
OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

User Manual
OMNeT++ version 4.0

Chapters
1 Introduction
2 Overview
3 The NED Language
4 Simple Modules
5 Messages
6 The Simulation Library
7 Building Simulation Programs
8 Configuring Simulations
9 Running Simulations
10 Network Graphics And Animation
11 Analyzing Simulation Results
12 Eventlog
13 Documenting NED and Messages
14 Parallel Distributed Simulation
15 Plug-in Extensions
16 Embedding the Simulation Kernel
17 Appendix: NED Reference
18 Appendix: NED Language Grammar
19 Appendix: NED XML Binding
20 Appendix: NED Functions
21 Appendix: Message Definitions Grammar
22 Appendix: Display String Tags
23 Appendix: Configuration Options
24 Appendix: Result File Formats
25 Appendix: Eventlog File Format

Table of Contents

 1 Introduction
 1.1 What is OMNeT++?
 1.2 Organization of this manual
 1.3 Credits

 2 Overview
 2.1 Modeling concepts
 2.1.1 Hierarchical modules
 2.1.2 Module types

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 2.1.3 Messages, gates, links
 2.1.4 Modeling of packet transmissions
 2.1.5 Parameters
 2.1.6 Topology description method
 2.2 Programming the algorithms
 2.3 Using OMNeT++
 2.3.1 Building and running simulations
 2.3.2 What is in the distribution

 3 The NED Language
 3.1 NED overview
 3.2 Warmup
 3.2.1 The network
 3.2.2 Introducing a channel
 3.2.3 The App, Routing and Queue simple modules
 3.2.4 The Node compound module
 3.2.5 Putting it together
 3.3 Simple modules
 3.4 Compound modules
 3.5 Channels
 3.6 Parameters
 3.7 Gates
 3.8 Submodules
 3.9 Connections
 3.10 Multiple connections
 3.10.1 Connection patterns
 3.11 Submodule type as parameter
 3.12 Properties (metadata annotations)
 3.13 Inheritance
 3.14 Packages

 4 Simple Modules
 4.1 Simulation concepts
 4.1.1 Discrete Event Simulation
 4.1.2 The event loop
 4.1.3 Simple modules in OMNeT++
 4.1.4 Events in OMNeT++
 4.1.5 Simulation time
 4.1.6 FES implementation
 4.2 Defining simple module types
 4.2.1 Overview
 4.2.2 Constructor
 4.2.3 Constructor and destructor vs initialize() and finish()
 4.2.4 An example
 4.2.5 Using global variables
 4.3 Adding functionality to cSimpleModule
 4.3.1 handleMessage()
 4.3.2 activity()
 4.3.3 initialize() and finish()
 4.3.4 handleParameterChange()
 4.3.5 Reusing module code via subclassing
 4.4 Accessing module parameters
 4.4.1 Volatile and non-volatile parameters

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 4.4.2 Changing a parameter's value
 4.4.3 Further cPar methods
 4.4.4 Emulating parameter arrays
 4.5 Accessing gates and connections
 4.5.1 Gate objects
 4.5.2 Connections
 4.5.3 The connection's channel
 4.6 Sending and receiving messages
 4.6.1 Sending messages
 4.6.2 Packet transmissions
 4.6.3 Delay, data rate, bit error rate, packet error rate
 4.6.4 Broadcasts and retransmissions
 4.6.5 Delayed sending
 4.6.6 Direct message sending
 4.6.7 Receiving messages
 4.6.8 The wait() function
 4.6.9 Modeling events using self-messages
 4.7 Stopping the simulation
 4.7.1 Normal termination
 4.7.2 Raising errors
 4.8 Finite State Machines in OMNeT++
 4.9 Walking the module hierarchy
 4.10 Direct method calls between modules
 4.11 Dynamic module creation
 4.11.1 When do you need dynamic module creation
 4.11.2 Overview
 4.11.3 Creating modules
 4.11.4 Deleting modules
 4.11.5 Module deletion and finish()
 4.11.6 Creating connections
 4.11.7 Removing connections

 5 Messages
 5.1 Messages and packets
 5.1.1 The cMessage class
 5.1.2 Self-messages
 5.1.3 Modelling packets
 5.1.4 Encapsulation
 5.1.5 Attaching parameters and objects
 5.2 Message definitions
 5.2.1 Introduction
 5.2.2 Declaring enums
 5.2.3 Message declarations
 5.2.4 Inheritance, composition
 5.2.5 Using existing C++ types
 5.2.6 Customizing the generated class
 5.2.7 Using STL in message classes
 5.2.8 Summary
 5.2.9 What else is there in the generated code?

 6 The Simulation Library
 6.1 Class library conventions
 6.1.1 Base class

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 6.1.2 Setting and getting attributes
 6.1.3 getClassName()
 6.1.4 Name attribute
 6.1.5 getFullName() and getFullPath()
 6.1.6 Copying and duplicating objects
 6.1.7 Iterators
 6.1.8 Error handling
 6.2 Logging from modules
 6.3 Simulation time conversion
 6.4 Generating random numbers
 6.4.1 Random number generators
 6.4.2 Random number streams, RNG mapping
 6.4.3 Accessing the RNGs
 6.4.4 Random variates
 6.4.5 Random numbers from histograms
 6.5 Container classes
 6.5.1 Queue class: cQueue
 6.5.2 Expandable array: cArray
 6.6 Routing support: cTopology
 6.6.1 Overview
 6.6.2 Basic usage
 6.6.3 Shortest paths
 6.7 Statistics and distribution estimation
 6.7.1 cStatistic and descendants
 6.7.2 Distribution estimation
 6.7.3 The k-split algorithm
 6.7.4 Transient detection and result accuracy
 6.8 Recording simulation results
 6.8.1 Output vectors: cOutVector
 6.8.2 Output scalars
 6.8.3 Precision
 6.9 Watches and snapshots
 6.9.1 Basic watches
 6.9.2 Read-write watches
 6.9.3 Structured watches
 6.9.4 STL watches
 6.9.5 Snapshots
 6.9.6 Getting coroutine stack usage
 6.10 Deriving new classes
 6.10.1 cOwnedObject or not?
 6.10.2 cOwnedObject virtual methods
 6.10.3 Class registration
 6.10.4 Details
 6.11 Object ownership management
 6.11.1 The ownership tree
 6.11.2 Managing ownership

 7 Building Simulation Programs
 7.1 Overview
 7.2 Using gcc
 7.2.1 The opp_makemake tool
 7.2.2 Basic use
 7.2.3 Debug and release builds

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 7.2.4 Using external C/C++ libraries
 7.2.5 Building directory trees
 7.2.6 Automatic include dirs
 7.2.7 Dependency handling
 7.2.8 Out-of-directory build
 7.2.9 Building shared and static libraries
 7.2.10 Recursive builds
 7.2.11 Customizing the Makefile
 7.2.12 Projects with multiple source trees
 7.2.13 A multi-directory example

 8 Configuring Simulations
 8.1 Configuring simulations
 8.2 The configuration file: omnetpp.ini
 8.2.1 An example
 8.2.2 File syntax
 8.2.3 File inclusion
 8.3 Sections
 8.3.1 The [General] section
 8.3.2 Named configurations
 8.3.3 Section inheritance
 8.4 Setting module parameters
 8.4.1 Using wildcard patterns
 8.4.2 Using the default values
 8.5 Parameter studies
 8.5.1 Basic use
 8.5.2 Named iteration variables
 8.5.3 Repeating runs with different seeds
 8.6 Parameter Studies and Result Analysis
 8.6.1 Output vectors and scalars
 8.6.2 Configuring output vectors
 8.6.3 Saving parameters as scalars
 8.6.4 Experiment-Measurement-Replication
 8.7 Configuring the random number generators
 8.7.1 Number of RNGs
 8.7.2 RNG choice
 8.7.3 RNG mapping
 8.7.4 Automatic seed selection
 8.7.5 Manual seed configuration

 9 Running Simulations
 9.1 Introduction
 9.1.1 Running a simulation executable
 9.1.2 Running a shared library
 9.1.3 Controlling the run
 9.2 Cmdenv: the command-line interface
 9.2.1 Example run
 9.2.2 Command-line switches
 9.2.3 Cmdenv ini file options
 9.2.4 Interpreting Cmdenv output
 9.3 Tkenv: the graphical user interface
 9.3.1 Command-line switches
 9.4 Batch execution

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 9.4.1 Using Cmdenv
 9.4.2 Using shell scripts
 9.4.3 Using opp_runall
 9.5 Akaroa support: Multiple Replications in Parallel
 9.5.1 Introduction
 9.5.2 What is Akaroa
 9.5.3 Using Akaroa with OMNeT++
 9.6 Troubleshooting
 9.6.1 Unrecognized configuration option
 9.6.2 Stack problems
 9.6.3 Memory leaks and crashes
 9.6.4 Simulation executes slowly

 10 Network Graphics And Animation
 10.1 Display strings
 10.1.1 Display string syntax
 10.1.2 Display string placement
 10.1.3 Display string inheritance
 10.1.4 Display string tags used in submodule context
 10.1.5 Display string tags used in module background context
 10.1.6 Connection display strings
 10.1.7 Message display strings
 10.2 Parameter substitution
 10.3 Colors
 10.3.1 Color names
 10.3.2 Icon colorization
 10.4 The icons
 10.4.1 The image path
 10.4.2 Categorized icons
 10.4.3 Icon size
 10.5 Layouting
 10.6 Enhancing animation
 10.6.1 Changing display strings at runtime
 10.6.2 Bubbles

 11 Analyzing Simulation Results
 11.1 Result files
 11.1.1 Results
 11.1.2 Output vectors
 11.1.3 Format of output vector files
 11.1.4 Scalar results
 11.2 The Analysis Tool in the Simulation IDE
 11.3 Scave Tool
 11.3.1 Filter command
 11.3.2 Index command
 11.3.3 Summary command
 11.4 Alternative statistical analysis and plotting tools
 11.4.1 Spreadsheet programs
 11.4.2 GNU R
 11.4.3 MATLAB or Octave
 11.4.4 NumPy and MatPlotLib
 11.4.5 ROOT
 11.4.6 Gnuplot

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 11.4.7 Grace

 12 Eventlog
 12.1 Introduction
 12.2 Configuration
 12.2.1 File Name
 12.2.2 Recording Intervals
 12.2.3 Recording Modules
 12.2.4 Recording Message Data
 12.3 Eventlog Tool
 12.3.1 Filter
 12.3.2 Echo

 13 Documenting NED and Messages
 13.1 Overview
 13.2 Documentation comments
 13.2.1 Private comments
 13.2.2 More on comment placement
 13.3 Text layout and formatting
 13.3.1 Paragraphs and lists
 13.3.2 Special tags
 13.3.3 Text formatting using HTML
 13.3.4 Escaping HTML tags
 13.4 Customizing and adding pages
 13.4.1 Adding a custom title page
 13.4.2 Adding extra pages
 13.4.3 Incorporating externally created pages

 14 Parallel Distributed Simulation
 14.1 Introduction to Parallel Discrete Event Simulation
 14.2 Assessing available parallelism in a simulation model
 14.3 Parallel distributed simulation support in OMNeT++
 14.3.1 Overview
 14.3.2 Parallel Simulation Example
 14.3.3 Placeholder modules, proxy gates
 14.3.4 Configuration
 14.3.5 Design of PDES Support in OMNeT++

 15 Plug-in Extensions
 15.1 Overview
 15.2 Plug-in descriptions
 15.2.1 Defining a new random number generator
 15.2.2 Defining a new scheduler
 15.2.3 Defining a new configuration provider
 15.2.4 Defining a new output scalar manager
 15.2.5 Defining a new output vector manager
 15.2.6 Defining a new snapshot manager
 15.3 Accessing the configuration
 15.3.1 Defining new configuration options
 15.3.2 Reading values from the configuration
 15.4 Implementing a new user interface

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 16 Embedding the Simulation Kernel
 16.1 Architecture
 16.2 Embedding the OMNeT++ simulation kernel
 16.2.1 The main() function
 16.2.2 The simulate() function
 16.2.3 Providing an environment object
 16.2.4 Providing a configuration object
 16.2.5 Loading NED files
 16.2.6 How to eliminate NED files
 16.2.7 Assigning module parameters
 16.2.8 Extracting statistics from the model
 16.2.9 The simulation loop
 16.2.10 Multiple, coexisting simulations
 16.2.11 Installing a custom scheduler
 16.2.12 Multi-threaded programs

 17 Appendix: NED Reference
 17.1 Syntax
 17.1.1 NED file extension
 17.1.2 NED file encoding
 17.1.3 Reserved words
 17.1.4 Identifiers
 17.1.5 Case sensitivity
 17.1.6 Literals
 17.1.7 Comments
 17.1.8 Grammar
 17.2 Built-in definitions
 17.3 Packages
 17.3.1 Package declaration
 17.3.2 Directory structure, package.ned
 17.4 Components
 17.4.1 Simple modules
 17.4.2 Compound modules
 17.4.3 Networks
 17.4.4 Channels
 17.4.5 Module interfaces
 17.4.6 Channel interfaces
 17.4.7 Resolving the implementation C++ class
 17.4.8 Properties
 17.4.9 Parameters
 17.4.10 Gates
 17.4.11 Submodules
 17.4.12 Connections
 17.4.13 Inner types
 17.4.14 Name uniqueness
 17.4.15 Type name resolution
 17.4.16 Implementing an interface
 17.4.17 Inheritance
 17.4.18 Network build order
 17.5 Expressions
 17.5.1 Operators
 17.5.2 Referencing parameters and loop variables
 17.5.3 The index operator

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 17.5.4 The sizeof() operator
 17.5.5 The xmldoc() operator
 17.5.6 Functions
 17.5.7 Units of measurement

 18 Appendix: NED Language Grammar

 19 Appendix: NED XML Binding

 20 Appendix: NED Functions

 21 Appendix: Message Definitions Grammar

 22 Appendix: Display String Tags
 22.1 Module and connection display string tags
 22.2 Message display string tags

 23 Appendix: Configuration Options
 23.1 Configuration Options
 23.2 Predefined Configuration Variables

 24 Appendix: Result File Formats
 24.1 Version
 24.2 Run Declaration
 24.3 Attributes
 24.4 Module Parameters
 24.5 Scalar Data
 24.6 Vector Declaration
 24.7 Vector Data
 24.8 Index Header
 24.9 Index Data
 24.10 Statistics Object
 24.11 Field
 24.12 Histogram Bin

 25 Appendix: Eventlog File Format

1 Introduction

1.1 What is OMNeT++?

OMNeT++ is an object-oriented modular discrete event network simulation framework. It has a generic architecture,
so it can be (and has been) used in various problem domains:

modeling of wired and wireless communication networks
protocol modeling
modeling of queueing networks
modeling of multiprocessors and other distributed hardware systems

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

validating of hardware architectures
evaluating performance aspects of complex software systems
and in general, it can be used for the modeling and simulation of any system where the discrete event
approach is suitable, and which can be conveniently mapped into entities communicating by exchanging
messages.

OMNeT++ itself is not a simulator of anything concrete, but it rather provides infrastructure and tools for writing
simulations. One of the fundamental ingredients of this infrastructure is a component architecture for simulation
models. Models are assembled from reusable components termed modules. Well-written modules are truly
reusable, and can be combined in various ways like LEGO blocks.

Modules can be connected with each other via gates (other systems would call them ports), and combined to form
compound modules. The depth of module nesting is not limited. Modules communicate through message passing,
where messages may carry arbitrary data structures. Modules can may messages along predefined paths via gates
and connections, or directly to their destination; the latter is useful for wireless simulations, for example. Modules
may have parameters, which can be used to customize module behaviour, and/or to parameterize the model's
topology. Modules at the lowest level of the module hierarchy are called simple modules, and they encapsulate
behaviour. Simple modules are programmed in C++, and make use of the simulation library.

OMNeT++ simulations can be run under various user interfaces. Graphical, animating user interfaces are highly
useful for demonstration and debugging purposes, and command-line user interfaces are best for batch execution.

The simulator as well as user interfaces and tools are highly portable. They are tested on the most common
operating systems (Linux, Mac OS/X, Windows), and they can be compiled out of the box or after trivial
modifications on most Unix-like operating systems.

OMNeT++ also supports parallel distributed simulation. OMNeT++ can use several mechanisms for communication
between partitions of a parallel distributed simulation, for example MPI or named pipes. The parallel simulation
algorithm can easily be extended or new ones plugged in. Models do not need any special instrumentation to be
run in parallel -- it is just a matter of configuration. OMNeT++ can even be used for classroom presentation of
parallel simulation algorithms, because simulations can be run in parallel even under the GUI which provides
detailed feedback on what is going on.

OMNEST is the commercially supported version of OMNeT++. OMNeT++ is only free for academic and non-profit
use -- for commercial purposes one needs to obtain OMNEST licenses from Simulcraft Inc.

1.2 Organization of this manual

The manual is organized the following way:

The chapters [1] and [2] contain introductory material
The second group of chapters, [3], [4] and [6] are the programming guide. They present the NED language,
the simulation concepts and their implementation in OMNeT++, explain how to write simple modules and
describe the class library.
The chapters [10] and [13] elaborate the topic further, by explaining how one can customize the network
graphics and how to write NED source code comments from which documentation can be generated.
The following chapters, [7], [8], [9] and [11] deal with practical issues like building and running simulations
and analyzing results, and present the tools OMNeT++ provides to support these tasks.
Chapter [14] is devoted to the support of distributed execution.
The chapters [15] and [16] explain the architecture and internals of OMNeT++, as well as ways to extend it
and embed it into larger applications.
The appendices provide a reference of the NED language, configuration options, file formats and other
details.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

1.3 Credits

OMNeT++ has been developed by András Varga (andras@omnetpp.org, andras.varga@omnest.com).

In the early stage of the project, several people have contributed to OMNeT++. Although most contributed code is
no longer part of the OMNeT++, nevertheless I'd like to acknowledge the work of the following people. First of all,
I'd like thank Dr Gy?rgy Pongor (pongor@hit.bme.hu), my advisor at the Technical University of Budapest who
initiated the OMNeT++ as a student project.

My fellow student ákos Kun started to program the first NED parser in 1992-93, but it was abandoned after a few
months. The first version of nedc was finally developed in summer 1995, by three exchange students from TU Delft:
Jan Heijmans, Alex Paalvast and Robert van der Leij. nedc was first called JAR after their initials until it got
renamed to nedc. nedc was further developed and refactored several times until it finally retired and got replaced
by nedtool in OMNeT++ 3.0. The second group of Delft exchange students (Maurits André, George van Montfort,
Gerard van de Weerd) arrived in fall 1995. They performed some testing of the simulation library, and wrote some
example simulations, for example the original version of Token Ring, and simulation of the NIM game which
survived until OMNeT++ 3.0. These student exchanges were organized by Dr. Leon Rothkranz at TU Delft, and
Gy?rgy Pongor at TU Budapest.

The diploma thesis of Zoltán Vass (spring 1996) was to prepare OMNeT++ for parallel execution over PVM to
OMNeT++. This code has been replaced with the new Parallel Simulation Architecture in OMNeT++ 3.0. Gábor
Lencse (lencse@hit.bme.hu) was also interested in parallel simulation, namely a method called Statistical
Synchronization (SSM). He implemented the FDDI model (practically unchanged until now), and added some
extensions into NED for SSM. These extensions have been removed since then (OMNeT++ 3.0 does parallel
execution on different principles).

The P2 algorithm and the original implementation of the k-split algorithm was programmed in fall 1996 by Babak
Fakhamzadeh from TU Delft. k-split was later reimplemented by András.

Several bugfixes and valuable suggestions for improvements came from the user community of OMNeT++. It would
be impossible to mention everyone here, and the list is constantly growing -- instead, the README and ChangeLog
files contain acknowledgements.

Between summer 2001 and fall 2004, the OMNeT++ CVS was hosted at the University of Karlsruhe. Credit for
setting up and maintaining the CVS server goes to Ulrich Kaage. Ulrich can also be credited with converting the
User Manual from Microsoft Word format to LaTeX, which was a huge undertaking and great help.

2 Overview

2.1 Modeling concepts

An OMNeT++ model consists of modules that communicate with message passing. The active modules are termed
simple modules; they are written in C++, using the simulation class library. Simple modules can be grouped into
compound modules and so forth; the number of hierarchy levels is not limited. The whole model, called network in
OMNeT++, is itself a compound module. Messages can be sent either via connections that span between modules
or directly to other modules. The concept of simple and compound modules is similar to DEVS atomic and coupled
models. In Fig. below, boxes represent simple modules (gray background) and compound modules. Arrows
connecting small boxes represent connections and gates.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Figure: Simple and compound modules

Modules communicate with messages which -- in addition to usual attributes such as timestamp -- may contain
arbitrary data. Simple modules typically send messages via gates, but it is also possible to send them directly to
their destination modules. Gates are the input and output interfaces of modules: messages are sent out through
output gates and arrive through input gates. An input and an output gate can be linked with a connection.
Connections are created within a single level of module hierarchy: within a compound module, corresponding gates
of two submodules, or a gate of one submodule and a gate of the compound module can be connected.
Connections spanning across hierarchy levels are not permitted, as it would hinder model reuse. Due to the
hierarchical structure of the model, messages typically travel through a chain of connections, to start and arrive in
simple modules. Compound modules act as 'cardboard boxes' in the model, transparently relaying messages
between their inside and the outside world. Parameters such as propagation delay, data rate and bit error rate, can
be assigned to connections. One can also define connection types with specific properties (termed channels) and
reuse them in several places. Modules can have parameters. Parameters are mainly used to pass configuration
data to simple modules, and to help define model topology. Parameters may take string, numeric or boolean
values. Because parameters are represented as objects in the program, parameters -- in addition to holding
constants -- may transparently act as sources of random numbers with the actual distributions provided with the
model configuration, they may interactively prompt the user for the value, and they might also hold expressions
referencing other parameters. Compound modules may pass parameters or expressions of parameters to their
submodules.

OMNeT++ provides efficient tools for the user to describe the structure of the actual system. Some of the main
features are:

hierarchically nested modules
modules are instances of module types
modules communicate with messages through channels
flexible module parameters
topology description language

2.1.1 Hierarchical modules

An OMNeT++ model consists of hierarchically nested modules, which communicate by passing messages to each
another. OMNeT++ models are often referred to as networks. The top level module is the system module. The
system module contains submodules, which can also contain submodules themselves (Fig. below). The depth of
module nesting is not limited; this allows the user to reflect the logical structure of the actual system in the model
structure.

Model structure is described in OMNeT++'s NED language.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Modules that contain submodules are termed compound modules, as opposed simple modules which are at the
lowest level of the module hierarchy. Simple modules contain the algorithms in the model. The user implements the
simple modules in C++, using the OMNeT++ simulation class library.

2.1.2 Module types

Both simple and compound modules are instances of module types. While describing the model, the user defines
module types; instances of these module types serve as components for more complex module types. Finally, the
user creates the system module as an instance of a previously defined module type; all modules of the network are
instantiated as submodules and sub-submodules of the system module.

When a module type is used as a building block, there is no distinction whether it is a simple or a compound
module. This allows the user to split a simple module into several simple modules embedded into a compound
module, or vica versa, aggregate the functionality of a compound module into a single simple module, without
affecting existing users of the module type.

Module types can be stored in files separately from the place of their actual usage. This means that the user can
group existing module types and create component libraries. This feature will be discussed later, in Chapter [9].

2.1.3 Messages, gates, links

Modules communicate by exchanging messages. In an actual simulation, messages can represent frames or
packets in a computer network, jobs or customers in a queuing network or other types of mobile entities. Messages
can contain arbitrarily complex data structures. Simple modules can send messages either directly to their
destination or along a predefined path, through gates and connections.

The ``local simulation time'' of a module advances when the module receives a message. The message can arrive
from another module or from the same module (self-messages are used to implement timers).

Gates are the input and output interfaces of modules; messages are sent out through output gates and arrive
through input gates.

Each connection (also called link) is created within a single level of the module hierarchy: within a compound
module, one can connect the corresponding gates of two submodules, or a gate of one submodule and a gate of
the compound module (Fig. below).

Due to the hierarchical structure of the model, messages typically travel through a series of connections, to start
and arrive in simple modules. Such series of connections that go from simple module to simple module are called
routes. Compound modules act as `cardboard boxes' in the model, transparently relaying messages between their
inside and the outside world.

2.1.4 Modeling of packet transmissions

Connections can be assigned three parameters, which facilitate the modeling of communication networks, but can
be useful in other models too: propagation delay, bit error rate and data rate, all three being optional. One can
specify link parameters individually for each connection, or define link types and use them throughout the whole
model.

Propagation delay is the amount of time the arrival of the message is delayed by when it travels through the
channel.

Bit error rate specifies the probability that a bit is incorrectly transmitted, and allows for simple noisy channel
modelling.

Data rate is specified in bits/second, and it is used for calculating transmission time of a packet.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

When data rates are in use, the sending of the message in the model corresponds to the transmission of the first
bit, and the arrival of the message corresponds to the reception of the last bit. This model is not always applicable,
for example protocols like Token Ring and FDDI do not wait for the frame to arrive in its entirety, but rather start
repeating its first bits soon after they arrive -- in other words, frames ``flow through'' the stations, being delayed only
a few bits. If you want to model such networks, it is possible to change this default behaviour and deliver the
message to the module when the first bit is received.

2.1.5 Parameters

Modules can have parameters. Parameters can be assigned either in the NED files or the configuration file
omnetpp.ini.

Parameters may be used to customize simple module behaviour, and for parameterizing the model topology.

Parameters can take string, numeric or boolean values, or can contain XML data trees. Numeric values include
expressions using other parameters and calling C functions, random variables from different distributions, and
values input interactively by the user.

Numeric-valued parameters can be used to construct topologies in a flexible way. Within a compound module,
parameters can define the number of submodules, number of gates, and the way the internal connections are
made.

2.1.6 Topology description method

The user defines the structure of the model in NED language descriptions (Network Description).The NED language
will be discussed in detail in Chapter [3].

2.2 Programming the algorithms

The simple modules of a model contain algorithms as C++ functions. The full flexibility and power of the
programming language can be used, supported by the OMNeT++ simulation class library. The simulation
programmer can choose between event-driven and process-style description, and can freely use object-oriented
concepts (inheritance, polymorphism etc) and design patterns to extend the functionality of the simulator.

Simulation objects (messages, modules, queues etc.) are represented by C++ classes. They have been designed
to work together efficiently, creating a powerful simulation programming framework. The following classes are part
of the simulation class library:

modules, gates, connections etc.
parameters
messages
container classes (e.g. queue, array)
data collection classes
statistic and distribution estimation classes (histograms, P2 algorithm for calculating quantiles etc.)
transient detection and result accuracy detection classes

The classes are also specially instrumented, allowing one to traverse objects of a running simulation and display
information about them such as name, class name, state variables or contents. This feature has made it possible to
create a simulation GUI where all internals of the simulation are visible.

2.3 Using OMNeT++

2.3.1 Building and running simulations

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

This section provides insight into working with OMNeT++ in practice: Issues such as model files, compiling and
running simulations are discussed.

An OMNeT++ model consists of the following parts:

NED language topology description(s) (.ned files) which describe the module structure with parameters,
gates etc. NED files can be written using any text editor, but the OMNeT++ IDE provides excellent support for
two-way graphical and text editing.
Message definitions (.msg files). You can define various message types and add data fields to them.
OMNeT++ will translate message definitions into full-fledged C++ classes.
Simple modules sources. They are C++ files, with .h/.cc suffix.

The simulation system provides the following components:

Simulation kernel. This contains the code that manages the simulation and the simulation class library. It is
written in C++, compiled into a shared or static library.
User interfaces. OMNeT++ user interfaces are used in simulation execution, to facilitate debugging,
demonstration, or batch execution of simulations. They are written in C++, compiled into libraries.

Simulation programs are built from the above components. First, .msg files are translated into C++ code using the
opp_msgc. program. Then all C++ sources are compiled, and linked with the simulation kernel and a user interface
library to form a simulation executable or shared library. NED files are loaded dynamically in their original text forms
when the simulation program starts.

Running the simulation and analyzing the results

The simulation may be compiled as a standalone program executable, thus it can be run on other machines without
OMNeT++ being present or it can be created as a shared library. In this case the OMNeT++ shared libraries must
be present on that system. When the program is started, first it reads all NED files containing your model topology,
then it reads a configuration file (usually called omnetpp.ini). This file contains settings that control how the
simulation is executed, values for model parameters, etc. The configuration file can also prescribe several
simulation runs; in the simplest case, they will be executed by the simulation program one after another.

The output of the simulation is written into data files: output vector files, output scalar files , and possibly the user's
own output files. OMNeT++ contains an Integrated Development Environment that provides rich environment for
analyzing these files. It is not expected that someone will process the result files using OMNeT++ alone: output files
are text files in a format which can be read into math packages like Matlab or Octave, or imported into
spreadsheets like OpenOffice Calc, Gnumeric or MS Excel (some preprocessing using sed, awk or perl might be
required, this will be discussed later). All these external programs provide rich functionality for statistical analysis
and visualization, and it is outside the scope of OMNeT++ to duplicate their efforts. This manual briefly describes
some data plotting programs and how to use them with OMNeT++.

Output scalar files can be visualized with the OMNeT++ IDE too. It can draw bar charts, x-y plots (e.g. throughput
vs offered load), or export data via the clipboard for more detailed analysis into spreadsheets and other programs.

User interfaces

The primary purpose of user interfaces is to make the internals of the model visible to the user, to control simulation
execution, and possibly allow the user to intervene by changing variables/objects inside the model. This is very
important in the development/debugging phase of the simulation project. Just as important, a hands-on experience
allows the user to get a `feel' of the model's behaviour. The graphical user interface can also be used to
demonstrate a model's operation.

The same simulation model can be executed with different user interfaces, without any change in the model files
themselves. The user would test and debug the simulation with a powerful graphical user interface, and finally run it
with a simple and fast user interface that supports batch execution.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Component libraries

Module types can be stored in files separate from the place of their actual use. This enables the user to group
existing module types and create component libraries.

Universal standalone simulation programs

A simulation executable can store several independent models that use the same set of simple modules. The user
can specify in the configuration file which model is to be run. This allows one to build one large executable that
contains several simulation models, and distribute it as a standalone simulation tool. The flexibility of the topology
description language also supports this approach.

2.3.2 What is in the distribution

If you installed the source distribution, the omnetpp directory on your system should contain the following
subdirectories. (If you installed a precompiled distribution, some of the directories may be missing, or there might
be additional directories, e.g. containing software bundled with OMNeT++.)

The simulation system itself:

 omnetpp/ OMNeT++ root directory
 bin/ OMNeT++ executables
 include/ header files for simulation models
 lib/ library files
 images/ icons and backgrounds for network graphics
 doc/ manuals, readme files, license, APIs, etc.
 manual/ manual in HTML
 migration/ how to migrate your models from 3.x to 4.0 version
 ned2/ DTD definition of the XML syntax for NED files
 tictoc-tutorial/ introduction into using OMNeT++
 api/ API reference in HTML
 nedxml-api/ API reference for the NEDXML library
 parsim-api/ API reference for the parallel simulation library
 migrate/ tools to help model migration from 3.x to 4.0 version
 src/ OMNeT++ sources
 sim/ simulation kernel
 parsim/ files for distributed execution
 netbuilder/files for dynamically reading NED files
 envir/ common code for user interfaces
 cmdenv/ command-line user interface
 tkenv/ Tcl/Tk-based user interface
 nedxml/ NEDXML library, nedtool, opp_msgc
 scave/ result analysis library
 eventlog/ eventlog processing library
 layout/ graph layouter for network graphics
 common/ common library
 utils/ opp_makemake, opp_test, etc.
 test/ regression test suite
 core/ tests for the simulation library
 anim/ tests for graphics and animation
 dist/ tests for the built-in distributions
 makemake/ tests for opp_makemake
 ...

The Eclipse-based Simulation IDE is in the ide directory.

 ide/ Simulation IDE
 features/ Eclipse feature definitions
 plugins/ IDE plugins (extensions to the IDE can be dropped here)
 ...

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

The Windows version of OMNeT++ contains a redistribution of the MinGW gcc compiler, together with a copy of
MSYS that provides Unix tools commonly used in Makefiles. The MSYS directory also contains various 3rd party
open-source libraries needed to compile and run OMNeT++.

 mingw/ MinGW gcc port
 msys/ MSYS plus libraries

Sample simulations are in the samples directory.

 samples/ directories for sample simulations
 aloha/ models the Aloha protocol
 cqn/ Closed Queueing Network
 ...

The contrib directory contains material from the OMNeT++ community.

 contrib/ directory for contributed material
 octave/ Octave scripts for result processing
 emacs/ NED syntax highlight for Emacs
 ...

3 The NED Language

3.1 NED overview

The user describes the structure of a simulation model in the NED language. NED stands for Network Description.
NED lets the user declare simple modules, and connect and assemble them into compound modules. The user can
label some compound modules as networks, self-contained simulation models. Channels are another component
type, whose instances can also be used in compound modules.

The NED language has several features which let it scale well to large projects:

[Hierarchical] The traditional way to deal with complexity is via introducing hierarchies. In OMNeT++, any module
which would be too complex as a single entity can be broken down into smaller modules, and used as a compound
module.

[Component-Based] Simple modules and compound modules are inherently reusable, which not only reduces
code copying, but more importantly, allows component libraries (like the INET Framework, MiXiM, Castalia, etc.) to
exist.

[Interfaces] Module and channel interfaces can be used as a placeholder where normally a module or channel
type would be used, and the concrete module or channel type is determined at network setup time by a parameter.
Concrete module types have to ``implement'' the interface they can substitute. For example, given a compound
module type named MobileHost contains a mobility submodule of the type IMobility (where IMobility is
a module interface), the actual type of mobility may be chosen from the module types that implemented
IMobility (RandomWalkMobility, TurtleMobility, etc.)

[Inheritance] Modules and channels can be subclassed. Derived modules and channels may add new
parameters, gates, and (in the case of compound modules) new submodules and connections. They may set
existing parameters to a specific value, and also set the gate size of a gate vector. This makes it possible, for
example, to take a GenericTCPClientApp module and derive an FTPClientApp from it by setting certain
parameters to a fixed value; or to derive a WebClientHost compound module from a BaseHost compound

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

module by adding a WebClientApp submodule and connecting it to the inherited TCP submodule.

[Packages] The NED language features a Java-like package structure, to reduce the risk of name clashes
between different models. NEDPATH (similar to Java's CLASSPATH) was also introduced to make it easier to specify
dependencies among simulation models.

[Inner types] Channel types and module types used locally by a compound module can be defined within the
compound module, in order to reduce namespace pollution.

[Metadata annotations] It is possible to annotate module or channel types, parameters, gates and submodules by
adding properties. Metadata are not used by the simulation kernel directly, but they can carry extra information for
various tools, the runtime environment, or even for other modules in the model. For example, a module's graphical
representation (icon, etc) or the prompt string and measurement unit (milliwatt, etc) of a parameter are already
specified as metadata annotations.

NOTE
The NED language has changed significantly in the 4.0 version. Inheritance, interfaces, packages, inner
types, metadata annotations, inout gates were all added in the 4.0 release, together with many other features.
Since the basic syntax has changed as well, old NED files need to be converted to the new syntax. There are
automated tools for this purpose, so manual editing is only needed to take advantage of new NED features.

The NED language has an equivalent tree representation which can be serialized to XML; that is, NED files can be
converted to XML and back without loss of data, including comments. This lowers the barrier for programmatic
manipulation of NED files, for example extracting information, refactoring and transforming NED, generating NED
from information stored in other system like SQL databases, and so on.

NOTE
This chapter is going to explain the NED language gradually, via examples. If you are looking for a more
formal and concise treatment, see Appendix [18].

3.2 Warmup

In this section we introduce the NED language via a complete and reasonably real-life example: a communication
network.

Our hypothetical network consists of nodes. One each node there's an application running which generates packets
at random intervals. The nodes are routers themselves as well. We assume that the application uses datagram-
based communication, so that we can leave out the transport layer from the model.

3.2.1 The network

First we'll define the network, then in the next sections we'll continue to define the network nodes.

Let the network topology be as in Figure below.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Figure: The network

The corresponding NED description would look like this:

//
// A network
//
network Network
{
 submodules:
 node1: Node;
 node2: Node;
 node3: Node;
 ...
 connections:
 node1.port++ <--> {datarate=100Mbps;} <--> node2.port++;
 node2.port++ <--> {datarate=100Mbps;} <--> node4.port++;
 node4.port++ <--> {datarate=100Mbps;} <--> node6.port++;
 ...
}

The above code defines a network type named Network. Note that the NED language uses the familiar curly brace
syntax, and ``// '' to denote comments.

NOTE
Comments in NED not only make the source code more readable, but in the OMNeT++ IDE they also get
displayed at various places (tooltips, content assist, etc), and become part of the documentation extracted
from the NED files. The NED documentation system, not unlike JavaDoc or Doxygen, will be described in
Chapter [13].

The network contains several nodes, named node1, node2, etc. from the NED module type Node. We'll define
Node in the next sections.

The second half of the declaration defines how the nodes are to be connected. The double arrow means
bidirectional connection. The connection points of modules are called gates, and the port++ notation adds a new
gate to the port[] gate vector. Gates and connections will be covered in more detail in sections [3.7] and [3.9].
Nodes are connected with a channel that has a data rate of 100Mbps.

NOTE

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

In many other systems, the equivalent of OMNeT++ gates are called ports. We have retained the term gate
to reduce collisions with other uses of the otherwise overloaded word port: router port, TCP port, I/O port, etc.

The above code would be placed into a file named Net6.ned. It is a convention to put every NED definition into its
own file and to name the file accordingly, but it is not mandatory to do so.

One can define any number of networks in the NED files, and for every simulation the user has to specify which
network he wants to set up. The usual way of specifying the network is to put the network option into the
configuration (by default the omnetpp.ini file):

[General]
network = Network

3.2.2 Introducing a channel

It is cumbersome to have to repeat the data rate for every connection. Luckily, NED provides a convenient solution:
one can create a new channel type that encapsulates the data rate setting, and this channel type can be defined
inside the network so that it does not litter the global namespace.

The improved network will look like this:

//
// A Network
//
network Network
{
 types:
 channel C extends ned.DatarateChannel {
 datarate = 100Mbps;
 }
 submodules:
 node1: Node;
 node2: Node;
 node3: Node;
 ...
 connections:
 node1.port++ <--> C <--> node2.port++;
 node2.port++ <--> C <--> node4.port++;
 node4.port++ <--> C <--> node6.port++;
 ...
}

Later sections will cover the concepts used (inner types, channels, the DatarateChannel built-in type,
inheritance) in details.

3.2.3 The App, Routing and Queue simple modules

Simple modules are the basic building blocks for other (compound) modules. All active behavior in the model is
encapsulated in simple modules. Behavior is defined with a C++ class; NED files only declare the externally visible
interface of the module (gates, parameters).

In our example, we could define Node as a simple module. However, its functionality is quite complex (traffic
generation, routing, etc), so it is better to implement it with several smaller simple module types which we are going
to assemble into a compound module. We'll have one simple module for traffic generation (App), one for routing
(Routing), and one for queueing up packets to be sent out (Queue). For brevity, we omit the bodies of the latter
two in the code below.

simple App
{

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 parameters:
 int destAddress;
 ...
 @display("i=block/browser");
 gates:
 input in;
 output out;
}

simple Routing
{
 ...
}

simple Queue
{
 ...
}

By convention, the above simple module declarations go into the App.ned, Routing.ned and Queue.ned files.

NOTE
Note that module type names (App, Routing, Queue) begin with a capital letter, and parameter and gate
names begin with lowercase -- this is the recommended naming convention. Capitalization matters because
the language is case sensitive.

Let us see the first simple module type declaration. App has a parameter called destAddress (others have been
omitted for now), and two gates named out and in for sending and receiving application packets.

The argument of @display() is called a display string, and it defines the rendering of the module in graphical
environments; "i=..." defines the default icon.

Generally, @-words like @display are called properties in NED, and they are used to annotate various objects with
metadata. Properties can be attached to files, modules, parameters, gates, connections, and other objects, and
parameter values have a very flexible syntax.

3.2.4 The Node compound module

Now we can assemble App, Routing and Queue into the compound module Node. A compound module can be
thought of as a ``cardboard box'' that groups other modules into a larger unit, which can further be used as a
building block for other modules; networks are also a kind of compound module.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Figure: The Node compound module

module Node
{
 parameters:
 @display("i=misc/node_vs,gold");
 gates:
 inout port[];
 submodules:
 app: App;
 routing: Routing;
 queue[sizeof(port)]: Queue;
 connections:
 routing.localOut --> app.in;
 routing.localIn <-- app.out;
 for i=0..sizeof(port)-1 {
 routing.out[i] --> queue[i].in;
 routing.in[i] <-- queue[i].out;
 queue[i].line <--> port[i];
 }
}

Compound modules, like simple modules, may have parameters and gates. Our Node module contains an
address parameter, plus a gate vector of unspecified size, named port. The actual gate vector size will be
determined implicitly by the number of neighbours when we create a network from nodes of this type. The type of
port[] is inout, which allows bidirectional connections.

The modules that make up the compound module are listed under submodules. Our Node compound module
type has an app and a routing submodule, plus a queue[] submodule vector that contains one Queue module
for each port, as specified by [sizeof(port)]. (It is legal to refer to [sizeof(port)] because the network is
built in top-down order, and the node is already created and connected at network level when its submodule
structure is built out.)

In the connections section, the submodules are connected to each other and to the parent module. Single
arrows are used to connect input and output gates, and double arrows connect inout gates, and a for loop is
utilized to connect the routing module to each queue module, and to connect the outgoing/incoming link (line
gate) of each queue to the corresponding port of the enclosing module.

3.2.5 Putting it together

We have seen all NED definitions, but how does it get used by OMNeT++? When the simulation program is started,
it loads the NED files. The program should already contain the C++ classes that implement the needed simple
modules, App, Routing and Queue; their C++ code is either part if the executable or gets loaded from shared
library. The simulation program also loads the configuration (omnetpp.ini), and determines from it that the
simulation model to be run is the Network network. Then the network gets instantiated for simulation.

The simulation model is built in a top-down preorder fashion. This means that starting from an empty system
module, all submodules are created, their parameters and vector sizes get assigned and they get fully connected
before proceeding to go into the submodules to build their internals.

* * *

In the following sections we'll go through the elements of the NED language and look at them in more details.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

3.3 Simple modules

Simple modules are the active components in the model. Simple modules are defined with the simple keyword.

An example simple module:

simple Queue
{
 parameters:
 int capacity;
 @display("i=block/queue");
 gates:
 input in;
 output out;
}

Both the parameters and gates sections are optional, that is, they can be left out if there's no parameter or gate.
In addition, the parameters keyword itself is optional too, it can be left out even if there are parameters or
properties.

Note that the NED definition doesn't contain any code to define the operation of the module: that part is expressed
in C++. By default, OMNeT++ looks for C++ classes of the same name as the NED type (so here, Queue).

One can explicitly specify the C++ class with the @class property. Classes with namespace qualifiers are also
accepted, as shown in the following example that uses the mylib::Queue class:

simple Queue
{
 parameters:
 int capacity;
 @class(mylib::Queue);
 @display("i=block/queue");
 gates:
 input in;
 output out;
}

If you have several modules that are all in a common namespace, then a better alternative to @class is the
@namespace property. The C++ namespace given with @namespace will be prepended to the normal class name.
In the following example, the C++ classes will be mylib::App, mylib::Router and mylib::Queue:

@namespace(mylib);

simple App {
 ...
}

simple Router {
 ...
}

simple Queue {
 ...
}

As you've seen, @namespace can be specified on file level. Moreover, when placed in a file called package.ned,
the namespace will apply to all files in the same directory and all directories below.

The implementation C++ classes need to be subclassed from the cSimpleModule library class; chapter [4] of this

http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

manual describes in detail how to write them.

Simple modules can be extended (or specialized) via subclassing. The motivation for subclassing can be to set
some open parameters or gate sizes to a fixed value (see [3.6] and [3.7]), or to replace the C++ class with a
different one. Now, by default the derived NED module type will inherit the C++ class from its base, so it is
important to remember that you need to write out @class if you want it to use the new class.

The following example shows how to specialize a module by setting a parameter to a fixed value (and leaving the
C++ class unchanged):

simple Queue
{
 int capacity;
 ...
}

simple BoundedQueue extends Queue
{
 capacity = 10;
}

In the next example, the author wrote a PriorityQueue C++ class, and wants to have a corresponding NED
type, derived from Queue. However, it does not work as expected:

simple PriorityQueue extends Queue // wrong! still uses the Queue C++ class
{
}

The correct solution is to add a @class property to override the inherited C++ class:

simple PriorityQueue extends Queue
{
 @class(PriorityQueue);
}

Inheritance in general will be discussed in section [3.13].

3.4 Compound modules

A compound module groups other modules into a larger unit. A compound module may have gates and parameters
like a simple module, but no active behavior (no C++ code) is associated with it.

NOTE
When there is a temptation to add code to a compound module, then encapsulate the code into a simple
module, and add it as a submodule.

A compound module declaration may contain several sections, all of them optional:

module Host
{
 types:
 ...
 parameters:
 ...
 gates:
 ...
 submodules:
 ...

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 connections:
 ...
}

Modules contained in a compound module are called submodules, and they are listed in the submodules section.
One can create arrays of submodules (i.e. submodule vectors), and the submodule type may come from a
parameter.

Connections are listed under the connections section of the declaration. One can create connections using
simple programming constructs (loop, conditional). Connection behaviour can be defined by associating a channel
with the connection; the channel type may also come from a parameter.

Module and channel types only used locally can be defined in the types section as inner types, so that they don't
pollute the namespace.

Compound modules may be extended via subclassing. Inheritance may add new submodules and new connections
as well, not only parameters and gates; also, one may refer to inherited submodules, to inherited types etc. What is
not possible is to "de-inherit" submodules or connections, or to modify inherited ones.

In the following example, we show how one can assemble common protocols into a "stub" for wireless hosts, and
add user agents via subclassing.

[Module types, gate names, etc. used in the example are fictional, not based on an actual OMNeT++-based model
framework]

module WirelessHostBase
{
 gates:
 input radioIn;
 submodules:
 tcp: TCP;
 ip: IP;
 wlan: Ieee80211;
 connections:
 tcp.ipOut --> ip.tcpIn;
 tcp.ipIn <-- ip.tcpOut;
 ip.nicOut++ --> wlan.ipIn;
 ip.nicIn++ <-- wlan.ipOut;
 wlan.radioIn <-- radioIn;
}

module WirelessUser extends WirelessHostBase
{
 submodules:
 webAgent: WebAgent;
 connections:
 webAgent.tcpOut --> tcp.appIn++;
 webAgent.tcpIn <-- tcp.appOut++;
}

The WirelessUser compound module can further be extended, for example with an Ethernet port:

module DesktopUser extends WirelessUser
{
 gates:
 inout ethg;
 submodules:
 eth: EthernetNic;
 connections:
 ip.nicOut++ --> eth.ipIn;
 ip.nicIn++ <-- eth.ipOut;
 eth.phy <--> ethg;
}

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

3.5 Channels

Channels encapsulate parameters and behaviour associated with connections. Channels are like simple modules,
in the sense that there are C++ classes behind them. The rules for finding the C++ class for a NED channel type is
the same as with simple modules: the default class name is the NED type name unless there is a @class property
(@namespace is also observed), and the C++ class is inherited when the channel is subclassed.

Thus, the following channel type would expect a CustomChannel C++ class to be present:

channel CustomChannel // needs a CustomChannel C++ class
{
}

The practical difference to modules is that you rarely need to write you own channel C++ class, because there are
predefined channel types that you can subclass from, inheriting their C++ code. The predefined types are:
ned.IdealChannel, ned.DelayChannel and ned.DatarateChannel. (``ned '' is the package name; you can
get rid of it if you import the types with the import ned.* or similar directive. Packages and imports are
described in section [3.14].)

IdealChannel has no parameters, and lets through all messages without delay or any side effect. A connection
without a channel object and a connection with an IdealChannel behave in the same way. Still, IdealChannel
has its uses, for example when a channel object is required so that it can carry a new property or parameter that is
going to be read by other parts of the simulation model.

DelayChannel has two parameters:

delay is a double parameter which represents the propagation delay of the message. Values need to be
specified together with a time unit (s, ms, us, etc.)
disabled is a boolean parameter that defaults to false; when set to true, the channel object will drop all
messages.

DatarateChannel has a few additional parameters compared to DelayChannel:

datarate is a double parameter that represents the bandwidth of the channel, and it is used for calculating
the transmission duration of packets. Values need to be specified with bits per second or its multiples as unit
(bps, Kbps, Mbps, Gbps, etc.) Zero is treated specially and results in zero transmission duration, i.e. it
stands for infinite bandwidth. Zero is also the default.
ber and per stand for Bit Error Rate and Packet Error Rate, and allow basic error modelling. They expect a
double in the [0,1] range. When the channel decides (based on random numbers) that an error occurred
during transmission a packet, it sets an error flag in the packet object. The receiver module is expected to
check the flag, and discard the packet as corrupted if it is set. The default ber and per are zero.

NOTE
There is no channel parameter that would decide whether the channel delivers the message object to the
destination module at the end or at the start of the reception; that is decided by the C++ code of the target
simple module. See the setDeliverOnReceptionStart() method of cGate.

The following example shows how to create a new channel type by specializing DatarateChannel:

channel C extends ned.DatarateChannel
{
 datarate = 100Mbps;
 delay = 100us;
 ber = 1e-10;

http://omnetpp.org/doc/omnetpp40/api/classcGate.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

}

NOTE
The three built-in channel types are also used for connections where the channel type not explicitly specified.

You may add parameters and properties to channels via subclassing, and modify existing ones. In the following
example, we introduce length-based calculation of the propagation delay:

channel DatarateChannel2 extends ned.DatarateChannel
{
 double length @unit(m);
 delay = this.length / 200000km * 1s;
}

Parameters are primarily useful as input to the underlying C++ class, but even if you reuse the underlying C++
class of built-in channel types, they may be read and used by other parts of the model. For example, adding a
cost parameter (or @cost property) may be observed by the routing algorithm and used for routing decisions. The
following example shows a cost parameter, and annotation using a property (@backbone).

channel Backbone extends ned.DatarateChannel
{
 @backbone;
 double cost = default(1);
}

3.6 Parameters

Parameters are variables that belong to a module. Parameters can be used in building the topology (number of
nodes, etc), and to supply input to C++ code that implements simple modules and channels.

Parameters can be of type double, int, bool, string and xml; they can also be declared volatile. For the
numeric types, a unit of measurement can also be specified (@unit property), to increase type safety.

Parameters can get their value from NED files or from the configuration (omnetpp.ini). A default value can also
be given (default(...)), which gets used if the parameter is not assigned otherwise.

Let us see an example before we go into details:

simple App
{
 parameters:
 int address; // local node address
 string destAddresses; // destination addresses
 volatile double sendIaTime @unit(s) = default(exponential(1s));
 // time between generating packets
 volatile int packetLength @unit(byte); // length of one packet
 ...
}

Values

Parameters may get their values from several places: from NED code, from the configuration (omnetpp.ini), or
even, interactively from the user.

The following example shows how parameters of an App module (from the previous example) may be assigned
when App gets used as a submodule:

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

module Node
{
 submodules:
 app : App {
 sendIaTime = 3s;
 packetLength = 1024B; // B=byte
 }
 ...
}

After the above definition, the app submodule's parameters cannot be changed from omnetpp.ini any more.

IMPORTANT
A value assigned in NED cannot be overwritten from ini files; they count as "hardcoded" as far as ini files are
concerned.

Provided that the value isn't set in the NED file, a parameter can be assigned in the configuration in the following
way:

**.sendIaTime = 100ms

The above line applies to all parameters called sendIaTime, whichever module they belong to; it is possible to
write more selective assignments by replacing ** with more specific patterns. Parameter assignments in the
configuration are described in section [8.4].

One can also write expressions, including stochastic expressions, in the ini file:

**.sendIaTime = 2s + exponential(100ms)

If there is no assignment in the ini file, the default value (given with =default(...) in NED) is applied implicitly. If
there is no default value, the user will be asked, provided the simulation program is allowed to do that; otherwise
there will be an error. (Interactive mode is typically disabled for batch executions where it would do more harm than
good.)

It is also possible to explicitly apply the default (this can sometimes be useful):

**.sendIaTime = default

Finally, one can explicitly ask the simulator to prompt the user interactively for the value (again, provided that
interactivity is enabled, otherwise this will result in an error):

**.sendIaTime = ask

NOTE
How do you decide whether to assign a parameter from NED or from an ini file? The point of ini files is a
cleaner separation of the model and experiments. NED files (together with C++ code) are considered to be
part of the model, and to be more or less constant. Ini files, on the other hand, are for experimenting with the
model, by running it several times with different parameters. Thus, parameters that are expected to change
(or make sense to be changed) during experimentation should be put into ini files.

Expressions

Parameter values may be given with expressions. NED language expressions have a C-like syntax, with some
variations on operator names: binary and logical XOR are # and ##, while \^ has been reassigned to power-of
instead. The + operator does string concatenation as well as numeric addition. Expressions can use various
numeric, string, stochastic and other functions (fabs(), toUpper(), uniform(), erlang_k(), etc.).

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

NOTE
The list of NED functions can be read in Appendix [20]. The user can also extend NED with new functions;
this feature is described in XXX.

Expressions may refer to module parameters, gate vector and module vector sizes (using the sizeof operator)
and the index of the current module in a submodule vector (index).

A Expressions may refer to parameters of the compound module being defined, of the current module (with the
this. prefix), and to parameters of already defined submodules, with the syntax submodule.parametername
(or submodule[index].parametername).

volatile

The volatile modifier causes the parameter's value expression to be evaluated every time the parameter is read.
This has significance if the expression is not constant, for example it involves numbers drawn from a random
number generator. In contrast, non-volatile parameters are evaluated only once. (This practically means that they
are evaluated and replaced with the resulting constant at the start of the simulation.)

To better understand volatile, let's suppose we have an ActiveQueue simple module that has a volatile
double parameter named serviceTime.

The queue module's C++ implementation would re-read the serviceTime parameter at runtime for every job
serviced; so if serviceTime is assigned an expression like uniform(0.5s, 1.5s), every job would have a
different, random service time.

In practice, a volatile parameter usually means that the underlying C++ code will re-read the parameter every time
a value is needed at runtime, so the parameter can be used a source of random numbers.

NOTE
This does not mean that a non-volatile parameter cannot be assigned a value like uniform(0.5s, 1.5s).
It can, but that has a totally different effect. Had we omitted the volatile keyword from the serviceTime
parameter, for example, the effect would be that every job had the same constant service time, say
1.2975367s, chosen randomly at the beginning of the simulation.

Units

One can declare a parameter to have an associated unit of measurement, by adding the @unit property. An
example:

simple App
{
 parameters:
 volatile double sendIaTime @unit(s) = default(exponential(350ms));
 volatile int packetLength @unit(byte) = default(4KB);
 ...
}

The @unit(s) and @unit(byte) bits declare the measurement unit for the parameter. Values assigned to
parameters must have the same or compatible unit, i.e. @unit(s) accepts milliseconds, nanoseconds, minutes,
hours, etc., and @unit(byte) accepts kilobytes, megabytes, etc. as well.

NOTE
The list of units accepted by OMNeT++ is listed in the Appendix, see [17.5.7]. Unknown units (bogomips,
etc.) can also be used, but there are no conversions for them, i.e. decimal prefixes will not be recognized.

The OMNeT++ runtime does a full and rigorous unit check on parameters to ensure ``unit safety'' of models.
Constants should always include the measurement unit.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

The @unit property of a parameter cannot be added or overridden in subclasses or in submodule declarations.

XML parameters

Sometimes modules need more complex input than simple module parameters can describe. Then you'd put these
parameters into an external config file, and let the modules read and process the file. You'd pass the file name to
the modules in a string parameter.

These days, XML is increasingly becoming a standard format for configuration files as well, so you might as well
describe your configuration in XML. From the 3.0 version, OMNeT++ contains built-in support for XML config files.

OMNeT++ wraps the XML parser (LibXML, Expat, etc.), reads and DTD-validates the file (if the XML document
contains a DOCTYPE), caches the file (so that if you refer to it from several modules, it'll still be loaded only once),
lets you pick parts of the document via an XPath-subset notation, and presents the contents to you in a DOM-like
object tree.

This machinery can be accessed via the NED parameter type xml, and the xmldoc() operator. You can point
xml-type module parameters to a specific XML file (or to an element inside an XML file) via the xmldoc()
operator. You can assign xml parameters both from NED and from omnetpp.ini.

The following example declares an xml parameter, and assigns an XML file to it:

simple TrafGen {
 parameters:
 xml profile;
 gates:
 output out;
}

module Node {
 submodules:
 trafGen1 : TrafGen {
 profile = xmldoc("data.xml");
 }
 ...
}

It is also possible to assign an XML element within a file to the parameter:

module Node {
 submodules:
 trafGen1 : TrafGen {
 profile = xmldoc("all.xml", "profile[@id='gen1']");
 }
 trafGen2 : TrafGen {
 profile = xmldoc("all.xml", "profile[@id='gen2']");
 }
}

<?xml>
XXX example

3.7 Gates

Gates are the connection points of modules. OMNeT++ has three types of gates: input, output and inout, the latter
being essentially an input and an output gate glued together.

A gate, whether input or output, cannot be connected to two or more other gates. (For compound module gates,

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

this means one connection "outside" and one "inside".) It is possible, though generally not recommended, to
connect the input and output sides of an inout gate separately.

One can create single gates and gate vectors. The size of a gate vector can be given inside square brackets in the
declaration, but it also possible to leave it open by just writing a pair of empty brackets ("[]").

When the gate vector size is left open, one can still specify it later, when subclassing the module, or when using the
module for a submodule in a compound module. However, it does not need to be specified, because one can
create connections with the gate++ operator that automatically expands the gate vector.

The gate size can be queried from various NED expressions with the sizeof() operator.

NED normally requires that all gates be connected. To relax this requirement, you can annotate selected gates with
the @loose property, which turns off connectivity check for that gate. Also, input gates that solely exist so that the
module can receive messages via sendDirect() (see [4.6.6]) should be annotated with @directIn. It is also
possible to turn off connectivity check for all gates within a compound module, by specifying the
allowunconnected keyword in the module's connections section.

Let us see some examples.

In the following example, the Classifier module has one input for receiving jobs, which it will send to one of the
outputs. The number of outputs is determined by a module parameter:

simple Classifier {
 parameters:
 int numCategories;
 gates:
 input in;
 output out[numCategories];
}

The following Sink module also has its in[] gate defined as vector, so that it can be connected to several
modules:

simple Sink {
 gates:
 input in[];
}

A node for building a square grid. Gates around the edges of the grid are expected to remain unconnected, hence
the @loose annotation:

simple GridNode {
 gates:
 inout neighbour[4] @loose;
}

WirelessNode below is expected to receive messages (radio transmissions) via direct sending, so its radioIn
gate is marked with @directIn.

simple WirelessNode {
 gates:
 input radioIn @directIn;
}

In the following example, we define TreeNode as having gates to connect any number of children, then subclass it
to get a BinaryTreeNode to set the gate size to two:

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

simple TreeNode {
 gates:
 inout parent;
 inout children[];
}

simple BinaryTreeNode extends TreeNode {
 gates:
 children[2];
}

An example for setting the gate vector size in a submodule, using the same TreeNode module type as above:

module BinaryTree {
 submodules:
 nodes[31]: TreeNode {
 gates:
 children[2];
 }
 connections:
 ...
}

3.8 Submodules

Modules that a compound module is composed of are called its submodules. A submodule has a name, and it is an
instance of a compound or simple module type. In the NED definition of a submodule, this module type may be
given explicitly, but, as we'll see later, it is also possible to specify the type with a string expression (see section
[3.11].)

NED supports submodule arrays (vectors) as well. Submodule vector size, unlike gate vector size, must always be
specified and cannot be left open as with gates.

The basic syntax of submodules is shown below:

module Node
{
 submodules:
 routing: Routing; // a submodule
 queue[sizeof(port)]: Queue; // submodule vector
 ...
}

A submodule vector may also be used to implement a conditional submodule, like in the example below:

module Host
{
 parameters:
 bool withTCP = default(true);
 submodules:
 tcp[withTCP ? 1 : 0]: TCP; // conditional submodule
 ...
 connections:
 tcp[0].ipOut --> ip.tcpIn if withTCP;
 tcp[0].ipIn <-- ip.tcpOut if withTCP;
 ...
}

As already seen in previous code examples, a submodule may also have a curly brace block as body, where one
can assign parameters, set the size of gate vectors, and add/modify properties like the display string (@display).

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

It is not possible to add new parameters and gates.

Display strings specified here will be merged with the display string from the type to get the effective display string.
This is described in chapter [10].

module Node
{
 gates:
 inout port[];
 submodules:
 routing: Routing {
 parameters: // this keyword is optional
 routingTable = "routingtable.txt"; // assign parameter
 gates:
 in[sizeof(port)]; // set gate vector size
 out[sizeof(port)];
 }
 queue[sizeof(port)]: Queue {
 @display("t=queue id $id"); // modify display string
 id = 1000+index; // different "id" parameter for each element
 }
 connections:
 ...
}

An empty body may be omitted, that is,

 queue: Queue;

is the same as

 queue: Queue {
 }

It is possible to add new submodules to an existing compound module via subclassing; this has been described in
the section [3.4].

3.9 Connections

Connections are defined in the connections section of compound modules. Connections cannot span across
hierarchy levels: one can connect two submodule gates, a submodule gate and the "inside" of the parent
(compound) module's gates, or two gates of the parent module (though this is rarely useful). It is not possible to
connect to any gate outside the parent module, or inside compound submodules.

Input and output gates are connected with a normal arrow, and inout gates with a double-headed arrow ``<--> ''.
To connect the two gates with a channel, use two arrows and put the channel specification in between. The same
syntax is used to add properties such as @display to the connection.

Some examples have already been shown in the Warmup section ([3.2]); let's see some more.

It has been mentioned that an inout gate is basically an input and an output gate glued together. These sub-gates
can also be addressed (and connected) individually if needed, as port$i and port$o (or for vector gates, as
port$i[$k$] and port$o[k]).

Gates are specified as modulespec.gatespec (to connect a submodule), or as gatespec (to connect the compound
module). modulespec is either a submodule name (for scalar submodules), or a submodule name plus an index in
square brackets (for submodule vectors). For scalar gates, gatespec is the gate name; for gate vectors it is either

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

the gate name plus an index in square brackets, or gatename++.

The gatename++ notation causes the first unconnected gate index to be used. If all gates of the given gate vector
are connected, the behavior is different for submodules and for the enclosing compound module. For submodules,
the gate vector expands by one. For a compound module, after the last gate is connected, ++ will stop with on
error.

NOTE
Why is it not possible to expand a gate vector of the compound module? The model structure is built in top-
down order, so new gates would be left unconnected on the outside, as there is no way in NED to "go back"
and connect them afterwards.

When the ++ operator is used with $i or $o (e.g. g$i++ or g$o++, see later), it will actually add a gate pair
(input+output) to maintain equal gate size for the two directions.

Channel specification

A channel specification (--> channelspec --> inside a connection) are similar to submodules in many respect.

Let's see some examples:

<--> {delay=10ms;} <-->
<--> {delay=10ms; datarate=1e-8;} <-->
<--> C <-->
<--> BBone {cost=100; length=52km; datarate=1e-8;} <-->
<--> {@display("XXX");} <-->
<--> BBone {@display("XXX");} <-->

When a channel type is missing, one of the built-in channel types will be used, based on the parameters assigned
in the connection. If datarate, ber or per is assigned, ned.DatarateChannel will be chosen. Otherwise, if
delay or disabled is present, it will be ned.DelayChannel; otherwise it is ned.IdealChannel. Naturally, if
other parameter names are assigned in an connection without an explicit channel type, it will be an error (with
``ned.DelayChannel has no such parameter'' or similar message).

3.10 Multiple connections

Simple programming constructs (loop, conditional) allow creating multiple connections easily.

This will be shown in the following examples.

Chain

One can create a chain of modules like this:

module Chain
 parameters:
 int count;
 submodules:
 node[count] : Node {
 gates:
 port[2];
 }
 connections allowunconnected:
 for i = 0..count-2 {
 node[i].port[1] <--> node[i+1].port[0];
 }
}

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Binary Tree

One can build a binary tree in the following way:

simple BinaryTreeNode {
 gates:
 inout left;
 inout right;
 inout parent;
}

module BinaryTree {
 parameters:
 int height;
 submodules:
 node[2^height-1]: BinaryTreeNode;
 connections allowunconnected:
 for i=0..2^(height-1)-2 {
 node[i].left <--> node[2*i+1].parent;
 node[i].right <--> node[2*i+2].parent;
 }
}

Note that not every gate of the modules will be connected. By default, an unconnected gate produces a run-time
error message when the simulation is started, but this error message is turned off here with the
allowunconnected modifier. Consequently, it is the simple modules' responsibility not to send on a gate which is
not leading anywhere.

Random graph

Conditional connections can be used to generate random topologies, for example. The following code generates a
random subgraph of a full graph:

module RandomGraph {
 parameters:
 int count;
 double connectedness; // 0.0<x<1.0
 submodules:
 node[count]: Node {
 gates:
 in[count];
 out[count];
 }
 connections allowunconnected:
 for i=0..count-1, j=0..count-1 {
 node[i].out[j] --> node[j].in[i]
 if i!=j && uniform(0,1)<connectedness;
 }
}

Note the use of the allowunconnected modifier here too, to turn off error messages given by the network setup
code for unconnected gates.

3.10.1 Connection patterns

Several approaches can be used when you want to create complex topologies which have a regular structure; three
of them are described below.

``Subgraph of a Full Graph''

This pattern takes a subset of the connections of a full graph. A condition is used to ``carve out'' the necessary
interconnection from the full graph:

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

for i=0..N-1, j=0..N-1 {
 node[i].out[...] --> node[j].in[...] if condition(i,j);
}

The RandomGraph compound module (presented earlier) is an example of this pattern, but the pattern can
generate any graph where an appropriate condition(i,j) can be formulated. For example, when generating a tree
structure, the condition would return whether node j is a child of node i or vica versa.

Though this pattern is very general, its usage can be prohibitive if the N number of nodes is high and the graph is
sparse (it has much fewer connections that N2). The following two patterns do not suffer from this drawback.

``Connections of Each Node''

The pattern loops through all nodes and creates the necessary connections for each one. It can be generalized like
this:

for i=0..Nnodes, j=0..Nconns(i)-1 {
 node[i].out[j] --> node[rightNodeIndex(i,j)].in[j];
}

The Hypercube compound module (to be presented later) is a clear example of this approach. BinaryTree can also
be regarded as an example of this pattern where the inner j loop is unrolled.

The applicability of this pattern depends on how easily the rightNodeIndex(i,j) function can be formulated.

``Enumerate All Connections''

A third pattern is to list all connections within a loop:

for i=0..Nconnections-1 {
 node[leftNodeIndex(i)].out[...] --> node[rightNodeIndex(i)].in[...];
}

The pattern can be used if leftNodeIndex(i) and rightNodeIndex(i) mapping functions can be sufficiently formulated.

The Chain module is an example of this approach where the mapping functions are extremely simple:
leftNodeIndex(i)=i and rightNodeIndex(i) = i+1. The pattern can also be used to create a random subset of a full
graph with a fixed number of connections.

In the case of irregular structures where none of the above patterns can be employed, you can resort to listing all
connections, like you would do it in most existing simulators.

3.11 Submodule type as parameter

A submodule type may be specified with a module parameter of the type string, or in general, with any string-
typed expression. The syntax uses the like keyword.

Let us begin with an example:

network Net6
{
 parameters:
 string nodeType;
 submodules:
 node[6]: <nodeType> like INode {

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 address = index;
 }
 connections:
 ...
}

It creates a submodule vector whose module type will come from the nodeType parameter. For example, if
nodeType="SensorNode", then the module vector will consist of sensor nodes (provided such module type
exists and it qualifies -- the latter will be explained right now).

The missing piece is the like INode bit. INode must be an existing module interface, which the SensorNode
module type must implement (more about this later).

The corresponding NED declarations:

moduleinterface INode
{
 parameters:
 int address;
 gates:
 inout port[];
}

module SensorNode like INode
{
 parameters:
 int address;
 ...
 gates:
 inout port[];
 ...
}

3.12 Properties (metadata annotations)

Properties allow adding metadata annotations to modules, parameters, gates, connections, NED files, packages,
and virtually anything in NED. @display, @class, @namespace, @unit, @prompt, @loose, @directIn are all
properties that have been mentioned in previous sections, but those examples only scratch the surface of what can
be done with properties.

Using properties, one can attach extra information to NED elements. Some properties are interpreted by NED, by
the simulation kernel; other properties may be read and used from within the simulation model, or provide hints for
NED editing tools.

Properties are attached to the type, so you cannot have properties per-instance different properties. All instances of
modules, connections, parameters, etc. created from any particular location in the NED files have identical
properties.

The following example shows the syntax for annotating various NED elements:

@prop; // file property

module Example
{
 parameters:
 @prop; // module property
 int a @prop = default(1); // parameter property
 gates:
 output out @prop;

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 submodules:
 src: Source {
 parameters:
 @prop; // submodule property
 count @prop; // adding a property to a parameter
 gates:
 out[] @prop; // adding a property to a gate
 }
 ...
 connections:
 src.out++ --> { @prop; } --> sink1.in;
 src.out++ --> Channel { @prop; } --> sink2.in;
}

Data model

Properties may contain data, given in parentheses; the data model is quite flexible. Properties may contain lists:

@enum(Sneezy,Sleepy,Dopey,Doc,Happy,Bashful,Grumpy);

They may contain key-value pairs, separated by semicolons:

@coords(x=10.31; y=30.2; unit=km);

In key-value pairs, each value can be a (comma-separated) list:

@nodeinfo(id=742;labels=swregion,routers,critical);

The above examples are special cases of the general data model. According to the data model, properties contain
key-valuelist pairs, separated by semicolons. Items in valuelist are separated by commas. Wherever key is missing,
values go on the valuelist of the default key, the empty string. @prop is the same as @prop().

The syntax for value items is a bit restrictive: they may contain words, numbers, string constants and some more,
but not arbitrary strings. Whenever the syntax does not permit some value, it should be enclosed in quotes. This
quoting does not make any difference in the value, because the parser automatically drops one layer of quotes;
thus, @class(TCP) and @class("TCP") are exactly the same.

There are also some conventions. One can use properties to tag some NED element with a label; for example, a
@host property could be used to mark all module types that represent various hosts. This property could be used
e.g. by editing tools, by topology discovery code inside the simulation model, etc.

The convention for such a "label" property is that any extra data in it (i.e. within parens) is ignored, except a single
word false, which is reserved to "remove" the property. Thus, simulation model or tool source code that interprets
properties should handle all the following forms as equivalent to @host: @host(), @host(true),
@host(anything-but-false), @host(a=1;b=2); and @host(false) should be interpreted as the lack of
the @host tag.

Modifying properties

When you subclass a NED type, use a module type as submodule or use a channel type for a connection, you may
add new properties to the module or channel, or to its parameters and gates, and you can also modify existing
properties.

When modifying a property, the new property gets merged with the old one, with a few simple rules. New keys
simply get added. If a key already exists in the old property, items in its valuelist overwrite items on the same
position in the old property. A single hyphen ($-$) as valuelist item serves as ``antivalue'', it removes the item at the
corresponding position.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Some examples:

base @prop

new @prop(a)

result @prop(a)

base @prop(a,b,c)

new @prop(,-)

result @prop(a,,c)

base @prop(foo=a,b)

new @prop(foo=A,,c;bar=1,2)

result @prop(foo=A,b,c;bar=1,2)

NOTE
The above merge rules are part of NED, but the code that interprets properties may have special rules for
certain properties. For example, the @unit property of parameters is not allowed to be overridden, and
@display is merged with special although similar rules (see Chapter [10]).

Indices

Properties are identified by names, so if the same @name occurs in the same context, then it names the exact
same property object. If you want to have multiple properties with the same name, then you need to distinguish
them with an index. An index is a name or number, written in square brackets after the property name. The index
may be chosen to carry a meaning, or it may be a dummy whose only purpose is to tell multiple properties with the
same name apart. (The code that interprets properties may be written to observe or to ignore indices, as needed).

The following example, the simple module declares in properties the statistics it collects. These declarations might
be used by model editing tools, by simulation code, or by analysis tools.

[Note that this is a completely hypothetical example -- OMNeT++ does not presently support declaring statistics using
properties.]

The statistic names are used as indices:

simple App {
 // declare two statistics collected by the C++ code
 @statistic[packetsReceived](type=integer;label="Number of packets received");
 @statistic[responseTime](type=double;unit=s;label="Application response
time");
 ...
}

simple HttpApp extends App {
 // tailor the label of the "packetsReceived" statistic:
 @statistic[packetsReceived](label="Number of HTTP requests received");
}

3.13 Inheritance

Inheritance support in the NED language is only described briefly here, because several details and examples have
been already presented in previous sections.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

In NED, a type may only extend (extends keyword) an element of the same component type: a simple module
may only extend a simple module, compound module may only extend a compound module, and so on. Single
inheritance is supported for modules and channels, and multiple inheritance is supported for module interfaces and
channel interfaces. A network is a shorthand for a compound module with the @isNetwork property set, so the
same rules apply to it as to compound modules.

However, a simple or compound module type may implement (like keyword) several module interfaces; likewise,
a channel type may implement several channel interfaces.

IMPORTANT
When you extend a simple module type both in NED and in C++, you must use the @class property to tell
NED to use the new C++ class -- otherwise your new module type inherits the C++ class of the base!

Inheritance may:

add new properties, parameters, gates, inner types, submodules, connections, as long as names do not
conflict with inherited names
modify inherited properties, and properties of inherited parameters and gates
it may not modify inherited submodules, connections and inner types

For details and examples, see the corresponding sections of this chapter (simple modules [3.3], compound
modules [3.4], channels [3.5], parameters [3.6], gates [3.7], submodules [3.8], connections [3.9], module interfaces
and channel interfaces [3.11]).

3.14 Packages

Small simulation projects are fine to have all NED files in a single directory. When a project grows, however, it
sooner or later becomes inevitable to introduce a directory structure, and sort the NED files into them. NED natively
supports directory trees with NED files, and calls directories packages. Packages are also useful for reducing name
clashes, because names can be qualified with the package name.

NOTE
NED packages are based on the Java package concept, with minor enhancements. If you are familiar with
Java, you'll find little surprise in this section.

Overview

When a simulation is run, you must tell the simulation kernel the directory which is the root of your package tree;
let's call it NED source folder. The simulation kernel will traverse the whole directory tree, and load all NED files
from every directory. You can have several NED directory trees, and their roots (the NED source folders) should be
given to the simulation kernel in the NEDPATH variable. NEDPATH can be specified in several ways: as an
environment variable (NEDPATH), as a configuration option (ned-path), or as a command-line option to the
simulation runtime. NEDPATH is described in details in chapter [9].

Directories in a NED source tree correspond to packages. If you have NED files in a <root>/a/b/c directory
(where <root> gets listed in NEDPATH), then the package name is a.b.c. The package name has to be explicitly
declared at the top of the NED files as well, like this:

package a.b.c;

The package name that follows from the directory name and the declared package must match; it is an error if they
don't. (The only exception is the root package.ned file, as described below.)

By convention, package names are all lowercase, and begin with either the project name (myproject), or the

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

reversed domain name plus the project name (org.example.myproject). The latter convention would cause the
directory tree to begin with a few levels of empty directories, but this can be eliminated with a toplevel
package.ned.

NED files called package.ned have a special role, as they are meant to represent the whole package. For
example, comments in package.ned are treated as documentation of the package. Also, a @namespace property
in a package.ned file affects all NED files in that directory and all directories below.

The toplevel package.ned file can be used to designate the root package, which is useful for eliminating a few
levels of empty directories resulting from the package naming convention. That is, if you have a package.ned file
in your <root> directory whose package declaration says org.example.myproject, then the <root>/a/b/c
directory will be package org.example.myproject.a.b.c -- and NED files in them must contain that as
package declaration. Only the root package.ned has this property, other package.ned 's cannot change the
package.

Let's look at the INET Framework as example, which contains hundreds of NED files in several dozen packages.
The directory structure looks like this:

INET/
 src/
 base/
 transport/
 tcp/
 udp/
 ...
 networklayer/
 linklayer/
 ...
 examples/
 adhoc/
 ethernet/
 ...

The src and examples subdirectories are denoted as NED source folders, so NEDPATH is the following
(provided INET was unpacked in /home/joe):

/home/joe/INET/src;/home/joe/INET/examples

Both src and examples contain package.ned files to define the root package:

// INET/src/package.ned:
package inet;

// INET/examples/package.ned:
package inet.examples;

And other NED files follow the package defined in package.ned:

// INET/src/transport/tcp/TCP.ned:
package inet.transport.tcp;

Name resolution, imports

We already mentioned that packages can be used to distinguish similarly named NED types. The name that
includes the package name (a.b.c.Queue for a Queue module in the a.b.c package) is called fully qualified
name; without the package name (Queue) it is called simple name.

Simple names alone are not enough to unambiguously identify a type. Here is how you can refer to an existing

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

type:

1. By fully qualified name. This is often cumbersome though, as names tend to be too long;
2. Import the type, then the simple name will be enough;
3. If the type is in the same package, then it doesn't need to be imported; it can be referred to by simple name

Types can be imported with the import keyword by either fully qualified name, or by a wildcard pattern. In wildcard
patterns, one asterisk ("*") stands for "any character sequence not containing period", and two asterisks ("**")
mean "any character sequence which may contain period".

So, any of the following lines can be used to import a type called
inet.protocols.networklayer.ip.RoutingTable:

import inet.protocols.networklayer.ip.RoutingTable;
import inet.protocols.networklayer.ip.*;
import inet.protocols.networklayer.ip.Ro*Ta*;
import inet.protocols.*.ip.*;
import inet.**.RoutingTable;

If an import explicitly names a type with its exact fully qualified name, then that type must exist, otherwise it's an
error. Imports containing wildcards are more permissive, it is allowed for them not to match any existing NED type
(although that might generate a warning.)

Inner types may not be referred to outside their enclosing types, so they cannot be imported either.

Name resolution with "like"

The situation is a little different for submodule and connection channel specifications using the like keyword,
when the type name comes from a string-valued expression (see section [3.11] about submodule and channel
types as parameters). Imports are not much use here: at the time of writing the NED file it is not yet known what
NED types will be suitable for being "plugged in" there, so they cannot be imported in advance.

There is no problem with fully qualified names, but simple names need to be resolved differently. What NED does is
this: it determines which interface the module or channel type must implement (i.e. ... like INode), and then
collects the types that have the given simple name AND implement the given interface. There must be exactly one
such type, which is then used. If there's none or there's more than one, it will be reported as an error.

Let us see the following example:

module MobileHost
{
 parameters:
 string mobilityType;
 submodules:
 mobility: <mobilityType> like IMobility;
 ...
}

and suppose that the following modules implement the IMobility module interface:
inet.mobility.RandomWalk, inet.adhoc.RandomWalk, inet.mobility.MassMobility; and suppose
that there's also a type called inet.examples.adhoc.MassMobility but it does not implement the interface.

So if mobilityType="MassMobility", then inet.mobility.MassMobility will be selected; the other
MassMobility doesn't interfere. However, if mobilityType="RandomWalk", then it's an error because there're
two matching RandomWalk types. Both RandomWalk 's can still be used, but one must explicitly choose one of
them by providing a package name: mobilityType="inet.adhoc.RandomWalk".

The default package

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

It is not mandatory to make use of packages: if all NED files are in a single directory listed on the NEDPATH, then
package declarations (and imports) can be omitted. Those files are said to be in the default package.

4 Simple Modules

Simple modules are the active components in the model. Simple modules are programmed in C++, using the
OMNeT++ class library. The following sections contain a short introduction to discrete event simulation in general,
explain how its concepts are implemented in OMNeT++, and give an overview and practical advice on how to
design and code simple modules.

4.1 Simulation concepts

This section contains a very brief introduction into how Discrete Event Simulation (DES) works, in order to
introduce terms we'll use when explaining OMNeT++ concepts and implementation.

4.1.1 Discrete Event Simulation

A Discrete Event System is a system where state changes (events) happen at discrete instances in time, and
events take zero time to happen. It is assumed that nothing (i.e. nothing interesting) happens between two
consecutive events, that is, no state change takes place in the system between the events (in contrast to
continuous systems where state changes are continuous). Those systems that can be viewed as Discrete Event
Systems can be modeled using Discrete Event Simulation. (Other systems can be modelled e.g. with continuous
simulation models.)

For example, computer networks are usually viewed as discrete event systems. Some of the events are:

start of a packet transmission
end of a packet transmission
expiry of a retransmission timeout

This implies that between two events such as start of a packet transmission and end of a packet transmission,
nothing interesting happens. That is, the packet's state remains being transmitted. Note that the definition of
``interesting'' events and states always depends on the intent and purposes of the person doing the modeling. If we
were interested in the transmission of individual bits, we would have included something like start of bit
transmission and end of bit transmission among our events.

The time when events occur is often called event timestamp ; with OMNeT++ we'll say arrival time (because in the
class library, the word ``timestamp'' is reserved for a user-settable attribute in the event class). Time within the
model is often called simulation time, model time or virtual time as opposed to real time or CPU time which refer to
how long the simulation program has been running and how much CPU time it has consumed.

4.1.2 The event loop

Discrete event simulation maintains the set of future events in a data structure often called FES (Future Event Set)
or FEL (Future Event List). Such simulators usually work according to the following pseudocode:

initialize -- this includes building the model and
 inserting initial events to FES

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

while (FES not empty and simulation not yet complete)
{
 retrieve first event from FES
 t:= timestamp of this event
 process event
 (processing may insert new events in FES or delete existing ones)
}
finish simulation (write statistical results, etc.)

The first, initialization step usually builds the data structures representing the simulation model, calls any user-
defined initialization code, and inserts initial events into the FES to ensure that the simulation can start. Initialization
strategy can differ considerably from one simulator to another.

The subsequent loop consumes events from the FES and processes them. Events are processed in strict
timestamp order in order to maintain causality, that is, to ensure that no event may have an effect on earlier events.

Processing an event involves calls to user-supplied code. For example, using the computer network simulation
example, processing a ``timeout expired'' event may consist of re-sending a copy of the network packet, updating
the retry count, scheduling another ``timeout'' event, and so on. The user code may also remove events from the
FES, for example when canceling timeouts.

The simulation stops when there are no events left (this happens rarely in practice), or when it isn't necessary for
the simulation to run further because the model time or the CPU time has reached a given limit, or because the
statistics have reached the desired accuracy. At this time, before the program exits, the user will typically want to
record statistics into output files.

4.1.3 Simple modules in OMNeT++

In OMNeT++, events occur inside simple modules. Simple modules encapsulate C++ code that generates events
and reacts to events, in other words, implements the behaviour of the model.

The user creates simple module types by subclassing the cSimpleModule class, which is part of the OMNeT++
class library. cSimpleModule, just as cCompoundModule, is derived from a common base class, cModule.

cSimpleModule, although packed with simulation-related functionality, doesn't do anything useful by itself -- you
have to redefine some virtual member functions to make it do useful work.

These member functions are the following:

void initialize()
void handleMessage(cMessage *msg)
void activity()
void finish()

In the initialization step, OMNeT++ builds the network: it creates the necessary simple and compound modules and
connects them according to the NED definitions. OMNeT++ also calls the initialize() functions of all modules.

The handleMessage() and activity() functions are called during event processing. This means that the user
will implement the model's behavior in these functions. handleMessage() and activity() implement different
event processing strategies: for each simple module, the user has to redefine exactly one of these functions.

handleMessage() is a method that is called by the simulation kernel when the module receives a message.

http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcCompoundModule.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

activity() is a coroutine-based solution which implements the process interaction approach (coroutines are
non-preemptive (i.e. cooperative) threads). Generally, it is recommended that you prefer handleMessage() to
activity() -- mainly because activity() doesn't scale well. Later in this chapter we'll discuss both methods
including their advantages and disadvantages.

Modules written with activity() and handleMessage() can be freely mixed within a simulation model.

The finish() functions are called when the simulation terminates successfully. The most typical use of
finish() is the recording of statistics collected during simulation.

4.1.4 Events in OMNeT++

OMNeT++ uses messages to represent events. Each event is represented by an instance of the cMessage class
or one its subclasses; there is no separate event class. Messages are sent from one module to another -- this
means that the place where the ``event will occur'' is the message's destination module, and the model time when
the event occurs is the arrival time of the message. Events like ``timeout expired'' are implemented by the module
sending a message to itself.

Events are consumed from the FES in arrival time order, to maintain causality. More precisely, given two
messages, the following rules apply:

1. the message with earlier arrival time is executed first. If arrival times are equal,
2. the one with smaller priority value is executed first. If priorities are the same,
3. the one scheduled or sent earlier is executed first.

Priority is a user-assigned integer attribute of messages.

4.1.5 Simulation time

The current simulation time can be obtained with the simTime() function.

Simulation time in OMNeT++ is represented by the C++ type simtime_t, which is by default a typedef to the
SimTime class. SimTime class stores simulation time in a 64-bit integer, using decimal fixed-point representation.
The resolution is controlled by the scale exponent global configuration variable, that is, SimTime instances have
the same resolution. The exponent can be between chosen between -18 (attosecond resolution) and 0 (seconds).
Some exponents with the ranges they provide are shown in the following table.

Exponent Resolution Approx. Range

-18 10-18s (1as) +/- 9.22s

-15 10-15s (1fs) +/- 153.72 minutes

-12 10-12s (1ps) +/- 106.75 days

-9 10-9s (1ns) +/- 292.27 years

-6 10-6s (1us) +/- 292271 years

-3 10-3s (1ms) +/- 2.9227e8 years

0 1s +/- 2.9227e11 years

Note that although simulation time cannot be negative, it is still useful to be able to represent negative numbers,
because they often arise during the evaluation of arithmetic expressions.

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classSimTime.html
http://omnetpp.org/doc/omnetpp40/api/classSimTime.html
http://omnetpp.org/doc/omnetpp40/api/classSimTime.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

The SimTime class performs additions and substractions as 64-bit integer operations. Integer overflows are
checked, and will cause the simulation to stop with an error message. Other operations (multiplication, division, etc)
are performed in double, then converted back to integer.

There is no implicit conversion from SimTime to double, mostly because it would conflict with overloaded
arithmetic operations of SimTime; use the dbl() method of Simtime to convert. To reduce the need for dbl(),
several functions and methods have overloaded variants that directly accept SimTime, for example fabs(),
fmod(), ceil(), floor(), uniform(), exponential(), and normal().

NOTE
Converting a SimTime to double may lose precision, because double only has a 52-bit mantissa.

Other useful methods of SimTime include str() which returns the value as a string; parse() which converts a
string to SimTime; raw() which returns the underlying int64 value; getScaleExp() which returns the global
scale exponent; and getMaxTime which returns the maximum simulation time that can be represented at the
current scale exponent.

Compatibility

Earlier versions of OMNeT++ used double for simulation time. To facilitate porting existing models to OMNeT++
4.0 or later, OMNeT++ can be compiled to use double for simtime_t. To enable this mode, define the
USE_DOUBLE_SIMTIME preprocessor macro during compiling OMNeT++ and the simulation models.

There are several macros that can be used in simulation models to make them compile with both double and
SimTime simulation time: SIMTIME_STR() converts simulation time to a const char * (can be used in printf
argument lists); SIMTIME_DBL(t) converts simulation time to double; SIMTIME_RAW(t) returns the underlying
int64 or double; STR_SIMTIME(s) converts string to simulation time; and SIMTIME_TTOA(buf,t) converts
simulation time to string, and places the result into the given buffer. MAXTIME is also defined correctly for both
simtime_t types.

NOTE
Why did OMNeT++ switch to int64-based simulation time? double 's mantissa is only 52 bits long, and this
caused problems in long simulations that relied on fine-grained timing, for example MAC protocols. Other
problems were the accumulation of rounding errors, and non-associativity (often (x+y)+z != x+(y+z), see
~[Goldberg91what]) which meant that two double simulation times could not be reliably compared for
equality.

4.1.6 FES implementation

The implementation of the FES is a crucial factor in the performance of a discrete event simulator. In OMNeT++,
the FES is implemented with binary heap, the most widely used data structure for this purpose. Heap is also the
best algorithm we know, although exotic data structures like skiplist may perform better than heap in some cases.
In case you're interested, the FES implementation is in the cMessageHeap class, but as a simulation programmer
you won't ever need to care about that.

4.2 Defining simple module types

4.2.1 Overview

As mentioned before [4.1.3], a simple module is nothing more than a C++ class which has to be subclassed from
cSimpleModule, with one or more virtual member functions redefined to define its behavior.

The class has to be registered with OMNeT++ via the Define_Module() macro. The Define_Module() line

http://omnetpp.org/doc/omnetpp40/api/classSimTime.html
http://omnetpp.org/doc/omnetpp40/api/classSimTime.html
http://omnetpp.org/doc/omnetpp40/api/classSimTime.html
http://omnetpp.org/doc/omnetpp40/api/classSimTime.html
http://omnetpp.org/doc/omnetpp40/api/classSimTime.html
http://omnetpp.org/doc/omnetpp40/api/classSimTime.html
http://omnetpp.org/doc/omnetpp40/api/classSimTime.html
http://omnetpp.org/doc/omnetpp40/api/classSimTime.html
http://omnetpp.org/doc/omnetpp40/api/classcMessageHeap.html
http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

should always be put into .cc or .cpp files and not header file (.h), because the compiler generates code from it.

[For completeness, there is also a Define_Module_Like() macro, but its use is discouraged and might even be removed in
future OMNeT++ releases.]

The following HelloModule is about the simplest simple module one could write. (We could have left out the
initialize() method as well to make it even smaller, but how would it say Hello then?) Note cSimpleModule
as base class, and the Define_Module() line.

// file: HelloModule.cc
#include <omnetpp.h>

class HelloModule : public cSimpleModule
{
 protected:
 virtual void initialize();
 virtual void handleMessage(cMessage *msg);
};

// register module class with `\opp`
Define_Module(HelloModule);

void HelloModule::initialize()
{
 ev << "Hello World!\n";
}

void HelloModule::handleMessage(cMessage *msg)
{
 delete msg; // just discard everything we receive
}

In order to be able to refer to this simple module type in NED files, we also need an associated NED declaration
which might look like this:

// file: HelloModule.ned
simple HelloModule
{
 gates:
 input in;
}

4.2.2 Constructor

Simple modules are never instantiated by the user directly, but rather by the simulation kernel. This implies that one
cannot write arbitrary constructors: the signature must be what is expected by the simulation kernel. Luckily, this
contract is very simple: the constructor must be public, and must take no arguments:

 public:
 HelloModule(); // constructor takes no arguments

cSimpleModule itself has two constructors:

1. cSimpleModule() -- one without arguments
2. cSimpleModule(size_t stacksize) -- one that accepts the coroutine stack size

The first version should be used with handleMessage() simple modules, and the second one with activity()
modules. (With the latter, the activity() method of the module class runs as a coroutine which needs a
separate CPU stack, usually of 16..32K. This will be discussed in detail later.) Passing zero stack size to the latter

http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

constructor also selects handleMessage().

Thus, the following constructor definitions are all OK, and select handleMessage() to be used with the module:

HelloModule::HelloModule() {...}
HelloModule::HelloModule() : cSimpleModule() {...}

It is also OK to omit the constructor altogether, because the compiler-generated one is suitable too.

The following constructor definition selects activity() to be used with the module, with 16K of coroutine stack:

HelloModule::HelloModule() : cSimpleModule(16384) {...}

NOTE
The Module_Class_Members() macro, already deprecated in OMNeT++ 3.2, has been removed in the 4.0
version. When porting older simulation models, occurrences of this macro can simply be removed from the
source code.

4.2.3 Constructor and destructor vs initialize() and finish()

The initialize() and finish() methods will be discussed in a later section in detail, but because their
apparent similarity to the constructor and the destructor is prone to cause some confusion, we'll briefly cover them
here.

The constructor gets called when the module is created, as part of the model setup process. At that time,
everything is just being built, so there isn't a lot things one can do from the constructor. In contrast, initialize()
gets called just before the simulation starts executing, when everything else has been set up already.

finish() is for recording statistics, and it only gets called when the simulation has terminated normally. It does
not get called when the simulations stops with an error message. The destructor always gets called at the end, no
matter how the simulation stopped, but at that time it is fair to assume that the simulation model has been halfway
demolished already.

Based on the above, the following conventions exist for these four methods:

Constructor:

Set pointer members of the module class to NULL; postpone all other initialization tasks to initialize().

initialize():

Perform all initialization tasks: read module parameters, initialize class variables, allocate dynamic data structures
with new; also allocate and initialize self-messages (timers) if needed.

finish():

Record statistics. Do not delete anything or cancel timers -- all cleanup must be done in the destructor.

Destructor:

Delete everything which was allocated by new and is still held by the module class. With self-messages (timers),
use the cancelAndDelete(msg) function! It is almost always wrong to just delete a self-message from the
destructor, because it might be in the scheduled events list. The cancelAndDelete(msg) function checks for that
first, and cancels the message before deletion if necessary.

OMNeT++ prints the list of unreleased objects at the end of the simulation. Simulation models that dump

http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

"undisposed object ..." messages need to get their module destructors fixed. As a temporary measure, these
messages may be hidden by setting print-undisposed=false in the configuration.

NOTE
The perform-gc configuration option has been removed in OMNeT++ 4.0. Automatic garbage collection
cannot be implemented reliably, due to the limitations of the C++ language.

4.2.4 An example

The following code is a bit longer but actually useful simple module implementation. It demonstrates several of the
above concepts, plus some others which will be explained in later sections:

1. constructor, initialize and destructor conventions
2. using messages for timers
3. accessing module parameters
4. recording statistics at the end of the simulation
5. documenting the programmer's assumptions using ASSERT()

// file: FFGenerator.h

#include <omnetpp.h>

/**
 * Generates messages or jobs; see NED file for more info.
 */
class FFGenerator : public cSimpleModule
{
 private:
 cMessage *sendMessageEvent;
 long numSent;

 public:
 FFGenerator();
 virtual ~FFGenerator();

 protected:
 virtual void initialize();
 virtual void handleMessage(cMessage *msg);
 virtual void finish();
};

// file: FFGenerator.cc

#include "FFGenerator.cc"

// register module class with `\opp`
Define_Module(FFGenerator);

FFGenerator::FFGenerator()
{
 sendMessageEvent = NULL;
}

void FFGenerator::initialize()
{
 numSent = 0;
 sendMessageEvent = new cMessage("sendMessageEvent");
 scheduleAt(0.0, sendMessageEvent);
}

void FFGenerator::handleMessage(cMessage *msg)
{
 ASSERT(msg==sendMessageEvent);

http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 cMessage *m = new cMessage("packet");
 m->setBitLength(par("msgLength"));
 send(m, "out");
 numSent++;

 double deltaT = (double)par("sendIaTime");
 scheduleAt(simTime()+deltaT, sendMessageEvent);
}

void FFGenerator::finish()
{
 recordScalar("packets sent", numSent);
}

FFGenerator::~FFGenerator()
{
 cancelAndDelete(sendMessageEvent);
}

The corresponding NED declaration:

// file: FFGenerator.ned
simple FFGenerator
{
 parameters:
 volatile double sendIaTime;
 gates:
 output out;
}

4.2.5 Using global variables

If possible, avoid using global variables, including static class members. They are prone to cause several problems.
First, they are not reset to their initial values (to zero) when you rebuild the simulation in Tkenv, or start another run
in Cmdenv. This may produce surprising results. Second, they prevent you from running your simulation in parallel.
When using parallel simulation, each partition of your model (may) run in a separate process, having its own copy
of the global variables. This is usually not what you want.

The solution is to encapsulate the variables into simple modules as private or protected data members, and expose
them via public methods. Other modules can then call these public methods to get or set the values. Calling
methods of other modules will be discussed in section . Examples of such modules are the Blackboard in the
Mobility Framework, and InterfaceTable and RoutingTable in the INET Framework.

4.3 Adding functionality to cSimpleModule

This section discusses cSimpleModule 's four previously mentioned member functions, intended to be redefined
by the user: initialize(), handleMessage(), activity() and finish(), plus a fifth, less frequently used
one, handleParameterChange.

4.3.1 handleMessage()

Function called for each event

The idea is that at each event (message arrival) we simply call a user-defined function. This function,
handleMessage(cMessage *msg) is a virtual member function of cSimpleModule which does nothing by

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

default -- the user has to redefine it in subclasses and add the message processing code.

The handleMessage() function will be called for every message that arrives at the module. The function should
process the message and return immediately after that. The simulation time is potentially different in each call. No
simulation time elapses within a call to handleMessage().

The event loop inside the simulator handles both activity() and handleMessage() simple modules, and it
corresponds to the following pseudocode:

while (FES not empty and simulation not yet complete)
{
 retrieve first event from FES
 t:= timestamp of this event
 m:= module containing this event
 if (m works with handleMessage())
 m->handleMessage(event)
 else // m works with activity()
 transferTo(m)
}

Modules with handleMessage() are NOT started automatically: the simulation kernel creates starter messages
only for modules with activity(). This means that you have to schedule self-messages from the
initialize() function if you want a handleMessage() simple module to start working ``by itself'', without first
receiving a message from other modules.

Programming with handleMessage()

To use the handleMessage() mechanism in a simple module, you must specify zero stack size for the module.
This is important, because this tells OMNeT++ that you want to use handleMessage() and not activity().

Message/event related functions you can use in handleMessage():

send() family of functions -- to send messages to other modules
scheduleAt() -- to schedule an event (the module ``sends a message to itself'')
cancelEvent() -- to delete an event scheduled with scheduleAt()

You cannot use the receive() family and wait() functions in handleMessage(), because they are coroutine-
based by nature, as explained in the section about activity().

You have to add data members to the module class for every piece of information you want to preserve. This
information cannot be stored in local variables of handleMessage() because they are destroyed when the
function returns. Also, they cannot be stored in static variables in the function (or the class), because they would be
shared between all instances of the class.

Data members to be added to the module class will typically include things like:

state (e.g. IDLE/BUSY, CONN_DOWN/CONN_ALIVE/...)
other variables which belong to the state of the module: retry counts, packet queues, etc.
values retrieved/computed once and then stored: values of module parameters, gate indices, routing
information, etc.
pointers of message objects created once and then reused for timers, timeouts, etc.
variables/objects for statistics collection

You can initialize these variables from the initialize() function. The constructor is not a very good place for
this purpose, because it is called in the network setup phase when the model is still under construction, so a lot of
information you may want to use is not yet available.

Another task you have to do in initialize() is to schedule initial event(s) which trigger the first call(s) to

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

handleMessage(). After the first call, handleMessage() must take care to schedule further events for itself so
that the ``chain'' is not broken. Scheduling events is not necessary if your module only has to react to messages
coming from other modules.

finish() is normally used to record statistics information accumulated in data members of the class at the end of
the simulation.

Application area

handleMessage() is in most cases a better choice than activity():

1. When you expect the module to be used in large simulations, involving several thousand modules. In such
cases, the module stacks required by activity() would simply consume too much memory.

2. For modules which maintain little or no state information, such as packet sinks, handleMessage() is more
convenient to program.

3. Other good candidates are modules with a large state space and many arbitrary state transition possibilities
(i.e. where there are many possible subsequent states for any state). Such algorithms are difficult to program
with activity(), or the result is code which is better suited for handleMessage() (see rule of thumb
below). Most communication protocols are like this.

Example 1: Protocol models

Models of protocol layers in a communication network tend to have a common structure on a high level because
fundamentally they all have to react to three types of events: to messages arriving from higher layer protocols (or
apps), to messages arriving from lower layer protocols (from the network), and to various timers and timeouts (that
is, self-messages).

This usually results in the following source code pattern:

class FooProtocol : public cSimpleModule
{
 protected:
 // state variables
 // ...

 virtual void processMsgFromHigherLayer(cMessage *packet);
 virtual void processMsgFromLowerLayer(FooPacket *packet);
 virtual void processTimer(cMessage *timer);

 virtual void initialize();
 virtual void handleMessage(cMessage *msg);
};

// ...

void FooProtocol::handleMessage(cMessage *msg)
{
 if (msg->isSelfMessage())
 processTimer(msg);
 else if (msg->arrivedOn("fromNetw"))
 processMsgFromLowerLayer(check_and_cast<FooPacket *>(msg));
 else
 processMsgFromHigherLayer(msg);
}

The functions processMsgFromHigherLayer(), processMsgFromLowerLayer() and processTimer() are
then usually split further: there are separate methods to process separate packet types and separate timers.

Example 2: Simple traffic generators and sinks

The code for simple packet generators and sinks programmed with handleMessage() might be as simple as the

http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

following pseoudocode:

PacketGenerator::handleMessage(msg)
{
 create and send out a new packet;
 schedule msg again to trigger next call to handleMessage;
}

PacketSink::handleMessage(msg)
{
 delete msg;
}

Note that PacketGenerator will need to redefine initialize() to create m and schedule the first event.

The following simple module generates packets with exponential inter-arrival time. (Some details in the source
haven't been discussed yet, but the code is probably understandable nevertheless.)

class Generator : public cSimpleModule
{
 public:
 Generator() : cSimpleModule() {}
 protected:
 virtual void initialize();
 virtual void handleMessage(cMessage *msg);
};

Define_Module(Generator);

void Generator::initialize()
{
 // schedule first sending
 scheduleAt(simTime(), new cMessage);
}

void Generator::handleMessage(cMessage *msg)
{
 // generate & send packet
 cMessage *pkt = new cMessage;
 send(pkt, "out");
 // schedule next call
 scheduleAt(simTime()+exponential(1.0), msg);
}

Example 3: Bursty traffic generator

A bit more realistic example is to rewrite our Generator to create packet bursts, each consisting of burstLength
packets.

We add some data members to the class:

burstLength will store the parameter that specifies how many packets a burst must contain,
burstCounter will count in how many packets are left to be sent in the current burst.

The code:

class BurstyGenerator : public cSimpleModule
{
 protected:
 int burstLength;
 int burstCounter;

 virtual void initialize();

http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 virtual void handleMessage(cMessage *msg);
};

Define_Module(BurstyGenerator);

void BurstyGenerator::initialize()
{
 // init parameters and state variables
 burstLength = par("burstLength");
 burstCounter = burstLength;
 // schedule first packet of first burst
 scheduleAt(simTime(), new cMessage);
}

void BurstyGenerator::handleMessage(cMessage *msg)
{
 // generate & send packet
 cMessage *pkt = new cMessage;
 send(pkt, "out");
 // if this was the last packet of the burst
 if (--burstCounter == 0)
 {
 // schedule next burst
 burstCounter = burstLength;
 scheduleAt(simTime()+exponential(5.0), msg);
 }
 else
 {
 // schedule next sending within burst
 scheduleAt(simTime()+exponential(1.0), msg);
 }
}

Pros and Cons of using handleMessage()

Pros:

consumes less memory: no separate stack needed for simple modules
fast: function call is faster than switching between coroutines

Cons:

local variables cannot be used to store state information
need to redefine initialize()

Usually, handleMessage() should be preferred to activity().

Other simulators

Many simulation packages use a similar approach, often topped with something like a state machine (FSM) which
hides the underlying function calls. Such systems are:

OPNETTM which uses FSM's designed using a graphical editor;
NetSim++ clones OPNET's approach;
SMURPH (University of Alberta) defines a (somewhat eclectic) language to describe FSMs, and uses a
precompiler to turn it into C++ code;
Ptolemy (UC Berkeley) uses a similar method.

OMNeT++'s FSM support is described in the next section.

4.3.2 activity()

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Process-style description

With activity(), you can code the simple module much like you would code an operating system process or a
thread. You can wait for an incoming message (event) at any point of the code, you can suspend the execution for
some time (model time!), etc. When the activity() function exits, the module is terminated. (The simulation can
continue if there are other modules which can run.)

The most important functions you can use in activity() are (they will be discussed in detail later):

receive() -- to receive messages (events)
wait() -- to suspend execution for some time (model time)
send() family of functions -- to send messages to other modules
scheduleAt() -- to schedule an event (the module ``sends a message to itself'')
cancelEvent() -- to delete an event scheduled with scheduleAt()
end() -- to finish execution of this module (same as exiting the activity() function)

The activity() function normally contains an infinite loop, with at least a wait() or receive() call in its body.

Application area

Generally you should prefer handleMessage() to activity(). The main problem with activity() is that it
doesn't scale because every module needs a separate coroutine stack. It has also been observed that
activity() does not encourage a good programming style.

There is one scenario where activity() 's process-style description is convenient: when the process has many
states but transitions are very limited, ie. from any state the process can only go to one or two other states. For
example, this is the case when programming a network application, which uses a single network connection. The
pseudocode of the application which talks to a transport layer protocol might look like this:

activity()
{
 while(true)
 {
 open connection by sending OPEN command to transport layer
 receive reply from transport layer
 if (open not successful)
 {
 wait(some time)
 continue // loop back to while()
 }

 while(there's more to do)
 {
 send data on network connection
 if (connection broken)
 {
 continue outer loop // loop back to outer while()
 }
 wait(some time)
 receive data on network connection
 if (connection broken)
 {
 continue outer loop // loop back to outer while()
 }
 wait(some time)
 }

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 close connection by sending CLOSE command to transport layer
 if (close not successful)
 {
 // handle error
 }
 wait(some time)
 }
}

If you have to handle several connections simultaneously, you may dynamically create them as instances of the
simple module above. Dynamic module creation will be discussed later.

There are situations when you certainly do not want to use activity(). If your activity() function contains no
wait() and it has only one receive() call at the top of an infinite loop, there's no point in using activity()
and the code should be written with handleMessage(). The body of the infinite loop would then become the body
to handleMessage(), state variables inside activity() would become data members in the module class, and
you'd initialize them in initialize().

Example:

void Sink::activity()
{
 while(true)
 {
 msg = receive();
 delete msg;
 }
}

should rather be programmed as:

void Sink::handleMessage(cMessage *msg)
{
 delete msg;
}

Activity() is run as a coroutine

activity() is run in a coroutine. Coroutines are a sort of threads which are scheduled non-preemptively (this is
also called cooperative multitasking). From one coroutine you can switch to another coroutine by a
transferTo(otherCoroutine) call. Then this coroutine is suspended and otherCoroutine will run. Later, when
otherCoroutine does a transferTo(firstCoroutine) call, execution of the first coroutine will resume from the
point of the transferTo(otherCoroutine) call. The full state of the coroutine, including local variables are
preserved while the thread of execution is in other coroutines. This implies that each coroutine must have its own
processor stack, and transferTo() involves a switch from one processor stack to another.

Coroutines are at the heart of OMNeT++, and the simulation programmer doesn't ever need to call transferTo()
or other functions in the coroutine library, nor does he need to care about the coroutine library implementation. It is
important to understand, however, how the event loop found in discrete event simulators works with coroutines.

When using coroutines, the event loop looks like this (simplified):

while (FES not empty and simulation not yet complete)
{
 retrieve first event from FES
 t:= timestamp of this event

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 transferTo(module containing the event)
}

That is, when the module has an event, the simulation kernel transfers the control to the module's coroutine. It is
expected that when the module ``decides it has finished the processing of the event'', it will transfer the control back
to the simulation kernel by a transferTo(main) call. Initially, simple modules using activity() are ``booted''
by events (''starter messages'') inserted into the FES by the simulation kernel before the start of the simulation.

How does the coroutine know it has ``finished processing the event''? The answer: when it requests another event.
The functions which request events from the simulation kernel are the receive() and wait(), so their
implementations contain a transferTo(main) call somewhere.

Their pseudocode, as implemented in OMNeT++:

receive()
{
 transferTo(main)
 retrieve current event
 return the event // remember: events = messages
}

wait()
{
 create event e
 schedule it at (current sim. time + wait interval)
 transferTo(main)
 retrieve current event
 if (current event is not e) {
 error
 }
 delete e // note: actual impl. reuses events
 return
}

Thus, the receive() and wait() calls are special points in the activity() function, because they are where

simulation time elapses in the module, and
other modules get a chance to execute.

Starter messages

Modules written with activity() need starter messages to ``boot''. These starter messages are inserted into the
FES automatically by OMNeT++ at the beginning of the simulation, even before the initialize() functions are
called.

Coroutine stack size

The simulation programmer needs to define the processor stack size for coroutines. This cannot be automated.

16 or 32 kbytes is usually a good choice, but you may need more if the module uses recursive functions or has
local variables, which occupy a lot of stack space. OMNeT++ has a built-in mechanism that will usually detect if the
module stack is too small and overflows. OMNeT++ can also tell you how much stack space a module actually
uses, so you can find out if you overestimated the stack needs.

initialize() and finish() with activity()

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Because local variables of activity() are preserved across events, you can store everything (state information,
packet buffers, etc.) in them. Local variables can be initialized at the top of the activity() function, so there isn't
much need to use initialize().

You do need finish(), however, if you want to write statistics at the end of the simulation. Because finish()
cannot access the local variables of activity(), you have to put the variables and objects containing the
statistics into the module class. You still don't need initialize() because class members can also be initialized
at the top of activity().

Thus, a typical setup looks like this in pseudocode:

class MySimpleModule...
{
 ...
 variables for statistics collection
 activity();
 finish();
};

MySimpleModule::activity()
{
 declare local vars and initialize them
 initialize statistics collection variables

 while(true)
 {
 ...
 }
}

MySimpleModule::finish()
{
 record statistics into file
}

Pros and Cons of using activity()

Pros:

initialize() not needed, state can be stored in local variables of activity()
process-style description is a natural programming model in some cases

Cons:

limited scalability: coroutine stacks can unacceptably increase the memory requirements of the simulation
program if you have several thousands or ten thousands of simple modules;
run-time overhead: switching between coroutines is somewhat slower than a simple function call
does not enforce a good programming style: using activity() tends to lead to unreliable, spaghetti code

In most cases, cons outweigh pros and it is a better idea to use handleMessage() instead.

Other simulators

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Coroutines are used by a number of other simulation packages:

All simulation software which inherits from SIMULA (e.g. C++SIM) is based on coroutines, although all in all
the programming model is quite different.
The simulation/parallel programming language Maisie and its successor PARSEC (from UCLA) also use
coroutines (although implemented with ``normal'' preemptive threads). The philosophy is quite similar to
OMNeT++. PARSEC, being ``just'' a programming language, it has a more elegant syntax but far fewer
features than OMNeT++.
Many Java-based simulation libraries are based on Java threads.

4.3.3 initialize() and finish()

Purpose

initialize() -- to provide place for any user setup code

finish() -- to provide place where the user can record statistics after the simulation has completed

When and how they are called

The initialize() functions of the modules are invoked before the first event is processed, but after the initial
events (starter messages) have been placed into the FES by the simulation kernel.

Both simple and compound modules have initialize() functions. A compound module's initialize()
function runs before that of its submodules.

The finish() functions are called when the event loop has terminated, and only if it terminated normally (i.e. not
with a runtime error). The calling order is the reverse of the order of initialize(): first submodules, then the
encompassing compound module. (The bottom line is that at the moment there is no ``official'' possibility to redefine
initialize() and finish() for compound modules; the unofficial way is to write into the nedtool-generated
C++ code. Future versions of OMNeT++ will support adding these functions to compound modules.)

This is summarized in the following pseudocode:

perform simulation run:
 build network
 (i.e. the system module and its submodules recursively)
 insert starter messages for all submodules using activity()
 do callInitialize() on system module
 enter event loop // (described earlier)
 if (event loop terminated normally) // i.e. no errors
 do callFinish() on system module
 clean up

callInitialize()
{
 call to user-defined initialize() function
 if (module is compound)
 for (each submodule)
 do callInitialize() on submodule
}

callFinish()
{
 if (module is compound)

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 for (each submodule)
 do callFinish() on submodule
 call to user-defined finish() function
}

initialize() vs. constructor

Usually you should not put simulation-related code into the simple module constructor. This is because modules
often need to investigate their surroundings (maybe the whole network) at the beginning of the simulation and save
the collected info into internal tables. Code like that cannot be placed into the constructor since the network is still
being set up when the constructor is called.

finish() vs. destructor

Keep in mind that finish() is not always called, so it isn't a good place for cleanup code which should run every
time the module is deleted. finish() is only a good place for writing statistics, result post-processing and other
operations which are supposed to run only on successful completion. Cleanup code should go into the destructor.

Multi-stage initialization

In simulation models, when one-stage initialization provided by initialize() is not sufficient, one can use multi-
stage initialization. Modules have two functions which can be redefined by the user:

void initialize(int stage);
int numInitStages() const;

At the beginning of the simulation, initialize(0) is called for all modules, then initialize(1),
initialize(2), etc. You can think of it like initialization takes place in several ``waves''. For each module,
numInitStages() must be redefined to return the number of init stages required, e.g. for a two-stage init,
numInitStages() should return 2, and initialize(int stage) must be implemented to handle the stage=0
and stage=1 cases.

[Note const in the numInitStages() declaration. If you forget it, by C++ rules you create a different function instead of
redefining the existing one in the base class, thus the existing one will remain in effect and return 1.]

The callInitialize() function performs the full multi-stage initialization for that module and all its submodules.

If you do not redefine the multi-stage initialization functions, the default behavior is single-stage initialization: the
default numInitStages() returns 1, and the default initialize(int stage) simply calls initialize().

``End-of-Simulation'' event

The task of finish() is solved in several simulators by introducing a special end-of-simulation event. This is not a
very good practice because the simulation programmer has to code the models (often represented as FSMs) so
that they can always properly respond to end-of-simulation events, in whichever state they are. This often makes
program code unnecessarily complicated.

This can also be witnessed in the design of the PARSEC simulation language (UCLA). Its predecessor Maisie used
end-of-simulation events, but -- as documented in the PARSEC manual -- this has led to awkward programming in
many cases, so for PARSEC end-of-simulation events were dropped in favour of finish() (called finalize()
in PARSEC).

4.3.4 handleParameterChange()

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

The handleParameterChange() method was added in OMNeT++ 3.2, and it gets called by the simulation kernel
when a module parameter changes. The method signature is the following:

void handleParameterChange(const char *parname);

The user can redefine this method to let the module react to runtime parameter changes. A typical use is to re-read
the changed parameter, and update the module state if needed. For example, if a timeout value changes, one can
restart or modify running timers.

The primary motivation for this functionality was to facilitate the implementation of scenario manager modules which
can be programmed to change parameters at certain simulation times. Such modules can be very convenient in
studies involving transient behaviour.

The following example shows a queue module, which supports runtime change of its serviceTime parameter:

void Queue::handleParameterChange(const char *parname)
{
 if (strcmp(parname, "serviceTime")==0)
 {
 // queue service time parameter changed, re-read it
 serviceTime = par("serviceTime");

 // if there any job being serviced, modify its service time
 if (endServiceMsg->isScheduled())
 {
 cancelEvent(endServiceMsg);
 scheduleAt(simTime()+serviceTime, endServiceMsg);
 }
 }
}

4.3.5 Reusing module code via subclassing

It is often needed to have several variants of a simple module. A good design strategy is to create a simple module
class with the common functionality, then subclass from it to create the specific simple module types.

An example:

class ModifiedTransportProtocol : public TransportProtocol
{
 protected:
 virtual void recalculateTimeout();
};

Define_Module(ModifiedTransportProtocol);

void ModifiedTransportProtocol::recalculateTimeout()
{
 //...
}

4.4 Accessing module parameters

Module parameters declared in NED files are represented with the cPar class at runtime, and be accessed by
calling the par() member function of cModule:

cPar& delayPar = par("delay");

http://omnetpp.org/doc/omnetpp40/api/classcPar.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcPar.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

cPar 's value can be read with methods that correspond to the parameter's NED type: boolValue(),
longValue(), doubleValue(), stringValue(), stdstringValue(), xmlValue(). There are also
overloaded type cast operators for the corresponding types (bool; integer types including int, long, etc;
double; const char *; cXMLElement *).

long numJobs = par("numJobs").longValue();
double processingDelay = par("processingDelay"); // using operator double()

Note that cPar has two methods for returning string value: stringValue() which returns const char *, and
stdstringValue() which returns std::string. For volatile parameters, only stdstringValue() may be
used, but otherwise the two are interchangeable.

If you use the par("foo") parameter in expressions (such as 4*par("foo")+2), the C++ compiler may be
unable to decide between overloaded operators and report ambiguity. In that case you have to clarify by adding
either an explicit cast ((double)par("foo") or (long)par("foo")) or use the doubleValue() or
longValue() methods.

4.4.1 Volatile and non-volatile parameters

A parameter can be declared volatile in the NED file. The volatile modifier indicates that a parameter is re-
read every time a value is needed during simulation. Volatile parameters typically are used for things like random
packet generation interval, and get values like exponential(1.0) (numbers drawn from the exponential
distribution with mean 1.0).

In contrast, non-volatile NED parameters are constants, and reading their values multiple times is guaranteed to
yield the same value. When a non-volatile parameter is assigned a random value like exponential(1.0), it gets
evaluated once at the beginning of the simulation and replaced with the result, so all reads will get same (randomly
generated) value.

The typical usage for non-volatile parameters is to read them in the initialize() method of the module class,
and store the values in class variables for easy access later:

class Source : public cSimpleModule
{
 protected:
 long numJobs;
 virtual void initialize();
 ...
};

void Source::initialize()
{
 numJobs = par("numJobs");
 ...
}

volatile parameters need to be re-read every time the value is needed. For example, a parameter that
represents a random packet generation interval may be used like this:

void Source::handleMessage(cMessage *msg)
{
 ...
 scheduleAt(simTime() + par("interval").doubleValue(), timerMsg);
 ...
}

http://omnetpp.org/doc/omnetpp40/api/classcPar.html
http://omnetpp.org/doc/omnetpp40/api/classcXMLElement.html
http://omnetpp.org/doc/omnetpp40/api/classcPar.html
http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

This code looks up the the parameter by name every time. This lookup can be spared by storing the parameter
object's pointer in a class variable, resulting in the following code:

class Source : public cSimpleModule
{
 protected:
 cPar *intervalp;
 virtual void initialize();
 virtual void handleMessage(cMessage *msg);
 ...
};

void Source::initialize()
{
 intervalp = &par("interval");
 ...
}

void Source::handleMessage(cMessage *msg)
{
 ...
 scheduleAt(simTime() + intervalp->doubleValue(), timerMsg);
 ...
}

4.4.2 Changing a parameter's value

Parameter values can be changed from the program, during execution. This is rarely needed, but may be useful for
some scenarios.

NOTE
The parameter's type cannot be changed at runtime -- it must remain the type declared in the NED file. It is
also not possible to add or remove module parameters at runtime.

The methods to set the parameter value are setBoolValue(), setLongValue(), setStringValue(),
setDoubleValue(), setXMLValue(). There are also overloaded assignment operators for various types
including bool, int, long, double, const char *, and cXMLElement *.

To let a module get notified about parameter changes, override its handleParameterChange() method, see .

4.4.3 Further cPar methods

The parameter's name and type are returned by the getName() and getType() methods. The latter returns a
value from an enum, which can be converted to a readable string with the getTypeName() static method. The
enum values are BOOL, DOUBLE, LONG, STRING and XML; and since the enum is an inner type, they usually have
to be qualified with cPar::.

isVolatile() returns whether the parameter was declared volatile in the NED file. isNumeric() returns true if
the parameter type is double or long.

The str() method returns the parameter's value in a string form. If the parameter contains an expression, then the
string representation of the expression gets returned.

An example usage of the above methods:

int n = getNumParams();
for (int i=0; i<n; i++)
{
 cPar& p = par(i);

http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcPar.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcXMLElement.html
http://omnetpp.org/doc/omnetpp40/api/classcPar.html
http://omnetpp.org/doc/omnetpp40/api/classcPar.html
http://omnetpp.org/doc/omnetpp40/api/classcPar.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 ev << "parameter: " << p.getName() << "\n";
 ev << " type:" << cPar::getTypeName(p.getType()) << "\n";
 ev << " contains:" << p.str() << "\n";
}

The NED properties of a parameter can be accessed with the getProperties() method that returns a pointer to
the cProperties object that stores the properties of this parameter. Specifically, getUnit() returns the unit of
measurement associated with the parameter (@unit property in NED).

Further cPar methods and related classes like cExpression and cDynamicExpression are used by the NED
infrastructure to set up and assign parameters. They are documented in the API Reference, but they are normally
of little interest for users.

4.4.4 Emulating parameter arrays

As of version 4.0, OMNeT++ does not support parameter arrays, but in practice they can be emulated using string
parameters. One can assign the parameter a string which contains all values in a textual form (for example, "0
1.234 3.95 5.467"), then parse this string in the simple module.

The cStringTokenizer class can be quite useful for this purpose. The constructor accepts a string, which it
regards as a sequence of tokens (words) separated by delimiter characters (by default, spaces). Then you can
either enumerate the tokens and process them one by one (hasMoreTokens(), nextToken()), or use one of
the cStringTokenizer convenience methods to convert them into a vector of strings (asVector()), integers
(asIntVector()), or doubles (asDoubleVector()).

The latter methods can be used like this:

const char *vstr = par("v").stringValue(); // e.g. "aa bb cc";
std::vector<std::string> v = cStringTokenizer(vstr).asVector();

and

const char *str = "34 42 13 46 72 41";
std::vector<int> v = cStringTokenizer().asIntVector();

const char *str = "0.4311 0.7402 0.7134";
std::vector<double> v = cStringTokenizer().asDoubleVector();

The following example processes the string by enumerating the tokens:

const char *str = "3.25 1.83 34 X 19.8"; // input

std::vector<double> result;
cStringTokenizer tokenizer(str);
while (tokenizer.hasMoreTokens())
{
 const char *token = tokenizer.nextToken();
 if (strcmp(token, "X")==0)
 result.push_back(DEFAULT_VALUE);
 else
 result.push_back(atof(token));
}

4.5 Accessing gates and connections

4.5.1 Gate objects

http://omnetpp.org/doc/omnetpp40/api/classcPar.html
http://omnetpp.org/doc/omnetpp40/api/classcProperties.html
http://omnetpp.org/doc/omnetpp40/api/classcPar.html
http://omnetpp.org/doc/omnetpp40/api/classcExpression.html
http://omnetpp.org/doc/omnetpp40/api/classcDynamicExpression.html
http://omnetpp.org/doc/omnetpp40/api/classcStringTokenizer.html
http://omnetpp.org/doc/omnetpp40/api/classcStringTokenizer.html
http://omnetpp.org/doc/omnetpp40/api/classcStringTokenizer.html
http://omnetpp.org/doc/omnetpp40/api/classcStringTokenizer.html
http://omnetpp.org/doc/omnetpp40/api/classcStringTokenizer.html
http://omnetpp.org/doc/omnetpp40/api/classcStringTokenizer.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Module gates are represented by cGate objects. Gate objects know to which other gates they are connected, and
what are the channel objects associated with the links.

Accessing gates by name

The cModule class has a number of member functions that deal with gates. You can look up a gate by name using
the gate() method:

cGate *outGate = gate("out");

This works for input and output gates. However, when a gate was declared inout in NED, it is actually
represented by the simulation kernel with two gates, so the above call would result in a gate not found error. The
gate() method needs to be told whether the input or the output half of the gate you need. This can be done by
appending the "$i" or "$o" to the gate name. The following example retrieves the two gates for the inout gate
"g":

cGate *gIn = gate("g$i");
cGate *gOut = gate("g$o");

Another way is to use the gateHalf() function, which takes the inout gate's name plus either cGate::INPUT or
cGate::OUTPUT:

cGate *gIn = gateHalf("g", cGate::INPUT);
cGate *gOut = gateHalf("g", cGate::OUTPUT);

These methods throw an error if the gate does not exist, so they cannot be used to determine whether the module
has a particular gate. The hasGate() method can be used then. An example:

if (hasGate("optOut"))
 send(new cMessage(), "optOut");

A gate can also be identified and looked up by a numeric gate ID. You can get the ID from the gate itself (getId()
method), or from the module by gate name (findGate() method). The gate() method also has an overloaded
variant which returns the gate from the gate ID.

int gateId = gate("in")->getId(); // or:
int gateId = findGate("in");

As gate IDs are more useful with gate vectors, we'll cover them in detail in a later section.

Gate vectors

Gate vectors possess one cGate object per element. To access individual gates in the vector, you need to call the
gate() function with an additional index parameter. The index should be between zero and size-1. The size of the
gate vector can be read with the gateSize() method. The following example iterates through all elements in the
gate vector:

for (int i=0; i<gateSize("out"); i++) {
 cGate *gate = gate("out", i);
 //...
}

A gate vector cannot have ``holes'' in it, that is, gate() never returns NULL or throws an error if the gate vector
exists and the index is within bounds.

http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

For inout gates, gateSize() may be called with or without the "$i"/"$o" suffix, and returns the same number.

The hasGate() method may be used both with and without an index, and they mean two different things: without
an index it tells the existence of a gate vector with the given name, regardless of its size (it returns true for an
existing vector even if its size is currently zero!); with an index it also examines whether the index is within the
bounds.

Gate IDs

A gate can also be accessed by its ID. A very important property of gate IDs is that the ID of gate k in a gate vector
equals the ID of gate 0 plus the index. This allows you to efficiently access any gate in a gate vector, because
retrieving a gate by ID is more efficient than by name and index. The index of the first gate can be obtained with
gate("out",0)->getId(), but it is better to use a dedicated method, gateBaseId(), which also works if the
gate size is zero.

Two further important properties of gate IDs: they are stable and unique (within the module). By stable we mean
that the ID of a gate never changes; and by unique we not only mean that at any given time no two gates have the
same IDs, but also that IDs of deleted gates do not get reused later, so gate IDs are unique in the lifetime of a
simulation run.

NOTE
Earlier versions of OMNeT++ did not have these guarantees -- resizing a gate vector could cause its ID range
to be relocated, if it would have overlapped with the ID range of other gate vectors. OMNeT++ 4.0 solves the
same problem by interpreting the gate ID as a bitfield, basically containing bits that identify the gate name,
and other bits that hold the index. This also means that the theoretical upper limit for a gate size is now
smaller, albeit it is still big enough so that it can be safely ignored for practical purposes.

The following example iterates through a gate vector, using IDs:

int baseId = getBaseId("out");
int size = gateSize("out");
for (int i=0; i<size; i++) {
 cGate *gate = gate(baseId + i);
 //...
}

Enumerating all gates

If you need to go through all gates of a module, there are two possibilities. One is invoking the getGateNames()
method that returns the names of all gates and gate vectors the module has; then you can call
isGateVector(name) to determine whether individual names identify a scalar gate or a gate vector; then gate
vectors can be enumerated by index. Also, for inout gates getGateNames() returns the base name without the
"$i"/"$o" suffix, so the two directions need to be handled separately. The gateType(name) method can be
used to test whether a gate is inout, output or inout (it returns cGate::INOUT, cGate::INPUT, or
cGate::OUTPUT).

Clearly, the above solution can be quite hairy. An alternative is to use the GateIterator class provided by
cModule. It goes like this:

for (cModule::GateIterator i(this); !i.end(); i++) {
 cGate *gate = i();
 ...
}

Where this denotes the module whose gates are being enumerated (it can be replaced by any cModule *
variable).

http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

NOTE
In earlier OMNeT++ versions, gate IDs used to be small integers, so it made sense to iterate over all gates of
a module by enumerating all IDs from zero to a maximum, skipping the holes (NULLs). This is no longer the
case with OMNeT++ 4.0 and later versions. Moreover, the gate() method now throws an error when called
with an invalid ID, and not just returns NULL.

Adding and deleting gates

Although rarely needed, it is possible to add and remove gates during simulation. You can add scalar gates and
gate vectors, change the size of gate vectors, and remove scalar gates and whole gate vectors. It is not possible to
remove individual random gates from a gate vector, to remove one half of an inout gate (e.g. "gate$o"), or to set
different gate vector sizes on the two halves of an inout gate vector.

The cModule methods for adding and removing gates are addGate(name,type,isvector=false) and
deleteGate(name). Gate vector size can be changed by using setGateSize(name,size). None of these
methods accept "$i" / "$o" suffix in gate names.

NOTE
When memory efficiency is of concern, it is useful to know that in OMNeT++ 4.0 and later, a gate vector will
consume significantly less memory than the same number of individual scalar gates.

cGate methods

The getName() method of cGate returns the name of the gate or gate vector. If you need a string that contains
the gate index as well, getFullName() is what you want. If you also want to include the hierarchical name of the
owner module, call getFullPath().

The getType() method of cGate returns the gate type, either cGate::INPUT or cGate::OUTPUT. (It cannot
return cGate::INOUT, because an inout gate is represented by a pair of cGates.) The isVector(),
getIndex(), getVectorSize(), getId() method names speak for themselves. size() is an alias to
getVectorSize().

The getOwnerModule() method returns the module the gate object belongs to.

To illustrate these methods, we expand the gate iterator example to print some information about each gate:

for (cModule::GateIterator i(this); !i.end(); i++) {
 cGate *gate = i();
 ev << gate->getFullName() << ": ";
 ev << "id=" << gate->getId() << ", ";
 if (!gate->isVector())
 ev << "scalar gate, ";
 else
 ev << "gate " << gate->getIndex()
 << " in vector " << gate->getName()
 << " of size " << gate->getVectorSize() << ", ";
 ev << "type:" << cGate::getTypeName(gate->getType());
 ev << "\n";
}

There are further cGate methods to access and manipulate the connection(s) attached to the gate; they will be
covered in the following sections.

4.5.2 Connections

Simple module gates have normally one connection attached. Compound module gates, however, need to be
connected both inside and outside of the module to be useful. A series of connections (joined with compound

http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

module gates) is called a path. A path is directed, and it normally starts at an output gate of a simple module, ends
at an input gate of a simple module, and passes through several compound module gates.

Every cGate object contains pointers to the previous gate and the next gate in the path (returned by the
getPreviousGate() and getNextGate() methods), so a path can be thought of as a double-linked list.

The use of the previous gate / next gate pointers with various gate types is illustrated on figure below.

Figure: (a) simple module output gate, (b) compound module output gate, (c) simple module input gate, (d)
compound module input gate

The start and end gates of the path can be found with the getPathStartGate() and getPathEndGate()
methods, which simply follow the previous gate / next gate pointers until they return NULL.

The isConnectedOutside() and isConnectedInside() methods return whether a gate is connected on the
outside or on the inside. They examine either the from or the to pointer, depending on the gate type (input or
output). Again, see figure below for an illustration.

The isConnected() method is a bit different: it returns true if the gate is fully connected, that is, for a compound
module gate both inside and outside, and for a simple module gate, outside.

The following code prints the name of the gate a simple module gate is connected to:

cGate *gate = gate("somegate");
cGate *otherGate = gate->getType()==cGate::OUTPUT ? gate->getNextGate() :
 gate->getPreviousGate();
if (otherGate)
 ev << "gate is connected to: " << otherGate->getFullPath() << endl;
else
 ev << "gate not connected" << endl;

4.5.3 The connection's channel

TODO

4.6 Sending and receiving messages

On an abstract level, an OMNeT++ simulation model is a set of simple modules that communicate with each other
via message passing. The essence of simple modules is that they create, send, receive, store, modify, schedule
and destroy messages -- everything else is supposed to facilitate this task, and collect statistics about what was
going on.

Messages in OMNeT++ are instances of the cMessage class or one of its subclasses. Message objects are
created using the C++ new operator and destroyed using the delete operator when they are no longer needed.
During their lifetimes, messages travel between modules via gates and connections (or are sent directly, bypassing
the connections), or they are scheduled by and delivered to modules, representing internal events of that module.

http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Messages are described in detail in chapter [5]. At this point, all we need to know about them is that they are
referred to as cMessage * pointers. Message objects can be given descriptive names (a const char * string)
that often helps in debugging the simulation. The message name string can be specified in the constructor, so it
should not surprise you if you see something like new cMessage("token") in the examples below.

4.6.1 Sending messages

Once created, a message object can be sent through an output gate using one of the following functions:

send(cMessage *msg, const char *gateName, int index=0);
send(cMessage *msg, int gateId);
send(cMessage *msg, cGate *gate);

In the first function, the argument gateName is the name of the gate the message has to be sent through. If this
gate is a vector gate, index determines though which particular output gate this has to be done; otherwise, the
index argument is not needed.

The second and third functions use the gate Id and the pointer to the gate object. They are faster than the first one
because they don't have to search through the gate array.

Examples:

send(msg, "outGate");
send(msg, "outGates", i); // send via outGates[i]

The following code example creates and sends messages every 5 simulated seconds:

int outGateId = findGate("outGate");
while(true)
{
 send(new cMessage("job"), outGateId);
 wait(5);
}

4.6.2 Packet transmissions

When a message is sent out on a gate, it usually travels through a series of connections until it arrives at the
destination module. We call this series of connections a connection path or simply path.

Several connections in the path may have an associated channel, but there can be only one channel per path that
models nonzero transmission duration. This channel is called the transmission channel.

Transmitting a packet

The first packet can be simply send out on the output gate. However, subsequent packets may only be sent when
the transmission channel is free, that is, it has finished transmitting earlier packets.

You can get a pointer to the transmission channel by calling the getDatarateChannel() method on the output
gate. The channel's isBusy() and getTransmissionFinishTime() methods can tell you whether a channel is
currently transmitting, and when the transmission is going to finish. (When the latter is less or equal the current
simulation time, the channel is free.) If the channel is currently busy, a timer (self-message) needs to be scheduled,
and the packet should be stored until then, for example in a queue.

The output gate also has isBusy() and getTransmissionFinishTime() methods, which are basically
shortcuts to getDatarateChannel()->isBusy() and getDatarateChannel()-
>getTransmissionFinishTime(). When performance is important, it is recommended to obtain a pointer to the

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

transmission channel once, and then call isBusy() and getTransmissionFinishTime() on the cached
channel pointer.

An incomplete code example to illustrate the above process:

simtime_t txfinishTime = gate("out")->getTransmissionFinishTime();
if (txfinishTime <= simTime())
 send(pkt, "out");
else
 scheduleAt(txFinishTime, timerMsg); // also: remember pkt,
 // and ensure that when timerMsg expires, it will get sent out

Receiving a packet

Normally the packet object gets delivered to the destination module at the simulation time that corresponds to
finishing the reception of the message (ie. the arrival of its last bit). However, the receiver module may change this,
by "reprogramming" the receiver gate with the setDeliverOnReceptionStart() method:

gate("in")->setDeliverOnReceptionStart(true);

This method may only be called on simple module input gates, and it instructs the simulation kernel to give arriving
packets to the receiver module when reception begins not ends, that is, on arrival of the first bit of the message.
getDeliverOnReceptionStart() only needs to be called once, so it is usually done in the initialize()
method of the module.

When a packet gets delivered to the module, the packet's isReceptionStart() method can be called to
determine whether it corresponds to the start or end of the reception process (it should be the same as the
getDeliverOnReceptionStart() flag of the input gate), and getDuration() returns the transmission
duration.

4.6.3 Delay, data rate, bit error rate, packet error rate

Connections can be assigned three parameters, which facilitate the modeling of communication networks, but can
be useful for other models too:

propagation delay (sec)
bit error rate (errors/bit)
data rate (bits/sec)

Each of these parameters is optional. One can specify link parameters individually for each connection, or define
link types (also called channel types) once and use them throughout the whole model.

The propagation delay is the amount of time the arrival of the message is delayed by when it travels through the
channel. Propagation delay is specified in seconds.

The bit error rate has influence on the transmission of messages through the channel. The bit error rate (ber) is the
probability that a bit is incorrectly transmitted. Thus, the probability that a message of n bits length is transferred
without bit errors is:

Pno bit error = (1 - ber)length

The message has an error flag which is set in case of transmission errors.

The data rate is specified in bits/second, and it is used for transmission delay calculation. The sending time of the
message normally corresponds to the transmission of the first bit, and the arrival time of the message corresponds
to the reception of the last bit (Fig. below).

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Figure: Message transmission

The above model may not be suitable to model all protocols. In Token Ring and FDDI, stations start to repeat bits
before the whole frame arrives; in other words, frames ``flow through'' the stations, being delayed only a few bits. In
such cases, the data rate modeling feature of OMNeT++ cannot be used.

If a message travels along a path, passing through successive links and compound modules, the model behaves as
if each module waited until the last bit of the message arrives and only started its transmission afterwards. (Fig.
below).

Figure: Message sending over multiple channels

Since the above effect is usually not the desired one, typically you will want to assign data rate to only one
connection in the path.

Multiple transmissions on links

If a data rate is specified for a connection, a message will have a certain nonzero transmission time, depending on
the length of the connection. This implies that a message that is passsing through an output gate, ``reserves'' the
gate for a given period (``it is being transmitted'').

Figure: Connection with a data rate

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

While a message is under transmission, other messages have to wait until the transmission is completed. The
module sends another message while the gate is busy, a runtime error will be thrown.

The OMNeT++ class library provides functions to check whether a certain output gate is transmitting and find out
when when it finishes transmission.

If the connection with a data rate is not directly connected to the simple module's output gate but is the second one
in the path, you have to check the second gate's busy condition.

NOTE
In OMNeT++ versions prior to 4.0, sending on a busy gate was permitted, and messages got implicitly
queued up. The behaviour of the simulation kernel was changed because in practice, sending on a busy gate
was more often result of a programming error than calculated behaviour.

Implementation of message sending

Message sending is implemented like this: the arrival time and the bit error flag of a message are calculated right
inside the send() call, then the message gets inserted into the FES with the calculated arrival time. The message
does not get scheduled individually for each link. This implementation was chosen because of its run-time
efficiency.

NOTE
The consequence of this implementation is that any change in the channel's parameters (delay, bit rate, bit
error rate) will only affect messages sent after the change. Messages already under way will not be
influenced by the change.

This is not a huge problem in practice, but if it is important to model channels with changing parameters, the
solution is to insert simple modules into the path to ensure strict scheduling.

The approach of some other simulators

Note that some simulators (e.g. OPNET) assign packet queues to input gates (ports), and messages sent are
buffered at the destination module (or the remote end of the link) until they are received by the destination module.
With that approach, events and messages are separate entities, that is, a send operation includes placing the
message in the packet queue and scheduling an event, which signals the arrival of the packet. In some
implementations, output gates also have packet queues where packets will be buffered until the channel is ready
(available for transmission).

OMNeT++ gates don't have associated queues. The place where sent but not yet received messages are buffered
in the FES. OMNeT++'s approach is potentially faster than the solution mentioned above because it doesn't have
the enqueue/dequeue overhead and also spares an event creation. The drawback is, that changes to channel
parameters do not take effect immediately.

In OMNeT++ one can implement point-to-point transmitter modules with packet queues if needed. For example, the
INET Framework follows this approach.

Connection attributes (propagation delay, transmission data rate, bit error rate) are represented by the channel
object, which is available via the source gate of the connection.

cChannel *chan = outgate->getChannel();

cChannel is a small base class. All interesting attributes are part of its subclass cDatarateChannel, so you
have to cast the pointer before getting to the delay, error and data rate values.

cDatarateChannel *chan = check_and_cast<cDatarateChannel *>(outgate-
>getChannel());

http://omnetpp.org/doc/omnetpp40/api/classcChannel.html
http://omnetpp.org/doc/omnetpp40/api/classcChannel.html
http://omnetpp.org/doc/omnetpp40/api/classcDatarateChannel.html
http://omnetpp.org/doc/omnetpp40/api/classcDatarateChannel.html
http://omnetpp.org/doc/omnetpp40/api/classcDatarateChannel.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

double d = chan->getDelay();
double e = chan->getBitErrorRate();
double r = chan->getDatarate();

You can also change the channel attributes with the corresponding setXXX() functions. Note, however, that (as it
was explained in section) changes will not affect messages already sent, even if they have not begun transmission
yet.

Channel transmission state

The isBusy() member function returns whether the gate is currently transmitting, and if so, the
getTransmissionFinishTime() member function returns the simulation time when the gate is going to finish
transmitting. (If the gate in not currently transmitting, getTransmissionFinishTime() returns the simulation
time when it finished its last transmission.)

An example:

cMessage *packet = new cMessage("DATA");
packet->setByteLength(1024); // 1K

if (gate("TxGate")->isBusy()) // if gate is busy, wait until it
{ // becomes free
 wait(gate("TxGate")->getTransmissionFinishTime() - simTime());
}
send(packet, "TxGate");

If the connection with a data rate is not directly connected to the simple module's output gate but is the second one
in the path, you have to check the second gate's busy condition. You could use the following code:

if (gate("out")->getNextGate()->isBusy())
 //...

Note that if data rates change during the simulation, the changes will affect only the messages that are sent after
the change.

4.6.4 Broadcasts and retransmissions

When you implement broadcasts or retransmissions, two frequently occurring tasks in protocol simulation, you
might feel tempted to use the same message in multiple send() operations. Do not do it -- you cannot send the
same message object multiple times. The solution in such cases is duplicating the message.

Broadcasting messages

In your model, you may need to broadcast a message to several destinations. Broadcast can be implemented in a
simple module by sending out copies of the same message, for example on every gate of a gate vector. As
described above, you cannot use the same message pointer for in all send() calls -- what you have to do instead
is create copies (duplicates) of the message object and send them.

Example:

for (int i=0; i<n; i++)
{
 cMessage *copy = msg->dup();
 send(copy, "out", i);
}
delete msg;

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

You might have noticed that copying the message for the last gate is redundant: we can just send out the original
message there. Also, we can utilize gate IDs to spare looking up the gate by name for each send operation. The
optimized version of the code looks like this:

int outGateBaseId = gateBaseId("out");
for (int i=0; i<n; i++)
 send(i==n-1 ? msg : msg->dup(), outGateBaseId+i);

Retransmissions

Many communication protocols involve retransmissions of packets (frames). When implementing retransmissions,
you cannot just hold a pointer to the same message object and send it again and again -- you'd get the not owner
of message error on the first resend.

Instead, whenever it comes to (re)transmission, you should create and send copies of the message, and retain the
original. When you are sure there will not be any more retransmission, you can delete the original message.

Creating and sending a copy:

// (re)transmit packet:
cMessage *copy = packet->dup();
send(copy, "out");

and finally (when no more retransmissions will occur):

delete packet;

Why?

A message is like any real world object -- it cannot be at two places at the same time. Once you've sent it, the
message object no longer belongs to the module: it is taken over by the simulation kernel, and will eventually be
delivered to the destination module. The sender module should not even refer to its pointer any more. Once the
message arrived in the destination module, that module will have full authority over it -- it can send it on, destroy it
immediately, or store it for further handling. The same applies to messages that have been scheduled -- they
belong to the simulation kernel until they are delivered back to the module.

To enforce the rules above, all message sending functions check that you actually own the message you are about
to send. If the message is with another module, it is currently scheduled or in a queue etc., you'll get a runtime
error: not owner of message.

[The feature does not increase runtime overhead significantly, because it uses the object ownership management (described
in Section [6.11]); it merely checks that the owner of the message is the module that wants to send it.]

4.6.5 Delayed sending

It is often needed to model a delay (processing time, etc.) immediately followed by message sending. In OMNeT++,
it is possible to implement it like this:

wait(someDelay);
send(msg, "outgate");

If the module needs to react to messages that arrive during the delay, wait() cannot be used and the timer
mechanism described in Section [4.6.9], ``Self-messages'', would need to be employed.

There is also a more straightforward method than those mentioned above: delayed sending. Delayed sending can

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

be achieved by using one of these functions:

sendDelayed(cMessage *msg, double delay, const char *gateName, int index);
sendDelayed(cMessage *msg, double delay, int gateId);
sendDelayed(cMessage *msg, double delay, cGate *gate);

The arguments are the same as for send(), except for the extra delay parameter. The effect of the function is the
same as if the module had kept the message for the delay interval and sent it afterwards. That is, the sending time
of the message will be the current simulation time (time at the sendDelayed() call) plus the delay. The delay
value must be non-negative.

Example:

sendDelayed(msg, 0.005, "outGate");

4.6.6 Direct message sending

Sometimes it is necessary or convenient to ignore gates/connections and send a message directly to a remote
destination module. The sendDirect() function does that:

sendDirect(cMessage *msg, double delay, cModule *mod, int gateId)
sendDirect(cMessage *msg, double delay, cModule *mod, const char *gateName, int
index=-1)
sendDirect(cMessage *msg, double delay, cGate *gate)

In addition to the message and a delay, it also takes the destination module and gate. The gate should be an input
gate and should not be connected. In other words, the module needs dedicated gates for receiving via
sendDirect(). (Note: For leaving a gate unconnected in a compound module, you'll need to specify
connections nocheck: instead of plain connections: in the NED file.)

An example:

cModule *destinationModule = getParentModule()->getSubmodule("node2");
double delay = truncnormal(0.005, 0.0001);
sendDirect(new cMessage("packet"), delay, destinationModule, "inputGate");

At the destination module, there is no difference between messages received directly and those received over
connections.

4.6.7 Receiving messages

With activity() only! The message receiving functions can only be used in the activity() function,
handleMessage() gets received messages in its argument list.

Messages are received using the receive() function. receive() is a member of cSimpleModule.

cMessage *msg = receive();

The receive() function accepts an optional timeout parameter. (This is a delta, not an absolute simulation time.)
If an appropriate message doesn't arrive within the timeout period, the function returns a NULL pointer.

[Putaside-queue and the functions receiveOn(), receiveNew(), and receiveNewOn() were deprecated in OMNeT++ 2.3 and
removed in OMNeT++ 3.0.]

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

simtime_t timeout = 3.0;
cMessage *msg = receive(timeout);

if (msg==NULL)
{
 ... // handle timeout
}
else
{
 ... // process message
}

4.6.8 The wait() function

With activity() only! The wait() function's implementation contains a receive() call which cannot be used in
handleMessage().

The wait() function suspends the execution of the module for a given amount of simulation time (a delta).

wait(delay);

In other simulation software, wait() is often called hold. Internally, the wait() function is implemented by a
scheduleAt() followed by a receive(). The wait() function is very convenient in modules that do not need to
be prepared for arriving messages, for example message generators. An example:

for (;;)
{
 // wait for a (potentially random amount of) time, specified
 // in the interArrivalTime volatile module parameter
 wait(par("interArrivalTime").doubleValue());

 // generate and send message
 ...
}

It is a runtime error if a message arrives during the wait interval. If you expect messages to arrive during the wait
period, you can use the waitAndEnqueue() function. It takes a pointer to a queue object (of class cQueue,
described in chapter [6]) in addition to the wait interval. Messages that arrive during the wait interval will be
accumulated in the queue, so you can process them after the waitAndEnqueue() call returned.

cQueue queue("queue");
...
waitAndEnqueue(waitTime, &queue);
if (!queue.empty())
{
 // process messages arrived during wait interval
 ...
}

4.6.9 Modeling events using self-messages

In most simulation models it is necessary to implement timers, or schedule events that occur at some point in the
future. For example, when a packet is sent by a communications protocol model, it has to schedule an event that
would occur when a timeout expires, because it will have to resent the packet then. As another example, suppose
you want to write a model of a server which processes jobs from a queue. Whenever it begins processing a job, the
server model will want to schedule an event to occur when the job finishes processing, so that it can begin
processing the next job.

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

In OMNeT++ you solve such tasks by letting the simple module send a message to itself; the message would be
delivered to the simple module at a later point of time. Messages used this way are called self-messages. Self-
messages are used to model events which occur within the module.

Scheduling an event

The module can send a message to itself using the scheduleAt() function. scheduleAt() accepts an absolute
simulation time, usually calculated as simTime()+delta:

scheduleAt(absoluteTime, msg);
scheduleAt(simtime()+delta, msg);

Self-messages are delivered to the module in the same way as other messages (via the usual receive calls or
handleMessage()); the module may call the isSelfMessage() member of any received message to determine
if it is a self-message.

As an example, here's how you could implement your own wait() function in an activity() simple module, if
the simulation kernel didn't provide it already:

cMessage *msg = new cMessage();
scheduleAt(simtime()+waitTime, msg);
cMessage *recvd = receive();
if (recvd!=msg)
 // hmm, some other event occurred meanwhile: error!
...

You can determine if a message is currently in the FES by calling its isScheduled() member:

if (msg->isScheduled())
 // currently scheduled
else
 // not scheduled

Re-scheduling an event

If you want to reschedule an event which is currently scheduled to a different simulation time, first you have to
cancel it using cancelEvent().

Cancelling an event

Scheduled self-messages can be cancelled (removed from the FES). This is particularly useful because self-
messages are often used to model timers.

cancelEvent(msg);

The cancelEvent() function takes a pointer to the message to be cancelled, and also returns the same pointer.
After having it cancelled, you may delete the message or reuse it in the next scheduleAt() calls.
cancelEvent() gives an error if the message is not in the FES.

Implementing timers

The following example shows how to implement timers:

cMessage *timeoutEvent = new cMessage("timeout");

scheduleAt(simTime()+10.0, timeoutEvent);
//...

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

cMessage *msg = receive();
if (msg == timeoutEvent)
{
 // timeout expired
}
else
{
 // other message has arrived, timer can be cancelled now:
 delete cancelEvent(timeoutEvent);
}

4.7 Stopping the simulation

4.7.1 Normal termination

You can finish the simulation with the endSimulation() function:

endSimulation();

endSimulation() is rarely needed in practice because you can specify simulation time and CPU time limits in
the ini file (see later).

4.7.2 Raising errors

If your simulation encounters an error condition, you can throw a cRuntimeError exception to terminate the
simulation with an error message (and in case of Cmdenv, a nonzero exit code). The cRuntimeError class has a
constructor whose argument list is similar to printf():

if (windowSize<1)
 throw cRuntimeError("Invalid window size %d; must be >=1", windowSize);

Do not include a newline (``\n'') or punctuation (period or exclamation mark) in the error text; it will be added by
OMNeT++.

You can achieve the same effect by calling the error() method of cModule.

if (windowSize<1)
 error("Invalid window size %d; must be >=1", windowSize);

Of course, the error() method can only be used when a module pointer is available.

4.8 Finite State Machines in OMNeT++

Overview

Finite State Machines (FSMs) can make life with handleMessage() easier. OMNeT++ provides a class and a set
of macros to build FSMs. OMNeT++'s FSMs work very much like OPNET's or SDL's.

The key points are:

There are two kinds of states: transient and steady. At each event (that is, at each call to
handleMessage()), the FSM transitions out of the current (steady) state, undergoes a series of state
changes (runs through a number of transient states), and finally arrives at another steady state. Thus

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcRuntimeError.html
http://omnetpp.org/doc/omnetpp40/api/classcRuntimeError.html
http://omnetpp.org/doc/omnetpp40/api/classcRuntimeError.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

between two events, the system is always in one of the steady states. Transient states are therefore not
really a must -- they exist only to group actions to be taken during a transition in a convenient way.
You can assign program code to handle entering and leaving a state (known as entry/exit code). Staying in
the same state is handled as leaving and re-entering the state.
Entry code should not modify the state (this is verified by OMNeT++). State changes (transitions) must be put
into the exit code.

OMNeT++'s FSMs can be nested. This means that any state (or rather, its entry or exit code) may contain a further
full-fledged FSM_Switch() (see below). This allows you to introduce sub-states and thereby bring some structure
into the state space if it would become too large.

The FSM API

FSM state is stored in an object of type cFSM. The possible states are defined by an enum; the enum is also a
place to define, which state is transient and which is steady. In the following example, SLEEP and ACTIVE are
steady states and SEND is transient (the numbers in parentheses must be unique within the state type and they
are used for constructing the numeric IDs for the states):

enum {
 INIT = 0,
 SLEEP = FSM_Steady(1),
 ACTIVE = FSM_Steady(2),
 SEND = FSM_Transient(1),
};

The actual FSM is embedded in a switch-like statement, FSM_Switch(), where you have cases for entering and
leaving each state:

FSM_Switch(fsm)
{
 case FSM_Exit(state1):
 //...
 break;
 case FSM_Enter(state1):
 //...
 break;
 case FSM_Exit(state2):
 //...
 break;
 case FSM_Enter(state2):
 //...
 break;
 //...
};

State transitions are done via calls to FSM_Goto(), which simply stores the new state in the cFSM object:

FSM_Goto(fsm,\textit{newState});

The FSM starts from the state with the numeric code 0; this state is conventionally named INIT.

Debugging FSMs

FSMs can log their state transitions ev, with the output looking like this:

...
FSM GenState: leaving state SLEEP
FSM GenState: entering state ACTIVE
...
FSM GenState: leaving state ACTIVE

http://omnetpp.org/doc/omnetpp40/api/classcFSM.html
http://omnetpp.org/doc/omnetpp40/api/classcFSM.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

FSM GenState: entering state SEND
FSM GenState: leaving state SEND
FSM GenState: entering state ACTIVE
...
FSM GenState: leaving state ACTIVE
FSM GenState: entering state SLEEP
...

To enable the above output, you have to #define FSM_DEBUG before including omnetpp.h.

#define FSM_DEBUG // enables debug output from FSMs
#include <omnetpp.h>

The actual logging is done via the FSM_Print() macro. It is currently defined as follows, but you can change the
output format by undefining FSM_Print() after including omnetpp.ini and providing a new definition instead.

#define FSM_Print(fsm,exiting)
 (ev << "FSM " << (fsm).getName()
 << ((exiting) ? ": leaving state " : ": entering state ")
 << (fsm).getStateName() << endl)

Implementation

The FSM_Switch() is a macro. It expands to a switch() statement embedded in a for() loop which repeats
until the FSM reaches a steady state. (The actual code is rather scary, but if you're dying to see it, it is in cfsm.h.)

Infinite loops are avoided by counting state transitions: if an FSM goes through 64 transitions without reaching a
steady state, the simulation will terminate with an error message.

An example

Let us write another bursty generator. It will have two states, SLEEP and ACTIVE. In the SLEEP state, the module
does nothing. In the ACTIVE state, it sends messages with a given inter-arrival time. The code was taken from the
Fifo2 sample simulation.

#define FSM_DEBUG
#include <omnetpp.h>

class BurstyGenerator : public cSimpleModule
{
 protected:
 // parameters
 double sleepTimeMean;
 double burstTimeMean;
 double sendIATime;
 cPar *msgLength;

 // FSM and its states
 cFSM fsm;
 enum {
 INIT = 0,
 SLEEP = FSM_Steady(1),
 ACTIVE = FSM_Steady(2),
 SEND = FSM_Transient(1),
 };

 // variables used
 int i;
 cMessage *startStopBurst;
 cMessage *sendMessage;

 // the virtual functions

http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcPar.html
http://omnetpp.org/doc/omnetpp40/api/classcFSM.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 virtual void initialize();
 virtual void handleMessage(cMessage *msg);
};

Define_Module(BurstyGenerator);

void BurstyGenerator::initialize()
{
 fsm.setName("fsm");
 sleepTimeMean = par("sleepTimeMean");
 burstTimeMean = par("burstTimeMean");
 sendIATime = par("sendIATime");
 msgLength = &par("msgLength");
 i = 0;
 WATCH(i); // always put watches in initialize()
 startStopBurst = new cMessage("startStopBurst");
 sendMessage = new cMessage("sendMessage");
 scheduleAt(0.0,startStopBurst);
}

void BurstyGenerator::handleMessage(cMessage *msg)
{
 FSM_Switch(fsm)
 {
 case FSM_Exit(INIT):
 // transition to SLEEP state
 FSM_Goto(fsm,SLEEP);
 break;
 case FSM_Enter(SLEEP):
 // schedule end of sleep period (start of next burst)
 scheduleAt(simTime()+exponential(sleepTimeMean),
 startStopBurst);
 break;
 case FSM_Exit(SLEEP):
 // schedule end of this burst
 scheduleAt(simTime()+exponential(burstTimeMean),
 startStopBurst);
 // transition to ACTIVE state:
 if (msg!=startStopBurst) {
 error("invalid event in state ACTIVE");
 }
 FSM_Goto(fsm,ACTIVE);
 break;
 case FSM_Enter(ACTIVE):
 // schedule next sending
 scheduleAt(simTime()+exponential(sendIATime), sendMessage);
 break;
 case FSM_Exit(ACTIVE):
 // transition to either SEND or SLEEP
 if (msg==sendMessage) {
 FSM_Goto(fsm,SEND);
 } else if (msg==startStopBurst) {
 cancelEvent(sendMessage);
 FSM_Goto(fsm,SLEEP);
 } else {
 error("invalid event in state ACTIVE");
 }
 break;
 case FSM_Exit(SEND):
 {
 // generate and send out job
 char msgname[32];
 sprintf(msgname, "job-%d", ++i);
 ev << "Generating " << msgname << endl;
 cMessage *job = new cMessage(msgname);
 job->setBitLength((long) *msgLength);
 job->setTimestamp();
 send(job, "out");
 // return to ACTIVE

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 FSM_Goto(fsm,ACTIVE);
 break;
 }
 }
}

4.9 Walking the module hierarchy

Module vectors

If a module is part of a module vector, the getIndex() and size() member functions can be used to query its
index and the vector size:

ev << "This is module [" << module->getIndex() <<
 "] in a vector of size [" << module->size() << "].\n";

Module IDs

Each module in the network has a unique ID that is returned by the getId() member function. The module ID is
used internally by the simulation kernel to identify modules.

int myModuleId = getId();

If you know the module ID, you can ask the simulation object (a global variable) to get back the module pointer:

int id = 100;
cModule *mod = simulation.getModule(id);

Module IDs are guaranteed to be unique, even when modules are created and destroyed dynamically. That is, an
ID which once belonged to a module which was deleted is never issued to another module later.

Walking up and down the module hierarchy

The surrounding compound module can be accessed by the getParentModule() member function:

cModule *parent = getParentModule();

For example, the parameters of the parent module are accessed like this:

double timeout = getParentModule()->par("timeout");

cModule 's findSubmodule() and getSubmodule() member functions make it possible to look up the module's
submodules by name (or name+index if the submodule is in a module vector). The first one returns the numeric
module ID of the submodule, and the latter returns the module pointer. If the submodule is not found, they return -1
or NULL, respectively.

int submodID = compoundmod->findSubmodule("child",5);
cModule *submod = compoundmod->getSubmodule("child",5);

The getModuleByRelativePath() member function can be used to find a submodule nested deeper than one
level below. For example,

compoundmod->getModuleByRelativePath("child[5].grandchild");

http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

would give the same results as

compoundmod->getSubmodule("child",5)->getSubmodule("grandchild");

(Provided that child[5] does exist, because otherwise the second version would crash with an access violation
because of the NULL pointer dereference.)

The cSimulation::getModuleByPath() function is similar to cModule 's moduleByRelativePath() function,
and it starts the search at the top-level module.

Iterating over submodules

To access all modules within a compound module, use cSubModIterator.

For example:

for (cSubModIterator iter(*getParentModule()); !iter.end(); iter++)
{
 ev << iter()->getFullName();
}

(iter() is pointer to the current module the iterator is at.)

The above method can also be used to iterate along a module vector, since the getName() function returns the
same for all modules:

for (cSubModIterator iter(*getParentModule()); !iter.end(); iter++)
{
 if (iter()->isName(getName())) // if iter() is in the same
 // vector as this module
 {
 int itsIndex = iter()->getIndex();
 // do something to it
 }
}

Walking along links

To determine the module at the other end of a connection, use cGate 's getPreviousGate(), getNextGate()
and getOwnerModule() functions. For example:

cModule *neighbour = gate("out")->getNextGate()->getOwnerModule();

For input gates, you would use getPreviousGate() instead of getNextGate().

4.10 Direct method calls between modules

In some simulation models, there might be modules which are too tightly coupled for message-based
communication to be efficient. In such cases, the solution might be calling one simple module's public C++ methods
from another module.

Simple modules are C++ classes, so normal C++ method calls will work. Two issues need to be mentioned,
however:

how to get a pointer to the object representing the module;
how to let the simulation kernel know that a method call across modules is taking place.

http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcSubModIterator.html
http://omnetpp.org/doc/omnetpp40/api/classcSubModIterator.html
http://omnetpp.org/doc/omnetpp40/api/classcSubModIterator.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Typically, the called module is in the same compound module as the caller, so the getParentModule() and
getSubmodule() methods of cModule can be used to get a cModule* pointer to the called module. (Further
ways to obtain the pointer are described in the section [4.9].) The cModule* pointer then has to be cast to the
actual C++ class of the module, so that its methods become visible.

This makes the following code:

cModule *calleeModule = getParentModule()->getSubmodule("callee");
Callee *callee = check_and_cast<Callee *>(calleeModule);
callee->doSomething();

The check_and_cast<>() template function on the second line is part of OMNeT++. It does a standard C++
dynamic_cast, and checks the result: if it is NULL, check_and_cast raises an OMNeT++ error. Using
check_and_cast saves you from writing error checking code: if calleeModule from the first line is NULL
because the submodule named "callee" was not found, or if that module is actually not of type Callee, an error
gets thrown from check_and_cast.

The second issue is how to let the simulation kernel know that a method call across modules is taking place. Why
is this necessary in the first place? First, the simulation kernel always has to know which module's code is currently
executing, in order to several internal mechanisms to work correctly. (One such mechanism is ownership handling.)
Second, the Tkenv simulation GUI can animate method calls, but to be able to do that, it has to know about them.

The solution is to add the Enter_Method() or Enter_Method_Silent() macro at the top of the methods that
may be invoked from other modules. These calls perform context switching, and, in case of Enter_Method(),
notify the simulation GUI so that animation of the method call can take place. Enter_Method_Silent() does not
animate the call. Enter_Method() expects a printf()-like argument list -- the resulting string will be displayed
during animation.

void Callee::doSomething()
{
 Enter_Method("doSomething()");
 ...
}

4.11 Dynamic module creation

4.11.1 When do you need dynamic module creation

In some situations you need to dynamically create and maybe destroy modules. For example, when simulating a
mobile network, you may create a new module whenever a new user enters the simulated area, and dispose of
them when they leave the area.

As another example, when implementing a server or a transport protocol, it might be convenient to dynamically
create modules to serve new connections, and dispose of them when the connection is closed. (You would write a
manager module that receives connection requests and creates a module for each connection. The Dyna example
simulation does something like this.)

Both simple and compound modules can be created dynamically. If you create a compound module, all its
submodules will be created recursively.

It is often convenient to use direct message sending with dynamically created modules.

Once created and started, dynamic modules aren't any different from ``static'' modules; for example, one could also
delete static modules during simulation (though it is rarely useful.)

http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

4.11.2 Overview

To understand how dynamic module creation works, you have to know a bit about how normally OMNeT++
instantiates modules. Each module type (class) has a corresponding factory object of the class cModuleType.
This object is created under the hood by the Define_Module() macro, and it has a factory function which can
instantiate the module class (this function basically only consists of a return new module-class(...)
statement).

The cModuleType object can be looked up by its name string (which is the same as the module class name).
Once you have its pointer, it is possible to call its factory method and create an instance of the corresponding
module class -- without having to include the C++ header file containing module's class declaration into your source
file.

The cModuleType object also knows what gates and parameters the given module type has to have. (This info
comes from compiled NED code.)

Simple modules can be created in one step. For a compound module, the situation is more complicated, because
its internal structure (submodules, connections) may depend on parameter values and gate vector sizes. Thus, for
compound modules it is generally required to first create the module itself, second, set parameter values and gate
vector sizes, and then call the method that creates its submodules and internal connections.

As you know already, simple modules with activity() need a starter message. For statically created modules,
this message is created automatically by OMNeT++, but for dynamically created modules, you have to do this
explicitly by calling the appropriate functions.

Calling initialize() has to take place after insertion of the starter messages, because the initializing code may
insert new messages into the FES, and these messages should be processed after the starter message.

4.11.3 Creating modules

The first step, finding the factory object:

cModuleType *moduleType = cModuleType::get("WirelessNode");

Simplified form

cModuleType has a createScheduleInit(const char *name, cModule *parentmod) convenience
function to get a module up and running in one step.

mod = modtype->createScheduleInit("node",this);

It does create() + buildInside() + scheduleStart(now) + callInitialize().

This method can be used for both simple and compound modules. Its applicability is somewhat limited, however:
because it does everything in one step, you do not have the chance to set parameters or gate sizes, and to
connect gates before initialize() is called. (initialize() expects all parameters and gates to be in place
and the network fully built when it is called.) Because of the above limitation, this function is mainly useful for
creating basic simple modules.

Expanded form

If the previous simple form cannot be used. There are 5 steps:

1. find factory object
2. create module

http://omnetpp.org/doc/omnetpp40/api/classcModuleType.html
http://omnetpp.org/doc/omnetpp40/api/classcModuleType.html
http://omnetpp.org/doc/omnetpp40/api/classcModuleType.html
http://omnetpp.org/doc/omnetpp40/api/classcModuleType.html
http://omnetpp.org/doc/omnetpp40/api/classcModuleType.html
http://omnetpp.org/doc/omnetpp40/api/classcModuleType.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

3. set up parameters and gate sizes (if needed)
4. call function that builds out submodules and finalizes the module
5. call function that creates activation message(s) for the new simple getModule(s)

Each step (except for Step 3.) can be done with one line of code.

See the following example, where Step 3 is omitted:

// find factory object
cModuleType *moduleType = cModuleType::get("WirelessNode");

// create (possibly compound) module and build its submodules (if any)
cModule *module = moduleType->create("node", this);
module->buildInside();

// create activation message
module->scheduleStart(simTime());

If you want to set up parameter values or gate vector sizes (Step 3.), the code goes between the create() and
buildInside() calls:

// create
cModuleType *moduleType = cModuleType::get("WirelessNode");
cModule *module = moduleType->create("node", this);

// set up parameters and gate sizes before we set up its submodules
module->par("address") = ++lastAddress;
module->setGateSize("in", 3);
module->setGateSize("out", 3);

// create internals, and schedule it
module->buildInside();
module->scheduleStart(simTime());

4.11.4 Deleting modules

To delete a module dynamically:

module->deleteModule();

If the module was a compound module, this involves recursively destroying all its submodules. A simple module
can also delete itself; in this case, the deleteModule() call does not return to the caller.

Currently, you cannot safely delete a compound module from a simple module in it; you must delegate the job to a
module outside the compound module.

4.11.5 Module deletion and finish()

When you delete a module during simulation, its finish() function is not called automatically (deleteModule()
doesn't do it.) How the module was created doesn't play any role here: finish() gets called for all modules -- at
the end of the simulation. If a module doesn't live that long, finish() is not invoked, but you can still manually
invoke it.

You can use the callFinish() function to arrange finish() to be called. It is usually not a good idea to invoke
finish() directly. If you're deleting a compound module, callFinish() will recursively invoke finish() for all
submodules, and if you're deleting a simple module from another module, callFinish() will do the context
switch for the duration of the call.

http://omnetpp.org/doc/omnetpp40/api/classcModuleType.html
http://omnetpp.org/doc/omnetpp40/api/classcModuleType.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcModuleType.html
http://omnetpp.org/doc/omnetpp40/api/classcModuleType.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

[The finish() function is even made protected in cSimpleModule, in order to discourage its invocation from other modules.]

Example:

mod->callFinish();
mod->deleteModule();

4.11.6 Creating connections

Connections can be created using cGate 's connectTo() method.

[The earlier connect() global functions that accepted two gates have been deprecated, and may be removed from further
OMNeT++ releases.]

connectTo() should be invoked on the source gate of the connection, and expects the destination gate pointer as
an argument:

srcGate->connectTo(destGate);

The source and destination words correspond to the direction of the arrow in NED files.

As an example, we create two modules and connect them in both directions:

cModuleType *moduleType = cModuleType::get("TicToc");
cModule *a = modtype->createScheduleInit("a",this);
cModule *b = modtype->createScheduleInit("b",this);

a->gate("out")->connectTo(b->gate("in"));
b->gate("out")->connectTo(a->gate("in"));

connectTo() also accepts a channel object as an additional, optional argument. Channels are subclassed from
cChannel. Almost always you'll want use an instance of cDatarateChannel as channel -- this is the one that
supports delay, bit error rate and data rate. The channel object will be owned by the source gate of the connection,
and you cannot reuse the same channel object with several connections.

cDatarateChannel has setDelay(), setBitErrorRate() and setDatarate() methods to set up the
channel attributes.

An example that sets up a channel with a delay:

cDatarateChannel *channel = new cDatarateChannel("channel");
channel->setDelay(0.001);

a->gate("out")->connectTo(b->gate("in"), channel); // a,b are modules

4.11.7 Removing connections

The disconnect() method of cGate can be used to remove connections. This method has to be invoked on the
source side of the connection. It also destroys the channel object associated with the connection, if one has been
set.

srcGate->disconnect();

5 Messages

http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcModuleType.html
http://omnetpp.org/doc/omnetpp40/api/classcModuleType.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcChannel.html
http://omnetpp.org/doc/omnetpp40/api/classcDatarateChannel.html
http://omnetpp.org/doc/omnetpp40/api/classcDatarateChannel.html
http://omnetpp.org/doc/omnetpp40/api/classcDatarateChannel.html
http://omnetpp.org/doc/omnetpp40/api/classcDatarateChannel.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

5.1 Messages and packets

5.1.1 The cMessage class

cMessage is a central class in OMNeT++. Objects of cMessage and subclasses may model a number of things:
events; messages; packets, frames, cells, bits or signals travelling in a network; entities travelling in a system and
so on.

Attributes

A cMessage object has number of attributes. Some are used by the simulation kernel, others are provided just for
the convenience of the simulation programmer. A more-or-less complete list:

The name attribute is a string (const char *), which can be freely used by the simulation programmer.
The message name appears in many places in Tkenv (for example, in animations), and it is generally very
useful to choose a descriptive name. This attribute is inherited from cOwnedObject (see section [6.1.1]).
The message kind attribute is supposed to carry some message type information. Zero and positive values
can be freely used for any purpose. Negative values are reserved for use by the OMNeT++ simulation library.
The length attribute (understood in bits) is used to compute transmission delay when the message travels
through a connection that has an assigned data rate.
The bit error flag attribute is set to true by the simulation kernel with a probability of 1-(1-ber)length when the
message is sent through a connection that has an assigned bit error rate (ber).
The priority attribute is used by the simulation kernel to order messages in the message queue (FES) that
have the same arrival time values.
The time stamp attribute is not used by the simulation kernel; you can use it for purposes such as noting the
time when the message was enqueued or re-sent.
Other attributes and data members make simulation programming easier, they will be discussed later:
parameter list, encapsulated message, control info and context pointer.
A number of read-only attributes store information about the message's (last) sending/scheduling:
source/destination module and gate, sending (scheduling) and arrival time. They are mostly used by the
simulation kernel while the message is in the FES, but the information is still in the message object when a
module receives the message.

Basic usage

The cMessage constructor accepts several arguments. Most commonly, you would create a message using an
object name (a const char * string) and a message kind (int):

cMessage *msg = new cMessage("MessageName", msgKind);

Both arguments are optional and initialize to the null string ("") and 0, so the following statements are also valid:

cMessage *msg = new cMessage();
cMessage *msg = new cMessage("MessageName");

It is a good idea to always use message names -- they can be extremely useful when debugging or demonstrating
your simulation.

Message kind is usually initialized with a symbolic constant (e.g. an enum value) which signals what the message
object represents in the simulation (i.e. a data packet, a jam signal, a job, etc.) Please use positive values or zero
only as message kind -- negative values are reserved for use by the simulation kernel.

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

The cMessage constructor accepts further arguments too (length, priority, bit error flag), but for readability of the
code it is best to set them explicitly via the set...() methods described below. Length and priority are integers,
and the bit error flag is boolean.

Once a message has been created, its data members can be changed by the following functions:

msg->setKind(kind);
msg->setBitLength(length);
msg->setByteLength(lengthInBytes);
msg->setPriority(priority);
msg->setBitError(err);
msg->setTimestamp();
msg->setTimestamp(simtime);

With these functions the user can set the message kind, the message length, the priority, the error flag and the
time stamp. The setTimeStamp() function without any argument sets the time stamp to the current simulation
time. setByteLength() sets the same length field as setBitLength(), only the parameters gets internally
multiplied by 8.

The values can be obtained by the following functions:

int k = msg->getKind();
int p = msg->getPriority();
int l = msg->getBitLength();
int lb = msg->getByteLength();
bool b = msg->hasBitError();
simtime_t t = msg->getTimestamp();

getByteLength() also reads the length field as length(), but the result gets divided by 8 and rounded up.

Duplicating messages

It is often necessary to duplicate a message (for example, sending one and keeping a copy). This can be done in
the same way as for any other OMNeT++ object:

cMessage *copy = msg->dup();

or

cMessage *copy = new cMessage(*msg);

The two are equivalent. The resulting message is an exact copy of the original, including message parameters
(cMsgPar or other object types) and encapsulated messages.

5.1.2 Self-messages

Using a message as self-message

Messages are often used to represent events internal to a module, such as a periodically firing timer on expiry of a
timeout. A message is termed self-message when it is used in such a scenario -- otherwise self-messages are
normal messages, of class cMessage or a class derived from it.

When a message is delivered to a module by the simulation kernel, you can call the isSelfMessage() method to
determine if it is a self-message; it other words, if it was scheduled with scheduleAt() or was sent with one of
the send...() methods. The isScheduled() method returns true if the message is currently scheduled. A
scheduled message can also be cancelled (cancelEvent()).

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMsgPar.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

bool isSelfMessage();
bool isScheduled();

The following methods return the time of creating and scheduling the message as well as its arrival time. While the
message is scheduled, arrival time is the time it will be delivered to the module.

simtime_t getCreationTime();
simtime_t getSendingTime();
simtime_t getArrivalTime();

Context pointer

cMessage contains a void* pointer which is set/returned by the setContextPointer() and
getContextPointer() functions:

void *context =...;
msg->setContextPointer(context);
void *context2 = msg->getContextPointer();

It can be used for any purpose by the simulation programmer. It is not used by the simulation kernel, and it is
treated as a mere pointer (no memory management is done on it).

Intended purpose: a module which schedules several self-messages (timers) will need to identify a self-message
when it arrives back to the module, ie. the module will have to determine which timer went off and what to do then.
The context pointer can be made to point at a data structure kept by the module which can carry enough ``context''
information about the event.

5.1.3 Modelling packets

Arrival gate and time

The following methods can tell where the message came from and where it arrived (or will arrive if it is currently
scheduled or under way.)

int getSenderModuleId();
int getSenderGateId();
int getArrivalModuleId();
int getArrivalGateId();

The following methods are just convenience functions which build on the ones above.

cModule *getSenderModule();
cGate *getSenderGate();
cGate *getArrivalGate();

And there are further convenience functions to tell whether the message arrived on a specific gate given with id or
name+index.

bool arrivedOn(int id);
bool arrivedOn(const char *gname, int gindex=0);

The following methods return message creation time and the last sending and arrival times.

simtime_t getCreationTime();
simtime_t getSendingTime();
simtime_t getArrivalTime();

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Control info

One of the main application areas of OMNeT++ is the simulation of telecommunication networks. Here, protocol
layers are usually implemented as modules which exchange packets. Packets themselves are represented by
messages subclassed from cMessage.

However, communication between protocol layers requires sending additional information to be attached to
packets. For example, a TCP implementation sending down a TCP packet to IP will want to specify the destination
IP address and possibly other parameters. When IP passes up a packet to TCP after decapsulation from the IP
header, it'll want to let TCP know at least the source IP address.

This additional information is represented by control info objects in OMNeT++. Control info objects have to be
subclassed from cObject (a small footprint base class with no data members), and attached to the messages
representing packets. cMessage has the following methods for this purpose:

void setControlInfo(cObject *controlInfo);
cObject *getControlInfo();
cObject *removeControlInfo();

When a "command" is associated with the message sending (such as TCP OPEN, SEND, CLOSE, etc), the
message kind field (getKind(), setKind() methods of cMessage) should carry the command code. When the
command doesn't involve a data packet (e.g. TCP CLOSE command), a dummy packet (empty cMessage) can be
sent.

Identifying the protocol

In OMNeT++ protocol models, the protocol type is usually represented in the message subclass. For example,
instances of class IPv6Datagram represent IPv6 datagrams and EthernetFrame represents Ethernet frames)
and/or in the message kind value. The PDU type is usually represented as a field inside the message class.

The C++ dynamic_cast operator can be used to determine if a message object is of a specific protocol.

cMessage *msg = receive();
if (dynamic_cast<IPv6Datagram *>(msg) != NULL)
{
 IPv6Datagram *datagram = (IPv6Datagram *)msg;
 ...
}

5.1.4 Encapsulation

Encapsulating packets

It is often necessary to encapsulate a message into another when you're modeling layered protocols of computer
networks. Although you can encapsulate messages by adding them to the parameter list, there's a better way.

The encapsulate() function encapsulates a message into another one. The length of the message will grow by
the length of the encapsulated message. An exception: when the encapsulating (outer) message has zero length,
OMNeT++ assumes it is not a real packet but some out-of-band signal, so its length is left at zero.

cMessage *userdata = new cMessage("userdata");

userdata->setByteLength(2048); // 2K
cMessage *tcpseg = new cMessage("tcp");
tcpseg->setByteLength(24);
tcpseg->encapsulate(userdata);
ev << tcpseg->getByteLength() << endl; // --> 2048+24 = 2072

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcObject.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcObject.html
http://omnetpp.org/doc/omnetpp40/api/classcObject.html
http://omnetpp.org/doc/omnetpp40/api/classcObject.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

A message can only hold one encapsulated message at a time. The second encapsulate() call will result in an
error. It is also an error if the message to be encapsulated isn't owned by the module.

You can get back the encapsulated message by decapsulate():

cMessage *userdata = tcpseg->decapsulate();

decapsulate() will decrease the length of the message accordingly, except if it was zero. If the length would
become negative, an error occurs.

The getEncapsulatedMsg() function returns a pointer to the encapsulated message, or NULL if no message
was encapsulated.

Reference counting

Since the 3.2 release, OMNeT++ implements reference counting of encapsulated messages, meaning that if you
dup() a message that contains an encapsulated message, then the encapsulated message will not be duplicated,
only a reference count incremented. Duplication of the encapsulated message is deferred until decapsulate()
actually gets called. If the outer message gets deleted without its decapsulate() method ever being called, then
the reference count of the encapsulated message simply gets decremented. The encapsulated message is deleted
when its reference count reaches zero.

Reference counting can significantly improve performance, especially in LAN and wireless scenarios. For example,
in the simulation of a broadcast LAN or WLAN, the IP, TCP and higher layer packets won't get duplicated (and then
discarded without being used) if the MAC address doesn't match in the first place.

The reference counting mechanism works transparently. However, there is one implication: one must not change
anything in a message that is encapsulated into another! That is, getEncapsulatedMsg() should be viewed
as if it returned a pointer to a read-only object (it returns a const pointer indeed), for quite obvious reasons: the
encapsulated message may be shared between several messages, and any change would affect those other
messages as well.

Encapsulating several messages

The cMessage class doesn't directly support adding more than one messages to a message object, but you can
subclass cMessage and add the necessary functionality. (It is recommended that you use the message definition
syntax [5.2] and customized messages [5.2.6] to be described later on in this chapter -- it can spare you some
work.)

You can store the messages in a fixed-size or a dynamically allocated array, or you can use STL classes like
std::vector or std::list. There is one additional ``trick'' that you might not expect: your message class has
to take ownership of the inserted messages, and release them when they are removed from the message. These
are done via the take() and drop() methods. Let us see an example which assumes you have added to the
class an std::list member called messages that stores message pointers:

void MessageBundleMessage::insertMessage(cMessage *msg)
{
 take(msg); // take ownership
 messages.push_back(msg); // store pointer
}

void MessageBundleMessage::removeMessage(cMessage *msg)
{
 messages.remove(msg); // remove pointer
 drop(msg); // release ownership
}

You will also have to provide an operator=() method to make sure your message objects can be copied and

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

duplicated properly -- this is something often needed in simulations (think of broadcasts and retransmissions!).
Section [6.10] contains more info about the things you need to take care of when deriving new classes.

5.1.5 Attaching parameters and objects

If you want to add parameters or objects to a message, the preferred way to do that is via message definitions,
described in chapter [5.2].

Attaching objects

The cMessage class has an internal cArray object which can carry objects. Only objects that are derived from
cOwnedObject (most OMNeT++ classes are so) can be attached. The addObject(), getObject(),
hasObject(), removeObject() methods use the object name as the key to the array. An example:

cLongHistogram *pklenDistr = new cLongHistogram("pklenDistr");
msg->addObject(pklenDistr);
...
if (msg->hasObject("pklenDistr"))
{
 cLongHistogram *pklenDistr =
 (cLongHistogram *) msg->getObject("pklenDistr");
 ...
}

You should take care that names of the attached objects do not clash with each other or with cMsgPar parameter
names (see next section). If you do not attach anything to the message and do not call the getParList()
function, the internal cArray object will not be created. This saves both storage and execution time.

You can attach non-object types (or non-cOwnedObject objects) to the message by using cMsgPar 's void*
pointer 'P') type (see later in the description of cMsgPar). An example:

struct conn_t *conn = new conn_t; // conn_t is a C struct
msg->addPar("conn") = (void *) conn;
msg->par("conn").configPointer(NULL,NULL,sizeof(struct conn_t));

Attaching parameters

The preferred way of extending messages with new data fields is to use message definitions (see section [5.2]).

The old, deprecated way of adding new fields to messages is via attaching cMsgPar objects. There are several
downsides of this approach, the worst being large memory and execution time overhead. cMsgPar 's are heavy-
weight and fairly complex objects themselves. It has been reported that using cMsgPar message parameters might
account for a large part of execution time, sometimes as much as 80%. Using cMsgPars is also error-prone
because cMsgPar objects have to be added dynamically and individually to each message object. In contrast,
subclassing benefits from static type checking: if you mistype the name of a field in the C++ code, already the
compiler can detect the mistake.

If you still need cMsgPars for some reason, here's a short summary. At the sender side you can add a new named
parameter to the message with the addPar() member function, then set its value with one of the methods
setBoolValue(), setLongValue(), setStringValue(), setDoubleValue(), setPointerValue(),
setObjectValue(), and setXMLValue(). There are also overloaded assignment operators for the
corresponding C/C++ types.

At the receiver side, you can look up the parameter object on the message by name and obtain a reference to it
with the par() member function. hasPar() can be used to check first whether the message object has a
parameter object with the given name. Then the value can be read with the methods boolValue(),
longValue(), stringValue(), doubleValue(), pointerValue(), objectValue(), xmlValue(), or by

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcLongHistogram.html
http://omnetpp.org/doc/omnetpp40/api/classcLongHistogram.html
http://omnetpp.org/doc/omnetpp40/api/classcLongHistogram.html
http://omnetpp.org/doc/omnetpp40/api/classcLongHistogram.html
http://omnetpp.org/doc/omnetpp40/api/classcMsgPar.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcMsgPar.html
http://omnetpp.org/doc/omnetpp40/api/classcMsgPar.html
http://omnetpp.org/doc/omnetpp40/api/classcMsgPar.html
http://omnetpp.org/doc/omnetpp40/api/classcMsgPar.html
http://omnetpp.org/doc/omnetpp40/api/classcMsgPar.html
http://omnetpp.org/doc/omnetpp40/api/classcMsgPar.html
http://omnetpp.org/doc/omnetpp40/api/classcMsgPar.html
http://omnetpp.org/doc/omnetpp40/api/classcMsgPar.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

using the provided overloaded type cast operators.

Example usage:

msg->addPar("destAddr");
msg->par("destAddr").setLongValue(168);
...
long destAddr = msg->par("destAddr").longValue();

Or, using overloaded operators:

msg->addPar("destAddr");
msg->par("destAddr") = 168;
...
long destAddr = msg->par("destAddr");

5.2 Message definitions

5.2.1 Introduction

In practice, you'll need to add various fields to cMessage to make it useful. For example, if you're modelling
packets in communication networks, you need to have a way to store protocol header fields in message objects.
Since the simulation library is written in C++, the natural way of extending cMessage is via subclassing it. However,
because for each field you need to write at least three things (a private data member, a getter and a setter
method), and the resulting class has to integrate with the simulation framework, writing the necessary C++ code
can be a tedious and time-consuming task.

OMNeT++ offers a more convenient way called message definitions. Message definitions provide a very compact
syntax to describe message contents. C++ code is automatically generated from message definitions, saving you a
lot of typing.

A common source of complaint about code generators in general is lost flexibility: if you have a different idea how
the generated code should look like, there's little you can do about it. In OMNeT++, however, there's nothing to
worry about: you can customize the generated class to any extent you like. Even if you decide to heavily customize
the generated class, message definitions still save you a great deal of manual work.

The subclassing approach for adding message parameters was originally suggested by Nimrod Mesika.

The first message class

Let us begin with a simple example. Suppose that you need message objects to carry source and destination
addresses as well as a hop count. You could write a mypacket.msg file with the following contents:

message MyPacket
{
 int srcAddress;
 int destAddress;
 int hops = 32;
};

The task of the message subclassing compiler is to generate C++ classes you can use from your models as well as
``reflection'' classes that allow Tkenv to inspect these data structures.

If you process mypacket.msg with the message subclassing compiler, it will create the following files for you:
mypacket_m.h and mypacket_m.cc. mypacket_m.h contains the declaration of the MyPacket C++ class, and
it should be included into your C++ sources where you need to handle MyPacket objects.

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

The generated mypacket_m.h will contain the following class declaration:

class MyPacket : public cMessage {
 ...
 virtual int getSrcAddress() const;
 virtual void setSrcAddress(int srcAddress);
 ...
};

So in your C++ file, you could use the MyPacket class like this:

#include "mypacket_m.h"

...
MyPacket *pkt = new MyPacket("pkt");
pkt->setSrcAddress(localAddr);
...

The mypacket_m.cc file contains implementation of the generated MyPacket class, as well as ``reflection'' code
that allows you to inspect these data structures in the Tkenv GUI. The mypacket_m.cc file should be compiled
and linked into your simulation. (If you use the opp_makemake tool to generate your makefiles, the latter will be
automatically taken care of.)

What is message subclassing not?

There might be some confusion around the purpose and concept of message definitions, so it seems to be a good
idea to deal with them right here.

It is not:

... an attempt to reproduce the functionality of C++ with another syntax. Do not look for complex C++ types,
templates, conditional compilation, etc. Also, it defines data only (or rather: an interface to access data) -- not
any kind of active behaviour.
... a generic class generator. This is meant for defining message contents, and data structure you put in
messages. Defining methods is not supported on purpose. Also, while you can probably (ab)use the syntax to
generate classes and structs used internally in simple modules, this is probably not a good idea.

The goal is to define the interface (getter/setter methods) of messages rather than their implementations in C++. A
simple and straightforward implementation of fields is provided -- if you'd like a different internal representation for
some field, you can have it by customizing the class.

There are questions you might ask:

Why doesn't it support std::vector and other STL classes? Well, it does. Message definitions focus on the
interface (getter/setter methods) of the classes, optionally leaving the implementation to you -- so you can
implement fields (dynamic array fields) using std::vector. (This aligns with the idea behind STL -- it was
designed to be nuts and bolts for C++ programs).
Why does it support C++ data types and not octets, bytes, bits, etc..? That would restrict the scope of
message definitions to networking, and OMNeT++ wants to support other application areas as well.
Furthermore, the set of necessary concepts to be supported is probably not bounded, there would always be
new data types to be adopted.
Why no embedded classes? Good question. As it does not conflict with the above principles, it might be
added someday.

The following sections describe the message syntax and features in detail.

5.2.2 Declaring enums

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

An enum (declared with the enum keyword) generates a normal C++ enum, plus creates an object which stores text
representations of the constants. The latter makes it possible to display symbolic names in Tkenv. An example:

enum ProtocolTypes
{
 IP = 1;
 TCP = 2;
};

Enum values need to be unique.

5.2.3 Message declarations

Basic use

You can describe messages with the following syntax:

message FooPacket
{
 int sourceAddress;
 int destAddress;
 bool hasPayload;
};

Processing this description with the message compiler will produce a C++ header file with a generated class,
FooPacket. FooPacket will be a subclass of cMessage.

For each field in the above description, the generated class will have a protected data member, a getter and a
setter method. The names of the methods will begin with get and set, followed by the field name with its first letter
converted to uppercase. Thus, FooPacket will contain the following methods:

virtual int getSourceAddress() const;
virtual void setSourceAddress(int sourceAddress);

virtual int getDestAddress() const;
virtual void setDestAddress(int destAddress);

virtual bool getHasPayload() const;
virtual void setHasPayload(bool hasPayload);

Note that the methods are all declared virtual to give you the possibility of overriding them in subclasses.

Two constructors will be generated: one that optionally accepts object name and (for cMessage subclasses)
message kind, and a copy constructor:

FooPacket(const char *name=NULL, int kind=0);
FooPacket(const FooPacket& other);

Appropriate assignment operator (operator=()) and dup() methods will also be generated.

Data types for fields are not limited to int and bool. You can use the following primitive types (i.e. primitive types
as defined in the C++ language):

bool
char, unsigned char
short, unsigned short
int, unsigned int

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

long, unsigned long
double

Field values are initialized to zero.

Initial values

You can initialize field values with the following syntax:

message FooPacket
{
 int sourceAddress = 0;
 int destAddress = 0;
 bool hasPayload = false;
};

Initialization code will be placed in the constructor of the generated class.

Enum declarations

You can declare that an int (or other integral type) field takes values from an enum. The message compiler can
than generate code that allows Tkenv display the symbolic value of the field.

Example:

message FooPacket
{
 int payloadType enum(PayloadTypes);
};

The enum has to be declared separately in the message file.

Fixed-size arrays

You can specify fixed size arrays:

message FooPacket
{
 long route[4];
};

The generated getter and setter methods will have an extra k argument, the array index:

virtual long getRoute(unsigned k) const;
virtual void setRoute(unsigned k, long route);

If you call the methods with an index that is out of bounds, an exception will be thrown.

Dynamic arrays

If the array size is not known in advance, you can declare the field to be a dynamic array:

message FooPacket
{
 long route[];
};

In this case, the generated class will have two extra methods in addition to the getter and setter methods: one for
setting the array size, and another one for returning the current array size.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

virtual long getRoute(unsigned k) const;
virtual void setRoute(unsigned k, long route);
virtual unsigned getRouteArraySize() const;
virtual void setRouteArraySize(unsigned n);

The set...ArraySize() method internally allocates a new array. Existing values in the array will be preserved
(copied over to the new array.)

The default array size is zero. This means that you need to call the set...ArraySize() before you can start
filling array elements.

String members

You can declare string-valued fields with the following syntax:

message FooPacket
{
 string hostName;
};

The generated getter and setter methods will return and accept const char* pointers:

virtual const char *getHostName() const;
virtual void setHostName(const char *hostName);

The generated object will have its own copy of the string.

Note that a string member is different from a character array, which is treated as an array of any other type. For
example,

message FooPacket
{
 char chars[10];
};

will generate the following methods:

virtual char getChars(unsigned k);
virtual void setChars(unsigned k, char a);

5.2.4 Inheritance, composition

So far we have discussed how to add fields of primitive types (int, double, char, ...) to cMessage. This might
be sufficient for simple models, but if you have more complex models, you'll probably need to:

set up a hierarchy of message (packet) classes, that is, not only subclass from cMessage but also from your
own message classes;
use not only primitive types as fields, but also structs, classes or typedefs. Sometimes you'll want to use a
C++ type present in an already existing header file, another time you'll want a struct or class to be generated
by the message compiler so that you can benefit from Tkenv inspectors.

The following section describes how to do this.

Inheritance among message classes

By default, messages are subclassed from cMessage. However, you can explicitly specify the base class using the

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

extends keyword:

message FooPacket extends FooBase
{
 ...
};

For the example above, the generated C++ code will look like:

class FooPacket : public FooBase { ... };

Inheritance also works for structs and classes (see next sections for details).

Defining classes

Until now we have used the message keyword to define classes, which implies that the base class is cMessage,
either directly or indirectly.

But as part of complex messages, you'll need structs and other classes (rooted or not rooted in cOwnedObject) as
building blocks. Classes can be created with the class class keyword; structs we'll cover in the next section.

The syntax for defining classes is almost the same as defining messages, only the class keyword is used instead
of message.

Slightly different code is generated for classes that are rooted in cOwnedObject than for those which are not. If
there is no extends, the generated class will not be derived from cOwnedObject, thus it will not have
getName(), getClassName(), etc. methods. To create a class with those methods, you have to explicitly write
extends cOwnedObject.

class MyClass extends cOwnedObject
{
 ...
};

Defining plain C structs

You can define C-style structs to be used as fields in message classes, ``C-style'' meaning ``containing only data
and no methods''. (Actually, in the C++ a struct can have methods, and in general it can do anything a class can.)

The syntax is similar to that of defining messages:

struct MyStruct
{
 char array[10];
 short version;
};

However, the generated code is different. The generated struct has no getter or setter methods, instead the fields
are represented by public data members. For the definition above, the following code is generated:

// generated C++
struct MyStruct
{
 char array[10];
 short version;
};

A struct can have primitive types or other structs as fields. It cannot have string or class as field.

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Inheritance is supported for structs:

struct Base
{
 ...
};

struct MyStruct extends Base
{
 ...
};

But because a struct has no member functions, there are limitations:

dynamic arrays are not supported (no place for the array allocation code)
``generation gap'' or abstract fields (see later) cannot be used, because they would build upon virtual
functions.

Using structs and classes as fields

In addition to primitive types, you can also use other structs or objects as a field. For example, if you have a struct
named IPAddress, you can write the following:

message FooPacket
{
 IPAddress src;
};

The IPAddress structure must be known in advance to the message compiler; that is, it must either be a struct or
class defined earlier in the message description file, or it must be a C++ type with its header file included via
cplusplus {{...}} and its type announced (see Announcing C++ types).

The generated class will contain an IPAddress data member (that is, not a pointer to an IPAddress). The
following getter and setter methods will be generated:

virtual const IPAddress& getSrc() const;
virtual void setSrc(const IPAddress& src);

Pointers

Not supported yet.

5.2.5 Using existing C++ types

Announcing C++ types

If you want to use one of your own types (a class, struct or typedef, declared in a C++ header) in a message
definition, you have to announce those types to the message compiler. You also have to make sure that your
header file gets included into the generated _m.h file so that the C++ compiler can compile it.

Suppose you have an IPAddress structure, defined in an ipaddress.h file:

// ipaddress.h
struct IPAddress {
 int byte0, byte1, byte2, byte3;
};

To be able to use IPAddress in a message definition, the message file (say foopacket.msg) should contain the

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

following lines:

cplusplus {{
#include "ipaddress.h"
}};

struct IPAddress;

The effect of the first three lines is simply that the #include statement will be copied into the generated
foopacket_m.h file to let the C++ compiler know about the IPAddress class. The message compiler itself will
not try to make sense of the text in the body of the cplusplus {{ ... }} directive.

The next line, struct IPAddress, tells the message compiler that IPAddress is a C++ struct. This information
will (among others) affect the generated code.

Classes can be announced using the class keyword:

class cSubQueue;

The above syntax assumes that the class is derived from cOwnedObject either directly or indirectly. If it is not, the
noncobject keyword should be used:

class noncobject IPAddress;

The distinction between classes derived and not derived from cOwnedObject is important because the generated
code differs at places. The generated code is set up so that if you incidentally forget the noncobject keyword
(and thereby mislead the message compiler into thinking that your class is rooted in cOwnedObject when in fact it
is not), you'll get a C++ compiler error in the generated header file.

5.2.6 Customizing the generated class

The Generation Gap pattern

Sometimes you need the generated code to do something more or do something differently than the version
generated by the message compiler. For example, when setting a integer field named payloadLength, you might
also need to adjust the packet length. That is, the following default (generated) version of the
setPayloadLength() method is not suitable:

void FooPacket::setPayloadLength(int payloadLength)
{
 this->payloadLength = payloadLength;
}

Instead, it should look something like this:

void FooPacket::setPayloadLength(int payloadLength)
{
 int diff = payloadLength - this->payloadLength;
 this->payloadLength = payloadLength;
 setBitLength(length() + diff);
}

According to common belief, the largest drawback of generated code is that it is difficult or impossible to fulfill such
wishes. Hand-editing of the generated files is worthless, because they will be overwritten and changes will be lost in
the code generation cycle.

http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

However, object oriented programming offers a solution. A generated class can simply be customized by
subclassing from it and redefining whichever methods need to be different from their generated versions. This
practice is known as the Generation Gap design pattern. It is enabled with the @customize property set on the
message:

message FooPacket
{
 @customize(true);
 int payloadLength;
};

If you process the above code with the message compiler, the generated code will contain a FooPacket_Base
class instead of FooPacket. Then you would subclass FooPacket_Base to produce FooPacket, while doing
your customizations by redefining the necessary methods.

class FooPacket_Base : public cMessage
{
 protected:
 int src;
 // make constructors protected to avoid instantiation
 FooPacket_Base(const char *name=NULL);
 FooPacket_Base(const FooPacket_Base& other);
 public:
 ...
 virtual int getSrc() const;
 virtual void setSrc(int src);
};

There is a minimum amount of code you have to write for FooPacket, because not everything can be pre-
generated as part of FooPacket_Base, e.g. constructors cannot be inherited. This minimum code is the following
(you'll find it the generated C++ header too, as a comment):

class FooPacket : public FooPacket_Base
{
 public:
 FooPacket(const char *name=NULL) : FooPacket_Base(name) {}
 FooPacket(const FooPacket& other) : FooPacket_Base(other) {}
 FooPacket& operator=(const FooPacket& other)
 {FooPacket_Base::operator=(other); return *this;}
 virtual FooPacket *dup() {return new FooPacket(*this);}
};

Register_Class(FooPacket);

Note that it is important that you redefine dup() and provide an assignment operator (operator=()).

So, returning to our original example about payload length affecting packet length, the code you'd write is the
following:

class FooPacket : public FooPacket_Base
{
 // here come the mandatory methods: constructor,
 // copy constructor, operator=(), dup()
 // ...

 virtual void setPayloadLength(int newlength);
}

void FooPacket::setPayloadLength(int newlength)
{
 // adjust message length
 setBitLength(length()-getPayloadLength()+newlength);

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 // set the new length
 FooPacket_Base::setPayloadLength(newlength);
}

Abstract fields

The purpose of abstract fields is to let you to override the way the value is stored inside the class, and still benefit
from inspectability in Tkenv.

For example, this is the situation when you want to store a bitfield in a single int or short, and still you want to
present bits as individual packet fields. It is also useful for implementing computed fields.

You can declare any field to be abstract with the following syntax:

message FooPacket
{
 @customize(true);
 abstract bool urgentBit;
};

For an abstract field, the message compiler generates no data member, and generated getter/setter methods will
be pure virtual:

virtual bool getUrgentBit() const = 0;
virtual void setUrgentBit(bool urgentBit) = 0;

Usually you'll want to use abstract fields together with the Generation Gap pattern, so that you can immediately
redefine the abstract (pure virtual) methods and supply your implementation.

5.2.7 Using STL in message classes

You may want to use STL vector or stack classes in your message classes. This is possible using abstract
fields. After all, vector and stack are representations of a sequence -- same abstraction as dynamic-size
vectors. That is, you can declare the field as abstract T fld[], and provide an underlying implementation
using vector<T>. You can also add methods to the message class that invoke push_back(), push(), pop(),
etc. on the underlying STL object.

See the following message declaration:

struct Item
{
 int a;
 double b;
}

message STLMessage
{
 @customize(true);
 abstract Item foo[]; // will use vector<Item>
 abstract Item bar[]; // will use stack<Item>
}

If you compile the above, in the generated code you'll only find a couple of abstract methods for foo and bar, no
data members or anything concrete. You can implement everything as you like. You can write the following C++ file
then to implement foo and bar with std::vector and std::stack:

#include <vector>
#include <stack>

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

#include "stlmessage_m.h"

class STLMessage : public STLMessage_Base
{
 protected:
 std::vector<Item> foo;
 std::stack<Item> bar;

 public:
 STLMessage(const char *name=NULL, int kind=0) : STLMessage_Base(name,kind) {}
 STLMessage(const STLMessage& other) : STLMessage_Base(other.getName())
{operator=(other);}
 STLMessage& operator=(const STLMessage& other) {
 if (&other==this) return *this;
 STLMessage_Base::operator=(other);
 foo = other.foo;
 bar = other.bar;
 return *this;
 }
 virtual STLMessage *dup() {return new STLMessage(*this);}

 // foo methods
 virtual void setFooArraySize(unsigned int size) {}
 virtual unsigned int getFooArraySize() const {return foo.size();}
 virtual Item& getFoo(unsigned int k) {return foo[k];}
 virtual void setFoo(unsigned int k, const Item& afoo) {foo[k]=afoo;}
 virtual void addToFoo(const Item& afoo) {foo.push_back(afoo);}

 // bar methods
 virtual void setBarArraySize(unsigned int size) {}
 virtual unsigned int getBarArraySize() const {return bar.size();}
 virtual Item& getBar(unsigned int k) {throw cRuntimeException("sorry");}
 virtual void setBar(unsigned int k, const Item& bar) {throw
cRuntimeException("sorry");}
 virtual void barPush(const Item& abar) {bar.push(abar);}
 virtual void barPop() {bar.pop();}
 virtual Item& barTop() {return bar.top();}
};

Register_Class(STLMessage);

Some additional notes:

1. setFooArraySize(), setBarArraySize() are redundant.
2. getBar(int k) cannot be implemented in a straightforward way (std::stack does not support accessing

elements by index). It could still be implemented in a less efficient way using STL iterators, and efficiency
does not seem to be major problem because only Tkenv is going to invoke this function.

3. setBar(int k, const Item&) could not be implemented, but this is not particularly a problem. The
exception will materialize in a Tkenv error dialog when you try to change the field value.

You may regret that the STL vector/stack are not directly exposed. Well you could expose them (by adding a
vector<Item>& getFoo() {return foo;} method to the class) but this is probably not a good idea. STL
itself was purposefully designed with a low-level approach, to provide ``nuts and bolts'' for C++ programming, and
STL is better used in other classes for internal representation of data.

5.2.8 Summary

This section attempts to summarize the possibilities.

You can generate:

classes rooted in cOwnedObject

http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

messages (default base class is cMessage)
classes not rooted in cOwnedObject
plain C structs

The following data types are supported for fields:

primitive types: bool, char, short, int, long, unsigned short, unsigned int, unsigned long,
double
string, a dynamically allocated string, presented as const char *
fixed-size arrays of the above types
structs, classes (both rooted and not rooted in cOwnedObject), declared with the message syntax or
externally in C++ code
variable-sized arrays of the above types (stored as a dynamically allocated array plus an integer for the array
size)

Further features:

fields initialize to zero (except struct members)
fields initializers can be specified (except struct members)
assigning enums to variables of integral types.
inheritance
customizing the generated class via subclassing (Generation Gap pattern)
abstract fields (for nonstandard storage and calculated fields)

Generated code (all generated methods are virtual, although this is not written out in the following table):

Field declaration Generated code

primitive types

double field;

double getField();
void setField(double d);

string type

string field;

const char *getField();
void setField(const char *);

fixed-size arrays

double field[4];

double getField(unsigned k);
void setField(unsigned k, double d);
unsigned getFieldArraySize();

dynamic arrays

double field[];

void setFieldArraySize(unsigned n);
unsigned getFieldArraySize();
double getField(unsigned k);
void setField(unsigned k, double d);

customized class

class Foo {
 @customize(true);

class Foo_Base { ... };

and you have to write:

class Foo : public Foo_Base {
 ...
};

abstract fields

abstract double field;

double getField() = 0;
void setField(double d) = 0;

Example simulations

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Several of the example simulations contain message definitions, for example Tictoc, Dyna, Routing and Hypercube.
For example, in Dyna you'll find this:

dynapacket.msg defines DynaPacket and DynaDataPacket;
dynapacket_m.h and dynapacket_m.cc are produced by the message subclassing compiler from it, and
they contain the generated DynaPacket and DynaDataPacket C++ classes (plus code for Tkenv
inspectors);
other model files (client.cc, server.cc, ...) use the generated message classes

5.2.9 What else is there in the generated code?

In addition to the message class and its implementation, the message compiler also generates reflection code
which makes it possible to inspect message contents in Tkenv. To illustrate why this is necessary, suppose you
manually subclass cMessage to get a new message class. You could write the following:

[Note that the code is only for illustration. In real code, freq and power should be private members, and getter/setter methods
should exist to access them. Also, the above class definition misses several member functions (constructor, assignment
operator, etc.) that should be written.]

class RadioMsg : public cMessage
{
 public:
 int freq;
 double power;
 ...
};

Now it is possible to use RadioMsg in your simple modules:

RadioMsg *msg = new RadioMsg();
msg->freq = 1;
msg->power = 10.0;
...

You'll notice one drawback of this solution when you try to use Tkenv for debugging. While cMsgPar-based
message parameters can be viewed in message inspector windows, fields added via subclassing do not appear
there. The reason is that Tkenv, being just another C++ library in your simulation program, doesn't know about your
C++ instance variables. The problem cannot be solved entirely within Tkenv, because C++ does not support
``reflection'' (extracting class information at runtime) like for example Java does.

There is a solution however: one can supply Tkenv with missing ``reflection'' information about the new class.
Reflection info might take the form of a separate C++ class whose methods return information about the RadioMsg
fields. This descriptor class might look like this:

class RadioMsgDescriptor : public Descriptor
{
 public:
 virtual int getFieldCount() {return 2;}

 virtual const char *getFieldName(int k) {
 const char *fieldname[] = {"freq", "power";}
 if (k<0 || k>=2) return NULL;
 return fieldname[k];
 }

 virtual double getFieldAsDouble(RadioMsg *msg, int k) {
 if (k==0) return msg->freq;
 if (k==1) return msg->power;
 return 0.0; // not found

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMsgPar.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 }
 //...
};

Then you have to inform Tkenv that a RadioMsgDescriptor exists and that it should be used whenever Tkenv
finds messages of type RadioMsg (as it is currently implemented, whenever the object's getClassName()
method returns "RadioMsg"). So when you inspect a RadioMsg in your simulation, Tkenv can use
RadioMsgDescriptor to extract and display the values of the freq and power variables.

The actual implementation is somewhat more complicated than this, but not much.

6 The Simulation Library

OMNeT++ has an extensive C++ class library which you can use when implementing simple modules. Parts of the
class library have already been covered in the previous chapters:

the message class cMessage (chapter [5])
sending and receiving messages, scheduling and canceling events, terminating the module or the simulation
(section)
access to module gates and parameters via cModule member functions (sections and)
accessing other modules in the network (section)
dynamic module creation (section)

This chapter discusses the rest of the simulation library:

random number generation: normal(), exponential(), etc.
module parameters: cPar class
storing data in containers: the cArray and cQueue classes
routing support and discovery of network topology: cTopology class
recording statistics into files: cOutVector class
collecting simple statistics: cStdDev and cWeightedStddev classes
distribution estimation: cLongHistogram, cDoubleHistogram, cVarHistogram, cPSquare, cKSplit
classes
making variables inspectable in the graphical user interface (Tkenv): the WATCH() macros
sending debug output to and prompting for user input in the graphical user interface (Tkenv): the ev object
(cEnvir class)

6.1 Class library conventions

6.1.1 Base class

Classes in the OMNeT++ simulation library are derived from cOwnedObject. Functionality and conventions that
come from cOwnedObject:

name attribute
getClassName() member and other member functions giving textual information about the object
conventions for assignment, copying, duplicating the object
ownership control for containers derived from cOwnedObject
support for traversing the object tree
support for inspecting the object in graphical user interfaces (Tkenv)

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcPar.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcOutVector.html
http://omnetpp.org/doc/omnetpp40/api/classcStdDev.html
http://omnetpp.org/doc/omnetpp40/api/classcLongHistogram.html
http://omnetpp.org/doc/omnetpp40/api/classcDoubleHistogram.html
http://omnetpp.org/doc/omnetpp40/api/classcVarHistogram.html
http://omnetpp.org/doc/omnetpp40/api/classcPSquare.html
http://omnetpp.org/doc/omnetpp40/api/classcKSplit.html
http://omnetpp.org/doc/omnetpp40/api/classcEnvir.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Classes inherit and redefine several cOwnedObject member functions; in the following we'll discuss some of the
practically important ones.

6.1.2 Setting and getting attributes

Member functions that set and query object attributes follow a naming convention: the setter member function
begins with set, and the getter begins with get (or in the case of boolean attributes, with is or has, whichever is
more appropriate). For example, the length attribute of the cPacket class can be set and read like this:

pk->setBitLength(1024);
length = pk->getBitLength();

NOTE
OMNeT++ 3.x and earlier versions did not have the get verb in the name of getter methods. There are
scripts to port old source code to OMNeT++ 4.0; these tools and the suggested porting produre are described
in the Migration Guide.

6.1.3 getClassName()

For each class, the getClassName() member function returns the class name as a string:

const char *classname = msg->getClassName(); // returns "cMessage"

6.1.4 Name attribute

An object can be assigned a name (a character string). The name string is the first argument to the constructor of
every class, and it defaults to NULL (no name string). An example:

cMessage *timeoutMsg = new cMessage("timeout");

You can also set the name after the object has been created:

timeoutMsg->setName("timeout");

You can get a pointer to the internally stored copy of the name string like this:

const char *name = timeoutMsg->getName(); // --> "timeout"

For convenience and efficiency reasons, the empty string "" and NULL are treated as equivalent by library objects.
That is, "" is stored as NULL but returned as "". If you create a message object with either NULL or "" as name
string, it will be stored as NULL and getName() will return a pointer to a static "".

cMessage *msg = new cMessage(NULL, <additional args>);
const char *str = msg->getName(); // --> returns ""

6.1.5 getFullName() and getFullPath()

Objects have two more member functions which return strings based on object names: getFullName() and
getFullPath(). For gates and modules which are part of gate or module vectors, getFullName() returns the
name with the index in brackets. That is, for a module node[3] in the submodule vector node[10] getName()

http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcPacket.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

returns "node", and getFullName() returns "node[3]". For other objects, getFullName() is the same as
getName().

getFullPath() returns getFullName(), prepended with the parent or owner object's getFullPath() and
separated by a dot. That is, if the node[3] module above is in the compound module "net.subnet1", its
getFullPath() method will return "net.subnet1.node[3]".

ev << this->getName(); // --> "node"
ev << this->getFullName(); // --> "node[3]"
ev << this->getFullPath(); // --> "net.subnet1.node[3]"

getClassName(), getFullName() and getFullPath() are extensively used on the graphical runtime
environment Tkenv, and also appear in error messages.

getName() and getFullName() return const char * pointers, and getFullPath() returns std::string.
This makes no difference with ev<<, but when getFullPath() is used as a "%s" argument to sprintf() you
have to write getFullPath().c_str().

char buf[100];
sprintf("msg is '%80s'", msg->getFullPath().c_str()); // note c_str()

6.1.6 Copying and duplicating objects

The dup() member function creates an exact copy of the object, duplicating contained objects also if necessary.
This is especially useful in the case of message objects.

cMessage *copy = msg->dup();

dup() delegates to the copy constructor, which in turn relies on the assignment operator between objects.
operator=() can be used to copy contents of an object into another object of the same type. This is a deep copy:
object contained in the object will also be duplicated if necessary. operator=() does not copy the name string --
this task is done by the copy constructor.

NOTE
Since the OMNeT++ 4.0 version, dup() returns a pointer to the same type as the object itself, and not a
cObject*. This is made possible by a relatively new C++ feature called covariant return types.

6.1.7 Iterators

There are several container classes in the library (cQueue, cArray etc.) For many of them, there is a
corresponding iterator class that you can use to loop through the objects stored in the container.

For example:

cQueue queue;

//..
for (cQueue::Iterator queueIter(queue); !queueIter.end(); queueIter++)
{
 cOwnedObject *containedObject = queueIter();
}

6.1.8 Error handling

When library objects detect an error condition, they throw a C++ exception. This exception is then caught by the

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcObject.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

simulation environment which pops up an error dialog or displays the error message.

At times it can be useful to be able stop the simulation at the place of the error (just before the exception is thrown)
and use a C++ debugger to look at the stack trace and examine variables. Enabling the debug-on-errors ini
file entry lets you do that -- check it in section .

If you detect an error condition in your code, you can stop the simulation with an error message using the
opp_error() function. opp_error() 's argument list works like printf(): the first argument is a format string
which can contain "%s", "%d" etc, filled in using subsequent arguments.

An example:

if (msg->getControlInfo()==NULL)
 opp_error("message (%s)%s has no control info attached",
 msg->getClassName(), msg->getName());

6.2 Logging from modules

The logging feature will be used extensively in the code examples, we introduce it here.

The ev object represents the user interface of the simulation. You can send debugging output to ev with the C++-
style output operators:

ev << "packet received, sequence number is " << seqNum << endl;
ev << "queue full, discarding packet\n";

An alternative solution is ev.printf():

ev.printf("packet received, sequence number is %d\n", seqNum);

The exact way messages are displayed to the user depends on the user interface. In the command-line user
interface (Cmdenv), it is simply dumped to the standard output. (This output can also be disabled from
omnetpp.ini so that it doesn't slow down simulation when it is not needed.) In Tkenv, the runtime GUI, you can
open a text output window for every module. It is not recommended that you use printf() or cout to print
messages -- ev output can be controlled much better from omnetpp.ini and it is more convenient to view, using
Tkenv.

One can save CPU cycles by making logging statements conditional on whether the output actually gets displayed
or recorded anywhere. The ev.isDisabled() call returns true when ev<< output is disabled, such as in Tkenv or
Cmdenv ``express'' mode. Thus, one can write code like this:

if (!ev.isDisabled())
 ev << "Packet " << msg->getName() << " received\n";

A more sophisticated implementation of the same idea is to the EV macro which can be used in logging statements
instead of ev. One would simply write EV<< instead of ev<<:

EV << "Packet " << msg->getName() << " received\n";

EV 's implementation makes use of the fact that the << operator binds looser than the conditional operator (?:).

6.3 Simulation time conversion

Simulation time is represented by the type simtime_t which is a typedef to double. OMNeT++ provides utility

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

functions, which convert simtime_t to a printable string ("3s 130ms 230us") and vica versa.

The simtimeToStr() function converts a simtime_t (passed in the first argument) to textual form. The result is
placed into the char array pointed to by the second argument. If the second argument is omitted or it is NULL,
simtimeToStr() will place the result into a static buffer which is overwritten with each call. An example:

char buf[32];
ev.printf("t1=%s, t2=%s\n", simtimeToStr(t1), simTimeToStr(t2,buf));

The simtimeToStrShort() is similar to simtimeToStr(), but its output is more concise.

The strToSimtime() function parses a time specification passed in a string, and returns a simtime_t. If the
string cannot be entirely interpreted, -1 is returned.

simtime_t t = strToSimtime("30s 152ms");

Another variant, strToSimtime0() can be used if the time string is a substring in a larger string. Instead of taking
a char*, it takes a reference to char* (char*&) as the first argument. The function sets the pointer to the first
character that could not be interpreted as part of the time string, and returns the value. It never returns -1; if nothing
at the beginning of the string looked like simulation time, it returns 0.

const char *s = "30s 152ms and something extra";

simtime_t t = strToSimtime0(s); // now s points to "and something extra"

6.4 Generating random numbers

Random numbers in simulation are never random. Rather, they are produced using deterministic algorithms.
Algorithms take a seed value and perform some deterministic calculations on them to produce a ``random'' number
and the next seed. Such algorithms and their implementations are called random number generators or RNGs, or
sometimes pseudo random number generators or PRNGs to highlight their deterministic nature.

[There are real random numbers as well, see e.g. http://www.random.org/, http://www.comscire.com, or the Linux
/dev/random device. For non-random numbers, try www.noentropy.net.]

Starting from the same seed, RNGs always produce the same sequence of random numbers. This is a useful
property and of great importance, because it makes simulation runs repeatable.

RNGs produce uniformly distributed integers in some range, usually between 0 or 1 and 232 or so. Mathematical
transformations are used to produce random variates from them that correspond to specific distributions.

6.4.1 Random number generators

Mersenne Twister

By default, OMNeT++ uses the Mersenne Twister RNG (MT) by M. Matsumoto and T. Nishimura [Matsumoto98].
MT has a period of 219937-1, and 623-dimensional equidistribution property is assured. MT is also very fast: as fast
or faster than ANSI C's rand().

The "minimal standard" RNG

OMNeT++ releases prior to 3.0 used a linear congruential generator (LCG) with a cycle length of 231-2, described
in [Jain91], pp. 441-444,455. This RNG is still available and can be selected from omnetpp.ini (Chapter [9]).

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

This RNG is only suitable for small-scale simulation studies. As shown by Karl Entacher et al. in [Entacher02], the
cycle length of about 231 is too small (on todays fast computers it is easy to exhaust all random numbers), and the
structure of the generated ``random'' points is too regular. The [Hellekalek98] paper provides a broader overview of
issues associated with RNGs used for simulation, and it is well worth reading. It also contains useful links and
references on the topic.

The Akaroa RNG

When you execute simulations under Akaroa control (see section [9.5]), you can also select Akaroa's RNG as the
RNG underlying for the OMNeT++ random number functions. The Akaroa RNG also has to be selected from
omnetpp.ini (section [8.7]).

Other RNGs

OMNeT++ allows plugging in your own RNGs as well. This mechanism, based on the cRNG interface, is described
in section . For example, one candidate to include could be L'Ecuyer's CMRG [LEcuyer02] which has a period of
about 2191 and can provide a large number of guaranteed independent streams.

6.4.2 Random number streams, RNG mapping

Simulation programs may consume random numbers from several streams, that is, from several independent RNG
instances. For example, if a network simulation uses random numbers for generating packets and for simulating bit
errors in the transmission, it might be a good idea to use different random streams for both. Since the seeds for
each stream can be configured independently, this arrangement would allow you to perform several simulation runs
with the same traffic but with bit errors occurring in different places. A simulation technique called variance
reduction is also related to the use of different random number streams.

It is also important that different streams and also different simulation runs use non-overlapping series of random
numbers. Overlap in the generated random number sequences can introduce unwanted correlation in your results.

The number of random number streams as well as seeds for the individual streams can be configured in
omnetpp.ini (section [8.7]). For the "minimal standard RNG", the seedtool program can be used for selecting
good seeds (section).

In OMNeT++, streams are identified with RNG numbers. The RNG numbers used in simple modules may be
arbitrarily mapped to the actual random number streams (actual RNG instances) from omnetpp.ini (section
[8.7]). The mapping allows for great flexibility in RNG usage and random number streams configuration -- even for
simulation models which were not written with RNG awareness.

6.4.3 Accessing the RNGs

The intrand(n) function generates random integers in the range [0, n-1], and dblrand() generates a random
double on [0,1). These functions simply wrap the underlying RNG objects. Examples:

int dice = 1 + intrand(6); // result of intrand(6) is in the range 0..5
double p = dblrand(); // dblrand() produces numbers in [0,1)

They also have a counterparts that use generator k:

int dice = 1 + genk_intrand(k,6); // uses generator k
double prob = genk_dblrand(k); // ""

The underlying RNG objects are subclassed from cRNG, and they can be accessed via cModule 's getRNG()
method. The argument to getRNG() is a local RNG number which will undergo RNG mapping.

http://omnetpp.org/doc/omnetpp40/api/classcRNG.html
http://omnetpp.org/doc/omnetpp40/api/classcRNG.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

cRNG *rng1 = getRNG(1);

cRNG contains the methods implementing the above intrand() and dblrand() functions. The cRNG interface
also allows you to access the ``raw'' 32-bit random numbers generated by the RNG and to learn their ranges
(intRand(), intRandMax()) as well as to query the number of random numbers generated
(getNumbersDrawn()).

6.4.4 Random variates

The following functions are based on dblrand() and return random variables of different distributions:

Random variate functions use one of the random number generators (RNGs) provided by OMNeT++. By default
this is generator 0, but you can specify which one to be used.

OMNeT++ has the following predefined distributions:

Function Description

Continuous distributions

uniform(a, b, rng=0) uniform distribution in the range [a,b)

exponential(mean, rng=0) exponential distribution with the given mean

normal(mean, stddev, rng=0) normal distribution with the given mean and standard deviation

truncnormal(mean, stddev,
rng=0)

normal distribution truncated to nonnegative values

gamma_d(alpha, beta, rng=0) gamma distribution with parameters alpha>0, beta>0

beta(alpha1, alpha2, rng=0) beta distribution with parameters alpha1>0, alpha2>0

erlang_k(k, mean, rng=0) Erlang distribution with k>0 phases and the given mean

chi_square(k, rng=0) chi-square distribution with k>0 degrees of freedom

student_t(i, rng=0) student-t distribution with i>0 degrees of freedom

cauchy(a, b, rng=0) Cauchy distribution with parameters a,b where b>0

triang(a, b, c, rng=0) triangular distribution with parameters a<=b<=c, a!=c

lognormal(m, s, rng=0) lognormal distribution with mean m and variance s>0

weibull(a, b, rng=0) Weibull distribution with parameters a>0, b>0

pareto_shifted(a, b, c,
rng=0)

generalized Pareto distribution with parameters a, b and shift c

Discrete distributions

intuniform(a, b, rng=0) uniform integer from a..b

bernoulli(p, rng=0) result of a Bernoulli trial with probability 0<=p<=1 (1 with probability p and 0 with
probability (1-p))

binomial(n, p, rng=0) binomial distribution with parameters n>=0 and 0<=p<=1

geometric(p, rng=0) geometric distribution with parameter 0<=p<=1

negbinomial(n, p, rng=0) binomial distribution with parameters n>0 and 0<=p<=1

poisson(lambda, rng=0) Poisson distribution with parameter lambda

They are the same functions that can be used in NED files. intuniform() generates integers including both the
lower and upper limit, so for example the outcome of tossing a coin could be written as intuniform(1,2).
truncnormal() is the normal distribution truncated to nonnegative values; its implementation generates a number

http://omnetpp.org/doc/omnetpp40/api/classcRNG.html
http://omnetpp.org/doc/omnetpp40/api/classcRNG.html
http://omnetpp.org/doc/omnetpp40/api/classcRNG.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

with normal distribution and if the result is negative, it keeps generating other numbers until the outcome is
nonnegative.

If the above distributions do not suffice, you can write your own functions. If you register your functions with the
Register_Function() macro, you can use them in NED files and ini files too.

6.4.5 Random numbers from histograms

You can also specify your distribution as a histogram. The cLongHistogram, cDoubleHistogram,
cVarHistogram, cKSplit or cPSquare classes are there to generate random numbers from equidistant-cell or
equiprobable-cell histograms. This feature is documented later, with the statistical classes.

6.5 Container classes

6.5.1 Queue class: cQueue

Basic usage

cQueue is a container class that acts as a queue. cQueue can hold objects of type derived from cOwnedObject
(almost all classes from the OMNeT++ library), such as cMessage, cPar, etc. Internally, cQueue uses a double-
linked list to store the elements.

A queue object has a head and a tail. Normally, new elements are inserted at its head and elements are removed
at its tail.

Figure: cQueue: insertion and removal

The basic cQueue member functions dealing with insertion and removal are insert() and pop(). They are used
like this:

cQueue queue("my-queue");
cMessage *msg;

// insert messages
for (int i=0; i<10; i++)
{
 msg = new cMessage;
 queue.insert(msg);
}

// remove messages
while(!queue.empty())
{
 msg = (cMessage *)queue.pop();
 delete msg;
}

The length() member function returns the number of items in the queue, and empty() tells whether there's

http://omnetpp.org/doc/omnetpp40/api/classcLongHistogram.html
http://omnetpp.org/doc/omnetpp40/api/classcDoubleHistogram.html
http://omnetpp.org/doc/omnetpp40/api/classcVarHistogram.html
http://omnetpp.org/doc/omnetpp40/api/classcKSplit.html
http://omnetpp.org/doc/omnetpp40/api/classcPSquare.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcPar.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

anything in the queue.

There are other functions dealing with insertion and removal. The insertBefore() and insertAfter()
functions insert a new item exactly before and after a specified one, regardless of the ordering function.

The front() and back() functions return pointers to the objects at the front and back of the queue, without
affecting queue contents.

The pop() function can be used to remove items from the tail of the queue, and the remove() function can be
used to remove any item known by its pointer from the queue:

queue.remove(msg);

Priority queue

By default, cQueue implements a FIFO, but it can also act as a priority queue, that is, it can keep the inserted
objects ordered. If you want to use this feature, you have to provide a function that takes two cOwnedObject
pointers, compares the two objects and returns -1, 0 or 1 as the result (see the reference for details). An example of
setting up an ordered cQueue:

cQueue sortedqueue("sortedqueue", cOwnedObject::cmpbyname, true);
 // sorted by object name, ascending

If the queue object is set up as an ordered queue, the insert() function uses the ordering function: it searches
the queue contents from the head until it reaches the position where the new item needs to be inserted, and inserts
it there.

Iterators

Normally, you can only access the objects at the head or tail of the queue. However, if you use an iterator class,
cQueue::Iterator, you can examine each object in the queue.

The cQueue::Iterator constructor takes two arguments, the first is the queue object and the second one
specifies the initial position of the iterator: 0=tail, 1=head. Otherwise it acts as any other OMNeT++ iterator class:
you can use the ++ and -- operators to advance it, the () operator to get a pointer to the current item, and the
end() member function to examine if you're at the end (or the beginning) of the queue.

An example:

for(cQueue::Iterator iter(queue,1); !iter.end(), iter++)
{
 cMessage *msg = (cMessage *) iter();
 //...
}

6.5.2 Expandable array: cArray

Basic usage

cArray is a container class that holds objects derived from cOwnedObject. cArray stores the pointers of the
objects inserted instead of making copies. cArray works as an array, but it grows automatically when it gets full.
Internally, cArray is implemented with an array of pointers; when the array fills up, it is reallocated.

cArray objects are used in OMNeT++ to store parameters attached to messages, and internally, for storing
module parameters and gates.

Creating an array:

http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

cArray array("array");

Adding an object at the first free index:

cPar *p = new cMsgPar("par");
int index = array.add(p);

Adding an object at a given index (if the index is occupied, you'll get an error message):

cPar *p = new cMsgPar("par");
int index = array.addAt(5,p);

Finding an object in the array:

int index = array.find(p);

Getting a pointer to an object at a given index:

cPar *p = (cPar *) array[index];

You can also search the array or get a pointer to an object by the object's name:

int index = array.find("par");
Par *p = (cPar *) array["par"];

You can remove an object from the array by calling remove() with the object name, the index position or the
object pointer:

array.remove("par");
array.remove(index);
array.remove(p);

The remove() function doesn't deallocate the object, but it returns the object pointer. If you also want to deallocate
it, you can write:

delete array.remove(index);

Iteration

cArray has no iterator, but it is easy to loop through all the indices with an integer variable. The size() member
function returns the largest index plus one.

for (int i=0; i<array.size(); i++)
{
 if (array[i]) // is this position used?
 {
 cOwnedObject *obj = array[i];
 ev << obj->getName() << endl;
 }
}

6.6 Routing support: cTopology

6.6.1 Overview

http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcPar.html
http://omnetpp.org/doc/omnetpp40/api/classcMsgPar.html
http://omnetpp.org/doc/omnetpp40/api/classcPar.html
http://omnetpp.org/doc/omnetpp40/api/classcMsgPar.html
http://omnetpp.org/doc/omnetpp40/api/classcPar.html
http://omnetpp.org/doc/omnetpp40/api/classcPar.html
http://omnetpp.org/doc/omnetpp40/api/classcPar.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

The cTopology class was designed primarily to support routing in telecommunication or multiprocessor networks.

A cTopology object stores an abstract representation of the network in graph form:

each cTopology node corresponds to a module (simple or compound), and
each cTopology edge corresponds to a link or series of connecting links.

You can specify which modules (either simple or compound) you want to include in the graph. The graph will
include all connections among the selected modules. In the graph, all nodes are at the same level, there's no
submodule nesting. Connections which span across compound module boundaries are also represented as one
graph edge. Graph edges are directed, just as module gates are.

If you're writing a router or switch model, the cTopology graph can help you determine what nodes are available
through which gate and also to find optimal routes. The cTopology object can calculate shortest paths between
nodes for you.

The mapping between the graph (nodes, edges) and network model (modules, gates, connections) is preserved:
you can easily find the corresponding module for a cTopology node and vica versa.

6.6.2 Basic usage

You can extract the network topology into a cTopology object by a single function call. You have several ways to
select which modules you want to include in the topology:

by module type
by a parameter's presence and its value
with a user-supplied boolean function

First, you can specify which node types you want to include. The following code extracts all modules of type
Router or Host. (Router and Host can be either simple or compound module types.)

cTopology topo;
topo.extractByModuleType("Router", "Host", NULL);

Any number of module types can be supplied; the list must be terminated by NULL.

A dynamically assembled list of module types can be passed as a NULL-terminated array of const char*
pointers, or in an STL string vector std::vector<std::string>. An example for the former:

cTopology topo;
const char *typeNames[3];
typeNames[0] = "Router";
typeNames[1] = "Host";
typeNames[2] = NULL;
topo.extractByModuleType(typeNames);

Second, you can extract all modules which have a certain parameter:

topo.extractByParameter("ipAddress");

You can also specify that the parameter must have a certain value for the module to be included in the graph:

cMsgPar yes = "yes";
topo.extractByParameter("includeInTopo", &yes);

The third form allows you to pass a function which can determine for each module whether it should or should not

http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcMsgPar.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

be included. You can have cTopology pass supplemental data to the function through a void* pointer. An
example which selects all top-level modules (and does not use the void* pointer):

int selectFunction(cModule *mod, void *)
{
 return mod->getParentModule() == simulation.getSystemModule();
}

topo.extractFromNetwork(selectFunction, NULL);

A cTopology object uses two types: cTopology::Node for nodes and cTopology::Link for edges.
(sTopoLinkIn and cTopology::LinkOut are `aliases' for cTopology::Link; we'll talk about them later.)

Once you have the topology extracted, you can start exploring it. Consider the following code (we'll explain it
shortly):

for (int i=0; i<topo.getNumNodes(); i++)
{
 cTopology::Node *node = topo.getNode(i);
 ev << "Node i=" << i << " is " << node->getModule()->getFullPath() << endl;
 ev << " It has " << node->getNumOutLinks() << " conns to other nodes\n";
 ev << " and " << node->getNumInLinks() << " conns from other nodes\n";

 ev << " Connections to other modules are:\n";
 for (int j=0; j<node->getNumOutLinks(); j++)
 {
 cTopology::Node *neighbour = node->getLinkOut(j)->getRemoteNode();
 cGate *gate = node->getLinkOut(j)->getLocalGate();
 ev << " " << neighbour->getModule()->getFullPath()
 << " through gate " << gate->getFullName() << endl;
 }
}

The getNumNodes() member function (1st line) returns the number of nodes in the graph, and getNode(i) returns
a pointer to the ith node, an cTopology::Node structure.

The correspondence between a graph node and a module can be obtained by:

cTopology::Node *node = topo.getNodeFor(module);
cModule *module = node->getModule();

The getNodeFor() member function returns a pointer to the graph node for a given module. (If the module is not
in the graph, it returns NULL). getNodeFor() uses binary search within the cTopology object so it is fast
enough.

cTopology::Node 's other member functions let you determine the connections of this node:
getNumInLinks(), getNumOutLinks() return the number of connections, in(i) and out(i) return pointers
to graph edge objects.

By calling member functions of the graph edge object, you can determine the modules and gates involved. The
getRemoteNode() function returns the other end of the connection, and getLocalGate(), getRemoteGate(),
getLocalGateId() and getRemoteGateId() return the gate pointers and ids of the gates involved. (Actually,
the implementation is a bit tricky here: the same graph edge object cTopology::Link is returned either as
cTopology::LinkIn or as cTopology::LinkOut so that ``remote'' and ``local'' can be correctly interpreted for
edges of both directions.)

6.6.3 Shortest paths

The real power of cTopology is in finding shortest paths in the network to support optimal routing. cTopology

http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcGate.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

finds shortest paths from all nodes to a target node. The algorithm is computationally inexpensive. In the simplest
case, all edges are assumed to have the same weight.

A real-life example when we have the target module pointer, finding the shortest path looks like this:

cModule *targetmodulep =...;
cTopology::Node *targetnode = topo.getNodeFor(targetmodulep);
topo.calculateUnweightedSingleShortestPathsTo(targetnode);

This performs the Dijkstra algorithm and stores the result in the cTopology object. The result can then be
extracted using cTopology and cTopology::Node methods. Naturally, each call to
calculateUnweightedSingleShortestPathsTo() overwrites the results of the previous call.

Walking along the path from our module to the target node:

cTopology::Node *node = topo.getNodeFor(this);

if (node == NULL)
{
 ev < "We (" << getFullPath() << ") are not included in the topology.\n";
}
else if (node->getNumPaths()==0)
{
 ev << "No path to destination.\n";
}
else
{
 while (node != topo.getTargetNode())
 {
 ev << "We are in " << node->getModule()->getFullPath() << endl;
 ev << node->getDistanceToTarget() << " hops to go\n";
 ev << "There are " << node->getNumPaths()
 << " equally good directions, taking the first one\n";
 cTopology::LinkOut *path = node->getPath(0);
 ev << "Taking gate " << path->getLocalGate()->getFullName()
 << " we arrive in " << path->getRemoteNode()->getModule()->getFullPath()
 << " on its gate " << path->getRemoteGate()->getFullName() << endl;
 node = path->getRemoteNode();
 }
}

The purpose of the getDistanceToTarget() member function of a node is self-explanatory. In the unweighted
case, it returns the number of hops. The getNumPaths() member function returns the number of edges which are
part of a shortest path, and path(i) returns the ith edge of them as cTopology::LinkOut. If the shortest paths
were created by the ...SingleShortestPaths() function, getNumPaths() will always return 1 (or 0 if the
target is not reachable), that is, only one of the several possible shortest paths are found. The
...MultiShortestPathsTo() functions find all paths, at increased run-time cost. The cTopology 's
getTargetNode() function returns the target node of the last shortest path search.

You can enable/disable nodes or edges in the graph. This is done by calling their enable() or disable()
member functions. Disabled nodes or edges are ignored by the shortest paths calculation algorithm. The
isEnabled() member function returns the state of a node or edge in the topology graph.

One usage of disable() is when you want to determine in how many hops the target node can be reached from
our node through a particular output gate. To calculate this, you calculate the shortest paths to the target from the
neighbor node, but you must disable the current node to prevent the shortest paths from going through it:

cTopology::Node *thisnode = topo.getNodeFor(this);
thisnode->disable();
topo.calculateUnweightedSingleShortestPathsTo(targetnode);
thisnode->enable();

http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

for (int j=0; j<thisnode->getNumOutLinks(); j++)
{
 cTopology::LinkOut *link = thisnode->getLinkOut(i);
 ev << "Through gate " << link->getLocalGate()->getFullName() << " : "
 << 1 + link->getRemoteNode()->getDistanceToTarget() << " hops" << endl;
}

In the future, other shortest path algorithms will also be implemented:

unweightedMultiShortestPathsTo(cTopology::Node *target);
weightedSingleShortestPathsTo(cTopology::Node *target);
weightedMultiShortestPathsTo(cTopology::Node *target);

6.7 Statistics and distribution estimation

6.7.1 cStatistic and descendants

There are several statistic and result collection classes: cStdDev, cWeightedStdDev, LongHistogram,
cDoubleHistogram, cVarHistogram, cPSquare and cKSplit. They are all derived from the abstract base
class cStatistic.

cStdDev keeps the count, mean, standard deviation, minimum and maximum value etc of the observations.
cWeightedStdDev is similar to cStdDev, but accepts weighted observations. cWeightedStdDev can be
used for example to calculate time average. It is the only weighted statistics class.
cLongHistogram and cDoubleHistogram are descendants of cStdDev and also keep an approximation
of the distribution of the observations using equidistant (equal-sized) cell histograms.
cVarHistogram implements a histogram where cells do not need to be the same size. You can manually
add the cell (bin) boundaries, or alternatively, automatically have a partitioning created where each bin has
the same number of observations (or as close to that as possible).
cPSquare is a class that uses the P2 algorithm described in [JCh85]. The algorithm calculates quantiles
without storing the observations; one can also think of it as a histogram with equiprobable cells.
cKSplit uses a novel, experimental method, based on an adaptive histogram-like algorithm.

Basic usage

One can insert an observation into a statistic object with the collect() function or the += operator (they are
equivalent). cStdDev has the following methods for getting statistics out of the object: getCount(), getMin(),
getMax(), getMean(), getStddev(), getVariance(), getSum(), getSqrSum() with the obvious
meanings. An example usage for cStdDev:

cStdDev stat("stat");

for (int i=0; i<10; i++)
 stat.collect(normal(0,1));

long numSamples = stat.getCount();
double smallest = stat.getMin(),
 largest = stat.getMax();
double mean = stat.getMean(),
 standardDeviation = stat.getStddev(),
 variance = stat.getVariance();

6.7.2 Distribution estimation

Initialization and usage

http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcTopology.html
http://omnetpp.org/doc/omnetpp40/api/classcStatistic.html
http://omnetpp.org/doc/omnetpp40/api/classcStdDev.html
http://omnetpp.org/doc/omnetpp40/api/classcWeightedStdDev.html
http://omnetpp.org/doc/omnetpp40/api/classcDoubleHistogram.html
http://omnetpp.org/doc/omnetpp40/api/classcVarHistogram.html
http://omnetpp.org/doc/omnetpp40/api/classcPSquare.html
http://omnetpp.org/doc/omnetpp40/api/classcKSplit.html
http://omnetpp.org/doc/omnetpp40/api/classcStatistic.html
http://omnetpp.org/doc/omnetpp40/api/classcStdDev.html
http://omnetpp.org/doc/omnetpp40/api/classcWeightedStdDev.html
http://omnetpp.org/doc/omnetpp40/api/classcStdDev.html
http://omnetpp.org/doc/omnetpp40/api/classcWeightedStdDev.html
http://omnetpp.org/doc/omnetpp40/api/classcLongHistogram.html
http://omnetpp.org/doc/omnetpp40/api/classcDoubleHistogram.html
http://omnetpp.org/doc/omnetpp40/api/classcStdDev.html
http://omnetpp.org/doc/omnetpp40/api/classcVarHistogram.html
http://omnetpp.org/doc/omnetpp40/api/classcPSquare.html
http://omnetpp.org/doc/omnetpp40/api/classcKSplit.html
http://omnetpp.org/doc/omnetpp40/api/classcStdDev.html
http://omnetpp.org/doc/omnetpp40/api/classcStdDev.html
http://omnetpp.org/doc/omnetpp40/api/classcStdDev.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

The distribution estimation classes (cLongHistogram, cDoubleHistogram, cVarHistogram, cPSquare and
cKSplit) are derived from cDensityEstBase. Distribution estimation classes (except for cPSquare) assume
that the observations are within a range. You may specify the range explicitly (based on some a-priori info about
the distribution) or you may let the object collect the first few observations and determine the range from them.
Methods which let you specify range settings are part of cDensityEstBase.

The following member functions exist for setting up the range and to specify how many observations should be
used for automatically determining the range.

setRange(lower,upper);
setRangeAuto(numFirstvals, rangeExtFactor);
setRangeAutoLower(upper, numFirstvals, rangeExtFactor);
setRangeAutoUpper(lower, numFirstvals, rangeExtFactor);

setNumFirstVals(numFirstvals);

The following example creates a histogram with 20 cells and automatic range estimation:

cDoubleHistogram histogram("histogram", 20);
histogram.setRangeAuto(100,1.5);

Here, 20 is the number of cells (not including the underflow/overflow cells, see later), and 100 is the number of
observations to be collected before setting up the cells. 1.5 is the range extension factor. It means that the actual
range of the initial observations will be expanded 1.5 times and this expanded range will be used to lay out the
cells. This method increases the chance that further observations fall in one of the cells and not outside the
histogram range.

Figure: Setting up a histogram's range

After the cells have been set up, collection can go on.

The isTransformed() function returns true when the cells have already been set up. You can force range
estimation and setting up the cells by calling the transform() function.

The observations that fall outside the histogram range will be counted as underflows and overflows. The number of
underflows and overflows are returned by the getUnderflowCell() and getOverflowCell() member
functions.

Figure: Histogram structure after setting up the cells

You create a P2 object by specifying the number of cells:

cPSquare psquare("interarrival-times", 20);

Afterwards, a cPSquare can be used with the same member functions as a histogram.

Getting histogram data

There are three member functions to explicitly return cell boundaries and the number of observations is each cell.

http://omnetpp.org/doc/omnetpp40/api/classcLongHistogram.html
http://omnetpp.org/doc/omnetpp40/api/classcDoubleHistogram.html
http://omnetpp.org/doc/omnetpp40/api/classcVarHistogram.html
http://omnetpp.org/doc/omnetpp40/api/classcPSquare.html
http://omnetpp.org/doc/omnetpp40/api/classcKSplit.html
http://omnetpp.org/doc/omnetpp40/api/classcDensityEstBase.html
http://omnetpp.org/doc/omnetpp40/api/classcPSquare.html
http://omnetpp.org/doc/omnetpp40/api/classcDensityEstBase.html
http://omnetpp.org/doc/omnetpp40/api/classcDoubleHistogram.html
http://omnetpp.org/doc/omnetpp40/api/classcPSquare.html
http://omnetpp.org/doc/omnetpp40/api/classcPSquare.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

getNumCells() returns the number of cells, getBasepoint(int k) returns the kth base point,
getCellValue(int k) returns the number of observations in cell k, and getCellPDF(int k) returns the PDF
value in the cell (i.e. between getBasepoint(k) and getBasepoint(k+1)). The getCellInfo(k) method
returns multiple data (cell bounds, counter, relatile frequency) packed together in a struct. These functions work for
all histogram types, plus cPSquare and cKSplit.

Figure: base points and cells

An example:

long n = histogram.getCount();
for (int i=0; i<histogram.getNumCells(); i++)
{
 double cellWidth = histogram.getBasepoint(i+1)-histogram.getBasepoint(i);
 int count = histogram.getCellValue(i);
 double pdf = histogram.getCellPDF(i);
 //...
}

The getPDF(x) and getCDF(x) member functions return the value of the Probability Density Function and the
Cumulated Density Function at a given x, respectively.

Random number generation from distributions

The random() member function generates random numbers from the distribution stored by the object:

double rnd = histogram.random();

cStdDev assumes normal distribution.

You can also wrap the distribution object in a cPar:

cMsgPar rndPar("rndPar");
rndPar.setDoubleValue(&histogram);

The cPar object stores the pointer to the histogram (or P2 object), and whenever it is asked for the value, calls the
histogram object's random() function:

double rnd = (double)rndPar; // random number from the cPSquare

Storing/loading distributions

The statistic classes have loadFromFile() member functions that read the histogram data from a text file. If you
need a custom distribution that cannot be written (or it is inefficient) as a C function, you can describe it in
histogram form stored in a text file, and use a histogram object with loadFromFile().

http://omnetpp.org/doc/omnetpp40/api/classcPSquare.html
http://omnetpp.org/doc/omnetpp40/api/classcKSplit.html
http://omnetpp.org/doc/omnetpp40/api/classcStdDev.html
http://omnetpp.org/doc/omnetpp40/api/classcPar.html
http://omnetpp.org/doc/omnetpp40/api/classcMsgPar.html
http://omnetpp.org/doc/omnetpp40/api/classcPar.html
http://omnetpp.org/doc/omnetpp40/api/classcPSquare.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

You can also use saveToFile()that writes out the distribution collected by the histogram object:

FILE *f = fopen("histogram.dat","w");
histogram.saveToFile(f); // save the distribution
fclose(f);

cDoubleHistogram hist2("Hist-from-file");
FILE *f2 = fopen("histogram.dat","r");
hist2.loadFromFile(f2); // load stored distribution
fclose(f2);

Histogram with custom cells

The cVarHistogram class can be used to create histograms with arbitrary (non-equidistant) cells. It can operate
in two modes:

manual, where you specify cell boundaries explicitly before starting collecting
automatic, where transform() will set up the cells after collecting a certain number of initial observations.
The cells will be set up so that as far as possible, an equal number of observations fall into each cell (equi-
probable cells).

Modes are selected with a transform-type parameter:

HIST_TR_NO_TRANSFORM: no transformation; uses bin boundaries previously defined by addBinBound()
HIST_TR_AUTO_EPC_DBL: automatically creates equiprobable cells
HIST_TR_AUTO_EPC_INT: like the above, but for integers

Creating an object:

cVarHistogram(const char *s=NULL,
 int numcells=11,
 int transformtype=HIST_TR_AUTO_EPC_DBL);

Manually adding a cell boundary:

void addBinBound(double x);

Rangemin and rangemax is chosen after collecting the numFirstVals initial observations. One cannot add cell
boundaries when the histogram has already been transformed.

6.7.3 The k-split algorithm

Purpose

The k-split algorithm is an on-line distribution estimation method. It was designed for on-line result collection in
simulation programs. The method was proposed by Varga and Fakhamzadeh in 1997. The primary advantage of k-
split is that without having to store the observations, it gives a good estimate without requiring a-priori information
about the distribution, including the sample size. The k-split algorithm can be extended to multi-dimensional
distributions, but here we deal with the one-dimensional version only.

The algorithm

The k-split algorithm is an adaptive histogram-type estimate which maintains a good partitioning by doing cell splits.
We start out with a histogram range [xlo, xhi) with k equal-sized histogram cells with observation counts n1,n2, .. nk.
Each collected observation increments the corresponding observation count. When an observation count ni reaches
a split threshold, the cell is split into k smaller, equal-sized cells with observation counts ni,1, ni,2, .. ni,k initialized to
zero. The n observation count is remembered and is called the mother observation count to the newly created

http://omnetpp.org/doc/omnetpp40/api/classcDoubleHistogram.html
http://omnetpp.org/doc/omnetpp40/api/classcVarHistogram.html
http://omnetpp.org/doc/omnetpp40/api/classcVarHistogram.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

i
cells. Further observations may cause cells to be split further (e.g. ni,1,1,...ni,1,k etc.), thus creating a k-order tree of
observation counts where leaves contain live counters that are actually incremented by new observations, and
intermediate nodes contain mother observation counts for their children. If an observation falls outside the
histogram range, the range is extended in a natural manner by inserting new level(s) at the top of the tree. The
fundamental parameter to the algorithm is the split factor k. Experience shows that k=2 worked best.

Figure: Illustration of the k-split algorithm, k=2. The numbers in boxes represent the observation count values

For density estimation, the total number of observations that fell into each cell of the partition has to be determined.
For this purpose, mother observations in each internal node of the tree must be distributed among its child cells and
propagated up to the leaves.

Let n...,i be the (mother) observation count for a cell, s...,i be the total observation count in a cell n...,i plus the
observation counts in all its sub-, sub-sub-, etc. cells), and m...,i the mother observations propagated to the cell. We
are interested in the ?...,i = n...,i + m...,i estimated amount of observations in the tree nodes, especially in the leaves.
In other words, if we have ?...,i estimated observation amount in a cell, how to divide it to obtain m...,i,1, m...,i,2 ..
m...,i,k that can be propagated to child cells. Naturally, m...,i,1 + m...,i,2 + .. + m...,i,k = ?...,i.

Two natural distribution methods are even distribution (when m...,i,1 = m...,i,2 = .. = m...,i,k) and proportional
distribution (when m...,i,1 : m...,i,2 : .. : m...,i,k = s...,i,1 : s...,i,2 : .. : s...,i,k). Even distribution is optimal when the s...,i,j
values are very small, and proportional distribution is good when the s...,i,j values are large compared to m...,i,j. In
practice, a linear combination of them seems appropriate, where λ=0 means even and λ=1 means proportional
distribution:

m..,i,j = (1-λ)?..,i/k + λ ?..,i s...,i,j / s..,i where λ is in [0,1]

Figure: Density estimation from the k-split cell tree. We assume λ=0, i.e. we distribute mother observations evenly.

Note that while n...,i are integers, m...,i and thus ?...,i are typically real numbers. The histogram estimate calculated
from k-split is not exact, because the frequency counts calculated in the above manner contain a degree of
estimation themselves. This introduces a certain cell division error; the λ parameter should be selected so that it
minimizes that error. It has been shown that the cell division error can be reduced to a more-than-acceptable small
value.
Strictly speaking, the k-split algorithm is semi-online, because its needs some observations to set up the initial
histogram range. Because of the range extension and cell split capabilities, the algorithm is not very sensitive to the
choice of the initial range, so very few observations are sufficient for range estimation (say Npre=10). Thus we can

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

regard k-split as an on-line method.

K-split can also be used in semi-online mode, when the algorithm is only used to create an optimal partition from a
larger number of Npre observations. When the partition has been created, the observation counts are cleared and
the Npre observations are fed into k-split once again. This way all mother (non-leaf) observation counts will be zero
and the cell division error is eliminated. It has been shown that the partition created by k-split can be better than
both the equi-distant and the equal-frequency partition.

OMNeT++ contains an experimental implementation of the k-split algorithm, the cKSplit class. Research on k-
split is still under way.

The cKSplit class

The cKSplit class is an implementation of the k-split method. Member functions:

void setCritFunc(KSplitCritFunc _critfunc, double *_critdata);
void setDivFunc(KSplitDivFunc _divfunc, double *_divdata);
void rangeExtension(bool enabled);

int getTreeDepth();
int getTreeDepth(cKSplit::Grid& grid);

double getRealCellValue(cKSplit::Grid& grid, int cell);
void printGrids();

cKSplit::Grid& getGrid(int k);
cKSplit::Grid& getRootGrid();

struct cKSplit::Grid
{
 int parent; // index of parent grid
 int reldepth; // depth = (reldepth - rootgrid's reldepth)
 long total; // sum of cells & all subgrids (includes "mother")
 int mother; // observations "inherited" from mother cell
 int cells[K]; // cell values
};

6.7.4 Transient detection and result accuracy

In many simulations, only the steady state performance (i.e. the performance after the system has reached a stable
state) is of interest. The initial part of the simulation is called the transient period. After the model has entered
steady state, simulation must proceed until enough statistical data has been collected to compute result with the
required accuracy.

Detection of the end of the transient period and a certain result accuracy is supported by OMNeT++. The user can
attach transient detection and result accuracy objects to a result object (cStatistic 's descendants). The
transient detection and result accuracy objects will do the specific algorithms on the data fed into the result object
and tell if the transient period is over or the result accuracy has been reached.

The base classes for classes implementing specific transient detection and result accuracy detection algorithms
are:

cTransientDetection: base class for transient detection
cAccuracyDetection: base class for result accuracy detection

Basic usage

http://omnetpp.org/doc/omnetpp40/api/classcKSplit.html
http://omnetpp.org/doc/omnetpp40/api/classcKSplit.html
http://omnetpp.org/doc/omnetpp40/api/classcKSplit.html
http://omnetpp.org/doc/omnetpp40/api/classcKSplit.html
http://omnetpp.org/doc/omnetpp40/api/classcKSplit.html
http://omnetpp.org/doc/omnetpp40/api/classcKSplit.html
http://omnetpp.org/doc/omnetpp40/api/classcKSplit.html
http://omnetpp.org/doc/omnetpp40/api/classcKSplit.html
http://omnetpp.org/doc/omnetpp40/api/classcStatistic.html
http://omnetpp.org/doc/omnetpp40/api/classcTransientDetection.html
http://omnetpp.org/doc/omnetpp40/api/classcAccuracyDetection.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Attaching detection objects to a cStatistic and getting pointers to the attached objects:

addTransientDetection(cTransientDetection *object);
addAccuracyDetection(cAccuracyDetection *object);
cTransientDetection *getTransientDetectionObject();
cAccuracyDetection *getAccuracyDetectionObject();

Detecting the end of the period:

polling the detect() function of the object
installing a post-detect function

Transient detection

Currently one transient detection algorithm is implemented, i.e. there's one class derived from
cTransientDetection. The cTDExpandingWindows class uses the sliding window approach with two
windows, and checks the difference of the two averages to see if the transient period is over.

void setParameters(int reps=3,
 int minw=4,
 double wind=1.3,
 double acc=0.3);

Accuracy detection

Currently one accuracy detection algorithm is implemented, i.e. there's one class derived from
cAccuracyDetection. The algorithm implemented in the cADByStddev class is: divide the standard deviation
by the square of the number of values and check if this is small enough.

void setParameters(double acc=0.1, int reps=3);

6.8 Recording simulation results

6.8.1 Output vectors: cOutVector

Objects of type cOutVector are responsible for writing time series data (referred to as output vectors) to a file.
The record() method is used to output a value (or a value pair) with a timestamp. The object name will serve as
the name of the output vector.

The vector name can be passed in the constructor,

cOutVector responseTimeVec("response time");

but in the usual arrangement you'd make the cOutVector a member of the module class and set the name in
initialize(). You'd record values from handleMessage() or from a function called from handleMessage().

The following example is a Sink module which records the lifetime of every message that arrives to it.

class Sink : public cSimpleModule
{
 protected:
 cOutVector endToEndDelayVec;

 virtual void initialize();
 virtual void handleMessage(cMessage *msg);

http://omnetpp.org/doc/omnetpp40/api/classcStatistic.html
http://omnetpp.org/doc/omnetpp40/api/classcTransientDetection.html
http://omnetpp.org/doc/omnetpp40/api/classcAccuracyDetection.html
http://omnetpp.org/doc/omnetpp40/api/classcTransientDetection.html
http://omnetpp.org/doc/omnetpp40/api/classcAccuracyDetection.html
http://omnetpp.org/doc/omnetpp40/api/classcTransientDetection.html
http://omnetpp.org/doc/omnetpp40/api/classcTDExpandingWindows.html
http://omnetpp.org/doc/omnetpp40/api/classcAccuracyDetection.html
http://omnetpp.org/doc/omnetpp40/api/classcADByStddev.html
http://omnetpp.org/doc/omnetpp40/api/classcOutVector.html
http://omnetpp.org/doc/omnetpp40/api/classcOutVector.html
http://omnetpp.org/doc/omnetpp40/api/classcOutVector.html
http://omnetpp.org/doc/omnetpp40/api/classcOutVector.html
http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcOutVector.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

};

Define_Module(Sink);

void Sink::initialize()
{
 endToEndDelayVec.setName("End-to-End Delay");
}

void Sink::handleMessage(cMessage *msg)
{
 simtime_t eed = simTime() - msg->getCreationTime();
 endToEndDelayVec.record(eed);
 delete msg;
}

There is also a recordWithTimestamp() method, to make it possible to record values into output vectors with a
timestamp other than simTime(). Increasing timestamp order is still enforced though.

All cOutVector objects write to a single output vector file named omnetpp.vec by default. You can configure
output vectors from omnetpp.ini: you can disable writing to the file, or limit it to a certain simulation time interval
for recording (section [8.6.2]).

The format and processing of output vector files is described in section [11.1.2].

If the output vector object is disabled or the simulation time is outside the specified interval, record() doesn't write
anything to the output file. However, if you have a Tkenv inspector window open for the output vector object, the
values will be displayed there, regardless of the state of the output vector object.

6.8.2 Output scalars

While output vectors are to record time series data and thus they typically record a large volume of data during a
simulation run, output scalars are supposed to record a single value per simulation run. You can use output scalars

to record summary data at the end of the simulation run
to do several runs with different parameter settings/random seed and determine the dependence of some
measures on the parameter settings. For example, multiple runs and output scalars are the way to produce
Throughput vs. Offered Load plots.

Output scalars are recorded with the record() method of cSimpleModule, and you'll usually want to insert this
code into the finish() function. An example:

void Transmitter::finish()
{
 double avgThroughput = totalBits / simTime();
 recordScalar("Average throughput", avgThroughput);
}

You can record whole statistics objects by calling their record() methods, declared as part of cStatistic. In
the following example we create a Sink module which calculates the mean, standard deviation, minimum and
maximum values of a variable, and records them at the end of the simulation.

class Sink : public cSimpleModule
{
 protected:
 cStdDev eedStats;

 virtual void initialize();
 virtual void handleMessage(cMessage *msg);
 virtual void finish();

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcOutVector.html
http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcStatistic.html
http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcStdDev.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

};

Define_Module(Sink);

void Sink::initialize()
{
 eedStats.setName("End-to-End Delay");
}

void Sink::handleMessage(cMessage *msg)
{
 simtime_t eed = simTime() - msg->getCreationTime();
 eedStats.collect(eed);
 delete msg;
}

void Sink::finish()
{
 recordScalar("Simulation duration", simTime());
 eedStats.record();
}

The above calls write into the output scalar file which is named omnetpp.sca by default. The output scalar file is
preserved across simulation runs (unlike the output vector file which gets deleted at the beginning of every
simulation run). Data are always appended at the end of the file, and output from different simulation runs are
separated by special lines. The format and processing of output vector files is described in section .

6.8.3 Precision

Output scalar and output vector files are text files, and floating point values (doubles) are recorded into it using
fprintf() 's "%g" format. The number of significant digits can be configured using the output-scalar-
precision= and output-vector-precision= configuration entries (see). The default precision is 12 digits.
The following has to be considered when changing the default value:

IEEE-754 doubles are 64-bit numbers. The mantissa is 52 bits, which is roughly equivalent to 16 decimal places
(52*log(2)/log(10)). However, due to rounding errors, usually only 12..14 digits are correct, and the rest is pretty
much random garbage which should be ignored. However, when you convert the decimal representation back into
an IEEE-754 double (as in Plove and Scalars), an additional small error will occurs because 0.1, 0.01, etc cannot
be accurately represented in binary. This conversion error is usually smaller than the one that the double variable
already had before recording into the file, however if it is important you can eliminate it by setting >16 digits
precision for the file (but again, be aware that the last digits are garbage). The practical upper limit is 17 digits,
setting it higher doesn't make any difference in fprintf() 's output.

Errors coming from converting to/from decimal representation can be eliminated by choosing an output
vector/output scalar manager class which stores doubles in their native binary form. The appropriate configuration
entries are outputvectormanager-class= and outputvectormanager-class=; see . For example,
cMySQLOutputScalarManager and cMySQLOutputScalarManager provided in samples/database fulfill
this requirement.

However, before worrying too much about rounding and conversion errors, it is worth considering what is the real
accuracy of your results. Some things to consider:

in real life, it is very hard to measure quantities (weight, distance, even time) with more than a few digits of
precision. What precision are your input data? For example, if you approximate inter-arrival time as
exponential(0.153) when the mean is really 0.152601... and the distribution is not even exactly exponential,
you are already starting out with a bigger error than rounding can cause.

the simulation model is itself an approximation of real life. How much error do the (known and unknown)

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

simplifications cause in the results?

6.9 Watches and snapshots

6.9.1 Basic watches

It would be nice, but variables of type int, long, double do not show up by default in Tkenv; neither do STL
classes (std::string, std::vector, etc.) or your own structs and classes. This is because the simulation
kernel, being a library, knows nothing about types and variables in your source code.

OMNeT++ provides WATCH() and set of other macros to come to your rescue, and make variable to be
inspectable in Tkenv and to be output into the snapshot file. WATCH() macros are usually placed into
initialize() (to watch instance variables) or to the top of the activity() function (to watch its local
variables), the point being that they should only be executed once.

long packetsSent;
double idleTime;

WATCH(packetsSent);
WATCH(idleTime);

Of course, members of classes and structs can also be watched:

WATCH(config.maxRetries);

When you open an inspector for the simple module in Tkenv and click the Objects/Watches tab in it, you'll see your
watched variables and their values there. Tkenv also lets you change the value of a watched variable.

The WATCH() macro can be used with any type that has a stream output operator (operator<<) defined. By
default, this includes all primitive types and std::string, but since you can write operator<< for your
classes/structs and basically any type, WATCH() can be used with anything. The only limitation is that since the
output should more or less fit on single line, the amount of information that can be conveniently displayed is limited.

An example stream output operator:

std::ostream& operator<<(std::ostream& os, const ClientInfo& cli)
{
 os << "addr=" << cli.clientAddr << " port=" << cli.clientPort; // no endl!
 return os;
}

And the WATCH() line:

WATCH(currentClientInfo);

6.9.2 Read-write watches

Watches for primitive types and std::string allow for changing the value from the GUI as well, but for other
types you need to explicitly add support for that. What you need to do is define a stream input operator
(operator>>) and use the WATCH_RW() macro instead of WATCH().

The stream input operator:

std::ostream& operator>>(std::istream& is, ClientInfo& cli)
{

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 // read a line from "is" and parse its contents into "cli"
 return is;
}

And the WATCH_RW() line:

WATCH_RW(currentClientInfo);

6.9.3 Structured watches

WATCH() and WATCH_RW() are basic watches: they allow one line of (unstructured) text to be displayed. However,
if you have a data structure generated from message definitions (see Chapter [5]), then one can do better. The
message compiler automatically generates meta-information describing individual fields of the class or struct, which
makes it possible to display the contents on field level.

The WATCH macros to be used for this purpose are WATCH_OBJ() and WATCH_PTR(). Both expect the object to
be subclassed from cObject; WATCH_OBJ() expects a reference to such class, and WATCH_PTR() expects a
pointer variable.

ExtensionHeader hdr;
ExtensionHeader *hdrPtr;
...
WATCH_OBJ(hdr);
WATCH_PTR(hdrPtr);

CAUTION: With WATCH_PTR(), the pointer variable must point to a valid object or be NULL at all times, otherwise
the GUI may crash while trying to display the object. This practically means that the pointer should be initialized to
NULL even if not used, and should be set to NULL when the object to which it points gets deleted.

delete watchedPtr;
watchedPtr = NULL; // set to NULL when object gets deleted

6.9.4 STL watches

The standard C++ container classes (vector, map, set, etc) also have structured watches, available via the
following macros:

WATCH_VECTOR(), WATCH_PTRVECTOR(), WATCH_LIST(), WATCH_PTRLIST(), WATCH_SET(),
WATCH_PTRSET(), WATCH_MAP(), WATCH_PTRMAP().

The PTR-less versions expect the data items ("T") to have stream output operators (operator <<), because that's
how they will display them. The PTR versions assume that data items are pointers to some type which has
operator <<. WATCH_PTRMAP() assumes that only the value type (``second'') is a pointer, the key type (``first'')
is not. (If you happen to use pointers as key, then define operator << for the pointer type itself.)

Examples:

std::vector<int> intvec;
WATCH_VECTOR(intvec);

std::map<std::string,Command*> commandMap;
WATCH_PTRMAP(commandMap);

6.9.5 Snapshots

http://omnetpp.org/doc/omnetpp40/api/classcObject.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

The snapshot() function outputs textual information about all or selected objects of the simulation (including the
objects created in module functions by the user) into the snapshot file.

bool snapshot(cOwnedObject *obj = &simulation, const char *label = NULL);

The function can be called from module functions, like this:

snapshot(); // dump the whole network
snapshot(this); // dump this simple module and all its objects
snapshot(&simulation.msgQueue); // dump future events

This will append snapshot information to the end of the snapshot file. (The snapshot file name has an extension of
.sna, default is omnetpp.sna. Actual file name can be set in the config file.)

The snapshot file output is detailed enough to be used for debugging the simulation: by regularly calling
snapshot(), one can trace how the values of variables, objects changed over the simulation. The arguments:
label is a string that will appear in the output file; obj is the object whose inside is of interest. By default, the whole
simulation (all modules etc) will be written out.

If you run the simulation with Tkenv, you can also create a snapshot from the menu.

An example of a snapshot file:

[...]

(cSimulation) 'simulation' begin
 Modules in the network:
 'token' #1 (TokenRing)
 'comp[0]' #2 (Computer)
 'mac' #3 (TokenRingMAC)
 'gen' #4 (Generator)
 'sink' #5 (Sink)
 'comp[1]' #6 (Computer)
 'mac' #7 (TokenRingMAC)
 'gen' #8 (Generator)
 'sink' #9 (Sink)
 'comp[2]' #10 (Computer)
 'mac' #11 (TokenRingMAC)
 'gen' #12 (Generator)
 'sink' #13 (Sink)
end

(TokenRing) 'token' begin
 #1 params (cArray) (n=6)
 #1 gates (cArray) (empty)
 comp[0] (cCompoundModule,#2)
 comp[1] (cCompoundModule,#6)
 comp[2] (cCompoundModule,#10)
end

(cArray) 'token.parameters' begin
 num_stations (cModulePar) 3 (L)
 num_messages (cModulePar) 10000 (L)
 ia_time (cModulePar) truncnormal(0.005,0.003) (F)
 THT (cModulePar) 0.01 (D)
 data_rate (cModulePar) 4000000 (L)
 cable_delay (cModulePar) 1e-06 (D)
end

[...]

(cQueue) 'token.comp[0].mac.local-objects.send-queue' begin
 0-->1 (cMessage) Tarr=0.0158105774 (15ms) Src=#4 Dest=#3

http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcCompoundModule.html
http://omnetpp.org/doc/omnetpp40/api/classcCompoundModule.html
http://omnetpp.org/doc/omnetpp40/api/classcCompoundModule.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 0-->2 (cMessage) Tarr=0.0163553310 (16ms) Src=#4 Dest=#3
 0-->1 (cMessage) Tarr=0.0205628236 (20ms) Src=#4 Dest=#3
 0-->2 (cMessage) Tarr=0.0242203591 (24ms) Src=#4 Dest=#3
 0-->2 (cMessage) Tarr=0.0300994268 (30ms) Src=#4 Dest=#3
 0-->1 (cMessage) Tarr=0.0364005251 (36ms) Src=#4 Dest=#3
 0-->1 (cMessage) Tarr=0.0370745702 (37ms) Src=#4 Dest=#3
 0-->2 (cMessage) Tarr=0.0387984129 (38ms) Src=#4 Dest=#3
 0-->1 (cMessage) Tarr=0.0457462493 (45ms) Src=#4 Dest=#3
 0-->2 (cMessage) Tarr=0.0487308918 (48ms) Src=#4 Dest=#3
 0-->2 (cMessage) Tarr=0.0514466766 (51ms) Src=#4 Dest=#3
end

(cMessage) 'token.comp[0].mac.local-objects.send-queue.0-->1' begin
 #4 --> #3
 sent: 0.0158105774 (15ms)
 arrived: 0.0158105774 (15ms)
 length: 33536
 kind: 0
 priority: 0
 error: FALSE
 time stamp: 0.0000000 (0.00s)
 parameter list:
 dest (cPar) 1 (L)
 source (cPar) 0 (L)
 gentime (cPar) 0.0158106 (D)
end

[...]

It is possible that the format of the snapshot file will change to XML in future OMNeT++ releases.

6.9.6 Getting coroutine stack usage

It is important to choose the correct stack size for modules. If the stack is too large, it unnecessarily consumes
memory; if it is too small, stack violation occurs.

From the Feb99 release, OMNeT++ contains a mechanism that detects stack overflows. It checks the intactness of
a predefined byte pattern (0xdeadbeef) at the stack boundary, and reports ``stack violation'' if it was overwritten.
The mechanism usually works fine, but occasionally it can be fooled by large -- and not fully used -- local variables
(e.g. char buffer[256]): if the byte pattern happens to fall in the middle of such a local variable, it may be preserved
intact and OMNeT++ does not detect the stack violation.

To be able to make a good guess about stack size, you can use the getStackUsage() call which tells you how
much stack the module actually uses. It is most conveniently called from finish():

void FooModule::finish()
{
 ev << getStackUsage() << "bytes of stack used\n";
}

The value includes the extra stack added by the user interface library (see extraStackforEnvir in envir/omnetapp.h),
which is currently 8K for Cmdenv and at least 16K for Tkenv.

[The actual value is platform-dependent.]

getStackUsage()also works by checking the existence of predefined byte patterns in the stack area, so it is also
subject to the above effect with local variables.

6.10 Deriving new classes

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcPar.html
http://omnetpp.org/doc/omnetpp40/api/classcPar.html
http://omnetpp.org/doc/omnetpp40/api/classcPar.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

6.10.1 cOwnedObject or not?

If you plan to implement a completely new class (as opposed to subclassing something already present in
OMNeT++), you have to ask yourself whether you want the new class to be based on cOwnedObject or not. Note
that we are not saying you should always subclass from cOwnedObject. Both solutions have advantages and
disadvantages, which you have to consider individually for each class.

cOwnedObject already carries (or provides a framework for) significant functionality that is either relevant to your
particular purpose or not. Subclassing cOwnedObject generally means you have more code to write (as you have
to redefine certain virtual functions and adhere to conventions) and your class will be a bit more heavy-weight.
However, if you need to store your objects in OMNeT++ objects like cQueue, or you'll want to store OMNeT++
classes in your object, then you must subclass from cOwnedObject.

[For simplicity, in the these sections ``OMNeT++ object'' should be understood as ``object of a class subclassed from
cOwnedObject '']

The most significant features cOwnedObject has is the name string (which has to be stored somewhere, so it has
its overhead) and ownership management (see section [6.11]) which also has the advantages but also some costs.

As a general rule, small struct-like classes like IPAddress, MACAddress, RoutingTableEntry,
TCPConnectionDescriptor, etc. are better not sublassed from cOwnedObject. If your class has at least one
virtual member function, consider subclassing from cObject, which does not impose any extra cost because it
doesn't have data members at all, only virtual functions.

6.10.2 cOwnedObject virtual methods

Most classes in the simulation class library are descendants of cOwnedObject. If you want to derive a new class
from cOwnedObject or a cOwnedObject descendant, you must redefine some member functions so that objects
of the new type can fully co-operate with other parts of the simulation system. A more or less complete list of these
functions is presented here. You do not need to worry about the length of the list: most functions are not absolutely
necessary to implement. For example, you do not need to redefine forEachChild() unless your class is a
container class.

The following methods must be implemented:

Constructor. At least two constructors should be provided: one that takes the object name string as const
char * (recommended by convention), and another one with no arguments (must be present). The two are
usually implemented as a single method, with NULL as default name string.
Copy constructor, which must have the following signature for a class X: X(const X&). The copy
constructor is used whenever an object is duplicated. The usual implementation of the copy constructor is to
initialize the base class with the name (getName()) of the other object it receives, then call the assignment
operator (see below).
Destructor.
Duplication function, X *dup() const. It should create and return an exact duplicate of the object. It is
usually a one-line function, implemented with the help of the new operator and the copy constructor.
Assignment operator, that is, X& operator=(const X&) for a class X. It should copy the contents of the
other object into this one, except the name string. See later what to do if the object contains pointers to other
objects.

If your class contains other objects subclassed from cOwnedObject, either via pointers or as data member, the
following function should be implemented:

Iteration function, void forEachChild(cVisitor *v). The implementation should call the function
passed for each object it contains via pointer or as data member; see the API Reference on cOwnedObject
on how to implement forEachChild(). forEachChild() makes it possible for Tkenv to display the object

http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcVisitor.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

tree to you, to perform searches on it, etc. It is also used by snapshot() and some other library functions.

The following methods are recommended to implement:

Object info, std::string info(). The info() function should return a one-line string describing the
object's contents or state. info() is displayed at several places in Tkenv.
Detailed object info, std::string detailedInfo(). This method may potentially be implemented in
addition to info(); it can return a multi-line description. detailedInfo() is also displayed by Tkenv in the
object's inspector.
Serialization, parsimPack() and parsimUnpack() methods. These methods are needed for parallel
simulation, if you want objects of this type to be transmitted across partitions.

6.10.3 Class registration

You should also use the Register_Class() macro to register the new class. It is used by the createOne()
factory function, which can create any object given the class name as a string. createOne() is used by the Envir
library to implement omnetpp.ini options such as rng-class="..." or scheduler-class="...". (see
Chapter [15])

For example, an omnetpp.ini entry such as

rng-class="cMersenneTwister"

would result in something like the following code to be executed for creating the RNG objects:

cRNG *rng = check_and_cast<cRNG*>(createOne("cMersenneTwister"));

But for that to work, we needed to have the following line somewhere in the code:

Register_Class(cMersenneTwister);

createOne() is also needed by the parallel distributed simulation feature (Chapter [14]) to create blank objects to
unmarshal into on the receiving side.

6.10.4 Details

We'll go through the details using an example. We create a new class NewClass, redefine all above mentioned
cOwnedObject member functions, and explain the conventions, rules and tips associated with them. To
demonstrate as much as possible, the class will contain an int data member, dynamically allocated
non-cOwnedObject data (an array of doubles), an OMNeT++ object as data member (a cQueue), and a
dynamically allocated OMNeT++ object (a cMessage).

The class declaration is the following. It contains the declarations of all methods discussed in the previous section.

//
// file: NewClass.h
//
#include <omnetpp.h>

class NewClass : public cOwnedObject
{
 protected:
 int data;
 double *array;
 cQueue queue;
 cMessage *msg;
 ...

http://omnetpp.org/doc/omnetpp40/api/classcMersenneTwister.html
http://omnetpp.org/doc/omnetpp40/api/classcRNG.html
http://omnetpp.org/doc/omnetpp40/api/classcRNG.html
http://omnetpp.org/doc/omnetpp40/api/classcMersenneTwister.html
http://omnetpp.org/doc/omnetpp40/api/classcMersenneTwister.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 public:
 NewClass(const char *name=NULL, int d=0);
 NewClass(const NewClass& other);
 virtual ~NewClass();
 virtual NewClass *dup() const;
 NewClass& operator=(const NewClass& other);

 virtual void forEachChild(cVisitor *v);
 virtual std::string info();
};

We'll discuss the implementation method by method. Here's the top of the .cc file:

//
// file: NewClass.cc
//
#include <stdio.h>
#include <string.h>
#include <iostream.h>
#include "newclass.h"

Register_Class(NewClass);

NewClass::NewClass(const char *name, int d) : cOwnedObject(name)
{
 data = d;
 array = new double[10];
 take(&queue);
 msg = NULL;
}

The constructor (above) calls the base class constructor with the name of the object, then initializes its own data
members. You need to call take() for cOwnedObject-based data members.

NewClass::NewClass(const NewClass& other) : cOwnedObject(other.getName())
{
 array = new double[10];
 msg = NULL;
 take(&queue);
 operator=(other);
}

The copy constructor relies on the assignment operator. Because by convention the assignment operator does not
copy the name member, it is passed here to the base class constructor. (Alternatively, we could have written
setName(other.getName()) into the function body.)

Note that pointer members have to be initialized (to NULL or to an allocated object/memory) before calling the
assignment operator, to avoid crashes.

You need to call take() for cOwnedObject-based data members.

NewClass::~NewClass()
{
 delete [] array;
 if (msg->getOwner()==this)
 delete msg;
}

The destructor should delete all data structures the object allocated. cOwnedObject-based objects should only be
deleted if they are owned by the object -- details will be covered in section [6.11].

http://omnetpp.org/doc/omnetpp40/api/classcVisitor.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

NewClass *NewClass::dup() const
{
 return new NewClass(*this);
}

The dup() functions is usually just one line, like the one above.

NewClass& NewClass::operator=(const NewClass& other)
{
 if (&other==this)
 return *this;
 cOwnedObject::operator=(other);

 data = other.data;

 for (int i=0; i<10; i++)
 array[i] = other.array[i];

 queue = other.queue;
 queue.setName(other.queue.getName());

 if (msg && msg->getOwner()==this)
 delete msg;
 if (other.msg && other.msg->getOwner()==const_cast<cMessage*>(&other))
 take(msg = other.msg->dup());
 else
 msg = other.msg;
 return *this;
}

Complexity associated with copying and duplicating the object is concentrated in the assignment operator, so it is
usually the one that requires the most work from you of all methods required by cOwnedObject.

If you do not want to implement object copying and duplication, you should implement the assignment operator to
call copyNotSupported() -- it'll throw an exception that stops the simulation with an error message if this
function is called.

The assignment operator copies contents of the other object to this one, except the name string. It should always
return *this.

First, we should make sure we're not trying to copy the object to itself, because it might be disastrous. If so (that is,
&other==this), we return immediately without doing anything.

The base class part is copied via invoking the assignment operator of the base class.

New data members are copied in the normal C++ way. If the class contains pointers, you'll most probably want to
make a deep copy of the data where they point, and not just copy the pointer values.

If the class contains pointers to OMNeT++ objects, you need to take ownership into account. If the contained object
is not owned then we assume it is a pointer to an ``external'' object, consequently we only copy the pointer. If it is
owned, we duplicate it and become the owner of the new object. Details of ownership management will be covered
in section [6.11].

void NewClass::forEachChild(cVisitor *v)
{
 v->visit(queue);
 if (msg)
 v->visit(msg);
}

The forEachChild() function should call v->visit(obj) for each obj member of the class. See the API

http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcVisitor.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Reference for more information of forEachChild().

std::string NewClass::info()
{
 std::stringstream out;
 out << "data=" << data << ", array[0]=" << array[0];
 return out.str();

}

The info() method should produce a concise, one-line string about the object. You should try not to exceed 40-
80 characters, since the string will be shown in tooltips and listboxes.

See the virtual functions of cObject and cOwnedObject in the class library reference for more information. The
sources of the Sim library (include/, src/sim/) can serve as further examples.

6.11 Object ownership management

6.11.1 The ownership tree

OMNeT++ has a built-in ownership management mechanism which is used for sanity checks, and as part of the
infrastructure supporting Tkenv inspectors.

Container classes like cQueue own the objects inserted into them. But this is not limited to objects inserted into a
container: every cOwnedObject-based object has an owner all the time. From the user's point of view, ownership
is managed transparently. For example, when you create a new cMessage, it will be owned by the simple module.
When you send it, it will first be handed over to (i.e. change ownership to) the FES, and, upon arrival, to the
destination simple module. When you encapsulate the message in another one, the encapsulating message will
become the owner. When you decapsulate it again, the currently active simple module becomes the owner.

The getOwner() method, defined in cOwnedObject, returns the owner of the object:

cOwnedObject *o = msg->getOwner();
ev << "Owner of " << msg->getName() << " is: " <<
 << "(" << o->getClassName() << ") " << o->getFullPath() << endl;

The other direction, enumerating the objects owned can be implemented with the forEachChild() method by it
looping through all contained objects and checking the owner of each object.

Why do we need this?

The traditional concept of object ownership is associated with the ``right to delete'' objects. In addition to that,
keeping track of the owner and the list of objects owned also serves other purposes in OMNeT++:

enables methods like getFullPath() to be implemented.

prevents certain types of programming errors, namely, those associated with wrong ownership handling.

enables Tkenv to display the list of simulation objects present within a simple module. This is extremely
useful for finding memory leaks caused by forgetting to delete messages that are no longer needed.

Some examples of programming errors that can be caught by the ownership facility:

attempts to send a message while it is still in a queue, encapsulated in another message, etc.

attempts to send/schedule a message while it is still owned by the simulation kernel (i.e. scheduled as a

http://omnetpp.org/doc/omnetpp40/api/classcObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

future event)

attempts to send the very same message object to multiple destinations at the same time (ie. to all connected
modules)

For example, the send() and scheduleAt() functions check that the message being sent/scheduled must is
owned by the module. If it is not, then it signals a programming error: the message is probably owned by another
module (already sent earlier?), or currently scheduled, or inside a queue, a message or some other object -- in
either case, the module does not have any authority over it. When you get the error message ("not owner of
object"), you need to carefully examine the error message: which object has the ownership of the message,
why's that, and then probably you'll need to fix the logic somewhere in your program.

The above errors are easy to make in the code, and if not detected automatically, they could cause random crashes
which are usually very difficult to track down. Of course, some errors of the same kind still cannot be detected
automatically, like calling member functions of a message object which has been sent to (and so currently kept by)
another module.

6.11.2 Managing ownership

Ownership is managed transparently for the user, but this mechanism has to be supported by the participating
classes themselves. It will be useful to look inside cQueue and cArray, because they might give you a hint what
behavior you need to implement when you want to use non-OMNeT++ container classes to store messages or
other cOwnedObject-based objects.

Insertion

cArray and cQueue have internal data structures (array and linked list) to store the objects which are inserted into
them. However, they do not necessarily own all of these objects. (Whether they own an object or not can be
determined from that object's getOwner() pointer.)

The default behaviour of cQueue and cArray is to take ownership of the objects inserted. This behavior can be
changed via the takeOwnership flag.

Here's what the insert operation of cQueue (or cArray) does:

insert the object into the internal array/list data structure

if the takeOwnership flag is true, take ownership of the object, otherwise just leave it with its original owner

The corresponding source code:

void cQueue::insert(cOwnedObject *obj)
{
 // insert into queue data structure
 ...

 // take ownership if needed
 if (getTakeOwnership())
 take(obj);

}

Removal

Here's what the remove family of operations in cQueue (or cArray) does:

remove the object from the internal array/list data structure

http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

if the object is actually owned by this cQueue/cArray, release ownership of the object, otherwise just leave
it with its current owner

After the object was removed from a cQueue/cArray, you may further use it, or if it is not needed any more, you
can delete it.

The release ownership phrase requires further explanation. When you remove an object from a queue or array, the
ownership is expected to be transferred to the simple module's local objects list. This is accomplished by the
drop() function, which transfers the ownership to the object's default owner. getDefaultOwner() is a virtual
method returning cOwnedObject* defined in cOwnedObject, and its implementation returns the currently
executing simple module's local object list.

As an example, the remove() method of cQueue is implemented like this:

[Actual code in src/sim is structured somewhat differently, but the meaning is the same.]

cOwnedObject *cQueue::remove(cOwnedObject *obj)
{
 // remove object from queue data structure
 ...

 // release ownership if needed
 if (obj->getOwner()==this)
 drop(obj);

 return obj;
}

Destructor

The concept of ownership is that the owner has the exclusive right and duty to delete the objects it owns. For
example, if you delete a cQueue containing cMessages, all messages it contains and owns will also be deleted.

The destructor should delete all data structures the object allocated. From the contained objects, only the owned
ones are deleted -- that is, where obj->getOwner()==this.

Object copying

The ownership mechanism also has to be taken into consideration when a cArray or cQueue object is duplicated.
The duplicate is supposed to have the same content as the original, however the question is whether the contained
objects should also be duplicated or only their pointers taken over to the duplicate cArray or cQueue.

The convention followed by cArray/cQueue is that only owned objects are copied, and the contained but not
owned ones will have their pointers taken over and their original owners left unchanged.

In fact, the same question arises in three places: the assignment operator operator=(), the copy constructor and
the dup() method. In OMNeT++, the convention is that copying is implemented in the assignment operator, and
the other two just rely on it. (The copy constructor just constructs an empty object and invokes assignment, while
dup() is implemented as new cArray(*this)).

7 Building Simulation Programs

7.1 Overview

http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcArray.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

As it was already mentioned, an OMNeT++ model physically consists of the following parts:

NED language topology description(s). These are files with the .ned extension.
Message definitions, in files with .msg extension.
Simple modules implementations and other C++ code, in .cc files (or .cpp, on Windows)

To build an executable simulation program, you first need to translate the MSG files into C++, using the message
compiler (opp_msgc). After this step, the process is the same as building any C/C++ program from source: all C++
sources need to be compiled into object files (.o files (using gcc on Mac, Linux) or mingw on Windows) and all
object files need to be linked with the necessary libraries to get an executable or shared library.

NOTE
Compiling NED files directly to C++ classes is no longer supported in OMNeT++ 4.0. NED files are always
dynamically loaded.

File names for libraries differ for Unix/Linux and for Windows, and also different for static and shared libraries. Let
us suppose you have a library called Tkenv. If you are compiling with gcc or mingw, the file name for the static
library would be something like libopptkenv[d].a, and the shared library would be called
libopptkenv[d].so. (libopptkenvd.so would be used for the debug version while libopptkenv.so is for the
release build.)

NOTE
On Windows, shared libraries have the .dll extension instead of .so On Mac OS X, shared libraries have
the .dylib extension instead of .so.

In OMNeT++ 4.0 we recommend to use shared libraries whenever it is possible. You'll need to link with the
following libraries:

The simulation kernel and class library, called oppsim (file liboppsim.[so|dll|dylib] etc).
User interfaces. The common part of all user interfaces is the oppenvir library (file
liboppenvir.[so|dll|dylib], etc), and the specific user interfaces are opptkenv and oppcmdenv
(libopptkenv.[so|dll|dylib], liboppcmdenv.[so|dll|dylib], etc). You have to link with
oppenvir, plus opptkenv or oppcmdenv or both.

Luckily, you do not have to worry about the above details, because automatic tools like opp_makemake will take
care of the hard part for you.

The following figure gives an overview of the process of building and running simulation programs.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Figure: Building and running simulation

This section discusses how to use the simulation system on the following platforms:

Unix (Linux/Mac OS X) with gcc
Windows with the included MinGW compiler

7.2 Using gcc

The following section applies to using OMNeT++ on Linux, Solaris, Mac OS X, FreeBSD and other Unix
derivatives, and also to MinGW on Windows.

NOTE
The doc/ directory of your OMNeT++ installation contains Readme.<platform> files that provide more
detailed platform specific instructions.

7.2.1 The opp_makemake tool

The opp_makemake tool can automatically generate a Makefile for your simulation program, based on the
source files in the current directory or directory tree. opp_makemake has several options; opp_makemake -h
displays help.

The most important options are:

-f, --force : Force overwriting existing Makefile
-o filename : Name of simulation executable or library to be built.
-O directory, --out directory : Specifies the name of the output directory tree for out-of-directory
build
--deep : Generates a "deep" Makefile. A deep Makefile will cover the whole source tree under the make

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

directory, not just files in that directory.
-r, --recurse : Causes make to recursively descend into all subdirectories; subdirectories are expected
to contain makefiles themselves.
-X directory, -Xdirectory, --except directory : With -r and --deep option: ignore the given
directory.
-dsubdir, -d subdir, --subdir subdir : Causes make to recursively descend into the given
directory.
-n, --nolink : Produce object files but do not create executable or library.
-s, --make-so : Build shared library (.so, .dll or .dylib).
-a, --make-lib : Create static library (.a or .lib).
-Idir : Additional NED and C++ include directory.
-Ldir : Add a directory to the library path.
-llibrary : Additional library to link against.

7.2.2 Basic use

Once you have the source files (*.ned, *.msg, *.cc, *.h) in a directory, change there and type:

$ opp_makemake

This will create a file named Makefile. If you type make, your simulation program should build.

If you already had a Makefile in that directory, opp_makemake will refuse to overwrite it. You can force
overwriting the old Makefile with the -f option:

$ opp_makemake -f

The name of the output file will be derived from the name of the project directory (see later). You can override it
with the -o option:

$ opp_makemake -f -o aloha

In addition to the default target that builds the simulation executable, the Makefile also contains the following
targets:

Target Action

all The default target is to build the simulation executable

depend Adds (or refreshes) dependencies in the Makefile

clean Deletes all files that were produced by the make process

7.2.3 Debug and release builds

opp_makemake generates a makefile that can create both release and debug builds. By default it creates debug
version, but it is easy to override this behaviour. Just define the MODE variable on the make command line.

$ make MODE=release

If you want to create release builds by default you should use the --mode mode option for opp_makemake when
generating your makefiles.

$ opp_makemake --mode release ...

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

7.2.4 Using external C/C++ libraries

If you are using external libraries you should specify the include path for the header files with the -I includedir
option. You should specify this option if you are using anything outside from the source directory tree (except the
system and OMNeT++ headers which are always included automatically)

To define an external library to be linked with, use -Ldir to specify the directory of the external library and -
llibrary to specify the name of the external dependency.

7.2.5 Building directory trees

It is possible to build a whole source directory tree with a single makefile. A source tree will generate a single
output file (executable or library). A source directory tree will always have a Makefile in its root, and source files
may be placed anywhere in the tree.

To turns on this option, use the opp_makemake --deep option. opp_makemake will collect all .cc and .msg
files from the whole subdirectory tree, and generate a makefile that covers all. If you need to exclude a specific
directory, use the -X exclude/dir/path option. (Multiple -X options are accepted.)

An example:

$ opp_makemake -f --deep -X experimental -X obsolete

7.2.6 Automatic include dirs

If your source tree contains several subdirectories (maybe several levels deep), it can be annoying that you should
specify relative paths for your header files in your .cc files or you should specify the include path explicitly by the -
I includepath option. opp_makemake has a command line option, which adds all directories in the current
source tree to the compiler command line. This option is turned on by default.

NOTE
You may turn off this mechanism with the --no-deep-includes option.

The only requirement is that your #include statements must unambigously specify the name of the header file.
(i.e. if you have two common.h files, one in subdir1 and the other in subdir2 specify #include
"subdir1/common.h" instead of #include "common.h". If you want to include a directory which is outside of
your source directory tree you always must specify it with the -I external/include/dir option.

7.2.7 Dependency handling

Dependency information is used by the makefile to minimize the time required to compile and link your project. If
your makefile contains up-to date dependency info -- only files changed since you last compiled your project will be
re-compiled or linked.

opp_makemake automatically adds dependencies to the makefile. You can regenerate the dependencies by typing
make depend any time. The warnings during the dependency generation process can be safely ignored.

You may generate and add dependencies to the makefile manually using the opp_makedep tool. Use
opp_makedep --help to display the supported command line options.

NOTE
The dependency generator does not handle conditional macros and includes. Conditionally included header
files are always added to the file's dependency list.

7.2.8 Out-of-directory build

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

The build system creates object and executable files in a separate directory, called output directory. The structure
of the output folder will be the same as your sourcefolder structure except that it will be placed in the
out/configname directory. The configname part will mirror your compiler toolchain and build mode settings.
(i.e. The result of a debug build with gcc will be placed in out/gcc-debug)

The location of the generated output file is determined by the -O option. (The default value is 'out', relative to the
project root directory):

$ opp_makemake -O ../tmp/obj

NOTE
The project directory is the first ancestor of the current directory which contains a .project file).

NOTE
Source files (i.e. those created by the opp_msgc compiler) will be generated in the source folder rather than
in the output folder.

7.2.9 Building shared and static libraries

By default the makefile will create an executable file, but it is also possible to build shared or static libraries. Shared
libraries are usually a better choice.

Use --make-so to create shared libraries, and --make-lib to build static libraries. The --nolink option
completely avoids the linking step, which is useful for top-level makefiles that only invoke other makefiles, or if you
want to do the linking manually.

7.2.10 Recursive builds

The --recurse option enables recursive make: when you build the simulation, make will descend into the
subdirectories and runs make in them too. By default, --recurse decends into all subdirectories; the -X directory
option can be used to make it ignore certain subdirectories. This option is especially useful for top level makefiles.

The --recurse option automatically discovers subdirectories, but this is sometimes inconvenient. Your source
directory tree may contain parts which need their own hand written Makefile. This can happen if you include
source files from an other non OMNeT++ project.With the -d dir or --subdir dir option, you can explicitly
specify which directories to recurse into, and also, the directories need not be direct children of the current
directory.

The recursive make options (--recurse, -d, --subdir) imply -X, that is, the directories recursed into will be
automatically excluded from deep makefiles.

You can control the order of traversal by adding dependencies into the makefrag file (see [7.2.11])

NOTE
With -d, it is also possible to create infinite recursions. opp_makemake cannot detect them, it is your
responsibility that cycles do not occur.

Motivation for recursive builds:

toplevel makefile
integrating sources that have their own makefile

7.2.11 Customizing the Makefile

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

It is possible to add rules or otherwise customize the generated makefile by providing a makefrag file. When you
run opp_makemake, it will automatically insert makefrag into the resulting Makefile. With the -i option, you
can also name other files to be included into the Makefile.

makefrag will be inserted after the definitions but before the first rule, so it is possible to override existing
definitions and add new ones, and also to override the default target.

makefrag can be useful if some of your source files are generated from other files (for example, you use
generated NED files), or you need additional targets in your makefile or just simply wants to override the default
target in the makefile.

7.2.12 Projects with multiple source trees

In the case of a large project, your source files may be spread across several directories and your project may
generate more than one executable file (i.e. several shared libraries, examples etc.).

Once you have created your makefiles with opp_makemake in every source directory tree, you will need a toplevel
makefile. The toplevel makefile usually calls only the makefiles recursively in the source directory trees.

7.2.13 A multi-directory example

For a complex example of using opp_makemake, we will check how to create the makefiles for the mobility-
framework. First take a look at the project's directory structure and find the directories that should be used as
source trees:

mobility-framework
 bitmaps
 contrib <-- source tree (build libmfcontrib.so from this dir)
 core <-- source tree (build libmfcore.so from this dir)
 docs
 network
 template
 testSuite <-- source tree (build testSuite executable from this dir)

Additionally there are dependencies between these output files: mfcontrib requires mfcore and testSuite
requires mfcontrib (and indirectly mfcore of course).

First create the makefile for the core directory (build a shared lib from all .cc files found in the core subtree and
name it 'mfcore'):

$ cd core && opp_makemake -f --deep --make-so -o mfcore -O out

The contrib directory is depending on mfcore so we use the -L and -l options to specify the library we should link
with. Note that we must also add the include directories manually from the core source tree, because autodiscovery
works only in the same source tree:

$ cd contrib && opp_makemake -f --deep --make-so -o mfcontrib -O out \\
 -I../core/basicModules -I../core/utils -L../out/$(CONFIGNAME)/core -lmfcore

The testSuite will be created as an executable file which depends on both mfcontrib and mfcore.

$ cd testSuite && opp_makemake -f --deep -o testSuite -O out
 -I../core/utils -I../core/basicModules -I../contrib/utils \\
 -I../contrib/applLayer -L../out/$(CONFIGNAME)/contrib -lmfcontrib

Now the last step is to create a top-level makefile in the root of the project that calls the previously created

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

makefiles in the correct order. We will use the --nolink option, exclude every subdirectory from the build (-X.)
and explicitly call the above makefiles (-d dirname).

$ opp_makemake -f --nolink -O out -d testSuite -d core -d contrib -X.

Finally we have to specify the dependencies between the above directories. Add the lines below to the makefrag
file in the project directory root.

contrib_dir: core_dir
testSuite_dir: contrib_dir

8 Configuring Simulations

8.1 Configuring simulations

Configuration and input data for the simulation are in a configuration file usually called omnetpp.ini.

The following sections explain omnetpp.ini.

8.2 The configuration file: omnetpp.ini

8.2.1 An example

For a start, let us see a simple omnetpp.ini file which can be used to run the Fifo example simulation.

[General]
network = FifoNet
sim-time-limit = 100h
cpu-time-limit = 300s
#debug-on-errors = true
#record-eventlog = true

[Config Fifo1]
description = "low job arrival rate"
**.gen.sendIaTime = exponential(0.2s)
**.gen.msgLength = 100b
**.fifo.bitsPerSec = 1000bps

[Config Fifo2]
description = "high job arrival rate"
**.gen.sendIaTime = exponential(0.01s)
**.gen.msgLength = 10b
**.fifo.bitsPerSec = 1000bps

The file is grouped into sections named [General], [Config Fifo1] and [Config Fifo2], each one
containing several entries.

Lines that start with ``#'' are comments.

8.2.2 File syntax

The ini file is a text file consisting of entries grouped into different sections. The order of the sections doesn't
matter.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Lines that start with "#" are comments, and will be ignored during processing.

Long lines can be broken up using the backslash notation: if the last character of a line is "\", it will be merged with
the next line.

There is no limit on the file size or the maximum line length.

Example:

[General]
this is a comment
**.foo = "this is a single value \
for the foo parameter"

8.2.3 File inclusion

OMNeT++ supports including an ini file in another, via the include keyword. This feature allows you to partition
large ini files into logical units, fixed and varying part etc.

An example:

omnetpp.ini
...
include parameters.ini
include per-run-pars.ini
...

You can also include files from other directories. If the included ini file further includes others, their path names will
be understood as relative to the location of the file which contains the reference, rather than relative to the current
working directory of the simulation.

This rule also applies to other file names occurring in ini files (such as the load-libs=, output-vector-
file=, output-scalar-file= etc. options, and xmldoc() module parameter values.)

8.3 Sections

8.3.1 The [General] section

The most commonly used options of the [General] section are the following.

The network option selects the model to be set up and run.
The length of the simulation can be set with the sim-time-limit and the cpu-time-limit options (the
usual time units such as ms, s, m, h, etc. can be used).

It is important to note, that the loaded NED files may contain any number of modules, channel and any number of
networks as well. It does not matter whether you use all or just some of them in the simulations. You will be able to
select any of the networks that occur in the loaded NED files using the network= omnetpp.ini entry, and as
long as every module, channel etc for it has been loaded, network setup will be successful.

8.3.2 Named configurations

Named configurations are sections of the form [Config <configname>], where <configname> is by convention
a camel-case string that starts with a capital letter: Config1, WirelessPing, OverloadedFifo, etc. For
example, omnetpp.ini for an Aloha simulation might have the following skeleton:

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

[General]
...
[Config PureAloha]
...
[Config SlottedAloha1]
...
[Config SlottedAloha2]
...

Some configuration keys (such as user interface selection) are only accepted in the [General] section, but most
of them can go into Config sections as well.

When you run a simulation, you need to select one of the configurations to be activated. In Cmdenv, this is done
with the -c command-line option:

$ aloha -c PureAloha

The simulation will then use the contents of the [Config PureAloha] section to set up the simulation. (Tkenv, of
course, lets you select the configuration from a dialog.)

8.3.3 Section inheritance

Actually, when you activate the PureAloha configuration, the contents of the [General] section will also be taken
into account: if some configuration key or parameter value is not found in [Config PureAloha], then the search
will continue in the [General] section. In other words, lookups in [Config PureAloha] will fall back to
[General]. The [General] section itself is optional; when it is absent, it is treated like an empty [General]
section.

All named configurations fall back to [General] by default. However, for each configuration it is possible to
specify a fall-back section explicitly, using the extends= key. Consider the following ini file skeleton:

[General]
...
[Config SlottedAlohaBase]
...
[Config SlottedAloha1]
extends = SlottedAlohaBase
...
[Config SlottedAloha2]
extends = SlottedAlohaBase
...
[Config SlottedAloha2a]
extends = SlottedAloha2
...
[Config SlottedAloha2b]
extends = SlottedAloha2
...

If you activate the SlottedAloha2b configuration, lookups will consider sections in the following order (this is also
called the section fallback chain): SlottedAloha2b, SlottedAloha2, SlottedAlohaBase, General.

The effect is the same as if the contents of the sections SlottedAloha2b, SlottedAloha2, SlottedAlohaBase and
General were copied together into one section, one after another, [Config SlottedAloha2b] being at the top,
and [General] at the bottom. Lookups always start at the top, and stop at the first matching entry.

The concept is similar to inheritance in object-oriented languages, and benefits are similar too: you can factor out
the common parts of several configurations into a "base" configuration, and the other way round, you can reuse
existing configurations (as opposed to copying them) by using them as a base. In practice you will often have
"abstract" configurations too (in the C++/Java sense), which assign only a subset of parameters and leave the

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

others open, to be assigned in derived configurations.

If you are experimenting a lot with different parameter settings of a simulation model, these techniques will make it
a lot easier to manage ini files.

8.4 Setting module parameters

Simulations get input via module parameters, which can be assigned a value in NED files or in omnetpp.ini -- in
this order. Since parameters assigned in NED files cannot be overridden in omnetpp.ini, one can think about them
as being ``hardcoded''. In contrast, it is easier and more flexible to maintain module parameter settings in
omnetpp.ini.

In omnetpp.ini, module parameters are referred to by their full paths or hierarchical names. This name consists of
the dot-separated list of the module names (from the top-level module down to the module containing the
parameter), plus the parameter name (see section [6.1.5]).

An example omnetpp.ini which sets the numHosts parameter of the toplevel module and the
transactionsPerSecond parameter of the server module:

[General]
net.numHosts = 15
net.server.transactionsPerSecond = 100

8.4.1 Using wildcard patterns

Models can have a large number of parameters to be configured, and it would be tedious to set them one-by-one in
omnetpp.ini. OMNeT++ supports wildcards patterns which allow for setting several model parameters at once.

The notation is a variation on the usual glob-style patterns. The most apparent differences to the usual rules are the
distinction between * and **, and that character ranges should be written with curly braces instead of square
brackets (that is, any-letter is {a-zA-Z} not [a-zA-Z], because square brackets are already reserved for the
notation of module vector indices).

Pattern syntax:

? : matches any character except dot (.)
* : matches zero or more characters except dot (.)
** : matches zero or more character (any character)
{a-f} : set: matches a character in the range a-f
{^a-f}: negated set: matches a character NOT in the range a-f
{38..150} : numeric range: any number (i.e. sequence of digits) in the range 38..150 (e.g. 99)
[38..150] : index range: any number in square brackets in the range 38..150 (e.g. [99])
backslash (\) : takes away the special meaning of the subsequent character

Precedence

If you use wildcards, the order of entries is important: if a parameter name matches several wildcards-patterns, the
first matching occurrence is used. This means that you need to list specific settings first, and more general ones
later. Catch-all settings should come last.

An example ini file:

[General]
*.host[0].waitTime = 5ms # specifics come first

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

*.host[3].waitTime = 6ms
.host[].waitTime = 10ms # catch-all comes last

Asterisk vs double asterisk

The * wildcard is for matching a single module or parameter name in the path name, while ** can be used to
match several components in the path. For example, **.queue*.bufSize matches the bufSize parameter of
any module whose name begins with queue in the model, while *.queue*.bufSize or net.queue*.bufSize
selects only queues immediately on network level. Also note that **.queue**.bufSize would match
net.queue1.foo.bar.bufSize as well!

Sets, negated sets

Sets and negated sets can contain several character ranges and also enumeration of characters. For example,
{_a-zA-Z0-9} matches any letter or digit, plus the underscore; {xyzc-f} matches any of the characters x, y, z,
c, d, e, f. To include '-' in the set, put it at a position where it cannot be interpreted as character range, for example:
{a-z-} or {-a-z}. If you want to include '}' in the set, it must be the first character: {}a-z}, or as a negated
set: {^}a-z}. A backslash is always taken as literal backslash (and NOT as escape character) within set
definitions.

Numeric ranges and index ranges

Only nonnegative integers can be matched. The start or the end of the range (or both) can be omitted: {10..},
{..99} or {..} are valid numeric ranges (the last one matches any number). The specification must use exactly
two dots. Caveat: *{17..19} will match a17, 117 and 963217 as well, because the * can also match digits!

An example for numeric ranges:

[General]
..queue[3..5].bufSize = 10
..queue[12..].bufSize = 18
..queue[*].bufSize = 6 # this will only affect queues 0,1,2 and 6..11

8.4.2 Using the default values

It is also possible to utilize the default values specified in the NED files. The <parameter-fullpath>=default setting
assigns the default value to the parameter if it has one.

The <parameter-fullpath>=ask setting will try to get the parameter value interactively from the user.

If a parameter was not set but has a default value, that value will be assigned. This is like having a **=default
line at the bottom of the [General] section.

If a parameter was not set and has no default value, that will either cause an error or will be interactively prompted
for, depending on the particular user interface.

NOTE
In Cmdenv you must explicitly enable the interactive mode with the --cmdenv-interactive=true option
otherwise you will get an error when running the simulation.

More precisely, parameter resolution takes place as follows:

1. If the parameter is assigned in NED, it cannot be overridden in the configuration. The value is applied and the
process finishes.

2. If the first match is a value line (matches <parameter-fullpath>=somevalue), the value is applied and the
process finishes.

3. If the first match is a <parameter-fullpath>=default line, the default value is applied and the process

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

finishes.
4. If the first match is a <parameter-fullpath>=ask line, the parameter will be asked from the user interactively

(UI dependent).
5. If there was no match and the parameter has a default value, it is applied and the process finishes.
6. Otherwise the parameter is declared unassigned, and handled accordingly by the user interface. It may be

reported as an error, or may be asked from the user interactively.

8.5 Parameter studies

8.5.1 Basic use

It is quite common in simulation studies that the simulation model is run several times with different parameter
settings, and the results are analyzed in relation to the input parameters. OMNeT++ 3.x had no direct support for
batch runs, and users had to resort to writing shell (or Python, Ruby, etc.) scripts that iterated over the required
parameter space, and generated a (partial) ini file and run the simulation program in each iteration.

OMNeT++ 4.0 largely automates this process, and eliminates the need for writing batch execution scripts. It is the
ini file where the user can specify iterations over various parameter settings. Here's an example:

[Config AlohaStudy]
*.numHosts = ${1, 2, 5, 10..50 step 10}
**.host[*].generationInterval = exponential(${0.2, 0.4, 0.6}s)

This parameter study expands to 8*3 = 24 simulation runs, where the number of hosts iterates over the numbers 1,
2, 5, 10, 20, 30, 40, 50, and for each host count three simulation runs will be done, with the generation interval
being exponential(0.2), exponential(0.4), and exponential(0.6).

How does it get run? First of all, Cmdenv with the '-x' option will tell you how many simulation runs a given section
expands to. (You'll of course use Cmdenv for batch runs, not Tkenv.)

$ aloha -u Cmdenv -x AlohaStudy

`\opp` Discrete Event Simulation
...
Config: AlohaStudy
Number of runs: 24

If you add the '-g' option, the program will also print out the values of the iteration variables for each run. (Use '-G'
for even more info) Note that the parameter study actually maps to nested loops, with the last "${..}" becoming the
innermost loop. The iteration variables are just named $0 and $1 -- we'll see that it is possible to give meaningful
names to them. Please ignore the '$repetition=0' part in the printout for now.

$ aloha -u Cmdenv -x AlohaStudy -g
`\opp` Discrete Event Simulation
...
Config: AlohaStudy
Number of runs: 24
Run 0: $0=1, $1=0.2, $repetition=0
Run 1: $0=1, $1=0.4, $repetition=0
Run 2: $0=1, $1=0.6, $repetition=0
Run 3: $0=2, $1=0.2, $repetition=0
Run 4: $0=2, $1=0.4, $repetition=0
Run 5: $0=2, $1=0.6, $repetition=0
Run 6: $0=5, $1=0.2, $repetition=0
Run 7: $0=5, $1=0.4, $repetition=0
...
Run 19: $0=40, $1=0.4, $repetition=0
Run 20: $0=40, $1=0.6, $repetition=0

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Run 21: $0=50, $1=0.2, $repetition=0
Run 22: $0=50, $1=0.4, $repetition=0
Run 23: $0=50, $1=0.6, $repetition=0

Any of these runs can be executed by passing the '-r <runnumber>' option to Cmdenv. So, the task is now to run
the simulation program 24 times, with '-r' running from 0 through 23:

$ aloha -u Cmdenv -c AlohaStudy -r 0
$ aloha -u Cmdenv -c AlohaStudy -r 1
$ aloha -u Cmdenv -c AlohaStudy -r 2
...
$ aloha -u Cmdenv -c AlohaStudy -r 23

This batch can be executed either from the OMNeT++ IDE (where you are prompted to pick an executable and an
ini file, choose the configuration from a list, and just click Run), or using a little command-line batch execution tool
(opp_runall) supplied with OMNeT++.

Actually, it is also possible to get Cmdenv execute all runs in one go, by simply omitting the '-r' option.

$ aloha -u Cmdenv -c AlohaStudy

`\opp` Discrete Event Simulation
Preparing for running configuration AlohaStudy, run #0...
...
Preparing for running configuration AlohaStudy, run #1...
...
...
Preparing for running configuration AlohaStudy, run #23...

However, this approach is not recommended, because it is more susceptible to C++ programming errors in the
model. (For example, if any of the runs crashes, the whole batch is terminated -- which may not be what the user
wants).

Let us get back to the ini file. We had:

[Config AlohaStudy]
*.numHosts = ${1, 2, 5, 10..50 step 10}
**.host[*].generationInterval = exponential(${0.2, 0.4, 0.6}s)

The ${...} syntax specifies an iteration. It is sort of a macro: at each run, the whole ${...} string gets textually
replaced with the current iteration value. The values to iterate over do not need to be numbers (unless you want to
use the "a..b" or "a..b step c" syntax), and the substitution takes place even inside string constants. So, the
following examples are all valid (note that textual substitution is used):

*.param = 1 + ${1e-6, 1/3, sin(0.5)}
 ==> *.param = 1 + 1e-6
 *.param = 1 + 1/3
 *.param = 1 + sin(0.5)
*.greeting = "We will simulate ${1,2,5} host(s)."
 ==> *.greeting = "We will simulate 1 host(s)."
 *.greeting = "We will simulate 2 host(s)."
 *.greeting = "We will simulate 5 host(s)."

To write a literal ${..} inside a string constant, quote "{" with a backslash, and write "$\{..}".

8.5.2 Named iteration variables

You can assign names to iteration variables, which has the advantage that you'll see meaningful names instead of
$0 and $1 in the Cmdenv output, and also lets you refer to the variables at more than one place in the ini file. The

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

syntax is ${<varname>=<iteration>}, and variables can be referred to simply as ${<varname>}:

[Config Aloha]
*.numHosts = ${N=1, 2, 5, 10..50 step 10}
**.host[*].generationInterval = exponential(${mean=0.2, 0.4, 0.6}s)
**.greeting = "There are ${N} hosts"

The scope of the variable name is the section that defines it, plus sections based on that section (via extends=).

There are also a number of predefined variables: ${configname} and ${runnumber} with the obvious meanings;
${network} is the name of the network that is simulated; ${processid} and ${datetime} expand to the OS process id
of the simulation and the time it was started; and there are some more: ${runid}, ${iterationvars} and ${repetition}.

${runid} holds the Run ID. When a simulation is run, it gets assigned a Run ID, which uniquely identifies that
instance of running the simulation: if you run the same thing again, it will get a different Run ID. Run ID is a
concatenation of several variables like ${configname}, ${runnumber}, ${datetime} and ${processid}. This yields an
identifier that is unique "enough" for all practical purposes, yet it is meaningful for humans. The Run ID is recorded
into result files written during the simulation, and can be used to match vectors and scalars written by the same
simulation run.

In cases when not all combinations of the iteration variables make sense or need to be simulated, it is possible to
specify an additional constraint expression. This expression is interpreted as a conditional (an "if" statement) within
the innermost loop, and it must evaluate to "true" for the variable combination to generate a run. The expression
should be given with the constraint= configuration key. An example:

*.numNodes = ${n=10..100 step 10}
**.numNeighbors = ${m=2..10 step 2}
constraint = $m <= sqrt($n)

The expression syntax supports most C language operators (including boolean, conditional and binary shift
operations) and most <math.h> functions; data types are boolean, double and string. The expression must evaluate
to a boolean.

NOTE
It is not supported to refer to other iteration variables in the definition of an iteration variable (i.e. you cannot
write things like ${j=$i..10}), although it might get implemented in future OMNeT++ releases.

8.5.3 Repeating runs with different seeds

It is directly supported to perform several runs with the same parameters but different random number seeds. There
are two configuration keys related to this: repeat= and seed-set=. The first one simple specifies how many times a
run needs to be repeated. For example,

repeat = 10

causes every combination of iteration variables to be repeated 10 times, and the ${repetition} predefined variable
holds the loop counter. Indeed, repeat=10 is equivalent of adding ${repetition=0..9} to the ini file. The ${repetition}
loop always becomes the innermost loop.

The seed-set= configuration key affects seed selection. Every simulation uses one or more random number
generators (as configured by the num-rngs= key), for which the simulation kernel can automatically generate seeds.
The first simulation run may use one set of seeds (seed set 0), the second run may use a second set (seed set 1),
and so on. Each set contains as many seeds as there are RNGs configured. All automatic seeds generate random
number sequences that are far apart in the RNG's cycle, so they will never overlap during simulations.

NOTE

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Mersenne Twister, the default RNG of OMNeT++ has a cycle length of 219937, which is more than enough for
any conceivable purpose.

The seed-set= key tells the simulation kernel which seed set to use. It can be set to a concrete number (such as
seed-set=0), but it usually does not make sense as it would cause every simulation to run with exactly the same
seeds. It is more practical to set it to either ${runnumber} or to ${repetition}. The default setting is ${runnumber}:

seed-set = ${runnumber} # this is the default

This makes every simulation run to execute with a unique seed set. The second option is:

seed-set = ${repetition}

where all $repetition=0 runs will use the same seeds (seed set 0), all $repetition=1 runs use another seed set,
$repetition=2 a third seed set, etc.

To perform runs with manually selected seed sets, you can just define an iteration for the seed-set= key:

seed-set = ${5,6,8..11}

In this case, the repeat= key should be left out, as seed-set= already defines an iteration and there's no need for an
extra loop.

It is of course also possible to manually specify individual seeds for simulations. This is rarely necessary, but we
can use it here to demonstrate another feature, parallel iterators:

repeat = 4
seed-1-mt = ${53542, 45732, 47853, 33434 ! repetition}
seed-2-mt = ${75335, 35463, 24674, 56673 ! repetition}
seed-3-mt = ${34542, 67563, 96433, 23567 ! repetition}

The meaning of the above is this: in the first repetition, the first column of seeds is chosen, for the second repetition,
the second column, etc. The "!" syntax chooses the kth value from the iteration, where k is the position (iteration
count) of the iteration variable after the "!". Thus, the above example is equivalent to the following:

no repeat= line!
seed-1-mt = ${seed1 = 53542, 45732, 47853, 33434}
seed-2-mt = ${ 75335, 35463, 24674, 56673 ! seed1}
seed-3-mt = ${ 34542, 67563, 96433, 23567 ! seed1}

That is, the iterators of seed-2-mt and seed-3-mt are advanced in lockstep with the seed1 iteration.

8.6 Parameter Studies and Result Analysis

8.6.1 Output vectors and scalars

In OMNeT++ 3.x, the default result file names were ``omnetpp.vec'' and ``omnetpp.sca''. This is not very convenient
for batch execution, where an output vector file created in one run would be overwritten in the next run. Thus, we
have changed the default file names to make them differ for every run. The new defaults are:

output-vector-file = "${resultdir}/${configname}-${runnumber}.vec"
output-scalar-file = "${resultdir}/${configname}-${runnumber}.sca"

Where ${resultdir} is the value of the result-dir configuration option, and defaults to results/. So the

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

above defaults generate file names like "results/PureAloha-0.vec", "results/PureAloha-1.vec", and so on.

Also, in OMNeT++ 3.x output scalar files were always appended to by the simulation program, rather than being
overwritten. This behavior was changed in 4.0 to make it consistent with vector files, that is, output scalar files are
also overwritten by the simulator, and not appended to.

NOTE
The old behavior can be turned back on by setting output-scalar-file-append=true.

Although it has nothing to do with our main topic (ini files), this is a good place to mention that the format of result
files have been extended to include meta info such as the run ID, network name, all configuration settings, etc.
These data make the files more self-documenting, which can be valuable during the result analysis phase, and
increase reproducibility of the results. Another change is that vector data are now recorded into the file clustered by
the output vectors, which (combined with index files) allows much more efficient processing.

8.6.2 Configuring output vectors

As a simulation program is evolving, it is becoming capable of collecting more and more statistics. The size of
output vector files can easily reach a magnitude of several ten or hundred megabytes, but very often, only some of
the recorded statistics are interesting to the analyst.

In OMNeT++, you can control how cOutVector objects record data to disk. You can turn output vectors on/off or
you can assign a result collection interval. By default, all output vectors are turned on.

NOTE
The way of configuring output vectors has changed. In OMNeT++ 3.x, the keys for enabling-disabling a vector
and specifying recording interval were <module-and-vectorname-pattern>.enabled, and <module-and-
vectorname-pattern>.interval. The "enabled" and "interval" words changed to "vector-recording" and "vector-
recording-interval". The reason for this change is that per-object configuration keys are now required to have
a hyphen in their names, to make it possible to tell them apart from module parameter assignments. This
allows the simulator to catch mistyped config keys in ini files. The syntax for specifying the recording interval
has also been extended (in a backward compatible way) to accept multiple intervals, separated by comma.

Output vectors can be configured with the following syntax:

module-pathname.objectname.vector-recording = true/false
module-pathname.objectname.vector-recording-interval = start1..stop1,
 start2..stop2, ...

Either start or stop can be omitted, to mean the beginning and the end of the simulation, respectively.

The object name is the string passed to cOutVector in its constructor or with the setName() member function.

cOutVector eed("End-to-End Delay");

Start and stop values can be any time specification accepted in NED and config files (e.g. 10h 30m 45.2s).

As with parameter names, wildcards are allowed in the object names and module path names.

An example:

[General]
**.vector-recording-interval = 1s..60s
**.End-to-End Delay.vector-recording = true
.Router2..vector-recording = true
**.vector-recording = false

http://omnetpp.org/doc/omnetpp40/api/classcOutVector.html
http://omnetpp.org/doc/omnetpp40/api/classcOutVector.html
http://omnetpp.org/doc/omnetpp40/api/classcOutVector.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

The above configuration limits collection of all output vectors to the 1s..60s interval, and disables collection of
output vectors except all end-to-end delays and the ones in any module called Router2.

8.6.3 Saving parameters as scalars

When you are running several simulations with different parameter settings, you'll usually want to refer to selected
input parameters in the result analysis as well -- for example when drawing a throughput (or response time) versus
load (or network background traffic) plot. Average throughput or response time numbers are saved into the output
scalar files, and it is useful for the input parameters to get saved into the same file as well.

For convenience, OMNeT++ automatically saves the iteration variables into the output scalar file if they have
numeric value, so they can be referred to during result analysis.

WARNING
If an iteration variable has non-numeric value, it will not be recorded automatically and cannot be used during
analysis. This can happen unintentionally if you specify units inside an iteration variable list:

NEVER USE:
**.host[*].generationInterval = exponential(${mean=0.2s, 0.4s, 0.6s})
INSTEAD: Specify the unit outside of the variable
**.host[*].generationInterval = exponential(${mean=0.2, 0.4, 0.6}s)

Module parameters can also be saved, but this has to be requested by the user, by configuring save-as-scalar=true
for the parameters in question. The configuration key is a pattern that identifies the parameter, plus ".save-as-
scalar". An example:

**.host[*].networkLoad.save-as-scalar = true

This looks simple enough. However, there are three pitfalls: non-numeric parameters, too many matching
parameters, and random-valued volatile parameters.

First, the scalar file only holds numeric results, so non-numeric parameters cannot be recorded -- that will result in
a runtime error.

Second, if wildcards in the pattern match too many parameters, that might unnecessarily increase the size of the
scalar file. For example, if the host[] module vector size is 1000 in the example below, then the same value (3) will
be saved 1000 times into the scalar file, once for each host.

**.host[*].startTime = 3
**.host[*].startTime.save-as-scalar = true # saves "3" once for each host

Third, recording a random-valued volatile parameter will just save a random number from that distribution. This is
rarely what you need, and the simulation kernel will also issue a warning if this happens.

**.interarrivalTime = exponential(1s)
**.interarrivalTime.save-as-scalar = true # wrong: saves random values!

These pitfalls are not rare in practice, so it is usually more convenient to rely on the iteration variables in the result
analysis. That is, one can rewrite the above example as

**.interarrivalTime = exponential(${mean=1}s)

and refer to the $mean iteration variable instead of the interarrivalTime module parameter(s) during result analysis.
save-as-scalar=true is not needed because iteration variables are automatically saved into the result files.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

8.6.4 Experiment-Measurement-Replication

We have introduced three concepts that are useful for organizing simulation results generated by batch executions
or several batches of executions.

During a simulation study, a person prepares several experiments. The purpose of an experiment is to find out the
answer to questions like "how does the number of nodes affect response times in the network?" For an experiment,
several measurements are performed on the simulation model, and each measurement runs the simulation model
with a different parameter settings. To eliminate the bias introduced by the particular random number stream used
for the simulation, several replications of every measurement are run with different random number seeds, and the
results are averaged.

OMNeT++ result analysis tools can take advantage of experiment/measurement/replication labels recorded into
result files, and organize simulation runs and recorded output scalars and vectors accordingly on the user interface.

These labels can be explicitly specified in the ini file using the experiment=, measurement= and replication= config
keys. If they are missing, the default is the following:

experiment = "${configname}"
measurement = "${iterationvars}"
replication = "#${repetition},seed-set=<seedset>"

That is, the default experiment label is the configuration name; the measurement label is concatenated from the
iteration variables; and the replication label contains the repeat loop variable and for the seed-set. Thus, for our first
example the experiment-measurement-replication tree would look like this:

"PureAloha" Unknown LaTeX command \textrm --experiment
 $N=1,$mean=0.2 Unknown LaTeX command \textrm -- measurement
 #0, seed-set=0 Unknown LaTeX command \textrm -- replication
 #1, seed-set=1
 #2, seed-set=2
 #3, seed-set=3
 #4, seed-set=4
 $N=1,$mean=0.4
 #0, seed-set=5
 #1, seed-set=6
 ...
 #4, seed-set=9
 $N=1,$mean=0.6
 #0, seed-set=10
 #1, seed-set=11
 ...
 #4, seed-set=14
 $N=2,$mean=0.2
 ...
 $N=2,$mean=0.4
 ...
 ...

The experiment-measurement-replication labels should be enough to reproduce the same simulation results, given
of course that the ini files and the model (NED files and C++ code) haven't changed.

Every instance of running the simulation gets a unique run ID. We can illustrate this by listing the corresponding run
IDs under each repetition in the tree. For example:

"PureAloha"
 $N=1,$mean=0.2
 #0, seed-set=0
 PureAloha-0-20070704-11:38:21-3241
 PureAloha-0-20070704-11:53:47-3884

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 PureAloha-0-20070704-16:50:44-4612
 #1, seed-set=1
 PureAloha-1-20070704-16:50:55-4613
 #2, seed-set=2
 PureAloha-2-20070704-11:55:23-3892
 PureAloha-2-20070704-16:51:17-4615
 ...

The tree shows that ("PureAloha", "$N=1,$mean=0.2", "#0, seed-set=0") was run three times. The results produced
by these three executions should be identical, unless, for example, some parameter was modified in the ini file, or a
bug got fixed in the C++ code.

We believe that the default way of generating experiment-measurement-replication labels will be useful and
sufficient in the majority of the simulation studies. However, you can customize it if needed. For example, here is a
way to join two configurations into one experiment:

[Config PureAloha_Part1]
experiment = "PureAloha"
...
[Config PureAloha_Part2]
experiment = "PureAloha"
...

Measurement and replication labels can be customized in a similar way, making use of named iteration variables,
${repetition}, ${runnumber} and other predefined variables. One possible benefit is to customize the generated
measurement and replication labels. For example:

[Config PureAloha_Part1]
measurement = "${N} hosts, exponential(${mean}) packet generation interval"

One should be careful with the above technique though, because if some iteration variables are left out of the
measurement labels, runs with all values of those variables will be grouped together to the same replications.

8.7 Configuring the random number generators

The random number architecture of OMNeT++ was already outlined in section [6.4]. Here we'll cover the
configuration of RNGs in omnetpp.ini.

8.7.1 Number of RNGs

The num-rngs= configuration option sets the number of random number generator instances (i.e. random number
streams) available for the simulation model (see [6.4]). Referencing an RNG number greater or equal to this
number (from a simple module or NED file) will cause a runtime error.

8.7.2 RNG choice

The rng-class= configuration option sets the random number generator class to be used. It defaults to
"cMersenneTwister", the Mersenne Twister RNG. Other available classes are "cLCG32" (the "legacy" RNG of
OMNeT++ 2.3 and earlier versions, with a cycle length of 231-2), and "cAkaroaRNG" (Akaroa's random number
generator, see section [9.5]).

8.7.3 RNG mapping

The RNG numbers used in simple modules may be arbitrarily mapped to the actual random number streams (actual
RNG instances) from omnetpp.ini. The mapping allows for great flexibility in RNG usage and random number

http://omnetpp.org/doc/omnetpp40/api/classcMersenneTwister.html
http://omnetpp.org/doc/omnetpp40/api/classcLCG32.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

streams configuration -- even for simulation models which were not written with RNG awareness.

RNG mapping may be specified in omnetpp.ini. The syntax of configuration entries is the following.

[General]
<modulepath>.rng-N = M # where N,M are numeric, M < num-rngs

This maps module-local RNG N to physical RNG M. The following example maps all gen module's default (N=0)
RNG to physical RNG 1, and all noisychannel module's default (N=0) RNG to physical RNG 2.

[General]
num-rngs = 3
**.gen[*].rng-0 = 1
**.noisychannel[*].rng-0 = 2

This mapping allows variance reduction techniques to be applied to OMNeT++ models, without any model change
or recompilation.

8.7.4 Automatic seed selection

Automatic seed selection gets used for an RNG if you don't explicitly specify seeds in omnetpp.ini. Automatic and
manual seed selection can co-exist: for a particular simulation, some RNGs can be configured manually, and some
automatically.

The automatic seed selection mechanism uses two inputs: the run number and the RNG number. For the same run
number and RNG number, OMNeT++ always selects the same seed value for any simulation model. If the run
number or the RNG number is different, OMNeT++ does its best to choose different seeds which are also
sufficiently apart in the RNG's sequence so that the generated sequences don't overlap.

The run number can be specified either in in omnetpp.ini (e.g. via the cmdenv-runs-to-execute= entry) or on
the command line:

./mysim -r 1

./mysim -r 2

./mysim -r 3

For the cMersenneTwister random number generator, selecting seeds so that the generated sequences don't
overlap is easy, due to the extremely long sequence of the RNG. The RNG is initialized from the 32-bit seed value
seed = runNumber*numRngs + rngNumber. (This implies that simulation runs participating in the study should have
the same number of RNGs set).

[While (to our knowledge) no one has proven that the seeds 0,1,2,... are well apart in the sequence, this is probably true,
due to the extremely long sequence of MT. The author would however be interested in papers published about seed
selection for MT.]

For the cLCG32 random number generator, the situation is more difficult, because the range of this RNG is rather
short (231-1, about 2 billion). For this RNG, OMNeT++ uses a table of 256 pre-generated seeds, equally spaced in
the RNG's sequence. Index into the table is calculated with the runNumber*numRngs + rngNumber formula. Care
should be taken that one doesn't exceed 256 with the index, or it will wrap and the same seeds will be used again.
It is best not to use the cLCG32 at all -- cMersenneTwister is superior in every respect.

8.7.5 Manual seed configuration

In some cases you may want manually configure seed values. Reasons for doing that may be that you want to use
variance reduction techniques, or you may want to use the same seeds for several simulation runs.

http://omnetpp.org/doc/omnetpp40/api/classcMersenneTwister.html
http://omnetpp.org/doc/omnetpp40/api/classcLCG32.html
http://omnetpp.org/doc/omnetpp40/api/classcLCG32.html
http://omnetpp.org/doc/omnetpp40/api/classcMersenneTwister.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

To manually set seeds for the Mersenne Twister RNG, use the seed-k-mt option, where k is the RNG index. An
example:

[General]
num-rngs = 3
seed-0-mt = 12
seed-1-mt = 9
seed-2-mt = 7

For the now obsolete cLCG32 RNG, the name of the corresponding option is seed-k-lcg32, and OMNeT++
provides a standalone program called opp_lcg32_seedtool to generate good seed values that are sufficiently
apart in the RNG's sequence.

9 Running Simulations

9.1 Introduction

This chapter describes how to run simulations. It covers basic usage, user interfaces, batch runs, how to use
Akaroa, and also explains how to solve the most common errors.

9.1.1 Running a simulation executable

By default, the output of an opp_makemake-generated makefile is a simulation executable that can be run directly.
In simple cases, this executable can be run without command-line arguments, but usually one will need to specify
options to specify what ini file to use, which user interface to activate, where to load NED files from, and so on.

Getting help

The following sections describe the most frequently used command-line options. To get a complete list of supported
command line options, run a simulation executable (or opp_run) with the -h option.

$./fifo -h

Specifying ini files

The default ini file is omnetpp.ini, and is loaded if no other ini file is given on the command line.

Ini files can be specified both as plain arguments and with the -f option, so the following two commands are
equivalent:

$./fifo experiment.ini common.ini
$./fifo -f experiment.ini -f common.ini

Multiple ini files can be given, and their contents will get merged. This allows for partitioning the configuration into
separate files, for example to simulation options, module parameters and result recording options.

Specifying the NED path

NED files are loaded from directories listed on the NED path. More precisely, they are loaded from the listed
directories and their whole subdirectory trees. Directories are separated with a semicolon (;).

http://omnetpp.org/doc/omnetpp40/api/classcLCG32.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

NOTE
Semicolon is used as separator on both Unix and Windows.

The NED path can be specified in several ways:

using the NEDPATH environment variable
using the -n command-line option
in ini files, with the ned-path configuration option

NED path resolution rules are as follows:

OMNeT++ checks for NED path specified on the command line with the -n option
if not found on the command line, it checks for the NEDPATH environment variable
the ned-path entry from the ini file gets appended to the result of the above steps
if the result is still empty, it falls back to "." (the current directory)

Selecting a user interface

OMNeT++ simulations can be run under different user interfaces. Currently the following user interfaces are
supported:

Tkenv: Tcl/Tk-based graphical, windowing user interface
Cmdenv: command-line user interface for batch execution

You would typically test and debug your simulation under Tkenv, then run actual simulation experiments from the
command line or shell script, using Cmdenv. Tkenv is also better suited for educational or demonstration purposes.

Both Tkenv and Cmdenv are provided in the form of a library, and you may choose between them by linking one or
both into your simulation executable. (Creating the executable was described in chapter [7]). Both user interfaces
are supported on Unix and Windows platforms.

You can choose which runtime environment is included in your simulation executable when you generate your
makefile. By default both Tkenv and Cmdenv is linked in so you can choose between them during runtime, but it is
possible to specify only a single user interface with the -u Cmdenv or -u Tkenv option on the opp_makemake
command line. This can be useful if you intend to run your simulations on a machine where Tcl/Tk is not installed.

By default, Tkenv will be used if both runtime environment is present in your executable, but you can override this
with the user-interface=Cmdenv in your ini file or by specifying -u Cmdenv on the command line. If both the
config option and the command line option are present, the command line option takes precedence.

Selecting a configuration and run number

Configurations can be selected with the -c <configname> command line option. If you do not specify the
configuration and you are running under:

Tkenv: the runtime environment will prompt you to choose one.
Cmdenv: the General configuration will be executed.

User interfaces may support the -r runnumber option to select runs, either one or more, depending on the type
of the user interface.

There are several command line options to get information about the iteration variables and the number of runs in
the configurations:

-a -- Prints all configuration names and the number of runs in them.
-x <configname> -- Prints the number of runs available in the given configuration.
-g -- Prints the unrolled configuration (together with the -x option) and expands the iteration variables.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

-G -- Prints even more details than -g.

Loading extra libraries

OMNeT++ allows you to load shared libraries at runtime. This means that you can create simulation models as a
shared library and load the model later into a different executable without the need to explicitly link against that
library. This approach has several advantages.

It is possible to distribute the model as a shared library. Others may be able to use it without recompiling it.
You can split a large model into smaller, reusable components.
You can mix several models (even from different projects) without the need of linking or compiling.

Use the -l libraryname command line option to load a library dynamically at run time. OMNeT++ will attempt to
load it using the dlopen() or LoadLibrary() functions and automatically registers all simple modules in the
library.

The prefix and suffix from the library name can be omitted (the extension (.dll, .so, .dylib and also the
common lib prefix on unix systems). This means that you can specify the library name in a platform independent
way (name.dll, libname.dll, libname.so and libname.dylib can be loaded with -l name).

It is also possible to specify the libraries to be loaded in the ini file with the load-libs= config option. The values
from the command line and the config file will be merged.

NOTE
Runtime loading is not needed if your executable or shared lib was already linked against the library in
question. In that case, the platform's dynamic loader will automatically load the library.

NOTE
You must ensure that the library can be accessed by OMNeT++ . You have to specify the path with your
library name (pre- and postfixes of the library filename still can be omitted) or adjust your shared library path
according to your OS. (On Windows set the PATH, on Unix set LD_LIBRARY_PATH and on Mac OS X set
the DYLD_LIBRARY_PATH as needed.)

9.1.2 Running a shared library

Shared libraries can be run using the opp_run program. Both opp_run and simulation executables are capable of
loading additional shared libraries; actually, opp_run is nothing else than an empty simulation executable.

Example:

opp_run -l mymodel

The above example will load the model found in libmymodel.so and execute it.

9.1.3 Controlling the run

There are several useful configuration options that control how a simulation is run.

cmdenv-express-mode -- Provides only minimal status updates on the console.
cmdenv-interactive -- Allows asking interactively for missing parameter values.
cmdenv-status-frequency -- How often the status is written to the console.
cpu-time-limit -- Limit how long the simulation should run (in wall clock time)
sim-time-limit -- Limit how long the simulation should run (in simulation time)
debug-on-errors -- If the runtime detects any error it will generate a breakpoint so you will be able to
check the location and the context of the problem in your debugger.
fingerprint -- The simulation kernel computes a checksum while running the simulation. It is calculated

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

from the module id and from the current simulation time of each event. If you specify the fingerprint
option in the config file, the simulation runtime will compare the computed checksum with the provided one. If
there is a difference it will generate an error. This feature is very useful if you make some cosmetic changes
to your source and want to be reasonable sure that your changes did not altered the behaviour f the model.
record-eventlog -- You can turn on the recording of the simulator events. The resulting file can be
analyzed later in the IDE with the sequence chart tool.

NOTE
It is possible to specify a configuration option also on command line (in which case the command line takes
precedence). You should prefix the option name with a double dash (--) and should not put any spaces
around the equal sign (e.g. --debug-on-errors=true)

To get the list of all possible configuration options type:

opp_run -h config

9.2 Cmdenv: the command-line interface

The command line user interface is a small, portable and fast user interface that compiles and runs on all
platforms. Cmdenv is designed primarily for batch execution.

Cmdenv simply executes some or all simulation runs that are described in the configuration file. If one run stops
with an error message, subsequent ones will still be executed. The runs to be executed can be passed via
command-line argument or in the ini file.

9.2.1 Example run

When run the Fifo example under Cmdenv, you should see something like this:

$./fifo -u Cmdenv -c Fifo1

OMNeT++ Discrete Event Simulation (C) 1992-2008 Andras Varga, OpenSim Ltd.
Version: 4.0, edition: Academic Public License -- NOT FOR COMMERCIAL USE
See the license for distribution terms and warranty disclaimer
Setting up Cmdenv...
Loading NED files from .: 5

Preparing for running configuration Fifo1, run #0...
Scenario: $repetition=0
Assigned runID=Fifo1-0-20090104-12:23:25-5792
Setting up network 'FifoNet'...
Initializing...
Initializing module FifoNet, stage 0
Initializing module FifoNet.gen, stage 0
Initializing module FifoNet.fifo, stage 0
Initializing module FifoNet.sink, stage 0

Running simulation...
** Event #1 T=0 Elapsed: 0.000s (0m 00s) 0% completed
 Speed: ev/sec=0 simsec/sec=0 ev/simsec=0
 Messages: created: 2 present: 2 in FES: 1
** Event #232448 T=11719.051014922336 Elapsed: 2.003s (0m 02s) 3% completed
 Speed: ev/sec=116050 simsec/sec=5850.75 ev/simsec=19.8351
 Messages: created: 58114 present: 3 in FES: 2
...
** Event #7206882 T=360000.52066583684 Elapsed: 78.282s (1m 18s) 100%
completed
 Speed: ev/sec=118860 simsec/sec=5911.9 ev/simsec=20.1053
 Messages: created: 1801723 present: 3 in FES: 2

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

<!> Simulation time limit reached -- simulation stopped.

Calling finish() at end of Run #0...
End.

As Cmdenv runs the simulation, periodically it prints the sequence number of the current event, the simulation time,
the elapsed (real) time, and the performance of the simulation (how many events are processed per second; the
first two values are 0 because there wasn't enough data for it to calculate yet). At the end of the simulation, the
finish() methods of the simple modules are run, and the output from them are displayed. On my machine this
run took 34 seconds. This Cmdenv output can be customized via omnetpp.ini entries. The output file
results/Fifo1-0.vec contains vector data recorded during simulation (here, queueing times), and it can be
processed using the IDE or other tools.

9.2.2 Command-line switches

The command line environment allows you to specify more than one run by using the -r 2,4,6..8 format. See
[9.4] for more information about running simulation batches.

9.2.3 Cmdenv ini file options

cmdenv-runs-to-execute specifies which simulation runs should be executed. It accepts a comma-separated
list of run numbers or run number ranges, e.g. 1,3..4,7..9. If the value is missing, Cmdenv executes all runs
that have ini file sections; if no runs are specified in the ini file, Cmdenv does one run. The -r command line option
overrides this ini file setting.

Cmdenv can be executed in two modes, selected by the cmdenv-express-mode ini file option:

Normal (non-express) mode is for debugging: detailed information will be written to the standard output
(event banners, module output, etc).
Express mode can be used for long simulation runs: only periodical status update is displayed about the
progress of the simulation.

cmdenv-performance-display affects express mode only: it controls whether to print performance information.
Turning it on results in a 3-line entry printed on each update, containing ev/sec, simsec/sec, ev/simsec, number of
messages created/still present/currently scheduled in FES.

For a full list of options, see the ones beginning with cmdenv in Appendix [23].

9.2.4 Interpreting Cmdenv output

When the simulation is running in ``express'' mode with detailed performance display enabled, Cmdenv periodically
outputs a three-line status info about the progress of the simulation. The output looks like this:

...
** Event #250000 T=123.74354 (2m 3s) Elapsed: 0m 12s
 Speed: ev/sec=19731.6 simsec/sec=9.80713 ev/simsec=2011.97
 Messages: created: 55532 present: 6553 in FES: 8
** Event #300000 T=148.55496 (2m 28s) Elapsed: 0m 15s
 Speed: ev/sec=19584.8 simsec/sec=9.64698 ev/simsec=2030.15
 Messages: created: 66605 present: 7815 in FES: 7
...

The first line of the status display (beginning with **) contains:

how many events have been processed so far

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

the current simulation time (T), and
the elapsed time (wall clock time) since the beginning of the simulation run.

The second line displays info about simulation performance:

ev/sec indicates performance: how many events are processed in one real-time second. On one hand it
depends on your hardware (faster CPUs process more events per second), and on the other hand it depends
on the complexity (amount of calculations) associated with processing one event. For example, protocol
simulations tend to require more processing per event than e.g. queueing networks, thus the latter produce
higher ev/sec values. In any case, this value is independent of the size (number of modules) in your model.
simsec/sec shows relative speed of the simulation, that is, how fast the simulation is progressing compared
to real time, how many simulated seconds can be done in one real second. This value virtually depends on
everything: on the hardware, on the size of the simulation model, on the complexity of events, and the
average simulation time between events as well.
ev/simsec is the event density: how many events are there per simulated second. Event density only
depends on the simulation model, regardless of the hardware used to simulate it: in a cell-level ATM
simulation you'll have very hight values (109), while in a bank teller simulation this value is probably well
under 1. It also depends on the size of your model: if you double the number of modules in your model, you
can expect the event density double, too.

The third line displays the number of messages, and it is important because it may indicate the `health' of your
simulation.

Created: total number of message objects created since the beginning of the simulation run. This does not
mean that this many message object actually exist, because some (many) of them may have been deleted
since then. It also does not mean that you created all those messages -- the simulation kernel also creates
messages for its own use (e.g. to implement wait() in an activity() simple module).
Present: the number of message objects currently present in the simulation model, that is, the number of
messages created (see above) minus the number of messages already deleted. This number includes the
messages in the FES.
In FES: the number of messages currently scheduled in the Future Event Set.

The second value, the number of messages present is more useful than perhaps one would initially think. It can be
an indicator of the `health' of the simulation: if it is growing steadily, then either you have a memory leak and losing
messages (which indicates a programming error), or the network you simulate is overloaded and queues are
steadily filling up (which might indicate wrong input parameters).

Of course, if the number of messages does not increase, it does not mean that you do not have a memory leak
(other memory leaks are also possible). Nevertheless the value is still useful, because by far the most common way
of leaking memory in a simulation is by not deleting messages.

9.3 Tkenv: the graphical user interface

Tkenv is a portable graphical windowing user interface. Tkenv supports interactive execution of the simulation,
tracing and debugging. Tkenv is recommended in the development stage of a simulation or for presentation and
educational purposes, since it allows one to get a detailed picture of the state of simulation at any point of
execution and to follow what happens inside the network.

9.3.1 Command-line switches

A simulation program built with Tkenv accepts all the general command line switches. In addition the -r
runnumber option allows only specifying a single run. Multiple runs are not supported.

Tkenv configuration options:

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

tkenv-default-config: Specifies which config Tkenv should set up automatically on startup. The default
is to ask the user.

tkenv-default-run: Specifies which run (of the default config, see tkenv-default-config) Tkenv should set
up automatically on startup. The default is to ask the user.

tkenv-extra-stack: Specifies the extra amount of stack that is reserved for each activity() simple module
when the simulation is run under Tkenv.

tkenv-image-path: Specifies the path for loading module icons.

tkenv-plugin-path: Specifies the search path for Tkenv plugins. Tkenv plugins are .tcl files that get
evaluated on startup.

Tkenv specific configuration options can be specified also on command line by prefixing them with double dash (e.g
--tkenv-option=value). See Appendix [23] for the list of possible configuration options.

NOTE
The usage of the Tkenv user interface is detailed in the OMNeT++ User Guide's Tkenv chapter.

9.4 Batch execution

Once your model works reliably, you'll usually want to run several simulations. You may want to run the model with
various parameter settings, or you may want (should want?) to run the same model with the same parameter
settings but with different random number generator seeds, to achieve statistically more reliable results.

Running a simulation several times by hand can easily become tedious, and then a good solution is to write a
control script that takes care of the task automatically. Unix shell is a natural language choice to write the control
script in, but other languages like Perl, Matlab/Octave, Tcl, Ruby might also have justification for this purpose.

Of course before running simulation batches you must set a condition to stop your simulation. This is usually a time
limit set by the sim-time-limit configuration option, but you can limit your simulation by using wall clock time
(cpu-time-limit) or by directly ending a simulation with an API call if some condition is true.

9.4.1 Using Cmdenv

To execute more than one run using the Cmdenv use the -r option and specify the runs in a comma separated
format 1,2,4,9..11 or you may leave out the -r option to execute all runs in the experiment.

WARNING
Although it is very convenient, we do not recommended to use this method for running simulation batches.
Specifying more than one runnumber would run these simulations in the same process. This method is more
prone to C++ programming errors. A failure in a single run may stop and kill all the runs following it. If you
want to execute more than one run we recommend to run each of them in a separate process. Use the
opp_runall for this purpose.

9.4.2 Using shell scripts

The following script executes a simulation named wireless several times, with parameters for the different runs
given in the runs.ini file.

Before you are executing your simulation batch, you may check how many runs are available in the configuration
you are using. Use the -x config command line option to print the number of runs or add the -g to get more
details.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

#! /bin/sh
./wireless -f runs.ini -r 1
./wireless -f runs.ini -r 2
./wireless -f runs.ini -r 3
./wireless -f runs.ini -r 4
...
./wireless -f runs.ini -r 10

To run the above script, type it in a text file called e.g. run, give it x (executable) permission using chmod, then
you can execute it by typing ./run:

$ chmod +x run
$./run

You can simplify the above script by using a for loop. In the example below, the variable i iterates through the
values of list given after the in keyword. It is very practical, since you can leave out or add runs, or change the
order of runs by simply editing the list -- to demonstrate this, we skip run 6, and include run 15 instead.

#! /bin/sh
for i in 3 2 1 4 5 7 15 8 9 10; do
 ./wireless -f runs.ini -r $i
done

If you have many runs, you can use a C-style loop:

#! /bin/sh
for ((i=1; $i<50; i++)); do
 ./wireless -f runs.ini -r $i
done

9.4.3 Using opp_runall

OMNeT++ has a utility program called opp_runall which allows you to execute a simulation batch in command
line mode. You must specify the whole command line you would use to run your batch in Cmdenv. There are
advantages running your batches this way:

Each simulation run executes in a separate operating system process. This means that a crash because of a
programming error does not affect the outcome of the other runs. They are totally independent of each other.
If you happen to have a multi core/processor machine, you can take advantage of the processing power by
running sevaral runs parallel.

The command basically creates a makefile which contains a separate target for each run. By default the makefile
will be executed causing each target to run. You can give additional options to the opp_runall command to
activate parallel building. The -j option can be used to specify the maximum number of parallel runs allowed.

WARNING
Use the parallel execution option only if you have enough memory to run several simulations side by side. If
you run out of memory your operating system will start swapping and the overall performance of the system
will be greatly reduced. Always specify the number of processes after the -j option otherwise the make
program will try to start all runs at the same time. As a rule of thumb: if you have 4 cores (and enough
memory), use -j4.

The form of the command is:

opp_runall -j2 ./aloha -u Cmdenv -c PureAlohaExperiment -r 0..23

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

You can use the -x ConfigName -g command line options with your simulation to check the number of available
runs.

Using the --export filename option only generates the makefile, but does not start it. You can run your
batch later by invoking the generated makefile.

9.5 Akaroa support: Multiple Replications in Parallel

9.5.1 Introduction

Typical simulations are Monte-Carlo simulations: they use (pseudo-)random numbers to drive the simulation model.
For the simulation to produce statistically reliable results, one has to carefully consider the following:

When is the initial transient over, when can we start collecting data? We usually do not want to include the
initial transient when the simulation is still ``warming up.''
When can we stop the simulation? We want to wait long enough so that the statistics we are collecting can
``stabilize'', can reach the required sample size to be statistically trustable.

Neither questions are trivial to answer. One might just suggest to wait ``very long'' or ``long enough''. However, this
is neither simple (how do you know what is ``long enough''?) nor practical (even with today's high speed processors
simulations of modest complexity can take hours, and one may not afford multiplying runtimes by, say, 10, ``just to
be safe.'') If you need further convincing, please read [Pawlikowsky02] and be horrified.

A possible solution is to look at the statistics while the simulation is running, and decide at runtime when enough
data have been collected for the results to have reached the required accuracy. One possible criterion is given by
the confidence level, more precisely, by its width relative to the mean. But ex ante it is unknown how many
observations have to be collected to achieve this level -- it must be determined runtime.

9.5.2 What is Akaroa

Akaroa [Akaroa99] addresses the above problem. According to its authors, Akaroa (Akaroa2) is a ``fully automated
simulation tool designed for running distributed stochastic simulations in MRIP scenario'' in a cluster computing
environment.

MRIP stands for Multiple Replications in Parallel. In MRIP, the computers of the cluster run independent
replications of the whole simulation process (i.e. with the same parameters but different seed for the RNGs (random
number generators)), generating statistically equivalent streams of simulation output data. These data streams are
fed to a global data analyser responsible for analysis of the final results and for stopping the simulation when the
results reach a satisfactory accuracy.

The independent simulation processes run independently of one another and continuously send their observations
to the central analyser and control process. This process combines the independent data streams, and calculates
from these observations an overall estimate of the mean value of each parameter. Akaroa2 decides by a given
confidence level and precision whether it has enough observations or not. When it judges that is has enough
observations it halts the simulation.

If n processors are used, the needed simulation execution time is usually n times smaller compared to a one-
processor simulation (the required number of observations are produced sooner). Thus, the simulation would be
sped up approximately in proportion to the number of processors used and sometimes even more.

Akaroa was designed at the University of Canterbury in Christchurch, New Zealand and can be used free of charge
for teaching and non-profit research activities.

9.5.3 Using Akaroa with OMNeT++

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Akaroa

Before the simulation can be run in parallel under Akaroa, you have to start up the system:

Start akmaster running in the background on some host.
On each host where you want to run a simulation engine, start akslave in the background.

Each akslave establishes a connection with the akmaster.

Then you use akrun to start a simulation. akrun waits for the simulation to complete, and writes a report of the
results to the standard output. The basic usage of the akrun command is:

akrun -n num_hosts command [argument..]

where command is the name of the simulation you want to start. Parameters for Akaroa are read from the file
named Akaroa in the working directory. Collected data from the processes are sent to the akmaster process, and
when the required precision has been reached, akmaster tells the simulation processes to terminate. The results
are written to the standard output.

The above description is not detailed enough help you set up and successfully use Akaroa -- for that you need to
read the Akaroa manual.

Configuring OMNeT++ for Akaroa

First of all, you have to compile OMNeT++ with Akaroa support enabled.

The OMNeT++ simulation must be configured in omnetpp.ini so that it passes the observations to Akaroa. The
simulation model itself does not need to be changed -- it continues to write the observations into output vectors
(cOutVector objects, see chapter [6]). You can place some of the output vectors under Akaroa control.

You need to add the following to omnetpp.ini:

[General]
rng-class = "cAkaroaRNG"
outputvectormanager-class = "cAkOutputVectorManager"

These lines cause the simulation to obtain random numbers from Akaroa, and allows data written to selected output
vectors to be passed to Akaroa's global data analyser.

[For more details on the plugin mechanism these settings make use of, see section .]

Akaroa's RNG is a Combined Multiple Recursive pseudorandom number generator (CMRG) with a period of
approximately 2191 random numbers, and provides a unique stream of random numbers for every simulation
engine. It is vital to obtain random numbers from Akaroa: otherwise, all simulation processes would run with the
same RNG seeds, and produce exactly the same results!

Then you need to specify which output vectors you want to be under Akaroa control. By default, all output vectors
are under Akaroa control; the

<modulename>.<vectorname>.with-akaroa = false

setting can be used to make Akaroa ignore specific vectors. You can use the *, ** wildcards here (see section
[8.4.1]). For example, if you only want a few vectors be placed under Akaroa, you can use the following trick:

<modulename>.<vectorname1>.with-akaroa = true
<modulename>.<vectorname2>.with-akaroa = true

http://omnetpp.org/doc/omnetpp40/api/classcOutVector.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

...
**.*.with-akaroa = false # catches everything not matched above

Using shared file systems

It is usually practical to have the same physical disk mounted (e.g. via NFS or Samba) on all computers in the
cluster. However, because all OMNeT++ simulation processes run with the same settings, they would overwrite
each other's output files (e.g. omnetpp.vec, omnetpp.sca). Your can prevent this from happening using the
fname-append-host ini file entry:

[General]
fname-append-host = true

When turned on, it appends the host name to the names of the output files (output vector, output scalar, snapshot
files).

9.6 Troubleshooting

9.6.1 Unrecognized configuration option

If you receive an error message about unrecognized configuration options you may use -h config or -h
configdetails options to display all possible configuration options and their descriptions.

9.6.2 Stack problems

``Stack violation (FooModule stack too small?) in module bar.foo''

OMNeT++ detected that the module has used more stack space than it has allocated. The solution is to increase
the stack for that module type. You can call the getStackUsage() from finish() to find out actually how much
stack the module used.

``Error: Cannot allocate nn bytes stack for module foo.bar''

The resolution depends on whether you are using OMNeT++ on Unix or on Windows.

Unix. If you get the above message, you have to increase the total stack size (the sum of all coroutine stacks). You
can do so in omnetpp.ini:

[General]
total-stack-kb = 2048 # 2MB

There is no penalty if you set total-stack-kb too high. I recommend to set it to a few K less than the maximum
process stack size allowed by the operating system (ulimit -s; see next section).

Windows. You need to set a low (!) ``reserved stack size'' in the linker options, for example 64K (/stack:65536
linker flag) will do. The ``reserved stack size'' is an attribute in the Windows exe files' internal header. It can be set
from the linker, or with the editbin Microsoft utility. You can use the opp_stacktool program (which relies on
another Microsoft utility called dumpbin) to display reserved stack size for executables.

You need a low reserved stack size because the Win32 Fiber API which is the mechanism underlying activity()
uses this number as coroutine stack size, and with 1MB being the default, it is easy to run out of the 2GB possible
address space (2GB/1MB=2048).

A more detailed explanation follows. Each fiber has its own stack, by default 1MB (this is the ``reserved'' stack

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

space -- i.e. reserved in the address space, but not the full 1MB is actually ``committed'', i.e. has physical memory
assigned to it). This means that a 2GB address space will run out after 2048 fibers, which is way too few. (In
practice, you won't even be able to create this many fibers, because physical memory is also a limiting factor).
Therefore, the 1MB reserved stack size (RSS) must be set to a smaller value: the coroutine stack size requested
for the module, plus the extra-stack-kb amount for Cmdenv/Tkenv -- which makes about 16K with Cmdenv,
and about 48K when using Tkenv. Unfortunately, the CreateFiber() Win32 API doesn't allow the RSS to be
specified. The more advanced CreateFiberEx() API which accepts RSS as parameter is unfortunately only available
from Windows XP.

The alternative is the stacksize parameter stored in the EXE header, which can be set via the STACKSIZE .def file
parameter, via the /stack linker option, or on an existing executable using the editbin /stack utility. This parameter
specifies a common RSS for the main program stack, fiber and thread stacks. 64K should be enough. This is the
way simulation executable should be created: linked with the /stack:65536 option, or the /stack:65536 parameter
applied using editbin later. For example, after applying the editbin /stacksize:65536 command to dyna.exe, I was
able to successfully run the Dyna sample with 8000 Client modules on my Win2K PC with 256M RAM (that means
about 12000 modules at runtime, including about 4000 dynamically created modules.)

``Segmentation fault''

On Unix, if you set the total stack size higher, you may get a segmentation fault during network setup (or during
execution if you use dynamically created modules) for exceeding the operating system limit for maximum stack
size. For example, in Linux 2.4.x, the default stack limit is 8192K (that is, 8MB). The ulimit shell command can be
used to modify the resource limits, and you can raise the allowed maximum stack size up to 64M.

$ ulimit -s 65500
$ ulimit -s
65500

Further increase is only possible if you're root. Resource limits are inherited by child processes. The following
sequence can be used under Linux to get a shell with 256M stack limit:

$ su root
Password:
ulimit -s 262144
su andras
$ ulimit -s
262144

If you do not want to go through the above process at each login, you can change the limit in the PAM configuration
files. In Redhat Linux (maybe other systems too), add the following line to /etc/pam.d/login:

session required /lib/security/pam_limits.so

and the following line to /etc/security/limits.conf:

* hard stack 65536

A more drastic solution is to recompile the kernel with a larger stack limit. Edit
/usr/src/linux/include/linux/sched.h and increase _STK_LIM from (8*1024*1024) to
(64*1024*1024).

Finally, it you're tight with memory, you can switch to Cmdenv. Tkenv increases the stack size of each module by
about 32K so that user interface code that is called from a simple module's context can be safely executed.
Cmdenv does not need that much extra stack.

Eventually...

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Once you get to the point where you have to adjust the total stack size to get your program running, you should
probably consider transforming (some of) your activity() simple modules to handleMessage(). activity()
does not scale well for large simulations.

9.6.3 Memory leaks and crashes

The most common problems in C++ are associated with memory allocation (usage of new and delete):

memory leaks, that is, forgetting to delete objects or memory blocks no longer used;
crashes, usually due to referring to an already deleted object or memory block, or trying to delete one for a
second time;
heap corruption (eventually leading to crash) due to overrunning allocated blocks, i.e. writing past the end of
an allocated array.

By far the most common ways leaking memory in simulation programs is by not deleting messages (cMessage
objects or subclasses). Both Tkenv and Cmdenv are able to display the number of messages currently in the
simulation, see e.g. section [9.2.4]. If you find that the number of messages is steadily increasing, you need to find
where the message objects are. You can do so by selecting Inspect|From list of all objects... from the Tkenv menu,
and reviewing the list in the dialog that pops up. (If the model is large, it may take a while for the dialog to appear.)

If the number of messages is stable, it is still possible you're leaking other cOwnedObject-based objects. You can
also find them using Tkenv's Inspect|From list of all objects... function.

If you're leaking non-cOwnedObject-based objects or just memory blocks (structs, int/double/struct
arrays, etc, allocated by new), you cannot find them via Tkenv. You'll probably need a specialized memory
debugging tool like the ones described below.

Memory debugging tools

If you suspect that you may have memory allocation problems (crashes associated with double-deletion or
accessing already deleted block, or memory leaks), you can use specialized tools to track them down.

By far the most efficient, most robust and most versatile tool is Valgrind, originally developed for debugging KDE.

Other memory debuggers are NJAMD, MemProf, MPatrol, dmalloc and ElectricFence. Most of the above tools
support tracking down memory leaks as well as detecting double deletion, writing past the end of an allocated
block, etc.

A proven commercial tool Rational Purify. It has a good reputation and proved its usefulness many times.

9.6.4 Simulation executes slowly

Check the following if you think your simulation is running too slow.

Turn on express mode with the cmdenv-express-mode=true configuration option.
Be sure that event logging is turned off (record-eventlog=false configuration option).
Turn of vector file recording if you do not absolutely need it (**.vector-recording=false).
If you are running under Tkenv disable animation features, close inspectors, hide the timeline, hide object
tree, turn off log filtering.
Compile your code as release instead of debug (in some cases this can give you 5x speedup)

What can you do if the simulation executes much slower than you expect? The best advice that can be given here
is that you should use a good profiler to find out how much time is spent in each part of the program. Do not make
the mistake of omitting this step, thinking that you know "which part is slow"! Even for experienced programmers,
profiling session is all too often full of surprises. It often turns out that lots of CPU time is spent in completely

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcOwnedObject.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

innocent-looking statements, while the big and complex algorithm doesn't take nearly as much time as expected.
Don't assume anything -- profile before you optimize!

A great profiler on Linux is the Valgrind-based callgrind, and its visualizer KCachegrind. Unfortunately it won't be
ported to Windows anytime soon. On Windows, you're out of luck -- commercial products may help, or, port your
simulation to Linux. The latter goes usually much smoother than one would expect.

10 Network Graphics And Animation

10.1 Display strings

Display strings specify the arrangement and appearance of modules in graphical user interfaces (currently only
Tkenv): they control how the objects (compound modules, their submodules and connections) are displayed.
Display strings occur in NED description's @display property.

Display strings can be used in the following contexts:

submodules -- display string may contain position, arrangement (for module vectors), icon, icon color,
auxiliary icon, status text, communication range (as circle or filled circle), tooltip, etc.
compound modules, networks -- display string can specify background color, border color, border thickness,
background image, scaling, grid, unit of measurement, etc.
connections -- display string can specify positioning, color, line thickness, line style, text and tooltip
messages -- display string can specify icon, icon color, etc.

10.1.1 Display string syntax

The display string syntax is a semicolon-separated list of tags. Each tag consists of a key, an equal sign and a
comma-separated list of arguments:

@display("p=100,100;b=60,10,rect,blue,black,2")

Tag arguments may be omitted both at the end and inside the parameter list:

@display("p=100,100;b=,,rect,blue")

10.1.2 Display string placement

The following NED sample shows where to place display strings in the code:

simple Queue
{
 parameters:
 @display("i=block/queue");
 ...
}

network SimpleQueue
{
 parameters:
 @display("bgi=maps/europe");
 submodules:
 sink: Sink {

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 @display("p=273,101");
 }
 ...
 connections:
 source.out --> { @display("ls=red,3"); } --> queue.in++;
}

10.1.3 Display string inheritance

Every module and channel object has one single display string object, which controls its appearance in various
contexts. The initial value of this display string object comes from merging the @display properties occurring at
various places in NED files. This section describes the rules @display properties are merged to create the module
or channel's display string.

Derived NED types inherit their display string from their base NED type.
Submodules inherit their display string from their type.
Connections inherit their display string from their channel type.

The base NED type's display string is merged into the current display string using the following rules:

If a tag is present in the base display string, but not in the current one the whole tag (with all arguments) is
added to the current display string. (e.g. base: "i=icon,red" current: "p=2,4" result:
"p=2,4;i=icon,red")
If a tag is present both in the base and in the current display string only tag arguments present in the base,
but not in the current display string will be copied. (e.g. base: "b=40,20" current: "b=,,oval" result:
"b=40,20,oval")
If the current display string contains a tag argument with value "-" (hyphen) that argument is treated as empty
and will not be inherited from other display strings. Requesting the value of this argument will return its the
default value.
If neither the base display string nor the current one has value for a tag a suitable default value will be
returned and used.

Example of display string inheritance:

simple Base {
 @display("i=block/queue"); // use a queue icon in all instances
}

simple Derived extends Base {
 @display("i=,red,60"); // ==> "i=block/queue,red,60"
}

network SimpleQueue {
 submodules:
 submod: Derived {
 @display("i=,yellow,-;p=273,101;r=70"); // ==>
"i=block/queue,yellow;p=273,101;r=70"
 }
 ...
}

10.1.4 Display string tags used in submodule context

The following tags define how a module appears on the Tkenv user interface if it is used as a submodule:

b -- shapes, colors
i -- icon
is -- icon size

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

i2 -- alternate (status) icon placed at the upper right corner of the main icon
p -- positioning and layouting
r -- range indicator
q -- queue information text
t -- text
tt -- tooltip

Icons

By default modules are represented by simple icons. Using images for the modules is possible with the i tag. See
the images subfolder of your OMNeT++ installation for possible icons. The stock images installed with OMNeT++
have several size variants. Most of them have very small (vs), small (s), large (l) and very large (vl) variants. You
can specify which variant you want to use with the is tag.

@display("i=block/source;is=l"); // a large source icon from the block icons group

Sometimes you want to have similar icons for modules, but would like to make them look a little different to create
groups or to reflect status information about the module. You can easily change the color of an already existing
image. The following example colorizes the block/source icon, 20% red

@display("i=block/source,red,20")

If you want to show state information about your module, you can use the i2 tag to add a small status icon to your
main icon. This icon is displayed in the upper right corner of your main icon. In most cases the i2 tag is specified at
runtime using the setDisplayString() method, so the icon can be changed dynamically based on the module's
internal state.

@display("i=block/queue;i2=status/busy")

Shapes

If you want to have simple, but resizable representation for your module, you can use the b tag to create geometric
shapes. Currently oval and rectangle is supported:

// an oval shape with 70x30 size, red background, black 4 pixel border
@display("b=70,30,oval,red,black,4")

Positioning, coordinates

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

To define the position of a module inside an other one use the p tag. If you do not specify a p tag for your module,
the parent module will automatically choose a position based on a layouting algorithm. The following example will
place the module at the given position:

@display("p=50,79");

NOTE
The coordinates specified in the p, b or r tags are not necessarily integers and measured in pixels. You can
use the parent module's bgs=pix2unitratio,unit tag, to set the scaling parameter and the unit of
measurement for your module. You can specify the ratio between 1 pixel and 1 unit with the bgs tag.

The p tag allows the automatic arrangement of module vectors. They can be arranged in a row, a column, a matrix
or a ring or you may specify their positions later at runtime using the setDisplayString() method. The rest of
the arguments in the p tag depends on the layout type:

row -- p=100,100,r,deltaX (A row of modules with deltaX units between the modules)
column -- p=100,100,c,deltaY (A column of modules with deltaX units between the modules)
matrix -- p=100,100,m,noOfCols,deltaX,deltaY (A matrix with noOfCols columns. deltaX and
deltaY units between rows and columns)
ring -- p=100,100,ri,rx,ry (A ring (oval) with rx and ry as the horizontal and vertical radius.)
exact (default) -- p=100,100,x,deltaX,deltaY (Place each module at (100+deltaX,
100+deltaY). The coordinates are usually set at runtime.)

A matrix layout for a module vector:

@display("p=,,m,4,50,50");

Figure: Matrix arrangement using the p tag

Wireless range

In wireless simulations it is very useful to show some kind of range around your module. This can be an
interference range, transmission range etc. The following example will place the module at a given position, and
draw a circle with a 90-unit radius around it as a range indicator:

submodules:
 ap: AccessPoint {
 @display("p=50,79;r=90");
 }

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Figure: Range indicator using the r tag

Additional decorations

Sometimes you want to annotate your modules with additional information to make your model more transparent.
One special case is when you want to show the length of a queue (cQueue) embedded somewhere in a module. In
the following example the Server simple module contains a cQueue object, which was named by the
queue.setName("procqueue") method. If we specify q=procqueue in the display string, Tkenv will descend
into the module (several levels deep if needed) and look for a queue object named "procqueue". It will display the
length of the queue object along the module.

@display("q=procqueue");

You can add a text description to any module using the t (displayed along the module) or tt tag (displayed as a
tooltip). The following example displays a short text along with the module and adds a tooltip text too that can be
seen by hovering over them module with the mouse.

@display("t=Packets sent: 18;tt=Additional tooltip information");

NOTE
Generally it makes no sense to assign static texts in the NED file. Usually the t and tt tags are used at
runtime with the setDisplayString() method.

To see detailed descripton of the display string tags check Appendix [22] about display string tags.

10.1.5 Display string tags used in module background context

http://omnetpp.org/doc/omnetpp40/api/classcQueue.html
http://omnetpp.org/doc/omnetpp40/api/classcQueue.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

The following tags describe what a module looks like if opened in Tkenv. They mostly deal with the module
background.

bgi -- background image
bgtt -- tooltip above the background
bgg -- background grid
bgl -- control child layouting
bgb -- background size, color, border
bgs -- scaling of background coordinates
bgp -- background coordinate offset

In some cases it is required that the module's physical position should be modeled also in your model. In this case
you would set the submodule display strings with the setDisplayString() method at run time, but it would be
also nice to customize the area in what the modules are moving. It is possible to manipulate what a module's
background looks like or whether we can use measurement units instead of pixels to set the position of the
modules. The following example demonstrates the use of module background tags. The coordinates are given in km
(SI unit). The bgs=pixelsperunit,unit specifies pixel/unit ratio, i.e. 1km is 0.075 pixel on the screen. The
whole area is 6000x4500km (bgb=) and the map of Europe is used as a background and stretched to fill the
module background. A light grey grid is drawn with a 1000km distance between major ticks, and 2 minor ticks per
major tick (bgg=tickdistance,minorpermajorticks,color). See Figure below.

network EuropePlayground
{
 @display("bgb=6000,4500;bgi=maps/europe,s;bgg=1000,2,grey95;bgs=0.075,km");

Figure: Background grid, scaling and image

After specifying the above bgs tag, all your submodule coordinates will be treated as if they were specified in km.

To see detailed descripton of the display string tags check Appendix [22] about display string tags.

10.1.6 Connection display strings

Connections may also have display strings. Connections inherit the display string property of their channel in the

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

same way submodules inherit their display string from their types. If no channel is specified for a connection,
IdealChannel will be used implicitly by the simulation kernel.

Connections support the following tags:

ls -- line shape, and colors
t -- text
tt -- tooltip
m -- used for hinting Tkenv how the connections should route to/from the module

Example of a thick, red connection:

source1.out --> { @display("ls=red,3"); } --> queue1.in++;

NOTE
If you want to hide a connection, specify width=0 for the connection. i.e. use ls=,0.

To see detailed descripton of these tags check Appendix [22] about display string tags.

10.1.7 Message display strings

Message display string affects how messages are shown during animation. By default, they are displayed as a
small filled circle, in one of 8 basic colors (the color is determined as message kind modulo 8), and with the
message class and/or name displayed under it The latter is configurable in the Tkenv Options dialog, and message
kind dependent coloring can also be turned off there.

Specifying message display strings

Message objects do not store a display string by default, but you can redefine the cMessage 's
getDisplayString() method and make it return one.

Example of using an icon to represent a message:

const char *CustomPacket::getDisplayString() const
{
 return "i=msg/packet;is=vs";
}

Or better: If you add the field displayString to your message definition (.msg file) the message compiler will
automatically generate the set/getDisplayString methods for you:

message Job
{
 string displayString = "i=msg/package_s,kind";
...

Message display string tags

The following tags can be used in message display strings:

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

b -- shapes, colors
i -- icon
is -- icon size

Using a small red box icon to represent the messages:

@display("i=msd/box,red;is=s");

Messages will be represented by a 15x15 rectangle with white background. Their border color will depend on the
messageKind property of the message.

@display("b=15,15,rect,white,kind,5");

NOTE
In message display strings you may use the word kind as a special color. This virtual color depends on the
messageKind field in the message.

10.2 Parameter substitution

Parameters of the module or channel containing the display string can be substituted into the display string with the
$parameterName notation:

Example:

simple MobileNode
{
 parameters:
 double xpos;
 double ypos;
 string fillColor;
 // get the values from the module parameters xpos,ypos,fillcolor
 @display("p=$xpos,$ypos;b=60,10,rect,$fillColor,black,2");
}

10.3 Colors

10.3.1 Color names

Any valid Tk color specification is accepted: English color names (blue, lightgrey, wheat) or #rgb, #rrggbb format
(where r,g,b are hex digits).

It is also possible to specify colors in HSB (hue-saturation-brightness) as @hhssbb (with h, s, b being hex digits).
HSB makes it easier to scale colors e.g. from white to bright red.

You can produce a transparent background by specifying a hyphen ("-") as background color.

In message display strings, kind can also be used as a special color name. It will map to a color depending on the
message kind. (See the getKind() method of cMessage.)

10.3.2 Icon colorization

The "i=" display string tag allows for colorization of icons. It accepts a target color and a percentage as the
degree of colorization. Percentage has no effect if the target color is missing. Brightness of icon is also affected -- to
keep the original brightness, specify a color with about 50% brightness (e.g. #808080 mid-grey, #008000 mid-

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

green).

Examples:

"i=device/server,gold" creates a gold server icon
"i=misc/globe,#808080,100" makes the icon greyscale
"i=block/queue,white,100" yields a "burnt-in" black-and-white icon

Colorization works with both submodule and message icons.

10.4 The icons

10.4.1 The image path

In the current OMNeT++ version, module icons are PNG or GIF files. The icons shipped with OMNeT++ are in the
images/ subdirectory. Both the graphical NED editor and Tkenv need the exact location of this directory to load the
icons.

Icons are loaded from all directories in the image path, a semicolon-separated list of directories. The default image
path is compiled into Tkenv with the value "omnetpp-dir/images; ./images;./bitmaps" -- which will work
fine as long as you don't move the directory, and you'll also be able to load more icons from the images/
subdirectory of the current directory. As people usually run simulation models from the model's directory, this
practically means that custom icons placed in the images/ subdirectory of the model's directory are automatically
loaded.

The compiled-in image path can be overridden with the OMNETPP_IMAGE_PATH environment variable. The way of
setting environment variables is system specific: in Unix, if you're using the bash shell, adding a line

export OMNETPP_IMAGE_PATH="/home/you/images;./images"

to ~/.bashrc or ~/.bash_profile will do; on Windows, environment variables can be set via the My Computer
--> Properties dialog.

You can extend the image path from omnetpp.ini with the tkenv-image-path option, which gets prepended
to the environment variable's value.

[General]
tkenv-image-path = "/home/you/model-framework/images;/home/you/extra-images"

10.4.2 Categorized icons

Since OMNeT++ 3.0, icons are organized into several categories, represented by folders. These categories
include:

block/ - icons for subcomponents (queues, protocols, etc).
device/ - network devices: servers, hosts, routers, etc.
abstract/ - symbolic icons for various devices
misc/ - node, subnet, cloud, building, town, city, etc.
msg/ - icons that can be used for messages

Old (pre-3.0) icons are in the old/ folder.

Tkenv and the IDE now load icons from subdirectories of all directories of the image path, and these icons can be
referenced from display strings by naming the subdirectory (subdirectories) as well: "subdir/icon",

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

"subdir/subdir2/icon", etc.

For compatibility, if the display string contains a icon without a category (i.e. subdirectory) name, OMNeT++ tries it
as "old/icon" as well.

10.4.3 Icon size

Icons come in various sizes: normal, large, small, very small. Sizes are encoded into the icon name's suffix: _vl,
_l, _s, _vs. In display strings, one can either use the suffix ("i=device/router_l"), or the "is" (icon size)
display string tag ("i=device/router;is=l"), but not both at the same time (we recommend using the is tag
whenever possible).

10.5 Layouting

OMNeT++ implements an automatic layouting feature, using a variation of the SpringEmbedder algorithm. Modules
which have not been assigned explicit positions via the "p=" tag will be automatically placed by the algorithm.

SpringEmbedder is a graph layouting algorithm based on a physical model. Graph nodes (modules) repent each
other like electric charges of the same sign, and connections are sort of springs which try to contract and pull the
nodes they're attached to. There is also friction built in, in order to prevent oscillation of the nodes. The layouting
algorithm simulates this physical system until it reaches equilibrium (or times out). The physical rules above have
been slightly tweaked to get better results.

The algorithm doesn't move any module which has fixed coordinates. Predefined row, matrix, ring or other
arrangements (defined via the 3rd and further args of the "p=" tag) will be preserved -- you can think about them
as if those modules were attached to a wooden framework so that they can only move as one unit.

Caveats:

If the full graph is too big after layouting, it is scaled back so that it fits on the screen, unless it contains any
fixed-position module. (For obvious reasons: if there's a module with manually specified position, we don't
want to move that one). To prevent rescaling, you can specify a sufficiently large bounding box in the
background display string, e.g. "b=2000,3000".
Size is ignored by the present layouter, so longish modules (such as an Ethernet segment) may produce
funny results.
The algorithm is prone to produce erratic results, especially when the number of submodules is small, or
when using predefined (matrix, row, ring, etc) layouts. The "Re-layout" toobar button can then be very useful.
Larger networks usually produce satisfactory results.
The algorithm is starting from random positions. To get the best results you may experiment with different
seeds by specifying them using the bgl=seed display string tag.

10.6 Enhancing animation

10.6.1 Changing display strings at runtime

Often it is useful to manipulate the display string at runtime. Changing colors, icon, or text may convey status
change, and changing a module's position is useful when simulating mobile networks.

Display strings are stored in cDisplayString objects inside channels, modules and gates. cDisplayString
also lets you manipulate the string.

To get a pointer to the cDisplayString object, you can call the components's getDisplayString() method:

http://omnetpp.org/doc/omnetpp40/api/classcDisplayString.html
http://omnetpp.org/doc/omnetpp40/api/classcDisplayString.html
http://omnetpp.org/doc/omnetpp40/api/classcDisplayString.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

// Setting a module's position, icon and status icon:
cDisplayString *dispStr = getDisplayString();
dispStr->parse("p=40,20;i=device/cellphone;i2=status/disconnect");

NOTE
The connection display string is stored in the channel object, but it can also be accessed via the source gate
of the connection.

// Setting an outgoing connection's color to red:
cDisplayString *gateDispStr = gate("out")->getDisplayString();
dispStr->parse("ls=red");

NOTE
In OMNeT++ 3.x, to manipulate the appearance of a compound module you had to use the
backgroundDisplayString() method. This method is no longer supported in OMNeT++ 4.0, because
there is no separate background display string. Use the getDisplayString() method instead with the
background specific tags, i.e. those starting with bg.

// Setting module background and grid with background display string tags:
cDisplayString *parentDispStr = getParentModule()->getDisplayString();
parentDispStr->parse("bgi=maps/europe;bgg=100,2");

As far as cDisplayString is concerned, a display string (e.g. "p=100,125;i=cloud") is a string that consist of
several tags separated by semicolons, and each tag has a name and after an equal sign, zero or more arguments
separated by commas.

The class facilitates tasks such as finding out what tags a display string has, adding new tags, adding arguments to
existing tags, removing tags or replacing arguments. The internal storage method allows very fast operation; it will
generally be faster than direct string manipulation. The class doesn't try to interpret the display string in any way,
nor does it know the meaning of the different tags; it merely parses the string as data elements separated by
semicolons, equal signs and commas.

An example:

dispStr->parse("a=1,2;p=alpha,,3");
dispStr->insertTag("x");
dispStr->setTagArg("x",0,"joe");
dispStr->setTagArg("x",2,"jim");
dispStr->setTagArg("p",0,"beta");
ev << dispStr->str(); // result: "x=joe,,jim;a=1,2;p=beta,,3"

10.6.2 Bubbles

Modules can let the user know about important events (such as a node going down or coming up) by displaying a
bubble with a short message ("Going down", "Coming up", etc.) This is done by the bubble() method of
cComponent. The method takes the string to be displayed as a const char * pointer.

An example:

bubble("Collision! (2 frames)");

http://omnetpp.org/doc/omnetpp40/api/classcDisplayString.html
http://omnetpp.org/doc/omnetpp40/api/classcDisplayString.html
http://omnetpp.org/doc/omnetpp40/api/classcDisplayString.html
http://omnetpp.org/doc/omnetpp40/api/classcDisplayString.html
http://omnetpp.org/doc/omnetpp40/api/classcComponent.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

If the module contains a lot of code that modifies the display string or displays bubbles, it is recommended to make
these calls conditional on ev.isGUI(). The ev.isGUI() call returns false when the simulation is run under
Cmdenv, so one can make the code skip potentially expensive display string manipulation.

Better:

if (ev.isGUI())
 bubble("Going down!");

11 Analyzing Simulation Results

11.1 Result files

11.1.1 Results

vector results, scalar results

unique run id

attributes, e.g. experiment-measurement-replication

The format of result files is documented in detail in [24].

11.1.2 Output vectors

Output vectors are time series data: values with timestamps. You can use output vectors to record end-to-end
delays or round trip times of packets, queue lengths, queueing times, link utilization, the number of dropped
packets, etc. -- anything that is useful to get a full picture of what happened in the model during the simulation run.

Output vectors are recorded from simple modules, by cOutVector objects (see section [6.8.1]). Since output
vectors usually record a large amount of data, in omnetpp.ini you can disable vectors or specify a simulation
time interval for recording (see section [8.6.2]).

All cOutVector objects write to the same, common file. The following sections describe the format of the file, and
how to process it.

11.1.3 Format of output vector files

An output vector file contains several series of data produced during simulation. The file is textual, and it looks like
this:

net-1.vec

http://omnetpp.org/doc/omnetpp40/api/classcOutVector.html
http://omnetpp.org/doc/omnetpp40/api/classcOutVector.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

vector 1 "subnet[4].term[12]" "response time" TV
1 12.895 2355.66666666
1 14.126 4577.66664666
vector 2 "subnet[4].srvr" "queue length" TV
2 16.960 2.00000000000.63663666
1 23.086 2355.66666666
2 24.026 8.00000000000.44766536

There two types of lines: vector declaration lines (beginning with the word vector), and data lines. A vector
declaration line introduces a new output vector, and its columns are: vector Id, module of creation, name of
cOutVector object, and multiplicity (usually 1). Actual data recorded in this vector are on data lines which begin
with the vector Id. Further columns on data lines are the simulation time and the recorded value.

vector data clustering for efficiency

indexed access

how to configure the IndexVectorFileManager (?)

11.1.4 Scalar results

Scalar results are recorded with recordScalar() calls, usually from the finish() methods of modules.

Format of scalar files

The corresponding output scalar file (by default, omnetpp.sca) will look like this:

scalar "lan.hostA.mac" "frames sent" 99
scalar "lan.hostA.mac" "frames rcvd" 3088
scalar "lan.hostA.mac" "bytes sent" 64869
scalar "lan.hostA.mac" "bytes rcvd" 3529448
...

Every record() call generates one "scalar" line in the file. (If you record statistics objects (cStatictic
subclasses such as cStdDev) via their record() methods, they'll generate several lines: mean, standard
deviation, etc.) In addition, several simulation runs can record their results into a single file -- this facilitates
comparing them, creating x-y plots (offered load vs throughput-type diagrams), etc.

11.2 The Analysis Tool in the Simulation IDE

The Simulation IDE provides an Analysis Tool for analysis and visualization of simulation results. The Analysis Tool
lets you load several result files at once, and presents their contents somewhat like a database. You can browse
the results, select the particular data you are interested in (scalars, vectors, histograms), apply processing steps,
and create various charts or plots from them. Data selection, processing and charting steps can be freely
combined, resulting in a high degree of freedom. These steps are grouped into and stored as "recipes", which get
automatically re-applied when new result files are added or existing files are replaced. This automation spares the
user lots of repetitive manual work, without resorting to scripting.

The Analysis Tool is covered in detail in the User Guide.

11.3 Scave Tool

Much of the IDE Analysis Tool's functionality is available on the command line as well, via the scavetool
program. scavetool is suitable for filtering and basic processing of result files, and exporting the result in various
formats digestible for other tools. scavetool has no graphics capabilities, but it can be used to produce files that

http://omnetpp.org/doc/omnetpp40/api/classcOutVector.html
http://omnetpp.org/doc/omnetpp40/api/classcStdDev.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

can be directly plotted with other tools like gnuplot (see [11.4.6]).

When scavetool is invoked without arguments, it prints usage information:

scavetool <command> [options] <file>...

11.3.1 Filter command

The result files can be filtered and processed by this command and the result can be written into files as vector
files, CSV files, Matlab or Octave files.

The filter can be specified by the \itshape -p <filter> option. The filter is one or more \itshape
<fieldname>(<pattern>) expression connected with AND, OR and NOT operators. The possible field names are:

file: full path of the result file
run: run identifier
module: module name
name: vector name
attr:<runAttribute>: value of an attribute of the run (e.g. experiment)
param:<moduleParameter>: value of the parameter in the run

Processing operations can be applied to vectors by the \itshape -a <function>(<parameterlist>) option. You can list
the available functions and their parameters by the \itshape info command.

The name and format of the output file can be given by the \itshape -O <file> and \itshape -F <formatname>
options, where the formatname is one of:

vec: vector file (default)
csv: CSV file
octave: Octave text file
matlab: Matlab script file

Examples:

scavetool filter -p "queuing time" -a winavg(10) -O out.vec in.vec

Writes the window averaged queuing times stored in in.vec into out.vec.

scavetool filter -p "module(**.sink) AND
 (\"queueing time\" OR \"transmission time\")"
 -O out.csv -F csv in.vec

Writes the queing and transmission times of sink modules into CSV files. It generates a separate files for each
vector named out-1.csv, out-2.csv... The generated file contains a header and two columns:

time,"Queue.sink.queueing time"
2.231807576851,0
7.843802235089,0
15.797137536721,3.59449
21.730758362277,6.30398
[...]

11.3.2 Index command

If the index file was deleted or the vector file was modified, you need to rebuild the index file before running the
filter command.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Normally the vector data is written in blocks into the vector file. However if the vector file was generated by an older
version of the cOutputVectorManager it might not be so. In this case you have to specify the -r option to
rearrange the records of the vector file, otherwise the index file would be too big and the indexing inefficient.

11.3.3 Summary command

The summary command reports the list of statistics names, module names, run ids, configuration names in the
given files to the standard output.

11.4 Alternative statistical analysis and plotting tools

There are several programs and packages that can also be used to analyse result files, and create various plots
and charts from them.

11.4.1 Spreadsheet programs

One straightforward solution is to use spreadsheets such as OpenOffice Calc, Microsoft Excel, Gnumeric or
KSpread. Data can be imported from csv or other formats, exported with scavetool (see [11.3]).

Spreadsheets have good charting and statistical features. A useful functionality spreadsheets offer for analysing
scalar files is PivotTable (Excel) or DataPilot (OpenOffice). The drawback of using spreadsheets is limited
automation, leading to tedious and repetitive tasks; also, the number of rows is usually limited to about
32,000..64,000, that can be painful when working with large vector files.

11.4.2 GNU R

R is a free software environment for statistical computing and graphics. R has an excellent programming language
and powerful plotting capabilities, and it is supported on all major operating systems and platforms.

R is widely used for statistical software development and data analysis. The program uses a command line
interface, though several graphical user interfaces are available.

Several OMNeT++-related packages such as SimProcTC and Syntony already use R for data analysis and plotting.
In the future, OMNeT++ is going to be extended with features that further facilitate using it with R.

11.4.3 MATLAB or Octave

MATLAB is a commercial numerical computing environment and programming language. MATLAB allows easy
matrix manipulation, plotting of functions and data, implementation of algorithms, creation of user interfaces, and
interfacing with programs in other languages.

Octave is an open-source Matlab-like package, available on nearly all platforms. Currently Octave relies on Gnuplot
for plotting, and has more limited graphics capabilities than GNU R or MATLAB.

11.4.4 NumPy and MatPlotLib

MatPlotlib is a plotting library for the Python programming language and its NumPy numerical mathematics
extension. It provides a "pylab" API designed to closely resemble that of MATLAB, thereby making it easy to learn
for experienced MATLAB users. Matplotlib is distributed under a BSD-style license.

11.4.5 ROOT

http://omnetpp.org/doc/omnetpp40/api/classcOutputVectorManager.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

ROOT is a powerful object-oriented data analysis framework, with strong support for plotting and graphics in
general. ROOT was developed at CERN, and is distributed under a BSD-like license.

ROOT is based on CINT, a ``C/C++ interpreter'' aimed at processing C/C++ scripts. It is probably harder to get
started using ROOT than with either Gnuplot or Grace, but if you are serious about analysing simulation results,
you will find that ROOT provides power and flexibility that would be unattainable the other two programs.

Curt Brune's page at Stanford (http://www.slac.stanford.edu/~curt/omnet++/) shows examples what you can
achieve using ROOT with OMNeT++.

11.4.6 Gnuplot

Gnuplot is a very popular command-line program that can generate two- and three-dimensional plots of functions
and data. The program runs on all major platforms, and it is well supported.

Gnuplot has an interactive command interface. For example, if you have the data files foo.csv and bar.csv that
contain two values per line (x y; such files can be exported with scavetool from vector files), you can plot them in
the same graph by typing:

plot "foo.csv" with lines, "bar.csv" with lines

To adjust the y range, you would type:

set yrange [0:1.2]
replot

Several commands are available to adjust ranges, plotting style, labels, scaling etc. On Windows, you can copy the
resulting graph to the clipboard from the Gnuplot window's system menu, then insert it into the application you are
working with.

11.4.7 Grace

Grace (also known as xmgrace, a successor of ACE/gr or Xmgr) is a powerful GPL data visualization program with
a menu-and-dialog graphical user interface for X and Motif. It has also been ported to Windows.

Grace can export graphics in various raster and vector formats, and has many useful features like built-in statistics
and analysis functions (e.g. correlation, histogram), fitting, splines, etc., and it also has a built-in programming
language.

12 Eventlog

12.1 Introduction

The eventlog feature and the related tools are completely new in OMNeT++ 4.0. They aim to help understanding
complex simulation models and to help correctly implementing the desired component behaviors. Using these tools
you will be able to easily examine every minute detail of the simulation back and forth in terms of simulation time or
step-by-step focusing on the behavior instead of the statistical results of your model.

The eventlog file is created automatically during a simulation run upon explicit request configurable in the ini file.
The resulting file can be viewed in the OMNeT++ IDE using the Sequence Chart and the Eventlog Table or can be

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

processed by the command line Eventlog Tool. These tools support filtering the collected data to show you only the
relevant parts focusing on what you are looking for. They allow examining causality relationships and provide
filtering based on simulation times, event numbers, modules and messages.

The simulation kernel records into the eventlog among others: user level messages, creation and deletion of
modules, gates and connections, scheduling of self messages, sending of messages to other modules either
through gates or directly and processing of messages (that is events). Optionally detailed message data can also
be automatically recorded based on a message filter. The result is an eventlog file which contains detailed
information of the simulation run and later can be used for various purposes.

NOTE
The eventlog file may become quite large for long running simulations (often hundreds of megabytes, but
occasionally several gigabytes), because it contains a lot of information about the run, especially when
message detail recording is turned on.

12.2 Configuration

To record an eventlog file during the simulation, simply insert the following line into the ini file.

record-eventlog = true

NOTE
Since writing an eventlog file might significantly decrease overall simulation performance therefore eventlog
recording is turned off by default.

12.2.1 File Name

The simulation kernel will write the eventlog file during the simulation into the file specified by the following ini file
configuration entry (showing the default file name pattern here):

eventlog-file = ${resultdir}/${configname}-${runnumber}.elog

12.2.2 Recording Intervals

The size of an eventlog file is approximately proportional to the number of events it contains. To reduce the file size
and speed up the simulation it might be useful to record only certain events. The following ini file configuration entry
instructs the kernel to record events with simulation time less than 10.2, between 22.2 and 100 and greater than
233.3.

eventlog-recording-intervals = ..10.2, 22.2..100, 233.3..

12.2.3 Recording Modules

Another factor that affects the size of an eventlog file is the number of modules for which the simulation kernel
records events during the simulation. The following ini file configuration entry instructs the kernel to record only the
events that occurred in any of the routers having index between 10 and 20 while turns off recording for all other
modules. This configuration key makes sense only for simple modules.

.router[10..20]..module-eventlog-recording = true
**.module-eventlog-recording = false

12.2.4 Recording Message Data

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Since recording message data dramatically increases the size of the eventlog file and additionally slows down the
simulation therefore it is turned off by default even if writing the eventlog is enabled. To turn on message data
recording enter a value for the following configuration key in the ini file:

eventlog-message-detail-pattern

An example configuration for an IEEE 80211 model that records the field encapsulationMsg and all other fields
which name ends with Address from messages which class name ends with Frame looks like this:

eventlog-message-detail-pattern = *Frame:encapsulatedMsg,*Address

An example configuration for a TCP/IP model that records the port and address fields in all network packets looks
like the following:

eventlog-message-detail-pattern =
 PPPFrame:encapsulatedMsg|IPDatagram:encapsulatedMsg,*Address|TCPSegment:*Port

NOTE
Take care about long running simulations because they might output eventlog files of several Gbytes and
thus fail due to insufficient disk space.

12.3 Eventlog Tool

The Eventlog Tool is a command line tool to process eventlog files. Invoking it without parameters will display usage
information such as available commands and options. The following are the most useful commands for users.

12.3.1 Filter

The eventlog tool provides off line filtering that is usually applied to the eventlog file after the simulation has been
finished and before actually opening it in the OMNeT++ IDE or processing it by any other means. Use the filter
command and its various options to specify what should be present in the result file.

12.3.2 Echo

Since the eventlog file format is text based and users are encouraged to implement their own filters therefore there
needs to be a way to check whether an eventlog file is correct. The echo command provides a way to check this
and help users creating custom filters. Anything not echoed back by the eventlog tool will not be taken into
consideration by the other tools found in the OMNeT++ IDE.

NOTE
Custom filter tools should filter out whole events only otherwise the consequences are undefined.

13 Documenting NED and Messages

13.1 Overview

OMNeT++ provides a tool which can generate HTML documentation from NED files and message definitions. Like
Javadoc and Doxygen, the NED documentation tool makes use of source code comments. The generated HTML
documentation lists all modules, channels, messages, etc., and presents their details including description, gates,

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

parameters, unassigned submodule parameters and syntax-highlighted source code. The documentation also
includes clickable network diagrams (exported from the graphical editor) and usage diagrams as well as inheritance
diagrams.

The documentation tool integrates with Doxygen, meaning that it can hyperlink simple modules and message
classes to their C++ implementation classes in the Doxygen documentation. If you also generate the C++
documentation with some Doxygen features turned on (such as inline-sources and referenced-by-relation,
combined with extract-all, extract-private and extract-static), the result is an easily browsable and very informative
presentation of the source code. Of course, one still has to write documentation comments in the code.

In the 4.0 version, the documentation tool is part of the Eclipse-based simulation IDE.

13.2 Documentation comments

Documentation is embedded in normal comments. All // comments that are in the ``right place'' (from the
documentation tool's point of view) will be included in the generated documentation.

[In contrast, Javadoc and Doxygen use special comments (those beginning with /**, ///, //< or a similar marker) to
distinguish documentation from ``normal'' comments in the source code. In OMNeT++ there's no need for that: NED and the
message syntax is so compact that practically all comments one would want to write in them can serve documentation
purposes.]

Example:

//
// An ad-hoc traffic generator to test the Ethernet models.
//
simple Gen
{
 parameters:
 string destAddress; // destination MAC address
 int protocolId; // value for SSAP/DSAP in Ethernet frame
 double waitMean @unit(s); // mean for exponential interarrival times
 gates:
 output out; // to Ethernet LLC
}

You can also place comments above parameters and gates. This is useful if they need long explanations. Example:

//
// Deletes packets and optionally keeps statistics.
//
simple Sink
{
 parameters:
 // You can turn statistics generation on and off. This is
 // a very long comment because it has to be described what
 // statistics are collected (or not).
 bool collectStatistics = default(true);
 gates:
 input in;
}

13.2.1 Private comments

If you want a comment line not to appear in the documentation, begin it with //#. Those lines will be ignored by the
documentation tool, and can be used to make ``private'' comments like FIXME or TODO, or to comment out unused
code.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

//
// An ad-hoc traffic generator to test the Ethernet models.
//# TODO above description needs to be refined
//
simple Gen
{
 parameters:
 string destAddress; // destination MAC address
 int protocolId; // value for SSAP/DSAP in Ethernet frame
 //# double burstiness; -- not yet supported
 double waitMean @unit(s); // mean for exponential interarrival times
 gates:
 output out; // to Ethernet LLC
}

13.2.2 More on comment placement

Comments should be written where nedtool will find them. This is a) immediately above the documented item, or b)
after the documented item, on the same line.

In the former case, make sure there's no blank line left between the comment and the documented item. Blank lines
detach the comment from the documented item.

Example:

// This is wrong! Because of the blank line, this comment is not
// associated with the following simple module!

simple Gen
{
 ...
}

Do not try to comment groups of parameters together. The result will be awkward.

13.3 Text layout and formatting

13.3.1 Paragraphs and lists

If you write longer descriptions, you'll need text formatting capabilities. Text formatting works like in Javadoc or
Doxygen -- you can break up the text into paragraphs and create bulleted/numbered lists without special
commands, and use HTML for more fancy formatting.

Paragraphs are separated by empty lines, like in LaTeX or Doxygen. Lines beginning with `- ' will be turned into
bulleted lists, and lines beginning with `-# ' into numbered lists.

Example:

//
// Ethernet MAC layer. MAC performs transmission and reception of frames.
//
// Processing of frames received from higher layers:
// - sends out frame to the network
// - no encapsulation of frames -- this is done by higher layers.
// - can send PAUSE message if requested by higher layers (PAUSE protocol,
// used in switches). PAUSE is not implemented yet.
//
// Supported frame types:
// -# IEEE 802.3
// -# Ethernet-II

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

//

13.3.2 Special tags

The documentation tool understands the following tags and will render them accordingly: @author, @date,
@todo, @bug, @see, @since, @warning, @version. Example usage:

//
// @author Jack Foo
// @date 2005-02-11
//

13.3.3 Text formatting using HTML

Common HTML tags are understood as formatting commands. The most useful tags are: <i>..</i> (italic),
.. (bold), <tt>..</tt> (typewriter font), _{..} (subscript), ^{..} (superscript),

 (line break), <h3> (heading), <pre>..</pre> (preformatted text) and .. (link), as well
as a few other tags used for table creation (see below). For example, <i>Hello</i> will be rendered as ``Hello''
(using an italic font).

The complete list of HTML tags interpreted by the documentation tool are: <a>, , <body>,
, <center>,
<caption>, <code>, <dd>, <dfn>, <dl>, <dt>, , <form>, , <hr>, <h1>, <h2>, <h3>, <i>,
<input>, , , <meta>, <multicol>, , <p>, <small>, , , <sub>, <sup>,
<table>, <td>, <th>, <tr>, <tt>, <kbd>, , <var>.

Any tags not in the above list will not be interpreted as formatting commands but will be printed verbatim -- for
example, <what>bar</what> will be rendered literally as ``<what>bar</what>'' (unlike HTML where unknown tags
are simply ignored, i.e. HTML would display ``bar'').

If you insert links to external pages (web sites), its useful to add the target="_blank" attribute to ensure pages
come up in a new browser window and not just in the current frame which looks awkward. (Alternatively, you can
use the target="_top" attribute which replaces all frames in the current browser).

Examples:

//
// For more info on Ethernet and other LAN standards, see the
// IEEE 802
// Committee's site.
//

You can also use the tag to create links within the page:

//
// See the resources in this page.
// ...
// Resources
// ...
//

You can use the <pre>..</pre> HTML tag to insert source code examples into the documentation. Line breaks
and indentation will be preserved, but HTML tags continue to be interpreted (or you can turn them off with
<nohtml>, see later).

Example:

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

// <pre>
// // my preferred way of indentation in C/C++ is this:
// for (int i=0; i<10; i++)
// {
// printf(<i>"%d\n"</i>, i);
// }
// </pre>

will be rendered as

// my preferred way of indentation in C/C++ is this:
for (int i=0; i<10; i++)
{
 printf("%d\n", i);
}

HTML is also the way to create tables. The example below

//
// <table border="1">
// <tr> <th>#</th> <th>number</th> </tr>
// <tr> <td>1</td> <td>one</td> </tr>
// <tr> <td>2</td> <td>two</td> </tr>
// <tr> <td>3</td> <td>three</td> </tr>
// </table>
//

will be rendered approximately as:

number

1 one

2 two

3 three

13.3.4 Escaping HTML tags

Sometimes may need to off interpreting HTML tags (<i>, , etc.) as formatting instructions, and rather you want
them to appear as literal <i>, texts in the documentation. You can achieve this via surrounding the text with
the <nohtml>...</nohtml> tag. For example,

// Use the <nohtml><i></nohtml> tag (like <tt><nohtml><i>this</i></nohtml><tt>)
// to write in <i>italic</i>.

will be rendered as ``Use the <i> tag (like <i>this</i>) to write in italic.''

<nohtml>...</nohtml> will also prevent opp_neddoc from hyperlinking words that are accidentally the same as
an existing module or message name. Prefixing the word with a backslash will achieve the same. That is, either of
the following will do:

// In <nohtml>IP</nohtml> networks, routing is...

// In \IP networks, routing is...

Both will prevent hyperlinking the word IP if you happen to have an IP module in the NED files.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

13.4 Customizing and adding pages

13.4.1 Adding a custom title page

The title page is the one that appears in the main frame after opening the documentation in the browser. By default
it contains a boilerplate text with the generic title ``OMNeT++ Model Documentation''. You probably want to
customize that, and at least change the title to the name of the documented simulation model.

You can supply your own version of the title page adding a @titlepage directive to a file-level comment (a
comment that appears at the top of a NED file, but is separated from the first import, channel, module, etc.
definition by at least one blank line). In theory you can place your title page definition into any NED or MSG file, but
it is probably a good idea to create a separate index.ned file for it.

The lines you write after the @titlepage line up to the next @page line (see later) or the end of the comment will
be used as the title page. You probably want to begin with a title because the documentation tool doesn't add one
(it lets you have full control over the page contents). You can use the <h1>..</h1> HTML tag to define a title.

Example:

//
// @titlepage
// <h1>Ethernet Model Documentation</h1>
//
// This documents the Ethernet model created by David Wu and refined by Andras
// Varga at CTIE, Monash University, Melbourne, Australia.
//

13.4.2 Adding extra pages

You can add new pages to the documentation in a similar way as customizing the title page. The directive to be
used is @page, and it can appear in any file-level comment (see above).

The syntax of the @page directive is the following:

// @page filename.html, Title of the Page

Please choose a file name that doesn't collide with the files generated by the documentation tool (such as
index.html). The page title you supply will appear on the top of the page as well as in the page index.

The lines after the @page line up to the next @page line or the end of the comment will be used as the page body.
You don't need to add a title because the documentation tool automatically adds one.

Example:

//
// @page structure.html, Directory Structure
//
// The model core model files and the examples have been placed
// into different directories. The <tt>examples/</tt> directory...
//
//
// @page examples.html, Examples
// ...
//

You can create links to the generated pages using standard HTML, using the ... tag. All
HTML files are placed in a single directory, so you don't have to worry about specifying directories.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Example:

//
// @titlepage
// ...
// The structure of the model is described here.
//

13.4.3 Incorporating externally created pages

You may want to create pages outside the documentation tool (e.g. using a HTML editor) and include them in the
documentation. This is possible, all you have to do is declare such pages with the @externalpage directive in any
of the NED files, and they will be added to the page index. The pages can then be linked to from other pages using
the HTML ... tag.

The @externalpage directive is similar in syntax to @page:

// @externalpage filename.html, Title of the Page

The documentation tool does not check if the page exists or not. It is your responsibility to copy it manually into the
directory of the generated documentation, and to make sure the hyperlink works.

14 Parallel Distributed Simulation

14.1 Introduction to Parallel Discrete Event Simulation

OMNeT++ supports parallel execution of large simulations. The following paragraphs provide a brief picture of the
problems and methods of parallel discrete event simulation (PDES). Interested readers are strongly encouraged to
look into the literature.

For parallel execution, the model is to be partitioned into several LPs (logical processes) that will be simulated
independently on different hosts or processors. Each LP will have its own local Future Event Set, thus they will
maintain their own local simulation times. The main issue with parallel simulations is keeping LPs synchronized in
order to avoid violating the causality of events. Without synchronization, a message sent by one LP could arrive in
another LP when the simulation time in the receiving LP has already passed the timestamp (arrival time) of the
message. This would break causality of events in the receiving LP.

There are two broad categories of parallel simulation algorithms that differ in the way they handle causality
problems outlined above:

1. Conservative algorithms prevents incausalities from happening. The Null Message Algorithm exploits
knowledge of the time when LPs send messages to other LPs, and uses `null' messages to propagate this
information to other LPs. If an LP knows it won't receive any messages from other LPs until t+Δ t simulation
time, it may advance until t+Δ t without the need for external synchronization. Conservative simulation tends
to converge to sequential simulation (slowed down by communication between LPs) if there's not enough
parallelism in the model, or parallelism is not exploited by sending a sufficient number of `null' messages.

2. Optimistic synchronization allows incausalities to occur, but detects and repairs them. Repairing involves
rollbacks to a previous state, sending out anti-messages to cancel messages sent out during the period that
is being rolled back, etc. Optimistic synchronization is extremely difficult to implement, because it requires
periodic state saving and the ability to restore previous states. In any case, implementing optimistic

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

synchronization in OMNeT++ would require -- in addition to a more complicated simulation kernel -- writing
significantly more complex simple module code from the user. Optimistic synchronization may be slow in
cases of excessive rollbacks.

14.2 Assessing available parallelism in a simulation model

OMNeT++ currently supports conservative synchronization via the classic Chandy-Misra-Bryant (or null message)
algorithm [chandymisra79]. To assess how efficiently a simulation can be parallelized with this algorithm, we'll need
the following variables:

P performance represents the number of events processed per second (ev/sec).
[Notations: ev: events, sec: real seconds, simsec: simulated seconds]

P depends on the performance of the hardware and the computation-intensiveness of processing an event. P
is independent of the size of the model. Depending on the nature of the simulation model and the
performance of the computer, P is usually in the range of 20,000..500,000 ev/sec.
E event density is the number of events that occur per simulated second (ev/simsec). E depends on the
model only, and not where the model is executed. E is determined by the size, the detail level and also the
nature of the simulated system (e.g. cell-level ATM models produce higher E values than call center
simulations.)
R relative speed measures the simulation time advancement per second (simsec/sec). R strongly depends on
both the model and on the software/hardware environment where the model executes. Note that R = P/E.
L lookahead is measured in simulated seconds (simsec). When simulating telecommunication networks and
using link delays as lookahead, L is typically in the msimsec-μsimsec range.
τ latency (sec) characterizes the parallel simulation hardware. τ is the latency of sending a message from one
LP to another. τ can be determined using simple benchmark programs. The authors' measurements on a
Linux cluster interconnected via a 100Mb Ethernet switch using MPI yielded τ=22μs which is consistent with
measurements reported in [ongfarrell2000]. Specialized hardware such as Quadrics Interconnect [quadrics]
can provide τ=5μs or better.

In large simulation models, P, E and R usually stay relatively constant (that is, display little fluctuations in time).
They are also intuitive and easy to measure. The OMNeT++ displays these values on the GUI while the simulation
is running, see Figure below. Cmdenv can also be configured to display these values.

Figure: Performance bar in OMNeT++ showing P, R and E

After having approximate values of P, E, L and τ, calculate the λ coupling factor as the ratio of LE and τ P:

λ = (LE) / (τ P)

Without going into the details: if the resulting λ value is at minimum larger than one, but rather in the range 10..100,
there is a good change that the simulation will perform well when run in parallel. With λ < 1, poor performance is
guaranteed. For details see the paper [ParsimCrit03].

14.3 Parallel distributed simulation support in OMNeT++

14.3.1 Overview

This chapter presents the parallel simulation architecture of OMNeT++. The design allows simulation models to be
run in parallel without code modification -- it only requires configuration. The implementation relies on the approach
of placeholder modules and proxy gates to instantiate the model on different LPs -- the placeholder approach allows
simulation techniques such as topology discovery and direct message sending to work unmodified with PDES. The
architecture is modular and extensible, so it can serve as a framework for research on parallel simulation.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

The OMNeT++ design places a big emphasis on separation of models from experiments. The main rationale is that
usually a large number of simulation experiments need to be done on a single model before a conclusion can be
drawn about the real system. Experiments tend to be ad-hoc and change much faster than simulation models, thus
it is a natural requirement to be able to carry out experiments without disturbing the simulation model itself.

Following the above principle, OMNeT++ allows simulation models to be executed in parallel without modification.
No special instrumentation of the source code or the topology description is needed, as partitioning and other
PDES configuration is entirely described in the configuration files.

OMNeT++ supports the Null Message Algorithm with static topologies, using link delays as lookahead. The laziness
of null message sending can be tuned. Also supported is the Ideal Simulation Protocol (ISP) introduced by
Bagrodia in 2000 [bagrodia00]. ISP is a powerful research vehicle to measure the efficiency of PDES algorithms,
both optimistic and conservative; more precisely, it helps determine the maximum speedup achievable by any
PDES algorithm for a particular model and simulation environment. In OMNeT++, ISP can be used for
benchmarking the performance of the Null Message Algorithm. Additionally, models can be executed without any
synchronization, which can be useful for educational purposes (to demonstrate the need for synchronization) or for
simple testing.

For the communication between LPs (logical processes), OMNeT++ primarily uses MPI, the Message Passing
Interface standard [mpiforum94]. An alternative communication mechanism is based on named pipes, for use on
shared memory multiprocessors without the need to install MPI. Additionally, a file system based communication
mechanism is also available. It communicates via text files created in a shared directory, and can be useful for
educational purposes (to analyse or demonstrate messaging in PDES algorithms) or to debug PDES algorithms.
Implementation of a shared memory-based communication mechanism is also planned for the future, to fully exploit
the power of multiprocessors without the overhead of and the need to install MPI.

Nearly every model can be run in parallel. The constraints are the following:

modules may communicate via sending messages only (no direct method call or member access) unless
mapped to the same processor
no global variables
there are some limitations on direct sending (no sending to a submodule of another module, unless mapped
to the same processor)
lookahead must be present in the form of link delays
currently static topologies are supported (we are working on a research project that aims to eliminate this
limitation)

PDES support in OMNeT++ follows a modular and extensible architecture. New communication mechanisms can
be added by implementing a compact API (expressed as a C++ class) and registering the implementation -- after
that, the new communications mechanism can be selected for use in the configuration.

New PDES synchronization algorithms can be added in a similar way. PDES algorithms are also represented by
C++ classes that have to implement a very small API to integrate with the simulation kernel. Setting up the model
on various LPs as well as relaying model messages across LPs is already taken care of and not something the
implementation of the synchronization algorithm needs to worry about (although it can intervene if needed, because
the necessary hooks are provided).

The implementation of the Null Message Algorithm is also modular in itself in that the lookahead discovery can be
plugged in via a defined API. Currently implemented lookahead discovery uses link delays, but it is possible to
implement more sophisticated ones and select them in the configuration.

14.3.2 Parallel Simulation Example

We will use the Parallel CQN example simulation for demonstrating the PDES capabilities of OMNeT++. The model
consists of N tandem queues where each tandem consists of a switch and k single-server queues with exponential

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

service times (Figure below). The last queues are looped back to their switches. Each switch randomly chooses the
first queue of one of the tandems as destination, using uniform distribution. The queues and switches are
connected with links that have nonzero propagation delays. Our OMNeT++ model for CQN wraps tandems into
compound modules.

Figure: The Closed Queueing Network (CQN) model

To run the model in parallel, we assign tandems to different LPs (Figure below). Lookahead is provided by delays
on the marked links.

Figure: Partitioning the CQN model

To run the CQN model in parallel, we have to configure it for parallel execution. In OMNeT++, the configuration is in
a text file called omnetpp.ini. For configuration, first we have to specify partitioning, that is, assign modules to
processors. This is done by the following lines:

[General]
*.tandemQueue[0]**.partition-id = 0
*.tandemQueue[1]**.partition-id = 1
*.tandemQueue[2]**.partition-id = 2

The numbers after the equal sign identify the LP.

Then we have to select the communication library and the parallel simulation algorithm, and enable parallel
simulation:

[General]
parallel-simulation = true
parsim-communications-class = "cMPICommunications"
parsim-synchronization-class = "cNullMessageProtocol"

When the parallel simulation is run, LPs are represented by multiple running instances of the same program. When
using LAM-MPI [lammpi], the mpirun program (part of LAM-MPI) is used to launch the program on the desired
processors. When named pipes or file communications is selected, the opp_prun OMNeT++ utility can be used to
start the processes. Alternatively, one can run the processes by hand (the -p flag tells OMNeT++ the index of the
given LP and the total number of LPs):

./cqn -p0,3 &

./cqn -p1,3 &

./cqn -p2,3 &

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

For PDES, one will usually want to select the command-line user interface, and redirect the output to files.
(OMNeT++ provides the necessary configuration options.)

The graphical user interface of OMNeT++ can also be used (as evidenced by Figure below), independent of the
selected communication mechanism. The GUI interface can be useful for educational or demonstration purposes.
OMNeT++ displays debugging output about the Null Message Algorithm, EITs and EOTs can be inspected, etc.

Figure: Screenshot of CQN running in three LPs

14.3.3 Placeholder modules, proxy gates

When setting up a model partitioned to several LPs, OMNeT++ uses placeholder modules and proxy gates. In the
local LP, placeholders represent sibling submodules that are instantiated on other LPs. With placeholder modules,
every module has all of its siblings present in the local LP -- either as placeholder or as the ``real thing''. Proxy
gates take care of forwarding messages to the LP where the module is instantiated (see Figure below).

The main advantage of using placeholders is that algorithms such as topology discovery embedded in the model
can be used with PDES unmodified. Also, modules can use direct message sending to any sibling module,
including placeholders. This is so because the destination of direct message sending is an input gate of the
destination module -- if the destination module is a placeholder, the input gate will be a proxy gate which
transparently forwards the messages to the LP where the ``real'' module was instantiated. A limitation is that the
destination of direct message sending cannot be a submodule of a sibling (which is probably a bad practice
anyway, as it violates encapsulation), simply because placeholders are empty and so its submodules are not
present in the local LP.

Instantiation of compound modules is slightly more complicated. Since submodules can be on different LPs, the
compound module may not be ``fully present'' on any given LP, and it may have to be present on several LPs
(wherever it has submodules instantiated). Thus, compound modules are instantiated wherever they have at least
one submodule instantiated, and are represented by placeholders everywhere else (Figure below).

Figure: Placeholder modules and proxy gates

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Figure: Instantiating compound modules

14.3.4 Configuration

Parallel simulation configuration is the [General] section of omnetpp.ini.

The parallel distributed simulation feature can be turned on with the parallel-simulation boolean option.

The parsim-communications-class selects the class that implements communication between partitions. The
class must implement the cParsimCommunications interface.

The parsim-synchronization-class selects the parallel simulation algorithm. The class must implement the
cParsimSynchronizer interface.

The following two options configure the Null Message Algorithm, so they are only effective if
cNullMessageProtocol has been selected as synchronization class:

parsim-nullmessageprotocol-lookahead-class selects the lookahead class for the NMA; the class
must be subclassed from cNMPLookahead. The default class is cLinkDelayLookahead.

parsim-nullmessageprotocol-laziness expects a number in the (0,1) interval (the default is 0.5), and
it ontrols how often NMA should send out null messages; the value is understood in proportion to the
lookahead, e.g. 0.5 means every lookahead/2 simsec.

The parsim-debug boolean option enables/disables printing log messages about the parallel simulation
algorithm. It is turned on by default, but for production runs we recommend turning it off.

Other configuration options configure MPI buffer sizes and other details; see options that begin with parsim- in
Appendix [23].

When you are using cross-mounted home directories (the simulation's directory is on a disk mounted on all nodes
of the cluster), a useful configuration setting is

[General]
fname-append-host = true

It will cause the host names to be appended to the names of all output vector files, so that partitions do not
overwrite each other's output files. (See section [9.5.3])

14.3.5 Design of PDES Support in OMNeT++

Design of PDES support in OMNeT++ follows a layered approach, with a modular and extensible architecture. The
overall architecture is depicted in Figure below.

http://omnetpp.org/doc/omnetpp40/api/classcParsimCommunications.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Figure: Architecture of OMNeT++ PDES implementation

The parallel simulation subsytem is an optional component itself, which can be removed from the simulation kernel
if not needed. It consists of three layers, from the bottom up: Communications Layer, Partitioning Layer and
Synchronization Layer.

The Communications Layer

The purpose of the Communications Layer is to provide elementary messaging services between partitions for the
upper layer. The services include send, blocking receive, nonblocking receive and broadcast. The send/receive
operations work with buffers, which encapsulate packing and unpacking operations for primitive C++ types. The
message class and other classes in the simulation library can pack and unpack themselves into such buffers. The
Communications layer API is defined in the cParsimCommunications interface (abstract class); specific
implementations like the MPI one (cMPICommunications) subclass from this, and encapsulate MPI send/receive
calls. The matching buffer class cMPICommBuffer encapsulates MPI pack/unpack operations.

The Partitioning Layer

The Partitioning Layer is responsible for instantiating modules on different LPs according to the partitioning
specified in the configuration, for configuring proxy gates. During the simulation, this layer also ensures that cross-
partition simulation messages reach their destinations. It intercepts messages that arrive at proxy gates and
transmits them to the destination LP using the services of the Communications Layer. The receiving LP unpacks the
message and injects it at the gate the proxy gate points at. The implementation basically encapsulates the
cParsimSegment, cPlaceholderModule, cProxyGate classes.

The Synchronization Layer

The Synchronization Layer encapsulates the parallel simulation algorithm. Parallel simulation algorithms are also
represented by classes, subclassed from the cParsimSynchronizer abstract class. The parallel simulation
algorithm is invoked on the following hooks: event scheduling, processing model messages outgoing from the LP,
and messages (model messages or internal messages) arriving from other LPs. The first hook, event scheduling is
a function invoked by the simulation kernel to determine the next simulation event; it also has full access to the
future event set (FES) and can add/remove events for its own use. Conservative parallel simulation algorithms will
use this hook to block the simulation if the next event is unsafe, e.g. the null message algorithm implementation
(cNullMessageProtocol) blocks the simulation if an EIT has been reached until a null message arrives (see
[bagrodia00] for terminology); also it uses this hook to periodically send null messages. The second hook is
invoked when a model message is sent to another LP; the null message algorithm uses this hook to piggyback null
messages on outgoing model messages. The third hook is invoked when any message arrives from other LPs, and
it allows the parallel simulation algorithm to process its own internal messages from other partitions; the null
message algorithm processes incoming null messages here.

The Null Message Protocol implementation itself is modular, it employs a separate, configurable lookahead
discovery object. Currently only link delay based lookahead discovery has been implemented, but it is possible to
implement more sophisticated ones.

The Ideal Simulation Protocol (ISP; see [bagrodia00]) implementation consists in fact of two parallel simulation

http://omnetpp.org/doc/omnetpp40/api/classcParsimCommunications.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

protocol implementations: the first one is based on the null message algorithm and additionally records the external
events (events received from other LPs) to a trace file; the second one executes the simulation using the trace file
to find out which events are safe and which are not.

Note that although we implemented a conservative protocol, the provided API itself would allow implementing
optimistic protocols, too. The parallel simulation algorithm has access to the executing simulation model, so it could
perform saving/restoring model state if model objects support this

[Unfortunately, support for state saving/restoration needs to be individually and manually added to each class in the
simulation, including user-programmed simple modules.]

.

We also expect that because of the modularity, extensibility and clean internal architecture of the parallel simulation
subsystem, the OMNeT++ framework has the potential to become a preferred platform for PDES research.

15 Plug-in Extensions

15.1 Overview

OMNeT++ is an open system, and several details of its operation can be customized via plug-ins. To create a plug-
in, you generally need to write a C++ class that implements a certain interface (i.e. subclasses from a C++ abstract
class), and register it in OMNeT++. The plug-in class can be activated for a particular simulation with a
corresponding configuration option.

The following plug-in interfaces are supported:

cRNG. Interface for random number generators.
cScheduler. The scheduler class. This plug-in interface allows for implementing real-time, hardware-in-the-
loop, distributed and distributed parallel simulation.
cConfigurationEx. Configuration provider plug-in. This plug-in interface lets you replace omnetpp.ini
with some other implementation, for example a database.
cOutputScalarManager. It handles recording the scalar output data. The default output scalar manager is
cFileOutputScalarManager, defined in the Envir library.
cOutputVectorManager. It handles recording the output from cOutVector objects. The default output
vector manager is cIndexedFileOutputVectorManager, defined in the Envir library.
cSnapshotManager. It provides an output stream to which snapshots are written (see section [6.9.5]). The
default snapshot manager is cFileSnapshotManager, defined in the Envir library.

The classes (cRNG, cScheduler, etc.) are documented in the API Reference.

To actually implement and select a plug-in for use:

1. Subclass the given interface class (e.g. for a custom RNG, cRNG) to create your own version.
2. Register the class by putting the Register_Class(MyRNGClass) line into the C++ source.
3. Compile and link your interface class into the OMNeT++ simulation executable. IMPORTANT: make sure the

executable actually contains the code of your class! Over-optimizing linkers (esp. on Unix) tend to leave out
code to which there seem to be no external reference.

4. Add an entry to omnetpp.ini to tell Envir use your class instead of the default one. For RNGs, this setting
is rng-class in the [General] section.

http://omnetpp.org/doc/omnetpp40/api/classcRNG.html
http://omnetpp.org/doc/omnetpp40/api/classcScheduler.html
http://omnetpp.org/doc/omnetpp40/api/classcConfigurationEx.html
http://omnetpp.org/doc/omnetpp40/api/classcOutputScalarManager.html
http://omnetpp.org/doc/omnetpp40/api/classcOutputVectorManager.html
http://omnetpp.org/doc/omnetpp40/api/classcOutVector.html
http://omnetpp.org/doc/omnetpp40/api/classcSnapshotManager.html
http://omnetpp.org/doc/omnetpp40/api/classcRNG.html
http://omnetpp.org/doc/omnetpp40/api/classcScheduler.html
http://omnetpp.org/doc/omnetpp40/api/classcRNG.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

15.2 Plug-in descriptions

15.2.1 Defining a new random number generator

The new RNG C++ class must implement the cRNG interface, and can be activated with the rng-class
configuration option.

15.2.2 Defining a new scheduler

The scheduler plug-in interface allows for implementing real-time, hardware-in-the-loop, distributed and distributed
parallel simulation. The scheduler C++ class must implement the cScheduler interface, and can be activated with
the scheduler-class configuration option.

To see examples of scheduler classes, check the cRealTimeScheduler class in the simulation kernel, and
cSocketRTScheduler which is part of the Sockets sample simulation.

15.2.3 Defining a new configuration provider

Overview

The configuration provider plug-in lets you replace ini files with some other storage implementation, for example a
database. The configuration provider C++ class must implement the cConfigurationEx interface, and can be
activated with the configuration-class configuration option.

The cConfigurationEx interface abstracts the inifile-based data model a little. It assumes that the configuration
data consists of several named configurations. Before every simulation run, one of the named configurations get
activated, and from then on, all queries into the configuration operate on the active named configuration only.

It practice, you'll probably use the SectionBasedConfiguration class (in src/envir) or subclass from it,
because it already implements a lot of functionality that otherwise you would have to.

SectionBasedConfiguration does not assume ini files or any other particular storage format; instead, it
accepts an object that implements the cConfigurationReader interface to provides the data in raw form to it.
The default implementation of cConfigurationReader is InifileReader.

The startup sequence

From the configuration plug-in's point of view, the startup sequence looks like the following (see
src/sim/bootenv.cc in the source code):

1. First, ini files specified on the command-line are read into a boot-time configuration object. The boot-time
configuration is always a SectionBasedConfiguration with InifileReader.

2. Shared libraries get loaded (see the -l command-line option, and the load-libs configuration option).
This allows configuration classes to come from shared libraries.

3. The configuration-class configuration option is examined. If it is present, a configuration object of the
given class is instantiated, and replaces the boot-time configuration. The new configuration object is initialized
from the boot-time configuration, so that it can read parameters (e.g. database connection parameters, XML
file name, etc) from it. Then the boot-time configuration object is deallocated.

4. The load-libs option from the new configuration object is processed.
5. Then everything goes on as normally, using the new configuration object.

Providing a custom configuration class

http://omnetpp.org/doc/omnetpp40/api/classcRNG.html
http://omnetpp.org/doc/omnetpp40/api/classcScheduler.html
http://omnetpp.org/doc/omnetpp40/api/classcRealTimeScheduler.html
http://omnetpp.org/doc/omnetpp40/api/classcConfigurationEx.html
http://omnetpp.org/doc/omnetpp40/api/classcConfigurationEx.html
http://omnetpp.org/doc/omnetpp40/api/classcConfigurationReader.html
http://omnetpp.org/doc/omnetpp40/api/classcConfigurationReader.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

To replace the configuration object with your custom implementation, you would write the class:

#include "cconfiguration.h"

class CustomConfiguration : public cConfigurationEx
{
 ...
};

Register_Class(CustomConfiguration);

and then activate it in the boot-time configuration:

[General]
configuration-class = CustomConfiguration

Providing a custom reader for SectionBasedConfiguration

As said already, writing a configuration class from scratch can be a lot of work, and it may be more practical to
reuse SectionBasedConfiguration with a different configuration reader class. This can be done with
sectionbasedconfig-configreader-class config option, interpreted by SectionBasedConfiguration.
Specify the following in your boot-time ini file:

[General]
configuration-class = SectionBasedConfiguration
sectionbasedconfig-configreader-class = <my new reader class>

The configuration reader class should look like this:

#include "cconfigreader.h"

class DatabaseConfigurationReader : public cConfigurationReader
{
 ...
};

Register_Class(DatabaseConfigurationReader);

15.2.4 Defining a new output scalar manager

cOutputScalarManager handles recording the scalar output data. The default output scalar manager is
cFileOutputScalarManager, defined in the Envir library.

The new class can be activated with the outputscalarmanager-class configuration option.

15.2.5 Defining a new output vector manager

cOutputVectorManager handles recording the output from cOutVector objects. The default output vector manager
is cIndexedFileOutputVectorManager, defined in the Envir library.

The new class can be activated with the outputvectormanager-class configuration option.

15.2.6 Defining a new snapshot manager

cSnapshotManager provides an output stream to which snapshots are written (see section [6.9.5]). The default

http://omnetpp.org/doc/omnetpp40/api/classcConfigurationEx.html
http://omnetpp.org/doc/omnetpp40/api/classcConfigurationReader.html
http://omnetpp.org/doc/omnetpp40/api/classcOutputScalarManager.html
http://omnetpp.org/doc/omnetpp40/api/classcOutputVectorManager.html
http://omnetpp.org/doc/omnetpp40/api/classcOutVector.html
http://omnetpp.org/doc/omnetpp40/api/classcSnapshotManager.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

snapshot manager is cFileSnapshotManager, defined in the Envir library.

The new class can be activated with the snapshotmanager-class configuration option.

15.3 Accessing the configuration

config is the ini file plus --ccc=vvv options

15.3.1 Defining new configuration options

New configuration options need to be declared with one of the appropriate registration macros. These macros are:

Register_GlobalConfigOption(ID, NAME, TYPE, DEFAULTVALUE, DESCRIPTION)
Register_PerRunConfigOption(ID, NAME, TYPE, DEFAULTVALUE, DESCRIPTION)
Register_GlobalConfigOptionU(ID, NAME, UNIT, DEFAULTVALUE, DESCRIPTION)
Register_PerRunConfigOptionU(ID, NAME, UNIT, DEFAULTVALUE, DESCRIPTION)
Register_PerObjectConfigOption(ID, NAME, TYPE, DEFAULTVALUE, DESCRIPTION)
Register_PerObjectConfigOptionU(ID, NAME, UNIT, DEFAULTVALUE, DESCRIPTION)

Config options come in three flavours, as indicated by the macro names:

Global options affect all configurations (i.e. they are only accepted in the [General] section but not in
[Config <name>] sections)
Per-Run options can be specified in any section (i.e. both in [General] and in [Config <name>]
sections)
Per-Object options ...

The macro arguments are as follows:

ID is a C++ identifier that will let you refer to the configuration option in cConfiguration member functions. (It is
actually pointer to a cConfigOption object that the macro creates.)
NAME is the name of the option (a string).
TYPE is the data type of the option; it must be one of: CFG_BOOL, CFG_INT, CFG_DOUBLE, CFG_STRING,
CFG_FILENAME, CFG_FILENAMES, CFG_PATH, CFG_CUSTOM. The most significant difference between
filesystem-related types (filename, filenames, path) and plain string is that relative filenames and paths get
automatically converted to absolute when the configuration is read, with the base directory being the location
of the ini file where the configuration entry was read from.
UNIT is a string that names the measurement unit in which the option's value is to be interpreted; it implies
type CFG_DOUBLE.
DEFAULTVALUE is the default value in textual form (string); this should be NULL if the option has no default
value.
DESCRIPTION is an arbitrarily long string that describes the purpose and and operation of the option. It will
be used in help texts etc.

For example, the debug-on-errors macro is declared in the following way:

Register_GlobalConfigOption(CFGID_DEBUG_ON_ERRORS,
 "debug-on-errors", CFG_BOOL, "false",
 "When enabled, runtime errors will etc etc...");

NOTE
Registration is necessary because from the 4.0 version, OMNeT++ validates the configuration on startup, in
order to be able to report invalid or mistyped option names and other errors.

15.3.2 Reading values from the configuration

http://omnetpp.org/doc/omnetpp40/api/classcConfiguration.html
http://omnetpp.org/doc/omnetpp40/api/classcConfigOption.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

The configuration is accessible via the getConfig() method of cEnvir. It returns a pointer to the configuration
object (cConfiguration):

cConfiguration *config = ev.getConfig();

cConfiguration provides several methods for querying the configuration.

no sections: flattened view etc.

const char *getAsCustom(cConfigOption *entry, const char *fallbackValue=NULL);
bool getAsBool(cConfigOption *entry, bool fallbackValue=false);
long getAsInt(cConfigOption *entry, long fallbackValue=0);
double getAsDouble(cConfigOption *entry, double fallbackValue=0);
std::string getAsString(cConfigOption *entry, const char *fallbackValue="");
std::string getAsFilename(cConfigOption *entry);
std::vector<std::string> getAsFilenames(cConfigOption *entry);
std::string getAsPath(cConfigOption *entry);

fallbackValue is returned if the value is not specified in the configuration, and there is no default value.

bool debug = ev.getConfig()->getAsBool(CFGID_PARSIM_DEBUG);

15.4 Implementing a new user interface

It is possible to extend OMNeT++ with a new user interface. The new user interface will have fully equal rights to
Cmdenv and Tkenv, that is, it can be activated by starting the simulation executable with the -u <name>
command-line or the user-interface configuration option, it can be made the default user interface, it can
define new command-line options and configuration options, and so on.

User interfaces must implement (i.e. subclass from) cRunnableEnvir, and must be registered to OMNeT++ with
the Register_OmnetApp() macro. In practice, you'll almost always want to subclass EnvirBase instead of
cRunnableEnvir, because EnvirBase already implements lots of functionality that otherwise you'd have to.

NOTE
If you want something completely different from what EnvirBase provides, such as when embedding the
simulation kernel into another application, then you should be reading section [16.2], not this one.

An example user interface:

#include "envirbase.h"

class FooEnv : public EnvirBase
{
 ...
};

Register_OmnetApp("FooEnv", FooEnv, 30, "an experimental user interface");

The envirbase.h header comes from the src/envir directory, so it is necessary to add it to the include path (-
I).

The arguments to Register_OmnetApp() include the user interface name (for use with the -u and user-
interface options), the C++ class that implements it, a weight for default user interface selection (if -u is
missing, the user interface with the largest weight will get activated), and a description string (for help and other
purposes).

http://omnetpp.org/doc/omnetpp40/api/classcEnvir.html
http://omnetpp.org/doc/omnetpp40/api/classcConfiguration.html
http://omnetpp.org/doc/omnetpp40/api/classcConfiguration.html
http://omnetpp.org/doc/omnetpp40/api/classcConfiguration.html
http://omnetpp.org/doc/omnetpp40/api/classcConfigOption.html
http://omnetpp.org/doc/omnetpp40/api/classcConfigOption.html
http://omnetpp.org/doc/omnetpp40/api/classcConfigOption.html
http://omnetpp.org/doc/omnetpp40/api/classcConfigOption.html
http://omnetpp.org/doc/omnetpp40/api/classcConfigOption.html
http://omnetpp.org/doc/omnetpp40/api/classcConfigOption.html
http://omnetpp.org/doc/omnetpp40/api/classcConfigOption.html
http://omnetpp.org/doc/omnetpp40/api/classcConfigOption.html
http://omnetpp.org/doc/omnetpp40/api/classcRunnableEnvir.html
http://omnetpp.org/doc/omnetpp40/api/classcRunnableEnvir.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

The C++ class should implement all methods left pure virtual in EnvirBase, and possibly others if you want to
customize their behaviour. One method that you'll surely want to reimplement is run() -- this is where your user
interface runs. When this method exits, the simulation program exits.

NOTE
A good starting point for implementing your own user interface is Cmdenv -- just copy and modify its source
code to quickly get going.

16 Embedding the Simulation Kernel

16.1 Architecture

OMNeT++ has a modular architecture. The following diagram shows the high-level architecture of OMNeT++
simulations:

Figure: Architecture of OMNeT++ simulation programs

The rectangles in the picture represent components:

Sim is the simulation kernel and class library. Sim exists as a library you link your simulation program with.
Envir is another library which contains all code that is common to all user interfaces. main() is also in Envir.
Envir provides services like ini file handling for specific user interface implementations. Envir presents itself
towards Sim and the executing model via the ev facade object, hiding all other user interface internals. Some
aspects of Envir can be customized via plugin interfaces. Embedding OMNeT++ into applications can be
achieved by implementing a new user interface in addition to Cmdenv and Tkenv, or by replacing Envir with
another implementation of ev (see sections [15.4] and [16.2].)
Cmdenv and Tkenv are specific user interface implementations. A simulation is linked with Cmdenv, Tkenv,
or both.
The Model Component Library consists of simple module definitions and their C++ implementations,
compound module types, channels, networks, message types and in general everything that belongs to
models and has been linked into the simulation program. A simulation program is able to run any model that
has all necessary components linked in.
The Executing Model is the model that has been set up for simulation. It contains objects (modules,
channels, etc.) that are all instances of components in the model component library.

The arrows in the figure show how components interact with each other:

Executing Model <==> Sim. The simulation kernel manages the future events and invokes modules in the

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

executing model as events occur. The modules of the executing model are stored in the main object of Sim,
simulation (of class cSimulation). In turn, the executing model calls functions in the simulation kernel
and uses classes in the Sim library.
Sim <==> Model Component Library. The simulation kernel instantiates simple modules and other
components when the simulation model is set up at the beginning of the simulation run. It also refers to the
component library when dynamic module creation is used. The machinery for registering and looking up
components in the model component library is implemented as part of Sim.
Executing Model <==> Envir. The ev object, logically part of Envir, is the facade of the user interface
towards the executing model. The model uses ev to write debug logs (ev<<, ev.printf()).
Sim <==> Envir. Envir is in full command of what happens in the simulation program. Envir contains the
main() function where execution begins. Envir determines which models should be set up for simulation,
and instructs Sim to do so. Envir contains the main simulation loop (determine-next-event, execute-event
sequence) and invokes the simulation kernel for the necessary functionality (event scheduling and event
execution are implemented in Sim). Envir catches and handles errors and exceptions that occur in the
simulation kernel or in the library classes during execution. Envir presents a single facade object (ev) that
represents the environment (user interface) toward Sim -- no Envir internals are visible to Sim or the
executing model. During simulation model setup, Envir supplies parameter values for Sim when Sim asks for
them. Sim writes output vectors via Envir, so one can redefine the output vector storing mechanism by
changing Envir. Sim and its classes use Envir to print debug information.
Envir <==> Tkenv/Cmdenv. Tkenv and Cmdenv are concrete user interface implementations. When a
simulation program is started, the main() function (which is part of Envir) determines the appropriate user
interface class, creates an instance and runs it by invoking its run() method. Sim's or the model's calls on
the ev object are delegated to the user interface.

16.2 Embedding the OMNeT++ simulation kernel

This section discusses the issues of embedding the simulation kernel or a simulation model into a larger
application. We assume that you don't just want to change one or two aspects of the simulator (like event
scheduling or result recording) or create a new user interface a'la Cmdenv or Tkenv -- if so, see chapter [15].

For the following discussion, we assume that you write the embedding program from scratch, i.e. starting from a
main() function.

16.2.1 The main() function

Here's an minimalistic program that initializes the simulation library, and runs two simulations. In later sections we'll
go through details of the code and discuss how to elaborate it.

#include <omnetpp.h>

int main(int argc, char *argv[])
{
 // the following line MUST be at the top of main()
 cStaticFlag dummy;

 // initializations
 ExecuteOnStartup::executeAll();
 SimTime::setScaleExp(-12);

 // load NED files
 cSimulation::loadNedSourceFolder("./foodir");
 cSimulation::loadNedSourceFolder("./bardir");
 cSimulation::doneLoadingNedFiles();

 // run two simulations
 simulate("FooNetwork", 1000);
 simulate("BarNetwork", 2000);

http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classExecuteOnStartup.html
http://omnetpp.org/doc/omnetpp40/api/classSimTime.html
http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 return 0;
}

The first few lines of the code initialize the simulation library. The purpose of cStaticFlag is to set a global
variable to true for the duration of the main() function, to help the simulation library handle exceptions correctly
in extreme cases. ExecuteOnStartup::executeAll() does various startup tasks such as building registration
tables out of the Define_Module(), Register_Class() and similar entries throughout the code.
SimTime::setScaleExp(-12) sets simulation time resolution to picoseconds; other values can be used as
well, but it is mandatory to choose one.

NOTE
It is not allowed to change the simulation time exponent later, because as the exponent is a global variable,
existing simtime_t instances would change their values.

The code then loads the NED files from the foodir and bardir subdirectories of the working directory (as if the
NED path was ./foodir;./bardir), and goes on to run two simulations.

16.2.2 The simulate() function

A minimalistic version of the simulate() function is shown below. For conciseness, we omitted exception
handling code (try/catch blocks) except for the event loop, but marked every line with ``E! '' where various
problems with the simulation model can manifest as exceptions.

void simulate(const char *networkName, simtime_t limit)
{
 // look up network type
 cModuleType *networkType = cModuleType::find(networkName);
 if (networkType == NULL) {
 printf("No such network: %s\n", networkName);
 return;
 }

 // create a simulation manager and an environment for the simulation
 cEnvir *env = new CustomSimulationEnv(argc, argv, new EmptyConfig());
 cSimulation *sim = new cSimulation("simulation", env);
 cSimulation::setActiveSimulation(sim);

 // set up network and prepare for running it
 sim->setupNetwork(networkType); //E!
 sim->startRun(); //E!

 // run the simulation
 bool ok = true;
 try {
 while (sim->getSimTime() < limit) {
 cSimpleModule *mod = sim->selectNextModule(); //E!
 if (!mod)
 break;
 sim->doOneEvent(mod); //E!
 }
 printf("Finished: time limit reached\n");
 }
 catch (cTerminationException& e) {
 printf("Finished: %s\n", e.what());
 }
 catch (std::exception& e) {
 ok = false;
 printf("ERROR: %s\n", e.what());
 }

 if (ok)

http://omnetpp.org/doc/omnetpp40/api/classExecuteOnStartup.html
http://omnetpp.org/doc/omnetpp40/api/classSimTime.html
http://omnetpp.org/doc/omnetpp40/api/classcModuleType.html
http://omnetpp.org/doc/omnetpp40/api/classcModuleType.html
http://omnetpp.org/doc/omnetpp40/api/classcEnvir.html
http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcTerminationException.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 simulation.callFinish(); //E!

 // finish the simulation and clean up the network
 sim->endRun(); //E!
 sim->deleteNetwork(); //E!

 cSimulation::setActiveSimulation(NULL);
 delete sim; // deletes env as well
}

The function accepts a network type name (which must be fully qualified, i.e. with package name), and a simulation
time limit.

In the first few lines we look up the network name among the modules that have been loaded from NED files, and
print an error message if not found.

Then we need to create and activate a simulation manager object (cSimulation). The simulation manager needs
an environment object to take the configuration from, write simulation results to, and so on. The environment object
(CustomSimulationEnv in the above code) has to be provided by the programmer; this is discussed in detail in a
later section.

NOTE
Before the 4.0 version, simulation and ev were global variables; now they are macros that resolve to
*cSimulation::getActiveSimulation() and *cSimulation::getActiveSimulation()-
>getEnvir().

Then we set up the network in the simulation manager. The sim->setupNetwork() method creates the system
module and recursively all modules and their interconnections; module parameters are also read from the
configuration (where needed) and assigned. If there is an error (e.g. module type not found), an exception will be
thrown. The exception object is some kind of std::exception, usually a cRuntimeError.

If network setup was successful, we call sim->startRun(), one side effect of which is that the initialize()
methods of modules and channels get invoked. This step also results in an exception if something goes wrong in
an initialize().

The following lines actually run the simulation, by calling sim->selectNextModule() and sim-
>doOneEvent() in an event loop, until the simulation time limit is reached or some exception occurs. Exceptions
subclassed from cTerminationException signal the normal termination of the simulation; other exceptions
signal various errors.

If the simulation has completed successfully (ok==true), the code goes on to call the finish() methods of
modules and channels. Then, regardless of whether there was an error, sim->endRun() has to be called, and
the network is torn down with sim->deleteNetwork().

Finally, we deallocate the simulation manager object, but the active simulation manager is not allowed to be
deleted, so we first deactivate it with setActiveSimulation(NULL).

16.2.3 Providing an environment object

The environment object needs to be subclassed from the cEnvir class, but since it has quite a number of pure
virtual methods, it is easier to start by subclassing cNullEnvir. cNullEnvir defines all pure virtual methods,
with either an empty body, or with a body that throws an "unsupported method called" exception. You can
redefine methods to be more sophisticated later on, as you are progressing with the development.

One method that you surely want to redefine is readParameter(); that's how module parameters get their
values. For debugging purposes, you may also redefine sputn() where module log messages are written.
cNullEnvir only provides one random number generator, so your simulation model uses more than one, you also

http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcRuntimeError.html
http://omnetpp.org/doc/omnetpp40/api/classcTerminationException.html
http://omnetpp.org/doc/omnetpp40/api/classcEnvir.html
http://omnetpp.org/doc/omnetpp40/api/classcNullEnvir.html
http://omnetpp.org/doc/omnetpp40/api/classcNullEnvir.html
http://omnetpp.org/doc/omnetpp40/api/classcNullEnvir.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

need to redefine the getNumRNGs() and getRNG(k) methods. To print or store simulation records, redefine
recordScalar(), recordStatistic() and/or the output vector related methods. Other cEnvir methods are
invoked from the simulation kernel to inform the environment about messages being sent, events scheduled and
cancelled, modules created and so on.

The following example shows a minimalistic environment class that's enough to get started:

class CustomSimulationEnv : public cNullEnvir
{
 public:
 // constructor
 CustomSimulationEnv(int ac, char **av, cConfiguration *c) :
 cNullEnvir(ac, av, c) {}

 // model parameters: accept defaults
 virtual void readParameter(cPar *par) {
 if (par->containsValue())
 par->acceptDefault();
 else
 throw cRuntimeError("no value for %s", par->getFullPath().c_str());
 }

 // send module log messages to stdout
 virtual void sputn(const char *s, int n) {
 (void) ::fwrite(s,1,n,stdout);
 }
};

16.2.4 Providing a configuration object

The configuration object needs to subclass from cConfiguration. cConfiguration also has several methods,
but the typed ones (getAsBool(), getAsInt(), etc.) have default implementations that delegate to the much
fewer string-based methods (getConfigValue(), etc.).

It is fairly straightforward to implement a configuration class that emulates an empty ini file:

class EmptyConfig : public cConfiguration
{
 protected:
 class NullKeyValue : public KeyValue {
 public:
 virtual const char *getKey() const {return NULL;}
 virtual const char *getValue() const {return NULL;}
 virtual const char *getBaseDirectory() const {return NULL;}
 };
 NullKeyValue nullKeyValue;

 protected:
 virtual const char *substituteVariables(const char *value) {return value;}

 public:
 virtual const char *getConfigValue(const char *key) const
 {return NULL;}
 virtual const KeyValue& getConfigEntry(const char *key) const
 {return nullKeyValue;}
 virtual const char *getPerObjectConfigValue(const char *objectFullPath,
 const char *keySuffix) const {return NULL;}
 virtual const KeyValue& getPerObjectConfigEntry(const char *objectFullPath,
 const char *keySuffix) const {return nullKeyValue;}
};

16.2.5 Loading NED files

http://omnetpp.org/doc/omnetpp40/api/classcEnvir.html
http://omnetpp.org/doc/omnetpp40/api/classcNullEnvir.html
http://omnetpp.org/doc/omnetpp40/api/classcConfiguration.html
http://omnetpp.org/doc/omnetpp40/api/classcNullEnvir.html
http://omnetpp.org/doc/omnetpp40/api/classcPar.html
http://omnetpp.org/doc/omnetpp40/api/classcRuntimeError.html
http://omnetpp.org/doc/omnetpp40/api/classcConfiguration.html
http://omnetpp.org/doc/omnetpp40/api/classcConfiguration.html
http://omnetpp.org/doc/omnetpp40/api/classcConfiguration.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

NED files can be loaded with any of the following static methods of cSimulation: loadNedSourceFolder(),
loadNedFile(), and loadNedText(). The first one loads a whole subdirectory tree, the second one loads a
single NED file, and the third takes a literal string containing NED code and parses that one.

NOTE
One use of loadNedText() is to parse NED sources previously converted to C++ string constants and
linked into the executable. This allows for creating executables that are self-contained, and do not need NED
files to be distributed with them.

The above functions can be mixed as well, but after the last call, doneLoadingNedFiles() must be invoked (it
checks for unresolved NED types).

Loading NED files has global effect, and they cannot be unloaded.

16.2.6 How to eliminate NED files

It is possible to get rid of NED files altogether. This would also remove the dependency on the oppnedxml library
and the code in sim/netbuilder as well, albeit at the cost of additional coding.

NOTE
When the only purpose is to get rid of NED files as external dependency of the program, it is simpler to use
loadNedText() on NED files converted to C++ string constants instead.

The trick is to write cModuleType and cChannelType objects for your simple module, compound module and
channel types, and register them manually. For example, cModuleType has pure virtual methods called
createModuleObject(), addParametersAndGatesTo(module), setupGateVectors(module),
buildInside(module), which you need to implement. The body of the buildInside() method would be
similar to C++ files generated by nedtool of OMNeT++ 3.x.

16.2.7 Assigning module parameters

As already mentioned, modules get values for their input parameters by calling the readParameter() method of
the environment object (cEnvir).

NOTE
readParameter() is only called for parameters that have not been set to a fixed (i.e. non-default) value
in the NED files.

The readParameter() method should be written so that it can assign the parameter. For doing so, it can
recognize the parameter from its name (par->getName()), from its full path (par->getFullPath()), from the
owner module's class (par->getOwner()->getClassName()) or NED type name (((cComponent *)par-
>getOwner())->getNedTypeName()). Then it can set the parameter using one of the typed setter methods
(setBoolValue(), setLongValue(), etc.), or set it to an expression provided in string form (parse() method).
It can also accept the default value if there is one (acceptDefault()).

The following code is a straightforward example that answers parameter value requests from a pre-filled table.

class CustomSimulationEnv : public cNullEnvir
{
 protected:
 // parameter (fullpath,value) pairs, needs to be pre-filled
 std::map<std::string,std::string> paramValues;
 public:
 ...
 virtual void readParameter(cPar *par) {
 if (paramValues.find(par->getFullPath())!=paramValues.end())
 par->parse(paramValues[par->getFullPath()]);
 else if (par->containsValue())

http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcModuleType.html
http://omnetpp.org/doc/omnetpp40/api/classcChannelType.html
http://omnetpp.org/doc/omnetpp40/api/classcModuleType.html
http://omnetpp.org/doc/omnetpp40/api/classcEnvir.html
http://omnetpp.org/doc/omnetpp40/api/classcComponent.html
http://omnetpp.org/doc/omnetpp40/api/classcNullEnvir.html
http://omnetpp.org/doc/omnetpp40/api/classcPar.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 par->acceptDefault();
 else
 throw cRuntimeError("no value for %s", par->getFullPath().c_str());
 }
};

16.2.8 Extracting statistics from the model

There are several ways you can extract statistics from the simulation.

Via C++ calls into the model

Modules in the simulation are C++ objects. If you add the appropriate public getter methods to the module classes,
you can call them from your main program to obtain statistics. Modules may be looked up with the
getModuleByPath() method of cSimulation, then cast to the specific module type via
check_and_cast<>() so that the getter methods can be invoked.

cModule *mod = simulation.getModuleByPath("Network.client[2].app");
WebApp *appMod = check_and_cast<WebApp *>(mod);
int numRequestsSent = appMod->getNumRequestsSent();
double avgReplyTime = appMod->getAvgReplyTime();
...

The drawback of this approach is that getters need to be added manually to all affected module classes which
might not be practical, especially if modules come from external projects.

Via cEnvir callbacks

A more general way is to catch recordScalar() method calls in the simulation model. cModule 's
recordScalar() method delegates to the similar function in cEnvir. You may define the latter function such
that it stores all recorded scalars (for example in an std::map), where the main program can find them later.
Values from output vectors can be captured in a similar way.

A draft implementation:

class CustomSimulationEnv : public cNullEnvir
{
 private:
 std::map<std::string, double> results;
 public:
 virtual void recordScalar(cComponent *component, const char *name,
 double value, opp_string_map *attributes=NULL)
 {
 results[component->getFullPath()+"."+name] = value;
 }

 const std::map<std::string, double>& getResults() {return results;}
};

...

const std::map<std::string, double>& results = env->getResults();
int numRequestsSent = results["Network.client[2].app.numRequestsSent"];
double avgReplyTime = results["Network.client[2].app.avgReplyTime"];

A drawback is that compile-time checking of statistics names is lost, but definite advantages include that any
simulation model can now be used without changes, and that capturing additional statistics does not require code
modification in the main program.

http://omnetpp.org/doc/omnetpp40/api/classcRuntimeError.html
http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcEnvir.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcEnvir.html
http://omnetpp.org/doc/omnetpp40/api/classcNullEnvir.html
http://omnetpp.org/doc/omnetpp40/api/classcComponent.html
http://omnetpp.org/doc/omnetpp40/api/classopp__string__map.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

16.2.9 The simulation loop

To run the simulation, the selectNextModule() and doOneEvent methods of cSimulation must be called in
a loop:

while (sim->getSimTime() < limit)
{
 cSimpleModule *mod = sim->selectNextModule();
 sim->doOneEvent(mod);
}

It depends on the concrete scheduler class whether selectNextModule() may return NULL. The default
cSequentialScheduler never returns NULL.

Execution may terminate in various ways. Runtime errors cause a cRuntimeError (or other kind of
std::exception) to be thrown. cTerminationException is thrown on normal termination conditions, such as
when the simulation runs out of events to process.

You may customize the loop to exit on other termination conditions as well, such as on a simulation time limit (see
above), on CPU time limit, or when results reach a required accuracy. It is relatively straightforward to build in
progress reporting and interactivity (start/stop) as well.

Animation can be hooked up to the appropriate callback methods of cEnvir: beginSend(), sendHop(),
endSend(), and others.

16.2.10 Multiple, coexisting simulations

It is possible for several instances of cSimulation to coexist, and also to set up and simulate a network in each
instance. However, this requires frequent use of cSimulation::setActiveSimulation(): before invoking
any cSimulation method or module method, the corresponding cSimulation instance needs to be designated
as the active simulation manager. This is necessary because several models and simulation kernel methods refer
to the active simulation manager instance via the simulation macro, and it is similar with the ev macro.

NOTE
Before the 4.0 version, simulation and ev were global variables; now they are macros that resolve to
*cSimulation::getActiveSimulation() and *cSimulation::getActiveSimulation()-
>getEnvir().

Every cSimulation instance should have its own associated environment object (cEnvir). Environment objects
may not be shared among several cSimulation instances. cSimulation 's destructor deletes the associated
cEnvir instance as well.

cSimulation instances may be reused from one simulation to another, but it is also possible to make a new
instance for each simulation run.

NOTE
It is not possible to run different simulations concurrently from different theads, due to the use of global
variables which are not easy to get rid of, like the active simulation manager pointer and the active
environment object pointer. Static buffers and objects (like string pools) are also used for efficiency reasons
at some places inside the simulation kernel.

16.2.11 Installing a custom scheduler

The default event scheduler is cSequentialScheduler. To replace it with a different scheduler (e.g.
cRealTimeScheduler or your own scheduler class), add a setScheduler() call into main():

http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html
http://omnetpp.org/doc/omnetpp40/api/classcSequentialScheduler.html
http://omnetpp.org/doc/omnetpp40/api/classcRuntimeError.html
http://omnetpp.org/doc/omnetpp40/api/classcTerminationException.html
http://omnetpp.org/doc/omnetpp40/api/classcEnvir.html
http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcEnvir.html
http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcEnvir.html
http://omnetpp.org/doc/omnetpp40/api/classcSimulation.html
http://omnetpp.org/doc/omnetpp40/api/classcSequentialScheduler.html
http://omnetpp.org/doc/omnetpp40/api/classcRealTimeScheduler.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

cScheduler *scheduler = new CustomScheduler();
simulation.setScheduler(scheduler);

It is usually not a good idea to change schedulers in the middle of a simulation, so setScheduler() may only be
called when no network is set up.

16.2.12 Multi-threaded programs

The OMNeT++ simulation kernel is not reentrant, so it must be protected against concurrent access.

%

% $./fddi -h
%
% {\opp} Discrete Event Simulation (C) 1992-2004 Andras Varga
% ...
% Available networks:
% FDDI1
% NRing
% TUBw
% TUBs
%
% Available modules:
% FDDI_MAC
% FDDI_MAC4Ring
% ...
%
% Available channels:
% ...
% End run of {\opp}
%

%

% Define_Module(FIFO);
%

%

% static cModule *FIFO__create(const char *name, cModule *parentmod)
% {
% return new FIFO(name, parentmod);
% }
%
% EXECUTE_ON_STARTUP(FIFO__mod,
% modtypes.getInstance()->add(
% new cModuleType("FIFO","FIFO",(ModuleCreateFunc)FIFO__create)
%);
%)
%

%

% cEnvir ev;
%

17 Appendix: NED Reference

http://omnetpp.org/doc/omnetpp40/api/classcScheduler.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcModule.html
http://omnetpp.org/doc/omnetpp40/api/classcModuleType.html
http://omnetpp.org/doc/omnetpp40/api/classcEnvir.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

17.1 Syntax

17.1.1 NED file extension

NED files have the .ned file name suffix. This is mandatory, and cannot be overridden.

17.1.2 NED file encoding

NED files are read as 8-bit-clean ASCII. This permits NED files saved in UTF-8, or any character set compatible
with ASCII (8859-1, etc).

NOTE
There is no official way to determine the encoding of a NED file. It is up to the user to configure the correct
encoding in text editors and other tools that are used to edit or process NED files.

Keywords and other syntactic elements in NED are ASCII, and identifiers must be ASCII as well. Comments and
string literals may contain characters above 127. String literals (e.g. in parameter values) will be passed to the C++
code as const char * without any conversion; it is up to the simulation model to interpret them using the desired
encoding.

Line ending may be either CR or CRLF, regardless of the platform.

17.1.3 Reserved words

Authors have to take care that no reserved words are used as identifiers. The reserved words of the NED language
are:

allowunconnected bool channel channelinterface connections const default double
extends false for gates if import index inout input int like module moduleinterface
network output package parameters property simple sizeof string submodules this true
types volatile xml xmldoc

17.1.4 Identifiers

Identifiers must be composed of letters of the English alphabet (a-z, A-Z), numbers (0-9) and underscore ``_''.
Identifiers may only begin with a letter or underscore.

The recommended way to compose identifiers from multiple words is to capitalize the beginning of each word
(camel case).

17.1.5 Case sensitivity

Keywords and identifiers in the NED language are case sensitive. For example, TCP and Tcp are two different
names.

17.1.6 Literals

String literals

String literals use double quotes. The following C-style backslash escapes are recognized: \b, \f, \n, \r, \t, \\,
\", and \xhh where h is a hexadecimal digit.

Numeric constants

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Numeric constants are accepted in their usual decimal or scientific notations.

Quantity constants

A quantity constant has the form (<numeric-constant> <unit>)+, for example 12.5mW or 3h 15min 37.2s. When
multiple measurement units are present, they have to be convertible into each other (i.e. refer to the same physical
quantity).

Section [17.5.7] lists the units recognized by OMNeT++. Other units can be used as well, the only downside being
that OMNeT++ will not be able to perform conversions on them.

17.1.7 Comments

Comments can be placed anywhere in the NED file, with the usual C++ syntax: comments begin with a double
slash `//', and last until the end of the line.

17.1.8 Grammar

The grammar of the NED language can be found in Appendix [18].

17.2 Built-in definitions

The NED language has the following built-in definitions, all in the ned package: channels IdealChannel
DelayChannel, and DatarateChannel; module interfaces IBidirectionalChannel and
IUnidirectionalChannel. The latter two are reserved for future use.

package ned;

@namespace("");

channel IdealChannel {
 @class(cIdealChannel);
}

channel DelayChannel {
 @class(cDelayChannel);
 bool disabled = false;
 double delay = 0s @unit(s);
}

channel DatarateChannel {
 @class(cDatarateChannel);
 bool disabled = false;
 double delay = 0s @unit(s);
 double datarate = 0bps @unit(bps);
 double ber = 0;
 double per = 0;
}

moduleinterface IBidirectionalChannel {
 gates:
 inout a;
 inout b;
}

moduleinterface IUnidirectionalChannel {
 gates:
 input i;
 output o;
}

http://omnetpp.org/doc/omnetpp40/api/classcIdealChannel.html
http://omnetpp.org/doc/omnetpp40/api/classcDelayChannel.html
http://omnetpp.org/doc/omnetpp40/api/classcDatarateChannel.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

17.3 Packages

NED supports hierarchical namespaces called packages. The solution is roughly modelled after Java's packages,
with minor changes.

17.3.1 Package declaration

The package of the declarations in a NED file is determined by the package declaration in the file (package
keyword). A NED file may contain at most one package declaration. If there is no package declaration, the file's
contents is in the default package.

Component type names must be unique within their package.

17.3.2 Directory structure, package.ned

Like in Java, the directory of a NED file must match the package declaration. However, it is possible to omit
directories at the top which do not contain any NED files (like the typical /org/<projectname> directories in
Java).

The top of a directory tree containing NED files is named a NED source folder. The package.ned file directly in a
NED source folder plays a special role.

If there is no toplevel package.ned or it contains no package declaration, the declared package of a NED file in
the folder <srcfolder>/x/y/z must be x.y.z. If there is a toplevel package.ned and it declares to be in
package a.b, then any NED file in the folder <srcfolder>/x/y/z must have the declared package a.b.x.y.z.

NOTE
package.ned files are allowed in other folders as well, but they cannot be used to define the package they
are in.

17.4 Components

Simple modules, compound modules, networks, channels, module interfaces and channel interfaces are called
components.

17.4.1 Simple modules

Simple module types are declared with the simple keyword; see the NED Grammar (Appendix [18]) for the syntax.

Simple modules may have properties ([17.4.8]), parameters ([17.4.9]) and gates ([17.4.10]).

A simple module type may not have inner types ([17.4.13]).

A simple module type may extend another simple module type, and may implement one or more module interfaces
([17.4.5]). Inheritance rules are described in section [17.4.17], and interface implementation rules in section
[17.4.16].

Every simple module type has an associated C++ class, which must be subclassed from cSimpleModule. The
way of associating the NED type with the C++ class is described in section [17.4.7].

17.4.2 Compound modules

http://omnetpp.org/doc/omnetpp40/api/classcSimpleModule.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Compound module types are declared with the module keyword; see the NED Grammar (Appendix [18]) for the
syntax.

Compound modules may have properties ([17.4.8]), parameters ([17.4.9]), and gates ([17.4.10]); its internal
structure is defined by its submodules ([17.4.11]) and connections ([17.4.12]); and it may also have inner types
([17.4.13]) that can be used for submodules and connections.

A compound module type may extend another compound module type, and may implement one or more module
interfaces ([17.4.5]). Inheritance rules are described in section [17.4.17], and interface implementation rules in
section [17.4.16].

17.4.3 Networks

The network keyword

A network declared with the network keyword is equivalent to a compound module (module keyword) with the
@isNetwork(true) property.

NOTE
A simple module can only be designated to be a network by spelling out the @isNetwork property; the
network keyword cannot be used for that purpose.

The @isNetwork property

The @isNetwork property is only recognized on simple modules and compound modules. The value may be
empty, true or false:

@isNetwork;
@isNetwork();
@isNetwork(true);
@isNetwork(false);

The empty value corresponds to @isNetwork(true).

The @isNetwork property does not get inherited, that is, a subclass of a module with @isNetwork set does not
automatically become a network. The @isNetwork property needs to be explicitly added to the subclass to make it
a network.

Rationale
Subclassing may introduce changes to a module that make it unfit to be used as a network.

17.4.4 Channels

Channel types are declared with the channel keyword; see the NED Grammar (Appendix [18]) for the syntax.

Channel types may have properties ([17.4.8]) and parameters ([17.4.9]).

A channel type may not have inner types ([17.4.13]).

A channel type may extend another channel type, and may implement one or more channel interfaces ([17.4.6]).
Inheritance rules are described in section [17.4.17], and interface implementation rules in section [17.4.16].

Every channel type has an associated C++ class, which must be subclassed from cChannel. The way of
associating the NED type with the C++ class is described in section [17.4.7].

http://omnetpp.org/doc/omnetpp40/api/classcChannel.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

17.4.5 Module interfaces

Module interface types are declared with the moduleinterface keyword; see the NED Grammar (Appendix [18])
for the syntax.

Module interfaces may have properties ([17.4.8]), parameters ([17.4.9]), and gates ([17.4.10]). However,
parameters are not allowed to have a value assigned, not even a default value.

A module interface type may not have inner types ([17.4.13]).

A module interface type may extend one or more other module interface types. Inheritance rules are described in
section [17.4.17].

17.4.6 Channel interfaces

Channel interface types are declared with the channelinterface keyword; see the NED Grammar (Appendix
[18]) for the syntax.

Channel interfaces may have properties ([17.4.8]) and parameters ([17.4.9]). However, parameters are not allowed
to have a value assigned, not even a default value.

A channel interface type may not have inner types ([17.4.13]).

A channel interface type may extend one or more other channel interface types. Inheritance rules are described in
section [17.4.17].

17.4.7 Resolving the implementation C++ class

The procedure for determining the C++ implementation class for simple modules and for channels are identical. It
goes as follows (we are going to say component instead of ``simple module or channel''):

If the component extends another component and has no @class property, the C++ implementation class is
inherited from the base type.

If the component contains a @class property, the C++ class name will be composed of the current namespace
(see [17.4.7]) and the value of the @class property. The @class property should contain a single value.

NOTE
The @class property may itself contain a namespace declaration (ie. may contain ``:: '').

If the component contains no @class property and has no base class, the C++ class name will be composed of
the current namespace and the unqualified name of the component.

IMPORTANT
NED subclassing does not imply subclassing the C++ implementation! If you want to subclass a simple
module or channel in NED as well as in C++, you explicitly need to specify the @class property, otherwise
the derived simple module or channel will continue to use the C++ class from its super type.

Current namespace

The current namespace is the value of the first @namespace property found while searching the following order:

1. the current NED file

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

2. the package.ned file in the current package
3. the package.ned file of the parent package or the first ancestor package searching upwards

NOTE
Note that namespaces coming from multiple @namespace properties in different scopes do not nest, but
rather, the nearest one wins.

The @namespace property should contain a single value.

17.4.8 Properties

Properties are a means of adding metadata annotations to NED files, component types, parameters, gates,
submodules, and connections.

Identifying a property

Properties are identified by name. It is possible to have several properties on the same object with the same name,
as long as they have unique indices. An index is an identifier in square brackets after the property name.

The following example shows a property without index, one with the index foo, and a third with the index bar.

@statistic();
@statistic[foo]();
@statistic[bar]();

Property value

The value of the property is specified inside parentheses. The value consists of key-valuelist pairs, separated by
semicolons; values are separated with commas. Example:

@prop(key1=value11,value12,value13;key2=value21,value22)

Keys must be unique.

If the key+equal sign part (key=) is missing, the valuelist belongs to the default key. Examples:

@prop(value1,value2)
@prop(value1,value2;key1=value11,value12,value13)

Property values have a liberal syntax (see Appendix [18]). Values that do not fit the grammar (notably, those
containing a comma or a semicolon) need to be surrounded with double quotes.

When interpreting a property value, one layer of quotes is removed automatically, that is, foo and "foo" are the
same. To add a value with quotation marks included, enclose it in an extra layer of quotes: "\"foo\"".

Example:

@prop(marks=the ! mark, "the , mark", "the ; mark", other marks);

Placement

Properties may be added to NED files, component types, parameters, gates, submodules and connections. For the
exact syntax, see Appendix [18].

When a component type extends another component type(s), properties are merged. This is described in section

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

[17.4.17].

Property declarations

The property keyword is reserved for future use. It is envisioned that accepted property names and property keys
would need to be pre-declared, so that the NED infrastructure can warn the user about mistyped or unrecognized
names.

17.4.9 Parameters

Parameters can be defined and assigned in the parameters section of component types. In addition, parameters
can also be assigned in the parameters sections of submodule bodies and connection bodies, but those places
do not allow adding new parameters.

The parameters keyword is optional, and can be omitted without change in the meaning.

A parameter is identified by a name, and has a data type. A parameter may have value or default value, and may
also have properties (see [17.4.8]).

Accepted parameter data types are double, int, string, bool, and xml. Any of the above types can be
declared volatile as well (volatile int, volatile string, etc.)

The presence of a data type keyword decides whether the given line defines a new parameter or refers to an
existing parameter. One can assign value or default value to an existing parameter, and/or modify its properties or
add new properties.

Examples:

int a; // defines new parameter
int b @foo; // new parameter with property
int c = default(5); // new parameter with default value
int d = 5; // new parameter with value assigned
int e @foo = 5; // new parameter with property and value
f = 10; // assignment to existing (e.g.inherited) parameter
g = default(10); // overrides default value of existing parameter
h; // legal, but does nothing
i @foo(1); // adds a property to existing parameter
j @foo(1) = 10; // adds a property and value to existing parameter

Parameter values are NED expressions. Expressions are described in section [17.5].

For volatile parameters, the value expression is evaluated every time the parameter value is accessed.
Non-volatile parameters are evaluated only once.

NOTE
The const keyword is reserved for use within expressions to define constant subexpressions, i.e. to denote
a part within an expression the should only be evaluated once. Constant subexpressions are not supported
yet.

The following properties are recognized for parameters: @unit, @prompt.

The @prompt property

The @prompt property defines a prompt string for the parameter. The prompt string is used when/if a simulation
runtime user interface interactively prompts the user for the parameter's value.

The @prompt property is expected to contain one string value for the default key.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

The @unit property

A parameter may have a @unit property to associate it with a measurement unit. The @unit property should
contain one string value for the default key. Examples:

@unit("s")
@unit(s)
@unit("second")
@unit(second)

When present, values assigned to the parameter must be in the same or in a compatible (that is, convertible) unit.
Examples:

 double a @unit(s) = 5s; // OK
 double a @unit(s) = 5; // error: should be 5s
 double a @unit(s) = 5kg; // error: incompatible unit

@unit behavior for non-numeric parameters (string, XML) is unspecified (may be ignored or may be an error).

The @unit property of a parameter may not be modified via inheritance.

Example:

simple A {
 double p @unit(s);
}
simple B extends A {
 p @unit(mW); // illegal: cannot override @unit
}

17.4.10 Gates

Gates can be defined in the gates section of component types. The size of a gate vector (see below) may be
specified at the place of defining the gate, via inheritance in a derived type, and also in the gates block of a
submodule body. A submodule body does not allow defining new gates.

A gate is identified by a name, and is characterized by a type (input, output, inout), and optionally a vector
size. Gates may also have properties (see [17.4.8]).

Gates may be scalar or vector. The vector size is specified with a numeric expression inside the square brackets
([...]). The vector size may also be left open by specifying an empty pair of square brackets.

A gate vector size may not be overridden in subclasses or in a submodule.

The presence of a gate type keyword decides whether the given line defines a new gate, or refers to an existing
gate. One can specify the gate vector size for an existing gate vector, and/or modify its properties or add new
properties.

Examples:

gates:
 input a; // defines new gate
 input b @foo; // new gate with property
 input c[]; // new gate vector with unspecified size
 input d[8]; // new gate vector with size=8
 e[10]; // set gate size for existing (e.g.inherited) gate vector
 f @foo(bar); // add property to existing gate
 g[10] @foo(bar); // set gate size and add property to existing gate

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Gate vector sizes are NED expressions. Expressions are described in section [17.5].

See the Connections section ([17.4.12]) for more information on gates.

Recognized gate properties

The following properties are recognized on gates: @directIn and @loose. They have the same effect: When
either of them is present on a gate, the gate is not required to be connected in the connections section of a
compound module (see [17.4.12]).

@directIn should be used when the gate is an input gate that is intended for being used as a target for the
sendDirect() method; @loose should be used in any other case when the gate is not required to be connected
for some reason.

NOTE
The reason @directIn gates are not required to remain unconnected is that it is often useful to wrap such
modules in a compound module, where the compound module also has a @directIn input gate that is
internally connected to the submodule's corresponding gate.

Example:

gates:
 input radioIn @directIn;

17.4.11 Submodules

Submodules are defined in the submodules section of the compound module.

Submodules may be scalar or vector, the vector size of the latter being specified with a numeric expression inside
the square brackets ([...]).

Submodule type

The simple or compound module type ([17.4.1], [17.4.2]) that will be instantiated as the submodule may be
specified in several ways:

with a concrete module type name, or
by a string-valued expression that evaluates to the name of a module type, or
the type name may come from the configuration.

In the latter two cases, the like keyword is used, and a module interface type ([17.4.5]) needs to be specified as
well, which the concrete module type needs to implement to be eligible to be chosen. In the second case, the string
expression is specified in angle braces (<...>); in the third case, an empty pair of angle braces is used (<>). See
the NED Grammar (Appendix [18]) for the exact syntax.

NOTE
When using the <> syntax, the actual NED type should be provided with the type-name configuration
option: **.host[0..3].type-name="MobileHost".

Parameters, gates

A submodule definition may or may not have a body (a curly brace delimited block). An empty submodule body ({
}) is equivalent to a missing one.

A submodule body may contain parameters ([17.4.9]) and gates ([17.4.5]).

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

A submodule body cannot define new parameters or gates. It is only allowed to assign existing parameters, and to
set the vector size of existing gate vectors.

It is also allowed to add or modify properties and parameter/gate properties.

17.4.12 Connections

Connections are defined in the connections section of the compound module.

Normally, all gates must be connected, including submodule gates and the gates of the compound module. When
the allowunconnected modifier is present after connections, gates will be allowed to be left unconnected.

NOTE
The @directIn and @loose gate properties are alternatives to the connections allowunconnected
syntax; see [17.4.10].

Connections and connection groups

The connections section may contain any number of connections and connection groups. A connection group is
one or more connections grouped with curly braces.

Both connections and connection groups may be conditional (if keyword) or may be multiple (for keyword).

Any number of for and if clauses may be added to a connection or connection loop; they are interpreted as if
they were nested in the given order. Loop variables of a for may be referenced from subsequent conditions and
loops as well as in module and gate index expressions in the connections.

See the NED Grammar ([18]) for the exact syntax.

Example connections:

a.out --> b.in;
c.out --> d.in if p>0;
e.out[i] --> f[i].in for i=0..sizeof(f)-1, if i%2==0;

Example connection groups:

if p>0 {
 a.out --> b.in;
 a.in <-- b.out;
}
for i=0..sizeof(c)-1, if i%2==0 {
 c[i].out --> out[i];
 c[i].in <-- in[i];
}
for i=0..sizeof(d)-1, for j=0..sizeof(d)-1, if i!=j {
 d[i].out[j] --> d[j].in[i];
}
for i=0..sizeof(e)-1, for j=0..sizeof(e)-1 {
 e[i].out[j] --> e[j].in[i] if i!=j;
}

Connection syntax

The connection syntax uses arrows (-->, <--) to connect input and output gates, and double arrows (<-->)
to connect two inout gates. The latter is also said to be a bidirectional connection.

Arrows point from the source gate (a submodule output gate or a compound module input gate) to the destination

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

gate (a submodule input gate or a compound module output gate). Connections may be written either left to right or
right to left, that is, a-->b is equivalent to b<--a.

Gates are specified as modulespec.gatespec (to connect a submodule), or as gatespec (to connect the compound
module). modulespec is either a submodule name (for scalar submodules), or a submodule name plus an index in
square brackets (for submodule vectors). For scalar gates, gatespec is the gate name; for gate vectors it is either
the gate name plus an index in square brackets, or gatename++.

The gatename++ notation causes the first unconnected gate index to be used. If all gates of the given gate vector
are connected, the behavior is different for submodules and for the enclosing compound module. For submodules,
the gate vector expands by one. For the compound module, it is an error to use ++ on gate vector with no
unconnected gates.

Rationale
The reason it is not supported to expand the gate vector of the compound module is that the module structure
is built in top-down order: new gates would be left unconnected on the outside, as there is no way in NED to
"go back" and connect them afterwards.

When the ++ operator is used with $i or $o (e.g. g$i++ or g$o++, see later), it will actually add a gate pair
(input+output) to maintain equal gate size for the two directions.

The syntax to associate a channel (see [17.4.4]) with the connection is to use two arrows with a channel
specification in between (see later). The same syntax is used to add properties such as @display to the
connection.

Inout gates

An inout gate is represented as a gate pair: an input gate and an output gate. The two sub-gates may also be
referenced and connected individually, by adding the $i and $o suffix to the name of the inout gate.

A bidirectional connection (which uses a double arrow to connect two inout gates), is also a shorthand for two uni-
directional connections; that is,

a.g <--> b.g;

is equivalent to

a.go --> b.gi;
a.gi <-- b.go;

In inout gate vectors, gates are always in pairs, that is, sizeof(g$i)==sizeof(g$o) always holds. It is
maintained even when g$i++ or g$o++ is used: the ++ operator will add a gate pair, not just an input or an output
gate.

Specifying channels

A channel specification associates a channel object with the connection. A channel object is an instance of a
channel type (see [17.4.4]).

The channel type that will be instantiated as channel object may be specified in several ways:

with a concrete channel type name, or
may be implicitly determined from the set of parameters used (see later), or
by a string-valued expression that evaluates to the name of a channel type, or
the type name may come from the configuration.

In the latter two cases, the like keyword is used, and a channel interface type ([17.4.6]) needs to be specified as

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

well, which the concrete channel type needs to implement to be eligible to be chosen. In the second case, the string
expression is specified in angle braces (<...>); in the third case, an empty pair of angle braces is used (<>). The
syntax is similar to the submodule syntax (see [17.4.11]).

NOTE
When using the <> syntax, the actual NED type should be provided with the type-name configuration
option, where the object pattern should be the source gate plus .channel:
**.host[*].g$o.channel.type-name="EthernetChannel".

NOTE
As bidirectional connections (those using double arrows, <-->) are a shorthand for two uni-directional
connections, bidirectional connections with channels will actually create two channel objects, one for each
direction!

Channel parameters and properties

A channel definition may or may not have a body (a curly brace delimited block). An empty channel body ({ }) is
equivalent to a missing one.

A channel body may contain parameters ([17.4.9]).

A channel body cannot define new parameters. It is only allowed to assign existing parameters.

It is also allowed to add or modify properties and parameter properties.

Implicit channel type

When a connection uses an unnamed channel type (--> {...} --> syntax), the actual NED type to be used will
depend on the parameters set in the connection.

When no parameters are set, ned.IdealChannel is chosen.

When only ned.DelayChannel parameters are used (delay and disabled), ned.DelayChannel is chosen.

When only ned.DatarateChannel parameters are used (datarate, delay, ber, per, disabled), the chosen
channel type will be ned.DatarateChannel.

Unnamed channels connections cannot use any other parameters.

17.4.13 Inner types

Inner types are defined in the types section of the component type.

Inner types are only visible inside the enclosing component type.

17.4.14 Name uniqueness

Identifier names within a component must be unique. That is, submodule or inner type cannot be named the same,
or the same as a gate or parameter of the parent module.

17.4.15 Type name resolution

Names from other NED files can be referred to either by fully qualified name
(``inet.networklayer.ip.RoutingTable ''), or by short name (``RoutingTable '') if the name is visible.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Visible names are:

inner types;
anything from the same package;
imported names.

Imports

Imports have a similar syntax to Java, but they are more flexible with wildcards. All of the following are legal:

import inet.protocols.network.ip.RoutingTable;
import inet.protocols.network.ip.*;
import inet.protocols.network.ip.Ro*Ta*;
import inet.protocols.*.ip.*;
import inet.**.RoutingTable;

One asterisk "*" stands for "any character sequence not containing period"; two asterisks mean "any character
sequence which may contain period". No other wildcards are recognized.

An import not containing wildcard MUST match an existing NED type. However, it is legal for an import that does
contain wildcards not to match any NED type (although that might generate a warning.)

Inner types may not be referenced outside their enclosing types.

Base types and submodules

Fully qualified names and simple names are accepted. Simple names are looked up among the inner types of the
enclosing type (compound module), then using imports, then in the same package.

Parametric module types ("like" submodules)

Lookup of the actual module type for "like" submodules differs from normal lookups. This lookup ignores the imports
in the file altogether. Instead, it collects all modules that support the given interface and match the given type name
string (i.e. end in the same simple name, or have the same fully qualified name). The result must be exactly one
module type.

The algorithm for parametric channel types works in the same way.

Network name in the ini file

The network name in the ini file may be given as fully qualified name or as simple (unqualified) name.

Simple (unqualified) names are tried with the same package as the ini file is in (provided it's in a NED directory).

17.4.16 Implementing an interface

A module type may implement one or more module interfaces, and a channel type may implement one or more
channel interfaces, using the like keyword.

The module or channel type is required to have at least those parameters and gates that the interface has.

Regarding component properties, parameter properties and gate properties defined in the interface: the module or
channel type is required to have at least those properties, with at least the same values. It may have additional
properties, and properties may add more keys and values.

NOTE
Implementing an interface does not cause the properties, parameters and gates to be interited by the module

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

or channel type; they have to be added explicitly.

NOTE
A module or channel type may have extra properties, parameters and gates in addition to those in the
interface.

17.4.17 Inheritance

A simple module may only extend a simple module.
A compound module may only extend a compound module.
A channel may only extend a channel.
A module interface may only extend a module interface (or several module interfaces).
A channel interface may only extend a channel interface (or several channel interfaces).

A network is a shorthand for a compound module with the @isNetwork property set, so the same rules apply to it
as to compound modules.

Inheritance may:

add new properties, parameters, gates, inner types, submodules, connections, as long as names do not
conflict with inherited names
modify inherited properties, and properties of inherited parameters and gates
it may not modify inherited submodules, connections and inner types

Other inheritance rules:

for inner types: new inner types can be added, but inherited ones cannot be changed
for properties: contents will be merged (rules like for display strings: values on same key and same position
will overwrite old ones)
for parameters: type cannot be redefined; value may be redefined in subclasses or at place of usage
for gates: type cannot be redefined; vector size may be redefined in subclasses or at place of usage
for gate/parameter properties: extra properties can be added; existing properties can be overridden/extended
like for standalone properties
for submodules: new submodules may be added, but inherited ones cannot be modified
for connections: new connections may be added, but inherited ones cannot be modified

See other rules for specifics.

Property inheritance

Generally, properties may be modified via inheritance. Inheritance may:

add new keys
add/overwrite values for existing keys
remove a value from an existing key (by using the special value '-')

Parameter inheritance

Default values for parameters may be overridden in subclasses.

Parameter (non-default) assignments may also be overridden in subclasses.

Rationale
The latter is needed for ease of use of channels and their delay, ber, per, datarate parameters.

Gate inheritance

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Gate vector size may not be overridden in subclasses.

17.4.18 Network build order

When a network in instantiated for simulation, the module tree is built in a top-down preorder fashion. This means
that starting from an empty system module, all submodules are created, their parameters and vector sizes get
assigned and they get fully connected before proceeding to go into the submodules to build their internals.

This implies that inside a compound module definition (including in submodules and connections), one can refer to
the compound module's parameters and gate sizes, because they are already built at the time of usage.

The same rules apply to compound or simple modules created dynamically during runtime.

17.5 Expressions

NED language expressions have a C-like syntax, with some variations on operator names (see ^, #, ##).
Expressions may refer to module parameters, loop variables (inside connection for loops), gate vector and
module vector sizes, and other attributes of the model. Expressions can use built-in and user-defined functions as
well.

17.5.1 Operators

The following operators are supported (in order of decreasing precedence):

Operator Meaning

-, !, ~ unary minus, negation, bitwise complement

^ power-of

*, /, % multiply, divide, modulus

+, - add, subtract, string concatenation

<<, >> bitwise shift

&, |, # bitwise and, or, xor

== equal

!= not equal

>, >= greater, greater or equal

<, <= less, less or equal

&&, ||, ## logical operators and, or, xor

?: the C/C++ ``inline if''

Conversions

Values are of type boolean, long, double, string, or xml element. A long or double may have an associated
measurement unit (s, mW, etc.)

Long and double values are implicitly converted to one another where needed. Conversion is performed with the
C++ language's built-in typecast operator.

There is no implicit conversion between bool and numeric types, so 0 is not a synonym for false, and nonzero

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

numbers are not a synonym for true.

There is also no conversion between string and numeric types, so e.g. "foo"+5 is illegal. There are functions for
converting a number to string and vica versa.

NOTE
Implementation note: Currently the stack-based evaluation engine represents all numbers in double, i.e. it
does not use long on the stack. (This may change in future releases.) Details:

Integers (integer constants, long parameters, etc) are converted to double.
For bitwise operators, doubles are converted to unsigned long using the C/C++ built-in conversion
(type cast), the operation is performed, then the result is converted back to double.
For modulus (%), the operands are converted to long.

Unit handling

Operations involving numbers with units work in the following way.

Addition, substraction, and numeric comparisons require their arguments to have the same unit or compatible units;
in the latter case a unit conversion is performed before the operation. Incompatible units cause an error.

Power-of and bitwise operations require their arguments to be dimensionless.

Multiplying two numbers with units is not supported.

For division, dividing two numbers with units is only supported if the two units are convertible (i.e. the result will be
dimensionless). Dividing a dimensionless number with a number with unit is not supported.

17.5.2 Referencing parameters and loop variables

Identifiers in expressions occurring anywhere in component definitions are interpreted as referring to parameters of
the given component.

Exception: if an identifier occurs in a connection for loop and names a previously defined loop variable, then it is
understood as referring to the loop variable.

In submodule bodies, parameters of the same submodule can be referred to with the this qualifier:
this.destAddress.

Expressions may also refer to parameters of submodules defined earlier in NED file, using the
submoduleName.paramName or the submoduleName[index].paramName syntax.

17.5.3 The index operator

The index operator is only allowed in a vector submodule's body, and yields the index of the submodule instance.

17.5.4 The sizeof() operator

The sizeof() operator expects one argument, and it is only accepted in compound module definitions.

The sizeof(identifier) syntax occurring anywhere in a compound module yields the size of the named
submodule or gate vector of the compound module.

Inside submodule bodies, the size of a gate vector of the same submodule can be referred to with the this
qualifier: sizeof(this.out).

To refer to the size of a submodule's gate vector defined earlier in the NED file, use the

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

sizeof(submoduleName.gateVectorName) or sizeof(submoduleName[index].gateVectorName)
syntax.

17.5.5 The xmldoc() operator

The xmldoc() operator can be used to assign XML-type parameters, that is, point them to XML files or to specific
elements inside XML files.

xmldoc() has two flavours: one accepts a file name, the second accepts a file name plus an XPath-like
expression which selects an element inside the XML file.

xmldoc() with two arguments accepts a path expression to select an element within the document. The
expression syntax is similar to XPath.

If the expression matches several elements, the first element (in preorder depth-first traversal) will be selected.
(This is unlike XPath, which selects all matching nodes.)

The expression syntax is the following:

An expression consists of path components (or "steps") separated by "/" or "//".
A path component can be an element tag name, "*", "." or "..".
"/" means child element (just as in /usr/bin/gcc); "//" means an element any levels under the current
element.
".", ".." and "*" mean the current element, the parent element, and an element with any tag name,
respectively.
Element tag names and "*" can have an optional predicate in the form "[position]" or
"[@attribute='value']". Positions start from zero.
Predicates of the form "[@attribute=$param]" are also accepted, where $param can be one of:
$MODULE_FULLPATH, $MODULE_FULLNAME, $MODULE_NAME, $MODULE_INDEX, $MODULE_ID,
$PARENTMODULE_FULLPATH, $PARENTMODULE_FULLNAME, $PARENTMODULE_NAME,
$PARENTMODULE_INDEX, $PARENTMODULE_ID, $GRANDPARENTMODULE_FULLPATH,
$GRANDPARENTMODULE_FULLNAME, $GRANDPARENTMODULE_NAME, $GRANDPARENTMODULE_INDEX,
$GRANDPARENTMODULE_ID.

17.5.6 Functions

The functions available in NED are listed in Appendix [20].

17.5.7 Units of measurement

The following measurements units are recognized in constants. Other units can be used as well, but there are no
conversions available for them (i.e. parsec and kiloparsec will be treated as two completely unrelated units.)

Unit Name Value

s second

d day 86400s

h hour 3600s

min minute 60s

ms millisecond 1e-3s

us microsecond 1e-6s

ns nanosecond 1e-9s

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

ps picosecond 1e-12s

bps bit/sec

Kbps kilobit/sec 1e3bps

Mbps megabit/sec 1e6bps

Gbps gigabit/sec 1e9bps

Tbps terabit/sec 1e12bps

B byte

KB kilobyte 1024B

MB megabyte 1.04858e6B

GB gigabyte 1.07374e9B

TB terabyte 1.09951e12B

b bit

m meter

km kilometer 1e3m

cm centimeter 1e-2m

mm millimeter 1e-3m

W watt

mW milliwatt 1e-3W

Hz herz

kHz kiloherz 1e3Hz

MHz megaherz 1e6Hz

GHz gigaherz 1e9Hz

g gram 1e-3kg

kg kilogram

J joule

kJ kilojoule 1e3J

MJ megajoule 1e6J

V volt

kV kilovolt 1e3V

mV millivolt 1e-3V

A amper

mA milliamper 1e-3A

uA microamper 1e-6A

18 Appendix: NED Language Grammar

This appendix contains the grammar for the NED language.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

In the NED language, space, horizontal tab and new line characters count as delimiters, so one or more of them is
required between two elements of the description which would otherwise be unseparable.

'//' (two slashes) may be used to write comments that last to the end of the line.

The language is fully case sensitive.

Notation:

rule syntax is that of bison/yacc
uppercase words are terminals, lowercase words are nonterminals
NAME, STRINGCONSTANT, INTCONSTANT, REALCONSTANT represent identifier names and string, integer
and real number literals (defined as in the C language)
other terminals represent keywords in all lowercase

nedfile
 : definitions
 |
 ;

definitions
 : definitions definition
 | definition
 ;

definition
 : packagedeclaration
 | import
 | propertydecl
 | fileproperty
 | channeldefinition
 | channelinterfacedefinition
 | simplemoduledefinition
 | compoundmoduledefinition
 | networkdefinition
 | moduleinterfacedefinition
 | ';'
 ;

packagedeclaration
 : PACKAGE dottedname ';'
 ;

dottedname
 : dottedname '.' NAME
 | NAME
 ;

import
 : IMPORT importspec ';'

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 ;

importspec
 : importspec '.' importname
 | importname
 ;

importname
 : importname NAME
 | importname '*'
 | importname '**'
 | NAME
 | '*'
 | '**'
 ;

propertydecl
 : propertydecl_header opt_inline_properties ';'
 | propertydecl_header '(' opt_propertydecl_keys ')' opt_inline_properties ';'
 ;

propertydecl_header
 : PROPERTY '@' NAME
 | PROPERTY '@' NAME '[' ']'
 ;

opt_propertydecl_keys
 : propertydecl_keys
 |
 ;

propertydecl_keys
 : propertydecl_keys ';' propertydecl_key
 | propertydecl_key
 ;

propertydecl_key
 : NAME
 ;

fileproperty
 : property_namevalue ';'
 ;

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

channeldefinition
 : channelheader '{'
 opt_paramblock
 '}'
 ;

channelheader
 : CHANNEL NAME
 opt_inheritance
 ;

opt_inheritance
 :
 | EXTENDS extendsname
 | LIKE likenames
 | EXTENDS extendsname LIKE likenames
 ;

extendsname
 : dottedname
 ;

likenames
 : likenames ',' likename
 | likename
 ;

likename
 : dottedname
 ;

channelinterfacedefinition
 : channelinterfaceheader '{'
 opt_paramblock
 '}'
 ;

channelinterfaceheader
 : CHANNELINTERFACE NAME
 opt_interfaceinheritance
 ;

opt_interfaceinheritance
 : EXTENDS extendsnames
 |

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 ;

extendsnames
 : extendsnames ',' extendsname
 | extendsname
 ;

simplemoduledefinition
 : simplemoduleheader '{'
 opt_paramblock
 opt_gateblock
 '}'
 ;

simplemoduleheader
 : SIMPLE NAME
 opt_inheritance
 ;

compoundmoduledefinition
 : compoundmoduleheader '{'
 opt_paramblock
 opt_gateblock
 opt_typeblock
 opt_submodblock
 opt_connblock
 '}'
 ;

compoundmoduleheader
 : MODULE NAME
 opt_inheritance
 ;

networkdefinition
 : networkheader '{'
 opt_paramblock
 opt_gateblock
 opt_typeblock
 opt_submodblock
 opt_connblock
 '}'
 ;

networkheader
 : NETWORK NAME

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 opt_inheritance
 ;

moduleinterfacedefinition
 : moduleinterfaceheader '{'
 opt_paramblock
 opt_gateblock
 '}'
 ;

moduleinterfaceheader
 : MODULEINTERFACE NAME
 opt_interfaceinheritance
 ;

opt_paramblock
 : opt_params
 | PARAMETERS ':'
 opt_params
 ;

opt_params
 : params
 |
 ;

params
 : params paramsitem
 | paramsitem
 ;

paramsitem
 : param
 | property
 ;

param
 : param_typenamevalue
 | pattern_value
 ;

param_typenamevalue
 : param_typename opt_inline_properties ';'
 | param_typename opt_inline_properties '=' paramvalue opt_inline_properties ';'
 ;

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

param_typename
 : opt_volatile paramtype NAME
 | NAME
 ;

pattern_value
 : '/' pattern '/' '=' paramvalue
 ;

paramtype
 : DOUBLE
 | INT
 | STRING
 | BOOL
 | XML
 ;

opt_volatile
 : VOLATILE
 |
 ;

paramvalue
 : expression
 | DEFAULT '(' expression ')'
 | DEFAULT
 | ASK
 ;

opt_inline_properties
 : inline_properties
 |
 ;

inline_properties
 : inline_properties property_namevalue
 | property_namevalue
 ;

pattern
 : pattern pattern_elem
 | pattern_elem
 ;

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

pattern_elem
 : '.'
 | '*'
 | '?'
 | '**'
 | NAME
 | INTCONSTANT
 | '..'
 | '[' pattern ']'
 | '{' pattern '}'
 | IMPORT | PACKAGE | PROPERTY
 | MODULE | SIMPLE | NETWORK | CHANNEL | MODULEINTERFACE | CHANNELINTERFACE
 | EXTENDS | LIKE
 | DOUBLE | INT | STRING | BOOL | XML | VOLATILE
 | INPUT | OUTPUT | INOUT | IF | FOR
 | TYPES | PARAMETERS | GATES | SUBMODULES | CONNECTIONS | ALLOWUNCONNECTED
 | TRUE | FALSE | THIS | DEFAULT | CONST | SIZEOF | INDEX | XMLDOC
 ;

property
 : property_namevalue ';'
 ;

property_namevalue
 : property_name
 | property_name '(' opt_property_keys ')'
 ;

property_name
 : '@' NAME
 | '@' NAME '[' NAME ']'
 ;

opt_property_keys
 : property_keys
 ;

property_keys
 : property_keys ';' property_key
 | property_key
 ;

property_key
 : NAME '=' property_values
 | property_values
 ;

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

property_values
 : property_values ',' property_value
 | property_value
 ;

property_value
 : property_value_tokens
 | STRINGCONSTANT
 |
 ;

property_value_tokens
 : property_value_tokens property_value_token
 | property_value_token
 ;

property_value_token
 : NAME | INTCONSTANT | REALCONSTANT | TRUE | FALSE
 | '$' | '@' | ':' | '=' | '[' | ']' | '{' | '}' | '.' | '?'
 | '^' | '+' | '-' | '*' | '/' | '%' | '<' | '>' | '==' | '!=' | '<=' | '>='
 | '**' | '..' | '++' | '||' | '&&' | '##' | '!'
 ;

opt_gateblock
 : gateblock
 |
 ;

gateblock
 : GATES ':'
 opt_gates
 ;

opt_gates
 : gates
 |
 ;

gates
 : gates gate
 | gate
 ;

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

gate
 : gate_typenamesize
 opt_inline_properties ';'
 ;

gate_typenamesize
 : gatetype NAME
 | gatetype NAME '[' ']'
 | gatetype NAME vector
 | NAME
 | NAME '[' ']'
 | NAME vector
 ;

gatetype
 : INPUT
 | OUTPUT
 | INOUT
 ;

opt_typeblock
 : typeblock
 |
 ;

typeblock
 : TYPES ':'
 opt_localtypes
 ;

opt_localtypes
 : localtypes
 |
 ;

localtypes
 : localtypes localtype
 | localtype
 ;

localtype
 : propertydecl
 | channeldefinition
 | channelinterfacedefinition
 | simplemoduledefinition
 | compoundmoduledefinition

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 | networkdefinition
 | moduleinterfacedefinition
 | ';'
 ;

opt_submodblock
 : submodblock
 |
 ;

submodblock
 : SUBMODULES ':'
 opt_submodules
 ;

opt_submodules
 : submodules
 |
 ;

submodules
 : submodules submodule
 | submodule
 ;

submodule
 : submoduleheader ';'
 | submoduleheader '{'
 opt_paramblock
 opt_gateblock
 '}' opt_semicolon
 ;

submoduleheader
 : submodulename ':' dottedname
 | submodulename ':' likeparam LIKE dottedname
 ;

submodulename
 : NAME
 | NAME vector
 ;

likeparam
 : '<' '>'

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 | '<' expression '>'
 ;

opt_connblock
 : connblock
 |
 ;

connblock
 : CONNECTIONS ALLOWUNCONNECTED ':'
 opt_connections
 | CONNECTIONS ':'
 opt_connections
 ;

opt_connections
 : connections
 |
 ;

connections
 : connections connectionsitem
 | connectionsitem
 ;

connectionsitem
 : connectiongroup
 | connection opt_loops_and_conditions ';'
 ;

connectiongroup
 : opt_loops_and_conditions '{'
 connections '}' opt_semicolon
 ;

opt_loops_and_conditions
 : loops_and_conditions
 |
 ;

loops_and_conditions
 : loops_and_conditions ',' loop_or_condition
 | loop_or_condition
 ;

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

loop_or_condition
 : loop
 | condition
 ;

loop
 : FOR NAME '=' expression '..' expression
 ;

connection
 : leftgatespec '-->' rightgatespec
 | leftgatespec '-->' channelspec '-->' rightgatespec
 | leftgatespec '<--' rightgatespec
 | leftgatespec '<--' channelspec '<--' rightgatespec
 | leftgatespec '<-->' rightgatespec
 | leftgatespec '<-->' channelspec '<-->' rightgatespec
 ;

leftgatespec
 : leftmod '.' leftgate
 | parentleftgate
 ;

leftmod
 : NAME vector
 | NAME
 ;

leftgate
 : NAME opt_subgate
 | NAME opt_subgate vector
 | NAME opt_subgate '++'
 ;

parentleftgate
 : NAME opt_subgate
 | NAME opt_subgate vector
 | NAME opt_subgate '++'
 ;

rightgatespec
 : rightmod '.' rightgate
 | parentrightgate
 ;

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

rightmod
 : NAME
 | NAME vector
 ;

rightgate
 : NAME opt_subgate
 | NAME opt_subgate vector
 | NAME opt_subgate '++'
 ;

parentrightgate
 : NAME opt_subgate
 | NAME opt_subgate vector
 | NAME opt_subgate '++'
 ;

opt_subgate
 : '$' NAME
 |
 ;

channelspec
 : channelspec_header
 | channelspec_header '{'
 opt_paramblock
 '}'
 ;

channelspec_header
 :
 | dottedname
 | likeparam LIKE dottedname
 ;

condition
 : IF expression
 ;

vector
 : '[' expression ']'
 ;

expression
 :

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 expr
 | xmldocvalue
 ;

xmldocvalue
 : XMLDOC '(' stringliteral ',' stringliteral ')'
 | XMLDOC '(' stringliteral ')'
 ;

expr
 : simple_expr
 | '(' expr ')'
 | CONST '(' expr ')'
 | expr '+' expr
 | expr '-' expr
 | expr '*' expr
 | expr '/' expr
 | expr '%' expr
 | expr '^' expr
 | '-' expr
 | expr '==' expr
 | expr '!=' expr
 | expr '>' expr
 | expr '>=' expr
 | expr '<' expr
 | expr '<=' expr
 | expr '&&' expr
 | expr '||' expr
 | expr '##' expr
 | '!' expr
 | expr '&' expr
 | expr '|' expr
 | expr '#' expr
 | '~' expr
 | expr '<<' expr
 | expr '>>' expr
 | expr '?' expr ':' expr
 | INT '(' expr ')'
 | DOUBLE '(' expr ')'
 | STRING '(' expr ')'
 | NAME '(' ')'
 | NAME '(' expr ')'
 | NAME '(' expr ',' expr ')'
 | NAME '(' expr ',' expr ',' expr ')'
 | NAME '(' expr ',' expr ',' expr ',' expr ')'
 | NAME '(' expr ',' expr ',' expr ',' expr ',' expr ')'
 | NAME '(' expr ',' expr ',' expr ',' expr ',' expr ',' expr ')'
 | NAME '(' expr ',' expr ',' expr ',' expr ',' expr ',' expr ',' expr ')'
 | NAME '(' expr ',' expr ',' expr ',' expr ',' expr ',' expr ',' expr ',' expr ')'

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 | NAME '(' expr ',' expr ',' expr ',' expr ',' expr ',' expr ',' expr ',' expr ',' expr ')'
 | NAME '(' expr ',' expr ',' expr ',' expr ',' expr ',' expr ',' expr ',' expr ',' expr ',' expr ')'
 ;

simple_expr
 : identifier
 | special_expr
 | literal
 ;

identifier
 : NAME
 | THIS '.' NAME
 | NAME '.' NAME
 | NAME '[' expr ']' '.' NAME
 ;

special_expr
 : INDEX
 | INDEX '(' ')'
 | SIZEOF '(' identifier ')'
 ;

literal
 : stringliteral
 | boolliteral
 | numliteral
 ;

stringliteral
 : STRINGCONSTANT
 ;

boolliteral
 : TRUE
 | FALSE
 ;

numliteral
 : INTCONSTANT
 | REALCONSTANT
 | quantity
 ;

quantity

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 : quantity INTCONSTANT NAME
 | quantity REALCONSTANT NAME
 | INTCONSTANT NAME
 | REALCONSTANT NAME
 ;

opt_semicolon
 : ';'
 |
 ;

19 Appendix: NED XML Binding

This appendix shows the DTD for the XML binding of the NED language and message definitions.

<!ELEMENT files ((ned-file|msg-file)*)>

<!--
 ** NED-2.
 -->

<!ELEMENT ned-file (comment*, (package|import|property-decl|property|
 simple-module|compound-module|module-interface|
 channel|channel-interface)*)>
<!ATTLIST ned-file
 filename CDATA #REQUIRED
 version CDATA "2">

<!-- comments and whitespace; comments include '//' marks. Note that although
 nearly all elements may contain comment elements, there are places
 (e.g. within expressions) where they are ignored by the implementation.
 Default value is a space or a newline, depending on the context.
 -->
<!ELEMENT comment EMPTY>
<!ATTLIST comment
 locid NMTOKEN #REQUIRED
 content CDATA #IMPLIED>

<!ELEMENT package (comment*)>
<!ATTLIST package
 name CDATA #REQUIRED>

<!ELEMENT import (comment*)>
<!ATTLIST import
 import-spec CDATA #REQUIRED>

<!ELEMENT property-decl (comment*, property-key*, property*)>
<!ATTLIST property-decl
 name NMTOKEN #REQUIRED
 is-array (true|false) "false">

<!ELEMENT extends (comment*)>
<!ATTLIST extends
 name CDATA #REQUIRED>

<!ELEMENT interface-name (comment*)>

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

<!ATTLIST interface-name
 name CDATA #REQUIRED>

<!ELEMENT simple-module (comment*, extends?, interface-name*, parameters?, gates?
)>
<!ATTLIST simple-module
 name NMTOKEN #REQUIRED>

<!ELEMENT module-interface (comment*, extends*, parameters?, gates?)>
<!ATTLIST module-interface
 name NMTOKEN #REQUIRED>

<!ELEMENT compound-module (comment*, extends?, interface-name*,
 parameters?, gates?, types?, submodules?, connections?
)>
<!ATTLIST compound-module
 name NMTOKEN #REQUIRED>

<!ELEMENT channel-interface (comment*, extends*, parameters?)>
<!ATTLIST channel-interface
 name NMTOKEN #REQUIRED>

<!ELEMENT channel (comment*, extends?, interface-name*, parameters?)>
<!ATTLIST channel
 name NMTOKEN #REQUIRED>

<!ELEMENT parameters (comment*, (property|param|pattern)*)>
<!ATTLIST parameters
 is-implicit (true|false) "false">

<!ELEMENT param (comment*, expression?, property*)>
<!ATTLIST param
 type (double|int|string|bool|xml) #IMPLIED
 is-volatile (true|false) "false"
 name NMTOKEN #REQUIRED
 value CDATA #IMPLIED
 is-default (true|false) "false">

<!ELEMENT pattern (comment*, expression?, property*)>
<!ATTLIST pattern
 pattern CDATA #REQUIRED
 value CDATA #IMPLIED
 is-default (true|false) "false">

<!ELEMENT property (comment*, property-key*)>
<!ATTLIST property
 is-implicit (true|false) "false"
 name NMTOKEN #REQUIRED
 index NMTOKEN #IMPLIED>

<!ELEMENT property-key (comment*, literal*)>
<!ATTLIST property-key
 name CDATA #IMPLIED>

<!ELEMENT gates (comment*, gate*)>

<!ELEMENT gate (comment*, expression?, property*)>
<!ATTLIST gate
 name NMTOKEN #REQUIRED
 type (input|output|inout) #IMPLIED
 is-vector (true|false) "false"
 vector-size CDATA #IMPLIED>

<!ELEMENT types (comment*, (channel|channel-interface|simple-module|
 compound-module|module-interface)*)>

<!ELEMENT submodules (comment*, submodule*)>

<!ELEMENT submodule (comment*, expression*, parameters?, gates?)>

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

<!ATTLIST submodule
 name NMTOKEN #REQUIRED
 type CDATA #IMPLIED
 like-type CDATA #IMPLIED
 like-param CDATA #IMPLIED
 vector-size CDATA #IMPLIED>

<!ELEMENT connections (comment*, (connection|connection-group)*)>
<!ATTLIST connections
 allow-unconnected (true|false) "false">

<!ELEMENT connection (comment*, expression*, channel-spec?, (loop|condition)*)>
<!ATTLIST connection
 src-module NMTOKEN #IMPLIED
 src-module-index CDATA #IMPLIED
 src-gate NMTOKEN #REQUIRED
 src-gate-plusplus (true|false) "false"
 src-gate-index CDATA #IMPLIED
 src-gate-subg (i|o) #IMPLIED
 dest-module NMTOKEN #IMPLIED
 dest-module-index CDATA #IMPLIED
 dest-gate NMTOKEN #REQUIRED
 dest-gate-plusplus (true|false) "false"
 dest-gate-index CDATA #IMPLIED
 dest-gate-subg (i|o) #IMPLIED
 arrow-direction (l2r|r2l|bidir) #REQUIRED>

<!ELEMENT channel-spec (comment*, expression*, parameters?)>
<!ATTLIST channel-spec
 type CDATA #IMPLIED
 like-type CDATA #IMPLIED
 like-param CDATA #IMPLIED>

<!ELEMENT connection-group (comment*, (loop|condition)*, connection*)>

<!ELEMENT loop (comment*, expression*)>
<!ATTLIST loop
 param-name NMTOKEN #REQUIRED
 from-value CDATA #IMPLIED
 to-value CDATA #IMPLIED>

<!ELEMENT condition (comment*, expression?)>
<!ATTLIST condition
 condition CDATA #IMPLIED>

<!--
 ** Expressions
 -->

<!ELEMENT expression (comment*, (operator|function|ident|literal))>
<!ATTLIST expression
 target CDATA #IMPLIED>

<!ELEMENT operator (comment*, (operator|function|ident|literal)+)>
<!ATTLIST operator
 name CDATA #REQUIRED>

<!-- functions, "index", "const" and "sizeof" -->
<!ELEMENT function (comment*, (operator|function|ident|literal)*)>
<!ATTLIST function
 name NMTOKEN #REQUIRED>

<!-- Ident is either a parameter reference or an identifier for 'sizeof' operator
 format is 'name' or 'module.name' or 'module[n].name'. If there's a child,
 that's the module index n.
-->
<!ELEMENT ident (comment*, (operator|function|ident|literal)?)>
<!ATTLIST ident
 module CDATA #IMPLIED

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 name NMTOKEN #REQUIRED>

<!ELEMENT literal (comment*)>
<!-- Note: value is in fact REQUIRED, but empty attr value should
 also be accepted because that represents the "" string literal;
 "spec" is for properties, to store the null value and "-",
 the antivalue. Unit can only be present with "double".
 -->
<!ATTLIST literal
 type (double|int|string|bool|spec) #REQUIRED
 unit CDATA #IMPLIED
 text CDATA #IMPLIED
 value CDATA #IMPLIED>

<!--**-->

<!--
**
** OMNeT++/OMNEST Message Definitions (MSG)
**
-->

<!ELEMENT msg-file (comment*, (namespace|property-decl|property|cplusplus|
 struct-decl|class-decl|message-decl|packet-decl|enum-decl|
 struct|class|message|packet|enum)*)>

<!ATTLIST msg-file
 filename CDATA #IMPLIED
 version CDATA "2">

<!ELEMENT namespace (comment*)>
<!ATTLIST namespace
 name CDATA #REQUIRED> <!-- note: not NMTOKEN because it
may contain "::" -->

<!ELEMENT cplusplus (comment*)>
<!ATTLIST cplusplus
 body CDATA #REQUIRED>

<!-- C++ type announcements -->

<!ELEMENT struct-decl (comment*)>
<!ATTLIST struct-decl
 name NMTOKEN #REQUIRED>

<!ELEMENT class-decl (comment*)>
<!ATTLIST class-decl
 name NMTOKEN #REQUIRED
 is-cobject (true|false) "false"
 extends-name NMTOKEN #IMPLIED>

<!ELEMENT message-decl (comment*)>
<!ATTLIST message-decl
 name NMTOKEN #REQUIRED>

<!ELEMENT packet-decl (comment*)>
<!ATTLIST packet-decl
 name NMTOKEN #REQUIRED>

<!ELEMENT enum-decl (comment*)>
<!ATTLIST enum-decl
 name NMTOKEN #REQUIRED>

<!-- Enums -->

<!ELEMENT enum (comment*, enum-fields?)>
<!ATTLIST enum
 name NMTOKEN #REQUIRED

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 extends-name NMTOKEN #IMPLIED
 source-code CDATA #IMPLIED>

<!ELEMENT enum-fields (comment*, enum-field*)>

<!ELEMENT enum-field (comment*)>
<!ATTLIST enum-field
 name NMTOKEN #REQUIRED
 value CDATA #IMPLIED>

<!-- Message, class, struct -->

<!ELEMENT message (comment*, (property|field)*)>
<!ATTLIST message
 name NMTOKEN #REQUIRED
 extends-name NMTOKEN #IMPLIED
 source-code CDATA #IMPLIED>

<!ELEMENT packet (comment*, (property|field)*)>
<!ATTLIST packet
 name NMTOKEN #REQUIRED
 extends-name NMTOKEN #IMPLIED
 source-code CDATA #IMPLIED>

<!ELEMENT class (comment*, (property|field)*)>
<!ATTLIST class
 name NMTOKEN #REQUIRED
 extends-name NMTOKEN #IMPLIED
 source-code CDATA #IMPLIED>

<!ELEMENT struct (comment*, (property|field)*)>
<!ATTLIST struct
 name NMTOKEN #REQUIRED
 extends-name NMTOKEN #IMPLIED
 source-code CDATA #IMPLIED>

<!ELEMENT field (comment*)>
<!ATTLIST field
 name NMTOKEN #REQUIRED
 data-type CDATA #IMPLIED
 is-abstract (true|false) "false"
 is-readonly (true|false) "false"
 is-vector (true|false) "false"
 vector-size CDATA #IMPLIED
 enum-name NMTOKEN #IMPLIED
 default-value CDATA #IMPLIED>

<!--
 ** 'unknown' is used internally to represent elements not in this NED DTD
 -->
<!ELEMENT unknown ANY>
<!ATTLIST unknown
 element CDATA #REQUIRED>

20 Appendix: NED Functions

The functions that can be used in NED expressions and ini files are the following. The question mark (as in
``rng? '') marks optional arguments.

Category "conversion":

[double]: double double(any x)

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Converts x to double, and returns the result. A boolean argument becomes 0 or 1; a string is interpreted as
number; an XML argument causes an error.

[int]: long int(any x)
Converts x to long, and returns the result. A boolean argument becomes 0 or 1; a double is converted using floor();
a string is interpreted as number; an XML argument causes an error.

[string]: string string(any x)
Converts x to string, and returns the result.

Category "math":

[acos]: double acos(double)
Trigonometric function; see standard C function of the same name

[asin]: double asin(double)
Trigonometric function; see standard C function of the same name

[atan]: double atan(double)
Trigonometric function; see standard C function of the same name

[atan2]: double atan2(double, double)
Trigonometric function; see standard C function of the same name

[ceil]: double ceil(double)
Rounds down; see standard C function of the same name

[cos]: double cos(double)
Trigonometric function; see standard C function of the same name

[exp]: double exp(double)
Exponential; see standard C function of the same name

[fabs]: quantity fabs(quantity x)
Returns the absolute value of the quantity.

[floor]: double floor(double)
Rounds up; see standard C function of the same name

[fmod]: quantity fmod(quantity x, quantity y)
Returns the floating-point remainder of x/y; unit conversion takes place if needed.

[hypot]: double hypot(double, double)
Length of the hypotenuse; see standard C function of the same name

[log]: double log(double)
Natural logarithm; see standard C function of the same name

[log10]: double log10(double)
Base-10 logarithm; see standard C function of the same name

[max]: quantity max(quantity a, quantity b)
Returns the greater one of the two quantities; unit conversion takes place if needed.

[min]: quantity min(quantity a, quantity b)
Returns the smaller one of the two quantities; unit conversion takes place if needed.

[pow]: double pow(double, double)
Power; see standard C function of the same name

[sin]: double sin(double)
Trigonometric function; see standard C function of the same name

[sqrt]: double sqrt(double)
Square root; see standard C function of the same name

[tan]: double tan(double)
Trigonometric function; see standard C function of the same name

Category "ned":

[ancestorIndex]: long ancestorIndex(long numLevels)
Returns the index of the ancestor module numLevels levels above the module or channel in context.

[fullName]: string fullName()
Returns the full name of the module or channel in context.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

[fullPath]: string fullPath()
Returns the full path of the module or channel in context.

[parentIndex]: long parentIndex()
Returns the index of the parent module, which has to be part of module vector.

Category "random/continuous":

[beta]: double beta(double alpha1, double alpha2, long rng?)
Returns a random number from the Beta distribution

[cauchy]: quantity cauchy(quantity a, quantity b, long rng?)
Returns a random number from the Cauchy distribution

[chi_square]: double chi_square(long k, long rng?)
Returns a random number from the Chi-square distribution

[erlang_k]: quantity erlang_k(long k, quantity mean, long rng?)
Returns a random number from the Erlang distribution

[exponential]: quantity exponential(quantity mean, long rng?)
Returns a random number from the Exponential distribution

[gamma_d]: quantity gamma_d(double alpha, quantity theta, long rng?)
Returns a random number from the Gamma distribution

[lognormal]: double lognormal(double m, double w, long rng?)
Returns a random number from the Lognormal distribution

[normal]: quantity normal(quantity mean, quantity stddev, long rng?)
Returns a random number from the Normal distribution

[pareto_shifted]: quantity pareto_shifted(double a, quantity b, quantity c, long rng?)
Returns a random number from the Pareto-shifted distribution

[student_t]: double student_t(long i, long rng?)
Returns a random number from the Student-t distribution

[triang]: quantity triang(quantity a, quantity b, quantity c, long rng?)
Returns a random number from the Triangular distribution

[truncnormal]: quantity truncnormal(quantity mean, quantity stddev, long rng?)
Returns a random number from the Truncated Normal distribution

[uniform]: quantity uniform(quantity a, quantity b, long rng?)
Returns a random number from the Uniform distribution

[weibull]: quantity weibull(quantity a, quantity b, long rng?)
Returns a random number from the Weibull distribution

Category "random/discrete":

[bernoulli]: long bernoulli(double p, long rng?)
Returns a random number from the Bernoulli distribution

[binomial]: long binomial(long n, double p, long rng?)
Returns a random number from the Binomial distribution

[geometric]: long geometric(double p, long rng?)
Returns a random number from the Geometric distribution

[intuniform]: long intuniform(long a, long b, long rng?)
Returns a random number from the Intuniform distribution

[negbinomial]: long negbinomial(long n, double p, long rng?)
Returns a random number from the Negbinomial distribution

[poisson]: long poisson(double lambda, long rng?)
Returns a random number from the Poisson distribution

Category "strings":

[choose]: string choose(long index, string list)
Interprets list as a space-separated list, and returns the item at the given index. Negative and out-of-bounds indices

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

cause an error.
[contains]: bool contains(string s, string substr)

Returns true if string s contains substr as substring
[endsWith]: bool endsWith(string s, string substr)

Returns true if s ends with the substring substr.
[indexOf]: long indexOf(string s, string substr)

Returns the position of the first occurrence of substring substr in s, or -1 if s does not contain substr.
[length]: long length(string s)

Returns the length of the string
[replace]: string replace(string s, string substr, string repl, long startPos?)

Replaces all occurrences of substr in s with the string repl. If startPos is given, search begins from position startPos
in s.

[replaceFirst]: string replaceFirst(string s, string substr, string repl, long startPos?
)
Replaces the first occurrence of substr in s with the string repl. If startPos is given, search begins from position
startPos in s.

[startsWith]: bool startsWith(string s, string substr)
Returns true if s begins with the substring substr.

[substring]: string substring(string s, long pos, long len?)
Return the substring of s starting at the given position, either to the end of the string or maximum len characters

[substringAfter]: string substringAfter(string s, string substr)
Returns the substring of s after the first occurrence of substr, or the empty string if s does not contain substr.

[substringAfterLast]: string substringAfterLast(string s, string substr)
Returns the substring of s after the last occurrence of substr, or the empty string if s does not contain substr.

[substringBefore]: string substringBefore(string s, string substr)
Returns the substring of s before the first occurrence of substr, or the empty string if s does not contain substr.

[substringBeforeLast]: string substringBeforeLast(string s, string substr)
Returns the substring of s before the last occurrence of substr, or the empty string if s does not contain substr.

[tail]: string tail(string s, long len)
Returns the last len character of s, or the full s if it is shorter than len characters.

[toLower]: string toLower(string s)
Converts s to all lowercase, and returns the result.

[toUpper]: string toUpper(string s)
Converts s to all uppercase, and returns the result.

[trim]: string trim(string s)
Discards whitespace from the start and end of s, and returns the result.

Category "units":

[convertUnit]: quantity convertUnit(quantity x, string unit)
Converts x to the given unit.

[dropUnit]: double dropUnit(quantity x)
Removes the unit of measurement from quantity x.

[replaceUnit]: quantity replaceUnit(quantity x, string unit)
Replaces the unit of x with the given unit.

[unitOf]: string unitOf(quantity x)
Returns the unit of the given quantity.

21 Appendix: Message Definitions Grammar

This appendix contains the grammar for the message definitions language.

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

In the language, space, horizontal tab and new line characters count as delimiters, so one or more of them is
required between two elements of the description which would otherwise be unseparable.

'//' (two slashes) may be used to write comments that last to the end of the line.

The language is fully case sensitive.

Notation:

rule syntax is that of bison/yacc
uppercase words are terminals, lowercase words are nonterminals
NAME, CHARCONSTANT, STRINGCONSTANT, INTCONSTANT, REALCONSTANT represent identifier names and
string, character, integer and real number literals (defined as in the C language)
other terminals represent keywords in all lowercase

Nonterminals ending in _old are present so that message files from the previous versions of OMNeT++ (3.x) can
be parsed.

msgfile
 : definitions
 ;

definitions
 : definitions definition
 |
 ;

definition
 : namespace_decl
 | cplusplus
 | struct_decl
 | class_decl
 | message_decl
 | packet_decl
 | enum_decl
 | enum
 | message
 | packet
 | class
 | struct
 ;

namespace_decl
 : NAMESPACE namespacename ';'

namespacename
 : namespacename ':' ':' NAME
 | NAME
 ;

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

cplusplus
 : CPLUSPLUS '{{' ... '}}' opt_semicolon
 ;

struct_decl
 : STRUCT NAME ';'
 ;

class_decl
 : CLASS NAME ';'
 | CLASS NONCOBJECT NAME ';'
 | CLASS NAME EXTENDS NAME ';'
 ;

message_decl
 : MESSAGE NAME ';'
 ;

packet_decl
 : PACKET NAME ';'
 ;

enum_decl
 : ENUM NAME ';'
 ;

enum
 : ENUM NAME '{'
 opt_enumfields '}' opt_semicolon
 | ENUM NAME EXTENDS NAME '{'
 opt_enumfields '}' opt_semicolon
 ;

opt_enumfields
 : enumfields
 |
 ;

enumfields
 : enumfields enumfield
 | enumfield
 ;

enumfield

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 : NAME ';'
 | NAME '=' enumvalue ';'
 ;

message
 : message_header body
 ;

packet
 : packet_header body
 ;

class
 : class_header body
 ;

struct
 : struct_header body
 ;

message_header
 : MESSAGE NAME '{'
 | MESSAGE NAME EXTENDS NAME '{'
 ;

packet_header
 : PACKET NAME '{'
 | PACKET NAME EXTENDS NAME '{'
 ;

class_header
 : CLASS NAME '{'
 | CLASS NAME EXTENDS NAME '{'
 ;

struct_header
 : STRUCT NAME '{'
 | STRUCT NAME EXTENDS NAME '{'
 ;

body
 : opt_fields_and_properties
 opt_propertiesblock_old
 opt_fieldsblock_old

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 '}' opt_semicolon
 ;

opt_fields_and_properties
 : fields_and_properties
 |
 ;

fields_and_properties
 : fields_and_properties field
 | fields_and_properties property
 | field
 | property
 ;

field
 : fieldmodifiers fielddatatype NAME
 opt_fieldvector opt_fieldenum opt_fieldvalue ';'
 | fieldmodifiers NAME
 opt_fieldvector opt_fieldenum opt_fieldvalue ';'
 ;

fieldmodifiers
 : ABSTRACT
 | READONLY
 | ABSTRACT READONLY
 | READONLY ABSTRACT
 |
 ;

fielddatatype
 : NAME
 | NAME '*'
 | CHAR
 | SHORT
 | INT
 | LONG
 | UNSIGNED CHAR
 | UNSIGNED SHORT
 | UNSIGNED INT
 | UNSIGNED LONG
 | DOUBLE
 | STRING
 | BOOL
 ;

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

opt_fieldvector
 : '[' INTCONSTANT ']'
 | '[' NAME ']'
 | '[' ']'
 |
 ;

opt_fieldenum
 : ENUM '(' NAME ')'
 |
 ;

opt_fieldvalue
 : '=' fieldvalue
 |
 ;

fieldvalue
 : fieldvalue fieldvalueitem
 | fieldvalueitem
 ;

fieldvalueitem
 : STRINGCONSTANT
 | CHARCONSTANT
 | INTCONSTANT
 | REALCONSTANT
 | TRUE
 | FALSE
 | NAME
 | '?' | ':' | '&&' | '||' | '##' | '==' | '!=' | '>' | '>=' | '<' | '<='
 | '&' | '|' | '#' | '<<' | '>>'
 | '+' | '-' | '*' | '/' | '%' | '^' | '&' | UMIN | '!' | '~'
 | '.' | ',' | '(' | ')' | '[' | ']'
 ;

enumvalue
 : INTCONSTANT
 | '-' INTCONSTANT
 | NAME
 ;

quantity
 : quantity INTCONSTANT NAME
 | quantity REALCONSTANT NAME
 | INTCONSTANT NAME

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 | REALCONSTANT NAME
 ;

property
 : property_namevalue ';'
 ;

property_namevalue
 : property_name
 | property_name '(' opt_property_keys ')'
 ;

property_name
 : '@' NAME
 | '@' NAME '[' NAME ']'
 ;

opt_property_keys
 : property_keys
 ;

property_keys
 : property_keys ';' property_key
 | property_key
 ;

property_key
 : NAME '=' property_values
 | property_values
 ;

property_values
 : property_values ',' property_value
 | property_value
 ;

property_value
 : NAME
 | '$' NAME
 | STRINGCONSTANT
 | TRUE
 | FALSE
 | INTCONSTANT
 | REALCONSTANT
 | quantity

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 | '-'
 |
 ;

opt_fieldsblock_old
 : FIELDS ':'
 opt_fields_old
 |
 ;

opt_fields_old
 : fields_old
 |
 ;

fields_old
 : fields_old field
 | field
 ;

opt_propertiesblock_old
 : PROPERTIES ':'
 opt_properties_old
 |
 ;

opt_properties_old
 : properties_old
 |
 ;

properties_old
 : properties_old property_old
 | property_old
 ;

property_old
 : NAME '=' property_value ';'
 ;

opt_semicolon : ';' | ;

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

22 Appendix: Display String Tags

22.1 Module and connection display string tags

Supported module and connection display string tags are listed in the following table.
Tag[argument index] -
name

Description

p[0] - x X position of the center of the icon/shape; defaults to automatic graph layouting

p[1] - y Y position of the center of the icon/shape; defaults to automatic graph layouting

p[2] - arrangement Arrangement of submodule vectors. Values: row (r), column (c), matrix (m), ring (ri), exact (x)

p[3] - arr. par1 Depends on arrangement: matrix => ncols, ring => rx, exact => dx, row => dx, column => dy

p[4] - arr. par2 Depends on arrangement: matrix => dx, ring => ry, exact => dy

p[5] - arr. par3 Depends on arrangement: matrix => dy

b[0] - width Width of object. Default: 40

b[1] - height Height of object. Default: 24

b[2] - shape Shape of object. Values: rectangle (rect), oval (oval). Default: rect

b[3] - fill color Fill color of the object (colorname or #RRGGBB or @HHSSBB). Default: #8080ff

b[4] - border color Border color of the object (colorname or #RRGGBB or @HHSSBB). Default: black

b[5] - border width Border width of the object. Default: 2

i[0] - icon An icon representing the object

i[1] - icon color A color to colorize the icon (colorname or #RRGGBB or @HHSSBB)

i[2] - icon colorization % Amount of colorization in percent. Default: 30

is[0] - icon size The size of the image. Values: very small (vs), small (s), normal (n), large (l), very large (vl)

i2[0] - overlay icon An icon added to the upper right corner of the original image

i2[1] - overlay icon color A color to colorize the overlay icon (colorname or #RRGGBB or @HHSSBB)

i2[2] - overlay icon colorization
%

Amount of colorization in percent. Default: 30

r[0] - range Radius of the range indicator

r[1] - range fill color Fill color of the range indicator (colorname or #RRGGBB or @HHSSBB)

r[2] - range border color Border color of the range indicator (colorname or #RRGGBB or @HHSSBB). Default: black

r[3] - range border width Border width of the range indicator. Default: 1

q[0] - queue object Displays the length of the named queue object

t[0] - text Additional text to display

t[1] - text position Position of the text. Values: left (l), right (r), top (t). Default: t

t[2] - text color Color of the displayed text (colorname or #RRGGBB or @HHSSBB). Default: blue

tt[0] - tooltip Tooltip to be displayed over the object

bgp[0] - bg x Module background horizontal offset

bgp[1] - bg y Module background vertical offset

bgb[0] - bg width Width of the module background rectangle

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

bgb[1] - bg height Height of the module background rectangle

bgb[2] - bg fill color Background fill color (colorname or #RRGGBB or @HHSSBB). Default: grey82

bgb[3] - bg border color Border color of the module background rectangle (colorname or #RRGGBB or @HHSSBB).
Default: black

bgb[4] - bg border width Border width of the module background rectangle. Default: 2

bgtt[0] - bg tooltip Tooltip to be displayed over the module's background

bgi[0] - bg image An image to be displayed as a module background

bgi[1] - bg image mode How to arrange the module's background image. Values: fix (f), tile (t), stretch (s), center (c).
Default: fixed

bgg[0] - grid tick distance Distance between two major ticks measured in units

bgg[1] - grid minor ticks Minor ticks per major ticks. Default: 1

bgg[2] - grid color Color of the grid lines (colorname or #RRGGBB or @HHSSBB). Default: grey

bgl[0] - layout seed Seed value for layout algorithm

bgl[1] - layout algorithm Algorithm for child layouting

bgs[0] - pixels per unit Number of pixels per distance unit

bgs[1] - unit name Name of distance unit

ls[0] - line color Connection color (colorname or #RRGGBB or @HHSSBB). Default: black

ls[1] - line width Connection line width. Default: 1

ls[2] - line style Connection line style. Values: solid (s), dotted (d), dashed (da). Default: solid

22.2 Message display string tags

To customize the appearance of messages in the graphical runtime environment, override the
getDisplayString() method of cMessage or cPacket to return a display string.

Tag Meaning

b=width,height,oval Ellipse with the given height and width.

Defaults: width=10, height=10

b=width,height,rect Rectangle with the given height and width.

Defaults: width=10, height=10

o=fillcolor,outlinecolor,borderwidth Specifies options for the rectangle or oval. For color notation, see section [10.3].

Defaults: fillcolor=red, outlinecolor=black, borderwidth=1

i=iconname,color,percentage Use the named icon. It can be colorized, and percentage specifies the amount of
colorization. If color name is "kind", a message kind dependent colors is used (like default
behaviour).

Defaults: iconname: no default -- if no icon name is present, a small red solid
circle will be used; color: no coloring; percentage: 30%

tt=tooltip-text Displays the given text in a tooltip when the user moves the mouse over the message icon.

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcPacket.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

23 Appendix: Configuration Options

23.1 Configuration Options

This section lists all configuration options that are available in ini files. A similar list can be obtained from any
simulation executable by running it with the -h configdetails option.

cmdenv-autoflush=<bool>, default:false; per-run setting
 Call fflush(stdout) after each event banner or status update; affects both
 express and normal mode. Turning on autoflush may have a performance
 penalty, but it can be useful with printf-style debugging for tracking down
 program crashes.

cmdenv-config-name=<string>; global setting
 Specifies the name of the configuration to be run (for a value `Foo',
 section [Config Foo] will be used from the ini file). See also
 cmdenv-runs-to-execute=. The -c command line option overrides this setting.

<object-full-path>.cmdenv-ev-output=<bool>, default:true; per-object setting
 When cmdenv-express-mode=false: whether Cmdenv should print debug messages
 (ev<<) from the selected modules.

cmdenv-event-banner-details=<bool>, default:false; per-run setting
 When cmdenv-express-mode=false: print extra information after event
 banners.

cmdenv-event-banners=<bool>, default:true; per-run setting
 When cmdenv-express-mode=false: turns printing event banners on/off.

cmdenv-express-mode=<bool>, default:true; per-run setting
 Selects ``normal'' (debug/trace) or ``express'' mode.

cmdenv-extra-stack=<double>, unit="B", default:8KB; global setting
 Specifies the extra amount of stack that is reserved for each activity()
 simple module when the simulation is run under Cmdenv.

cmdenv-interactive=<bool>, default:false; global setting
 Defines what Cmdenv should do when the model contains unassigned
 parameters. In interactive mode, it asks the user. In non-interactive mode
 (which is more suitable for batch execution), Cmdenv stops with an error.

cmdenv-message-trace=<bool>, default:false; per-run setting
 When cmdenv-express-mode=false: print a line per message sending (by
 send(),scheduleAt(), etc) and delivery on the standard output.

cmdenv-module-messages=<bool>, default:true; per-run setting
 When cmdenv-express-mode=false: turns printing module ev<< output on/off.

cmdenv-output-file=<filename>; global setting
 When a filename is specified, Cmdenv redirects standard output into the
 given file. This is especially useful with parallel simulation. See the
 `fname-append-host' option as well.

cmdenv-performance-display=<bool>, default:true; per-run setting
 When cmdenv-express-mode=true: print detailed performance information.
 Turning it on results in a 3-line entry printed on each update, containing
 ev/sec, simsec/sec, ev/simsec, number of messages created/still
 present/currently scheduled in FES.

cmdenv-runs-to-execute=<string>; global setting
 Specifies which runs to execute from the selected configuration (see
 cmdenv-config-name=). It accepts a comma-separated list of run numbers or
 run number ranges, e.g. 1,3..4,7..9. If the value is missing, Cmdenv
 executes all runs in the selected configuration. The -r command line option

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 overrides this setting.

cmdenv-status-frequency=<int>, default:100000; per-run setting
 When cmdenv-express-mode=true: print status update every n events. Typical
 values are 100,000...1,000,000.

configuration-class=<string>; global setting
 Part of the Envir plugin mechanism: selects the class from which all
 configuration information will be obtained. This option lets you replace
 omnetpp.ini with some other implementation, e.g. database input. The
 simulation program still has to bootstrap from an omnetpp.ini (which
 contains the configuration-class setting). The class should implement the
 cConfiguration interface.

constraint=<string>; per-run setting
 For scenarios. Contains an expression that iteration variables (${} syntax)
 must satisfy for that simulation to run. Example: $i < $j+1.

cpu-time-limit=<double>, unit="s"; per-run setting
 Stops the simulation when CPU usage has reached the given limit. The
 default is no limit.

debug-on-errors=<bool>, default:false; global setting
 When set to true, runtime errors will cause the simulation program to break
 into the C++ debugger (if the simulation is running under one, or
 just-in-time debugging is activated). Once in the debugger, you can view
 the stack trace or examine variables.

description=<string>; per-run setting
 Descriptive name for the given simulation configuration. Descriptions get
 displayed in the run selection dialog.

eventlog-file=<filename>, default:${resultdir}/${configname}-${runnumber}.elog;
per-run setting
 Name of the event log file to generate.

eventlog-message-detail-pattern=<custom>; per-run setting
 A list of patterns separated by '|' character which will be used to write
 message detail information into the event log for each message sent during
 the simulation. The message detail will be presented in the sequence chart
 tool. Each pattern starts with an object pattern optionally followed by ':'
 character and a comma separated list of field patterns. In both patterns
 and/or/not/* and various field match expressions can be used. The object
 pattern matches to class name, the field pattern matches to field name by
 default.
 EVENTLOG-MESSAGE-DETAIL-PATTERN := (DETAIL-PATTERN '|')* DETAIL_PATTERN
 DETAIL-PATTERN := OBJECT-PATTERN [':' FIELD-PATTERNS]
 OBJECT-PATTERN := MATCH-EXPRESSION
 FIELD-PATTERNS := (FIELD-PATTERN ',')* FIELD_PATTERN
 FIELD-PATTERN := MATCH-EXPRESSION
 Examples (enter them without quotes):
 "*": captures all fields of all messages
 "*Frame:*Address,*Id": captures all fields named somethingAddress and
 somethingId from messages of any class named somethingFrame
 "MyMessage:declaredOn(MyMessage)": captures instances of MyMessage
 recording the fields declared on the MyMessage class
 "*:(not declaredOn(cMessage) and not declaredOn(cNamedObject) and not
 declaredOn(cObject))": records user-defined fields from all messages

eventlog-recording-intervals=<custom>; per-run setting
 Simulation time interval(s) when events should be recorded. Syntax:
 [<from>]..[<to>],... That is, both start and end of an interval are
 optional, and intervals are separated by comma. Example: ..10.2, 22.2..100,
 233.3..

experiment-label=<string>, default:${configname}; per-run setting
 Identifies the simulation experiment (which consists of several,
 potentially repeated measurements). This string gets recorded into result
 files, and may be referred to during result analysis.

http://omnetpp.org/doc/omnetpp40/api/classcConfiguration.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcNamedObject.html
http://omnetpp.org/doc/omnetpp40/api/classcObject.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

extends=<string>; per-run setting
 Name of the configuration this section is based on. Entries from that
 section will be inherited and can be overridden. In other words,
 configuration lookups will fall back to the base section.

fingerprint=<string>; per-run setting
 The expected fingerprint of the simulation. When provided, a fingerprint
 will be calculated from the simulation event times and other quantities
 during simulation, and checked against the given one. Fingerprints are
 suitable for crude regression tests. As fingerprints occasionally differ
 across platforms, more than one fingerprint values can be specified here,
 separated by spaces, and a match with any of them will be accepted. To
 calculate the initial fingerprint, enter any dummy string (such as "none"),
 and run the simulation.

fname-append-host=<bool>, default:false; global setting
 Turning it on will cause the host name and process Id to be appended to the
 names of output files (e.g. omnetpp.vec, omnetpp.sca). This is especially
 useful with distributed simulation.

load-libs=<filenames>; global setting
 A space-separated list of dynamic libraries to be loaded on startup. The
 libraries should be given without the `.dll' or `.so' suffix -- that will
 be automatically appended.

max-module-nesting=<int>, default:50; per-run setting
 The maximum allowed depth of submodule nesting. This is used to catch
 accidental infinite recursions in NED.

measurement-label=<string>, default:${iterationvars}; per-run setting
 Identifies the measurement within the experiment. This string gets recorded
 into result files, and may be referred to during result analysis.

<object-full-path>.module-eventlog-recording=<bool>, default:true; per-object
setting
 Enables recording events on a per module basis. This is meaningful for
 simple modules only.
 Example:
 .router[10..20]..module-eventlog-recording = true
 **.module-eventlog-recording = false

ned-path=<path>; global setting
 A semicolon-separated list of directories. The directories will be regarded
 as roots of the NED package hierarchy, and all NED files will be loaded
 from their subdirectory trees. This option is normally left empty, as the
 {\opp} IDE sets the NED path automatically, and for simulations started
 outside the IDE it is more convenient to specify it via a command-line
 option or the NEDPATH environment variable.

network=<string>; per-run setting
 The name of the network to be simulated. The package name can be omitted
 if the ini file is in the same directory as the NED file that contains the
 network.

num-rngs=<int>, default:1; per-run setting
 The number of random number generators.

output-scalar-file=<filename>, default:${resultdir}/${configname}-
${runnumber}.sca; per-run setting
 Name for the output scalar file.

output-scalar-file-append=<bool>, default:false; per-run setting
 What to do when the output scalar file already exists: append to it
 ({\opp} 3.x behavior), or delete it and begin a new file (default).

output-scalar-precision=<int>, default:14; per-run setting
 The number of significant digits for recording data into the output scalar
 file. The maximum value is ~15 (IEEE double precision).

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

output-vector-file=<filename>, default:${resultdir}/${configname}-
${runnumber}.vec; per-run setting
 Name for the output vector file.

output-vector-precision=<int>, default:14; per-run setting
 The number of significant digits for recording data into the output vector
 file. The maximum value is ~15 (IEEE double precision). This setting has no
 effect on the "time" column of output vectors, which are represented as
 fixed-point numbers and always get recorded precisely.

output-vectors-memory-limit=<double>, unit="B", default:16MB; per-run setting
 Total memory that can be used for buffering output vectors. Larger values
 produce less fragmented vector files (i.e. cause vector data to be grouped
 into larger chunks), and therefore allow more efficient processing later.

outputscalarmanager-class=<string>, default:cFileOutputScalarManager; global
setting
 Part of the Envir plugin mechanism: selects the output scalar manager class
 to be used to record data passed to recordScalar(). The class has to
 implement the cOutputScalarManager interface.

outputvectormanager-class=<string>, default:cIndexedFileOutputVectorManager;
global setting
 Part of the Envir plugin mechanism: selects the output vector manager class
 to be used to record data from output vectors. The class has to implement
 the cOutputVectorManager interface.

parallel-simulation=<bool>, default:false; global setting
 Enables parallel distributed simulation.

<object-full-path>.param-record-as-scalar=<bool>, default:false; per-object
setting
 Applicable to module parameters: specifies whether the module parameter
 should be recorded into the output scalar file. Set it for parameters whose
 value you'll need for result analysis.

parsim-communications-class=<string>, default:cFileCommunications; global setting
 If parallel-simulation=true, it selects the class that implements
 communication between partitions. The class must implement the
 cParsimCommunications interface.

parsim-debug=<bool>, default:true; global setting
 With parallel-simulation=true: turns on printing of log messages from the
 parallel simulation code.

parsim-filecommunications-prefix=<string>, default:comm/; global setting
 When cFileCommunications is selected as parsim communications class:
 specifies the prefix (directory+potential filename prefix) for creating the
 files for cross-partition messages.

parsim-filecommunications-preserve-read=<bool>, default:false; global setting
 When cFileCommunications is selected as parsim communications class:
 specifies that consumed files should be moved into another directory
 instead of being deleted.

parsim-filecommunications-read-prefix=<string>, default:comm/read/; global setting
 When cFileCommunications is selected as parsim communications class:
 specifies the prefix (directory) where files will be moved after having
 been consumed.

parsim-idealsimulationprotocol-tablesize=<int>, default:100000; global setting
 When cIdealSimulationProtocol is selected as parsim synchronization class:
 specifies the memory buffer size for reading the ISP event trace file.

parsim-mpicommunications-mpibuffer=<int>; global setting
 When cMPICommunications is selected as parsim communications class:
 specifies the size of the MPI communications buffer. The default is to
 calculate a buffer size based on the number of partitions.

http://omnetpp.org/doc/omnetpp40/api/classcOutputScalarManager.html
http://omnetpp.org/doc/omnetpp40/api/classcOutputVectorManager.html
http://omnetpp.org/doc/omnetpp40/api/classcParsimCommunications.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

parsim-namedpipecommunications-prefix=<string>, default:omnetpp; global setting
 When cNamedPipeCommunications is selected as parsim communications class:
 selects the name prefix for Windows named pipes created.

parsim-nullmessageprotocol-laziness=<double>, default:0.5; global setting
 When cNullMessageProtocol is selected as parsim synchronization class:
 specifies the laziness of sending null messages. Values in the range [0,1)
 are accepted. Laziness=0 causes null messages to be sent out immediately as
 a new EOT is learned, which may result in excessive null message traffic.

parsim-nullmessageprotocol-lookahead-class=<string>, default:cLinkDelayLookahead;
global setting
 When cNullMessageProtocol is selected as parsim synchronization class:
 specifies the C++ class that calculates lookahead. The class should
 subclass from cNMPLookahead.

parsim-synchronization-class=<string>, default:cNullMessageProtocol; global
setting
 If parallel-simulation=true, it selects the parallel simulation algorithm.
 The class must implement the cParsimSynchronizer interface.

<object-full-path>.partition-id=<string>; per-object setting
 With parallel simulation: in which partition the module should be
 instantiated. Specify numeric partition ID, or a comma-separated list of
 partition IDs for compound modules that span across multiple partitions.
 Ranges ("5..9") and "*" (=all) are accepted too.

print-undisposed=<bool>, default:true; global setting
 Whether to report objects left (that is, not deallocated by simple module
 destructors) after network cleanup.

realtimescheduler-scaling=<double>; global setting
 When cRealTimeScheduler is selected as scheduler class: ratio of simulation
 time to real time. For example, scaling=2 will cause simulation time to
 progress twice as fast as runtime.

record-eventlog=<bool>, default:false; per-run setting
 Enables recording an eventlog file, which can be later visualized on a
 sequence chart. See eventlog-file= option too.

repeat=<int>, default:1; per-run setting
 For scenarios. Specifies how many replications should be done with the same
 parameters (iteration variables). This is typically used to perform
 multiple runs with different random number seeds. The loop variable is
 available as ${repetition}. See also: seed-set= key.

replication-label=<string>, default:#${repetition}; per-run setting
 Identifies one replication of a measurement (see repeat= and
 measurement-label= as well). This string gets recorded into result files,
 and may be referred to during result analysis.

result-dir=<string>, default:results; per-run setting
 Value for the ${resultdir} variable, which is used as the default directory
 for result files (output vector file, output scalar file, eventlog file,
 etc.)

<object-full-path>.rng-%=<int>; per-object setting
 Maps a module-local RNG to one of the global RNGs. Example: **.gen.rng-1=3
 maps the local RNG 1 of modules matching `**.gen' to the global RNG 3. The
 default is one-to-one mapping.

rng-class=<string>, default:cMersenneTwister; per-run setting
 The random number generator class to be used. It can be `cMersenneTwister',
 `cLCG32', `cAkaroaRNG', or you can use your own RNG class (it must be
 subclassed from cRNG).

runnumber-width=<int>, default:0; per-run setting
 Setting a nonzero value will cause the $runnumber variable to get padded

http://omnetpp.org/doc/omnetpp40/api/classcRealTimeScheduler.html
http://omnetpp.org/doc/omnetpp40/api/classcMersenneTwister.html
http://omnetpp.org/doc/omnetpp40/api/classcMersenneTwister.html
http://omnetpp.org/doc/omnetpp40/api/classcLCG32.html
http://omnetpp.org/doc/omnetpp40/api/classcRNG.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 with leading zeroes to the given length.

<object-full-path>.scalar-recording=<bool>, default:true; per-object setting
 Whether the matching output scalars should be recorded. Syntax:
 <module-full-path>.<scalar-name>.scalar-recording=true/false. Example:
 **.queue.packetsDropped.scalar-recording=true

scheduler-class=<string>, default:cSequentialScheduler; global setting
 Part of the Envir plugin mechanism: selects the scheduler class. This
 plugin interface allows for implementing real-time, hardware-in-the-loop,
 distributed and distributed parallel simulation. The class has to implement
 the cScheduler interface.

seed-%-lcg32=<int>; per-run setting
 When cLCG32 is selected as random number generator: seed for the kth RNG.
 (Substitute k for '%' in the key.)

seed-%-mt=<int>; per-run setting
 When Mersenne Twister is selected as random number generator (default):
 seed for RNG number k. (Substitute k for '%' in the key.)

seed-%-mt-p%=<int>; per-run setting
 With parallel simulation: When Mersenne Twister is selected as random
 number generator (default): seed for RNG number k in partition number p.
 (Substitute k for the first '%' in the key, and p for the second.)

seed-set=<int>, default:${runnumber}; per-run setting
 Selects the kth set of automatic random number seeds for the simulation.
 Meaningful values include ${repetition} which is the repeat loop counter
 (see repeat= key), and ${runnumber}.

sim-time-limit=<double>, unit="s"; per-run setting
 Stops the simulation when simulation time reaches the given limit. The
 default is no limit.

simtime-scale=<int>, default:-12; global setting
 Sets the scale exponent, and thus the resolution of time for the 64-bit
 fixed-point simulation time representation. Accepted values are -18..0; for
 example, -6 selects microsecond resolution. -12 means picosecond
 resolution, with a maximum simtime of ~110 days.

snapshot-file=<filename>, default:${resultdir}/${configname}-${runnumber}.sna;
per-run setting
 Name of the snapshot file.

snapshotmanager-class=<string>, default:cFileSnapshotManager; global setting
 Part of the Envir plugin mechanism: selects the class to handle streams to
 which snapshot() writes its output. The class has to implement the
 cSnapshotManager interface.

tkenv-default-config=<string>; global setting
 Specifies which config Tkenv should set up automatically on startup. The
 default is to ask the user.

tkenv-default-run=<int>, default:0; global setting
 Specifies which run (of the default config, see tkenv-default-config) Tkenv
 should set up automatically on startup. The default is to ask the user.

tkenv-extra-stack=<double>, unit="B", default:48KB; global setting
 Specifies the extra amount of stack that is reserved for each activity()
 simple module when the simulation is run under Tkenv.

tkenv-image-path=<path>; global setting
 Specifies the path for loading module icons.

tkenv-plugin-path=<path>; global setting
 Specifies the search path for Tkenv plugins. Tkenv plugins are .tcl files
 that get evaluated on startup.

http://omnetpp.org/doc/omnetpp40/api/classcSequentialScheduler.html
http://omnetpp.org/doc/omnetpp40/api/classcScheduler.html
http://omnetpp.org/doc/omnetpp40/api/classcLCG32.html
http://omnetpp.org/doc/omnetpp40/api/classcSnapshotManager.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

total-stack=<double>, unit="B"; global setting
 Specifies the maximum memory for activity() simple module stacks. You need
 to increase this value if you get a ``Cannot allocate coroutine stack''
 error.

<object-full-path>.type-name=<string>; per-object setting
 Specifies type for submodules and channels declared with 'like <>'.

user-interface=<string>; global setting
 Selects the user interface to be started. Possible values are Cmdenv and
 Tkenv. This option is normally left empty, as it is more convenient to
 specify the user interface via a command-line option or the IDE's Run and
 Debug dialogs.

<object-full-path>.vector-max-buffered-values=<int>; per-object setting
 For output vectors: the maximum number of values to buffer per vector,
 before writing out a block into the output vector file. The default is no
 per-vector limit (i.e. only the total memory limit is in effect)

<object-full-path>.vector-record-eventnumbers=<bool>, default:true; per-object
setting
 Whether to record event numbers for an output vector. Simulation time and
 value are always recorded. Event numbers are needed by the Sequence Chart
 Tool, for example.

<object-full-path>.vector-recording=<bool>, default:true; per-object setting
 Whether data written into an output vector should be recorded.

<object-full-path>.vector-recording-interval=<custom>; per-object setting
 Recording interval(s) for an output vector. Syntax: [<from>]..[<to>],...
 That is, both start and end of an interval are optional, and intervals are
 separated by comma. Example: ..100, 200..400, 900..

warnings=<bool>, default:true; per-run setting
 Enables warnings.

23.2 Predefined Configuration Variables

Predefined variables that can be used in config values:

${runid}
 A reasonably globally unique identifier for the run, produced by
 concatenating the configuration name, run number, date/time, etc.
${inifile}
 Name of the (primary) inifile
${configname}
 Name of the active configuration
${runnumber}
 Sequence number of the current run within all runs in the active
 configuration
${network}
 Value of the "network" configuration option
${experiment}
 Value of the "experiment-label" configuration option
${measurement}
 Value of the "measurement-label" configuration option
${replication}
 Value of the "replication-label" configuration option
${processid}
 PID of the simulation process
${datetime}
 Date and time the simulation run was started
${resultdir}
 Value of the "result-dir" configuration option
${repetition}
 The iteration number in 0..N-1, where N is the value of the "repeat"

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 configuration option
${seedset}
 Value of the "seed-set" configuration option
${iterationvars}
 Concatenation of all user-defined iteration variables in name=value form
${iterationvars2}
 Concatenation of all user-defined iteration variables in name=value form,
 plus ${repetition}

24 Appendix: Result File Formats

The file format described here applies to both output vector and output scalar files. Their formats are consistent,
only the types of entries occurring into them are different. This unified format also means that they can be read with
a common routine.

Result files are line oriented. A line consists of one or more tokens, separated by whitespace. Tokens either don't
contain whitespace, or whitespace is escaped using a backslash, or are quoted using double quotes. Escaping
within quotes using backslashes is also permitted.

The first token of a line usually identifies the type of the entry. A notable exception is an output vector data line,
which begins with a numeric identifier of the given output vector.

A line starting with # as the first non-whitespace character denotes a comment, and is to be ignored during
processing.

Result files are written from simulation runs. A simulation run generates physically contiguous sets of lines into one
or more result files. (That is, lines from different runs do not arbitrarily mix in the files.)

A run is identified by a unique textual runId, which appears in all result files written during that run. The runId may
appear on the user interface, so it should be somewhat meaningful to the user. Nothing should be assumed about
the particular format of runId, but it will be some string concatenated from the simulated network's name, the
time/date, the hostname, and other pieces of data to make it unique.

A simulation run will typically write into two result files (.vec and .sca). However, when using parallel distributed
simulation, the user will end up with several .vec and .sca files, because different partitions (a separate process
each) will write into different files. However, all these files will contain the same runId, so it is possible to relate data
that belong together.

Entry types are:

version: result file version
run: simulation run identifier
attr: run, vector, scalar or statistics object attribute
param: module parameter
scalar: scalar data
vector: vector declaration
vector-id: vector data
file: vector file attributes
statistic: statistics object
field: field of a statistics object
bin: histogram bin

24.1 Version

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Specifies the format of the result file. It is written at the beginning of the file.

Syntax:

version versionNumber

The version described in this document is 2. Version 1 files are produced by OMNeT++ 3.3 or earlier.

24.2 Run Declaration

Marks the beginning of a new run in the file. Entries after this line belong to this run.

Syntax:

run runId

Example:

run TokenRing1-0-20080514-18:19:44-3248

Typically there will be one run per file, but this is not mandatory. In cases when there are more than one runs in a
file and it is not feasible to keep the entire file in memory during analysis, the offsets of the run lines may be
indexed for more efficient random access.

The run line may be immediately followed by attribute lines. Attributes may store generic data like the network
name, date/time of running the simulation, configuration options that took effect for the simulation, etc.

Run attribute names used by OMNeT++ include the following:

Generic attribute names:

network: name of the network simulated
datetime: date/time associated with the run
processid: the PID of the simulation process
inifile: the main configuration file
configname: name of the inifile configuration
seedset: index of the seed-set use for the simulation

Attributes associated with parameter studies (iterated runs):

runnumber: the run number within the parameter study
experiment: experiment label
measurement: measurement label
replication: replication label
repetition: the loop counter for repetitions with different seeds
iterationvars: string containing the values of the iteration variables
iterationvars2: string containing the values of the iteration variables

An example run header:

run TokenRing1-0-20080514-18:19:44-3248
attr configname TokenRing1
attr datetime 20080514-18:19:44
attr experiment TokenRing1
attr inifile omnetpp.ini
attr iterationvars ""
attr iterationvars2 $repetition=0

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

attr measurement ""
attr network TokenRing
attr processid 3248
attr repetition 0
attr replication #0
attr resultdir results
attr runnumber 0
attr seedset 0

24.3 Attributes

Contains an attribute for the preceding run, vector, scalar or statistics object. Attributes can be used for saving
arbitrary extra information for objects; processors should ignore unrecognized attributes.

Syntax:

attr name value

Example:

attr network "largeNet"

24.4 Module Parameters

Contains a module parameter value for the given run. This is needed so that module parameters may be included
in the analysis (e.g. to identify the load for a ``throughput vs load'' plot).

It may not be practical to simply store all parameters of all modules in the result file, because there may be too
many. We assume that NED files are invariant and don't store parameters defined in them. However, we store
parameter assignments that come from omnetpp.ini, in their original wildcard form (i.e. not expanded) to conserve
space. Parameter values entered interactively by the user are also stored.

When the original NED files are present, it should thus be possible to reconstruct all parameters for the given
simulation.

Syntax:

param parameterNamePattern value

Example:

param **.gen.sendIaTime exponential(0.01)
param **.gen.msgLength 10
param **.fifo.bitsPerSec 1000

24.5 Scalar Data

Contains an output scalar value.

Syntax:

scalar moduleName scalarName value

Examples:

scalar "net.switchA.relay" "processed frames" 100

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

Scalar lines may be immediately followed by attribute lines. OMNeT++ uses the following vector attributes:

unit: measurement unit, e.g. s for seconds

24.6 Vector Declaration

Defines an output vector.

Syntax:

vector vectorId \ moduleName vectorName

vector vectorId moduleName vectorName columnSpec

Where columnSpec is a string, encoding the meaning and ordering the columns of data lines. Characters of the
string mean:

E event number
T simulation time
V vector value

Common values are TV and ETV. The default value is TV.

Vector lines may be immediately followed by attribute lines. OMNeT++ uses the following vector attributes:

unit: measurement unit, e.g. s for seconds
enum: symbolic names for values of the vector; syntax is "IDLE=0, BUSY=1, OFF=2"
type: data type, one of int, double and enum
interpolationmode: hint for interpolation mode on the chart: none (=do not connect the dots), sample-
hold, backward-sample-hold, linear
min: minimum value
max: maximum value

24.7 Vector Data

Adds a value to an output vector. This is the same as in older output vector files.

Syntax:

\itshape vectorId column1 column2 ...

Simulation times and event numbers within an output vector are required to be in increasing order.

Performance note: Data lines belonging to the same output vector may be written out in clusters (of sizes roughly
multiple of the disk's physical block size). Then, since an output vector file is typically not kept in memory during
analysis, indexing the start offsets of these clusters allows one to read the file and seek in it more efficiently. This
does not require any change or extension to the file format.

24.8 Index Header

The first line of the index file stores the size and modification date of the vector file. If the attributes of vector file
differs from the information stored in the index file, then the IDE automatically rebuilds the index file.

Syntax:

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

file filesize modificationDate

24.9 Index Data

Stores the location and statistics of blocks in the vector file.

Syntax:

\itshape vectorId offset length firstEventNo lastEventNo firstSimtime lastSimtime count min max sum sqrsum

where

offset: the start offset of the block
length: the length of the block
firstEventNo, lastEventNo: the event number range of the block (optional)
firstSimtime, lastSimtime: the simtime range of the block
count, min, max, sum, sqrsum: collected statistics of the values in the block

24.10 Statistics Object

Represents a statistics object.

Syntax:

statistic moduleName \ statisticName

Example:

statistic Aloha.server "collision multiplicity"

A statistic line may be followed by field and attribute lines, and a series of bin lines that represent histogram data.

OMNeT++ uses the following attributes:

unit: measurement unit, e.g. s for seconds
isDiscrete: boolean (0 or 1), meaning whether observations are integers

A full example with fields, attributes and histogram bins:

statistic Aloha.server "collision multiplicity"
field count 13908
field mean 6.8510209951107
field stddev 5.2385484477843
field sum 95284
field sqrsum 1034434
field min 2
field max 65
attr isDiscrete 1
attr unit packets
bin -INF 0
bin -0.5 0
bin 0.5 0
bin 1.5 2254
bin 2.5 2047
bin 3.5 1586
bin 4.5 1428
bin 5.5 1101
bin 6.5 952
bin 7.5 785

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

...
bin 51.5 2

24.11 Field

Represents a field in a statistics object.

Syntax:

field fieldName \ value

Example:

field sum 95284

Fields:

count: observation count
mean: mean of the observations
stddev: standard deviation
sum: sum of the observations
sqrsum: sum of the squared observations
min: minimum of the observations
max: maximum of the observations

For weighted statistics, additionally the following fields may be recorded:

weights: sum of the weights
weightedSum: the weighted sum of the observations
sqrSumWeights: sum of the squared weights
weightedSqrSum: weighted sum of the squared observations

24.12 Histogram Bin

Represents a bin in a histogram object.

Syntax:

bin binLowerBound value

Histogram name and module is defined on the statistic line, which is followed by several bin lines to contain data.
Any non-bin line marks the end of the histogram data.

The binLowerBound column of bin lines represent the lower bound of the given histogram cell. Bin lines are in
increasing binLowerBound order.

The value column of bin lines represent observation count in the given cell: value k is the number of observations
greater or equal than binLowerBound k, but smaller than binLowerBound k+1. Value is not necessarily an integer,
because the cKSplit and cPSquare algorithms produce non-integer estimates. The first bin line is the underflow
cell, and the last bin line is the overflow cell.

Example:

bin -INF 0
bin 0 4
bin 2 6

http://omnetpp.org/doc/omnetpp40/api/classcKSplit.html
http://omnetpp.org/doc/omnetpp40/api/classcPSquare.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

bin 4 2
bin 6 1

25 Appendix: Eventlog File Format

This appendix documents the format of the eventlog file. Eventlog files are written by the simulation (when enabled).
Everything that happens during the simulation gets recorded into the file,

[With certain granularity of course, and subject to filters that were active during simulation]

so the file can later be used to reproduce the history of the simulation on a sequence chart, or in some other form.

The file is line-oriented text file. Blank lines and lines beginning with "#" (comments) will get ignored. Other lines
begin with an entry identifier like E for Event or BS for BeginSend, followed by attribute-identifier and value pairs.
One exception is debug output (recorded from ev<<... statements), which are represented by lines that begin
with a hypen, and continue with the actual text.

<file> ::= <line>*
<line> ::= <empty-line> | <user-log-message> | <event-log-entry>
<empty-line> ::= CR LF
<user-log-message> ::= - SPACE <text> CR LF
<event-log-entry> ::= <event-log-entry-type> SPACE <parameters> CR LF
<event-log-entry-type> ::= SB | SE | BU | MB | ME | MC | MD | MR | GC | GD |
 CC | CD | CS | MS | CE | BS | ES | SD | SH | DM | E
<parameters> ::= (<parameter>)*
<parameter> ::= <name> SPACE <value>
<name> ::= <text>
<value> ::= <boolean> | <integer> | <text> | <quoted-text>

Here is a fragment of an existing eventlog file as an example:

E # 14 t 1.018454036455 m 8 ce 9 msg 6
BS id 6 tid 6 c cMessage n send/endTx pe 14
ES t 4.840247053855
MS id 8 d t=TRANSMIT,,#808000;i=device/pc_s
MS id 8 d t=,,#808000;i=device/pc_s

E # 15 t 1.025727827674 m 2 ce 13 msg 25
- another frame arrived while receiving -- collision!
CE id 0 pe 12
BS id 0 tid 0 c cMessage n end-reception pe 15
ES t 1.12489449434
BU id 2 txt "Collision! (3 frames)"
DM id 25 pe 15

A correct eventlog also fulfills the following requirements:

simulation events are in increasing event number and simulation time order

The various entry types and their supported attributes are as follows:

SB SimulationBeginEntry // recorded at the first event
{
 v int version // simulator version, e.g. 0x401 (=1025) is release 4.1
 rid string runId // identifies the simulation run
}

SE SimulationEndEntry // optional last line of an event log file

http://omnetpp.org/doc/omnetpp40/api/classcMessage.html
http://omnetpp.org/doc/omnetpp40/api/classcMessage.html

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

{
}

BU BubbleEntry // display a bubble message
{
 id int moduleId // id of the module which printed the bubble message
 txt string text // displayed message text
}

MB ModuleMethodBeginEntry // beginning of a call to another module
{
 sm int fromModuleId // id of the caller module
 tm int toModuleId // id of the module being called
 m string method // C++ method name
}

ME ModuleMethodEndEntry // end of a call to another module
{
}

MC ModuleCreatedEntry // creating a module
{
 id int moduleId // id of the new module
 c string moduleClassName // C++ class name of the module
 t string nedTypeName // fully qualified NED type name
 pid int parentModuleId -1 // id of the parent module
 n string fullName // full dotted hierarchic module name
 cm bool compoundModule false // simple or compound module
}

MD ModuleDeletedEntry // deleting a module
{
 id int moduleId // id of the module being deleted
}

MR ModuleReparentedEntry // reparenting a module
{
 id int moduleId // id of the module being reparented
 p int newParentModuleId // id of the new parent module
}

GC GateCreatedEntry // gate created
{
 m int moduleId // module in which the gate was create
 g int gateId // id of the new gate
 n string name // gate name
 i int index -1 // gate index if vector, -1 otherwise
 o bool isOutput // input or output gate
}

GD GateDeletedEntry // gate deleted
{
 m int moduleId // module in which the gate was created
 g int gateId // id of the deleted gate
}

CC ConnectionCreatedEntry // creating a connection
{
 sm int sourceModuleId // id of the source module identifying the connection
 sg int sourceGateId // id of the gate at the source module identifying the
connection
 dm int destModuleId // id of the destination module
 dg int destGateId // id of the gate at the destination module
}

CD ConnectionDeletedEntry // deleting a connection
{
 sm int sourceModuleId // id of the source module identifying the connection
 sg int sourceGateId // id of the gate at the source module identifying the

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

connection
}

CS ConnectionDisplayStringChangedEntry // a connection display string change
{
 sm int sourceModuleId // id of the source module identifying the connection
 sg int sourceGateId // id of the gate at the source module identifying the
connection
 d string displayString // the new display string
}

MS ModuleDisplayStringChangedEntry // a module display string change
{
 id int moduleId // id of the module
 d string displayString // the new display string
}

E EventEntry // an event that is processing of a message
{
 # long eventNumber // unique event number
 t simtime_t simulationTime // simulation time when the event occurred
 m int moduleId // id of the processing module
 ce long causeEventNumber -1 // event number from which the message being
processed was sent or -1 if the message was sent from initialize
 msg long messageId // life time unique id of the message being
processed
}

CE CancelEventEntry // canceling an event caused by self message
{
 id long messageId // id of the message being removed from the FES
 pe long previousEventNumber -1 // event number from which the message being
cancelled was sent or -1 if the message was sent from initialize
}

BS BeginSendEntry // beginning to send a message
{
 id long messageId // life time unique id of the message
being sent
 tid long messageTreeId // id of the message inherited by dup
 eid long messageEncapsulationId -1 // id of the message inherited by
encapsulation
 etid long messageEncapsulationTreeId -1 // id of the message inherited by both
dup and encapsulation
 c string messageClassName // C++ class name of the message
 n string messageFullName // message name
 pe long previousEventNumber -1 // event number from which the message
being sent was processed or -1 if the message has not yet been processed before
 k short messageKind 0 // message kind
 p short messagePriority 0 // message priority
 l int64 messageLength 0 // message length in bits
 er bool hasBitError false // true indicates the message has bit
errors
 d string detail NULL // detailed information of message
content when recording message data is turned on
}

ES EndSendEntry // prediction of the arrival of a message
{
 t simtime_t arrivalTime // when the message will arrive to its destination
module
}

SD SendDirectEntry // sending a message directly to a destination gate
{
 sm int senderModuleId // id of the source module from which the
message is being sent
 dm int destModuleId // id of the destination module to which the
message is being sent

OMNeT++ - Manual

http://omnetpp.org/doc/omnetpp40/manual/usman.html[2009-4-20 20:32:29]

 dg int destGateId // id of the gate at the destination module
to which the message is being sent
 pd simtime_t propagationDelay 0 // propagation delay that is while the
message is propagated through the connection
 td simtime_t transmissionDelay 0 // transmission delay that is while the whole
message is sent from the source gate
}

SH SendHopEntry // sending a message through a connection identified by its
source module and gate id
{
 sm int senderModuleId // id of the source module from which the
message is being sent
 sg int senderGateId // id of the gate at the source module from
which the message is being sent
 pd simtime_t propagationDelay 0 // propagation delay that is while the
message is propagated through the connection
 td simtime_t transmissionDelay 0 // transmission delay that is while the whole
message is sent from the source gate
}

DM DeleteMessageEntry // deleting a message
{
 id int messageId // id of the message being deleted
 pe long previousEventNumber -1 // event number from which the message being
deleted was sent or -1 if the message was sent from initialize
}

Document converted from LaTeX by ltoh from Russell W. Quong (quong@best.com)

http://www.best.com/~quong/ltoh.html
http://www.best.com/~quong
mailto:quong@best.com

	omnetpp.org
	OMNeT++ - Manual

