> ‘

Each line of the configuration file can have two or three possible fields separated by space and the
format is like this:

‘ <list of task ranks> <executable> [<possible arguments>] ‘

In the first field is defined a comma separated list of ranks for the MPI tasks that will be spawned.
Possible values are integer numbers or ranges of numbers. The second field is the path/name of the
executable. And the third field is optional and defines the arguments of the program.

Example 16: In this example there is a simple configuration file with name “multi.conf’. This file
defines three MPI programs. For the first executable mpi-progl only one instance will be executed
with rank 0 and one integer argument. For the second program mpi-prog2 Slurm will create two tasks
with ranks 4 and 6 and each one will have the path of a file as argument. For the third program mpi-
prog3 five MPI tasks will be executed with ranks 1, 2, 3, 5 and 7 without any arguments.

0 ./mpi-progl 0
4,6 ./mpi-prog2 ./tmp.txt
1-3,5,7 ./mpi-prog3

Following is the job-script that will start this MPMD job. The job-script allocates 4 nodes for 1 hour.
The command srun will start this MPMD application, where all 4 nodes will be used with 2 MPI tasks
per node (8 tasks in total). It can be submitted with sbatch:

#!/bin/bash
#SBATCH --nodes=4
#SBATCH —--time=01:00:00

srun -N4 --ntasks-per-node=2 --multi-prog ./multi.conf

The “--multi-prog” option can be used of course for any kind of binary and its usage is not restricted
to MPI jobs only, but it is the only way to apply the MPMD model.

47

5 Interactive Jobs

5.1 Interactive Session

Interactive sessions can be allocated using the salloc command. The following command for example
will allocate 2 nodes for 30 minutes:

‘ salloc --nodes=2 --time=00:30:00

Once an allocation has been made, the salloc command will start a bash on the login node where the
submission was done. After a successful allocation the users can execute srun from that shell and they
can spawn interactively their applications. For example:

‘ srun --ntasks=4 --ntasks-per-node=2 --cpus-per-task=7 ./hybrid-prog ‘

The interactive session is terminated by exiting the shell. In order to obtain a shell on the first allocated
compute nodes (like command “msub -I“from Moab), the users can start a remote shell from within
the current session and connect it to a pseudo terminal (pty) using the srun command with a shell as an
argument. For example:

‘ srun --cpu_bind=none --nodes=2 --pty /bin/bash ‘

After gaining access to the remote shell it is possible to run srun again from that remote shell in order
to execute interactively applications without any delays (no scheduling delays since the allocation has
already been granted). Below follows a transcript of an exemplary interactive session:

$ salloc --nodes=2 --time=00:01:00

salloc: Pending job allocation 4749

salloc: job 4749 queued and waiting for resources
salloc: job 4749 has been allocated resources
salloc: Granted job allocation 4749

$ hostname
jrlo3

$ srun --ntasks 2 --ntasks-per-node=2 hostname
jrcoO0l61l
jrc0162

$ srun --cpu_bind=none --nodes=1 --ntasks=1 --pty /bin/bash -i

$ hostname
jrcoO0l61l

$ logout

$ hostname
jrlo3

$ exit

exit

salloc: Relinquishing job allocation 4749
salloc: Job allocation 4749 has been revoked.

48

Note: When the users want to start a remote shell on the compute nodes, they should always give the
option “--cpu_bind=none” to the srun command in order to disable the default pinning. If this option is
not given then the default CPU binding settings will pin the processes in an unexpected way, e.g.
sometimes restricting the processes on one core only. Here is an example how it should be used:

‘S srun --cpu_bind=none --nodes=1 --ntasks=1 --pty /bin/bash -i

5.2 X Forwarding

The X11 forwarding support has been implemented with the “--forward-x” option of the srun
command. It is similar to the option “msub -x” from Moab. X11 forwarding is required for users who

want to use applications or tools which provide a GUI.

Here is an example that shows how to use this feature:

$ salloc --nodes=1 --time=00:01:00

$ srun --cpu_bind=none --nodes=1 --ntasks=1 --forward-x --pty /bin/bash -i

$./GUI-App

Note: User accounts will be charged per allocation whether the compute nodes are used or not. Batch
submission is the preferred way to execute jobs.

49

6 From Moab/Torque to Slurm

On JUROPA we are using the combination of Moab and Torque for the Batch System. Moab works as
the scheduler and Torque is the resource manager. However, on JURECA we use Slurm as scheduler
and resource manager. In this chapter we will compare and give some information about these two
solutions and we will try to help the users have an easier migration from Moab/Torque to Slurm.

6.1 Differences between the Systems

Here we will compare and declare some differences between Moab and Slurm:

Moab Slurm
Resource Not supported. Needs an external A flexible and capable resource manager
Management Resource Manager (like Torque). (in our case psslurm on the nodes).

Nodes It is possible to set nodes for batch and | No difference between batch and
interactive jobs only, or both. interactive jobs for Slurm.

Queues Partitions separate node into groups. Slurm defines only partitions. For Slurm
Queues are used for job submission on | the partitions are used as queues. Partitions
one partition only. can overlap and we can specify limits.

Priorities Complex priorities mechanism. Easy to configure, maintain and manage.
The desired batch model from JSC can be
easily applied.

Limits/Policy Good support for limits and policies Highly configurable: define limits and
configuration. policies per partition/account/user. Enforce
limits with QoS.
Job scripts Define job-script options with #MSUB. | Define job-script options with #SBATCH.

In the following table you can see some of the differences between Torque and Slurm:

locally on the nodes. Upon completion
files are gathered at destination.

Torque Slurm

Scheduling Integrates only a simple FIFO Slurm is a capable scheduler with support
scheduler, needs external scheduler. for backfilling algorithm.

Output files With the default options, stores output | Standard output and error files are created

in the final destination immediately.

Working directory

Must explicitly change to current
working directory.

Jobs start to run in the directory where
they were submitted from.

environment, they must use the option
“_V”.

Job Steps Not supported by Torque. Flexible allocations within jobs.
Task Distribution Possible to specify different number of |Possible to specify only the same number
tasks per set of nodes, e.g.: of tasks on all nodes with the allocation
“-1 nodes=1:ppn=2+nodes=4:ppn=8” options.
Environment If users want to export the whole shell | The environment defined in user's shell

during submission will be automatically
exported to the job.

50

6.2 User Commands Comparison

The following table presents commands with similar functionality from Slurm, Moab and Torque:

User Commands Slurm Moab Torque
Job Submission sbatch msub gsub
Job deletion scancel canceljob gdel
Job status squeue checkjob gstat
scontrol show job

Job hold scontrol hold mjobctl -h ghold
Job release scontrol release mjobctl -u qrls
Queue list squeue showg gstat -0Q
Cluster status sinfo -—= gstat -a
Node list scontrol show nodes - pbsnodes -1
GUI sview - xpbsmon
The table below compares the allocation options of msub and sbatch:

Allocation option Moab/Torque (msub) Slurm (sbatch)

Number of nodes

-1

nodes=<number>

--nodes=<number>
-N <number>

Number of total tasks None --ntasks=<number>
-n <number>
Number of tasks/cpus per node | -1 ppn=<number> --ntasks-per-node=<num>

--tasks-per-node=<num>

Number of threads per task

tpt=<number>

—--cpus-per-task=<num>
-c <num>

File for the standard output -0 <path> --output=<path>
-0 <path>

File for the standard error -e <path> --error=<path>
-e <path>

Walltime limit -1 walltime=<time> —--time=<walltime>

-t <walltime>

Partition/Queue selection -g <queue> --partition=<queue>
-p <queue>
Email for notifications -M <email> --mail-user=<email>
Event types for notifications -m <mode> --mail-type=<mode>
Job name -N <jobname> --job-name=<jobname>
-J <jobname>
Interactive jobs -I None (use salloc or srun)
Job dependencies -W depend=<mode>:<jobID> | --dependency=<dependency list>

51

-d <dependency list>

7 Examples

7.1 Template job-scripts

Template MPI job-script:

#!/bin/bash

#SBATCH -J <jobname>

#SBATCH -N <number>

#SBATCH -n <number> # can be omitted
#SBATCH --ntasks-per-node=<number>
#SBATCH -o <jobname>-%j.out

#SBATCH -e <jobname>-%j.err

#SBATCH --mail-type=<BEGIN, END, FAIL, or ALL>
#SBATCH --mail-user=<email>

#SBATCH --partition=<batch | devel>
#SBATCH --time=<time>

run MPI application below (with srun)

Template Hybrid job-script:

#!/bin/bash

#SBATCH -J <jobname>

#SBATCH -N <number>

#SBATCH -n <number> # can be omitted
#SBATCH --ntasks-per-node=<number>
#SBATCH --cpus-per-task=<number>
#SBATCH -0 <jobname>-%j.out

#SBATCH -e <jobname>-%j.err

#SBATCH --mail-type=<BEGIN, END, FAIL, or ALL>
#SBATCH --mail-user=<email>

#SBATCH --partition=<batch | devel>
#SBATCH --time=<time>

export OMP_NUM_THREADS=${SLURM CPUS_PER_TASK}

run Hybrid application below (with srun)

7.2 Modules

Check loaded modules:

$ module list
No modules loaded

Check available Toolchains:

$ module avail

—————————————————————————— /usr/local/software/jureca/UI/FullToolchains ——————————— oo
gpsolf/2015.06 intel/2015.07 intel-para/2015.07 (D)
gpsolf/2015.07 (D) intel-para/2015.07-mt

——————————————————————————— /usr/local/software/jureca/UI/Compilers+MPI ————————— oo
gpsmpi/2015.06 iimpi/2015.07 ipsmpi/2015.07 (D)
gpsmpi/2015.07 (D) ipsmpi/2015.07-mt

————————————————————————————— /usr/local/software/jureca/UIl/Compilers ——-—————————mmmmmmmmmm—
GCC/5.1.0 iccifort/2015.3.187-GCC-bare-4.9.3

52

GCC/5.2.0

GCC-bare/4.9.3
icc/2015.3.187-GCC-bare-4.9.3
icc/2015.3.187

EasyBuild/2.2.0
Inspector/2015_ updatel
JUBE/2.0.6
VTune/2015_update4

Developers/InstallSoftware
Stages/Current

Where:
(S):

(D): Default Module

()

iccifort/2015.3.187
ifort/2015.3.187-GCC-bare-
ifort/2015.3.187

(D)

(D)

/usr/local/software/jureca/UI/Tools
binutils/2.25
gc/7.4.2
ipp/8.2.2.187
libatomic_ops/7.4.2

ncurses/5.9
popt/1.16
pscom/5.0.45-1
tbb/4.3.6.211

/usr/local/software/jureca/Devel
(D) Stages/Devel (S) (D)
Stages/Legacy (S)

Module is Sticky, requires --force to unload or purge

Use "module spider" to find all possible modules.

Use "module keyword keyl key2

Load a Toolchain and check loaded modules:

$ module load intel-para/2015.07
$ module list

Currently Loaded Modules:

1) zlib/.1.2.8 9)
2) binutils/.2.25 10)
3) ncurses/.5.9 11)
4) libatomic_ops/.7.4.2 12)
5) gc/.7.4.2 13)
6) util-wrapper/1l.1 14)
7) GCC-bare/.4.9.3 15)
8) popt/.1.16 16)

Check available packages:
$ module avail

ABINIT/7.10.2
ASE/3.8.1.3440-Python-2.7.10
Autoconf/2.69
Automake/1.13
Automake/1.15

Bison/3.0.2
Boost/1.58.0-Python-2.7.10
BuildEnv/defaults
CDO/1.6.9

CMake/3.1.3

CMake/3.2.3

CP2K/2.6.0

Cube/4.3.1

Cube/4.3.2
Cython/0.22-Python-2.7.10
DB_File/1.831-Perl-5.20.1
Doxygen/1.8.9.1

ELPA/2014.06.001-generic-simple

ELPA/2014.06.001-hybrid
Elemental/0.85
FFTW/2.1.5

FFTW/3.3.4
FIAT/1.1-Python-2.7.10
GDB/7.8

GEOS/3.4.2

GLib/2.42.2

GMP/5.1.3

pscom/.5.0.45-1

ipsmpi/2015.07
iccifort/2015.3.187-GCC-bare-4.9.3
icc/2015.3.187-GCC-bare-4.9.3
ifort/2015.3.187-GCC-bare-4.9.3
psmpi/5.1.4-1

imkl1/11.2.3.187

intel-para/2015.07

/usr/local/software/jureca/Stage3/modules/all/Toolchain/intel-para/2015.07

ScientificPython/2.9
Score-P/1.4.1
Score-P/1.4.2
Szip/2.1

TAU/2.24

TAU/2.24.1
Tcl/8.5.9

Tcl/8.6.3
UDUNITS/2.1.24
UltraScan3/3.3.2002
VampirTrace/5.14.4

(D)

(D)

(D)
4.9.3
(D)

util-wrapper/1.1
z1lib/1.2.8

." to search for all possible modules matching any of the "keys".

.4-Python-2.7.10

(D)

(D)

(D)

XML-LibXML/2.0118-Perl-5.20.1

Xerces-C++/3.1.2
YAXT/0.3.0
adf/2014.07
arpack-ng/3.1.3
bzip2/1.0.6
CURL/7.41.0
cpmd/4.1
darshan-runtime/2.3.
darshan-util/2.3.1
expat/2.1.0
flex/2.5.38
flex/2.5.39
freetype/2.5.5
gettext/0.19.4
git/2.3.2

53

(D)

(D)

(D)

1

(D)

GMP/6.0.0a (D) glproto/1.4.17

GPAW/0.10.0.11364-Python-2.7.10 gnuplot/5.0.0
GROMACS/5.0.5-hybrid grace/5.1.25

GSL/1.16 h5py/2.4.0-Python-2.7.10
GTI/1.4.0 h5py/2.5.0-Python-2.7.10 (D)
HDF5/1.8.14-gpfs inputproto/2.3

HPL/2.1 kbproto/1.0.6
Harminv/1.3.1 1ibICE/1.0.9
Hypre/2.10.0b libsM/1.2.2
IOR/2.10.3-mpiio 1libx11/1.6.1
JasPer/1.900.1 libXau/1.0.8
LAMMPS/20150210 libXaw/1.0.12

LWM2/1.1 libXmu/1.1.2

Libint/1.1.5 libXpm/3.5.11
Libint/2.0.3 (D) 1ibXt/1.1.4

M4/1.4.17 libdrm/2.4.60

METIS/5.1.0 libdwarf/20140805
MUMPS/5.0.0-parmetis libelf/0.8.13

MUST/1.4.0 libffi/3.2.1
MethPipe/3.3.1 libgd/2.1.1

NAG/Mark24 libpciaccess/0.13.3
NASM/2.11.08 1ibpng/1.6.16

NCO/4.4.8 libpthread-stubs/0.3
OPARI2/1.1.3 libreadline/6.3
OPARI2/1.1.4 (D) librsb/1.2.0-rcl
OTF/1.12.5 libtool/2.4.6

OTF2/1.5.1 libunwind/1.1
OpenFOAM/2.0.1 libxc/2.0.2
OpenFOAM/2.2.2 libxc/2.2.2 (D)
OpenFOAM/2.3.1 (D) libxcb/1.11-Python-2.7.10
OpenSSL/1.0.11 libxml2/2.9.2

PAPI/5.4.0 libyaml/0.1.5

PCRE/8.36 makedepend/1.0.5

PDT/3.19 matplotlib/1.3.1-Python-2.7.10
PDT/3.20 (D) motif/2.3.4
PETSc/3.6.0_downloads_complex_debug mpiP/3.4.1
PETSc/3.6.0_downloads_complex netCDF/4.3.2
PETSc/3.6.0_downloads_debug netCDF-C++/4.2
PETSc/3.6.0_downloads_int8_ debug netCDF-C++4/4.2.1
PETSc/3.6.0_downloads_int8 netCDF-Fortran/4.4.2
PETSc/3.6.0_downloads (D) netCDF4-python/1.1.7.1-Python-2.7.10
ParMETIS/4.0.3 numpy/1.7.1-Python-2.7.10
Perl/5.20.1 parallel-netcdf/1.6.0
PnMPI/1.2.0 pkg-config/0.28
PnMPI/1.4.0 (D) sprng/1
PyYAML/3.10-Python-2.7.10 sundials/2.6.1
Python/2.7.10 tcsh/6.18.01

Python/3.4.3 (D) xbitmaps/1.1.1

ot/4.8.5 xcb-proto/1.11-Python-2.7.10
QuantumESPRESSO/5.1.1 xextproto/7.3.0
SCOTCH/6.0.3 xorg-macros/1.19.0
SION1lib/1.5.5 xproto/7.0.27
SQLite/3.8.8.1 xtrans/1.3.5

Scalasca/2.2 zsh/5.0.2

Scalasca/2.2.1 (D)

-—- /usr/local/software/jureca/Stage3/modules/all/Toolchain/iccifort/2015.3.187-GCC-bare-4.9.3 ----
impi/5.1.0.079 psmpi/5.1.4-1-mt psmpi/5.1.4-1 (D)

————————————— /usr/local/software/jureca/Stage3/modules/all/Toolchain/ipsmpi/2015.07 ——————————————
imkl1/11.2.3.187

—————————————————————————— /usr/local/software/jureca/UI/FullToolchains ————————— oo
gpsolf/2015.06 intel/2015.07 intel-para/2015.07 (D)
gpsolf/2015.07 (D) intel-para/2015.07-mt

——————————————————————————— /usr/local/software/jureca/UI/Compilers+MPI —————————— -

gpsmpi/2015.06 iimpi/2015.07 ipsmpi/2015.07 (D)
gpsmpi/2015.07 (D) ipsmpi/2015.07-mt
————————————————————————————— /usr/local/software/jureca/UIl/Compilers —————————————— -
GCC/5.1.0 iccifort/2015.3.187-GCC-bare-4.9.3
GCC/5.2.0 (D) iccifort/2015.3.187 (D)

54

GCC-bare/4.9.3 ifort/2015.3.187-GCC-bare-4.9.3

icc/2015.3.187-GCC-bare-4.9.3 ifort/2015.3.187 (D)
icc/2015.3.187 (D)

------------------------------- /usr/local/software/jureca/UI/To0Ols ——————— e
EasyBuild/2.2.0 binutils/2.25 ncurses/5.9 util-wrapper/1l.1
Inspector/2015_ updatel gc/7.4.2 popt/1.16 z1lib/1.2.8
JUBE/2.0.6 ipp/8.2.2.187 pscom/5.0.45-1
VTune/2015_update4 libatomic_ops/7.4.2 tbb/4.3.6.211

———————————————————————————————— /usr/local/software/jureca/Devel ——————
Developers/InstallSoftware (D) Stages/Devel (S) (D)

Stages/Current (S) Stages/Legacy (S)
Where:

(S): Module is Sticky, requires --force to unload or purge
(D): Default Module

Use "module spider" to find all possible modules.
Use "module keyword keyl key2 ..." to search for all possible modules matching any of the "keys".

Load a module:

$ module load OpenFOAM/2.3.1
$ module list

Currently Loaded Modules:

1) zlib/.1.2.8 8) popt/.1l.16 15) imk1l/11.2.3.187

2) binutils/.2.25 9) pscom/.5.0.45-1 16) intel-para/2015.07
3) ncurses/.5.9 10) ipsmpi/2015.07 17) libreadline/6.3

4) libatomic _ops/.7.4.2 11) iccifort/2015.3.187-GCC-bare-4.9.3 18) SCOTCH/6.0.3

5) gc/.7.4.2 12) icc/2015.3.187-GCC-bare-4.9.3 19) OpenFOAM/2.3.1

6) util-wrapper/1l.1 13) ifort/2015.3.187-GCC-bare-4.9.3

7) GCC-bare/.4.9.3 14) psmpi/5.1.4-1

Purge all modules:

$ module purge
$ module list
No modules loaded

Check a package:
$ module spider Boost

Description:
Boost provides free peer-reviewed portable C++ source libraries. - Homepage:
http://www.boost.org/

Versions:
Boost/1.57.0-Python-2.7.
Boost/1.58.0-Python-2.7.
Boost/1.58.0-Python-2.7.

= O o

To find detailed information about Boost please enter the full name.
For example:

$ module spider Boost/1.58.0-Python-2.7.10

55

Check a specific version of a package:

$ module spider Boost/1.58.0-Python-2.7.10

Description:
Boost provides free peer-reviewed portable C++ source libraries. - Homepage:
http://www.boost.org/

This module can only be loaded through the following modules:

Stages/.Stage2 gpsolf/2015.06
Stages/.Stage2 intel-para/2015.06
Stages/.Stage2 intel-para/2015.06-mt
Stages/.Stage2 intel-para/2015.07
Stages/.Stage2 intel-para/2015.07-mt
Stages/.Stage2 intel/2015.04
Stages/.Stage2 intel/2015.07
Stages/.Stage3 gpsolf/2015.06
Stages/.Stage3 gpsolf/2015.07
Stages/.Stage3 intel-para/2015.07
Stages/.Stage3 intel/2015.07
Stages/Current gpsolf/2015.06
Stages/Current gpsolf/2015.07
Stages/Current intel-para/2015.07
Stages/Current intel/2015.07
Stages/Devel gpsolf/2015.06
Stages/Devel gpsolf/2015.07
Stages/Devel intel-para/2015.07
Stages/Devel intel/2015.07
Stages/Legacy gpsolf/2015.06
Stages/Legacy intel-para/2015.06
Stages/Legacy intel-para/2015.06-mt
Stages/Legacy intel-para/2015.07
Stages/Legacy intel-para/2015.07-mt
Stages/Legacy intel/2015.04
Stages/Legacy intel/2015.07
gpsolf/2015.06

gpsolf/2015.07

intel-para/2015.07

intel/2015.07

56

7.3 Compilation

MPI program example (file mpi.c):

#include <stdio.h>
#include <mpi.h>

int main (int argc, char** argv)

{
int rank, size;
char processor name [MPI_MAX PROCESSOR NAME];
int name_len;

// Initialize the MPI environment.
MPI_Init(&argc, &argv);

// Get the number of processes.
MPI_Comm_size (MPI_COMM WORLD, &size);

// Get the rank of the process.
MPI Comm rank (MPI_COMM WORLD, &rank);

// Get the name of the processor.
MPI Get_processor_name (processor_name, &name_len);

// Print out.
printf("Hello world from processor $%s, rank %d out of %d processors.\n",

rank, size);

// Finalize the MPI environment.
MPI Finalize();

return 10;

Hybrib program example (file hybrid.c):
#include <stdio.h>

#include <mpi.h>

#include "mpi.h"

#define _NUM_THREADS 16

int main (int argc, char** argv)

{
int rank, size, count, total;
char processor_name [MPI_MAX PROCESSOR NAME];
int name_len;

// omp_set num_threads(_NUM_THREADS) ;

// Initialize the MPI environment.
MPI_Init(&argc, &argv);

// Get the number of processes.
MPI Comm size (MPI_COMM WORLD, &size);

// Get the rank of the process.
MPI Comm rank (MPI_COMM WORLD, &rank);

// Get the name of the processor.
MPI_Get_ processor name (processor_ name, &name_len);

count = 0;

#pragma omp parallel reduction(+:count)

{
57

processor_name,

count = count + omp_get num threads();
total omp_get num_threads();

}

// Print out.
printf("Hello world from processor %s, rank %d out of %d processors. OpenMP threads: %d\n",
processor name, rank, size, total);

// Finalize the MPI environment.
MPI_Finalize();

return 0;

Compile the MPI program:

$ mpicc -o mpi-prog mpi.c

Compile the Hybrid program:

$ mpicc -openmp -o hybrid-prog hybrid.c

7.4 Job submission

Job-script for an MPI job (file mpiscript.sh):

#!/bin/bash

#SBATCH -J mpitest

#SBATCH -N 4

#SBATCH --ntasks-per-node=24

#SBATCH -0 mpitest-%j.out

#SBATCH -e mpitest-%j.err

#SBATCH --mail-type=END

#SBATCH --mail-user=c.paschoulas@fz-juelich.de
#SBATCH --partition=batch

#SBATCH --time=00:30:00

run MPI application below (with srun)
srun -N 4 --ntasks-per-node=24 ./mpi-prog

Submit the MPI job-script:

$ sbatch ./mpiscript.sh

Job-script for a Hybrid job (file hybridtest.sh):

#!/bin/bash

#SBATCH -J hybridtest
#SBATCH -N 4

#SBATCH --ntasks-per-node=24
#SBATCH --cpus-per-task=2
#SBATCH -o hybridtest-%j.out
#SBATCH -e hybridtest-%j.err
#SBATCH --mail-type=END
#SBATCH --mail-user=c.paschoulas@fz-juelich.de
#SBATCH --partition=batch
#SBATCH --time=00:30:00

export OMP_NUM_THREADS=${SLURM CPUS_PER_TASK}

run Hybrid application below (with srun)
srun -N 4 --ntasks-per-node=24 -c ${SLURM_CPUS_PER TASK} ./hybrid-prog

58

Submit the Hybrid job-script

$ sbatch ./hybridscript.sh

7.5 Job Control

Hold a job:

$ scontrol hold 14900
$ squeue

JOBID PARTITION NAME

14900 batch hybridte

Release a job:

$ scontrol release 14900
$ squeue

JOBID PARTITION NAME

14900 batch hybridte

Cancel a job:

$ scancel 14905

7.6 Query Commands

Check the Queue
$ squeue
JOBID PARTITION NAME
44210 batch Simulati
44211 batch Simulati
44213 batch Simulati
44214 batch Simulati
44215 batch Simulati
44216 batch Simulati
44217 batch Simulati
44241 batch equil2 1
44283 batch expl-g01
43141 batch scr.N50M
43140 batch scr.N50M
43856 batch Vito-ANA
43847 batch F3T_CR
44342 batch run-scri
44230 batch submit3a
44231 batch submit3b
44238 batch submitb5a
44239 batch submit5b
44242 batch submitéa
40618 batch bridgel
43800 batch job
43799 batch job
43796 batch job
41497 batch job.sh
43932 batch Simulati

USER

paschoul

USER

paschoul

USER
jics4002
jics4002
jics4002
jics4002
jics4002
jics4002
jics4002

cao
pajl5340
esmi2000
esmi2000
hgr221
hku230
jias5002
jiek6000
jiek6000
jiek6000
jiek6000
jiek6000
jif£3006
hgr240
hgr240
hgr240
jics6402
hgr283

ST

PD

ST

R

ST
PD
PD
PD
PD

g g
O oo

fe B e B v e e B s B B e B e B v e B e B

TIME

0:00

TIME

0:01

29:17
1:59:57

19:46:04
19:52:01
19:32:11
16:02:55

51:07
51:07
51:07
51:07
51:07
49:08

14:06:56
14:45:36
14:47:35
15:01:28
14:06:56
11:26:17

59

NODES

4

NODES

4

NODES

w
BNHEFNNORRPRPEPRPRPWONRPRWORRRERERRR

NODELIST (REASON)

(JobHeldUser)

NODELIST (REASON)

jre[120-123]

NODELIST (REASON)
(Dependency)
(Dependency)
(Dependency)
(Dependency)
(Dependency)
(Dependency)
(Dependency)
jrc[0387-0388,0406-0407,0450-0453]
jrc[0251,0341-0342]
jrc[0369-0372]
jrc[0439-0440,0443-0444]
jrc[0454-0455]
jrc[0343-0368,0400-0403]
jrc[0415-0417]

jrc0305

jrc0418

jrc0441

jrc0442

jrc0304
jrc[0136-0140,0321-0325]
jrc[0134,0316]
jrc[0141,0317]

jrc0319

jrc[0249-0250]
jrc[0152,0447-0449]

Check the Queue for one user:

$ squeue -u paschoul

JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)
14910 batch mpitest paschoul PD 0:00 4 (QOSResourceLimit)
14911 batch mpitest paschoul PD 0:00 4 (QOSResourceLimit)
14912 batch hybridte paschoul R 0:02 4 jrc[0120-0123]
14908 batch mpitest paschoul R 0:02 4 jrc[095-098]

Check partitions and nodes:

$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

batch* up 2:00:00 5 drain j3c[090,115-116,119,124]

batch* up 2:00:00 65 idle j3c[061-089,091-114,117-118,120-123,125-130]
large down 1:00:00 5 drain j3c[090,115-116,119,124]

large down 1:00:00 65 idle j3c[061-089,091-114,117-118,120-123,125-130]
Check off-line nodes:

$ sinfo -R

REASON USER TIMESTAMP NODELIST

#401 - NodeHardware root 2015-07-29T21:18:54 jrc0320

#403 - NodeHardware root 2015-07-30T07:58:53 jrc0340

#402 - NodeHardware root 2015-07-30T04:12:14 jrc0144

Golden client root 2015-07-20T16:59:45 jrc0386

#401 - NodeHardware root 2015-07-29T21:18:54 jrc0320

#403 - NodeHardware root 2015-07-30T07:58:53 jrc0340

#402 - NodeHardware root 2015-07-30T04:12:14 jrc0144

Golden client root 2015-07-20T16:59:45 jrc0386

#401 - NodeHardware root 2015-07-29T21:18:54 jrc0320

Check reservations:

$ sinfo -T

RESV_NAME STATE START_TIME END_TIME DURATION NODELIST
test ACTIVE 2014-11-14T15:24:47 2015-10-01T00:00:00 320-07:35:13 jrc0128

Check one partition:

$ scontrol show partition batch

PartitionName=batch
AllowGroups=ALL AllowAccounts=ALL AllowQos=ALL
AllocNodes=ALL Default=YES
DefaultTime=01:00:00 DisableRootJobs=NO GraceTime=0 Hidden=NO
MaxNodes=64 MaxTime=1-00:00:00 MinNodes=1 LLN=NO MaxCPUsPerNode=48
Nodes=jrc[0116-0155,0246-0455]
Priority=1 RootOnly=NO ReqResv=NO Shared=NO PreemptMode=0FF
State=UP TotalCPUs=12000 TotalNodes=250 SelectTypeParameters=N/A
DefMemPerNode=UNLIMITED MaxMemPerNode=UNLIMITED

Check one node:

$ scontrol show node jrc0130

NodeName=jrc0130 Arch=x86_ 64 CoresPerSocket=12
CPUAlloc=48 CPUErr=0 CPUTot=48 CPULoad=24.03 Features=normal
Gres=meml28:no_consume:1l
NodeAddr=jrc0130 NodeHostName=jrc0130 Version=psslurm-41-pl14.03
0S=Linux RealMemory=128952 AllocMem=0 Sockets=2 Boards=1
State=ALLOCATED ThreadsPerCore=2 TmpDisk=0 Weight=1
BootTime=2015-07-27T11:34:29 SlurmdStartTime=2015-07-27T11:34:53
CurrentWatts=0 LowestJoules=0 ConsumedJoules=0
ExtSensorsJoules=n/s ExtSensorsWatts=0 ExtSensorsTemp=n/s

60

Check the shares:

$ sshare
Account User Raw Shares Norm Shares Raw Usage Effectv Usage FairShare
root 1.000000 7347830935 1.000000 0.500000
root paschoul 1 0.000002 0 0.000000 1.000000
deep 3000 0.004902 0 0.000000 1.000000
eau00 3000 0.004902 0 0.000000 1.000000
ecy00 3000 0.004902 460420812 0.062667 0.000142
esmil7 3000 0.004902 0 0.000000 1.000000
esmil9 3000 0.004902 1494 0.000000 0.999971
esmi20 3000 0.004902 65827880 0.008957 0.281814
grs200 3000 0.004902 1257977 0.000171 0.976079
grs300 3000 0.004902 478 0.000000 0.999991
grs400 3000 0.004902 45140069 0.006144 0.419461
hac29 3000 0.004902 87 0.000000 0.999998
hbnl5 3000 0.004902 0 0.000000 1.000000
hbn23 3000 0.004902 0 0.000000 1.000000
hbn29 3000 0.004902 79553390 0.010826 0.216354
hbn30 3000 0.004902 19171256 0.002609 0.691441
hbn31 3000 0.004902 117928315 0.016051 0.103343
hbn32 3000 0.004902 0 0.000000 1.000000
hbn33 3000 0.004902 0 0.000000 1.000000
zam 3000 0.004902 66646822 0.009071 0.277284
zam paschoul 3000 0.000037 46031 0.000075 0.247122
zdv590 3000 0.004902 0 0.000000 1.000000
Check the priorities:
$ sprio
JOBID PRIORITY AGE FAIRSHARE JOBSIZE Q0s
203 46776 32500 0 14277 0
1771 46776 32500 0 14277 0
6659 34303 32500 15 2788 0
6660 34303 32500 15 2788 0
6767 36084 32500 15 3569 0
8435 1016 794 0 223 0
8597 5208 4985 0 223 0
8633 932 710 0 223 0
8797 32555 32500 0 56 0
8801 32555 32500 0 56 0
8805 32555 32500 0 56 0
8886 1304 1082 0 223 0
8996 14752 11183 0 3569 0
35800 14400 10831 0 3569 0
36848 4878 4821 2 56 0
36858 1615 1558 2 56 0
39621 1609 1552 2 56 0
39672 983 926 2 56 0
39714 1749 1692 2 56 0
39726 1770 1713 2 56 0
40608 101329 771 0 558 100000
44116 744 688 0 56 0
44122 744 688 0 56 0
44257 100662 606 0 56 100000
44258 100661 606 0 56 100000
44259 100661 606 0 56 100000
44260 100661 606 0 56 100000
44261 100661 606 0 56 100000
44262 100661 606 0 56 100000
44263 100661 606 0 56 100000
44264 100661 606 0 56 100000
44265 100661 606 0 56 100000
44266 100661 606 0 56 100000
44267 100661 606 0 56 100000

61

7.7 Accounting Commands

Check user association:

$ sacctmgr show assoc where user=paschoul

Cluster Account User Partition Share GrpJobs GrpNodes GrpCPUs GrpMem GrpSubmit
GrpWall GrpCPUMins MaxJobs MaxNodes MaxCPUs MaxSubmit MaxWall MaxCPUMins Q0Ss
Def QO0S GrpCPURunMins

jureca zam paschoul 3000
normal normal
jureca root paschoul maint 1

nolimits nolimits

Check all QoSs:
$ sacctmgr show gos
Name Priority GraceTime Preempt PreemptMode Flags
UsageThres UsageFactor GrpCPUs GrpCPUMins GrpCPURunMins GrpJobs GrpMem GrpNodes GrpSubmit
GrpWall MaxCPUs MaxCPUMins MaxNodes MaxWall MaxCPUsPU MaxJobsPU MaxNodesPU MaxSubmitPU
normal 100000 00:00:00 cluster DenyOnLimit
1.000000
280 1-00:00:00 280 280 4096
lowcont 0 00:00:00 cluster DenyOnLimit
1.000000
280 06:00:00 24 280 4096
nocont 0 00:00:00 cluster DenyOnLimit
1.000000
280 06:00:00 24 280 4096
suspended 0 00:00:00 cluster DenyOnLimit
1.000000
0 00:00:00 0 0 0
nolimits 100000 00:00:00 cluster DenyOnLimit
1.000000
Check one QoS:
$ sacctmgr show gos where name=normal
Name Priority GraceTime Preempt PreemptMode Flags
UsageThres UsageFactor GrpCPUs GrpCPUMins GrpCPURunMins GrpJobs GrpMem GrpNodes GrpSubmit
GrpWall MaxCPUs MaxCPUMins MaxNodes MaxWall MaxCPUsPU MaxJobsPU MaxNodesPU MaxSubmitPU
normal 100000 00:00:00 cluster DenyOnLimit
1.000000
280 1-00:00:00 280 280 4096
Check old jobs history:
$ sacct -X -u hgul47?
JobID JobName Partition Account AllocCPUS State ExitCode
42861 T34pH4 batch hgul4 48 TIMEOUT 0:1
42866 T28pH8 batch hgul4 48 TIMEOUT 0:1
42872 T26pHS8 batch hgul4 48 RUNNING 0:0
42873 T26pH5 batch hgul4 48 RUNNING 0:0
42874 T26pH4 batch hgul4 48 RUNNING 0:0
42875 T24pHS8 batch hgul4 48 RUNNING 0:0

62

42876 T24pH5 batch hgul4 48 RUNNING 0:0
42877 T22pH8 batch hgul4 48 RUNNING 0:0
42878 T22pHS5 batch hgul4 48 RUNNING 0:0

Check old jobs with different format and specified time frame:

$ sacct -X -u kraused --format="jobid,user,nnodes,nodelist,state,exit" -S 2014-11-15T00:00:00 -E 2015-
11-17T18:00:00

JobID User NNodes NodeList State ExitCode
2 kraused 1 jrc0106 COMPLETED 0:0
3 kraused 8 Jjrc[0106-0113] FAILED 2:0
10 kraused 8 Jjrc[0108-0115] COMPLETED 0:0
297 kraused 70 jrc[0282-0306,+ CANCELLED+ 0:0
298 kraused 70 jrc[0106-0125,+ FAILED 127:0
299 kraused 2 None assigned CANCELLED+ 0:0
300 kraused 2 None assigned CANCELLED+ 0:0
301 kraused 2 None assigned CANCELLED+ 0:0
302 kraused 2 None assigned CANCELLED+ 0:0
303 kraused 2 None assigned CANCELLED+ 0:0
304 kraused 2 None assigned CANCELLED+ 0:0
305 kraused 2 None assigned CANCELLED+ 0:0
306 kraused 2 None assigned CANCELLED+ 0:0
307 kraused 2 None assigned CANCELLED+ 0:0
308 kraused 2 None assigned CANCELLED+ 0:0
309 kraused 2 None assigned CANCELLED+ 0:0
310 kraused 2 None assigned CANCELLED+ 0:0
311 kraused 2 None assigned CANCELLED+ 0:0
312 kraused 2 None assigned CANCELLED+ 0:0
313 kraused 2 None assigned CANCELLED+ 0:0
314 kraused 2 None assigned CANCELLED+ 0:0
315 kraused 2 None assigned CANCELLED+ 0:0
316 kraused 70 jrc[0282-0306,+ CANCELLED+ 0:0
317 kraused 70 jrc[0106-0125,+ CANCELLED+ 0:0
318 kraused 2 None assigned CANCELLED+ 0:0
319 kraused 2 None assigned CANCELLED+ 0:0
320 kraused 2 None assigned CANCELLED+ 0:0
321 kraused 2 None assigned CANCELLED+ 0:0
36016 kraused 1 jrc0454 FAILED 127:0
36017 kraused 1 jrc0455 FAILED 127:0
36018 kraused 1 jrc0307 COMPLETED 0:0
36019 kraused 1 jrc0411 COMPLETED 0:0
36020 kraused 1 jrc0412 COMPLETED 0:0
36021 kraused 1 jrc0413 COMPLETED 0:0
36022 kraused 1 jrc0414 COMPLETED 0:0
36023 kraused 1 jrc0415 COMPLETED 0:0
36024 kraused 1 jrc0429 COMPLETED 0:0
36025 kraused 1 jrc0430 COMPLETED 0:0
36026 kraused 1 jrc0431 COMPLETED 0:0
36027 kraused 1 jrc0432 COMPLETED 0:0
36028 kraused 1 jrc0433 COMPLETED 0:0
36029 kraused 1 jrc0298 COMPLETED 0:0
36030 kraused 1 jrc0299 COMPLETED 0:0
36031 kraused 1 jrc0300 COMPLETED 0:0
36032 kraused 1 jrc0301 COMPLETED 0:0

63

8 Changelog

Version 2.0.1

* Fixed some typos and the borders of a few tables.

Version 2.0.0

* Extended documentation for Phase 2 (complete system). All nodes types and the new
partitions are documented in this version. Also new sections were added about the General
Resourses (GRES) of Slurm.

Version 1.0.0

 First version of this document.

NOTE: This document was created using LibreOffice Writer and then it was exported to the PDF
format. There is a known issue where the users cannot copy from this document some commands and
then paste them on their terminals. Currently we don't know if there is a fix for this issue, but we will
investigate it.

64

	1 Cluster Information
	1.1 Introduction
	1.2 Cluster Nodes
	1.3 Data Management - Filesystems
	1.4 Access to the Cluster
	1.5 Shell Environment
	1.6 Modules
	Modules and Toolchains hierarchy
	Using the module command
	Accessing Old Software

	1.7 Compilers
	Compilation Examples

	1.8 Batch model & Accounting

	2 Batch System – Slurm
	2.1 Slurm Overview
	2.2 Slurm Configuration
	2.3 Partitions
	2.4 Slurm's Accounting Database
	2.5 Job Limits – QoS
	2.6 Generic Resources - GRES
	Job Submission Filter

	2.7 Priorities
	2.8 Job Environment
	2.9 SMT
	Using SMT on JURECA
	How to profit from SMT

	2.10 Processor Affinity
	Default processor affinity
	Binding to sockets
	Manual pinning
	Disabling pinning

	3 Slurm User Commands
	3.1 List of Commands
	3.2 Allocation Commands
	sbatch & salloc
	Generic Resources – GRES

	3.3 Spawning commands
	srun

	3.4 Query Commands
	squeue
	sview
	sinfo
	smap
	sprio
	scontrol
	sshare

	3.5 Job Control Commands
	scancel
	scontrol

	3.6 Job Utility Commands
	sattach
	sstat

	3.7 Job Accounting Commands
	sacct
	sacctmgr

	3.8 Custom commands from JSC
	llview
	q_cpuquota

	4 Batch Jobs
	4.1 Job script examples
	Serial job
	Parallel job
	OpenMP job
	MPI job
	MPI jobs with SMT
	Hybrid Jobs
	Hybrid jobs with SMT
	Intel MPI jobs

	4.2 Job steps
	4.3 Dependency Chains
	4.4 Job Arrays
	4.5 MPMD

	5 Interactive Jobs
	5.1 Interactive Session
	5.2 X Forwarding

	6 From Moab/Torque to Slurm
	6.1 Differences between the Systems
	6.2 User Commands Comparison

	7 Examples
	7.1 Template job-scripts
	7.2 Modules
	7.3 Compilation
	7.4 Job submission
	7.5 Job Control
	7.6 Query Commands
	7.7 Accounting Commands

	8 Changelog

