
SG24-2219-00

VisualAge for Smalltalk Handbook
Volume 2: Features

September 1997

SG24-2219-00

International Technical Support Organization

VisualAge for Smalltalk Handbook
Volume 2: Features

September 1997

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information
in Appendix A, “Special Notices.”

First Edition (September 1997)

This edition applies to VisualAge for Smalltalk, Versions 2, 3, and 4, for use with OS/2, AIX, and
Microsoft Windows 95/NT.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Preface . xii i
How This Redbook Is Organized . xiv
ITSO on the Internet . xv
VisualAge Support on CompuServe . xvii
About the Authors . xvii
Acknowledgments . xviii
Comments Welcome . xix

Chapter 1. AS/400 Connection . 1
Multiple Programs with a Single Remote Procedure Call 1
RPC Part Sets Commit Boundary . 1
Connection Problem with V3R1 . 2
AS/400 Communication Error . 2
Strange Characters on Log-on Window . 3
Quick Form from AS/400 Record Classes 3
Communication . 4
Read Next/Previous . 4
SQL Statements . 5
Data Queues and Records . 6
ODBC Requirements . 6
ClientAccess/400 Optimized for OS/2 . 7
VisualAge Server on LAN Server/400 . 7
Native Application Accessing VisualAge for Smalltalk Application 8
Packaging Problem . 8
Run-time Prerequisites for VisualAge for Smalltalk AS/400 Application . 9
Fixes Available Via FTP . 9
Multiple AS/400 Connections . 10
Accessing AS/400 Physical File Members 11
Accessing AS/400 Database . 11
QENVY/QENVAUXD . 12
Code Page Translation . 12
Date Conversion . 13
Database Transactions . 14
ReadAll Method . 14
Blocking Factor . 15
Multitasking with the AS/400 Parts . 15
Checking PCS Status . 17
Suppressing AS/400 Sign-on Dialog . 17
Changing Normal Cursor to Busy Cursor 17
PromptForUserIdAndPassword . 18
Performance Comparison . 19

 Copyright IBM Corp. 1997 iii

Packaged Application Requirements . 21
VisualAge for Smalltalk with OS/2 Client 21
Packaged Image Size . 22
Transaction Program . 23
AS/400 Connection Feature Installation . 23
ILE Service Programs . 24
5250 Screen Scraping . 24
DDM Performance and File Access Parts 26
Migrating from OS/400 V3R0M5 to V3R1 . 27
Compound Key . 28
Data Queue Program Temporary Fix . 31
Record Descriptions . 31
Stored Procedures in RPG . 32
Proper Exiting to Remove Dependents . 33
RPC Parameter Problem . 34
Variable-Length Data Queue . 34
Saving Image Causes Communications Problem 35
RPG Program Calls . 36
Personal Communications for AS/400 . 37
Repeated Record Structures . 37
Simultaneous DDM Access . 39
Synchronous Processing . 40
ODBC Driver and Host Variables . 42
Asynchronous RPC with Large Arguments 42
Data Queues . 43
File Open and Close . 43
Sign-On Screen . 44
Error Using #readAll . 44
DDM and RPC . 44
ODBC Default Library . 45
File Locking . 45
Unique Keys . 46
Logical Record Format . 47
Fastest DB2/400 Access . 48
Access OV/400 Document . 50
AS/400 Connection through TCP/IP . 50
AS/400 Feature and TCP/IP . 51
Remote Procedure Call Messages . 51
Remote Command Fix . 53
Fixpack Problem . 53
User Profile Name . 54
Referential Integrity Constraint Violation 55
Reestablish Connection . 56
Application Packaging . 57

iv VisualAge for Smalltalk Handbook − Features

File Access through Library List . 57
Record Name and DDS . 58
Cursor Stability . 58
Job Queues . 59
Client Access for Windows . 59
ODBC vs. File Access Part . 60
File Agents . 61
Using Windows 16-Bit Platforms over TCP/IP 62
Unspecified Key . 63

Chapter 2. Communications and Transactions 65
Supported TCP/IP Stacks . 65
Testing the TCP/IP Setup . 65
Address in Use . 66
Using TCP/IP in Scripts . 66
Socket Program with Time-Out . 68
Sockets and Streams . 70
Error: ′A NetBIOS message was ignored′ 70
Accessing COBOL through CICS . 71
Primitive Failing When Opening CICS Proc Dialog Settings 72
Handling a Transaction Abend . 72
CICS ECI and Code Page Translation . 73
MQSeries and VisualAge on AIX . 73
MQ: ″No Message Available″ . 74
Syncpoint Processing . 75
ASCII to EBCDIC Conversion . 75
MQI Sample Application . 76
Commit/Rollback with MQ . 78
Error: MqccFailed . 78
Host Presentation Space . 79
Getting 3270 Cursor Position . 79
Intercepting Key Strokes . 80
Accessing COM Ports in Smalltalk . 80

Chapter 3. Interface to External Routines 81
Using OSSObject, OSObject Pointer, AbtPointer Classes 81
Freeing a DLL . 83
Error: Abt.154e . 83
Signaling the End of a Rexx Program . 84
Set Working Directory for Program Starter 84
Debugging DLLs . 86
Calling OS/2 Presentation Manager API Functions 88
Function Like f(int*) . 89
Legacy Code . 90

Contents v

Calling a Smalltalk Image from OS/2 . 91
Calling Smalltalk from the Outside . 91
Interface to Native Presentation Manager Widgets 94
Changes to 16-Bit Function Calling Convention 95
Calling OSObjects . 95
Memory Leaks from a C DLL under OS/2 96
Debugging C DLLs Called from VisualAge 96
Checking If Platform Function Is Available 96
#asPointer Method . 97
COBOL Wrapper Locking the DLL . 98
Passing a Complex Structure to a C DLL 98
Parsing COBOL COPY-Book . 101
Calling C Functions from VisualAge on AIX 103
Sample Callback Function . 104
DDE on AIX . 108

Chapter 4. CICS and IMS Connection . 109
Successor Uniqueness Violation Exception 109
Exception: TransRecord Does Not Understand 110
HLLAPI Exceptions: Harclock Exceptions 110
Time-out Exceptions . 111
Drag-and-Drop for Windows 95 . 111
Screen Scraper Functionality . 111
IBM Smalltalk 64 KB Method Size Limit 111
BplBusinessObj class> > allInstances Behavior 112
Business Object Key Alteration . 112
Run-Time Image Build Problems . 113
Host Transaction Interface Changes . 113
Communication Considerations . 114

Chapter 5. Database . 117
Error Message When Upgrading . 117
Ineffective Bind Command Syntax . 117
User ID from User Profile Manager . 117
Password-Required Warning when Using TopLink 118
DB2/6000 Connection Failure on AIX . 119
Handling Errors in Database Code . 119
SQL Error 30081n in DB/2 2.1 . 120
Call-Level Interface . 120
Binding Problem with DB2/6000 on AIX 121
OS Error 126 Connecting to Oracle . 122
SQLSTATE 37000 Error with ODBC Driver 123
Microsoft Access Drivers . 123
SQLSTATE S1010 Error with ODBC DB2/2 Driver 124

vi VisualAge for Smalltalk Handbook − Features

Primitive Failed—OS Error 1 . 124
Migrating from DB2 V1.2 to DB2 V2 . 125
Building a Dynamic Where Clause . 125
ODBC using Microsoft-JET Drivers . 127
Database Log-on Prompt . 128
Database Log-on Prompt after Migrating to Version 3 129
Native Oracle and Data Types . 130
Local Log-on . 131
Text Database . 132
Reusing a Cursor . 133
OS/2 ODBC Problems . 134
Connecting to DB2/400 with ODBC . 135
Retrieving Current Date from DB2/2 . 135
Database Portability . 137
Canceling a Database Call . 137
Establishing a Database Connection via Smalltalk Code 138
Non-ANSI SQL Support . 140
Binding to Database . 140
Using a Wild Card with Host Variables . 140
Bypass the Error Prompt in DB2/2 . 142
Delete and Create Rows . 142
Handling SQL Statement . 143
Database Operations on Separate OS/2 Thread 143
Hard-Coded Database Name . 144
Locked Rows on Database Tables . 145
Sharing Queries Between Applications 145
Connecting from OS/2 Client to DB2/6000 145
Outer Join Statements . 146
Quick Form and Stored Procedures . 146
Using a Host Variable for IN Clause . 146
Errors when Binding to Database . 147
Automatically Connect and Log-on to Database 148
SQL Support . 148
Using One Database with Different Database Managers 151
Query Not Found in Database Access Set 152
Using getQuerySpecNamed: . 153
Setting MaximumNumberRows . 153
Accessing a Database Using Smalltalk 154
Providing User Feedback when Updating DB2 155
Executing a Stored Procedure . 156
Executing a Stored Procedure with Parameter 156
ODBC Keyword Limitation . 157
High-Level Qualifiers . 157
SQL Insert in Plain Smalltalk . 160

Contents vii

Creating a Table in Smalltalk Code . 161
Specifying Host Variables for a Query . 162
Deleting Rows from Database . 163
Searching for Database Connection Errors 164
Disabling Error Message . 165
Windows 95 and DB2 . 165
Database Parts for Windows 95 . 165
Windows 95 and native DB2 DLLs . 166
Scrollable Cursors . 167
Database Connection Information . 167
Moving from ODBC to CLI . 168
Undefined Access Set . 169
Table and View Names . 170
Use of the Multirow Query Settings . 170
DBF Format . 171
ODBC Support for OS/2 . 171
Object-Oriented Databases . 171
Absence of Database Query Fields . 171
Support for Blocking with Oracle . 172
Comparing ODBC and Native Oracle Interfaces 172
SQL0805N Message when Creating a Database Query 173
Checking Multidatabase Feature Installation 173
Changing the Database Name in All Application Classes 174
Nature of ODBC . 175
Problem in Specifying Driver . 175
User ID Not Privileged for Read . 176
Error: Oracle ORA-00942 . 177
Changing a High-Level Qualifier for Run Time 177
DB2 Cursor Control . 179
Database Feature not Installable . 181
Database Support for Windows . 181
Formatting rowsAsStrings to Remove Brackets 182
Intercepting a 100 or 0 SQLCODE . 184
Database Access Set . 185
Stored Procedures for SQL Server . 185
Error: SQL0236W . 188
Communication with DB2/2 . 189
Sample Databases . 190
ODBC Driver Error . 191
Data Source Name Error . 191
Minimum Files for Run-Time . 191
Data Source Driver Error . 192
Database Access Set . 192
Using Stored Procedures with ODBC or DB2 CLI 193

viii VisualAge for Smalltalk Handbook − Features

Active Database Connections When Exiting VisualAge 193
Unloading the Static SQL Feature . 193
Database Samples . 194

Chapter 6. Distributed . 195
Distributed Feature versus CORBA . 195
Turning on Distributed Tracing . 195
Avoiding Hard-Coding TCP/IP Addresses for Distribution 196
Premature Connection Closure . 196
Remote Object Has No Object ID . 197
Copying Objects Between Object Spaces 198
Activator Wasting CPU Time . 199
Security Error With Connect Request on Activation 199
Server Without User Interface . 200
Packager Method Exclusion Remedy . 200
Name Server Distributed Part Difficulties 201
Error During Distributed Load . 201
Testing Distributed Smalltalk for TCP . 202
Distributed Initialization on Windows for Workgroups 202
Seeing Your Data Moving . 203
Role of the Activator . 203
Remote Object Pointer Dead After Packaging 204
Logging Transcript Messages . 205
Tracing Run-Time Startup Problems . 205
Name Discrepancy Problem in Loading 206
Sharing Class Instances Across Object Spaces 207
Peer-to-Peer or Server . 207
Equivalent of a Threads Package . 208
Sending an Object as a Parameter to a Remote Object 208
Sending an Object to a Remote Site While a Thread Executes 208
Disconnecting Remote Images . 209
Dynamic Change Potential . 209
Retention of Instances . 209
TCP/IP Errors at Startup . 210
Distributing Parts . 210
Tools to Manage Network Traffic . 211
SOM/DSOM Implementation . 211
Fault Tolerance for Object Spaces . 211
Changing Name Server Entries at Run Time 211
Long Startup Delay . 212
Packaging an Application . 212
Object Spaces from Different Libraries 212
Message Tracing . 212
Handling TCP/IP Addresses . 213

Contents ix

Making the Name Server Persist . 213
Capturing Information from a Walkback Window 213
Copying Object Space to a Backup Processor 214
Error: Client not Authorized for Server . 214
Error: Remote Object Has No ID . 214
Extending Server Classes . 215
Moving Parameters Between Client and Server Object Spaces 215
Improving Performance Across Client-Server Object Spaces 216
Partitioning Objects Across Object Spaces 216
Transaction Management Provision . 217
Loading the Distributed Feature . 217
Packaging an Application . 217
Allowing Clients Run-Time Access . 218
Retaining Needed Classes and Methods 218
Run-Time Startup Problems . 218
Finding Remote Object Space Pointers in Image 219
Debugging a Client System . 219
Fault Tolerance . 220
Using TCP/IP Port Numbers . 221
Remedy for a Time-Wasting Method . 221
Using Windows 95 As a Server . 222
TCP/IP Local Name Server Setup . 222
Placement of Object Space Security Files 222
DBCS Environments . 223
Unloading the Distributed Feature . 223
File Handle Limits on UNIX . 224

Chapter 7. Reports . 225
Reports Feature in Version 3 on AIX . 225
Win32s Errors with Reports Feature . 226
Iterator Field Break . 226
Sums Over Hidden Details . 227
Conditional Printing . 227
General Reports Questions . 227
Saving Printer Settings in reportPreview 229
Report Writer Default Fonts . 229
Calculated Fields . 230
Field Breaks . 230
Packaging . 230
Using Scripts with Reports . 231
Using Multirow Query Results in Reports 231
Changing the Color of an Iterator Header 231
Reporting in an ASCII File for Later Printing 232
Printing in the Report Owner′s Language 232

x VisualAge for Smalltalk Handbook − Features

Printing Underlined Words . 232
Counting an Unprinted Value . 232
Omit Printing of Certain Lines . 233
Speeding Report Printing . 233
Adding Fields to a Report Dynamically 233
HP Printer . 233
Hierarchical Breaks . 235
Using Break Protocols . 236
coElement Role . 236

Chapter 8. SOM and DSOM . 237
Generating Classes with a SOM Prefix 238
SOM Exception . 239
CORBA-Compliant ORBs . 239
Using DSOM Hangs the System . 239
Adding SOM Objects as VisualAge Parts 240
Using DSOM Ends the VisualAge Process 241
Environment Variable Setup for SOM . 241
Error: somFindClass failed for class Xxxxx 243
SOM Support Feature . 244
SOM Methods with Inout Sequences . 244
SOM Objects . 245
ABT.SOM.1017.e: #somFindClass Failed 245
SOM Objects on OS/2 Desktop . 246

Chapter 9. Web Connection . 249
Retaining State between Requests . 249
Disabling a Button . 249
GIFs not Displayed . 250
Handling Pseudo-Pages . 250
Packaging Web Application . 251
HTML Links and Session Data . 252
URL Query String . 253
Session Data Lifetime . 253
Parts Usable with the Web . 254
GUI Differences . 254
Packaging AbtWebSamplesApp and AbtChatSampleApp Separately . . 254
Unloading Web Connection Feature after Running WSI Servers 254
Using DBCS Fonts on Windows Platforms 255
Double-Byte Part Names . 255

Appendix A. Special Notices . 257

Appendix B. Related Publications . 259

Contents xi

International Technical Support Organization Publications 259
Redbooks on CD-ROMs . 260
Other Publications . 260

How to Get ITSO Redbooks . 263
How IBM Employees Can Get ITSO Redbooks 263
How Customers Can Get ITSO Redbooks 264
IBM Redbook Order Form . 265

Glossary . 267

List of Abbreviations . 293

Index . 295

ITSO Redbook Evaluation . 297

xii VisualAge for Smalltalk Handbook − Features

Preface

This book addresses many common questions in the VisualAge for Smalltalk
development arena. It covers various aspects of VisualAge and IBM
Smalltalk through answers to frequently asked questions, hints and tips from
users and developers, and online bulletin boards inside and outside of IBM.

This redbook will help VisualAge for Smalltalk developers find answers to
their everyday questions. The book provides usage guidelines for areas
such as change management, performance, database access, and
transaction processing, to help developers avoid common programming
pitfalls.

The VisualAge for Smalltalk Handbook has two volumes:

• Volume 1: Fundamentals

Volume 1 covers general programming questions on such topics as
image maintenance, graphical user interfaces, naming conventions, and
the IBM Smalltalk language.

• Volume 2: Features

Volume 2 focuses on VisualAge for Smalltalk features, such as AS/400
Connection, Communications and Transactions, Distributed, Reports,
and Web Connection.

This book is written for VisualAge for Smalltalk programmers, project
leaders, and developers. Understanding many of the questions and answers
in this book requires substantial knowledge of the VisualAge for Smalltalk
product and the Smalltalk language.

This book does not discuss questions related to methodologies, analysis
and design. For a discussion of object-oriented analysis and design with
VisualAge for Smalltalk, refer to Visual Modeling Technique.

 Copyright IBM Corp. 1997 xiii

How This Redbook Is Organized

This redbook contains 348 pages. It is organized as follows:

• Volume 1: Fundamentals

This book sets the stage for programming with VisualAge for Smalltalk.
It contains questions and answers dealing with the base product and
everyday programming pitfalls.

− Chapter 1, “What Is VisualAge for Smalltalk”

This chapter provides some non-technical discussion of
programming with VisualAge for Smalltalk.

− Chapter 2, “General Information”

This chapter provides general programming tips, from image
maintenance and packaging to troubleshooting.

− Chapter 3, “Graphical User Interface”

This chapter provides a discussion of graphical user interface parts,
such as containers, notebooks, buttons, or tables.

− Chapter 4, “IBM Smalltalk Programming Language”

This chapter provides questions and answers regarding the IBM
Smalltalk programming language.

− Chapter 5, “ENVY”

This chapter provides a discussion of the ENVY team programming
environment.

− Chapter 6, “Microsoft Windows”

This chapter provides a discussion of programming issues related to
the Microsoft Windows platform.

− Chapter 7, “National Language Support”

This chapter discusses national language support with VisualAge for
Smalltalk.

• Volume 2: Features

This book details on the various VisualAge for Smalltalk features, some
of which are packaged with the base product and some others are
separately orderable.

− Chapter 1, “AS/400 Connection”

This chapter provides a discussion of the AS/400 Connection feature
and related items such as ClientAccess/400 and DB2/400.

xiv VisualAge for Smalltalk Handbook − Features

− Chapter 2, “Communications and Transactions”

This chapter provides a discussion of the Communications/
Transactions feature and its protocols, such as TCP/IP, APPC, CICS,
or NetBIOS.

− Chapter 3, “Interface to External Routines”

This chapter discusses the use of external routines, such as C or
COBOL programs.

− Chapter 4, “CICS and IMS Connection”

This chapter provides a discussion of the CICS/IMS Connection
feature.

− Chapter 5, “Database”

This chapter covers questions and answers related to database
access from VisualAge for Smalltalk, such as DB2 or Oracle.

− Chapter 6, “Distributed”

This chapter provides insight into the VisualAge for Smalltalk
Distributed feature, for example, remote objects or object spaces.

− Chapter 7, “Reports”

This chapter covers the VisualAge for Smalltalk Reports feature.

− Chapter 8, “SOM and DSOM”

This chapter provides a discussion of the System Object Model and
the Distributed System Object Model.

− Chapter 9, “Web Connection”

This chapter discusses the Web Connection feature of VisualAge for
Smalltalk.

ITSO on the Internet

Internet users may find additional material about new redbooks on the ITSO
World Wide Web home page. Point your Web browser to the following URL:

http://www.redbooks.ibm.com/redbooks

IBM internal users may also download redbooks or scan through redbook
abstracts. Point your Web browser to the internal IBM Redbooks home
page:

http://w3.itso.ibm.com/redbooks

Preface xv

If you do not have World Wide Web access, you can obtain the list of all
current redbooks through the Internet by anonymous FTP to:

ftp.almaden.ibm.com
cd /redbooks
get itsopub.txt

The FTP server, ftp.almaden.ibm.com, also stores the sample software from
the diskettes accompanying some of the redbooks. To retrieve the sample
files, issue the following commands from the /redbooks directory:

cd SG24xxxx ← Redbook number
binary
get SampleFile.EXE
ascii
get SampleFile.TXT

All users of ITSO publications are encouraged to provide feedback to
improve quality over time. Send questions about and feedback on redbooks
to:

redbook@vnet.ibm.com or
REDBOOK at WTSCPOK or
USIB5FWN at IBMMAIL

If you find an error in the software that is supplied with a redbook, please
send a bug report with a description of the problem to

bugs@vnet.ibm.com

To receive regular updates on new redbooks and general IBM
announcements, you can subscribe to the IBM Announcement Listserver. It
automatically supplies an Internet e-mail user with timely new
announcement information (titles and optionally the letter or abstract) from
selected categories. To get started, send an e-mail to

announce@webster.ibmlink.ibm.com

The keyword SUBSCRIBE must be the only word in the body of the e-mail;
leave the subject line blank. You will receive a category form and listserver
details. To immediately start your subscription to, for example, AS/400
announcements, put the words SELECT HW120 in the body of the note. On
the afternoon of an announcement day, you will receive e-mail with the
announcement, along with a list of newly available redbook titles. To obtain
a full abstract of a particular redbook, use GET SG242535 in the note.

xvi VisualAge for Smalltalk Handbook − Features

VisualAge Support on CompuServe

VisualAge users are encouraged to use CompuServe to ask questions
about VisualAge and its features. When logged on to your CompuServe
account, type GO VISUALAGE to get into the IBM Workstation Rapid
Application Development (WRAD) conference. You will find sections to
discuss the following and other VisualAge topics:

• Installation/Begin
• Communication/Languages
• Database
• AS/400 Connection
• Web Connection

About the Authors

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, San Jose, CA.

Andi Bitterer works as a consultant for the International Technical Support
Organization at the Almaden Research Center in San Jose, California. He
graduated with a degree in computer science from the Technical University
in Darmstadt, Germany. Andi joined IBM in 1987 and worked as an
application development specialist in large customer projects for IBM
Integration Systems Services and at the German AS/400 Field Support
Center. Since joining the ITSO in 1994, he has taught workshops worldwide
on object-oriented application development and the Internet. Andi is the
author of three other VisualAge for Smalltalk books published by Prentice
Hall. You can reach him by e-mail at bit@acm.org.

Vincent Dijkstra works as an Education Consultant at the IBM International
Education Center, La Hulpe, Belgium. He holds Bachelor of Arts and Master
of Arts degrees in Technology and Policy from the Eindhoven Technical
University. Vincent started working for IBM in 1992 on a learning resource
to assist managers and teams in transforming their organizations. In 1994
he joined the IBM Object Technology University, where he teaches
Smalltalk, VisualAge, and more recently Java and analysis and design
techniques. You can reach Vincent by e-mail at vdijkstra@vnet.ibm.com

Boris Shingarov received his Master of Science degree in Quantum Fields at
Moscow State University, M.V.Lomonosov, in Russia. He is the head of the
Center for VisualAge and IBM Smalltalk, Dialogue/MSU, providing VisualAge
consulting and services all over Russia. Currently, Boris teaches VisualAge
for Smalltalk courses at MSU. He can be reached by email at
boris@visualage.dialogue.msu.su.

Preface xvii

Acknowledgments

This book has been a team effort par excellence, even though most
contributors were not even aware of being a team. However, we want to
acknowledge everyone, inside and outside of IBM, who, knowingly or
unknowingly, added information to the collection of invaluable hints and tips
in this book.

Thanks go to Dave Allison, Rainer Angstmann, Jean-Pierre Augias, Wayne
Beaton, Jan Belik, Paul Berglund, Jonathan Bezuidenho, Debu
Bhattacharya, Franco Biaggi, Peter Boonen, Chris Bosman-Clark, Toufic
Boubez, David Bourke, Dave Bowman, Mamie Branch, Michel Brassard,
Chuck Bridgham, Robert Brown, Jordi Buj, Jerry Callistein, Jon Capezzuto,
Tony Carlier, Janelle Carroll, Ron Cherveny, George Chiu, Chris Clark, Eric
Clayberg, Stephen Cooper, Ellis Covington, Tim Cowan, Mark Cresswell, Jim
Crossgrove, Greg Curfman, James Curtis, Chris Davia, Kirk Davis, Gordon
Davis, John DeBinder, Ricardo Devis, Bill Dickenson, Stef van Dijk, Sue
Dubbeling, John Earle, Ralf Eberhardt, Kevin Egolf, Linda Fargo, Ahmed
Fattah, Gerald Fischer, Hans Forsberg, Mike French, Annick Fron, Sabine
Gaissert, Ken Gelsinger, Chris Gerken, Michel Giroux, Erick Godoy, Tom
Gordon, Chris Grindstaff, Juergen Guenauer, Sven Guyet, Tim Hanis, Brad
Hanks, John Hansen, Nicla Havrup, Chris Hayes, Frank Haynes, Pam Helyar,
Andy Heys, Hal Hildebrand, Tim Hilgenberg, Andrew Hobbs, Steve Hobson,
Bryan Hogan, Andreas Huber, Greg Hutchinson, Mike Jacobs, Charif
Jaouhar, Chuck Jaynes, Christopher Joak, Greg Johnson, Tom Johnson,
Jane Jones, Gary Karasiuk, Gijsbert Karens, Dan Kehn, John Kellington,
Dave Kennedy, Brian Kent, Kelly Keplinger, Alan Knight, George Kober,
Martin Kunz, Bruce Lambert, Micky Lim, Michael Linderman, Daniel Lipp,
Grace Liu, Bill Lockard, Tom Logan, Mark Lorenz, Pablo Lorenzo, Sabina
Luzzatti, Stewart MacLean, Bill Mathews, Cynthia McCrickard, David McGee,
John McIntosh, Ted McKnight, Gerald Meazell, Eric Meredith, Jim
Mickelson, Gonzalo Mourino, Pat Mueller, Gen Nagatsuka, Martin Nally,
Binh Nguyen, Jimmy Nguyen, Achim Nogli, Ami Noyman, Patrick O′Donnell,
John O′Keefe, Dan Ohlhaut, Omar Padilla, Jim Pendergast, Rosa Peral, Ralf
Pfiszter, Enrico Piccinin, Oliver Picot, Guenter Pindhofer, Rene Plourde,
Greg Plummer, Bob Poulton, Steve Reeves, Brian Remedios, James
Rendell, Scott Rich, Cameron Roy, Jouko Ruuskanen, Jari Saari, Craig
Setera, Dan Shaver, Ed Shirk, Allen Smith, Christine Smith, Craig Smith,
David Smith, Larry Smith, Daniel Stainhauser, Jim Stewart, Jeff Stratford,
Jean Talbott, Steve Tang, John Tobin, Mark Tompkin, Mike Toohey, Rick
Trotter, David Twyerould, Timo Ullrich, Harold Wadler, Jim Wason,
Christopher Webster, Tony Weddle, Ronny Weisz, David Whiteman, Mark
Wilkes, Joe Winchester, Rory Woodward, Cindy Wotus, Glorious Wright,
Alfred Wu, Barry Young, Ric Zapanta, Sherwood Zern, and Slavik Zorin, for
their numerous contributions, questions or answers, hints and tips.

xviii VisualAge for Smalltalk Handbook − Features

Many thanks go to Alexis Scott, Nancy Lewis, Paul Braun, and Shawn Walsh
at the ITSO Raleigh Center, for their great administrative support, and to Pat
Donleycott, ITSO Raleigh Center Manager, for hosting the residency.

Thanks also to Shirley Hentzell and Maggie Cutler for their outstanding
editing of this book, to Liz Rice for her editorial assistance, and to Geoff
Nicholls, without whose advice this book would not have a decent index.

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” to the fax
number shown on the form.

• Use the electronic evaluation form found on the Redbooks Home Pages
at the following URLs:

For Internet users http://www.redbooks.ibm.com
For IBM Intranet users http://w3.itso.ibm.com

• Send us a note at the following address:

redbook@vnet.ibm.com

Preface xix

xx VisualAge for Smalltalk Handbook − Features

Chapter 1. AS/400 Connection

In this chapter, we discuss the VisualAge for Smalltalk AS/400 Connection
feature.

Multiple Programs with a Single Remote Procedure Call

We wrote an RPG program that, upon receiving a control parameter, sends
a program message to a message queue and waits for a response. The
message queue is in break mode. An RPC part calls this program among
others from Smalltalk several times with invokeAsynchronous, and before
the message was answered, resultIsReady returned true.

Do not change the program name on the RPC part. If you want to call
another program, use another RPC part. If you are having problems with
the resultIsReady returning true after the program name has been changed,
it is because the resultIsReady attribute is queried from the AS/400 when the
getter method is run by your application. It is not set when the program
ends. This would require the AS/400 to somehow send a message to the
PC, which it does not do.

RPC Part Sets Commit Boundary

I want to start an RPC part with an initial program that sets a commit
boundary by issuing a Start Commitment Control (STRCMTCTL) command
with the Change (*CHG) parameter.

Then I want to change the program name in the RPC part to run a series of
update programs. The last program would do either a commit or rollback.

Instead of changing the RPC part to run different update programs, why not
have the initial program call the update programs? In other words, make
the calling program start commitment control, do the transactions, and the
commit or rollback. All of the work would be done on the AS/400 within the
same job. I think the STRCMTCTL would take the form: STRCMTCTL
LCKLVL(*CHG) CMTSCOPE(*JOB).

Alternatively, your RPC could wait on a data queue for parameters. This
way you could pass transaction instructions to the asynchronous RPC and
the AS/400 job would read them when ready. Completion could be indicated
in another data queue in which the client waits on.

 Copyright IBM Corp. 1997 1

Connection Problem with V3R1

When I try to start a session from VisualAge for Smalltalk using one of the
AS/400 features, I get an error and the debugger gives me:

Unable to connect to remote host 5250PLU2 #APNOCONNECTIVITY -
Error occurred verifying security parameters for 5250PLU2
#E4APPCINVALIDAPPCRC - APPC Error: Primary: CONV FAILURE
FAILURE NO RETRY Secondary: OK

The problem is with the configuration of the 5250PLU2 that VisualAge for
Smalltalk for Smalltalk is attempting to use. From the transcript, try the
following:

Smal l ta l k

AS400System reconfigureAllSystems
AS400System availableSystemNames inspect.

(This should return an ordered collection of all the systems you
have configured in CM/2.)

(AS400System named: ′sysname ′) signOn.

Also, make sure that you are actually signing on to the AS/400. Verify that

AS400System promptForUseridAndPassword

returns true.

AS/400 Communication Error

I want to start a communication from VisualAge for Smalltalk to the AS/400.
The connection with PC Support works fine. Now I get the error:
′UndefinedObject does not understand,′ I checked all the parameters of my
record descriptions, I tested it with different examples, but I always get the
same error if I want to access the AS/400.

2 VisualAge for Smalltalk Handbook − Features

The key is the comma in the message. Your pool dictionaries might be
corrupted. This could have happened if you attempted a packaging
operation without copying the *.SWP files as stated in the packaging section
of the AS/400 Guide.

Reinstall the AS/400 Connection feature. This should not take too long, but
it will repopulate the pool dictionaries and fix the problem.

Strange Characters on Log-on Window

When I try to connect to an AS/400, I receive a log-on window with very
strange characters and dimensions (I cannot see the words User ID or
Password). I can still connect if I type a user ID and a password; also the
′LogOn was successful′ window has funny characters.

This would happen if the client is missing the AS4RTE20.MRI file. The file is
located in the run-time directory for the platform on the server. Copy the file
to each client.

Quick Form from AS/400 Record Classes

I have retrieved a record description from the file LIB1/FILE1. VisualAge for
Smalltalk creates a class LIB1FILE1. I use a part of LIB1FILE1 in a visual
part. I use also the Quick Form function to visualize some of the fields of
LIB1FILE1. Quick Form function generates one label and one text for each
field, but the text generated does not have the length of the AS/400. Is there
any way to rapidly build visual forms where entry fields have the same
characteristics of the AS/400 fields they come from?

We looked at that when we first developed the feature. Ideally, we would
like to see decimal number attributes, string lengths, and so on be assigned
to the entry fields with quick form. Unfortunately, it is not possible as the
quick form operation uses the Smalltalk type (Decimal, String) and has no
reference to the RECORD subclass. As a result, we cannot add this feature.

Chapter 1. AS/400 Connection 3

Communication

What part of CA/400 needs to be running for a VisualAge Windows
application to run against the AS/400? On OS/2 I just need to have started
CM/2 to have access, so it seems I will just need to have the router started.

Correct. The minimum on Windows is the router. If the shared code library
resides on shared folders, then folders will need to be started for the
developers (not the application users).

Does VisualAge for Smalltalk work through the ASCII workstation controller
(WSC) and CA/400?

It should. As long as the router connection through the ASCII WSC supports
APPC it should work. We use the router APIs so the router should make the
physical connection transparent.

Read Next/Previous

I am using the AS/400 File Access Part and get what seems like strange
behavior when using the Read Next and Read Previous methods. When I
switch directions through the file using Read Next or Read Previous, the
fields are still the same ones until I again invoke that method, which then
retrieves the appropriate record. Is this the way it is supposed to work?

This is working the way the AS/400 does (even though it is a bit confusing).
The way you can think of file positioning is with a cursor. When the file is
open, the cursor is positioned before the first record.

→ ″Cursor is here after an open″
Record 1
Record 2
Record ...
Record x

When a readNext is done, the record directly below the cursor is returned to
your program and the cursor is bumped:

Record 1 ″This record is returned by the readNext″
→ ″Cursor position after the readNext.″

Record 2
Record ...
Record x

4 VisualAge for Smalltalk Handbook − Features

The next readNext would position the cursor like this after completion:

Record 1
Record 2 ″This record is returned″

→ ″Cursor is here after the readNext″
Record ...
Record x

In the above example, the last readNext returned Record 2. When a
readPrevious is done, the record before the cursor is returned and the
cursor is bumped. In this case Record 2 is returned again.

Record 1
→ ″Cursor is here after the readPrevious″

Record 2 ″This record is returned″
Record ...
Record x

SQL Statements

We use use Visualage on a Windows workstation. We want to execute SQL
statements on the AS/400 database. We understand we need CAE. Does
that mean that we need a server with DB2/2 to use DRDA? Or, is there a
direct link between CAE and the database of the AS/400 ?

Our AS/400 is now on V2R2. With Client Access in V3R1, will we be able to
use the ODBC driver included in Client Access?

SQL access is available through the VisualAge for Smalltalk database parts,
DB2/2 and a DDCS/2 gateway server. The AS/400 feature provides record
level file access directly to the AS/400.

ClientAccess/400 Windows 3.1 is shipping with ODBC support. Through the
support of ODBC by VisualAge for Smalltalk, you can also access the
AS/400 with SQL directly through the ClientAccess/400 ODBC driver.

Note that you do not need the AS/400 Connection feature to access the
AS/400 database through SQL.

Chapter 1. AS/400 Connection 5

Data Queues and Records

We have an application interfacing to an AS/400 that uses data queues.
Using the FIFO example that comes with the VisualAge for Smalltalk AS/400
Connection feature we can write a record to the queue. However, we cannot
do the reverse, which is to read from the queue (dequeue) and put the
result into a record. In that case, what comes back from the AS/400 is not
the record that we expect (it could be an error message), is there a way to
interrogate the dequeued object before assigning it to a record?

The data queue parts enqueue records but dequeue AS400DataQueueEntry
instances. You can see this in the parts reference (FIFO Data
Queue...Actions...#dequeue Result type). Since the AS400DataQueueEntry
class is not in the parts reference, you need to do a little digging.

Ideally, enqueue and dequeue should have data symmetry. That is to say, it
would be nice if, when you enqueue a record, you could dequeue a record.
Unfortunately, this is not the case. The dequeue operation can include
sender information. Since this information is not part of the enqueue
operation, we lose symmetry.

When a dequeue action is performed, the #result attribute is the dequeued
data. This dequeued data is an instance of AS400DataQueueEntry. The
AS400DataQueueEntry has six attributes: data, jobName, jobNumber, key,
userName, and userProfile. The bulk of these attributes are associated with
the sender information (the job which enqueued the data). The #data
attribute will contain the record that you are looking for.

The FIFO example is a bit misleading because when you dequeue the order
data, the result is added to the OrderedCollection and the list box appears
to show a record. In reality, instances of AS400DataQueueEntry are being
added to the OrderedCollection. If you open the settings of the list box you
will find that the attribute name is set to ′data.′ This will effectively show
the record in the list box.

ODBC Requirements

When I want to use the ODBC support of VisualAge for Smalltalk, do I still
need DDCS/2 and DB2/2 on our clients to be able to access the AS/400
(level 3.1) data with SQL? What would be the advantage of using DDCS/2
and DB2/2, if any?

6 VisualAge for Smalltalk Handbook − Features

DDCS/2 and DB2/2 are needed only if you are not using ODBC and you want
to access different types of databases at the same time. If your data base is
of one type (only AS/400 systems) then ODBC is the way to go.
ClientAccess/400 V3R1 supports an ODBC driver for the AS/400. ODBC
support is the best way to access AS/400 data using SQL.

ClientAccess/400 Optimized for OS/2

We are developing VisualAge for Smalltalk applications with AS/400 access
parts and have two questions about CA/400 and the clients who will use the
developed application. There are two OS/2 features of CA/400: the old
16-bit client and the new 32-bit Optimized for OS/2 client. My questions are
these:

• Is CA/400 all that the clients will need to successfully execute the
VisualAge for Smalltalk applications? That is, no need to purchase
CM/2 because all of the required pieces of CM/2 will be included with
CA/400 so that the VisualAge for Smalltalk application can successfully
run?

• If so, are there any differences between the two CA/400 OS/2 clients that
could cause difficulties in running the VisualAge for Smalltalk
application.

You don′ t even need to have CA/400 installed to use VisualAge for Smalltalk
with the AS/400. CM/400 comes with the new OS/2 client so you shouldn′ t
need to purchase separate CM/2. The AS/400 feature only needs the APPC
components of the CM products. Since OS/2 optimized CA/400 includes this
function, you do not have to purchase anything else.

VisualAge Server on LAN Server/400

Can I install the VisualAge for Smalltalk server on a LAN Server/400 now
available, or do I have to install also the OS/2 LAN Server?

VisualAge for Smalltalk is running fine on LAN Server/400, because inside
LAN Server/400 it is actually OS/2 LAN Server.

Chapter 1. AS/400 Connection 7

Native Application Accessing VisualAge for Smalltalk Application

In our scenario, we want to have a user running a native AS/400 application
(green screen). When the user presses a certain function key, it would
cause a VisualAge for Smalltalk developed application to get focus and do
something. The native AS/400 application would need to pass data to the
VisualAge for Smalltalk developed PC application. We are thinking about
using data queues to pass the data. However, how do we notify the
VisualAge for Smalltalk application that something happened (in this case,
that a new entry was added to the data queue), and cause the VisualAge for
Smalltalk application to get focus?

The VisualAge for Smalltalk application would have to be started already
and waiting on the data queue. You can set the wait time so the VisualAge
for Smalltalk application will block (that is, not run any further) until data is
added to the data queue.

Packaging Problem

I have problems if I want to package an application with using the AS/400
classes from VisualAge for Smalltalk AS/400 Feature. If I run the packaging,
I get an error. After that, if I start to work with my application in the
development environment with access to the AS/400 and with the help of the
AS/400 classes I always get an error that I cannot connect to the AS/400. If I
shut down VisualAge for Smalltalk and I start it with the old image before I
call the packaging, I get the connection to the AS/400. What is the reason for
this error?

If you packaged a run-time image and you did not copy the E4*.SWP files to
the same directory as your development image, as called for in the AS/400
Guide (see packaging considerations, Run-time image packaging, Required
run-time image files) you will get a walkback. This walkback will be
something like CfsError does not understand lseek:whence:...

You will no longer be able to connect to the AS/400 in the development
environment until you reinstall the VisualAge for Smalltalk AS/400
Connection feature into your image. After the install has completed, save
your image. You should be able to connect in the development image now.

If you are getting a walkback in a packaged image that is something like
UndefinedObject does not understand, (note the comma) then you need to
copy the E4*.SWP files to the same directory as the run-time image. This is

8 VisualAge for Smalltalk Handbook − Features

documented in the AS/400 Guide (see Packaging considerations, Run-time
distribution, Required run-time files).

Run-time Prerequisites for VisualAge for Smalltalk AS/400 Application

What are the prerequisites to run applications developed with VisualAge for
Smalltalk and accessing the AS/400 (any AS/400 objects) in OS/2 and
Windows environments. Is only Client Access supported or is other
software also required?

If your AS/400 runs on OS/400 V3R1, you only need to have an APPC LU 6.2
connection from the workstation to the AS/400. If you run OS/2, you can use
CM/2 to establish the connection. Under Windows, use the ClientAccess/400
router. If you are using OS/400 V2R3 or OS/400 V3R0M5 you will also need
the VisualAge for Smalltalk Server for OS/400 PRPQ (5799-FNN).

Fixes Available Via FTP

The latest updates for VisualAge for Smalltalk are available through
anonymous FTP and CompuServe. We recommend that users FTP the
package to avoid line charges for large files. Please be sure to get the file
readme.tm. It contains the instructions for installing the fixes.

The fixpacks are cumulative, so they contain all fixes from previous fixpacks.

 Important!

You must apply the base fixes before applying any other fixpack.

To FTP the package, use the following commands:

Enter ftp ps.boulder.ibm.com
Enter anonymous as a userid.
Enter your email address for a password.
Enter cd ps/products/visualage/fixes

Change to the directory of your VisualAge version.
Enter dir to display all available files.
Enter bin
Enter prompt n
Enter mget * to get all of the fixpacks, or use

get <fixPackName> to get a particular fixpack.
Enter quit to exit FTP.

Chapter 1. AS/400 Connection 9

Multiple AS/400 Connections

We want to use Rumba for connectivity to the AS/400 because the
five-session limitation of PC Support is too restrictive. I assume that
VisualAge for Smalltalk would have the same restriction, as it relies on PCS.
Will VisualAge for Smalltalk work with other connectivity options (like
Rumba) to allow customers to connect to more than five systems within an
application (at the same time)?

The five-session limit is part of Work Station Function (WSF) and not a limit
in the router. Rumba simply supports more terminal emulation sessions
than WSF. This has nothing to do with the router limit.

The VisualAge for Smalltalk AS/400 Connection feature uses the router and
not WSF, so we are bound by the limits of the router. We have tested and
support only the PCS and CA/400 routers, although customers are
successfully using other routers.

We have users running OS/400 V2R3 and V3R1 to attach to seven or eight
AS/400 systems at the same time.

For a twinaxial link, the limit is one actual connection; however, through the
use of an ADRS entry you can use that one connected system to route you
to other systems. The system you are connected to must be a network node
(*NETNODE). You can check this by doing a Display Network Attributes
(DSPNETA) command. If it is a *NETNODE, then this will allow that AS/400
to do routing for you.

As far as a token-ring or Ethernet connection, the most TRLI entries that you
can make is six. Again, however, you can take advantage of the ADRS
entries to get more connections by routing through the systems that you are
connected to.

Refer to the PC Support/400 DOS Installation and Adminstration Guide
(SC41-0006) for further details on how to code the TRLI and ADRS entries.

10 VisualAge for Smalltalk Handbook − Features

Accessing AS/400 Physical File Members

For our existing AS/400 database we want to create a new VisualAge for
Smalltalk front end. The database design includes heavy use of multiple
members per physical file. How do I access those members through
VisualAge for Smalltalk?

Accessing data within a database member is possible with a bit of code.
The manual does not indicate that this can be done. Instead of setting the
file name within the file part′s settings view, a filename(mbrname) should be
set using this script:

Smal l ta l k

aFilePart fileName: ′ORDERS(JANUARY)′.

This will work when accessing data in existing members.

Accessing AS/400 Database

When accessing the AS/400 database I can use either SQL or read and write
statements. Can I go either way with the VisualAge for Smalltalk parts?

If we use read and write, is this done using DDM, and how will it be checked
that the user of the VisualAge for Smalltalk application is authorized to do
this?

The AS/400 feature provides record-level read and write access to the
AS/400 data base. DDM is used to provide this support.

When the VisualAge for Smalltalk AS/400 feature needs to connect to the
AS/400, a sign-on dialog is shown where the user must enter the user ID
and password. This information is used to start DDM. Any subsequent
access to the data base is based upon the authority of the user profile
information provided at this time.

SQL access is available through the database features of base VisualAge. I
recommend using the ODBC support of VisualAge for Smalltalk and
ClientAccess/400 to access the AS/400 data base with SQL.

Chapter 1. AS/400 Connection 11

QENVY/QENVAUXD

When submitting a job via invokeAsynchronous under VisualAge for
Smalltalk to an AS/400 under V3R0M5, QENVY/QENVAUXD is called with
three parameters of QENVY, 000000, and 001350. The submitted job is using
the AS/400 job description (JOBD) contained in the user ID of the AS/400
user. Where do we find more details on QENVAUXD or its equivalent for
Version 3 R1 Host Services to control which job description and batch job
queue is used for execution on the AS/400? Note that we are attempting to
control where the invoked asynchronous job executes and do not want to
use the user profile′s job description.

You can control the job description used for invokeAsynchronous. Before
invoking the Remote Procedure Call (RPC), set the jobDescription like this:

Smal l ta l k

| rpc |
rpc := AS400RemoteProcedureCall new.
rpc programName: ′YOURPGM′.
rpc agent jobDescription: ′NEWJOBD′. ″NEWJOBD job desc must exist″
rpc invokeAsynchronous.

Code Page Translation

We are running a VisualAge for Smalltalk application that accesses an
AS/400 database in the Thai language. However, we found that the data is
not translated correctly. We suspect a code-page problem. Our AS/400 has
codepage 874-838 and my workstation has 437. How do we set up a correct
translation?

In order to display Thai data on a workstation, the workstation must be
configured to display the character set of the AS/400 data. Using a code
page of 437 (English) with an AS/400 codepage of 838 (Thai) is not a
compatible combination. The character set included in 437 does not contain
Thai characters. The 874 codepage does not appear to be an AS/400 code
page, but a workstation code page.

According to National Language Design Guide Volume 2, SE09-8002, the
recommended combinations for Thailand are the following:

 AS/400 - Character set 1176, codepage 838, CCSID 838

12 VisualAge for Smalltalk Handbook − Features

 PC (Primary) - Character set 1176, codepage 874, CCSID 874
(Secondary) - Character set 966, codepage 874, CCSID 4970

You will need to configure the workstation to use 874, using either the 1176
or the 966 character set.

The VisualAge for Smalltalk AS/400 Feature uses the local code page and
the host job code page to create conversion tables. The conversion tables
are built on the AS/400 and transferred to files on your workstation. The
conversion tables are unique to the local code page and host code page
combination.

Date Conversion

Can anyone give me any suggestions for the way to convert date into zoned
decimal six-digit format? Any methods in Smalltalk we should look at?

Yes. Try this as an example:

Smal l ta l k

 | aDate day month year dayString monthString yearString decimalDate |
aDate := Date today.
day := aDate dayOfMonth.
dayString := (day printString size = 1)

ifTrue: [′0′,day printString]
ifFalse: [day printString].

month := aDate monthIndex.
monthString := (month printString size = 1)

ifTrue: [′0′,month printString]
ifFalse: [month printString].

year := aDate year.
yearString := year printString copyFrom: 3 to: 4.
decimalDate := (dayString, monthString, yearString) asDecimal

Chapter 1. AS/400 Connection 13

Database Transactions

My KeyedFileView opens a physical file as read and write and the lock
mode is shared with readers and updaters. If I run KeyedFileView new
openWidget twice to start two transactions to open the physical file, they
cannot access the same record (record lock). However, readNext works
correctly for each of the windows (two file pointers?).

My questions are these:

 1. How many DDM server jobs are used by the VisualAge for Smalltalk to
process these two transactions (windows)?

 2. Is there a way that I can start a separate job for each transaction within
one application?

 3. Can I start each of the database transactions (not external functions)
within an application on a separate process?

 1. One DDM job is started for all file parts within an image.

 2. You cannot start a separate job by using DDM. If you really need
transaction support, you should use the RPC part and an AS/400
program to complete the transaction.

 3. Yes, provided your application uses semaphores to synchronize the
processes. This is necessary because the DDM job assumes a single
conversation.

ReadAll Method

I wonder why, in the compound key example in the AS400Examples, you
chose to write a script instead of using readAll. Is it because performance
penalties are incurred when we use readAll?

To the contrary, readAll is very fast. The reason it was not used in the
example is that the example required the file to be open at the same time.
ReadAll will not work if the file is already open.

14 VisualAge for Smalltalk Handbook − Features

Blocking Factor

The VisualAge for Smalltalk AS/400 Connection feature manual says that a
blocking factor is used only when the files are opened as read only. Is that
true?

That is correct. OpenReadWrite sets the blocking factor to one for data
integrity reasons. OpenReadOnly calculates a blocking factor based upon
the size of the record description of the file. A read operation must make a
request to the AS/400 and receive a reply back. The size of the reply must
be contained within one APPC packet (about 32 KB). Because data
translation is usually the performance bottleneck and not the actual data
transfer from the AS/400, we constrained the calculated reply size to 2 KB.
The calculated blocking factor will be approximately 2 KB divided by the
size of the record description.

In practice, you should not change the blocking factor unless you have
observed a performance problem with the calculated size.

Multitasking with the AS/400 Parts

I have a big file from which I have to retrieve all its records. Because this is
a lengthy process, I decided to fork the reading of the records. The
application′s user interface is separated from the logic and file handling.

When I′m doing the read operation in a forked process, I can′ t write to the
file from another process. I also can′ t read another file at the same time. I
tried the following:

Chapter 1. AS/400 Connection 15

Smal l ta l k

openMyFile
″open the AS/400 file″

semaphore := Semaphore new. ″semaphore is instance variable″
semaphore signal.
self signalEvent: #openTheFile. ″in the Composition Editor it

goes to the openReadWrite action
of the AS/400 file. ″

readFileContents
″ reading the file records ″

[semaphore block.
″ the loop of reading the file records

(also signaling for activities done
in the Composition Editor)

semaphore signal] fork.

When I run this piece of code, the result is that I am blocked. Why? I need
to handle few files from few parts at the same times. Should I be using the
same semaphore?

Instead of using Semaphore new, use Semaphore forMutualExclusion. Then
use critical: where you want the code to have exclusive access to the DDM
conversation. For example,

Smal l ta l k

 | semaphore |
 semaphore := Semaphore forMutualExclusion.
[semaphore
critical: [< access DDM here >]] fork.

Each critical bit should have its own semaphore, and the amount of work
done within the critical block should be kept to a minimum.

Refer to IBM Smalltalk, The Language by David Smith. The book contains
extensive coverage of this topic.

16 VisualAge for Smalltalk Handbook − Features

Checking PCS Status

I noticed that many of the errors I got when I run VisualAge for Smalltalk
with AS/400 parts are coming from PC Support (PCS), for example, PCS is
not started or PCS is not in good condition.

How can I check in a VisualAge for Smalltalk program whether PCS has
been started and if it has, whether it is working okay before I use any
AS/400 functions?

The expression E4Service remoteConnections returns a collection of the
names of the systems you can connect to. It uses the
EHNAPPC_QuerySystems API in the ClientAccess router DLL to get the
information.

Suppressing AS/400 Sign-on Dialog

In our application, we do not want the AS/400 sign-on screen to be shown,
because we developed our own sign-on screen. I am trying to log on to the
AS/400 after I opened the widget of the main program. I then provide the
user ID and the password in the script. How can we suppress AS/400
sign-on dialog?

According to the AS/400 System entry in the Parts Refererence of the
VisualAge for Smalltalk AS/400 Feature User′s Guide, AS400System has an
attribute called promptForUserIdAndPassword. This is a boolean attribute.
If the attribute′s value is true, users will be prompted for their user ID and
password the first time that VisualAge for Smalltalk attempts to access the
AS/400. If the value is false, users will not be prompted for their user ID and
password at that time. Instead, VisualAge for Smalltalk queries
Communications Manager/2, ClientAccess/400, or PC Support/400 as
appropriate for the user ID and password.

Changing Normal Cursor to Busy Cursor

I′d like to change the normal cursor to the busy cursor whenever I use
AS/400 functions, because it is sometimes difficult for the end user to know
whether the operation is finished or not. How should I do this?

Chapter 1. AS/400 Connection 17

You should use the following construct when executing your long-running
AS/400 access methods.

Smal l ta l k

System abtShowBusyCursorWhile:
[stuff that takes a long time to do]

Do not use the showBusyCursorWhile: method, because it will not be
packaged in your run-time image. VisualAge for Smalltalk uses this method
only at development time.

PromptForUserIdAndPassword

I am using VisualAge for Smalltalk Team, OS/2 Warp, CM/2 and all the fixes
applied (base fixes, warp fixes, AS/400 fixes). When I start CM/2, I have to
provide a user ID and password to connect to the AS/400. However, I would
like VisualAge for Smalltalk to query CM/2 for its user ID and password and
use the same information to connect to the AS/400. Therefore I set
promptForUserIdAndPassword to true in the AS400System class.

Unfortunately, this seems not to work, since I receive a VisualAge for
Smalltalk debugger signalling a security error when starting the
conversation. Any hints?

First of all, you need to set promptForUserIdAndPassword to false so that
VisualAge will query CM/2 for the sign-on information. You also need to
make another change to your CM/2 configuration, assuming you are running
CM/2 1.11 (not sure if this applies to CM/2 1.1 or 1.0):

 1. Double-click on Communications Manager Setup from the CM/2 folder.

 2. Click on the Setup button from the CM/2 Setup screen.

 3. Select your configuration file name and click on OK .

 4. You wil l then be presented with the next panel where there is an
Options pull-down menu. Select that menu.

 5. From the Options menu select Configure any Profile or Feature .

 6. From the next panel scroll down to SNA Features and select it, then click
on Configure .

 7. On the next panel select Conversation security and then click on Create .

 8. Click on the Utilize User Profile Management selection button and click
on Add and then OK .

18 VisualAge for Smalltalk Handbook − Features

 9. Close CM/2 Setup and let it run Verify.

If you had CM/2 running while you made this change, you can just select to
dynamically update your connections. However, I would recommend
stopping CM/2 and ending VisualAge for Smalltalk, then restarting them to
ensure all is initialized correctly.

Performance Comparison

We have some concerns about the comparative performance of VisualAge
for Smalltalk versus legacy RPG code. We have done a test whereby 300
objects were instantiated from an AS/400 database file. The time required
to perform this operation through an inspection process was approximately
23 seconds. As a comparison, an RPG program that read the same 300
records into an array took only one second, making this quite a significant
performance difference. Does that sound like what you know and expect?

Here are a few things to consider about measuring performance.

• Use Time millisecondsToRun: aBlock for your measuring.

• Using inspectors will add several seconds to your measurement.

• For optimal performance, use openReadOnly instead of openReadWrite.
The reason is that openReadOnly will access blocks of records, where
openReadWrite will access records one at a time. The key point is to
reduce the number of network turn-arounds. Also, see the discussion
on blockingFactor, below.

• VisualAge for Smalltalk will never be as fast as RPG because the data
has to come across the network and be translated to Smalltalk objects.
For this reason, you must minimize the number of network turn-arounds.

The file parts maintain a cache of records to improve performance. The
number of records maintained in the cache depends on the way the file is
opened. If the file is opened for update, then the cache is set to one for
data integrity reasons. If the file is opened with openReadOnly, then the
blockingFactor attribute determines the cache size.

For openReadOnly, the file parts attempt to anticipate the need for data by
accessing blocks of records. The number of records in the block is based
on the size of the cache. The size of the cache can affect performance in
two different ways. First, the number of network exchanges can be reduced
by increasing the cache size. But as the size of the cache rises, application
performance can decline. This is because the records are translated to
Smalltalk objects as the data is received from the AS/400. If too many

Chapter 1. AS/400 Connection 19

records are accessed, but never used by the application, workstation
performance can decline.

If your application does not set the blockingFactor attribute, a default value
is calculated. The default value calculation is the integer result of dividing
2048 by the byte length of the recordDescription plus 16. If the byte length of
the recordDescription attribute plus 16 exceeds 2048, the cache is set to
one.

If the record length is less than 2032, consider setting the blockingFactor
attribute to a value less than the default. If the record length is greater than
or equal to 2032, consider setting the blockingFactor attribute to a value
higher than the default. In any case, the determination of the best value is
based on the resulting application performance.

For openReadWrite, because of the small cache size for files opened with
openReadWrite, performance can suffer if a great many read actions are
run. This is because each read consists of a network exchange with the
AS/400. Consider using two file parts:

 1. One file part for update operations. Read the record of interest before
updating to ensure that proper locks are placed on the data. Move the
cursor to the beginning or end of the file after the update is done to
release the record lock.

 2. A second file part is devoted to read operations. Do the majority of file
read operations with this part.

As for measuring performance, here′s an example:

Smal l ta l k

| myFile results records |

myFile := AS400KeyedFile new.
myFile

fileName: ′CUSTMAST′;
l ibraryName: ′PROD′;
recordDescriptionName: #ExampleCustomerMasterRecord.

records := OrderedCollection new.
myFile openReadOnly.
results := Time mill isecondsToRun: [

1 to: 300 do:[records add: (myFile readNext)]] .
results inspect.

20 VisualAge for Smalltalk Handbook − Features

Packaged Application Requirements

If we package an application that accesses the AS/400, does the PC that the
application is installed on require OS/2 Communications Manager software
installed in order for the package to run?

Yes. VisualAge for Smalltalk provides the application and presentation
layers, but the transport layer of communication and below must be
provided by Communications Manager (on OS/2 platform) or Client Access
(on Windows platform).

VisualAge for Smalltalk with OS/2 Client

Can Client Access/400 for OS/2 Optimized Client be used for the client
transport services in the client workstation executing the deployed
VisualAge for Smalltalk application? Is it correct that the only time you
really must have CM/2 instead of Client Access/400 for OS/2 Optimized
Client is for:

• 5250 Terminal Emulation (WSF type function), assuming no other 5250
emulator is installed?

• 3270 Terminal Emulation for connect to other server platforms?

Only the OS/2 router is needed for any of the VisualAge for Smalltalk AS/400
services except EHLLAPI (terminal emulation/screen scraping) services.
The router function is provided by the less-expensive Communications
Manager/400 product, which does come bundled with Client Access/400 for
OS/2 Optimized Client. Both CM/2 and CA/400 for OS/2 have EHLLAPI
functionality.

So, for a deployed VisualAge for Smalltalk application, these are the options
for OS/2 transport services:

VisualAge Client Application Minimum Required Communication Software

Without EHLLAPI Communications Manager/400

With EHLLAPI
Client Access/400 for OS/2

Communications Manager/2

Chapter 1. AS/400 Connection 21

Packaged Image Size

My customer has developed a relatively simple VisualAge application (20
classes, 5 of them visual). Using the packager (as run-time image), the
packaging process takes 1 hour 20 minutes on a PC with 75 MHz Pentium
and 24 MB RAM, and the resulting image (with the unnecessary classes
removed) is 8.5 MB. The applications that I′ve developed are much larger
(accessing DB2 directly); they take 10 minutes to package and the image is
around 2.5 MB.

Is this all because of the AS/400 feature? Any hints on reducing the image
size?

The AS/400 Feature classes will add some bulk (and therefore packaging
time) to the packaged image size, but 8.5 MB seems quite large for such a
simple application. There are a number of things that you can look for:

 1. One of the first things to check whenever you have packaging problems
is that the application′s prerequisites are correct. The packager uses
the prerequisite chain in searching for classes and methods that are
required by the packaged image. If prerequisites are missing, required
classes and methods will not be included. If applications are included in
the prerequisites that are not actually required, there is a chance for
extra classes and methods to be included. Check especially for
prerequisites including the edit applications. You should have the run
application as your only prerequisite.

 2. Check for class variables and globals that may be initialized. When
possible, such variables should be lazy-initialized at run-time so that
they are not dumped into the packaged image. These variables can be
automatically set to nil during packaging by placing an implementor of
prePackagingActionsFor: on the application′s class.

 3. Finally, check the *.ES files that are written during the packaging
process. These files provide statistics and information about exactly
what was written to the packaged image. Should you find a class
included that you don′ t believe should be there, then you need to find
out what is referencing that class.

22 VisualAge for Smalltalk Handbook − Features

Transaction Program

We are using the AS/400 Connection feature under Windows. Our AS/400
runs under OS/400 V3R1. We can′ t get a connection to the AS/400. Is there
a transaction program we must first activate?

Check to see if an object of type *PGM with the name QEVYMAIN exists in
library QIWS. If there is, then the transaction program is installed. If not,
then you have to install the OS/400 Host Servers feature of OS/400
(5763SS1).

AS/400 Connection Feature Installation

When I install the AS/400 feature for Windows, I get the message ″Warning
86 waiting lock, do not interrupt″ and then the system seems to stall. What is
going on?

There are two likely causes:

 1. Some VisualAge for Smalltalk Team user (not necessarily the client PC
performing the installation of the AS/400 Feature) is accessing the
library file in single-user mode. This may be the case if someone has
just finished installing the library updates for the AS/400 feature and has
not released the lock on the file yet (assuming no one but the installer
should be connected to the library file during the installation). Or, if that
is exactly what you, as the installer, are trying to do when you get this
message, be sure no other users are currently connected before
installation.

If you get this message during the installation of the AS/400 feature on a
client PC, then check your ABT.CNF start-up script in the VisualAge for
Smalltalk directory (usually VISUALAG) to make sure the attributes of
your EmLibrary are set as follows:

Smal l ta l k

″Start up Library.″

EmLibrary
defaultName: ″ ...Your library′s name should be here.″ ;
releaseLockMode: true;
singleUserMode: false.

Chapter 1. AS/400 Connection 23

If singleUserMode and releaseLockMode are correctly set, then it may be
that one of the other library users has not correctly set these in their
ABT.CNF files to allow shared use. Check with your VisualAge Team
server administrator.

 2. To share files in Windows, you must have SHARE.EXE loaded before
your network log-in and Windows start-up. Check your AUTOEXEC.BAT
file in the root directory of your boot partition. It should have
SHARE.EXE as the first executed program. If it is not in AUTOEXEC.BAT,
it may be executed in an ″INSTALL=″ statement in the CONFIG.SYS file,
so check that file also. See your DOS Command Reference for usage
details.

If SHARE is present but you still have this problem, SHARE may have
run out of resources. Try enlarging the /l or /f values. Also, be sure
that all library file users have SHARE loaded. A quick way to check is to
execute ″mem /c″ at a DOS prompt.

ILE Service Programs

Is it possible for VisualAge for Smalltalk to call an ILE service program
function, that is, an entry point defined in an ILE program?

You cannot do this directly. You would have to write a wrapper ILE program
that calls the needed functions. Then it is a straightforward remote
procedure call (RPC) to the default entry point of the wrapper program.

This is not a limitation of VisualAge for Smalltalk or the AS/400 Feature.
Functions in ILE service programs can only be called by ILE programs that
are bound to the service program during the create program process.
Although the (OS/400 V3R1) RPC server program used by the VisualAge for
Smalltalk AS/400 Feature is an ILE program, it cannot directly call the
functions you need because it is not bound to your service programs.

5250 Screen Scraping

Can I use VisualAge for Smalltalk to revamp AS/400 5250 screens? Is there
any restriction? What software do I have to use?

24 VisualAge for Smalltalk Handbook − Features

Screen scraping and 5250 emulation interface driving are useful ways to put
a GUI wrapper around your legacy AS/400 interactive applications. in
VisualAge, this is accomplished through the Emulator High-Level Language
Application Programming Interface (EHLLAPI, pronounced as
″EE-huh-lah-pee″).

EHLLAPI is a standard that is documented in the OS/2 EE 1.3 EHLLAPI
Programming Reference. This interface is generic to all terminal emulations
in the APPN/SNA environment, including the 5250 family (not just 3270).

In VisualAge for Smalltalk, the EHLLAPI protocols are implemented in the
Abt3270Hllapi, Abt3270Terminal, Abt3270Screen, and Abt3270HllapiError
parts. These parts have been tested and documented for use with 3270
applications, but the 5250 environment is so similar that some customers
have already successfully used them in 5250 applications.

There are many products that include EHLLAPI with their 5250 or 3270
emulation. So, a feature was created for the Abt3270Hllapi parts that allows
VisualAge application developers to configure the EHLLAPI DLL name and
entry point name to use their favorite emulator.

To do this, you must create a startup class method in your application class
(that is, YourVisualAgeApp class>>#startup). Within that method you
should set the EHLLAPI DLL and entry point attributes like this:

Smal l ta l k

Abt3270Hllapi dllName: ′pcshll.dll′. ″Substitute your EHLLAPI DLL″
Abt3270Hllapi entryPointName: ′HLLAPI′. ″ and its entry point here. ″

The above is the default which is set for the PC 3270 product. If you use an
EHLLAPI product other than PC 3270 without the above two messages in
your startup method, you will get an error message saying ″PCSHLL.DLL not
found″.

This should work with any EHLLAPI product as long as it provides a DLL file
that has one entry point with the following four parameters:

C

unsigned short far * /* function number */
char far * /* data area */
unsigned short far * /* data length */
unsigned short far * /* position/return code */

Chapter 1. AS/400 Connection 25

It also must be a 16 bit (segmented addressing) function that uses one of the
client communication routers supported for use with VisualAge for Smalltalk:

• Client Access/400 for Windows
• PC Support/400 for Extended DOS
• Communications Manager/400 (comes bundled with CA/400 for OS/2)
• Communications Manager/2 for OS/2
• Personal Communications/3270

Check the requirements section of your VisualAge for Smalltalk Installation
Guide or Resource Catalog for specifics on supported levels.

A must-have reference for VisualAge EHLLAPI development is the ITSO
Redbook VisualAge: Building GUIs for Existing Applications. Note that the
example application is for a 3270 environment, but it can be easily extended
to 5250 environments.

DDM Performance and File Access Parts

We try to access an AS/400 file with 500 fields and 80000 records from
VisualAge for Smalltalk. We need to work with only 10 fields in the record
and 1000 records. In order to access the database with DDM and instantiate
the data, we need 5 minutes when we use the Keyed File part and the
readNextKey method. I assume it is because VisualAge for Smalltalk always
instantiates the whole record. Is there a solution to do this better? What is
the difference between the Sequential File part and the Direct File part,
anyway?

One thing you might try in order to improve performance is to create a
logical view (logical file) on the AS/400 that is based on this 80,000 record
physical file. The record format for this logical file would contain only the
desired fields. In this way you would only be bringing 10 fields per record
over the communications line instead of 500 fields per record.

Also, since the file is a keyed file, you could use the readAt: method to
access records of a particular key. This way you would not need to search
sequentially (in key order) through the file to find the key you want.

Direct and sequential files are in fact very similar. However, here are some
differences:

• Both direct and sequential files are created using the same CL
command. However, after a direct file is created, an INZPFM command
is issued to initialize the member with a large number (default = 10,000)
of inactive records. This is not done for a sequential file.

26 VisualAge for Smalltalk Handbook − Features

• With a direct file, you can write a record at a specific location in the file.
This is not possible with a sequential file.

• With a sequential file, you can do a readAll. This allows you to read all
records of a file without opening the file. It uses the DDM ULDRECF
command. This is not possible with a direct file.

• Finally, when you send repeated readNext messages to a direct file, the
records are returned in relative record number sequence, whereas with
a sequential file they are returned in the order in which they were
written.

Migrating from OS/400 V3R0M5 to V3R1

My customer has just migrated OS/400 from V3R0M5 to V3R1. At this current
level, VisualAge for Smalltalk cannot connect to the AS/400. That is, when
we try to connect, a VisualAge for Smalltalk debugger reports that an ENVY
exception has occurred. The following products are installed:

• Workstation
− OS/2 Warp Version 3
− VisualAge for Smalltalk and AS/400 Feature
− Communications Manager/2 Version 1.11

• AS/400
− OS/400 V3R1
− Host Server feature (5763SS1)

We tried to install the QENVY library on the AS/400 but it doesn′ t help to
solve the problem. What can we do?

First, you do not need the QENVY library on a V3R1 system. Here are the
things I would look at or try:

• Try executing AS400System reconfigureAllSystems before attempting to
connect to the AS/400.

• Is your conversation security set up properly in CM/2? There is a known
defect in CM/2 1.11 wherein our product will not work properly unless
you set up the conversation security. To check (and if necessary fix)
this:

 1. Start the Communications Manager Setup program (there should be
an icon in your Communications Manager/2 folder).

 2. Select Setup

 3. Select the configuration you are using.

 4. Click on the Additional Definitions button .

Chapter 1. AS/400 Connection 27

 5. Select the proper connection type in the Workstation Connection
Type window and 5250 emulation in the Feature or Application
window.

 6. Click on the Configure button.

 7. You should see a window entitled Communications Manager Profile
List.

 8. Select SNA Features and click on the Configure button.

 9. Select Conversation Security in the features list.

10. Do you see anything in the Definition Comment list? If not, go to
Step 13; otherwise, continue.

11. Is there just one entry in the Definition Comment list and is it an
asterisk? If so, your Communications Manager program is probably
okay. If not, continue.

12. If you feel comfortable doing this, I would delete all entries and
continue.

13. You should be in the SNA Features List window. Select
Conversation Security . Press the Create button. In the new window,
select the Utilize User Profile Management box. Click on Add . Do
not enter a user ID or password. When you are done, you should
see an asterisk in the Definition Comment list.

14. Click on Close to exit the SNA Features List window.

15. Click on Close to exit the Communications Manager Profile List
window.

16. Click on Close to exit the Communications Manager Configuration
Definition window.

17. Close remaining windows.

Compound Key

Use the readAt method to retrieve records from a keyed file. When one
record field is the key, this works fine, but when the key is made up of two
fields, I′m not able to get it to work. The first field is a character field and
the second field is a zoned field. How should this be put together?

28 VisualAge for Smalltalk Handbook − Features

You can do this as follows:

Smal l ta l k

key := Array with: ′XYZ CORP′ with: ′12345.67′ asDecimal.
record := fi le readAt: key.

Refer to VisualAge for Smalltalk AS/400 Connection User′s Guide and
Reference Version 3.0 for a good discussion of this. Here is an excerpt from
this manual that deals with keys.

Using Keyed Files
A file can have a key that consists of one or more fields. When a key
consists of one field, it is called a simple key. When a key consists of more
than one field, it is called a compound key. Data can be accessed based on
the entire compound key or a subset of the fields in the compound key.
When a key consists of a subset of the compound key fields, it is called a
partial key.

Specifying a Key
Many of the file actions for a keyed file require a key as a parameter. The
value of the key can take several forms depending on the complexity of the
key.

Specifying a Simple Key
When a file has a simple key, a simple value can be passed to the actions
requiring a key. For example, if the simple key is described as ZONED or
PACKED, an instance of Decimal can be passed as the key value. If the
simple key is described as CHARACTER, an instance of String can be
passed as the key value.

In general, if the field can be described as a key, the corresponding
Smalltalk object can be passed as the key value.

Specifying a Compound Key
A compound key can be specified in several different ways. If the required
key value consists of all of the fields in the compound key, an instance of
the recordDescription of the file can be passed as the key value.

A second approach is to pass the requested key values in a collection. For
example, if a compound key consists of three fields and the desired key
value is keyValue1, keyValue2, and keyValue3, respectively, a valid code
fragment would be as follows:

Chapter 1. AS/400 Connection 29

Smal l ta l k

 aKey := Array
with: keyValue1
with: keyValue2
with: keyValue3.

 aRecord := aFile readAt: aKey.

Another example of a valid use of a collection as a key follows:

Smal l ta l k

 aKey := OrderedCollection new.
 aKey

add: keyValue1;
add: keyValue2;
add: keyValue3.

 aRecord := aFile readAt: aKey.

The values in the collection are assigned in order to the respective key
fields for the duration of the keyed operation.

Specifying a Partial Key
The partial key can be described as an AS400RecordDescription having only
the desired key fields. The advantage to this approach is that the partial
key record can be visually connected in the Composition Editor. The
disadvantage is that if the field definitions change, fields would have to be
changed in both the record description for the file and the partial key record.

A second approach is to pass the requested partial key values in a
collection. For example, if a compound key consists of three fields and the
desired partial key consists of the first two fields having the values
keyValue1 and keyValue2 respectively, a valid code fragment would be as
follows:

Smal l ta l k

aKey := Array
with: keyValue1
with: keyValue2.

aRecord := aFile readAt: aKey.

30 VisualAge for Smalltalk Handbook − Features

The values in the collection are assigned in order to the respective key
fields for the duration of the keyed operation.

Data Queue Program Temporary Fix

If your application uses OS/400 V3R1 data queues (with VisualAge for
Smalltalk AS400DataQueue parts or E4DataQueue services), your
application may hangup or exhibit other errors if PTF SF24792 has been
applied to the host system where your application′s data queues reside.
See Authorized Program Analysis Report (APAR) SA47183 for more problem
symptom details.

PTF SF24792 is included in cumulative fix volume C95276310 and is a
prerequisite for PTF SF24769 (which is included in the latest cumulative
volume C95304310).

The solution to this problem is to apply PTF SF26431. This PTF now
supersedes SF24792, but it is not yet included in any cumulative volume, so
it must ordered. (If you have ECS, use the SNDPTFORD CL command.) Be
careful to follow the cover-letter instructions.

As a circumvention, you can remove PTF SF24769 and PTF SF24792, being
careful to follow the PTF cover-letter instructions for their removal. If you
choose to do this, you should reapply SF24769 after SF26431 has been
applied.

Record Descriptions

Is it possible to define a completely new record description in VisualAge for
Smalltalk (including the host details) and then have VisualAge propagate the
host information to the AS/400 to generate the DDS?

For physical files, yes. Assuming the record description (including host field
name alias), system, library, and file name settings are already set to valid
values, then just connect whatever is the significant event in your
application to the AS/400 file part′s create action. The file and its DDS will
be created on the specified host when that event occurs.

For logical files (or DB2/400 views), no. To create logical files from within
your VisualAge for Smalltalk client application, you would need to imbed
your DDS source in an argument of a remote command to first create the
DDS source file member and then send a CRTLF remote command using
this newly created DDS source file.

Chapter 1. AS/400 Connection 31

Alternatively, DB2/400 views can also be constructed through ODBC SQL
statement execution.

Stored Procedures in RPG

We want to use the VisualAge for Smalltalk ODBC support to access the
AS/400 database. Is it possible to create stored procedures on the AS/400
with RPG and call those procedures through the ODBC stored procedure
part under Windows and OS/2?

Yes, under some circumstances, Stored Procedure parts can be used with
ODBC instead of RPC parts. The main constraint is compatibility of the
interfaces between the five levels of the ODBC execution of the stored
procedure:

Functional Unit Example instance(s)
--------------- -------------------
Client application VisualAge StoredProcedure parts
database objects/modules 2.0 3.0 (OS/2) 2.0 3.0 (Windows)

* *
| interface A | | | |
* *

ODBC driver manager VisualAge ODBC driver manager
* *
| interface B | | | |
* *

ODBC driver (client) Client Access/400 ODBC driver
* OS/2 Optimized Windows 3.1
| * *
| interface C | |
*

ODBC Server V3R1 DB2/400 Host Server
*
| interface D |
*

Stored Procedure (server) Your RPG program

Each interface can pass certain argument objects in an agreed format
through agreed channels. Some of these interfaces support passage of 0, 1,
or multiple arguments for each input only (IN), output only (OUT), or both
(INOUT). Output parameters are also referred to as result sets.

DB2/400 supports RPG stored procedure calls, as well as C, FORTRAN,
REXX, CL, and several other program language bases. See the DB2/400
Database Programming Reference and SQL Reference

32 VisualAge for Smalltalk Handbook − Features

Proper Exiting to Remove Dependents

I have noticed that two classes, AS400APPCConfiguration and
E4AS400Broker, have left instances around after executing my program. Is
there a proper way of exiting a program that uses the AS/400 connection so
that the above two classes will not leave any instances around? Should I be
concerned about the instances? Can these instances get included in the
image when I package?

While you are in development mode, there should be no problem. You
should be refreshing your image′s configuration model every time your
image is started. Be sure, in your application class startUp method, to do:

Smal l ta l k

AS400System reconfigureAllSystems

This also should be done whenever your communication configuration is
changed or restarted while the application image is still active.

If your application must have a default system, this default should also be
set in the startUp method, whether by prompting the user or by loading this
from your application′s configuration data.

If you do nothing about these before packaging your development image,
you will leave instances in the packaged image. However, if you do the
appropriate things in your application class #startUp method, as described
above, these instances will be removed from the configuration model and
and BrokerRegistry, eventually to be garbage collected. Thus, they are of
little consequence other than the space and time overheads they cause by
being left in the deployed application image.

To be conscientious and tidy about your packaged images, you need to
create a prePackagingActionsFor: class method in your application classes
to automate the image housecleaning. Browse implementers of
prePackagingActions* for examples. This should include setting your
application′s configurable variables to nil (if they are lazy-initialized or are
loaded from an object store at startup) or the application default.

The method E4FrameWorkApp class>>prePackagingActionsFor: anImage
does ″E4Service shutDownAll″ to ensure that no active conversations are
left in the image. To be sure that no global reference to your development
server systems persist (preventing garbage collection),

Chapter 1. AS/400 Connection 33

 1. Close all active AS/400 parts.

 2. Clear all your application caches.

 3. Sign-off all systems (AS400System availableSystemNames).

Generally, put your application in the pristine state that you would like it to
be for a fresh-out-of-the-box application.

RPC Parameter Problem

I tried to use RPC with no arguments and I′ve got an error (MCH0802)
because of the wrong number of passed parameters. On the AS/400, I saw
that the problem was caused by the progrm QEVYMAIN which tried to call
the program QIWS/QGYSETG using 9 instead of 7 parameters. How do I get
the correct parameter list?

It sounds as though you have a down-level version of QGYSETG. The
Version 3.0 manual has a list of prerequisites for Version 3.0 to run. Please
make sure that you have installed the necessary PTFs:

• SF23309

• SF23828

• SF23829

• SF24428

Variable-Length Data Queue

I defined an AS/400 data queue and I want my VisualAge for Smalltalk
program to read from it. There is a partner program on the AS/400 that
writes some data in that queue. The partner program does not always write
a fixed number of characters, so that one time the message in the queue
can have 100 characters, the next time it is only 50 characters.

If I define a record to read 100 characters, the VisualAge for Smalltalk
application encounters an error when reading the 50-character message.
The error comes from the at: method of ByteArray class. VisualAge for
Smalltalk tries to read 100 characters, while the stream coming from the
AS/400 has only 50 characters. If I define a record structure with 50
characters, I lose information from the 100-character message. Am I
missing something?

34 VisualAge for Smalltalk Handbook − Features

If you described the field data as (CHARACTER length: xx) this is essentially
a fixed-length description. You have two options:

 1. Have the partner program pad the messages with blanks. This is
probably the easiest solution. There is a slight performance cost, in that
the padded blanks will be translated, but if it′s only 50 bytes, the cost
should be minimal.

 2. Use varying-length data description. This is a bit tricky because the
partner program would have to include variable-length information in the
data queue entry. To do this, specify varying for the field. If you are
using the AS400RecordDescription on the settings view, open the
settings for the CHARACTER field and go to Size page and check the
variable-length check box. The resulting type will be changed to
(CHARACTER length: xx) varying where xx is the maximum length.

Variable-length data is encoded with two leading bytes of length
information. This means your partner program would have to put length
information on the data queue like this: LLDDDDDDD..DD where LL are
the two length bytes and DDD is your data bytes. Do not include the
length bytes in your data description length.

For example, if your messages have a maximum length of 100, the field
should be described as (CHARACTER length: 100) varying. The partner
program should put the two length bytes and then all of the data (up to
100 more bytes) on the data queue.

Saving Image Causes Communications Problem

I am using VisualAge for Smalltalk, Version 3.0 for Windows, and I am
connected to an AS/400. When I save the image and after that try to
reaccess the AS/400, I get an error like: Unable to connect. Router and
communication DLLs are not available. Can you help me?

There is a problem in VisualAge for Smalltalk, Version 3.0 for Windows,
when you save the image and then make any other APPC accesses before
you exit VisualAge. VisualAge releases the APPC router DLL before the
image is saved to avoid saving an invalid handle. When you then continue
to access your AS/400 parts, you get the messages you mentioned.

One way to work around this problem is to exit VisualAge for Smalltalk
immediately after you save the image. We have also provided a
circumvention with the Version 3.0 CD-ROM which is referenced in the
following excerpt from the readme.as4 file (also on the CD-ROM):

Chapter 1. AS/400 Connection 35

 README.AS4

Known Problems and Testing Notes:

• Lost AS/400 Systems when saving image (Windows only)

− Problem:

When an image is saved under Windows, the available AS/400
systems may be lost.

− Fix:

To fix this, you need to file in AS4APPCW.ST from the
readmefileins subdirectory into your Windows image.

RPG Program Calls

Can RPG programs be called within a VisualAge for Smalltalk application?
If so, can the parameters be passed to and from the RPG program?

Yes. An AS/400 RPG program (or any callable AS/400 program, regardless
of the programming language used to create it) can be invoked by a
VisualAge for Smalltalk client application. Read ″Chapter 4. Calling AS/400
Commands and Programs″ in the VisualAge for Smalltalk AS/400 Connection
User′s Guide and Reference, Version 3.0, which can be found in the online
references on the VisualAge for Smalltalk v3.0 CD-ROM.

As for the passing of data between client and host server programs, there
are several alternatives:

• AS400RemoteProcedureCall arguments (both input and output)

• Data queues (FIFO, LIFO, and keyed)

• Data areas (character and decimal)

• User spaces

• AS/400 database files

If the data is simple, RPC argument passing would suffice. Another
consideration is whether or not your RPC (your RPG program) can run
asynchronously, so that some concurrency of client and server applications
would give better performance. Although it is possible to communicate with
asynchronous RPCs through arguments, it might be easier to manage
asynchronous RPC invocations by using one of the more loosely coupled
alternatives, such as data queues.

36 VisualAge for Smalltalk Handbook − Features

Personal Communications for AS/400

Does Personal Communications for AS/400 for Windows 4.1 work in place of
the Client Access router for the VisualAge for Smalltalk AS/400 Connection
feature?

No. While the Personal Communications product may provide AS/400
support, it does not provide an implementation of the E32APPC DLL, which
is currently required by the AS/400 Connection feature.

Repeated Record Structures

We are investigating how best to return complex data structures back to a
VisualAge for Smalltalk client. Our initial investigation has led us to the
following conclusions:

• When using AS/400 Record Descriptions, there is no way to define a
repeating structure for the record as a whole, or for a user-defined field
within the record (a nested record).

• User spaces are the preferred means to achieve a repeating structure,
at least for a simple record. (I′m not sure how to handle repeating
nested records here.)

Am I correct?

Repeating structures are supported, although not documented (sorry). This
function is not available at the Composition Editor, but is available “under
the covers.” Using this technique will probably render your record
description useless within the Composition Editor, but will provide the
function you are seeking.

The key to using repeating fields and repeating structures is the use of the
ARRAY datatype. The ARRAY datatype allows collections of like types to be
described. For example, if a RPC returns 100 fields of packed decimal
numbers you could describe the record description as:

Chapter 1. AS/400 Connection 37

Smal l ta l k

 (RECORD subclass: #DoNotDoThis)

field: ′ field1′ type: (ZONED length: 4);
field: ′ field2′ type: (ZONED length: 4);

...
field: ′ field100′ type: (ZONED length: 4);
endRecord

But using ARRAY, you could do this:

Smal l ta l k

 (RECORD subclass: #DoThisInstead)

field: ′ fields′ type: (ARRAY of: (ZONED length: 4) occurs: 100);
endRecord

and the #fields getter method would return an array of decimals.

The ARRAY>>of:occurs: accepts any valid AS/400 type, so user-defined
records could be used as well.

In many cases, a fixed number of array elements cannot be used because
the results vary from request to request. In this case, you can describe the
number of array elements based on the value of another field (defined
before the array field). For example, if your RPC returns the detailed
records for a given customer/order number, then you could describe the
result as:

Smal l ta l k

 (RECORD subclass: #VariableRepeatingEntryRECORD)

field: ′numberOfEntries′ type: (BINARY length: 32);
field: ′entries ′ type: (ARRAY

of: MyOrderDetailRecord
occurs: 100
dependingOn: ′numberOfEntries′);

endRecord

38 VisualAge for Smalltalk Handbook − Features

where 100 is the maximum number of detail records that would ever be
returned. In this case, the number of order detail records is determined by
the value in the numberOfEntries field. The RPC program would need to fill
in this value prior to returning the record.

To make these changes to your RECORD subclass, you will need to carefully
edit the class definition within a Smalltalk browser and save the changes.
You must include the #endRecord statement or your image will get
corrupted.

In answer to the other part of your question, the User Space part does
provide automatic implementation of variable-length length repeating
stuctures when the requested byte range exceeds the length of the
user-space data description. In fact, our implementation uses the ARRAY
technique described above. To handle repeating nested records, simply
describe the record within a record as described in the user guide
references above, assign your record to be the #dataDescription of the user
space, and you get the repeating support for free.

Simultaneous DDM Access

Is it possible to make two (or more) simultaneous DDM requests (for
example: a readAll and a readNext), from two (or more) different Smalltalk
processes to the same or different AS/400 file parts?

No. The DDM data streams share one conversation between the client
process(es) and the single DDM server job. See ″Appendix A. Guide to
Jobs Started by the AS/400 Connection″ in the VisualAge for Smalltalk
Version 3.0, AS/400 Connection User′s Guide and Reference on the CD-ROM.

While the DDM architecture does support interleaving and multileaving of
transaction data streams within a shared conversation, the contention
between the client processes, in this case, is for the conversation state,
which is a much lower-level resource, beyond the control of the public
application-accessable protocol in the AS/400 Connection feature.

As a result, it is up to the (cooperating) concurrent client processes to
ensure that only one DDM transaction is taking place at any time. This
means that you need to use semaphores to enforce mutual exclusion
around file-access operations, as you currently are doing. For more
information, see ″Chapter 15. Processes and Synchronization″ of David
Smith ′s book, IBM Smalltalk, the Language.

Chapter 1. AS/400 Connection 39

Synchronous Processing

Is it possible to issue a synchronous RPC, running on a separate process,
and use this RPC to:

• Run an RPG program in the AS/400 in order to read the registers on a
file and write on a queue, or in a user space?

• Read the queue or the user space using the VisualAge for Smalltalk
parts, all of this simultaneously with other accesses to the same or
different file using the AS/400 file parts, from the user interface process?

Yes, you could start an AS/400 RPG program that would do the same kind of
polling for changes of the database file that you currently do with the
#readAll message from your client application. The RPC could be started
with either #invoke or #invokeAsynchronous, depending on your client
application′s need for control.

Synchronous calling would allow the termination of the RPG program to
control the termination of the client process that called it. Asynchronous
calling would allow the same client process to continue on, reading the data
queue entries produced by the RPG program, and terminating under its own
control, depending on the data queue or user space contents.
Asynchronous calling also has the advantage of requiring only one process
and simpler coordination. By contrast, synchronous calling requires a
separate process to read the data queue or user space and coordination
with the RPC-calling process.

You have two other alternatives:

• Your AS/400 program that processes the event and results queues could
write an entry to a data queue or user space after it has made an
update to your production floor-model database file. This would signal a
client process waiting to read the queue that the client model needs to
be refreshed. Notification would elminate the need for polling and the
data queue entry content could be used for more selective record
retrieval, depending on what was actually updated in the file.

• The AS/400 file (assuming this is OS/400 Version 3R1 or higher) can
itself put entries in a data queue or user space to signal its update. This
can be done by attaching DB2/400 file or field update triggers that
directly invoke data queue APIs or another program to create the data
queue entry. This has the advantage over the previous alternative of
not impacting the event-and-result queue program, but the file DDS is
more complex.

40 VisualAge for Smalltalk Handbook − Features

One other consideration:

Any asynchronous file access initiated by a user interface event is subject to
the same mutual exclusion constraints that were mentioned above. If the
user interface process can wait for a pending #readAll to complete, then it
would be sufficient to bracket the user interface file access within the
#critical: argument block for the same mutal exclusion semaphore that
guards the #readAll file access. However, if this produces any unacceptable
user interface response, you can implement a two-level priorty queue as
follows:

Smal l ta l k

| highPriorityDDM lowPriorityDDM |

highPriorityDDM := Semaphore forMutualExclusion.
 lowPrior i tyDDM := Semaphore forMutualExclusion.
 ...

″The code that polls the AS/400 file must pass both mutex guards.″
[[true] whileTrue: [

lowPriorityDDM critical: [
highPriorityDDM critical: [

myRecords := myFile readAll.
]

]
″Do all non-DDM processing of myRecords outside of the
nested critical sections.″
...

]
] fork.
...
″The code that accesses the AS/400 file within an event
handling block that is triggered by a user interface event
need only pass the highPriorityDDM mutex guard. This allows
it to sneak into DDM ahead of pending lowPriorityDDM accesses.
However, this will not interrupt a #readAll that is already
doing DDM access.″

highPriorityDDM critical:
[userInfo := myFile readAt: infoKey].

Chapter 1. AS/400 Connection 41

ODBC Driver and Host Variables

I am using VisualAge for Smalltalk on Windows 3.11 with CA/400 and I am
trying to use the ODBC driver that comes with Client Access. When I query
DB2/400 through a multiple-line query, every thing works fine. When I use a
host variable I get an error: IM001 {microsoft ODBC DLL} driver does not
support this function. Any ideas?

ODBC does not support host variables. Use parameter markers instead.
Refer to ″Appendix E. Comparison Between Embedded SQL and ODBC″ in
the Microsoft ODBC 2.0 Programmer′s Reference. There it says, ″ODBC uses
a parameter marker in place of a host variable, wherever a host variable
would occur in embedded SQL.″

Asynchronous RPC with Large Arguments

To all VisualAge for Smalltalk application developers who use
AS400RemoteProcedureCal l>>#invokeAsynchronous

A problem occurs when any RPC argument is larger than 256 bytes. There
are two symptoms:

 1. On the AS/400 host, in the user ′s main server job log (use WRKUSRJOB
CL command and ″Work with″ Option 5 to see), there is a CPF2498
message in the QIWS/QEVYMAIN program saying that the data queue
entry it is sending has an ″Invalid length.″

 2. At the same time, the user ′s auxiliary server job (which was started by
the main server job to execute the asynchronous RPC) is hung up,
waiting to receive the data queue entry from the main server job, which
never gets there. You can display the auxiliary server job′s call stack to
verify this (″Work with Job″ Option 11).

From your client application′s view, depending on your configuration and
use, the application may hang up, receive a time-out exception, or endlessly
retry AS400RemoteProcedureCall>>#resultIsReady.

APAR SA55627 describes a temporary workaround.

42 VisualAge for Smalltalk Handbook − Features

Data Queues

I′m looking for a way to share a data queue (in QTEMP) between a
VisualAge for Smalltalk application and a native AS/400 application. In
normal operations, each application runs in a different job. How can I make
an RPG program, that reads lots of data, summarize the data and put the
results (multiple lines) into a data queue? When I try, the VisualAge for
Smalltalk program then handles only summarized data.

How do I run both applications in the same job? Or is there another way of
handling this situation?

By definition, each job has its own QTEMP library and the contents cannot
be accessed by other jobs. Since the data queue in VisualAge for Smalltalk
uses its own job, and your native AS/400 program runs in another job, the
solution is to use a different (permanent) library such as QGPL. It is not
possible to run your native AS/400 program and the VisualAge for Smalltalk
data queue server program in the same job.

File Open and Close

In order to benefit reuse, I keep my applications separate from the
RDBMS-handling. When using the AS/400 feature, this means that I never
use a file in an application, but that objects request services from an AS/400
database application. The biggest problem with this approach is that the
application can not control file opens and closes. This means I have to
open and close the files with every transaction.

To avoid this (performance) problem, I wanted to open the necessary files in
the beginning of an application, followed by an OVRDBF SHARE(*YES), as
we do in a native application where a lot of calls are executed. For these
commands I use the AS400RemoteCommand class.

The problem is that these commands are executed in another job on the
AS/400 rather than the job where all DDM requests are handled. Therefore,
this approach does not work. How should I tackle this problem?

Try using the file part action remoteCommand:. This will run in the DDM job.
Depending on the OS/400 version you may not be be able to get this to work
as the override scope (OVRSCOPE) must be specified as *JOB on the
OVRDBF command. I know this is available on V3R1, I′m not sure about
V2R3, and I know it is definitely not on V2R2.

Chapter 1. AS/400 Connection 43

Sign-On Screen

I′m having a problem with the AS/400 sign-on screen in a packaged
application under VisualAge for Smalltalk version 2. In edit time it works
fine, but in the packaged application, all the text has been replaced with
AS400BaseRun message errors because the correct text seems to be
missing. What should I do to get my messages back?

Your problem is that you do not have the AS4RTE20.MRI file in the same
directory as your packaged image. You can find AS4RTE20.MRI in the
RUNTIME subdirectory of the VisualAge for Smalltalk directory hierarchy on
your server. That is, put X:\VISUALAG\OS2\RUNTIME\AS4RTE20.MRI, where
X: is the drive letter for your VisualAge for Smalltalk server.

If you want to solve the problem for future client installs, you should copy
the .MRI file to the ABT subdirectory of your VisualAge for Smalltalk server
directory.

Error Using #readAll

I have run into an error when using the #readAll method for E4KeyedFiles.
The method works fine initially, but I receive an “Invalid usage” error when I
have another instance of a keyed file open for the same file. Is this a bug?
I understand that I can′ t use readAll if my E4KeyedFile is already open, but
this is another instance and should be independent of the file that I am
using for readAll. What do I do wrong?

This is not a bug. As far as the DDM Server is concerned, the file is open.
We do not start a new logical session for each agent unless you are going
to a different AS/400.

DDM and RPC

How can I force an AS400RemoteProcedureCall to be executed in the same
VisualAge for Smalltalk for AS/400 job where DDM requests are handled?
The goal is to have an RPC execute the command OVRDBF xx OPNDBF
SHARE(*YES) and DDM open and close files per transaction for optimal
reuse of code.

44 VisualAge for Smalltalk Handbook − Features

What you are looking for can be accomplished by using remoteCommand:
which will execute commands through the DDM job. This is a piece of code
that I wrote:

Smal l ta l k

| file |

file := AS400DirectFile newPart

recordDescriptionName: #TestRecordDefinition;
filename:′TESTFILE′;
l ibraryName: ′TESTLIB′;
yourself.

fi le remoteCommand: ′ADDLIBLE TESTLIB′.

Use this code and send an OVRDBF as the remote command. You could
also issue a CALL PGMX this way, however, you would have to find another
way to retrieve any returned information, possibly through a data area.

ODBC Default Library

When using the ODBC driver to connect to the AS/400, there is a defined
default library. How can I change this when I am about to log on to the
AS/400?

You can set a default library list in ODBC.INI. Thus, if the proper library
name (or names) is in the ODBC.INI on your machine, then the Client
Access ODBC driver should find the table.

File Locking

If the file lock option is set to exclusive, does that mean that the entire file is
locked or just the current record? Also, if the option is set to Share with
readers, does that mean the entire file is locked from updaters?

Chapter 1. AS/400 Connection 45

When the file access mode is set to exclusive, the file is locked in such a
way that neither readers nor updaters can access the file. When the file
access mode is set to readers, the file is locked in such a way that those
who open for read-only access can read the file, but those who want to open
for update access cannot.

Unique Keys

When using a keyed file where the key or keys are specified as unique and I
try to write a new record with a key that already exists in the file, is there a
way to get a return code of this being a duplicate record, or is that where an
exception handling comes in and an excection would be generated?

This is where you want to use exception handling. Here is a script that will
demonstrate the con cept of exception handling for the
particular case you cited.

Smal l ta l k

exceptionOccurred: aCollectionOfMessages

″Check to see if expected messages were detected.
This will check for a nonexistent message for example
purposes only. This script should be used with an
event-to-script connection for the exceptionOccurred event.″

| aMessage |

aMessage := aCollectionOfMessages
detect: [each | each identifier = #E4DUPKSIRMY

ifNone: nil].
^aMessage notNil

ifTrue: [
CwMessagePrompter warningMessage:

′Duplicate key, will not add to file.′.
#ignore]

ifFalse: [
#cancel]

You can try this out by connecting the exceptionOccurred event of the
AS400KeyedFile part to this script.

46 VisualAge for Smalltalk Handbook − Features

Logical Record Format

I retrieved the following record description for physical file PART:

Smal l ta l k

(RECORD subclass: #PART)

field: ′prtnbr ′ hostField: ′PRTNBR′ type: (ZONED length: 6);
field: ′prtdsc′ hostField: ′PRTDSC′ type: (CHARACTER length: 30);
field: ′grpnbr ′ hostField: ′GRPNBR′ type: (ZONED length: 6);
key: ′prtnbr ′;
endRecord

I then repeated the same operation for logical file PARTL1 based on PART
and got:

Smal l ta l k

(RECORD subclass: #PARTL1)

field: ′prtnbr ′ hostField: ′PRTNBR′ type: (ZONED length: 6);
field: ′prtdsc′ hostField: ′PRTDSC′ type: (CHARACTER length: 30);
field: ′grpnbr ′ hostField: ′GRPNBR′ type: (ZONED length: 6);
key: ′grpnbr ′;
key: ′prtnbr ′;
endRecord

Because both files share the same field names, PARTL1 should inherit from
PART. Consequently I changed the preceding class definition to the
following:

Smal l ta l k

(PART subclass: #PARTL1)

key: ′grpnbr ′;
key: ′prtnbr ′;
endRecord

However, when I try to read PARTL1, I get a walkback saying that
hostFieldNames is nil.

Chapter 1. AS/400 Connection 47

When a logical file includes all the fields of its physical file, how do I make
the logical file′s record format a subclass of the physical file′s record
format?

You get a walkback saying hostFieldNames is nil, because the
hostFieldName class variable is inherited from PART, but the value it holds
(the collection of host field names) does not get copied to the subclass.

The hostFieldName array is constructed by #field:hostField:type: invocations
and assigned in the RECORD class>>endRecord method.

The RECORD class is intended as a template for creating AS/400 record
classes. If you are intending to define new views of an existing record using
a subset of its fields, alternate keys, or both, then the #logicalView method
would be a more straightforward alternative. (See the ″Comments″ text of
RECORD class>>logicalView or STRUCTURE>>logicalView for
examples.)

It should be noted that #logicalView cannot be used to implement a
client-side ″logical join″ view of two or more record classes. To do that, you
must implement the view or logical file on the AS/400 and then derive the
client record description from this new view, as you did in your first
implementation of PARTL1.

Inheritance from subclasses of RECORD can be used to aggregate
additional attributes. But this also might be better handled by having an
instance variable of the new class to contain an instance of the record. It
would depend on how much of the record′s protocol needs to be visible
outside of the new class in your application. And, if you use inheritance, be
sure to copy the record′s class variables (such as hostFieldName) to the
subclass.

Fastest DB2/400 Access

Is it true that ODBC is the fastest way to access AS/400 data?

If you are using SQL access exclusively, yes, ODBC is the fastest access to
AS/400 data, assuming the following:

• You are using the VisualAge for Smalltalk ODBC driver manager.

• You are using the V3R1 Client Access/400 ODBC driver. The V3R1
DB2/400 host server has been optimized for use with this ODBC client
driver. The V2R3 PC Support ODBC driver has a different, more

48 VisualAge for Smalltalk Handbook − Features

restricted architecture. I have no benchmarks for other AS/400-operable
ODBC products.

• You are not using the E4SQLAccess services. These DRDA-based
service classes are intended only to ease the migration of previous
ENVY/400 customers into VisualAge for Smalltalk They will still be
available in the next release of the VisualAge for Smalltalk AS/400
Connection but they will be phased out. Do not use them for new
development.

• You are talking about performance with respect to a particular
client/server conversation—that is, a single server, not a distributed
database on multiple servers. I have not seen benchmarks on
multiserver applications for ODBC, so I wouldn′ t know.

ODBC is also the recommended choice for portability, interoperability, and
forward compatibility. However, if the AS/400 is your only application server
platform and you are not limited to SQL access, you can get faster response
and (for simple retrieval or update) higher throughput by using the
DDM-based AS/400 database services provided in the VisualAge AS/400
Feature (AS400KeyedFile, AS400SequentialFile, and AS400DirectFile parts).

In an OS/2 client environment, DB2/2 with DDCS/2 is also a viable choice.
However, some customers have found that DDCS is slower than ODBC in
their single-server environment. This may be because the DDCS
transactions are routed through an additional communications server.

This discussion would not be complete without a ″your mileage may vary″
disclaimer: Your application constraints, the complexity of the queries, the
database topology (in a distributed multiserver database), the
communications media and its configuration, and the processing
environment (system load, resource availability, and so on) can all influence
actual performance in a way that might favor one of the alternatives to
ODBC.

This being said, your best choice will be made by testing the alternatives in
a small prototype of your product′s typical or most critical environments.

Chapter 1. AS/400 Connection 49

Access OV/400 Document

Is it possible to access (read/store/change) AS/400 documents through the
VisualAge for Smalltalk classes?

We do not support manipulation of documents except by means of CL
commands and System APIs. You can access CL commands using the
AS400RemoteCommand part and System APIs using the
AS400RemoteProcedure. Using CL commands, you could dump the
contents of an OV/400 document to an outfile. You could then read the
outfile using the AS400SequentialFile part.

The meat of an OV/400 document is stored in Revisable Form Text (RFT) or
Final Form Text (FFT) format. Even if your goal is only to bring back plain
text from a document, this is nontrivial as the files (theoretically) ca n
contain margin text, backspaces (which essentially negate the previous
character), and other text controls that are either difficult to deal with or
non-ambiguous. The RFT is especially difficult.

AS/400 Connection through TCP/IP

Can I use the AS/400 feature (DDM, remote procedures) over TCP/IP without
the Client Access router?

VisualAge AS/400 Feature supports only APPC/APPN communications. This
is true for both Version 2.0 and Version 3.0. Client Access for OS/400
Optimized for OS/2 supports APPC/APPN communications via TCP/IP.
Client Access for OS/400 (V3R1M1) for Windows 3.1 also supports
APPC/APPN via TCP/IP. This product does not ship a TCP/IP stack,
however; you would have to purchase one separately. But, in either of
these cases you′d have to purchase Client Access.

Watch this!

If you are running under OS/2 and have an APPC/APPN connection
through Communications Manager for OS/2 (CM/2) or Communications
Manager for OS/400 (CM/400)), you do not need Client Access unless
you are in a DBCS environment.

50 VisualAge for Smalltalk Handbook − Features

AS/400 Feature and TCP/IP

Is it possible to use the AS/400 Feature communicating directly to the
AS/400 using TCPIP without having Client Access/400 or PC Support/400
loaded on the client machine? If so, would I need the Communications
Feature to communicate directly to the AS/400 from a VisualAge for
Smalltalk application?

Yes, the client application can talk to an AS/400 across a TCP/IP-based
connection through the VisualAge for Smalltalk communications feature,
provided you have client software that supports the TCP/IP stack. You could
do things like simple file transfer (FTP), remote job submittal, and the usual
services that you get with TCP/IP. Your application will have to manage
those services.

However, if you want to use the VisualAge for Smalltalk AS/400 Feature
parts (which shield the application programmer from many communications
and service management details), then the client application must have an
SNA APPC protocol stack available to talk to the AS/400 host server
programs. If you need to use a TCP/IP connection to get there, you can still
do it, if you have Anynet client software. Anynet provides the APPC stack
and wraps it in an IP conversation. This is transparent to the VisualAge for
Smalltalk client application and the host server programs.

Anynet support comes with Client Access/400 for Windows, and both CM/2
and CM/400 for OS/2. If the VisualAge AS/400 feature with Anynet satisfies
your application′s needs for AS/400 services, then you don′ t need the
VisualAge Communications Feature (unless, of course, your VisualAge
application also talks to other IP-based non-AS/400 servers, or uses 5250
terminal emulation or screen scraping for legacy AS/400 applications).

Remote Procedure Call Messages

Is it possible to retrieve messages sent to a remotely called AS/400
program? When I do the following:

Chapter 1. AS/400 Connection 51

Smal l ta l k

^(AS400RemoteProcedureCall new
procedureName: ′MYRPC′;
l ibraryName: ′MYLIB′;
arguments: (MYPARM new parmcde: ′ A′))

invoke;
result

the answer is an E4Result object with three instance variables:

• result
• status
• messages

Variable result contains my updated argument record, status contains
#SUCCEEDED and messages contains an empty ordered collection. Yet I
know for a fact that the invoked program MYRPC had messages sent to it
while running. How can I retrieve them? (Ideally the E4Result object would
contain an ordered collection of E4ErrorMessage objects.)

What you are trying to do is not possible using VisualAge for Smalltalk
Version 2, but it is possible using VisualAge for Smalltalk, AS/400
Connection, Version 3. I just created a window that allows you to type in
any CL command. It issues an RPC to QSYS/QCMDEXC which issues the
CL command. Then it displays a list of the message identifiers of all of the
messages in the job log that have message identifiers. I have a pop-up
menu for the list that allows me to show the message text for any message
identifier.

Here are the jobMessages and showMessage methods:

Smal l ta l k

jobMessages

| jobLog messages |
(jobLog := AS400JobLog newPart)

system: (AS400System named: #RCHAS400);
openContents.

messages := jobLog contents reject:

jobLog closeContents.
^messages

52 VisualAge for Smalltalk Handbook − Features

Smal l ta l k

showMessage: anAS400ProgramMessage

(self subpartNamed: ′Message Prompter1′)
messageString: anAS400ProgramMessage messageText;
prompt

Although we only support retrieving all messages from the job log, since
each Smalltalk program message object has a unique identifier within the
job log (even if there is more than one message with the same AS/400
message identifier), you could simulate getting only new messages by
keeping track of which message identifiers you′ve seen and rejecting
messages you′ve already seen.

Remote Command Fix

After installing VisualAge for Smalltalk Version 3.0 for OS/2, we have a
problem when using the AS400RemoteCommand. The command is not
performed because of a dump of program QGYSETG in library QGY. We are
running OS/400 version 3.10. The beta version of VisualAge for Smalltalk
Version 3.0 was running correctly.

Do we need a PTF for the AS/400 or for any VisualAge for Smalltalk parts?

You may need PTF SF24428 which supplies additional function in QGYSETG
for optimal APPC connection in the Host Server List APIs (see APAR
SA44719 for details).

This PTF is listed along with other needed PTFs in the ″Prerequisites for
OS/400″ section of chapter 1 in the new ″VisualAge for Smalltalk, AS/400
Connection User′s Guide and Reference.″ The other PTFs are SF23309,
SF23828, and SF25419 (which supersedes the listed SF23829).

Fixpack Problem

Chapter 1. AS/400 Connection 53

 Warning

A problem was found in fixpack ABTTA43A.EXE. This especially affects
VisualAge for Smalltalk, Version 3.0, application developers working on a
Windows platform.

If you have already installed AS/400 Connection fixpack 1 from
ABTTA43A.EXE in a Windows client image, it is recommended that you
reinstall the Version 3.0 AS/400 Connection feature, and then install the
AS/400 Connection fixpack 3 from ABTTA43C.EXE.

Do not install ABTTA43A.EXE if you have a copy and have not already
done so.

The new fixpack (ABTTA43C.EXE with accompanying ABTTA43C.TXT file)
is available in the usual VisualAge for Smalltalk fix directories at:

ftp://ps.boulder.ibm.com/ps/products/visualage/fixes

For those with Internet FTP access but no Web browser, get the ASCII
file, ABTTA43C.TXT by anonymous FTP, switch to binary transfer, and
then get ABTTA43C.EXE. Follow the ABTTA43C.TXT instructions to install
the AS/400 Connection fixpack 3.

User Profile Name

Is there a way to figure out the name of the AS/400 user profile that is
signed on with the VisualAge for Smalltalk application on the AS/400?

Try the following:

Smal l ta l k

E4CommunicationService UserID

54 VisualAge for Smalltalk Handbook − Features

Referential Integrity Constraint Violation

A problem has been found when a VisualAge for Smalltalk, Version 3.0,
application violates a referential integrity constraint that is defined for an
AS/400 table.

The symptoms are:

• The user′s server job′s log (in subsystem QCMN) has CPF503A
message.

• The exception is not signaled to the client′s handler.

• The exception message is written to the Transcript or (for a packaged
client) the system error log.

This problem happens because the severity of the error that triggers
exception signaling is interpreted differently in the Version of DDM services
used in version 3.0 of the AS/400 Connection feature. There are a few
exception conditions that should always be signaled, but their DDM severity
code does not always reveal this. CPF503A is one that we missed.

The general workaround is to add the exception′s message ID to the
collection of message IDs for exceptions that should always be signaled. To
do so, create a scratch edition of the
E4AS400FileService>>promotableMessages method as follows:

Smal l ta l k

promotableMessages

″E4AS400FileService>>promotableMessages with added exceptions:
CPF5027 (record locked exception)
CPF503A (referential constraint violation) ″

^#(CPF5009 CPF5035 CPF5027 CPF503A)

After you create this scratch edition of #promotableMessages, your
exception should then be signaled so that your exception monitoring should
be able to catch this exception.

Chapter 1. AS/400 Connection 55

Reestablish Connection

If my AS/400 goes down because of a power outage or an IPL, my VisualAge
for Smalltalk application results in a severe ENVY error, when it tries
accessing the AS/400 by opening, reading, or signing on. The only way to
resolve this is by booting the PC. However, I want to systematically
reestablish a connection with the AS/400 without having to reboot the client.
How can I resynchronize the AS/400 and the PC?

At the point where the loss of connection is detected (probably in your
exception handling for whatever AS/400 part you were accessing at the
time), do the following:

Smal l ta l k

″Close all services for the failed system connection by using
the #signOff method. During #signOff, additional exceptions
can be signalled, but ignore them like this...″

myAS400System signOff Y onExceptionExecute: [:aSignal |].

Do whatever application cleanup is needed to put the client side of the
transaction in a resumable state. This might be a good time to alert the user
and prompt them to either end the application or have your recovery code
wait for the server to become available.

If the user or your recovery code chooses to wait on availability of the failed
system, you need to do some kind of polled waiting loop to reestablish the
connection.

Complex applications with multiple open AS/400 parts and/or asynchronous
processes benefit by this use of AS400System protocol (#signOff and
#signOn) because any part that is sensitive to a server connection′s failure
or recovery can be hooked to the appropriate AS400System event (for
example, #aboutToSignOff). In this way, the part can control its own shut
down and recovery.

56 VisualAge for Smalltalk Handbook − Features

Application Packaging

There is a problem when packaging images using the AS/400 Connection
parts in Version 3.0.

The problem stems from the fact that two pool dictionaries are being
removed by the packager, resulting in walkbacks when accessing local
message text (for instance, as the result of a communications exception).
The fix is to force the packager to include these dictionaries in the packaged
image. This can be accomplished by adding the following method to the
application class of one of your applications to be packaged into the final
run-time image:

Smal l ta l k

 packagingRulesFor: aPackagedImage

 aPackagedImage
includeGlobalVariable: #E4BaseNlsSeparatedMessages;
includeGlobalVariable: #E4SqlNlsSeparatedMessages

File Access through Library List

How can I access keyed files without qualifying the library but using the
AS/400 library list?

If it is an existing file, you may set the libraryName attribute in the AS400File
part ′s settings to *LIBL. (The special values, *CURLIB, *USRLBL, and *ALL
are also acceptable.)

Realize that these special values are interpreted with reference to the host
server job, which may be determined by that job′s job description. This is
not necessarily the same as the user′s job description.

If you wish to modify the server job′s library list before opening the file,
send a #remoteCommand: to do ADDLIBLE, CHGLIBL, and so on. For
example:

Chapter 1. AS/400 Connection 57

Smal l ta l k

″created a new AS400File part and now add mylib ″

myKeyedFile remoteCommand: ′ADDLIBLE mylib′.

You must use an actual library name if you are creating the file on the host
server from an existing client record description. If none is specified, it will
be created in the library specified by the file part′s system userLibrary
attribute which is QTEMP by default. That′s also where the DDS source is
created.

Record Name and DDS

When I create a record description and use that record description to create
a file, it looks as though the DDS for the file is temporary as generated on
the AS400. After the file has been created, the DDS is deleted. Now, is
there a way to write the DDS to a file so that it is not deleted?

Yes, it is generated into QTEMP/OFDDSFIL. Since the file is in QTEMP, the
file is never explicitly deleted, it is, however, implicitly deleted when the
DDM job is ended. The library is specified in
E4AS400FileService>>userLibrary (private) so in theory you could change
this to be a library name of your choice. Any changes made to IBM code
place your support in jeopardy, so I would sugg est the following: If this
function is important to you, make a class extension of
E4AS400HeteroFileService (V2.0) or E4AS400HomoFileService (V3.0) in one
of your applications. Add the #userLibrary method to return a string
specifying the name of the library. Since E4AS400FileService is abstract,
overriding the method in your extension should be safe. As always, this
would be overriding private code, so use at your own risk (this is an
untested workaround).

Cursor Stability

I am reading records from a file with the following settings:

• Relational operator: EQ

• File lock mode: #updaters

• Commit lock level: #cursorStability

• File open: #openReadOnly

58 VisualAge for Smalltalk Handbook − Features

I have the feeling that records (keyed file) get locked after a record has
been read (readAt), even though the file has been opened with
openReadOnly. Is that possible?

Normally, #openReadOnly does not lock any records. However, since the file
is part of a commitment control definition, the rules change slightly. The
cursor stability (*CS) commitment control definition locks all records. See
the VisualAge for Smalltalk, Version 3 for AS/400 Connection User′s Guide.
Under “Accessing AS/400 Data,” it says: “Every record accessed for files
opened under commitment control is locked.”

The difference between *ALL and *CS is that the record that is locked can
change when the definition is *CS. If the *ALL definition is used, then record
locks accumulate as records are accessed, and not released until a commit
or rollback is used.

It is up to you to establish whether or not your application requires the
readOnly data to be locked as part of the transaction. If it does, then *CS or
*ALL may apply to your case. If not, then do not start commitment control
for the read-only file.

Job Queues

How can I get AS400JobQueue instances of all job queues that exist on the
system (or in my library list)? I want to be able to prompt the user with a
list of valid choices.

You can obtain a list of available job queues by using an Object List Part (in
the AS/400 Host Object Parts category. In the list settings, change the Type
to *JOBQ. You may also want to modify the name and library settings as is
appropriate for your application.

Client Access for Windows

Is it possible to make Client Access/400 for Windows open automatically
when an application is launched?

If you just need to get the router and host server connections started (which
is all you need for VisualAge for Smalltalk AS/400 Connection feature), then
you could use the Program Starter part to launch the CA/400 Advanced
Connection dialogue (CAWINEHNECONN.EXE) in your application #startup
method. (Do this before doing AS400System reconfigureAllSystems.)

Chapter 1. AS/400 Connection 59

This might be more detail than you want to present to your user, but the
internal API to get the basic CA/400 sign-on dialog is unavailable to the
VisualAge for Smalltalk application developer. Also, there is little that can
be done, in terms of return codes or other methods of returning the results
of the user′s interaction with the connection dialogue to the VisualAge for
Smalltalk application.

You could also use the configured CA/400 Startup, WSTRPCS.EXE, in place
of EHNECONN.EXE. In both cases, you may want to use the CA/400 router
API to check if the router is already loaded so that you don′ t do this
unnecessarily.

If your user automatically starts CA/400 at the Windows startup, then this
concern can usually be eliminated.

ODBC vs. File Access Part

Are there any recommendations or performance benchmarks that would
suggest when to use ODBC and when to use the keyed file class to access
data on the AS/400?

We have no benchmark comparisons between the AS/400 file parts (DDM)
and ODBC that would address all application uses. Experiments that
measure response in the kind of file access that is typical of an application
are the best way to get reliable data for selecting the righ t choice for your
application.

In general, ODBC access will have a certain amount of fixed overhead that
makes it prohibitive (compared to DDM) for one-record-at-a-time use. DDM
is, up to a point, faster for simple retrieval and update of groups of records.
But this is primarily true when there is little need for filtering or selective
processing of records in the client application.

If you have more complex queries and updates of groups of records that in
DDM access, would require retrieval of many useless records and additional
client-side record processing, then ODBC access might show better
performance, in spite of its initial overhead. As you saw in your trial, there
is some ODBC caching within the client image that cuts out much of the
overhead for repetitive record processing.

ODBC also has more alternatives for moving the balance of the processing
away from the client and onto the server, such as prepared packages and
stored procedures. In DDM, server-side filtering is done by access through
logical file views and joins of physical files. The ODBC stored procedure

60 VisualAge for Smalltalk Handbook − Features

advantage can be countered on the DDM-side by the use of
AS400RemoteProcedureCall parts, although data queues might be more
effective with RPCs than DDM file access with RPCs.

As far as programming overhead and maintainability are concerned, again,
your application context is the key. The AS/400 Connection feature takes
most of the burden out of using DDM. But you may find the additional
client-side record processing needs in some parts of your application make
ODBC a simpler alternative. Also, if your client application must operate
with non-AS/400 servers, ODBC is the only alternative that has a chance of
working with both.

Ideally, you will design your application so that you could freely use either
DDM, or ODBC, or both, as your application needs dictate. Or, at least be
able to switch with a minimum of change as your application evolves. In
any case, a small-scaled prototype of the kind that you did will give you the
most help in deciding what is best in a specific application context.

File Agents

I am using an E4KeyedFile to access data on the AS/400. Before sending an
open message, I set the library name to *LIBL. After the connection has
been established, how can I determine the name of the library containing
the file?

While not officially supported (private and internal methods are utilized),
there is a way to determine the real file library after the open in Version 3.0.

First, make sure you are getting the keyed file by asking the broker for an
#extendedKeyedFile, not a #keyedFile. Either will answer an E4KeyedFile,
but the underlying service will be different.

After performing the open, the file can ask for the real library by invoking
the following:

Smal l ta l k

self openFeedbackArea libraryName.

Chapter 1. AS/400 Connection 61

Using Windows 16-Bit Platforms over TCP/IP

Intermittent hang problems occur when you try to access AS/400 information
on the Windows 3.1 platform, using TCP/IP for your communication protocol.
Do not deploy any applications that would rely on Windows 3.1 TCP/IP and
the AS/400 Connection parts. We are continuing to investigate the cause of
these problems.

When using any AS/400 Connection parts on Windows 3.1 and TCP/IP as
your communication protocol, there is a restriction that communications to
the AS/400 can not occur within a Windows 3.1 callback.

Many of the VisualAge parts make use of callbacks. It is not possible to list
all situations where a callback can occur from a visual part or to describe
when AS/400 parts actually require to communicate to the AS/400 based on
actions, events, or attributes being set and requested, because they can be
state dependent.

Here are a few of the more common situations you may encounter and
some workarounds:

• The selectedItem event on a combo box visual part is implemented
within a callback. Any connections fired as a result of selecting an item
in the list will be run within the callback. If an action or attribute on an
AS/400 part is connected to the selectedItem event, and that action or
attribute requires access to the AS/400, a walkback would occur stating
″Invalid operation during callback.″

The recommended workaround is to use a drop-down list and entry field
rather than a combo box.

• When you use a tree view, the attribute specified in the
itemChildrenAttribues is called from within a callback. If retrieving the
children involves accessing the AS/400, this would fail with a walkback
stating ″Invalid operation during callback.″

The recommended workaround is to use the itemChildrenRequested
event of the tree view to access the children. This does not use a
callback.

• When you use a container view and attributes are set on the columns,
the setting of these column attributes occur within a callback. If setting
the attributes involves accessing the AS/400, this would fail with a
walkback stating ″Invalid operation during callback.″

62 VisualAge for Smalltalk Handbook − Features

The recommended workaround is to use a script to retrieve all AS/400
data before setting the items in the container view.

Unspecified Key

If you get the error ″Key xxxx for yyyyyy is not specified″ when attempting to
retrieve data for jobs on the AS/400, you have to install the fix provided in
the product refresh fixes for the AS/400 Connection.

Chapter 1. AS/400 Connection 63

64 VisualAge for Smalltalk Handbook − Features

Chapter 2. Communications and Transactions

In this chapter, we discuss the Communications/Transactions Feature of
VisualAge for Smalltalk. Communications protocols supported by this
feature include:

• TCP/IP
• APPC
• CPI-C
• NetBIOS
• CICS ECI
• MQSeries
• EHLLAPI

In this chapter, we do not discuss VisualAge Web Connection Parts. Refer to
Chapter 9, “Web Connection” for more information.

Supported TCP/IP Stacks

What TCP/IP stacks are supported and work with the VisualAge
Communications Feature for either OS/2, Windows or AIX environment?

The Communications Feature supports the IBM TCP/IP stack on OS/2 and
AIX and supports the WinSock Verison 1.1 TCP/IP stack on Windows.
Version 3.0a added Windows 95 and Windows NT TCP/IP support.

Testing the TCP/IP Setup

How can I test my VisualAge TCP/IP setup?

One thing to check is to inspect the following code in the Transcript:

Smal l ta l k

AbtTCPInetHost localHost

 Copyright IBM Corp. 1997 65

Address in Use

I have a program that performs a bind on a socket. After closing the socket,
the IBM TCP/IP software still thinks the address is in use. Is the problem
with the TCP/IP software, IBM Communications, or am I missing something
during cleanup?

Actually this is normal operation for TCP/IP. The TCP stack holds that
address in use even after the socket that was bound to the port has closed.
This is done to make sure that the clients who knew about the old program
don ′ t try to access the new one. You can set the socket option REUSEADDR
to prevent this. But beware, because on some platforms you may end up
with two active programs using the same address and there is no way to
know which program will service the next client.

Using TCP/IP in Scripts

Is there an example of using TCP/IP via Smalltalk scripts?

Using Smalltalk scripts to program TCP/IP is quite a large field.
Nevertheless, below is one very simple example.

Server script:

Smal l ta l k

| aCommLink aClass aHost aPort aResult |
aHost := AbtTCPInetHost getHostById: ′127.0.0.1′. ″loopback″
aPort := AbtTCPPort usingHost: aHost portNumber: 175.
aClass := Smalltalk at: #AbtSocket ifAbsent: [^nil].
aCommLink := (aClass newStreamUsingPort: aPort) socket.
(aResult := aCommLink bind) isAbtError ifTrue:

[^aResult display].
aResult := aCommLink listen: 2.
[aCommLink accept.

10 timesRepeat: [CgDisplay default bell: 100] rbrk.
fork.

^aResult.

Client script:

66 VisualAge for Smalltalk Handbook − Features

Smal l ta l k

| aCommLink aHost aPort |
aHost := AbtTCPInetHost getHostById: ′127.0.0.1′. ″loopback″
aPort := AbtTCPPort usingHost: aHost portNumber: 175.
aCommLink := aPort newConnectedSocket.
aCommLink sendData: ′hello ′, (String with: Character cr).
aCommLink soclose.

It would be a very good idea to test for errors on the socket and accept
calls. You may also want to look at another piece of code, below, which is
interesting in many aspects.

Chapter 2. Communications and Transactions 67

Smal l ta l k

getData
″Public - return text from server″

| abtHost abtPort abtSock rc chunk gData |

abtHost := AbtTCPInetHost getHostByName: self host.
abtHost isCommunicationsError

ifTrue: [System errorMessage: ′error host′.
^nil].

abtPort := AbtTCPPort usingHost: abtHost portNumber: self port.
abtPort isCommunicationsError

ifTrue: [System errorMessage: ′error port ′.
^nil].

abtSock := AbtSocket newStreamUsingPort: abtPort.
self selector isNil ifTrue: [self selector: ′ ′].
abtSock bufferLength: 8192.

rc := abtSock connect.
rc isCommunicationsError ifTrue: [rc display. ^nil].
rc := abtSock sendData: self selector.
rc isCommunicationsError ifTrue: [rc display. ^nil].
gData := ′ ′.

[abtSock isConnected] whileTrue: [
chunk := abtSock receive.
chunk isCommunicationsError ifTrue: [chunk display].
gData := gData, chunk contents asString.].

abtSock disconnect.

Socket Program with Time-Out

I have been trying to write a client socket program that has a built-in
timeout. To do this, I start two processes, one with a delay timer and one
that waits for the socket to return some data. I′ve attached the code below.
Can someone please tell me if this is supposed to work? This program
works fine if I do not enclose the receive as a separate process.

68 VisualAge for Smalltalk Handbook − Features

The following method always reports that the timeout has occurred, even
though I know that there was plenty of time for the server to send back the
request.

Smal l ta l k

simple: aMessage timeout: seconds

| host address socket result buffer exceededTimeout sem |
host := AbtTCPInetHost getHostById: ′karsloop ′.
address := AbtTCPPort usingHost: host portNumber: 2000.
(socket := AbtSocket newStreamUsingPort: address) socket.
result := socket connect.

result isCommunicationsError ifTrue:
[self error: ′Could not connect′].

socket sendData: aMessage.
sem := Semaphore new.
exceededTimeout := true.

[
|delay|

delay := Delay forSeconds: seconds.
delay wait.
sem signal.

] fork.
[
buffer := socket receive.

exceededTimeout := false.
sem signal.

] fork.
sem wait.
exceededTimeout

ifTrue: [resul t := ′Exceeded timeout′]
ifFalse:

[buffer isCommunicationsError
ifTrue: [self error: ′Could not receive′].

result := buffer contentsAsString.
].

socket disconnect.
^result

Chapter 2. Communications and Transactions 69

Use abtWait and abtSignal instead of wait and signal.

Sockets and Streams

I want to attach a Stream object to a Socket, as this makes it very easy to
write programs that deal with Sockets. Is this possible with IBM Smalltalk
or VisualAge TCP/IP?

The VisualAge socket support was designed with records, not streams in
mind. Currently we don′ t have any existing code to support what you want
to do. However, I think it′s really easy and straightforward to write code to
manage the stream interfacing with our socket code.

Error: ′A NetBIOS message was ignored ′

My application is experiencing random errors while communicating via
NetBIOS. In test (development system) I get the message: ″A NetBIOS
message was ignored:″ In production I simply get garbage in the receive
buffer. The method involved seems to be #ncbComplete: The error seems
to happen when multiple sends and multiple receive are performed. I don′ t
fully understand this code:

Smal l ta l k

AbtIBMNetBIOSCall class>>ncbComplete: anInteger
″This is the NCB completed procecure for the receiver.″

(self netBIOSDictionary includesKey: anInteger)
ifTrue: [(self netBIOSDictionary at: anInteger) requestComplete.]
ifFalse: [Transcript cr; show: ′A NetBIOS message was ignored : ′.

Transcript show: (anInteger printString)].
^nil

I understood that #ncbComplete is the entry point for a call-in coming when
the NetBIOS call is completed and that the call-in is matched with the
original request kept in the netBIOSDictionary. In which case is the ifFalse:
[] branch activated? I wonder why this case is simply ignored and not
treated as an error.

70 VisualAge for Smalltalk Handbook − Features

#ncbComplete: is indeed the method called by the asynchronous callback
into Smalltalk from a C procedure. That C procedure is called by NetBIOS
when the asynchronous NetBIOS function completes. What is passed back
into Smalltalk is the NCB address. VisualAge keeps the NCB addresses of
all asynchronous calls as the keys of the NcbDictionary and associates with
it the instance of the NetBIOS object making the call (name, adapter, or
session). If a callback is received with an NCB address that is not
associated with any instance of a session, adapter, or name (which should
never happen), then there is no clear instance to send the error to. Perhaps
we could recheck all the objects that are waiting, to see if their NCB
completion code has changed and figure out from that who the NCB
completion message was meant for. In theory, this error shouldn′ t happen
and the interesting question is did a bad NCB address get sent back by
NetBIOS to the C procedure (which is doubtful) or did something happen to
the entry in the dictionary.

Accessing COBOL through CICS

My application accesses a COBOL program through the CICS proc dialog.
When I package the application as runtime image, I get a warning message
for each field in my commArea, something like: no implementor of IS_field1
where field1 is one field in my commArea. Everything works fine, but I am
not sure why these warning occurs, and how to fix it.

For this case, the packager warnings are acceptable. I suspect that you′ve
built scripts with assistance of the VisualAge script template tool. In your
script, you probably have code similar to that shown below:

Smal l ta l k

(self subpartNamed: ′COBOL External function1′)
valueOfAttributeNamed: ′passedVariable1′
selector: #′ IS_passedVariable1′.

When saving VisualAge parts, you may have noticed that VisualAge creates
interface specification methods for each of the attributes and actions for
your part. These methods are named ′ IS_<at t r ibu teName> ′. However, the
APPC proc dialog part (and several others) construct their interface
specification dynamically based on their settings (no ′ IS_′ methods are
created). The VisualAge script template tool currently builds code assuming
that all attributes have a corresponding ′ IS_′ selector.

Chapter 2. Communications and Transactions 71

We may be able to address this annoyance in a future release. For now,
don ′ t be alarmed about packager warnings which reference the dynamic
attributes of your Proc dialog parts.

Primitive Failing When Opening CICS Proc Dialog Settings

I wanted to start working with the CICS parts. When I try to open the settings
for the CICS Proc Dialog I receive a walkback with the following information:
Primitive failed in: PlatformFunction>>#call:with:with:with: due to OS error
127 I saw in the VisualAge debugger that VisualAge tried to call
FAACIC32.DLL <c:int16 ′FAACIC32′:CICS-EciListSystem> so I checked my
CICS installation again, but everything seems okay. I can run CICS
applications, the DLL is there and in the LIBPATH, and so on. What is
wrong?

You have VisualAge version 3.0. The original Version 3 release did not
support running directly on the server. It would run on a client. This is
fixed in Version 3.0a. Obtain the refresh.

Handling a Transaction Abend

My application will communicate to host system CICS/ESA using VisualAge
ECI parts. The application uses the Distributed Program Link (DPL) function.
How do I detect and notify the client of transaction abend on the host
system? Is it related to the lastError attribute?

The CICS ProcDialog part handles errors only one way. It will display a
message box with the error. If that is good enough for you, then you don′ t
have to do anything. If you are using the CICS Program and CICS Logical
Unit of Work parts, then you have control over how errors are handled.
When an error occurs, as during the execution of the ECI call, the lastError
attribute is filled with an instance of AbtCICSError, which contains the return
code (a negative number) and in some cases a four-character abend code.
This error attribute contains an attribute codesAsString which will return a
string that is a little more readable than the return code. For instance, it
would return ′EciNoCICS′ if the return code was a -1. This error attribute
also has a display action that will produce a message box just like the one
the ProcDialog always shows. The other thing that happens is the
errorOccurred event is signaled. You can use this error event to do such
things as execute the rollback action on the CICS Logical Unit of Work, or
open a window of your own where you can show some more information

72 VisualAge for Smalltalk Handbook − Features

and have Commit and Rollback buttons to allow the user to decide whether
to continue or abort the transaction.

CICS ECI and Code Page Translation

In the CICS ProcDialog part on the data attributes setting, there is a code
page parameter. The Help explains that you have to enter the code page of
the remote system (CICS/ESA). Who does the translation from EBCDIC to
ASCII and from one code page to another? Is it the conversion table on the
CICS/ESA, the CICS client, or VisualAge?

The ProcDialog of the communications parts uses the code page settings for
the AbtForeign record that is generated from the parsed header file. The
code page setting represents the code page of the target machine (where
the transaction will be sent). The CICS communication area data
represented by the AbtForeign record will be translated to the target code
page by VisualAge before sent out on the network. When the communication
area is updated (when CICS returns from the transaction), the data will be in
the target machine′s code page (the target machine sent the response in its
code page). VisualAge will convert the data in the record to the local code
page when you send at: #fieldName message to the AbtForeignRecord.

CICS also can translate the data. If you wish CICS to translate the data (you
need to set up the correct CICS macro exits), then don′ t specify a different
code page on the VisualAge settings page. If you want VisualAge to do the
conversion then set the code page and use a transaction id other than
CPMI.

MQSeries and VisualAge on AIX

If you want to use VisualAge or IBM Smalltalk on AIX to talk to MQSeries,
then you need to have an MQSeries server installed on the AIX box that
VisualAge runs on. VisualAge on AIX does not support the MQ client but it
does support an MQ server (MQ installed on the local AIX box). If you need
to have messages sent to another MQ server on another box, such as OS/2,
you need to create transfer queues and channel files as described in the
MQ documentation. MQSeries on AIX can be a server by setting up the inetd
daemon with the proper values as specified in the MQSeries Distributed
book. I don′ t believe there is a listener program (runmqlsr) for MQ on AIX
as there is on OS/2. You also need to have the latest PTFs for MQ AIX so
you don′ t encounter melt problems. There is a MQ fix for handling signals.

Chapter 2. Communications and Transactions 73

MQ: ″No Message Available ″

I am trying to read MQ messages. I get them successfully when put locally
on the same queue. When I send the MQ message to the host and send a
reply back after processing, I am unable to see the message in VisualAge,
although it can be read by a native REXX program. This is my setup:

VisualAge → local MQM on OS/2 → VisualAge OK
VisualAge → local MQM OS/2 → remote MQM MVS

→ PL/I → remote MQM MVS
→ local MQM OS/2 → VisualAge not OK

In both cases the create new message is done with msgid and correlid set
to none, but probably the interpretation is different. Any hints?

The problem that you encountered was caused by an error in the
toBeLoadedCode for the pool dictionary AbtMQConstants. MqmiNone was
defined in the toBeLoadedCode as a blank string rather than an empty string
(MqciNone should also be an empty string). As a result, when we create a
new message descriptor we set the message ID to blanks. When we use
that message descriptor on the get call, it is trying to read only messages
from the queue with a message ID of blanks. The fix is to change the
toBeLoadedCode so that MqmiNone and MqciNone are empty strings (this
should be fixed in the refresh). You can fix this another way by changing
AbtMQMessage>>defaultDescriptor (instance private method) from:

at: #msgid put: MqmiNone;
at: #correlid put: MqciNone;

to:
at: #msgid put: ′′;
at: #correlid put: ′′;

The reason you did not see this when you put a message to the queue with
VisualAge and then read it with another application using VisualAge is that
in both cases you used a blank string as the message ID.

74 VisualAge for Smalltalk Handbook − Features

Syncpoint Processing

I am trying to do syncpoint processing with MQSeries on OS/2 but have not
succeeded. Neither commit nor backout show any reaction whatsoever,
meaning that it neither worked correctly nor gave back any kind of error
message. I have set the options for syncpoint processing on the queues.
What′s wrong?

There are a couple of things you need to do in order to use syncpoint
processing with VisualAge. First, messages that are read from a queue will
be committed or backed out only if the get message options (GMO) are set
for syncpoint. The same is true of the puts to the queue. Set the put
message options (PMO) for syncpoint. To accomplish this in Smalltalk, use
AbtMQqueue>>gmoOpt ions: and AntMQqueue>>pmoOpt ions: . Send
the value 2 to the methods MqgmoSyncpoint and MqpmoSyncpoint as
defined in the AbtMQConstants pool dictionary. Second, we have a bug in
the commit and backout methods of AbtMQqueue. The following line in each
method should be changed from:

rslt := AbtMQCall commit: self handle.
 or

rslt := AbtMQCall backOut: self handle.

to:

rslt:=AbtMQCall commit: self queueManager handle.
 or

rslt:=AbtMQCall backOut: self queueManager handle.

We were sending the queue′s handle not the queue manager handle on the
commit and backout, resulting in an AbtError when we tested these
methods.

ASCII to EBCDIC Conversion

I′m using the MQ classes to do MQ to a /390 host. I do the put with the
format string option. When the host receives the message it is not
converted to EBCDIC. The channel has CONVERT=YES on it. What am I
doing wrong?

Chapter 2. Communications and Transactions 75

Since we already have support in VisualAge for code page conversions, we
decided to use that option for MQ conversions. If you want to send a
message to a system with a different code page, you can have the data
converted by VisualAge before the data is sent across the wire. There are a
couple of ways to accomplish this: If you are just sending strings, then you
can use the convertToCodePage: method of EsString. There are various
variations of this method in EsString. If you are sending a more complex
structure or integers with different byte orders (little/big endian), then you
should use AbtForeignRecord. Set method codePage: to the numeric value
of the target code page (such as codePage: 37) and method bigEndian: to
true or false.

MQI Sample Application

Is there a sample application using the VisualAge MQI parts? The
Communication/Transaction feature guide does not seem to have one.

Below is a simple script to put a message to one queue and read a
message from another queue. This example is for the Version 3 refresh
code. While the MQ API has only a few calls, there are many options you
can use to create different behavior. What you want to accomplish will
determine how to design the visual parts or scripts.

76 VisualAge for Smalltalk Handbook − Features

Smal l ta l k

| aConnectionSpec aConnection rc |

″create a connection spec that will define the names
of the input queue (reply queue), the output queue
(request queue) and the queue manager″

(aConnectionSpec:=AbtMQSeriesConnectionSpec new)
userId: ′salkeld′;
requestQueueName: ′VAQMGR.VAQUEUE1′;
replyQueueName: ′VAQMGR.VAQUEUE2′;
queueManagerName: ′VAQMGR′.

″connect to the queue manager and open the queues″

((aConnection:=AbtMQConnection new)
connectUsing: aConnectionSpec) isAbtError

ifTrue: [^aConnection lastError].

″put a string to the output queue″

(rc:=aConnection sendString: ′Hello World.′) isAbtError
ifTrue: [^aConnection lastError].

″read a message from the input queue. write the message
header and data contents to the Transcript″

(rc:=aConnection get) isAbtError
ifTrue: [^aConnection lastError]
ifFalse: [Transcript cr; show: rc descriptor printString; cr; show: rc

contentsAsString].

″close the queues and disconnect from the queue manager″

(rc:=aConnection disconnect) isAbtError
ifTrue: [^aConnection lastError].

Chapter 2. Communications and Transactions 77

Commit/Rollback with MQ

Commit/Rollback are messages sent to a queue. This implies that both
commit and rollback are supported at the queue level. The documentation
seems to talk about a logical unit of work only. What is the definition of a
logical unit of work with respect to MQ? Is it from open to close of the
queue? Is it from connect to disconnect to the queue manager? Is it from
first get/put to commit/rollback/close?

If it is related to the connect, then does that imply that all queues opened
are committed?

The commit and rollback take a queue manager handle rather than the
queue handle. All get-put actions to the queue from the last commit or open
of the queue until the time you do a commit or rollback will be part of the
logical unit of work. All those actions will be committed or backed out as a
group. The commit or rollback is on an application or program basis even
though the queue manager handle is used. Even if two programs were
reading from the same queue and one was processing the messages under
a logical unit of work and the other one was not, the messages that are part
of the one program′s logical unit of work are the only ones affected by the
commit or roll back.

Error: MqccFailed

I am running the VisualAge 3.0a refresh code, and am running MQ 2.0.
When using the visuals, I receive following error message at connection:

AbtMQError: rc=2 for #connect in an AbtMQqm at (30.05.96 21.36.26)
→ (′MqccFailed′ , ′MqrcQMgrNotAvailable ′)

I found out the the VisualAge MQ parts still looked for the client DLL (I
thought this had been improved with some switch) and went into the
AbtMQSeriesPMSubapp to change MQIC to MQM:

Smal l ta l k

startUp

PlatformLibrary mapLogicalName: ′MQSERIESDLL′ ″$NON-NLS$″
toPhysicalName: ′MQM ′. ″$NON-NLS$″

78 VisualAge for Smalltalk Handbook − Features

The result is still the same. I can′ t connect to the queue manager. MQ is
installed correctly and the C samples run okay. What could I be doing
wrong?

VisualAge defaults to using the client code on OS/2 and Windows 3.1. On
Windows 3.1, you have no choice since there is only MQ client code
available. On OS/2, if MQ is installed locally, you can go to the
subapplication and change MQIC to MQM, swipe the code, and execute it. If
you save the method, then the next time you start up the MQM DLL will be
used. VisualAge uses the client DLL MQIC since, in most cases, people
probably would not want to do the full MQ install on every machine of an
MQ user. The client install is much smaller and there is less system
maintenance of queue managers, queues, channels and so on.

In your case, if you are using MQM and you not only changed the method
but swiped and executed it, then check the case of the queue manager
name. MQ is case sensitive and will not find the queue if the case is wrong
even if the spelling is correct.

Host Presentation Space

What is a host presentation space?

A host presentation space is the 3270 emulator VisualAge is interacting with.

Getting 3270 Cursor Position

The 3270 Terminal has an attribute cursorPosition. At what time is this
attribute updated? I get the cursor position only once when the screen
opens. Later on, when the user has moved the cursor around, I never get
the new cursor position. Why?

The screen part doesn′ t update the cursor position, but if you query the
position from the screen′s terminal, then the updated position is returned
(use #cursorPosition).

Chapter 2. Communications and Transactions 79

Intercepting Key Strokes

How do I intercept key strokes in a host presentation space for OS/2?

The terminal part has the following methods you can invoke via a Smalltalk
script:

startKeystrokeIntercept: takes a string where the first character is the
session ID of the presentation space and the second character is a D to
intercept AID keystrokes only or an L to intercept all keystrokes. The getKey:
method takes a record structure gkeyStruct. The record structure is defined
in the Abt3270HllapiConstants pool dictionary. You must set the
gkeyShortname field of the record to the session ID from which you are
going to read a key stroke. The getKey: method will return a zero return
code if a key was read and fill in the record structure with the data pertinent
to the key you read. If the return code is not zero, then the data in the
record structure is not valid. You should read the EHLLAPI programming
reference to find how to interpret the data returned in the record. You need
to use the sendKey: or type: methods to put the key you intercepted in the
current presentation space (or another presentation space if you wish). You
can inform HLLAPI that you accepted or rejected a key stroke you
intercepted with the getKey: by using postInterceptStatus: with true (accept)
or false (reject). After you start key stroke interception with
startKeystrokeIntercept: you can loop on the getKey:, postInterceptStatus:,
sendKey:, or type: methods. When you decide to stop intercepting
keystrokes, leave the loop and use the stopKeystrokeIntercept method.

Accessing COM Ports in Smalltalk

What is the correct way to access a COM port from Smalltalk? Are there
special classes for that? Or do I have to use C for that?

Although this question is commonly asked as a communications question, it
really has nothing to do with the Communications/Transactions feature
because you use just base Smalltalk to do that. For an explanation and an
example, refer to Chapter 4, “IBM Smalltalk Programming Language.”

80 VisualAge for Smalltalk Handbook − Features

Chapter 3. Interface to External Routines

In this chapter, we cover questions and answers related to accessing
routines external to VisualAge for Smalltalk.

Using OSSObject, OSObject Pointer, AbtPointer Classes

How do I use the OSObject, OSObjectPointer and AbtPointer classes?

Below are a few ideas for using OSObject subclasses. The OSObject
hierarchy replaces the V2 OSStruct/OSPointer hierarchies:

Smal l ta l k

″ Create an OSObject which points to OS memory ″
| x y pf |

pf := PlatformFunction ...

″ Allocates operating system memory large enough to
store a MyOSObjectClass instance ″

x := MyOSObjectClass calloc.

″ Creates an instance of MYOSObjectClass. The data for this
instance resides in a ByteArray in Smalltalk memory″

y := MyOSObjectClass new.

″ Code below passes the integer address of
the OSObject to the function ″

pf callWith: x abtAsExternalPassedPointer.
pf callWith: y abtAsExternalPassedPointer.

″ You can create accessor methods in MyOSObjectClass
to store/extract the data values. VisualAge provides
a tool that automatically builds OSObject subclasses.″

x inspect.
y inspect.

 Copyright IBM Corp. 1997 81

In the code above, x and y can be treated equivalently in your code.
OSObject instances function in the same manner whether they contain the
actual data (such as y) or a pointer to the data (such as x). The methods
abtMoveToOSMemory and abtMoveFromOSMemory can be used to toggle
between storing data as an address to external memory or a ByteArray in
Smalltalk memory. Be careful: If abtMoveToOSMemory is used to create a
pointer, the pointer will be freed when the OSObject subclass is garbage
collected. #abtMoveFromOSMemory copies the structure to Smalltalk
memory and frees the pointer.

Smal l ta l k

MyOSObjectClass new abtMoveToOSMemory.

Smal l ta l k

MyOSObjectClass calloc abtMoveFromOSMemory.

AbtPointer probably won′ t be of much use to you. This class adds a
VisualAge interface specification to OSObjects to simplify pointer
manipulation for simple datatypes (integer, character) when using the C
External Function part.

Smal l ta l k

| pointer |

pointer := (AbtPointer calloc: 4) pointerDescriptor:
(AbtCPointerField new pointerType: AbtCIntField new).

pointer valueAtAddress: 12.
pointer valueAtAddress inspect.
pointer free.

OSObjectPointers are used to store pointers to other OSObject subclasses.
I have not made much use of this class, but it might be useful if you need to
manipulate an array of pointers:

82 VisualAge for Smalltalk Handbook − Features

Smal l ta l k

| osObjectPointer arraySize |

osObjectPointer := OSObjectPointer itemType: MyOSObject.
arraySize := 1.
″ Allocate enough space to store 3 pointers ″
osObjectPointer reference: (ByteArray new: (arraySize * 4)).
osObjectPointer at: 0 put: MyOSObject calloc.
(osObjectPointer at: 0) inspect.
0 to: arraySize -1 do: [:i |
(osObjectPointer at: i) free].

Freeing a DLL

I have tested a DLL function in a VisualAge for Smalltalk application and
now I cannot replace the DLL file. It′s in use. How can I get VisualAge to
turn it loose?

I assume that you have an application where you dropped the COBOL
external function part and set it up to point to some DLL. After some
testing, you decided you wanted to replace the DLL with an updated version.
You brought down the application and the composition editor window so the
COBOL external function part would go away. But, the DLL is still open, so
you can′ t replace it. Here is a simple way. After you make sure all the
windows that might reference your DLL are gone, execute the following from
the Transcript:

Smal l ta l k

(PlatformLibrary logicalName: ′yourdll ′) close

Error: Abt. 154e

I am getting the following error: Abt.154e. What could be the cause?

Some common causes for Abt.154e are:

• DLL does not exist in the LIBPATH (OS/2) or PATH (Windows).

• A DLL that is invoked from the called DLL cannot be found in the PATH
or LIBPATH. That is, VisualAge for Smalltalk calls A; A.DLL calls B.DLL
(both A and B must be in the LIBPATH concatenation).

Chapter 3. Interface to External Routines 83

• The entry point name was entered incorrectly. Be sure that the entry
point name is keyed in exactly as it appears in the ′.def′ file. Depending
upon the compile or link options specified, the entry point name may be
case-sensitive (ABC differs from abc).

Signaling the End of a Rexx Program

How can I signal to VisualAge for Smalltalk the end of a Rexx program
started with program starter?

If you are interested in being notified when a program started from the
program starter ends, the best way to proceed is to subclass the
AbtProgramStarter. This part uses the DosStartSession API to start your
programs. DosStartSession can be invoked so that the OS/2 session
manager will write a data element into a queue that you specify when any
child session ends. Your subclass needs to create the queue and issue the
DosReadQueue to be notified when the child session ends. See the OS/2 CP
Reference for more information on this API.
AbtProgramStarter>>startProgram executes the DosStartSession.

I believe that you can also retrieve the return code of your program with this
technique.

Set Working Directory for Program Starter

How can I set the working directory for a program started from the program
starter? When I launch an application using the program starter, the working
directory seems to be set to the root of the system drive, which is not the
one I want.

The best way to do this is to create a subclass of the program starter part to
provide a method for setting the working directory before launching the
program starter. Here′s the code that will do it:

Smal l ta l k

AbtProgramStarter subclass: #ProgramStarterSubclass
instanceVariableNames: ′dir ′
classVariableNames: ′ ′
poolDictionaries: ′ ′

84 VisualAge for Smalltalk Handbook − Features

The public methods for this class would be similar to the following:

Smal l ta l k

dir: pathName
″Set the directory to pathName″

(CfsDirectoryDescriptor chdir: pathName) isCfsError
ifTrue:

[Transcript cr; show: ′Fail′.
^nil].

dir := pathName.
self signalEvent: #dirChanged with: pathName.

Smal l ta l k

dir
″Answer the current directory to the receiver″

dir isNil ifTrue:
[self dir: CfsDirectoryDescriptor startUpDirectory].

^dir.

Smal l ta l k

changeDir
″Change directory″

| directory |
directory := self dir.
directory isNil
ifTrue: [^nil].
(CfsDirectoryDescriptor chdir: directory) isCfsError
ifTrue:

[Transcript cr; show: ′Fail′.
^nil].

Don′ t forget to do an editPart on your subclass so you can promote dir and
changeDir to the public interface.

Chapter 3. Interface to External Routines 85

Debugging DLLs

Is there a way to debug a C-DLL which is called by VisualAge in the
development environment? Is there a way to invoke the IBM Presentation
Manager Debugger?

You load VisualAge under the PM debugger and set a DLL-load breakpoint.
Once the DLL is loaded, you can set source breakpoints. If you get a trap in
the DLL, IBM Presentation Manager Debugger will show the offending line.

You should add exception handling to your code. Attached you find a
simple example that can be adapted for use in a DLL. By the way, in the
refresh an exception in a primitive will return back to Smalltalk instead of
letting the operating system handle it.

C

#define INCL_DOS
#include < o s 2 . h >
#include < s e t j m p . h >
#include < s t d i o . h >
#include < s t r i n g . h >

extern int main(void);

/* Exception registration record. Stored on stack, with first pointer
* to next registeration record, second pointer to exception handler,
* and the rest defined by the author of the exception handler. */

typedef struct
{

struct _EXCEPTIONREGISTRATIONRECORD * volatile prev_structure;
_ERR * volatile ExceptionHandler;
jmp_buf env;

} MYEXCEPTIONREGISTRATIONRECORD,
*PMYEXCEPTIONREGISTRATIONRECORD;

/* Exception handler that returns traps via longjmp(). */

extern ULONG APIENTRY MyExceptionHandler
(PEXCEPTIONREPORTRECORD pReportRecord,
PEXCEPTIONREGISTRATIONRECORD pRegRecord,
PCONTEXTRECORD pContextRecord, PVOID pReserved)

86 VisualAge for Smalltalk Handbook − Features

C (cont inued)

{
ULONG rc = XCPT_CONTINUE_SEARCH;
if (pReportRecord->ExceptionNum == XCPT_ACCESS_VIOLATION)

longjmp(((PMYEXCEPTIONREGISTRATIONRECORD)
pRegRecord)->env, -1);

/* If we return to here then we could not handle the exception. */

return rc;
}

extern BOOL Trapper(PSZ psz)
{

MYEXCEPTIONREGISTRATIONRECORD myExceptionRegRecord;

/* Insert my exception handler into the chain. */

myExceptionRegRecord.prev_structure = NULL;
myExceptionRegRecord.ExceptionHandler = MyExceptionHandler;
DosSetExceptionHandler((PEXCEPTIONREGISTRATIONRECORD)

&myExceptionRegRecord);
if (setjmp(myExceptionRegRecord.env))

goto OnException;

/* Now go about my business in safety. */

if (strlen(psz))
printf(″Trapper says okay to ′ % s′ \n″, psz);

else
printf(″Trapper says it is empty\n″);

/* I′m done, so unchain my exception handler. */

DosUnsetExceptionHandler((PEXCEPTIONREGISTRATIONRECORD)
&myExceptionRegRecord);
return TRUE;

Chapter 3. Interface to External Routines 87

C (cont inued)

/* The code below is only executed if a trap occurs. */

OnException:
printf(″Trapper says ′ouch!′ \n″);

DosUnsetExceptionHandler((PEXCEPTIONREGISTRATIONRECORD)
&myExceptionRegRecord);
return FALSE;

}

extern int main()
{

Trapper(″Hello″);
Trapper(NULL);
Trapper(″″);
Trapper((PSZ) 42);
Trapper(″Goodbye″);
return 0;

}

Calling OS/2 Presentation Manager API Functions

Is there a way to call OS/2 Presentation Manager API functions?

Yes, there are methods for calling Win... functions. Let′s illustrate this by an
example.

C

BOOL WinFillRect(HPS hps, PRECTL prcl, long lColor);

This function operates on an HPS and therefore the method belongs to the
class OSHps. All other arguments to the function are passed as message
arguments; thus, the method is

OSHps>>winFi l lRect : lColor :

If you look at the implementation of the method, you can see that there is
WinFillRect pointing to a PlatformFunction defined like

<c: bool ′PMWIN′:743 uint32 pointer int32>

88 VisualAge for Smalltalk Handbook − Features

Function Like f(int*)

I want to pass an integer to a C DLL in such a way that it can modify it and,
after the function returns, I can read the modified value. What do I do?

To do this, is it a good idea to pass a pointer to the integer to a
PlatformFunction? If yes, what′s the proper way to do so? The handy
message #asPointer seems to be classified as Obsolete, and I can′ t read
the contents reliably anyway. Having to create a OSBasicType and then an
OSObjectPointer seems like overkill.

You might consider using a ByteArray or an OSObject instance to pass your
pointer to integer. Define the parameter to be passed as a #pointer in your
PlatformFunction definition. When a ByteArray is passed as an argument to
a PlatformFunction expecting a #pointer argument, VisualAge for Smalltalk
passes a pointer to that ByteArray to the external function. Try this:

Smal l ta l k

| pf intPointerParm result |

 pf := PlatformFunction
 callingConvention: ′c′
 function: ′ test′
 library: ′ test′
 parameterTypes: #(pointer)
 returnType: #void.

 intPointerParm := ByteArray new: 4.

″ Put an input value into the ByteArray ″
 intPointerParm int32At: 0 put: 12.

″ call the function - > pf callWith: intPointerParm ″

″ pf callWith: intPointerParm. ″
 result := intPointerParm int32At: 0.

If you need to retain the address of your pointer after the function call, you
must use an OSObject to pass the parameter. Your VisualAge for Smalltalk
application must explicitly free the allocated memory when you are finished
using the address. Use this:

Chapter 3. Interface to External Routines 89

Smal l ta l k

| pf intPointerParm result |
pf := PlatformFunction
callingConvention: ′c′
function: ′ test′
l ibrary: ′ test′
parameterTypes: #(pointer)
returnType: #void.

intPointerParm := OSObject calloc: 4.

″ Put an input value into the OSObject ″ intPointerParm int32At: 0 put: 12.

″ call the function - > pf callWith: intPointerParm
abtAsExternalPassedPointer ″

″ pf callWith: intPointerParm. ″ result := intPointerParm int32At: 0.

intPointerParm free.
result inspect

Legacy Code

How is legacy code handled?

Legacy COBOL, C, or C++ applications may be wrappered into parts using
the COBOL, C, and C++ support included with the base product. The IMS
Connection feature provides the ability to wrap existing IMS transactions to
be used as parts within the VisualAge for Smalltalk environment. IBM SOM
and DSOM support will allow you to reuse existing SOM and DSOM objects
as a VisualAge for Smalltalk part.

90 VisualAge for Smalltalk Handbook − Features

Calling a Smalltalk Image from OS/2

How do I call the VisualAge for Smalltalk image from a separate running
program under OS/2?

One way is to use the nonblocking API support to wait on a semaphore or a
named pipe. Look also in the IBM Smalltalk Programmer′s Reference,
Version 3.0, Chapter 11.There is an interesting function BOOLEAN
EsPostAsyncMessage(EsVMContext vmContext, EsObject receiver, Object
selector, U_32 argumentCount, ...) that can be called from a thread in a
DLL. Yes, the DLL must be loaded. The EsPostAsyncMessage call must be
made in a thread in the Smalltalk process. So there is some initialization
that you must do. The DLL must be written to handle whatever IPC
mechanisms you want to use.

Calling Smalltalk from the Outside

I have a Smalltalk event handler that needs to receive messages from an
outside system. I need to find out how an external application such as a C
program can talk or execute a Smalltalk method. In C, I would just create a
DLL with the necessary functions, but I can find no Smalltalk equivalent.
Chapter 8, “IBM Smalltalk Virtual Machine API,” of the IBM Smalltalk
Programmer ′s Reference mentions ″calling IBM Smalltalk from other
languages″ in the introduction, but doesn′ t discuss it in detail anywhere.

Listed below is a simple example of a user primitive written in C that calls
into the Smalltalk interpreter by sending a message. There are two
functions in the C program. The first function is called by a Smalltalk
method and passes the receiver and selector to be used by the second C
function to send messages back into Smalltalk. The second C function runs
on a new thread created by the first function. The second function performs
a loop that results in sending four messages back into Smalltalk. The
Smalltalk method that receives the message from the C function updates a
List with the string ″Wake Forest″ whenever it is called.

Hopefully this simple example, along with what′s in the IBM Smalltalk
Programmer ′s Guide, will get you started:

Chapter 3. Interface to External Routines 91

Smal l ta l k

setUp
″Sends a message to initUpdateListRoutine passing a receiver
(an instance of UserPrimitiveExample2) and a selector (updateList).
The initUpdateListRoutine will call the user primitive C function with the
receiver/selector parameters. The C function can then use this

information to
call back into Smalltalk.″

self initUpdateListRoutine: self makeFixed
selector: #updateList makeFixed.

Smal l ta l k

initUpdateListRoutine: receiver selector: selector
″Two arguments are actually passed to the C routine. The arguments
passed are the same ones received by this method. ″

<pr imi t ive: ′samprim2 ′ :in i tUpdateListProc>
^self primitiveFailed

Smal l ta l k

updateList
″ This is the method that is called by the C function. ″

| col |
[col := (self subpartNamed: ′List′) items.

col add: ′Wake Forest′.
(self subpartNamed: ′List′) items: col.

] abtDefer.

Then use this:

92 VisualAge for Smalltalk Handbook − Features

C

 /* User primitive example */

#define INCL_DOSPROCESS /* Process and thread values */
#include ″esuser.h″
inc lude <os2 .h>
inc lude <s td io .h>

 /* Now for the globals */
static ESGlobalInfo * globalInfo;
static EsObject receiver;
static EsObject selector;

void getListData(void);

 /* This routine gets the Object and Message selector needed */
 /* for calling the Smalltalk routine. */

EsUserPrimitive(initUpdateListProc)
{

EsObject result;
TID ThreadID; /* New thread ID (returned) */
PFNTHREAD ThreadAddr; /* Program address */
ULONG ThreadArg; /* Parameter to thread routine */
ULONG ThreadFlags; /* At start thread, how to allocate stack */
ULONG StackSize; /* Size in bytes of new thread′s stack */
APIRET rc; /* Return code */

ThreadFlags = 0; /* Thread is to be started immediately */
StackSize = 4096; /* Set the size for the new thread′s stack */

globalInfo = EsPrimVMContext->globalInfo;
receiver = EsPrimArgument(1);
selector = EsPrimArgument(2);
rc = DosCreateThread(&ThreadID, (PFNTHREAD)getListData,

0L, ThreadFlags, StackSize);
EsPrimSucceed(0);

}

Chapter 3. Interface to External Routines 93

C (cont inued)

void getListData ()
{

EsObject result;
int I;

fo r (i = 0 ; i < 4 ; I++)
{

DosSleep(1000);
EsSendMessage(globalInfo->currentVMContext, &result,

receiver, selector, 0);
}
return;

}

EsDefinePrimitiveTable(samplePrimitiveTable)
EsPrimitiveTableEntry(″initUpdateListProc″, initUpdateListProc)

EsEndPrimitiveTable

Interface to Native Presentation Manager Widgets

How do I use existing Presentation Manager controls in Smalltalk? That is, I
want to register my own PM window procedure, and so on.

Wrapping a PM control requires considerable knowledge of PM and how
Smalltalk OSWidgets work. In the past, only independent software vendors
added new OSWidgets. Now that Version 3 includes the source code
needed to wrap a PM control, you could do it but I suggest finding an easier
approach since it is undocumented and requires private APIs; the methods
change from release to release.

Nevertheless, a very interesting sample of how you can do it is included on
the product CD. The filename is DIALOG.DAT. Import it to your library, then
load it to your image, and enjoy!

94 VisualAge for Smalltalk Handbook − Features

Changes to 16-Bit Function Calling Convention

I′m calling a 16-bit DLL as a PlatformFunction. It works fine using VisualAge
for Smalltalk Version 2.0, but fails in the DLL with a system trap using
VisualAge for Smalltalk Version 3.0. What am I doing wrong?

Two changes to PlatformFunction have occured for Version 3, both of which
are involved in the problem.

• The name of the pascal 16 calling convention has been changed.
Pascal which was the 16-bit convention is now the 32-bit convention. So
if you are calling a 16-bit DLL, use the pascal16 calling convention.
Inspect the following code snippet for a complete list of valid calling
conventions:

Smal l ta l k

PlatformFunction callingConventions

Also, consult p. 352 of the VisualAge for Smalltalk User′s Guide for
additional information on calling conventions.

• The second problem is that OSObject′s behavior has changed.

This is all a little disconcerting considering that both of these object′s
behavior are listed as API.

Calling OSObjects

One thing to be aware of when using the C External Function part is that
char* fields are stored as actual 4-byte addresses to OS memory. Fields of
this type can be set in several different ways:

 1. Set the field to an OSObject instance (a pointer). VisualAge for
Smalltalk stores the address of the OSObject into the structure. The
programmer must manage the memory.

 2. Set the field to a String. VisualAge for Smalltalk allocates OS memory
large enough to contain the string, then copies the contents of the string
to the allocated memory.

Chapter 3. Interface to External Routines 95

 Caution

If you change the contents of the String, VisualAge for Smalltalk
copies the new String to the address already saved in the structure.
You should initialize fields with type ′char *′ to contain the largest
expected String. VisualAge frees the allocated memory when the
part is destroyed.

Memory Leaks from a C DLL under OS/2

I am calling a C DLL which allocates considerable storage and then frees
the storage when it is done. The OS/2 swap file seems to grow without
bound even though the storage is freed. What′s wrong?

I would suggest that you get the Theseus tool available from IBM and use its
memory-leak detection option. It is a little tedious matching the allocates
and frees, but you should be able to determine if your application is
increasing its memory usage and which DLL is allocating the memory that is
not being freed.

Debugging C DLLs Called from VisualAge

Is there a debugger that will allow me to debug a C DLL that was called
from VisualAge for Smalltalk?

Yes. On OS/2 I use IPMD. The key thing is to first set a LOAD breakpoint
for your DLL so that when it gets loaded because you tried to execute a
function In it, then you will cause a break that will allow you to set break
points in the DLL itself.

Checking If Platform Function Is Available

I am calling a C DLL through a Platform Function. This works fine. But now I
want to check if the DLL is really available, before making a call to it.

How can I ask the Platform Function (or Platform Library) if it is available (its
DLL is available)?

96 VisualAge for Smalltalk Handbook − Features

Checking if the DLL is available before actually calling it sounds a good idea
because if you call the DLL via PlatformFunction when it is not available, the
VisualAge for Smalltalk image crashes.

One way to fix this problem is to handle an exception by sending #when:do:
to a block that tries to access your platform function. If there is any problem,
then the block at the second parameter gets executed. There you can send
#primitiveErrorCode to your platform function to get the OS error (2 is for
DLL not found, 127 is procedure not found, and so on) and do whatever you
want including resuming execution.

There is also a direct way to see if the function is available. The
PlatformFunction>>#abtAddress is useful for seeing if a DLL can be
opened. The #abtAddress routine answers the function address or an
AbtError object containing the operating system return code. Use this:

Smal l ta l k

″ Inspect the output of this code for a function that exists and a function
that does not exist. ″

| func1 |
func1 := PlatformFunction callingConvention: ′c′
 function: ′ func1′
 library: ′mydll ′
 parameterTypes: #(pointer)
 returnType: #none.
func1 abtAddress

#asPointer Method

I have noticed that the asPointer method is obsolete. What is now the way
to put a String as a char * member of a structure (subclass of created as a
record wrapper)?

The method copyToOSMemory is a simple way to create a pointer to a
String. This method creates a new instance of the class OSStringZ (an
OSObject subclass), and copies the String to the memory occupied by the
OSStringZ. I notice that this method is defined in application
WindowsAndPMPlatformFramework, so I′m not certain about its existence or
implementation on other platforms.

Chapter 3. Interface to External Routines 97

Smal l ta l k

′aaaaaaaaaaaaa ′ copyToOSMemory.

COBOL Wrapper Locking the DLL

I am using a COBOL validation subroutine which is called from VisualAge
for Smalltalk using the COBOL part. VisualAge for Smalltalk appears to
lock the DLL once the part has run, so if I want to refresh the COBOL DLL
after recompiling and linking, I am prevented by a system message saying
the DLL is in use by another process.

Shutting VisualAge for Smalltalk down doesn′ t help either as saving the
image after running the part, locks the whole machine up and we have to
resort to switching off and on!

The COBOL part has an action closeLibrary, which can be used to close
your dynamic link library. This action is useful at edit time for cases like
yours where you would like to replace the DLL. To see how this works, add
a temporary push button to your view and connect the clicked event to the
closeLibrary action of the COBOL part.

 Note:

You must click More... from the COBOL part in order to see the
closeLibrary action.

 Caution:

This works for most DLLs, but we have encountered cases where it does
not (causes a walkback).

Passing a Complex Structure to a C DLL

How do I pass a complex structure as a parameter to a C DLL? That is, a
structure that contains multiple sub-structures? I′ve created an
AbtCompoundType for each substructure, but I don′ t know how to package
everything together in one memory area.

For example, I used this:

98 VisualAge for Smalltalk Handbook − Features

C

typedef struct
{

char fieldName [32]
char fieldValue [32]

} FIELDS;

typedef struct
{

char abc [32];
char bcd [32];
char def [32];
FIELDS fieldpairs [32]; ″ an array of fields ″

} POLDETAIL;

typedef struct
{

char asd [32];
char sdf [32];
FIELDS fieldpairs [32]; ″ another array of fields ″

} COVDETAIL;

typedef struct
{

char resultName [32];
char resultValue1 [32];
char resultValue2 [32];

} RESULTS;

Then my function prototype was as follows:

C

POLDETAIL *pPol1;
COVDETAIL *cCov1;
RESULTS **pResults;

void CALC(POLDETAIL *pPol1,
COVDETAIL *pCov1,
RESULTS **pResults)

Chapter 3. Interface to External Routines 99

You can create a Compound type that has embedded Compound types
within it (substructures within structures). An example from MQ record
structures:

Smal l ta l k

| rec |

 rec:= AbtCompoundType new name: ′QMQueueAliasInquire ′;
addField: ((AbtCompoundType new name: ′QMQueueInteger ′;
addField: (AbtCLongField new name: #MqiaDefPersistence; yourself);
addField: (AbtCLongField new name: #MqiaDefPriority; yourself);
addField: (AbtCLongField new name: #MqiaInhibitPut; yourself);
addField: (AbtCLongField new name: #MqiaQType; yourself);
addField: (AbtCLongField new name: #MqiaInhibitGet; yourself);
addField: (AbtCLongField new name: #MqiaScope; yourself); yourself)

new name: #QMQueueInteger; yourself);
addField: ((AbtCompoundType new name: ′QMQueueCharacter ′;
addField: (AbtCCharArrayField new name: #MqcaQName; count: 48;

yourself);
addField: (AbtCCharArrayField new name: #MqcaQDesc; count: 64;

yourself);
addField: (AbtCCharArrayField new name: #MqcaBaseQName; count: 48;

yourself); yourself)
new name: #QMQueueCharacter; yourself);
yourself.

 rec := rec newRecord.

The variable record now is a record with multiple substructures within it. To
pass it on a platform, call you need to use abtAsExternalPassedPointer and
the platform call must have that parameter defined as a pointer. In your
case, the platform call may look something like this:

100 VisualAge for Smalltalk Handbook − Features

Smal l ta l k

| rec1 rec2 rec3 temp1 |
rec1:= (AbtCompoundType ...) newRecord.
rec1 at: ____ put: ___.
rec2:= (AbtCompoundType ...) newRecord.
rec2 at: ____ put: ___.
rec3:= (AbtCompoundType ...) newRecord.
rec3 at: ____ put: ___.
(temp1 := AbtHeapObject calloc: 4) uint32At: 0 put: rec3
abtAsExternalPassedPointer.
(PlatformFunction callingConvention: ′abtsystem ′

function: ′CALC′
l ibrary: ′MYDLL′
parameterTypes: #(#pointer #pointer #pointer)
returnType: #none)

coroutineCallWithArray: ((Array new: 3)
at: 1 put: rec1 abtAsExternalPassedPointer;
at: 2 put: rec2 abtAsExternalPassedPointer;
at: 3 put: temp1 abtAsExternalPassedPointer;
yourself).

temp1 free.

Notice that since you pass a pointer to a pointer for the result, we got some
OS storage and stored the pointer of the record structure in it. We then pass
the pointer of that data area in the platform call. On return, remember to
free that data area. The results will be in the result structure.

Parsing COBOL COPY-Book

When I parse a COBOL COPY-book, I get only 01-level fields. How could I
access the lower level fields, such as 02, 05?

If you are using the COBOL External Function part from the Composition
Editor, you use the tear-off attribute option to expose the subattributes of
your record.

For example, if you would like to work with the ′FIRST-NAME′ field of the
record below, you would:

• Parse the copybook below from the COBOL external function part

• Save the settings for the part

• Tear off attribute atmSampleCusts

Chapter 3. Interface to External Routines 101

• Tear off attribute cust1 from the previous torn-off attribute

• The attributes for cust1 will contain the simple (level-03) data items:

C O B O L

01 ATM-SAMPLE-CUSTS.
02 CUST-1.

03 FIRST-NAME PIC X(20).
03 LAST-NAME PIC X(20).
03 PIN-NUMBER PIC X(5).
03 CHECKING-BALANCE PIC 9(7)V99.
03 SAVINGS-BALANCE PIC 9(7)V99.

The Smalltalk code below shows how you would manipulate the data
structure using Smalltalk code:

Smal l ta l k

| record recordShape level01s cust1 firstName |

″ Parse the file and build dataStructures dictionary ″
level01s := (AbtCOBOLLangParser parseFile: ′atm.cpy′)
 dataStructures.

″ Extract the definition for the level-01 item ″
recordShape := (level01s at: ′ATM-SAMPLE-CUSTS′

asSmalltalkGlobalIdentifier).

″ Build an AbtRecord based on the level-01 item ″
record := recordShape newRecord.

″ Extract the level-02 item (a subrecord) ″
cust1 := record at: ′cust1′.

″ Extract the level-03 item ′FIRST_NAME′ ″
firstName := cust1 at: ′ firstName′

102 VisualAge for Smalltalk Handbook − Features

Calling C Functions from VisualAge on AIX

I am working on a proof of concept and need to call C routine called
TripsRoute() in a library called trips.a. To do this quickly, I dropped a C
external function part, parsed a header file successfully, and used
quick-form to lay out a window with some input parameters. On the DLL
page I specified trips as the DLL and TripsRoute as the entry point name. I
verified that trips.w is in my LIBPATH, but when I execute the function I get
an error message:

ABT.ABT.154.e: Unable to find function ′TripsRoute′ or module
′ trips ′. Operating system return code is 1.

I built trips.w with the table as directed in the manual (How to create a DLL
in AIX), adding the user primitive table that was created by VisualAge for
Smalltalk

When calling a function on the AIX platform, you must define a function
mapping table to map the entry point called by IBM Smalltalk to the actual
entry point in your library. This allows IBM Smalltalk to access multiple
entrypoints within the same library without having to relink the Smalltalk
Virtual Machine.

Below is a sample C file used for building an AIX module that contains the
function mapping support described above.

The VisualAge for Smalltalk User′s Guide contains information similar to
what is shown below:

C

inc lude <esuser .h> /* located on your VA server */
inc lude <myheader .h> /* myheader is the header file

that contains the prototype for
your function. ′entryPoint′ in this
example */

/* The quoted ″entryPoint″ is the function name that you specify
in your VisualAge platform function
This name does NOT have to match the actual function name */

EsDefinePrimitiveTable(MyFunctionsTable)
EsPrimitiveTableEntry (″entryPoint″, entryPoint)
EsEndPrimitiveTable

Chapter 3. Interface to External Routines 103

Use the following:

M a k e F i le

MODULE_NAME = mylib #the ′DLL′
TABLE_NAME = MyFunctionsTable # the single entry point for the lib.
USER_OBJS = mylib.o otherlib.o

the location of ′esuser.h′
SYSTEM_INCLUDE = -I/usr/visualage/..
USER_INCLUDE = -I.

LDFLAGS = -H512 -T512
CFLAGS = -O -s $(SYSTEM_INCLUDE) $(USER_INCLUDE)
Specify the libraries that should be linked into your mapping table
LIBS = - lc -lotherLibs

$(MODULE_NAME): $(USER_OBJS)
ld -o $@ $(USER_OBJS) $(LDFLAGS) $(LIBS) -e$(TABLE_NAME)

Sample Callback Function

Below is a simple example of a callback function that calls back into
Smalltalk when a CICS ECI call has finished. From the example you can
fashion your own callbacks. This is also covered in the VisualAge for
Smalltalk Programmer′s Guide.

This is the function:

104 VisualAge for Smalltalk Handbook − Features

C

#include < e s u s e r . h >
#include < c i c s _ e c i . h >

#ifdef OS2
#define CALLINGCONV _System

#else
#define CALLINGCONV

#endif

/***/
/* Now for the globals */
/***/

 static ESGlobalInfo * CicsGInfo;
 static EsObject CicsReceiver;
 static EsObject CicsSelector;

 /***/
/* Return the notification that CICS finished the transaction */
/***/
void CALLINGCONV CICSPost(short messageQualifer)
{

U_32 returnCode;
EsObject msgQ;

EsDefineUserPrimitiveEnvironment(CicsGInfo);
returnCode = EsU32ToInteger((U_32)messageQualifer, &msgQ);
i f (returnCode == EsPrimErrNoError) {

EsPostAsyncMessage(CicsGInfo->currentVMContext,
CicsReceiver,
CicsSelector,
1,
msgQ);

}
return;

}

Chapter 3. Interface to External Routines 105

C (cont inued)

/***/
 /* This routine starts the Async-notification post routine. It needs */
 /* an Object and Message selector to be used for the call back. */
 /***/

 EsUserPrimitive(getCICSPostRoutine)
 {

U_32 returnCode;
EsObject postAddress;

if (EsPrimArgumentCount |= 2) {
EsPrimFail(EsPrimErrInvalidArgCount, EsPrimArgNumNoArg);

} /* endif */

CicsGInfo = EsPrimVMContext->globalInfo;
CicsReceiver = EsPrimArgument(1);
CicsSelector = EsPrimArgument(2);

returnCode = EsU32ToInteger((unsigned long)CICSPost,
&postAddress);

i f (returnCode == EsPrimErrNoError) {
EsPrimSucceed(postAddress);

} else {
EsPrimFail(returnCode, EsPrimArgNumNoArg);

} /* endif */
 }

 #ifdef LINKED_USER_PRIMITIVES

 EsDefinePrimitiveTable(AbtCicsPrimitiveTable)
EsPrimitiveTableEntry(″getCICSPostRoutine″, getCICSPostRoutine)

 #ifdef RS6000
EsPrimitiveTableEntry(″CicsExternalCall″, CICS_ExternalCall)
EsPrimitiveTableEntry(″CicsEciListSystems″, CICS_EciListSystems)

 #endif
 EsEndPrimitiveTable

 #endif

In the above C example, there are two procedures:

106 VisualAge for Smalltalk Handbook − Features

 1. getCICSPostRoutine wil l be called from Smalltalk to get the address of
the callback function and to set the receiver and selector (method) that
should be called on an asynchronous callback into Smalltalk.

 2. CICSPost wil l be the procedure called by CICS when the ECI call has
finished. The messageQualifier is passed by CICS in the call to this
procedure. CICSPost will convert that parameter into an EsObject and
pass it back to Smalltalk in the callback.

Look at AbtCICSLuw class private methods. postRoutineAddress method will
call a primitive that calls the getCICSPostRoutine C procedure to obtain the
callback address. It also does the important task of setting AbtCICSLuw in
fixed storage so it will not be moved when garbage collection occurs. It
does this with the makeFixed method. It passes both itself as the receiver
and the requestCompleteFor: as the method to be used in the callback. The
requestCompleteFor: method. when called in the callback, will look up in a
dictionary the messageQualifier key and find the associated object. We add
the key and associated object to the dictionary before an ECI call is made.

The Smalltalk code is this:

Smal l ta l k .

postRoutineAddress

 PostRoutineAddress == ni l i fTrue: [
PostRoutineAddress := self getPostRoutineFor: self makeFixed

usingSelector: #requestCompleteFor: makeFixed].
^PostRoutineAddress

Smal l ta l k

getPostRoutineFor: object usingSelector: aSelector

<pr imi t ive: ′Abt_CICS_Primitives′:getCICSPostRoutine>

^self primitiveFailed

Chapter 3. Interface to External Routines 107

Smal l ta l k

requestCompleteFor: qualifier

″Post the required semaphore for this qualifier″

| transaction dictionary |
 AbtTrace point: ′Receipt of message from CICS OS/2′ ″$NON-NLS$″

withData: qualifier.
 transaction := (dictionary := self luwDictionary)

keyAtIndex: qualifier ifAbsent: [^nil].
 (dictionary atIndex: qualifier)

dateAndTime: (Date dateAndTimeNow);
origin: transaction;
locus: #requestCompleteFor:withRc:withAbend: .

 transaction semaphore abtSignal.

DDE on AIX

Is DDE supported on AIX?

DDE is not supported in VisualAge for Smalltalk for AIX, only on OS/2 and
Windows.

108 VisualAge for Smalltalk Handbook − Features

Chapter 4. CICS and IMS Connection

In this chapter, we cover the CICS and IMS Connection feature.

Successor Uniqueness Violation Exception

I get a successor uniqueness violation exception, and I don′ t know what the
reason is. It seems like it could be several things, but how do I tell which it
is?

Here is a list of the most common reasons for this exception. In this context,
successor means a Transaction Record that succeeds the one currently
processing data received from the host.

 1. The transaction sends an unknown screen.

This occurs if either the screen is not modeled, or there is no transition
defined to reach it from the actual Transaction Record. In most cases,
this occurs if the Transaction detects an error and resends the current
screen, together with an error message.

 2. LU6.2 (IMS) identification

For LU 6.2, identification is done via a message output descriptor (MOD)
identifier provided by a user exit. Problems can be:

• No successor or more than one successor defines a MOD named
like the MOD identifier received. Check the MOD identifiers of the
successors. (Advanced Page 3)

• Wrong code page is specified for the connection spec (For Version
3.0b and up).

Note: For LU6.2 connections under VisualAge, the default code
page is your local code page, so you must always change it to be
the host code page.

 3. CICS and IMS LU2 identification

• No literal fields selected for physical identification. If you have more
than one successor, you must select fields in each successor for
unique identification.

• The physical identification of two or more successors is ambiguous.
This may occur if two successors define the same fields (equal
position and literal) for identification or if the identification fields
selected for one successor also match fields in another one.

 Copyright IBM Corp. 1997 109

• The literal contains leading blanks which are stripped off. Until
Version 3.0a, change the field offset so that the field begins with the
first real character. Then remove the blanks from the literal. For
Version 3.0b, simply turn off the Trim flag on Advanced page 3. Note
that trailing blanks are no problem.

 4. CICS LU2 and EPI identification

• For CICS, literals can be changed dynamically. It is common style
for CICS programmers to change field literals and attribute bytes at
run time. This is why you must usually correct the parsed
information to match this. Take special care when handling literals
with leading blanks.

Exception: TransRecord Does Not Understand

Why do I get the Bpl...TransRecord does not understand ... exception?

This occurs if you send a misspelled message to a Transaction Object.
These are composite parts, which send all messages not understood to their
primary part. In most cases, the primary part will be the first part you add to
the transaction object—that is, a transaction record.

HLLAPI Exceptions: Harclock Exceptions

Why do I get the Harclock exception?

This occurs when the CICS and IMS Connection writes to a screen that is in
an incorrect state. The reasons for this can be:

• The same short session ID is used for several transaction objects, and
more than one transaction object wants to update the screen. This leads
to either both trying to update at the same time or one finding an
incorrect 3270 screen for update. In this case, use Session classes to
manage access to the HLLAPI resources.

• A previously run TOM left an incorrect panel state. This can occur if an
error forced the previous TOM to abort, so that it was not able to return
to a defined state. Your exception handlers should guarantee that each
TOM reaches one of a defined set of states (either the base state or the
ones the TOM should reach).

110 VisualAge for Smalltalk Handbook − Features

Time-out Exceptions

I don′ t understand—why do I get a timeout using HLLAPI all the time? I can′ t
find any error in my setup.

If HLLAPI time-outs occur with no obvious reason, ensure that you have
defined a sufficient settle time in the 3270 connection spec. For example, try
1000 ms in case of Windows. The 3270 communication implementation,
which uses its own notification mechanism, has been updated for Version
3.0b.

Drag-and-Drop for Windows 95

Using Windows 95, I have noticed a pop-up window appearing when I drop
items from the connections page. Should I take any action on that window?

Simply click again to finish the drop.

Screen Scraper Functionality

Is there some kind of screen scraper functionality in CICS and IMS
Connection?

Although CICS and IMS Connection is no screen scraper, we included a
feature that enables customers to have some of this functionality for special
purposes. Every time a Transaction Record is processed, it signals an event
named #processed, together with the current Transaction Result as a
parameter.

IBM Smalltalk 64 KB Method Size Limit

I get an error message saying that the abtBuildInternals method is too big.
What can I do to avoid that?

Chapter 4. CICS and IMS Connection 111

Using IBM Smalltalk, the maximum method size is limited to 64 KB. This
may be critical for transaction objects, which store their definition to a
method named #abtBuildInternals. If this happens, use external transaction
records to distribute the transaction flow over more than one transaction
object.

Using IMS, when a whole transaction is modeled in one format definition,
even one transaction record can become too big. If this happens, spread its
panels into several parts and parse them into several transaction objects.

BplBusinessObj class > > allInstances Behavior

What do I use BplBusinessObj class> > AllInstances for?

This method is often used to query all instances of a class. Note that the
implementation for business objects does not force a global garbage collect
as a side effect. If you need a global garbage collection, invoke it through
System globalGarbageCollect.

Business Object Key Alteration

Can I change the key of a business object? How?

In general, you should avoid altering a business object′s key. If you have no
choice and are experienced, you can alter it by performing the following
steps:

• Make sure that there is no other instance defined with the target key
using:

Smal l ta l k

<class >allInstances detect: [:aBo | aBo includes: keyDictionary]

• Change the keys using setter methods.

• Rehash the set of instances using:

Smal l ta l k

<BO class > allInstances rehash.

• Process the piece of code using:

112 VisualAge for Smalltalk Handbook − Features

Smal l ta l k

[<your code >] critical.

to avoid concurrent update.

Run-Time Image Build Problems

I can′ t create a run-time image. I use phantom instance variables, could this
be the problem?

When using phantom instance variables to model 1 to n field-to-attribute
relations, you may have problems when creating a run-time image. If setter
methods are missing in the run-time image, the simplest approach is to
define public interfaces for them.

Host Transaction Interface Changes

Do I have to change anything when the interface to the host transactions
changes?

Every time the host transactions interface is modified, you have to model
these changes into your transaction records. There are two ways to do this:

• Model the changes using the Transaction Record Settings notebook.
You will have to extract the changes necessary and do the update via
the notebook pages. The advantage here is that you do not lose the
other information the transaction record contains.

• Parse the macros again. You can have a set of locally modified macro
files (to split fields, and the like), to which you apply the changes. After
parsing, you will have to model the connection and identification
information again, but the changes are consistent. The advantage here
is that you only do the changes once. (But you then have to parse
several times, one for every record.)

Chapter 4. CICS and IMS Connection 113

Communication Considerations

What are the pros and cons of the different communication setups?

Here is a comparison of the various possible communication setups.

Static Communication Session Acquisition Setup
Here the same session is always used, and only one transaction can be
handled at any one time. The following should not cause problems for your
transaction system:

• Prototyping Setup via HLLAPI

Use 3270 communication, specify short session IDs. Because it does not
protect the communication resources, it is suitable only for
single-threaded prototyping and testing. Each transaction must return to
a fixed state after processing.

• Thread Serialization Setup via HLLAPI

Use 3270 communication, specify session class. The session classes
protect your communication resources, so you can have parallel use of
communication resources. However, the session classes will serialize
the requests, so there can be only one active thread using a certain
communication resource at any one time (all others will sleep). Each
transaction must return to a fix state after processing.

• Stacked Processing Setup via HLLAPI (IMS Only)

Use 3270 communication, specify session class, make use of the #hold
and #release messages. This is possible only if you are limited to
conversational transactions. Think of a transaction being run in a 3270
session: The hold message will cause MFS to present a new blank
screen on that terminal, so that another transaction can be started. You
have to issue the release message before continuing work with your
original transaction, and there can be multiple stack layers. Each
transaction must return to a fixed state after processing.

Dynamic Communication Session Acquisition Setups
These are communication setups that allow parallel transaction processing
for one user ID. However, this will produce the desired results only if the
selected transactions are designed to run in parallel.

• CPI-C (IMS Only)

Using CPI-C will give you dynamic session acquisition and host
performance advantages. Dynamic session acquisition means that
every time a session is needed, one is started automatically. This

114 VisualAge for Smalltalk Handbook − Features

means that you can have multiple parallel sessions. Read the
limitations section in the CICS and IMS Connection documentation to
decide if there is any show-stopping limitation for your setup. Note that
CPIC causes very much debugging effort, so it seems suitable for
production only, not for development.

• EPI (CICS Only)

EPI also offers dynamic session acquisition. It does not have as many
limitations, and causes only slightly more debugging effort compared to
HLLAPI.

Chapter 4. CICS and IMS Connection 115

116 VisualAge for Smalltalk Handbook − Features

Chapter 5. Database

In this chapter we cover database-related questions.

Error Message When Upgrading

After filing in code from VisualAge for Smalltalk, Version 2 Standard to
Version 3 Team, I get a debugger with ″AbtIbmDate384Field does not
understand format:″ when generating run-time code for an access set.

Implement a format: instance method for AbtIbmDate383Field that does
nothing.

Ineffective Bind Command Syntax

The syntax of the bind command of the VisualAge for Smalltalk for Smalltalk
User′s Guide does not work for me. What do I do?

Use the commands below to bind:

dbm connect to <database name>
dbm bind <.BND file> to database using DATETIME ISO BLOCKING ALL

User ID from User Profile Manager

How do I get the User ID from User Profile Manager?

If you are using DB2 for OS/2 (and in possibly other configurations as well),
you can do the following in Version 3 of VisualAge for Smalltalk:

 Copyright IBM Corp. 1997 117

Smal l ta l k

| pf result userid type |

pf := PlatformFunction callingConvention: ′pascal16′
function: ′UPMELOCU′
l ibrary: ′UPM′
parameterTypes: #(struct struct)
returnType: #uint16.

userid := String new: 10.
type := ByteArray new: 2.

result := pf coroutineCallWith: userid asPSZ with: type.
userid inspect.
^ userid

For Version 2, change ′pascal16′ to ′pascal′.

Password-Required Warning when Using TopLink

If you get a cryptic warning message from Q&E saying that a password is
required when using VisualAge for Smalltalk with TopLink, the problem is
probably related to the ODBC drivers shipped with VisualAge for Smalltalk
and TopLink. TopLink ships with front-end ODBC drivers that will work with
almost all back-end ODBC drivers except those shipped with VisualAge for
Smalltalk. Our licensing agreement with Intersolv is for the use of the Q&E
drivers that we ship as both the front-end and the back-end drivers. This is
enforced through a password mechanism. Since TopLink ships their own
front-end drivers, trying to use the back-end drivers shipped with VisualAge
for Smalltalk causes a problem. To solve this, TopLink can use the
front-end drivers provided by VisualAge for Smalltalk (not available yet) or
the customer can use other back-end drivers (such as from Microsoft or
Intersolv) that have a per seat run-time fee.

118 VisualAge for Smalltalk Handbook − Features

DB2/6000 Connection Failure on AIX

I get a walkback (primitive failed in: PlatformFunction...) when I try to
connect to DB2/6000 from VisualAge for Smalltalk on AIX. I recently
installed VisualAge for Smalltalk, Version 3a and also recently changed
versions of DB2. I then backed out a later version of DB2 and reverted back
to 2.1. The connection to the database manager fails; the database DLL
fails to load (is not found). What′s wrong?

The libpath statement in the ABT file should be updated to include
″/usr/Ipp/db2_02_01/lib″ after the ″/usr/visualage/bin″ entry. This is not
consistent on all configurations and may have something to do with the
version of DB2/6000 you are using.

 Note

There is a known problem with DB2/6000 Version 2.1 that may explain
this situation. The external symptom of the DB2/6000 problem is the
inability to load DLLs, archived libraries, or both. The problem is caused
by an old or back-level version of C run-time support shipped with the
DB2/6000 V2 image. The following circumvention was extracted from a
DB2/6000 PMR. Find a newer version of libC.a. Check in usr/Ipp/xlC/lib.
The size of libC.a that works is 410 KB. When you find a correct version
of libC.a, copy or link it into the /usr/Ipp/db2_02_01/lib directory. Make a
backup copy of each prior to the link. Run: $In -fs /usr/Ipp/xlc/lib/lib
C.a/usr/Ipp/db2_02_01/lib/libC.a

Handling Errors in Database Code

There are several ways to do error checking for SQL in VisualAge. One is
to connect a block to the errorBlock attribute of the database query using an
attribute to script connection. The script can look something like:

Smal l ta l k

handleError

^[:error | ErrorView newPart valueofAttributeNamed: #String
put: (error printString);
openWidget.]

If you want to check for a specific error code you can do something like:

Chapter 5. Database 119

Smal l ta l k

handleError2

^[:error |

|code|

code := AbtDbmSystem activeDatabaseMgr sqlca at: ′sqlcode′.
self partAttributeValue: #(#Text6 #object) put: code.

(code = 100)
ifTrue: [ErrorView newPart valueOfAttributeNamed: #String

put: ′SQL 100 Error′;
openWidget]

].

SQL Error 30081n in DB/2 2.1

I received SQL Error 30081n when I was in DB/2, Version 2.1. What do I do?

I had a customer who solved this problem by going to Communications
Manager and reconnecting to the database server. Apparently the link
between the database server and database client was inactive. Reactivating
the connection made the error disappear.

Call-Level Interface

The feature list includes an entry for IBM CLI Database. What′s that?

That′s a good question, and I′m glad you asked. Version 3.0a was mainly a
port to Windows 95 and NT. We didn′ t plan on putting in new features, or
updating our documentation either. But one feature did get in, and that′s
the IBM CLI Database. Unfortunately, this feature has minimal
documentation (its all in a readme file). So, I will tell you about it.

The IBM CLI Database feature is a reimplementation of the IBM Database
Manager, bringing our database manager count to four:

 1. IBM Database 2 (the original)

 2. IBM Database 2 - CLI

 3. ODBC

120 VisualAge for Smalltalk Handbook − Features

 4. Oracle (Native)

Our original DB2 support used a DLL that we provided. That DLL used
embedded SQL. It didn′ t support multiple connections, and it didn′ t handle
concurrent applications well. It needed to be ported to Windows 95 and
Windows NT. Furthermore, it is not possible to support multiple concurrent
connections using embedded SQL (you can have multiple connections, but
only one active connection). Faced with these problems, we decided it was
time to change interfaces.

DB2 provides a second dynamic interface, the Call Level Interface (CLI),
which supports multiple concurrent connections. The CLI DLL is shipped
with each DB2/2 client, so our customers already have it. It′s designed for
concurrency of applications. It supports distributed units of work (multiple
connections, one transaction). It′s available on all platforms. So,... we now
support the CLI.

The CLI should have the same public interface as the original DB2 support,
so migration is easy. It is necessary to use AbtEditDatabaseMigrationApp to
migrate any of the visual database query parts, however. (This was
documented in VisualAge for Smalltalk, Version 3.0, you load the application
and execute AbtDatabaseMigrationView new openWidget).

The CLI feature is available on all platforms (the original DB2 support has
not been ported to Windows 95 or NT), and it is the implementation that we
will be using in the future. The original DB2 support will eventually be
dropped.

Binding Problem with DB2/6000 on AIX

What, exactly, do I need to write a stand-alone VisualAge for Smalltalk
application on AIX that works with DB2/6000? I have installed DB2/6000
Version 1.2 on AIX 4.1.3, but I cannot successfully bind. I get a message
″SQL0033N ″/usr/visualage/abt/abtdx30.bnd″ is not a valid bind file″. I get
the same error when I try using abtdsx30.bnd as well.

The default *.bnd and *.w file installed for VisualAge for Smalltalk, Version
3.0a on AIX, is compatible with DB2/6000 2.1. To use DB2/6000 1.2, copy the
files abtdx30.bnd and abtdx30.w to your local VisualAge directory from
/usr/cdrom/vast/install/fileins. This will allow you to run DB2/6000 1.2

If all VisualAge for Smalltalk users use DB2/6000 1.2, then copy abtdx30.bnd
to /usr/visualage/abt and copy abtdx30.w to /usr/visualage/bin. Both sets of
files have the same names, so please save a copy of the 2.1 files. Also

Chapter 5. Database 121

notice that there is a file-in for DB2/6000 1.2 (db2v120.st). You can use the
database samples to perform the bind.

OS Error 126 Connecting to Oracle

Oracle changes the DLL names with every release. The DLL name is
hard-coded in our methods and therefore the customer may get a ″can′ t find
DLL″ condition when connecting to Oracle. To fix, change the DLL name in
private class method defaultLibraryName in AbtOracleDatabaseManager and
then execute ″AbtOracleDatabaseManager
buildPlatformFunctionsDictionary″ to make the change in the class variable.
Here are complete instructions to make appropriate changes to VisualAge
for Smalltalk code:

 1. From Smalltalk Tools/System/Change User, make yourself Library
Supervisor.

 2. From Smalltalk Tools/Manage Applications , find application
AbtDbmOracleBaseApp and select it.

 3. From Applications , select Create New Edition .

 4. Find application AbtDbmOracleWinPlatformInterfaceSubapp below
AbtDbmOracleBaseApp and select it.

 5. From Applications , Create New Edition .

 6. In the next pane, choose class AbtOracleDatabaseManager , and
double-click on it to open a browser.

 7. In this new browser, choose everything in the second pane, and click on
the instance button below the third pane so that it says class and click
on the public button below the fourth pane so that says private. Select
everything in the thrid pane and you will see the method
defaultLibraryName in the fourth pane.

 8. Click on defaultLibraryName and change the code in the lower pane to
indicate your DLL for Oracle.

For example, to reflect your DLL name, change ″orant71.dll″ in the code
below:

Smal l ta l k

IsWinNT
ifTrue: [^′orant71.dll′]

 9. Save the changes to the method with the pop-up menu, and close the
browser.

122 VisualAge for Smalltalk Handbook − Features

10. From the Application Manager, version and release your class to a
name you will recognize (Classes/Version/Release All).

11. Click on AbtDbmOracleWinPlatformInterfaceSubapp and version and
release it to the same name (Applications/Version and then
Applications/Subapplications/Release).

12. Click on AbtDbmOracleBaseApp and version it (Applications/ Version).

13. Change back to your user ID.

14. Other coworkers wanting to take advantage of the fix can now load the
new edition of the application into their image.

15. After doing this, type AbtOracleDatabaseManager
buildPlatformFunctionsDictionary. in the Transcript, select it and
execute.

SQLSTATE 37000 Error with ODBC Driver

When using the VisualAge for Smalltalk ODBC driver with MicrosoftAccess, I
get ″Error string {SQLSTATE 37000 - {Microsoft} {ODBC Access Driver}
10014 in query expression {Native Error 3100}} Why?

The cause of this problem is that Microsoft Access does not support the use
of the ″for update″ clause. Because of this restriction, you must uncheck the
checkbox ″Lock row on edit″ on the Update notebook page when looking at
the settings for your database query.

Microsoft Access Drivers

To get updated drivers for Microsoft Access:

 1. Point your favorite Web browswer at www.microsoft.com.

 2. Select the Support link.

 3. Then select the Free Software from Microsoft Software Library link.

 4. Under the Explore: option, select Access .

 5. For the Search field, type ODBC drivers.

 6. Hit the Go button.

 7. Download the file from the ″ODBC Drivers for Win95 Applications″ link.

Chapter 5. Database 123

SQLSTATE S1010 Error with ODBC DB2/2 Driver

I got the following error message: [SQLSTATE=S1010 -
[INTERSOLV] [ODBC DB2/2 driver]Function sequence error. [Native
Er ro r=0]] What do I do?

Try the following:

Go into the VisualAge for Smalltalk DB2/2 driver′s setup from the ODBC
Administrator. At the bottom, there is an option for Cursor Behavior. The
default value is 0 - Close. Try choosing 1 - Preserve.

The DB2 Driver, by default, does not use ″with hold cursors.″ In other
words, if a commit is done, the cursors are no longer valid. If you set the
cursor behavior option to 1 - Preserve, it causes the driver to be used ″with
hold cursors,″ which causes the cursor to remain valid after a commit has
occured.

This is a DB2/2 behavior. In DB2/2, when a commit is done, the cursors
become invalid. In our IBM database code, when a commit is done, we just
flush the cache to avoid the problem with invalid cursors. But in ODBC, it
does not make sense to flush the cache for a commit since this behavior is
unique to DB2/2. So, this setting needs to be set in the driver to cause it to
use ″with hold cursors″ so that the cursors do not become invalid after a
commit.

Primitive Failed—OS Error 1

I am trying to connect VisualAge for Smalltalk to DB2/6000. I run AIX and
DB2 2.1. I get a walkback saying: Error string: Primitive failed in:
PlatformFunction>>#callWith:with:with: due to OS error1. I have the
impression that DB2 connection outside VisualAge is working.

However, I would like to check my path setup to verify that everything is
correct. What do I have to do to check this?

To ensure that your environment is correct, enter ″db2″ at a command line.
If their environment is correct, this command will enter you into the db2
command-line processor. If this command fails, enter ″set″ at a command
line. After entering ″set″ ensure that there is an entry in your path for db2
(/home/db2/sqll ib/bin). If the ″db2″ command succeeds, then take at look at

124 VisualAge for Smalltalk Handbook − Features

/usr/visualage/bin and ensure that abtdx30.w is present. Finally, try to
execute the DB2LN command.

Migrating from DB2 V1.2 to DB2 V2

If you have developed an application in VisualAge for Smalltalk that
accesses DB2 tables version 1.2, and you want to migrate from DB2 1.2 to
DB2 2, it should have no impact on your application. The only thing I can
think of that you might want to change is if you have any references to the
class AbtIbmDb22DatabaseConnection, you may need to change them to
AbtIbmDb22CSDatabaseConnection, although I think the code would work
even if you don′ t change.

Building a Dynamic Where Clause

I am trying to build a dynamic where clause. The data for the clause comes
from two text entry fields. One field states the customer′s name and the
other states the customer′s identification number. My script looks as follows:

Smal l ta l k

initializeWhereClause
″Private - initialize the where clause of the SQL query
looking for customer name and ID″

| where |
where := ′WHERE CUSTOMER.CUST_NAME = ′,

(self subpartNamed: ′CustomerName ′) value,
′ AND CUSTOMER.CUSTID = ′,
(self subpartNamed: ′CustomerID′) value.

What I want is:

SQL

WHERE customer.cust_name = ′John Doe′
AND customer.custid = 102

What I get is:

Chapter 5. Database 125

SQL

WHERE customer.cust_name = John Doe
AND customer.custid = 102

How can I create a robust method that will handle name punctuation, for
example O′Brian, in the correct way as well?

The problem you are having is you are including an extra quote before and
after the name string. Try the following code snippet using our sample
tables:

Smal l ta l k

| activeConnection querySpec result resultCollection temp aName |
resultCollection := OrderedCollection new.
aName := ′O′ ′Brien ′.
activeConnection := (AbtDbmSystem activeDatabaseConnection).
querySpec := (AbtQuerySpec new) statement:

′select * from STAFF where NAME = ′, aName printString.
result := activeConnection resultTableFromQuerySpec: querySpec.
result do: [:row | resultCollection add: (row asString)].
^resultCollection.

Another way to write the query would be this code:

Smal l ta l k

| activeConnection querySpec result resultCollection temp aName par |
resultCollection := OrderedCollection new.
aName := ′O′ ′Brien ′.
querySpec := (AbtQuerySpec new) statement:

′select * from STAFF where NAME = :name′.
par := Dictionary new.
par at: ′name ′ put: aName.
activeConnection := (AbtDbmSystem activeDatabaseConnection).
result := activeConnection

resultTableFromQuerySpec: querySpec
withValues: par.

result do: [:row | resultCollection add: (row asString)].
^resultCollection.

126 VisualAge for Smalltalk Handbook − Features

In this way you can pass the values of all the host variables using a
dictionary. Something that can help improve performance is the use of the
Access Set (provided that you are using VisualAge for Smalltalk Version 3).
In other words, you can define your select query using the interactive tool
and store it in one Access Set (let′s call it MyAccessSet) as ″MyQuery.″
Once you have done this, you can retrieve the query with the following code:

Smal l ta l k

query := MyAccessSet runtimeQuerySpecNamed: #MyQuery

This version of the code usually runs faster, since the query stored in the
Access Set contains a definition of the host variables (type, length and so
on). You can get this definition by sending the method hostVarsShape to the
query specification (instance of class AbtQuerySpec). Therefore the final
code becomes:

Smal l ta l k

| activeConnection query result resultCollection temp aName par |
resultCollection := OrderedCollection new.
aName := ′O′ ′Brien ′.
query := MyAccessSet runtimeQuerySpecNamed: #MyQuery.
par := Dictionary new.
par at: ′name ′ put: aName.
activeConnection := (AbtDbmSystem activeDatabaseConnection).
result := activeConnection

resultTableFromQuerySpec: query
withValues: par.

result do: [:row | resultCollection add: (row asString)].
^resultCollection.

ODBC using Microsoft-JET Drivers

I′m trying to use VisualAge for Smalltalk ODBC parts to access a FoxPro file
through the Microsoft JET/Dbase/FoxPro driver. Unfortunately, it seems
Microsoft does not support ′FOR UPDATE OF...′ in a SELECT statement. Is
there any easy workaround in VisualAge, or do I have to get a different
ODBC driver?

Chapter 5. Database 127

You are correct that the Microsoft Jet ODBC Driver does not support the
SELECT .. FOR UPDATE OF... statement, which is used to lock the row
selected. There are two options you can use:

 1. You can go to the Update page on the MultiRowQuery settings page and
turn (Lock row on edit) off. Of course, the locking scheme will be in
your control.

 2. You can use the dBase driver that is shipped with VisualAge for
Smalltalk and go to the driver settings in the ODBC Administrator and
choose FoxPro1 or FoxPro25 for the CreateType and fox for the Lock
Compatibility. More information can be found in the online document:
ODBC Drivers Reference.

Database Log-on Prompt

The log-on prompt is really beginning to annoy me. It seems to pop up for
every database operation, even though I have prompt turned off. The only
thing I can think of that might be causing this is that I have multiple
database access sets defined. When I added the connection to the
application, it only added to the one access set. I manually added it to the
other, but I believe it is prompting me every time it has to switch between
access sets. I want the thing turned off completely since I am writing an
application that will run unattended.

If you are using ODBC, then be aware that it has a prompting mechanism of
its own, so if you do not supply sufficient log-on information, the ODBC
prompt will pop up on a connection attempt.

VisualAge for Smalltalk will attempt to establish a new database connection
only if there are no existing connections with the specified connection alias.
Are you certain that the connection alias for all of your parts is the same?
Does your application disconnect the connection? Be aware that the #close
action of the database query parts will cause a disconnect. When you test
your application, use the Database connections view from the VisualAge for
Smalltalk organizer to monitor the status of your database connections (the
connection view refreshes each time it receives focus).

It is not necessary to add the connection specification to multiple access
sets within the same application. The database query parts can use any
connection specification that is visible to the application. This includes
connection specifications that are defined in access sets that are owned by
or are prerequisistes for the application.

128 VisualAge for Smalltalk Handbook − Features

Since your application is to run unattended, you might consider using the
method below to save your log-on specification. When you run this code,
your log-on specification will be active for as long as the image remains
active.

Smal l ta l k

″ For ODBC, use the data source name as the server ″
AbtDatabaseLogonSpec

id: ′myid ′
password: ′mypassword ′
server: ′servername ′ alias: ′Alias1′

″ If you would like to ′unregister ′ the logon spec, execute the following: ″
AbtDbmSystem

removeLogonSpecWithAlias: ′Alias1′

Database Log-on Prompt after Migrating to Version 3

I migrated an application from VisualAge for Smalltalk, Version 2.0 to
Version 3.0 and after setting up a database connection with prompt set to
″no,″ I get a log-on prompt from VisualAge asking for user ID, password,
and node every time I connect to the database (DB2). I don′ t want this
prompt.

I′m not sure if this is anything to do with the fact that the application uses
″connect″ which, the user′s guide informed me, is sort of just left in for
compatibility. How do I lose the prompt?

If you use openDatabaseNamed: in your application, try removing it. That
should eliminate the prompt you are getting. Try something like the
following. (Note that there′s also a change in a variable name for a
connection that′s really a database manager.)

Chapter 5. Database 129

Smal l ta l k

″Selects rows from a table″
| querySpec result resultCollection connection manager |
resultCollection := OrderedCollection new.
manager := AbtDbmSystem

activeDatabaseMgrWithName: #AbtIbmDatabaseManager.
connection := manager activeConnection.
querySpec := (AbtQuerySpec new)

statement: ′SELECT * FROM STAFF′.
result := connection resultTableFromQuerySpec: querySpec.
result do: [:eachRow |

resultCollection add: (eachRow asString)].
^resultCollection.

Native Oracle and Data Types

I would like to use VisualAge for Smalltalk Professional on Windows 95 and
NT platforms and hence I would like to know if there are any restrictions on
using native Oracle support on Oracle data types accessible, specifically
Long and LongRow?

We are not aware of any restrictions or limitations when using these data
types. One piece of information you might find useful is that default buffer
size for these datatypes is stored in a class variable and can be changed.
The default is 32767. To change the default, execute:

Smal l ta l k

AbtOracleLongField bufferSize: <newSize>

The database resource cache for any active database connections should be
cleared out before proceeding. You can do this as follows:

Smal l ta l k

(AbtDbmSystem
activeDatabaseConnectionWithAlias: ′Oracle1′) flushCache

130 VisualAge for Smalltalk Handbook − Features

There is an undocumented interface that can be used to fetch portions of
LONG/LONG ROW fields. Fields of this type are often huge, and it is not
expedient to fetch the entire field with one trip across the network. Below
you find code to demonstrate how a partial fetch can be accomplished:

Smal l ta l k

| tbl row rt longBuffer |
tbl := AbtDbmSystem

activeDatabaseConnection openTableNamed: ′TLONG2′.
row := tbl emptyRow.
r t : = AbtDbmSystem

activeDatabaseConnection resultTableFromQuerySpec:
(′select * from TLONG2 where COL2 = ′, ′abc′ printString)

abrAsQuerySpec.
rt next.

″ Fetch only a portion of the long field into longBuffer ″
longBuffer := rt cursor

currentLongFieldNamed: ′COL1′
from: 31990
to: 33200
ifError: [] .

rt close.

longBuffer inspect

Local Log-on

I would like to do an automatic log-on to the database server, because I
don ′ t want the User Profile Manager (UPM) to ask for my user ID. Does
anyone have a code snippet describing how to do that?

The following fileout of a class has some UPM methods in it that will allow
you to do a local log-on and log-off in VisualAge for Smalltalk, Version 3.0.
Here is how we use it in our application (CSCCUPM is a subclass of
CSCCObject):

Chapter 5. Database 131

Smal l ta l k

upm := CSCCUPM new.
rc := upm

upmLogon: userID
password: password.

 rc isAbtError ifTrue: [
″A UPM logon error occurred return the error to the caller″
^]

logonSpec := AbtDatabaseLogonSpec
id: userID
password: password
server: nil.

conSpec := AbtDatabaseConnectionSpec
forDbmClass: #AbtIbmDatabaseManager
databaseName: database.

conSpec promptEnabled: false.

rc := conSpec
connectUsingAlias: ′CSC ConSpec′
logonSpec: logonSpec.

Text Database

This is an example of how to create a text database using the ODBC Text
driver. Before running this script, you need to have already defined a data
source for the text driver using the ODBC Administrator (using the ODBC
Sample Launcher). Use this:

132 VisualAge for Smalltalk Handbook − Features

Smal l ta l k

| textDatabase result def tableName |

″This is the name of the table″
tableName := ′TEST′.

″Add the appropriate DSN for databaseName:″
textDatabase := (AbtDatabaseConnectionSpec

forDbmClass: AbtOdbcDatabaseManager
databaseName: ′Test′) connectUsingAlias: ′ test′
logonSpec: (AbtDatabaseLogonSpec new

id: ′′;
password: ′′;
server: ′′).

def := ′(NAME VARCHAR(30) ,′,
′ STREET VARCHAR(30),′,
′ CITY VARCHAR(20),′,
′ STATE VARCHAR(2),′,
′ ZIP_CODE VARCHAR(5))′.

result := textDatabase
createTableNamed: tableName
definition: def
ifError: [

AbtDbmSystem activeDatabaseMgr errorBlock.]
textDatabase disconnect.

Reusing a Cursor

Is there any method in the Multirow Query part that I can use to prepare a
query only once and then execute the query several times with different
host- variables? I understand that I can′ t use a dynamic ″Where″ clause.
My reason for asking is that, at least in the AS/400 field, I pay a severe
penalty every time I run the query (for example, for every row when filling a
container details part).

Chapter 5. Database 133

You don′ t have to do this, it′s already implemented as described. When a
cursor is prepared, it gets saved in a cache (resourceCache instance
variable on a database connection object). Each time you use
#executeQuery, the cache is searched to see if there is a prepared cursor
available to be reused. If a cursor is open, it can′ t be reused; you can′ t open
the same cursor twice. Once the cache size reaches 10, the least recently
used cursor is thrown out before adding a new one.

OS/2 ODBC Problems

I have come accross quite a few problems when trying to use VisualAge for
Smalltalk, Version 3.0 ODBC support under OS/2. First of all, an attempt to
create VisualAge Text data source causes a trap D every now and then (not
regularly).

The second problem is that an attempt to add a VisualAge DB2/2 based data
source results in an error message: “INTERSOLV • ODBCADM • Not able to
add a datasource.”

The last problem I have is with the ODBCADM executable: it freezes the
window if the program is started from the OS/2 command prompt. The
window seems to be alive—the cursor blinks—but I can′ t type anything. The
ODBC feature is installed, samples as well, drivers installed, all without any
error messages.

The first problem may occur if you had a previous version of ODBC installed
on your system, or had the previous version of VisualAge for Smalltalk with
ODBC support installed. The best thing to do is to delete the files named:
IB*04.DLL, ODBC.DLL, ODBCINST.DLL, and reinstall VisualAge for Smalltalk
again to make sure you are using the latest level of drivers.

The second problem will occur when the DB2/2 Driver (IBDB207.DLL) can′ t
find the required DB/2 Client Dlls in the LIBPATH. If you have a tool called
chkdll32 you can check to see what DLLs that driver requires to load.

For the last problem, try the following: the ODBCADM Executable that was
provided to us from a third party vendor trashes your OS/2 Window. Try
typing: Start ODBCADM at the OS/2 command prompt.

134 VisualAge for Smalltalk Handbook − Features

Connecting to DB2/400 with ODBC

I would like to connect to DB2/400 using the ODBC driver of Client
Access/400 Optimized for OS/2. I couldn′ t find any documentation on this
and I would appreciate some help.

If you want to use the ODBC driver with VisualAge for Smalltalk, you will
have to install two PTF′s for Client Access/400 (product 5763XG1 V3R1M1):

• SF28583

• SF28840

This will update your Client Access/400 Optimized for OS/2. You will have
the correct DLLs (EHNODBC2.DLL and EHNSTP2.DLL in the CAOS2
directory). If you installed ODBC support on your VisualAge for Smalltalk
environment, you should have an ODBC administrator program in the DLL
subdirectory of your main VisualAge directory, called ODBCADM.EXE. This
program will enable you to configure datasources that use the ODBC driver
of Client Access. Specify which machine you want to connect to, and which
libraries you want to use. Leave the other parameters at their default value.

You have now created an ODBC data source that you can use like any other
data source in VisualAge for Smalltalk. If you want more information on
using data sources and database parts, check out Chapter 2 of the
VisualAge for Smalltalk User′s Guide, Version 3. This chapter will tell you
more about database support. The database in the example provided is
DB2/2, but basically it is the same as an ODBC data source. They both can
execute SQL statements.

Retrieving Current Date from DB2/2

When I execute a SELECT to the database to get the current date, VisualAge
for Smalltalk is changing the date format from a 4-digit year to a 2-digit year.
Is there any way to override this conversion?

I have been told that the correct date format is returned from DB2.
VisualAge for Smalltalk converts the date to a Date object. When the date is
then accessed via printString, a 2-digit year is presented as the default
format. For my situation this is not an acceptable response. The date
should be presented in the same form that it is returned by DB2. Without
modifying Date or the converter class that Date uses, what is the correct
method for obtaining the current date from DB2?

Chapter 5. Database 135

The problem comes down to a pool dictionary NlsGlobals, which, in turn,
contains an entry for CurrentLCTime, an instance of LCTime. LCTime has a
method called #dFmt: that takes a string as parameter, as in dFmt:
′ % d / % m / % Y ′. So using:

Smal l ta l k

(NlsGlobals at: ′CurrentLCTime′) dFmt: ′ % d / % m / % Y ′

changes to 4-digit years in printing, sending ′ % d / % m / % y ′ switches to
2-digit year printing.

To answer the second question, you won′ t receive back a Date object from
the database. Instead you get back a AbtRecord of type 1 that is just a
dictionary that contains the date at: ′1′. By sending it the at: message you
can get the Date object.

A date object has an instance variable called year that contains a 4-digit
year. When you inspect or print a Date object, the year is convert from 4
digits to 2. For example, inspect the following: Date today. As you can see,
the year is truncated from 1997 to 97. The 4-digit year can be accessed by
sending the year message to the date object. When you execute a SELECT
statement and retrieve the rows from the result table, you get an ordered
collection of AbtIbmRow objects. Each row object is itself made up of
objects. If your SELECT statement includes a column defined as a DATE
data type, then the row objects will contain date objects. To access a date
object, send the at: message to the row object. The argument passed is the
name of the column that contains the date value. For example, suppose you
executed the following SQL statement:

SQL

SELECT CUSTOMER.NAME, CURRENT DATE DATE FROM CUSTOMER.

To get a date you would execute the following statement:

Smal l ta l k

rowObject at: ′DATE′.

Once you have the date object, you can access the 4-digit year.

136 VisualAge for Smalltalk Handbook − Features

Database Portability

Suppose I develop an application with VisualAge for Smalltalk that contains
lots of queries to DB2. What effort would it require to convert it to another
database (for example Oracle), if I use:

• Native SQL?

• ODBC?

A tool is provided in VisualAge for Smalltalk, Version 3, which helps users
migrate their Version 2 database parts to Version 3. This tool also helps
users to migrate their query parts to use different connection specifications.
See page 429 of the VisualAge for Smalltalk User′s Guide for additional
information about this tool.

The general steps for migrating your query parts would be as follows:

 1. Modify an existing connection specification for your application (or
create a new specification) so that it contains information about the
desired (target) database connection;

 2. Follow instructions on page 429 of the User′s Guide to execute the
migration tool for the parts that require migration.

Migration will be possible if the table names and column names for your
target database connection match those for your original connection.

Canceling a Database Call

I would like to know if there is an ability for the end-user application to
cancel a database call. The scenario is that a user sets up a long-running
process and then decides to abort the transaction request.

I can specify threaded database calls from the preferences notebook. One
approach might be to end the thread as a means of canceling the database
transaction. I assume the thread could be terminated by an external call
interface and using a facility of the platform′s operating system. What
support is available in the database classes to cancel a database request?

Chapter 5. Database 137

Native Oracle support contains an API called ″break″ that will
asynchronously terminate any long-running operations for a database
connection. This method can be executed as follows:

Smal l ta l k

(AbtDbmSystem activeDatabaseConnectionWithAlias: ′Oracle ′) break

ODBC and IBM database support do not currently implement any similar
functionality. In answer to the question regarding threads, threaded
database calls are executed with a threadKey equivalent to the
AbtDatabaseConnection instance that executes the DB call. Therefore, a
thread could be terminated by executing the following code:

Smal l ta l k

AbtThreadManager terminateThread:
(AbtDbmSystem activeDatabaseConnectionWithAlias: ′x′).

Establishing a Database Connection via Smalltalk Code

Below you find an example of the recommended VisualAge for Smalltalk,
Version 3, approach for establishing a database connection via Smalltalk
code. (The recommended steps for establishing a database connection
have changed. The old—Version 2—technique for connecting is still
supported, but is slightly less flexible.) The code is as follows:

138 VisualAge for Smalltalk Handbook − Features

Smal l ta l k

| dbSpec1 dbConnection1 |

dbSpec1 := AbtDatabaseConnectionSpec
forDbmClass: AbtOdbcDatabaseManager
dataSourceName: ′Local ′.

″activate the connection described by dbSpec1 passing in required
logon information ″
dbConnection1 := dbSpec1

connectUsingAlias: ′Local ′
logonSpec: (AbtDatabaseLogonSpec new

id: ′USERID′ ;
password: ′PASSWORD′ ;
server: ′Local ′ ;
yourself).

The approach above is useful if you are using Smalltalk code to connect.
However, the VisualAge for Smalltalk visual database parts are designed to
prompt for log-on information each time a new connection is established.
There is a simple way to override this behavior. A programmer can
″register″ log-on information, which remains active for as long as the image
is active (the information is cleared when the image is restarted). For
example,

Smal l ta l k

AbtDbmSystem registerLogonSpec:
logonSpec: (AbtDatabaseLogonSpec new

id: ′USERID′ ;
password: ′PASSWORD′ ;
server: ′Local ′ ;
yourself) withAlias: ′Local ′.

After the above statement is executed, the supplied log-on specificationswill
be used any time you attempt to activate the connection with alias Local.
The #removeLogonSpecWithAlias: can be used to undo the above action.

Chapter 5. Database 139

Non-ANSI SQL Support

Can VisualAge be used to generate non-ANSI SQL? If not, could I manually
create a non-ANSI SQL query for a database part?

The VisualAge for Smalltalk SQL Editor was built based on ANSI SQL and
cannot be used to build non-ANSI SQL. However, you could manually create
a non-ANSI SQL query for a database part. We know of no limitations in
allowable syntax for SQL statements. In some cases, it may be possible to
build your initial ANSI query using the SQL Editor, then manually edit the
query to add any non-ANSI functionality. VisualAge for Smalltalk merely
passes your query string to the database connection. No syntax validation
is done within VisualAge itself.

Binding to Database

I am trying to create my first query with VisualAge for Smalltalk, Version 3,
using a DB2/6000 database. I have successfully created an access set and
alias. When I look at the Database connection specifications window, it
shows my database to be active. When I attempt to create a query in the
Multirow Query Settings window, I get: SQL0805N ″NULLID.ABTDC30 is not
found.″ What does this mean?

This means that you did not bind to your database. You can look at the
instructions in Appendix C of the VisualAge for Smalltalk User′s Guide, or
you can use the AbtSampleLauncherView in AbtDatabaseSamples to bind to
your database. When you run this sample view, you can choose the Tools
page of the notebook. There will be a button that says Bind To Database .
Click this button. The database alias name that you are trying to bind to (if
you have an active database connection) should show up in the list.
Highlight it, and click the Bind to Database now button.

Using a Wild Card with Host Variables

I′m executing a query with the following structure and it works fine:

SQL

SELECT * FROM table WHERE name LIKE ′SOU% ′

140 VisualAge for Smalltalk Handbook − Features

However, if I change the predicate member as follows: connect a text part to
:varHost and enter SOU% as the text part value, no action is performed, that
is, nothing is displayed.

SQL

SELECT * FROM table WHERE name LIKE :varHost

I would like to know why it works this way, or how I can use the wild
character ′ % ′ with host variables?

The problem should be solved if you use a VARCHAR host variable rather
than a fixed character field. When constructing default host variable
definitions, VisualAge for Smalltalk bases the definition on the table shape.
For example:

SQL

SELECT * FROM table1 WHERE field1 LIKE :hostVar1

When using the VisualAge for Smalltalk SQL editor, the above query would
build a default host variable definition for hostVar1 based on the column
definition for field1. You can use the host variables option on the settings
view to modify the shape of your host variables.

The reason Fixed character host variable definitions do not work as you
might expect for this case is that VisualAge for Smalltalk pads fixed
character fields with spaces. On the other hand, VARCHAR fields are
padded with nulls. So, if hostVar1 is a FixedCharacter field with size 10,
substituting the value ′abc% ′ for hostVar1 would result in the following
query:

SQL

″Get all rows from table1 where field1
starts with ′abc′ and ends with 6 spaces″

SELECT * FROM table1 WHERE field1 LIKE ′abc% ′

Using a VARCHAR field with size 10 would result in the following query (as
expected):

Chapter 5. Database 141

Smal l ta l k

″Get all rows from table1 where field1 starts with ′abc′″

SELECT * FROM table1 WHERE field1 LIKE ′abc% ′

Bypass the Error Prompt in DB2/2

How can I prevent the error prompter from popping up when a query error
occurs? We intend to use a touch-screen and want to minimize the
interaction between the end user and the system.

Each query part has its own #errorBlock attribute, which can be individually
set prior to query execution. The query parts circumvent the default error
block set in the active database manager instance by passing in an
errorBlock when executing database API calls. Prior to executing a query,
you can set its errorBlock in a script:

Smal l ta l k

(self subpartNamed: ′Multiple Row Query1′)
errorBlock: < your b lock > .

Another thing you can do is to create a VisualAge for Smalltalk
event-to-script connection to a method which returns the errorBlock and
connect the result of the connection to the #errorBlock attribute of your
query part.

Delete and Create Rows

I tried the newRow and deleteRow action in VisualAge for Smalltalk, Version
3.0, on a resultTable torn off from a multirow query. While running the
application, it turned out that the actions didn′ t work. Are the newRow and
deleteRow messages not supported?

142 VisualAge for Smalltalk Handbook − Features

One possibility is that the query is set to read-only. Some queries that you
write can only be read-only. Look at the Update page of the query settings
to see if it is set to read-only. For example, if the query includes computed
columns, or is a SELECT DISTINCT, it must be read only. If VisualAge for
Smalltalk determines that the query is read-only, you will see a message on
the first update page of the settings view.

Handling SQL Statement

Using the VisualAge for Smalltalk SQL Statement part, you can use the
Manual create and Manual edit options to type in the text of a SQL
statement. When executing statements of this type, VisualAge passes the
statement to the database connection instance. As long as the connection
instance can handle the statement, there should be no problem. The
Smalltalk script to accomplish this nonvisually is as follows:

Smal l ta l k

| connection |
connect ion :=

AbtDbmSystem activeDatabaseConnectionWithAlias: ′MyConnection ′.

connection executeSQLStatement:
′CREATE NICKNAME BOB FOR TABLE STEVE′.

″any non-SELECT SQL statement ″

Database Operations on Separate OS/2 Thread

Is it possible to configure VisualAge for Smalltalk Version 3 to have
long-running database queries on a separate OS/2 thread so as not to
freeze the end user interface?

From the VisualAge for Smalltalk Organizer, select Options → preferences .
Select the Database page, and from there you can select Thread all
database calls .

Chapter 5. Database 143

Hard-Coded Database Name

I noticed that the connection specification has the database name
hard-coded in it. I thought that VisualAge for Smalltalk would let me
develop my application independent of a specific database.

This independence would be helpful if I need to use one database to
develop and test my application, and another for production use of my
application. Otherwise, I would have to create another connection
specification for run time. So, my idea is to modify the alias accessor
method in order to put in an indirection for the database name in order to
read it from an INI file. Would this be the right way?

The database connection specification provides a level of indirection that
allows you to describe your database connection separately from your
database query parts. The connection alias in the query parts provides a
reference to the actual specifications that are retained in an access set.

The connection specification gives the programmer the ability to quickly
change the database name for all of their parts by merely modifying the
connection specification. So, a programmer could develop and test using
database1, but change the specification to database2 prior to packaging.
This level of flexibility is sufficient for most customers.

As is pointed out, the database name is hard-coded in the connection
specification; therefore, it is not possible to dynamically determine and set
the database name at run time using the default connection specification
scheme.

The idea of changing the accessor method for the connection specification is
a good way to accomplish your objective of dynamically setting the
database name at run time. The modified specification method would look
something like:

Smal l ta l k

^AbtDatabaseConnectionSpec new
dbmClass: AbtIbmDatabaseManager;
dsn: MyInitializeClass defaultDatabaseName ; ″ < < Changed ″
promptEnabled: true;
yourself

144 VisualAge for Smalltalk Handbook − Features

Be warned that if you change the connection specification using the
VisualAge for Smalltalk Database connections view, the specification will be
replaced with a hard-coded database name. Any changes to the
databaseName should be done using your initialization class
(#MyInitializeClass in the example above).

Locked Rows on Database Tables

If you update a database table, the row in the database will be locked until a
commit is done. The database query part has an action named
executeQueryAsTransaction, which will do the commit as soon as the update
gets done. Another possibility is the commitUnitOfWork action, if you want
the commit to happen separately.

Sharing Queries Between Applications

It is possible to share queries between various applications by sharing the
access set. The only thing you need to do is to make your application a
prerequisite of the other so you have visibility of the other′s access sets.

To change the prerequisites for an application, you can do the following
from the VisualAge for Smalltalk Organizer:

• Select your application.

• Click Applications → Make executable... from the organizer menu

• Change the prerequisites as required

• Click Cancel to exit the Make executable window

Application prerequisites can also be changed using several of the Smalltalk
Tools browsers from the Transcript menu.

Connecting from OS/2 Client to DB2/6000

I am starting a project using VisualAge for Smalltalk, Version 3.0. I have put
together a system architecture plan. I have a question concerning the
database access. What would be the best way to connect from a VisualAge
3.0 OS/2 client to DB2/6000? I′ve heard about CAE/2, and DDCS/2, but I′ m
not sure which is better. I would appreciate some advice.

Chapter 5. Database 145

Many developers/testers use CAE/2 to connect to DB2/6000 via TCP/IP.
DDCS/2 is not needed to connect to DB2/6000, it is needed only if you plan
on connecting to DB2/400, DB2/VM or DB2/MVS.

Outer Join Statements

Does VisualAge for Smalltalk support outer join statements?

There are no limitations on executing outer join statements from VisualAge
for Smalltalk. It merely passes the statement along to DB2/2 and iterates
the results. However, queries of this type must be built manually without
assistance of the VisualAge SQL editor.

Quick Form and Stored Procedures

You can use the quick form option for stored procedure parts. You will
notice a slightly different behavior when doing a quick form of the self
attribute. For the query parts, doing a quick form of self results in a quick
form of all host variables for the query. A quick form of the self attribute of
the Stored Procedure part results in a quick form of all basic attributes for
the part (for example, host variables, connectionAlias, databaseName, and
so on). For the Stored Procedure part, it is probably simpler to use the
quick form for each individual attribute rather than using the self attribute.

Using a Host Variable for IN Clause

I would like to build a database query which uses an IN clause. I tried to
use a host variable that contains multiple values. My SQL code looks like
this:

SQL

SELECT AA, BB, CC WHERE KEY_FIELD IN (:hostVar)

What I need is a host variable so that the SQL would equate to:

SQL

SELECT AA, BB, CC WHERE KEY_FIELD IN (′aa ′, ′bb ′, ′cc′)

146 VisualAge for Smalltalk Handbook − Features

Is there another workaround? I have to allow for any number of values
within the parentheses. My problem to date has been that Smalltalk seems
to place additional single quotes in the strings that I create.

I don′ t think what you are trying to do is how I would go about it. Host
variables are only of simple type. They cannot be a collection of things. It
would make more sense if you were trying to pass this to the IN: (:hostVar,
:hostVar). This, as you mentioned, does seem to add an extra set of
single quotes around each string.

So, with that said, I would recommend doing it by actually using a dynamic
Where clause. There is an example on how to use one in the User′s Guide
on page 201. This allows you to build the Where clause via script. It seems
as though you would need to pass your collection to the script and build the
Where clause dynamically with this collection.

Errors when Binding to Database

I am experiencing a problem creating a DB2 query from VisualAge for
Smalltalk, Version 2.0. I have tried the following procedure. First I issued
the following commands from an OS/2 command line :

SQL

SQLBIND ABTD3220.BND SAMPLE /F=ISO SQLWARN NO
SQLBIND ABTD1620.BND SAMPLE /F=ISO SQLWARN NO

Second, I connected to the DB2 database from the Transcript window.
Finally I dropped the query part onto the free-form area and opened the
settings to create a query. When selecting Insert from the options, I
received an error message saying that the SQLDA had set the SQLVAR to 0
and that the DB2 DBMS required at least 2 in this field. Did I overlook
anything?

To get VisualAge for Smalltalk, Version 2.0, to run with DB2/2 2.1, you need
to rebind to your database from within the DB/2 command line processor
using an additional parameter:

Try doing a connect to your desired database from CAE/2 OS/2 DB2
command processor:

• CONNECT TO databasename

Chapter 5. Database 147

• BIND ABTD3220.BND DATETIME ISO SQLWARN NO

• BIND ABTD1620.BND DATETIME ISO SQLWARN NO

It is important that you do the connect and the bind from within the
command line processor.

Automatically Connect and Log-on to Database

When we test our application, the system prompts us for a Data Source
Name every time we access the application. Would it be possible to write a
piece of code that automatically does a connect and log-on to an ODBC
database?

Here is some Smalltalk code that can be used to automatically connect and
log-on to an ODBC database:

Smal l ta l k

| conSpec logonSpec |
conSpec := AbtDatabaseConnectionSpec

forDbmClass: #AbtOdbcDatabaseManager
dataSourceName: ′FoxProC:′.

logonSpec := AbtDatabaseLogonSpec
id: ′ ′
password: ′ ′
server: ′FoxProC:′.

conSpec connectUsingAlias: ′FoxProAliasC′
logonSpec: logonSpec.

SQL Support

Does VisualAge for Smalltalk support the construction of any SQL
statement? For example, can I issue these commands from an SQL editor?

• SELECT FOR UPDATE

• FETCH

• LOCK / UNLOCK

• COMMIT

148 VisualAge for Smalltalk Handbook − Features

The SQL Editor does not support construction of the SELECT FOR UPDATE
statement; however, you can use the Manual edit option to construct such a
query.

The fetch operation is actually handled by using a VisualAge for Smalltalk
AbtResultTable instance. Manipulation of the resultTable is hidden from the
user when using the VisualAge database query parts; however, you can
write a Smalltalk script to perform this type of manipulation (see example
below).

Also, lock/unlock statements can be built using the Manual create option of
the Database Query.

The Smalltalk script below was created without the visual query parts. It
executes successfully against an Oracle database connection, but should be
useful for IBM and ODBC as well:

Chapter 5. Database 149

Smal l ta l k

| connection querySpec table rt oldRow newRow |

″V3 protocol -> connection := AbtDbmSystem activeDatabaseConnection.″
connection := AbtDbmSystem activeDatabaseMgr databaseInUse.
table := connection openTableNamed: ′ACCOUNTs′.

connection executeSQLStatement:
′LOCK TABLE ACCOUNTS IN SHARE MODE′.

querySpec := ′SELECT * FROM ACCOUNTS WHERE ACCOUNT_ID′,
′ = 1 FOR UPDATE OF BAL′.

″Executing the above query causes the result set to be locked″

rt := connection resultTableFromQuerySpec: querySpec.

″#next message performs a cursor ′ fetch′ operation″
oldRow := rt next.
newRow := oldRow deepCopy.
newRow at: ′BAL ′ put: 135.

″Statement below causes a standard ′UPDATE′ statement to be
executed″
table atRow: oldRow putRow: newRow.

″VisualAge IBM database support has a positioned update feature.
See AbtIbmResultTable. Update the row where the cursor is currently

 positioned. For example: rt atCurrentRowPutRow: newRow.″

″Close the resultTable. This causes the cursor to be closed″
rt close.
connection commitUnitOfWork.

″Alternatively, you can execute the commit as follows″
connection executeSQLStatement: ′COMMIT′.″

150 VisualAge for Smalltalk Handbook − Features

Using One Database with Different Database Managers

We want to develop an application that should use a database that resides
in different database managers. We intend to exploit the native access to
DB2 and Oracle and use the ODBC support for the other situations. We are
working with VisualAge for Smalltalk, Version 3. I would like to have an
answer to the following questions:

 1. How should I design my application in order to reuse my data logic for
the different database managers?

 2. Would it be possible to create one application that supports all of the
database managers I intend to use? For example, would VisualAge for
Smalltalk give you the possibility of creating different paths depending
on the database manager you want to use?

 1. By changing your database connection specifications, you can cause the
same database logic to be executed against different database sources.
There is a limitation: When the VisualAge for Smalltalk SQL Editor
saves queries containing host variables, the host variable representation
is saved in a format that is tied to the database connection used when
building the query.

Queries that use host variables can be saved without information about
the variable characteristics, but these queries will perform slower. Use
the ′Manual create ′ option to build queries that do not retain information
about their host variable shapes.

 2. It seems possible to use subapplications that contain information
specific to the database manager you are working with.

You would:

• Define a subapplication for each of the database managers to be
supported

• Create configuration expressions for each of the subapplications, so that
only the applicable subapplication gets loaded, based on the state of the
image (for example, if ODBC loaded, load ODBC subapplication)

• Create an access set (with the same name) in each of the
subapplications. Only one of the subapplications can be loaded at any
given time if you do this.

• Define your database connection specification in the subapplication.

• Define your queries (with no host variable information) in an access set
found in the application. Alternatively, you could define your queries in

Chapter 5. Database 151

the subapplication, but you would have to build and maintain the query
in three different places.

• Verify proper prerequisites for each of the application line-ups (for
example, each subapplication has different prerequisites)

Query Not Found in Database Access Set

After I save a query (no matter which type) in a nonvisual part and restart
VisualAge for Smalltalk, get the following error: ABT.SQL.9.w. It says that
the query is not found in the database access set. However, if I look in the
proper access set I can see that the query is specified. The application that
uses these ″not found″ queries works fine if you edit the queries. Why do I
have to edit them to make my application work?

Below is some information which should prove useful in helping you locate
the edit time representation of your query. When VisualAge saves a query
specification, it actually saves two types of information.

 1. A run-time selector is saved in the access set to build the query at
application execution time.

 2. An edit-time object is saved in the repository (manager). In addition to
the run-time representation of the query specification, the edit-time
object contains information to reconstruct the edit-time settings in the
SQL Editor.

When looking for a particular query specification, the Database query
settings view recognizes only existing queries for which both of the above
pieces of information exist. Since you′ve verified that the run-time selector
exists, it appears that VisualAge cannot find the edit-time representation of
the query. If you are using the VisualAge for Smalltalk Professional (Team)
development environment, check for other editions of the access set (use
the ′Editions′ option from the VisualAge organizer).

Be aware that loading the run-time selector into your image will allow the
query to execute, but the edit-time representation (stored in the manager) is
associated with a particular edition of the access set. You can inspect the
following line of code to view the edit-time query specification names in your
access set:

Smal l ta l k

< access set > querySpecNames

152 VisualAge for Smalltalk Handbook − Features

Using get QuerySpecNamed:

I am developing an application that uses DB2/2 support. I was very pleased
with the method getQuerySpecNamed: It allowed me to define query
specification visually and use it in a script. However, I was quite surprised
to see that this method is considered to be an edit-time method, since it is
defined in the abtEditDatabaseSupport application. Is there a reason for
this? Am I wrong in using this method in a run-time script?

You should not be using this method at run time. This method is an internal
method and is only used at edit time. Not every class and method supplied
with VisualAge for Smalltalk is part of the API. It is very important to
understand that VisualAge for Smalltalk includes not only the classes and
methods that compose the API, but also the classes and methods used in
the internal functioning of the VisualAge for Smalltalk APIs and the
VisualAge for Smalltalk environment and its tools. The non-API classes and
methods are primarily provided to aid developers in understanding the
functioning of the system and in debugging their usage of the API.

Setting MaximumNumberRows

How can I set the query part′s maximumNumberRows: attribute?

Listed below is a Smalltalk query specification example that sets the
maximumNumberRows to 5:

Smal l ta l k

| activeDatabase querySpec result resultCollection |
resultCollection := OrderedCollection new.
activeDatabase := AbtDbmSystem activeDatabaseMgr

openDatabaseNamed: ′ORDERENT′.
querySpec := (AbtQuerySpec new)

statement: ′SELECT CUSTOMERS.CUSTOMER_NUMBER,
CUSTOMERS.NAME FROM CUSTOMERS′.

result := activeDatabase resultTableFromQuerySpec: querySpec.
result maximumNumberRows: 5.
result do: [:row |

resultCollection add: (row asString)].
^resultCollection.

Chapter 5. Database 153

Accessing a Database Using Smalltalk

To access a database using only Smalltalk, begin with modeling. Do some
analysis and design of your business and decide what object models your
business needs.

For example, if you are querying a customer database, I would have a
customer object that contains data particular to a customer. Then, I would
have, possibly, a customer list. This customer list would be an ordered
collection of customers.

Here is an example of code that builts a result table in Smalltalk and stuffs it
into a table part of the window. However, the table part must already have
its columns set up corresponding to the database columns. In other words,
the attribute names for each column must be the database column names
(in upper case). The example is:

Smal l ta l k

getResults

| dbmgr db table querySpec rt rc |

dbmgr := AbtDbmSystem activeDatabaseMgr.
db := dbmgr openDatabaseNamed: ′CLIENTLG′.
table := db openTableNamed: ′USERID.CLIENT′.
querySpec := (AbtQuerySpec new)

statement: ′select * from CLIENT′ .
rt := db resultTableFromQuerySpec: querySpec .

rc := ((AbtQueryResultTable new)
querySpec: querySpec ;
database: db ;
resultTable: rt; yourself).

(self subpartNamed: ′Table′) rows: (rc rows).

The following example of code takes a result table on the layout surface and
puts the rows into an ordered collection. At the end of the code, it takes
the new theClientList and stuffs it into a variable on the layout surface called
clientCollection so that it is accessible by other parts that use this part:

154 VisualAge for Smalltalk Handbook − Features

Smal l ta l k

createAllClientList
″Perform the createAllClientList action.″

| newClient theClientList theResultTableRows |
theResultTableRows :=

(self subpartNamed: #′resultTable of DatabaseQuery′)
valueOfAttributeNamed: #rows selector: #′ IS_rows′.

theClientList := OrderedCollection new.

(theResultTableRows) do: [:aRow |
newClient := Client new.
newClient myDatabaseRow: aRow.
theClientList add: newClient].

(self subpartNamed: #clientCollection) value: theClientList.
self currentClient:

(self subpartNamed: #′currentRow of resultTable of DatabaseQuery′)
value.

Providing User Feedback when Updating DB2

You can pause a process by using the Delay class, but it seems like
something you shouldn′ t have to do. The typical way of coding this is as
follows:

 1. Put up progress indicator

 2. Fork background process (forkAt: Processor userBackgroundPriority)

 3. Background process calls ″CwAppContext default asyncExecInUI:
<update progress ind icator>″ occasionally.

 4. Background process finishes, calls ″CwAppContext default syncExecInUI:
<c lose process ind icator>″.

Sometimes developers forget step (2) and run off the user interface process.
It doesn′ t hang VisualAge for Smalltalk because the database component
forks work processes, but they don′ t get user interface updates as they
expect. The alternative approaches to background processing is covered in
the IBM Smalltalk Programmer′s Reference.

Chapter 5. Database 155

Executing a Stored Procedure

Is it possible to execute a stored procedure with VisualAge for Smalltalk,
Version 2, via ODBC?

VisualAge for Smalltalk, Version 2, ODBC does not support executing stored
procedures visually, but you could create a Smalltalk script similar to the
following:

Smal l ta l k

| activeDatabase querySpec result resultCollection |

resultCollection := OrderedCollection new.
activeDatabase := AbtDbmSystem activeDatabaseMgr databaseInUse.
querySpec := (AbtQuerySpec new) statement: ′{call sp_who}′.
result := activeDatabase resultTableFromQuerySpec: querySpec.
result do: [:row | resultCollection add: (row asString)].
^resultCollection

This will return the active users on SQL Server as strings. The ODBC stored
procedure calling convention is {call xxxx}.

Executing a Stored Procedure with Parameter

How can I execute a stored procedure call to DB2/2 with parameters using
ODBC Windows CAE?

Here is an example for calling a stored procedure that passes one
parameter:

156 VisualAge for Smalltalk Handbook − Features

Smal l ta l k

| aDict querySpec ct |
aDict := Dictionary new.
ct := CompoundType new

addField: (AbtOdbcVarCharField new
name: ′COL1′;
count: (20)).

aDict at: ′COL1′ put: ′CHUCKTEST′.
querySpec := (AbtQuerySpec new)

statement: ′{call STOREDPROC(?)}′.
querySpec hostVarsShape: ct.
AbtDbmSystem activeDatabaseMgr

executeQuerySpec: querySpec
withValues: aDict.

ODBC Keyword Limitation

It appears that VisualAge for Smalltalk limits the connection string keywords
that it passes on to an ODBC driver to DSN, user ID and password. Are
there other driver-specific specific keywords that can be sent in from
VisualAge for Smalltalk?

Most of the connection information can be entered in the ODBC.INI file
under the headings of the specified drivers. Refer to the ODBC Drivers
Reference information. The only information that can dynamically be sent in
at run time is the user ID, password, and DSN.

High-Level Qualifiers

I need to change the high-level qualifier in my application. Is there a way to
do that without having to go into each query and modify it? Is it safe to edit
the DB_allSpecs method and change from there?

There is a way to change a high-level qualifier for all database access sets
in an application for run time.

In order to create a database query, you need to specify a database access
set. The database access set is a Smalltalk class that contains information
about your queries. In particular, the private class method DB_allSpecs
contains this information. You can manually change this method to specify

Chapter 5. Database 157

the new high level qualifier, or you can modify and run the code below to
change the method.

If you created your database query using the SQL Editor (nonmanual
option), the SQL Editor will not show this change. Consequently, if you
update your query at a later time, DB_allSpecs will be generated with the
old high-level qualifier. Remember to modify the method or run the code
below again.

Once you′ve changed the high-level qualifier in the DB_allSpecs method,
you need to look for the new high-level qualifier at development time (test
option on the Composition Editor) and run time.

The best approach is to have one version of the class for development and
one for run time (if you have VisualAge for Smalltalk Team). Make sure to
release the correct version to your application before packaging it for run
time, or create a development and a run-time application with the
appropriate class. The code is as follows:

158 VisualAge for Smalltalk Handbook − Features

Smal l ta l k

″this code will change a high level qualifier for all
database access sets in an application″

| app oldHLQ uOldHLQ newHLQ uNewHLQ aSet uStmt oStmt
aChanges sChanges start index |
app := yourApp. ″set this to the app you want altered″
oldHLQ := ′oldHLQ′. ″set this to the old high level qualifier″
newHLQ := ′newHLQ′. ″set this to the new high level qualifier″
uOldHLQ := oldHLQ asUppercase.
uNewHLQ := newHLQ asUppercase.
(AbtDbmSystem accessSetNamesForApp: app)

do: [:aClassName |
aChanges := false.
Transcript cr;

show: (′Examining Access Set - ′,aClassName).
(aSet := aClassName abrAsClass) registeredQuerySpecs

do: [:aQuerySpec |
oStmt := aQuerySpec statement.
uStmt := oStmt asUppercase.
sChanges := false.
start := 1.

″for readability the next whileTrue^ loop is shifted to the left″

[(index := uStmt indexOfSubCollection: uOldHLQ starting start) ∼ = 0
]

whileTrue: [
oStmt := (oStmt copyFrom: 1 to: index - newHLQ),

(oStmt copyFrom: index + oldHLQ size to: oStmt size).
sChanges := true .
uStmt := oStmt asUppercase.
start := index + newHLQ size.].

(sChanges) ifTrue: [
aQuerySpec statement: oStmt.
aSet putQuerySpec: aQuerySpec.
Transcript cr; show:

(′Changes made to Query Spec - ′, aQuerySpec name)
].

]. ″ end query specs for access set ″
]. ″end access sets ″

Chapter 5. Database 159

SQL Insert in Plain Smalltalk

Is it possible to perform a SQL Insert statement using plain Smalltalk? If so,
how do I do this with multiple rows of data?

The following code examples will insert into the database; you can add
looping to add multiple rows:

Smal l ta l k

″Example - insertFromScript″
| db dbManager dict qSpec queryStatement |
dbManager := AbtDbmSystem activeDatabaseMgr.
db := AbtDbmSystem activeDatabaseMgr

openDatabaseNamed: ′COMPANY′.
queryStatement := ′ INSERT INTO EMPLOYEE

(EMPLOYEENUMBER, NAME,DEPTNUMBER,DESCRIPTION)
VALUES (:EENUM,

:EMPLOYEENAME,:DEPTNUM,:DESCRIPTION)′.

qSpec := AbtQuerySpec new
statement: queryStatement;
yourself. dict := Dictionary new.

dict at: ′EENUM′ put: ′267267′.
dict at: ′EMPLOYEENAME′ put: ′Joe Tex′.
dict at: ′DEPTNUM′ put: ′TK5B′.
dict at: ′DESCRIPTION′ put: ′Sales Rep′.
db executeQuerySpec: qSpec

withValues: dict.

160 VisualAge for Smalltalk Handbook − Features

Smal l ta l k

″Example insert statement″
| dbm db qs sel |
db := AbtDbmSystem activeDatabaseMgr

openDatabaseNamed: ′CLIENTLG′.
dbm := AbtDbmSystem activeDatabaseMgr.
se l := ′ INSERT INTO CLIENT

(NAME, COMPANY_NAME, PHONE_NUMBER)
VALUES(′ ′Mr. Grinch′′, ′′Mean&Heartless ′′, ′′123-4567′′)′.

dbm beginUnitOfWork.
qs := (AbtQuerySpec new) statement: sel.
dbm executeQuerySpec: qs.
dbm commitUnitOfWork.

Creating a Table in Smalltalk Code

How can I create a Table in DB2/2 using Smalltalk code?

You can create a table in Smalltalk code by executing the following code
(Make sure to connect to the database first.):

Smal l ta l k

| sqlDef dbmgr db table |
dbmgr := AbtDbmSystem activeDatabaseMgr.
db := dbmgr openDatabaseNamed: ′DBNAME′.
sqlDef := ′(COL1 date not null,′,

′ COL2 varchar(20), ′ ,
′ COL3 int,′,
′ COL4 decimal (6,2),′,
′ COL5 char(1) ,′,
′ COL6 varchar(10))′.

table := db
createTableNamed: ′TABLENAME′
definition: sqlDef.

Chapter 5. Database 161

Specifying Host Variables for a Query

How can I manually set host variables for a query?

The following example selects rows from a table using an access set and
host variables:

Smal l ta l k

| activeDatabase result resultCollection querySpec varDict |
querySpec := (YourAccessSet

getQuerySpecNamed: ′showColumnNames ′).

resultCollection := OrderedCollection new.
activeDatabase := AbtDbmSystem activeDatabaseMgr

openDatabaseNamed: ′YourDatabaseName′.

″Here you need to create a dictionary in which you
associate each host variable name with its value″

varDict := Dictionary new.
varDict at: ′ tableName ′ put: ′ theActualValue′.

″Then you use the resultTableFromQuerySpec:withValues: message ″

result := activeDatabase
resultTableFromQuerySpec: querySpec
withValues: varDict.

″This would also work without an access set
querySpec := (AbtQuerySpec new)

statement: ′SELECT name FROM sysibm.syscolumns
WHERE tbname = :tableName ′. ...″

result do: [:row |
resultCollection add: (row asString)].

^resultCollection.

162 VisualAge for Smalltalk Handbook − Features

Deleting Rows from Database

I am trying to delete a number of rows from a database (DB2/2 Version 2.1).
I think of using the following approach. First, declare a cursor to get the
rows and second, skip through the rows and delete those that I don′ t want.
Would this be the right approach?

The idea will work. It is advisable to use public API methods when building
your scripts. In this case, the query result table is the recommended
mechanism. The cursor classes contain no public protocol and are not
intended for direct use by programmers. The cursor is indirectly
manipulated via the protocol defined in the AbtIbmResultTable class. To
accomplish the intent of your script, you might consider using code like that
shown below.

Just for your information, to browse the API methods for the database
component, select the Browse category option from the Smalltalk tools
option of the Transcript. Database run-time APIs are categorized as
AbtDbRun-API.

Smal l ta l k

| connection qspec table rt oldRow newRow |
connection := AbtDbmSystem

activeDatabaseConnectionWithAlias: ′VAIBMSamples ′.
qspec := ′SELECT * FROM NameOfTable FOR UPDATE′

abrAsQuerySpec.

rt := connection resultTableFromQuerySpec: qspec.
oldRow := rt next.

[rt atEnd] whileFalse: [
rt deletePresentRow.
rt next

].

rt close.
connection commitUnitOfWork.

Another potential option is to use the DELETE statement to remove the rows
without having to fetch them first:

Chapter 5. Database 163

Smal l ta l k

| connection qspec table rt oldRow newRow |
connection := AbtDbmSystem

activeDatabaseConnectionWithAlias: ′VAIBMSamples ′.

qspec := ′DELETE FROM TableName WHERE F1 > 20′
abrAsQuerySpec.

 connection executeQuerySpec: qspec.

Searching for Database Connection Errors

What approach can I use to trace an error when trying to make a request to
a database?

A trace of the SQL operations performed by your application would be
useful. Below are some instructions to help you capture the trace
information:

• Disconnect your active IBM database connection.

• Establish a new connection to the target database.

The above steps ensure a clean start.

• Execute the following command to start tracing of database calls:

Smal l ta l k

AbtDbmSystem activeDatabaseMgr startTraceOn: ′ trace.out′.

• After the error message is returned, execute the following command to
stop tracing of database calls:

Smal l ta l k

AbtDbmSystem activeDatabaseMgr stopTrace.

• Scan the trace file TRACE.OUT for anything that looks unusual.

164 VisualAge for Smalltalk Handbook − Features

Disabling Error Message

I want to handle the AbtError resulting from a query. I don′ t want the error
message to be displayed to the user. I can do this by subclassing the
classes under AbtDatabaseQuery and overwrite the defaultErrorBlock
method, but I would like to know if there is a switch to disable this option in
all the queries.

One way to overwrite the defaultErrorBlock is as follows:

• Extend the AbtDatabasePart class in your application

• Add an initialize instance method setting the (individual) errorBlock to
whatever you want, making sure you have super initialize as the first
statement.

Windows 95 and DB2

We have been working with VisualAge for Smalltalk Professional for OS/2,
with heavy use of the IBM Database option (DB2/2 and MVS DB2). We now
have some Windows 95 clients. Does Windows 95 only allow for access to
DB2 via the call-level interface and using ODBC rather than native DB2? Is
native DB2 access not possible?

DB2 support on Windows 95 and NT is through the DB2 CLI. The CLI is
native support. It is possible to use the CLI as an ODBC driver, but that is
not what is done. The support is coded directly to the CLI. Furthermore, the
future direction will be to use the CLI on all platforms. There is information
about this in the database readme file, including information on how to
migrate.

Database Parts for Windows 95

We are porting our VisualAge for Smalltalk, Version 3.0a, applications from
OS/2 (professional client with server) to a Windows 95 client. Our
applications use the database query parts off the parts palette (multirow
query and the old query part). Since the Windows 95 version of VisualAge
for Smalltalk uses IBM′s CLI for DB2, does anything have to be changed?
Should we be able to do our queries without any changes?

Chapter 5. Database 165

When porting to the call-level interface, it is necessary to migrate the host
variable shapes that are saved in your query parts. An application is
provided, AbtEditDatabaseMigrationApp to assist you. Load the application
and execute AbtDatabaseMigrationView new openWidget. There should be
some guidance on how to use it in the database readme.

Windows 95 and native DB2 DLLs

We were using the IBM database option in the OS/2 version of VisualAge for
Smalltalk Version 3.0a, Professional. The class AbtIbmDatabaseManager
implements a message called #sqlca, #sqlstate and #sqlcode (although they
are private methods). We intensively make use of these methods in our
application.

On switching to the Windows 95 platform, we cannot use the native DB2
DLLs. Instead, we must use the AbtIbmCliDatabaseManager class. This
class does not implement the #sqlca, #sqlstate, and #sqlcode messages.
Why were they not implemented, and is there a way to get this information?

The AbtIbmCliDatabaseConnection stores the last error to occur in a
dictionary accessed by #prevError. The dictionary key is the SQL state, and
the value is a string that includes the SQL code and the associated
message. The sqlcode is part of the string that is stored in the prevError
dictionary. You can write a method to pull the sqlcode out of the string.
The CLI did not have a way to retrieve an SQL communication area
(SQLCA) until Version 2.1 of DB2/2, so if you have that version you will be
using a subclass of AbtIbmCliDatabaseConnection, namely
AbtIbmCliCSDatabaseConnection. This class has a method,
#getSqlcaForStatementHandle:ifError:, which can be used to retrieve the
sqlca. This method uses the #buildSqlca method to create an empty SQLCA
to pass along to the CLI. The statement handle is saved in the cursor object
(AbtIbmCliCursor). Each result table has a cursor. The selector is #hstmt.
Be aware that this is a private method that might not be supported in future
releases.

166 VisualAge for Smalltalk Handbook − Features

Scrollable Cursors

I am working on an application that searches a database for information. It
will be used in an environment where a telephone operator answers
questions online. Hence an extremely quick response time is needed. It
won ′ t be necessary to get more than 10 records.

I have written my own persistence layer methods and I decided not to use
visual parts for database access. To accomplish the above, I was thinking
to implement and manage scrollable cursors, however, I welcome any other
suggestion.

If you are using result tables (AbtResultTable, or subclass) in your
persistence layer, you could do the following. Use #for:do:ifError::, the first
argument is the number of rows to retrieve. For example, (rt is an
AbtResultTable rows is a collection):

Smal l ta l k

rt
for: 10
do: [:row | rows add: row]
ifError: [:err | err display].

The #for:do:ifError: does not fetch all rows. It fetches up to the number
specified in the first argument. It leaves the cursor open, so the next time
you use it, it picks up where it left off, and fetches the next n rows. There
are other methods, like #do:ifError:, that fetch all rows, but #for:do:ifError:
does not.

Database Connection Information

In the IBM database manager, there is a message called #connectionInfo.
This allows you to retrieve the connection user ID. Is there some kind of
similar method in the IBM call-level interface database manager?

Chapter 5. Database 167

The message #connectionInfo was private, so it wasn′ t added to the CLI
implementation. To get the user ID, add the following method to
AbtIbmCliDatabaseConnection:

Smal l ta l k

userName
″Answer the user name.″

| infoBuffer |
infoBuffer := ByteArray new: 9.
self

getInfo: 47 ″SQL_USER_NAME″
buffer: infoBuffer
ifError: self errorBlock.

^infoBuffer asString abrTrimNullsFromEnd

Moving from ODBC to CLI

How could we move from an application using ODBC to access DB2/6000 to
an application that uses CLI in VisualAge for Smalltalk Windows 95, Version
3.0a? We have only one access set and think we could do the changes by
hand. However, we are not convinced that this is the right way to go. We
welcome any other idea or suggestion.

The CLI database manager is a subclass of the ODBC database manager.
The CLI database manager′s type dictionary consists of all the ODBC data
types and those data types unique to IBM CLI, such as large object (LOB)
fields. Therefore, there is no need to change your queries, only your
connection specification needs changing. Do the following to migrate your
application to IBM CLI from ODBC:

 1. Catalog the DB2/6000 database you′ l l be accessing.

 2. Update your connection specification, changing the database manager
to IBM Database 2 - CLI.

 3. Set the database source name to the alias you used to catalog the
DB2/6000 database.

To take a look at the types supported by a CLI database manager, inspect
the following code snippet after connecting to a CLI database (replace
′alias ′ with your connection alias):

168 VisualAge for Smalltalk Handbook − Features

Smal l ta l k

(AbtDbmSystem activeDatabaseConnectionWithAlias: ′alias ′)
databaseMgr class typeDict

Undefined Access Set

I have tried to port an DB2/2 application from Version 3.0 of VisualAge for
Smalltalk to Version 3.0a. Testing the application revealed that I had lost
my database connection. When I tried to recreate it, I was told I had not yet
defined an access set. However, my access set class is present within the
application. Any ideas on what is happening?

VisualAge will attempt to build a connection specification only when an
access set is actually defined within an application.

An access set that is extended by an application will not be recognized
when the database connections view attempts to create a new connection
specification. In order to edit or create a connection specification, you must
select the application where your access set is defined, then open the
Database connections view.

To determine which application owns the access set, display the result of
the following statement:

Smal l ta l k

< M y A c c e s s S e t > controller

The connection specification is merely a method in your access set. If the
above advice is not helpful, you can:

• Double-click on your access set to open a class browser.

• Manually create a new class method (like that below) that matches the
name of your connection alias.

• Add the method to category ′Connection specs′ (the database query
parts search for defined connection specifications based on category
name).

Chapter 5. Database 169

Smal l ta l k

″Sample of connection specification method for Oracle″

^AbtDatabaseConnectionSpec new
dbmClass: AbtOracleDatabaseManager;
dsn: ′Current Oracle Database′;
promptEnabled: true;
yourself.

The Database connections view displays information about connection
specifications defined by an application; however, the database query parts
(on the palette) have access to all connection specifications that are visible
to the application (all connection specifications defined within the
application or one of its prerequisites).

Table and View Names

The queries to retrieve table and view names from a database are
hard-coded in the public methods of AbtIbmDatabaseConnection. Methods
with prefix ′all*′ are typically used to gather lists of tables or views, for
example, allUserTableNamesIfError: (there are several others also). You
can modify the queries in these methods to point at the views that exist for
your installation.

Use of the Multirow Query Settings

How do I use the multirow query settings?

Use it to set the maximum number of rows to fetch (used with a one-time
query to limit the rows returned Enable packeting) for DB2/2, quick forms,
and containers. It returns up to the number of rows that will fit on the
display area. You can get more rows as needed to satisfy user actions,
such as scrolling, and enable blocked fetches. For ODBC, you can up to the
number of rows that you specify in the Blocked fetch size for each request

170 VisualAge for Smalltalk Handbook − Features

DBF Format

Does VisualAge for Smalltalk support DBF format?

Yes. VisualAge for Smalltalk supports ODBC and there are ODBC drivers for
dBase files.

ODBC Support for OS/2

A hypothetical company wants to develop applications for laptops 12 MB of
RAM and prefers not to use DB2/2 because of its license costs and memory
requirements. Is it cheaper to use an ODBC-driver for dBase files or
something similar? What about the Multidatabase Feature that is bundled
with the base product (single user and team versions) and should support
ODBC. Are all drivers mentioned in the ODBC document a part of VisualAge
for Smalltalk? Are users allowed to deploy these drivers without charge?

If you are using the Explore CD, the answer is that you can′ t distribute it and
it would not run if you did. If you bought VisualAge for Smalltalk, then you
can distribute the ODBC DLLs that came with the product without charge.
(The ODBC support came with the base product.) If you had the Explore CD
and ODBC support did not come with it, then you need to get a new version
of the Explore CD that comes with the ODBC support.

Object-Oriented Databases

Does VisualAge for Smalltalk work with OO databases?

Versant and GemStone are the ones that work today. GemStone has a very
good object-oriented DBMS for use with Smalltalk, including VisualAge and
IBM Smalltalk.

Absence of Database Query Fields

What would cause my database query to show no fields?

Chapter 5. Database 171

One of two things:

 1. The database is not set up or connected to properly. See the VisualAge
for Smalltalk User′s Guide for connecting to a database. If you are using
DB2, make sure you also bind to the database. Use your DBMS tools to
set up the database schema.

 2. The query is not set up properly. The database query part has a
settings popup. In the resulting dialog, define your query. For more
information, refer to the VisualAge for Smalltalk User′s Guide.

Support for Blocking with Oracle

Does VisualAge for Smalltalk have support for blocking with Oracle?

For Native Oracle, yes. For ODBC no (although it may use it under the
covers).

Comparing ODBC and Native Oracle Interfaces

How does the ODBC interface compare with a native Oracle database
interface?

Performance differences between ODBC and native Oracle are not
extremely significant. Native Oracle has ″blocked fetching″ capability, and
performance can be tuned by the programmer by specifying an optimal
number of rows to fetch. However, we suspect that the ODBC driver is also
taking advantage of Oracle′s blocked fetching capability (under the covers)
since data retrieval speeds are quite comparable. Both ODBC and native
Oracle have the ability to INSERT/UPDATE multiple rows with a single
database call. Both ODBC and native Oracle provide a stored procedure
interface; however, the ODBC interface does not support passing array
parameters to stored procedures (the native Oracle interfaces supports
array parameters). Native Oracle has definite advantages where application
setup is concerned. ODBC requires the configuration of an .INI file for each
machine where the application will run, and you must ship support DLLs
with your packaged application. Native Oracle uses the OCI DLL supplied
with Oracle; therefore, no additional files or setup is required when bundling
the run-time application. The configuration issue becomes even more
significant when deploying an application on multiple platforms. These are
really the only differences.

172 VisualAge for Smalltalk Handbook − Features

SQL0805N Message when Creating a Database Query

I get a SQL0805N message ″NULLID.ABTD3200 is not found. SQLSTATE=
51002″ when attempting to create a query on a new database. What am I
doing wrong?

This message signals that you forgot to bind VisualAge to your database.
For IBM Database Managers, you must bind to a database before using it. If
you are using VisualAge for Smalltalk for OS/2, you can do this from the
Transcript window by typing the following where ′dbname ′ is the name of
the database you are binding to:

Smal l ta l k

AbtDbmSystem activeDatabaseMgr
bindToDatabaseNamed: ′dbname ′

If you prefer, you can bind to the database from an OS/2 command line:

sqlbind abtd3200.bnd ′ dbname′
sqlbind abtd1600.bnd ′ dbname′

If you are using VisualAge for Smalltalk for Windows, you must first create
an empty database from your OS/2 server machine. Then type the following
command at an OS/2 command prompt:

sqlbind abtdw20.bnd dbname /F=IS0

For more information on the Sqlbind command, consult the DB2/2 Command
Reference manual.

Checking Multidatabase Feature Installation

I want to check to see if we have already installed the Multidatabase
Feature of VisualAge for Smalltalk. How do I proceed?

To determine if you have previously installed the Multidatabase Feature,
follow these steps:

 1. Start VisualAge on your workstation.

 2. On the System Transcript window, select Smalltalk tools → Browse
Application .

Chapter 5. Database 173

 3. In the dialog that appears, type AbtDbmMultiDbBaseApp and then select
the OK push button.

If the Application Browser opens on AbtDbmMultiDbBase application,″
then you installed the Multidatabase Feature previously, and you should
follow the instructions for ″Multidatabase Customers.″ If, instead, a
message box displays with the message ″AbtDbmMultiDbBaseApp is not
the name of an application,″ then you have not installed the
Multidatabase Feature and you should follow the instructions for ″ODBC
Customers.″

 4. After determining whether or not, you have previously installed the
Multidatabase Feature, exit VisualAge for Smalltalk.

If you already have the Multidatabase Feature installed, be sure to
follow the instructions for installing ODBC titled ″Multidatabase
Customers.″

Changing the Database Name in All Application Classes

Before I package my application to send it to my customer, I need to change
the database name in all my database query parts. Is there an easy way to
do this without opening each part ?

Execute the following in your Transcript window or in a workspace. Make
sure to change MyApp, OLDDB, and NEWDB. Ignore the message written to
your Transcript.

Smal l ta l k

| record bldr |

MyApp allLocalClasses do: [:class |
((class inheritsFrom: AbtAppBldrPart)
and: [(bldr := (record := class partBuilderRecord) builder) notNil])
ifTrue: [bldr subpartBuilders do: [:subbldr |
(subbldr attributeSettingNamed: #databaseName) = ′OLDDB′
ifTrue: [subbldr attributeSettingNamed: #databaseName

put:′NEWDB′]].
class partBuilderRecord: record]].

174 VisualAge for Smalltalk Handbook − Features

Nature of ODBC

What is ODBC?

The IBM VisualAge for Smalltalk ODBC Support provides support for an
Open Database Connectivity (ODBC) interface between VisualAge for
Smalltalk applications and databases. The ODBC interface enables you to
create VisualAge database applications that are independent of a specific
database management system. ODBC Support provides a single ODBC
interface between your VisualAge applications and the specific database
drivers that you use to access databases.

Problem in Specifying Driver

When I was connecting to my database, I get the message ″Driver specified
by data source name could not be loaded (4149).″ What′s wrong?

This problem can happen when connecting to an Oracle, SQL Server, or
Sybase database.

During installation, you should have been asked whether or not you wanted
to initialize the odbc.ini file when you installed the VisualAge for Smalltalk
SQL Server or Oracle support. If you did not answer yes, type and execute
the following in your Transcript for Sybase or SQL Server:

Smal l ta l k

AbtMultiDbSqlSvrDatabaseManager installIniFile

or, for Oracle,

Smal l ta l k

AbtMultiDbOracleDatabaseManager installIniFile

Other causes of this problem may be that the location of DLLs starting with
″qe″ are not specified in the libpath in the config.sys (or path in the
autoexec.bat on Windows). These qe*.dll files are supplied with VisualAge
and reside in the \VISUALAG\DLL directory on the client machine (standard
VisualAge for Smalltalk) or server (VisualAge for Smalltalk Team). For
Sybase or SQL Server, the required file is qess04.dll and for Oracle,

Chapter 5. Database 175

qe704.dll. File qelib.dll is also an important DLL, required by both
databases.

Other potential causes of the problem using Oracle are that the
ORA7032.DLL file required by the VisualAge for Smalltalk code is not
present or its location is not specified in the libpath in the config.sys (or
path in the autoexec.bat on Windows). Oracle users must type a ′b:′ before
the server name on the connect if using SQL*Net for NetBIOS or ′ t:′ for
TCP/IP.

Other potential causes of the problem using Sybase or SQL Server are that
the SYBDB.DLL file required by the VisualAge for Smalltalk code is not
present or its location is not specified in the libpath in the config.sys (or
path in the autoexec.bat on Windows).

For Sybase or SQL Server, Versions above 4.6, or for Sybase System 10, the
user must install client code from Sybase that supports older versions of
Sybase (has the sybdb.dll file, not the newer libsybdb.dll file).

Also, users should remember that the server name must be typed in the
correct case (lower or upper) that was used during installation. In order to
check this, the user may look at the sql.ini file in the SQL Server ini
subdirectory. The ini file must be edited with a ini editor. However, you can
still see the server name just by typing the sql.ini file.

User ID Not Privileged for Read

I get a message SQL0551N; user ID does not have the privilege to perform
read. What′s wrong?

Make sure first that the user you are logged on to has authorizations to use
the table. Second, issue authority to the user ID that performed the bind on
the database. This is for VisualAge for Smalltalk, Version 2.0:

SQL

Grant run on package nullid.abtd3220 to userid or
Grant run on package nullid.abtd3220 to public

176 VisualAge for Smalltalk Handbook − Features

Error: Oracle ORA-00942

I receive an error message — ′Oracle ORA-00942: table or view does not
exist′ — when clicking on a table name when using the query builder in
VisualAge for Smalltalk. Why?

Oracle 6 had an entry in the all_synonyms table for accessible_columns.
That entry pointed the synonym accessible_columns to the table
all_tab_columns. Oracle 7 does not include this table, which VisualAge for
Smalltalk needs. To get this table, you can either create a synonym in the
all_synonyms table of accessible_columns and point it to the table
all_tab_columns and then VisualAge for Smalltalk should run okay.

Or, Oracle 7 provides a script named CATALOG6.SQL. This script creates
Version 6 views for compatibility. The script resides in the
RDBMS70\ADMIN subdirectory. If you run this script (you probably need
DBA authority), it will create the ACCESSIBLE_COLUMNS synonym that
VisualAge for Smalltalk uses. For details on this script, see the ORACLE7
Server Migration Guide.

Changing a High-Level Qualifier for Run Time

The high-level qualifier I use at development is different from the one I use
at run time. How can I change it for run time ?

In order to create a database query, you need to specify a database access
set. The database access set is a Smalltalk class that contains information
about your queries. In particular, the private class method DB_allSpecs
contains this information. You can manually change this method to specify
the new high-level qualifier, or you can modify and run the code below to
change the method.

If you created your database query using the SQL Editor (nonmanual
option), the SQL Editor will not show this change. Consequently, if you
update your query at a later time, we will generate DB_allSpecs with the old
high-level qualifier. Remember to modify the method or run the code below
again.

Once you′ve changed the high-level qualifier in the DB_allSpecs method, we
will look for the new high-level qualifier at development time (test option on
the Composition Editor) and run time. The best approach is to have one
version of the class for development and one for run time (if you have

Chapter 5. Database 177

VisualAge for Smalltalk, Team). Make sure to release the correct version to
your application before packaging it for run time or create yourself a
development and a run-time application with the appropriate class.

Smal l ta l k

″ this code will change a high level qualifier for all
database access sets in an application ″

| app oldHLQ uOldHLQ newHLQ uNewHLQ aSet uStmt oStmt
aChanges sChanges start index |

app := yourApp. ″set this to the app you want altered ″
oldHLQ := ′oldHLQ′. ″set this to the old high level qualifier″
newHLQ := ′newHLQ′. ″set this to the new high level qualifier″
uOldHLQ := oldHLQ asUppercase.
uNewHLQ := newHLQ asUppercase.
(AbtDbmSystem accessSetNamesForApp: app)

do: [:aClassName | aChanges := false.
Transcript cr; show: (′Examining Access Set - ′,aClassName).
(aSet := aClassName abrAsClass) registeredQuerySpecs
do: [:aQuerySpec | oStmt := aQuerySpec statement.

uStmt := oStmt asUppercase.
sChanges := false.
start := 1.
[(index := uStmt indexOfSubCollection: uOldHLQ startingAt:

start) = 0]
whileTrue: [oStmt := (oStmt copyFrom: 1 to: index - 1),

newHLQ,
(oStmt copyFrom: index + oldHLQ size to: oStmt size).
sChanges := true .
uStmt := oStmt asUppercase.
start := index + newHLQ size.
].

(sChanges)
ifTrue: [aQuerySpec statement: oStmt.

aSet putQuerySpec: aQuerySpec.
Transcript cr; show:

(′Changes made to Query Spec - ′
,aQuerySpec name)].

]. ″ end query specs for access set ″
]. ″end access sets ″

178 VisualAge for Smalltalk Handbook − Features

DB2 Cursor Control

How do I perform DB2 cursor control in VisualAge for Smalltalk?

VisualAge for Smalltalk does not currently support the control of cursors for
DB2. However, this level of control can be done with Smalltalk coding.

Below are some ideas for manipulating SQL cursors for IBM database
queries. Many implementation details are left out, but this information
should give you a starting point for enhancing the database visual part.

Cursor manipulation is possible using the AbtResultTable class.
AbtResultTable objects are required for any query that returns data to
VisualAge for Smalltalk, such as SELECT statements.

Below is a snippet of code that demonstrates a subset of the AbtResultTable
function. The #next message is equivalent to a cursor fetch. The #close
message closes the cursor.

Smal l ta l k

| dbm db rt row |
dbm := AbtDbmSystem activeDatabaseMgr.
db := dbm openDatabaseNamed: ′VISUALAG′.
rt := db resultTableFromQuerySpec:
(′SELECT * FROM SQLCAM01′ abrAsQuerySpec).
[(row := r t nex t) == n i l]
whileFalse: [Transcript show: row asString; cr].

rt close.

One way to override the result table (cursor) logic is to modify the Database
Visual part code. This code resides in application
AbtRunDatabaseQueryPartApp.

Create a subclass of AbtQueryResultTable class so that certain methods can
be overridden. Method #initializeOnResultTable is used to build a collection
of rows from the result table. The default implementation is to load all rows
into the collection using the AbtResultTable method do:. This method can
be overridden to initially retrieve only a certain number of rows.

Chapter 5. Database 179

Smal l ta l k

((self resultTable) == nil)
ifFalse: [self getMoreRows: 10].
″getMoreRows: must be written″

self currentRowIndex: ((self rows size > 0)
ifTrue: [1]
ifFalse: [0].

The getMoreRows: method must be created, and it will be used to get the
specified number of rows. The application developer will be responsible for
closing the cursor when finished.

Smal l ta l k

getMoreRows: aNum

| newRow rowCount |
 rowCount := 1.
 newRow := self resultTable next.

[newRow == n i l o r : [rowCount > aNum]]
whileFalse: [
self rows add:
(self updateObjectForRow: newRow alreadyInDb: true).
rowCount := rowCount + 1.
newRow := self resultTable next.]

Using the Public Interface editor, the user can create an action in the newly
created class to retrieve the next n rows.

AbtDatabaseQuery methods executeQuery and executeQueryAsTransaction
contain code to construct an AbtQueryResultTable object based on the
query being executed.

These methods would need to be overridden to instantiate the new
AbtQueryResultTable subclass (rather than AbtQueryResultTable).

180 VisualAge for Smalltalk Handbook − Features

Database Feature not Installable

I would like to use the Database feature of VisualAge for Smalltalk, but it is
not on my install selection. I am trying out the OS/2 VisualAge for Smalltalk
Team from the Explore CD. I need to access a Database but am unable to
install a database manager.

Selecting ′ Install...′ from the Smalltalk Tools menu in the System Transcript
provides only selections for DynamicDataExchange, Smalltalk Programming
Examples, SOMsupport and TrailBlazer. I have installed all available server
options (including IBM Database and C).

When I try to install the Multidatabase feature (I want to access an Oracle v7
database) there is no extra selection to install. What did I overlook?

VisualAge for Smalltalk features require a two-step install. Be sure that you
have installed the IBM Database feature from the CD, then check your install
selections from the Smalltalk Tools pull-down menu. Also, check the install
path in the abt.cnf to see if is pointing to the correct path. The abt.cnf file
resides in the \visualag subdirectory on the client machine.

If your install path in the abt.cnf seems correct, try executing the following
from within the Transcript window:

Smal l ta l k

System setSubsystemType: ′ABT′ to: ′VA′

Once this is executed, the ability to install the multidatabase, C, and COBOL
features should be on the install menu.

Database Support for Windows

What kind of database support is there for VisualAge for Windows?

Database support includes many databases. Included with the base product
is support for IBM DB2/2. Previously, support for accessing Oracle or SQL
Server was available through the Multi- database feature for VisualAge for
Smalltalk. Recently this was replaced with our new ODBC support, which is
free to users who have the base product. With ODBC support, many
additional databases are now supported.

Chapter 5. Database 181

In order to take advantage of DB2/2 under Windows, customers must
purchase DB2/2 or DB2/6000. Using a product called DB2 Client Application
Enabler/DOS (DB2 CAE/DOS), Windows clients can access either DB2/2 or
DB2/6000. DB2 CAE/DOS and other DB2 CAE products are offered free of
charge. With the help of a product called DDCS/2, clients may access DB2
data o MVS and AS/400.

Formatting rowsAsStrings to Remove Brackets

How do I format the string returned from rowsAsStrings from the database
result table to get rid of the brackets and other funny characters?

If you would like to display just one column of the database table in the
visual part (such as list box, combo box) then you can specify an attribute
name in the settings for that visual part that is the same as the name of one
of the columns in your database table. Then, connect the resultTable(rows)
to the visual part(items).

The rowsAsStrings message puts the brackets around each column in the
result row. The way to get around it is to pick out the data you want using
an expression like:

Smal l ta l k

name := row at: #COLNAME (Can do this if using Smalltalk
and not VisualAge)

If you would like to display more than just one column of the database table,
you can use the following examples as reference. The Multimedia User′s
Guide and Reference, shows you in the insurance Sample application, how
to write an attribute-to-script connection that formats the rows into nicer
looking strings. This is the example in that manual

182 VisualAge for Smalltalk Handbook − Features

Smal l ta l k

formatNameList
″Formats the names in the result table of the query as

Lastname, Firstname, Middlename.″

| list oldList aString table |

l ist := OrderedCollection new.
table := (self subpartAttributeValue: #(#NameTable self)).
table isNil ifTrue: [^list].

oldList := table rows.
(oldList isNil) ifFalse: [

oldList do: [:row |
aString := ((row at: #LASTNAME), ′, ′, (row at: #FIRSTNAME)

′, ′, (row at: #MIDDLENAME)
list add: aString]

].

^list.

Another alternative is to add an attribute to the public interface of a part.
This attribute can have a get method that returns the columns in a
displayable manner somewhat like the above examples. Then specify that
attribute name in the settings for your nonvisual part.

This is another example that fills a container from a query that retrieves
client names from a database:

Chapter 5. Database 183

Smal l ta l k

fil lContainer
″fills the container with client icons″
| client cnr icon rows name id |
icon := (AbtIconDescriptor new

moduleName: ′MTBMP10′;
id: 806;
yourself).

cnr := self partAttributeValue: #(#Container #self).
rows := self partAttributeValue:

#(# ′resultTable of DatabaseQuery′ #rows).
rows do: [:row |

name := ((row at: #LASTNAME), ′, ′,(row at: #FIRSTNAME),′ ′,
(row at: #MIDDLENAME)).

id := (row at: #ID).
client := AbtIconGadgetView new.
client parentView: cnr;

label: name;
largeIcon: icon;
openWidget.

client abtWhen: #defaultAction
perform: (DirectedMessage new

receiver: self;
selector: #openClient:id:;
arguments: (Array with: name with: id)).

].
cnr arrangeItems.

Intercepting a 100 or 0 SQLCODE

How can I intercept a 100 or 0 SQLCODE?

To check that a query successfully retrieved data, you can check that the
″rows″ collection size is greater than 0. For example:

Smal l ta l k

(self rows size = 0)
ifTrue: [...″SQLCODE = 100 logic″]
ifFalse: [... ″SQLCODE = 0 logic″]

184 VisualAge for Smalltalk Handbook − Features

Database Access Set

What is a database access set and how do I create one ?

A database access set is a VisualAge for Smalltalk class used for storing
database query specifications and stored procedure definitions. It is created
when you want to build a database query part.

As long as you use only one database manager, you can use the same
access set for storing all of the queries and stored procedures in an
application. An access set can be shared by different applications. If you
use more than one database manager, however, create an access set for
each database manager.

To create a database access set:

 1. Select Browse Application on a new or existing application.

 2. In the Application Browser, select Create Database Access Set from the
Classes pull-down menu.

 3. Type a name for your access set in the Database Access Set Name
window, then select the OK push button.

Stored Procedures for SQL Server

How do I handle stored procedures for the SQL Server in VisualAge for
Smalltalk?

There are two implementations that will support SQL Server stored
procedures in VisualAge for Smalltalk.

The first involves changing the VisualAge code. This will enable the
customer to still use the visuals (the database query part, not the stored
procedure part) much as you currently do a database query. This
implementation also requires that the customer package his application as a
run-time image or, if using the merge method, dump the changes to the
VisualAge code to merge with his application.

This change can be overwritten with maintenance supplied by the VisualAge
for Smalltalk support team.

The second implementation is totally programmatical and code is provided
below under ″Implementation 2.″ This code must be written for every stored

Chapter 5. Database 185

procedure you wish to call. Alternatively, the customer can design a
nonvisual reusable part along these lines.

Implementation 1:
Go to the System Transcript menu and click on Smalltalk
Tools/System/Change User and change to Library Supervisor. Then, go to
the System Transcript/Smalltalk Tools menu and click on Manage
Applications . Find and click on AbtRunDatabaseQueryPartApp , and choose
Applications/Create New Edition . Then, in the second pane, click on
AbtDatabaseQuery and choose Classes/Create New Edition .

Drop a database query part on the layout surface of any composition editor.
Bring up the context menu (second mouse button) and click on edit part .
Then, go to the Public Interface Editor for that part, click on the actions page
and add a new action name called executeStoredProcedure. In the action
selector box, type executeStoredProcedure. Go to the script editor for that
part, click on the AbtDbRun-Internal category and write a script called
″executeStoredProcedure″ that looks like the following:

Smal l ta l k

executeStoredProcedure
″Execute my query spec; no commits or rollbacks are issued.″

| result |

result := self executeQuerySetUp.
((result isAbtError) or: [r e s u l t = = n i l])
ifFalse: [result := self executeSelect].
^result

Save the part, then go back to the Application Manager window, find
AbtRunDatabaseQueryPartApp , and click on AbtDatabaseQuery in the
second pane. Under Classes click on Version Release All and name the
version something that you will recognize later.

Under Applications , choose Version Applications/Name Each and name the
version the same as you did for the class.

Then, go to the System Transcript menu and click on Smalltalk
Tools/System/Change User and change back to your user ID. In order for
others in your group to take advantage of these changes, they will have to
load this version of AbtRunDatabaseQueryPartApp in their image.

186 VisualAge for Smalltalk Handbook − Features

With this implementation, you can use the visual query part to manually
create a query specification to call the stored procedure. Then tear off a
result table from the query part. In order to present your data in a table
format, you will need to drop a table part on the window and add columns to
the table for each column that the stored procedure returns. For each
column, you will need to open the settings and set the attribute name to the
exact column name of the table in the database.

Then, make two connections from the table to the result table part. Connect
the table (rows) to the result table (rows) and the table (selectedRowIndex)
to the result table (currentRow Index).

Then, connect your event to run the query to the executeStoredProcedure
action of the database query part.

If you package your application as a run-time image, then you will not have
to perform the next step.

If you use the merge (.app) file packaging method, you will need to dump
these changes and include them in your run-time application. To do this,
execute the code below in a workspace or transcript window.

Smal l ta l k

|result |
 (result := ApplicationDumper new)

dump: (AbtRunDatabaseQueryPartApp)
intoFileNamed: ′abtdbqry.app′.

 result hasErrorOccurred ifTrue: [
self error: ′An error occurred when dumping the application′.

result currentErrorString].

This will create a file in the current directory. This file must then be moved
to your merge directory during the packaging step (VisualAge for Smalltalk
User′s Guide). The .CNF file needs to be modified and ″abtdbqry.app″ needs
to be added directly after the database .app files in the list.

Implementation 2:
This code, when implemented in a script for a view, will run a stored
procedure and place the results in a list box on the window called ″List.″

Chapter 5. Database 187

Smal l ta l k

executeStoredProc
″ This code executes a SQL Server system stored procedure and puts

the
result table in a list box on the window. ″

| dbmgr resultTable qSpec db |

dbmgr := AbtDbmSystem activeDatabaseMgr.
(dbmgr notNil)
ifTrue: [

db := dbmgr openDatabaseNamed: ′pubs ′.
qSpec := AbtQuerySpec new statement: ′sp_helpdb pubs′.

resultTable := dbmgr databaseInUse resultTableFromQuerySpec:
qSpec.

(self subpartNamed: ′List′) items: (resultTable asStrings)
].

Error: SQL0236W

When I try to connect to my database, I get SQL0236W error. What is
wrong?

To get VisualAge Version 2.0 to run with DB2/2 2.1, you need to rebind to
your database from within the DB/2 command-line processor using an
additional parameter:

Try doing a connect to your desired database from CAE/2 OS/2 DB2
command processor:

• CONNECT TO databasename

• BIND ABTD3220.BND DATETIME ISO SQLWARN NO

• BIND ABTD1620.BND DATETIME ISO SQLWARN NO

Please note that VisualAge for Smalltalk, Version 2.0, does not allow you to
take advantage of the new enhancements DB2/2 2.1 provides. These
enhancements are supported only in VisualAge for Smalltalk Version 3 or
higher..

188 VisualAge for Smalltalk Handbook − Features

Communication with DB2/2

I need to know all about the platforms that DB2/2 will run on and how
VisualAge can communicate with DB2/2. Can you help me?

IBM DB2 is a family of client-server RDBMS. As with any client-server
RDBMS, clients and servers can and do work on different operating
systems. DB2 servers, the products that actually manage data, are
available for OS/2, RS/6000, HP, SUN, AS/400, VM, VSE, and MVS platforms.
These are the platforms where you store your data and a particular DB2
server manages an orderly multiuser access to this data.

DB2 data stored on the server can be accessed from a variety of
applications running on different client platforms. Visualiser and VisualAge
for Smalltalk are an example of such applications. DB2 Family supports
applications running on DOS, Windows, and OS/2 PCs, several flavors of
UNIX (AIX, HP-UX, Solaris) as well as AS/400, VM, VSE, and MVS
applications. At this time, some combinations of clients and servers
because they need Version 2 of DB2 on OS/2 and UNIX. One example of a
combination that does not work in time is an MVS application accessing
DB2/2 data. One the other hand, a very popular combination that does work
is Windows applications, such as Excel, WordPerfect, accessing DB2/MVS
data.

DB2 provides application enabling to Windows products such as VisualAge
for Windows and Visualizer for Windows (when they are delivered) so that
they can access DB2 data no matter which DB2 server it resides on (MVS,
O/2 and so on). The product that provides this enablement is called DB2
Client Application Enabler/DOS. (DB2 CAE/DOS). DB2 CAE/DOS, and other
DB2 CAE products are offered free of charge.

Access to host databases requires use of a DDCS gateway. DDCS gateway
products provide access to host data from desktop applications. The DDCS
gateway itself is available for OS/2, AIX, HP-UX, and Solaris environments.
However, it does support all of the DB2 CAE client products. In other words,
DOS and Windows are supported as well.

Chapter 5. Database 189

Sample Databases

How do I install the sample databases that come with VisualAge?

Before installing the sample database, make sure the IBM Database Feature
is installed. To do this:

• Select Install from the Smalltalk Tools pull-down menu in the Transcript
window.

• Select IBM Database and IBM Database Samples from the list and
select OK .

• If using VisualAge for Smalltalk for Windows, make sure the following
statement is in your AUTOEXEC.BAT file: SET DB2CODEPAGE=437

Next, be sure to activate a database manager. From the Transcript window,
select Database from the Visual Tools pull-down menu. The Database
Selection window is displayed:

• From the Database Manager drop-down list, select the database
manager you want to use.

• If the particular database manager you are using requires a user ID,
password, and server, enter the appropriate values.

• If you want, you may enter a preferred database in the text entry field.
The SQL Editor uses this as your default database.

• Select the Connect push button.

To install the ORDERENT sample database, execute

Smal l ta l k

AbtDatabaseSamples installDatabase

in your Transcript window. See the VisualAge for Smalltalk User′s Guide
and Reference for more information.

For the multimedia database, execute

Smal l ta l k

AbtMultimediaSamplesApp installDatabase

More information about this can be found in the online Multimedia Guide.

190 VisualAge for Smalltalk Handbook − Features

ODBC Driver Error

I am getting a dialog telling me that I don′ t have a license for the ODBC
Drivers. What do I do?

Make sure that the QEIB.LIC is in the same directory as the drivers
(IB***0*.DLL).

• For OS/2, the licensing file is called QEIB.LIC.

• For Windows, the licensing file is called QEIBM.LIC.

• If you have purchased drivers from Intersolv or Q+E before, your
licensing file may be called something else or stored somewhere else.

Data Source Name Error

I am getting the message: ″Data Source Name not found and no default
name specified.″ What′s wrong?

Your ODBC.INI file does not contain the Data Source Name entry. Use the
ODBC Administrator to add the entry (ODBCADM.EXE).

Minimum Files for Run-Time

What are the minimum files that need to be included at run time?

• Windows

− IBUTL06.DLL

− IBBAS06.DLL

− ODBC.DLL

− ODBCINST.DLL

− IB***06.DLL ← Your database driver

− ABTDWW20.DLL

• OS/2

− IBUTL04.DLL

− IBBAS04.DLL

Chapter 5. Database 191

− IBMDS04.DLL

− ODBC.DLL

− ODBCINST.DLL

− IB***04.DLL ← Your database driver

− ABTDPW20.DLL

 In addition, for any flat file drivers you will also need:

• IBFLT06.DLL for Windows

• IBFLT04.DLL for OS/2

If you are using Non-IBM supplied drivers, you will need only:

• ODBC.DLL

• ODBCINST.DLL

• ABTDPW20.DLL (OS/2)

• ABTDWW20.DLL (Windows)

Data Source Driver Error

I am getting the message ″Driver specified by Data Source name could not
be loaded.″

Make sure the ODBC.INI entry for the specified Data Source Name is
pointing to the correct driver.

Also, make sure the driver DLL can load. To verify this, use QEDLLOAD.EXE
or CHKDLL32.EXE.

Database Access Set

Can I simply copy a private method, in which a query is held, of the
DatabaseAccess class and save it with another name and then use this new
method to set the query for a Single-Row Query part?

192 VisualAge for Smalltalk Handbook − Features

VisualAge for Smalltalk stores hidden edit-time information about query
specifications in the library. Unfortunately, merely making a copy of a
method does not propagate the necessary edit-time information required by
the database parts on the palette. The example below demonstrates how
one might copy the same query to a different name. A similar technique
could be used to copy specifications between different access sets.

Smal l ta l k

| sourceAccessSet targetAccessSet qSpec |
sourceAccessSet := targetAccessSet := MyAccessSet.
qSpec := sourceAccessSet getQuerySpecNamed: ′Query1′.
qSpec name: ′NewQuery1′.
targetAccessSet putQuerySpec: qSpec.

Using Stored Procedures with ODBC or DB2 CLI

Unified field AbtDatabaseVarCharField does not map to the proper
DBM-specific field at run time. Therefore, if you use stored procedures with
ODBC or DB2 CLI, the text fields may be truncated on the left.

Active Database Connections When Exiting VisualAge

Exiting VisualAge does not force a disconnect of an active database
connection in VisualAge. Therefore, before exiting VisualAge, close all
active connections to databases.

Unloading the Static SQL Feature

If you have the Static SQL feature loaded, execute the following code and
then unload the feature.

Smal l ta l k

AbtSqlIbmOs2Precompiler removing

Chapter 5. Database 193

Database Samples

The general database samples can be packaged; however, they cannot be
run as a packaged application.

194 VisualAge for Smalltalk Handbook − Features

Chapter 6. Distributed

In this chapter, we cover the VisualAge for Smalltalk Distributed feature.

Distributed Feature versus CORBA

I′m surprised by the fact that VisualAge for Smalltalk Distributed is not
CORBA-compliant. Will this change in the future?

The intent of the Distributed Feature is not to provide CORBA bindings. That
is provided by the SOM/DSOM bindings in VisualAge for Smalltalk. The two
do not overlap. They are both in the current version of VisualAge for
Smalltalk and can both be used in the same image concurrently.

For good advice on what should be the preferable choice in a given
environment (SOM/DSOM vs. Distributed Feature), consult Developing
Distributed Object Applications with VisualAge Smalltalk Distributed Feature.
Here are some points to watch for:

• Pure Smalltalk programming vs. language independence

• Storage management

• Transparency during developmant

• Communication protocols

• Distributed tools

Turning on Distributed Tracing

How do I turn on distributed tracing?

To turn distributed tracing on, do one of the following:

• Start the image with the command line parameter -Dt. This will
generate a file called ″dstrace.log″ that traces every step of the
distributed operation.

 Note

You have to add another packaging rule for this to work at run time.
Include the global variable DsCommunicationNLS.

• Evaluate

 Copyright IBM Corp. 1997 195

DsTracer traceAllToFile: ′dstrace.log′.
 or

DsTracer traceOffAll

 Note

This feature is our internal debugging tool, and is unsupported

Avoiding Hard-Coding TCP/IP Addresses for Distribution

Is there a way not to hard-code TCP/IP addresses when using matrix-based
distribution?

The distribution matrix uses location references, which are stored in the
name server. The location references contain the physical addresses of the
machines on the network. To change the physical location of any location in
the matrix, all you have to do is edit the name server. No change to the
packaged image is necessary, assuming the name server is persistent. To
make a name server persistent, use the Archive → Make Persistent pop-up
menu in the Name Server Browser. In this case, the Name Server contents
is stored into a file which is loaded on image start up. The name server
information can be modified by editing or replacing the name server file.

Premature Connection Closure

What happens when the connection closes when I′m sending a message to
another object space?

Communication errors can be handled with exception processing. The
general exception that covers distributed errors is:

Smal l ta l k

DsDistributedSystem unavailableObjectException

There are examples in the distrib.txt file shipped with the feature.

There are also callbacks for certain events, which can be registered for.
The events include connections, disconnections, sends out/in, receives
out/in, and so on. See class DsCallbackRec under the class category
DS-EventCallbacks for the available callbacks. You can register for callbacks
with

196 VisualAge for Smalltalk Handbook − Features

Smal l ta l k

DsDistributedSystem localSpace addCallback: callbackId
receiver: anObject1 selector: aSymbol clientData: anObject2.

There is a complementary #removeCallback... method. See the cardgame
demo, DtCardGameApplication for sample usage. The callback methods
work the same way that widget callbacks work.

An important point to understand is that we recognize communications
errors only when a socket call fails. When two object spaces are connected,
each side has a socket-receive call pending. When the cables are
disconnected, some TCP stacks will return an error on the receive, others
will not. If you need more timely information on disconnects, I would
suggest creating a watchdog process that sends periodic ping messages to
check out the health of the connection.

When the two disconnected object spaces are reconnected, we attempt to
recover to the state of all remote objects. If the object spaces do not match,
they will be reset to an initial connection state. A common reason that the
object spaces would not match, would be if the client object space needed
to be restored from a saved image.

Remote Object Has No Object ID

I can′ t start VisualAge for Smalltalk Distributed correctly. Smalltalk
Distributed Initialization runs okay. VisualAge for Smalltalk Organizer does
not show up and also can not be started manually.

Transcript window shows: ″CwAppContext: walkback during proc dispatch...
all procs removed.″

The distributed debugger window shows ″ABT.DSF.35.i: Remote Object has
no object id, DsParentLogicalProcess:Thread1-...suspended″. The only
workaround is to use a fresh image.

Apparently someone is sending #isClass to a remote object pointer during
image startup. This usually occurs because there was a remote browser
open when you saved the image or a remote object pointer was saved in
the Smalltalk dictionary. If you have a classes browser open, it will send
messages to every object in the Smalltalk dictionary when the window gets
restored, looking for all the classes in the image. In the debugger that

Chapter 6. Distr ibuted 197

shows up, try to find the global that has a remote object pointer in it, set it
to nil, drop to the stack frame that restores the snapshot and resume the
process.

Copying Objects Between Object Spaces

I′m trying to send objects by value rather than by reference. To do that, I′ m
using #asDsByValueObject. But the performance doesn′ t appear
satisfactory. What should I do?

The following text can be filed into your image to fix this problem:

Smal l ta l k

DsObjectMobility becomeDefault!

! DsInputStream privateMethods !

reconcileCopy: anArrayOfArraysOfInstances
| beforeList afterList localSpace |

beforeList := OrderedCollection new.
afterList := OrderedCollection new.
localSpace := objectSpace localSpace.
anArrayOfArraysOfInstances do: [:instArray |
instArray do: [:inst |

inst dsBasicClass reconcile: inst
afterCopyInto: localSpace
before: beforeList
after: afterList

]
].
beforeList isEmpty ifFalse: [

beforeList asArray multiBecome: afterList asArray]
! !

198 VisualAge for Smalltalk Handbook − Features

Activator Wasting CPU Time

When VisualAge for Smalltalk is running without the activator, it consumes
little CPU time when idle. But whan I run it with the activator, it consumes a
considerable amount of CPU time even being idle. What′s going on?

Because Smalltalk implements a light process model, it has an idle loop
that checks if timers have expired, This loop wakes up every 100 ms and
accounts for the small CPU load (say, 5%) you see. When the system is
busy, the idle loop is not, so most of that 5% is then used for useful work.
When you connect to the activator, a similar loop is created to look for data
from the activator. Again this loop will handle useful work if there is work to
do. There are private methods that affect the timing of the loop but we don′ t
suggest that you change them because they will affect the message delays
when the system is busy.

Security Error With Connect Request on Activation

I have a client object space sending a request to the AIX server object
space. The activator daemon starts up the VisualAge for Smalltalk image
and this is what I get in the Transcript window:

Smal l ta l k

 ABT.DSF.301.i: Smalltalk Distributed initializing...
 ABT.DSF.309.i: Object space activated;with key ′aixspace′ at host′aixsrv ′
 ABT.DSF.304.i: Smalltalk Distributed initialization complete.
 ABT.DSF.413.e: Client is not authorized to access this server.
 Activation Error - ABT.DSF.339.e: Security error with connect request

from object space at host ′amtechvage ′ with key ′ ′.

Why do I get this?

A common reason is not having abtdsusr.cnf and abtdsaut.cnf files in the
current directory of each of the two object spaces.

Chapter 6. Distr ibuted 199

Server Without User Interface

Even if your server does not need a user interface, I suggest that you create
a small application window. This window at least makes it easy to see that
your server is running and gives you a way to stop it. There are ways to
create a headless server but they are complicated and not extensively
tested.

Packager Method Exclusion Remedy

How do I know if I need the #packagerInclude... methods?

If you have methods that are called by a remote client only, then the
packager will exclude those messages, and maybe even the classes. The
fix to this is to use the #packagerInclude... method to identify these methods
so they will be included in the packaged image. This is not too bad, since
you have to think about the API to your distributed object anyway. This is a
good place to document it.

Remember that the selectors returned by packagerIncludeSelectors are
class or instance neutral. That is, any instance or class method in an
included class is included in the image, whether directly referenced or not.

Many people do not like having to have the #packagerInclude... method with
all the necessary methods, but that′s the way the packager works today.
Because our packager is so good at getting rid of things in the image, we
have to appease it by listing the things that we really want to keep.

The easiest way is to go ahead and package your client code in your server.
If image size is really critical, then you′ ll have to either include references
to classes and methods in a selector that you know will be packaged, or use
the #packagerIncludeSelectors method. All you have to include in
#packagerIncludeSelectors method are the messages that you expect a
remote client to send. This should be in your design somewhere as the
advertised API of your server. You may even be able to generate this
method based on method categories.

You can find more information about #packagerInclude... in the IBM
Smalltalk User′s Guide. Also, you may want to look at the Packaged
Classes Browser, Method menu.

200 VisualAge for Smalltalk Handbook − Features

Name Server Distributed Part Difficulties

I find that the name server distributed part from TCP/IP category doesn′ t
work for some connections. How can I fix it?

Try this little fix:

Smal l ta l k

DtRunDistributedObject becomeDefault.
DtRunDistributedObject isVersion ifTrue:
[DtRunDistributedObject newEdition]!

!DsRemoteObjectPointer publicMethods !

performIn: anObject arguments: args

^Processor dsActiveLogicalProcess
forward: (DsSendOperation

objectSpace: objectSpace
markerBlock: [:op | ^op]
receiver: self
selector: #performIn:arguments:
arguments: (Array with: anObject
with: (args asDsParameterArray)) asDsParameterArray)

! !

Error During Distributed Load

I′m trying to run an example from the VisualAge for Smalltalk Distributed
User′s Guide. (The example with the DtListBuilder application). After
creating configuration map and distribution matrix, when I try to perform
DistributedLoad, I get the next: ″...Abt.Dsf.1.i: Connected to object space
with key ... at host ... ″, and then, suddenly : ″Abt.Dsf.709.e: Failed trying to
load AVBMap ″, where AVBMap is the name I gave to the configuration
map. What could cause this?

Chapter 6. Distr ibuted 201

You can′ t use the Distribution Matrix → Distributed Load menu item when
your object spaces are connected to different ENVY libraries. What would it
load? The configuration map is not in the other library.

Testing Distributed Smalltalk for TCP

What can I do to test Distributed Smalltalk for TCP/IP?

Try these methods:

Smal l ta l k

DsDistributedSystem testTCPLocal
DsDistributedSystem testTCPAddress: ′xx.xx.xx.xx′
DsDistributedSystem testTCPHostName: ′host.domain.com ′

You may also want try these:

Smal l ta l k

DsTCPCommunicator localHostAddress.
DsTCPCommunicator localHostName.
DsTCPCommunicator hostNameFromAddress: ′1.2.3.4′.
DsTCPCommunicator fullHostNameFromName: ′hostname ′.
DsTCPCommunicator hostAddressFromName: ′hostname.company.com ′.

Distributed Initialization on Windows for Workgroups

When I try to load the Distributed Feature into my image, the code loads and
a message displays in the Transcript that says ″Smalltalk Distributed
Initializing...,″ but it never finishes. I left it overnight and the next morning it
was still running. I have verified this is not a problem with host-name
resolution. I am running Windows for Workgroups, Version 3.11 and am
using the Microsoft TCP/IP stack. I first loaded TCP/IP into my image and
then the Distributed feature.

202 VisualAge for Smalltalk Handbook − Features

This is a known problem with Microsoft Windows for Workgroups TCP/IP,
Version 3.11b is a complete refresh and solves the problem you have. Have
a look at ftp://ftp.microsoft.com/bussys/Clients/WFW/update.txt

Anyway, if you are running the MS Windows for Workgroups TCP/IP stack,
make sure you are running Version 3.11b or later. See the above address
for information on fixes and upgrades.

Seeing Your Data Moving

After quite a bit of tuning, my application runs over a telephone line (28.8
KB). One advantage of using the modem is that I can see data moving
(watching the lights) and it gives a good feel for when you think stuff is on
the client, but you actually reference it on the server and so on.

Another way to ″See data moving″ is to open the Profiles Browser and
create an object space profile (Profiles → Remote Objects → Profile the
Object Space), then press auto refresh . Profiling the object space has a
relatively small performance impact (compared to profiling each or all
remote objects).

Role of the Activator

Can objects that reside in the server image send messages to objects that
reside in the client image without having the activator running on the client
machine?

Sure they can. The Activator is involved only in establishing the initial
connection between the two object spaces. After that, they communicate
directly without any involvement by the activator. In this sense, the activator
is somewhat like the inetd super-server in TCP/IP.

Once the connection is established, all communication is peer-to-peer.
Don′ t worry too much about the ″client/server″ distinction: the only
difference between the two is that a server can receive incoming
connections and a client cannot. However, once the connection is made,
both sides can send and receive messages.

Chapter 6. Distr ibuted 203

Remote Object Pointer Dead After Packaging

When I run my application in the distributed development environment, the
local and remote object spaces communicate just fine. When I package my
local image and run it, I get a run-time error saying “Remote object pointer
is dead.” I′m running the run-time application from the same machine as the
development environment, so I know my TCP/IP environment is OK. I′ m
running the remote development environment as the server, so that part
should certainly work, since the local development image can talk to it (I did
a Reset Distributed System to break the connection to the local development
image).

You will see a dead remote object pointer when a message is sent to a
remote object that has been reset. Remote objects are reset when you do a
DsDistributedSystem reset, or reset the connection. Also, when two object
space are connected and their states do not match (images were saved at
different times), then we automatically reset during the connection. To
avoid the error, your application will need to clear the pointer at the
appropriate time. There are callbacks available for connections,
disconnections, and distributed system resets to aid you.

When you send a message to a shadow or a shadow-loaded class like #self,
then what you get in return is not a shadow, but a lighter weight Remote
Object Pointer. This object is as good as a proxy in that it will forward any
messages to the real remote object but it can only reconnect to the object
space where it was created. That object is time stamped and everything.
The shadow however attempts the connection from scratch if it loses contact
with the object space.

Remote objects that you reference through shadows are okay, because they
contain the information to reconnect to the remote objects. The remote
objects that you have to worry about are the intermediate objects that are
returned as results from other message sends. For example, when you
send a message to a shadow, it may return another remote object.

One thing that might help is to do a DsDistributedSystem reset prior to
switching into packaging mode.

204 VisualAge for Smalltalk Handbook − Features

Logging Transcript Messages

At run time, you can log the Transcript messages to a file with the -l
command line parameter, that is,

ABT.EXE -lfilename.log -iruntime.img

Tracing Run-Time Startup Problems

You can trace the run-time image startup sequence by putting Transcript
show:′s in YourAppl icat ion class>>#startUp,
EmSystemConfiguration>>#startUp, or even in
EmSystemConf igurat ion>>#startup. At run time, you can log the
Transcript messages to a file with the -l command line parameter.

Here is a short explanation of the run-time startup sequence which may help
you choose the right trace points:

The first method loaded by the VM is EmSystemConfiguration>>#startup
(note the lowercase u). After performing
EmSystemConfiguration>>#init ial izeVM, this method creates a user
interface process to execute EmSystemConfiguration#startUp. What goes
on in #startUp is best explained by this comment in the source code:

Chapter 6. Distr ibuted 205

Smal l ta l k

EmSystemConf igurat ion>>star tUp

″Inform each loaded application and subApplication that the image
is about to be started up. After the initialization of the vm the
startup sequence is as follows.

 1. Set ImageStarted to false.

 2. Perform pre-startUps. Perform any work, which must be performed
only before the standard startUp sequence.

 3. Set the System #breakMessage: and send #initializeNlsSystem to the
startUpClass.

 4. Send #localize to all (Sub)Applications in the required order.

 5. Send #initializeSystem to the startUpClass.

 6. Send #startUp; #relocalize to all (Sub)Applications in the required
order.

 7. Set ImageStarted to true.

 8. Send #run to the startUpClass.″

Name Discrepancy Problem in Loading

I′m using a configuration map that contains two location references, client
and server, and I′m using a distribution matrix with this map. When doing a
distributed load, the locations in the map are loaded according to the
matrix. There are two other developers on my team who need to start using
the Distributed feature. When they try to do a distributed load of the config
map, the server loads fine but the client fails because the other developers
host names and IP addresses are different from what I defined in the client
location reference. The only way I can think of to get around this is to have
a different configuration map for each developer, but it would be difficult to
keep them all synchronized.

Is there another way of handling this? I have shadow classes in my server
that reference real classes in the client. Will the shadow classes in the
server image use the client location reference and if so, doesn′ t that mean
that my server object space will be able to interact with only one client
object space?

206 VisualAge for Smalltalk Handbook − Features

The design point of the Distribution Matrix was that it could be defined once
and used by several developers. The only items the Distribution Matrix
saves in the library are the application names and the location names. The
location names are resolved (through the name server) in the individual
developer ′s image at the time the distributed load is requested. Therefore,
all the developers should share the same configuration map (with the
Distribution Matrix) and should have location references with the same
names in their name server. However, each can have different definitions of
those location references.

As to having shadow classes in your server that reference real classes in
the client: I think something is backward here. I′m not saying that it is
impossible to have shadows in your server object space, but it is not a good
idea to have them pointing to client object spaces. You don′ t know the
address of your client ahead of time, and in most cases you don′ t even
know how many clients you may have at any one time.

Shadows are almost always used in clients to point to classes in the server
or to other well known remote objects.

Sharing Class Instances Across Object Spaces

When two clients make a connection to the same remote class, are they
able to share all the instances of the class together?

Yes. Distributed Smalltalk maintains the object identities across object
spaces.

Peer-to-Peer or Server

Is the peer-to-peer object communications true peer-to-peer, or is it a set of
communicating servers, like what happens in many CORBA
implementations?

Yes, it is peer-to-peer, in that once a connection is made, either side can
initiate a message to the other side. True, in order to make the first
connection one side has to act like a client and the other has to act like a
server. But, I think it is better than a ″set of communicating servers″
because the side that played the server role first doesn′ t have to locate the
client in order to send a message to it.

Chapter 6. Distr ibuted 207

Equivalent of a Threads Package

Is there an equivalent of a threads package in distributed?

VisualAge for Smalltalk Smalltalk has a built-in process model. You can
create many independent Smalltalk processes. However, all these Smalltalk
processes run on the same native process/thread.

In addition VisualAge provides a mechanism to perform a primitive call on
an independent native OS process/thread.

Sending an Object as a Parameter to a Remote Object

What happens if an object is sent as a parameter to a remote object. Is it
cloned, copied, reference-passed, or moved to the remote image?

The default is to pass all parameters by reference. You can override this
default on a parameter by parameter basis to make a copy. We do not yet
have any built-in replication support, so you are on your own if you copy.

Sending an Object to a Remote Site While a Thread Executes

What happens if I attempt to pass an object to a remote site while a thread
is executing in one of its methods?

It depends on what you mean by ″pass an object.″ You can pass a
reference to an object to a remote site at any time, regardless of whether
one of its methods is currently executing. The only other operation we allow
is to copy. The only consideration here is whether the state of the object is
inconsistent at some point in the middle of the method. We do not yet
support actually moving an object to another node, although you could build
this on top of the existing support.

208 VisualAge for Smalltalk Handbook − Features

Disconnecting Remote Images

Is it possible for remote images to be disconnected without stalling
everything?

Yes. Your application can register and receive a callback when a
connection to a remote object space is lost. It is up to your application to
handle that in an appropriate way.

Dynamic Change Potential

How tightly coupled is the system? Can new clients be added on the fly?
Can servers be modified on the fly?

The system has a late binding in that you can use the Name Server to
locate objects at run time. The information in the Name Server can be
changed at any time, so any request for the named object will be directed to
the new location.

Once the connection is made, it is tightly coupled, as long as you hold on to
the remote object instance. You have to go back through the Name Server
to take advantage of any real-time changes.

Clients can connect and disconnect from a server as much as necessary.
I′m not sure what you mean by ″servers be modified on the fly″. Once a
connection is made (a remote object located in a server object space)
another server can′ t automatically take over that server′s work. But if the
client relocated the remote object through the Name Server, as stated
above, the newly located object could reside in another server.

Retention of Instances

I am trying to perform a distributed load, as described in the VisualAge for
Smalltalk Distributed User′s Guide. On step 2 (see page 34 in the Guide) I
receive an error message saying DtListBuilderCollection cannot be removed
because it has instances. What do I do?

Chapter 6. Distr ibuted 209

Use the following code:

Smal l ta l k

 DtListBuilderCollection allInstancesDo: [:each | each become: nil]

TCP/IP Errors at Startup

I get TCP/IP errors at Distributed Smalltalk startup? What do I do?

Check to make sure that your TCP/IP name server is working correctly. You
should be able to ping yourself and others, both by name and by IP address.
If you do not have a name server, you will need to make an entry into the
file TCPIP\ETC\HOSTS (your TCP/IP directory may be named differently).
The TCP/IP also has a user interface that updates this file for you.

Distributing Parts

Is there any graphical mapping of the physical distributed environment in a
way that will enable me to move parts of the application from one machine
to another?

We have an extension to the Configuration Map object that allows you to
design which applications are to be loaded into which object spaces. This is
called the Distribution Matrix. You define the locations (client or server
roles or clusters) and it displays a matrix. You can use the matrix to specify
which applications should be loaded on which locations. This information is
used when you load your Configuration Map; it does not do an immediate
move. The advantage is that this information is saved in the library
(connected to the Configuration Map) to be used again by you or anyone
else. Since the locations are resolved to real object spaces through the
name server, this information is dynamic; it depends on the current
mapping.

210 VisualAge for Smalltalk Handbook − Features

Tools to Manage Network Traffic

Are there any tools that can monitor and manage the flow of traffic in the
network?

One option in the Profiler (Transcript → Distribution Tools → Browse
Profiles) monitors and profiles all messages in and out of a specific object
space. We do not have any tools that cover the scope of more than one
object space. There are also no tools that allow you to trap and modify any
messages.

SOM/DSOM Implementation

Can a SOM/DSOM application be distributed?

In VisualAge for Smalltalk, Version 3.0, you can communicate with a
SOM/DSOM client object. We do not yet support creating SOM/DSOM
server objects in the image. You can use the SOM/DSOM client support in
any distributed object space. However, the Distributed feature cannot help
implement SOM/DSOM or CORBA server objects.

Fault Tolerance for Object Spaces

What fault tolerance is available with object spaces?

We handle all communication errors as Smalltalk exceptions. Your
application code should catch these errors (when:do:) whenever you do any
remote messaging.

Changing Name Server Entries at Run Time

Can name server entries be changed dynamically at run time?

Yes, this is the reason the name server exists. If you reference an object
through a name server object reference, then every time you retrieve that
information you will use the current information in the name server. This is
how shadows work.

Chapter 6. Distr ibuted 211

Long Startup Delay

What might cause a long delay in starting up VisualAge for Smalltalk
Distributed?

That ugly delay is probably the result of the Distributed feature attempting to
locate your host name in the name server. This would happen if you are not
pointing to a name server and don′ t have your local host name in your
/etc/hosts file.

Packaging an Application

How do I package a distributed VisualAge for Smalltalk application?

The first step in packaging is to use the menu item Distribution tools →
Options → Enable Packaging . While packaging is enabled, you cannot
communicate with another object space. You then proceed much as you
would with a regular VisualAge application: for simple applications, you can
use the Make Executable menu choice. For more complex applications, you
may have to use the Browse Packaged Images menu option at least once to
specify your packaging rules. DtShadows act like regular objects during the
packaging operation and are included in the run-time image to again
forward messages.

Object Spaces from Different Libraries

Can object spaces run from different team server libraries and still use
distributed load?

Only if both libraries have the required code.

Message Tracing

Is there a way to trace the messaging in Distributed Smalltalk?

212 VisualAge for Smalltalk Handbook − Features

Yes, but it causes a large volume of output so be careful. Evaluate the
following in your client and server images, respectively:

Smal l ta l k

DsTracer traceApplicationToFile: ′client.trc′
DsTracer traceApplicationToFile: ′server.trc′

Then run your distributed application and look at the TRC files.

Handling TCP/IP Addresses

How are TCP/IP addresses handled in a packaged Distributed Smalltalk
executable?

The distribution matrix uses location references, which are stored in the
name server. The location references contain the physical addresses of the
machines on the network. To change the physical location of any location in
the matrix, all you have to do is edit the name server. No change to the
packaged image is necessary, assuming the name server is persistent.

Making the Name Server Persist

How do I make the name server persistent?

The name server browser has a pop-up menu (Archive → Make Persistent)
that allows you to make a name server persistent. In this case, its contents
are stored in a file that is loaded on image start up. The name server
information can be modified by editing or replacing the name server file.

Capturing Information from a Walkback Window

How can I capture information when I get a walkback window in a
development environment?

At the debugger window, select Stack then Write Stack Trace Text To File .
This report provides messaging information to help debug the problem.

Chapter 6. Distr ibuted 213

Copying Object Space to a Backup Processor

Is there an option to duplicate or copy an object space into another
processor as a backup?

We don′ t have anything like this built in. You can use the capabilities that
are in the product to design your own standby object space. However, you
can′ t redirect all pointers your application may have to any remote objects.
Some of the remote object pointers are not relocatable. You would have to
design your application so it can (1) keep a hot standby up to date with all
the current state information; (2) detect when to switch to that standby; and
(3) refresh any saved object that may be a remote object pointer. You could
use the Name Server and Shadows to help.

Error: Client not Authorized for Server

What causes the error ″ABT.DSF.413.e: Client is not authorized to access
this server?″

You should have abtdsusr.cnf and abtdsaut.cnf files in the current directory
of each of your client and server object spaces. Both of these files are
installed on the client. You can execute ″DsSecurityConfiguration
authorizedUsersFile″ and DsSecurityConfiguration passwordsFile″ to see the
names of the two CNF files. You can locate them in different directories by
explicitly stating the complete pathname in these CNF files. You can also
control access by stating in these files exactly what object spaces have
access rights (the default is ″* *″, which gives everyone access).

Error: Remote Object Has No ID

What causes the error ″ABT.DSF.35.i: Remote Object has no object id?″

One cause results in a message #isClass to a Remote Object Pointer during
image startup. This usually occurs because a remote browser was open
when you saved the image, or a Remote Object Pointer was saved in the
Smalltalk dictionary. If you have a classes browser open, it will send
messages to every object in the Smalltalk dictionary when the window is
restored, looking for all the classes in the image. If you can see the rest of
the stack, try to find the global that has a Remote Object Pointer in it, set it
to nil, drop to the stack frame that restores the snapshot, and resume the
process.

214 VisualAge for Smalltalk Handbook − Features

Extending Server Classes

Can server classes be extended in client object spaces when using a
distribution matrix?

No. The way shadow load works is to replace the existing class with a
shadow to the class that exists only in the server object space. Since the
class no longer really exists in the client object space, you can′ t extend it
there. The class, and all instances of the class, exist only in the server
object space, so you can extend the class only in the server object space.
You can, however, have class extensions in subapplications and any other
application that is actually loaded in the same place.

Moving Parameters Between Client and Server Object Spaces

What is the best way to get parameters between client and server object
spaces?

Assuming that you are sending the message from the client to
aRemoteObject, you want to copy the result of the message, which may be
another remote object. The best way to do this would be:

Smal l ta l k

(aRemoteObject message: parm)
dsInSpace: (DsDistributedSystem localSpace).

You can also try

Smal l ta l k

object dsAsUnloadedBytes asString

before sending the object to the client. If you want to be sure that the
parameter is also copied from the client to the server, so the server won′ t
have to send any remote messages, then you can either make sure the
parameter is a string or integer (sent by value by default) or use the
asDsByValueParameter message. To keep performance optimal, you may
also want to convert your objects to strings first, before sending the
message.

Chapter 6. Distr ibuted 215

Improving Performance Across Client-Server Object Spaces

What can I do to improve performance across client-server object spaces?

You can marshal your data. Marshaling is converting a real object into a
String, binary, or other portable form. There are three ways to marshal
remote objects:

• Shallow:

Smal l ta l k

myLocalCopy := myRemoteObject dsInSpace:
(DsObjectSpace localSpace).

• Deep:

Smal l ta l k

myLocalCopy := myRemoteObject asByValueObject.

• Application:

Smal l ta l k

myLocalCopy := MyLocalCopyClass fromMarshalData:
(myRemoteObject myMarshalingData).

The last technique is where you write your own marshaling.

Partitioning Objects Across Object Spaces

Are there any rules of thumb on how to partition objects across object
spaces?

Yes. Minimize cross-object-space message traffic. When possible, combine
multiple messages into one message and make cross-object-space
messages asynchronous. Design your application to be sliced so you can
manage distributed messaging.

216 VisualAge for Smalltalk Handbook − Features

Transaction Management Provision

Is there transaction management in Distributed Smalltalk?

No, we don′ t have a Transaction Service implemented in Distributed
Smalltalk. We are looking into it and know it is a high priority. Until it
exists, you can implement some concurrency control in your server objects
with the use of semaphores.

Loading the Distributed Feature

What is the best way to load the Distributed feature?

Load TrailBlazer, TCP/IP, and Distributed features, in that order. Then apply
any known fixes.

Packaging an Application

What are the steps for packaging a Distributed Smalltalk application?

 1. Create the configuration map.

 2. Create the locations. Remember, these have to point to things in the
name server.

 3. Create the Distribution Matrix, and fill it in.

 4. Load your configuration map locally to test it and make changes.

 5. Do a Distributed Load of your configuration map at least once before
packaging.

 6. For each location/platform combination:

a. Load the location into a fresh image, just to make sure no garbage
is hanging around.

b. Package using either the one button packager, the package option
on the applications browser, or Smalltalk tools → Browse Packaged
Images .

Chapter 6. Distr ibuted 217

Allowing Clients Run-Time Access

What must be done to allow run-time access to distributed clients?

You must copy abtdsaut.cnf and abtdsusr.cnf from your development image
directory to your packaged image directory.

Retaining Needed Classes and Methods

What do I do when the packager strips out classes or methods I need in a
client?

The packager is good at getting rid of things in the image we don′ t need.
You have to list the things that we really want to keep if they are not
referenced elsewhere. The easiest way to do this is to go ahead and
package your client code in your server. If the image size is really critical,
then you′ ll have to either include references to classes and methods in a
selector that you know will be packaged, or use the
#packagerIncludeSelectors method. This is not really too bad, all you have
to include in #packagerIncludeSelectors method are the messages that you
expect a remote client to send. This should be in your design somewhere
as the advertised API of your server. You might even be able to generate
this method based on method categories.

Run-Time Startup Problems

What do I do if I have run-time startup problems when using Distributed
Smalltalk?

Make sure you have the following setup in your packaging. If you are
packaging an application with a Shadow Load (see Chapter 6, “Distributing
an Application with a Distribution Matrix,” in the VisualAge for Smalltalk
Distributed User′s Guide) then you may need to change the prerequisites on
the DtCodeDistribution application:

 1. Remove DtCommon and LibraryObjects (leave
DtNameServerApplication)

 2. Add DsMRISupport.

One more thing you will have to change is the packaging rules. Add the
following packaging rules to your application:

218 VisualAge for Smalltalk Handbook − Features

Smal l ta l k

packagingRulesFor: aPackagedImage
″Define rules for the given packaged image.″

aPackagedImage excludeVariable: ′deadROP′ inClassNamed:
#DtShadow.

aPackagedImage excludeVariable: ′ lastROP′ inClassNamed:
#DtShadow.

aPackagedImage includeClassNamed:
#DtGlobalReferenceWithLocationReference.

Finding Remote Object Space Pointers in Image

What can I do to make sure I have no remote object space pointers in my
image?

If you know that you do not want any remote object pointers or object space
connections saved in your image, you can execute:

Smal l ta l k

DsDistributedSystem saveConnectionState: false.

If this option is set false, on start Up, your image will start clean. If you need
this only for packaging, you can set up a packaging rule to set the
DsActivation class variable ′SaveConnectionState′ to false.

Debugging a Client System

How can I debug a distributed client system?

Three things to try, in order.

 1. Is there a walkback.log file? If there is a problem, there should be one
in your run-time directory.

 2. Try starting your run-time application with the parameter ″-lruntime.log″.
This will create a run-time.log file containing anything that might be sent
to the Transcript plus any debugger messages.

Chapter 6. Distr ibuted 219

 3. If neither of the above gives you any information, then try our internal
(unadvertised, unsupported) trace. Add the parameter -dt when starting
your run-time image. This will generate a file called dstrace.log that
traces every step of the distributed operation.

By the way, you have to add another packaging rule for this to work at
run-time. Include the global variable DsCommunicationsNLS.

Fault Tolerance

How fault-tolerant is Distributed Smalltalk?

The fault-tolerant behavior that you see is dependent on the TCP/IP Stack
and the operating system. We recognize communications errors only when
a socket call fails. When two object spaces are connected, each side has a
socket receive call pending. When the cables are disconnected, some TCP
stacks will return an error on the receive, others will not. TCP may not
return an error until a send call is issued. Distributed Smalltalk will
occasionally send control messages for things like Distributed Garbage
Collection, which might detect a disconnect. If you need more timely
information on disconnects, I would suggest creating a watchdog process
that sends periodic ping messages to check out the health of the
connection. When two disconnected object spaces are reconnected, we
attempt to recover to the state of all remote objects. If the object spaces do
not match, they will be reset to an initial connection state. A common
reason that the object spaces would not match would be if the client object
space needed to be restore d from a saved image.

If your application needs more control, there are several techniques that an
application can use. Here is a brief summary: Communication errors can
be handled with exception processing. The general exception that covers
distributed errors is:

Smal l ta l k

DsDistributedSystem unavailableObjectException.

There are examples in the distrib.txt file shipped with the feature.

220 VisualAge for Smalltalk Handbook − Features

Using TCP/IP Port Numbers

How can I use a particular TCP/IP port number in Distributed Smalltalk?

The default port number is 1586, which is a registered port number for
Smalltalk Distributed. You can use a different port number, if you choose.

 1. Change the Activator ′s port and update the config file; _por t=nnnn is
the option you need to modify. Or, start up the activator with the -pnnnn
parameter

 2. Start up the object space (image) with the -dpTCP:nnnncommand line
option where ″nnnn″ is your port number.

See the VisualAge for Smalltalk Distributed, User′s Guide for more
information.

Remedy for a Time-Wasting Method

We found a method that was wasting a lot of time doing nothing. This
method is used when you copy an object from one object space to another,
like using #asDsByValueObject. The following text can be filed into your
image to fix this problem:

Smal l ta l k

 DsObjectMobility becomeDefault!
 !DsInputStream privateMethods !

 reconcileCopy: anArrayOfArraysOfInstances
| beforeList afterList localSpace |

 beforeList := OrderedCollection new.
 afterList := OrderedCollection new.
 localSpace := objectSpace localSpace.
 anArrayOfArraysOfInstances do: [:instArray |

instArray do: [:inst |
inst dsBasicClass reconcile: inst
afterCopyInto: localSpace
before: beforeList
after: afterList]

].
 beforeList isEmpty ifFalse: [
 beforeList asArray multiBecome: afterList asArray.].

Chapter 6. Distr ibuted 221

Using Windows 95 As a Server

Can Windows 95 ever be used as a server for Distributed Smalltalk?

Yes, VisualAge for Smalltalk, Distributed technically supports that, but we
don ′ t recommend it. Windows has clearly positioned Windows 95 as the
client and Windows NT as the server, so the question is how strong a server
you would get with Windows 95.

TCP/IP Local Name Server Setup

The Smalltalk Distributed name server requires TCP/IP host names. It
resolves TCP/IP addresses considerably faster when host names are
entered into the object space descriptor instead of numeric TCP/IP
addresses.

As Windows 95 does not have a proper notebook to set up local host names,
edit the HOSTS.SAM file in the \WINDOWS directory to contain your local
host names and save as file HOSTS (no extension). Entries are one line
each; for example:

9.127.127.1 LocalHost
9.127.127.2 RemoteHost
9.1.100.200 MyOtherHost

Placement of Object Space Security Files

Both object space security files— abtdsusr.cnf for an object space acting as
a client or server, and abtdsaut.cnf for an object space acting as a server—
must be in installed in the current directory of each of the object spaces.
The current directory is usually the directory from which the image is
started with abt.exe or ibmst.exe. Both files must be present, even if the
default security configuration is used. You can change the placement of the
files by setting the security information. See the VisualAge: Distributed
User′s Guide for details.

222 VisualAge for Smalltalk Handbook − Features

DBCS Environments

VisualAge for Smalltalk Version 4 does not support the interoperation of
single-byte character set (SBCS) machines with double-byte character set
(DBCS) machines in a distributed configuration. Also, Version 4 cannot
guarantee that two DBCS machines with different code page mappings will
interoperate in a distributed configuration.

Unloading the Distributed Feature

To unload the distributed feature, follow these steps:

 1. Unload all applications that depend on the distributed feature.

 2. Reset the Distributed system:

• Exit the activator daemon program, if it is running.

• Reset Distributed by selecting Distribution → Options → Reset
Distributed System.

 3. Close any TrailBlazer browsers, as well as any Distributed tool windows,
for example, ObjectExchange and name server browsers.

 4. Switch to the standard debugger by selecting Distribution → Options →
Use Standard Debugger .

 5. Terminate currently running processes. Execute self halt to bring up a
debugger on the current user interface process. Then use the Add
process menu item in the debugger to add all processes except
AbtEwHoverHelpBackgroundProcess to the debugger. Close the
debugger and tell it not to keep the processes for future debugging.

 6. Ensure that there are no outstanding asynchronous calls, for example,
calls made to the operating system from Smalltalk. Then execute the
following code from a workspace:

Smal l ta l k

AcoResourceManger startUp.

This step cancels all of the asynchronous callouts. Therefore exercise
caution.

 7. Execute the following code from a workspace:

Chapter 6. Distr ibuted 223

Smal l ta l k

DtEventProfilerApplication eventQueueProcessor.

 8. Unload the feature by selecting Tools → Load → Unload Features . Part
way through the unload, the progress indicator window disappears, but
you still see status messages in the Transcript.

 9. When you get a debugger with the error “undefinedObject
doesNotUnderstand close,” execute the following code to reset your
window system:

Smal l ta l k

′CommonWidgets reinitialize ′.

10. Check and unload any configuration maps that have not been unloaded
in the following order, in case errors occur during feature unload.

From Transcript messages, you should be able to tell whether feature
unload is complete and which configuration map has been unloaded:

Transcr ip t

Distributed: Example
Distributed: Security
Distributed: VisualAge Part
Distributed: Toolkit
Distributed: Object Space
Distributed: Base Services
AbtObjectMonitorTools
ENVY/Image SCI

File Handle Limits on UNIX

In general, UNIX platforms have file handle limits per operating system
process. In VisualAge Distributed, each connection uses two file handles.

Some other operations, such as file operations, also use file handles.
Therefore, the number of file handles determines the maximum number of
connections in one Smalltalk image. Use ulimit -n to check the default
number of file handles on your system. Consult your system administrator
or user manual to find out how to reset the number of file handles.

224 VisualAge for Smalltalk Handbook − Features

Chapter 7. Reports

In this chapter we cover issues related to the VisualAge for Smalltalk
Reports feature.

Reports Feature in Version 3 on AIX

Why is the Reports Feature not supported on AIX?

Reports didn′ t make it onto AIX because the CommonPrinting subsystem
hasn ′ t been implemented yet for the Unix platforms. The subsystem was
designed to a proposed desktop printing standard as part of the Common
Desktop Environment. The proposal fit the current Motif-based subsystems
of CommonGraphics and CommonWidgets, and mapped well to the platform
print support on OS/2 and Windows, so it was chosen as the basis for
portable print support. Unfortunately, the portable Unix implementation to
support this design hasn′ t materialized yet.

Given that there would be no print support on AIX in VisualAge for
Smalltalk, Version 3, we considered supporting development and viewing of
reports on AIX. In the end, we decided that it was better to wait for print
support rather than sell the edit/view support as a standalone. At this point,
all the possible print solutions from AIX require an OS/2 or Windows
machine. This machine could be set up as a print server, and print requests
could be made from the AIX clients via the Distributed Smalltalk or another
communication protocol. The server would have the reports feature loaded
and would have a set of parameterized reports that could be run. For
example, it might have a customer detail report that would take a customer
object or customer ID as an attribute.

The output of the reports could be printed directly to a server-attached
printer, or captured in a Postscript/PCL/other file to be sent back to the AIX
client. In the second case, the captured output could be returned to the AIX
client to be printed on his locally attached printer. It could also be captured
and sent to his printer directly from the server via lpr or another remote
printing solution. Printing the reports directly on the server would be the
easiest way to handle printer configurations. If the reports are going to be
printed back on the client machine, then the print server must have to have
a print driver installed that is exactly compatible with the printer attached to
the client. This might be a problem for some printers. I hope that this
design will provide a workable print solution given the available printing
platforms.

 Copyright IBM Corp. 1997 225

Win32s Errors with Reports Feature

If you have experienced Win32s errors when trying to print or preview
reports, go to print setup, or print a workspace or transcript, then we have a
fix for you. Some print drivers apparently underestimate the space required
for their printer-specific driver information, eventually causing memory
corruption and a Win32s exception. The fix is to allocate little more space
than the drivers ask for. Rather than add a mangled file-in of the long
method to be changed, here′s a description of the change to be made:

 1. Open the application CommonPrintingWin, find the class
CgPrintJobAttributes

 2. Select class and private methods

 3. Find the following method:

devModeDriver:devName:devMedium:flags:oldDeviceMode:

 4. Change the following statement:

Smal l ta l k

devmodeNew := OSDevmode reference:
(ByteArray new: devmodeSize).

to:

Smal l ta l k

devmodeNew := OSDevmode reference:
(ByteArray new: devmodeSize+10).

The specific printer driver that showed the problem was the IBM 4019 driver,
Version 4.3, dated 3/11/94. There could be other problem drivers.

Iterator Field Break

I am using a report iterator field break (AbtReportFieldBreakForm). This
class has no extension in AbtRunReportApp, so AbtEditReportApp becomes
a prerequisite for my application. This doubles the size of our image, which
is a very bad thing. Am I doing something wrong?

226 VisualAge for Smalltalk Handbook − Features

To fix it, you have to move the class AbtReportFieldBreakForm from the
AbtEditReportApp to the AbtRunReportApp. After this, you have to move the
one and only method visualPolicyClass back to the AbtEditReportApp
(extend the class in the app AbtEditReportApp).

Sums Over Hidden Details

Currently we are experimenting with the VisualAge for Smalltalk Report
Writer. How can we have sums, and the like over fields not printed in the
details line. That is, connecting the count: method to an attribute of ″current
of iterator″ causes a shift down one line, so that the first value of the new
group is counted in the old group and left out of the new one.

You are right about the problem with using a current attribute directly.
That′s why we added the formatted event from fields. It is only triggered
when the field is printed, rather than at iteration which may be signalling a
field for the next group. You can connect a script or dependency from
formatted of a field in the details line to count an un-printed value.

Conditional Printing

Is there a way to conditionally omit printing of certain lines? For example, if
a group key takes a certain value, we want to omit all detail lines within the
group and proceed to the group footer.

For now, there′s no way to do this on a line basis; if a line is present in the
body of an iterator it will at least take up some space. You could probably
omit lines by adding and removing lines from the body based on the current
object′s state. Reports are very dynamic that way—the contents and layout
of a line or field or form is not really committed until it hits the page, except
for page headers and footers.

General Reports Questions

My application has the following reporting requirements:

• A set of canned (standard) reports with headers, totals, breaks, and
page controls.

• Reports that can easily be distributed to the requester via Lotus Notes,
PROFS (VM mainframe system) or paper, or that persons can easily
print/save/manipulate themselves.

Chapter 7. Reports 227

• Unscheduled reporting by the programming staff for quick reports or
questions.

• Ability to save these unscheduled reports for users, with helps
explaining how these reports should be run (quotes, format of parameter
input, and so on).

• Structured unscheduled reporting for users, simplistic and quick.

• Ability to choose fields, sorts, and breaks.

• Complex reporting, queries to pull information are structured and
simple, however it is not necessarily true that all data will be reported,
dependent on multiple program criteria specific to regional
information/criteria

• Similar to writing a program with a lot of specs/variables

Does the Reports feature support these requirements? If not, can the parts
be easily extended?

Reports are saved as VisualAge for Smalltalk parts. The end-user
application would provide access to a set of Reports, and the user would be
able to view, preview, or print them. There is no current example of
formatting a report to other formats, such as a text file or note, but the
design includes the possibility of developing support for other devices.

Although VisualAge for Smalltalk doesn′ t provide an environment for
end-user report editing, one can easily be built into your application. Report
layouts are edited in the CompositionEditor and saved as Report parts, but
their run-time formatting is very dynamic. Our reports provide mainly layout
behavior, with data sources such as Queries or Smalltalk collections
responsible for providing data selection, ordering, and the like. End-user
report tailoring can be enabled by creating views that tailor the data
organization (modify the query′s SQL) and modify the layout of the report by
adding, removing, or reordering report fields. Attributes such as font and
color can also be updated on the fly. In fact, you can create a report
completely on the fly if you need to.

To save the unscheduled (ad hoc) reports for users should be
straightforward. The report part would be predefined to lay out the results
of a query, and the query would be tailored based on the criteria specified.

The reporting capability of the report parts is quite powerful, and is enabled
to take advantage of the full capability of our database parts as well as any
other Smalltalk objects you want to include in the report. Report parts are

228 VisualAge for Smalltalk Handbook − Features

more than a query builder and report generator. The source code is fully
available, and they should be easily extendable.

Saving Printer Settings in reportPreview

If you access a report for the first time, you have to choose the printer, go
into its settings, and define them. Is there an easy way to save default the
printer settings?

You could store the printer object in a class variable and connect it to the
printer object of the report. Eventually, you could save the printer settings of
an AbtReportPrinter using the object dumper. The key attributes are
printerDisplay, printerDisplayName, and printerJobProperties. If the file
exists, you could restore the attributes from the file, otherwise prompt the
user for the printer.

Report Writer Default Fonts

For reasons of National Language Support, it was necessary to change the
default font in the Report Writer to a system font. If your existing reports use
the default font settings in the Report Writer, you have to take one of the
following actions to preserve your existing report layouts:

• Change the default Report Writer font to its Version 3 default:

 1. From the VisualAge Orgainzer window, select Options →
Preferences .

 2. In the VisualAge Preferences window, select the Report tab.

 3. Select the Change default font button.

 4. In the Font Selection window, change the font to display-Times New
Roman-medium-13.

 5. In the Font Selection window, select OK.

 6. In the VisualAge Preferences window, select OK.

or

• Set the font in the Report Shell part for each report:

 1. In your report part, open the settings for the Report Shell part.

 2. In the Properties Sheet, select the deviceFont field and then select
the button that appears.

Chapter 7. Reports 229

 3. In the Font Selection window, change the font to display-Times New
Roman-medium-13.

 4. In the Font Selection window, select OK.

 5. Select OK in the Properties Sheet window.

 6. Save the report part.

Calculated Fields

When using calculated fields in a report, you must place the calculated field
on a separate line from the field that is being calculated. This avoids timing
problems which can cause unpredicatble results in your calculation.

Field Breaks

When you use field breaks to build a report, do not delete the watch field for
a break. To delete a break, use the Remove field break... menu option.
Deleting the watch field causes a walkback during testing:
″AbtExternalSubpartBuilder does not understand coElement.″ During run
time, it ensures that the break is never triggered.

Packaging

The Catalog of Classes report includes class and application information
which is not available at run time, such as the owner of a class or
application, and edition information. Thus it is impossible to package and
run this report as a run time application. The IconViewer example from the
sample application can be packaged instead.

Be sure to include CLKS.BMP when you package your Report application.
Failure to do so will cause a run-time error: ″Primitive failed in:
Smalltalk>>#quo: due to Divide by zero in argument 1.″

230 VisualAge for Smalltalk Handbook − Features

Using Scripts with Reports

Some sample code has been added to the AbtReportPrinter class to help
you select printers from scripts in your reporting application. See the
methods default and named: in the AbtReportPrinter class.

Scripts that are called through attribute-to-script connections can be called
before any queries or data initialization. Therefore you code these scripts to
handle nil values from uninitialized parts, and you should use the ″More
dependencies...″ feature of the attribute-to-script connection′s settings to
make sure the field is recalculated when the appropriate data has been
updated.

Using Multirow Query Results in Reports

Always check the Enable packeting checkbox on the Fetch page of the
query ′s settings notebook. If this box is not checked, the first row of data
might be prefetched and will be skipped when the report is formatted.

Always check the Read-Only checkbox on the Update page of the query′s
settings notebook. Checking this box improves query performance and
prevents possible locking problems.

Override finalInitialize in your part to set query host variables for your
primary query. Using a connection from aboutToFormat might set the host
variable after the query has already been run.

Changing the Color of an Iterator Header

If you change the color of an iterator header and then change the color back
to the default, the header will appear after the footer. To move the header
back to its proper position in the report, drop a new line on the iterator body
and then delete the line.

Chapter 7. Reports 231

Reporting in an ASCII File for Later Printing

How do I write a VisualAge for Smalltalk report in an ASCII file to print it
later?

Right now the best way to do this is to print it to a PostScript file using the
settings on the print driver to print to a file. You can then print the report
later.

Printing in the Report Owner ′s Language

How do I print reports depending on the language of the report owner?

This should work the same way as views. One problem might be that your
report instances might have already been created before you chose the new
language. You will have to recreate any reports that might be built with the
original language. For example, any embedded reports in the current view
would already have been created.

Printing Underlined Words

How do I print underlined words with the report writer under OS/2?

We don′ t have support yet for underlining, because the base font classes
don ′ t support it.

Counting an Unprinted Value

How can we have sums and the like over fields not printed in the details
line?

You are right about the problem with using a current attribute directly.
That′s why we added the #formatted event from fields. It is triggered only
when the field is printed, rather than at iteration which may be signaling a
field for the next group. You can connect a script or dependency from
#formatted of a field in the details line to count an unprinted value.

232 VisualAge for Smalltalk Handbook − Features

Omit Printing of Certain Lines

Is there a way to conditionally omit printing of certain lines?

This is a known requirement, and we hope to provide a nice way to do this
in the future. For now, there′s no way to do this on a line-by-line basis. If a
line is present in the body of an iterator, it will at least take up some space.
You could probably do this by adding and removing lines from the body
based on the current object′s state. Reports are very dynamic that way, the
contents or layout of a line or field or form is not really committed until it
hits the page, except for page headers and footers.

Speeding Report Printing

Is there a way to speed up the printing throughput of the report parts?

The only speed-up I can recommend is reviewing the signaling and script
execution performed in the report and the objects being reported upon.

Adding Fields to a Report Dynamically

How do I add report fields to the report IteratorShell dynamically?

In order to create your fields at the earliest possible moment, you can
create them in the method finalInitialize or create them in a script that is
invoked when the outer collection is set. When I set the field values, I had a
script invoked by the event #self from the current item of the outer
collection′s iterator. The script filled in the dynamic fields with the items
from the inner collection.

HP Printer

Here is a fix that might remedy a problem with your HP printer. The typical
symptoms include clipping of tall fonts and jagged right-aligned columns in
reports, when using scaled fonts and PCL print streams. The root cause is
incorrect results from textWidth. File this in and try it again.

Chapter 7. Reports 233

Smal l ta l k

| CgPMPrinterServer privateMethods |
 createPS: logAddress driverName: driverName driverData: driverData
″Create a printer OSHdc and an OSHps on it. Answer the OSHps or

nil.″

| devOpenStruct hdc hps pLogAddress pDriverName pDriverData |
 pDriverData := OSDrivdata calloc: driverData cb.
 driverData memcpyFrom: 0 to: driverData cb - 1 into: pDriverData

startingAt: 0.
 (devOpenStruct := OSDevopenstruc new)
 pszLogAddress: (pLogAddress := logAddress copyToOSMemory);
 pszDriverName: (pDriverName := driverName copyToOSMemory);
 pdriv: pDriverData.

″The DeviceContext for the server must be open OD_INFO to
 allow font metrics to be queried without having a print
 job current. OD_QUEUED rejects all gpiCreateLogFont: calls
 until a job is actually started.″

 hdc := Hab
devOpenDC: OdInfo
pszToken: ′*′ ″$NON-NLS$″
lCount: 3
pdopData: devOpenStruct
hdcComp: nil.

 pLogAddress free.
 pDriverName free.
 pDriverData free.
 hdc isNull
 ifTrue: [^nil].
 hps := Hab

gpiCreatePS: hdc
psizlSize: OSSizel new
flOptions: PuPels 3 GpifDefault 3 GpiaAssoc 3 GpitNormal.

 hps isNull
 ifTrue: [

hdc devCloseDC.
^nil].

^hps

234 VisualAge for Smalltalk Handbook − Features

Hierarchical Breaks

How can I have hierarchical breaks?

All the breaks attached to an iterator are peers, and don′ t imply any
hierarchy. I think it would be pretty easy to add a subclass of CoFieldBreak
which had the concept of a parent break, the key method to override is
insertBreak, which answers whether or not this break has been triggered.
You can probably get results similar to hierarchical breaks by using multiple
nested iterators. For example, the hierarchical break report:

Report Breaks

CountryStateIterator
CountryHeader: ″Country:″ countryName!
StateHeader: ″State:″ stateName!
Body: - state details -
StateFooter: - state totals -
CountryFooter: - country totals -
(break on state key and country key)

might produce output like:

 Report

Country: USA
- USA details -

State: NC
- NC details -
- NC totals -

State: VA
- VA details -
- VA totals -

State: FL
- FL details - < Country break and state break >
- FL totals -
- USA totals -

Country: Tonga
- Tonga detail -

State: Vanuaatu
- Vanuaatu details - < Country break and state break >
- Vanuaatu totals -
- Tonga totals -

Chapter 7. Reports 235

The same output could be produced from a report with nested iterators for
country and state as follows: (Note that the header lines here are actually
within the bodies.)

Report Breaks

CountriesIterator
CountriesBody
CountryHeader: ″Country:″ countryName!
StatesIterator (on states for current Country)
StatesBody
StateHeader: ″ State:″ stateName!
StateDetailsLine: - state details -
StateFooter: - state totals -
CountryFooter: - country totals -

It′s actually a much cleaner report, which eliminates timing problems with
breaks and totals.

Using Break Protocols

How does the #addBreak - #removeBreak protocol work?

They take AbtFieldBreak as an argument. Breaks are tested in the order
they are added to an iterator. You can add one by creating a new one with
a header/footer/watchField/name and passing it to addBreak:. You can
remove one by name with something like:

Smal l ta l k

iterator removeBreak (iterator subpartNamed: ′badBreak ′).

coElement Role

What is the role of the coElement?

CoElements are to AbtReportElements as CwWidgets are to AbtBasicViews.
They are the primitive object which knows more about page layout and how
to actually render a field. Most report parts correspond to one or more
CoElements. See the implementers of coElementClass.

236 VisualAge for Smalltalk Handbook − Features

Chapter 8. SOM and DSOM

In this chapter, we cover the SOM implementation for use with VisualAge for
Smalltalk. Here are some places to read about SOM and DSOM (in no
particular order):

• Client/Server Programming with OS/2 2.1 (G325-0650-02)

This tome by Robert Orfali and Dan Harkey should be on the desk of
anyone doing client/server programming. It has a great deal of
information on SOM Version 1 (as delivered with OS/2 2.0) and some on
SOM Version 2 and DSOM(as delivered with SOMobjects for OS/2 and
with the VisualAge SOMsupport feature).

• Client/Server Survival Guide with OS/2 (SR28-5494)

Orfali and Harkey (above) have followed their original best-seller with
another book that is destined for fame. Part 7 has the most relavent
information, comprising seven chapters on CORBA, object frameworks
(Taligent), OPENDOC vs. OLE/2, DSOM and SOMobjects, and distributed
object databases.

• Object-Oriented Programming Using SOM and DSOM (SR28-5570)

Christina Lau provides a soup-to-nuts coverage of SOM and DSOM here.
Her programming examples range from introductory to a complete
miniapplication. While there′s not a lot of depth, some important points
are brought out that I have not seen discussed anywhere else.

• SOMobjects: A Practical Introduction to SOM and DSOM (GG24-4357)

This redbook from the IBM ITSO Austin Center takes you through the
steps of developing a distributed banking application using DSOM. The
book is most appropriate for readers who have some DSOM
background.

• SOMobjects Developers Toolkit Publications (IBM Publication number is
S96F-8649 for the complete set.)

This set of books contains:

− User′s Guide

− Programmers Reference

− Programmers Quick Reference

− Collection Classes Reference

− Emitter Framework Guide and Reference

− Installation/Configuration Guide

 Copyright IBM Corp. 1997 237

• See also, OS/2 Developer Magazine. Many past issues have had
articles about the SOMobjects implementation of SOM and DSOM. The
most recent are:

− “SOMobjects Developer Toolkit: An Overview,” Nov/Dec 93,
G362-0001-20

− “SOMobjects Developer Toolkit: Sharing SOM Objects with DSOM,”
Jan/Feb 94 G362-0001-21

Generating Classes with a SOM Prefix

How do I modify the SOM Smalltalk constructor in V3.0 so that it keeps on
generating classes with a SOM prefix?

Changing the way class names are built would be difficult, but not
impossible. One thing that makes it hard is that the pattern for naming has
to be used globally (since Smalltalk class names are constructed
dynamically at run time from the SOM class names). Have you tried simply
defining aliases? For example,

Smal l ta l k

Smalltalk at: #SOMMySOMClass put: MySOMClass

After doing this, you can refer to the class by either name. You do need to
be a bit careful if you take this approach since there are some situations
where only the real name will do. For example, the class itself knows only
its real name. This means that

Smal l ta l k

SOMMySOMClass name

will answer #MySOMClass. If you really want to get the SOMStructure
classes as in Version 2, you can still get them in Version 3. You just need
to annotate your IDL that defines the structure (in the implementation
section) with a statement like this:

I D L

ssc_explicit_mapping: mySOMStruct;

Of course, then you are back into the aliasing business again.

238 VisualAge for Smalltalk Handbook − Features

SOM Exception

SOM exceptions are transformed to Smalltalk exceptions in Version
VisualAge for Smalltalk, Version 3. If you want to handle all user
exceptions, you can code something like the following (the contents of the
handler block are up to you, of course):

Smal l ta l k

(SOMGlobals at: ′ExCORBAUser′)
markReadOnly: false;
defaultHandler:

[:signal | Transcript cr; show: ′SOM UserException′]
markReadOnly: true.

You can use a similar statement (referencing ExCORBASystem) to handle all
system exceptions. If you want special handling for a particular method call,
just use the normal Smalltalk exception-handling mechanisms:

Smal l ta l k

[aBlock] when: (AnException) do:
[:signal | ″the exception handling code″].

CORBA-Compliant ORBs

Which CORBA-compliant ORBs work with a VisualAge for Smalltalk client?

Only IBM SOM works with IBM Smalltalk. There will be wide support for
other ORBs in the future as the various ORB-vendors (including IBM)
implement CORBA 2.0′s ORB Interoperability function.

Using DSOM Hangs the System

When I try to access a DSOM object from VisualAge, the system seems to
hang. The only way I can get out is to press Ctrl-Esc and end VisualAge.
What′s happening?

Chapter 8. SOM and DSOM 239

DSOM objects are accessed across a communication link, either
interprocess communications (IPC) or a wire. To account for latency in the
communications network, the DSOM client must wait for some time before
declaring an error due to lack of server response. Since its calls to DSOM
are synchronous, VisualAge for Smalltalk waits also. If you have enough
patience to wait, DSOM will either return with an exception indication or
your VisualAge process will terminate.

If your VisualAge process terminates, the most likely reason is that you
didn ′ t have the DSOM daemon running.

You can reduce the wait from its default of 10 minutes to something more
reasonable for your working environment by placing a DSOM time-out
statement in your CONFIG.SYS file. The value you specify is the number of
seconds that DSOM should wait for a response from a server before it
declares failure—60 seconds might be a good choice. Here is an example:

SET SOMDTIMEOUT=60

Adding SOM Objects as VisualAge Parts

I am running OS/2 Warp using VisualAge for Smalltalk. Can anyone please
tell me what VisualAge software components I need installed and what are
the job steps to adding SOM objects that we develop to be used as
VisualAge parts? Somehow there is a way to get a menu option in
VisualAge that says Create SOM Wrapper , but how do I get it?

First you need to have the SOMobjects Developers Toolkit on the machine
running VisualAge for Smalltalk Be sure you have compiled the IDL for your
classes into the Interface Repository.

Next you need to install the VisualAge SOMsupport. From the Transcript
menu Smalltalk tools , select Install and then select SOMsupport in the
listbox.

Next you need to create SOM wrapper classes. Open a VisualAge for
Smalltalk Applicaion Browser for the application that you want to hold the
wrapper classes. From the menu Classes , select Create SOM wrappers . The
dialog panel will show you the available SOM interfaces/modules. Select
your interfaces and press OK . You need to create the wrapper classes in
super/subclass order. This means that all superclasses of the ones you are
creating wrappers for must already exist (have wrappers). The wrapper

240 VisualAge for Smalltalk Handbook − Features

class names are derived from the SOM interface names by prefixing with
SOM (that is, SOMObject in SOM is SOMSOMObject in Smalltalk).

Now you can use the wrapper classes like other VisualAge parts by entering
their class name in the Add Part dialog of the Composition Editor. The SOM
attributes and operations are available as VisualAge for Smalltalk attributes
and actions.

Using DSOM Ends the VisualAge Process

When I try to access a DSOM object from VisualAge for Smalltalk, the
VisualAge process ends with no indication of the reason. What′s
happening?

DSOM servers are accessed through an intermediate process known as the
DSOM daemon. If this process is not running when VisualAge sends the
first DSOM message, SOM raises a terminating error (Error 30109) and ends
the invoking process.

You will see the message associated with this error only if you have DSOM
debugging enabled (SET SOMDDEBUG=1). The message will be output on
STDOUT by SOM (or to the DSOM message file if it is enabled). You must
have STDOUT redirected to a file to see its content.

You can ensure that the DSOM daemon is running by including it in your
STARTUP.CMD file. Enter a line similar to the following:

start ″DSOM Daemon″ /MIN somdd.exe

Environment Variable Setup for SOM

Can you summarize for me the setup of environment variables in my
CONFIG.SYS file for using SOM with VisualAge for Smalltalk?

You can find detailed descriptions about the environment variables setup in
the SOMobjects Base Toolkit Users Guide which is shipped with the
VisualAge for Smalltalk SOMsupport component. The summary below
shows how we have set up our environment variables for successful
operation. If you use any of the suggested environment variable settings,
you should replace ′C:\SOM′ with the drive and directory that your

Chapter 8. SOM and DSOM 241

SOMBASE environment variable is set to and ′C:\VISUALAG′ with the base
VisualAge drive and directory.

• SOMIR— Specifies the list of interface repositories to be used. The
default statement generated in your CONFIG.SYS file during installation
of the SOMobjects product specifies two .IR files:

SET SOMIR=C:\SOM\ETC\SOM.IR;SOM.IR

You will almost always want to change this statement. For reliable
operation of SOM, the statement should contain only fully qualified
library names.

If you want to group all your .IR files in one place, you might change it to
something like the following:

SET SOMIR=C:\SOM\ETC\SOM.IR;C:\SOM\ETC\MYSOM.IR

If you want to group your personal extensions to the system .IR together
with the rest of the VisualAge for Smalltalk, you might change it to
something like the following:

SET SOMIR=C:\SOM\ETC\SOM.IR;C:\VISUALAG\MYSOM.IR

See the SOMobjects Base Toolkit Users Guide, 4-46, 6-9, 6-40, and 7-3

• SOMDDIR— Specifies the directory where various DSOM files are stored
(in particular, the implementation repository). Although SOM uses a
default value if you don′ t specify this environment variable, we have
experienced some problems that seemed to disappear when we set the
variable explicitly:

SET SOMDDIR=C:\SOM\ETC\DSOM

See the SOMobjects Base Toolkit Users Guide, 6-9 and 6-40

• SOMDTIMEOUT— Specifies how long a DSOM client should wait for an
acknowledgment. If you are using local (cross-process) DSOM, you
might specify a very short wait time. If you are communicating with
DSOM servers across a network, you probably want a longer wait time.
In any case, the default wait time of 10 minutes is probably way too long
for your environment. We use 60 seconds as our time-out value:

SET SOMDTIMEOUT=60

See SOMobjects Base Toolkit Users Guide, 6-41

• SOMDDEBUG— May be set to enable DSOM run-time error messages. If
it is not set, or if it is set to zero, error messages are not issued and the
only indication of an error is the exception code returned from a method
invocation. If you do enable run-time error messages, you may receive
some false messages (sometimes an error is an expected result of an
operation), so you should carefully sort the false errors from the real

242 VisualAge for Smalltalk Handbook − Features

ones. You might want to run with messages enabled while developing
applications using SOM and with messages disabled in your deployed
applications:

SET SOMDDEBUG=1

See SOMobjects Base Toolkit Users Guide, 6-41 and 6-68

• SOMDMESSAGELOG— Specifies the name of a file where DSOM
run-time error messages are recorded. If it is not set, the messages are
written to the standard output device. Setting this variable is most
useful if you want to capture debugging messages (see SOMDDEBUG
above) in a deployed application rather than showing them to the
application′s users. Note that, due to a bug in SOM, you cannot include
a drive when specifying the value for this variable:

SET SOMDMESSAGELOG=\VISUALAG\SOMDMSG.LOG

See SOMobjects Base Toolkit Users Guide, 6-41 and 6-68

Error: somFindClass failed for class Xxxxx

When I try to run an application using SOM objects, I get a Transcript error
message ′somdFindClass failed for class Xxxxx.′ What is wrong?

The usual cause of this error is one of the following:

 1. The class definition could not be found in any of the accessed Interface
Repositories.

The accessed Interface Repositories are specified in the SOMIR
environment variable. If you think you have things set up properly, try
using the IRDUMP utility to look at the class. From the same drive and
directory where you start VisualAge, use this.

IRDUMP classname

If the interface definition for the class is not displayed, you have an error
in your set up.

 2. The DLL containing the implementation of the class could not be found
in any of the directories specified in your LIBPATH statement.

a. If the DLL is not in a directory specified in your LIBPATH, either
update your LIBPATH and reboot, or move the DLL file.

b. The mapping from the interface definition to a DLL may be
incomplete or incorrect. If the name of your SOM class is not the
same as the name of the DLL that implements it, you normally must

Chapter 8. SOM and DSOM 243

specify the dllname= modifier in the implementation section of the
IDL file for the class (see SOMobjects Base Toolkit Users Guide,
4-32). The only exception to this requirement occurs when you
manage your own class-to-implementation-file mapping using the
SOMClassMgr>>#somFindClsInFi le techniques.

SOM Support Feature

Is there a way to set up and use the VisualAge for Smalltalk SOM feature
without the SOM Development Toolkit?

The VisualAge for Smalltalk SOM support provides the needed subset of the
SOM objects Developer′s Toolkit. It provides the function you need to add
SOMobjects to your interface repository. Install only the SOMobjects Base
Toolkit that is shipped with VisualAge for Smalltalk.

SOM Methods with Inout Sequences

I have some methods in my SOM classes that have inout sequences as
parameters. Smalltalk maps sequences to OrderedCollections with the
_maximum field of the sequence set to zero. But according to SOM
documentation, the _maximum member of the sequence in an inout
parameter must be set to the actual size of the buffer. This seems
reasonable so that the SOM object knows how much memory is available
for the answer.

Will there be any way of setting the maximum field to something different
than zero (for instance, the actual size of the OrderedCollection)?

It actually works just a bit different than is described, but the effect is the
same (unbounded inout sequences are sent with a maximum of zero). In
Smalltalk, maximum is a computed value (it is not stored with the
OrderedCollection). Therefore, it can have one of two values: the maximum
specified in the IDL (bounded), or the current size of the OrderedCollection
(unbounded). Of course, the unbounded case is not working.

The patch is fairly simple. You need to update
SOMTC>>#toSOMMemory:at: by finding the code block that handles
sequences (search for TCSequence). Update the code block by changing:

244 VisualAge for Smalltalk Handbook − Features

Smal l ta l k

maximum = 0 ifTrue: [length := length min: maximum].

to:

Smal l ta l k

maximum = 0
ifTrue: [length := length min: maximum] ″bounded sequence″
ifFalse: [maximum := length]. ″unbounded sequence″

SOM Objects

Is it possible to create VisualAge for Smalltalk parts out of SOM objects?

Yes, you can use SOM objects as VisualAge for Smalltalk parts. First you
need to generate the SOM wrappers; then you can use the Add Part
interface in the Composition Editor to add the SOM object to your
application. Look at the SOMDSamplesApp in VisualAge for Smalltalk for
some examples.

Wrapper generation is a two-step process. In the first step, you use the
SOM Compiler to create entries for your interfaces in the SOM Interface
Repository (IR). In the second step, you generate the SOM wrappers
(language bindings) in Smalltalk. You can do this either by using the
wrapper-generation programming interface or by using the Generate SOM
Wrappers user interface accessed through the VisualAge for Smalltalk
Organizer. This second step reads the interface descriptions from the SOM
IR built in the first step. VisualAge for Smalltalk SOM support also uses the
SOM IR at run time to retrieve data-marshaling information.

ABT.SOM.1017.e: #somFindClass Failed

I received the following message: ABT.SOM.1017.e: #somFindClass failed;
′dep ′ could not be loaded or class ′CDep′ could not be initialized. If I
inspect the components of the part I am testing, I find the the window and nil
(instead of the initialized SOM wrapper). Any help?

Chapter 8. SOM and DSOM 245

There are two likely causes for this problem:

 1. SOM could not find the DLL containing CDep, or a DLL containing a
class that CDep subclasses, by searching the subdirectories listed in
LIBPATH. One way to check if this is your problem is to get the
CHK4DLLS package from OS2TOOLS or run CHK4DLLS from NETDOOR.
From the subdirectory that you are running VisualAge from (this is
important), run:

chk4dlls -l dep.dll

If CHK4DLLS doesn′ t complain, this probably is not your problem.

 2. SOM could not create a class instance for CDep (or a class that CDep
subclasses). Look at the link map for all your SOM DLLs (dep.dll and
any others that you wrote and which contain SOM classes). Each of the
DLLs should export SOMInitModule (spelling counts!). Look in Chapter
5.6 of the SOMobjects User′s Guide for information on writing a
SOMInitModule function.

Note also that it is normal to get a walkback for ″UndefinedObject doesn′ t
understand″ associated with this message. When the class cannot be
created, a nil object is answered by the SOM method _somFindClass.
Eventually someone tries to do real work with the nil object and the
walkback results.

SOM Objects on OS/2 Desktop

How can I send messages to SOM objects that live on an OS/2-desktop?
For example, I′d like to send wpHide to the launchpad. Is there someone
who has something like this running? I tried it, but it doesn′ t work. When I
run the part I made, I get the following message in the transcript (despite
copying the pmwp.dll in my VisualAge for Smalltalk directory).

ABT.SOM.1017.e: #somFindClass failed; ′pmwp ′ could not be
loaded or class ′WPLaunchPad′ was not initialized.

Here is what I did:

• I loaded the SOMSupport feature into my image

• I generated SOM wrappers for WPObject, WPAbstract, WPLaunchPad

• I created a new visual part, added WPLaunchPad as a part, and
connected the wpHide action with a button-clicked event.

246 VisualAge for Smalltalk Handbook − Features

To work with the OS/2 Workplace Shell objects, you need to have the OS/2
Warp Workplace Shell Programming Guide and the OS/2 Warp Workplace
Shell Programming Reference at hand.

OS/2 Workplace Shell Objects are special. They reside in their own
framework under WPObject and don′ t respond as you might expect to the
normal SOM messages. For example, you can′ t create an instance of one
with #somNew; you must use #wpclsNew. But you don′ t really want a new
instance of the LaunchPad, you want the one that′s on the desktop already.
So, I think you need a script that will send #wpclsFindObjectFirst with the
correct parameters to WPObject.

Chapter 8. SOM and DSOM 247

248 VisualAge for Smalltalk Handbook − Features

Chapter 9. Web Connection

In this chapter, we present a set of questions and answers on the Web
connection feature.

Retaining State between Requests

Does the VisualAge for Smalltalk Web Connection feature have any features
that make it possible to maintain server state between related requests?
The classic example of this, I guess, would be the web shopping basket into
which users pop different items until they are ready to commit the order.

You should use something called Session Data. Session data is basically a
value holder with an expiration time-out. For VisualAge for Smalltalk, you
specify the class name of the part, and then we′ ll give you that part as a
tear-off for you to do with what you want. Expiration time-outs are
configurable. A session key is generated for every session data object,
which is sent between the browser and VisualAge for Smalltalk via hidden
input fields.

Disabling a Button

I have two buttons on an HTML form. The first button must be enabled while
the second button must be disabled. When clicking on the first button I want
to enable the second and disable the first. Is it possible to do that with Web
parts?

There is no way to disable anything in HTML. About the only thing you can
do is to destroy the button programmatically. Unfortunately, destroyPart
won ′ t cut it. Instead, you should (using a script), send the message
removeFromParentPart to the part you want to remove from the generated
HTML.

 Copyright IBM Corp. 1997 249

GIFs not Displayed

I don′ t seem to be able to get images displayed. In my browser. The image
outline is briefly displayed, but no image appears. I put LOGO.GIF in the
same directory as my home page file, INDEX.HTM, I also put it in the
VisualAge for Smalltalk directory. If I reference it in the home page, it is
displayed; similarly, if I save the generated HTML and load the file into the
browser it is displayed.

A cut-down example page generates the following:

H T M L

 <!-- generated by VisualAge Web Connection on 18-06-96 -->
 < h t m l > < h e a d > < t i t l e > T e s t P a g e < / t i t l e > < / h e a d >
 < b o d y >

 < h 1 > < f o n t c o l o r = ″#FF0000″ > H e l l o < / f o n t > < / h 1 >
 < i m g s r c = ″logo.gif″ a l t = ″ ″ >

 < / b o d y >
 < / h t m l >

I assume there is something incorrect in my configuration. Any ideas?

From the HTML, it looks like you are specifying the run-time image name as
LOGO.GIF. Now, let′s assume that I got to your page by way of the
universal resource locator (URL) http://server/cgi-bin/abtcgil.exe/MyPart.
LOGO.GIF is a relative URL which will be looked for as
http://server/cgi-bin/abtcgil.exe/logo.gif. Wrong! What you probably want is
to specify the URL as /LOGO.GIF, which will be interpreted as
http://server/logo.gif.

Handling Pseudo-Pages

We need to provide the user with a dynamic list of pages, like the PartLister,
where in fact each page will be the same VisualAge for Smalltalk page, but
with dynamically created different contents.

Viewing any page causes the links to all the pages to change color.

This is handled by Alta Vista Searcher by suffixing parameters to the URL,
so that the URLs all look different to the browser. Are these parameters, the

250 VisualAge for Smalltalk Handbook − Features

string of name=value pairs after the ? in the URL, related to the HTML
Form Data? Are there any supplied methods for parsing this parameter
string?

You can access form data as you suggest via the formData attribute of the
request part. Probably the easiest thing to do is to drop a composite part
next to the page part with the links on it, drop a form in that, and drop an
entry field for every parameter you want to access. These entry fields
should be named the same as the parameter you are going to pass in.
Save the part. Now, you can access the parameters by using a form data
part pointing to the part with the page and composite combo on it. The
composite exists merely so that you can add attributes to the form data for
this page. It will never be used.

For example, let′s say you want to create two text links on a page pointing
to some other part, but pass different parameters to them. Call the parts
Part1 and Part2. Call the parameters parm1 and parm2. On the text parts
on the page part of Part1, specify URL for the link, and type in

Par t2?parm1=yes&parm2=no
and

Par t2?parm2=no&parm1=yes

for the links of the two text parts. In the composite, you should have a form
with two entry fields named parm1 and parm2. Now, on Part2, drop a form
data part, specify Part1 as the part to get the data from. You can now
access the yes and no values via the parm1 and parm2 attributes of the
form data.

Packaging Web Application

Which files do I need to include with my packaged web application?

The run-time files needed for Web Connection, in addition to the standard
files required by VisualAge for Smalltalk are as follows:

• MPR files

− abtwce30.mpr
− abtwve30.mpr
− abtwre30.mpr
− abtcpe30.mpr (TCP/IP)

• CAT files

− cfs.cat

Chapter 9. Web Connection 251

− esta.cat
− esw.cat
− cp.cat
− krn.cat
− esd.cat
− cw_e.cat
− em.cat
− cpswin.cat

• Other TCP/IP files

• abttcp30.dll (OS/2 and Windows)

• abttcp30.w (AIX)

HTML Links and Session Data

I have a Web page with links to other HTML parts. When I click on a link, the
second page should be opened with a dynamically generated HTML list. To
generate the HTML, I try to pass session data to the second page.

The problem is that I am only using literal HTML text, so I cannot check the
Use session data check box. The result is that the CGI session data is
always empty. How do I get around this?

You will need to pass the current session key as part of the URL you are
building in the dynamic list. You can do this by appending the part name in
the URL with a ″-″ (hyphen) followed by the current session data key, with
no intervening spaces. The session data key for a given part can be
retrieved from the current transaction by using the message self transaction
sessionDataKey, for example,

Smal l ta l k

partNameWithKey := ′MyPartName ′, ′-′,
self transaction sessionDataKey.

252 VisualAge for Smalltalk Handbook − Features

URL Query String

Can I suppress the query string that is passed back to the browser after a
request has been made of the server? I′ve got a lot of stuff being passed
around in the URL and it is not very visually pleasing to have things like
randomly generated session keys and form data being visible to the user in
the URL field of their browser.

On the settings page for the HTML Form part there is a setting for the
method of submission. If you select Get, the form data is passed back in the
URL and if you select Post, the form data is passed back via hidden input
fields. Sounds like you might have selected the Get submission option; if
so, selecting Post should give you what you want.

On the other hand, if you are not using forms, but using image and text links
instead, there is no way to suppress the URL shown to the user, other than
by turning off the URL entry field (most browsers allow you to turn it off).

Session Data Lifetime

I am using WebConnection in a plain Smalltalk environment. Is there a way
to change the lifetime of session data to a new value, each time one is
created?

You can change the default (15 minutes) via the class message

Smal l ta l k

AbtCgiLinkSessionData class>>defaultLifeTimeSeconds: anInteger

To change the lifetime of a session data object that already exists, use

Smal l ta l k

sessionData
lifeTimeSeconds: secondsThatItWillLiveFor;
touch

Chapter 9. Web Connection 253

Parts Usable with the Web

What VisualAge for Smalltalk parts are usable with the Web connection?

All the nonvisual parts currently available in VisualAge for Smalltalk are
usable from within VisualAge for Smalltalk Web Connection.

GUI Differences

Why do the GUIs built with the Web parts appear differently in different
browsers?

HTML is provided to the browser. How the browser displays this tagged
HTML text depends on how IBM, or NetScape, or Microsoft built the browser
program. The charm of a browser is that it is an application can be
deployed across many platforms. The challenge of a browser is that how
the application looks to the end user cannot be guaranteed.

Packaging AbtWebSamplesApp and AbtChatSampleApp Separately

When packaging the Web Connection samples, package
AbtWebSamplesApp and AbtWebChatSampleApp separately. Although
AbtWebChatSampleApp is apparently packaged with the
AbtWebSamplesApp, an error in the packaging rules prevents some chat
classes from being included in the general samples package. If you package
the chat sample separately, it will function properly.

One way to fix this is to use the Browse Packaged Image action from the
Transcript tools pulldown and package the sample with this interface. In this
case, in the Applications and ICs page, select both AbtWebSamplesApp and
AbtWebChatSampleApp. Then use Reduce and Output Image normally.

Unloading Web Connection Feature after Running WSI Servers

Here is the procedure for unloading the Web Connection feature after
running WSI servers.

 1. Stop any running WSI servers, using the Web Server Interface Monitor.

 2. Save and exit the image. Restart the image. This action cleans up the
TCP objects in the Smalltalk image.

254 VisualAge for Smalltalk Handbook − Features

 3. Unload the feature from the Load/Unload features interface.

Using DBCS Fonts on Windows Platforms

In DBCS environments on Windows platforms, the default font used after
installation may cause a walkback when you try to edit it from the Web
Connection page in the Preferences notebook.

To bypass the walkback, execute the following code:

Smal l ta l k

AbtHtmlFontManager class classPool
at: ′ProportionalFontName′ put: CgFontStruct default name.

AbtHtmlFontManager class classPool
at: ′MonospacedFontName′ put: CgFontStruct default name.

After executing this code, you should be able to edit the fonts from the Web
Connection page in the Preferences notebook.

Double-Byte Part Names

Some browsers cannot parse HTML that references DBCS names.
Therefore, for Web Connection, do not use DBCS characters in your part
names.

Chapter 9. Web Connection 255

256 VisualAge for Smalltalk Handbook − Features

Appendix A. Special Notices

This publication is intended to help VisualAge for Smalltalk developers avoid
common programming pitfalls and as a guide for frequently asked questions
about the IBM Smalltalk language, VisualAge for Smalltalk, and its features.
The information in this publication is not intended as the specification of any
programming interfaces that are provided by VisualAge for Smalltalk. See
the PUBLICATIONS section of the IBM Programming Announcement for
VisualAge for Smalltalk for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM′s product, program, or service may
be used. Any functionally equivalent program that does not infringe any of
IBM ′s intellectual property rights may be used instead of the IBM product,
program or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to
the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the
mutual use of the information which has been exchanged, should contact
IBM Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(″vendor″) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and

 Copyright IBM Corp. 1997 257

integrate them into the customer′s operational environment. While each
item may have been reviewed by IBM for accuracy in a specific situation,
there is no guarantee that the same or similar results will be obtained
elsewhere. Customers attempting to adapt these techniques to their own
environments do so at their own risk.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.
PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.
UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.
Microsoft, Windows, and the Windows 95 logo
are trademarks or registered trademarks of Microsoft Corporation.

Other trademarks are trademarks of their respective companies.

AIX AIX/6000
Application System/400 APPN
AS/400 CICS
Common User Access CUA
DATABASE 2 DB2
DB2/2 DB2/400
DB2/6000 IBM
IMS MQ
MQSeries MVS
MVS/ESA Object Connection
OS/2 OS/400
Presentation Manager PS/2
RPG/400 SOM
SQL/400 TalkLink
VisualAge VisualGen
VisualInfo

HP, HP-UX Hewlett-Packard Company
Sun, Solaris Sun Microsystems, Inc.
Lotus, Notes Lotus Development Corporation

258 VisualAge for Smalltalk Handbook − Features

Appendix B. Related Publications

The publications listed in this section are considered particularly suitable for
a more detailed discussion of the topics covered in this redbook.

International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 263.

• VisualAge: Concepts and Features, GG24-3946

• VisualAge and Transaction Processing in a Client/Server Environment,
GG24-4487

• AS/400 Application Development with VisualAge for Smalltalk, SG24-2535

• World Wide Web Server Development with VisualAge for Smalltalk,
SG24-4734

• VisualAge: Building GUIs for Existing Applications, GG24-4244

• VisualAge for Smalltalk Distributed, SG24-4521

• VisualAge for Smalltalk and SOMobjects, SG24-4390

• OO Programming with Client Access for OS/400 and ODBC using
VisualAge for Smalltalk, SG24-4718

• Application Development with VisualAge for Smalltalk and MQSeries,
SG24-2117

• Object-Oriented Application Development with VisualAge for C++ for
OS/2, SG24-2593

• Programming with VisualAge for C++ for Windows, SG24-4782

• IBM VisualAge for Cobol for OS/2: Workframe User Guide, SG24-4604

• IBM VisualAge for Cobol for OS/2: Primer, SG24-4605

• IBM VisualAge for Cobol for OS/2: Object-Oriented Programming,
SG24-4606

• Visual Modeling Technique, Object Technology using Visual
Programming, SG24-4227

 Copyright IBM Corp. 1997 259

Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection SBOF-7250 SK2T-8042

Other Publications

These publications are also relevant as further information sources:

• VisualAge for Smalltalk User′s Guide, SC34-4518

• VisualAge for Smalltalk Programmer′s Guide to Building Parts for Fun
and Profit, SC34-4496

• IBM Smalltalk Programmer′s Reference, SC34-4493

• IBM Smalltalk User′s Guide, SC34-4536

• IBM Smalltalk: The Language, by David N. Smith, Benjamin/Cummings
Publishing Company, ISBN: 0-8053-0908

• VisualAge and Transaction Processing in a Client/Server Environment, by
Andreas Bitterer, Michel Brassard, William Nadal, and Chris Wong,
Prentice Hall PTR, 1996, ISBN: 0-13-460874-7

• AS/400 Application Development with VisualAge for Smalltalk, by
Andreas Bitterer, Masahiko Hamada, John Oosthuizen, Gino Porciello,
and Håkon Rambek, Prentice Hall PTR, 1997, ISBN: 0-13-520453-4

• World Wide Web Programming: VisualAge for C++ and Smalltalk, by
Andreas Bitterer and Marc Carrel-Billiard, Prentice Hall PTR, 1997, ISBN:
0-13-612466-6

• Object-Oriented Application Development with VisualAge for C++ for
OS/2, by Marc Carrel-Billiard, Peter Jakab, Isabelle Mauny, and Rainer
Vetter. Prentice Hall PTR, 1996, ISBN: 0-13-242447-9

• Programming with VisualAge for C++ for Windows, by Marc
Carrel-Billiard, Michael Friess, and Isabelle Mauny, Prentice Hall PTR,
1997, ISBN: 0-13-618208-9

260 VisualAge for Smalltalk Handbook − Features

• VisualAge for Smalltalk Distributed, by Walter Fang, Sven Guyet, Randy
Haven, Matti Vilmi, and Eduardo Eckmann, Prentice Hall PTR, 1996,
ISBN: 0-13-570805-2

• VisualAge for Smalltalk SOMsupport, by Walter Fang, Raymond Chu, and
Markus Weyerhäuser, Prentice Hall PTR, 1997, ISBN: 0-13-570813-3

• IBM Smalltalk Programming for Windows and OS/2, by Dan Shafer and
Scott Herndon, Prima Publishing, 1995, ISBN: 1-55958-749-0

• Visual Modeling Technique, by Daniel Tkach, Walter Fang, and Andrew
So, Addison-Wesley, 1996, ISBN: 0-8053-2574-3

• Smalltalk with Style, by Edward Klimas, Suzanne Skublics, and David
Thomas, Prentice Hall PTR, 1996, ISBN: 0-13-165549-3

• Object Technology in Application Development, by Daniel Tkach and
Richard Puttick, Benjamin/Cummings Publishing Company, ISBN:
0-8053-2572-7

• Designing Object-Oriented Software, by Rebecca Wirfs-Brock, Brian
Wilkerson, and Lauren Wiener, Prentice Hall PTR, 1994, ISBN:
0-13-629825-7

• TCP/IP Tutorial and Technical Overview, by Eamon Murphy, Steve
Hayes, and Matthias Enders, Prentice Hall PTR, 1995, ISBN:
0-13-460858-5

• Object-Oriented Interface Design: IBM Common User Access Guidelines,
SC34-4399

Appendix B. Related Publications 261

262 VisualAge for Smalltalk Handbook − Features

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The
latest information may be found at URL http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

TOOLCAT REDBOOKS

To get lists of redbooks, type one of the following commands:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks, type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO: type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Home Page on the World Wide Web

http://w3.itso.ibm.com/redbooks

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

• REDBOOKS category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword
subscribe in the body of the note (leave the subject line blank). A category form and detailed
instructions will be sent to you.

 Copyright IBM Corp. 1997 263

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

• Online Orders — send orders to:

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1)001-408-256-5422 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services - send note to softwareshop@vnet.ibm.com

• On the World Wide Web

Redbooks Home Page http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword
subscribe in the body of the note (leave the subject line blank).

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

264 VisualAge for Smalltalk Handbook − Features

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number
• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature
We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

How to Get ITSO Redbooks 265

266 VisualAge for Smalltalk Handbook − Features

Glossary

A
abstract class . A class that provides common
behavior across a set of subclasses but is not
itself designed to have instances that work.

abstraction . A simplified description or view of
something that emphasizes characteristics or
purposes relevant to the user while suppressing
details that are immaterial or distracting.

accessor methods . Methods that an object
provides to define the interface to its instance
variables. The accessor method to return the
value of an instance variable is often called a
get method or getter method, and the accessor
method to assign a value to an instance variable
is called a set method or setter method.

access plan . The control structure produced
during compile time that is used to process SQL
statements encountered when the program is
run.

action . In VisualAge, a function or operation
that a part can perform upon receiving a
message. Actions enable a part′s public
interface to give other parts access to its
behaviors. Compare to event and attribute.

activate . To make a resource of a node ready
to perform the functions for which it was
designed. Contrast with deactivate.

activator . In distributed processing
environments, a program running in the
background (sometimes called a ″daemon
process″) that init ially activates other programs
the first time they are called.

active . (1) Able to communicate on the
network. A token-ring network adapter is active
if it is able to transmit and receive on the
network. (2) Operational. (3) Pertaining to a
node or device that is connected or is available
for connection to another node or device.
(4) Currently transmitting or receiving.

adapter . Hardware card that allows a device,
such as a PC, to communicate with another
device, such as a monitor, a printer, or other I/O
device.

address . (1) In data communication, the
IEEE-assigned unique code or the unique locally
administered code assigned to each device or
workstation connected to a network. (2) A
character, group of characters, or a value that
identifies a register, a particular part of storage,
a data source, or a data sink. The value is
represented by one or more characters. (3) To
refer to a device or an item of data by its
address. (4) The location in the storage of a
computer where data is stored. (5) In word
processing, the location, identified by the
address code, of a specific section of the
recording medium or storage.

Advanced Program-to-Program Communication
(APPC) . (1) IBM′s architected solution for
program-to-program communication, distributed
transaction processing, and remote database
access. A transaction program (TP) using the
APPC API can communicate with other TPs on
systems that support APPC. (2) An
implementation of the Systems Network
Architecture (SNA) logical unit (LU) 6.2 protocol
that enables interconnected systems to
communicate and share the processing of
programs.

agent . A VisualAge part used to encapsulate
business logic and data access executed outside
a VisualAge for Smalltalk image.

allocate . A logical unit (LU) 6.2 application
program interface (API) verb used to assign a
session to a conversation for the conversation′s
use. Contrast with deallocate.

American National Standard Code for
Information Interchange (ASCII) . The standard
code, using a coded character set consisting of
7-bit coded characters (8 bits including parity
check), used for information interchange among

 Copyright IBM Corp. 1997 267

data processing systems, data communication
systems, and associated equipment. The ASCII
set consists of control characters and graphics
characters.

analog . Pertaining to data consisting of
continuously variable physical quantities.
Contrast with digital.

anonymous FTP . Using the FTP function of the
Internet anonymously by not logging in with an
actual, secret login ID and password. Often
permitted by large, host computers that are
willing to share openly some of the files on their
system to outside users who otherwise would
not be able to log in. See also FTP.

API . See application program interface.

APPC . See Advanced Program-to-Program
Communication.

application . (1) The use to which an information
processing system is put; for example, a payroll
application or an order-entry application. (2) A
collection of defined and extended classes that
provides a reusable piece of functionality. An
application contains and organizes functionally
related classes. It also can contain
subapplications and specify prerequisites.

application layer . In Open Systems
Architecture, the layer of the OSI reference
model that provides a means for application
processes residing in different open systems to
exchange information.

application manager . (1) A team member who
is responsible for the overall state of an
application. An application manager coordinates
the activities of the application′s developers and
assigns ownership of classes to team members.
(2) The browser from which users can create,
delete, manage, or configure applications in
their image.

application program . (1) A program written for
or by a user that applies to the user’s work.
Some application programs receive support and
services from a special kind of application
program called a network application program.

(2) A program used to connect and
communicate with stations in a network,
enabling users to perform application-oriented
activit ies.

Note: Do not use the term application in place
of application program.

application program interface (API) . An
architected functional interface supplied by an
operating system or other software system. The
interface enables an application program written
in a high-level language to use specific data or
functions of the underlying system.

application programmer . A person who
primarily writes and modifies programs for
application data. Contrast with system
programmer.

Archie . An Internet tool for finding files stored
on anonymous FTP sites. You need to know the
exact file name or a substring of it.

architecture . A logical structure that
encompasses operating principles including
services, functions, and protocols.

argument . A data element included as part of a
message. Arguments provide additional
information that the receiver can use to perform
the requested operation. Binary messages and
keyword messages take arguments. In a
keyword message, a colon (:) following a
keyword indicates that an argument is required.

ARPANet . (Advanced Research Projects
Agency Network), the precursor to the Internet.
Developed in the late 1960s and early 1970s by
the US Department of Defense as an experiment
in wide-area-networking that would survive a
nuclear war. See also Internet.

array literal . A literal that is an indexed
sequence of literals. The symbol # precedes
this sequence and parentheses enclose the
sequence. For example, #(5 7 9) is an array of
three integers.

ASCII . (American Standard Code for
Information Interchange), this is the world-wide
standard for the code numbers used by

268 VisualAge for Smalltalk Handbook − Features

computers to represent all the upper and
lower-case Latin letters, numbers, punctuation,
etc. There are 128 standard ASCII codes each
of which can be represented by a 7-digit binary
number, 0000000 through 1111111.

atomic . (1) Pertaining to the smallest element
in a composite object that can be manipulated
independently. (2) Pertaining to a set of
operations performed such that either all the
operations performed or none of the operations
are performed. (3) Pertaining to a set of
operations that cannot be interrupted, such as a
critical section of a parallel program.

attribute . (1) In VisualAge, data that represents
a property of a part. (For example, a customer
part could have a name attribute and an
address attribute.) Attributes enable a part ′s
public interface to give other parts access to its
properties. An attribute can itself be a part,
with its own behavior and attributes. Compare
to event and action. (2) Information that
describes the characteristics of system objects
or program objects.

attribute-to-attribute connection . A connection
from an attribute of one part to an attribute of
another part. When one attribute is updated,
the other attribute is updated automatically.
See also connection.

attribute-to-script connection . A connection
from an attribute of a part to a script. The
connected attribute receives its value from the
script, which can make calculations based on the
values of other parts. See also connection.

authority . The right to do something on the
system or to use an object, such as a file or
document, in the system.

authorization list . A list that gives a group of
users one or more types of access to objects
(such as files or programs) or data in the objects
(such as records in a file). It consists of a list of
two or more user IDs and their authorities for
system resources.

B
backbone . A high-speed line or series of
connections that forms a major pathway within a
network. The term is relative, as a backbone in
a small network is likely to be much smaller
than many nonbackbone lines in a large
network. See also Network.

bandwidth . The transmission capacity of the
lines that carry the Internet ′s electronic traffic.
Historically, it′s imposed severe limitations on
the ability of the Internet to deliver all that we
are demanding it deliver, but fiber-optic cables
will ensure that bandwidth soon will be
essentially limitless and free.

Basic Input/Output System (BIOS) . In IBM
personal computers with PC I/O channel
architecture, microcode that controls basic
hardware operations such as interactions with
diskette drives, fixed disk drives, and the
keyboard.

baud . In common usage the baud rate of a
modem is how many bits it can send or receive
per second. Technically, baud is the number of
times per second that the carrier signal shifts
value; for example a 1200 bit/second modem
actually runs at 300 baud, but it moves 4 bits
per baud. See also bit, modem.

behavior . (1) The set of external characteristics
that an object exhibits. (2) The abstract class
that provides common behavior for class and
metaclass objects.

binary . (1) Pertaining to a system of numbers
to the base two; the binary digits are 0 and 1.
(2) Pertaining to a selection, choice, or condition
that has two possible different values or states.

bind . The process by which the output from the
SQL precompiler is converted to a usable
structure called an access plan. This process is
the one during which access paths to the data
are selected and some authorization checking is
performed.

Glossary 269

bit . (binary digit) A single digit number in base
2, in other words, either a 1 or a zero. The
smallest unit of computerized data. Bandwidth
is usually measured in bits per second. See
also bandwidth, bps, byte, kilobyte, megabyte.

block . A Smalltalk object consisting of one or
more statements, enclosed in brackets [],
passed as arguments or used as the receiver of
messages that implement control flow. Blocks
can define temporary variables for their own
use.

Bps . (bits per second) A measurement of how
fast data is moved from one place to another. A
28.8 modem can move 28,800 bits per second.
See also bandwidth, bit.

browse . A way of looking at a file that does not
allow you to change it.

browser . (1) A window that supports one or
more programming activit ies, such as creating
new classes or methods, modifying existing
classes or methods, or viewing library members.
(2) Software that enables users to browse
through the cyberspace of the World Wide Web.
See also Client, URL, WWW.

buffer . (1) A portion of storage used to hold
input or output data temporarily. (2) A routine
or storage used to compensate for a difference
in data rate or time of occurrence of events,
when transferring data from one device to
another.

byte . A set of bits that represent a single
character. Usually there are 8 bits in a byte,
sometimes more, depending on how the
measurement is being made.

C
cascaded messages . Multiple messages sent to
the same receiver object. The messages are
separated by a semicolon (;).

category . (1) On the VisualAge Composition
Editor, a selectable grouping of parts
represented by an icon in the left-most column.

Selecting a category displays the parts
belonging to that category in the next column
over. (2) A logical association of a group of
methods within a class, with a name assigned by
the class developer.

CGI Link . A stand-alone executable program
that receives incoming CGI requests and routes
them to the VisualAge application. CGI Link runs
on the HTTP server, which does not have to be
the same as the machine running the VisualAge
application.

CGI Link session data . A Web Connection
nonvisual part that holds a persistent data
object. You can use CGI Link Session Data to
store an application-specific object that remains
valid from one CGI query to the next, for the
duration of a session .

change-event symbol . In VisualAge, the code
used to signal that an attribute has changed in
value.

character . A symbol used in printing. For
example, a letter of the alphabet, a numeral,
punctuation, or any other symbol that
represents information.

character literal . A literal that is any single
character preceded by a dollar sign ($).

CICS. See Customer Information Control
System.

class . The specification of an object, including
its attributes and behavior. Once defined, a
class can be used as a template for the creation
of object instances. Class, therefore, can also
refer to the collection of objects that share those
specifications. A class exists within a hierarchy
of classes in which it inherits attributes and
behavior from its superclasses, which exist
closer to the root of the hierarchy. See also
inheritance, metaclass, polymorphism, private
class and public class.

class definition . The definition of a class,
containing:

• Class name

270 VisualAge for Smalltalk Handbook − Features

• Type of class

• Immediate superclass for the class

• Instance, class, and class instance variables

• Pool dictionaries that the class uses.

class developer . A team member who develops
and changes classes. The team member who
created an edition of a class is that edition′s
class developer. Contrast with class owner.

class extension . An extension to the
functionality of a class defined by another
application. The extension consists of one or
more methods that define the added
functionality or behavior. These methods cannot
modify the existing behavior of the defined
class; they can only add behavior specific to the
application that contains the extended class.

class hierarchy . A tree structure that defines
the relationships among classes. A class has
subclasses down the hierarchy from itself and
superclasses up the hierarchy from itself. The
methods and variables of a class are inherited
by its subclasses.

class instance variable . Private data that
belongs to a class. The defining class and each
subclass maintain their own copy of the data.
Only the class methods of the class can directly
reference the data. Changing the data in one
class does not change it for the other classes in
the hierarchy. Contrast with class variable.

class method . A method that provides behavior
for a class. Class methods are usually used to
define ways to create instances of the class.
Contrast with instance method.

class owner . Team member responsible for the
integrity of that class in an application edition.
The class owner is responsible for releasing
class versions. Contrast with class developer.

class variable . Data that is shared by the
defining class and its subclasses. The instance
methods and class methods of the defining class
and its subclasses can directly reference this

data. Changing the data in one class changes it
for all of the other classes. Contrast with class
instance variable.

client . A software program that is used to
contact and obtain data from a server software
program on another computer, often across a
great distance. Each client program is designed
to work with one or more specific kinds of
server programs, and each server requires a
specific kind of client. A Web browser is a
specific kind of client. See also browser, server.

client object . An object that requests services
from other objects.

client/server . The model of interaction in
distributed data processing in which a program
at one location sends a request to a program at
another location and awaits a response. The
requesting program is called a client, and the
answering program is called a server.

code page . A font component that associates
code points and character identifiers. A code
page also identifies how undefined code points
are handled.

collection . (1) In Smalltalk, a set of elements in
which each element is an object. (2) In SQL, a
set of objects created by the SQL/400 licensed
program that consists of and logically classifies
a set of objects, such as tables, views, and
indexes.

command . (1) A request for performance of an
operation or execution of a program. (2) A
character string from a source external to a
system that represents a request for system
action.

comment . A set of characters enclosed in
double quotation marks. Smalltalk ignores
comments and does not execute them.

Common Gateway Interface . A standard
protocol through which a Web server can
execute programs running on the server
machine. CGI programs are executed in
response to requests from Web client browsers.

Glossary 271

Common Object Request Broker Architecture
(CORBA) . An architectural standard proposed
by the Object Management Group (OMG), an
industry standards organization, for creating
object descriptions that are portable among
programming languages and execution
platforms.

Common Programming Interface
Communications (CPI-C) . An IBM
communications architecture that defines a
programming interface for peer-to-peer
communications that is common across different
environments and platforms. Also referred to as
CPI Communications or CPI-C.

Common User Access (CUA) . An IBM
architecture for designing graphical user
interfaces that uses a set of standard
components and terminology.

component . A functional grouping of classes
and related files within a product. See also
system component.

composite part . A part that contains other
parts; it can also contain data and behavior of
its own. For example, a user interface view is a
composite part composed of subparts such as
entry fields, push buttons, and text.

Composition Editor . In VisualAge, a view that is
used to build a graphical user interface and to
make connections among parts.

concrete class . A subclass of an abstract class
that is a specialization of the abstract class. For
example, the concrete class, OrderedCollection,
is a subclass of the abstract class, Collection.

configuration . (1) A description of a group of
components that identifies, for each component,
the component edition or version that is part of
the group. (2) The arrangement of a computer
system or network as defined by the nature,
number, and chief characteristics of its
functional units. More specifically, the term may
refer to a hardware configuration or a software
configuration. (3) The devices and programs
that make up a system, subsystem, or network.

configuration file . The collective set of
definitions that describes a configuration.

configuration map . A named group of
application editions. A configuration map
usually represents a product or one of its major
parts.

connection . (1) In VisualAge, a formal, explicit
relationship between parts. Connections define
the ways in which parts communicate with one
another. Making connections is the basic
technique used for building any VisualAge
application. See also attribute-to-script,
attribute-to-attribute, event-to-script, and
event-to-action connection. (2) A linkage
between nodes. Connections are established
and released at the Network, Session, and
Presentation Layers.

construction from parts . A software
development technology in which applications
are assembled from reusable and existing
software components known as parts.

control language . The set of all commands with
which users request functions from the system.

controller . A unit that controls input/output
operations for one or more devices.

conversation . In SNA, a logical connection
between two transaction programs using an LU
6.2 session. Conversations are delimited by
brackets to gain exclusive use of a session.

CORBA . See Common Object Request Broker
Architecture.

CPI-C. See Common Programming Interface
Communications.

CUA . See Common User Access.

Customer Information Control System (CICS) .
An IBM licensed program that enables
transactions entered at remote terminals to be
processed by user-written applications. It
includes facilities for building, using, and
maintaining databases.

272 VisualAge for Smalltalk Handbook − Features

Cyberspace . Term originated by author William
Gibson in his novel Neuromancer, the word
Cyberspace is currently used to describe the
whole range of information resources available
through computer networks.

D
data area . A system object used to
communicate data such as common language
variable values between the programs within a
job and between jobs. A data area is identified
to the system as a specific object type. The
system-recognized identifier for the object type
is *DTAARA.

database file . A system object of the type *FILE
that contains descriptions of how input data is to
be presented to a program from internal storage
and how output data is to be presented to
internal storage from a program. The collection
of all database files makes up the database (all
the data files stored in the system).

database manager . A VisualAge or IBM
Smalltalk database component that models a
database management system in order to
provide the interface between an application
and the database management system.

data description specifications (DDS) . A format
for describing the user′s database files or
device files to the system. Describing a file in
DDS is similar to fill ing in information on a form
that is arranged in columns and rows. The most
common characteristics, such as the names and
lengths of fields, are described by putting
entries in specific columns on the form. Another
part of the form allows special parameters that
describe less common and more varied
characteristics. The finished specifications are
then used as the source for creating the file.

data integrity . (1) The condition that exists as
long as accidental or intentional destruction,
alteration, or loss of data does not occur.
(2) Preservation of data for its intended use.

data processing . The systematic performance
of operations upon data; for example, handling,
merging, sorting, and computing.

data queue . A way to communicate and put
data used by several programs in a job or
between jobs. The data queue is identified to
the system as a specific type of object. The
system-recognized identifier for the object type
is *DTAQ.

data structure . The syntactic structure of
symbolic expressions and their storage
allocation characteristics.

data transfer . (1) The result of the transmission
of data signals from any data source to a data
receiver. (2) The movement, or copying, of data
from one location and the storage of the data at
another location.

deactivate . To take a resource of a node out of
service, rendering it inoperable, or to place it in
a state in which it cannot perform the functions
for which it was designed. Contrast with
activate.

deallocate . A logical unit (LU) 6.2 application
program interface (API) verb that terminates a
conversation, thereby freeing the session for a
future conversation. Contrast with allocate.

debugger . A software tool used to detect,
trace, and eliminate errors in computer
programs or other software.

default . Pertaining to an attribute, value, or
option that is assumed when none is explicitly
specified.

delimiter . (1) A character used to indicate the
beginning or end of a character string. (2) A bit
pattern that defines the beginning or end of a
frame or token on a LAN.

dependent LU . Any logical unit (LU) that
receives an ACTLU over a link. Such LUs can
act only as secondary logical units (SLUs) and
can have only one LU-LU session at a time.
Contrast with independent LU.

Glossary 273

destination . Any point or location, such as a
node, station, or particular terminal, to which
information is to be sent.

device . An input/output unit such as a terminal,
display, or printer.

dictionary . In Smalltalk, an unordered collection
whose elements are accessed by an explicitly
assigned external key. See also pool dictionary.

digital . (1) Pertaining to data in the form of
digits. Contrast with analog. (2) Pertaining to
data consisting of numerical values or discrete
units.

disabled . (1) Pertaining to a state of a
processing unit that prevents the occurrence of
certain types of interruptions. (2) Pertaining to
the state in which a transmission control unit or
audio response unit cannot accept incoming
calls on a line.

display . (1) To present information for viewing,
usually on a terminal screen or a hard-copy
device. (2) A device or medium on which
information is presented, such as a terminal
screen.

Display . (1) A Smalltalk command that executes
the selected code and displays the result. (2) In
IBM Smalltalk, an X/Motif concept that models
the user ′s hardware display. The functions of
the X/Motif Display object are implemented in
the IBM Smalltalk CgDisplay class.

distributed application . A workstation
application that runs in cooperation with
programs running on other processes or
machines. Client/server applications are a
subset of distributed applications.

distributed computing environment (DCE) . A
set of services and tools that support the
creation, use, and maintenance of distributed
applications in a heterogeneous computing
environment.

Distributed System Object Model (DSOM) . An
extension to SOM enabling SOM objects to
reside on multiple network nodes.

DLL . See dynamic l ink l ibrary.

domain . (1) An access method, its application
programs, communication controllers,
connecting lines, modems, and attached
terminals. (2) In SNA, a system services control
point (SSCP) and the physical units (PUs), logical
units (LUs), links, link stations, and all the
associated resources that the SSCP has the
ability to control by means of activation
requests and deactivation requests.

domain name . The unique name that identifies
an Internet site. Domain names always have
two or more parts, separated by dots. The part
on the left is the most specific, and the part on
the right is the most general. A given machine
may have more than one domain name but a
given domain name points to only one machine.
Usually, all of the machines on a given network
will have the same thing as the right-hand
portion of their domain names, for example,
gateway.mynetwork.com.br,
mail.mynetwork.com.br, www.mynetwork.com.br,
and so on. It is also possible for a domain name
to exist but not be connected to an actual
machine. This is often done so that a group or
business can have an Internet e-mail address
without having to establish a real Internet site.
In these cases, some real Internet machine must
handle the mail on behalf of the listed domain
name. See also IP Number.

dynamic data exchange (DDE) . A
communication mechanism between processes
that enables two applications to exchange data
in a client/server relationship.

dynamic link library (DLL) . A file containing
data and code objects that can be used by
programs or applications during loading or at
run time but are not part of the program′s
executable (.EXE) file.

274 VisualAge for Smalltalk Handbook − Features

E
EBCDIC . Extended binary-coded decimal
interchange code. A coded character set
consisting of 8-bit coded characters.

edition . In the VisualAge or IBM Smalltalk team
programming environment, a software
component that is subject to further change. A
software component can have one or more
editions, identified by a time stamp stating the
date and time of the edition′s creation. Many
changes can be made to a single edition of a
class. In contrast, every change to a method
creates a new edition of that method. In its
broadest sense, edition can include scratch
edition and version.

EHLLAPI . Emulator high-level language
application programming interface. A
programming interface that enables a
workstation application to communicate with a
mainframe application. EHLLAPI operates in
conjunction with a terminal (such as 3270)
emulator.

e-mail . (Electronic mail) Messages transmitted
over the Internet from user to user. E-mail can
contain text, but also can carry with it files of
any type as attachments.

enabled . (1) On a LAN, pertaining to an
adapter or device that is active, operational, and
able to receive frames from the network.
(2) Pertaining to a state of a processing unit
that allows the occurrence of certain types of
interruptions. (3) Pertaining to the state in
which a transmission control unit or an audio
response unit can accept incoming calls on a
line.

encapsulation . The hiding of a software object′s
internal data representation. The object provides
an interface that queries and manipulates the
data without exposing its underlying structure.

end user . A person, device, program, or
computer system that uti l izes a computer
network for the purpose of data processing and
information exchange.

enterprise . A business or organization that
consists of two or more sites separated by a
public right-of-way or a geographical distance.

Ethernet . A very common method of
networking computers in a LAN. Ethernet will
handle about 10,000,000 bits/second and can be
used with almost any kind of computer. See
also bandwidth, LAN.

event . A representation of a change that occurs
to a part. The events on a part′s public
interface enable other interested parts to
receive notification when something about the
part changes. For example, a push button
generates an event signaling that it has been
clicked, which might cause another part to
display a window. Compare to attribute.

event-to-action connection . A connection that
causes an action to be performed when an
event occurs. See also connection.

event-to-script connection . A connection that
causes a script to run when an event occurs.
See also connection.

exception . An abnormal condition such as an
I/O error encountered in processing a data set
or a file.

execute . To perform the actions specified by a
program or a portion of a program.

execution . The process of carrying out an
instruction or instructions of a computer
program by a computer.

expression . In Smalltalk, the syntactic
representation of one or more messages. An
expression can consist of subexpressions
representing the receiver and arguments of the
message. The expression can also cause the
assignment of its result to one or more
variables.

external source . The format of Smalltalk source
code that is filed out to an external file. See
also fi le in and file out.

Glossary 275

F
feature . (1) A major component of a software
product that can be ordered separately. (2) In
VisualAge, an action, attribute, or event that is
available from a part ′s public interface and to
which other parts can connect. See also
attribute and event.

field . A group of related bytes (such as name
or amount) that are treated as a unit in a
record.

file . (1) A generic term for the object type that
refers to a database file, a device file, or a save
file. The system-recognized identifier for the
object type is *FILE. (2) In the hierarchical file
system, a piece of related information (data),
such as a document. (3) In SQL, the term is
generally referred to as a table.

file in . A Smalltalk command for compiling
external definitions of applications, classes, and
methods from a text file.

file name . (1) A name assigned to or declared
for a file. (2) The name used by a program to
identify a file.

file out . A Smalltalk command for writing
definitions of applications, classes, and methods
to an external text file.

firewall . A combination of hardware and
software that protects a local area network
(LAN) from Internet hackers. It separates the
network into two or more parts and restricts
outsiders to the area outside the firewall.
Private or sensitive information is kept inside
the firewall.

first-in first-out (FIFO) . A queuing technique in
which the next request to be processed from a
queue is the request of the highest priority that
has been on the queue for the longest time.

fixed-length record . A record having the same
length as all other records with which it is
logically or physically associated.

form . An HTML element that can include entry
fields, push buttons, and other user-interface
controls through which users can enter
information. Sometimes called a f i l l- in form.

format . (1) A specified arrangement of such
things as characters, fields, and lines, usually
used for displays, printouts, or files. (2) To
arrange such things as characters, fields, and
lines.

FQDN. (Fully Qualified Domain Name) The
official name assigned to a computer.
Organizations register names, such as ibm.com
or utulsa.edu. They then assign unique names
to their computers, such as watson5.ibm.com or
tornado.cs.utulsa.edu.

framework . A library of classes, intended for
reuse, that fall within a particular domain (for
example, a communications framework or a
graphics framework).

free-form surface . In VisualAge, the large open
area of the Composition Editor window. The
free-form surface holds the visual parts
contained by the views a user builds and
representations of the nonvisual parts that an
application includes.

FTP. (File Transfer Protocol) The basic Internet
function that enables files to be transferred
between computers. You can use it to download
files from a remote, host computer, as well as to
upload files from your computer to a remote,
host computer. (See Anonymous FTP).

function . (1) A specific purpose of an entity, or
its characteristic action. (2) In data
communications, a machine action such as
carriage return or line feed.

G
garbage collection . A Smalltalk process for
periodically identifying unreferenced objects and
deallocating their memory.

gateway . A device and its associated software
that interconnect networks or systems of

276 VisualAge for Smalltalk Handbook − Features

different architectures. The connection is
usually made above the reference model
network layer.

GET. One of the methods used in HTTP
requests. A GET request is used to retrieve data
from an HTTP server. See also POST.

GIF. (Graphics Interchange Format) A graphics
file format that is commonly used on the
Internet to provide graphics images in Web
pages.

global variable . A variable that any method in
any object can access.

graphical user interface (GUI) . A type of
interface that enables users to communicate
with a program by manipulating graphical
elements rather than by entering commands.
Typically, a graphical user interface includes a
combination of graphics, pointing devices, menu
bars, overlapping windows, and icons.

graphics . (1) The making of charts and
pictures. (2) Pertaining to charts, tables, and
their creation.

group member . A team member who belongs
to a group that is responsible for developing an
application.

GUI. See graphical user interface.

H
hardware . Physical equipment as opposed to
programs, procedures, rules, and associated
documentation.

header . The portion of a message that contains
control information for the message such as one
or more destination fields, name of the
originating station, input sequence number,
character string indicating the type of message,
and priority level for the message.

HLLAPI . High-level language application
programming interface. A programming
interface that enables a workstation application
to communicate with a mainframe application.

HLLAPI usually operates in conjunction with a
terminal emulator.

host . (1) A computer that ″hosts″ outside
computer users by providing files, services or
sharing its resources. (2) Any computer on a
network that is a repository for services
available to other computers on the network. It
is quite common to have one host machine
provide several services, such as WWW and
USENET. See also Node, Network.

host computer . (1) The primary or controll ing
computer in a multicomputer installation or
network. (2) In a network, a processing unit in
where a network access method resides.

host variable . A variable in an SQL statement
used for substituting data values into the
statement at execution time.

HTML (hypertext markup language). . The basic
language that is used to build hypertext
documents on the World Wide Web. It is used in
basic, plain ASCII-text documents, but when
those documents are interpreted (called
rendering) by a Web browser such as Netscape,
the document can display formatted text, color,
a variety of fonts, graphic images, special
effects, hypertext jumps to other Internet
locations and information forms.

HTTP (hypertext transfer protocol) . The
protocol for moving hypertext fi les across the
Internet. Requires a HTTP client program on
one end, and an HTTP server program on the
other end. HTTP is the most important protocol
used in the World Wide Web (WWW). See also
Client, Server, WWW.

HTTP request . A transaction initiated by a Web
browser and adhering to HTTP. The server
usually responds with HTML data, but can send
other kinds of objects as well.

hypertext . Text in a document that contains a
hidden link to other text. You can click a mouse
on a hypertext word and it will take you to the
text designated in the link. Hypertext is used in
Windows help programs and CD encyclopedias
to jump to related references elsewhere within

Glossary 277

the same document. The wonderful thing about
hypertext, however, is its ability to link− using
HTTP over the Web − to any Web document in
the world, yet still require only a single mouse
click to jump clear around the world.

I
icon . A small pictorial representation of an
object.

image . A Smalltalk file that provides a
development environment on an individual
workstation. An image contains object
instances, classes, and methods. It must be
loaded into the Smalltalk virtual machine in
order to run.

implementor . For any given message selector,
a method that implements that selector.

IMS . Information Management System/Virtual
Storage.

inactive . (1) Not operational. (2) Pertaining to
a node or device not connected or not available
for connection to another node or device.

independent LU . A logical unit (LU) that does
not receive an ACTLU over a link. Such LUs
can act as primary logical units (PLUs) or
secondary logical units (SLUs) and can have one
or more LU-LU sessions at a time. Contrast
with dependent LU.

index . A set of pointers that are logically
arranged by the values of a key. Indexes
provide quick access and can enforce
uniqueness on the rows in a table.

inheritance . A relationship among classes in
which one class shares the structure and
behavior of another. A subclass inherits from a
superclass.

initialize . In a LAN, to prepare the adapter (and
adapter support code, if used) for use by an
application program.

input/output (I/O) . (1) Pertaining to a device
whose parts can perform an input process and

an output process at the same time.
(2) Pertaining to a functional unit or channel
involved in an input process, output process, or
both, concurrently or not, and to the data
involved in such a process.

inspector . A Smalltalk tool for viewing the data
of any Smalltalk object.

instance . An object that is a single occurrence
of a particular class. An instance exists in
memory or external media in persistent form.
Compare to persistent object.

instance method . In Smalltalk, a method that
provides behavior for particular instances of a
class. Messages that invoke instance methods
are sent to particular instances, rather than to
the class as a whole. Contrast with class
method.

instance variable . Private data that belongs to
an instance of a class and is hidden from direct
access by all other objects. Instance variables
can be accessed only by the instance methods
of the defining class and its subclasses.

interface . (1) A shared boundary between two
functional units, defined by functional
characteristics, common physical
interconnection characteristics, signal
characteristics, and other characteristics as
appropriate. (2) A shared boundary. An
interface may be a hardware component to link
two devices or a portion of storage or registers
accessed by two or more computer programs.
(3) Hardware, software, or both, that links
systems, programs, or devices.

interface aids . In VisualAge, when used
together with the RecordStructure classes, the
interface aids convert existing C or COBOL
definitions into Smalltalk objects.

Internet . The vast collection of interconnected
networks that all use the TCP/IP protocols and
that evolved from the ARPANET of the late
1960′s and early 1970′s. By July of 1995, the
Internet was connecting roughly 60,000
independent networks into a vast global net.

278 VisualAge for Smalltalk Handbook − Features

intranet . A private network inside a company
or organization that uses the same kinds of
software that you would find on the public
Internet, but that is only for internal use. As the
Internet has become more popular, many of the
tools used on the Internet are being used in
private networks, for example, many companies
have Web servers that are available only to
employees.

IP. (Internet Protocol) The rules that provide
basic Internet functions. See TCP/IP.

IP Number . An Internet address that is a
unique number consisting of four parts
separated by dots, sometimes called a dotted
quad. (For example: 198.204.112.1) Every
Internet computer has an IP number and most
computers also have one or more domain
names that are plain language substitutes for
the dotted quad.

ISDN. (Integrated Services Digital Network) A
set of communications standards that enable a
single phone line or optical cable to carry voice,
digital network services and video. ISDN is
intended to eventually replace our standard
telephone system.

iterative development . A software development
process that allows progress in stages. At the
end of each stage, the result is verified by end
users. Through such verification, requirements
are dynamically identified and refined while the
product is under development.

J
Java . Java is a new programming language
invented by Sun Microsystems that is
specifically designed for writing programs that
can be safely downloaded to your computer
through the Internet and immediately run
without fear of viruses or other harm to your
computer or fi les. Using small Java programs
(called applets, Web pages can include
functions such as animations, calculators, and
other fancy tricks. We can expect to see a huge
variety of features added to the Web using Java,
since you can write a Java program to do

almost anything a regular computer program
can do, and then include that Java program in a
Web page.

job control language (JCL) . A problem-oriented
language designed to express statements in a
job that are used to identify the job or describe
its requirements to an operating system.

journal . A system object that identifies the
objects being journaled, the current journal
receiver, and all journal receivers on the system
for the journal. The system-recognized identifier
for the object type is *JRN.

journaling . The process of recording, in a
journal, the changes made to a physical file
member. Journaling allows the programmer to
reconstruct a physical member by applying or
removing the changes in the journal to a saved
version of the physical fi le member.

journal receiver . A system object that contains
journal entries added when changes are made
to an object, for example, when an update is
made to a file being journaled. The
system-recognized identifier for the object type
is *JRNRCV.

JPEG . (Joint Photographic Experts Group) The
name of the committee that designed the
photographic image-compression standard.
JPEG is optimized for compressing full-color or
gray-scale photographic-type, digital images. It
doesn ′ t work well on drawn images such as line
drawings, and it does not handle black-and-white
images or video images.

K
kbps . (kilobits per second) A speed rating for
computer modems that measures (in units of
1024 bits) the maximum number of bits the
device can transfer in one second under ideal
conditions.

keyword . (1) One of the predefined words of an
artificial language. (2) One of the significant
and informative words in a tit le or document
that describes the content of that document.

Glossary 279

(3) A name or symbol that identifies a
parameter. (4) A part of a command operand
that consists of a specific character string (such
as DSNAME=).

keyword message . A message that takes one
or more arguments. A keyword is an identifier
followed by a colon (:). Each keyword requires
one argument, and the order of the keywords is
important. ′hello ′ at: 2 put: $H is an example of
a keyword message; at: and put: are keyword
selectors, 2 and $H are the arguments. See also
message.

kilobyte . A thousand bytes. Actually, usually
1024 (2^10) bytes. See also byte, bit.

L
LAN . See local area network.

library . (1) A shared repository represented by
a single file. It stores source code, object
(compiled) code, and persistent objects,
including editions, versions, and releases of
software components. (2) A system object that
serves as a directory to other objects. A l ibrary
groups related objects and allows the user to
find objects by name. To identify a specific
object to the system, a user needs only to
provide the object name, the object type, and
the name of the library containing the object.

link . (1) The logical connection between nodes
including the end-to-end link control procedures.
(2) The combination of physical media,
protocols, and programming that connects
devices on a network. (3) In computer
programming, the part of a program, in some
cases a single instruction or an address, that
passes control and parameters between
separate portions of the computer program.
(4) To interconnect items of data or portions of
one or more computer programs. (5) In SNA,
the combination of the link connection and link
stations joining network nodes.

listserv . An Internet application that
automatically serves mailing lists by sending
electronic newsletters to a stored database of

Internet user addresses. Users can handle their
own subscribe/unsubscribe actions without
requiring anyone at the server location to
personally handle the transaction.

literal . An object that can be created by the
compiler. A literal can be a number, a character
string, a single character, a symbol, or an array.
All literals are unique: Two literals with the
same value refer to the same object. The object
created by a literal is read-only; it cannot be
changed.

literal text . Text in an HTML Text part that is
passed to the client browser exactly as entered.
You can use literal text to code HTML tagging
that is not directly supported by the Web
Connection parts.

load . A system operation that links the
compiled code for a software component from a
library into an active image. Loading also
performs other operations that enable the
component to run, such as linking prerequisites.

local address . In SNA, an address used in a
peripheral node in place of an SNA network
address and transformed to or from an SNA
network address by the boundary function in a
subarea node.

local area network (LAN) . (1) A network in
which devices are connected to one another for
communication and can be connected to a larger
network. See also token ring. (2) A network in
which communications are limited to a
moderately sized geographic area such as a
single office building, warehouse, or campus,
and do not generally extend across public
rights-of-way. Contrast with wide area network.

local node . In the subsystem, the node from
which one views the rest of the OSI
network—the node for which resources are
defined. Contrast with remote node.

logical file . A description of how data is to be
presented to or received from a program. This
type of database file contains no data, but it
defines record formats for one or more physical
files. The record formats allow a developer to

280 VisualAge for Smalltalk Handbook − Features

present different views of the data in a physical
file.

logical unit (LU) . In SNA, a port through which a
user gains access to the services of a network.
A logical unit can support two types of
sessions—with the host, and with other LUs.
See logical unit 6.2.

logical unit (LU) 6.2 . A type of logical unit that
supports general communication between
programs in a distributed processing
environment. LU 6.2 is characterized by (1) a
peer relationship between session partners, (2)
efficient utilization of a session for multiple
transactions, (3) comprehensive end-to-end
error processing, and (4) a generic application
program interface (API) consisting of structured
verbs that are mapped to a product
implementation. Synonym for Advanced
Program-to-Program Communications.

Login . The account name used to gain access
to a computer system. Not kept secret (unlike
password).

LU type . In SNA, the classification of a LU-LU
session in terms of the specific subset of SNA
protocols and options supported by the logical
units (LUs) for that session, namely:

• The mandatory and optional values allowed
in the session activation request

• The usage of data stream controls, function
management headers (FMHs), request unit
(RU) parameters, and sense codes

• Presentation services protocols such as
those associated with FMH usage.

LU types 0, 1, 2, 3, 4, 6.1, 6.2, and 7 are defined.

M
machine-readable information (MRI) .
Language-sensitive information associated with
a computer program, such as program
integrated information or softcopy
documentation.

management services . In SNA, one of the types
of network services in control points (CPs) and
physical units (PUs). Management services are
the services provided to assist in the
management of SNA networks, such as problem
management, performance and accounting
management, configuration management and
change management.

megabyte . A million bytes. A thousand
kilobytes. See also byte, bit, kilobyte.

message . In Smalltalk, a communication from
one object to another that requests the
receiving object to execute a method. A
message consists of a reference to the receiving
object, followed by a selector indicating the
requested method, and (in many cases)
arguments to be used in executing the method.
There are three types of messages: binary,
keyword, and unary.

metaclass . The specification of a class; the
complete description of a class′s attributes,
behavior, and implementation. Every class has
a metaclass, of which it is the sole instance.
Contrast with class.

method . Executable code that implements the
logic of a particular message for a class. In
VisualAge, methods are also called scripts. See
also class method, instance method, private
method, and public method.

MIME . (Multipurpose Internet Mail Extensions)
A set of Internet functions that extend normal
e-mail capabilit ies and enable nontext computer
files to be attached to e-mail. Nontext files
include graphics, spreadsheets, formatted
word-processor documents, sound files, and so
on. Files sent by MIME arrive at their
destination as exact copies of the original so
that you can send fully formatted word
processing files, spreadsheets, graphics images
and software applications to other users via
simple e-mail. Besides email software, the
MIME standard is also universally used by Web
servers to identify the files they are sending to
Web clients, in this way new file formats can be
accommodated simply by updating the
browsers ′ list of pairs of MIME types and

Glossary 281

appropriate software for handling each type.
See also browser, client, server.

model . A nonvisual part that represents the
state and behavior of a real-world object, such
as a customer or an account. Contrast with
view.

mode name . A symbolic name for a set of
session characteristics. For LU 6.2, a mode
name and a partner LU name together define a
group of parallel sessions having the same
characteristics.

module . A program unit that is discrete and
identifiable with respect to compiling, combining
with other units, and loading; for example, the
input to or output from an assembler, compiler,
linkage editor, or executive routine.

monitor . (1) A functional unit that observes and
records selected activities for analysis within a
data processing system. Possible uses are to
show significant departures from the norm, or to
determine levels of util ization of particular
functional units. (2) Software or hardware that
observes, supervises, controls, or verifies
operations of a system.

Multiple Virtual Storage (MVS) . An IBM
licensed program whose full name is the
Operating System/Virtual Storage (OS/VS) with
Multiple Virtual Storage/System Product for
System/370. It is a software operating system
controlling the execution of programs.

multireceive dialog . A dialog that takes one
data record from the object that initiates the
dialog, sends it to a remote program, and
returns multiple records from the remote
program to the initiating object. Compare to
simple dialog.

N
NetBIOS . See Network Basic Input/Output
System.

network . (1) A configuration of data processing
devices and software connected for information
interchange. (2) An arrangement of nodes and
connecting branches. Connections are made
between data stations.

network address . In SNA, an address,
consisting of subarea and element fields, that
identifies a link, a link station, or a network
addressable unit. Subarea nodes use network
addresses; peripheral nodes use local
addresses. The boundary function in the
subarea node to which a peripheral node is
attached transforms local addresses to network
addresses and vice versa. See local address.

Network Basic Input/Output System (NetBIOS) .
An operating system interface for application
programs used on IBM personal computers that
are attached to an IBM Token-Ring Network.

network layer . (1) In the Open Systems
Interconnection reference model, the layer that
provides for the entities in the transport layer
the means for routing and switching blocks of
data through the network between the open
systems in which those entities reside. (2) The
layer that provides services to establish a path
between systems with a predictable quality of
service. See Open Systems Interconnection
(OSI).

network management . The conceptual control
element of a station that interfaces with all of
the architectural layers of that station and is
responsible for the resetting and setting of
control parameters, obtaining reports of error
conditions, and determining whether the station
should be connected to or disconnected from the
network.

nil . The object in Smalltalk that means no
value. All variables initially refer to nil. It is the
single instance of the UndefinedObject class.

282 VisualAge for Smalltalk Handbook − Features

node . (1) Any device, attached to a network,
that transmits and/or receives data. (2) An
endpoint of a link, or a junction common to two
or more links in a network. (3) In a network, a
point where one or more functional units
interconnect transmission lines.

node name . In VTAM, the symbolic name
assigned to a specific major or minor node
during network definition.

nonvisual class . A class in a VisualAge
application that specifies a nonvisual part. For
example, Person, Address, and BankAccount are
nonvisual classes.

nonvisual part . A part that has no visual
representation at run time. A nonvisual part
typically represents some real-world object that
exists in the business environment. Contrast
with view, visual part.

notebook . In VisualAge, a view that resembles
a bound notebook, containing pages separated
into sections by tabbed divider pages. A user
can turn the pages of a notebook or select the
tabs to move from one section to another.

O
object . (1) The basic building block in Smalltalk
development. An object is anything that exhibits
behavior. All code and data in Smalltalk must be
part of an object. (2) On the AS/400 system, an
object is a named storage space consisting of a
set of characteristics that describes itself and, in
some cases, data. Some examples of objects
are programs, files, and libraries.

object code . Compiler or assembler output that
is itself executable machine code or is suitable
for processing to produce executable machine
code. Contrast with source code.

object factory . A nonvisual part capable of
dynamically creating new instances of a
specified part. For example, during the
execution of an application, an object factory
can create instances of a new class to collect
the data being generated.

object-oriented programming . A programming
methodology built around objects and based on
sending messages back and forth between those
objects. The basic concepts of object-oriented
programming are encapsulation, inheritance,
and polymorphism.

object persistency . A characteristic that
enables objects to exist beyond the time in
which their creating application runs. One use of
object persistency is sharing objects among
programmers in a development environment.

open system . (1) A system with specified
standards that therefore can be readily
connected to other systems that comply with the
same standards. (2) A data communications
system that conforms to the standards and
protocols defined by Open Systems
Interconnection (OSI).

open systems architecture (OSA) . A model that
represents a network as a hierarchical structure
of layers of functions; each layer provides a set
of functions that can be accessed and that can
be used by the layer above it.

Note: Layers are independent in the sense that
implementation of a layer can be changed
without affecting other layers.

Open Systems Interconnection (OSI) . (1) The
interconnection of open systems in accordance
with specific ISO standards. (2) The use of
standardized procedures to enable the
interconnection of data processing systems.
Note: The OSI architecture establishes a
framework for coordinating the development of
current and future standards for the
interconnection of computer systems. Network
functions are divided into seven layers. Each
layer represents a group of related data
processing and communication functions that
can be carried out in a standard way to support
different applications.

operating system . Software that controls the
execution of programs. An operating system
can provide services such as resource

Glossary 283

allocation, scheduling, input/output control, and
data management.

operation . (1) A defined action, namely, the act
of obtaining a result from one or more operands
in accordance with a rule that completely
specifies the result for any permissible
combination of operands. (2) A program step
undertaken or executed by a computer. (3) An
action performed on one or more data items,
such as adding, multiplying, comparing, or
moving.

option . (1) A specification in a statement, a
selection from a menu, or a setting of a switch
that may be used to influence the execution of a
program. (2) A hardware or software function
that may be selected or enabled as part of a
configuration process. (3) A piece of hardware
(such as a network adapter) that can be
installed in a device to modify or enhance
device function.

P
panel . (1) A formatted display of information
that appears on a terminal screen. Contrast
with screen. (2) In computer graphics, a display
image that defines the locations and
characteristics of display fields on a display
surface.

parameter . (1) A data element included as part
of a message to provide information that the
object might need. In Smalltalk, generally
referred to as an argument. (2) A variable that
is given a constant value for a specified
application and that may denote the application.
(3) An item in a menu or for which the user
specifies a value or for which the system
provides a value when the menu is interpreted.
(4) Data passed between programs or
procedures.

part . A self-contained software object with a
standardized public interface, consisting of a set
of external features that allow the part to
interact with other parts. The parts on the
VisualAge parts palette can be used as
templates to create instances of objects.

parts palette . In the VisualAge Composition
Editor, an organized collection of visual and
nonvisual parts used in building composite parts
for an application. The parts palette is organized
into categories. Application developers can add
parts to the palette for use in defining
applications or other parts.

password . In computer security, a string of
characters known to the computer system and a
user, who must specify it to gain full or limited
access to a system and to the data stored within
it.

path . (1) In a network, any route between any
two nodes. (2) The route traversed by the
information exchanged between two attaching
devices in a network. (3) A command in IBM
Personal Computer Disk Operating System (PC
DOS) and IBM Operating System/2 (OS/2) that
specifies directories to be searched for
commands or batch files that are not found by a
search of the current directory.

PATH_INFO . A CGI variable, usually
transmitted to the CGI program in the form of an
environment variable. The PATH_INFO variable
contains all path information from the URL
following the name of the CGI executable. For a
Web Connection application, this information is
the same as the VisualAge part name.

persistent object . Instances stored outside of
the image. A persistent object must be loaded
into virtual or real storage before it can process
messages sent to it.

personal computer (PC) . A desk-top,
free-standing, or portable microcomputer that
usually consists of a system unit, a display, a
monitor, a keyboard, one or more diskette
drives, internal fixed-disk storage, and an
optional printer. PCs are designed primarily to
give independent computing power to a single
user and are inexpensively priced for purchase
by individuals or small businesses. Examples
include the various models of the IBM personal
computers and the IBM Personal System/2
computer.

284 VisualAge for Smalltalk Handbook − Features

physical connection . The ability of two
connectors to mate and make electrical contact.
In a network, devices that are physically
connected can communicate only if they share
the same protocol.

physical file . A description of how data is to be
presented to or received from a program and
how data is actually stored in the database. A
physical file contains one record format and one
or more members.

physical unit (PU) . In SNA, a type of network
addressable unit (NAU). A physical unit (PU)
manages and monitors the resources (such as
attached links) of a node, as requested by a
system services control point (SSCP) through an
SSCP-PU session. An SSCP activates a session
with the physical unit in order to indirectly
manage, through the PU, resources of the node
such as attached links.

pointer . (1) An identifier that indicates the
location of an item of data. (2) A data element
that indicates the location of another data
element. (3) A physical or symbolic identifier of
a unique target.

polymorphism . The ability of different objects
to respond to the same message in different
ways. Different objects can have very different
method implementations for the same message.
An object can send a message without concern
for its underlying implementation.

pool dictionary . A dictionary object whose keys
define variables that can be shared by multiple
classes. All methods for a class can access the
variables in a pool dictionary if the class
declares the pool dictionary as part of its scope.

port . (1) A place where information goes into or
out of a computer, or both. For example, the
serial port on a personal computer is where a
modem would be connected. (2) On the Internet
port often refers to a number that is part of a
URL, appearing after a colon (:) right after the
domain name. Every service on an Internet
server listens on a particular port number on
that server. Most services have standard port
numbers; Web servers normally listen on port

80. Services can also listen on nonstandard
ports, in which case the port number must be
specified in a URL when accessing the server.
(3) Refers to translating a piece of software to
bring it from one type of computer system to
another. See also domain name, server, URL.

POST. One of the methods used in HTTP
requests. A POST request is used to send data
to an HTTP server. See also GET.

prerequisite application . An application
required by another application for it to function
successfully. An application can extend or
reference one or more of the prerequisite
application ′s classes. In team development,
prerequisite applications are particular versions
or editions of applications.

presentation layer . In the Open Systems
Interconnection reference model, the layer that
provides for the selection of a common syntax
for representing information and for
transformation of application data into or from
this common syntax.

primary logical unit (PLU) . In SNA, the logical
unit (LU) that contains the primary half-session
for a particular LU-LU session. Each session
must have a PLU and secondary logical unit
(SLU). The PLU is the unit responsible for the
bind and is the controlling LU for the session. A
particular LU may contain both primary and
secondary half-sessions for different active
LU-LU sessions.

primary part . In a composite part constructed
with the VisualAge Composition Editor, the
subpart whose public interface is fully exposed
on the public interface of the composite part.
The primary part is transparently visible to parts
outside the composite part and is the subpart
with which most interaction will take place.

private class . In VisualAge or IBM Smalltalk, a
class that is not part of the system API but is
provided as part of the internal functioning of
the system. A private class is not visible
outside its containing application. If you use a
VisualAge or IBM Smalltalk class marked as
private, you might have to modify your code in

Glossary 285

order for it to work with a future release of
VisualAge or IBM Smalltalk. Contrast with
public class.

private method . In VisualAge or IBM Smalltalk,
a method that is not part of the system API but
is provided as part of the internal functioning of
the system. If you use a method marked as
private, you might have to modify your code in
order for it to work with a future release of
VisualAge or IBM Smalltalk. Contrast with
public method. Individual application
development projects can use the public and
private designations as a means of organizing
their code.

process . In Smalltalk, a sequence of actions
described by expressions and performed by the
system ′s virtual machine.

property . A unique characteristic of a part.

protocol . (1) The set of all messages to which
an object will respond. (2) Specification of the
structure and meaning (the semantics) of
messages that are exchanged between a client
and a server. (3) A set of semantic and
syntactic rules that determine the behavior of
functional units in achieving communication.
(4) In SNA, the meanings of and the sequencing
rules for requests and responses used for
managing the network, transferring data, and
synchronizing the states of network components.
(5) A specification for the format and relative
timing of information exchanged between
communicating parties.

proxy . An application gateway from one
network to another for a specific network
application like Telnet of FTP, for example, a
firewall ′s proxy Telnet server performs
authentication of the user and then lets the
traffic flow through the proxy as if it were not
there. Function is performed in the firewall and
not in the client workstation, causing more load
in the firewall. Compare with socks.

PRPQ. Programming Request for Price
Quotation. A customer request for a price
quotation for a licensed program to be designed

especially for a particular group of customers or
an application. Documentation for the program
is provided only to those customers who order
the PRPQ.

pseudocode . An artificial language used to
describe computer program algorithms without
using the syntax of any particular programming
language. The code requires translation before
execution.

public class . A class that is provided as part of
the VisualAge or IBM Smalltalk API. A public
class is visible to applications other than its
containing application. Public classes are
designed to function with future releases of
VisualAge or IBM Smalltalk and with operating
systems supported by VisualAge or IBM
Smalltalk. Contrast with private class.

public interface . A set of external features that
enable a part to interact with other parts. A
part ′s public interface is made up of three
characteristics: attributes, actions, and events.

Public Interface Editor . A VisualAge view used
to create and modify attributes, actions, and
events, which together make up the public
interface of a part.

public method . A method that is provided as
part of the VisualAge or IBM Smalltalk API.
Public methods are designed to function with
future releases of VisualAge or IBM Smalltalk
and with operating systems supported by
VisualAge or IBM Smalltalk. Contrast with
private method. Individual application
development projects can use the public and
private designations as a means of organizing
their code.

Q
query specification . A database query
definition. All queries issued to a database by
VisualAge or IBM Smalltalk must be defined by
a query specification.

quick form . In the VisualAge Composition
Editor, a menu option that enables application

286 VisualAge for Smalltalk Handbook − Features

developers to quickly create a default view for a
part.

R
receive . To obtain and store information
transmitted from a device.

receiver . The object that receives a message.
Contrast with sender.

record . (1) (ISO) In programming languages,
an aggregate that consists of data objects,
possibly with different attributes, that usually
have identifiers attached to them. In some
programming languages, records are called
structures. (2) (TC97) A set of data treated as a
unit. (3) A set of one or more related data
items grouped for processing. (4) In VTAM, the
unit of data transmission for record mode. A
record represents whatever amount of data the
transmitting node chooses to send.

RecordStructure . An object that contains
information about the format, structure, and
types of the data it contains.

RecordStructure classes . Classes that provide
a flexible, open architecture for converting
Smalltalk objects to and from data types of
other languages.

release . A system operation on a component
that changes its containing component′s
configuration. Releasing a component adds its
released edition or version to the configuration
for its containing component. When a containing
component is loaded into an image, the released
editions or versions of the components it
contains are also loaded.

remote . Concerning the peripheral parts of a
network not centrally linked to the host
processor and generally using
telecommunication lines with public right-of-way.

remote node . Any node other than the local
node. Contrast with local node.

repository . (1) An organized, shared body of
information that can support business and
data-processing activities. (2) In VisualAge or
IBM Smalltalk, the multiuser library that stores
components such as applications, classes, and
methods created by application developers. It
stores source code, object code, and persistent
objects.

request . A service primitive issued by a
service user to call a function supported by the
service provider.

reset button . A type of push button that can
appear on a form. A reset button restores all
input fields to their default states.

resource . (1) Any facility of the computing
system or operating system required by a job or
task, and including main storage, input/output
devices, the processing unit, data sets, and
control or processing programs. (2) In the
NetView program, any hardware or software that
provides function to the network.

response . A service primitive issued by a
service user to complete the procedures
associated with a confirmed service.

return code . (1) A value (usually hexadecimal)
provided by an adapter or a program to indicate
the result of an action, command, or operation.
(2) A code used to influence the execution of
succeeding instructions.

return value . An object or data type that a
receiver object passes to a sender object in
response to a message.

router . A network device that enables the
network to reroute messages it receives that
are intended for other networks. The network
with the router receives the message and sends
it on its way exactly as received. In normal
operations, they do not store any of the
messages that they pass through.

routine . Part of a program, or a sequence of
instructions called by a program, that may have
some general or frequent use.

Glossary 287

RPG. A programming language designed for
writing application programs for business data
processing requirements. The application
programs range from report writ ing and inquiry
programs to applications such as payroll, order
entry, and production planning.

S
scratch edition . A mutable and private copy of
an application for a user who is not necessarily
the application ′s manager. The scratch edition
only exists in that user′s image. Using a scratch
edition, one can modify an application version,
and the existing classes contained in it, without
actually creating a new edition. Each scratch
ed i t ion has << >> d isp layed around the
edition timestamp or version name. Contrast
with edition, version.

screen . An illuminated display surface; for
example, the display surface of a CRT or plasma
panel. Contrast with panel.

script . A series of Smalltalk statements that
implement an action for a part. Scripts are
equivalent to Smalltalk methods.

Script Editor . A VisualAge view that enables a
developer to implement part behavior by writ ing
Smalltalk scripts (methods). The Script Editor
shows all the objects that can be referenced by
a method and all previously defined methods of
a part ′s class.

selector . The component of a message that
specifies the requested operation. There are
three kinds of selectors: binary, keyword, and
unary.

sender . An object that sends a message to
another object. On the level of code
implementation, the sender is considered to be
the sending method within the class or instance
that issues the message. Contrast with
receiver.

server . (1) A computer that provides services
to multiple users or workstations in a network;
for example, a file server, print server, or mail

server. (2) An object that performs one or more
tasks on behalf of a client. The server can be a
computer (a file server), a specific process on a
server, or a distributed object. A single server
machine could have several different server
software packages running on it, thus providing
many different servers to clients on the network.
See also client, network.

service . (1) A specific behavior that an object
is responsible for exhibiting. (2) In network
architecture, the capabilities that a layer and the
layers closer to the physical media provide to
the layers closer to the end user. (3) A set of
service primitives that a layer provides to the
layer above it.

service object . A nonvisual part that gives
access to the outside world of a VisualAge for
Smalltalk image.

session . (1) A connection between two
application programs that allows them to
communicate. (2) In SNA, a logical connection
between two network addressable units that can
be activated, tailored to provide various
protocols, and deactivated as requested.
(3) The data transport connection resulting from
a call or link between two devices. (4) The
period of time during which a user of a node can
communicate with an interactive system, usually
the elapsed time between logon and logoff.
(5) In network architecture, an association of
facilities necessary for establishing, maintaining,
and releasing connections for communication
between stations. (6) A series of CGI queries
that come from the same client and belong to
the same logical sequence. A session is
identified by a unique session key, which is
generated by VisualAge. A session begins when
a client initially connects (without a session key)
and ends when a specified timeout period has
elapsed since the last connection.

session key . A unique string, generated
automatically by VisualAge, that identifies a
session. All requests and replies carry the
session key in hidden HTML data fields.

session layer . The layer that provides the
services that organize and synchronize

288 VisualAge for Smalltalk Handbook − Features

communications between functional units in
different open systems located in the
presentation layer.

settings view . A view of a part that provides a
way to display and set the attributes and options
associated with the part.

simple dialog . A dialog that takes one data
record from the initiating object and sends it to
a remote program, which returns the result to
the initiating object. Compare to mult ireceive
dialog.

Smalltalk (ST) . (1) A complete programming
environment for developing object-oriented
applications. Smalltalk is a pure implementation
of object-oriented concepts; every entity in the
environment is an object. (2) The name of the
programming language that the Smalltalk
programming environment supports. (3) In the
IBM Smalltalk programming environment, the
name of the System Dictionary containing the
global variables.

SNA . See Systems Network Architecture.

socket . (1) In the TCP/IP environment, a socket
is an endpoint for communication between
processes or applications. A socket that can
send data to and receive data from a remote
node is a connected socket. (2) Synonym for
port .

socks . Software to intercept and redirect all
TCP/IP requests at the firewall. It handles data
to and from applications such as Telnet, FTP,
Mosaic, and Gopher. Provides users in a
secured network access to resources outside the
network by directing data through the firewall.
Firewall users must use client programs
specifically designed to work with the sockd
server.

software . (1) Programs, procedures, rules, and
any associated documentation pertaining to the
operation of a system. (2) Contrast with
hardware.

SOM . See system object model.

source code . Compiler or assembler input,
written in a source language. Contrast with
object code.

source file . A file of programming code that is
not compiled into machine language. A source
file can be created by the specification of
FILETYPE(*SRC) on the Create command. A
source file can contain source statements for
such items as high-level language programs and
data description specifications (DDS).

SQL . Structured Query Language. A language
used to access relational databases.

SQL Editor . An interactive tool for creating
structured query language (SQL) statements. It
consists of a set of dialogs that prompt the user
for information about database tables and use
that information to generate SQL statements.

statement . A language syntactic unit consisting
of an operator, or other statement identifier,
followed by one or more operands.

stored procedure . A procedure stored in a
database system that contains SQL and other
control statements.

structured query language (SQL) . A language
used to access relational databases.

subapplication . An application contained by
another application. Using subapplications, one
can organize the classes of an application into a
tree of subapplications or isolate the parts of an
application that are platform-specific.

subclass . A class that inherits behaviors and
specifications (in other words, methods and
variables) from another class. Contrast with
superclass.

subclass type . In VisualAge or IBM Smalltalk,
an indication of how a subclass inherits instance
variables from its superclass.

submit button . A type of push button that can
appear on a form. A submit button initiates a
connection to the HTTP server and sends a CGI

Glossary 289

query, using the data from the input fields as
parameters.

subpart . A part that is embedded within a
composite part.

subsystem . A secondary or subordinate
system, or programming support, usually
capable of operating independently of or
asynchronously with a controlling system.

superclass . A class from which another class
inherits behaviors and specifications (in other
words, methods and variables). Contrast with
subclass.

symbol . In Smalltalk, an object that represents
a string used as a name within the system. A
symbol literal is a sequence of characters
preceded by the pound sign (#) with no
embedded blanks, such as #George or
#messageSelector.

synchronous . (1) Pertaining to two or more
processes that depend on the occurrences of a
specific event such as common timing signal.
(2) Occurring with a regular or predictable
timing relationship.

system . In data processing, a collection of
people, machines, and methods organized to
accomplish a set of specific functions.

system component . A component that manages
storage of code and access to that stored code.
A library file is a system component that stores
and manages code. A user object is a system
component that represents a person who can
use a library.

system object model (SOM) . An
object-structured protocol that enables
applications to access and use objects and
object definitions, regardless of the
programming language created that them, with
no need to recompile the application.

systems management . The process of
monitoring, coordinating, and controll ing
resources within open systems.

Systems Network Architecture (SNA) . The
description of the logical structure, formats,
protocols, and operational sequences for
transmitting information units through, and
controlling the configuration and operation of,
networks.

T
TCP/IP. (Transmission Control Protocol/Internet
Protocol) The basic programming foundation that
carries computer messages around the globe
via the Internet. The suite of protocols that
defines the Internet. Originally designed for the
UNIX operating system, TCP/IP software is now
available for every major kind of computer
operating system. To be truly on the Internet,
your computer must have TCP/IP software.

team programming . Development of a system,
program, or application suite by a team of two
or more programmers or application developers.

tear-off attribute . An attribute that an
application developer has exposed to work with
as though it were a standalone part.

Telnet . An Internet protocol that lets you
connect your PC as a remote workstation to a
host computer anywhere in the world and to use
that computer as if you were logged on locally.
You often have the ability to use all of the
software and capability on the host computer,
even if it′s a huge mainframe.

temporary variable . A variable whose scope is
limited to the Smalltalk method or block in which
it is defined. A temporary variable takes an
assigned value.

terminal . A device that is capable of sending
and receiving information over a link; it is
usually equipped with a keyboard and some kind
of display, such as a screen or a printer.

token ring . A network with a ring topology that
passes tokens from one attaching device (node)
to another. A node that is ready to send can
capture a token and insert data for transmission.

290 VisualAge for Smalltalk Handbook − Features

tool bar . In the VisualAge Composition Editor,
the strip of icons along the top of the free-form
surface. The tool bar contains tools to help
construct composite parts. These tools are also
available through the Tools pull-down menu of
the Composition Editor window.

transaction . (1) In client/server transaction
processing, a business activity or set of
activities that transforms a database from one
state to another (for example, making an airline
reservation or custom ordering an automobile).
(2) In an SNA network, an exchange between
two programs that usually involves a specific set
of initial input data that causes the execution of
a specific task or job. Examples of transactions
include the entry of a customer’s deposit that
results in the updating of the customer’s
balance, and the transfer of a message to one
or more destination points.

transaction program . A program that processes
transactions in or through a logical unit (LU)
type 6.2 in an SNA network. Application
transaction programs are end users in an SNA
network; they process transactions for service
transaction programs and for other end users.
Service transaction programs are IBM-supplied
programs that typically provide uti l i ty services
to application transaction programs.

Transcript window . The main controlling
window in Smalltalk.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of protocols that allow
cooperating computers to share resources
across a heterogeneous network.

U
uniform resource locator (URL) . A standard
identifier for a resource on the World Wide Web,
used by a Web browser to initiate a connection.
The URL includes the communications protocol
to use, the name of the server, and path
information identifying the object to be retrieved
on the server.

usability . The quality of a system, program, or
device that enables users to easily understand
and conveniently use it.

user interface (UI) . The hardware, software, or
both that enables a user to interact with a
computer. In VisualAge, user interface normally
refers to the visual presentation with which a
user interacts and its underlying software.

user profile . A file that contains the user′s
password, the list of special authorities assigned
to a user, and the objects the user owns. It is
used by the system to verify the user′s
authorization to read or use objects, such as
files or devices, or to run the jobs on the
system. Each user profile must have a unique
name.

user space . In OS/400 application programming
interfaces, an object consisting of a collection of
bytes that can be used for storing any
user-defined information. The
system-recognized identifier for the object type
is *USRSPC.

V
variable . (1) A storage place within an object
for a data element. The data element is an
object, such as a number or date, stored as an
attribute of the containing object. (2) In
VisualAge, a part that receives an identity at run
time. A variable by itself contains no data or
program logic; it must be connected in such a
way that it receives runtime identity from a part
elsewhere in the application.

version . In the VisualAge or IBM Smalltalk
team programming environment, an edition of a
software component that cannot be changed.
Each version has a version name. Contrast with
edit ion.

view . A composite visual part. A view can
display and change the underlying nonvisual
objects of an application. In VisualAge, views
are both the end result of developing an
application and the basic unit of composition of
user interfaces. Compare to visual part.

Glossary 291

Virtual Storage Access Method (VSAM) . An
access method for direct or sequential
processing of fixed and variable-length records
on direct access devices. The records in a
VSAM data set or file can be organized in
logical sequence by a key field (key sequence),
in the physical sequence in which they are
written on the data set or file (entry-sequence),
or by relative-record number.

Virtual Telecommunications Access Method
(VTAM) . An IBM licensed program that controls
communication and the flow of data in an SNA
network. It provides single-domain,
multiple-domain, and interconnected network
capability.

visible class . A class that another class can
subclass or refer to by name in a method.
Visible refers to the scope in which the class
name can be used. For a class in a given
application, visible classes include:

• All classes defined in the same application
• All public classes defined in any

subapplication
• All prerequisite classes, including

prerequisites of prerequisites to the lowest
level

visual part . A part that has a visual
representation at run time. Visual parts, such
as windows, push buttons, and entry fields,
make up the user interface of an application.
Compare to v iew. Contrast with nonvisual part.

visual programming tool . A tool, such as
VisualAge, that provides a means for specifying
programs graphically. Application programmers
write applications by manipulating graphical
representations of components.

W
WAN . (Wide Area Network)— Any internet or
network that covers an area larger than a single
building or campus. See also Internet, LAN,
network.

wide area network (WAN) . A data
communications network designed to serve an
area of hundreds or thousands of miles—for
example, public and private packet-switching
networks, and national telephone networks.

widget . An object that provides a user-interface
abstraction; for example, a scrollbar widget.
Widgets support obtaining input from the user
and displaying output to the user.

window . (1) A rectangular area of the screen
with visible boundaries in which information is
displayed. Windows can overlap on the screen,
giving the appearance of one window being on
top of another. (2) In the VisualAge Composition
Editor, a part that can be used as a container for
other visual parts, such as push buttons.

workstation . (1) An I/O device that allows
either transmission of data or the reception of
data (or both) from a host system, as needed to
perform a job; for example, a display station or
printer. (2) A configuration of I/O equipment at
which an operator works. (3) A terminal or
microcomputer, usually one connected to a
mainframe or network, at which a user can
perform tasks.

World Wide Web . (WWW) (W3) (the Web) An
Internet client-server distributed information and
retrieval system based upon HTTP that transfers
hypertext documents across a varied array of
computer systems. The Web was created by the
CERN High-Energy Physics Laboratories in
Geneva, Switzerland in 1991. CERN boosted the
Web into international prominence on the
Internet.

292 VisualAge for Smalltalk Handbook − Features

List of Abbreviations

AIX Advanced Interactive
eXecutive

APAR authorized program
analysis report

APPC advanced
program-to-program
communication

APPN advanced peer-to-peer
networking

BMP bitmap

CAE Client Application
Enabler

CDROM compact disk read only
memory

CG common graphics

CGI Common Gateway
Interface

CICS customer information
control system

CLI call level interface

CORBA Common Object
Request Broker
Architecture

CPI-C common programming
interface for
communications

CPU central processing unit

CRC class responsibility
collaborators

CUA Common User Access

DAP developer assistance
program

DBA database administrator

DBF database file

DBMS database management
system

DB2 Database 2

DDCS distributed database
connection services

DDL database definit ion
language

DDM Distributed Data
Management

DDS data description
specifications

DLL dynamic l ink l ibrary

DSN data set name

DSOM distributed system
object model

ECS electronic customer
support

EPI external presentation
interface

ESA enterprise systems
architecture

FTP File Transfer Protocol

GIF graphic interchange
format

GPF general protection fault

GUI graphical user interface

HLLAPI high level language
application program
interface

HPFS high performance fi le
system

HTML Hypertext Markup
Language

HTTP Hypertext Transfer
Protocol

HTTPD Hypertext Transfer
Protocol daemon

IBM International Business
Machines Corporation

IDL interface definition
language

 Copyright IBM Corp. 1997 293

ILE integrated language
environment

IMS information
management system

IPC inter-processor
communication

IPMD IBM presentation
manager debugger

ISO International
Organization for
Standardization

ISP Internet service
provider

ISV independent software
vendor

ITSO International Technical
Support Organization

JDBC Java Database
Connectivity

LAN local area network

LF logical file

MB megabyte

MIME Multipurpose Internet
Mail Extensions

MLE multi l ine edit

MQ message queueing

MRI machine readable
information

MVS multiple virtual storage

NLS national language
support

NT new technology

ODBC Open Database
Connectivity

OIDL object interface
definition language

OLTP on-line transaction
processing

OMT object modeling
technique

OOP object-oriented
programming

OOSE object-oriented software
engineering

ORB object request broker

OS operating system

OS/2 Operating System/2

PCS PC/Support

PM presentation manager

PTF program temporary f ix

RAM random access memory

RDBMS relational database
management system

RFT request for technology

RPC remote procedure call

RPG report program
generator

SGML standard generalized
mark-up language

SHTTP Secure Hypertext
Transfer Protocol

SOM system object model

SQL structured query
language

SSL secure sockets layer

TCP/IP Transmission Control
Protocol/Internet
Protocol

URL uniform resource
locator

VM virtual machine

VMT visual modeling
technique

WWW world wide web

294 VisualAge for Smalltalk Handbook − Features

Index

Numerics
3270

cursor posit ion 79
host presentation space 79

A
abend, transaction 72
aborting process stack Vol1 :199
aboutToExecute Vol1 :207
ABTPATH Vol1 :213
accelerator keys Vol1 :157, Vol1 :230
access set 127, 145, 169
accessing COM port Vol1 :178
action

closeLibrary 98
closeWidget Vol1 :25, Vol1 :95
default Vol1 :113
destroyPart Vol1 :95

act ivator 199, 203
active, terminating processes Vol1 :25
ActiveX Vol1 :14
adding

column to table Vol1 :146
container icons dynamically Vol1 :126
icon to list Vol1 :129
items to combo box Vol1 :110
menu choices Vol1 :105
records to container Vol1 :120

agent class Vol1 :65
AIX

calling C function 103
DB2/6000 119
DB2/6000 binding 121
DDE 108
distributing application Vol1 :252
event handler Vol1 :151
moving l ibrary to Vol1 :255
MQSeries 73
packaging Vol1 :47
reports feature 225
simplified Chinese Vol1 :267

altering behavior Vol1 :40
anchor block handle Vol1 :135
animated busy cursor Vol1 :105
ANSI

Smalltalk
committee Vol1 :2
standardization Vol1 :166

SQL 140
Anynet 51
API

break 138
common fi le system Vol1 :176
data queue 40
DosStartSession 84
EHNAPPC_QuerySystems 17
MQ 76
nonblocking 91
OS/2 PMs 88
router 4
system 50

APPC
AS/400 configuration 33
AS/400 connection 35, 50
ASCII work station controller 4
blocking factor 15
LU 6.2 9
proc dialog 71
router 35
stack 51

AppletAuthor Vol1 :22
application

AS/400
native 8
packaging 8, 21
runtime prerequisites 9

changing database name 174
CICS 72
COBOL 71
creating new Vol1 :250
delete Vol1 :249
distributing Vol1 :252
edition Vol1 :246
editions browser Vol1 :250

 Copyright IBM Corp. 1997 295

application (continued)
exporting Vol1 :245
exporting to non-LAN PC Vol1 :252
global variables Vol1 :205
import ing Vol1 :245
launching Vol1 :203
LibraryObjects Vol1 :247
loading Vol1 :47, Vol1 :245
merging Vol1 :49
MQ sample 76
multiple windows Vol1 :89
native 8
not owned Vol1 :61
owner Vol1 :256
packaging 57, 251
packaging distributed 212
prerequisites 22
purging Vol1 :250
releasing Vol1 :61
reloading current edition Vol1 :249
removing Vol1 :250
report packaging 230
running unattended 129
sharing data 43
sharing query 145
start execution Vol1 :203
synchronizing AS/400 and VisualAge 8
unable to version Vol1 :61
unloading Vol1 :56
using Vol1 :248
versioning Vol1 :61

application prerequisites Vol1 :52
ApplicationLoader Vol1 :47
apply push button Vol1 :38
architecture

GUI Vol1 :87
layered Vol1 :63

archival code Vol1 :32, Vol1 :34, Vol1 :54, Vol1 :68,
Vol1 :246

arguments, command line Vol1 :200
array 37
AS/400

5250 screen 24
accessing VisualAge application 8
APPC 7
APPC configuration 33
asynchronous job 12

AS/400 (continued)
blocking factor 15
busy cursor 17
code page 12
commit boundary 1
communication error 2
complex data structures 37
compound key 29
configured systems 2
connecting 18
connecting to 2
connection feature, reinstalling 8
connection problem 35
data queue 34
database 11
DDM 26
DDS 31
document 50
examples 14
feature installation 23
file access part 4
fixpack problem 54
ILE 24
job description 12
job queue 59
library l ist 57
migrat ing 27
multiple connections 10
multi tasking 15
native application 8
ODBC default library 45
ODBC requirements 6
OfficeVision/400 50
opening and closing file 43
packaging application 8, 21, 22
password 18
Personal Communications 37
physical f i le member 11
record class 3
record description 31, 35
reestablishing connection 56
referential integrity 55
repeating record structures 37
RPC 1
RPC message 51
Rumba 10
runtime prerequisites 9

296 VisualAge for Smalltalk Handbook − Features

AS/400 (continued)
screen scraping 24
service program 24
sign-on 2
sign-on dialog 17
sign-on screen 44
simultaneous DDM access 39
SQL 11
stored procedure 32
synchronizing VisualAge application 8
transaction program 23
user ID 18
user profile 54
using Windows 3.1 62
work station function 10

ASCII
EBCDIC conversion 75
reporting in fi le 232
work station controller 4

association, pool dictionary Vol1 :193
asynchronous job 12
atom Vol1 :168
attr ibute

changed event Vol1 :213
cursorPosition 79
lastError 72
promptForUserIdAndPassword 17
resultIsReady 1
selectionIsValid Vol1 :156
synchronizing Vol1 :45
tabContents Vol1 :115
updating class Vol1 :205

audio cards Vol1 :85
automatic

log-off Vol1 :202
tab moving Vol1 :132
tabbing Vol1 :132, Vol1 :162

AVA playback Vol1 :85

B
back-tabbing in details views Vol1 :74
background

process
continuing Vol1 :201
database update 155

task, garbage collection Vol1 :174

background, transparent Vol1 :135
beep Vol1 :101
bibliography 259, Vol1 :271
bind, command syntax 117
bitmap

click-sensitive Vol1 :140
color Vol1 :131
colors Vol1 :139
image formats Vol1 :140
on notebook tab Vol1 :115
push button Vol1 :161
resolution Vol1 :131

bitmap on button Vol1 :136
block

creating at run-time Vol1 :192
reading from file Vol1 :192

blocking factor 15, 19
broker

file 61
registry 33

browser
DBCS part name 255
progress message Vol1 :156
suppressing URL query string 253

BRW format generator Vol1 :43
building visual forms 3
business

class Vol1 :208
object

garbage collection 112
key alteration 112

busy cursor Vol1 :100, Vol1 :105
button

activation Vol1 :150
bitmap Vol1 :136, Vol1 :161
disabling 249, Vol1 :106, Vol1 :156
dynamic Vol1 :160
enabling Vol1 :150
mask Vol1 :159
toggle Vol1 :105

C
C 89, 91, 96, 103
CA/400

ODBC 5, 42

Index 297

cache 19, Vol1 :50
caching compiler Vol1 :192
CAE 5
calculated field 230
call stack, trace Vol1 :21
call-level interface 120
callback

CICS ECI 104
losing focus Vol1 :56
mouse move Vol1 :157
synchronizing table scrolling Vol1 :148

calling
convention 95, 101
OSObjects 95

capturing
key pressed events Vol1 :230
stack information Vol1 :28

caret cursor Vol1 :102
carriage return, missing Vol1 :162
CAT files 251, Vol1 :50, Vol1 :264
catalog of classes 230
catching

all errors Vol1 :181
errors Vol1 :179

category
class methods Vol1 :67
CLIM-API Vol1 :175
ES-Internal Vol1 :172
instance methods Vol1 :66
naming Vol1 :66

CCSID 12
cell

hover help Vol1 :157
monitor changes Vol1 :149

centered, opening window Vol1 :93
change management Vol1 :247
changing

label color Vol1 :120
mouse pointer Vol1 :98
object class Vol1 :231
scroll bar size Vol1 :124
table

cell Vol1 :149
format Vol1 :36
size Vol1 :149

channel fi le 73
character

identity Vol1 :240
replacing in string Vol1 :222
strange 3

character set translation table Vol1 :44
check box, container Vol1 :119
CICS

accessing COBOL 71
callback 104
code page translation 73
ECI 72, 73
EPI 115
EPI identification 110
harclock 110
li teral 110
logical unit of work 72
LU2 identification 109
opening proc dialog 72
program 72
screen scraping 111
transaction abend 72

circular reference Vol1 :97
class

AbtAppBldrPart Vol1 :208
AbtAppBldrView Vol1 :32
AbtCompoundType 98, Vol1 :62
AbtConverter Vol1 :210
AbtDatabaseSamples 140
AbtDateConverter Vol1 :212, Vol1 :219
AbtDateParse Vol1 :213
AbtDeferredUpdatedManager Vol1 :31
AbtEditDatabaseSupport 153
AbtError 97, 165
AbtForeign 73
AbtForeignRecord 73
AbtFrameView Vol1 :109
AbtIbmCliDatabaseManager 166
AbtIbmDatabaseConnection 167
AbtIbmResultTable 163
AbtIntegerConverter Vol1 :219, Vol1 :220
AbtObservableObject Vol1 :24
AbtOracleLongField 130
AbtPart Vol1 :208
AbtPointer 81
AbtProgramStarter 84
AbtQuerySpec 127

298 VisualAge for Smalltalk Handbook − Features

class (continued)
AbtRecord Vol1 :62
AbtResultTable 167
AbtRowColumnView Vol1 :109
AbtSampleLauncherView 140
AbtShellView Vol1 :69, Vol1 :155
AbtTextConverterManager Vol1 :152
AbtTextView Vol1 :145
AbtTimeConverter Vol1 :219
agent Vol1 :65
alternatives Vol1 :255
AS/400 record 3
AS400APPCConfiguration 33
AS400DataQueueEntry 6
AS400DirectFile 49
AS400KeyedFile 49
AS400RecordDescription 35
AS400RemoteCommand 53
AS400RemoteProcedureCall 36
AS400SequentialFile 49, 50
AS400System 18
available in l ibrary Vol1 :257
BplBusinessObj 112
business Vol1 :208
catalog 230
CfsDirectoryDescriptor Vol1 :176
changes Vol1 :255
changing Vol1 :231
comparing Vol1 :257
control ler Vol1 :65
creating from script Vol1 :229
CwOverrideShell Vol1 :98
damaged Vol1 :251
DatabaseAccessSet 192
Date Vol1 :212
date stamp Vol1 :247
Delay Vol1 :197
delete old version Vol1 :250
DsCallbackRec 196
DsDistributedSystem 202
DsTCPCommunicator 202
DsTracer 196
DtListBuilderCollection 209
E4AS400Broker 33
E4CommunicationService 54
E4FrameWorkApp 33
E4KeyedFile 61

class (continued)
E4KeyedFiles 44
E4Service 17, 33
editions Vol1 :249
EmFileOutInterface Vol1 :28
EmLibraryStatistics Vol1 :71, Vol1 :253
ensure packaging Vol1 :49
EsLinearOrderedCollection Vol1 :218
EwList Vol1 :223
EwTableList Vol1 :224
EwTextEditPolicy Vol1 :224
extending Vol1 :40
extending server 215
extension Vol1 :40, Vol1 :49, Vol1 :64
facade Vol1 :65
fixed decimal Vol1 :182
generating with SOM prefix 238
hierarchy Vol1 :172
identif ication Vol1 :182
instance variables Vol1 :225
invisible Vol1 :45
load editions Vol1 :249
loaded method Vol1 :44
locale Vol1 :210, Vol1 :264
manager Vol1 :66
method Vol1 :175
methods at run-time Vol1 :206
missing Vol1 :52
missing SOM definition 243
model Vol1 :65
naming Vol1 :226
naming convention Vol1 :63
ObjectDumper Vol1 :39, Vol1 :217
ObjectLoader Vol1 :39, Vol1 :217
OSHab 88
OSHps 88
OSObject 81, 95
OSObjectPointer 81
OSWidget Vol1 :74, Vol1 :225
owner Vol1 :256
packaging modifications Vol1 :49
PlatformFunction 95
recompil ing Vol1 :169
RECORD 3, 48
released version Vol1 :246
renaming Vol1 :29, Vol1 :31
reusing Vol1 :63

Index 299

class (continued)
SequencableCollection Vol1 :218
SequenceableCollection Vol1 :186
session 114
sharing instance across object spaces 207
SortedCollection Vol1 :218
specifying policy Vol1 :57
string Vol1 :186
Swapper Vol1 :217
SymbolTable Vol1 :226
testing Vol1 :173
Time 19
unreleased Vol1 :257
updating attributes Vol1 :205
variable Vol1 :173
variables, initializing Vol1 :209
with instances, deleting Vol1 :35
XPlatformAdministration Vol1 :87

CLI 120, 166, 193
client

concurrent processes 39
MQ 73
OS/2 optimized 21
passing data 36
run-time access 218
socket 68
transaction abend 72
unsupported Vol1 :61

Client32 Vol1 :83
ClientAccess/400

32-bit optimized client 7
advanced connection 59
AS/400 database 11
ODBC 45, 48, 135
ODBC driver 5
ODBC requirements 7
opening automatically 59
optimized for OS/2 50
router 37
status 17
TCP/IP 51
user ID 17
Windows 59

cloned library Vol1 :248
close option, disabling Vol1 :97

closing
widget Vol1 :96
window Vol1 :95

CM/2 50
AS/400 access 4
configured AS/400 systems 2
conversation security 27
optimized client 21
packaging AS/400 application 21
profile list 28
setup 18, 27
user ID 17

CM/400 7, 50
COBOL 83, 98, 101, Vol1 :9, Vol1 :55
COBOL, accessing through CICS 71
code page

AS/400 12
CICS 73
connection specification 109
conversion Vol1 :75, Vol1 :263, Vol1 :266
missing translation table Vol1 :44
MPR file Vol1 :263
support Vol1 :263

collection
do: Vol1 :218
heap-sorted Vol1 :219
interval Vol1 :189
reversing Vol1 :186
sorted Vol1 :194, Vol1 :218

color
bitmap resolution Vol1 :131
changing Vol1 :193
iterator header 231
label Vol1 :120
wallpaper Vol1 :138

column
adding to table Vol1 :146
hiding Vol1 :145
navigating between Vol1 :117
resizing Vol1 :123

COM port, accessing Vol1 :178
combo box

adding items Vol1 :110
behavior Vol1 :114
default action Vol1 :113
selected item 62
synchronizing Vol1 :109

300 VisualAge for Smalltalk Handbook − Features

command
bind syntax 117
CRTLF 31
DSPNETA 10
OVRDBF 43
OVRSCOPE 43
remote 43, 53
STRCMTCTL 1

command line, arguments Vol1 :200
commitment

boundary 1
control 1, 59, 75, 78, 145

common file system API Vol1 :176
common widgets, reinitializing Vol1 :25
communication

AS/400 2
saving image 35
static session acquisition 114
Windows 3.1 62

Communications Manager/2
See CM/2

comparing
floating point Vol1 :183
floating-point Vol1 :239

compatibi l i ty Vol1 :10
compile time, creating object Vol1 :167
compiler

caching Vol1 :192
incremental Vol1 :191
literal strings Vol1 :227
optimization Vol1 :221
severity level Vol1 :195
warning Vol1 :195

component, moving between libraries Vol1 :246
composition editor, window location Vol1 :90
compound key 28
CompuServe xvii, 9, Vol1 :12
concatenation Vol1 :237
configuration

5250PLU 2
VisualAge Vol1 :213

configuration map
deleting application Vol1 :249
distributed load 201
distribution matrix 206
exporting Vol1 :252, Vol1 :254
loaded features Vol1 :253

configuration map (continued)
version control Vol1 :257

configured subsystems Vol1 :199
connecting

to AS/400 2
to remote host 2

connection menu, customizing Vol1 :33
connection, releasing Vol1 :95
container

adding icons dynamically Vol1 :126
adding records Vol1 :120
back-tabbing in details views Vol1 :74
check box Vol1 :119
column list box Vol1 :119
context menu Vol1 :127
deselecting items Vol1 :121
details tree Vol1 :121
details tree children Vol1 :124
details view Vol1 :124
hiding column Vol1 :125
hiding heading Vol1 :124
icon column Vol1 :125
nonexistent attribute Vol1 :129
object attribute Vol1 :128
OLE client Vol1 :260
refreshing Vol1 :128
refreshing details view Vol1 :127
remove i tems Vol1 :125
removing icon Vol1 :128
resizing columns Vol1 :123
scroll bar Vol1 :124
selecting multiple rows Vol1 :150
selection Vol1 :117
sharing menu Vol1 :108
valid objects Vol1 :117

context menu Vol1 :74
continuing background process Vol1 :201
control widget, buffering Vol1 :30
controller class Vol1 :65
conversation

security 18, 27
conversion tables 13
converting numbers Vol1 :210
coordinates of hot spot Vol1 :138
copy-book 101

Index 301

copyright Vol1 :200
CORBA 195, 239, Vol1 :2, Vol1 :64
CPI-C 114
creating

class from script Vol1 :229
object at compile time Vol1 :167

Crystal Wave Vol1 :85
CTL file Vol1 :80
Ctrl-click events Vol1 :159
CUA compliance Vol1 :10, Vol1 :88
cursor

animated Vol1 :105
busy 17, Vol1 :100
caret Vol1 :102
change pointer Vol1 :98
control 179
deleting rows 163
file position 4
icon Vol1 :103
position in text Vol1 :131
position on 3270 terminal 79
positioning window at Vol1 :90
reusing 133
scrollable 167
stabil i ty 58

customizing connection menu Vol1 :33
CwConstants Vol1 :41

D
damaged class Vol1 :40, Vol1 :251
data

integri ty 15
structures 37
translation 73

data converter, error message Vol1 :135
data definition specification

See DDS
data entry part Vol1 :141
data queue

fil l ing record 6
passing data 36
PTF 31
sharing 43
synchronizing applications 8
variable length 34

data types 130
database

access set 127, 152, 157, 169, 185, 192
active connection 193
ANSI SQL 140
API methods 163
automatic connect 148
automatic log-on 131
bind 147
binding 140, 173
blocking factor 15
CAE/2 145
call-level interface 120
canceling request 137
changing high-level qualifier 177
changing name 174
CLI 120, 165, 167
connect 147
connection

error 164
information 167
specification 144
status 128
via Smalltalk code 138

conversion 137
creating table 161
current date 135
cursor 163, 167
cursor control 179
date representation 135
DB2/400 146
DB2/6000 145
DB2/VM 146
DBF format 171
DDCS/2 145
disabling error messages 165
DLL 166
driver problem 175
error SQL0236W 188
feature installation 173, 181
fetch 148
forking process Vol1 :197
hard-coded name 144
high-level qualif ier 157, 177
host variable 146, 162
host variable with wild card 140
insert 160

302 VisualAge for Smalltalk Handbook − Features

database (continued)
intercepting SQLCODE 100 184
locked row 145
log-on 148
log-on prompt 128, 129
log-on specification 139
manager 120, 151
maximum number of rows 153
migrat ing 165
migrating to CLI 168
migrat ion 137
minimum run-time fi les 191
missing query fields 171
name 144
object-oriented 171
ODBC 148, 156
ODBC to CLI migration 168
outer join 146
overr ide 43
portabi l i ty 137
query 152
reconnecting server 120
sample 190
scrollable cursor 167
Smalltalk access 154
stored procedure 32, 156
stored procedures 146
text 132
thread 143
transaction 14
updating Vol1 :197
user feedback 155
user privi lege 176
wild card 140
Windows 95 165

date
conversion 13
convert ing Vol1 :219
defaults Vol1 :212
format 135, Vol1 :212
representation 135
retr ieving current 135
stamp Vol1 :247

DB2/2 5, 6, 49, 124, 125
DB2/400 135

DB2/6000 119, 121, 124, 140
DBCS 50, 223, 255
DDCS/2 6, 49
DDE 108
DDM 11, 14, 16

data stream 39
keyed file 26
open file 44
opening and closing file 43
performance 26
prior i ty 41
sharing conversation 39
simultaneous access 39
ULDRECF 27

DDS
generate records 31
record name 58
temporary generated 58

debug
C DLL 96
distributed client 219
DLL 86
source breakpoint 86

decimal
convert ing Vol1 :210
fixed Vol1 :182
point Vol1 :264

default action Vol1 :113
default icon Vol1 :27
deferred update part Vol1 :30
deleting

application Vol1 :249
class with instances Vol1 :35
old classes Vol1 :29
parts with instances Vol1 :35

dependency mechanism Vol1 :34
dependent attachments, widget Vol1 :97
dependents, reinitializing Vol1 :25
deselecting items Vol1 :121
destroying

notebook page Vol1 :116
object Vol1 :170
widget Vol1 :95

details view
refreshing Vol1 :127

Index 303

details views, back-tabbing in container Vol1 :74
device, COM port Vol1 :178
dialog

box Vol1 :134
message box Vol1 :89
modal Vol1 :94
nonmodal Vol1 :142
sign-on 17

dictionary
dependent Vol1 :96
global Vol1 :173
global variable Vol1 :205
lookup Vol1 :193
versus lookup table Vol1 :234

digital video player Vol1 :84
directory, contents Vol1 :176
disabling

close option Vol1 :97
methods Vol1 :56
mouse pointer Vol1 :101
notebook tab Vol1 :125
push button Vol1 :106, Vol1 :156

disk space Vol1 :233, Vol1 :261
display, retreiving resolution Vol1 :92
distr ibuted

activation 199
adding client 209
client run-time access 218
DBCS 223
debugging client 219
handling TCP/IP addresses 213
headless server 200
init ial ization 202
loading feature 217
modifying server 209
name server 201
packaging 200, 212
port number 221
run-time startup 218
security error 199
seeing data moving 203
SOM/DSOM implementation 211
startup delay 212
testing for TCP/IP 202
threads 208
tracing 195
transaction management 217

distributed (continued)
unloading feature 223
Windows 95 server 222
Windows for Workgroups 202

Distributed Data Management
See DDM

distributing application Vol1 :252
distribution fees Vol1 :9
distribution matrix 196, 201, 206, 210
DLL

allocating memory 96
available platform function 96
closing 98, Vol1 :55
debugging 86, 96
freeing 83
IPMD 86
LIBPATH 83
locking 98
memory leak 96
Oracle 122
passing complex structure 98
source breakpoint 86
unable to replace 83

document, OfficeVision/400 50
double-byte character set Vol1 :267
double-triggering of event Vol1 :213
drag and drop

list box Vol1 :110
drag-and-drop

link Vol1 :138
on push button Vol1 :144
port ing Vol1 :129

DRDA 5
driver

audio Vol1 :85
dBase 128
Jet 127
Microsoft Access 123
ODBC 123
ODBC license 191
text 132

DSOM
accessing object 241
daemon 240
ending VisualAge 241
hanging system 239
synchronous call 240

304 VisualAge for Smalltalk Handbook − Features

dynamic
menu Vol1 :105, Vol1 :107
push button Vol1 :160
where clause 125, 147

dynamic l ink l ibrary
See DDL

E
EBCDIC, ASCII conversion 75
ECI 72
edition

date stamp Vol1 :247
loading previous Vol1 :249
reloading current Vol1 :249
t imestamp Vol1 :247

EHLLAPI 21, 80
EMSRV Vol1 :47, Vol1 :82, Vol1 :84, Vol1 :252,

Vol1 :256
emulation

5250 21
encapsulation Vol1 :65
environment variable 241, Vol1 :29
ENVY Vol1 :2, Vol1 :4, Vol1 :7, Vol1 :243
ENVY/400 49
ENVY/Manager Vol1 :257
EPI 115
equality Vol1 :184, Vol1 :221, Vol1 :226, Vol1 :240
error

126 connecting to Oracle 122
30081n 120
Abt.154e 83
ABT.SQL.9.w 152
AS/400 communication 2
attribute does not exist Vol1 :129
block 142
bypassing prompter 142
catching Vol1 :179
catching all Vol1 :181, Vol1 :228
CfsError 8
client not authorized 214
code 1 124
database connection 164
disabling message 165
distributed load 201
file in use Vol1 :43
file system Vol1 :180

error (continued)
MCH0802 34
NetBIOS 70
opening proc dialog 72
ORA-00942 177
primit ive 97, Vol1 :73
readAll method 44
return code Vol1 :72
saving part Vol1 :69
security 199
somFindClass 243
SQL0236W 188
SQL0805N 173
SQLSTATE 37000 123
SQLSTATE S1010 124
successor uniqueness violation 109
swapper Vol1 :198
SYS317x Vol1 :72
TCP/IP startup 210
terminating SOM 241
time-out 111
transaction abend 72
turning off message Vol1 :135
user input Vol1 :133
Win32s 226

error message
displaying Vol1 :36
explanation Vol1 :68

escaping infinite loop Vol1 :27
Ethernet 10
EtWorkspace Vol1 :48
event

aboutToOpenWidget Vol1 :93, Vol1 :110
changed Vol1 :213
Ctrl key and click Vol1 :159
defaultActionRequested Vol1 :70
double-triggering Vol1 :213
errorOccurred 72
gettingFocus Vol1 :102
handler

enter key Vol1 :153
function key Vol1 :143
keyboard Vol1 :142, Vol1 :159, Vol1 :230
platform Vol1 :151

itemChildrenRequested 62
itemCollapsed Vol1 :259
itemExpanded Vol1 :259

Index 305

event (continued)
key pressed Vol1 :230
losingFocus Vol1 :102
not trappable Vol1 :230
profi ler Vol1 :21
registered Vol1 :260
registering Vol1 :225
resized Vol1 :96
selectedIndexChanged Vol1 :110
selectedItemsChanged Vol1 :117
selectionChanged Vol1 :105, Vol1 :106
tr iggering Vol1 :44
userInputConvertError Vol1 :133
userModif ied Vol1 :141

EwDropCallbackData Vol1 :144
exception

doesNotUnderstand Vol1 :228
process stack Vol1 :199

exception handling
catching errors Vol1 :179
code Vol1 :182
database code 119
debugging DLL 86
doesNotUnderstand Vol1 :228
object space connection 196
open file Vol1 :208
SOM 239
transaction abend 72
unique key 46

exit dialog message box Vol1 :89
Explorer Vol1 :260
exporting

application Vol1 :245
configuration map Vol1 :254
pool dictionary Vol1 :254

extending
classes Vol1 :40
pop-up menu Vol1 :57

F
facade class Vol1 :65
fatal errors Vol1 :36
fault tolerance 211, 220
feature

AIX reports 225
DAT file Vol1 :253

feature (continued)
loading Vol1 :80
unloading 223, 254, Vol1 :82

field
break 230
calculated 230
dynamically adding to report 233
iterator 226
li teral 109
unprinted 232
watch 230

FIFO 36
file

access mode 46
access part 4, 60
agent 61
AS4RTE20.MRI 44
blocking factor 15
broker 61
closing Vol1 :208
commitment control 59
compound key 28
DDM 26
direct 26
existence Vol1 :177
handle Vol1 :208
handle limits on UNIX 224
in use error Vol1 :43
join 48
keyed 26, 29, 60
library l ist 57
locking 45
logical record format 47
macro 113
member 11
opening and closing 43
physical 11, 14
read next 4
read previous 4
real l ibrary 61
record cache 19
record description 31
removing handles Vol1 :208
sequential 26
sharing 24
sharing field names 47
simultaneous DDM access 39

306 VisualAge for Smalltalk Handbook − Features

fi le (continued)
system Vol1 :176
system, error Vol1 :180
unique key 46
UNIX 224

file-in Vol1 :28
file-out Vol1 :28
filing out classes Vol1 :29
final form text 50
finalization Vol1 :201
finding mouse pointer location Vol1 :102
fixed character field 141
fixed decimal class Vol1 :182
fixed object space Vol1 :219
fixes 9
flat file Vol1 :247
flips Vol1 :211
floating point

behavior Vol1 :182
comparing Vol1 :183
decimal Vol1 :264
rounding Vol1 :182
subtracting Vol1 :183

floating window Vol1 :98
floating-point

comparing values Vol1 :239
focus

setting Vol1 :162
widget Vol1 :136

folder, shared 4
font, scaled 233
forcing packager Vol1 :47
forking

background process Vol1 :197
database read 15

form
checker Vol1 :118
data 250
printing Vol1 :152
reusable Vol1 :140

formatting string Vol1 :173
FoxPro 127
fractions Vol1 :182
freeing up resources Vol1 :24
function key Vol1 :143, Vol1 :163

G
gadgets, icon Vol1 :107
garbage collection

business object 112
fixed object Vol1 :219
forcing Vol1 :174, Vol1 :216
instances Vol1 :211
object finalization Vol1 :171
protection Vol1 :219
rate Vol1 :174
removing dependents 33
weak pointer Vol1 :170

general protection fault Vol1 :73
generating

archival code Vol1 :246
OLE methods Vol1 :260

getters and setters, generating Vol1 :54
ghosts Vol1 :26
GIF, on Web page 250
global variable Vol1 :172, Vol1 :205
graphical label, push buttons Vol1 :32
graphics, priority Vol1 :209
grid part Vol1 :20
grouping methods Vol1 :66
GUI

architecture Vol1 :87
wrapper 25

H
heading, hiding Vol1 :124
headless server 200
help, setting Vol1 :141
hiding

container column Vol1 :125
heading on container details view Vol1 :124
notebook page Vol1 :116
table column Vol1 :145
visual objects Vol1 :158

hierarchical break 235
high-level qualif ier 157, 177
HLLAPI 80, 111, 114
host

3270 emulator 79
passing data 36
presentation space 79, 80

Index 307

host (continued)
server program 36
services 12
transaction interface 113
variable 42, 127, 140, 146, 162

ODBC, driver 42
hot spot

border Vol1 :138
coordinates Vol1 :138
image Vol1 :140
reshaping Vol1 :138

hover help
behavior Vol1 :198
push buttons Vol1 :32
widgets Vol1 :157

HP printer 233
HTML

form 249
form data 250
image 250
links 252
literal text 252
session data 252

I
ICAPI Vol1 :20
icon

adding dynamically to container Vol1 :126
adding to list Vol1 :129
as cursor Vol1 :103
DLL Vol1 :48
gadgets Vol1 :107
in container column Vol1 :125
missing Vol1 :50
missing after packaging Vol1 :50
moving Vol1 :152
on menu Vol1 :108
push button Vol1 :157
removing from container Vol1 :125, Vol1 :128
VisualAge Vol1 :70

identical users Vol1 :256
identity Vol1 :221, Vol1 :226, Vol1 :240
ILE 24
image

backup copy Vol1 :24
base Vol1 :23

image (continued)
calling from OS/2 91
CAT files Vol1 :264
cleaning Vol1 :23
cleared cache Vol1 :50
click-sensitive Vol1 :140
closing windows Vol1 :95
component Vol1 :15
component, packaging Vol1 :75
concurrently running Vol1 :83
connecting to cloned library Vol1 :248
copyright Vol1 :200
creating Vol1 :23
disconnecting remote 209
exiting Vol1 :199
finding remote object space pointers 219
formats Vol1 :140
growing after packaging Vol1 :26
hot spot Vol1 :138
live updating Vol1 :33
loading different Vol1 :30
memory al location Vol1 :39
merging applications Vol1 :49
missing class Vol1 :52
owner Vol1 :251
package size 22
packaged Vol1 :46
packaging prerequisites Vol1 :52
preventing growth Vol1 :25
rebind strings Vol1 :75
reduced runtime Vol1 :47, Vol1 :78
reducing size Vol1 :23, Vol1 :25, Vol1 :232
remote 209
remote object space pointers 219
required .CAT files Vol1 :50
run-t ime Vol1 :200, Vol1 :205, Vol1 :264
saving 35
saving before packaging Vol1 :26, Vol1 :50
size Vol1 :24, Vol1 :48, Vol1 :54
stock Vol1 :47, Vol1 :50
synchronizing Vol1 :243
update Vol1 :249
using iterator field break 226
using phantom instance variables 113
virgin Vol1 :23
wallpaper Vol1 :138

308 VisualAge for Smalltalk Handbook − Features

immutable object Vol1 :240
import ing application Vol1 :245
IMS

communication 114
harclock 110
LU2 identif ication 109
screen scraping 111
stacked processing 114
transaction modeling 112

in-place activation Vol1 :260
in-progress window Vol1 :155
inactivity, log-off Vol1 :202
including classes in package Vol1 :46
incremental compiler Vol1 :191
indexed message editor Vol1 :62
inetd 73
infinite loop Vol1 :27
Informix Vol1 :8
inheritance

RECORD subclass 48
script Vol1 :204
visual class Vol1 :215
visual part Vol1 :204

inherited message Vol1 :175
inhibiting list selection Vol1 :223
initializing class variables Vol1 :209
input

error Vol1 :133
validating Vol1 :118

inspector
opening Vol1 :38
performance 19

installation, AS/400 Connection 23
install ing feature Vol1 :253
instance

equality Vol1 :226
garbage collection Vol1 :211
identity Vol1 :226
phantom variables 113
removing 209
sharing across object spaces 207
testing Vol1 :173

integer
as key Vol1 :235
hash Vol1 :235
internal representation Vol1 :216
small Vol1 :241

intercepting key stroke 80
interface repository 243
Internet

ITSO xv
interrupting infinite loop Vol1 :28
interval

reverse Vol1 :190
to: method Vol1 :189

invisible part Vol1 :45
INZPFM 26
IPMD 86
IRDUMP 243
ISAPI Vol1 :20
iterating over widgets Vol1 :94
iterator

field break 226
header, color 231

ITSO
feedback xvi
FTP server xvi
Internet xv
redbooks home page xv
World Wide Web xv

J
Java beans Vol1 :22
job

asynchronous 12
DDM requests 43
description 12
library l ist 57
log 53
queue 59
sharing data 43
unspecified key 63

join, outer 146
JPEG support Vol1 :20

K
key

accelerator Vol1 :157
alteration 112
compound 28
Ctrl Vol1 :159
dictionary Vol1 :234

Index 309

key (continued)
function Vol1 :163
intercepting stroke 80
lookup table Vol1 :234
part ial 29
pressed event Vol1 :230
release Vol1 :134
simple 29
specifying 29
unique 46
unspecified 63

keyboard
event handler Vol1 :230
foreign characters Vol1 :265
handling Vol1 :159
input Vol1 :141

L
label

changing color Vol1 :120
mult i l ine text Vol1 :130

LAN
LAN Server/400 7
OS/2 LAN Server 7

last selected item Vol1 :112
launching application Vol1 :203
legacy code Vol1 :9
l ibrary

access Vol1 :84
available classes Vol1 :257
cloned Vol1 :248
closing DLL 98
consistency Vol1 :253
corruption Vol1 :83
deleting application Vol1 :249
ENVY/Manager Vol1 :257
growth rate Vol1 :254
importing application Vol1 :245
list 57
manager Vol1 :249
moving

code Vol1 :251
components Vol1 :246
to AIX Vol1 :255

object space 212
password protection Vol1 :244

l ibrary (continued)
protecting Vol1 :244
remote access Vol1 :243
reuse Vol1 :244
shared folder 4
single-user mode 23

LIFO 36
limiting lines in MLE Vol1 :156
link Vol1 :138
list

adding icon Vol1 :129
widget Vol1 :223

list box
behavior Vol1 :112
container column Vol1 :119
drag-and-drop Vol1 :110, Vol1 :144
scroll ing Vol1 :112

li teral
field 109
string Vol1 :221
strings Vol1 :227
text 252

loading
application Vol1 :245
application in run-time image Vol1 :47
different image Vol1 :30
feature Vol1 :253
variable references Vol1 :198

local log-on 131
locale Vol1 :264
locating widget focus Vol1 :136
location

mouse pointer Vol1 :102
reference 196
window Vol1 :90

lock, releasing Vol1 :83
locking

compatibi l i ty 128
file 45
row 145
scheme 128

log-off, automatic Vol1 :202
logical

fi le 48
record format 47
unit of work 72, 78

310 VisualAge for Smalltalk Handbook − Features

long field 130
lookup table, using Vol1 :234
looping walkback Vol1 :56
LU 6.2 109

M
macro fi le 113
manager

class Vol1 :66
cloning Vol1 :250
consistency Vol1 :253
growth rate Vol1 :254
size Vol1 :250

managing network traffic 211
mapping widgets across systems Vol1 :87
marshaling 216
maturity VisualAge Vol1 :2
maximized window, opening Vol1 :92
maximizing window Vol1 :91
MCH0802 34
member, physical fi le 11
memory

allocation Vol1 :39
garbage collection Vol1 :174
invalid location Vol1 :73
leak 96

menu
accelerator key Vol1 :157
adding choices Vol1 :105
disabling button Vol1 :106
dynamic Vol1 :105
for icon gadgets Vol1 :107
icon Vol1 :108
on Windows NT Vol1 :74
reusable Vol1 :108
sharing Vol1 :108
toggle button Vol1 :105

merging applications Vol1 :49
message

box, exit dialog Vol1 :89
CPF503A 55
descriptor 74
inherited Vol1 :175
misspelled 110
MQ 74
prompter, labels Vol1 :139

message (continued)
transcript logging 205
wmUser Vol1 :224

method 26, 27
Vol1 :167
= Vol1 :221

= = Vol1 :221
abeReinitializeDependents Vol1 :24
aboutToChangeSelection Vol1 :223
abrWithoutWhitespace Vol1 :223
abtAddress 97
abtBuildInternals 111, Vol1 :32
abtExternalizedStringBuildingInfo Vol1 :263
abtPadWith:upToLength:onRight: Vol1 :223
abtScanEnv Vol1 :29, Vol1 :213
abtScrubImage Vol1 :24, Vol1 :25, Vol1 :211,

Vol1 :216
abtShowBusyCursorWhile 18
abtSignal 70
abtWait 70
activeProcess Vol1 :196
allInstances Vol1 :211
allMethodsReferencingLiteral: Vol1 :232
allUserTableNamesIfError 170
apply Vol1 :38
asDate Vol1 :219
asInteger Vol1 :219
asPointer 97
asTime Vol1 :219
at:put: Vol1 :222
availableSystemNames 34
avoiding standard names Vol1 :46
basicAllInstances Vol1 :56
become Vol1 :187
become: Vol1 :211
bindWith Vol1 :173
blockingFactor 19
break 138
calculateInterfaceSpec Vol1 :68
calculatePartBuilder Vol1 :68
closeWidget Vol1 :158
closeWidgetCommand Vol1 :97
commandLine Vol1 :200
commitUnitOfWork 145
connectionInfo 167
containing string Vol1 :232
contextAtFrame: Vol1 :196

Index 311

method (continued)
convertToCodePage 76
copy Vol1 :222
copyright Vol1 :200
deepCopy Vol1 :172
defaultActionRequested Vol1 :153
deleteRow 142
destroyPart 249
disabling Vol1 :56
do: Vol1 :218
elements: Vol1 :194
equals:to: Vol1 :182
eventTableAt:put: Vol1 :225
exceptionOccurred 46
execLongOperation:message: Vol1 :155
executeQueryAsTransaction 145
fileExists Vol1 :178
finalInitialize Vol1 :90
for:do:ifError: 167
forMutualExclusion 16
getDiskFreeSpace Vol1 :233, Vol1 :261
getQuerySpecNamed: 153
grabPointer Vol1 :101
grouping Vol1 :66
includedMethods Vol1 :53
initialize Vol1 :168
initializeWhereClause 125
initializeWidgetClasses Vol1 :87
installToBeLoadedCode Vol1 :254
interceptEvents: Vol1 :230
interface specification 71
invokeAsynchronous 1, 12, 40
isRuntime Vol1 :201
loaded Vol1 :44, Vol1 :263
makeFixed Vol1 :219
makeWeak Vol1 :170
maximumNumberRows 153
methodAtFrame: Vol1 :196
mill isecondsToRun 19
new Vol1 :175
newRow 142
normalizeYear: Vol1 :213
numberOfFrames Vol1 :196
OLE, generating Vol1 :260
openReadOnly 15, 19, 58
openReadWrite 15, 19
openWidget Vol1 :158

method (continued)
packagerIncludeClasses Vol1 :47
packagerIncludeClassNames Vol1 :49, Vol1 :53
packagerIncludeSelectors 200, Vol1 :49
packagingRulesFor: Vol1 :50
packagingRulesFor: Vol1 :52
platformWidgetClass Vol1 :87
platformWidgetGadget Vol1 :87
postCreationInitialization Vol1 :70
preferredConnectionFeatures Vol1 :33
prePackagingActionsFor 22, 33
primCommitUserInput: Vol1 :152
printHex Vol1 :186
printNumber:on: Vol1 :265
printString Vol1 :210
printStringWidth Vol1 :183
prompt Vol1 :94
readAll 14, 41, 44
readAt 28
readNext 27
readNextKey 26
receiverAtFrame: Vol1 :196
reconfigureAllSystems 27
registerLogonSpec: 139
removeFromParentPart 249
reSort Vol1 :194
reverse Vol1 :186, Vol1 :190
rowsAsStrings 182
selectionPolicy: Vol1 :223
sender context Vol1 :196
sender signature Vol1 :195
setGridLineStyleAndColor Vol1 :36
setPosition Vol1 :93
setSensitive: Vol1 :106
showBusyCursor Vol1 :100
showBusyCursorWhile: 18, Vol1 :100
shutDownAll 33
signOff 34
size limit 111
sorted: Vol1 :194
species Vol1 :194
startUp 33
syncExecInUI: Vol1 :193
to: Vol1 :189
toBeLoadedCode 74, Vol1 :209, Vol1 :254
trace call stack Vol1 :21
tr imBlanks Vol1 :223

312 VisualAge for Smalltalk Handbook − Features

method (continued)
unloaded Vol1 :264
updateWidget Vol1 :191, Vol1 :193
useDashedLines Vol1 :36
value Vol1 :172
visibi l i ty Vol1 :175
wasRemovedCode Vol1 :254
widgetUnderCursor Vol1 :102
windowProc:with:with: Vol1 :225

method tracing Vol1 :216
migrat ion

DB2/2 125
minimizing window Vol1 :94
minimum window size Vol1 :96
missing

archival code Vol1 :68
carriage return Vol1 :162
icons Vol1 :50
method Vol1 :53

modal dialog Vol1 :94
model class Vol1 :65
modifying system menu Vol1 :41
Moti f

documentation Vol1 :88
widget Vol1 :87
XKCancel Vol1 :135

mouse
click with Ctrl key Vol1 :159
cursor position Vol1 :102
dragging Vol1 :108
pointer

changing Vol1 :98
location Vol1 :102

moving
classes Vol1 :29
icons Vol1 :152

MPR files 251
MQ

client 73
commitment control 78
connection problem 78
EBCDIC conversion 75
logical unit of work 78
reading message 74
sample application 76
syncpoint processing 75

MQ client code 79
MQSeries, AIX 73
MRI file Vol1 :63
multi l ine edit part

l imiting lines Vol1 :156
missing CR Vol1 :162
parsing text Vol1 :144
tab order Vol1 :143
typed words Vol1 :144

multi l ine edit window Vol1 :144
multi l ine text Vol1 :130
mult imedia

example Vol1 :38
opening device Vol1 :84

mult iple
AS/400 connections 10
inheritance Vol1 :10
rows, selecting Vol1 :150
select list Vol1 :112
windows, application Vol1 :89

mult irow query 133, 231
multi tasking 15
mult i threading Vol1 :28, Vol1 :204
mutable object Vol1 :241
MWave Vol1 :85

N
name server

changing entries 211
persistent 213

named pipe 91
naming convention Vol1 :63, Vol1 :174
national language support

See NLS
navigating between columns Vol1 :117
NetBIOS

asynchronous function 71
dictionary 70
random errors 70

Netware
client Vol1 :84
server Vol1 :84

network
managing traffic 211
node 10

Index 313

NFS drive Vol1 :82
NLS

decimals Vol1 :210
double-byte character set Vol1 :267
multiple languages Vol1 :265
report writer default fonts 229
search path Vol1 :266

nonmodal dialog Vol1 :142
nonvisual part Vol1 :208
notebook

advancing pages Vol1 :114
bitmap on tab Vol1 :115
destroying page Vol1 :116
disabling tab Vol1 :125
hiding page Vol1 :116
migrat ing Vol1 :117
portable Vol1 :117
porting across platforms Vol1 :117
settings view Vol1 :75
skipping through Vol1 :114
tab contents Vol1 :115
turning pages Vol1 :114
validating input Vol1 :118

Novell Vol1 :83, Vol1 :257
NSAPI Vol1 :20
number

convert ing Vol1 :210
floating point Vol1 :182
precision Vol1 :183
rounding Vol1 :182

O
object

changing class Vol1 :231
class identification Vol1 :182
copying between spaces 198
creating at compile time Vol1 :167
creation Vol1 :174
destroying Vol1 :170
dumper 229, Vol1 :39, Vol1 :247
finalization Vol1 :171
identity Vol1 :226, Vol1 :240
immutable Vol1 :240
list part 59
loader Vol1 :39
long-living Vol1 :219

object (continued)
marshaling 216
memory Vol1 :187
mutable Vol1 :241
parti t ioning 216
peer-to-peer communication 207
primit ive Vol1 :217
printer 229
read-only Vol1 :227
reference Vol1 :206
remote 197
sending as parameter 208
sending message to client image 203
SOM 240
space 198
surviving fl ips Vol1 :211
table Vol1 :187
traffic Vol1 :21
transaction 110
undefined 2, Vol1 :69
visualizer Vol1 :21
writing to fi le Vol1 :217

object linking and embedding
See OLE

object space
activator 203
connecting to different libraries 202
connection close 196
different l ibraries 212
duplicating 214
extending server class 215
fault tolerance 211
finding remote pointers 219
initial connection 203
moving parameters 215
partit ioning object 216
performance 216
profi l ing 203
security fi les 222
sharing class instances 207

object-oriented database 171
ODBC

administrator 135
AS/400 access 5
AS/400 database 11
blocking 172
ClientAccess/400 45, 48

314 VisualAge for Smalltalk Handbook − Features

ODBC (continued)
create view 32
data source 135
data source name 191
DB2/400 135
DBF format 171
default l ibrary 45
description 175
driver manager 48
file access part 60
host variable 42
keywords 157
license 191
log-on 128
ODBC.INI 45, 157
OS/2 134
parameter marker 42
parameters 157
PC Support 48
requirements 7
SQLSTATE 37000 123
SQLSTATE S1010 124
stored procedure 32, 193
text driver 132
TopLink 118

ODBC.INI 45
ODBCADM 134
OfficeVision/400 50
OLE

class generator Vol1 :260
client Vol1 :260
generating methods Vol1 :260
sharing objects Vol1 :260

open database connectivity
See ODBC

opening
inspector Vol1 :38
mult imedia device Vol1 :84
window centered Vol1 :93
window maximized Vol1 :92

openness VisualAge Vol1 :3
operating system, registering event Vol1 :225
optimized 32-bit client 7
Oracle

blocking 172
break API 138
connection 122

Oracle (continued)
data types 130
DLL 122
dr iver 175
error 126 122
error ORA-00942 177

organizer
preferences Vol1 :75
views Vol1 :42

OS/2
AS/400 access through CM/2 4
calling image from 91
calling PM API functions 88
code page conversion Vol1 :266
distributing application Vol1 :252
drag-and-drop Vol1 :129
event handler Vol1 :151
LAN Server 7
LIBPATH 83
maximize window Vol1 :91
memory leak 96
MQ 79
MQSeries 75
mult i threading Vol1 :204
notebook Vol1 :116, Vol1 :117
ODBC 134
optimized client 21
PM API 88
session manager 84
shutdown Vol1 :43
SOM object 246
swap file 96
task list Vol1 :131
thread 143
Warp client Vol1 :84
workplace shell 247

OS/400
host servers 23
host services 12

outer join 146
OV/400 50
overlapping fields Vol1 :95
override database 43

Index 315

P
package, including classes in Vol1 :46
packaged image Vol1 :46
packaging Vol1 :54

application 57
application prerequisites 22, Vol1 :52
AS/400 22
AS/400 application 8, 21
AS/400 sign-on screen 44
changing database name 174
class modifications Vol1 :49
database samples 194
distributed 217
distributed application 212
distributed tracing 195
for other platform Vol1 :48
garbage collecting Vol1 :26
image growing Vol1 :26
image size 22
instruction Vol1 :76
launch code Vol1 :203
method exclusion 200
missing icons Vol1 :50
missing method Vol1 :53
packaged image browser Vol1 :47
pool dictionaries Vol1 :51
remote object pointer 204
removing methods Vol1 :46
report application 230
required CAT and MPR files Vol1 :76
required CAT files Vol1 :264
required classes Vol1 :49
required ICs Vol1 :75
retaining classes 218
scan messages Vol1 :50
target environment Vol1 :252
Web application 251
without SWP files 3
workspace Vol1 :48

packaging AIX Vol1 :47
packaging in target environment Vol1 :47
padding strings Vol1 :223
palette Vol1 :131, Vol1 :139
parameter

passing 98, Vol1 :34

parameter marker 42
parsing

COBOL copy-book 101
macro file 113
string Vol1 :219

part
AS/400 file access 4
changing settings view Vol1 :145
composite 251
DBCS name 255
destroying Vol1 :95
distributing 210
error when saving Vol1 :69
invisible Vol1 :45
labels Vol1 :160
object list 59
pr imary Vol1 :69
printing form Vol1 :152
reusable table Vol1 :149, Vol1 :153
SOM object 240
table list Vol1 :149
validation Vol1 :152
with instances, deleting Vol1 :35

partial key 29
passing

data 36
parameters Vol1 :34

password protection Vol1 :244
pausing process Vol1 :197
PC Support

communication error 2
Rumba 10
status 17
TCP/IP 51
user ID 17

PCL print stream 233
peer-to-peer communication 207
performance

access set 127
activator 199
class naming Vol1 :226
concatenation Vol1 :237
copying object 221
CPI-C 114
DDM 26
degrading Vol1 :24
dictionary Vol1 :234

316 VisualAge for Smalltalk Handbook − Features

performance (continued)
dynamic session acquisition 114
file access part 60
hiding visual objects Vol1 :158
image size Vol1 :24
logical view 26
lookup table Vol1 :234
Novell Client32 Vol1 :258
object space 216
ODBC 48, 60, 172
opening and closing file 43
opening widgets Vol1 :158
Oracle 172
readAll 14
record cache 19
report printing 233
Smalltalk versus RPG 19
SQL 48
stream Vol1 :237
trace logging Vol1 :54
type converters Vol1 :220
unloading application Vol1 :56
Windows 95 Vol1 :83

persistence 213, Vol1 :217
Personal Communications 37
phantom instance variables 113
physical file 14
platform

drag-and-drop Vol1 :20, Vol1 :129
function 95
function, available 96
maximize window Vol1 :91
porting notebook Vol1 :117
screen resolution Vol1 :95
Windows 16-bit 62

PlatformFunction 101
PlatformWidgetsConstants Vol1 :41
pointer

dead 204
manipulation 82
motion mask Vol1 :102
object table Vol1 :187
passing 101
recaching Vol1 :243, Vol1 :248
remote object 197
retaining address 89
weak Vol1 :170

pool dictionary
Abt3270HllapiConstants 80
AbtMQConstants 74
CfsConstants Vol1 :176
corrupted 3
defining Vol1 :198
establishing Vol1 :197
excluded keys Vol1 :51
exporting Vol1 :254
NlsGlobals 136
packaging Vol1 :51
replacing associations Vol1 :197
repopulating 3
resolving references Vol1 :193
SystemExceptions Vol1 :180
using Vol1 :197

pop-up menu, extending Vol1 :57
port

COM Vol1 :178
number 221

portabi l i ty
CUA Vol1 :88
Windows 95 Vol1 :88

portable notebook Vol1 :117
port ing

drag-and-drop Vol1 :129
notebook across platforms Vol1 :117
Smalltalk applications Vol1 :10

positioning window at cursor Vol1 :90
POSIX Vol1 :2
PostScript 232
precision Vol1 :183
prerequisite Vol1 :52, Vol1 :81
preventing image growth Vol1 :25
primary part Vol1 :69
pr imit ive

error code 97, Vol1 :73
failed 124
object Vol1 :217

printer
save settings 229

printf() Vol1 :173
printing

conditional 227
printing form with visual part Vol1 :152

Index 317

proc dialog
APPC 71
CICS 72
code page 73
transaction abend 72

process
abort ing stack Vol1 :199
background Vol1 :201
forking Vol1 :197
pausing Vol1 :197
synchronization Vol1 :209

processor Vol1 :196
profi ler 211, Vol1 :216
program

asynchronous call ing 40
CICS 72
COBOL 71
listener 73
partner 34
signaling end 84
starter 59, 84
synchronous call ing 40
working directory 84

progress
indicator 155, Vol1 :137
message Vol1 :156

prompter
bypassing 142
changing labels Vol1 :160
creating Vol1 :161
data source name 148
labels Vol1 :139

properties view Vol1 :75
protecting l ibrary Vol1 :244
PTF

ClientAccess/400 135
data queue 31
QGYSETG 34
remote command 53

purging application Vol1 :250
push button

apply Vol1 :38
bitmap Vol1 :161
disabling Vol1 :156
dynamic Vol1 :160
graphical label Vol1 :32
hover help Vol1 :32, Vol1 :157, Vol1 :198

push button (continued)
icon Vol1 :157

Q
QENVAUXD 12
QENVY 12
QEVYMAIN 23, 34
QGPL 43
QGYSETG 34, 53
QIWS 23, 34
QTEMP 43
query

host variable 162
message SQL0805N 173
missing fields 171
sharing 145
tables and views 170
URL string 253

queue
handle 78
manager 78

quick form 3, 146

R
recaching pointer Vol1 :243, Vol1 :248
record

adding to container Vol1 :120
AS/400 3
blocking 19
commitment control 59
deriving description 48
description 3, 31, 35
fil l ing from data queue 6
locking 45
logical format 47
read next 4
read previous 4
repeated structures 37
transaction 109
unique key 46

reduced runtime image Vol1 :47
reducing image size Vol1 :23
reference

circular Vol1 :97
object Vol1 :206

318 VisualAge for Smalltalk Handbook − Features

referential integrity 55
refreshing container details view Vol1 :127
registered

connection, removing Vol1 :30
events Vol1 :260

registering OS event Vol1 :225
reinit ial izing

common widgets Vol1 :25
dependents Vol1 :25

reinstalling AS/400 Connection feature 8
released version Vol1 :246
releasing

connections Vol1 :95
locks Vol1 :83

reloading application Vol1 :249
remote command 43, 53
remote host, connecting to 2
remote object

dead pointer 204
packaging 204
without object ID 197

remote procedure call
See RPC

removed class Vol1 :45
removing

application Vol1 :250
archival code Vol1 :37
blanks in string Vol1 :223
close option Vol1 :97
damaged classes Vol1 :40
elements from view Vol1 :71
instances Vol1 :35
registered event-to-script connection Vol1 :30

renaming
class Vol1 :29, Vol1 :31
visual part Vol1 :31

repeating record structures 37
replacing default icon Vol1 :27
report

adding fields dynamically 233
break protocol 236
calculated field 230
coElement 236
conditional printing 227, 233
counting unprinted value 232
default fonts 229
field breaks 230

report (continued)
hidden details 227
hierarchical break 235
HP printer 233
in ASCII file 232
iterator field break 226
omit printing 233
owner language 232
packaging application 230
printing performance 233
printing underlined words 232
saving printer settings 229
sums 227
underlined words 232
using multirow query 231
using scripts 231
Win32s error 226

reshaping hot spot Vol1 :138
resizing container columns Vol1 :123
resolution

bitmap Vol1 :131
centered window Vol1 :93
display Vol1 :92
independence Vol1 :95
screen Vol1 :95

resource
catalog Vol1 :12
compiler Vol1 :27
freeing up Vol1 :24

retrieving display resolution Vol1 :92
returning value, modal dialog Vol1 :94
reusable

form Vol1 :140
menu Vol1 :108

reusing
cursor 133
settings view Vol1 :227
table part Vol1 :149, Vol1 :153
visual class Vol1 :65
visual part Vol1 :140

reversing collections Vol1 :186
revisable form text 50
rounding Vol1 :182
router 4, 10

APPC 35
OS/2 client 21
starting automatically 59

Index 319

row
create 142
delete 142
loading all 179
locked 145
maximum number 153
removing brackets 182
rowsAsStrings 182
selecting mult iple Vol1 :150

RPC
argument passing 36
asynchronous 42
asynchronous invocation 1
asynchronous job 12
ILE service program 24
large arguments 42
message 51
mult iple programs 1
parameter 34
passing data 36
setting commit boundary 1
synchronous 40
transaction 14

RPG 19, 32, 36, 40
Rumba 10
running subsystems Vol1 :199
runt ime

AS/400 prerequisites 9
distribution fees Vol1 :9
image, reduced Vol1 :47

S
screen

resolution Vol1 :95
scraping 24, 111
size, window position Vol1 :93

script
client 66
creating class from Vol1 :229
double execution Vol1 :70
server 66
TCP/IP 66

scroll bar, changing size Vol1 :124
scrolling table Vol1 :148
SCSI drive Vol1 :40

security
conversation 18, 27
object space 222
veri fying parameters 2

selecting multiple rows Vol1 :150
semaphore 14, 16, 39, 41, 91
sender

context Vol1 :196
signature Vol1 :195

serial port Vol1 :178
server Vol1 :257
service program 24
session

acquisition 114
class 114
data 249, 252, 253

setting focus Vol1 :162
settings view

changing Vol1 :145
reusing Vol1 :227

severity level Vol1 :195
shadow 211
shape, hot spot Vol1 :138
SHARE.EXE 24
shared folder 4
sharing

data among applications 43
files 24
menu Vol1 :108
OLE objects Vol1 :260
record 45

shutdown OS/2 Vol1 :43
sign-on

dialog 17
screen 44

signature, finding sender Vol1 :195
single-row Query 192
sizing table Vol1 :149
Smalltalk

advantages Vol1 :4
API Vol1 :172
books Vol1 :165
caching compiler Vol1 :192
closing DLL Vol1 :55
committee Vol1 :2
creating table 161
database access 154

320 VisualAge for Smalltalk Handbook − Features

Smalltalk (continued)
database connection 138
description Vol1 :2
distr ibuting compiler Vol1 :9
event Vol1 :213
exception handling Vol1 :179
fault tolerance 220
formatter Vol1 :173
fractions Vol1 :182
GUI architecture Vol1 :87
incremental compiler Vol1 :191
integer Vol1 :216
method size limit 111
multiple inheritance Vol1 :10
performance versus RPG 19
porting applications Vol1 :10
process model 199
Server for MVS Vol1 :15
source code Vol1 :9
SQL INSERT 160
standardization Vol1 :166
strategy Vol1 :7
type converters Vol1 :220
Usenet group Vol1 :12
using TCP/IP 66
v e r s u s C + + Vol1 :5
versus Java Vol1 :7
widget Vol1 :87

smooth graphics Vol1 :209
socket 66, 68
Solaris server Vol1 :82
SOM

CORBA 239
development toolkit 244
DSOM hanging system 239
environment variable 241
exception 239
feature 244
generating class with prefix 238
inout sequences 244
interface repository 245
LIBPATH 243
missing class definition 243
object 245
object as part 240
OS/2 desktop 246
prefix 238

SOM (continued)
terminating error 241
wrapper 240, 245

sorted collection Vol1 :194
SoundBlaster Vol1 :85
space planning, window Vol1 :93
SQL

ANSI support 140
AS/400 database 5, 11
building statement 148
cursor 179
dynamic where clause 125
embedded 121
error 30081n 120
error 37000 123
error S1010 124
exception handling 119
for update of 127
host variable with wild card 140
IN clause 146
INSERT 160
Jet driver 127
locked row 145
ODBC 32
ODBC requirements 6
outer join 146
performance 48
statement 143
trace 164
wild card 140

SQL Server 185, Vol1 :8
stability, VisualAge Vol1 :2
stack

aborting process Vol1 :199
frames Vol1 :196
information, capturing Vol1 :28
overf low Vol1 :72
trace 213

stacked processing 114
static

communication session acquisition 114
SQL Vol1 :18

stock image Vol1 :47, Vol1 :50
stored procedure 32, 146, 156, 185, 193
storing settings Vol1 :39

Index 321

stream 70, Vol1 :237
string

asPointer 97
finding in methods Vol1 :232
formatt ing Vol1 :173
identity Vol1 :221
li teral Vol1 :221, Vol1 :227
padding Vol1 :223
parsing Vol1 :219
removing blanks Vol1 :223
replacing character Vol1 :222
substitute Vol1 :173
substring Vol1 :186
tr imming Vol1 :223

subapplication, using Vol1 :248
subclass, visual part Vol1 :204, Vol1 :215
substrings Vol1 :186
subsystems, configured Vol1 :199
successor uniqueness violation 109
swapper

error Vol1 :198
large objects Vol1 :217
loading application Vol1 :47

swapping Vol1 :174
sweeps Vol1 :211
Sybase Vol1 :8
symbol, as dictionary key Vol1 :235
synchronizing

attr ibutes Vol1 :45
combo box Vol1 :109
image Vol1 :243
table scrolling Vol1 :148
visual part Vol1 :202
windows Vol1 :95

synchronous RPC 40
syncpoint processing 75
SYS317x error Vol1 :72
system

connected 17
menu Vol1 :41
menu, modifying Vol1 :41

system object model
See SOM

T
tab

group Vol1 :158
order Vol1 :143, Vol1 :158

tabbing
automatic Vol1 :162
enter key Vol1 :153

table
adding column Vol1 :146
changing cell Vol1 :149
changing format Vol1 :36
changing size Vol1 :149
creating in Smalltalk 161
hiding column Vol1 :145
list Vol1 :149
resizing rows Vol1 :224
reusing part Vol1 :149, Vol1 :153
scroll ing Vol1 :148
selecting multiple rows Vol1 :150
sizing Vol1 :149
synchronizing scroll ing Vol1 :148
widths Vol1 :153

TalkLink Vol1 :11
target environment, packaging in Vol1 :47
task list Vol1 :131
TCP/IP

address in use 66
AS/400 communication 51
ClientAccess/400 50
DDM 50
distributed name server 201
distributed testing 202
fault tolerance 220
handling addresses 213
hard-coded addresses 196
local name server 222
name server 201, 210
port number 221
socket 66
stack 51, 65
startup error 210
testing setup 65
using in scripts 66
Windows 16-bit 62
WinSock 65

322 VisualAge for Smalltalk Handbook − Features

Team Connection Vol1 :6
team environment Vol1 :243, Vol1 :257

identical users Vol1 :256
terminating

active processes Vol1 :25
infinite loop Vol1 :28

testing
class Vol1 :173
instance Vol1 :173

text
box, default action Vol1 :153
changing color Vol1 :193
cursor position Vol1 :131
database 132
transparent Vol1 :135

thread 114, 138, 143, 208, Vol1 :28
t imestamp Vol1 :247
Tivoli Vol1 :21
toggle button Vol1 :105
token-ring 10
tool bar

creating Vol1 :109
sizing Vol1 :259

TopLink 118
trace

database connection 164
distributed 195
logging Vol1 :54
method call stack Vol1 :21
run-time startup 205

tracking table cell changes Vol1 :149
TrailBlazer

class policy Vol1 :57
code browser Vol1 :192
compiler warning level Vol1 :195
generating accessors Vol1 :54
initializing class variables Vol1 :209
toBeLoadedCode Vol1 :209

transaction
abend 72
canceling database request 137
code page 73
database 14
distributed 217
interface 113
interleaving 39
mult i leaving 39

transaction (continued)
object 110
program 23
record 109
single 114

transcript, logging messages 205
transfer queue 73
translation table Vol1 :44
transparent text background Vol1 :135
trapping errors Vol1 :180
tree view Vol1 :259
triggering events Vol1 :44
tr imming str ing Vol1 :223
turning notebook pages Vol1 :114
turning off error message Vol1 :135
type converters Vol1 :220

U
undefined object 2, 8, Vol1 :69
unique key 46
UNIX 189, 224, Vol1 :74
unloading

application Vol1 :56
feature Vol1 :82

unspecified key 63
unused file handles Vol1 :208
updating

database Vol1 :197
widget Vol1 :191

upward compatibi l i ty Vol1 :10
usenet Vol1 :12
user

identical Vol1 :256
privi lege 176

user input
error Vol1 :133
type converters Vol1 :220

user profi le management 18, 117, 131
user profile, AS/400 54

V
validating input Vol1 :118
variable

character field 141
global Vol1 :205

Index 323

variable (continued)
references, swapper error Vol1 :198
type Vol1 :172

verifying security parameters 2
version

identifying released Vol1 :246
immutable Vol1 :250

versioning application Vol1 :61
view

init ializing wrapper
removing elements Vol1 :71
wrapper Vol1 :89

visual part
anchor block handle Vol1 :135
customizing connection menu Vol1 :33
inheritance Vol1 :204
pr imary Vol1 :70
printing form Vol1 :152
renaming Vol1 :31
reusing Vol1 :140
subclass Vol1 :215
synchronizing Vol1 :202
window location Vol1 :90

VisualAge
ABTPATH Vol1 :213
communications protocols Vol1 :8
CompuServe Vol1 :12
configuration Vol1 :213
configuration management Vol1 :7
CUA compliance Vol1 :10
databases Vol1 :8
description Vol1 :1
features

in version 3 Vol1 :13
in version 4 Vol1 :14

fixes 9
icon Vol1 :70
installed features Vol1 :253
matur i ty Vol1 :2
multiple versions Vol1 :26
object repository Vol1 :6
ODBC 5
openness Vol1 :3
Organizer Vol1 :75
packaging Vol1 :8
platforms Vol1 :6
porting applications Vol1 :10

VisualAge (continued)
replacing icon Vol1 :27
resource catalog Vol1 :12
running from external SCSI drive Vol1 :40
stabil i ty Vol1 :2
start ing Vol1 :71
support xvii, Vol1 :11
TalkLink Vol1 :11
upward compatibi l i ty Vol1 :10
Windows 4

VisualAge Generator Vol1 :5
visualization feature Vol1 :82
visualizer Vol1 :6

W
walkback

capturing information 213
looping Vol1 :56

wallpaper Vol1 :138
watch field 230
weak pointer Vol1 :170
Web Connection

AppletAuthor Vol1 :22
CGI Vol1 :20
ICAPI Vol1 :20
ISAPI Vol1 :20
JPEG Vol1 :20
NSAPI Vol1 :20

where clause 125, 133
widget

attachments Vol1 :95
circular reference Vol1 :97
closing Vol1 :96
dependent attachments Vol1 :97
destroying Vol1 :95
hover help Vol1 :157
iterating over Vol1 :94
key release Vol1 :134
list Vol1 :223
locating focus Vol1 :136
mapping across systems Vol1 :87
native presentation manager 94
updating Vol1 :191
view wrapper Vol1 :146

wildcard 140

324 VisualAge for Smalltalk Handbook − Features

Win32s 226, Vol1 :70
window

always on top Vol1 :98
border Vol1 :93
centered Vol1 :93
closing Vol1 :95, Vol1 :134
closing on PF key Vol1 :163
Esc key Vol1 :134
find active Vol1 :155
in task list Vol1 :131
in-progress Vol1 :155
iterating over widgets Vol1 :94
location Vol1 :90
log-on 3
maximizing Vol1 :91
minimizing Vol1 :94
minimum size Vol1 :96
moving icons Vol1 :152
opening centered Vol1 :93
opening maximized Vol1 :92
palette Vol1 :131
position Vol1 :93
positioning at cursor Vol1 :90
progress indicator Vol1 :137
size Vol1 :96
space planning Vol1 :93
synchronization Vol1 :95
tit le Vol1 :131
tit le bar Vol1 :93

Windows
16-bit 62
AS/400 application 4
code page conversion Vol1 :266
database support 181
DBCS 255
disk space Vol1 :261
drag-and-drop Vol1 :129
event handler Vol1 :151
explorer Vol1 :260
for Workgroups 203
installing on DBCS system Vol1 :267
logo Vol1 :15
maximize window Vol1 :91
moving library to AIX Vol1 :255
notebook Vol1 :117
Personal Communications 37
router 4

Windows (continued)
sharing files 24
WinSock 65

Windows 3.1, MQ client 79
Windows 95

as distributed server 222
client Vol1 :83
controls Vol1 :88
DB2 support 165
local name server 222
Netware server Vol1 :257
requester Vol1 :83
sizing toolbar Vol1 :259
TreeView Vol1 :259

Windows NT client Vol1 :84
WinSock 65
WordPro Vol1 :260
work station controller

ASCII 4
work station function 10, 21
workspace packaging Vol1 :48
wrapper

COBOL 98
initializing Vol1 :146
legacy code Vol1 :9
object Vol1 :206
PM control 94
SOM 240, 245
view Vol1 :89

writing stack trace to file Vol1 :29
WSI server 254

X
X

resources Vol1 :88
server Vol1 :74

X3 Project 986-D Vol1 :166
XmNmodifyVerifyCallback Vol1 :144
XmNvalueChangedCallback Vol1 :144
XmOPEN Vol1 :260

Y
year format Vol1 :212

Index 325

326 VisualAge for Smalltalk Handbook − Features

ITSO Redbook Evaluation

VisualAge for Smalltalk Handbook Volume 2: Features
SG24-2219-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.com
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@vnet.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1997 327

IBML 

Printed in U.S.A.

SG24-2219-00

	Contents
	Preface
	How This Redbook Is Organized
	ITSO on the Internet
	VisualAge Support on CompuServe
	About the Authors
	Acknowledgments
	Comments Welcome

	Chapter 1. AS/ 400 Connection
	Multiple Programs with a Single Remote Procedure Call
	RPC Part Sets Commit Boundary
	Connection Problem with V3R1
	AS/ 400 Communication Error
	Strange Characters on Log- on Window
	Quick Form from AS/ 400 Record Classes
	Communication
	Read Next/ Previous
	SQL Statements
	Data Queues and Records
	ODBC Requirements
	ClientAccess/ 400 Optimized for OS/ 2
	VisualAge Server on LAN Server/ 400
	Native Application Accessing VisualAge for Smalltalk Application
	Packaging Problem
	Run- time Prerequisites for VisualAge for Smalltalk AS/ 400 Application
	Fixes Available Via FTP
	Multiple AS/ 400 Connections
	Accessing AS/ 400 Physical File Members
	Accessing AS/ 400 Database
	QENVY/ QENVAUXD
	Code Page Translation
	Date Conversion
	Database Transactions
	ReadAll Method
	Blocking Factor
	Multitasking with the AS/ 400 Parts
	Checking PCS Status
	Suppressing AS/ 400 Sign- on Dialog
	Changing Normal Cursor to Busy Cursor
	PromptForUserIdAndPassword
	Performance Comparison
	Packaged Application Requirements
	VisualAge for Smalltalk with OS/ 2 Client
	Packaged Image Size
	Transaction Program
	AS/ 400 Connection Feature Installation
	ILE Service Programs
	Screen Scraping
	DDM Performance and File Access Parts
	Migrating from OS/ 400 V3R0M5 to V3R1
	Compound Key
	Data Queue Program Temporary Fix
	Record Descriptions
	Stored Procedures in RPG
	Proper Exiting to Remove Dependents
	RPC Parameter Problem
	Variable- Length Data Queue
	Saving Image Causes Communications Problem
	RPG Program Calls
	Personal Communications for AS/ 400
	Repeated Record Structures
	Simultaneous DDM Access
	Synchronous Processing
	ODBC Driver and Host Variables
	Asynchronous RPC with Large Arguments
	Data Queues
	File Open and Close
	Sign- On Screen
	Error Using #readAll
	DDM and RPC
	ODBC Default Library
	File Locking
	Unique Keys
	Logical Record Format
	Fastest DB2/ 400 Access
	Access OV/ 400 Document
	AS/ 400 Connection through TCP/ IP
	AS/ 400 Feature and TCP/ IP
	Remote Procedure Call Messages
	Remote Command Fix
	Fixpack Problem
	User Profile Name
	Referential Integrity Constraint Violation
	Reestablish Connection
	Application Packaging
	File Access through Library List
	Record Name and DDS
	Cursor Stability
	Job Queues
	Client Access for Windows
	ODBC vs. File Access Part
	File Agents
	Using Windows 16- Bit Platforms over TCP/ IP
	Unspecified Key

	Chapter 2. Communications and Transactions
	Supported TCP/ IP Stacks
	Testing the TCP/ IP Setup
	Address in Use
	Using TCP/ IP in Scripts
	Socket Program with Time- Out
	Sockets and Streams
	Error: A NetBIOS message was ignored¢
	Accessing COBOL through CICS
	Primitive Failing When Opening CICS Proc Dialog Settings
	Handling a Transaction Abend
	CICS ECI and Code Page Translation
	MQSeries and VisualAge on AIX
	MQ: Message Available†
	Syncpoint Processing
	ASCII to EBCDIC Conversion
	MQI Sample Application
	Commit/ Rollback with MQ
	Error: MqccFailed
	Host Presentation Space
	Getting 3270 Cursor Position
	Intercepting Key Strokes
	Accessing COM Ports in Smalltalk

	Chapter 3. Interface to External Routines
	Using OSSObject, OSObject Pointer, AbtPointer Classes
	Freeing a DLL
	Error: Abt. 154e
	Signaling the End of a Rexx Program
	Set Working Directory for Program Starter
	Debugging DLLs
	Calling OS/ 2 Presentation Manager API Functions
	Function Like f(int*)
	Legacy Code
	Calling a Smalltalk Image from OS/ 2
	Calling Smalltalk from the Outside
	Interface to Native Presentation Manager Widgets
	Changes to 16- Bit Function Calling Convention
	Calling OSObjects
	Memory Leaks from a C DLL under OS/ 2
	Debugging C DLLs Called from VisualAge
	Checking If Platform Function Is Available
	#asPointer Method
	COBOL Wrapper Locking the DLL
	Passing a Complex Structure to a C DLL
	Parsing COBOL COPY- Book
	Calling C Functions from VisualAge on AIX
	Sample Callback Function
	DDE on AIX

	Chapter 4. CICS and IMS Connection
	Successor Uniqueness Violation Exception
	Exception: TransRecord Does Not Understand
	HLLAPI Exceptions: Harclock Exceptions
	Time- out Exceptions
	Drag- and- Drop for Windows 95
	Screen Scraper Functionality
	IBM Smalltalk 64 KB Method Size Limit
	BplBusinessObj class> Behavior
	Business Object Key Alteration
	Run- Time Image Build Problems
	Host Transaction Interface Changes
	Communication Considerations

	Chapter 5. Database
	Error Message When Upgrading
	Ineffective Bind Command Syntax
	User ID from User Profile Manager
	Password- Required Warning when Using TopLink
	DB2/ 6000 Connection Failure on AIX
	Handling Errors in Database Code
	SQL Error 30081n in DB/ 2 2.1
	Call- Level Interface
	Binding Problem with DB2/ 6000 on AIX
	OS Error 126 Connecting to Oracle
	SQLSTATE 37000 Error with ODBC Driver
	Microsoft Access Drivers
	SQLSTATE S1010 Error with ODBC DB2/ 2 Driver
	Primitive Failed OS Error 1
	Migrating from DB2 V1.2 to DB2 V2
	Building a Dynamic Where Clause
	ODBC using Microsoft- JET Drivers
	Database Log- on Prompt
	Database Log- on Prompt after Migrating to Version 3
	Native Oracle and Data Types
	Local Log- on
	Text Database
	Reusing a Cursor
	OS/ 2 ODBC Problems
	Connecting to DB2/ 400 with ODBC
	Retrieving Current Date from DB2/ 2
	Database Portability
	Canceling a Database Call
	Establishing a Database Connection via Smalltalk Code
	Non- ANSI SQL Support
	Binding to Database
	Using a Wild Card with Host Variables
	Bypass the Error Prompt in DB2/ 2
	Delete and Create Rows
	Handling SQL Statement
	Database Operations on Separate OS/ 2 Thread
	Hard- Coded Database Name
	Locked Rows on Database Tables
	Sharing Queries Between Applications
	Connecting from OS/ 2 Client to DB2/ 6000
	Outer Join Statements
	Quick Form and Stored Procedures
	Using a Host Variable for IN Clause
	Errors when Binding to Database
	Automatically Connect and Log- on to Database
	SQL Support
	Using One Database with Different Database Managers
	Query Not Found in Database Access Set
	Using getQuerySpecNamed:
	Setting MaximumNumberRows
	Accessing a Database Using Smalltalk
	Providing User Feedback when Updating DB2
	Executing a Stored Procedure
	Executing a Stored Procedure with Parameter
	ODBC Keyword Limitation
	High- Level Qualifiers
	SQL Insert in Plain Smalltalk
	Creating a Table in Smalltalk Code
	Specifying Host Variables for a Query
	Deleting Rows from Database
	Searching for Database Connection Errors
	Disabling Error Message
	Windows 95 and DB2
	Database Parts for Windows 95
	Windows 95 and native DB2 DLLs
	Scrollable Cursors
	Database Connection Information
	Moving from ODBC to CLI
	Undefined Access Set
	Table and View Names
	Use of the Multirow Query Settings
	DBF Format
	ODBC Support for OS/ 2
	Object- Oriented Databases
	Absence of Database Query Fields
	Support for Blocking with Oracle
	Comparing ODBC and Native Oracle Interfaces
	SQL0805N Message when Creating a Database Query
	Checking Multidatabase Feature Installation
	Changing the Database Name in All Application Classes
	Nature of ODBC
	Problem in Specifying Driver
	User ID Not Privileged for Read
	Error: Oracle ORA- 00942
	Changing a High- Level Qualifier for Run Time
	DB2 Cursor Control
	Database Feature not Installable
	Database Support for Windows
	Formatting rowsAsStrings to Remove Brackets
	Intercepting a 100 or 0 SQLCODE
	Database Access Set
	Stored Procedures for SQL Server
	Error: SQL0236W
	Communication with DB2/ 2
	Sample Databases
	ODBC Driver Error
	Data Source Name Error
	Minimum Files for Run- Time
	Data Source Driver Error
	Database Access Set
	Using Stored Procedures with ODBC or DB2 CLI
	Active Database Connections When Exiting VisualAge
	Unloading the Static SQL Feature
	Database Samples

	Chapter 6. Distributed
	Distributed Feature versus CORBA
	Turning on Distributed Tracing
	Avoiding Hard- Coding TCP/ IP Addresses for Distribution
	Premature Connection Closure
	Remote Object Has No Object ID
	Copying Objects Between Object Spaces
	Activator Wasting CPU Time
	Security Error With Connect Request on Activation
	Server Without User Interface
	Packager Method Exclusion Remedy
	Name Server Distributed Part Difficulties
	Error During Distributed Load
	Testing Distributed Smalltalk for TCP
	Distributed Initialization on Windows for Workgroups
	Seeing Your Data Moving
	Role of the Activator
	Remote Object Pointer Dead After Packaging
	Logging Transcript Messages
	Tracing Run- Time Startup Problems
	Name Discrepancy Problem in Loading
	Sharing Class Instances Across Object Spaces
	Peer- to- Peer or Server
	Equivalent of a Threads Package
	Sending an Object as a Parameter to a Remote Object
	Sending an Object to a Remote Site While a Thread Executes
	Disconnecting Remote Images
	Dynamic Change Potential
	Retention of Instances
	TCP/ IP Errors at Startup
	Distributing Parts
	Tools to Manage Network Traffic
	SOM/ DSOM Implementation
	Fault Tolerance for Object Spaces
	Changing Name Server Entries at Run Time
	Long Startup Delay
	Packaging an Application
	Object Spaces from Different Libraries
	Message Tracing
	Handling TCP/ IP Addresses
	Making the Name Server Persist
	Capturing Information from a Walkback Window
	Copying Object Space to a Backup Processor
	Error: Client not Authorized for Server
	Error: Remote Object Has No ID
	Extending Server Classes
	Moving Parameters Between Client and Server Object Spaces
	Improving Performance Across Client- Server Object Spaces
	Partitioning Objects Across Object Spaces
	Transaction Management Provision
	Loading the Distributed Feature
	Packaging an Application
	Allowing Clients Run- Time Access
	Retaining Needed Classes and Methods
	Run- Time Startup Problems
	Finding Remote Object Space Pointers in Image
	Debugging a Client System
	Fault Tolerance
	Using TCP/ IP Port Numbers
	Remedy for a Time- Wasting Method
	Using Windows 95 As a Server
	TCP/ IP Local Name Server Setup
	Placement of Object Space Security Files
	DBCS Environments
	Unloading the Distributed Feature
	File Handle Limits on UNIX

	Chapter 7. Reports
	Reports Feature in Version 3 on AIX
	Win32s Errors with Reports Feature
	Iterator Field Break
	Sums Over Hidden Details
	Conditional Printing
	General Reports Questions
	Saving Printer Settings in reportPreview
	Report Writer Default Fonts
	Calculated Fields
	Field Breaks
	Packaging
	Using Scripts with Reports
	Using Multirow Query Results in Reports
	Changing the Color of an Iterator Header
	Reporting in an ASCII File for Later Printing
	Printing in the Report Owner¢ s Language
	Printing Underlined Words
	Counting an Unprinted Value
	Omit Printing of Certain Lines
	Speeding Report Printing
	Adding Fields to a Report Dynamically
	HP Printer
	Hierarchical Breaks
	Using Break Protocols
	coElement Role

	Chapter 8. SOM and DSOM
	Generating Classes with a SOM Prefix
	SOM Exception
	CORBA- Compliant ORBs
	Using DSOM Hangs the System
	Adding SOM Objects as VisualAge Parts
	Using DSOM Ends the VisualAge Process
	Environment Variable Setup for SOM
	Error: somFindClass failed for class Xxxxx
	SOM Support Feature
	SOM Methods with Inout Sequences
	SOM Objects
	ABT. SOM. 1017. e: #somFindClass Failed
	SOM Objects on OS/ 2 Desktop

	Chapter 9. Web Connection
	Retaining State between Requests
	Disabling a Button
	GIFs not Displayed
	Handling Pseudo- Pages
	Packaging Web Application
	HTML Links and Session Data
	URL Query String
	Session Data Lifetime
	Parts Usable with the Web
	GUI Differences
	Packaging AbtWebSamplesApp and AbtChatSampleApp Separately
	Unloading Web Connection Feature after Running WSI Servers
	Using DBCS Fonts on Windows Platforms
	Double- Byte Part Names

	Appendix A. Special Notices
	Appendix B. Related Publications
	International Technical Support Organization Publications
	Redbooks on CD- ROMs
	Other Publications

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	Glossary
	List of Abbreviations
	Index
	ITSO Redbook Evaluation

