Advanced Programmable Calculator (APCalc)
User Manual

Palmilllc

I I CosSE W) -
1 4&6?3?88 E

1 of 45

Configureit theway you likeit

I Z=cosia)+singy) - I 45329229402045034 M I Payments= -
132892605 B o G2 Da97 4aFE BCOE El

D
:----- N M [=)
I e | 57 v e o i | N [[

An: En ¢| An: +—|[15=][<ir] du
%
Scientific Base Conversions Financial

copyright 1999, Mike Davis

2 of 45

Table of Contents

E a0 018 o1 o OSSPSR PTURSPTRN 5
L0 = T (o] o TSP PSPPSR 5
Launching APCaIC fOr the fIrSt tIME..... ..ottt s e et ne e eesee e e 6
L@ 10T ox Q0o S 6
BaSiC APCAIC OPEIBLION ...ttt sttt sae et et e st e s besbesbeebe s st eae e e e e e besheebeeaeeb e e e enbeseesbesbeeaeenee e enbeseenbeneas 8
SEHING PrEfEIBNCESoeeiee ittt b et bt bt ae et et e beseeeb e s et eb e e Rt e meeseeebesbesaeebeeneenteseenbeseesaens 9
USING Variahl €S 1N @GN EX[PIESSIONc.uiiviiierieiereeste ettt et ee st e beseesbesaesaeese e e aasesaeseesbesaeebeeseease s eabesbesaesaesneanseseesbesaens 9
USING FUNCLIONS 11N 8N EXPIESSION.......vitiieeetieieeieeie sttt sttt st st e e e se e besbesbesbesaeeae e e eseesbesbesbesbeehe e e eneeseenbeseeebesnnennan 10
L Tox 0 = VA €] (0T 11
Changing KEY GIOUD NAIMES.......ccveierierieiistiseeeeseestestesaestesseeseessessessesaessesseesseseessessessesseessensessssesnsessensessessessensennes 11
Creating/Editing APCaIC PrOQraIMIS.......ccviieieieeeeeerieseseestessessesseesessessessessessessessssssssssssessessessesssssessssssessessessessessessees 11
S Lo [N o O Lol T = 1 12
e 110 L= 0 3 SRR 12
Example 1: Compute the area and circumference Of @CITClE........veviveieri e 12
Example 2: Convert between Fahrenheit and Centigrade...........coooeeeiiie i e 13
EXample 3: SINGlE-TiNG PrOGIaIMS.......cco ittt se et e b bt aeeae e e e e e seesbesbesbeebe e e eneeseesbeseeebeeneennan 13
Example 4: MUItiPIE-1INE PrOGQraIMIS.coccuiieiteiteieeieee ettt sbe st et e e e be et sbesaesaeeseeseebeseesbesbesaeenseneabesaesbennas 13
Example 5: Subrouting / JUMP EXAMPIES ..ottt e e st ee b e s 14
EXECULING APCEIC PrOQIaITISciteiteiteiteeieeee ettt sttt et e et e et b e st eae e e e s e besbeebesaeeae e e e eebesaeabeebesbesbeeneenseseenbesaesreas 15
N O Lo =l T o R I o 15
APCEIC ProgrammMing TiPS. ... ccceieserereeeereeseseestessessesseessessessessessessesssesessessessesssasesssessessessessessessessesssessessensessessessenns 15
BASE CONMVEISIONSouerrirereiiresresese et se st se et s s e st ne s s e R et s e E e st E Rt n e e R e et s R e R et n e e R et s e e R et ne e R e st s e r et neeresenner e e neenis 17
Base Conversion Key Group DEfiNITIONSccceiieiereresi s seseee s st esae e e et sse e e e eaesnesseseesresnnenens 17
Fixed Point Cal CUlatiONS/CONVEISIONS.c..ouiirrireriresrerenesreiese s es e s en e e s s s e s sesesresesnerenens 18
Example 6: To convert 3FF from HEX to DEC, you would enter the following:ccceoveevevevvrvnce s, 18
Mixed Fixed Point and Floating Point operations using the *:’ operator and the Equal key: ... 19
Example 7: USING DASE OPEIALOL ‘27 ...ttt sttt b b he b e e e e e sa e besaesb e et enteseenbeseesbennas 19
Example 8: Mixing bases; 118(DEC) + 3FF (HEX) + 101010 (BINARY) and display asaHEX 19
FINANCIAl PrOOIAIMS. iueiteie ettt e ettt b st ae e e e se e besee e b e s bt ehe e s e e e e aeesEeebeeheeheeheeaeemeese et e sbeebeebeeneanteseebesaeabeas 21
Financial Key Group DEfINITIONcoeieiiiiie ettt e bbb et ae b e e e e e seesbeseesbeeneennan 21
Example 9: TVM programs (NP, IR, PV, FV, PMT, BEG, END)cccciiiiiiininereee e 21
NPV CBICUIBLIONScveeeeieiiseereese ettt r et R e se Rt e e R b s e R et s e n e e ren e e e n e e nren e e 22
[RR CAlCUIBLIONS.ceeeeeiereese ettt R et e e R R e R et ren e r e s nrer e r e 23
SEALISHICE FUNCLIONS. ...ttt E et R et R et e e Rt ne R e ren e e e 23
= D@ o= = 1o R SRPSR 25
L =0 11 o TR SRPSR 25
Manual Graphing Of @N EQUBLIONeiiiiiieeeeieres et se e e e e s s e ese e e e eestessesbesresseeneensesaensesensrennennen 25
€Tz ol gl UL TaTo [E=1 o ol = o SRR 26
IMPOIT/EXPOIT FUNCLIONS. ...ttt sttt ettt e e b b aeebe et e e e eesb e besaeeb e e aeems e e e ebesbeeaeeae e e enbeseesbesaeeneeneans 27
I o [T TSROSO PR USRI 27
L1004 74 T4 oo AR RR 28
DIELELE. ...tttk b b e bR e b e e bRt SRR eSS E e R AR EeRe AR b e R e AR R e Rt eE b e Rt R R e Rt nE b e bR b e Rt ne b e bt n et ne s 29
Import/Export Limitations, USING MEMOPEAccciiiiireeiereesesese et sesseeseesees e see e e ssessesseessessessesssssesnesnes 29
Editing APCalc programs in MEMOPE.cceiiiiiiieeeei e e s s e e e st seeaeneeseestesaessesseeneenaeseensesaennens 29
S0 1C ot o= 1] 1RSSR 32
Limitations (UNrEgiStErEd USEIS).......uiueeueeeeeeeiereesiesestestesiessesseesessessestessessessessessesssessessensessessessessesssessssessessessessenseens 32
S 0 1= 14 o] RSSO 32
F N o] 0= 00 LT AN I ot 33
APPENIX B - FUNCLIONS & OPEIALOIS. .. e viiteruieuieeeiestesteste st eaee e eteseesbesbe st saeeeeeeseeabesaesbesseansanseseesbesaeeseensaneeseesbesaeens 34
(0001015 = o[£ T TS O USRS UPPUPRR 42

S L o L= T PSRRI 43
(001 = 0] £ TP TP UPUPTURPRUPRUON 43
APPENiX D - OPEratOr PrECEUBINCE........ceueieiieiieite sttt sttt sttt ae et e e et s besaeeae et eneeseesbesbesaeeaeeaeaneeseesbesaesaenanans 45

4 of 45

Introduction

Introducing an Advanced Programmable Calculator (APCalc) using Algebraic Entry Notation. APCalcisnow a
color or black and white application. If you have a color device, APCalc will load in color. If you have a black and
white device, APCalc will load in black and white. The same program works for both screen types.

APCalc, in addition to providing normal calculator functions, allows you create your own custom programs and
thereby customize APCalc to your own requirements. Y ou can then save these custom programs in APCalc's built-
in program database.

Programs can be grouped into any of nine different User Function Key Groups to allow quickly transforming
APCalc from a scientific calculator to a financial, units conversion, currency conversion, base conversion or any
other calculator configuration that you desire. Any custom calculator can be restored with two taps of the pen.

APCalc offers features of automatic prompting for new variables, popup selection lists and subroutine calls,
branching, looping and comparison operators.

Installation

APCalc consists of two files. APCalc.prc (the application) and APCalcDB.pdb (the program database). Thereisa
third required file, MathLib (a public domain library), that is not part of APCalc. APCalc.prcisused generically to
mean either APCalc-C.prc (Color or B&W) or APCalc-BW.prc (B&W only).

These two files can be installed using the Desktop S/W or whatever installation program you currently use, just as
you would any other application. These files can be installed in either order. APCalc.prc and MathLib are the only
programs that must be installed. MathLib must be installed before you launch APCalc.prc, for the first time.

If you do not install APCalcDB.pdb, one will be created automatically when APCalc is executed the first time.

NOTE: Onceyou have created your own programs, you should not install APCalcDB.pdb that comeswith
upgrades. If you do, you will overwrite your own saved programs.

 MathLibisafree shared library that can be used by any OS 2.0+ Pilot program that needs | EEE 754 double
precision math functions. It's distributed under the terms of the GNU Library General Public License, and is
freely available with full source code and documentation at the MathLib Information web page. It's not a part of
the APCalc program, and you're not paying anything for its use; a copy is simply included in this archive for
your convenience.

5of 45

Launching APCalc for the first time

When you launch APCalc for the first time you will see the registration screen, like

Unregistered a

the one shown at theright. Y ou have two options at this point. Req.at wwwpdlmdedr.com
or www.handango.carn

If you have registered APCalc, you should enter the Key that you received with Yo must submit: User Mome
your confirmation, into the Key field, and tap[Register. User field and Reg. Code or Reg Cods, toregister &
fields cannot be changed. Once the key has been recognized as valid, you will see :::rc:gte Dis
the "Unregistered”, at the top of the screen, change to "Registered” and a popup A L EEE 44 FEE 3T D
screen that says " Thank You". Successful registration will remove this screen ey
from being displayed each time APCalc is started.

[Test Dri\.ne:] [Reqgister]
Alternatively, you can tap [Test Drive, without entering aKey, to use APCalc, inits [+ -
demonstration mode, subject to the limitations of the demo version of APCalc. ;’ 00E
Demo mode limits the size and humber of programs as well as the number of)= ==
Function Keys. If you have aready registered, use[Test Drive to exit the screen. E'E'E'E'E'E'

.

Y ou will then see a screen like the oneto theright. Thisishow APCalc looks with @E] f
no saved programs. The "Init" isjust aninitial blank program that is created as the EIEIEI
first program name. Y ou may tap [Inif] button followed by to begin editing this =200
program. Programming will be covered later in this document.

Quick Look

The following information should get you familiar with APCalc. The purpose of this document is to show you how
to use APCalc and itsfunctions. It is not aimed at teaching you how to programin general. | will handle, on a case
by case basis, any specific questions on how to do specific calculations.

i i Functions
Expr. Scroll Input Expression INsertion Foint
Zoom Font ucpsh{}
Program : _. History Popup ﬂﬁ!nﬁ}l':}
'I‘z:sin WIHC0S - T
Status (x)+costy) F| — Fixed Mode ask{™}
TrigMode — or (006502553 B atan
- ™ Key Groups atanh}
Function Keys { |_zin | cos J [tan)| asin) |acos) atan) avgll %
[1og)| In J|ex=p || sart]|cbret]] nd | Variables

Register pv
Control i¥
P
np
pt
nfib . B

Last X —— [Anz) (7] [+/-)[17=][Clr] 1 — Backspace .~
sto El o

— Graffiti Stroke

Exponent A

(i.e. 6.02e23) Enter Key (=)

6 of 45

Input Expression — The field in which you enter the expressions you wish to evaluate. Expressions may contain
signs, constants, numbers, variables, functions, operators and SPACES (spaces areignored). You can‘Tap’, ‘Cut’,
‘Copy’, ‘Paste’ and *Select’ any part of an expression. Expressions can how be up to 64 characters and may occupy
up to three lines. Up/Down scroll buttons (left of input line) have been added to navigate within the expression. Up
moves to the beginning of an expression, Down moves to end of expression line.

Theinput line can contain single expressions or multiple expressions, if separated by a semi-colon. Thisalows
input like: x=5; y=6; z=x*y, on asingle line with aresult of 30 displayed in the Answer field. Seethe'$ operator
for repeat execution of multipleinstruction lines.

Matching parenthesis: Asyou tap the expression field, you will select data within matching parenthesis. Thisis
useful for deleting parts of expressions within parenthesis.

Status— The current status of the calculator is displayed inthisarea. ‘R’ indicatesthat aprogramisrunning. If a
wait() function is executed, the ‘P’ (paused) indicates that the calculator is still in run mode and must be continued
with @ ‘'S indicates single-step mode and requires pressing @ after each instruction. Single-step modeissetin
preferences screen. Thereis also a Fixed Mode Status on the right side of the screen. Itisdisplay abold ‘F’ if the
calculator isin afixed point mode that is other than decimal. Be aware of this status or else you might not be aware
that an answer isin some other base.

Trig Mode— ‘D’ will displayed for degree mode, ‘R’ will be displayed for radians. Tapthe ‘D’ status field and
pop up aselection list (Deg, Rad).

Function Keys (User Defined K eys) — Two row of keys are allocated to built-in functions and User Programs.
These function keys can display groups of functions, for easy access. Current function groups include 9 User
Function Groups as well as, Trig/Sci, Misc/Hypr, Base 1 and Base 2.

The key label consists of the first 4 characters of the program name. (i.e. Program, will display ‘Prog’ on the
function key associated with the program number).

The user program Function Keys Groups can be renamed using Menu—> Edit->Edit Key Groups. Go to the edit
screen and choose names you prefer for these groups.

Use the Hard Scroll buttons to change these keys. The state of these function keys is maintained between sessions.
Y ou may also change these via the function key popup trigger (to right of Answer) or on the Preference menu.
These may be programmatically changed by the function fk(x) where x is between 0 and 13.

Note: Base 2 cannot be accessed via the Function Key Popup; it is an extension of Base 1 and is accessed via Basel,
viathe hard scroll buttons or with fk() function, in a program.

Last X — The[Ans]| key will evaluate to the last calculated value. Usethe 'Ans' variable, in an expression, when you
want to refer to the last calculated value.

Register Control — These two keys ((Std and [Rcl]) are used to store and recall values to and from the 100 built-in
APCalc registers. Syntax is Sto(x), where x isany value from 0to 99. The last calculated value is stored to the
specified register.

Quick Edit — This button brings up the currently loaded program, into the editing window. If there is no program
currently loaded, tapping will open with a blank program. Use this button to create and edit APCalc programs.

Run / Stop — This button is tapped to begin or halt execution of a previously loaded program. This button serves the
same function as menu option, Menu—>Program—->Run Program (/R). 1t must be tapped to ‘continue’ a paused
program (i.e. after await(“label”)). A paused programisindicated by a‘P’ inthe statusarea. Tapping @ can be
used to break out of an infinite loop, in a program.

7 of 45

Enter Key (=) — Functionslike theE key on any calculator. Tap thiskey to evaluate the expression, in the
expression field.

Graffiti® handwriting recognition — APCalc accepts input from the Graffiti® writing area. Graffiti® characters
areindicated inthis area.

Functions— Tap thistrigger and display alist of functions available for usein expressions. A few functions will be
missing from thislist because they have no use at the calculator level (outside of a program). Use the popup scroll
button to navigate to the function of your choice. Tap that function and it will be inserted into the current
expression.

Variables— Tap this button and display the last 30 variables available, for use in expressions. Use the popup scroll
button to navigate to the variables of your choice. Tap the variable name and it will be inserted into the current
expression. Tapping the right list will allow editing the variable data. When the list reaches 30 variables, new
variables are added to the list the oldest will be deleted. Variables are displayed in the order they were created.
Variables consist of apha, numericand *_’ with a maximum length of 20 characters.

Registers— Tap this button to display alist of built-in registers.. Tap the register name and it will be inserted into
the current expression. Tapping the right list will allow editing the tapped register.

Backspace — Tapping this key will delete the character to the left of the Insertion Point. Backspace will also set the
pending data flag ('pflag’).

Expression Result — Result of expressions are displayed in this area (Ieft of Key Groups), whenever the E| key
(APCalcd) istapped. Every function will return avalue. Expressions like Clear History, Clh(1), will return the last
calculated value (Ans). Tapping the Ansfield will pop the result into the Expr field.

Note: 'Ans variable uses the full precision of the previous result, while tapping the Ansfield will only use the
displayed value (i.e. truncated to displayed precision).

Key Groups— Tap thisicon to display alist of Function Key Groups. Select the desired group to assign Function
Keys.

Note: Base 2 cannot be accessed via the Function Key Popup; it is an extension of Basel and is accessed via Basel.

Fixed M ode Status— This status will be ‘F’ for any base other than 10. Thisisto remind you that you are not in the
base 10 output format. Y ou can use base(10) as an expression to return to base 10 or you can go to the base function
key group and set it there. Since the Base settings are remembered, you can use this status when returning from a
previous APCalc session.

History Popup — Tap this button to display the last 32 unique expressions. This can be used for repeat calculation
of arecent expression. Tapping any history entry pops that expression to the expression field. The history buffer is
mai ntai ned between sessions of APCalc.

Insertion Point — The insertion point isa blinking cursor that shows where new text will be entered or the point at
which text will be deleted using the Backspace key. Y ou can change the insertion point by simply tapping anywhere
within the expression.

Basic APCalc Operation
Basic calculations consist of entering expressionsin the expression field, followed by tapping the [APCalc key.
Expressions are entered just as you would write them on paper and may consist of a sequence of signs, numbers,

constants, variables, functions, operators and parenthesis. Expressions are evaluated each time the key is
pressed. The following are examples of what simple expressions might look like in the expression field of APCalc.

8 of 45

| nput Expression Result

25*56 + 10*1000 11,400.00000000

1/2%32% 272 64.00000000

(24 +23) * 3+ 4* (15- 16) 137.00000000

x=t?,y=5 z=x*y OR prompt for t and display 5*whatever was input. Seethe
x=t?; x2; iff(x==0, "end");$ '$' operator for repeat operations.

Note: implies that the[aPCalc=] key isto be tapped rather than writing "APCalc=" into the display.

The number significant decimal digits displayed may vary, depending on the previous preference settings. Y ou may
change this selection by activating the preference screen with either the Menu—> Info—> Preferences or using the
shortcut Command (/1) to bring up the preference screen. Preference selections made are saved and are restored
each time APCalc is launched.

Setting Preferences

Deg | Rad Select degree or radian mode Preferences|

Fix | Sci |Eng Select Fixed Point (within 1e8 to 1e-8 limits) or Sci or Eng mode] (o e A
Decimal Select decimal display format (0 to 8 decimal places) EII] E]B:E
SS Selects single-step mode, during program execution, if checked O Sstep [TZeros O R¥ars
TZeros Trim trailing zeros, of decimal part of result, if checked Display Instructions Mo
RVars Reset variables each time[APCalcd is pressed Tap Speed =
Display Inst. Display (animate) instructions, during program execution

Tap Speed Select fast or Slow tap speed for use with Multi-tap selection Bckun DB P—
Backup DB Backs up APCalc program database, during HotSync® [Backup O ProgHistory
ProgHistory Logs program steps, during program execution, if checked

Using variables in an expression

There may be times when you find it necessary to use variables within expressions, at the calculator level (that is,
outside of a program).

For instance, to calculate the area of atriangle use the formula %# base* hei ght . [+ 1/Z*base*height -]
To perform this calculation you would enter: ;' 00E

- - [height]
1/ 2*base* hei ght (or. 5*b*h) and press[aAPCalcg. Y ou will be prompted for 1
base and hei ght , if these variables do not already exist.

[cIr)

Prompting for variables occurs automatically, the first time the variable is
encountered. Simply enter the value for the variable and tap Ok. Calculation will
continue until complete. The result of the calculation will be displayed in the Ans
area next to the Key Group button. TIP: using avariable, followed by '? will
force prompting of a variable.

NL"I':C‘:I

pi

|+*'x:|

(=[=]=]=)
(2]=]~]#

ROO0

R —

90of 45

Once the calculation is complete, you can review the variable values by tapping the

tab at theright of the screen. Thislist of variables will contain the last 30 var Lontents
yariabl% used in al _cal culatiqns Tapping on any variable will pop that variable 58 Onnnn0mn
into the expression field. For instance to calculate the area of arectangle angle 2323000000
(base* hei ght), using the same values and only the variable popup and the time 3520000000
i war 23.24000000

APCalc " operator, you could tap: base hei ght vel 232300000223

0.0

0.0
To delete a specific variable (like base), just enter base= without avalue, 0.0
followed by the[aAPCalcs key. Thiswould delete base and removesit from the 0.0 v
variable popup list. Or, check Del and tap variable name. & s O o O Dl

Y ou may also assign the value of an expression to another variable. For instance you could have calculated these
two areas and assigned it to new variables, Atri and Arect, by writing the original expression as follows:

Atri = 1/ 2*base*hei ght and Arect = base*hei ght

Another useful way of evaluating expressionsisto evaluate a previously entered expression with different variable
values. There are two simple ways to accomplish this. The method you use will depend you your personal
preference.

The first method uses the ? operator. Any variable that has ? appended to the variable name, will automatically
prompt for that variable, even if it already exists. Y ou could have written the equation like:

Atri = 1/ 2*base?*hei ght ? and would have been prompted for base and hei ght each time the[APCalc]
key istapped. Or, Arect = base*hei ght ? and would have only been prompted for the first occurrence of
base and subsequent values for hei ght .

The second method of forcing prompting for variablesis by setting the RVars (reset variables) preference. This will
force the clearing of "all" variables each time the [APCalc key is tapped which will force prompting at variables.

Note: Using RVars clears all variables each time ispressed, use with caution. Thisapplies even if you are
not entering avariable. For instance, if RVarsis checked and you simply calculate 2+2, all variables will be cleared.
Thisisuseful, if you have an equation in the expr field and you want to continually be prompted for input. If you do
not use RVars and you are tap with a previoudly calculated expression, you will see no change to the
display since it has been calculated with previous variable val ues.

Using functions in an expression

Using functionsis very similar to using variables. Functions may be written into an [+ u—radis* -
expression, selected from the function list, f tab, or directly accessed viathe *

Function Keys. To enter the equation, x=r adi us* cos(angl e) , you could
enter:

x=r adi us* f'
then select cos() from the popup function list. You will notice that theinsertion |re1][4][5] ;'i:'{s}h'::'
point is positioned within the parenthesis. Y ou then writeinangl e or select it disp{™"? B
from the variable popup, if it already exists from a previous calculation. You R/C @El 3:?;? +

would finish the calculation by tapping the key.

10 of 45

Function Key Groups

Another way of using functionsis by directly accessing them via the predefined
Function Key Groups. Tap the Key Group icon, to the right of the Answer field,
and see a screen similar to the one to theright. Tap Trig/Sci to select scientific
functions. Thiswill set the Function Keysto their scientific assignments. Tapping
these any of these keys will insert that specific function into the expression field.

This screen shows the default Key Group names. Key Groups UserKeysl -
Subroutine2 can be renamed to anything you require. The last four, Trig/Sci,
Misc/Hypr, TVM, and Basel/Base2 are pre-defined, APCalc functions and cannot
be changed.

Changing Key Group Names

As you add programs, you will want to change the User Key Group names per your
configuration. These names are the names that are displayed in the group list,
when you tap the key group icon, on the main calculator screen.

To edit, select Edit>Edit Key Groups from the APCalc menu. Y ou can then
replace any default name to something more appropriate to your program groups.

Programs are divided into groups of 12 programs. Group 1 is appliesto programs 1
through 12, Group 2 applies to programs 13 through 24, an so on.

Creating/Editing APCalc Programs

Creating a program is just an extension of the basic operation of APCalc. A programis simply a sequence of basic
APCalc calculator expressions that have been saved, as aprogram. Programs can be created within APCalc, using
QEd (quick edit) or they can be written in MemoPad and imported (discussed later) into APCalc. Note: Thereisa

Userkeys1
Userkeys2

Userkeys3
Uszerkeysd
Userkeyst
Uszerkeyst
Userkeys?
Subroutine 1
Subroutine2

)™
A E
ud

X
a
"

Wiz Hypr
TM

[l

e}
e
i

HEE
ERERE

Bazels/Bases

.Grnup Selection

Group 1L
aroup 2 |
Group 3 L
aroupd |
Group 5 L
aroup & L
Group ¥ L

required format to follow, when creating programs within MemoPad. See Import section for this format.

In addition to basic expression evaluation, programs can initialize variables, prompt for user input, jump to other

locations within a program, call other programs and display results.

Each program instruction line can contain a single instruction or multiple instructions separated by a semi-colon. A
multiple instruction line will execute each instruction but will display only the last result. The LastX (Ans) variable

will be set for each individual instruction within a multi-instruction line.

Creation of programs consists of afew simple steps.

11 of 45

Creating or Editing a program involves the same process. The only differenceis
that creating a new program opens the QEd screen with a blank instruction list.

Tap the button to open the instruction list screen, shown at right, for the new

wdone
or currently loaded program. An example is shown at right. disp("Payment="}

Check Edit, then tap instruction to open edit instruction screen, for that instruction.
Check Delete, then tap an instruction to del ete the tapped instruction.

Check Insert, then tap instruction to insert instruction, in front of tapped instruction. ' 5 meart +
Tap the[Ok button to end the editing session and return to the calculator screen. O Delete
Once in the Instruction Edit screen, you can use the function list, the keypad or the prt a
keyboard to edit instructions. When the current expression is compl ete you may Edit Instruction (2)

either tap Dona, to return to the Instruction List screen, or you may tap one of the D= E PR
other buttons. Tapping Undg], restores the instruction to its original state. Hﬁ_]
L

(5]
6 [# pif~]
3
L)

To insert another new instruction, after the current instruction, check "Insert after
instruction" before tapping Ins (insert). To insert before the current instruction,
leave that box unchecked and tap Ins.

B8
g
2 + { II]

O Inzert after instruction

Next, will display the next or previousinstruction, if it exists.

Saving APCalc Programs

After you have created your program, don’t forget to save the program. At this point, the program isjust in program
space. If thisisanew program, you must use SaveAs. If thisisa‘loaded’ program (via Load or after executing a
program), you can use Save to change, or SaveAsto save under a different name. If you don’t perform a Save or
Save As, the program will be lost when you exit APCalc or execute a different program.

All of thefirst 108 user generated programs are automatically assigned to the User1 through User 9, upon initial
creation.

Changing the order of functions on keys requires moving the program location. See the "Import/Export to and from
MemoPad" section for instructionsin moving programs.
Example Programs

Example 1: Compute the area and circumference of a circle

Here is an example of a program that computes the area (A=pi*radius*2) and circumference (2*pi*radius) of acircle
and prompts for circle radius. It will also pause and display alabel before proceeding with the circumference
calculation.

radi us=

pi *radi us™2
wait(“Area ="

2*pi *radi us

di sp(“Ci rcunf erence =")

12 of 45

Example 2: Convert between Fahrenheit and Centigrade

Example of a program to convert between Fahrenheit and Centigrade. This example uses the iff(expr, "label")
function. Comments (//) are not entered into program. This program will display a popup that offers a choice of F
toCor CtoF. Select 1to convert from Fto C or 2 to convert from Cto F.

: Temp Convert

F= /1 clears F; forces pronmpt of F
C /1 clears C, forces prompt of C
in(“1) FtoC 2) CtoF") [/ pronpts for choice

sto(1) /'l saves choice
iff(rcl(1)>1,"CtoF") /1 tests for choice = 2
(F-32)*5/9 /1 executed if choice was 1
wait(“C = ") /1 displays C = | abel

j mp(" done”) /1 Junp to done

: CtoF

9/ 5* C+32 /] calculates F

wait (“F = ") /1 displays F = | abel

: done /1 done (conment)

Example 3: Single-line programs

The User Keys have two modes. For multi-line programs, the program is loaded and executed as soon as the User
Key istapped. For single-line programs, the = key must be pressed before the expression is executed. This second
mode isto allow you to store constants, or single line expressions for inclusion in other expressions. Any singleline
expression can be executed immediately simply by adding a comment line asthe first line, thereby, making it a
multi-line program.

To assign aUser Key to perform asin() function exactly like the sin() on the Trig/Sci group, you would create a
single line program like:

sin()
asthe only instruction. Assignit aname of, say, sin. ‘sin’ would then be assigned the next available User Key.
When that key istapped, sin() will be inserted at the insertion point in the expression. would be required to

evaluate the expression.

Note: Because of limited number of programsand Function K eys, single-line behavior isnot availablein
unregistered versions. Single-line programs behave just like multipleline programs, in unregistered versions.

Example 4: Multiple-line programs

To assign aUser Key to perform aclv(1) function, and execute immediately by tapping the User Key, you could
create a multi-line program like:

: begin
clv(l)

asthe program. Assign it aname of, say, clv. ‘clv’ would then be assigned the next available User Key. When that
key is tapped, clv program would be executed immediately.

13 of 45

Example 5: Subroutine / Jump Examples

The four programs below illustrate the use of call("prog") function as well as one use of the ask("prompt™) function.
Also you will see an example of out("prompt”, expr). Program 1 (PG1) calls program 2 (Sub2) to initialize two
variables, then the program returns to program 1 to calculate x+y. Following that calculation, program calls
program 3 (Sub3) to calculate x*y. Program 3 then calls program 4 to calculate x*y/x+y. Finaly the programs
return back through 3 to program 1. ##Names are not part of the programs, while in APCalc.

##PGL ##Sub2

. PGL : Sub2

45* 25 x=45

cal | ("Sub2") y=25

X+y di sp("Sub2 (init): x=45, y=25")
out ("PGL: x+y=", x+y) ask(" Conti nue")

ask(" Conti nue")

cal |l ("Sub3")

x*100+y

di sp("PGL End: x*100+y=")

##Sub3 ##Sub4

: Sub3 : Sub4

out ("Sub3: x*y=", x*y) out ("Sub4: (x*y)/(x+y)=", (x*y)/ (x+y))
ask("Tap any key") a=Ans

a=Ans ask("Exit")

cal | ("Sub4") a

a

It isimportant to note that call() does not return avalue that is the result of the called program. What call() returnsis
the last calculated value at the time of the call. So, for the PG1 example above, if 3 instruction was

resul t=cal | ("Sub2"),thevaueof resul t would be 1125 (the result of 45*25). If aninstruction like,
resul t =Ans wereinserted right after the call(), the value of r esul t would be zero, since that is the last
calculated value, asaresult of Sub2.

Call Variation

Thereisavariation of the call ("program™) that can be used in conjunction with the ask("") function. Thisfunctionis
calif(index, "progQ", "progl", "prog2", "prog3", "prog4"). Thisvariation usesan initial parameter index to select
which program will be called. Theindex iszero based. If index is 2, then "prog2" will be called, and so forth. If
callif() is called with a missing index parameter, it will execute exactly as call() but will use "prog0" name. Any
program names may be used for program parameters.

Example (pick list to select running Sub 2 or Sub 3 above):

ccallif test
a=ask("Run Sub2", "Run Sub3")
callif(a, "Sub2", "Sub3")

Jump Variation

Thereisaso asimilar variation to the jmp("program”) function. The function jmpif(index, "label0", "label 1",
"label2", "label 3", "label4") greatly simplifies branching using the ask() function or other ways that depend on an
index.

14 of 45

Executing APCalc Programs

All programs that are loaded into APCalc are assigned to one of the Function Keys. Simply tap that key to execute
the program. When a program is executed, it is also loaded into the program space and can be edited via the QEd
button. Once aprogram isloaded into the program space, it can also be executed, using @

That's about all there isto creating and running a program.

APCalc Editing Tips

Gr affiti® command stroke:
APCalc uses Graffiti® command strokes just like any other application. There are, however, afew strokes that are
very useful to APCalc. Theseinclude:

Move cursor one char right right-left-right

Move cursor one char left left-right-right

Delete last entry (char) left stroke

key upper-right to lower-left

Select All /S, selects the entire expression

Copy (with nothing selected) Copies Ans to the clipboard.

Tap Selecting Text:
| have added the ability to select within matching parenthesis. Thisisa multi-tap selection.

Tap once: Sets the insertion point

Tap twice: Selects aword or number

Tap again: Selects all text within matching parenthesis
Andsoon....

If there are no matching parenthesis, all remaining text is selected.

This feature works on expression field on calculator, Full Screen Program Edit mode, and Instruction Edit Mode

(QEd).

APCalc Programming Tips

1) Oneof thefirst things| do is create dummy programs for all 108 locations. The dummy programs are nothing
more than a comment. That way, | can just select the program | want to edit and avoid having to move
programs around.

:dummy
disp(“not programmed”)

2) Usingvar =, at the beginning of a program, will clear the variable and force its prompting, if that variable
appears later in the program. If it used at the end of a program, it will remove the variable from the variable
popup list. You can use thisto remove internal variables from the popup list.

3) Usingvar ?, promptsimmediately for avariableinput. Thisdoes not delete the variable first. Theresultis
that if the variable already exists, its place in the variable popup list, will not change. If it does not exist, one
will be created and placed at the top of the list. Use thisto control the order of prompting of variablesin a
program or equation. var? can also be used within an expression (i.e. z =x?+y?)

15 of 45

4)

5)

6)

7)

The purpose of expr(1) isto grab a pending expression from the input field. There are two cases where you
may wishto do this. You can use thisto have a program be dual function (store avalue, calculate aresult).

a) Casel (tograbinput at beginning of program): The expr(1) function should be the first instruction. If it is
not the first instruction, the Prefs>Display Instructions set to Y ES, can change the input and you will get
an undesired result.

b) Case2 (to grab input in the middle of a program): The expr(1) instruction must be preceded with a
wait("prompt").

Note: If you intend to grab pending data, you must include thisfunction asthefirst instruction. You
should also always use iff(pflag, “label”) to test for the existence of pending data.

pend(1) is similar to expr(1) except that it grabs data that was pending, at the time the program was executed.
pend(1) does not have to be the first expression. Wherever it islocated, will return the pending expression, at
the time the program began.

Use something like x=Ans, as the first instruction in a program, to have one program continue with (and save) a
calculation from a different program. Y ou can have programs who's input is dependent on the result (output) of
another program.

Other examples can be found at http://www.hal cyon.com/ipscone/apcal c/examples/. Navigate to
Documentation—> Program-> Examples.

16 of 45

http://www.halcyon.com/ipscone/apcalc/examples/

Base Conversions

APCalc offers flexibility in the way you can handle base conversions and fixed point math. There are two distinct
ways to handle base conversions and fixed point math and operations.

Y ou can perform all fixed point operations and conversions using the Base Conversion Function Keys. This mode
provides you with the greatest precision. Y ou have the use of the full 64 bit fixed point number system.

Y ou may also mix fixed point cal culations and floating point operations using a specia notation discussed below.
Using this mode, you are limited to fixed point numbers less than 1e53-1. All fixed point numbers are unsigned 64
bit numbers.

Number bases from 2 to 36 can be handled by APCalc. Numberslarger than base 16 use alphabetic letters g-z.
All base numbers are displayed using this character set. 0123456789ABCDEFghijklmnopgrstuvwxyz

“F” just below the history popup trigger, indicates that you are still in some Fixed Point Base other than 10.

Base Conversion Key Group Definitions

Base 1l
A-F Hex characters used to input Hex numbers, for numbers 10 to 15. + 05070z -
* F
: 1 FD3z2 (028
F10 FromBase Key: Setsthe input mode. Enter a number between 2 and 36 i
and tap the F10 key (FromBase) key. It will rename itself to denote the I | I N [
: Tig JF==T)__J[<vT
current From Base setting.
) D) ¢
T10 ToBase key: Setsthe output (Ans) mode. Enter anumber between 2 @El F
and 36 and tap the F16 (ToBase) key. It will rename itself to denote the HAEHBEREG
To current base Setting. E

F<>T Thisbutton does a quick swap of FromBase and ToBase.

Thisisaspecial operator, used in floating point mode, to provide limited base conversion capability in
floating point mode. Useit to enter numbersin a particular base like: 10:255, 16:3FF, 2:10110, etc. In
floating point mode, that is when you use to evaluate an expression, all expressions contain
functions, constants and decimal input. Y ou cannot input numbersin Hex, for instance, without using this
operator.

CVT Convertsanumber, in proper format, according to FromBase setting to aresult displayed in the ToBase
format. Enter a number in the proper format and tap CV T to convert it.

> Switch to other base Function Key Group.

17 of 45

B+ Adds ‘expr’ to the last displayed value. 'expr' isin the FromBase format + 0547240401 -
+

i F
selected with the FromBase key. ; 1 ED74 ACFOH
B- Subtracts ‘expr’ to the last displayed value. 'expr' isin the FromBase
format selected with the FromBase key. [and) ot) Ccor) (not) (2:)=)
B* Multiplies ‘expr’ to the last displayed value. 'expr'isin the FromBase

format selected with the FromBase key.

B/ Dividesthe last displayed value by ‘expr’. 'expr'isin the FromBase
format selected with the FromBase key.

<< Shiftsthe last displayed value, left, by n bits. Enter ‘n’ then tap the << key
to shift left n bits.

>> Shiftsthe last displayed value, right, by n bits. Enter ‘n’ then tap the >> key to shift right n bits.
and Performs a bitwise ‘and’ operation of the last input value and the ‘expr’ displayed in the input field.
or Performs a bitwise ‘or’ operation of the last input value and the ‘expr’ displayed in the input field.
xor Performs a bitwise ‘xor’ operation of the last input value and the ‘expr’ displayed in the input field.

not Negates the last displayed value. Does not require an input value. Just tap to negate last Ans.

Fixed Point Calculations/Conversions

All conversions and fixed point math are performed using a FromBase value and a ToBase value. Beforea
conversion can take place, you should enter the correct FromBase and ToBase, using the Fxx (temporary name) and
the Txx (temporary name) keys. The FromBase (Fxx) and ToBase (Txx) are remembered so F10 and T10 will be
remembered between APCalc sessions. Check the 'F' (fixed point status) if you need to know whether or not you
have previoudly set a Fixed Point base.

Example 6: To convert 3FF from HEX to DEC, you would enter the following:

1) 16 /'l base 16

2) Tap F10 // key is renamed to F16 (FronBase)

3) 10 /1 base 10

4) Tap T10 // key is renamed to T10 (ToBase)

5) 3FF

6) Tap CVvT // Convert - see results (1023) displayed

To continue and convert 3DACE from HEX to DEC, just:

1) 3DACE
2) Tap CVT // no need to reenter FronBase and ToBase val ues.

To then see what this value might be in BINARY, just change the ToBase value:

1) 2
2) Tap ToBase key // ToBase key is renaned to T2

To return to base 10 output:

18 of 45

1) 10
2) Tap ToBase key // to return to DEC output display

To then see what this value might be when 3FF added to it:
1) 3FF
2) Tap the --> key /1 switch button groups

3) Tap the B+ key // result of expr + previous val ue

NOTE: B+, B-, and, <<, etc expect the input data in the FromBase format. (i.e. FF would not be an acceptable input
if the FromBase was F10).

To then shift the results left by two bits:

1) 2 // shift left 2 bits
2) Tap the << /1 results displayed in Ans field

‘and’, ‘or’, ‘xor’ operateinasimilar manor. The‘not’ functions does not require an input. Just tap the ‘not’ key to
calculate the inverse of the displayed value.

Note: All of these operations expect the input expression in the correct format as determined by the FromBase and
ToBase input, using the FromBase and ToBase keys.

Mixed Fixed Point and Floating Point operations using the ‘:’ operator and the Equal key:

This mode allows limited use fixed point numbers, in various bases, to be intermixed in the basic floating point
calculator mode. Inthismode ONLY the ToBase format isused. Y ou can use this mode to calculate a mix of
base values and display the results in another base. The syntax for this operator is:

base: nunber where base is a number between 2 and 36 and number is the number in that
base, in the proper format.

Example 7: Using base operator *‘:’

1) 10: 255 /1 255 as a base 10 nunber (DEC)

2) 16: 3FF /1 HEX number 3FF

3) 16: 255 /1 HEX number 255

4) 2:101010 /1 BI NARY nunber 101010

5) 27:9g3F2 /1 g3F2 in base 27 (whatever that is good for)

Y ou can mix and match these numbers and eval uate expressions using this notation.

Example 8: Mixing bases;, 118(DEC) + 3FF (HEX) + 101010 (BINARY) and display asa HEX

1) 16

2) Tap ToBase key /1 F16 in |l egend, sets output to HEX
3) 10:118+16: 3FF+2: 101010

4)

This may seem awkward at first but | think you will find this very useful and provides a great deal of flexibility
when dealing with math operations on mixed, fixed point numbers.

Note: If you type FE3 (what you think isa HEX number) and tap [APCalc=], APCalc will think thisisavariable. You
must use the ‘:" operator if you wish to use the basic calculator with fixed point numbers.

19 of 45

This mode is limited to Fixed Point Numbers < 1e53-1. That isthe highest fixed point number that can be
accurately represented by the floating point format used by the OS.

20 of 45

Financial Programs
The example demonstrates the use of the built-in Time Value of Money (TVM) functions

Financial Key Group Definition

Beg tap if payment is at the beginning of the month. +Net Present Valued -
End tap if payment is at the end of the month ;’ 1513041345 @
DR Discount Rate (used with Net Present Value functions) E_Tg_l

CF Cash Flow input (used with Net Present Value functions)

NPV Net Present Value (calculates NPV given CF inputs)

IRR Internal Rate of Return (calculates IRR given CF inputs)

NP enter or calculate the total number of payments to be made

IR enter or calculate the periodic interest rate (i.e. 7.5 isentered as 7.5/12
if the period is monthly)

PV enter or calculate the present value of aloan

FV enter or calculate the future value of aloan

PMI enter or calculate the periodic payment of aloan. Payments are negative
while cash received is positive.

CLF Clearsfinancial parameters.

To use these programs, make sure RVARS is UNCHECKED.

Assume a 150,000 loan at 6% for 30 years and you wish to know the monthly payments, with payments made at the
beginning of the month. What is the monthly payment?

Number of payments 360 enter 360 and tap ‘NP’

Yearly Interest 6.5% enter 6.5/12 and tap ‘IR’
Present Value 150,000 enter 150000 and tap PV’
Future Value 0 enter 0 and tap ‘FV’

Pmt at beginning of mo. tap ‘Beg’

Payment ? tap ‘PMT’ to calculate -942.99

The result will show payments of —-942.99. Remember payments to you are positive and payments from you are
negative. So, when entering ‘PV’ and ‘FV’ the values are positive and your monthly payment is negative.

To see what the payment would be, if the interest was 6% instead of 6.5%, just enter 6/12 and tap ‘IR’ followed by
tapping ‘PMT’ and see that the new payment is, -894.85.

If the payment was at the end of the month, just tap ‘End’ followed by ‘PMT’ and see, -899.33.

Example 9: TVM programs (NP, IR, PV, FV, PMT, BEG, END)

While the TVM programs are built into APCalc, the following examples show how APCalc can be used to create
specialized programs to perform just about any task you have. The example below, was developed to fit on one Key
Group but you can assign the programs to any keys you like. These example programs require APCalc version 1.98f
or above.

The following programs can be entered into APCalc to provide baseline TVM calculations that can be modified to
add additional financial enhancements.

##Beg /1 nanme not part of program
: beg
pt =1

21 of 45

##End /1 name not part of program
rend
pt =0

##NP /1 nanme not part of program
np=expr (1)

i ff(pflag, "done")

np=np(ir, pnt, fv, pv, pt)

: done

di sp(" Nunber of pnts=")

##I R /1 name not part of program
p=expr (1)

iff(pflag,"in")

disp("wait...")
ir=ir(np,ir,pv,fv,pnt,pt)

j mp(" done”)

din

ir=p

: done

di sp("Interest Rate (per period)")

##PV /1 nanme not part of program
pv=expr (1)

i ff(pflag, "done")

pv=pv(np,ir,pnt,fv, pt)

: done

di sp("PV=")

#H#HFV /1 name not part of program
fv=expr (1)

i ff(pflag,"done")

fv=fv(np,ir, pm, pv, pt)

: done

di sp("Fv=")

##PMI /1 nanme not part of program
pmt =expr (1)

i ff(pflag,"done")

pmt =pnt (np,ir,fv, pv, pt)
: done

di sp(" Paynent =")

NPV Calculations

Both NPV and IRR calculations require inputting Cash Flow data. This cash flow dataisloaded into APCalc
registers, beginning with Register 1 and continuing until all cash flows are entered, up to 98 values. Begin all NPV
and IRR calculations by clearing the financial registers (CLF). Note: this does not clear the registers but only the
financial parameters, pv, ir, ect.

22 of 45

Register locations:

Register 1: Initial investment (usually a negative number, since cash if flowing away from you).
Register 2: First cash flow input

Register 3: Second cash flow input

Register N: Nth cash flow input

Register N+1: Net Present Value (also displayed in the APCalc Ansfield.

Tolook at an Investments. Using a 10% cost of capital (discount rate, DR) , the present values of inflows you would
begin this calculation by clearing the financial registers with CLF. Then input the discount rate of 10% by entering
10 followed by tapping the DR key. Then input each of these inflows below, followed by the CF key.

I nvestment

Year End of year cash flow NPV at end of year
2000 -1,000,000 -1,000,000

2001 400,000 -636,363.65

2002 400,000 -305,785.12

2003 400,000 -5,259.2

2004 400,000 267,946.18

2005 400,000 516,314.71

Now that you have entered the last value for 2005, tap the NPV key to compute the Net Present Value. Y ou want to
see apositive for good investments. Larger, in general, is better than smaller NPV.

NPV 516,315

IRR Calculations

To determine the Internal Rate of Return, simply tap the IRR key. This calcualtion uses an iteration process of 20
loops and produces an approximate result that should be good enough for any use but does not return the precise
exact IRR. It would be too slow, if | processed it to conclusion and would add no value, in doing so.

IRR can be in the range of -5010 to 5010. If you get areturn value that is at these limits, then your answer is larger
or smaller than the returned value.

Statistical Functions

The statistical key group provides functions including standard deviations and linear regression as well as
correlation coefficients. This section will show how to use the key group to provide this capability. APCalc
statistical group can handle 1 and 2 variable statistics.

Keys:

Init Sets 1 or 2 variable statistics. Select 1 for 1 variable statistics and 2 for 2
variable statistics. Y ou may or may not want to clear data.

X,y+ Adds each data point to the set OR displays sum of x values.

X,y- Removes data point(s) from set OR displays sum of y values.

n! Computes n factorial
Regs Display the statistical registers
n Displays the total number of data points

avg Displaysthe avg of x and y

SD-S Computes the standard deviation of x and y, using the Sample method

SD-P Computes the standard deviation of x and y, using the Population method

L.R. Computesthe linear regression of a set of data. Computes the slope and intercept of the best matching line.
y,r Computes the estimate of y given x asan input. Also, displays the correlation coefficient for the point.

23 of 45

Example 1: Compute the standard deviation of a given set of numbers using single variable statistics.
Begin by initializing the statistic functions. For 1 variable statistics, enter 1 and tap Init.

Data set: x= 5.5, 6.9, 10.3, 15.6, 21.2

Enter each of these values followed by tapping the x,y+ key to enter each piece of data. When al of the datais
entered, you can compute:

SumX =59.5 by tapping x,y+

avg(x) = 11.9 by tapping the avg button

SD-S = 6.49422821 by tapping the SD-S button
SD-P = 5.80861429 by tapping the SD-P button

Example 2:

Given data set:

x=55,6.9, 10.3, 15.6, 21.2
y=7.8,82,10.2, 187, 20.3

Begin by initializing the statistical group to handle 2 variable statistics. Enter each x followed by tapping x,y+. The
y value is entered at the popup. When finished entering all data you can compute;

SumX = 59.5 by tapping X,y+

SymY = 65.2 by tapping X,y-

avg(x) = 11.9 by tapping avg, avg(y) = 13.04 by tapping the popup pause indicator

SD-Sfor x = 6.49422821 by tapping SD-S, and SD-S for y = 5.99357990 by tapping the S.D.(y) popup
SD-P for x = 5.80861429 by tapping SD-P, and SD-P for y = 5.36082083 by tapping the S.D.(y) popup
Slope of closest matching line = .89353883 by tapping the L.R. button,

Intercept (B) = 2.40688797 by tapping the popup

To estimate y given an x, enter the x value followed by y,r. Tap the popup to get the correlation coefficient.

To display all of the statistical registers, tap the Regs key.

24 of 45

Matrix Operations

These functions will allow manipulation of up to 3 matrices (0 to 3). The default value for all 3 matricesis 3x3.
Matrices can be sized, for now, to 5x5 size. The matrices use the existing storage registers. Matrix parameters
range are:

of matrices -3

number of rows - Otobs
number of cols - 0tob5
row index - 0to4
col index - 0to4

These functions include:
InitM atrix mtxi(matrix, row, col, start)

Use this function to size amatrix. Matirces are not checked for overlap, as yet, so that will be up to the user to make
sure that matrices do not overlap.

Ex: mati(0, 4, 5, 20) defines matrix 0 as 4x5 and starts at reg 20
mati(1, 2, 2, 50) defines matrix 1 as 2x2 and starts at reg 50

Return value isthe dimension + start register in the following format:
r.cSR wherer isrow, ciscol and SR is starting register.

GetMatrixValue matg(matrix, row, col)

Use this function to get a matrix value.
Ex: mtxg(2, 3, 4) returns the value of matrix 2 at row=2, col=3

SetMatrixVaue mats(matrix, row, col, value)

FillMatrix matf(matrix, value)
Use this function to set a matrix value.
Ex: mtxs(2, 3, 4, number) the value of matrix 2 row=2, col=3 to number

DispSizeMatrix matz(matrix)

Mostly used for debug. This function returns the size of the matrix as specified in mtxi but sets nothing. Reg
97=row, 98=col, 99=start.

Graphing
Graphing on APCalc might be different that you have seen on other calculators. APCalc graphing has been
designed to allow graphing of equations, without the need of programming experience. Y ou may, though, use

programs to create more complex graphs and to automate many of the graphic setup steps.

Manual Graphing of an equation

25 of 45

It is quite simpleto graph an equation. Just perform the following steps and you
will begin to graph equations, without any programming experience.

1) Enter graph(1) and tap APCalc=

2) Select Setup from the menu bar (/)

3) Write in the equation on the f(x) line (i.e. sin(2*x))

4) Set: xMin, xMax, yMin, yMax, step B xhisOn v s On
XxMin=0 [Report Errors [Connected
xMax = 360 izeh= sindzh
TMace 1
step= 8

5) If you wish to display x and y axis lines, check the appropriate checkbox

x Axis on = checked, y Axis on = checked, "Report Errors" is used to
suppress errors when discontinuities are encountered.

6) Select "EXit" button to return to the graphic screen

7 Tap "Plot" to plot the equation (see image at right)

That'sit! Very simple. Note, however, if you select an inappropriate xMin, xXMax,
yMin, yMax, or step, you might get undesired results or the plot may not be visible
at all.

[Run J{ Plot) <lear 1 Exit)

If you graph afunction, and the function uses x values that produce an undefined result, you will get an error popup,
asawarning (i.e. tan(x) where x = 90 deg). Also note that if the x values step from 0 to 180, depending on the step,
you might not exactly hit on zero (for the tan example). You just need to be aware of this.

Graphing using a program

Graphing using programs s just like any other program, except that graphing programs use a special set of
instructions (see graphing instruction list at end of document) and programs are run on a different screen.

Using a graphing program, you may perform all of the steps that you can do manually. There are afew additional
instructions that are for color, and not available in manual graphing. This functionality will be availablein alater
version. Also note that some of the functions operate differently on black and white than they do on a color device.
For instance the rect(3, 3, 10, 10, 1) will fill arectangle with the foreground color. This may look fine on a color
device but may look differently on a black and white device.

Graphing program example: Create the following program and assign it to afunction key. When completed, tap the

function key to execute the program. Y ou should see the graph shown on the image to the right of the program.
Note that al graphing programs begin the graphing part with the graph(1) command.

26 of 45

‘text draw (continued from previous column) =T T
mode=dm(-1) Value2 = 151.0000
graph(1) .dm(2) Y1+ = 276.0000
gcolor(0,0,255,0,0,0) dm(mode)
grect(1,6,8,154,43,0) gcolor(0,0,0,0,0,0)
gcolor(255,0,0,255,255,208) grect(1,6,46,154,81,0)
grect(0,6,8,154,43,1) geolor(0,255,0,0,0,0) APCale
gprt(10,8,"Valuel =") grect(1,6,46,154,81,0) T
gprt(112,8,"(125-150)") gaxis(0,720,-2,2,20)
val1=125 gwin(5,45,149,37) ,
gcolor(255,0,0,255,255,208) gcolor(0,0,0,0,255,0) (fun) Plot) (dlear) Exit)
oprt(48,8,va1,4) gplot("sin(x)","x",0)
val2=vall gwin(5,45,149,37) ;
‘l00p geolor(192,192,192,0,0,0) Multiple Value Output Ex.
gcolor(255,255,255,0,0,255) grect(1,6,84,154,119,1) Valuel = 1251231
val2=val2+2 gcolor(0,0,204,192,192,192) Yaluez = 3458320
gprt(10,19,"Vaue2 =") grect(1,6,84,154,119,0) Total = 4709551
gprt(48,19,val2,4) guln(3) Walue 2= -345.8320
gcolor(0,255,0,0,0,0) gprt(66,96,"APCalc") Total = -220.7083
gprt(10,30,"V1+V2 =") gcolor(0,0,0,255,255,255) DrHere=
gprt(48,30,val1+val 2,4) guin(0) % %
iff(val2<150,"loop™) gwin(10,10,140,110) o

[Run J{ Flot J(Clear 1 Exit)

The example above demonstrates the use of graphing in a program. It isimportant to note that you may use the
graphing screen to display formatted text. The lower image, shown above, demonstrates the use of the graphing

screen to display multiple output values.

Note: When you have a program that graphs multiple equations, only the last equation is saved to the f(x) function
that shows up on the setup screen.

Import/Export Functions

Beginning with version 2.0, APCalc includes Import/Export functionality. This function also allows"Loading" of a
program into program space, "Deleting” of a program or programs and "I mport/Export" of programs.

Loading - Loads a program into program space for editing or executing.
Deleting - Deletes individual or groups of programs.
Import/Export - Transfers programs to and from the MemoPad program database.

The Import/Export screen is accessed viathe Menu in APCalc. Select Menu—>Import to bring up the import/export
screen. When the import/export screen is displayed you will seetwo lists. Thelist on the left contains all the
program groups in APCalc database. Asyou tap any of the groups, you will see the individual programs displayed
on the two rows of function keys at the top of the screen. Thelist on theright istitled MemoDB and displays

up to 108 program groups in the selected category.

Load

If you wish to load a program for editing, simply go to the Load/Import screen and check "Load" followed by the
Group and then the program on a particular button. Y ou will be returned to the main screen where you can execute
the program with the R/S button or edit it with the QEd button.

27 of 45

Import/Export

I mport/Export provides backup of APCalc programsto MemoPad. Programs can be transferred to/from and edited
on PC desktop computer, using any software that will allow creation of MemoPad files. The format of the group
files, in MemoPad, must conform to a specific file format, which is shown below. These programs can be imported
into APCalc. This capability also allows programs to be directly created within MemoPad and imported into
APCalc. There are some limitations that you should be aware of when using MemoPad (see limitations at end of
section).

Importing is accomplished by importing entire groups. Groups may contain from 1 to 12 programs

The programs, within each group file, overwrite (or overlay) the corresponding program that is already loaded on
APCalc. Itisnot necessary for acomplete set of 12 programs to be contained within agroup. If your program
group has only, say, 3 programs, ONLY those corresponding programs in the selected group will be overwritten.
The other 9 programs will remain unchanged.

Y ou may use multiple group names to load a particular group. For instance you might have a group called StatsA,
which contains programs for the first 6 programs for group 1. Y ou might also have another group called StatsB,
which contains programs for the second 6 programs for group 1. Y ou can then import StatsA, which will fill
programs 1 to 6 and StatsB, which will fill programs 7 to 12.

Notel: When the import screen opens, it will open with the current key group selected. This makesit easy to install
aparticular program group. Just select the Key Group to which a program will be added and when you open Import
that key group isdisplayed intheleft list.

Note2: If you have M emoPad records marked as private, they will not show up in theimport side of the
screen.

To Export a single program group, select the Category, tap the group and button to
export, then tap . Note: You may tap any of the buttons shown on the 2 rows
of function keys. Any key not highlighted, will not be exported as part of the
key group. A new program group is appended to the current category. Sincea

single program may contain less than the total of 12 programs, you will be ; ;
. . . Registars Registers

prompted for the export group name. Thiswill alow you to save partial groups Length Length

under different names than full groups. firea Area
Convert @ Convert
Graphi Graphi

To Export All, select Category, tap the BOLD || button, to append all APCalc |cf'§ " +(1] wr'f?.'p " +

i i O Lead
groups to current category. Use Export All, to back up your current configuration. o Lood B mport

To Import a single program group, check Import checkbox, select category, tap the MemoDB group file to import,
tap the group destination, then tap the button to import a single program group. Any program within the
imported group, will overwrite the corresponding program on the destination group.

To Import up to 9 program groups within a category, select the category, tap the start group destination (right list),
then tap the destination group, then tap the BOLD |€| button, to import up to 9 groups. The groups will be imported
until the last group isimported. Y ou may start at group 1 or any other group but the importing will stop as soon as
group 8isfilled. This capability isto alow single button backup/restore operation.

To Delete agroup from the APCalc database, check the Delete checkbox, select each program (button), then tap the

group name in the left program box. Y ou may delete the entire group or individual programs using the button
selections. If all programs are deleted, the Group name will be changed to --- Blank ---.

28 of 45

Delete

To Delete a group from MemoPad database, check the Delete checkbox, then tap the MemoDB list on theright. To
delete an individual program in the MemoPad group files, it is necessary to edit that record in MemoPad.

To Delete All APCalc or MemoPad programs use the Menu—> Clear All Programs or Menu—> Clear All Import

Import/Export allows the use of MemoPad categories so that backup can be performed to any category that you like.
Y ou can even edit, add, delete and rename any of the categories and they will be saved to the MemoPad database.

Any number of groups may be saved to each category, But only 108 are displayed in a particular category. You
can backup to asingle (or multiple) categories. Buttons are numbered from 1 to 6 on top row and 7-12 on 2™ row.

Note: This capability (import/export) isonly availableto registered users.

Import/Export Limitations, Using MemoPad

MemoPad has a 4k record limit that prevents editing of APCalc programs, once the program grows beyond 4k. This
presents two problems in using MemoPad, for Importing and Exporting of APCalc programs (Editing and Backup).
Fortunately, most user programs will fit within 4k.

EDITING:

There are two ways of dealing with this. Thefirstisto just use MemoPad for Import and Export, without editing
within MemoPad. Thiswill still allow you to browse the programs up to about 32k. | think this may only be
possible with the new Operating Systems, however.

If you have alarge program group that you would like to create or edit from within MemoPad, you will have to
break it up into sub groups. For example, say you have a group that will ultimately be about 6k. Y ou can have
GroupA (buttons 1 to 6) and GroupB (buttons 7 to 12).

BACKUP:

Y ou can still backup APCalc programs. APCalc hasit's own database, for currently loaded programs. Thiswill be
backed up, if you have the backup preference bit set.

Any files that are Exported to MemoPad will be backed up, assuming you have chosen to backup MemoPad files, up

to 32k. Thesefiles will be transferred to the PC and can be restored using the HotSync® manager. However, if
you edit or try to edit these files in the PC Desktop, they will be truncated to 4k.

Editing APCalc programs in MemoPad

Programs may be edited on a PC, using any software that will allow filesto be saved to MemoPad, and transferred
to the device using Desktop. Thereisarequired format that you must follow to allow programs to be transferred
from MemoPad to APCalc. Thereisno format required for programs edited within APCalc.

Thefirst line of a program, edited in MemoPad or on the PC, must begin with two number symbols (#) then the
group name, like:

##Key Group Name (up to 16 characters may be used), ex: ##Statistics
The next lineis (optionally) blank. The 3 lineis of the format:

#Function Key Label (4 characters only will be used), ex: ##Sdx

29 of 45

The next line contains the Function Key number for the program, with the following format:
##Key Number (00 to 12), ex: ##02

An example of a group file might be like the following:

ength

#HHm
#H#01
instruction 1
instruction 2

#HHem
##02
instruction 1
instruction 2

Hmm

##03
instruction 1
instruction 2

H#Hnm
##12
instruction 1
instruction 2

A group can contain from 1 to 12 programs. Y ou do not have to use key numbers 1 to 12 in sequence. For instance,
in the example above, you might have only 4 programs. Program key numbers might be 03, 05, 07, 12. In that case
the four programs would be loaded to function keys 3, 5, 7, and 12.

NOTE: When editing within MemoPad, let MemoPad wrap long lines. Do not use newline until you are
ready to begin a new instruction. Just let MemoPad warp thelong linefor you.

Sample program group created in MemoPad or on a PC should look like this:
#H#Tri g

##Si ne

##03

:conput es sine of expr

x=expr (1)

si n(x)

This program is shown as part of agroup named "Trig" and will be assigned to the 3 button in the " Trig" group.
This program will calculate the sine of any number entered into expression when the program is executed.

30 of 45

In APCalc the same program would look like this:

. conput es sine of expr
x=expr (1)
si n(x)

The Function Key Button would be named ‘ Sine’.

31 0of 45

Specifications

Floating Point 64 bit

Display Resolution 16 digits

Memory Req. 78Kk, plus space for saved programs

Functions 100 (73 APCalc, 27 MathLib) minimum; others to be added
Program Steps 64 steps

Expression Length 64 chars, 3 lines, Zoom Font

Storage Registers 100

Variables 30 total

History Buffer 32 expressions

User Keys 108, First 12 programs available on User 1 Function Keys

Second group of 12 programs are on User 2 Function Keys
Third group of 12 programs are on User 3 Function Keys
Forth group of 12 programs are on User 4 Function Keys
Fifth group of 12 programs are on User 5 Function Keys
Etc.

(All the Function Key Groups can be renamed)

Limitations (Unregistered Users)

Programs
Program steps

3
6

User Function Keys 3
Cannot Save New programs

Registration

In order to have full use of all features of APCalc, registration is necessary. You
can register by following the instructions on the registration screen. Y ou access
registration screen with; Menu->1nfo>How To Register

If you have registered APCalc, you should enter the Key that you received with
your confirmation, into the Key field, and tap[Register. User field and Reg. Code
fields cannot be changed. Once the key has been recognized as valid, you will see
the "Unregistered”, at the top of the screen, change to "Registered” and a popup
screen that says " Thank You". You will not be able to enter the key again, once
you have successfully registered. Successful registration will remove this screen
from being displayed each time APCalc is started.

Unregistered a

Reqg. at: www palrgear.com
or www.handango.carn

‘f'ou rmust subrnit: User Marne
or Req. Code, to register +*

Uzer Mike Davis

Feq. Code
L[R Ael C W A

Ky

[Test Dri\.ne:] [Reqgister]

Alternatively, you can tap [Test Drive, without entering a Key, to use APCalc, in its demonstration mode, subject to
the limitations of the demo version of APCalc Demo mode limits the size and number of programs as well asthe
number of Function Keys. If you have already registered, use[Test Drive to exit the screen.

Y ou may register at:

Handango
http://www.handango.com

32 of 45

http://www.palmcentral.com/

Appendix A - License

The author of this software grantsto the Licensee a non-exclusive, non-transferable, license to use this product in
accordance with this agreement, on one device only. This software is supplied "asit", without warranty of any kind.
The author assumes no liability for any damages incurred by its use.

Thelicense policy is very simple. You are entitled to use the Demo version in the manner intended. That is, you are
not entitled to use the extended features without registering the application. Registering the application gives you the
right to use all features of the application, on one device. The use of the demo islimited to areasonable time (15
days) to evaluate the program. After that time, you must register APCalc to continue with its use.

The following appliesto al versions of this software: Y ou may not reverse engineer, decompile, disassemble,
modify, distribute, sell, give away, or pogt, this software, on any web site without written permission, of the author.

Y ou may not use this software unless you agree to these terms. Using this software implies agreement with these
terms.

33 of 45

Appendix B - Functions & Operators

Parameters used in the following functions use the following notation. dblReference, intReference and strReference.
The prefixes 'dbl', 'int" and 'str' represent double, integer and string types. The 'Reference’ part of the parameter isa
descriptive label for the type of input parameter expected (i.e. dblAngle means an Angle, using type double, is
expected as an input). String types must be surrounded by double quotes.

acos(dblValue) Return type: double
Returnsthe arc cosine, of dblValue, asafloating point value. The return value isthe angle expressed in
either degrees or radians, depending on the Trig Mode selected.

acosh(dblValue) Return type: double
Returns the hyperbolic arc cosine, of dblValue, asafloating point value. The return valueisthe angle
expressed in either degrees or radians, depending on the Trig Mode selected.

and(intVall, intvVal2) Return type: integer
Returns the binary anding of intVall and intVal2. intVall and intVal2 areinteger values. If you use floating
point numbers, they will be truncated to the integer part of the value. Valid integers must be less than 2/52-1.

asin(dblValue) Return type: double
Returnsthe arc sing, of dblValue, asafloating point value. Thereturn value isthe angle expressed in either
degrees or radians, depending on the Trig Mode selected.

asinh(dblValue) Return type: double
Returns the hyperbolic arc sine, of dblValue, asafloating point value. Thereturn valueisthe angle
expressed in either degrees or radians, depending on the Trig Mode selected.

ask(" strChoice0", " strChoicel", " strChoice2", " strChoice3", " str Choice4") Return type: integer
Displays a popup of list choices. Returns an integer value (O - 5), depending on the selection made. A
maximum of 5 parameters (choices) may be used. Y ou may use less than 5 choices.

atan2(dblY, dblX) Return type: double
Returnsthe arc tangent, of dblY/dblX, asafloating point value. The return value is the angle expressed in
either degrees or radians, depending on the Trig Mode selected.

atan(dblValue) Return type: double
Returnsthe arc tangent, of dblValue, asafloating point value. The return value isthe angle expressed in
either degrees or radians, depending on the Trig Mode selected.

atanh(dblValue) Return type: double
Returns the hyperbolic arc tangent, of dblValue, as afloating point value. The return valueisthe angle
expressed in either degrees or radians, depending on the Trig Mode selected.

avg(intFromReg, intToReg) Return type: double
Returns the mean of all values from intFromReg and intToReg (inclusive). intFromReg and intToReg can be
any values between 0 and 99. intToReg must be larger than intFromReg for this function to give correct
results.

base(intBase) Return type: integer
Convertsthe last calculated value (Ans) to anew value and displaysit, asintBase. intBase can be any integer
between 2 and 36 inclusive.

beep(intFreq, intDur, intVol) Return type: double

Plays a sound of varying frequencies, duration and volume. intFreq is specified as hertz, intDur is specified
in mili-seconds and intVol is an integer from 0 to 64. 0isno sound. Returns Last Calculated Vaue (Ans).

34 of 45

BtB(intFromBase, intToBase) Return type: integer
Convert the number in the expression field, in intFromBase format (i.e. if intFromBase is 10, then expression
cannot contain non decimal values), to a number represented in intToBase. intFromBase and intToBase can
be any integers between 2 and 36 inclusive. Note: Because this works on the expression field, it cannot be
used outside of a program.

call(" strProgram™) Return type: double
Executes a program call to strProgram. Up to 5 programs can be called before artn(1) or end of program (i.e.
call stack is5). Useof rtn(1) isoptional. rtn(1) can be used to execute a program before the end of the
program. This function returns the value of the last calculated value (Ans), at the time of the call instruction.
It does not return a value as the result of the called program.

btn(mode) Return type: double
Depending on value of mode, returns current Key Group (0), last function key pressed (1), program number

2.

callif(intindex, " strProg0", " strProgl", " strProg2", " strProg3", " str Prog4") Return type: double
Executes a program based on an index. If index is0, then strPgmO is executed. Index is zero based.
Parameters are optional except that at least one program must be specified. If index isblank or missing,
callif() executes the same as call and uses strPgmO.

cbrt(dblValue) Return type: double
Calculates the cube root of dblVaue and returnsit as a double.

ceil(dblValue) Return type: integer
Computes the smallest integral value not less than dblValue.

clh(1) Return type: double
Clear history buffer. Dummy parameter (1) required. Returns'Ans.

cls(2) Return type: double
Clearsthe input expression field. Returns'Ans.

clv(l) Return type: double
Deletes al variables. Dummy parameter (1) required. Returns 'Ans.

comp(intVall, intVal2) Return type: integer
Comparestwo values. if intVallislarger thanintVa2, avalueof 1isreturned. If intVal2 islarger that
intVall, avalue of -1 isreturned. If thetwo values are equal, a0 isreturned. intVal andintVal2 areinteger
values. If you use floating point numbers, they will be truncated to the integer part of the value. Valid
integers must be less than 2°52-1.

cos(dblAngle) Return type: double
Returnsthe cosine, of dblAngle, asafloating point value. The dblAngle specified isin degrees or radians
depending on the current Trig Mode.

cosh(dblAngle) Return type: double
Returns the hyperbolic cosine, of dblAngle, asafloating point value. The dblAngle specified isin degrees
or radians depending on the current Trig Mode.

di(intValue) Return type: double
Set Display Instructions preference, 0 = don’t display instructions, 1 = display instructions, 0 and 1 return the
last calculated value returns current setting, -1 returns the current setting.

disp(" strLabel") Return type: double
Display a strLabel to the expression field. Returnsthe last calculated value (Ans).

35 of 45

dm(intValue) Return type: double
Set Display Mode preference, 0 = Fixed, 1 = Scientific, 2=Engineering. 0 and 1 return the last calculated
value, -1 = returns the current setting

dp(intValue) Return type: double
Set Display Mode preference, 0 - 8 as an input, sets the number of decimal places. 0 to 8 return the last
calculated value, -1 returns the current decimal point preference.

end(1) Return type: double
Immediately stops program execution at this instruction.

exp(dblValue) Return type: double
Calculates exponential of x (€).

expr (1) Return type: double
Returns the numeric value of the expression in the input field. Use this asthe first instruction to grab pending
data. Usinthe middle of a program, after await(“prompt”) to return the value of anewly input value or
expression. Y ou should use iff(pflag, “label”) to test for the existence of pending data, before using it.

See pend(1)

fabs(dblValue) Return type: double
Return the absol ute value of dblValue.

fact(intValue) Return type: integer
Calculates the factoria (dblValue!) of intValue.

fill(intFromReg, intToReg, dblValue) Return type: double
Fills registers, starting with intFromReg and continuing to intToReg (inclusive) with the value dblValue.
fill(0,99,0) would clear al registers. intToReg must be larger than intFromReg.

fk(intValue) Return type: double
Set Function Key Mode preference, 0 - 13 as an input, and displays the current function key set. 0to 13
return the last calculated value, -1 returns the current function key preference.

floor (dblValue) Return type: integer
Returnsthe largest integral value not greater than dblValue.

fmod(dblValuel, dblValue2) Return type: double
Computes the modulo remainder of dblValuel divided by dblValue2.

frac(dblValue) Return type: double
Returns the fractional part of a double value.

fv(intNP, dblIR, dbIPMT, dbIPV, intPT) Return type: double
Thisfunction performs two functions. If there is new datainput, the value is stored internaly in the fv
variable. If there is no new data pending the function returns the future value, of atime value of money
calculation. intNP is entered as the number of periodsin the loan. dblIR isthe periodic interest rate.
dblPMT isthe amount of the payment (use - for payment and + for cash received). dblPV isthe present value
of theloan. intPT iszero for payments at end of the month and 1 for payments at the beginning of the month.

gaxis(xMin, xMax, yMin, yMax, step) Return type: double
sets the grid spacing (x and y) for afunction. This does nothing to specify the visual part of the axis. Itis
only used to scale the window and the function ranges. The last parameter is the value to use in stepping
from xMin to xMax.

36 of 45

gcls(screen) Return type: double
clearsgraphic area. If 'screen’is O, it will clear the entire screen, if 1 it
will clear the current gwin() area.

geolor(rfg, gfg, bfg, rbg, gbg, bbg) Return type: double
Sets the foreground and background colors that are used in other functions. r, g, b (red, green, blue), fg
(foreground), bg (background).

gerr(intReportErrors) Return type: double
Reports error popup during graphing if intReportErrors!= 0. Reports errors if intReportErrors == 0.

glineg(x1, y1, x2, y2) Return type: double
draw line from (x1,y1) to (x2,y2)

gplot(" equation", "variable", drawAxis, drawConnected) Return type: double
use this function to pass a function, to graph, to the graphing program. Y ou can specify an independant
varialbe, other than x by using the second parameter. For instance: plot("sin(theta)", "theta'). drawAxis=1
to draw, 0 no draw. drawConnected = 1 draws between points. drawConnected = 0 draws only points.

gprt(x,y, "string") Return type: double
printsa"string" at coordinates (x,y)

gprt(x, y, val, decimalPlaces) Return type: double
prints avalue at coordinates (x, y), using decimal Places as the number of decimal digitsto display.

grect(type, x1, y1, W, H, fill) Return type: double
draw rectangle at (x1,y1) with Width W and height H. 'type' is frame width for non-filled rectangle and fill
pattern for filled rectangle. 'type' for fill isO - fill with background, 1 - fill with foreground, 2 - fill with
pattern. 'fill' is O for no fill and 1 for fill.

guln(mode) Return type: double
underline mode: 0 - no underling, 1 - dashed underline, 2 - solid underline, 3 - color underline.

gwin(x1, y1, W, H) Return type: double
specifies adrawing area for agraph or whatever you like. Thisis optional. If not used the window is draw
at 10,10 and is 140 x 110. You can use this function to create multiple graphing windows.

hr(dbIHM S) Return type: double
Returnstime in decimal format, for time entered as a parameter in Degrees-Minutes-Seconds format. i.e. 1
hour 30 minutes as a parameter returns 1.5 hours. dblHMS format isHH.MMSS.

hms(dblHR) Return type: double
Returns time in Degrees-Minutes-Seconds, for time entered as a parameter in decimal format. i.e. 1.5 hours
as a parameter returns 1.30 (1 hour and 30 minutes).

hypot(dblX, dblY) Return type: double
Calculates the hypotenuse of right triangle.

iff(dblExpr, " strLabel") Return type: integer
Evaluates 'expr' and if TRUE (case not important), transfers program execution to strLabel. TRUE is any
non-zero result. Zero is FALSE (case not important). Expressions can contain comparison operators such as
x>3, etc. Returnsthe Last Calculated Value at the time the instruction is executed.

37 of 45

iff(dblExpr, exprl, expr2) Return type: integer
Evaluates 'expr' and if TRUE, returns exprl else returns expr2. 'exprl' and ‘expr2' are both evaluated
regardless of which isreturned. For example you can use it in thisway: iff(expr, x=3, y=4). If expris
TRUE 3isreturned, if expr isFALSE, 4 isreturned. In both cases, x and y are assigned their respective
values. TRUE isany non-zero result. Zero isFALSE. Expressions can contain comparison operators such
asx>3, etc. Thisfunction requires 3 parameters.

in(" strPrompt") Return type: double
Pauses execution, displays an input field and asks for input (quotes required. Returns value input.

ir(intNP, dblIR, dblPV, dbIFV, dbIPMT, intPT) Return type: double
This function performs two functions. If there is new datainput, the value is stored internally in their
variable. If thereis no new data pending the function returns the periodic interest rate, of atime value of
money calculation. intNP is entered as the number of periodsin the loan. dblFV isthe future value. dblPMT
is the amount of the payment (use - for payment and + for cash received). dblPV isthe present value of the
loan. intPT is zero for payments at end of the month and 1 for payments at the beginning of the month.
dblIR isinitial guessuse 1.

jmp(" strLabel") Return type: double
Absolute jump to strLabel. Note: Labels must start with : (ex. :loopl). Returnsthe last calculated value.

jmpif(intindex, " strLbl0", " strLbl1", " strLbl2", " strLbI3", " strLbl4") Return type: double
Absolute jump to label, depending on the value of index. If index is 0, then program execution transfers to
strLblO. Index is zero based. Parameters are optional. If index is blank or missing, jmpif executes the same
asjmp and uses strLbl0. Returnsthe last calculated value.

In(dblValue) Return type: double
Computes the natural log of a double.

load(" strProg") Return type: double
Loads (chains) a new program. ‘strProg’ and Program name must match exactly. This function does not
return to the calling program. Returns the last calculated value.

log(dblValue) Return type: double
Computesog10 of adblValue.

loop(intReg, " strLabel") Return type: double
Program instructions between strLabel and the instruction loop() will be executed until intReg equals zero, at
which time program execution continues with the instruction following the loop() instruction. intReg isthe
index register. Valid values, for intReg, are 0to 99 inclusive. Load intReg prior to executing loop(), when
loop() is executed, the intReg will be automatically decremented. The strLabel instruction must precede the
loop() instruction. Returns last calculated value.

Iset(intlndex, " strLabel1", " strLabel2", " strLabel3", " strLabel4" , " strLabel5") Return type: double
Thislabel set function sets a group of five labels that will be displayed in the Registers Popup List. The
function will return the Last Calculated Value. The first parameter specifies which label set is being set and
the next five parameters are the labels. Thefirst parameter, intindex can be either 1 or 2. intindex = 1 sets
the first five labels and intindex = 2 sets the next five labels. Only 10 labels can be set in this version and
they will be contiguous. Thiswill be changed in later versions to use asingle function. Thisfunction in used
in conjunction with regs() below. Label names can consist of up to 9 characters.

These |abels are an array that will apply to any registers displayed with regs() with the second parameter set
to 1. That meansif you display registers 20-29 these labels will apply. If you display 40-49 the same |labels
will apply unless you change these. So you must change labelsif you wish a different set for a different set

of registers.

38 of 45

max(intVall, intVal2) Return type: double
Returns the maximum of the two values. intVall and intVal2 are integer values. If you use floating point
numbers, they will be truncated to the integer part of the value. Valid integers must be less than 2°52-1.

min(intVall, intVal2) Return type: double
Returns the minimum of the two values. intVall and intVal2 are integer values. If you use floating point
numbers, they will be truncated to the integer part of the value. Valid integers must be less than 2°52-1.

mtxf(intM atrix, dblValue) Return type: double
Fills a matrix (0 to 2) with the value of dblVValue. Returnsthisvaue

mtxi(intM atrix, intRow, intCol, intStart) Return type: double
Initializes a new matrix (0 to 2). intRow specifies the number of rows. intCol specifies the number of cols.
intStart specifies the starting register for the matrix. Return value is the sepcifics of the matrix in the
following format: R.CST where R is number of rows, C is number of colsand ST isthe starting register.

mtxg(intM atrix, intRow, intCol) Return type: double
Returns a specific matrix element. Specify the matrix (intMatrix), row and col.

mtxs(intM atrix, intRow, intCol, dblValue) Return type: double
Sets a specific matrix element. Specify the matrix, row and col.

mtxz(intM atrix) Return type: double
Returns the particular dimensions of the matrix asin mtxi but also saves these valuesin registers 97, 98 and
99.

NnCr(intN, intR) Return type: integer

Returns combinations of intN objects taken intR at atime where intN and intR are integers.

not(intVall) Return type: integer
Returns the one's complement of intVall. intVal isaninteger value. If you use floating point numbers, they
will be truncated to the integer part of the value. Valid integers must be less than 2°52-1.

np(dbliR, dbIPMT, dblFV, dblPV, intIPT) Return type: double
This function performs two functions. If there is new datainput, the value is stored internally in the np
variable. If thereis no new data pending the function returns the number of payment periods, of atime value
of money calculation. intIR is entered as the periodic interest rate of the loan. dblFV isthe future value.
dblPMT isthe amount of the payment (use - for payment and + for cash received). dblPV isthe present value
of theloan. intPT iszero for payments at end of the month and 1 for payments at the beginning of the month.

nPr(intN, intR) Return type: integer
Returns permutations of intN objects taken intR at atime. Where intN and intR are integer. Order matters.

or(intVall, intvVal2) Return type: integer
Returns the binary oring of intVall and intVal2. intVall and intVal2 are integer values. If you use floating
point numbers, they will be truncated to the integer part of the value. Valid integers must be less than 2/52-1.

out(" strLabel", dblExpr) Return type: double
Display astrLabel, in the expr field and avalue in the answer field. Similar to disp except that it displays
label and value, even when the display instructions’ is set to no, in preferences. dblExpr can be any
expression that returns avalue. Returns dblExpr.

pend(1) Return type: integer

Similar to expr(1) except that it returns the pending data at the time the program was first executed,
regardless of whereit is used within a program.

39 of 45

pmt(intNP, dblIR, dbIFV, dbIPV, intPT) Return type: integer
This function performs two functions. If there is new datainput, the value is stored internally in the pmt
variable. If thereis no new data pending the function returns the payment, of atime value of money
calculation. intIR isentered as the periodic interest rate of the loan. dblFV isthe future value. dbINP isthe
number of payments. dblPV isthe present value of theloan. intPT iszero for payments at end of the month
and 1 for payments at the beginning of the month.

Ex: ‘ir' isthe periodic interest rate (i.e. 9.9% with payments every month would be 9.9/12, asinput for ‘ir’).
Y ou may input the result of 9.9/12 or the expression itself.

np = total number of payments (i.e.: 360 for a 30 year mortgage)

ir = periodic interest rate (a yearly interest would be entered as xx/12

pv = present value (ie. 70000)

fv = future value (ie. 0)

pmt = monthly payment (use — for a payment to someone else and + for a payment received).
pt = payment at beginning of month=1, end of month=0

pow(dblX, dblY) Return type: double
Computes dbl X to the dblY power.

pv(intNP, dblIR, dbIPMT, dblFV, intPT) Return type: integer
Thisfunction performs two functions. If there is new datainput, the value is stored internally in the pmt
variable. If thereis no new data pending the function returns the payment, of atime value of money
calculation. intIR isentered as the periodic interest rate of the loan. dblFV isthe future value. dbINP isthe
number of payments. dbIPMT isthe loan payment amount. intPT is zero for payments at end of the month
and 1 for payments at the beginning of the month.

rand(dblSeed, intM ax) Return type: double
Returns a random number. The 2™ parameter is optional. If not used, the number returned is between 0 and
1. If you use intMax, the number returned is an integer format and is between 0 and intMax. intMax can be
between 0 and Ox7FFF. If you wish to have a double returned that is between 0 and say 100, just use the
function like this: rand(0)* 100. The seed must be between-1 <0< 1.

rcl(intReg) Return type: double
Returns the value stored in register intReg. Valid values for intReg are 0 to 99 inclusive.

regs(intReg, intShowL abelsFlag) Return type: double
Thisfunction launches a popup list of the storage registers. Thefirst iteminthelistisintReg. If the
intShowL abelsFlag is set to 1, then labels will be used instead of register numbers. if intShowL abelsFlag is
set to zero, then register numbers will be used. Within this 10 registers a ---- will be displayed if there are
ther isno label and the contents of the register is zero. Labels are setup using setl and set2 below. Tapping
the register number will pop the register into the expression window. Tapping the register contents will
select that register. Use Iset() to specify the labels.

rint(dblValue) Return type: integer
Returnsthe integral value nearest dblValue in direction of prevailing rounding mode.

round(dblValue) Return type: integer
Round x to nearest integral value away from zero.

rtn(1) Return type: double
Return function. Optional use. End of a program also returns to calling program or ends a program,
depending on whether or not it is a subroutine. Use thisto exit from a routine before coming to the end of the
routine (early exit).

40 of 45

rv(intValue) Return type: integer
Set Reset Variables preference, 0 = don't reset variables, 1 = reset variables, 0 and 1 return the last cal culated
value returns current setting, -1 returns the current setting. If RVarsis checked, all variables will be reset

each time the[APCalc| key is tapped.

sdx(intFrom, intTo, intM ode) Return type: double
Returns the standard deviation of a set of numbers stored in the built-in registers. Registers used are from
intFrom to intTo. Legal values must be 0 to 99 for each parameter. The intMode parameter selects whether
or not sample or population method is used to compute standard deviation. Use sample (intMode=0) when
the data set represents a sampl e of the data rather than the entire population. Use population (intM ode=1)
when the data set represents the entire population. intMode isoptional. If it isomitted, then sample method
isused.

sin(dblAngle) Return type: double
Returnsthe sine, of dblAngle, as afloating point value. The dblAngle specified isin degrees or radians
depending on the current Trig Mode.

sinh(dblAngle) Return type: double
Returns the hyperbolic sine, of dblAngle, as afloating point value. The dblAngle specified isin degrees or
radians depending on the current Trig Mode.

db(intVall, intVal2) Return type: integer
ShiftsintVall left by intVal2 bits. intVall and intVal2 are integer values. If you use floating point numbers,
they will be truncated to the integer part of the value. Valid integers must be less than 2/52-1.

sgrt(dblValue) Return type: double
Computes the square root of dblValue.

srb(intVall, intVal2) Return type: integer
ShiftsintVall right by intVal2 bits. intVall and intVal2 are integer values. If you use floating point
numbers, they will be truncated to the integer part of the value. Valid integers must be less than 2°52-1.

ss(intValue) Return type: integer
Set Single Step preference, 0 = no single-step, 1 = single-step, 0 and 1 return the last calculated value returns
current setting, -1 returns the current setting. If single-step is checked, a program will require R/Sto be
pressed between instructions, to continue execution.

sto(intReg) Return type: double
Stores the last calculated value into register intReg. Valid values for intReg are 0 to 99 inclusive.

sum(intFromReg, intToReg) Return type: double
Returns the sum of all values from intFromReg to intToReg (inclusive). intFromReg and intToReg can be
any values between 0 and 99. intToReg must be larger than intFromReg for this function to give correct
results.

tan(dblAngle) Return type: double
Returns the tangent, of dblAngle, asafloating point value. The dblAngle specified isin degrees or radians
depending on the current Trig Mode.

tanh(dblAngle) Return type: double
Returns the hyperbolic tangent, of dblAngle, as afloating point value. The dblAngle specified isin degrees
or radians depending on the current Trig Mode.

tick(1) Return type: integer

41 of 45

Returns the number of clock ticks. Thisisarelative number. Compare one tick value to another to
determine the number of ticks that have elapsed. Dummy parameter (1) required.

time(1) Return type: integer
Returns the time to registers 93 to 99, in the following format.
Register 93 seconds
Register 94 minutes
Register 95 hours
Register 96 day
Register 97 month
Register 98 year
Register 99 days of week from Sunday (O to 6)

tm(intValue) Return type: double
Set Trig Mode preference, 0 = Degrees, 1 = Radians, 0 and 1 return the last cal culated value returns current
setting, -1 returns the current setting.

trunc(dblValue) Return type: integer
Round X to nearest integral value not larger than x.

tz(intValue) Return type: double
Set Trim Zeros preference, 0 = Don't trim, 1 = Trim Zeros, 0 and 1 return the last calculated value returns
current setting, -1 returns the current setting

var (" strVariable") Return type: integer
Tests for the existence of a given variable, where “x” is any variable name. If the variable already existsa 1
isreturned. If the variableis NEW, a0 isreturned. Usethisintheiff() asfollows: iff(var(“x"), “calc-x").

vars(1) Return type: double
Programmatically pops up the variable list in amodal form. Select variable that will be returned to the
executing program.

wait(" strLabel") Return type: double
Pauses execution and displays alabel. Label is string (quotes required). Returns 'Ans.

xor(intVall, intVal2) Return type: integer
Returns the binary exclusive oring of intVall and intVal2. intVall and intVal2 are integer values. If you use
floating point numbers, they will be truncated to the integer part of the value. Valid integers must be less than
2752-1.

xrt(dblX, dblY) Return type: double
Calculate the x th root of y where x and y are doubles. Ex. 3 root of 64 would be calculated with xrt(3,64)
would evaluate to 4.

Constants

Constants represent fixed values. If you try to use a constant as a variable, you will get an error. For example, you
cannot use: e=23 without generating an error. '€ cannot be avariable.

pflag Return type: N/A
pflag is actually a constant. The value of this variable is dependent on whether or not an expressionis
waiting to be processed (ie. has not yet been pressed). pflagis TRUE (1), if an expression is pending
and FALSE (0), if has been pressed.

TRUE Return type: integer
TRUE isactually aconstant. The value of TRUE is1. The case of TRUE (true) is not important.

42 of 45

FALSE Return type: integer
pflag is actually aconstant. The value of FALSE is0. The case of FALSE (false) is not important.

e Return type: couble
same asexp(1). NOTE: you cannot have avariable named '€. If you do, you will get an error since you
cannot assign any value to this constant.

Ans Return type: double
Last calculated value

FAns Return type: integer
Last fixed point value

Special Keys

+/- Return type: N/A
Changes the sign of whatever isin the expression window. Example: if sin(x)+cos(y) isin the expression
field, tapping +/- changes the input to -(sin(x)+cos(y)). To change the sign of an individual value or variable,
just usethe - sign.

1/x Return type: N/A
Computes the reciprocal of whatever isin the expression field. That is, if Sin(x) isin the expression field, and
you tap 1/x, you will see 1/(sin(x)).

Operators

+ 551 Return type: double
Basic 4 function operators

Return type: double
Base conversion operator. Ansis expressed asthe result of XX:YYYY, where YYYY isevauated in base
XX with the answer displayed in the current ToBase. See base conversion section.

% Return type: double
Remainder operator. Returnsthe remainder of an division, in the form of XX%Y'Y, where the remainder XX
divided by Y'Y isthe decimal part of the result.

! Return type: double
Computes the factorial of the number it is appended to. n! isequivalent to fact(n).

$ Return type: N/A
Thisisactually aline terminator rather than an operator. Repeats a multipleinstruction line. The'$' must
appear after a';' Example: x?; x*2; iff(x==0, "end");$ NOTE: the'$' terminator is only meaningful, in an
executing program. From the calculator level, one can simply just tap the APCalc= again for repeat
operation.

43 of 45

NOTE: Remember: all functionsreturn a value. Some functions (such as sto()) return 'Ans (last calculated value).
That is: 2*sto(1) returns 2* Ans and also stores the previous 'Ans' to register 1. All functions that do not return a
specific value as a function, behave this way.

44 of 45

Appendix D - Operator Precedence

This simultaneously declares and forces prompting of avariable, even if the
variable already exists. Use ?to initialize avariable at the beginning of a
program.

Raise to power, equality (~) for ==, inequality (#) for !=, mod

y =S Multiply, Divide, Integer Divide (trunc), Less Than, Greater Than
<= 2 #and != are equivalent. ~and = = are equivaent.

Add, Subtract

Not really an operator. Thisisuseful for assignments within a program. You
an use assignments like: a=5, a=cos(x), a=cos(45), etc.

Note: the result of the expr is stored, not the expression. That is, a=cos(x)
stores the value of cos(x), depending on value input; not the expression of
cos(x). If you use var= without a value, the variable is deleted from the
variablelist.

Operator precedence is from left to right within a precedence level.

2*373*4
a*b<c*d

Is the same as 2*(3"3)*4, which produces the result of 216.
Isthe same as: ((a*b)<c)*d, if a=2, b=3, c=7, d=9 the result isnine. (2*3)<7 returns
TRUE or (1), ()*9returns 9. If c were 5, the result would be 0.

Are useful within some equations and especially suited for ‘iff’ instruction.

45 of 45

	Introduction	5
	Introduction
	Installation
	Launching APCalc for the first time
	Quick Look
	Basic APCalc Operation
	Setting Preferences
	Using variables in an expression
	Using functions in an expression
	Function Key Groups
	Changing Key Group Names

	Creating/Editing APCalc Programs
	Saving APCalc Programs
	Example Programs
	Example 1: Compute the area and circumference of a circle
	Example 2: Convert between Fahrenheit and Centigrade
	Example 3: Single-line programs
	Example 4: Multiple-line programs
	Example 5: Subroutine / Jump Examples

	Executing APCalc Programs
	APCalc Editing Tips
	APCalc Programming Tips
	Base Conversions
	Base Conversion Key Group Definitions
	
	
	Base 1

	Fixed Point Calculations/Conversions
	Example 6: To convert 3FF from HEX to DEC, you would enter the following:

	Mixed Fixed Point and Floating Point operations using the ‘:’ operator and the Equal key:
	Example 7: Using base operator ‘:’
	Example 8: Mixing bases; 118(DEC) + 3FF (HEX) + 101010 (BINARY) and display as a HEX

	Financial Programs
	Financial Key Group Definition
	Example 9: TVM programs (NP, IR, PV, FV, PMT, BEG, END)
	NPV Calculations
	IRR Calculations

	Statistical Functions
	Matrix Operations
	Graphing
	Manual Graphing of an equation
	Graphing using a program

	Import/Export Functions
	Load
	Import/Export
	Delete
	Import/Export Limitations, Using MemoPad

	Editing APCalc programs in MemoPad
	Specifications
	Limitations (Unregistered Users)
	Registration
	Appendix A - License
	Appendix B - Functions & Operators
	Constants
	Special Keys
	Operators

	Appendix D - Operator Precedence

