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Part I. Presentation and
Architecture

This first part of the documentation is an overall presentation of both the visible and

the hidden features of CartoWeb. The goals are first to give an idea of what

CartoWeb can readily do if used as it is shipped, and second to explain why it is a

powerful framework to build more advanced applications.
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1. Project Presentation

1.1. About CartoWeb

CartoWeb3 is a comprehensive and ready-to-use Web-GIS (Geographical

Information System), including many powerful features. As a modular and extensible

solution, it is also a convenient framework for building advanced and customized

applications.

Developed by Camptocamp SA [http://www.camptocamp.com], it is based on the

UMN MapServer [http://mapserver.gis.umn.edu] engine and is released under the

GNU GPL license [http://www.gnu.org/copyleft/gpl.html].

1.2. Credits

To date, the following people have been more or less involved in the development of

CartoWeb :

• Yves Bolognini

• Mathieu Bornoz

• Oliver Christen

• Damien Corpataux

• Olivier Courtin

• Daniel Faivre

• Alexandre Fellay

• Marc Fournier

• Jean-Denis Giguere

• Florent Giraud

• Pierre Giraud

• David Jonglez

• Frédéric Junod

• Sylvain Pasche

• Claude Philipona

• Arnaud Saint Leger

• Alexandre Saunier
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2. Cartographic Functionalities

2.1. Introduction

CartoWeb is quite a complex piece of software. This chapter is only a quick and

consequently incomplete overview of the standard functionalities that are somehow

visible for an end-user. The internal architecture and all the hidden features that make

CartoWeb customizable and extensible are presented in the next chapter.

2.2. Overview

The first figure is an overall view of the user interface of the demo that is shipped

with CartoWeb. The numbers refer to more or less visible underlying features. They

are :

1. Main map

2. Dynamic keymap

3. Navigation tools : zoom-in, zoo-out, panning

4. Layers tree

5. Geographic query tool

6. Redlining tools : to draw points, lines, rectangles, polygons

7. Measuring tools : distances and surfaces

8. Language switch : internationalization support

9. Login link : users and roles support

10.Print dialog : PDF production
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2.3. Navigation Interface

There are many possibilities to navigate on the main map, that is to change the scale

and the position.

• The arrows surrounding the main map

• The dynamic (i.e. clickable) keymap

• The navigation tools (zoom and pan)

• The drop-down menu "Scale"

• The various options in the "Search" tab

The menu "Mapsize" is self-explanatory.

2.4. Arbitrarily Complex Hierarchy of Layers

Contrary to Mapserver itself, CartoWeb supports an arbitrarily complex hierarchy of

layers, with infinite depth.

The elements of the layers "tree" have different rendering options :

• normal checkboxes
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• blocks

• radio button (exclusive options)

• drop-down menu (exclusive options)

Examples of these rendering options are presented in the following figure.

The icons for the classes are automatically drawn, and the out-of-scale layers are

grayed out.

2.5. Map Queries

Using the query tool, you can geographically search for objects. Found objects are

hilighted and their attributes are displayed.

CartoWeb adds many functionalities to the raw queries supported by Mapserver. In

particular, the queries may be persistent (i.e. you can add new objects to already

selected objects), and the hilighting can be defined on a layer by layer basis.
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2.6. Annotation and Redlining

It is possible to freely draw points, lines, rectangles and polygons on the map, ant to

attach labels to them. These features are persistent: they survive panning or zooming.

A mask mode, in which everything but the outlined polygon is masked, is provided

too.
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2.7. Measuring Tools

Distances and surfaces can be measured on the main map with the following tools :

2.8. Internationalization

Translation handling in CartoWeb now uses gettext [http://www.gnu.org/software/

gettext/manual]. However internationalization architecture is ready for other

translation systems.

Ta make life easier for translators, scripts that gather the strings to be translated in the

templates and in the configuration files are available.

2.9. Access Rights
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Access to different elements of CartoWeb can be allowed or denied according to who

is currently using the application. Both functionalities and data may have access

restrictions. For instance, PDF printing may be totally unavailable for anonymous

access, limited (low resolution) for normal user and totally granted (high resolution)

for superusers. Similarly, high-resolution aerial views may only be visible within an

organization, while external users should be content with satellite photographs.

A basic (file-based) authentication mechanism is included, but any other mechanism

that is able to authenticate an user and to link him to a role could be used as well.

2.10. PDF Output and Other Export Formats

CartoWeb is able to output a fully configurable PDF document. Some options can be

chosen by the end user in the following dialog, while the CartoWeb admin defines

which elements (maps, legends, tables, additional logos or watermarks...) are to be

printed and sets their positions within the page.
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Other output formats include the graphic formats (jpeg, png,...) of the map itself,

simplified html templates and comma-separated values tables of the query results.
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3. Architecture

3.1. Introduction

CartoWeb uses an innovative design and state-of-the-art technologies. The following

sections briefly review the main employed approaches.

3.2. MapServer / MapScript

CartoWeb is based on the UMN MapServer [http://mapserver.gis.umn.edu/] engine.

Interactions between CartoWeb and MapServer are achieved using the MapServer

PHP/Mapscript [http://mapserver.gis.umn.edu/doc44/phpmapscript-class-guide.html]

module.

MapServer must be installed prior to any CartoWeb setup.

MapServer resources:

• MapServer HomePage: http://mapserver.gis.umn.edu/

• MapServer Download: http://mapserver.gis.umn.edu/dload.html

• MapServer Documentation: http://mapserver.gis.umn.edu/doc.html

• MapServer PHP/Mapscript Class Reference

http://mapserver.gis.umn.edu/doc44/phpmapscript-class-guide.html

3.3. Web-Service Architecture - SOAP

One of the CartoWeb specificities is its ability to work along a client-server model as

well as a stand-alone application. Thus it is possible to host a CartoWeb client

(known as CartoClient) on one machine and have it requesting a CartoWeb server

(known as CartoServer), located on a separated server. A CartoServer can be called

by several CartoClient simultaneously. On the other hand, a CartoClient can query

several CartoServer for instance in the frame of different "projects" (Section 3.4.2,

“Projects”).
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CartoWeb offers two "access" modes :

• as a web-service. CartoClient and CartoServer then interact using remote

procedures based upon SOAP [http://www.w3.org/TR/soap12/].

• as a standalone application. Procedures are then performed directly between

CartoWeb components, bypassing the SOAP calls.
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Of course it is possible to combine the above architectures as shown on the following

figure:

3.4. Modularity: Projects and Plugins

3.4.1. Plugins
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CartoWeb buzzword is modularity. The application is built as a set of bricks that

interact with each other. Those bricks are called "plugins". Each plugin performs a

special group of tasks such as map browsing, layers management, images properties,

users permissions, data objects querying, exportation and much more. CartoWeb is

shipped with a set of standard plugins that can be separately activated or not. It is

possible to write your own plugins or customize existing ones as well.

Regular plugins, including how to configure them, are precisely described in Part II,

“User Manual”. For more information about how to write or customize plugins, see

Chapter 2, New Plugins.

3.4.2. Projects
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Projects are used to separate the upstream application from its customizations. They

contains all the modifications and adaptations you could have performed to make

CartoWeb suit your needs: layout templates, pictos, special configurations, personal

plugins etc.

By using projects you can:

• keep the general application clean from tricky modifications that would

compromise the future upgrades

• gather your project files to easily save and copy them to another CartoWeb

instance. For example when copying them from your test server to your production

one.

• run different projects on the same CartoWeb instance.

For more information about projects, see Chapter 3, Projects Handling.

3.5. Templates

CartoWeb layout customization is achieved using the well-known and powerful

Smarty [http://smarty.php.net/] template engine. For more information about

templating see Chapter 18, Templating.

3.6. Users and Roles

CartoWeb enables to define and manage different levels of permissions. Thus it is

possible to restrict some (or all) functionalities to some users or categories of users.

For more information about users and roles see Chapter 15, Security Configuration.

3.7. Performance Enhancement

CartoWeb takes benefits of several caching systems to speed up its execution. All the

possibilities are detailed in Chapter 5, Caches Configuration.
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14

http://smarty.php.net/
http://smarty.php.net/


Part II. User Manual
This user manual, second part of the CartoWeb documentation, is aimed at

administrators who have to setup, configure and maintain a CartoWeb environment.

It is not an end-user documentation, so you won't find here instructions on how to

navigate, select layers or do whatever operations the distant users are allowed to do

through their browser.

On the other side, if you want to go beyond the standard, out-of-the-box possibilities

of CartoWeb, you'll definitely have to look at the third part of this documentation,

intended for developers.
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1. Installation

1.1. CartoWeb Installation

1.1.1. Prerequisite for Installing CartoWeb

CartoWeb depends on several software components for its proper working. Some are

required and others are optional, depending on what you intend to do.

Note

Windows users can ignore this chapter and go directly to Section 1.1.2, “CartoWeb

Download”

The required software are:

A Web Server

Such as Apache http://httpd.apache.org

PHP >= 5.0.3

See http://www.php.net for more informations. You will need to have some

features available in PHP:

• Gettext (optional): You need the Gettext module if you want to enable the

Internationalization in CartoWeb. See Chapter 17, Internationalization for

configuration.

Note

If you are using the demo, you need to have Gettext support installed, as it uses

Gettext by default.

If you are using Cygwin, simply install the gettext-devel package.

• SOAP (optional if using direct mode only): You need the SOAP module if you

want to use CartoWeb as a Webservice or with separated CartoClient and

CartoServer. This is related to the cartoserverDirectAccess parameter

described in Section 4.2, “ client.ini ”
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Note

If you are using Windows, simply use the Windows Installer Section 1.1.2,

“CartoWeb Download”. If you absolutely want to install PHP manually, see

Appendix B, Apache & Mapserver Windows Manual Installation.

MapServer PHP/MapScript (from MapServer >= 4.4)

See http://www.maptools.org/php_mapscript/ for more information and installation

instructions.

Note

If you are using Debian, and you need to install MapServer, you can have a look at

Appendix A, Mapserver Debian Installation

Note

If you are using Windows, simply use the Windows Installer Section 1.1.2,

“CartoWeb Download”. If you absolutely want to install MapServer manually, see

Appendix B, Apache & Mapserver Windows Manual Installation.

PostgreSQL with PostGIS Support (Optional)

If you want spatial database support in CartoWeb you will need to install PostGIS

of the PostgreSQL database. See http://postgis.refractions.net/ for more

information.

1.1.2. CartoWeb Download

There are two ways to get CartoWeb:

1. Complete package from the official website:

o Download CartoWeb package from http://cartoweb.org/downloads.html. It is

recommended that you download the version with demo for a better user

experience.

o Uncompress the archive somewhere in your path accessible by your web server.

2. From CVS: Get the current development version via CVS using the following
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command:

cvs -d :pserver:anonymous@dev.camptocamp.com:/var/lib/cvs/public co cartoweb3

From CVS with cw3setup.php: If you already have the cw3setup.php file,

which comes along the CartoWeb package or CVS source, you can fetch

CartoWeb from CVS and set up it at once. See Section 1.1.3.2.6, “Install or

Reinstall CartoWeb from CVS and Set Up It at Once” for more details.

Once you have CartoWeb, point your web browser to the file located in htdocs/

info.php, and check that the PHP information page displays correctly (meaning PHP

is correctly setup) and that you have do not have a WARNING message at the top of

the page about MapScript failing to load. If it is not the case, CartoWeb will not run

correctly. You should install and set up PHP and PHP/MapScript correctly. See

Section 1.1.1, “Prerequisite for Installing CartoWeb”.

Having Gettext installed is recommended if you wish to use the multilingual features

of CartoWeb.

1.1.3. Command Line Installation

CartoWeb installer is cw3setup.php, located in the root directory of the application.

You can run this file with the --help parameter to see the available options. For

instance:

<PHP-INTERPRETER> cw3setup.php --help

where <PHP-INTERPRETER> is the location of your php interpreter. On Windows,

it can be C:\ms4w\Apache\cgi-bin\php.exe or on Unix /usr/lib/cgi-bin/php.

Note

There is a deployment mechanism to automate CartoWeb installation and updates. If

you are using different servers like: development, tests and production, it is highly

recommended to use it: http://www.cartoweb.org/cwiki/AutomaticDeployment/

1.1.3.1. List of Available Options

Usage: cw3setup.php ACTION [OPTION_1] ... [OPTION_N]

Possible actions:

--help, or -h Display this help and exit.
--version or -v Output version information and exit.
--install Install CartoWeb.
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--fetch-demo Fetch the demo data from cartoweb.org, and extract
it in the demo project if not already there.

--clean Clean generated files and caches.

List of options:

--debug Turn on output debugging.

--writableowner OWNER The user who should have write permissions for
generated files.

--cvs-root CVS Root directory to use when fetching
CartoWeb/project out of CVS.

--fetch-from-cvs Fetch CartoWeb from CVS and install it in the
current directory, or in the directory given by
the --install-location parameter.
NOTE: You must be located where cartoweb3 directory
will be created, not inside like other commands.

--cartoweb-cvs-option OPTIONS A string which will be given to the cvs checkout
command of cartoweb (not projects!).
For instance, to fetch a specific branch,
use '-r MY_BRANCH'. Or for a specific date,
use '-D "2005-09-05 11:00"'.

--fetch-from-dir DIRECTORY Copy CartoWeb from the specified directory into the
current directory, or in the directory given by the
--install-location parameter.
NOTE 1: You must be located where cartoweb3
directory will be created, not inside like other
commands.
NOTE 2: You may either use a path relative to the
target cartoweb3 directory or an absolute path.

--install-location Directory where to install CartoWeb
(when using --fetch-from-cvs/dir options).

--delete-existing Overwrite existing directories if any.
--no-symlinks Do not use symbolic links, even if your operating

system supports them.

--config-from-file FILE Location of a configuration file for automatic
variable replacement in .in files.
NOTE: You may either use a path relative to the
target cartoweb3 directory or an absolute path.

--config-from-project PROJECT Read the configuration file containing variables
to replace in .in files from the specified project.

--fetch-project-cvs PROJECT Fetch the given project from CVS (see --cvs-root
option). To fetch several projects at a time,
specify this option as many times as necessary.

--fetch-project-svn PROJECT Fetch the given project from SVN (you will need to
give --svn-co-options to specifiy the checkout
command to be used).
To fetch several projects at a time,
specify this option as many times as necessary.

--svn-co-options Checkout command to use for fetching project with
SVN. For instance "--username foo --no-auth-cache
checkout https://myproject/svn/bar/".

--fetch-project-dir DIRECTORY Fetch the given project from a directory. To
fetch several projects at a time, specify this
option as many times as necessary.

--project PROJECT Installation is launched only for given project. To
install several projects at a time, specify this
option as many times as necessary.

--default-project PROJECT Default project to use.
--base-url BASEURL URL where you can find client.php.
--profile PROFILENAME The profile to use (development/production/custom).

NOTE: default is 'development'
--clean-views Clean views (must be used with --clean).
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--clean-accounting Clean accounting (must be used with --clean).
--keep-directories Do not remove the generated directories during

cleaning (must be used with --clean).
--keep-permissions Do not alter the permissions of writable directories.

1.1.3.2. Examples of Use

1.1.3.2.1. Basic Setup

To perform a basic setup of CartoWeb, such as if you want to run the demo project,

type:

<PHP-INTERPRETER> cw3setup.php --install --base-url
http://www.example.com/cartoweb

In this example, http://www.example.com/cartoweb is the address which corresponds

to the cartoweb3/htdocs directory. You should find client.php if you type this

URL.

1.1.3.2.2. Installing a Project from a Directory

<PHP-INTERPRETER> cw3setup.php --install --fetch-project-dir
/home/foo/my_project --base-url http://www.example.com/cartoweb

1.1.3.2.3. Updating CartoWeb after Modifications

When you modify or add new content/features to CartoWeb, you need to update it.

This will set relative links or copy new/modified resources files (templates, images,

new plugins, ...)

<PHP-INTERPRETER> cw3setup.php --install --base-url
http://www.example.com/cartoweb

Same as Section 1.1.3.2.1, “Basic Setup”. Existing files are not overwritten.

1.1.3.2.4. Cleaning Generated Files (Map, PDF, Temporary Files and Smarty Cache)

<PHP-INTERPRETER> cw3setup.php --clean

Tip

On production servers, scripts/clean.php should be used instead of

cw3setup.php --clean since it is smoother.

Be aware however that some changes were made in cw3setup.php --clean that

might not have been ported to clean.php.

1.1.3.2.5. Fetching the Demo Data
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<PHP-INTERPRETER> cw3setup.php --fetch-demo

1.1.3.2.6. Install or Reinstall CartoWeb from CVS and Set Up It at Once

1.1.3.2.6.1. Install

<PHP-INTERPRETER> cw3setup.php --install --cvs-root
:pserver:anonymous@dev.camptocamp.com:/var/lib/cvs/public
--fetch-from-cvs --base-url http://www.example.com/cartoweb

Note

Do no execute this command from the cartoweb3 folder! Because this will fetch the

whole cartoweb3 hierarchy from cvs, including the cartoweb3 folder. If you

executed this from the cartoweb3 folder you would end up with something like

cartoweb3/cartoweb3/.... Instead, copy the cw3setup.php in the parent

directory, delete (or backup) the cartoweb3 folder and execute the command.

1.1.3.2.6.2. Reinstall

<PHP-INTERPRETER> cw3setup.php --install --cvs-root
:pserver:anonymous@dev.camptocamp.com:/var/lib/cvs/public
--fetch-from-cvs --delete-existing
--base-url http://www.example.com/cartoweb

Warning

This command will automatically delete the existing cartoweb3/ folder! Be sure to

backup the files and projects you wish to keep.

Note

See note on Section 1.1.3.2.6.1, “Install”. Notice here the --delete-existing parameter.

Needed here because cartoweb3/ already exists. Without it the cw3setup script

issues a warning and stops.

1.1.3.2.7. Update CartoWeb from CVS

To keep your CartoWeb up-to-date with the development version, simply type the

following command in the CartoWeb root folder:

cvs -d :pserver:anonymous@dev.camptocamp.com:/var/lib/cvs/public update
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Warning

This may have some serious effects on your existing developments, it is

recommended you backup the CartoWeb root folder and all subforders before

execution.

1.1.4. Windows Installation

1.1.4.1. Windows Install with Win32 Installer (Recommended)

• Download the MS4W installer at http://www.maptools.org/dl/ms4w/

ms4w-2.2.4-setup.exe. Double-click on the executable to launch it. This will install

Apache with PHP5.2.3, 4.10.2 CGI and MapScript.

• Download the CartoWeb installer at http://cartoweb.org/downloads.html.

Double-click on the executable to launch it. This will install CartoWeb. You can

also optionaly install the cartoweb demo data and Gettext (for internationalisation).

• You need to reboot Windows after the installation if you want to use the

internationalisation system with Gettext .

• That's it! Point your browser to http://localhost/cartoweb3/htdocs/client.php.

Once it is installed, you can modify CartoWeb setup with the command-line script

cw3setup.php (Section 1.1.3, “Command Line Installation”) from either a DOS or a

Cygwin prompt. See Section 1.1.4.3, “CartoWeb Setup” for more info about how to

use those interfaces.

1.1.4.2. Windows Manual Install

Instructions for Apache/PHP and MapServer installation are given in Appendix B,

Apache & Mapserver Windows Manual Installation

Then download CartoWeb as described above (Section 1.1.2, “CartoWeb

Download”).

Eventually set CartoWeb up with the command-line script cw3setup.php

(Section 1.1.3, “Command Line Installation”) from either a DOS or a Cygwin

prompt. See Section 1.1.4.3, “CartoWeb Setup” for more info about how to use those

interfaces.

1.1.4.3. CartoWeb Setup

1.1.4.3.1. CartoWeb Setup with DOS
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Open a command prompt (Start menu > Run > "cmd") and go to the CartoWeb root:

cd C:\ms4w\apps\cartoweb3

Then see Section 1.1.3.2.1, “Basic Setup”

Note

To enable you to execute PHP scripts easily (like php cw3setup.php

--someparameters instead of C:\ms4w\Apache\cgi-bin\php.exe cw3setup.php

--someparameters), set the path to the PHP binary in your PATH environment

variable (control panel > system > Advanced > Environment Variables. If there is no

PATH variable, add a new one. If a PATH variable is already present, you can add

the path to php.exe at the end of the existing path values, but add a ";" inbetween:

path1;path2;path3):

C:\ms4w\Apache\cgi-bin;

The example above is true if the PHP binary are installed in

C:\ms4w\Apache\cgi-bin.

Note

If you are using the demo, you need to have Gettext support installed, as it uses

Gettext by default. If you used the win32 installer, Gettext is already installed,

otherwise you must install it manually. You can get a version of Gettext for Windows

there http://gnuwin32.sourceforge.net/packages/gettext.htm. Also set the path to the

Gettext binary in your PATH environment variable.

C:\Program Files\GnuWin32\bin;

The example above is true if the Gettext binaries are installed in C:\Program

Files\GnuWin32\bin. This is needed by the po2mo.php script to merge and compile

the languages translation files.

Note

If you intend to use CVS in command line, you need to install a CVS client. Use

WinCVS [http://www.wincvs.org/] or TortoiseCVS [http://www.tortoisecvs.org/

download.shtml], both are free Open Source clients. You must add the path to the

CVS binary in your PATH environment variable.

C:\Program Files\TortoiseCVS;

The example above is true if you installed TortoiseCVS in C:\Program

Files\TortoiseCVS.
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1.1.4.3.2. CartoWeb Setup with Cygwin

Open a Cygwin window and go to the CartoWeb root:

cd C:
cd ms4w/apps/cartoweb3/

Then see Section 1.1.3.2.1, “Basic Setup”

Note

You can download Cygwin here Cygwin [http://www.cygwin.com/]. When you

install Cygwin, be sure to select the packages tar (or unzip) and cvs. You can also

install the gettext-devel package, so you wont need to get an external gettext

installation later. If you have already installed Cygwin, type the following command

to see what package are currently installed.

cygcheck -c

If the packages mentioned above are not present, run Cygwin setup again and add the

missing packages.

Note

To enable you to execute PHP scripts easily, set the path to the PHP binary in your

.bashrc (in C:\cygwin\home\Administrator\ by default):

export PATH=$PATH:/cygdrive/c/ms4w/Apache/cgi-bin

The example above is true if the PHP binary are installed in

C:\ms4w\Apache\cgi-bin.

If you do not want to install the cvs and gettext Cygwin package, you need to add also

the path to the external CVS and gettext binaries.

export PATH=$PATH:/cygdrive/c/program Files/GnuWin32/bin
export PATH=$PATH:/cygdrive/c/program Files/TortoiseCVS

See the note in Section 1.1.4.3.1, “CartoWeb Setup with DOS”

1.2. Demos

1.2.1. Introduction

A few demos are embedded in CartoWeb to demonstrate the range of functionalities

that CartoWeb offers and give users examples on how to implement them:

• demoCW3: this is an overview of the standard functionalities that are somehow
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visible for an end-user in CartoWeb,

• demoPlugins: it shows the new functionalities that are available in latest CartoWeb

versions,

• demoEdit: a simple demonstration of the geographical objects edition and

persistent storage tools.

• demoToolTips: it demonstrates the usage of the tooltips using pseudo real data.

Follow the installation notes below and also the specific database installation in

Section 1.2.5, “ToolTips demo specific installation”

Demo data are freely downloadable. Next section explains how to install them.

Configuration and programming details are then described.

1.2.2. Installation

Before installing these demos, you need to have a working CartoWeb installation.

You can refer to the previous chapters how to install it.

To install the demoCW3 project, you need to gather the data by launching the

cw3setup.php with the --fetch-demo option.

On the other hand, the demoPlugins project uses plugins that work with databases.

Consequently some databases settings and configuration are required. We describe

here how to install these databases and how to use cw3setup.php.

Step by step guide:

1. Install PostgreSQL with PostGIS support. Prerequisite: Postgresql >= 8.0

Note

If you are on Debian, you can have a look at Appendix A, Mapserver Debian

Installation

2. Create a PostgreSQL database using the following command:

$ createdb demo_plugins

3. Integrate PostGIS functionalities in this database. Typically, you can type:

$ createlang plpgsql demo_plugins
$ psql -d demo_plugins -f lwpostgis.sql
$ psql -d demo_plugins -f spatial_ref_sys.sql

Note
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psql is a terminal-based front-end for PostgreSQL. It enables you to type in queries

interactively, issue them to PostgreSQL, and see the query results. Don't forget to

specify its location on your system to use it. If the lwpostgis.sql and

spatial_ref_sys.sql files aren't in the current directory, you have to specify their

path.

4. Create tables used by the locate plugin to allow you to do a recenter on
features by searching their names. To do so, you should export the free

downloadable layers airport, agglo, district and town in PostgreSQL/PostGIS

tables by typing the following command:

$ shp2pgsql -I aerofacp.shp airport > /tmp/airport.sql
$ psql -d demo_plugins -f /tmp/airport.sql

$ shp2pgsql -I builtupa.shp agglo > /tmp/agglo.sql
$ psql -d demo_plugins -f /tmp/agglo.sql

$ shp2pgsql -I polbnda.shp district > /tmp/district.sql
$ psql -d demo_plugins -f /tmp/district.sql

$ shp2pgsql -I mispopp.shp town > /tmp/town.sql
$ psql -d demo_plugins -f /tmp/town.sql

Note

shp2pgsql is a command-line program that exports a shapefile into SQL

commands. Don't forget to specify its location on your system to use it. You have

to specify the path to the shapefiles if they aren't in the current directory.

5. Execute cw3setup.php. file, with the --fetch-demo option to download

geographical data.

6. cw3setup.php Options. To finish demoPlugins installation, you will need to

launch the cw3setup.php with the --config-from-file parameter pointing to a

property file containing database configuration informations. Such a file is

provided in the cartoweb3/projects/demoPlugins/demo.properties file. You

need to edit this file and change the parameter to match your environment. In

particular the DB_HOST, DB_USER, DB_PASSWD and DB_PORT options need

to match your database access configuration. DB_LOCATE_NAME must be set to

the name of the database for the locate plugin. This file contains comments about

the description of each variables. Here's an example how to call the cw3setup.php

script with the --config-from-file option.

php cw3setup.php --install --base-url http://www.example.com/cartoweb
--config-from-file projects/demoPlugins/demo.properties
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Note

Routing fonctionnalities are also integrated in this demo. But they need a more

advanced configuration and the PgRouting module installed in the database, so they

aren't integrated in the basic installation. The steps to integrate routing

fonctionnalities and create database tables are described in a dedicated chapter of the

User Documentation: Chapter 27, Routing
[plugin]

1.2.3. Routing specific installation

Routing installation instructions have moved to a dedicated chapter in the User

Documentation: Chapter 27, Routing
[plugin]

1.2.4. Locate Plugin specific installation

This plugin allows user to search features by their names, and recenter on them.

By typing the first letters of a name, user is given a list of corresponding names.

Clicking on one of them recenters the map on it.

Note

In the locate.ini, you also need to specify the layers on which you want to do a

search by name and the sql statements to request the database.

Tip

Ensure that the tables have the correct privileges (GRANT SELECT) in the database.

1.2.5. ToolTips demo specific installation

Tip

The database used to store data is the same as for the demoPlugins

• Create the tables for layers radio and gsm.

Note

To do so, convert the radio and gsm data from shapefile to postGIS tables. The

shapefiles should be available in projects/demoCW3/server_conf/demoCW3/
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data where all demos data are.

$ shp2pgsql -I radio.shp radio > /tmp/radio.sql
$ psql -d demo_plugins -f /tmp/radio.sql

$ shp2pgsql -I gsm.shp gsm > /tmp/gsm.sql
$ psql -d demo_plugins -f /tmp/gsm.sql

• Create the table for channel data.

$ psql -d demo_plugins -f channels.sql

The channels.sql is located in the projects/demoToolTips/server_conf/

demoToolTips/sql folder

• Launch the install script in your CartoWeb root directory.

php cw3setup.php --install --base-url <base-url> --profile development
--project demoToolTips --config-from-file projects/demoPlugins/demo.properties

1.2.6. Plugins extensions further information

The aim of this part is to give you further informations on creation of demoPlugins

and demoEdit plugins extensions. If you create a new plugin or adapt an existing one,

we guess it will be helpful to take these plugins extensions for example or use one of

these two resources:

• User HowTo: http://www.cartoweb.org/cwiki/HowTo,

• Dev tutorial new plugins part: Chapter 2, New Plugins.

1.2.6.1. demoRouting Extension

Routing installation instructions have moved to a dedicated chapter in the User

Documentation: Chapter 27, Routing
[plugin]

1.2.6.2. demoEdit Extension

Some useful tips are available in Section 14.3, “How To”.
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2. Structure

2.1. Introduction

This chapter is an overall tour of the CartoWeb code structure. It briefly explains the

role of each directory. When available, links to relevant chapters of this

documentation are also provided.

2.2. Global Directory Structure

After installation, CartoWeb has the following directory structure:

• client: Client specific code files

• client_conf: Client configuration files, see Chapter 4, Configuration Files.

• common: Common client and server code files

• coreplugins: Basic mandatory plugins

o images: Image generation, see Chapter 8, Image Format Options
[coreplugin]

(images)

o layers: Layers management, see Chapter 6, Layers
[coreplugin]

o location: Navigation, see Chapter 7, Navigation
[coreplugin] (location)

o mapquery: Perform queries based on a set of selected id's, see Section 9.2.2,

“MapServer Query Configuration”

o query: Perform queries on layers, see Chapter 9, Queries
[coreplugin] (query)

o statictools: Distance and surface calculation.

o tables: Table rules management, see Section 9.1.2, “Tables Configuration”

• documentation: documentation

o apidoc: PHP source code documentation

o user_manual/source: DocBook XML source of the present documentation

• htdocs: Web accessible directory

o css: css files

o gfx: icons files

o js: javascript files

• include: libraries used by CartoWeb

• locale: locale files for internationalization purposes, see Chapter 17,

Internationalization

• log: logs, mainly used for development and debug purposes.

• plugins: Standard, but not mandatory plugins, see Section 2.3, “Plugins”
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o auth: authentication plugin, see Chapter 15, Security Configuration

o exportCsv: Csv export plugin, see Section 11.3, “CSV Export”

o exportHtml: HTML export plugin, see Section 11.2, “HTML Export”

o exportPdf: PDF export plugin, see Chapter 12, PDF Export
[plugin]

o hello: test plugin

o hilight: hilight plugin, see Section 9.3.3, “Hilight Configuration”

o outline: redlining and annotations, see Chapter 10, Annotation and Redlining

[plugin] (outline)

• po: PO templates files, used for gettext translation system, see Section 17.1.2, “PO

Templates”

• projects: CartoWeb user projects dir, see Section 2.4, “Projects”

• scripts: maintenance and administration scripts

• server: CartoWeb server code files

• server_conf: Cartoweb server-side configuration files, see Section 4.3, “Server

Configuration Files”

• templates: CartoWeb Smarty templates files, see Chapter 18, Templating

• templates_c: smarty templates cached files

• tests: CartoWeb unit tests suite, mainly used for development and debug

purposes

• www-data: writable and web accessible directories for generated files

o icons: Generated icons

o images: Mapserver images

o mapinfo_cache: Client-side server configuration cache, see Section 5.6,

“Caches Configuration”

o mapresult_cache: Client requests and associated server results cache, see

Section 5.6, “Caches Configuration”

o pdf: Pdf generated cache files

o soapxml_cache: Client SOAP XML requests and associated server results

cache, see Section 5.6, “Caches Configuration”

o wsdl_cache: Client-side WSDL cache, see Section 5.6, “Caches Configuration”

2.3. Plugins

Modularity is a key feature of CartoWeb. Its functionalities are packaged in logical

sets called plugins, that aim to be independent from each other, although some

dependencies cannot be totally avoided. Some plugins (core plugins) cannot be

disabled, while the other ones must be explicitly loaded in the server and/or client

configuration files.
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Nearly all plugins have configuration options set in .ini files. The full description of

these options makes the bulk of this user manual.

Modifying existing plugins or writing new ones requires some acquaintance with

PHP5, as it involves some coding. The related documentation is thus reported to the

developer's part of this manual (see Section 2.1, “ What are Plugins”), but that

shouldn't deter anybody from experimenting with it.

Each plugin directory contains one or more subdirectories. Here are all the possible

subdirectories:

• client: Client-side plugin code

• common: Client and server code

• htdocs: Web accessible directory

• server: Server-side plugin code

• templates: Smarty templates

2.4. Projects

The aim of projects in CartoWeb is to clearly separate mainstream files from

project-specific files. Developers should thus only work in projects, and not

modify/add/delete files in the root directory. This will ensure smooth updates.

The directory /projects/my_project has exactly the same structure as the root

directory shown above: Section 2.2, “Global Directory Structure”

Files added in directory /projects override corresponding files of the root directory.

For instance, if you want to change the layers template (i.e. basically the

representation of the layers hierarchy), simply copy the default /coreplugins/

layers/templates/layer.tpl to projects/my_project/coreplugins/layers/

templates/layer.tpl and make your changes there.

For more information about projects, see Chapter 3, Projects Handling.
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3. Projects Handling

3.1. Introduction

Projects are used to customize a CartoWeb application to your needs. By creating a

new project you can override templates, resources files (pictures, style sheets,

JavaScript files, etc.), configuration files and even add new plugins or modify

existing ones.

It is strongly recommended to use projects when deploying a CartoWeb application

with non-standard layout or plugins. The main reason is the necessity to keep

upstream files unchanged in order to easily apply the application upgrades.

Projects are in fact a mirrored collection of directories and files from the original

architecture. Files placed in a project are in most cases used preferentially to the

original files. There is an exception with plugins PHP classes: the latter must be

extended and not simply overridden. In projects you can also add brand new files (for

instance new plugins) that have no original version in the upstream structure. Fore

more details about how to write or customize plugins in projects, see Chapter 2, New

Plugins in Part III, “Developer Manual”.

Note that you don't need to duplicate the whole CartoWeb structure in your projects.

Only directories that contain overriding files have to be created. In .ini files, only

variables set in projects are overridden. Other variables keep the values set in

upstream .ini files.

Following files can be "overridden":

• client_conf/*.ini (client.ini and plugins configuration files)

• [core]plugins/*/client/*.php

• [core]plugins/*/common/*.php

• [core]plugins/*/server/*.php

• [core]plugins/*/htdocs/*.php

• [core]plugins/*/templates/*.tpl

• htdocs/css/*.css

• htdocs/js/*.js

• htdocs/gfx/layout/*.gif

• server_conf/server.ini

• server_conf/<mapId>/*.ini (<mapId>.ini and plugins configuration files)

• templates/*.tpl
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You can add project-specific mapfiles in directory /projects/my_project/

server_conf/my_mapfile. To point to the new mapfile, change the mapId value in

/projects/my_project/client_conf/client.ini.

You can add project-specific plugins in directory /projects/my_project/plugins.

To load the new plugin, add its name in client.ini and/or my_mapfile.ini

(loadPlugins variable).

Note

You MUST execute the cw3setup script with option --install so the new/overriding

files are linked (linux) / copied (windows) in the main htdocs folder, see

Section 1.1.3, “Command Line Installation” for details.

3.2. Using Projects

There are several ways to tell CartoWeb what project to use:

3.2.1. Apache Environment Variable

Set environment variable CW3_PROJECT in Apache configuration.

<Directory /your/cartoclient/path/>
Options FollowSymLinks
Action php-script /cgi-bin/php5
AddHandler php-script .php

# [...]

SetEnv CW3_PROJECT your_project_name
</Directory>

Warning: You will need Apache's Env module to use SetEnv command. To load this

module, add the following line to your Apache configuration:

LoadModule env_module /usr/lib/apache/1.3/mod_env.so

3.2.2. Using current_project.txt

Add a file named current_project.txt in CartoWeb root directory. This file must

contain a single line with project name.

3.2.3. Using a GET Parameter

You can pass a GET parameter project=YOUR_PROJECT to the client.php script,

for instance:
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http://path.to/cartoweb/client.php?project=myProject

3.2.4. Using the Projects Drop-down List

Have a look at the configuration of client.ini described in Section 4.2, “ client.ini

”, in particular directives showProjectChooser and availableProjects, to display

the project selection drop-down menu.

If showProjectChooser is true, a dropdown menu will appear in your CartoClient

interface, giving the list of all projects available in your /projects/ directory.

Selecting one will make it the active one. Your choice is propagated from page to

page. Note that if the selected project has showProjectChooser set to false, the

project selection dropdown will no more appear, keeping you from activating another

project. To go back to the initial project, call the initial client.php page without

posting the HTML form.

3.2.5. Using a Modified client.php

This should be avoided in production, but may be useful in development if you have

to frequently switch the working project: add a new file client_myproject.php in

the root htdocs directory. This file only sets the environment variable and then calls

the normal client.php. Each project has so its own URL.

<?php
$_ENV['CW3_PROJECT'] = 'myproject';
require_once('client.php');

?>
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4. Configuration Files
When installing CartoWeb, the administrator of the application may want to adapt it

to the environnement use. This can be easily done using configuration parameters.

Some are required and CartoWeb won't correctly work if they're not set. Others are

optional but could hardly change the application behavior.

You will also find specific config parameters in the plugins related chapters of this

documentation.

4.1. Common client.ini and server.ini Options

Common options for both client and server. These parameters are available in

client_conf/client.ini for client and server_conf/server.ini for server.

• profile = development|production|custom: current settings profile. The

development profile has no cache activated and makes SOAP work in WSDL

mode. The production profile has all caches activated for best performances.

Setting this parameter to development or production will override some parameters

in the configuration. The custom profile means the parameters about caching and

other are not overrided.

• useWsdl = true|false: if true, WSDL will be used for sending SOAP requests. This

will add some processing time but ensures that SOAP requests are well-structured.

In addition, WSDL is necessary when interfacing the Web Service with a

strong-typed language built application.

Cache options. See Section 5.6, “Caches Configuration”.

Developer options. See Section 4.5, “Developer Specific Configuration”.

4.2. client.ini

CartoServer access configuration:

• cartoserverDirectAccess = true|false: toggles between SOAP and direct modes.

Direct access gives enhanced performances, but is only available if CartoServer

runs on the same server as CartoClient.

• cartoclientBaseUrl: base URL of the CartoClient

• cartoserverBaseUrl: base URL of the CartoServer (i.e. path containing the

cartoserver.wsdl.php file)
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Mapfile configuration:

• mapId = string

• initialMapStateId = string. Tells what initialMapState to use when creating a

new CartoWeb session (see also Section 4.3.3.3, “Initial Mapstates”).

Tip

initialMapStateId may be determined using several means. By order of priority:

1. URLs (using GET parameter initialState)

2. PHP environment variables. Place

$_ENV['CW3_INITIAL_MAP_STATE_ID'] = 'foobar';

in your PHP code before calling CartoWeb.

3. client.ini

4. If no initialMapStateId can be determined, CartoWeb use first

initialMapState available.

Session handling:

• sessionNameSuffix = string. Optional suffix used to distinguish CartoClient

sessions parts for a given user. In most cases it is not necessary but may be needed

when using, for instance, "sub-projects". This string is an ulimited

comma-separated list of type:value couples. Three types are available:

o str: a constant string

o conf: uses value of one of the current client.ini configuration parameters

o env: uses value of given PHP environment variable, if set.

For instance:

sessionNameSuffix = "str:toto, conf:profile, env:myEnvVar"
sessionNameSuffix = "str:foo, str:bar"
sessionNameSuffix = "env:CW3_APP_ID"

Tools configuration:

• initialTool: indicates which tool is activated when in initial state. If not specified,

the first tool in the toolbar is activated. Possible values are: zoomin, zoomout, pan,

query, distance, surface.

• toolbarRendering: indicates how to render tools selectors icons within toolbar.

Possible values are 'radio' (default), 'outline', 'swap'. If 'radio': an HTML radio

button appear nexts to each tool icon. If 'outline': active tool icon is outlined with a
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colored border. If 'swap': an alternate icon ("over") is displayed to mark the active

tool.

Project handling configuration:

• showProjectChooser = true|false: Shows a drop-down list for selecting the active

project.

• availableProjects = list: List of the project to show in the drop down list. If not set,

all projects found will be used.

Plugins configuration:

• loadPlugins = list: list of client plugins to load in addition to the core plugins. Note

that most client plugins also have a corresponding server plugin that must be

loaded on the server side. See Section 4.3.3.2, “ <myMap>.ini ”.

Internationalization:

• I18nClass is now deprecated See Chapter 17, Internationalization for a

description of the internationalization options and the corresponding

configurations.

• defaultLang = string: default language, possible values are the usual ISO locale

codes (en, fr, de ...)

• langList = list: list of usable languages. Used to order and restrict the available

languages. In case you have many languages in directory

<cartoweb_home>/locale/ and do not want to use them all in your project, you may

use this parameter to specify a list of languages to use. The order in which you

input the languages codes will be used to display the languages links in the

interface.

Example 4.1. langList usage

langList = it,de,fr

The exemple above restricts the availablelanguages to it, de and fr. They will be

displayed in that order in the interface languages list.

ToolPicker:
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• toolPickerOn = true|false: enable the ToolPicker dhtml. See Section 10.5, “The

ToolPicker”.

Interface (GUI):

• initialFolder = folder# : Set the default "folder" (menu tab) to by active by default.

folder# is the id of the element in the template containing the corresponding

plugin's specific interface. For example:

initialFolder = folder2

By default, folder1 is active.

4.3. Server Configuration Files

4.3.1. Introduction

This page describes the configuration options of the CartoServer. There is a global

configuration file (server.ini) directly in the server_conf folder. Then all specific

configurations are stored in individual folders. Each configuration contains:

• a Mapserver mapfile (myMap.map),

• its annexes (symbols, fonts, images, data...),

• a main configuration file (myMap.ini) that must have the same name as the .map

• smaller configuration files for the plugins.

By default, CartoWeb comes with a fully functional test folder, that includes the

necessary geometrical datas and allows one to run an out of the box demo.

4.3.2. Main Server Configuration File (server.ini)

• imageUrl = string: Path where cartoserver generated images can be accessed.

• reverseProxyUrl = string: The url of the reverse proxy, if used.

4.3.3. Map Configuration Files

4.3.3.1. Introduction

The CartoServer has the ability to contains several different maps. These maps are

represented by the mapserver mapfile, the CartoWeb configuration file for the map

and each plugins configuration.
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The file that contain the configuration information related to a map, is located in the

same directory as the mapfile, but has a .ini extension. These files are in the

directory server_conf/<myMap>.

4.3.3.2. <myMap>.ini

• mapInfo.loadPlugins = list: list of server plugins to load in addition to the core

plugins. Note that most server plugins also have a corresponding client plugin that

must be loaded on the client side. See Section 4.2, “ client.ini ”.

• mapInfo.initialMapStates.[...]: See Section 4.3.3.3, “Initial Mapstates”.

4.3.3.3. Initial Mapstates

Initial map states set the initial aspects of the layers selection interface when starting

using CartoClient: (un)folded nodes, selected layers... Some of these properties are

not modifiable in the layers selection interface (hidden layers for instance) and thus

stay unchanged throughout the session.

Several initial map states can be created in myMap.ini , but at least one must be

present. Each one is identified by a unique initialMapStateId. The choice to activate

one or another is done client-side in client_conf/client.ini.

Available properties and syntax for layers in "initial map states" are:

• mapInfo.initialMapStates.initialMapStateId.layers.layerId. selected = true|false: if

true, layer is initially selected.

• mapInfo.initialMapStates.initialMapStateId.layers.layerId. unfolded = true|false: if

true, the layerGroup is represented as an unfolded node (children layers are

visible).

• mapInfo.initialMapStates.initialMapStateId.layers.layerId. hidden = true|false: if

true, this layer and its children are not shown in the layers list (but are still

displayed on the map if they're activated).

• mapInfo.initialMapStates.initialMapStateId.layers.layerId. frozen = true|false: if

true, this layer (and its children as well) is listed in tree but without checkbox. Its

selection status (defined by "selected" property) thus cannot be changed.

Example of Initial MapState:

mapInfo.initialMapStates.default.layers.polygon.selected = true
mapInfo.initialMapStates.default.layers.point.hidden = true
...

mapInfo.initialMapStates.map25.layers.polygon.selected = true
mapInfo.initialMapStates.map25.layers.polygon.unfolded = true
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4.4. Ini Files for Plugins

Each plugin may have a configuration file associated with it. It may be found in

client_conf/ or server_conf/your_project_name/ directory depending which

side needs to access the parameters. They have the same name as the plugin and ends

with .ini extension. For instance, the layers plugin has a configuration file named

layers.ini.

All plugins configuration files are described in the next sections of this chapter.

Every plugin that provides tools icons can be configured for:

4.4.1. Ordering Tools Icons

To modify the toolbar icons sequence, update the tools weight values. Icons with the

lowest weights are placed first in the toolbar. Parameters naming convention is to

concatenate the 'weight' prefix to the capitalized-first-lettered tool name as in

weightDistance. For two-word tool names (eg. 'exemple_tool'), each word has its

first letter capitalized and the '_' (underscore) is removed. For instance:

exempleTool = something

Default weights value are :

• weightZoomin: 10

• weightZoomout: 11

• weightPan: 12

• weightFullextent: 14

• weightQueryByPoint: 40

• weightQueryByBbox: 41

• weightQueryByPolygon: 42

• weightQueryByCircle: 43

• weightOutlinePoint: 70

• weightOutlineLine: 71

• weightOutlineRectangle: 72

• weightOutlinePoly: 73

• weightOutlineCircle: 74

• weightDistance: 80

• weightSurface: 81

Use a negative value to deactivate a tool.

Configuration Files

40



weightFullextent = -1

4.4.2. Grouping Tools Icons

CartoWeb offers the possibility to display tools icons in separated locations of its

interface. For instance browsing icons may be displayed in the general toolbar

whereas outline pictos may only appear in a dedicated folder. To do so, simply add an

integer group index for each tool in matching plugin configuration file. For instance:

groupDistance = 2

By default, all tools icons are affected to group 1. Note that the parameters naming

convention is the same than for weight parameters (see Section 4.4.1, “Ordering

Tools Icons”), only substituting the 'group' prefix to the 'weight' one.

It is also possible to specify a global plugin group index that will be applied to all the

given plugin tools if no individual group index has been set. To do so, use the

groupPlugin in the matching plugin configuration file as follows:

groupPlugin = 3

To take benefit of the tools groups, update the main CartoWeb template file

templates/cartoclient.tpl by including the toolbar.tpl template at the correct

places with the correct group indexes as follows:

{include file="toolbar.tpl" group=2}

For more information about templates writing, see Chapter 18, Templating.

4.4.3. Plugins Template "folder" Target Id

When using CartoWeb with ajax mode enabled, all plugins which need to update

some page content require an id to target the correct element in the template. The

following plugins are known to have this behaviour:

•
layers

default target id: folder2

•
outline

default target id: folder6

•
geostat

default target id: folder8
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The targeted element are usualy the menu "tabs" containing each plugin specific

interface. If you want to modify the default target id, you can simply add the

following parameter in the corresponding plugin's .ini file on CLIENT SIDE!

For example :

folderId = layerTree

See actual usage in the demoCW3 project.

4.5. Developer Specific Configuration

Some configuration parameters can be activated to retrieve more display information

targetted to the developers, like special timing messages, or setting the Php

configuration to display notices on the page. These configuration options are

described below.

Warning

These parameters will be overrided by the profile parameter (See Section 4.1,

“Common client.ini and server.ini Options”).

These parameters are available in client_conf/client.ini for client and

server_conf/server.ini for server.

• showDevelMessages = true|false: Shows developer messages

• developerIniConfig = true|false: Sets ini parameters useful during development
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5. Caches Configuration
Several different caching mechanisms are available in CartoWeb for maximum

performances. The different types of caches are described in the next chapters.

5.1. Smarty Cache

The templating system used in CartoWeb is Smarty, which offers two level of

caching for templates. One is compilation of templates into the templates_c

directory, and the other is static caching of templates. In CartoWeb, because pages

are very dynamic, only the first level of caching is used.

The caching feature of Smarty is totally transparent to the user. However, an option

can be set in the client_conf/client.ini configuration file to enhance

performances.

• smartyCompileCheck = true|false: Set this to false in production to improve

performance. Warning: This parameter will be overrided by the profile parameter

(See Section 4.1, “Common client.ini and server.ini Options”).

Warning

Setting this option to false means that your template won't be updated any more. Pay

attention to this if you need to change them on the server.

5.2. WSDL Cache

When using SOAP, and the useWsdl option is set to true in the client_conf/

client.ini or server_conf/server.ini, the WSDL generated document can be

cached for more performance. This is the purpose of this cache option. So it should be

activated in production environment, and turned off during development, if your

changes have an impact on the WSDL.

5.3. MapInfo Cache

MapInfo is a structure generated on the server and used by the cartoclient to access

static server information. This cache keeps a copy of the MapInfo structure on the
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client or the server, so that the client does not need ask it everytime, and the server

can avoid regenerating it from scratch.

5.4. MapResult Cache

This is a server side only cache, which caches the requests made to the server. This

cache works at the Php level, meaning that it can be used when CartoWeb is used in

direct or SOAP mode. For the distinction between these two modes, see Section 4.2, “

client.ini ”. However, the XML SOAP cache is more appropriate when using SOAP

mode, see details in the next chapter.

5.5. XML SOAP Cache

This one is also a server side only cache, caching requests at the lowlevel XML

SOAP exchange. This means this cache is only effective when direct mode is not

used, and can be used for any webservice for which the output only depends on the

input arguments.

5.6. Caches Configuration

5.6.1. Rationale

All cache configuration name are in the form noXXXName, where XXX is the name of

the cache. This is so, so that if the parameter is not available, its default value will be

false, meaning that all caches are active by default, for maximum performance.

Warning

These parameters will be overrided by the profile parameter (See Section 4.1,

“Common client.ini and server.ini Options”).

5.6.2. Client and Server Cache Options

These parameters are available in client_conf/client.ini for client and

server_conf/server.ini for server.

• noWsdlCache = true|false: disables the caching of wsdl (ignored if useWsdl is

false)

• noMapInfoCache = true|false: disables the caching of MapInfo requests

5.6.3. Server Cache Options
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These parameters are available in server_conf/server.ini.

• noMapResultCache = true|false: disables the caching of getMap requests

• noSoapXMLCache = true|false: disables the caching of SOAP XML requests
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6. Layers
[coreplugin]

6.1. Introduction

Geographical data are most often apprehended as thematic layers: you may have a

layer "Rivers", a layer "Aerial view", a layer "Average income", just to cite a few

examples. Now the basic purpose of any viewer is to make these data available to

users by allowing navigation within a layer as well as comparison between layers. A

way to organize the layers is thus mandatory if an user-friendly application is to be

developed. In CartoWeb, the files that contain the configuration instructions for the

layers are on the server-side, in the directory server_conf/<myMap>. Usually this

directory is part of a project.

CartoWeb is based on the geographical engine Mapserver. The Mapserver

documentation http://mapserver.gis.umn.edu/doc.html [http://mapserver.gis.umn.edu/

doc.html] is an integral part of the CartoWeb doc. To be concise, you have to know

how to write a mapfile if you want to use CartoWeb. So it doesn't come as a surprise

that a mapfile, myMap.map, is included in the <myMap> directory, together with its

annexes (typically a symbol file myMap.sym, a directory etc for the required fonts,

the graphic file used as keymap background, maybe also data files).

We'll see that some functionalities of CartoWeb require small changes of the mapfile

content. But most of the configuration is done in the file layers.ini.

The file myMap.ini sets the required plugins and the initial state of the map. Its

content is described in Chapter 4, Configuration Files

6.2. Hierarchy of Layers and Rendering

Contrary to Mapserver itself, CartoWeb supports an arbitrarily complex hierarchy of

layers and different rendering options. The notion of LayerGroup makes it possible.

6.2.1. Layers and LayerGroups

There are two types of "layers-like objects" in layers.ini : Layers and

LayerGroups. They play fairly different roles and consequently have different

possible attributes. Layers have a 1-to-1 correspondance to Mapserver layers (as

defined in the layers.map), while LayerGroups group together atomic Layers or

other LayerGroups.

6.2.2. Layers Options
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As seen before, the Layer object maps directly to a layer in the mapfile. By default,

all layers in the mapfile are made available as a Layer in the layers.ini, with an

identifier having the same name as the name of the mapserver layer. Thus, if you

have the following option in your mapfile:

LAYER
NAME "my_layer"
TYPE line

END

This is equivalent as writing the following configuration in the layers.ini:

layers.my_layer.class = Layer
layers.my_layer.label = my_layer
layers.my_layer.msLayer = my_layer

Tip

If you don't need special parameters (see below) for your layer then you can avoid

adding it in the layers.ini

However, if you want these layers to appear in the layer list, you still have the

responsibility to affect them a parent layer, using the children property of the

LayerGroup layer declarations.

Here is the syntax for the various configuration parameters of a Layer.

• layers.layerId.className = Layer : defines the object as a Layer; layerId is a string

that uniquely identifies the object. The general rules of syntax for a .ini file must be

respected in the choice of the layerId (e.g. no '-' are allowed).

• layers.layerId.msLayer = string : name of the corresponding Mapserver layer in the

mapfile

• layers.layerId.label = string : caption of the layer in the layer tree on the client; this

is a 'raw' label, before any internationalization. The i18n scripts automatically

include this label in the strings that can be translated.

• layers.layerId.icon = filename : filename of the static picto that illustrates this

Layer in the layer tree. The file is expected to be in server_conf/<mapId>/icons

and a setup script launch is in most cases required. See also Section 6.4, “Layers

Legends” for a description of the automatic legending process.

• layers.layerId.link = url : provides a link for the layer (e.g. to some metadata);

makes the caption in the tree clickable.

6.2.3. LayerGroups Options
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Here is the syntax for the various configuration parameters of LayerGroups. Note that

a special LayerGroup with layerId=root must be present. Unsurprisingly, it is the root

(top level) of the hierarchy. It doesn't appear in the visible tree.

• layers.layerId.className = LayerGroup : defines the object as a LayerGroup;

layerId is a string that uniquely identifies the object. The general rules of syntax for

a .ini file must be respected in the choice of the layerId (e.g. no '-' are allowed).

• layers.layerId.children = list of layerIds : comma-separated list of layerIds; these

children may be Layers or other LayerGroups.

• layers.layerId.children.switchId = list of layerIds : comma-separated list of

layerIds, when using switching (see Section 6.2.4, “Children Switching”). This

option cannot be used together with simple children option.

• layers.layerId.aggregate = true|false : if true, the children objects are not listed in

the tree and not individually selectable. Default is false.

• layers.layerId.label = string : caption of the layer in the layer tree on the client; this

is a 'raw' label, before any internationalization. The i18n scripts automatically

include this label in the strings that can be translated.

• layers.layerId.icon = filename : filename of the static picto that illustrates this

Layer in the layer tree. The path is relative to myMap.ini. See also Section 6.4,

“Layers Legends” for a description of the automatic legending process.

• layers.layerId.link = url : provides a link for the layer (e.g. to some metadata);

makes the caption in the tree clickable.

• layers.layerId.rendering = tree|block|radio|dropdown : indicates how to display the

LayerGroup children.

o tree (default value): children layers are rendered below the LayerGroup with an

indentation. If children are not declared as "frozen" or "hidden" (see

Section 4.3.3.3, “Initial Mapstates”) they will be preceded by a checkbox input.

A node folding/unfolding link is displayed before the LayerGroup.

o radio: quite similar to the "tree" rendering with "radio" buttons replacing

checkboxes. Only one child layer can be selected at a time.

o block: children layers are separated as blocks (separation medium depends on

the template layout). Note that the rendering will be applied to the children, not

to the LayerGroup itself, which is not displayed at all.

o dropdown: as for block rendering, the LayerGroup is not displayed. Its children

are simply rendered as an HTML "simple select" options list. If the selected

child layer cannot be determined using posted or session-saved data, first child

(according to the layers.layerId.children list order) is selected. If any, only the

selected child layer's own children are displayed under the dropdown list.

• layers.layerId.metadata.minScale (resp. maxScale): one may specify a numerical

minimal (resp. maximal) scale for the given LayerGroup. This parameter has
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absolutely no effect on Mapserver behavior and is only used to display out-of-scale

icons and links in the layers tree. For more info about layers.ini metadata

parameters, see Section 6.3.2, “Metadata in layers.ini”.

6.2.4. Children Switching

Children switching is useful to define several lists of children for one layer group.

The children that will be displayed is choosen by a special parameter : the switch ID.

Switch IDs and labels are listed in file layers.ini(server side). In default test

environment, a dropdown is constructed using this list and displayed in the GUI.

switches.switch1.label = Switch 1
switches.switch2.label = Switch 2
switches.switch3.label = Switch 3

Then, each layer group that needs to change its children depending on the switch ID

may add this ID as a suffix to the children option.

layers.layerId.className = LayerGroup
layers.layerId.children.switch1 = layer1, layer3
layers.layerId.children.switch2 = layer2, layer3
layers.layerId.children.switch3 =

Special suffix default can be used to define a default children list :

layers.layerId.className = LayerGroup
layers.layerId.children.switch2 = layer2, layer3
layers.layerId.children.default =

The following layer group definitions are equivalent :

layers.layerId.className = LayerGroup
layers.layerId.children.default = layer4

layers.layerId.className = LayerGroup
layers.layerId.children = layer4

6.2.4.1. Change Switch position in template

By default, the switch input is positionned above the layers tree. If you wish to

change its position, simply place the {$switches} variable somewhere else in your

template. If you are using AJAX, you also need to define the switchTargetId

parameter in client_conf/layers.ini.

• switchTargetId = elementid : the id of the element in the template, containing the

{$switches} variable. For example :

<div id="switchTarget">
{$switches}

</div>
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6.2.4.2. Define an existing switch as default switch

If you do not wish to duplicate the "default" switch and the switch you want to use as

reference (default behaviour), you can use the relatedDefaultSwitchId parameter.

• relatedDefaultSwitchId = switchid : the id of the switch you want to use as default

switch (you need to modify the switches.tpl template!).

For example :

switches.switch1.label = human
switches.switch2.label = categ

; layers
layers.root.className = LayerGroup
;layers.root.children = background, human, categ, wmsLayers
layers.root.children.default = background, human, wmsLayers
layers.root.children.switch2 = background, categ, wmsLayers
layers.root.rendering = block

We have 2 switchs defined: switch1 and switch2. By default, the switch select in the

interface will contains 3 switchs: default, switch1, switch2. If we set

relatedDefaultSwitchId = switch1 and modify the template accordingly (see the

example in project demoCW3), the select will contains only switch1 and switch2.

In the layers definition, we only use default and switch2. If the user select switch1 in

the interface, the default switch will be used as switch1 is not defined: no more

duplicate definition of switch.

6.3. Metadata in Mapfile and layers.ini

Metadata are (keyword, value) pairs which can be associated to a MapServer layer in

the mapfile, or to a Layer or LayerGroup in the layers.ini configuration file. These

metadata are used in several different contextes, such as layer specific configuration,

security handling, ... The metadata related to the functionalities of CartoWeb are

described in the documentation of the corresponding plugins.

6.3.1. Metadata in Mapfiles

Specifying metadata in mapfiles is based on the standard MapServer syntax. For

instance:

LAYER
NAME "my_layer"
[...]
METADATA
"exported_values" "security_view,some_specific_parameter,data_encoding"
"security_view" "admin"
"some_specific_parameter" "value"
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"data_encoding" "value_iso"

"id_attribute_string" "FID|string"
"mask_transparency" "50"
"mask_color" "255, 255, 0"
"area_fixed_value" "10"

END
[...]

END

The metadata key exported_values is a bit special: It gives the list of metadata keys

(coma separated), which will be transmitted to the client. This is required for the

metadata keys describing layer security for instance, as they are used on the

CartoClient.

6.3.2. Metadata in layers.ini

The configuration file layers.ini may also contain metadata (key, value) pairs. This

is needed for LayerGroup objects, as these have no counterparts in the mapfile. For

simple layers, the metadata specified in the layers.ini take precedence over the

values from the mapfile.

For each layer object in the layers.ini file, the following syntax is used to set

metadata:

layers.layerId.metadata.METADATA = value

For instance:

layers.group_admin.className = LayerGroup
layers.group_admin.children = grid_defaulthilight
layers.group_admin.metadata.security_view = admin

layers.foo.className = Layer
layers.foo.metadata.data_encoding = value_iso

Note

It is possible to specify minScale and maxScale attributes as layers.ini metadata

for layerGroups items. The equivalent mapfile metadata is not available for layers. In

that case, simply use mapfile MINSCALE and MAXSCALE attributes.

6.3.3. Using the metadata fields in templates (layers.tpl)

Metadata declared in mapfiles or layers.ini can be used in the layers.tpl Smarty

templates using the following notation:

{capture name=caption}
{$element.layerLabel} <a
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href="/?lang={$element.layerMeta.lang}&client_id={$element.layerMeta.client_id}">
{element.layerMeta.complex_label}</a>
{/capture}

As we can see in the previous example, metadata values can be used through the

layerMeta property of the $element Smarty variable. Typical usage of this feature is

to render for instance several HTML links for each layers.

6.4. Layers Legends

CartoWeb includes a mechanism for the automatic generation of legends. If desired,

an icon is drawn for each class of the layers. There are two conditions that must be

fulfilled to make it work :

1. The mechanism must be enabled by setting

autoClassLegend = true

in layers.ini.

2. Each class (or more precisely each class that should appear in the legend) must

have a name. Here an example :

LAYER
NAME "spur_spurweite"
METADATA
...
END
TYPE line
...

CLASS
NAME "Normalspur (1435 mm)"
EXPRESSION ([MM] = 1435)
STYLE
COLOR 0 0 255 # blue

END
END

CLASS
# NAME "Meterspur (1000 mm)"

EXPRESSION ([MM] = 1000)
STYLE
COLOR 255 0 0 # red

END
END

CLASS
NAME "Schmalspur (< 900 mm)"
EXPRESSION ([MM] < 900)
STYLE
COLOR 128 0 128 # lila

END
END

END
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In this case, the second class would not appear in the legend, because the NAME is

commented out.

Provided that no static icon is defined for a layer in layers.ini, the icon of the first

visible class is used for the layer.

Legend icons are also used when exporting maps in PDF (see Chapter 12, PDF

Export
[plugin]

). Standard legend icons are used by default, which means that they may

seem pixelized when printing a 300 dpi map. To resolve this issue, the following

parameter can be set in layers.ini:

legendResolutions = 96, 150, 300

Each resolution must correspond to one of those set in PDF Export configuration file.

This file is described in Section 12.2.1, “General Configuration”.

6.5. WMS Layers Legends

Mapserver could act like a WMS client and retrieved layer from distant WMS server.

In this specific case, layers legends could be retrieved directly from a distant server

with SLD support (getLegendGraphic method).

You must also add a metadata on each WMS layer to retrieve its legend icon:

wms_legend_graphic

Here is an example:

LAYER
NAME 'prov_boundary'
TYPE RASTER

CONNECTION 'http://www2.dmsolutions.ca/cgi-bin/mswms_gmap?'
CONNECTIONTYPE WMS
METADATA
'wms_srs' 'EPSG:4326'
'wms_name' 'prov_bound'
'wms_server_version' '1.1.1'
'wms_format' 'image/png'
'wms_legend_graphic' 'true'

END
END

6.6. Auto Layers

In some cases, it may be useful to generate several layers out of a single "template"

layer. An example would be floors : each floor must be displayed with the same

color, etc. but the data source is different (different shapefile or different where clause

for a database layer). In CartoWeb, it is possible to add PHP code into mapfiles. True
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mapfiles are then generated by a batch script. The generated layers are called "Auto

Layers".

6.6.1. Auto Layers in layers.ini

First, you have to declare the list of auto layers indexes. Indexes will be used as

suffixes for generated layers :

autoLayersIndexes = index1, index2

Then you can use auto layers just as other layers. In this exemple, an auto layer

myAutoLayer_ was declared in the mapfile template (see Section 6.6.2, “Mapfile

Templates”).

layers.layer1.className = LayerGroup
layers.layer1.children = layer2, myAutoLayer_index1

layers.layer2.className = LayerGroup
layers.layer2.children = myAutoLayer_index2

6.6.2. Mapfile Templates

Mapfile templates for auto layers are PHP files. The main template must be called

mapId.map.php. If this file exists, then CartoWeb assumes that auto layers generation

is used. If the file does not exists, CartoWeb looks for a standard mapId.map.

The following functions are predefined and can be used in mapfile templates :

• printLayer($name, $contents) : adds a new auto layer. The name is the final

name of the layer without the index suffix. Contents include Mapserver layer

definition with PHP code for parts that will be different for each instance of auto

layer

• printIndex() : adds the current auto layer index. Must be used in auto layer

contents

• printName() : adds the current auto layer full name. Must be used in auto layer

contents

• getIndex() : returns the current auto layer index. It can be useful for instance in

conditional statements. Must be used in auto layer contents

• includeFile($path) : adds the content of another PHP mapfile template

Here is an example :

MAP
NAME "MyMapfile"
EXTENT -10 -10 10 10

# ...
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<?php

printLayer('myAutoLayer_',

<<<AUTOLAYER

# This is my auto layer with index <?php printIndex(); ?>
LAYER
NAME <?php printName(); ?>
TYPE POLYGON

# ...
CLASS
NAME "MyClass"
STYLE
COLOR <?php if(getIndex() == 'index2') print "200 200 255";

else print "255 153 102"; ?>
END

END
END

AUTOLAYER
);

?>

END

6.6.3. Batch Script

Script makemaps.php located in directory scripts generates mapfiles out of mapfile

templates for all projects. Mapfiles are generated in the same directory. The script

must be called once during installation and then each time a change is made to the

mapfile templates.

It uses filelayers.ini to find out which auto layers are needed. For instance, with

the following layers.ini, myAutoLayer_index3 won't be generated.

autoLayersIndexes = index1, index2, index3

layers.layer1.className = LayerGroup
layers.layer1.children = layer2, myAutoLayer_index1

layers.layer2.className = LayerGroup
layers.layer2.children = myAutoLayer_index2

At least one file is generated. Its name is auto.mapId.all.map and it contains all

auto layers used in file layers.ini. When children switching is used (see

Section 6.2.4, “Children Switching”), one mapfile is generated per switch. One more

is generated for special switch default. This way, only auto layers used with the

current switch are actually loaded at runtime. Mapfile auto.mapId.all.map is still

generated.

In the following example, 4 mapfiles are generated :

autoLayersIndexes = index1, index2, index3, index4

switches.switch1.label = Switch 1
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switches.switch2.label = Switch 2

layers.layer1.className = LayerGroup
layers.layer1.children.switch1 = layer2, myAutoLayer_index1
layers.layer1.children.default = layer2, myAutoLayer_index2

layers.layer2.className = LayerGroup
layers.layer2.children = myAutoLayer_index4

• auto.mapId.all.map : contains all layers used in layers.ini, ie. layers

myAutoLayer_index1, myAutoLayer_index2 and myAutoLayer_index4

• auto.mapId.switch1.map : contains layers used when Switch 1 is selected, ie.

layers myAutoLayer_index1 and myAutoLayer_index4

• auto.mapId.switch2.map : contains layers used when Switch 2 is selected, ie.

layers myAutoLayer_index2 and myAutoLayer_index4

• auto.mapId.default.map : contains layers used when no switch is selected, ie.

layers myAutoLayer_index2 and myAutoLayer_index4

6.7. Layer Reorder Plugin

Ability to reorder displayed layers could be appreciated by end user. And so, even if

your map is well designed with largest features layers on bottom and smallest on top,

and/or even with well used transparent properties. The plugin layerReorder , is

designed to do so. Layers could be reorder on the displayed stack to improve

visibility of one layer.

Each layer defined in the mapfile and currently selected in legend menu (and only

them) will be displayed in the reorder menu list.

6.7.1. Plugin activation

To activate the plugin, add it to loadPlugins from Both CartoClient and CartoServer

configuration files: client_conf/client.ini and server_conf/<mapId>/

<mapId>.ini. For instance:

loadPlugins = layerReorder

6.7.2. Layer exclusion

If you want to exclude some layers and then not allow them to be reordered, have a

look on client_conf/layerReorder.ini. You will be able to exclude some layers

and to choose to keep them on bottom (or on top). To do so, use the following

configuration parameters:

• topLayers: list of all layerIds to keep on top of the genererated map (LayerIds
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must be comma separated).

• bottomLayers: same as previous one, but obviously keep these layerIds on

bottom. Useful for example with a raster background layer.

6.7.3. Transparency selector

You could also add a transparency selector on each layer displayed with this plugin.

End user will so be able to choose a different transparency level for each displayed

layer.

To activate it, set enableTransparency to true in client_conf/

layerReorder.ini.

Default transparency selector values are : 10%, 20%, 50%, 75% and 100%. You

could also customize transparency values available in this selector, with a comma

separated value in transparencyLevels. A transparency value is a integer between 1

to 100 ; with 100 mean an opaque layer as 1 mean a nearly invisible one.

6.8. Layer Filter Plugin

This plugin is used to filter objects displayed on the map according to some criteria.

Those criteria are set by users using a special form, automatically built according to

the plugin configuration.

6.8.1. Plugin activation

To activate the plugin, add it to loadPlugins from Both CartoClient and CartoServer

configuration files: client_conf/client.ini and server_conf/<mapId>/

<mapId>.ini. For instance:

loadPlugins = layerFilter

6.8.2. Client Configuration

Client configuration is mainly used to described what the filter form must look like.

Aside from a i18n parameter - a boolean telling if form inputs titles and labels must

be internationalized - the configuration uses an object-like notation to list filter form

inputs and their properties. Three types of inputs are available: radio buttons,

checkboxes and dropdowns. Each input config object has a "criterion name" and

several properties:

• title, title of the criterion

• type, (checkbox|radio|dropdown), rendering of the criterion input
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• allOptionsListed, (boolean), only relevant when type=checkbox. If this setting

is true, no filter is applied when all boxes are checked. Default setting is false.

• options, a list of object-like options with an "option name" a label and a

selected boolean status (indicates the initial state of the filter form).

For instance:

i18n = true

criteria.foo.title = foobar
criteria.foo.type = checkbox
criteria.foo.allOptionsListed = true
criteria.foo.options.bou.label = some text
criteria.foo.options.bou.selected = true
criteria.foo.options.bla.label = blabla
criteria.foo.options.bla.selected = true
criteria.foo.options.chon.label = some other option not checked

If users check all the boxes of a criterion, no filter will be applied for this criterion. If

no box is checked for a criterion, all its filters will be applied.

For radio and dropdown criterion, it is possible to specify a neutral option (if

selected, no filter is applied for this criterion) using the null keyword. For instance:

criteria.foo.title = foobar
criteria.foo.type = dropdown
criteria.foo.options.bou.label = some text
criteria.foo.options.chon.label = some other text
criteria.foo.options.null.label = no filter
criteria.foo.options.null.selected = true

6.8.3. Server Configuration

The plugin server-side configuration described what layers criteria must apply to and

what the conditions matching the criteria options (PostGIS or ShapeFile FILTER

syntax) are. An object-like notation, symetrical to the client-side configuration, is

used. Each criterion owns the following properties:

• layers, a comma-separated list of one or more layers to whom the criterion

applies

• options, a collection of options "objects" with a filter property that indicates

what PostGIS or ShapeFile filter to apply. If you need to use double-quotes (")

within that property (for instance to enclose a table field name), rather user #

characters instead to avoid conflicts. The plugin will then replace them by

double-quotes characters.

For instance:

criteria.surf.layers = zone_a, zone_b

Layers
[coreplugin]

58



criteria.surf.options.surf1.filter = "#SOME_FIELD# < 1"
criteria.surf.options.surf2.filter = "MAX(some_other_field) BETWEEN 1 AND 2"

6.8.4. Insertion in Layout

In order to make the filter form available in the general layout, a Smarty

{$layerFilter} tag must be included in the templates/cartoclient.tpl

template. If the AJAX mode is activated, make sure that it is encapsulated within a

<div id="layerFilter"></div> element:

<div id="layerFilter">{$layerFilter}</div>
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7. Navigation
[coreplugin] (location)

The plugin location is the core plugin that deals with geographic navigation on the

map. It handles bboxes (visible areas) and scales; it drives the tools zoom-in,

zoom-out and panning, the directional arrows around the main map and the overview

map.

The corresponding configuration files are location.ini (client-side) and

location.ini (server-side).

7.1. Client-side Configuration

Here are the options that can be set:

• scalesActive: boolean, if true, the scales dropdown list is displayed (default: false).

If no visible scales are defined on the server, a simple input text will be displayed.

• freeScaleActive: boolean, if true, the free scales input is displayed (default: false).

This allow the user to freely set a scale value that is different from the predefined

scales. There are a few conditions for this to work:

o scalesActive must be activated (see above).

o scaleModeDiscrete must be deactivated (false) (see Server-side Configuration).

o location.js must be loaded.

o prototype.js must be loaded (by default if ajax is on).

• recenterActive: boolean, if true, the coords recentering form is displayed (default:

false)

• idRecenterActive: boolean, if true, the id recentering fields will be displayed

(default: false)

• idRecenterLayers the comma separated list of layers which will appear in the id

recentering selection form. If this list is absent, all msLayers appear in the form.

• shortcutsActive: boolean, if true, the shortcuts (direct access dropdown list) are

displayed (default: false)

• scaleUnitLimit: scale above which DHTML measures use km ; below, they use m.

• panRatio: ratio for panning by clicking directional arrows. Default is 1 (no overlap,

no gap). Values below 1 result in an overlap of the old and the new maps; values

above 1 in a gap between these two maps.

• weightZoomin: integer defining display order of the zoomin tool icon in toolbar (if

not specified, default to 10). A negative weight disables the tool.

Note
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Zoomin is the default tool and it will be activated automaticaly. If you want to

deactivate it, you need to set another default tool. See initialTool in Section 4.2,

“ client.ini ”.

• weightZoomout: see weightZoomin (default to 11)

• weightPan: see weightZoomin (default to 12)

• weightFullextent: see weightZoomin (default to 14)

• crosshairSymbol: (integer) numerical id of symbol to use to materialize recentering

point (see your symbolset file)

• crosshairSymbolSize: integer defining the size used to display the recentering

crosshair symbol.

• crosshairSymbolColor: RGB code (comma-separated list of integers) of the

crosshair color.

• showRefMarks: if true, will add reference marks to the main map. Reference marks

configuration is set on server.

7.2. Server-side Configuration

Here are the options that can be set:

• minScale: if set, minimal scale allowed.

• maxScale: if set, maximal scale allowed

• scaleModeDiscrete: boolean, if true, only specified scales (see below) can be set.

• zoomFactor: the zoom factor to use whan scaleModeDiscrete is set to false.

• noBboxAdjusting: If set to true, all data contained in the initial extent (mapfile) is

visible on the full extent (first) map. This case is the default mapserver behavior. If

set to false (default), the user won't be able to see anything outside the initial

extent, even on full extent map.

• scales.#.value (# = 0, 1, 2, ...): available value of the scale in discrete mode.

• scales.#.label (# = 0, 1, 2, ...): label of the scale, to be displayed in the dropdown

list on the client.

• scales.#.visible (# = 0, 1, 2, ...): boolean, if true, the scale is displayed in the

dropdown list. If false, this scale can only be selected by zoom-in/zoom-out.

Default is true.

• shortcuts.#.label (# = 0, 1, 2, ...): label of the shortcut; appears in the direct access

dropdown list on the client.

• shortcuts.#.bbox (# = 0, 1, 2, ...): geographic bbox of the shortcut.

• recenterMargin: margin to add around the centered-on object (valid for lines and

polygons). Expressed in percent of the width/height of the object. If not set,
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recenterDefaultScale is used.

• recenterDefaultScale: fixed scale to use when recentering. Mandatory when

centered-on object is a point.

• refMarksSymbol: symbol used to draw lines for reference marks (typically an

ellipse).

• refMarksSymbolSize: size in pixel of symbol used to draw lines for reference

marks (typically 1 or 2).

• refMarksSize: size of reference marks. Size is fixed and won't change with scale.

• refMarksColor: color of reference marks (comma-separated R, G and B values).

• refMarksTransparency: transparency of reference marks.

• refMarksOrigin: origin for reference marks (comma-separated X and Y values,

typically "0, 0").

• refMarksInterval.#.maxScale: maximum scale for corresponding interval.

• refMarksInterval.#.interval: real interval between two reference marks

(comma-separated X and Y values).

• refLinesActive: if true, will display reference marks on page borders.

• refLinesSize: size in pixel of reference marks on page borders.

• refLinesFontSize: size of font for reference marks on page borders.

• scaleUnitLimit: scale above which the scalebar use km ; below, m is used.

7.3. Related Elements Elsewhere

The maximal extent of the geographical zone is set by the EXTENT command in the

mapfile.

The initial bbox is set by the active initialMapState. It is to be configured in the

myMap.ini file, using the following syntax:

mapInfo.initialMapStates.initialMapStateId.location.bbox = "xmin,ymin,xmax,ymax"
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8. Image Format Options
[coreplugin]

(images)

The plugin images is the core plugin that deals with the formatting options for the

main map. It handles the size of the image and its filetype.

8.1. Client-side Configuration

8.1.1. Main Map Options

Here are the options that can be set:

• mapSizesActive: boolean; if true, displays a drop-down list of available mapsizes ;

if false a fixed size is used (defined by the two following parameters).

• mapWidth: mainmap width in pixels if mapSizesActive = false

• mapHeight: mainmap height in pixels if mapSizesActive = false

• mapSizes.#.width : (#=0,1,2...) available mainmap width in pixels for mapsize #

(when mapSizesActive = true)

• mapSizes.#.height : (#=0,1,2...) available mainmap height in pixels for mapsize #

(when mapSizesActive = true)

• mapSizes.#.label : (#=0,1,2...) label that describes mapsize #; appears in drop-down

list. If not specified, a <width>x<height> pattern is used as the label.

• mapSizesDefault : integer indicates the default mapsize to be used (among the

above #). Only when mapSizesActive = true.

• maxMapWidth : maximum allowed width in pixels of the generated mainmap

when setting manually the mapsize using GET or POST requests. If no value is

specified, default max width is 1500 px.

• maxMapHeight : maximum allowed height in pixels of the generated mainmap

when setting manually the mapsize using GET or POST requests. If no value is

specified, default max height is 1000 px.

If no mapsize settings are found, the default mapsize is 400x200 pixels.

8.1.2. Keymap and Scalebar Options

The plugin images can also deal with few keymap and scalebar options:

• collapsibleKeymap: if true, keymap is shown on map, and possibly hidden.

Image Format Options
[coreplugin] (images)

63



• noDrawKeymap: if true, keymap will not be drawn at all.

• noDrawScalebar: if true, scalebar will not be drawn.

8.2. Server-side Configuration

Here are the options that can be set:

• maxMapWidth: maximum allowed width in pixels of the generated mainmap. If

the value requested by the client is greater, maxMapWidth takes precedence over

it.

• maxMapHeight: maximum allowed height in pixels of the generated mainmap. If

the value requested by the client is greater, maxMapHeight takes precedence over

it.

8.3. Related Elements in Mapfile

8.3.1. General Image Type

The general output fileformat is handled by Mapserver. The basic command in the

mapfile is

IMAGETYPE png|jpeg|gif...

Then the OUTPUTFORMAT objects may set properties for each possible fileformat.

Example (for jpeg) :

OUTPUTFORMAT
NAME jpeg
DRIVER "GD/JPEG"
MIMETYPE "image/jpeg"
IMAGEMODE RGB
FORMATOPTION QUALITY=85
EXTENSION "jpg"

END

See the available options for each format in the Mapserver doc.

Important note if you intend to use pdf printing : interlaced png images are not

supported by the fpdf library that is used in this module. Consequently, you must

have the option

FORMATOPTION "INTERLACE=OFF"

in the definition of the png OUTPUTFORMAT. Here is the complete object :
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OUTPUTFORMAT
NAME png
DRIVER "GD/PNG"
MIMETYPE "image/png"
IMAGEMODE PC256
EXTENSION "png"
FORMATOPTION "INTERLACE=OFF"

END

8.3.2. Automatic Image Type Switch

It is often desirable to adapt the imagetype of the map to the represented data.

Typically, vector data is well rendered in png, while the colors of a raster background

require either jpeg or png24 format. CartoWeb includes a mechanism that

automatically switches the format when specific layers are selected. A special

metadata of the layers triggers this behavior :

METADATA
...
"force_imagetype" "jpeg|png..."
...

END

This metadata overrides the general fileformat of the mainmap (but not of the legend

icons; these stay in the initial fileformat).
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9. Queries
[coreplugin] (query)

Core plugin Query allows to search for geographical objects. Found objects are

hilighted and if requested related data are returned to client.

Depending on configuration and user choices, queries are executed on one layer,

several layers or all layers currently displayed on map.

Queries can be executed on a geographic selection or using a list of object IDs.

Geographic selection can be a point, a rectangle, a polygon or a circle but is a

rectangle by default. The second way to execute a query is used in particular to

maintain selection persistence: object IDs are stored client-side and sent to server

each time the page is reloaded.

Hilighting objects can be done using standard Mapserver queries or using special

Hilight plugin. See Section 9.3.3, “Hilight Configuration” for more information.

Results are returned and displayed using Tables plugin. See Section 9.1.2, “Tables

Configuration” for more information.

9.1. Client-side Configuration

9.1.1. query.ini

Here are the options that can be set in client's query.ini:

• persistentQueries: if true, queries will be persistent. If false, selection is lost after

next page reload. Note that persistency will work only with layers with

id_attribute_string set (see Section 9.3, “Related Elements in Mapfile”)

• displayExtendedSelection: if true, shows form for selection extended functions.

This form is mainly used by developers (see TODO: link to developer's doc)

• queryLayers: the comma separated list of layers which will appear in the extended

selection form. If this list is absent, all msLayers appear in the form.

• returnAttributesActive: if true, the layers attributes can be requested. If false, only

object IDs will be returned (default: false)

• defaultPolicy: can be either POLICY_XOR, POLICY_UNION,

POLICY_INTERSECTION or POLICY_REPLACE. Defines how new selected

objects are mixed with previous ones (default: POLICY_XOR)

• defaultMaskmode: if true, selected objects are highlighted in mask mode (default:

false). See also Section 9.3.3.2, “Mask Mode”

• defaultHilight: if true, objects are highlited (default: true)
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• defaultAttributes: if true, the layers attributes are returned (default: true)

• defaultTable: if true, the results table is displayed (default: true)

• weightQueryByPoint: integer which defines display order of the query by point

tool icon in toolbar (default: 40). Negative weighted tools are disabled

• weightQueryByBbox: see weightQueryByPoint (default: 41).

• weightQueryByPolygon: see weightQueryByPoint (default: 42).

• weightQueryByCircle: see weightQueryByPoint (default: 43).

9.1.2. Tables Configuration

Tables plugin can be used by any plugin to manage, transfer and display tables

structure. In basic CartoWeb installation, only Query plugin uses this functionality.

To configure table appearance, use tables client-side rules described in Developer's

Documentation (Section 2.4.3, “Tables”).

9.2. Server-side Configuration

9.2.1. query.ini

Here are the options that can be set in server's query.ini:

• drawQueryUsingHilight: if true, query hilighting will use Hilight plugin. In this

case, Hilight plugin must be loaded on server. If false, objects will be hilighed

using MapServer query functionality. See also Section 9.3.3, “Hilight

Configuration” (default: false)

• noRowId: if true, row id will not be included in the table. In this case the row id

will not be displayed in the output table (html, pdf, etc.). (default: false)

9.2.2. MapServer Query Configuration

MapQuery plugin can be used by any plugin to retrieve objects information from

MapServer.

Following options can be set in server's mapquery.ini:

• maxResults: Maximum number of results to handle in the query plugin. This limit

is to avoid high load on the server. It should be the client responsibility not to ask

too many objects to avoid reaching this limit. Ignoring big queries can be done

with the ignoreQueryThreshold parameter, which give a better behaviour for the

user
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• ignoreQueryThreshold: Do not take into account the elements selected by a shape

(rectangle, polygon) in a query, if this shape intersects more than

ignoreQueryThreshold objects. It should be less than maxResults to have

informative messages to the user

9.3. Related Elements in Mapfile

9.3.1. Making a Layer Queriable

To make a MapServer layer queriable, one have to add a TEMPLATE parameter in the

mapfile layer definition. In our case, any value fits. For instance:

LAYER
NAME "foobar"
...
TEMPLATE "ttt"
...

END

9.3.2. Meta Data

Here are the meta data that can be set to mapfile's layers:

• "id_attribute_string" "name|type": describes the attribute used for the id, and the

type of the id. Type can be either "int" or "string". Caution: case sensitive

• "query_returned_attributes" "attribute1 attribute2": the names (space separated) of

the fields returned by a query. If not set, all fields are returned. Caution: case

sensitive

• "hilight_use_logical_expressions" "true"/"false": Set this to true if you are using a

layer for hilight (using the convention yourlayer_hilight) and you want to

preserve your expressions in the hilight layer for hilighted objects. IMPORTANT:

you need to set this metadata on the hilight layer, not the original one.

• "data_encoding" any EncoderClass defined in client.ini: see Section 17.3,

“Character Set Encoding Configuration for Data Sources”. You must also specify

that parameter in the "exported_values" metadata! See Section 6.3, “Metadata in

Mapfile and layers.ini” for details.

Example:

METADATA
"id_attribute_string" "FID|string"
"query_returned_attributes" "FID FNAME"

END
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9.3.3. Hilight Configuration

Hilight plugin can be used by any plugin to hilight objects on the map. In basic

CartoWeb installation, only Query plugin uses this functionality. As Hilight plugin is

not a core plugin, it must be loaded in order to use it with queries.

9.3.3.1. Normal Mode

Hilight on a specific layer can be generated by several means: special layer

activation, special class activation, dynamic layer/class generation. Decision is made

in the following order:

1. looks for a layer named "<layer_name>_hilight"

2. if not found, looks for a class named "hilight" in the current layer

3. if not found, dynamically creates a layer if meta data "hilight_createlayer" is set to

"true"

4. if meta data "hilight_createlayer" is not set or set to "false", dynamically creates a

class

Here are the meta data that can be set to mapfile's layers:

• "hilight_color" "0-255 0-255 0-255": the hilight color of a dynamically generated

class

• "hilight_createlayer" "true": if true, a new layer will be dynamically generated for

the hilight

• "hilight_transparency" "1-100": the transparency, for dynamically generated layers

Examples:

Hilight using "<layer_name>_hilight" layer

LAYER
NAME "foo"
...

END

LAYER
NAME "foo_hilight"
...

END

Hilight using class "hilight"

LAYER
NAME "foo"
...
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CLASS
EXPRESSION /_always_false_/
NAME "hilight"
STYLE
...

END
END
# other layer classes
CLASS
...

END
END

Hilight using dynamically generated layer

LAYER
NAME "foo"
...
METADATA
"hilight_createlayer" "true"
"hilight_color" "255 255 0"
"hilight_transparency" "50"

END
END

9.3.3.2. Mask Mode

When mask mode is requested, decision is made in the following order:

1. looks for a layer named "<layer_name>_mask"

2. if not found, dynamically creates a mask layer by copying current layer

Masking process also tries to find a layer which would hide the area outside all

possible selections:

1. tries to activate a layer with name set in meta data "outside_mask"

2. if meta data "outside_mask" is not set, looks for a layer named

"default_outside_mask"

3. if not found, no outside mask will be displayed

Here are the meta data that can be set to mapfile's layers:

• "mask_color" "0-255 0-255 0-255": color of the mask when mask layer

(<layer_name>_mask) is not defined

• "mask_transparency" "true": transparency of the mask when mask layer

(<layer_name>_mask) is not defined

• "outside_mask" "layer_name": name of layer which will mask the outside (aka

"complement"). If not set, will try to find a layer named "default_outside_mask"
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Examples:

Mask using "<layer_name>_mask" layer

LAYER
NAME "foo"
...

END

LAYER
NAME "foo_mask"
...

END

Mask using "<layer_name>_mask" layer and an outside mask

LAYER
NAME "foo"
METADATA
"outside_mask" "bar"

END
...

END

LAYER
NAME "foo_mask"
...

END

LAYER
NAME "bar"
...

END

Mask using dynamically generated layer and default outside mask

LAYER
NAME "foo"
METADATA
"mask_color" "255 255 255"
"mask_transparency" "60"

END
...

END

LAYER
NAME "default_outside_mask"
...

END
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10. Annotation and Redlining
[plugin] (outline)

Imagine you want to draw some features (points, lines, polygons ...) in your map to

show specific data and/or print it. The outline plugin is what you need.

It allows you to draw features and to annotate them with label texts.

It's also possible to use polygons shapes as a mask layer see "Mask mode". User can

choose between mask or draw mode with radio buttons. See Section 10.2.1,

“outline.ini” for more information.

Shapes colors and styles should be set with specific configuration in the mapfile (See

Section 10.3, “Related Elements in Mapfile”).

The total area of the drawn polygons is displayed on the interface.

10.1. Client-side Configuration

10.1.1. outline.ini

Here are the options that can be set on the client:

• multipleShapes: boolean, if true, the user is allowed to draw multiple shapes. That

means that drawn features remain until browser session is closed. If false, will

outline only one shape at a time, new feature simply erases / overrides currently

drawn one. When he wants, the user can erase all the drawn feature by clicking on

the "outline_clear" form button (default true).

• labelMode: boolean, if true, user is asked to input a label text that is drawn to

annotate drawn shape.

• displayMeasures: boolean, if true, label text will contain surface or distance

measure.

• weightOutlinePoint: integer defining display order of the outline_point tool icon in

toolbar (if not specified, default to 70). A negative weight disables the tool.

• weightOutlineLine: see weightOutlinePoint (default to 71)

• weightOutlineRectangle: see weightOutlinePoint (default to 72)

• weightOutlinePoly: see weightOutlinePoint (default to 73)

• weightOutlineCircle: see weightOutlinePoint (default to 74)
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10.2. Server-side Configuration

10.2.1. outline.ini

Here are the options that can be set on the server:

• pointLayer: defines the name of the mapserver LAYER set in the mapfile to

display points.

• lineLayer: defines the name of the mapserver LAYER set in the mapfile to display

lines.

• polygonLayer: defines the name of the mapserver LAYER set in the mapfile to

display polygons. Note that rectangles are displayed as polygons.

• maskColor: defines the RGB color of the mask. This color is used to fill the

polygons outside's area. Drawn polys will appear as holes in a colored sheet,

showing the map under. This parameter is optional and set by default to 255 255

255 (white).

• areaFactor: defines an optional value for ratio by which the area is multiplied

before it is returned to the client. For example, people can use it to convert square

meters to square kilometers.

• areaPrecision: defines an optional way to obtain a formatted area surface value.

"{(int) nb decimal}#{(str) decimal separator}#{(str) thousand separator}"

If areaPrecision is present in outline.ini (server_conf) without any parameters the

following formatter will be apply : 2 decimal, .(dot) as decimal separator, "

"(space) as thousand separator. which correspond to the areaPrecision = "2#.# ". It's

better to double-quote your parameter, avoiding trouble by the ini parser if you

want to use a space at the end. If you want a 4 decimal, with comma decimal

separator, and single-quote for thousand separator you would change this to

areaPrecision = "4#,#'"

Note : this is absolutely not locales aware, you could only have one formater for all

language your project support. Would perharps change with php6 version.

• symbolPickerHilight = inversed|borderhilight: set the hilight mode to use in the

SymbolPicker interface. See Section 10.5.3.2, “SymbolPicker”.

• symbolSize: defines the size (in pixel) of the symbold images generated when

using the symbolPicker. The value is used for width and height. The default value

is 30.

10.3. Related Elements in Mapfile
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10.3.1. Layers

Specific layers must be set in the mapfile in order to draw the shapes:

LAYER
NAME "cartoweb_point_outline"
TYPE POINT
...

END

LAYER
NAME "cartoweb_line_outline"
TYPE LINE
...

END

LAYER
NAME "cartoweb_polygon_outline"
TYPE POLYGON
...

END

Don't forget that layers names must be set in the server-side outline.ini file (See

Section 10.2.1, “outline.ini”)

10.3.2. Labels

In case of using labels (i.e. labelMode set to true, see Section 10.1.1, “outline.ini”), a

LABEL object is needed in the layers' class.

Example:

LAYER
NAME "cartoweb_point_outline"
TYPE POINT
...
CLASS
STYLE
...

END
LABEL
FONT Vera
TYPE truetype
COLOR 51 51 51
SIZE 10

END
END

END

You will find more examples looking in the test.map file in server_conf directory.

10.4. GET Parameters

Creates outline drawing on-the-fly by passing a geometry type and one or more point

coordinates via the URL.
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10.4.1. Accepted Parameters

Parameters list

• outline_point

http://www.example.com/cartoweb/myproject.php?outline_point=611748,5232242

• outline_line

http://www.example.com/cartoweb/myproject.php?outline_line=611748,5232242;748204,5232242;748204,5050300;611748,5050300

• outline_poly

http://www.example.com/cartoweb/myproject.php?outline_poly=611748,5232242;748204,5232242;748204,5050300;611748,5050300;611748,5232242

• outline_circle

http://www.example.com/cartoweb/myproject.php?outline_circle=611748,5232242;50000

• It is possible to describe several shapes, including of different types:

http://www.example.com/cartoweb/myproject.php?outline_point[]=611748,5232242&outline_point[]=748204,5232242&outline_line=611748,5232242;748204,5232242;748204,5050300;611748,5050300

• Customized labels may be linked to shapes using the following syntax:

http://www.example.com/cartoweb/myproject.php?outline_circle=611748,5232242;50000|some+blue+circle

Note

If you do not want to have persistent outline, you can add the prevent_save_session

parameter in the URL. For example:

http://www.example.com/cartoweb/myproject.php?outline_point=611748,5232242&prevent_save_session

This may be useful if you use the mode=image output:

http://www.example.com/cartoweb/myproject.php?mode=image&outline_point=611748,5232242&prevent_save_session

10.5. The ToolPicker

10.5.1. What is the ToolPicker

The ToolPicker is a mini javascript framework used to display dynamically on screen

several DHTML tools.

Some tools come pre-included:

• ColorPicker : The ColorPicker allows the user to pick a color. He/she can either

pick it from a gradient map, use RGB or HSL slider, input RGB or HSL values ,

input an hexadecial value or pick it from a preselected list of colors. The color
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value is then returned to the main page.

• SymbolPicker : The SymbolPicker allows the user to pick a symbol in a predefined

list of symbols. The symbols are generated off the .sym file on the serverside of

CartoWeb. The symbol is then returned to the main page.

10.5.2. Installation

To use the ToolPicker in a project, simply enable it in your client.ini configuration

file, by setting toolPickerOn = true.

The ToolPicker requires the corresponding script, css and template in the

cartoclient.tpl file.

In the header :

<link rel="stylesheet" type="text/css" href="css/toolPicker.css" />

In the body, preferably at the end :

{include file="toolPicker.tpl"}

10.5.3. ToolPicker Usage

The main ToolPicker function accepts 3 parameters, 2 are mandatory, the last is

optional.

toolPicker( string tool_id_list, string tool_input_list [, string tool_output_list])

tool_id_list

You can initialize one or more tools at once. The tool_id_list parameter is composed

of one or more numerical values, separated by comma and enclosed by quotes (or

simplequotes). Example: '2' or '1,4' or '3,2,1'

The order of the id influes on the order of the tool panels when displayed on screen.

tool_input_list and tool_output_list

The script needs an input value and will return an output value. The input value is

retrieved from an html input element. In the same way the output value is returned to

an html input element.

The script needs as many input element id as initialised tools. If two tools are

initialised (parameter tool_id_list), tool_input_list must also contain two input id. Ids

are separated by comma and enclosed by quotes (or simplequotes). Example:

'return_id_tool_4,return_id_tool_2'
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The first input id corresponds to the first tool id in tool_id_list.

A different id can be specified if the element storing the output value must be

different from the element storing the input value. The same rule applies to

tool_input_list and tool_output_list.

See Section 10.5.5, “Examples of Usage”

Each tool also have some particularities:

10.5.3.1. ColorPicker

When a color is selected, the script will set the css property background-color of a

div in the template accordingly to the color picked.

The id of the div is based on the output element id (if it specified, if not, the input

element id is used), to which a _d is added.

Example, if the input element id is return_color_12, the id of the div used to display

the color will be return_color_12_d.

10.5.3.2. SymbolPicker

When a symbol is selected, the script will set the css property background-image of a

div in the template accordingly to the symbol picked.

The id of the div is based on the output element id (if it specified, if not, the input

element id is used), to which a _d is added.

Example, if the input element id is return_symbol_12, the id of the div used to display

the symbol will be return_symbol_12_d.

The SymbolPicker is used with CartoWeb outline plugin usually, but it also can be

used without the plugin.

10.5.3.2.1. Within the Outline Plugin

In CartoWeb server_conf/yourprojectname/outline.ini file defines a list of symbols to

use. For each kind of symbols you want to use:

pointSymbols = "circle, square, star [, anyothersymbol, ... ]"

All these symbol names MUST BE defined in the .sym file in

server_conf/yourprojectname/.

If you want to add language support for the symbol name, add the following
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parameter in server_conf/yourprojectname/outline.ini:

pointSymbols.labels = "symbolname1, symbolname2 [, anyothername, ... ]"

These names will be used to translate into the chosen language using the gettext

functionnality. Add the corresponding translations in the server .po files.

10.5.3.2.2. Without the Outline Plugin (Standalone Use)

If you do not use the outline plugin, you will need to set the following javaScript

variable somewhere in your page:

<script type="text/javascript">
/*<![CDATA[*/
var imgPath = 'path/to/symbol/images/';
var symbolType = 'type/of/image/files/'; //jpeg, gif, png, whatever

var symbolNamesArray = new Array("symbolfilename1","symbolfilename2" [,"othersymbolfilename", ...] );

var symbolLabelArray = new Array("symbollabel1","symbollabel2" [,"othersymbollabel", ...] );
/*]]>*/

</script>

symbolNamesArray contains the list of filename to use for your images.

symbolLabelArray contains the list of label used on screen for the symbols.

Create your symbol images and put them in path/to/symbol/images/. You also need to

create hilighted versions of your images, give them the same filename but add the

suffix '_over'. Exemple: symbol_1.gif -> symbol_1_over.gif

Put them in the same folder.

10.5.3.2.3. Symbol Hilight Mode

There are two modes to hilight the selected symbol in the SymbolPicker interface.

You can select between border hilight and inverted image. border hilight simply use

a css property to hilight the border of the selected symbol. inverted image need the

php library GD to create an inverted version of the symbol, which is then used for the

selected symbol.

The hiligh mode is set in the server_conf/outline.ini file:

• symbolPickerHilight = inversed|borderhilight

10.5.4. ToolPicker Default Values

If the toolPicker is used with the Outline plugin, the default values for Color,
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OutlineColor, Transparency and Symbol are set in the mapfile.

The default layer name are cartoweb_point_outline, cartoweb_line_outline and

cartoweb_polygon_outline

See Section 10.2.1, “outline.ini”

10.5.5. Examples of Usage

toolPicker('4','outline_point_symbol')

this will call the symbol picker (id 4), the input id is outline_point_symbol, and the

output id will be outline_point_symbol too

toolPicker('1','outline_point_color', 'color_return')

this will call the color picker, the input id is outline_point_color, and the output id

will be color_return

toolPicker('4,1','symbol_input,color_input', 'return_symbol,return_color')

this will call the symbol picker and the color picker, the input id is symbol_input for

the first tool (here the symbol picker) and color_input for the second tool (color

picker), and the output id will be return_symbol for the first tool and return_color for

the second.

10.5.6. Creating New Tools

You can add new tools.

Add the new tool name in the toolArrayRef array at the begining of the script.

var toolArrayRef = new Array( 'colorPicker',
'hashArray',
'pencilArray',
'symbolArray',
'yourTool');

Create the following four functions, these functions can be empty.

function yourToolInit(inputValue) { ... }
function yourToolSetup() { ... }
function yourToolReturn() {

...
return someValue;

}
function yourToolDisplay(targetElm) { ... }

The Init function is used to set the incoming values. It is always called when the

ToolPicker starts. It receives the input value recovered from the main page.
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The Setup function can be used to do all the actions you want.

The Return function is used to return a value to the main page.

The Display function is used to display something in the main page. It receives the id

of the target element to use (something_d).

Add the following four function definitions:

functionList["yourToolInit"]=yourToolInit;
functionList["yourToolSetup"]=yourToolSetup;
functionList["yourToolReturn"]=yourToolReturn;
functionList["yourToolDisplay"]=yourToolDisplay;

These are needed because of the dynamic function call inside the framework, which

do not use the eval() function to increase performances.

The width of the tool area available on screen is 245 pixel. Height is variable.
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11. Export Plugins
[plugin] (exportCsv,

exportHtml, exportDxf, exportRtf, exportImg)

11.1. Introduction

It is possible to export maps and data from the viewer (ie. the CartoWeb user

interface) in order to print them or to save them on the user's computer. Six formats

are available: PDF, CSV, HTML, DXF, RTF and raw image.

The PDF export plugin is precisely described (usage, configuration) in next chapter:

Chapter 12, PDF Export
[plugin]

.

11.2. HTML Export

The exportHtml plugin outputs an HTML simplified version of the viewer: main

map, keymap and layers list. It is often launched by clicking on a "HTML print" link

or button and opens a new browser window. It is specially useful to quickly (basic

HTML layout, same maps used than in viewer) display raw maps in order to print

them.

No configuration is required. To enable or deactivate this plugin, simply add or

remove exportHtml from the loadPlugins parameter in client_conf/

client.ini. For instance:

[...]

; exportHtml is listed as activated:
loadPlugins = auth, outline, exportHtml

[...]

To customized the exported page layout, simply edit the plugin template file

exportHtml/templates/export.tpl. It is recommended not to modify the regular

template file but to override it in a project version of the exportHtml plugin. For

more info about projects, see Section 2.4, “Projects”.

To get advanced printing capabilities, rather use the CartoWeb PDF export plugin,

exportPdf, described in next chapter.

11.3. CSV Export

The exportCsv plugin enables to export tabular data from various queries results in a

comma-separated (CSV) or assimilated text format. The returned CSV file can then

be opened and edited in any text editor or rendered as a table document in
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OpenOffice or MS Excel. For instance:

"Id";"Object Description"
"1";"A Line"

"CSV export" links are generally displayed in the viewer at the bottom of each

queries results tables. Each link can only export a single layer table at a time.

A few configuration parameters are available in client_conf/exportCsv.ini:

• separator indicates what character should be used to distinguish each tabular cell

value. Default is ";" (semi-colon).

• textDelimiter tells what character should be used to delimit the text in each cell.

It is specially useful when the character used as the separator may be found

within the cell content. Default parameter value is double-quote ie. `"`. The alias

is defined to overcome INI syntax issues.

• filename specifies the filename naming convention to use. It can include the table

name (using the [table] keyword) and the generation date under various formats.

Date formating is performed by indicating between a couple of brackets the

keyword date, followed by a comma and PHP date()-like date format. (see

http://php.net/date). Default filename convention is [date,Ymd-Hi]_[table].csv

which gives for instance 20050220-2021_myLayer.csv.

• If the charsetUtf8 boolean is set to true the result file will be UTF-8 encoded.

Else ISO-8859-1 encoding is used, which is the default behavior.

After initial CartoWeb installation, client_conf/exportCsv.ini is set as follows:

; separator between each value, default is ";"
separator = ";"

; delimiter before and after each value, default is double-quote
; special characters:
; double-quote = "
textDelimiter = double-quote

; file name format for exported CSV file, default is "[table]-[date,dMY].csv"
fileName = "[date,Ymd-Hi]_[table].csv"

; if true, exported CSV file will be UTF-8 encoded
; if false, it will be ISO-8859-1 encoded, default
charsetUtf8 = false

11.4. DXF Export

DXF is a drawing format supported by AutoCAD and assimilated software. With

CartoWeb, it is possible to export a DXF description of the shapes drawn with the

outline plugin. The latter plugin must be activated before using exportDxf plugin.

A few configuration parameters are available in client_conf/exportDxf.ini:
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• roundLevel (integer) indicates how many digits must appear after the decimal

point in points coordinates. Default is "2".

• fileName (string) specifies the filename naming convention to use. It may be static

or contain athe generation date under various formats. Date formating is performed

by indicating between a couple of brackets the keyword date, followed by a

comma and PHP date()-like date format. (see http://php.net/date). Default filename

convention is export_[date,Ymd-Hi].dxf which gives for instance

export_20060725-2021.dxf.

• exportDxfContainerName (string) specifies the ID of the block containing the

{$exportDxf} variable in the template when working with Ajax mode enabled.

For exemple:

exportDxfContainerName = "exportDxfContainer"

in exportDxf.ini and

<div id="exportDxfContainer">{$exportDxf}</div>

in your cartoclient.tpl.

11.5. RTF Export

The Rich Text Format (RTF) is a document file format used for cross-platform

document interchange. Most word processors are able to read and write RTF

documents. RTF should not be confused with enriched text format which is a

completely different specification.

The main goal of The ExportRtf plugin is to allow users to create templates directly

in a word editor. The plugin compatibility has been tested on :

• Office Word 2004 and later (Mac, Windows),

• OpenOffice 2.0 and later,

• NeoOffice (Mac)

Known incompatibilities :

• Pages (Mac),

• TextEdit (Mac) images are not supported,

Supported image formats (set in the mapFile):

• JPEG,

• GIF,

• PNG,
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11.5.1. Setting-up the template

Open your editor and do your layout setup by opening the exportRtf.rtf file in the

plugin template folder.

Note

Please take into consideration that the RTF template will be generated by your editor.

You may encounter some compatibility issues. For example: an RTF template done

with Word can be open with OpenOffice without too many difficulties while an RTF

generated with OpenOffice may not open correctly with Word.

You can insert different fields in the template by typing keywords inside triple

brackets. For Example : [[[$TITLE]]]

• $TITLE stands for a specific title of the form.

• $MAP stands for the map. The map dimensions are defined in the exportRtf.ini.

• $QUERYRESULTS stands for the query results. If you want to customize the table

output, edit the results.tpl file.

• $SCALEBAR stands for the scale bar.

• $KEYMAP stands for the minimap.

You can apply word formatting and alignment to your tags. The formatting will then

be reported to their contents.

Warning

When you write your tags in the file, please write them in a continuous way and

without spaces and/or formatting. If you want to apply any formatting, you need to

select all the tags with the "[[[ ]]]" included. If by mistake an RTF tag is inserted

inside the brackets, you will have to erase the tag and rewrite it or edit the RTF

sources and remove the RTF keywords.

11.5.2. Configuration parameters

You will find some configuration parameters in the exportRtf.ini file

;fields shown in the form
activatedBlocks = mainmap,title,scalebar,overview,queryResult
;dimention of the map in pixels X*Y
mapDimention ="400*400"
;allowed roles for the Auth plugin
allowedRoles = all
;rtf optional inputs
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optionalValues = ref,num,other

11.5.3. Optional Inputs

You can add free dynamic content inside your RTF. For instance, to insert a reference

number in you RTF file:

First, you have to add the name of your optional fields in the exportRtf.ini file.

Please do not use special characters there. Please do not use special characters here.

optionalValues = ref,num,other

Then, open the exportRtf.rtf file with you favorite word editor and just add tags the

same way you do it for standard components.

[[[$REF]]] [[[$NUM]]] [[[$OTHER]]]

This tags are case sensitive and have to be in UPPER CASE. The optionalValues

parameters that you have set in the ini file have generated some hidden inputs in the

HTML output. These inputs are named with the prefix "optRtf" and the tag name.

<input id="optRtfref" type="hidden" name="optRtfref" value=""/>

To have a value shown in the RTF, you just have to set a value to the corresponding

HTML input.

//JavaScript
$('optRtfref').value ='123';

Note

If you want to have an optional input available in a form (like a text input), you can

simply remove its name from the ini file. Then open an HTML template and add a

form field name, which must contain the prefix "optRtf" and the tag name.

11.6. Image Export

CartoWeb offers 2 way to get an image.

11.6.1. exportImg

To display only the map image without the other elements of the main template, you

can simply add ?exportImg to the url.

http://yourservername/yourproject.php?exportImg

The template used is imgoutput.tpl in the main templates folder. It can be

customised to your needs.
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This plugin must be activated in your client.ini list of plugins.

11.6.2. mode=image

CartoWeb allows to return a raw image map with no HTML. It is not an export plugin

and thus has not to be activated anywhere. CartoWeb simply needs to receive a

mode=image REQUEST parameter (GET or POST). For instance:

http://your/cartoweb3/?recenter_x=123456&recenter_y=654321&show_crosshair=1&mode=image

See Section 2.4.2.2, “Available Parameters” for more details about the possible extra

parameters allowed by this feature.
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12. PDF Export
[plugin]

12.1. Introduction

This chapter describes how to configure PDF export, using client_conf/

exportPdf.ini parameters.

First part (Section 12.2, “Configuration Reference”) is a comprehensive reference of

user-available configuration parameters. Second part (Section 12.3, “Tutorial”) is

intended to be a small tutorial giving explanations and examples about how to

configure the PDF exportation tool.

12.2. Configuration Reference

12.2.1. General Configuration

Parameters are named using a <object>.<property> convention. These parameters are

grouped within dedicated objects that deal with separated aspects of the export. For

instance:

general.horizontalMargin = 10
general.verticalMargin = 10

formats.A4.label = A4
formats.A4.bigDimension = 297

Some objects handle the general description of the PDF document as well as user

form generation: "general" and "formats".

Other objects are "blocks"-typed. They deal with block presentation (color, size,

content, etc.) and positioning. Blocks are basic entities of the PDF document: text,

images. For instance overview, mainmap, scalebar, title are described with block

objects.

To factorize blocks description, it is possible to describe a "template" block object

that defines the default configuration of blocks. Those default settings are then

overriden by each block specific description.

• general.guiMode (string): type of GUI used. Must be either 'classic' (default) or

'rotate'. 'rotate' mode adds the possibility to rotate the map to be printed directly on

screen.

• general.formats (comma-separated list of strings): ids of available sheet sizes.

Must match format objects names (see Formats configuration below).
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• general.defaultFormat (string): default selected/used format. Must be one of

the above list items.

• general.resolutions (comma-separated list of integers): list of available

resolutions in dot-per-inch (dpi). To have legend icons generated in same

resolutions, you must configure resolutions in plugin Layers (see Section 6.4,

“Layers Legends”).

• general.defaultResolution (integer): default selected/used resolution. Must be

one of the above list items.

• general.scales (comma-separated list of integers): list of available printing

scales (1000 should be read 1:1000). Used only when guiMode is 'rotate'.

• general.defaultScale (integer): default printing scale. Must be one of the above

list items. Used only when guiMode is 'rotate'.

• general.defaultOrientation (portrait|landscape): sheet orientation. The same

orientation is used for every pages of the PDF document.

• general.activatedBlocks (comma-separated list of strings): names of blocks

that will be used in the document. Names must match block objects names. See

Blocks configuration section.

• general.overviewScaleFactor (float): sets the extension of the overview map.

The bigger this parameter, the wider the extension. Default: 10.

• general.overviewColor (string): sets the inner color of the current map outline in

the overview. Default: 'none'.

• general.overviewOutlineColor (string): sets the border color of the current map

outline in the overview. Default: 'red'.

• general.showRefMarks (boolean): if true, reference marks are added to the

exported main map. They are never displayed on the overview.

• general.pdfEngine (CwFpdf|PdfLibLite): name of the PDF engine to use. For

now only FPDF is available and must be called using "CwFpdf" pdfEngine value.

A PDFLib Lite version is (very) partially implemented and as a result should not

be used for now (pdfEngine value: "PdfLibLite").

• general.pdfVersion (string): PDF version that must be used (only available with

"PdfLibLite" pdfEngine).

• general.output (inline|attachment|link|redirection): indicates how generated PDF

file must be output (default: redirection). "inline": file is generated and displayed

on the fly (might not work with buggy IE). "attachment": generated on the fly but a

dialog box asks the user weither the file must be opened or saved. "link": PDF file

is actually written on the server and a link pointing towards it is displayed.

"redirection": PDF file is written on the server and than user's browser is

automatically redirected towards it.

• general.filename (string): indicates how generated PDF files must be named. It

is possible to specify a date-formatting using PHP date format (see
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http://php.net/date). Default is map-[date,dMY-His].pdf which gives for instance

map-03Jan2005-193256.pdf.

• general.distUnit (mm|cm|pt|in): unit used to measure blocks distance

properties. Only one unit can be used in the whole configuration.

• general.horizontalMargin (float): horizontal distance between the sheet border

and the useful area (in distUnit).

• general.verticalMargin (float): vertical distance between the sheet border and

the useful area (in distUnit).

• general.allowedRoles (comma-separated list of strings): list of roles allowed to

print PDF documents.

• general.importRemotePng (boolean): if true, remote PNG files (gathered using a

URL) are copied in a local directory before being included in the PDF document.

This option is recommended when using physically separated CartoClient and

CartoServer (See Chapter 4, Configuration Files).

• general.extraFonts (comma-separated list of strings): list of additional fonts to

import in FPDF (not available for other pdfEngines). Each font contains the font

family name, the font style (optional) and the font PHP definition file (optional),

separated by "/". PHP definition files must be uploaded in FPDF fonts directory.

Parameters are described in FPDF AddFont() documentation [http://fpdf.org/en/

doc/addfont.htm]. Definition files generation is explained here [http://fpdf.org/en/

tutorial/tuto7.htm]. Example:

general.extraFonts = Comic/I/comici.php, MyFont/BI/myfontbi.php, MyOtherFont

• general.outputFormat (string): define a specific outputFormat to use for the

exported image. A corresponding OUTPUTFORMAT must exist in the mapfile.

• general.specialLayers.<layername>.addBlocks (comma-separated list of

strings): if layer layername is activated, the given blocks will be added to the list

of activated blocks (see general.activatedBlocks). To add blocks for several

layers, use dedicated lines with matching layer names.

• general.specialLayers.<layername>.removeBlocks (comma-separated list of

strings): if layer layername is activated, the given blocks will be removed from the

list of activated blocks (see general.activatedBlocks). To remove blocks for

several layers, use dedicated lines with matching layer names.

PHP built-in default values:

• pdfEngine: CwFpdf

• pdfVersion: 1.3

• guiMode: classic

• distUnit: mm
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• horizontalMargin: 10

• verticalMargin: 10

• formats: NULL

• defaultFormat: NULL

• resolutions: 96

• defaultResolution: 96

• activatedBlocks: NULL

• filename: map-[date,dMY-His].pdf

• overviewScaleFactor: 10

• overviewColor: NULL

• overviewOutlineColor: red

• output: redirection

• allowedRoles: (empty ie. nobody)

• importRemotePng: false

• extraFonts: NULL

Tip

Should you use the rotate guiMode, do not forget to add a general PROJECTION

tag in your mapfile. For instance:

PROJECTION
"init=epsg:21781"

END

12.2.2. Formats Configuration

Formats are described as a set of "formats" sub-objects. For instance:

formats.A4.bigDimension = 297
formats.A4.smallDimension = 210

formats.A3.label = A3
formats.A3.bigDimension = 420

Format ids (A3, A4, etc.) must match those listed in general.formats.

• formats.<format_name>.label (string): user-friendly name. Is translated using

Cw3I18n device Chapter 17, Internationalization.

• formats.<format_name>.bigDimension (float): largest sheet side (in distUnit).

• formats.<format_name>.smallDimension (float): smallest sheet side (in

distUnit).
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• formats.<format_name>.horizontalMargin (float): optional, if set, overrides

general.horizontalMargin for the given format.

• formats.<format_name>.verticalMargin (float): optional, if set, overrides

general.verticalMargin for the given format.

• formats.<format_name>.maxResolution (integer): optional, maximum allowed

resolution for the given format. If selected resolution is above maxResolution, it

will be set to maxResolution value.

• formats.<format_name>.allowedRoles (comma-separated list of strings): list of

roles allowed to use the format.

PHP built-in default values: all format parameters have NULL default values except

allowedRoles ("all").

12.2.3. Blocks Configuration

All blocks parameters are optional since default values are hard-coded in the PDF

export plugin PHP code (see code documentation for PdfBlock class). Those default

properties can be partially or totally overriden using a template object whose syntax is

similar to this:

template.type = text
template.fontFamily = times
template.fontSize = 12
template.fontItalic = false

whereas real blocks are described this way:

blocks.title.weight = 10
blocks.title.verticalBasis = top
blocks.title.verticalMargin = 15

"Template"-described properties have a global scope whereas "blocks" ones are

specific to the given block. Properties names are identical for both "template" and

"blocks" objects. Properties not related with the given block type are generally

ignored (for instance "fontSize" is not taken into account if block is an image). A lots

of properties use CSS-like denominations and effects. All following parameters

names must be precede by either "template." or "blocks.<block_name>." prefixes.

• type (text|image|table|legend): block type, indicates what kind of processing must

be applied.

• content (string): optional, for "text" blocks: the textual content ; for "image"

blocks, the image filename ; for "table" blocks, a comma-separated list of textual

content (limited to one row, commas delimit cells).

• fontFamily (string): name of font family to use. Naming depends on used
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pdfEngine.

• fontSize (float) : font size in points (pt)

• fontItalic (boolean): if true, text will be emphasized.

• fontBold (boolean): if true, text will be bold-weighted.

• fontUnderline (boolean): if true, text will be underlined.

• color (string): color of text in hexadecimal code #rrggbb. A few color aliases

("white", "black") are available as well.

• backgroundColor (string): background color in hexadecimal code or color aliases.

• borderWidth (float): border line width in distUnit.

• borderColor (string): border line color in hexadecimal code or color aliases.

• borderStyle (solid|dashed|dotted): border line style. Only available with

"PdfLibLite" pdfEngine. "solid" value is used for other pdfEngines.

• padding (float): vertical and horizontal distance between block content and its

borders in distUnit.

• horizontalMargin (float): horizontal margin in distUnit around the block (outside

borders).

• verticalMargin (float): vertical margin in distUnit around the block (outside

borders).

• horizontalBasis (left|right): indicates what document side must be used for

horizontal positioning.

• verticalBasis (top|bottom): indicates what document side must be used for

vertical positioning.

• hCentered (boolean): if true, block is horizontally centered (overloads

horizontalBasis property).

• vCentered (boolean): if true, block is vertically centered (overloads verticalBasis

property).

• textAlign (center|left|right): indicates how content must be horizontally aligned

within the block extent.

• verticalAlign (center|top|bottom): indicates how content must be vertically

aligned within the block extent.

• orientation (horizontal|vertical): indicates if content will be displayed form left

to right or from bottom to top (only for text blocks).

• zIndex (integer): indicates how overlapping blocks must be stacked. The higher

the zIndex, the higher the block in the stack (foreground).

• weight (integer): indicates in what order, blocks with the same zIndex must be

processed. Low-weighted blocks are handled first.

• inNewPage (boolean): indicates if a new page must be added before printing the

block.
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• inLastPages (boolean): indicates if block must be added in a new page at the end

of the document.

• width (float): block width in distUnit.

• height (float): block height in distUnit.

• multiPage (boolean): if true, given block will be displayed on every document

page.

• parent (string): if specified, current block will be printed inside given parent

block.

• inFlow (boolean): if true, block will be printed right after previous block,

preserving the vertical alignment.

• caption (string): for "table" blocks only: name of separated block used to describe

table caption formatting.

• headers (string): for "table" blocks only: name of separated block used to describe

table headers (colunms titles) formatting.

• allowedRoles (comma-separated list of strings): list of roles allowed to draw the

current block.

• i18n (boolean): if true, block content is translated using CartoWeb Gettext system

("i18n" stands for InternationalizatioN). Translated contents may be standard texts

or even URLs (useful for instance to display a logo adapted to the used language).

Some additional block-properties are available but are automatically set depending on

other parameter values and thus are not listed above ("private" access).

PHP built-in default values:

• type: NULL

• content: (empty string)

• fontFamily: times

• fontSize: 12

• fontItalic: false

• fontBold: false

• fontUnderline: false

• color: black

• backgroundColor: white

• borderWidth: 1

• borderColor: black

• borderStyle: solid

• padding: 0

• horizontalMargin: 0
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• verticalMargin: 0

• horizontalBasis: left

• verticalBasis: top

• hCentered: false

• vCentered: false

• textAlign: center

• verticalAlign: center

• orientation: horizontal

• zIndex: 1

• weight: 50

• inNewPage: false

• inLastPages: false

• width: NULL

• height: NULL

• multiPage: false

• parent: false

• inFlow: true

• caption: (empty string)

• headers: (empty string)

• allowedRoles: all

• i18n: false

12.2.4. Colors definition

Colors definitions in exportPdf.ini configuration file are done using hexadecimal

color codes or a few textual aliases such as white, black, red, green, blue. For

instance:

general.overviewOutlineColor = red
template.backgroundColor = white
template.borderColor = #000000 ; hexadecimal code for black
blocks.title.color = #0000ff ; hexadecimal code for blue

12.3. Tutorial

12.3.1. General Principle

The PDF document to generate is described using elementary objects blocks:
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• texts: titles, copyrights, dates...

• images: maps, logos...

• tables: queries results...

• legend: list of icons+labels for each printed layers

Those blocks are drawn and positioned on the document pages according to

properties detailed in each block.

In addition, some data must be specified to describe the general document

characteristics such as formats (pages size), orientation, available resolutions, PDF

engine and more.

Parameters containing several values are represented using comma-separated lists of

strings/integers. If some values contain special characters such as accentuated letters,

quotes or other exclamation marks, it may be wiser to encapsulate the whole

parameter value between double quotes (").

Warning

Note3: don't forget to activate the plugin by adding it in the loadPlugins from

BOTH CartoClient and CartoServer configuration files: client_conf/client.ini

and server_conf/<mapId>/<mapId>.ini. For instance:

; in client_conf/client.ini:
loadPlugins = hilight, outline, exportPdf

; in server_conf/<mapId>/<mapId>.ini:
mapInfo.loadPlugins = hilight, outline, exportPdf

12.3.2. Overall Configuration

Two objects are available for overall configuration:

12.3.2.1. general

This is where you can set the list of available resolutions and formats (made available

to the user through dropdown menus). Use commas to separate the available values.

defaultResolution and defaultFormat are used to preselect options in the

matching dropdowns. If for some reason the system failed to determine what

resolution and format the user desires, it will use those default values.

Specify the default orientation to select in user interface as well. You don't need to set

a list of available orientations since it is already fixed to "portrait, landscape".

The activatedBlocks parameter lists the blocks that may be drawn in the document.
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It does not mean that they will. For instance the title block will not appear if no title

input has been submitted by the user.

Choose the PDF generator you want to use. For now only FPDF is fully available.

PDFLib is only partially implemented and should not be used.

Set the output parameter in order to choose how the generated file will be served:

download box, link, inline...

The distUnit parameter is very important since it sets the unit used to measure the

length specified in every blocks. However it does not affect font sizes, that are always

indicated in points (pt).

horizontalMargin and verticalMargin indicate how much space will be kept

blank around each page. No block will be printed below these distances from the

sheets borders. Note that these values can be overriden in the formats description.

For instance:

general settings
general.guiMode = classic
general.formats = A4, A3
general.defaultFormat = A4
general.resolutions = 96, 150, 300
general.defaultResolution = 96
general.overviewScaleFactor = 10
general.defaultOrientation = portrait
general.activatedBlocks = mainmap, title, note, scalebar, overview,

copyright, queryResult, page, legend,
logo, scaleval, tlcoords, brcoords

general.pdfEngine = CwFpdf
general.pdfVersion = 1.3
general.output = inline
general.filename = "map-[date,dMY-Hi].pdf"
general.distUnit = mm
general.horizontalMargin = 10
general.verticalMargin = 10
general.importRemotePng = false

Some overview map settings are available as well. The overviewScaleFactor

indicates how wide the overview will be compared to the mainmap actual extent.

overviewColor and overviewOutlineColor respectively set the inner and border

colors of the mainmap outline in the overview map. Note that the outline plugin

must be activated (ie. added in the client.ini loadPlugins parameter) for those

settings to be taken into account.

Tip

To use the classical MapServer keymap in place of the overview, set the overview

block content parameter to static (see Section 12.3.4, “Blocks Configuration”) as
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follows:

blocks.overview.content = static

In that case parameters overviewScaleFactor, overviewColor,

overviewOutlineColor are ignored.

12.3.2.2. formats

Formats objects describe the PDF pages sizes (bigDimension, smallDimension).

One can describe as many formats as desired. Moreover there is no theoritical page

size limit except that the bigger the maps, the longer the document generation.

A format is determined by its biggest dimension (bigDimension) and its smallest

dimension (smallDimension).

The label parameter will be translated using Cw3 I18n internationalization system

(Chapter 17, Internationalization). It is not required to be identical to the format

object id. On the other hand, the latter id must be textually listed in

general.formats parameter or else it will not be taken into account.

In addition, a couple of format parameters can be specified: horizontalMargin and

verticalMargin override the corresponding general parameters if different margins

must be applied for the given format. maxResolution indicates the highest allowed

resolution for the given format: it enables to limit the applied resolution when, for

instance, printing big-dimensioned maps.

For instance:

; formats settings
formats.A4.label = A4
formats.A4.bigDimension = 297
formats.A4.smallDimension = 210

formats.A3.label = A3
formats.A3.bigDimension = 420
formats.A3.smallDimension = 297
formats.A3.horizontalMargin = 30
formats.A3.verticalMargin = 30
formats.A3.maxResolution = 150

12.3.3. Form Settings

The HTML interface of the PDF tool is fully customisable by:

• editing the general attributes for formats, resolutions and orientation lists (see

Section 12.3.2.1, “general” above).

• adding or editing blocks content parameters to specify default values for text
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inputs (such as title or note) and other options (legend, scalebar, overview, query

results,...). See Section 12.3.4, “Blocks Configuration”. For instance:

blocks.title.content = "My default title"
blocks.scalebar.content = 1 ; scalebar is checked by default
blocks.legend.content = in ; legend is checked as included in map by default

12.3.4. Blocks Configuration

Whatever their types (image, text, table, legend, north), blocks use the same PHP

object model and, as a result, the same object properties. Some parameters can be

used in several ways depending on the block type. Some others are simply ignored.

Blocks naming is quite free but some names are reserved to system-defined blocks

such as title, mainmap, overview, scalebar, note, copyright,

queryResult, legend, page, scaleval, tlcoords, brcoords, north,

currentuser. System blocks should not be renamed.

Note that blocks that are not mentioned in general.activatedBlocks won't be

displayed in any case.

general.activatedBlocks = mainmap, title, note, scalebar, overview,
copyright, queryResult, page, legend,
logo, scaleval, tlcoords, brcoords, north

12.3.4.1. Block Template and Overriding

Since all blocks descriptions are based on the same PdfBlock object, a template block

has been defined to factorize blocks common configuration (for instance font-family,

background color, borders, padding, etc.). It is also a way to specify default blocks

parameters values. It is then possible to personalize blocks by overriding those

properties within the block own description. Blocks configuration overriding can be

schemed as follows:

PHP PdfBlock (hard coded) >>> block template (user configured) >>> final block

(user configured)

Note that it is not necessary to redefine properties in blocks or in their template if

their current values (defined in "parent" structures) are already OK.

For instance:

; blocks default settings
template.type = text
template.fontFamily = times
template.fontSize = 12
template.fontItalic = false
template.fontBold = false
template.color = black
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template.backgroundColor = white
template.borderWidth = 0.25
template.borderColor = black
template.borderStyle = solid
template.padding = 3
template.horizontalMargin = 0
template.verticalMargin = 0
template.horizontalBasis = left
template.verticalBasis = top
template.hCentered = false
template.zIndex = 1
template.textAlign = center
template.verticalAlign = center
template.orientation = horizontal

12.3.4.2. Blocks Positioning

CartoWeb uses a CSS-like syntax for blocks description and positioning. Description

depends on the block type and is detailed in following sections.

Blocks are positioned one after the other, beginning by the ones with the lowest

zIndex (vertical position: the low-zIndex'ed blocks are placed under the

high-zIndexed ones - ie. closer to the background). When blocks have equal zIndexes,

those with lowest weight are processed first. Eventually, if blocks have identical

zIndexes and weights, the system will use general.activatedBlocks order to make

its choice.

Blocks with different zIndexes wil not interact except if one is marked has the other's

parent: in that situation the child block will be located inside the parent block

instead of using the general referencial. All following siblings will share the same

parent block except if they have a inFlow = false property. Parent blocks must

have lower zIndexes than their children.

For instance:

blocks.mainmap.zIndex = 0
blocks.mainmap.weight = 10

[...]

blocks.overview.parent = mainmap
blocks.overview.zIndex = 1

Block margins are used to position a given block. Horizontal positioning is achieved

by specifying the horizontalBasis (the side of the document - left|right - used as a

reference) and the horizontalMargin (the latter value tells how far in distUnit the

block will be spaced from the reference line). For instance to position a block at

10mm from the document right side, use the following configuration :

general.distUnit = mm

[...]
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blocks.myBlock.horizontalBasis = right
blocks.myBlock.horizontalMargin = 10

If you want to horizontally center a block, it is simply done using

blocks.myBlock.hCentered = true

Block centering overloads any other kind of positioning (margin...).

Vertical positioning is achieved in the same way (substitute the dedicated keywords).

The inFlow parameter defaults to true (except if set differently in the template block).

As a result, blocks with the same zIndex will be positioned right below the first

block preserving the left-side alignment. To cancel this behavior, set inFlow to false.

In that case, the given block will be positioned related to the previous block using

margin or centering ways.

12.3.4.3. Text Blocks

Text blocks are boxes with a textual content. The text is set in the content parameter

in case of a static block. content has to be left blank for visitor-set blocks such as

title or note. Text formatting is achieved using usual CSS-like parameter :

fontFamily, fontSize (expressed in points!!), color. Small exception:

fontItalic, fontBold, fontUnderline are booleans.

Box properties (background color, border size, color and style, padding) are set in the

same way whatever the block type is.

Width is generally detected automatically according to the text length. On the other

hand, the system has poor means to evaluate its height, so it is recommended to set it

by hand. Note that padding (space between border and content) is taken into account

only in the horizontal direction for text blocks. To remove a block border, one can

simply set its width (borderWidth) to 0. Note that some border styling parameters

are not available with all pdfEngines.

For instance:

blocks.title.zIndex = 2
blocks.title.weight = 10
blocks.title.verticalBasis = top
blocks.title.verticalMargin = 15
blocks.title.hCentered = true
blocks.title.fontSize = 20
blocks.title.fontItalic = true
blocks.title.fontBold = true
blocks.title.fontUnderline = true
blocks.title.backgroundColor = #eeeeee
blocks.title.height = 15
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It is possible to specify a text content in the configuration file by using the content

parameter. Note that \n strings in the content value will result in line feeds in the

final block.

blocks.myText.content = "This is myText block content!"

blocks.myText2.content = "myText2 block\nis multilined."

Text blocks content may also be retrieved from external data source such as text files

or databases using following syntaxes. "Connection" parts are separated by a "~".

First part indicates what medium (file|db) is used:

• file: file source

blocks.myText.content = "file~my/source/file/path"

The source file path can either be a absolute URL or a filesystem path. Relative

filesystem paths are allowed and are based on the CartoWeb root path. For

instance:

blocks.myText.content = "file~http://myserver/mysourcefile.txt"
blocks.myText.content = "file~C:\mydir\mysourcefile.txt"
blocks.myText.content = "file~/home/johndoe/mysourcefile.txt"
blocks.myText.content = "file~www-data/mysourcefile.txt"

If your source file contains several lines or \n strings, the generated block will also

be multilined.

• db: database source

blocks.myText.content = "db~DSN~SQL query"

The DSN (Data Source Name) gives the database connection parameters. Any

DSN format supported by PEAR::DB can be used. See PEAR::DB manual for

more info about DSNs at

http://pear.php.net/manual/en/package.database.db.intro-dsn.php. Note that you can

call any database server type as long as it is supported by PEAR::DB and that your

PHP distribution has the matching extension enabled.

For security reasons, only SELECT SQL queries are allowed but there is no other

limitation. On the other hand, the query results are basically rendered using a new

line for each result line and simply separating result elements with blank spaces.

For instance:

PDF Export
[plugin]

101

http://pear.php.net/manual/en/package.database.db.intro-dsn.php


blocks.myText.content = "db~pgsql://user:password@localhost/dbname~select name,
phone_number from phone_book where area_id = 12"

Tip

It is possible to make some text blocks have their contents translated by setting their

i18n parameter to true. For instance:

blocks.myTextBlock.content = "This text will be translated."
blocks.myTextBlock.i18n = true

Translatable blocks are CartoWeb built-in blocks copyright and date as well as

your own text blocks. Some other CartoWeb built-in blocks such as legend,

scaleval, page or query results table blocks are translated anyway.

Note that you will have to explicitly add those entries to your Gettext PO files since

there is no way for script client2pot.php to automatically detect them!

Tip

The date text block is fully customizable. You may specify the date format using

PHP date formatting (http://php.net/date). Both configurations are correct:

; use [] to add the date string in complete sentence:
blocks.date.content = "Generated on [Y/m/d H:i] by CartoWeb3"

; or if the date string is alone:
blocks.date.content = "Y/m/d H:i"

If you want to have the date block translated, set its i18n parameter to true and add

the translated version (including date format) to your PO files.

12.3.4.4. Image Blocks

Image blocks are used to display the maps (main + overview), the scalebar and other

user-defined pictures such as logos or diagrams. Except for system image blocks

(maps + scalebar), the image file location must be specified in content using either an

absolute URL or an absolute path within the server file system. It is also possible to

use a relative file path based on the CartoClient root directory (eg. htdocs/gfx/

layout/c2c.png).

width and height have to be set by the user.

For instance:

blocks.logo.type = image
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blocks.logo.content = http://server/gfx/layout/c2c.png
blocks.logo.width = 40
blocks.logo.height = 7
blocks.logo.padding = 2
blocks.logo.parent = mainmap
blocks.logo.horizontalBasis = right
blocks.logo.inFlow = false
blocks.logo.horizontalMargin = 5
blocks.logo.verticalMargin = 5

Tip

If you want to switch the image file depending on the used language, set the block

i18n parameter to true and add languages matching URLs/filepathes to your PO

files.

12.3.4.5. Table Blocks

Tables blocks are used to represent tabular data such as query results. A table is

composed of a caption row (title), a headers row (columns/fields titles) and one or

more data rows. All cells can only contain textual content.

The table block describes how data cells will be rendered (font, text color,

background color...) using the same parameters than for text blocks. The table width

will be computed according to the cells content with a upper limit materialized by the

page or the parent block available extent. If the max extent is reached, line feeds will

be added automatically to the cells contents. The height parameter gives the height

of a single-lined row (and not the total table height!). Note that if a table is too high to

fit a page, page breaks will automatically be added.

Caption and headers are described using separated blocks. They are specified by

filling the table block caption and headers fields with the matching blocks ids.

Since they are not standalone, there is no need to activate the blocks in the

general.activatedBlocks list. That way it is possible to set the caption and

headers layouts separately from the general table one (which is their default layout).

Note that these subblocks are optional and will not be displayed if no content can be

determined for them. The same headers and caption subblocks can be shared amongst

several table blocks.

CartoWeb output table content (and its caption and headers subblocks) is

automatically determined. But it is also possible to user-define independent tables by

filling the table and its caption/headers content: cells content are represented as

comma-separated string lists (only one row available for table data).

For instance:
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blocks.queryResult.type = table
blocks.queryResult.inNewPage = true
blocks.queryResult.caption = tableCaption
blocks.queryResult.headers = tableHeaders
blocks.queryResult.height = 10
blocks.queryResult.verticalMargin = 10
blocks.queryResult.hCentered = true

blocks.tableCaption.backgroundColor = #ff0000
blocks.tableCaption.color = white
blocks.tableCaption.content = "Table test"
blocks.tableCaption.height = 15

blocks.tableHeaders.backgroundColor = #ffaaaa
blocks.tableHeaders.fontBold = true
blocks.tableHeaders.color = #eeeeff

Tip

A special table block exists to specify which TableGroup (see Section 2.4.3.1,

“Tables Structures”) you want to display in the PDF.

blocks.queryResult.content = query

In that case only the TableGroup query is visible but you can specify more than one,

separate by comma. If this block is not defined in the configuration file, all

TableGroup are visible in the PDF file (backward compatibility).

The query results data come from the plugin Table which offers the mechanism of

table rules (see Section 2.4.3.2, “Setting Rules”) which describes how tables must be

displayed. You can also add table rules specificaly for the PDF output like this

example :

$outputType = $this->cartoclient->getOutputType();

if ($outputType == Cartoclient::OUTPUT_HTML_VIEWER) {
/* rules for HTML output */

}

if ($outputType == 'pdf') {
/* rules for PDF output */

}

outputType is generally the export plugin name without the "export" prefix.

12.3.4.6. Legend Block

There is usually only one instance of legend block in a CartoWeb PDF document. It

gives the list of the {selected layer/class + icon} couples. Content is automatically

retrieved according to selected layers. You only need to set the text formatting and

row height (as for a table block). Legend blocks does not provide any table-like

headers or caption.
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You can avoid that a given set of layers be displayed in the legend blocks (no change

on the maps) by listing the "forbidden" layers ids in the legend block content

parameter, prefixing each layer id with an exclamation point ("!"). For instance:

blocks.legend.content = "!background, !layer3"

Note the double quotes around the content value that contains special characters such

as "!".

Two behavior are offered to the visitor: embedding the legend block in the map or

printing it in a separated page. First case is OK when there is little legend items to

print (block is limited to one column) whereas the second possibility enables to

display lots of legend items, using several columns if needed. In the map-embedded

case, if the overview map is printed, the legend block width will be automatically set

to the overview width value.

For instance:

blocks.legend.type = legend
blocks.legend.zIndex = 1
blocks.legend.weight = 40
blocks.legend.fontSize = 8
blocks.legend.height = 5
blocks.legend.width = 50
blocks.legend.padding = 1.5
blocks.legend.verticalMargin = 10
blocks.legend.horizontalMargin = 10
blocks.legend.content = "!nix"

12.3.4.7. North Arrow Block

There is usually only one instance of north arrow block in a CartoWeb PDF

document. It displays an arrow (or any image) that will automatically show the north

direction. Path set in arrow block content parameter is relative to CartoWeb root

directory.

For instance:

blocks.north.type = north
blocks.north.content = "plugins/exportPdf/htdocs/gfx/arrow.png"
blocks.north.width = 10
blocks.north.height = 36
blocks.north.padding = 2
blocks.north.parent = mainmap
blocks.north.verticalBasis = bottom
blocks.north.horizontalBasis = left
blocks.north.inFlow = false
blocks.north.horizontalMargin = 15
blocks.north.verticalMargin = 5

12.3.4.8. Currentuser Block
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You can use the currentuser block to display somewhere the username of the user

who initiated the pdf generation.

This block do not require any special parameters beside the common positionning and

styling.

12.3.5. Roles Management

CartoWeb enables to perform roles restrictions on most of the PDF document parts:

general access, formats, resolutions, blocks. All these elements can be restricted to

some authorized users. For a more detailed discussion of the concept of security

restriction and roles, see Chapter 15, Security Configuration.

To do so, simply add to considered objects/blocks an allowedRoles property set to

the comma-separated list of roles you want to restrict them to.

For instance:

• to enable PDF printing only for loggedIn users, use:

general.allowedRoles = loggedIn

• to reserve A3 format to editors or admins, use:

formats.A4.allowedRoles = editor, admin

• to set a resolution limit for anonymous users when printing in A3, you can define 2

similar formats with different maxResolution and allowedRoles properties:

general.formats = A4, A3, A3full

[...]

formats.A4.label = A4
formats.A4.bigDimension = 297
formats.A4.smallDimension = 210

formats.A3.label = A3
formats.A3.bigDimension = 420
formats.A3.smallDimension = 297
formats.A3.maxResolution = 150
formats.A3.allowedRoles = anonymous

formats.A3full.label = A3full
formats.A3full.bigDimension = 420
formats.A3full.smallDimension = 297
formats.A3full.allowedRoles = loggedIn

Note that all formats that may be used must any way be specified in

general.formats.

• to hide a block for non-admin users, use:

blocks.overview.allowedRoles = admin
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13. Views
[plugin]

13.1. Introduction

Views are recordings of CartoWeb maps states at a given moment. One may see them

as a kind of bookmarks: while browsing maps in CartoWeb interface, users can save

the current state (map extent, selected layers, queries, annotations, etc.) under a label

of their choice. It is then possible to access later those saved states.

Views are shared among users and are - in the current version - available to every

user. Access to views edition functionalities (creation, modification, deletion) can be

restricted to some categories of users. The default configuration only allows

"admin"-roled users to perform view edition.

13.2. Views Configuration

The views device consists of two parts:

• a main controlling system that handles views detection, loading, recording and

storage.

• a "views" plugin that provides a graphical interface for performing views loading

and edition. This plugin is not mandatory to have views working but greatly

enhances the device usability.

13.2.1. Views Plugin

No configuration is required for that plugin. However it still needs to be activated

using the client_conf/client.ini loadPlugins parameter. For instance:

loadPlugins = auth, exportPdf, views

13.2.2. Main Views Controller

Main views controller configuration is done in the client_conf/client.ini file.

The dedicated parameters are:

• viewOn (boolean: 'true'|'false'): activates/deactivates the main view controller.

Views plugin will not work if the controller is off.

• viewStorage (string: 'file'|'db'): tells what storage container must be used: file or

database.

• viewablePlugins (comma-separated list of strings): list of plugins that must have
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their data saved in views. Note that "viewable" plugins must implement the

Sessionable interface. If you wish to save data from extended plugins, you must

add the extended plugin to the list, not the standard one (eg. myLocation instead of

location).

• viewMetas (comma-separated list of strings): list of metadata fields that must be

saved in addition to the viewable plugins data (for instance author, email,

description...). Common metadata fields such as "viewTitle" are anyway saved.

Note that metadata fields must have homonym form fields in plugins/views/

templates/views.tpl to be taken into account.

• viewDsn (string): DSN (Data Source Name), gives the database connection

parameters. Only used in database storage mode. Any DSN format supported by

PEAR::DB can be used. See PEAR::DB manual for more info about DSNs at

http://pear.php.net/manual/en/package.database.db.intro-dsn.php. Note that you can

call any database server type as long as it is supported by PEAR::DB and that your

PHP distribution has the matching extension enabled.

• viewSchema (string): Let you specify a schema in the database. By default, no

schema are specified. This parameter is totally optional.

• viewAuth (comma-separated list of strings): list of roles allowed to perform views

edition actions. Given roles must match client_conf/auth.ini defined ones. See

also Chapter 15, Security Configuration.

• viewSavedRequest (comma-separated list of strings): list of REQUEST variables

(GET, POST, COOKIE) that must be preserved when loading a view. Some are

already built-in listed such as tool, js_folder_idx, project, collapse_keymap

and views related parameters. Adding other CartoWeb reserved REQUEST

variables names to the list may prevent the view system from working correctly.

• viewLogErrors (boolean): if true, outdated views loadings will be logged in log/

viewErrors.log.

• viewUpgradeOutdated (boolean): if true, CartoWeb will try to upgrade outdated

views on the fly. Else view outdated parts will be discarded and current plugin

session data will be used instead.

• viewHooksClassName (string): name of the PHP class used to customize some

views processing. See Section 11.3, “Customizing Views Processing Using Project

Hooks” for details on how to write customized views hooks.

For instance:

; Views management
viewOn = true
viewStorage = db
viewablePlugins = location, layers, query, outline
viewMetas = author
viewDsn = pgsql://www-data@localhost/cw3
viewAuth = admin,
viewSavedRequest = personalVar1, personalVar2
viewLogErrors = true
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viewUpgradeOutdated = true
viewHooksClassName = FoobarViewHooks

Should you decide to use a database storage, you would need first to create an

appropriate table called views. Here is an example of SQL statements for

PostgreSQL:

CREATE TABLE views (
views_id serial NOT NULL PRIMARY KEY,
views_ts timestamp without time zone,
viewtitle character varying(50),
author character varying(50),
sessiondata text,
viewshow boolean,
weight integer

);

Tip

Field "views_ts" is just present in table "views" but not visible in the graphical

interface of the "views" plugin. This value is usefull to know the time of the

creation/modification of a view (only available with option "viewStorage = db").

13.3. Views Usage

13.3.1. Loading Views

Any defined view may be loaded by any users. Loading a view may be achieved

selecting it among a dropdown views list. Two dropdown lists are available:

• a public one that only displays views labels that have been marked as "visible" by

their creators.

• a selector within the Views plugin edition interface. This view selector contains all

views including the ones that have not been marked as "visible" by their creators.

Note that this selector provides a view ID (integer) input as well.

Views may also be loaded using GET parameters in URLs that look like:

http://<cartoweb/client/base/url>?handleView=1&viewLoad=1&viewLoadId=<viewId>

or simply

http://<cartoweb/client/base/url>?view=<viewId>

Tip
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Views not marked as "visible" may anyway be loaded by anyone. "Visible" only

means that their labels appear in the public view dropdown selector whereas

"invisible" ones don't.

13.3.2. Editing Views

Views edition is restricted to users whom roles match at least one of those specified

in the client_conf/client.ini viewAuth parameter (see Section 13.2.2, “Main

Views Controller”).

Views editors can create, update or delete views.

13.3.2.1. Saving a View

To save the current map state as a view, simply fill in the form fields with matching

metadata. To make the view "visible", check the "Show view" option. Finally push

the "save" button.

You may also save a new view using an existing view. To do so, load the desired

view as described in Section 13.3.1, “Loading Views”, modify it as explained in

Section 13.3.2.3, “Updating a View” and push the "Save as new view" button.

13.3.2.2. Deleting a View

Load the view you want to delete as shown above and push the "Delete" button. A

JavaScript confirmation pops before irreversible deletion.

13.3.2.3. Updating a View

To modify a view map properties (selected layers, annotations, map extent, etc.) as

well as its metadata (title, "visibility", etc.), load it as seen above.

If your changes only concern metadata, simply update the dedicated form fields and

push the "Update" button.

To update the view map properties, check the "Memorize form" option. Metadata and

selected view ID are then memorized while you perform your changes (pans, zooms,

annotations, layers selections, etc.). Eventually push the "Update" button.
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14. Editing
[plugin] (edit)

The edit plugin allows users to edit geographical data from their web browser.

14.1. Client-side Configuration

14.1.1. edit.ini

Here are the options that can be set on the client:

• general.allowedRoles: comma separated list of the roles that are allowed to use the

edit plugin

• insertedFeaturesMaxNumber: integer, number of new features that user is allowed

to draw for insertion in the database

Set it to 0 if user is only allowed to update or delete features.

• editLayers: comma separated list of layers that are editable

• editResultNbCol: number of columns to use to display the attributes table

• editDisplayAction: this string parameter is used to tell if the "validate" and

"cancel" buttons have to be displayed also under the attributes table. If empty or

both, buttons will be displayed both in the folder and under the attributes table. If

folder, buttons will be displayed only in the folder.

14.2. Related Elements in Mapfile

14.2.1. Metadatas

Specific metadatas must be set in the mapfile for the editable layers

METADATA
...
'edit_table' 'edit_poly' # PostGIS table
'edit_geometry_column' 'the_geom' # PostGIS geometry column
'edit_geometry_type' 'polygon' # PostGIS geometry type
'edit_srid' '-1'
'edit_attributes' 'parc_id,name|string,culture|string,surf,parc_type|integer' # list of the editable fields
'edit_rendering' ',,textarea,hidden,' # OPTIONAL! list of visual rendering of inputs in the form

END

• edit_table: string, name of the postGIS table to edit

• edit_geometry_column: string, name of the geometry field in the table

• edit_geometry_type: string, type of the geometry of the features for the layer
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possible values are point, line, polygon

May differ from the msLayer type (rendering)

• edit_srid: integer (optional), id of the SRID

• edit_attributes: string, comma separated list of attributes used for edition.

Each value represents the attribute name and type separated by a pipe symbol.

Only attributes with type set are editable.

Warning

Attribute types available values are 'string' and 'integer'.

• edit_rendering: OPTIONAL! string, comma separated list of rendering type used

when displaying the edition form.

Each value represents the type of input the user will see in the form when editing a

feature.

Attribute type available values are:

o (empty) : if no type is set, an input type text is displayed. This is the default

behaviour.

o hidden : input type hidden.

o textarea : textarea element.

Warning

edit_rendering is absolutly optional. If edit_rendering is not set, all inputs will be

simple text input.

14.3. How To

In this section are described the steps to get the edit plugin working on a cartoweb

project.

• First, you need a PostgreSQL database with postGIS enabled. Let's say, it is

named "edit_db" for the following explanations.

• At that point, you may launch demoEdit_schema.sql and demoEdit_data.sql.
located in the

<CARTOWEB_HOME>/projects/demoEdit/ directory.
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This will create 3 sample geometry tables, one for each type of geometry.

• In CartoWeb, you'll have to load the edit plugin in your project on both client
and server sides.

loadPlugins = [...], edit

• Then, you'll need to configure the plugin by setting the layer_ids in the
editLayers parameter in the edit.ini file.

editLayers = edit_poly, edit_line, edit_point

• In your mapfile, in the corresponding LAYER, you'll have to set the specific
metadatas as following :

LAYER
NAME "edit_poly"
STATUS ON
TYPE POLYGON
CONNECTIONTYPE POSTGIS
CONNECTION 'dbname=edit_db user=www-data password=www-data host=localhost'
DATA 'the_geom from (select the_geom, oid, parc_id, name, culture, surf, parc_type from edit_poly) as foo'
TEMPLATE 'ttt'

[...]
LABELITEM "name"
CLASS
NAME "class"
STYLE
COLOR 50 50 255
OUTLINECOLOR 255 50 50

END
LABEL

[...]
END

END
METADATA
'id_attribute_string' 'parc_id' # query
'query_returned_attributes' 'parc_id name culture surf parc_type'
'edit_table' 'edit_poly' # PostGIS table
'edit_geometry_column' 'the_geom' # PostGIS geometry column
'edit_geometry_type' 'polygon' # PostGIS geometry type
'edit_srid' '-1'
'edit_attributes' 'parc_id,name|string,culture|string,surf,parc_type|integer' # list of the editable fields
'edit_filter' '' # mapserver filter

END
END

Warning

Make sure that your edit_attributes list does not include spaces between

attributes.
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15. Security Configuration

15.1. Introduction

Access to different parts of the CartoWeb can be allowed or denied according to who

is currently using the application.

The following concepts are used in this chapter.

Security Mechanisms Concepts

User Representation of a user accessing CartoWeb. If the user is not

logged in, she is rerefenced as the anonymous user.

Role A user can have zero or more roles associated to her. These roles

are used to allow or deny a permission to a resource of feature.

Permissions Permissions describe parts of the application which can be allowed

or denied access. A permission can have roles for which access is

allowed, and roles for which it is denied.

15.2. Auth Plugin

The security system in CartoWeb was developped to be modular and to allow

different authentications systems to be easily plugged-in. This section describes one

implementation of authentication, user password and roles management, which is the

auth plugin shipped with CartoWeb.
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The auth plugin is not a core plugin. That's why you need to enable it if you want to

enable users to log-in. See Chapter 4, Configuration Files how to enable it in the list

of plugins. If it is not activated the login dialog won't be available, so users will

remain anonymous.

The next section describes the configuration file of the auth plugin. It is basically the

management of usernames, passwords and roles.

15.2.1. auth.ini (Client-side)

The auth.ini configuration is located in the client. This file contains the list of

usernames, their password and the roles they belong to:

• authActive: boolean Whether to show the Authentication login/logout buttons.

(note: this is not related to the fact the authentication system will be active or not)

• users.USERNAME List of users and their passwords. USERNAME is the name of the

user for whom the password is set. Passwords values are md5sums of the

password. To get this value, you can type in a shell:

echo -n 'mypassword' | md5sum

Example:

users.alice = e3e4faee0cc7fc55ad402f517cdaf40

• roles.USERNAME List of roles for each user. USERNAME is replaced by the user for

whom the roles are set. Some roles have a special meaning, see Section 15.2.2,

“Special Role Names”

It is possible to use three different locations where user and password are stored.

There are three mechanisms built-in in CartoWeb:

1. .ini file

2. database

3. ldap

The parameter securityContainer controls which backend is used.

• securityContainer: can be ini for the file storage, db for the dabase storage, or

ldap for the ldap storage.

Parameters for database and ldap storage are described below
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15.2.1.1. database storage

• dbSecurityDsn: The database connection string to be used. For instance

pgsql://user:password@localhost/test.

• dbSecurityQueryUser: The SQL query to perform to check a username/password

pair is valid. It should return a row if the pair is correct. For instance: "SELECT *

FROM users WHERE username='%s' AND password='%s'".

• dbSecurityQueryRoles: The SQL query used to retrieve roles for a given user. It

should return one column with all roles for the user each row. For instance:

"SELECT roles FROM users WHERE username='%s'"

15.2.1.2. ldap storage

The following parameters are inspired from Pear::Auth_Container_LDAP

• host: hostname of the server that hosts the ldap server localhost (default),

ldap.netsols.de.

• port: Port number on which the ldap server listens 389 (default).

• basedn: the base dn (Distinguished Name) of the ldap server For instance:

dc=ldap,dc=netsols,dc=de

• userattr: the user attribute to search for. uid (default)

• groupdn: gets prepended to basedn when searching for group. For instance:

ou=Groups

• groupattr: the group attribute to search for. cn (default)

• groupfilter: filter that will be added to the search filter when searching for a group:

(&(groupattr=group)(memberattr=username)(groupfilter))

(objectClass=groupOfUniqueNames) (default). For instance:

(objectClass=posixGroup) or (cn=cw*)(objectClass=posixGroup) if you

have groups starting with "cw" specifically set for Cartoweb.

• memberattr: the attribute of the group object where the user dn may be found

uniqueMember (default)

• groupscope: Scope for group searching: one, sub (default), or base

15.2.2. Special Role Names

The auth plugin configuration described in the previous section references the notion

of users and roles. Basically a role can be any string, the application will only use

them as a way to check if a feature is allowed or not. However, a set of role name

have a special meaning. They are described below.
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Special Roles

all This role belongs to any user. It is useful in case

a permission should not be restricted access.

loggedIn This role is given to all users who have logged in

the application. It means they are identified to

the system with a username.

anonymous This role is given to all users not known to the

application. This role is attached to anyone who

has not yet entered her username and password.

Example 15.1. Special Role Name Usage

general.allowedRoles = loggedIn

15.3. Global CartoWeb Permissions

The whole application can be denied access to anonymous users: only authenticated

(or a set) of users can access the application. Anonymous users arriving on the main

page will see a login dialog page if they have no rights to view the page (if the auth

plugin is not loaded, they will simply see a denied page).

This feature can be parametrized on the CartoClient in the client.ini configuration

file:

• securityAllowedRoles = list : List of roles which are allowed to access the

cartoweb. Set to 'all' if no if no restriction is given. (see Section 15.2.2, “Special

Role Names” for typical predefined roles)

Example 15.2. Global Permissions Usage

securityAllowedRoles = loggedIn

15.4. Plugin Specific Permissions

The main part of permissions is set in the different plugins of CartoWeb. For

instance, permissions related to which layer can be viewed are set in the layer plugin
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configuration files, and pdf printing permissions in the pdf plugin. These sections

either describes the plugin permissions which can be used, or make references the the

corresponding chapters.

15.4.1. Layers Related Permissions

It is possible to restrict which layer can be viewed by a set of users. For instance, only

logged in admin users can be allowed to view security sensitive layers.

These layer permissions are inherited by children. It means that if a parent

LayerGroup is not allowed to be viewed, then all the children won't be visible.

The permissions for layer must be activated in the layers.ini CartoClient

configuration file, and are set in the metadata of the mapfile or the <layers>.ini

configuration file. The concept of metadata in mapfiles and .ini file is described in

Section 6.3, “Metadata in Mapfile and layers.ini”. The metadata key name which can

be used is called security_view and contains a coma separated list of roles which

are allowed to view this layer. If no such metadata key is associated to a layer or

layerGroup, anyone can see the layer.

Heres the description of the layers.ini configuration file:

• applySecurity: True if the security check of layer access is activated. It might have

a minor impact on performances, if a large number of layer is used.

Here's an example of a security metadata key used in layer of the mapfile:

METADATA
"exported_values" "security_view,some_specific_parameter"
"security_view" "admin"
"some_specific_parameter" "value"

"id_attribute_string" "FID|string"
"mask_transparency" "50"
"mask_color" "255, 255, 0"
"area_fixed_value" "10"

END

In this example, the layer containing this metadata description will only be visible for

users having the admin role.

Note

Notice the usage of the exported_values metadata key which lists the security

related metadata key. It is explained in Section 6.3, “Metadata in Mapfile and

layers.ini”
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Now let's look the case where the metadata key is set on a layer group in the

<layers>.ini configuration file:

layers.group_admin.className = LayerGroup
layers.group_admin.children = grid_defaulthilight
layers.group_admin.metadata.security_view = admin

In this example, the admin role is set for the layerGroup called group_admin. You

can notice the very similar syntax as used in the mapfile.

Security can also be set for a whole switch (see Section 6.2.4, “Children Switching”):

switches.switch1.label = Switch 1
switches.switch1.security_view = admin
switches.switch2.label = Switch 2

In this case all layers set as children for this switch will only be visible for users

having the admin role.

Warning

Don't forget to set applySecurity to True in the layers.ini CartoClient

configuration file (in client_conf !), otherwise security metadata keys won't be taken

into account.

15.4.2. PDF Printing Permissions

The roles management in Pdf printing is explained in detail in Chapter 12, PDF

Export
[plugin]

. In particular, see Section 12.3.5, “Roles Management”.
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16. Throttling Configuration

16.1. Introduction

The throttling plugin allows to protect a cartoweb instance against fast and massive

usage from users. For example if a user tries to download all your map data using a

shell script with a combination of mode=image and recenter_bbox GET parameters.

If the plugin detects that a user (represented by its IP address) is using the application

in a such wrong way, the user will be blacklisted for a configurable number a seconds

and will receive an HTTP error code.

The throttling plugin is not a core plugin. That's why you need to enable it if you

want to enable users to log-in. See Chapter 4, Configuration Files how to enable it in

the list of plugins.

16.2. Throttling configuration

In practice, you have to define rules of maximum request allowed in a certain period.

If the user overflow one such rule he is blacklisted as described above.

16.2.1. Main throttling configuration

The plugin configuration file is located in client_conf/throttling.ini. The

configuration options are:

• dontBlock - Set to 1 to populate the black list without blocking the ip. Useful for

fine tuning the parameters before really blocking.

• whiteListPath - White list location. Read Section 16.2.3, “Whitelist

configuration” to have more information on this option.

• blackListPeriod - How long does a blacklisted must remains blocked (in

seconds).

• blackListLog - Location of the log file. If the path is relative it is relative to

CARTOWEB_HOME. Note that 'www-data' user (or the user who start apache)

have to be able the write into this file. If this file is not writable, the content will be

written into CARTOWEB_HOME/www-data/throttling/throttling.log

• blackListMail - A list of comma separated emails that will be notified every time

an IP is added or removed from the blacklist.

• buffer.*.period and buffer.*.maxRequest - Buffers configuration. Read

Section 16.2.2, “Throttling rules configuration” to see how buffers works.
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16.2.2. Throttling rules configuration

Access rules (named buffer in the plugin) represents the maximum request/period

you want to allow for each IP addresses. You can configure one or more buffers in

the client_conf/throttling.ini file.

Each buffer is defined by a name, a period and a maximum of request. For example,

if you want to allow a maximum of 20 request in 10 second for each IP, you will

write:

buffer.short.period = 10
buffer.short.maxRequest = 20

Where short is the symbolic buffer name, this name will be specified in the log file

and in the mail.

If you want to create more than one buffer you just have to populate the config file

and dont forget to change the symbolic name. For instance:

buffer.short.period = 10
buffer.short.maxRequest = 20

buffer.long.period = 3600
buffer.long.maxRequest = 500

buffer.foo.period = 100
buffer.foo.maxRequest = 500

16.2.3. Whitelist configuration

A list of IP addresses or IP networks can be specified in the main throttling

configuration file, this list will contains addresses of hosts or networks that will not

be taken into account by the plugin.

Addresses are in Classless Inter-Domain Routing format, if you want to include a

single IP address you have to write:

127.0.0.1/32

127.0.0.1 is the ip address and /32 is the network mask.

To include a whole IP network, you have to write:

192.168.3.0/24

Where 192.168.3.0 represent the network and /24 the network mask. In this case,

the whitelist will include all addresses from 192.168.3.1 to 192.168.3.255

Note that if the user's IP address can't be properly detected, it is never declared as

belonging to the whitelist. It sometimes happens if the user's computer is behind a
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miss-configured proxy: a proxy that don't properly set the HTTP_X_FORWARDED_FOR,

HTTP_X_FORWARDED or HTTP_CLIENT_IP header.

For more information about the Classless Inter-Domain Routing format, see:

http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
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17. Internationalization

17.1. Translations

Translation handling in CartoWeb was designed to use gettext [http://www.gnu.org/

software/gettext/manual] . However internationalization architecture is ready for

other translation systems.

Note

Scripts detailed below are only available in command line prompts ("DOS", shell).

They cannot be launched using a web browser.

17.1.1. Configuration

For now only gettext translation system is implemented. If gettext is not installed, you

can use a dummy translation system which translates nothing. To use gettext, you will

need to have PHP gettext module installed.

Translation system is now automatically set to gettext if gettext is installed otherwise

it's disabled. Parameter I18nClass is now deprecated.

17.1.1.1. Unix-like

In Unix-like environments, file /etc/locale.alias contains aliases to installed

locales. For each language used, a line must be present in this file. The alias ('fr' in the

example below) must point to a locale installed on the system.

...
fr fr_CH.ISO-8859-1
...

You will need to run locale-gen after editing /etc/locale.alias to regenerate

system's locales.

To install a locale on a Debian installation, use following command with root

priviledges:

dpkg-reconfigure locales

If package locales has never been installed, you have to install it before:

apt-get install locales

Two scripts have been prepared to check if gettext is correctly installed on the
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system:

• scripts/testgettext.sh: This will compile and run a small C program that will

test xgettext and msgfmt.

• scripts/testgettext.php: Given that gettext was correctly installed on the

system, this will test that gettext works in PHP.

Note

These scripts need that locales have been correctly configured. They were tested on

GNU/Linux with a Debian/Sarge install.

Note

On debian etch systems locale.alias path has changed. You should find it in /

usr/share/locale/locale.alias.

17.1.1.2. Win32

In order to have the language translation working correctly in Cartoweb with Gettext,

you need to have the languages you want to use installed in the Input Locales of

Windows (windows 2000: Control Panel > Regional Options > Input Locales.

windows XP: Control Panel > Regional and Language Options > Details > Settings)

17.1.2. PO Templates

Texts to be translated can be found in:

• Smarty templates using SmartyGettext [http://sourceforge.net/projects/

smarty-gettext/] (see Section 18.2, “Internationalization”)

• Client plugins .ini files (for instance map sizes)

• Server plugins .ini files (for instance scales labels)

• Mapfile's .ini and .map (layers labels)

• Client and server PHP code (see Section 5.1, “Translations”)

To generate PO templates, you will need to launch scripts on server and on client.

Templates are generated in directory <cartoweb_home>/projects/

<project_name>/po. If translation files (see Section 17.1.3, “Translating”) already

exist, a merge is done using msgmerge [http://www.gnu.org/software/gettext/

manual/html_chapter/gettext_6.html#SEC37] command. Follow these steps:
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• generate project and mapfile templates on server:

cd <cartoweb_home>/scripts
php server2pot.php

For each mapfile, two templates will be generated: server.po and

server.<mapfile_name>.po

• generate project template on client:

cd <cartoweb_home>/scripts
php client2pot.php

For each project, one template will be generated: client.po

It is possible to specify for which project you want to generate the .po file. Simply

add the project name as a parameter when launching the scripts client2pot and

server2pot:

php server2pot.php myprojectname

If you do not specify a project name, the .po files will be generated for all projects.

17.1.3. Translating

As for any gettext system, translating PO files can be done in Emacs, in Poedit [http://

poedit.sourceforge.net/] or in any text editor.

Translated PO files must be saved under name <template_name>.<lang>.po ;

where <lang> is the 2-letters ISO language: en, fr, de, etc.. For instance, the mapfile

test of test_main project will have three PO files in its PO directory for a complete

french translation:

• server.fr.po

• server.test.fr.po

• client.fr.po

17.1.4. Compiling PO to MO

To compile all PO files to MO files (gettext's binary format), use the following

commands on client side. This should be done each time configuration (client or

server) is updated, and after each system update. All languages are compiled at the

same time.

cd <cartoweb_home>/scripts
php po2mo.php

Warning: When CartoWeb is installed in SOAP mode, the script uses PHP curl

functions to retrieve PO files from server to client. PHP curl module must be
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installed.

17.1.5. Example

To translate texts in french for project test_project and map file projectmap, follow

these steps:

• On server:

cd <cartoweb_home>/scripts
php server2pot.php

Copy <cartoweb_home>/projects/test_project/po/server.po to

<cartoweb_home>/projects/test_project/po/server.fr.po and

<cartoweb_home>/projects/test_project/po/server.projectmap.po to

<cartoweb_home>/projects/test_project/po/server.projectmap.fr.po .

Edit french files with Poedit (or any editor).

• On client:

cd <cartoweb_home>/scripts
php client2pot.php

Copy <cartoweb_home>/projects/test_project/po/server.po to

<cartoweb_home>/projects/test_project/po/server.fr.po . Edit french

file with Poedit (or any editor).

Merge and compile files with the following commands:

cd <cartoweb_home>/scripts
php po2mo.php

Now you should have the file test_project.projectmap.mo in directory

<cartoweb_home>/locale/fr/LC_MESSAGES . The directory fr/LC_MESSAGES

will be created if it does not exist.

17.1.6. Debuging translation problems

There can be several reasons why the translation is not working.

First you need to check if gettext is correctly installed and configured. For so run the

following scripts:

• cd <cartoweb_home>/scripts
./testgettext.sh

This will test if Gettext is correctly installed in your system
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Note

Unix-like system only, this script is not intended for Windows users

• cd <cartoweb_home>/scripts
php testgettext.php

This will test if Gettext works correctly with php

Once you have verified Gettext is installed and run correctly, check if there are no

errors in your po files.

• Verify you do no have duplicate msgid in your po files. Each msgid must be unique

in a po file.

A typical error message would be:

Error message: Failure while launching "msgcat --to-code=iso-8859-1 --use-first --output=/www/cartoweb3/projects/demo/po/demo.en.po
/www/cartoweb3/projects/demo/po/demo.en.po /www/cartoweb3/projects/demo/po/client.en.po"
(output is /www/cartoweb3/projects/demo/po/client.en.po:392: duplicate message definition
/www/cartoweb3/projects/demo/po/client.en.po:390: ...this is the location of the first definition
msgcat: found 1 fatal error)

duplicate message definition on line 392 in client.en.po

• Check if you have several fuzzy entries in your merged po file (the file that is

automatically created by gettext, merging the client and server po files). This

happens when you have used the same msgid in different po files.

Note

Each po file contain a single fuzzy entry at the beginning, this should not be

removed

...
#, fuzzy
msgid ""
msgstr ""
"POT-Creation-Date: 2005-09-13 09:36+0200\n"
...

• Gettext automatically comments msgid and msgstr that are not found anymore in

your templates. Commented lines start with #. Sometimes this is unwelcome,

simply uncomment the lines.

• If your CartoWeb profile is set to production (Section 4.1, “Common client.ini and

server.ini Options”), do not forget to clean the temporary templates files by typing:

php cw3setup-php --clean
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See Section 1.1.3.2.4, “Cleaning Generated Files (Map, PDF, Temporary Files and

Smarty Cache)” for more details.

Note

It can also be usefull sometimes in development mode.

• If your are running PHP in a webserver as a module, the compiled .mo files are

cached. If no change happens after compiling new .mo files, it could be useful to

restart the webserver.

17.2. Character Set Encoding Configuration

Character set configuration is needed when CartoWeb strings may include

international characters with accents, or other special characters. Two types of

encodings must be set:

• how files (map files, configuration files, etc.) are encoded on server and on client.

To set this encoding, add the following line in server.ini and in client.ini:

EncoderClass.config = <encoder_class>

• how source data (shapefile, database, .. must be encoded. To set this encoding, add

the following line in client.ini:

EncoderClass.data = <encoder_class>

If not set, default to the same encoding as config, to keep backward compatibility

• how CartoWeb exports (including HTML output) must be encoded. To set this

encoding, add the following line in client.ini:

EncoderClass.output = <encoder_class>

Where <encoder_class> is the class used for encoding. Currently, following encoder

classes are implemented:

• EncoderISO: handles strings coded in ISO-8859-1

• EncoderUTF: handles strings coded in UTF-8

17.3. Character Set Encoding Configuration for Data
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Sources

When you have layers data with heterogeneous encoding (typicaly iso and utf8), you

can define specific EncoderClass by layer. Simply add "data_encoding" in the

METADATA section in the mapfile or in the layers.ini for the layers which need it.

The encoding used when reading data depends of the parameters set. The fallback

order is:

• data_encoding (in mapfile or layers.ini, with the corresponding EncoderClass in

client.ini)(specific by layer)

• EncoderClass.data (client.ini)(general for all layers)

• EncoderClass.config (client.ini)(for backward compatibility)

• UTF8 is the default if nothing is set.

See Section 6.3, “Metadata in Mapfile and layers.ini” for example of usage in mapfile

and layers.ini.

The EncoderClass defined in client.ini would be for example:

EncoderClass.data = EncoderUTF
EncoderClass.value_iso = EncoderISO

This example would be in the case most of your layers are in utf8 and only some are

in iso.
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18. Templating

18.1. Introduction

Smarty Template Engine is a convenient way to write HTML templates for dynamic

pages. It enables to delocalize a great amount of layout processing. Thus it is pretty

easy to customize a CartoWeb application layout without affecting the application

core.

CartoWeb templates are located in templates/ root directory and in plugins

templates/ directories (see Section 2.3, “Plugins”).

More info about Smarty templates can be found here: http://smarty.php.net. A

comprehensive online documentation including a reference and examples is available

in various languages here: http://smarty.php.net/docs.php.

18.2. Internationalization

It is possible - and recommended! - to use the SmartyGettext [http://

smarty.incutio.com/?page=SmartyGettext] tool in order to translate

template-embedded textual strings. Texts to be translated are identified using the {t}

tag:

<p>{t}Default text, please translate me{/t}</p>
<p>{t name="John Doe"}Hello my name is %1{/t}</p>
<p>{t 1='one' 2='two' 3='three'}The 1st parameter is %1, the 2nd is %2 and the 3nd %3.{/t}</p>

It is also possible to use the "|tr" smarty modifier if you want to apply some Smarty

transformations on a translated string:

{assign var="label" value="Themes"}
<div {if $label|tr|count_characters:true < 10}style="width:72px;"{/if}>{$label|tr}</div>

See also Chapter 17, Internationalization

18.3. Resources

Resources are identified using the {r} tag. {r} tags have a mandatory type attribute

and an optional plugin one. First attribute is used to indicate the relative file location

(files are grouped by types) in the file system whereas the second one tells what

plugin uses the resource. Filename is placed between opening and closing tags.

For instance to get the logo.png file located in htdocs/gfx/layout/, type in your

template:

<img src="{r type=gfx/layout}logo.png{/r}" alt="" />
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To get the zoom-in icons from the location plugin, type:

<img src="{r type=gfx plugin=location}zoom_in.gif{/r}" alt="" />

Following list shows all CartoWeb resource types.

• Htdocs root directory

o path: /htdocs/css/toto.css

o Smarty: {r type=css}toto.css{/r}

o generated URL: css/toto.css

• Coreplugins

o path: /coreplugins/layers/htdocs/css/toto.css

o Smarty: {r type=css plugin=layers}toto.css{/r}

o generated URL: layers/css/toto.css

• Plugins

o path: /plugins/hello/htdocs/css/toto.css

o Smarty: {r type=css plugin=hello}toto.css{/r}

o generated URL: hello/css/toto.css

• Projects

o path: /projects/myproject/htdocs/css/toto.css

o Smarty: {r type=css}toto.css{/r}

o generated URL: myproject/css/toto.css

• Projects Coreplugins (override)

o path: /projects/myproject/coreplugins/layers/htdocs/css/toto.css

o Smarty: {r type=css plugin=layers}toto.css{/r}

o generated URL: myproject/layers/css/toto.css

• Projects Plugins (override)

o path: /projects/myproject/plugins/hello/htdocs/css/toto.css

o Smarty: {r type=css plugin=hello}toto.css{/r}

o generated URL: myproject/hello/css/toto.css

• Projects specific plugins

o path: /projects/myproject/plugins/myplugin/htdocs/css/toto.css

o Smarty: {r type=css plugin=myplugin}toto.css{/r}

o generated URL: myproject/myplugin/css/toto.css
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19. Accounting
[plugin]

CartoWeb provides a mechanism to store accounting informations. These

informations can be used to generate statistics of the application usage.

19.1. Accounting Configuration

19.1.1. Introduction

Accounting configuration specifies if the accounting is enabled or not, and how to

store the accounting information. The configuration is the same for the client or

server. Notice however that if you are using CartoWeb in direct mode, the server

accounting configuration is not taken into account. See Section 4.2, “ client.ini ” for

more information about direct mode.

When you enable accounting, you also need to activate the accounting plugin in your

configuration. This is done through the loadPlugins parameter of client.ini and

mapInfo.loadPlugins of your server_conf/<mapId>/<mapId>.ini file.

19.1.2. client.ini or server.ini

Here are the options that can be set on the client or server:

• accountingOn (boolean: 'true'|'false'): sets whether accounting is enable or not.

• accountingStorage (string: 'file'|'db'|'db_direct'): controls how the accounting

information is stored.

file means that accounting information will be stored in files named cartoweb3/

www-data/accounting/<MAP_ID>/{client|server}_accounting.log where

<MAP_ID> is the mapId currently used.

db means that accounting information is stored inside a database table. This table

can be created using the following command:

CREATE TABLE cw_accounting (date timestamp, info text);

The database to be used can be configured using the accountingDsn parameter.

See next item.

db_direct the information is stored inside a database table. Unlike db the data are

not inserted in an unique columns but are directly splited.

Warning
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This mode can only be used if this client and the server are in direct mode. See

Section 4.2, “ client.ini ” for more information about direct mode.

• accountingBasePath (string): Optional base path where to store the accounting

log files. This is only used when accountingStorage is set to file.

• accountingDsn (string): DSN (Data Source Name), used to specify which

database to use for storing accounting information. This is only used when

accountingStorage is set to db or db_direct.

Note

Do not forget to enable the accounting plugin if you want to use this feature.

19.2. Managing Accounting Information

19.2.1. Accounting Log Files Administration

Accounting log file are used to store one line of accounting information each time a

request is made on CartoWeb. The log files will grow with time, as more and more

data are stored inside. This means that special care has to be taken by the CartoWeb

administrator to avoid that the log file eats all the available free disk space.

It exists several tools which can be used to manage the log files and to avoid it takes

too much place. For instance the Logrotate™ software can be used to rotate the log

files regularly.

Warning

Activating accounting and not taking care of log file management can slow down or

interrupt CartoWeb good working if the log file becomes too large.
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20. Locate
[plugin]

20.1. Introduction

The locate plugin deals with autocompletion of input fields used to recenter on a

feature on the map. It is based on AJAX requests.

When a few characters have been typed in the dedicated input field, an AJAX request

is processed on the database defined by its DSN. The first results beginning with

these characters are displayed in a drop down list.

When a result is clicked, the map is recentered on it.

The JavaScript part of this plugin is based on the script.aculo.us [http://

script.aculo.us/] Autocompleter.

20.2. Activation

The plugin needs obviously to be activated using the client_conf/client.ini

loadPlugins parameter. For instance:

loadPlugins = auth, exportPdf, views, locate

To enable the plugin, you also need to add required parts in the cartoclient.tpl

template. In the <head> element:

{if $locate_active|default:''}<link rel="stylesheet" type="text/css" href="{r type=css plugin=locate}locate.css{/r}" />{/if}
...

{if $locate_active|default:''}<script type="text/javascript" src="{r type=js}prototype.js{/r}"></script>{/if}

And in the <body> of the document (for example in the navigation folder):

{if $locate_active|default:''}
{$locate_form}

{/if}

Tip

Warning: make sure that the recentering in enabled (recenterActive = true in

client_conf/location.ini)! The hidden inputs id_recenter_layer and

id_recenter_ids are needed so the recentering functionnality works correctly.

20.3. Configuration
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• locate.#.id (# = 0, 1, 2, ...): id of the layer in layers.ini to recenter on.

• locate.#.label (# = 0, 1, 2, ...): label of the locate input; Note that if you use the

same label as in the layers.ini translations will operate.

• locate.#.sql (# = 0, 1, 2, ...): SQL statement for the AJAX request to the

database. It must return two fields:

o an identifier : the value of the id_attribute_string field of the layer, in order

to be able to recenter on the feature,

o a label : a name for the feature to recenter on.
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21. AJAX

21.1. Introduction

CartoWeb implements an AJAX layer, enabling asynchronous update of the HTML

GUI.

21.1.1. Browser Compatibility

Browser compatibility:

• Mozilla 1.7+

• Firefox 1.0.7+

• Internet Explorer 6+

• Safari 1.3.2+

Known browser incompatibility:

• Opera

• Internet Explorer 5 for Mac

• Konqueror

21.2. Make Your Project AJAX Enabled

To enable your project with AJAX, it is recommended that you build your project

based on demoCW3 or test_main projects (CartoWeb version 3.3.0 or higher). A

project based on demoCW3 won't need any tuning. A project based on test_main will

require the following:

• Enable AJAX in your client.ini (or client.ini.in):

If you have a project running since version 3.2.0 or before, and want to enable AJAX,

you'll need to:

• Enable AJAX in your client.ini (or client.ini.in)

• Adapt your cartoclient.tpl, mainmap.tpl and all redefined plugin templates (if

they are based on test_main or demoCW3 project templates from CartoWeb

version <= 3.2.0).
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21.2.1. Client.ini Configuration

Add the ajaxOn directive and set it to true in your /project/[yourProjectName]/

client_conf/client.ini or /project/[yourProjectName]/client_conf/

client.ini.in

ajaxOn = true

21.2.2. Plugin Ajaxisation Generalities

There are several steps needed to add ajax support to a plugin :

• PHP

• javascript

• template

21.2.3. PHP side

Your plugin php class must implements the Ajaxable interface.

class ClientYourPlugin extends ClientPlugin implements Ajaxable { ...

You can then add two functions:

• ajaxGetPluginResponse

• ajaxHandleAction

21.2.3.1. ajaxGetPluginResponse

ajaxGetPluginResponse will send back your plugin's response. It behaves the same

way as the usual renderForm function.

instead of doing :

$template->assign($some_content);

you do :

$ajaxPluginResponse->addHtmlCode('some_variable_name', $some_content);
$ajaxPluginResponse->addVariable('another_variable_name', $some_content);

HtmlCode and Variable are pretty much the same thing, it only differentiates the

treatments between html output and javascript variables.

21.2.3.2. ajaxHandleAction
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ajaxHandleAction is where you specify which plugin(s) is activated when an action

is triggered through your plugin. The content is usualy a switch on the action name:

switch ($actionName) {
case 'YourPlugin.SomeAction':

$pluginEnabler->disableCoreplugins();
$pluginEnabler->enablePlugin('images');
$pluginEnabler->enablePlugin('yourplugin');

break;
case 'YourPlugin.AnotherAction':

$pluginEnabler->disableCoreplugins();
$pluginEnabler->enablePlugin('yourplugin');

break;
}

You must explicitly enable your plugin

$pluginEnabler->enablePlugin('yourplugin');

otherwise your plugin will not send back anything.

disableCoreplugins(); explicitly deactivate all coreplugin. It means nothing will

be sent back to the browser.

You can activate plugin case by case, for example:

$pluginEnabler->disableCoreplugins();
$pluginEnabler->enablePlugin('images');

will only enable the images coreplugin and the map will then be refreshed.

21.2.4. Javascript browser's side

Create a new javascript file named YourPlugin.ajax.js

Place it in plugins/yourPlugin/htdocs/js/

Add it to your cartoclient.tpl header:

<script type="text/javascript" src="{r type=js plugin=yourPlugin}YourPlugin.ajax.js{/r}"></script>}

be careful to not place it before {include file="cartoclient_ajaxHeader.tpl"}, you will

get a javscript error because the plugin's javascript code use some objects which are

defined only in files inluded via the cartoclient_ajaxHeader.tpl file.

The YourPlugin.ajax.js contains basicaly two parts, one to trigger the action and

another to handle the answer and update your html/javascript

21.2.4.1. Ajax Answer Handling

AjaxPlugins.YourPlugin = {
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handleResponse: function(pluginOutput) {
/* Plugin general behaviour */

if (pluginOutput.variables.variable_name) {
// do something with your variable
alert(pluginOutput.variables.another_variable_name);
}

AjaxHandler.updateDomElement('target_id', 'innerHTML',
pluginOutput.htmlCode.some_variable_name);

}
};
}

The answer sent by PHP is handled in handleResponse. Here you recover the

variables and htmlCodes.

The function updateDomElement will handle all the html insertion. It takes 3

parameters:

• the target id of the existing element in your current html which will serve as

container for the new content.

• the insertion methode, always 'innerHTML'.

• the new content.

21.2.4.2. Ajax Action Triggering

In this part, you simply define all your actions and what to do before, when and after

the actions are triggered.

AjaxPlugins.YourPlugin.Actions = {};
// always empty, it only define a Actions object which will store our various actions.

AjaxPlugins.YourPlugin.Actions.SomeAction = {

buildPostRequest: function(argObject) {
return AjaxHandler.buildPostRequest();

},
.
onBeforeAjaxCall: function(argObject) {

Logger.note('Output something in the JSTraceDebugger window');
callSomeJavascriptFunctions();

},

onAfterAjaxCall: function(argObject) {
Logger.note('Output something in the JSTraceDebugger window');
callSomeJavascriptFunctions();

},

onBeforeAjaxCallGeneral: function(argObject) {
Logger.note('Output something in the JSTraceDebugger window');
callSomeJavascriptFunctions();

},
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onAfterAjaxCallGeneral: function(argObject) {
Logger.note('Output something in the JSTraceDebugger window');
callSomeJavascriptFunctions();

},

oneCustomFunction: function() {
Logger.note('Output something in the JSTraceDebugger window');
// you can also define functions
...

},
};

AjaxPlugins.YourPlugin.Actions.AnotherAction = {

buildPostRequest: function(argObject) {
return AjaxHandler.buildPostRequest();

}
};

Warning

BE CAREFUL FOR CLOSING "," and ";" !!!!

these are json syntax and it is a bit different than your usual javascript.

• buildPostRequest is always executed, it simply parses your html and recover all

the inputs (text, hidden, select, radio, checkbox, password, textarea) values and

send them to the server.

• onBeforeAjaxCall and onAfterAjaxCall are optional.

These functions are called before and after the action. For example if you want to

modify some inputs value just before it's being sent to the server. Or you want too

add some post-treatments.

Note that onAfterAjaxCall is called AFTER the response is being treated in the

normal handleResponse stage (see Section 21.2.4.1, “Ajax Answer Handling”).

• onBeforeAjaxCallGeneral and onAfterAjaxCallGeneral are optional.

These functions are called EVERYTIME an AJAX call is triggered by ANY

plugins.

If you add these functions in your plugin, the functions will be called even if the

action was triggered by another plugin.

onBeforeAjaxCallGeneral is called BEFORE onBeforeAjaxCall.

onAfterAjaxCallGeneral is called AFTER onAfterAjaxCall.

21.2.4.2.1. Add Event
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If the html fragment your are inserting must implement on-the-fly javascript event,

you can attach some event on existing elements via the attachAction function:

AjaxHandler.attachAction('target_element_id', 'type_of_event', 'callback_function', json_defined_arguments);

for example:

AjaxHandler.attachAction('pan_n', 'click', 'Location.Pan', {source: 'button'});

21.2.4.2.2. Custom Functions

You can define custom functions as well, see the oneCustomFunction above. But

you will need to explicitly call these functions from buildPostRequest,

onBeforeAjaxCall or onAfterAjaxCall.

The function is called like this: this.oneCustomFunction();

21.2.4.2.3. Log Messages

You can output some notice or warning in the JSTraceDebugger windows by adding:

Logger.note('Some text that will appear in the debugger');

You can also use 'send', 'header', 'error', 'warn', 'trace' or 'confirm'. They have slightly

different styling. See file Logger.js for details.

21.2.4.3. Initialize plugin

You may want to call some functions or define some variables on page load. To do so

simply add your plugin into the AjaxPlugins.initializablePlugins array, like this:

// add your plugin to the list of Ajax initializable plugins
AjaxPlugins.initializablePlugins.push(AjaxPlugins.YourPluginName);

Add this after your main

AjaxPlugins.YourPluginName = {...};

21.2.5. Templates Adaptation

To trigger the actions defined in YourPlugin.ajax.js, you simply call them like this:

<input type="button" value="{t}ok{/t}" onclick="return CartoWeb.trigger('YourPlugin.AnotherAction');" />
}

or if you want to provide a non-ajax fallback, you can do it like that:
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<input type="button" value="{t}ok{/t}" onclick="return CartoWeb.trigger('YourPlugin.AnotherAction', 'doSubmit()');" />
}

Warning

Adapting your templates is a tricky bit. Unless you customized your templates

thoroughly, we recommend that you start over again your templates customization

using demoCW3 or test_main as a basis, as these projects templates are AJAX ready.

We recommend that you diff your cartoclient.tpl, mainmap.tpl and all redefined

plugin templates with the upstream. This is the best way to be up to date, especially if

you use the latest CVS version of CartoWeb.

Tip

Original templates patch: http://bugzilla.maptools.org/

attachment.cgi?id=126&action=view
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22. Geostatistics
[plugin] (geostats)

22.1. Introduction

This chapter describes how to configure geostatistics functionnalities.

22.2. General Behavior

The Geostat plugin allows advanced cartographic representation based on attributes

of geospatial data. Currently, there is only support for polygonal entities. There will

be support for ponctual symbol very soon. Every vectorial formats supported by

Mapserver may be use.

The client side of the plugin allow the specification of the mandatory and optional

paramaters. These parameters will be passed to the server side which will create the

map layer and return some informations about the dataset.

22.3. Server-side Configuration

22.3.1. Mapfile Configuration

On the server side, the first configuration step is made within the mapfile. The only

requirement is a least on polygonal layer which expose at least one attribute. You

may consider an attribute as exposed if you can use it as CLASSITEM for this layer.

You must add one (and only one) class to this layer. It will be use as template for the

generated classes. You may use this class to define border color, label or other default

parameter. You should not add this layer to the layers.ini configuration file.

22.3.2. geostat.ini Configuration

Choropleth layers are managed differently then ordinary layer within cartoweb.

server_conf/mapId/geostat.ini is used to define layers that may be used for

geostatistics. Take a look to a sample of this file.

geostat.0.mslayer = region_geostat_fill
geostat.0.label = Region
geostat.0.choropleth = true
geostat.0.choropleth_attribs = POPULATION,HOUSINCOME
geostat.0.choropleth_attribs_label = "Population","Average house income"

These example represents a single layer definition. The general for of parameter is

geostat.n.key = value. n is an incremental number (first layer of the config file is 0.
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key is a parameter for this layer. value is the value associated to the following

parameter. The following parameters defined choropleth generation :

• msLayer : name of the layer in the mapfile

• label : Label for the layer in the interface

• choropleth : Should choropleth be activated. This is present for future

development

• choropleth_attribs : Comma separated list of attributes that may be used for

choropleth

• choropleth_attribs_label : Comma separated list of labels to display as

description of the preceding attributes

22.4. Client-side Configuration

Client-side configuration allow to specify which algorithms should be display within

the user interface. Currently, there are 2 algoriths families that may be configured.

The first is about classification algorithms. The second is about generation of color

ramp. The signification of the parameter is pretty straightforward.

The choroplethDataFromCurrentBoundingBox parameter allows to choose whether

classes should change when users zoom or if they should remain constant for every

scales.

;The following classification method are currently supported
; Custom : 0
; Equal intervals : 1
; Quantils : 2
; Modes : 3
choroplethClassifMethodDefault = 2
choroplethClassifMethodsList = 0,2,3
;The following color ramp generation method are currently supported
; Custom : 0
; RGB interpolation : 1
; HSV interpolation : 2
; Max diffrence : 3
choroplethColorRampMethodDefault = 1
choroplethColorRampMethodList = 1,3
choroplethDataFromCurrentBoundingBox = false
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23. ToolTips
[plugin]

23.1. Introduction

The tooltips plugin aim is to show features attributive information on top of the map

without refreshing the whole page.

23.2. Basic Usage

23.2.1. Introduction

When user moves the mouse over the map and stops during several milliseconds, an

AJAX request is sent to the CartoClient using the geographical coordinates of the

cursor.

If the webserver finds features corresponding to the defined timeout_async layers, a

response is sent back to the browser with some generated HTML code showing some

attributive information.

23.2.2. Pros / Cons

Pros

• fully customizable layout,

• several results can be displayed even for stacked features,

• isn't dependant to the feature counts, performances should not fail even for huge

quantity of feature

Cons

• database (postGIS) required

23.2.3. Configuration

Here are defined parameters available for timeout_async layers

• label : (optional) label for the layer. If not set, layerId is diplayed

• dsn : connection string to database (Data Source Name)

• dbTableName : name of the table in database

• attributes : comma separated list of attributes to be displayed
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• template : (optional) custom template, must be in overriden toolTips plugin

templates directory. If not set, generic layerResult.tpl is used. The template to

use can also be set in renderResult() method in PHP code if QueryableLayer is

extended (See Section 23.3.2, “Extending classes”)

• geomColName : (optional) name of the geometry column. Default is 'the_geom'.

• srid : (optional) name of the projection system to use. Default is '-1'.

tooltips.region.label = "Régions"
tooltips.region.dsn = "pgsql://www-data:www-data@localhost:5432/france"
tooltips.region.dbTableName = region
tooltips.region.attributes = "nom, code"
tooltips.region.template = "layerResult_region.tpl"

• timeoutBeforeHide : (optional) The time in millisecond before the tooltips result

box disappear (if the user has not put the mouse cursor on it). Set to 3000 by

default. This is a general parameter and it has a more common syntax.

timeoutBeforeHide = 7000

23.3. Custom Tooltips

23.3.1. Templates

Tip

Make sure that the custom templates are in the templates folder in the toolTips

plugin directory in your project.

23.3.1.1. Main Template

As for the other plugins, templates can be overriden in the projects. Then, user can

define a new layerResult.tpl template for all tooltips layers.

23.3.1.2. Layer Specific Template

One can also define a specific template for each layer. It can be defined using the

template parameter (See Section 23.2.3, “Configuration”) or in renderResult()

method in PHP code if QueryableLayer is extended (see above).

23.3.2. Extending classes

If a class extending ByXyQueryableLayer with a name like

LayerIdQueryableLayer exists, it will be taken into account.
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To do so, you should extend (replace) the toolTips plugin (See Section 2.3.3,

“Extending a Plugin”). You can name it ProjectToolTips for example.

So create a ClientProjectToolTips.php file containing something like :

require_once 'CustomLayers.php';

/**
* Client part of ClientToolTips plugin
* @package Plugins
*/
class ClientProjectToolTips extends ClientToolTips {

/**
* @see PluginManager::replacePlugin()
*/
public function replacePlugin() {

return 'toolTips';
}

}

Then create a new PHP file in the same directory named CustomLayers.php.

Important

The name of the class that extends ByXyQueryableLayer should match the layerId.

It should look like :

class DepQueryableLayer extends ByXyQueryableLayer {

public function __construct() {
parent::__construct();

$this->addReturnedAttribute('nom_chf_l');
}

/**
* Sets the type of ResultLayer returned by ResultLayer::queryLayer()
* @see QueryableLayer::newLayerResult()
*/
protected function newLayerResult() {

return new DepLayerResult();
}

}

class DepLayerResult extends LayerResult {

/**
* @see LayerResult::renderResult()
*/
public function renderResult($smarty) {

$smarty->assign('layerId', $this->getId());
$smarty->assign('layerLabel', Encoder::encode($this->getLabel(), 'config'));
$smarty->assign('depName', $this->getAttribute('nom_dept'));
$smarty->assign('depCode', $this->getAttribute('code_dept'));
$smarty->assign('depChefLieu', ucfirst(strtolower($this->getAttribute('nom_chf_l'))));
return $smarty->fetch('layerResult_depLayer.tpl');

}
}
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This method allows people to build tooltips with results coming from several sources

(joined tables for example).

Tip

Don't forget to load the plugin on client-side ( client_conf/client.ini)

23.3.3. Styling

Here are some considerations on how to customize the tooltip appearance.

TODO

23.4. Incompatibilities

Please note that some features were removed from the tooltips plugin to enhance its

stability. The area_async and the area_direct modes are not available anymore as

they complicated the javascript code a lot and weren't used at all. And the

timeout_async was replaced by tooltips in the configuration files.
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24. Search
[plugin]

24.1. Introduction

The search plugin aim is to offer standards search features (like recentering, result

offset, guided search, ajax features...) in a generic way. Take note that in his current

state the plugin only offers a server framework. There is not yet any generic

JavaScript framework.

Warning

The following examples only work with AJAX mode on !

24.2. Basic Usage

Introduction

24.2.1. General Considerations

The search plugin must be activated on both CartoClient and CartoServer side ie. the

loadPlugins parameter must contain search in your project client_conf/

client.ini and server_conf/<mapId>/<mapId>.ini.

Search use is mainly based on three files. client_conf/search.ini , plugins/

search/htdocs/js/Search.ajax.js and plugins/search/templates/

search.tpl.

The search plugin uses the PEAR DB abstraction class and should be able to handle

all databases supported by PEAR DB.

24.3. Basic Sample

24.3.1. Basic Mechanism and Setup

The data set and the query specification are set in the search.ini file. The design

and the fields of the search form is set in the search.tpl file. The search behavior

mainly reside in the Search.ajax.js.

Let's imagine that we want to do a search with a recenter on data that are represented

on a layer Addresses. The source of the data is a table in a PostGIS database.
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The data are stored in a table "addresses" with the followings rows: num, street,

zipcode, town, gid and the_geom. Primary key is gid.

First we have to set the configuration in the client_conf/client.ini/search.ini

like this:

dsn = SEARCHDSN
encodingContext = myencoding_context
; Do not forget to add EncoderClass.myencoding_context = EncoderISO (or any other context)
; in your client_conf/client.ini

config.Adresses.provider.type = fulltextTable
config.Adresses.provider.table = addresses
config.Adresses.provider.aliases = adr_num, num, adr_street, street, adr_zip, zipcode, adr_town, town
config.Adresses.provider.id = gid
config.Adresses.provider.columns = adr_num, adr_street, adr_zip, adr_town,
config.Adresses.provider.fulltextColumns = adr_num, adr_street, adr_zip, adr_town
config.Adresses.provider.sortColumn = adr_num
config.Adresses.provider.sortDirection = asc
config.Adresses.provider.sortPriorities = adr_num, adr_street, adr_zip, adr_town
config.Adresses.provider.labels = adr_num, adr_street, adr_zip, adr_town
config.Adresses.formatter.type = smarty
config.Adresses.formatter.template = search_results

• The dsn correspond to your dsn dataBase connexion string. For more information

please see the php PEAR corresponding page [http://pear.php.net/manual/en/

package.database.db.intro-dsn.php]

• The encodingContext correspond to the context in your client_conf/client.ini

see below code

• The config.XXXX is used for making a differentiation on tables.

• The config.Adresses.provider.type defines the type of query that should be done on

the table. Value can be :

o fulltextTable: That means the search is a textual search (ilike clause) that will be

done on the fields listed in the config.Adresses.provider.fulltextColumns.

o table: In this case a where clause should be set. (see Section 24.3.1.1, “Guided

Search”)

o user-defined (see Section 24.3.1.5, “Writing a Formatter”).

• The config.Adresses.provider.table specifies the name of the table to query.

• The config.Adresses.provider.aliases defines column names aliases. This could be

useful if there are two tables with same column name, or if you want to migrate

from one set of tables to another with different column names.

• The config.Adresses.provider.id designate the unique value used for recentering.

For example, if you want to do a recenter by id (gid in our case) the id value should

be set to gid. Do not forget the id-attribute-srting in the mapFile see Map file
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references [http://mapserver.gis.umn.edu/docs/reference/mapfile/layer]

• The config.Adresses.provider.columns specifies the columns to be returned by the

query. It contains the columns names separated by a coma.

• The config.Adresses.provider.fulltextColumns specifies the columns to be use in

the ilike clause when the config.Adresses.provider.type is fulltextColumns. It

contains the columns names separated by a coma.

Caution

This parameter should not be use if the type is Table.

• The config.Adresses.provider.sortColumn specifies the columns to by used for

ordering the rows.

• The config.Adresses.provider.sortDirection give the ordre type. It value can be asc

or desc for ascendent or descendent.

• The config.Adresses.formatter.type specifies the method for presenting the

result(s). Actually only smarty is implemented. But it is possible to write your own

Formatter (see chapter Writing a Formatter).

• The config.Adresses.formatter.template specifies the name of the template for

formatting query results. The file must be in the template folder of the plugin

search in your project directory.

• The config.Adresses.provider.labels specifies the label of the columns that should

be shown (the label will be used in the translation files).

Now we must set up the form that will be used for doing the search. Edit or create the

plugins/search/templates/search.tpl file and write:

<div id="search_div">
<fieldset><legend>{t}My Title{/t}</legend> <br/>

<table width="100%">
<tr>

<td>
{t}Street: {/t}

</td>
<td>

<input type="text" id="search_adr_street"
name="search_adr_street" size="13"/>

</td>
</tr>
<tr>

<td>
{t}adr_town: {/t}

</td>
<td>

<input type="text" id="search_adr_town"
name="search_adr_town" size="13"/>

</td>
</tr>
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...

</table>
<p>
<input type="submit" value="{t}Search{/t}" class="your_form_button_class"
onclick="JavaScript: CartoWeb.trigger('Search.DoIt'); return false;"/>

<input type="hidden" id="search_config" name="search_config" value="Adresses" />
<input type="hidden" id="search_sort_column" name="search_sort_column" value="adr_num"/>
<input type="hidden" id="search_sort_direction" name="search_sort_direction" value="asc" />
<input type="hidden" id="search_number" name="search_number" />

<div id="search_results_div"></div>
</p>

</fieldset>
</div>

Each field present in the fulltextColumns parameter of the configuration file must

have a corresponding input in the template. Each input should have an id composed

of the name of the column prefixed with the key-word "search_". For example, the

the column adr_num should give:

<input type="text" id="search_adr_num" name="search_adr_num" size="13"/>

The template contains a submit button that calls the CartoWeb.trigger('Search.DoIt')

JavaScript method. This method defined in the Search.ajax.js (see below)

launches the action.

You may notice the hidden inputs in the template. They provide parameters that can

be dynamically changed by JavaScript:

• The search_config input determines the table to be queried. Its value should

correspond to the name of a table defines in the search.ini

(config.here_is_the_value). This value allows to set different table in the

configuration file and to dynamically choose which table should be queried !!!!

This input is not optional and the search plugin will generate an error !!!!

• The search_sort_column input defines the column to be used by the sort clause. If

this input is not set or has no value, it's overridden by the sortColumn parameter

defined in search.ini. If this parameter is also not set in the configuration file it

will be ignored.

• The search_sort_direction input defines the sort order. It should be asc or desc. If

this input is not set or has no value, it's overridden by the sortColumnDirection

parameter defined in search.ini. If this parameter is also not set in the

configuration file it will be ignored.
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• The search_number input define the maximum number of rows to be returned by

the query. If this input is not set or has no value, it will be ignored.

There is also two other inputs parameters available:

• offset

• page

They allow the creation of a navigation of the query result. The offset input gives the

number of rows a "page" of result should contains. And page gives the current page

number.

Note: The form is injected in the cartoclient.tpl inside the Smarty tag search:

{if $search_active|default:''}
{$search}

{/if}

Warning

Do not forget to include the Search.ajax.js file in your cartoclient.tpl.

{if $search_active|default:''}<script type="text/javascript"
src="{r type=js plugin=search}Search.ajax.js{/r}"></script>{/if}

Now we must set up the result template file. Create or edit the plugins/search/

templates/search_results.tpl that has been defined in the configuration file and

write:

{if $table->numRows > 0}
<table class="yourCssClass">

<tr>
<th>{t}Id{/t}</th>
{foreach from=$table->columnIds item=column}
<th> <a href="JavaScript: order('{$column}');">{t}{$column}{/t}</a></th>
{/foreach}

</tr>
{foreach from=$table->rows item=row}
<tr>

<td>{$row->rowId}</td>
{foreach from=$row->cells item=value}
<td><a href="JavaScript: recenter('{$row->rowId}');">{$value}</a></td>
{/foreach}

</tr>
{/foreach}

</table>
{else}
{t}No results{/t}

Search
[plugin]

153



{/if}

This will return a table with the columns defined in the configuration file. By clicking

on a row you will call the recenter method. By clicking on a row header you will

order the result.

Note that the place of the result table is defined by a div that will be modified by the

JavaScript.

<div id="search_results_div"></div>

The div id must be the same as the target id in function ''handleResponse'' ! (see

below)

Finally we have to set up the java script file. Open or create the plugins/search/

htdocs/js/Search.ajax.js and write:

AjaxPlugins.Search = {

handleResponse: function(pluginOutput) {
//should be the same value as the input search_config
if (pluginOutput.htmlCode.myconfig)
$('search_results_div').innerHTML = pluginOutput.htmlCode.myconfig;

}
};

/*
* Search plugin's Actions
*/

AjaxPlugins.Search.Actions = {};

AjaxPlugins.Search.Actions.DoIt = {

buildPostRequest: function(argObject) {
return AjaxHandler.buildPostRequest();

}
};

function order(column) {

if (column != $('search_sort_column').value) {
$('search_sort_column').value = column;
$('search_sort_direction').value = 'asc';

} else {
if ($('search_sort_direction').value == 'asc') {
$('search_sort_direction').value = 'desc';
} else {
$('search_sort_direction').value = 'asc';
}

}

CartoWeb.trigger('Search.DoIt')
}
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function recenter(id){
if ($('search_config').value == 'Adresses') {
//id to recenter, be sure there is a hidden input with that name and
//id in your template! if not, add it
$('id_recenter_ids').value = id;

/* if the search database table name is the same as the related layer
to recenter on, you can set it as below
be sure there is a hidden input with that name and id in your template!
if not, add it */
$('id_recenter_layer').value = $('search_config').value;

/* do not use the recenter_scale parameter if you recenter on ids,
only use it with recenter on x,y.
you can set the recenter scale in location.ini on server side */

/* do not use the recenter_doit parameter if you recenter on ids,
only use it with recenter on x,y. */

CartoWeb.trigger('Location.Recenter');
}

}

24.3.1.1. Guided Search

Note

The Basic Usage chapter is a prerequisite to the read of this one

A often meet case is to have a incremental search. Each time a search parameter is

selected the following parameter is completed.

Let's now take a concrete case: We keep the same database as in the above sample.

Imagine we have a select field that is initialised with the towns names. When you

choose a city, a select fields containing all the streets of the town appears. When you

choose a street the final search is launched.

As mentioned above we have to set the search.ini file

dsn = SEARCHDSN
; Do not forget to add EncoderClass.myencoding_context = EncoderISO
;(or any other context)
; in your client_conf/client.ini

config.Adresses_init_town.provider.type = table
config.Adresses_init_town.provider.table = addresses
config.Adresses_init_town.provider.aliases = adr_town, town
config.Adresses_init_town.provider.id = adr_town
config.Adresses_init_town.provider.columns = adr_town
config.Adresses_init_town.provider.sortColumn = adr_town
config.Adresses_init_town.provider.sortDirection = asc
config.Adresses_init_town.formatter.type = smarty
config.Adresses_init_town.formatter.template = init_adresse_town_select

config.Adresses_init_street.provider.type = table
config.Adresses_init_street.provider.table = addresses
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config.Adresses_init_street.provider.aliases = adr_street, street, adr_town, town
config.Adresses_init_street.provider.id = adr_street
config.Adresses_init_street.provider.columns = adr_street
config.Adresses_init_street.provider.sortColumn = adr_street
config.Adresses_init_street.provider.sortDirection = asc
config.Adresses_init_street.provider.where = "adr_town like '@adr_town_init@'"
config.Adresses_init_street.formatter.type = smarty
config.Adresses_init_street.formatter.template = init_adresse_adr_street_select

config.Adresses.provider.type = table
config.Adresses.provider.table = addresses
config.Adresses.provider.aliases = adr_num, num, adr_street, street, adr_zip, zipcode, adr_town, town
config.Adresses.provider.id = gid
config.Adresses.provider.columns = adr_num, adr_street, adr_zip, adr_town
config.Adresses.provider.sortColumn = adr_num
config.Adresses.provider.sortDirection = asc
config.Adresses.provider.sortPriorities = adr_num, adr_street, adr_zip, adr_town
config.Adresses.formatter.type = smarty
config.Adresses.formatter.template = search_results
config.Adresses.provider.where = "adr_street like '@adr_street_init@' and adr_town like '@adr_town_init@'"

As you can see, we have have declared 3 search configurations that are pointing on

the same database entity. The first two tables are used for initializing the select. They

are not of type FullTextTable as we do not want to use the default search

comportement. So the provider.label and provider.fulltextColumns are not used.

There is also a new configuration parameter that is :

config.Adresses.provider.where

This parameter allows to specifiy a where clause. The where clause is written in

traditional sql but the data corresponding to the value of the form have to be replaced

by @the_field_name@.

Warning

Do not forget to remove the "search_" prefix that is in the select field when defining

the @the_field_name@ parameter in the ini file.

For the first two tables, the template file have been modified in order not to give back

a result table but a select containing all the data required

config.Adresses_init_street.formatter.type = smarty
config.Adresses_init_street.formatter.template = init_adresse_adr_street_select

Here is the content of the init_adresse_town_select.tpl file :

{t}Town:{/t}<br />
<select name="search_adr_town_init" id="search_adr_town_init"
onchange="javascript: initializeStreet()">
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<option value="">&nbsp </option>
{foreach from=$table->rows item=row}
<option value="{$row->rowId}">

{foreach from=$row->cells item=value}
{$value}
{/foreach}

</option>
{/foreach}

</select>

Here is the content of the init_adresse_adr_street_select.tpl file :

{t}Street:{/t} <br />
<select name="search_adr_street_init"
id="search_adr_street_init" onchange="search()" >
<option value="">&nbsp </option>

{foreach from=$table->rows item=row}
<option value="{$row->rowId}">

{foreach from=$row->cells item=value}
{$value}
{/foreach}

</option>
{/foreach}

</select>

Now we have to setup the search.tpl file.

<div id="search_div">
<fieldset><legend>{t}My Title{/t}</legend> <br/>
here we inser the placeholder for the select(s)
<br />
<div id="town_select_div"> Here comes the list containing the towns </div>
<br />
<div id ="street_select_div"> Here comes the list containing the streets </div>
<br />
<input type="hidden" id="search_config" name="search_config" value="" />
<input type="hidden" id="search_sort_column" name="search_sort_column" value=""/>
<input type="hidden"
id="search_sort_direction" name="search_sort_direction" value="asc" />

<input type="hidden" id="search_number" name="search_number" />
<div id="search_results_div"></div>
</fieldset>
</div>

Finally we have to set up the java script file. Open or create the plugins/search/

htdocs/js/Search.ajax.js file and write:

AjaxPlugins.Search = {

handleResponse: function(pluginOutput) {
//we inject the select input in the HTML
if (pluginOutput.htmlCode.Adresses_init_town) {
//should be the same value as the input search_config
$('town_select_div').innerHTML = pluginOutput.htmlCode.Adresses_init_town;
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}

if (pluginOutput.htmlCode.Adresses_init_street) {
//should be the same value as the input search_config
$('street_select_div').innerHTML = pluginOutput.htmlCode.Adresses_init_street;

}

if (pluginOutput.htmlCode.Adresses) {
//should be the same value as the input search_config
$('search_results_div').innerHTML = pluginOutput.htmlCode.Adresses;

}
}

};

/*
* Search plugin's Actions
*/

AjaxPlugins.Search.Actions = {};

AjaxPlugins.Search.Actions.DoIt = {

buildPostRequest: function(argObject) {
return AjaxHandler.buildPostRequest();

}
};

function order(column) {

if (column != $('search_sort_column').value) {
$('search_sort_column').value = column;
$('search_sort_direction').value = 'asc';

} else {
if ($('search_sort_direction').value == 'asc') {
$('search_sort_direction').value = 'desc';

} else {
$('search_sort_direction').value = 'asc';

}
}

CartoWeb.trigger('Search.DoIt')
}

//we empty the old selects and reinsert the new ones instead
//Please do not forget to modify the search_config input value
function initializeTown() {
$('town_select_div').innerHTML = '';

var myinput = $('search_config');
myinput.value = 'Adresses_init_town';
CartoWeb.trigger('Search.DoIt');

}

function initializeStreet() {
$('street_select_div').innerHTML = '';
var myinput = $('search_config');
myinput.value = 'Adresses_init_street';
CartoWeb.trigger('Search.DoIt');

}

function search() {
var myinput = $('search_config');
myinput.value = 'Adresses';
CartoWeb.trigger('Search.DoIt');

}

function recenter(id){
if ($('search_config').value == 'Adresses') {
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//id to recenter, be sure there is a hidden input
//with that name and id in your template! if not, add it
$('id_recenter_ids').value = id;

/* if the search database table name is the same
as the related layer to recenter on, you can set it as below

be sure there is a hidden input with that name and id in your template! if not, add it */
$('id_recenter_layer').value = $('search_config').value;

/* do not use the recenter_scale parameter
if you recenter on ids, only use it with recenter on x,y.

you can set the recenter scale in location.ini on server side */

/* do not use the recenter_doit parameter
if you recenter on ids, only use it with recenter on x,y. */

CartoWeb.trigger('Location.Recenter');
}

}
Event.observe(window, 'load', initializeTown, true);

For each initialisation, we have to set the correct value inside the search_config input

and add a "onload" event in order to initialize the town select when the page is

loaded.

Event.observe(window, 'load', initializeTown, true);

24.3.1.2. Multi table Search

Sometimes, you may want to have a search that is done on multiple tables. It can be

done easily. You have just to use the mechanisms presented in the basic sample and

create in the search.ini a table that looks like this:

config.parcels.provider.type = table
config.parcels.provider.table = parcelles, addresses
config.parcels.provider.aliases = adr_num, num, adr_street, street, adr_zip, zipcode, adr_town, town
;//be sure not to have twice the same id column name in different tables (or use aliases)
config.parcels.provider.id = parcel_id
config.parcels.provider.columns = parcel_ref, adr_street
config.parcels.provider.fulltextColumns = parcel_ref, adr_num, adr_street, adr_zip, adr_town,
config.parcels.provider.sortColumn = parcel_ref, adr_street
config.parcels.provider.sortDirection = asc
config.parcels.formatter.type = smarty
config.parcels.formatter.template = search_results
config.parcels.provider.labels = parcel_ref, street
config.parcels.provider.where = "adr_street like '%@adr_street@%' AND addresses.parcel_ref = parcels.parcel_ref"

In this sample we have a search that is done on a table adresses and a table parcels

where a parcel contains many adresses. The search return all the streets where the

name matches the name given in the form and their corresponding parcel reference.

24.3.1.3. Writing a Provider
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Warning

Documentation below is still in draft state

A provider is an interface implementation that allows you to acess a type of data that

is not supported by PEAR DB.

You have to modify the Search.php. In this file there is an abstract class that is

named :

abstract class ResultProvider

You have to extend this class :

class MyResultProvider extends ResultProvider {
public function getResult(SearchRequest $request) {

$table = New Table();
$table->tableId = 'search';
$table->columnIds = array('col1');
$table->noRowId = false;
$table->rows = array('hello world');
$table->numRows = $dbResult->numRows();
// Generates pages information
$table->rowsPage = 1;
$table->totalPages = 1;
$table->page = 1; //curent page number
$result = new SearchResult();
$result->table = $table;
return $result;

}
}

Warning

Do not forget to modify the provider in the ini file.

You have to implements the getResult fonction. It should return a Table() instance.

24.3.1.4. Recenter and Hilight

In previous samples, recentering is done afterwards, by clicking on on result. If you

want to recenter and hilight on search results directly during the search, you can add

those two lines in search.ini:

config.my_config.provider.recenter = recenter_layer
config.my_config.provider.hilight = hilight_layer

The two layers must exist in the mapfile. They will be used in ordre to recenter on
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and hilight search results.

This option is only available for client-side search configurations.

24.3.1.5. Writing a Formatter

Warning

Documentation below is still in draft state

A formatter allows you to format the result of the query. Actually it returns code

generated by Smarty. But if you want to use an other template engine or a more

specifique formatter (JSON for example or in our case a smarty with differents

delimiters), you have to modify the ClientSearch.php

In this file there is an abstract calss :

abstract class ResponseFormatter

you have to extend this class

/**
* Formats a response using a Smarty template with different separators
* @see ResponseFormatter
*/
class MYSmartyResponseFormatter extends ResponseFormatter {

/**
* @see ResponseFormatter::getResponse()
*/
public function getResponse(SearchResult $result) {

$smarty = new Smarty_Plugin($this->plugin->getCartoclient(),
$this->plugin);
$smarty->right_delimiter = '[EOF';
$smarty->left_delimiter = 'EOF]';
$smarty->assign('table', $result->table);
return $smarty->fetch($this->template . '.tpl');
}

}

Warning

Do not forget to modify the formatter in the ini file.

You have to implements the getResponse function. It should return a string.The

$result variable correspond to the value return by the provider.
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25. OGC Layer Loader
[plugin]

25.1. Introduction

The ogcLayerLoader plugin allows user to add OGC layers such as WMS and WFS

through a call by URL.

For exemple, using a simple URL, you could call your cartoweb project and add an

OGC layer at startup.

Once the layer added, the coreplugin Layer will be called to update user layers.

Added layer could then be used by other plugin in the project (legend, layer reorder,

...). This plugin is used by wmsBrowserLight and catalog to add OGC layers to the

map.

25.2. Plugin Activation

To activate the plugin, load from both CartoClient and CartoServer configuration

files: client_conf/client.ini and server_conf/"mapId"/"mapId".ini. For

instance:

loadPlugins = mapOverlay, ogcLayerLoader

25.3. Define where to insert OGC layers

To do so, in server_conf/"mapId"/ogcLayerLoader.ini, set the following

parameters in the ini file of the plugin.

ogcInsertLayerAfter = raster ; raster is the name of the layer

25.4. Specify in which layergroup you want to insert
OGC layers

To do so, in client_conf/layers.ini, set the following parameters in the ini file of

the layers coreplugin.

userLayerGroup = root ; root is the name of the layerGroup in which user layers will be added

25.5. Define where to link a geonetwork catalog
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To do so, in client_conf/ogcLayerLoader.ini, set the following parameters in the

ini file of the plugin.

urlCatalog = http://my.linked.geonetwork.catalog ;
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26. WMS Browser Light
[plugin]

26.1. Introduction

wmsBrowserLight plugin allows you to add WMS layers to your map using the

ogcLayerLoader plugin. Main difference between the wmsBrowerLight and the

wmsBroser plugin is the managment of the server list. The plugins manage WMS

servers compatible with version 1.1.1 of the OGC WMS spec.. Using the

wmsBrowerLight plugin you have three ways to add specify the server end point

(url).

• Simply type in the text box the server you heard about like

http://mywmsserverurl.iheard.about (Do not set the version or any other

parameters).

• Define a list of WMS servers using the ini file of the plugin. The servers will be

presented to the end user in a list box.

• Connect to a GeoNetwork node having metadata on WMS services and load server

urls from this catalog.

26.2. Plugin Activation

To activate the plugin, load ogcLayerLoader from both CartoClient and CartoServer

configuration files and wmsBrowserLight plugins from CartoClient configuration

files: client_conf/client.ini and server_conf/"mapId"/"mapId".ini. For

instance:

loadPlugins = mapOverlay, ogcLayerLoader, wmsBrowserLight

26.3. Define a list of WMS servers using the ini file

To do so, in client_conf/wmsBrowserLight.ini, set the following parameters in

the ini file of the plugin.

catalogtype = ini

servers.0.label = Sandre / Ouvrage
servers.0.url = http://services.sandre.eaufrance.fr/geo/ouvrage

servers.1.label = Données administratives et routières en France (Geosignal)
servers.1.url = http://www.geosignal.org/cgi-bin/wmsmap
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Warning

If your url contains aditional parameter (..?map=foo), you MUST enclose the url

between doublequotes

servers.1.url = "http://www.foo.org/cgi-bin/mapserv?map=bar"

26.4. Connect to a GeoNetwork node having metadata
on WMS services

In order to use this type of connection the name of the GeoNetwork node has to be

known. Optionnaly, the plugin will first logged into the node if user and password are

specified. To do so, in client_conf/wmsBrowserLight.ini, set the following

parameters in the ini file of the plugin.

catalogtype = gn
gn = http://sandre.eaufrance.fr/geonetwork
; unset gnuser and gnpassword if no login has to be made
gnuser = cartoweb
gnpassword = cartoweb
gnlang = en
; gnQuery is how CartoWeb could get the list of services in the node
gnQuery = "category=Services"

For the time being, there is no way to query GeoNetwork for services in a consistent

manner using the ISO 19115 information. It should be possible to get this information

from the tag ScopeCd of the DataQuality section. But this is not a searchable criteria

in version 2.0.2. On tip is to create on the GeoNetwork node a category set to

"services" and then used this categrory to get the list of server to propose to the end

user.
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27. Routing
[plugin]

27.1. Introduction

The routing plugins deals with the pgRouting [http://pgrouting.postlbs.org/]

Postgresql extension allowing to perform, among several algorithms, computation of

the shortest path between two nodes of a graph. This plugin provides a graphical user

interface to query a Postgresql/PostGiS database with pgRouting functions installed

on it.

Extended documentation on pgRouting functions can be found at the pgRouting

website [http://pgrouting.postlbs.org/].

The demo_plugins demonstration shows an example of the routing plugin.

This documentation details how to install pgRouting on a PostGIS-enabled database

and how to load demo data to be used in the demo_plugins project.

27.2. Installation

Before installing the pgRouting extension, a sample PostGIS database have to be

created, as explained in the installation manual: Chapter 1, Installation.

27.2.1. Quick Install

• Install the PgRouting PostgreSQL module.

Note

To do so,

o Download pgRouting from http://pgrouting.postlbs.org/ and follow install

instruction. Mac users can find a version here: http://www.kyngchaos.com/

software/unixport/postgres or find some basic compilation instructions (in

French), here: http://www.davidgis.fr/documentation/win32/html/apa.html

o On Debian, you need the following packages: cmake, g++, libboost-graph-dev,

postgresql-server-dev-8.1 (it may depend of your version of Postgres) Then you

can execute the "cmake .", "make" and "make install" given in the pgRouting

install instruction. You may require administrative right to execute correctly

these commands.

• Execute the routing_core.sql and routing_core_wrappers.sql files to install the
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functions in your database by typing:

$ psql -d demo_plugins -f routing_core.sql

These file are in the pgRouting installation package in folder /core/sql/

• Import Europe road geodata in PostGIS, create its graph structure and
configure plugin routing database. To do so, simply execute the

demo_routing.sql file, located in the <CARTOWEB_HOME>/projects/demoPlugins/

server_conf/sql directory. You may need to uncompress the file with gunzip

before usage.

Note

These steps are detailed in the next section.

• Edit the cartoweb3/projects/demoPlugins/demo.properties file. and

uncomment the line beginning with ;ROUTING_PLUGINS

• Execute cw3setup.php. file, with the --config-from-file option as described in the

previous chapter.

27.2.2. Detailled installation steps

The routing module is a set of functions that compute a shortest path from a set of

edges and vertices. Some functions are provided for importing data from geometric

tables, and for generating results as geometries.

Note

For more information on these functions, you can have a look at the pgRouting

documentation: http://pgrouting.postlbs.org/wiki/pgRoutingDocs.

This section explains the main steps to integrate the routing fonctionnalities in a

custom application. We describe the steps followed to install the routing demo. To

make short, we used an Europe roads shapefile, imported it in PostGIS, generated the

graph tables and configured files to suggest a search of the shortest path between two

European towns.

Note

The following chapters describe steps necessary to build a graph structure from

shapefiles. It is not necessary to execute these commands if the demo_routing.sql file

(<CARTOWEB_HOME>/projects/demoPlugins/server_conf/sql) was loaded into

the demo_plugins database. This file already installs all the routing structure.
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27.2.2.1. Europe Roads Geodata Importation in PostGIS

$ shp2pgsql -I roadl.shp roads_europe > /tmp/roadl.sql
$ psql -d demo_plugins -f /tmp/roadl.sql
# Only lauch the following commmands if you did not import the town table already
$ shp2pgsql -I mispopp.shp town > /tmp/town.sql
$ psql -d demo_plugins -f /tmp/town.sql

27.2.2.2. Graph Importation

The first step is to add needed columns to the table roads_europe. To do so, you can

type:

$ ALTER TABLE roads_europe ADD COLUMN source_id int;
$ ALTER TABLE roads_europe ADD COLUMN target_id int;
$ ALTER TABLE roads_europe ADD COLUMN edge_id int;
-- next line is to work around a pgRouting bug in update_cost_from_distance (fixed in latest CVS)
$ ALTER TABLE roads_europe RENAME id TO id_old;

You can then fill the columns source_id and target_id with the "assign_vertex_id"

function.

$ SELECT assign_vertex_id('roads_europe', 1);

Here is the content of the roads_europe table:

$ SELECT gid, source_id, target_id, edge_id, AStext(the_geom) FROM roads_europe limit 3;

gid | source_id | target_id | edge_id | AStext
-------+-----------+-----------+---------+----------------------------------------------
13115 | 11051 | 11099 | 14 | MULTILINESTRING((1062096.06 4861316.234,...))
12869 | 10918 | 10916 | 267 | MULTILINESTRING((250681.597 4779596.532,...))
12868 | 10918 | 10913 | 268 | MULTILINESTRING((250681.597 4779596.532,...))
(3 lignes)

But if the data quality is poor, you need to delete the duplicates edges (they have the

same source-target pairs of vertices). For example, to check that you have duplicated

edges, you can type:

$ SELECT * FROM (SELECT source_id, target_id, count(*) AS c FROM roads_europe group by
source_id, target_id order by c)
AS foo where foo.c = 2;

If there is duplicated edges, to delete one of two rows, you can type:

$ CREATE TABLE doublons AS SELECT * FROM roads_europe WHERE gid in
(SELECT gid FROM (SELECT DISTINCT on (source_id, target_id) source_id, gid
FROM roads_europe) AS doublon);
$ DELETE FROM roads_europe;
$ INSERT INTO roads_europe (SELECT * FROM doublons);
$ DROP TABLE doublons;

The following step is to create and fill the edges and vertices tables of the resulting
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graph. To do so, you can use "create_graph_tables" function.

$ SELECT create_graph_tables('roads_europe', 'int4');

SELECT * FROM roads_europe_edges LIMIT 3;
id | source | target | cost | reverse_cost
----+--------+--------+------+--------------
1 | 1 | 2 | |
2 | 3 | 3 | |
4 | 2 | 2 | |

(3 rows)

We can see that it contains NULL values for the cost column. The function

update_cost_from_distance can update the cost column with the distance of the lines

contained in the geometry table, attached to each edge:

$ SELECT update_cost_from_distance('roads_europe');

The costs are now:

id | source | target | cost | reverse_cost
----+--------+--------+------------------+--------------
1 | 1 | 2 | 6857.46585793103 |
2 | 3 | 4 | 37349.9592156392 |
3 | 5 | 6 | 14040.5673116933 |

(3 lignes)

Then you need to add the column which will contain the town labels, which will be

shown in the drop-down list for selecting the two points of a path.

The label information is contained in the roads table which was originally imported

using the shp2pgsql utility. The following commands will create a temporary table,

fill it with the town information, and then update the vertices table. The towns

contained in the shapefile may not be on the exact same point that the intersections of

the roads. Thus, all intersections which are in a distance less that 2000 meters are

associated to the town label. This distance may be adjusted according to the dataset

you are using.

$ CREATE TABLE roads_source_town AS
SELECT DISTINCT t.txt, source_id, distance(PointN(r.the_geom, 1), t.the_geom) AS d
FROM roads_europe r, town t, roads_europe_vertices
WHERE t.txt != 'UNK' AND distance(PointN(r.the_geom, 1), t.the_geom) < 2000
AND geom_id = source_id ORDER BY t.txt, d;

$ CREATE TABLE roads_source_town_uniq AS
SELECT * FROM roads_source_town a WHERE a.txt IN
(SELECT b.txt FROM roads_source_town b where a.txt = b.txt LIMIT 1)
AND a.d IN (SELECT b.d FROM roads_source_town b WHERE a.txt = b.txt LIMIT 1);

$ ALTER TABLE roads_europe_vertices ADD COLUMN txt character varying(50);
$ SELECT AddGeometryColumn('','roads_europe_vertices','the_geom','-1','POINT',2);
$ UPDATE roads_europe_vertices SET txt = (SELECT DISTINCT txt

FROM roads_source_town_uniq
WHERE roads_europe_vertices.geom_id = roads_source_town_uniq.source_id);

-- clean the temporary tables
$ DROP TABLE roads_source_town;
$ DROP TABLE roads_source_town_uniq;
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The last step is to fill the geometry column of the vertices table:

$ CREATE TABLE roads_europe_vertices_geom AS
SELECT v.id, v.geom_id, v.txt,startPoint(geometryn(r.the_geom, 1)) AS
the_geom FROM roads_europe r LEFT JOIN roads_europe_vertices v ON v.geom_id = r.source_id;

$ INSERT INTO roads_europe_vertices_geom
SELECT v.id, v.geom_id, v.txt, endPoint(geometryn(r.the_geom, 1)) AS the_geom
FROM roads_europe r LEFT JOIN roads_europe_vertices v ON v.geom_id = r.target_id;

$ DELETE FROM roads_europe_vertices;
$ INSERT INTO roads_europe_vertices SELECT DISTINCT ON (id) * FROM roads_europe_vertices_geom;
$ DROP TABLE roads_europe_vertices_geom;

Now, all is set up correctly for using the shortest path function on these data. But to

include the routing fonctionnalities in a custom project, we also must respect some

rules dictated by the routing plugin.

27.2.2.3. Routing Plugin Database Configuration

The two things to do are to:

• create the routing results table. In this example the table is routing_results.

$ CREATE TABLE routing_results (
results_id integer,
"timestamp" bigint,
gid integer

);
$ SELECT AddGeometryColumn('','routing_results','the_geom','-1',
'MULTILINESTRING',2);

• create the 'routing_results_seq' sequence.

$ CREATE SEQUENCE routing_results_seq
INCREMENT 1
MINVALUE 1
MAXVALUE 9223372036854775807
START 1
CACHE 1;

27.2.2.4. Mapfile Configuration

In the mapfile, you must include the routing layer, its connection to the database, a

symbology for the route and a first route using a unique identifier. The data parameter

will be overwritten by the routing plugin to draw the route chosen by the end-user.

Example:

LAYER
NAME "graph"
TYPE LINE
TRANSPARENCY 80
CONNECTIONTYPE postgis
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CONNECTION "user=@DB_USER@ password=@DB_PASSWD@ host=@DB_HOST@ dbname=@DB_NAME@"
DATA "the_geom from (SELECT the_geom from routing_results) as foo using unique
gid using srid=-1"

TEMPLATE "t"
CLASS
NAME "0"
STYLE
SYMBOL "circle"
SIZE 10
COLOR 90 27 191

END
END

END

27.2.2.5. General Configuration

For the demo, we suggest that you select your route by starting from a town until an

other town. This is possible because for each object of a european-towns layer, we

have identified the nearest object of the roads_europe_vertices table. That is why in

the demoRouting configuration there is a client-side configuration. Normally, in the

plugin routing, client-side only allows you to type an id of object, from which to start

and an other to finish the route. No configuration is needed. So, if you use

demoRouting extension, you must specify client-side, the:

• postgresRoutingVerticesTable: vertices table

• stepName: vertices table col containing informations you want to propose a choice

on

• dsn: the connexion string to the database

Anyway, server-side, you must specify :

• the routing table (postgresRoutingTable option),

• the routing layer in the mapfile (postgresRoutingResultsLayer option),

• the results routing table (postgresRoutingResultsTable),

• the connexion string to the database (dsn option).
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28. Bounding box history plugin
[plugin] (bboxHistory)

The bboxHistory plugin allow the user to navigate through the bbox he or she visits:

just like the back and forward buttons of a web browser.

Note that the ajax mode must be enabled to use the plugin and it has no configuration

file.

28.1. Plugin activation

To activate the plugin, add it to loadPlugins from CartoClient configuration file:

client_conf/client.ini. For instance:

loadPlugins = bboxHistory

You also need to add the plugin's template into the project template templates/

cartoclient.tpl. For instance:

...
{include file="toolbar.tpl" group=1 header=1}
{include file="toolbar.tpl" group=2}
{$bboxHistoryForm}
...
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29. Saving Map Context as an URL
[plugin] (exportLinkIt)

The exportLinkIt plugin displays in CartoWeb interface a URL that saves the main

caracteristics of the current page. Saved data are selected layers, layers switch id,

recentering info (center and scale), mapsize as well as outlined shapes and map

queries.

29.1. Plugin Activation

To activate the plugin, add it to loadPlugins from CartoClient configuration file:

client_conf/client.ini. For instance:

loadPlugins = exportLinkIt

You also need to add the plugin output variable {$linkIt} into the project main

template templates/cartoclient.tpl (see upstream template for instance). It is

recommended to add it outside of the main CartoWeb <form> tag since the generated

HTML may contain an additional <form> tag. Use CSS to place the result box.

Ajax is used to generate and display the resulting URL, using the Prototype Javascript

Framework. If your CartoWeb does not run in the ajaxOn mode, you need to add the

Prototype file in the main template templates/cartoclient.tpl. To do so add the

following HTML code within the <head> tag:

{if $linkIt|default:'' && !$ajaxOn}<script type="text/javascript" src="{r type=js}prototype.js{/r}"></script>{/if}

If Ajax mode is on, add the following code at the end of the "ajax = on" section of

templates/cartoclient_ajaxHeader.tpl if it is customized in your project. If

you use the regular templates/cartoclient_ajaxHeader.tpl, the JS script is

already included.

{if $linkIt|default:''}<script type="text/javascript" src="{r type=js plugin=exportLinkIt}linkit.js{/r}"></script>{/if}

Also add the CSS file inclusion in templates/cartoclient.tpl:

{if $linkIt|default:''}<link rel="stylesheet" type="text/css" href="{r type=css plugin=exportLinkIt}linkIt.css{/r}" />{/if}

Warning

Your toolbar.tpl MUST contains the '{if !$tool->oneshot}...{/if}' condition on the

tool activation action!!!
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This is especialy important if you overrided that template in your project. Please

compare with the latest cvs version of the toolbar.tpl file to be sure you have the

correct conditional code.

Finally right before the </body> closing tag of your templates/cartoclient.tpl

add

{if $linkIt|default:''}{$linkIt}{/if}

29.2. Plugin Configuration

Generated URL GET parameters may be obfuscated or "compressed" by setting the

compressUrl to true (default is false) in client_conf/exportLinkIt.ini. When

obfuscation/compression is activated, regular URLs (with standard CartoWeb GET

parameters) are still accepted.

Generated URL may be rather long and thus overflow browsers or servers limits.

urlMaxLength can be used to make CartoWeb output a warning message when the

generated URL is longer than the specified value.

For instance:

compressUrl = true
urlMaxLength = 2000

Note

The Generated URL will only contains the query parameters if the queried layers

have the id_attribute_string metadata specified in the mapfile! (see Section 9.3.2,

“Meta Data”)
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30. CartoWeb and WMS Usage
Statistics

[plugin] (statsReports)
StatsReports plugin allows to visualize statistics on CartoWeb and WMS usage.

Results can be shown in a form of tables, charts or maps.

30.1. Import and Reports

Statistics are generated out of CartoWeb's Accounting plugin output or out of Apache

logs (for WMS statistics). A Java application proccesses the logs and stores raw data

in a PostGreSQL database.

30.1.1. How To Build?

Source of Java application are located in scripts/stats. To build this project, you

need:

• Maven 2 (http://maven.apache.org)

• Java Runtime Environment JRE >= 1.5

• A PostgreSQL database

The other external librairies are taken care of by Maven.

Now you must set STATS_DB environment variable. On Linux it will look like:

export STATS_DB="jdbc:postgresql://localhost/MYDB?user=MYUSER&password=MYPASSWORD"

This is needed by post-build automatic tests. Then simply run following build

command:

mvn clean install

30.1.2. Running Import

CartoWeb logs are imported using the following command (remove end-of-line

backslashes on Windows):

java -Xmx1G \
-cp target/stats-standalone.jar org.cartoweb.stats.imports.Import \
--initialize --tableName=stats \
--db="jdbc:postgresql://localhost/MYDB?user=MYUSER&password=MYPASSWORD" \
--logDir=/my/log/dir/ --format=cartoweb \
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--logRegexp="\d\d\.\d\d\.\d\d\d\d\.log\$"

where:

• -Xmx1G - tells Java to use a maximum of 1 Gb for the import. This should be

enough even for very large log files

• --initialize - tells the application to create the database. Remove this option to

use incremental import once the database has been created

• --tableName - table prefix. Allows to use different table prefixes in order to have

several environments in only one database. For instance, use this option if you

want to import both CartoWeb and WMS logs in the same database

• --db - connection string

• --logDir - logs directory. Directory will be recursively processed

• --format - format. Currently values are cartoweb or wms

• --logRegExp- regular expression to limit processed file logs to those matching the

expression

For WMS imports, you need to speficy one of those two options:

• --mapIdRegExp - regular expression that finds the project name in WMS query.

This allows to have several WMS application on one server with the same Apache

logs.

• --mapIdConfig - filename for a .ini file that contains a [mapIDs] section that

defines what map ID to set in function of partial string matched against the WMS

log entry.

Example for a WMS import with a regular expression:

java -Xmx1G \
-cp target/stats-standalone.jar org.cartoweb.stats.imports.Import \
--initialize --tableName=stats_wms \
--db="jdbc:postgresql://localhost/MYDB?user=MYUSER&password=MYPASSWORD" \
--logDir=/my/log/apachedir/ --format=wms \
--logRegexp="\d\d\.\d\d\.\d\d\d\d\.log\$" --mapIdRegExp="GET /wms-([^\/]*)\//"

Example for a WMS import with a configuration file:

java -Xmx1G \
-cp target/stats-standalone.jar org.cartoweb.stats.imports.Import \
--initialize --tableName=stats_wms \
--db="jdbc:postgresql://localhost/MYDB?user=MYUSER&password=MYPASSWORD" \
--logDir=/my/log/apachedir/ --format=wms \
--logRegexp="\d\d\.\d\d\.\d\d\d\d\.log\$" --mapIdConfig="mapIDs.ini"

CartoWeb and WMS Usage Statistics
[plugin] (statsReports)

176



Content of the mapIDs.ini file:

[mapIDs]
GET /ogc-sitn/wms = main
GET /ogc-sitn-annuaire/wms = annuaire
GET /ogc-sitn-v1/wms = v1
GET /ogc-sitj-v1/wms = jv1

Help on the possible parameters for a command can be obtained by starting it without

parameters.

30.1.3. Configuring Reports

A report is a set of parameters that defines how data will be aggregated in order to

visualize statistics. For instance, parameters include the list of criteria (dimensions)

that will be available to the end user. Reports are defined in an INI file. A typical

section looks like:

[scale project]
; A comment
label = Stats per project
type = simple
periods.day = 30
periods.month = 12
periods.year = 5
values = pixel, count, countPDF, countDXF
dimensions = project
filters.project = sitn, jura

The fields are:

• label - report name for the GUI

• type - type of report (see below)

• periods.* - how to divide the time (see below)

• values - what values are stored (see below)

• dimensions - what criteria user will be able to specify in the GUI (see below)

• filters.* - what records you want to take into account (see below)

30.1.3.1. Report Types

Currently available types are:

• simple - graphs or tables

• gridbbox - colored maps based on the bounding box of the viewed maps

• gridcenter - colored maps based on the center of the viewed maps
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If the type is gridbox or gridcenter, you have to add a few fields in the

configuration that will define the position, size and granularity of the grid box. For

example:

type = gridbbox
minx = 522000
miny = 187000
size = 500
nx = 106
ny = 76

30.1.3.2. Periods

The possible period units are:

• hour

• day

• week

• month

• year

The value specifies the number of those units to keep in the DB. Here is an example

for generating a report aggregated by week, for the last 12 weeks:

periods.week = 12

The report generator consider the current time as being the time of the last hit

matching the filters. A period is taken into account even if there is no record for this

period.

30.1.3.3. Values

A list, separated by ',' of any of the following:

• count - the number of hits (no PDF or DXF outputs)

• countPDF - the number of PDF generated

• countDXF - the number of DXF generated

• pixel - the sum of pixels generated

30.1.3.4. Dimensions

A list, separted by ',' of any of the following:
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• project

• user

• scale

• size

• theme

• layer

• pdfFormat

• pdfRes

If you use the scale dimension, you have to add a field to specifiy the limits for the

discretization of the scale value. For example:

dimensions = scale
scales=1000,5000,10000,50000,100000,500000,1000000,5000000

30.1.3.5. Filters

You can put as many filters as you want, one line per filter. The filters available are

(you must prepend filters.):

• scale - a range of scales (floating point)

• width - a range of map width

• height - a range of map height

• project - a list, separated by ',' of project names

• layer - a list, separated by ',' of layer names

• theme - a list, separated by ',' of theme names

• user - a list, separated by ',' of user names

• pdfFormat - a list, separated by ',' of PDF format names

• pdfRes - a range of PDF resolution

For list of names, you can use '*' for matching any string of character. For example,

cn* will match cn25 and cn50. For ranges of values, you can give either a range like

2-5 or a simple value. Some examples of filters:

filters.scale = 1000.5-5000
filters.width = 290-350
filters.height = 290-350
filters.project = sitn, agri
filters.layer = cn*, adresses
filters.theme = orthophotos, default
filters.user = Jules, Jean
filters.pdfFormat = A4, A5
filters.pdfRes = 290-350
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30.1.4. Running Reports Generation

Raw data imported with Import application are aggregated using the following

command (remove end-of-line backslashes on Windows):

java -Xmx1G -cp target/stats-standalone.jar org.cartoweb.stats.report.Reports \
--iniFilename=myReports.ini --tableName=stats \
--db="jdbc:postgresql://localhost/MYDB?user=MYUSER&password=MYPASSWORD" \
--purgeOnConfigurationChange

where:

• -Xmx1G - tells Java to use a maximum of 1 Gb for the aggregation. This should be

enough even for very large amount of data

• --iniFilename - name of INI configuration file

• --tableName - table prefix. Allows to use different table prefixes in order to have

several environments in only one database. For instance, use this option if you

want to import both CartoWeb and WMS logs in the same database

• --db - connection string

• --purgeOnConfigurationChange - tells the application to drop all aggregated

data when a change was found in a report configuration. Without this option, a

warning is displayed and old data is not erased. Warning: you will NOT be able to

get report aggregated data again if original raw data has been purged!

30.1.5. Purging the Data

Raw report data is purged using the following command (remove end-of-line

backslashes on Windows):

java -Xmx1G -cp target/stats-standalone.jar org.cartoweb.stats.purge.Purge \
--tableName=stats --nbDays=100 \
--db="jdbc:postgresql://localhost/MYDB?user=MYUSER&password=MYPASSWORD"

where:

• -Xmx1G - tells Java to use a maximum of 1 Gb for the aggregation. This should be

enough even for very large amount of data

• --tableName - table prefix. Allows to use different table prefixes in order to have

several environments in only one database. For instance, use this option if you

want to import both CartoWeb and WMS logs in the same database

• --nbDays - Sets the number of days to keep in the raw data

• --db - connection string
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30.2. Statistics Visualization

StatsReports visualization plugin is a standard CartoWeb client and server plugin. It

must be activated on both sides.

30.2.1. Client-side Configuration

Typical client-side statsReports.ini looks like:

datas.cartoweb.label = Statistiques Cartoweb
datas.cartoweb.dsn = pgsql://MYUSER:MYPASSWORD@localhost/MYDB
datas.cartoweb.prefix = stats

datas.wms.label = Statistiques WMS
datas.wms.dsn = pgsql://MYUSER:MYPASSWORD@localhost/MYDB
datas.wms.prefix = statswms

tempDsn = pgsql://MYUSER:MYPASSWORD@localhost/MYTEMPDB
nColors = 16

where:

• datas.*.label - environment label (for the GUI)

• datas.*.dsn - database connection

• datas.*.prefix - table prefix (to use more than one environment on one

database)

• tempDsn - database connection for temporary tables (could be the same as other

database connection)

• nColors - number of colors for map statistics (linear distribution)

Please note that there should be one session at a time for each CartoWeb user. This is

due to the cache management (one graph/map per user).

Additional parameters are available to configure the cvs export of the tabular data:

outputCsv = 1
csvShowHeaders = 1
csvSeparator = ";"
filename = statsReport_cursomfilename.csv
csvUseTextDelimiter = 1
csvTextDelimiter = #

• outputCsv - set to 1 to enable csv export link, 0 to disable. Default is 1.

• csvShowHeaders - set to 1 to display line and column headers in the csv, 0 to hide.

Default is 1.

• csvSeparator - define the character to use as separator in the csv. Default is ","

(comma).
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• filename - define a custom defined filename. It may be static or contain a

generation date under various formats. Date formating is performed by indicating

between a couple of brackets the keyword date, followed by a comma and PHP

date()-like date format. (see http://php.net/date). For example

export_[date,Ymd-Hi].csv which gives for instance

export_20060725-2021.csv. Default is cartoweb_statsReport.csv.

• csvTextDelimiter - tells what character should be used to delimit the text in each

cell. It is specially useful when the character used as the csvSeparator may be

found within the cell content. Default parameter value is double-quote ie. `"`.

• csvUseTextDelimiter - set to 1 enable text delimiter usage, 0 to disable. Default

is 0.

30.2.2. Server-side Configuration

Typical server-side statsReports.ini looks like:

layer = my_stats_layer

where:

• layer - name of Mapfile statistics layer (see below). Default value is stats

30.2.3. Related Elements in Mapfile

In order to display map statistics, the following layer must be added to the mapfile.

Name of layer must be the one set in INI file.

LAYER
NAME "my_stats_layer"
TYPE RASTER
DATA ""
TRANSPARENCY 80
STATUS ON

END
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Part III. Developer Manual
As is implied by its name, this part of the documentation is aimed at those who need

to customize or extend CartoWeb for their specific needs.
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1. Calling Plugins
This chapter describes the structure of SOAP calls to CartoWeb server methods in

order to obtain cartographic data.

Warning

Due to some CartoWeb evolutions, please note that some parts of the current chapter

may need some updates!

Global WSDL code can be found in file CARTOWEB_HOME/server/

cartoserver.wsdl. WSDL code specific to plugins are located in PLUGIN_HOME/

common/plugin_name.wsdl.inc. Interesting parts from these files are copied in the

following sections.

Complete WSDL code dynamically generated for a map ID is accessible at the URL

CARTOWEB_URL/cartoserver.wsdl.php?mapId=project_name.mapfile_name.

SOAP method getMapInfo is used to retrieve server configuration information, such

as available layers, initial state, etc.. It shouldn't be called each time a map is

requested. A mechanism based on a timestamp is available to be sure configuration is

up-to-date (see Section 1.2, “Call to getMapInfo”).

SOAP method getMap is used each time a new map or related information are

needed.

1.1. Standard Structures

1.1.1. Simple Types

These types are used in different other structures.

<complexType name="ArrayOfString">
<complexContent>
<restriction base="enc11:Array">
<attribute ref="enc11:arrayType" wsdl:arrayType="xsd:string[]"/>

</restriction>
</complexContent>

</complexType>

• array - list of character strings

<complexType name="Dimension">

Calling Plugins

184



<all>
<element name="width" type="xsd:int"/>
<element name="height" type="xsd:int"/>

</all>
</complexType>

• width - width in pixels

• height - height in pixels

<complexType name="GeoDimension">
<all>
<element name="dimension" type="types:Dimension"/>
<element name="bbox" type="types:Bbox"/>

</all>
</complexType>

• dimension - dimensions in pixels

• bbox - bounding box (see Section 1.1.2, “Shapes” for a description of type Bbox)

1.1.2. Shapes

These types define a hierarchy of shapes. As heritage and polymorphism cannot be

used, type Shape includes all attibutes of its children types.

<complexType name="Bbox">
<all>
<element name="minx" type="xsd:double"/>
<element name="miny" type="xsd:double"/>
<element name="maxx" type="xsd:double"/>
<element name="maxy" type="xsd:double"/>

</all>
</complexType>

• minx - minimum x coordinate

• miny - minimum y coordinate

• maxx - maximum x coordinate

• maxy - maximum y coordinate

<complexType name="Point">
<all>
<element name="x" type="xsd:double"/>
<element name="y" type="xsd:double"/>

</all>
</complexType>

• x - x coordinate
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• y - y coordinate

<complexType name="ArrayOfPoint">
<complexContent>
<restriction base="enc11:Array">
<attribute ref="enc11:arrayType" wsdl:arrayType="types:Point[]"/>

</restriction>
</complexContent>

</complexType>

• array - list of points

<complexType name="Shape">
<all>
<element name="className" type="xsd:string"/>
<element name="x" type="xsd:double" minOccurs="0"/>
<element name="y" type="xsd:double" minOccurs="0"/>
<element name="minx" type="xsd:double" minOccurs="0"/>
<element name="miny" type="xsd:double" minOccurs="0"/>
<element name="maxx" type="xsd:double" minOccurs="0"/>
<element name="maxy" type="xsd:double" minOccurs="0"/>
<element name="points" type="types:ArrayOfPoint" minOccurs="0"/>

</all>
</complexType>

• className - shape class name: "Point", "Bbox", "Rectangle", "Line" or "Polygon"

• x - x coordinate (Point)

• y - y coordinate (Point)

• minx - minimum x coordinate (Bbox or Rectangle)

• miny - minimum y coordinate (Bbox or Rectangle)

• maxx - maximum x coordinate (Bbox or Rectangle)

• maxy - maximum y coordinate (Bbox or Rectangle)

• points - list of points (Line or Polygon)

<complexType name="ArrayOfShape">
<complexContent>
<restriction base="enc11:Array">
<attribute ref="enc11:arrayType" wsdl:arrayType="types:Shape[]"/>

</restriction>
</complexContent>

</complexType>

• array - list of shapes

1.1.3. Tables

These types define a table structure, used in particular in Query plugin (see
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Section 1.3.6, “Query”).

<complexType name="TableRow">
<all>
<element name="rowId" type="xsd:string"/>
<element name="cells" type="types:ArrayOfString"/>

</all>
</complexType>

• rowId - row ID

• cells - cell contents (see Section 1.1.1, “Simple Types” for a description of type

ArrayOfString)

<complexType name="ArrayOfTableRow">
<complexContent>
<restriction base="enc11:Array">
<attribute ref="enc11:arrayType"

wsdl:arrayType="types:TableRow[]"/>
</restriction>

</complexContent>
</complexType>

• array - list of rows

<complexType name="Table">
<all>
<element name="tableId" type="xsd:string"/>
<element name="tableTitle" type="xsd:string"/>
<element name="numRows" type="xsd:integer"/>
<element name="totalRows" type="xsd:integer"/>
<element name="offset" type="xsd:integer"/>
<element name="columnIds" type="types:ArrayOfString"/>
<element name="columnTitles" type="types:ArrayOfString"/>
<element name="noRowId" type="xsd:boolean"/>
<element name="rows" type="types:ArrayOfTableRow"/>

</all>
</complexType>

• tableId - table ID

• tableTitle - table title

• numRows - number of rows in table

• totalRows - total number of rows in context (for future use)

• offset - current position in context rows (for future use)

• columnIds - column IDs (see Section 1.1.1, “Simple Types” for a description of

type ArrayOfString)

• columnTitles - column titles (see Section 1.1.1, “Simple Types” for a description of

type ArrayOfString)

• noRowId - if true, table rows contain no row IDs
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• rows - list of rows

<complexType name="ArrayOfTable">
<complexContent>
<restriction base="enc11:Array">
<attribute ref="enc11:arrayType" wsdl:arrayType="types:Table[]"/>

</restriction>
</complexContent>

</complexType>

• array - list of tables

<complexType name="TableGroup">
<all>
<element name="groupId" type="xsd:string"/>
<element name="groupTitle" type="xsd:string"/>
<element name="tables" type="types:ArrayOfTable"/>

</all>
</complexType>

• groupId - ID of table group

• groupTitle - title of table group

• tables - list of tables

<complexType name="ArrayOfTableGroup">
<complexContent>
<restriction base="enc11:Array">
<attribute ref="enc11:arrayType"

wsdl:arrayType="types:TableGroup[]"/>
</restriction>

</complexContent>
</complexType>

• array - list of table groups

<complexType name="TableFlags">
<all>
<element name="returnAttributes" type="xsd:boolean"/>
<element name="returnTable" type="xsd:boolean"/>

</all>
</complexType>

• returnAttributes - if true, will return attributes (row cells) in addition to row IDs

• returnTable - if false, won't return any table information. This can be useful for

instance when hilighting an object on which no information is needed

1.2. Call to getMapInfo
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This method returns server configuration, which includes layers, initial states and

other plugin-specific configuration. Variables returned by this method are set in

server configuration files described in Part II, “User Manual”.

1.2.1. Global Server Configuration

This includes layers configuration and initial states.

<complexType name="LayerState">
<all>
<element name="id" type="xsd:string"/>
<element name="hidden" type="xsd:boolean"/>
<element name="frozen" type="xsd:boolean"/>
<element name="selected" type="xsd:boolean"/>
<element name="unfolded" type="xsd:boolean"/>

</all>
</complexType>

• id - layer state ID

• hidden - if true, layer isn't displayed in tree and attribute selected cannot be

modified

• frozen - if true, layer is displayed in tree but attribute selected cannot be modified

• selected - if true, layer is displayed as selected in tree

• unfolded - if true, layer tree is displayed unfolded (layer groups)

<complexType name="ArrayOfLayerState">
<complexContent>
<restriction base="enc11:Array">
<attribute ref="enc11:arrayType"

wsdl:arrayType="types:LayerState[]"/>
</restriction>

</complexContent>
</complexType>

• array - list of layer states

<complexType name="InitialLocation">
<all>
<element name="bbox" type="types:Bbox"/>

</all>
</complexType>

• bbox - initial bounding box (see Section 1.1.2, “Shapes” for a description of type

Bbox)

<complexType name="InitialMapState">
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<all>
<element name="id" type="xsd:string"/>
<element name="location" type="types:InitialLocation"/>
<element name="layers" type="types:ArrayOfLayerState"/>

</all>
</complexType>

• id - initial state ID

• location - initial location

• layers - list of layer states

<complexType name="ArrayOfInitialMapState">
<complexContent>
<restriction base="enc11:Array">
<attribute ref="enc11:arrayType"

wsdl:arrayType="types:InitialMapState[]"/>
</restriction>

</complexContent>
</complexType>

• array - list of initial states

<complexType name="MapInfo">
<all>
<element name="timestamp" type="xsd:integer"/>
<element name="mapLabel" type="xsd:string"/>
<element name="keymapGeoDimension" type="types:GeoDimension"/>
<element name="initialMapStates"

type="types:ArrayOfInitialMapState"/>
...elements specific to plugins...

</all>
</complexType>

• timestamp - timestamp of last update. This timestamp is transferred each time

method getMap is called, so client knows when configuration was modified (see

also Section 1.3.1.1, “Global Request”)

• mapLabel - name of map as defined in mapfile

• keymapGeoDimension - pixel and geographical dimension information for key

map

• initialMapStates - list of initial states

1.2.2. Layers

This includes configuration specific to Layers plugin, ie. list of all available layers

and their properties.

<complexType name="ArrayOfLayerId">
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<complexContent>
<restriction base="enc11:Array">
<attribute ref="enc11:arrayType" wsdl:arrayType="xsd:string[]"/>

</restriction>
</complexContent>

</complexType>

• array - list of layer IDs

<complexType name="ChildrenSwitch">
<all>
<element name="id" type="xsd:string"/>
<element name="layers" type="types:ArrayOfLayerId" minOccurs="0"/>

</all>
</complexType>

• id - switch ID

• layers - list of layers

<complexType name="ArrayOfChildrenSwitch">
<complexContent>
<restriction base="enc11:Array">
<attribute ref="enc11:arrayType" wsdl:arrayType=ChildrenSwitch[]"/>

</restriction>
</complexContent>

</complexType>

• array - list of children switches

<complexType name="Layer">
<all>
<element name="className" type="xsd:string"/>
<element name="id" type="xsd:string"/>
<element name="label" type="xsd:string"/>
<element name="children"

type="types:ArrayOfChildrenSwitch" minOccurs="0"/>
<element name="minScale" type="xsd:double"/>
<element name="maxScale" type="xsd:double"/>
<element name="icon" type="xsd:string"/>
<element name="link" type="xsd:string"/>
<element name="aggregate" type="xsd:boolean" minOccurs="0"/>
<element name="rendering" type="xsd:string" minOccurs="0"/>
<element name="metadata" type="types:ArrayOfString" minOccurs="0"/>

</all>
</complexType>

• className - layer class name: "LayerGroup", "Layer" or "LayerClass"

• id - layer ID

• label - label to be displayed. This label is not yet translated using

internationalization

• children - list of children
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• minScale - minimum scale at which layer will be displayed

• maxScale - maximum scale at which layer will be displayed

• icon - filename of the static icon for the layer. Dynamic legends are described in

Section 6.4, “Layers Legends”

• link - if set, layer name is clickable

• msLayer - MapServer layer id

• aggregate - if true, children are not displayed and cannot be selected individually

• rendering - how layer will be displayed: "tree", "block", "radio" or "dropdown".

See Chapter 6, Layers
[coreplugin]

for more details on this option

• metadata - list of meta data defined in server configuration file. Format of each

string in list is "variable_name=value"

<complexType name="ArrayOfLayer">
<complexContent>
<restriction base="enc11:Array">
<attribute ref="enc11:arrayType" wsdl:arrayType="types:Layer[]"/>

</restriction>
</complexContent>

</complexType>

• array - list of layers

<complexType name="SwitchInit">
<all>
<element name="id" type="xsd:string"/>
<element name="label" type="xsd:string"/>

</all>
</complexType>

• id - switch ID

• label - switch label

<complexType name="ArrayOfSwitchInit">
<complexContent>
<restriction base="enc11:Array">
<attribute ref="enc11:arrayType" wsdl:arrayType="types:SwitchInit[]"/>

</restriction>
</complexContent>

</complexType>

• array - list of switches

<complexType name="LayersInit">
<all>
<element name="notAvailableIcon" type="xsd:string"/>
<element name="notAvailablePlusIcon" type="xsd:string"/>
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<element name="notAvailableMinusIcon" type="xsd:string"/>
<element name="layers" type="types:ArrayOfLayer"/>
<element name="switches" type="types:ArrayOfSwitchInit" minOccurs="0"/>

</all>
</complexType>

• notAvailableIcon - filename of icon for not available layer (current scale is above

or below this layer maximum/minimum scale)

• notAvailablePlusIcon - filename of icon for not available layer (current scale is

above this layer maximum scale)

• notAvailableMinusIcon - filename of icon for not available layer (current scale is

below this layer minimum scale)

• layers - list of layers

• switches - list of switches

1.2.3. Location

This includes configuration specific to Location plugin, ie. fixed scales, scales limits

and shortcuts.

<complexType name="LocationScale">
<all>
<element name="label" type="xsd:string"/>
<element name="value" type="xsd:double"/>

</all>
</complexType>

• label - scale caption

• value - scale value to be set when scale is selected

<complexType name="ArrayOfLocationScale">
<complexContent>
<restriction base="enc11:Array">
<attribute ref="enc11:arrayType"

wsdl:arrayType="types:LocationScale[]"/>
</restriction>

</complexContent>
</complexType>

• array - list of scales

<complexType name="LocationShortcut">
<all>
<element name="label" type="xsd:string"/>
<element name="bbox" type="types:Bbox"/>

</all>
</complexType>
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• label - shortcut caption

• bbox - bounding box to recenter on when shortcut is selected

<complexType name="ArrayOfLocationShortcut">
<complexContent>
<restriction base="enc11:Array">
<attribute ref="enc11:arrayType"

wsdl:arrayType="types:LocationShortcut[]"/>
</restriction>

</complexContent>
</complexType>

• array - list of shortcuts

<complexType name="LocationInit">
<all>
<element name="className" type="xsd:string"/>
<element name="scales" type="types:ArrayOfLocationScale"/>
<element name="minScale" type="xsd:double"/>
<element name="maxScale" type="xsd:double"/>
<element name="shortcuts" type="types:ArrayOfLocationShortcut"/>

</all>
</complexType>

• className - "LocationInit" or extended class name if project implements an

extension

• scales - list of fixed scales

• minScale - global minimum scale

• maxScale - global maximum scale

• shortcuts - list of bounding box shortcuts

1.2.4. Layer Reorder

This includes configuration specific to LayerReorder plugin.

<complexType name="LayerReorderInit">
<all>
<element name="layers" type="types:ArrayOfLayerInit"/>

</all>
</complexType>

• array - layers are ordered from top to bottom of the displayed stack, see below to

LayerInit structure overview.

<complexType name="LayerInit">
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<all>
<element name="layerId" type="xsd:string"/>
<element name="layerLabel" type="xsd:string"/>

</all>
</complexType>

• layerId - Layer Id

• layerLabel - label to be displayed. This label is not yet translated using

internationalization

1.3. Call to getMap

For each plugin, SOAP XML format are described for both server calls (i.e. requests)

and server results.

1.3.1. Global Structures

Below is a description of general requests and results which include plugin-specific

ones.

1.3.1.1. Global Request

<complexType name="MapRequest">
<all>
<element name="mapId" type="xsd:string"/>
...elements specific to plugins...

</all>
</complexType>

• mapId - map ID, ie. project name and mapfile name separated by a point

1.3.1.2. Global Result

<complexType name="Message">
<all>
<element name="channel" type="xsd:integer"/>
<element name="message" type="xsd:string"/>

</all>
</complexType>

• channel - type of message: 1 = end user, 2 = developer

• message - text of the message

<complexType name="ArrayOfMessage">
<complexContent>
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<restriction base="enc11:Array">
<attribute ref="enc11:arrayType" wsdl:arrayType="types:Message[]"/>

</restriction>
</complexContent>

</complexType>

• array - list of messages

<complexType name="MapResult">
<all>
<element name="timestamp" type="xsd:integer"/>
<element name="serverMessages"

type="types:ArrayOfMessage" minOccurs="0"/>
...elements specific to plugins...

</all>
</complexType>

• timestamp - timestamp which identifies the server configuration. If this timestamp

changes, it means server configuration changed and a call to method getMapInfo is

required to get latest version (see Section 1.2, “Call to getMapInfo”).

• serverMessages - list of messages returned by server

1.3.2. Images

The Images plugin generates MapServer images. The three types of images are main

map, key map and scale bar. Basic parameters, such as image size, are defined in this

request/result. More specific parameters, such as map location or content, are defined

in other plugins.

1.3.2.1. Images Request

<complexType name="Image">
<all>
<element name="isDrawn" type="xsd:boolean"/>
<element name="path" type="xsd:string"/>
<element name="width" type="xsd:int"/>
<element name="height" type="xsd:int"/>

</all>
</complexType>

• isDrawn - true if the image should be generated (when used in a request) or if it

was generated (when returned in a result)

• path - relative path of generated image. Not used in request

• width - image width

• height - image height
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<complexType name="ImagesRequest">
<all>
<element name="className" type="xsd:string"/>
<element name="mainmap" type="types:Image"/>
<element name="keymap" type="types:Image"/>
<element name="scalebar" type="types:Image"/>

</all>
</complexType>

• className - "ImagesRequest" or extended class name if project implements an

extension

• mainmap - main map image information

• keymap - key map image information

• scalebar - scale bar image information

1.3.2.2. Images Result

<complexType name="ImagesResult">
<all>
<element name="className" type="xsd:string"/>
<element name="mainmap" type="types:Image"/>
<element name="keymap" type="types:Image"/>
<element name="scalebar" type="types:Image"/>

</all>
</complexType>

• className - "ImagesResult" or extended class name if project implements an

extension

• mainmap - main map image information (see Section 1.3.2.1, “Images Request” for

a description of type Image)

• keymap - key map image information

• scalebar - scale bar image information

1.3.3. Layers

The Layers plugin handles layers selection. Its request object includes list of layers to

be displayed on main map. This plugin has no specific result object.

1.3.3.1. Layers Request

<complexType name="LayersRequest">
<all>
<element name="className" type="xsd:string"/>
<element name="layerIds" type="types:ArrayOfLayerId"/>
<element name="resolution" type="xsd:int"/>
<element name="switchId" type="xsd:string"/>
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</all>
</complexType>

• className - "LayersRequest" or extended class name if project implements an

extension

• layerIds - list of layers to include in map generation (see Section 1.1.1, “Simple

Types” for a description of type ArrayOfLayerId)

• resolution - MapServer resolution. Set this to null if you want to use default

resolution

• switchId - current switch ID

1.3.3.2. Layers Result

<complexType name="LayersResult">
<all>
<element name="className" type="xsd:string"/>

</all>
</complexType>

• className - "LayersResult" or extended class name if project implements an

extension

1.3.4. Layer Reorder

The LayerReorder plugin handles layers reorder selection. Its request object includes

list of layerIds rightly ordered to be displayed on main map. This plugin has no

specific result object.

1.3.4.1. Layer Reorder Request

<complexType name="LayersRequest">
<all>
<element name="className" type="xsd:string"/>
<element name="layerIds" type="types:ArrayOfLayerId"/>

</all>
</complexType>

• className - "LayerReorderRequest" or extended class name if project implements

an extension

• layerIds - list of layers to include in map generation rightly ordered from top to

bottom (see Section 1.1.1, “Simple Types” for a description of type

ArrayOfLayerId).
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1.3.5. Location

The Location plugin handles position and moves on the map. Its request process

includes different position methods, such as recentering on a specific object or moves

relative to previous position. It returns the new bounding box and scale.

1.3.5.1. Location Request

<simpleType name="LocationType">
<restriction base="xsd:string">
<enumeration value="bboxLocationRequest"/>
<enumeration value="panLocationRequest"/>
<enumeration value="zoomPointLocationRequest"/>
<enumeration value="recenterLocationRequest"/>

</restriction>
</simpleType>

• bboxLocationRequest - recenters on a bounding box

• panLocationRequest - moves horizontaly/verticaly (panning)

• zoomPointLocationRequest - recenters on a point, includes relative zoom and fixed

scale

• recenterLocationRequest - recenters on mapfile IDs

<complexType name="LocationConstraint">
<all>
<element name="maxBbox" type="types:Bbox"/>

</all>
</complexType>

• maxBbox - maximum bounding box. If given parameters lead to a larger bounding

box, it will be cropped (see Section 1.1.2, “Shapes” for a description of type Bbox)

<complexType name="LocationRequest">
<all>
<element name="className" type="xsd:string"/>
<element name="locationType" type="types:LocationType"/>
<element name="bboxLocationRequest"

type="types:BboxLocationRequest" minOccurs="0"/>
<element name="panLocationRequest"

type="types:PanLocationRequest" minOccurs="0"/>
<element name="zoomPointLocationRequest"

type="types:ZoomPointLocationRequest" minOccurs="0"/>
<element name="recenterLocationRequest"

type="types:RecenterLocationRequest" minOccurs="0"/>
<element name="locationConstraint"

type="types:LocationConstraint" minOccurs="0"/>
</all>

</complexType>
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• className - "LocationRequest" or extended class name if project implements an

extension

• locationType - type of location

• bboxLocationRequest - bounding box request parameters (see Section 1.3.5.1.1,

“BBox Request”)

• panLocationRequest - panning request parameters (see Section 1.3.5.1.2, “Pan

Request”)

• zoomPointLocationRequest - zoom, recenter on point parameters (see

Section 1.3.5.1.3, “Zoom-Point Request”)

• recenterLocationRequest - recenter on IDs parameters (see Section 1.3.5.1.4,

“Recenter Request”)

• locationConstraint - constraint to be respected when location request is executed

1.3.5.1.1. BBox Request

<complexType name="BboxLocationRequest">
<all>
<element name="bbox" type="types:Bbox"/>

</all>
</complexType>

• bbox - bounding box to be recentered on (see Section 1.1.2, “Shapes” for a

description of type Bbox)

1.3.5.1.2. Pan Request

<simpleType name="PanDirectionType">
<restriction base="xsd:string">
<enumeration value="VERTICAL_PAN_NORTH"/>
<enumeration value="VERTICAL_PAN_NONE"/>
<enumeration value="VERTICAL_PAN_SOUTH"/>
<enumeration value="HORIZONTAL_PAN_WEST"/>
<enumeration value="HORIZONTAL_PAN_NONE"/>
<enumeration value="HORIZONTAL_PAN_EAST"/>

</restriction>
</simpleType>

• VERTICAL_PAN_NORTH - panning north

• VERTICAL_PAN_NONE - no vertical panning

• VERTICAL_PAN_SOUTH - panning south

• HORIZONTAL_PAN_WEST - panning west

• HORIZONTAL_PAN_NONE - no horizontal panning

• HORIZONTAL_PAN_EAST - panning east
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<complexType name="PanDirection">
<all>
<element name="verticalPan" type="types:PanDirectionType"/>
<element name="horizontalPan" type="types:PanDirectionType"/>

</all>
</complexType>

• verticalPan - type of vertical panning

• horizontalPan - type of horizontal panning

<complexType name="PanLocationRequest">
<all>
<element name="bbox" type="types:Bbox"/>
<element name="panDirection" type="types:PanDirection"/>

</all>
</complexType>

• bbox - current bounding box (see Section 1.1.2, “Shapes” for a description of type

Bbox)

• panDirection - panning directions

1.3.5.1.3. Zoom-Point Request

<simpleType name="ZoomType">
<restriction base="xsd:string">
<enumeration value="ZOOM_DIRECTION_IN"/>
<enumeration value="ZOOM_DIRECTION_NONE"/>
<enumeration value="ZOOM_DIRECTION_OUT"/>
<enumeration value="ZOOM_FACTOR"/>
<enumeration value="ZOOM_SCALE"/>

</restriction>
</simpleType>

• ZOOM_DIRECTION_IN - zoom in (default is x2)

• ZOOM_DIRECTION_NONE - no zoom, recenter on point only

• ZOOM_DIRECTION_OUT - zoom out (default is x0.5)

• ZOOM_FACTOR - zoom using a custom factor

• ZOOM_SCALE - zoom to a fixed scale

<complexType name="ZoomPointLocationRequest">
<all>
<element name="bbox" type="types:Bbox"/>
<element name="point" type="types:Point"/>
<element name="zoomType" type="types:ZoomType"/>
<element name="zoomFactor" type="xsd:float" minOccurs="0"/>
<element name="scale" type="xsd:integer" minOccurs="0"/>

</all>
</complexType>
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• bbox - bounding box (unused when zoom type = ZOOM_SCALE)

• point - point to recenter on

• zoomType - type of zoom

• zoomFactor - zoom factor (unused when zoom type != ZOOM_FACTOR)

• scale - fixed scale (unused when zoom type != ZOOM_SCALE)

1.3.5.1.4. Recenter Request

<complexType name="IdSelection">
<all>
<element name="layerId" type="xsd:string"/>
<element name="idAttribute" type="xsd:string"/>
<element name="idType" type="xsd:string"/>
<element name="selectedIds" type="types:ArrayOfString"/>

</all>
</complexType>

• layerId - ID of layer on which query will be executed

• idAttribute - name of ID attribute

• idType - type of ID attribute ("string" or "int")

• selectedIds - list of IDs

<complexType name="ArrayOfIdSelection">
<complexContent>
<restriction base="enc11:Array">
<attribute ref="enc11:arrayType"

wsdl:arrayType="types:IdSelection[]"/>
</restriction>

</complexContent>
</complexType>

• array - list of ID selections

<complexType name="RecenterLocationRequest">
<all>
<element name="idSelections" type="types:ArrayOfIdSelection"/>

</all>
</complexType>

• idSelections - list of ID selections

1.3.5.2. Location Result
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<complexType name="LocationResult">
<all>
<element name="className" type="xsd:string"/>
<element name="bbox" type="types:Bbox"/>
<element name="scale" type="xsd:double"/>

</all>
</complexType>

• className - "LocationResult" or extended class name if project implements an

extension

• bbox - new bounding box (see Section 1.1.2, “Shapes” for a description of type

Bbox)

• scale - new scale

1.3.6. Query

The Query plugin allows to search objects, hilight them on map and return text

results. Search can be executed from a rectangle selection and/or using a list of object

IDs.

Query request object is not mandatory. For more information about Query plugin, see

Chapter 9, Queries
[coreplugin] (query)

.

1.3.6.1. Query Request

<simpleType name="QuerySelectionPolicy">
<restriction base="xsd:string">
<enumeration value="POLICY_XOR"/>
<enumeration value="POLICY_UNION"/>
<enumeration value="POLICY_INTERSECTION"/>

</restriction>
</simpleType>

• POLICY_XOR - XOR selection: when selecting a group of objects, already

selected ones are unselected and not yet selected ones are selected (default type)

• POLICY_UNION - union selection: when selecting a group of objects, already

selected ones are kept selected and not yet selected ones are selected

• POLICY_INTERSECTION - intersection selection: when selecting a group of

objects, only already selected ones are kept selected

<complexType name="QuerySelection">
<all>
<element name="layerId" type="xsd:string"/>
<element name="idAttribute" type="xsd:string"/>
<element name="idType" type="xsd:string"/>
<element name="selectedIds" type="types:ArrayOfString"/>
<element name="useInQuery" type="xsd:boolean"/>
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<element name="policy" type="types:QuerySelectionPolicy"/>
<element name="maskMode" type="xsd:boolean"/>
<element name="hilight" type="xsd:boolean"/>
<element name="tableFlags" type="types:TableFlags"/>

</all>
</complexType>

• layerId - layer ID on which query will be executed

• idAttribute - name of ID attribute

• idType - type of ID attribute ("string" or "int")

• selectedIds - list of IDs

• useInQuery - if true, will force query to use this layer

• policy - type of selection

• maskMode - if true, will apply a mask instead of a simple selection. This won't

work when using MapServer's hilighting feature (see Chapter 9, Queries
[coreplugin]

(query))

• hilight - if false, selection won't be hilighted on map

• tableFlags - table flags (see Section 1.1.3, “Tables” for a description of type

TableFlags)

<complexType name="ArrayOfQuerySelection">
<complexContent>
<restriction base="enc11:Array">
<attribute ref="enc11:arrayType"

wsdl:arrayType="types:QuerySelection[]"/>
</restriction>

</complexContent>
</complexType>

• array - list of query selections

<complexType name="QueryRequest">
<all>
<element name="className" type="xsd:string"/>
<element name="shape" type="types:Shape"/>
<element name="queryAllLayers" type="xsd:boolean"/>
<element name="defaultMaskMode" type="xsd:boolean"/>
<element name="defaultHilight" type="xsd:boolean"/>
<element name="defaultTableFlags" type="types:TableFlags"/>
<element name="querySelections" type="types:ArrayOfQuerySelection"/>

</all>
</complexType>

• className - "QueryRequest" or extended class name if project implements an

extension

• shape - type of query object dependant. It can be a bounding box, a polygon, a

circle or a point (see Section 1.1.2, “Shapes” for a description of differents types)
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• queryAllLayers - if true, will execute query on all selected layers, ie. layers sent

through Layers request (see Section 1.3.3.1, “Layers Request”). Unused when

bounding box is not specified

• defaultMaskMode - mask mode for new layers (returned by query and but not yet

in array querySelections). Unused when queryAllLayers = false

• defaultHilight - highlight for new layers (returned by query and but not yet in array

querySelections). Unused when queryAllLayers = false

• defaultTableFlags - table flags for new layers (returned by query and but not yet in

array querySelections, see Section 1.1.3, “Tables” for a description of type

TableFlags). Unused when queryAllLayers = false

• querySelections - list if query selections. It contains all objects that must be

hilighted and can be used to maintain persistence of a selection

1.3.6.2. Query Result

<complexType name="QueryResult">
<all>
<element name="className" type="xsd:string"/>
<element name="tableGroup" type="types:TableGroup"/>

</all>
</complexType>

• className - "QueryResult" or extended class name if project implements an

extension

• tableGroup - group of tables which contains query results (one table per layer)

1.3.7. Outline

The Outline plugin allows to draw shapes on the main map. Shapes can also be drawn

as a mask, ie. as holes in a rectangle covering map. It returns total area covered by

shapes.

Outline request is not mandatory. As Outline plugin is not a core plugin, it must be

activated in order to use the following request/result objects.

1.3.7.1. Outline Request

<complexType name="Color">
<all>
<element name="r" type="xsd:int"/>
<element name="g" type="xsd:int"/>
<element name="b" type="xsd:int"/>

</all>
</complexType>
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• r - red

• g - green

• b - blue

<complexType name="ShapeStyle">
<all>
<element name="symbol" type="xsd:int"/>
<element name="size" type="xsd:int"/>
<element name="color" type="types:Color"/>
<element name="outlineColor" type="types:Color"/>
<element name="backgroundColor" type="types:Color"/>
<element name="transparency" type="xsd:int"/>

</all>
</complexType>

• symbol -index of Mapserver symbol

• size - size of shape

• color - color

• outlineColor - outline color

• backgroundColor - background color

• transparency - transparency

<complexType name="LabelStyle">
<all>
<element name="font" type="xsd:int"/>
<element name="size" type="xsd:int"/>
<element name="color" type="types:Color"/>
<element name="outlineColor" type="types:Color"/>
<element name="backgroundColor" type="types:Color"/>

</all>
</complexType>

• font - index of Mapserver font

• size - size of font

• color - color

• outlineColor - outline color

• backgroundColor - background color

<complexType name="StyledShape">
<all>
<element name="shapeStyle" type="types:ShapeStyle"/>
<element name="labelStyle" type="types:LabelStyle"/>
<element name="shape" type="types:Shape"/>
<element name="label" type="xsd:string"/>

</all>
</complexType>
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• shapeStyle - style of shape

• labelStyle - style of label

• shape - shape (can be a point, rectangle, line or polygon, see Section 1.1.2,

“Shapes” for a description of type Shape)

• label - content of label

<complexType name="ArrayOfStyledShape">
<complexContent>
<restriction base="enc11:Array">
<attribute ref="enc11:arrayType" wsdl:arrayType="types:StyledShape[]"/>

</restriction>
</complexContent>

</complexType>

• array - list of shapes with style

<complexType name="OutlineRequest">
<all>
<element name="className" type="xsd:string"/>
<element name="shapes" type="types:ArrayOfStyledShape"/>
<element name="maskMode" type="xsd:boolean"/>

</all>
</complexType>

• className - "OutlineRequest" or extended class name if project implements an

extension

• shapes - list of styled shapes

• maskMode - if true, will draw the complement of all shapes merged together

1.3.7.2. Outline Result

<complexType name="OutlineResult">
<all>
<element name="className" type="xsd:string"/>
<element name="area" type="xsd:double"/>

</all>
</complexType>

• className - "OutlineResult" or extended class name if project implements an

extension

• area - total area for all shapes

1.4. Examples
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The following examples show simple SOAP calls using PHP.

To use these examples with your CartoWeb server, you'll have to modify the map ID

and the layer names. Please note that in these examples, access to resources uses

symbolic links (see Chapter 4, Configuration Files).

1.4.1. Retrieving Server Configuration

First thing to do is to declare the SOAP client. Class SoapClient will need the WSDL

code dynamically generated by script cartoserver.wsdl.php.

<?php

$client = new SoapClient("http://url.to/server/cartoserver.wsdl.php"
. "?mapId=swiss_project.swiss");

...

Method only needs map ID as argument.

try{
$result = $client->getMapInfo("swiss_project.swiss");
print_r($result);

} catch (SoapFault $fault) {
print $fault->faultstring;

}

?>

Result is shown below. It includes server configuration for the corresponding project

and mapfile.

stdClass Object
(
[timeStamp] => 1107043488
[mapLabel] => Switzerland
[keymapGeoDimension] => stdClass Object
(
[dimension] => stdClass Object
(
[width] => 100
[height] => 100

)
[bbox] => stdClass Object
(
[minx] => 485000
[miny] => 65000
[maxx] => 835000
[maxy] => 298000

)
)

[initialMapStates] => Array
(
[0] => stdClass Object
(
[id] => default
[location] => stdClass Object
(
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[bbox] => stdClass Object
(
[minx] => 470000
[miny] => 50000
[maxx] => 860000
[maxy] => 320000

)
)

[layers] => Array
(
[0] => stdClass Object
(
[id] => swiss_layer_1
[hidden] =>
[frozen] =>
[selected] => 1
[unfolded] =>

)
[1] => stdClass Object
(
[id] => swiss_layer_2
[hidden] => 1
[frozen] =>
[selected] => 1
[unfolded] =>

)
)

)
)

[layersInit] => stdClass Object
(
[notAvailableIcon] => gfx/icons/swiss_project/swiss/na.png
[notAvailablePlusIcon] => gfx/icons/swiss_project/swiss/nap.png
[notAvailableMinusIcon] => gfx/icons/swiss_project/swiss/nam.png
[layers] => Array
(
[0] => stdClass Object
(
[className] => LayerGroup
[id] => root
[label] => root
[children] => Array
(
[0] => swiss_layer_1
[1] => swiss_layer_2

)
[minScale] => 0
[maxScale] => 0
[icon] =>
[link] =>
[aggregate] =>
[rendering] =>
[metadata] => Array
(
[0] => foo=bar

)
)

[1] => stdClass Object
(
[className] => Layer
[id] => swiss_layer_1
[label] => Swiss Layer 1
[children] => Array
(
)

[minScale] => 0
[maxScale] => 0
[icon] => gfx/icons/swiss_project/swiss/icon_1.png
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[link] =>
[metadata] => Array
(
)

)
[2] => stdClass Object
(
[className] => Layer
[id] => swiss_layer_2
[label] => Swiss Layer 2
[children] => Array
(
)

[minScale] => 1
[maxScale] => 20
[icon] =>
[link] =>
[metadata] => Array
(
)

)
)

[locationInit] => stdClass Object
(
[className] => LocationInit
[scales] => Array
(
[0] => stdClass Object
(
[label] => 1/50000
[value] => 50000

)
[1] => stdClass Object
(
[label] => 1/100000
[value] => 100000

)
[2] => stdClass Object
(
[label] => 1/500000
[value] => 500000

)
)

[minScale] => 25000
[maxScale] => 1000000
[shortcuts] => Array
(
[0] => stdClass Object
(
[label] => Romandie
[bbox] => stdClass Object
(
[minx] => 475000
[miny] => 65750
[maxx] => 670000
[maxy] => 212000

)
)

)
)

)

1.4.2. Getting a Map Using a Point and a Scale

The simpliest way to obtain a map from CartoWeb server is to send an X-Y location
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and a scale.

First thing to do is to declare the SOAP client. Class SoapClient will need the WSDL

code dynamically generated by script cartoserver.wsdl.php.

<?php

$client = new SoapClient("http://url.to/server/cartoserver.wsdl.php"
. "?mapId=swiss_project.swiss");

...

The map ID is required also in the request object.

$request->mapId = 'swiss_project.swiss';
...

In this example, only main map and scale bar are requested. So key map's isDrawn

attribute is set to false.

$request->imagesRequest->className = 'ImagesRequest';

$request->imagesRequest->mainmap->isDrawn = true;
$request->imagesRequest->mainmap->path = '';
$request->imagesRequest->mainmap->width = 500;
$request->imagesRequest->mainmap->height = 500;
$request->imagesRequest->mainmap->format = '';

$request->imagesRequest->keymap->isDrawn = false;
$request->imagesRequest->keymap->path = '';
$request->imagesRequest->keymap->width = 0;
$request->imagesRequest->keymap->height = 0;
$request->imagesRequest->keymap->format = '';

$request->imagesRequest->scalebar->isDrawn = true;
$request->imagesRequest->scalebar->path = '';
$request->imagesRequest->scalebar->width = 100;
$request->imagesRequest->scalebar->height = 100;
$request->imagesRequest->scalebar->format = '';
...

Two layers are displayed. Resolution attribute is set to null to keep standard

Mapserver resolution.

$request->layersRequest->className = 'LayersRequest';

$request->layersRequest->layerIds = array('swiss_layer_1',
'swiss_layer_2');

$request->layersRequest->resolution = null;
...

In this case, the location request object is of type zoom-point, and zoom type is set to

ZOOM_SCALE. Bbox is unused but is required.

$request->locationRequest->className = 'LocationRequest';

$request->locationRequest->locationType = 'zoomPointLocationRequest';
$request->locationRequest

->zoomPointLocationRequest->bbox->minx = 500000;
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$request->locationRequest
->zoomPointLocationRequest->bbox->miny = 100000;

$request->locationRequest
->zoomPointLocationRequest->bbox->maxx = 600000;

$request->locationRequest
->zoomPointLocationRequest->bbox->maxy = 200000;

$request->locationRequest
->zoomPointLocationRequest->point->x = 550000;

$request->locationRequest
->zoomPointLocationRequest->point->y = 150000;

$request->locationRequest
->zoomPointLocationRequest->zoomType = 'ZOOM_SCALE';

$request->locationRequest
->zoomPointLocationRequest->scale = 200000;

...

Now request object is ready, SOAP method is called.

try{
$result = $client->getMap($request);
print_r($result);

} catch (SoapFault $fault) {
print $fault->faultstring;

}

?>

Result is shown below. It includes relative paths to generated images and new

bounding box computed from requested scale.

stdClass Object
(
[timestamp] => 1107925732
[serverMessages] => Array
(
)

[imagesResult] => stdClass Object
(
[className] => ImagesResult
[mainmap] => stdClass Object
(
[isDrawn] => 1
[path] => images/110839565198671.jpg
[width] => 500
[height] => 500
[format] =>

)
[keymap] => stdClass Object
(
[isDrawn] =>
[path] =>
[width] =>
[height] =>
[format] =>

)
[scalebar] => stdClass Object
(
[isDrawn] => 1
[path] => images/110839565198672.png
[width] => 300
[height] => 31
[format] =>

)
)

Calling Plugins

212



[locationResult] => stdClass Object
(
[className] => LocationResult
[bbox] => stdClass Object
(
[minx] => 536770.840477
[miny] => 136770.840477
[maxx] => 563229.159523
[maxy] => 163229.159523

)
[scale] => 200000

)
)

1.4.3. Executing a Query

The following code shows how to use queries to display hilighted selection and to

retrieve corresponding attributes.

First thing to do is to declare the SOAP client. Class SoapClient will need the WSDL

code dynamically generated by script cartoserver.wsdl.php.

<?php

$client = new SoapClient("http://url.to/server/cartoserver.wsdl.php"
. "?mapId=swiss_project.swiss");

...

The map ID is required also in the request object.

$request->mapId = 'swiss_project.swiss';
...

In this example, only main map and key map are requested. So scale bar's isDrawn

attribute is set to false.

$request->imagesRequest->className = 'ImagesRequest';

$request->imagesRequest->mainmap->isDrawn = true;
$request->imagesRequest->mainmap->path = '';
$request->imagesRequest->mainmap->width = 500;
$request->imagesRequest->mainmap->height = 500;
$request->imagesRequest->mainmap->format = '';

$request->imagesRequest->keymap->isDrawn = true;
$request->imagesRequest->keymap->path = '';
$request->imagesRequest->keymap->width = 100;
$request->imagesRequest->keymap->height = 100;
$request->imagesRequest->keymap->format = '';

$request->imagesRequest->scalebar->isDrawn = false;
$request->imagesRequest->scalebar->path = '';
$request->imagesRequest->scalebar->width = 0;
$request->imagesRequest->scalebar->height = 0;
$request->imagesRequest->scalebar->format = '';
...

Two layers are displayed. Resolution attribute is set to null to keep standard
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Mapserver resolution.

$request->layersRequest->className = 'LayersRequest';

$request->layersRequest->layerIds = array('swiss_layer_1',
'swiss_layer_2');

$request->layersRequest->resolution = null;
...

In this case, the location request object is of type bbox. Only new bounding box is

required.

$request->locationRequest->className = 'LocationRequest';

$request->locationRequest->locationType = 'bboxLocationRequest';
$request->locationRequest->bboxLocationRequest->bbox->minx = 550000;
$request->locationRequest->bboxLocationRequest->bbox->miny = 100000;
$request->locationRequest->bboxLocationRequest->bbox->maxx = 600000;
$request->locationRequest->bboxLocationRequest->bbox->maxy = 150000;
...

The query will be performed on a rectangle, on all selected layers (ie. layers defined

in layers request object). IDs and attributes will be returned.

$request->queryRequest->className = 'QueryRequest';

$request->queryRequest->shape->className = 'Bbox';
$request->queryRequest->shape->minx = 570000;
$request->queryRequest->shape->miny = 120000;
$request->queryRequest->shape->maxx = 580000;
$request->queryRequest->shape->maxy = 130000;
$request->queryRequest->queryAllLayers = true;
$request->queryRequest->defaultMaskMode = false;
$request->queryRequest->defaultTableFlags->returnAttributes = true;
$request->queryRequest->defaultTableFlags->returnTable = true;
$request->queryRequest->querySelections = array();
...

Now request object is ready, SOAP method is called.

try{
$result = $client->getMap($request);
print_r($result);

} catch (SoapFault $fault) {
print $fault->faultstring;

}

?>

Result is shown below. It includes relative paths to generated images and new scale

computed from requested bounding box.

Query results include one table per layer. No results were found in layer

swiss_layer_1 and two results in swiss_layer_2. As requested, attributes (here

attribute_3 and attribute_4) are returned for each row.

stdClass Object
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(
[timestamp] => 1107925732
[serverMessages] => Array
(
)

[imagesResult] => stdClass Object
(
[className] => ImagesResult
[mainmap] => stdClass Object
(
[isDrawn] => 1
[path] => images/110846607738541.jpg
[width] => 500
[height] => 500
[format] =>

)
[keymap] => stdClass Object
(
[isDrawn] => 1
[path] => images/110846607738542.png
[width] => 150
[height] => 99
[format] =>

)
[scalebar] => stdClass Object
(
[isDrawn] =>
[path] =>
[width] =>
[height] =>
[format] =>

)
)

[locationResult] => stdClass Object
(
[className] => LocationResult
[bbox] => stdClass Object
(
[minx] => 550000
[miny] => 100000
[maxx] => 600000
[maxy] => 150000

)
[scale] => 377952.96

)
[queryResult] => stdClass Object
(
[className] => QueryResult
[tableGroup] => stdClass Object
(
[groupId] => query
[groupTitle] => Query
[tables] => Array
(
[0] => stdClass Object
(
[tableId] => swiss_layer_1
[tableTitle] => swiss_layer_1
[numRows] => 0
[totalRows] => 0
[offset] => 0
[columnIds] => Array
(
)

[columnTitles] => Array
(
)

[noRowId] =>
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[rows] => Array
(
)

)
[1] => stdClass Object
(
[tableId] => swiss_layer_2
[tableTitle] => swiss_layer_2
[numRows] => 2
[totalRows] => 0
[offset] => 0
[columnIds] => Array
(
[0] => attribute_3
[1] => attribute_4

)
[columnTitles] => Array
(
[0] => attribute_3
[1] => attribute_4

)
[noRowId] =>
[rows] => Array
(
[0] => stdClass Object
(
[rowId] => 123
[cells] => Array
(
[0] => Foo
[1] => 84.98

)
)

[1] => stdClass Object
(
[rowId] => 456
[cells] => Array
(
[0] => Bar
[1] => 32.47

)
)

)
)

)
)

)
)
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2. New Plugins

2.1. What are Plugins

2.1.1. Definition

CartoWeb plugins are modular packages of files (PHP classes, HTML templates,

images and other resources) that are used to perform a dedicated action: main map

formatting, layers browsing interface, map browsing (zooming, paning etc.), queries,

user authentication, search interfaces and many more.

2.1.2. Plugins and Coreplugins

There are two kinds of plugins:

• coreplugins: fundamental plugins that perform "low-level" actions such as map

size handling, browsing tools, layers selection. Plugins that are frequently used in

many CartoWeb applications may be included in this category as well. They are

always available and activated. As a result, other plugins may interact with them.

Coreplugins files are grouped in the coreplugins/ directory.

• plugins: "normal" plugins perform more specificactions and are not always

activated. Normal plugins activation is done by setting the loadPlugins parameter

in client_conf/client.ini for CartoClient plugins and in server_conf/

<mapId>/<mapId>.ini for CartoServer ones. For instance:

loadPlugins = auth, outline, exportHtml

Since they are not always available, simple plugins usually do not rely on each

other. On the other hand, it is not a problem for them to call some coreplugins

functionalities if the latter are publicly accessible. Simple plugins files are grouped

in the plugins/ directory.

The general philosophy is to gather all files of a given plugin in the same dedicated

directory, including files from both CartoClient and CartoServer sides of the plugin.

Thus it is easy to "plug" a new module in CartoWeb architecture by simply pasting it

in the plugins/ or coreplugins/ parent directories. Note however that plugins

configuration files (named <pluginName>.ini) are placed in the client_conf/

and/or server_conf/<mapId>/ depending if those plugins have

CartoClient/CartoServer components.

2.1.3. Plugins Structure
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Plugins and coreplugins have the following general structure:

<pluginName>/
<pluginName>/client/
<pluginName>/server/
<pluginName>/common/
<pluginName>/templates/
<pluginName>/htdocs/
<pluginName>/htdocs/gfx/
<pluginName>/htdocs/js/
<pluginName>/htdocs/css/

• client/ contains all specific CartoClient-side PHP files.

• server/ contains all specific CartoServer-side PHP files.

• common/ contains PHP files shared by both CartoClient and CartoServer sides, or

at least files that are not specific to one side or the other.

• templates/ contains all the plugin-specific Smarty templates. Since HTML

templates are only used in CartoClient, files from templates/ are only called by

client/ code.

• htdocs/ contains all files (PHP pages, images, JavaScript or CSS files, etc.) that

may be web-accessed when running the plugin. Those files are dispatched in

various directories depending on their nature. If necessary, you can create

additional subdirectories. For instance java/ if your plugin uses a Java applet. To

preserve the plugin independence, it is strongly recommended not to add your CSS

styles in the general CartoClient style sheet but to create a specific file here that

will be called separately.

Note that it is not required to actually create the whole structure described above.

Only directories that contain files are necessairy. For instance if a plugin only

perform CartoServer actions, it is no use to create client/, templates/ and

htdocs/ directories. common/ may be usefull if not-CartoServer-specific classes have

to be defined.

There are two ways to add a plugin/coreplugin to CartoWeb: writing a brand new one

or overriding/extending an existing one.

2.2. Writing a Plugin

2.2.1. Introduction

If no existing plugin or coreplugin fulfils your requirements and if none offers close

enough functionalities to justify an adaptation, you can write a new plugin.

Plugins main classes (client and/or server if any) must extend CartoWeb

definedClientPlugin and/or ServerPlugin classes which provide base plugin tools.
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For instance:

class ClientYourPlugin extends ClientPlugin {

/* here comes your plugin client class definition */

}

2.2.2. Plugin or Coreplugin?

First of all you have to determine if you are about to design a simple plugin or a

coreplugin. To be a coreplugin, your plugin must be really generic and present a great

interest to the CartoWeb users community since it might be included in the upstream

distribution. Contact CartoWeb development team for more info. In most cases it is

better and sufficient to create a simple plugin.

To activate a coreplugin, update the Cartoclient::getCorePluginNames() method

in /client/Cartoclient.php and/or the

ServerContext::getCorePluginNames() one in /server/ServerContext.php.

For instance:

private function getCorePluginNames() {
return array('images', 'location', 'layers', 'query', 'mapquery',

'tables', 'yourPluginName');
}

To load a regular plugin, update the loadPlugins parameter from client_conf/

client.ini and/or server_conf/<mapId>/<mapId>.ini as in following example:

loadPlugins = auth, outline, exportHtml

2.2.3. How Plugins Are Called

As explained in Section 2.1, “ What are Plugins”, plugins are independent

aggregations of PHP code that are called by the CartoWeb core classes to perform

dedicated actions. Plugins are called several times during the program execution

(entry points). Thus they can interact at various level of the application.

To determine what plugins must be called at what moment and to perform what

action, plugins must implement one or more of the CartoWeb plugin interfaces

(according to the object-oriented programing meaning). The interfaces define

methods that will be triggered by the main program during its execution. For

example, you can take a look at the following simplified Cartoclient::doMain()

method ("main program") defined in /client/Cartoclient.php:

private function doMain() {
$this->callPluginsImplementing('InitUser', 'handleInit',

$this->getMapInfo());

if ($this->isRequestPost()) {
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$this->cartoForm =
$this->httpRequestHandler->handleHttpRequest(

$this->clientSession,
$this->cartoForm);

$request = new FilterRequestModifier($_REQUEST);
$this->callPluginsImplementing('FilterProvider',

'filterPostRequest', $request);
$this->callPluginsImplementing('GuiProvider',

'handleHttpPostRequest',
$request->getRequest());

} else {
$request = new FilterRequestModifier($_REQUEST);
$this->callPluginsImplementing('FilterProvider',

'filterGetRequest', $request);
$this->callPluginsImplementing('GuiProvider',

'handleHttpGetRequest',
$request->getRequest());

}

$mapRequest = $this->getMapRequest();
$this->callPluginsImplementing('ServerCaller', 'buildRequest',

$mapRequest);

$this->mapResult = $this->getMapResultFromRequest($mapRequest);

$this->callPluginsImplementing('ServerCaller', 'initializeResult',
$this->mapResult);

$this->callPluginsImplementing('ServerCaller', 'handleResult',
$this->mapResult);

$this->formRenderer->showForm($this);

$this->callPluginsImplementing('Sessionable', 'saveSession');
$this->saveSession($this->clientSession);

}

callPluginsImplementing($interfaceName, $methodName, $argument) is run

at various points of the program and make plugins implementing given

<interfaceName> interface execute given <methodName> with given <argument>

argument.

Of course interface-defined methods must be implemented in the matching plugins.

Plugins can implements one or more CartoWeb interfaces.

Implementing interfaces is not mandatory when writing a plugin but not doing so will

keep plugins from being implicitely called by the main program. As a result, methods

from plugins with no interface implementation - also called "service plugins" - must

be explicitely called by another piece of code (generally an other plugin).

class ClientYourPlugin extends ClientPlugin
implements Sessionable, GuiProvider {

/* here comes your plugin client class definition */

}

For a comprehensive list of available client and server interfaces, see /client/
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ClientPlugin.php and /server/ServerPlugin.php files or take a look at the

CartoWeb PHP API documentation.

(Get a high quality version of this diagram here [http://www.cartoweb.org/doc/misc/

plugins_diagram.pdf].)

2.2.4. Plugin Creation Check-List

1. Determine if you will write a plugin or a coreplugin.

2. Create a <yourPlugin>/ directory in /projects/<yourProject>/plugins/ if

you need a simple plugin. Directory name will be the plugin name. You can use

whatever name you want except of course names of already existing plugins or

coreplugins. Yet it is recommended to use lowercase letters, capitalizing only the

first letter of each word that composes the name (eg. "yourPluginName").

In case of a coreplugin, there is no way to create a coreplugin in a project context.

Coreplugins can only be integrated in the upstream application. It is not

recommended to do so without CartoWeb developers agreement because of

compatibility troubles that may occur when upgrading, etc.

3. Create subdirectories to store all plugin-related resources files and templates.

4. Create client/, server/, common/ if your plugin as CartoClient, CartoServer and

respectively common parts.

5. Create your main PHP classes files. Those files must be named using the

first-letter-capitalized name of your plugin, prefixing it with "Client" or "Server"
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for client or server components (eg. ClientYourPlugin.php,

ServerYourPlugin.php, YourPlugin.php).

6. Extend ClientPlugin and/or ServerPlugin CartoWeb classes in the matching

above files and name the result classes using their files names (with no ".php").

For instance:

<?php
/**
* @version $Id: ServerYourPlugin.php,v 1.8 2005/02/23 11:52:43 johndoe Exp $
*/

class ServerYourPlugin extends ServerPlugin {

7. Make your classes implement needed interfaces and redefine corresponding

methods. Note that the common/ part class "YourPlugin" does not have to extend

or implement any CartoWeb class or interface. It is used as a container for

common data and treatment used by client and server classes.

8. If your plugin is implementing ServerCaller and ClientResponder, you will

need to write the WSDL code for the plugin request and response. See Section 2.1,

“ What are Plugins” for examples on how to write such WSDL documents.

Note

You need to add a className element in the WSDL file for a proper parsing from

CartoWeb

9. Activate your plugin by adding its name to the loadPlugins of the matching

project configuration files.

2.2.5. Automatic Files Inclusion

Main plugin PHP files (eg. ClientYourPlugin.php, ServerYourPlugin.php,

YourPlugin.php) are automatically included and their contained classes and objects

are directly accessible. Other files in client/, server/ or common/ are not and must

be included explicitely in the main plugin PHP files.

Templates stored in the plugin templates/ directory are also accessible directly by

using PHP code similar to the followin one:

$smarty = new Smarty_Plugin($this->getCartoclient(), $this);
$smarty->assign('foo', 'bar');
return $smarty->fetch('yourPlugin.tpl');

2.3. Adapting a Plugin

2.3.1. Approaches
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If an already available plugin or coreplugin offers close functionalities to the ones

you need, if you wish to slightly modify its behavior or simply want to adapt its

output to your website layout, it is far easier to adapt it then to build a new one from

scratch.

There are two levels of plugin adaptation. You can:

• override its HTML templates, resources (pictos, CSS or JS files) and its

configuration as well. This approach is generally sufficient when you only need to

adapt the layout.

• extend the main PHP classes to add your own methods or overload existing ones.

This approach is required when you need to add some PHP code to the plugin.

Both approaches are not incompatible and may be combined to obtain desired result.

See Section 2.3.4, “Combining Both Approaches” for more explanations.

2.3.2. Overriding a Plugin

Overriding a plugin is the simplest way to adapt it to your needs. It is done by

duplicating the plugin files (at least the ones you want to adapt) in your project frame.

For more information about projects handling, see Section 2.4, “Projects”.

This approach is recommended when you want to use your own versions of the

plugin templates or resources. Moreover you can add any new resources files that will

be called in your customized templates. However you will not be able to replace or

add PHP files (except PHP pages in the plugin htdocs/. To adapt a plugin

server-side behavior (PHP classes), you have to extend the plugin, which is explained

in Section 2.3.3, “Extending a Plugin”.

Say for instance, you want customize the layers coreplugin by modifying its

template layers.tpl and rewriting some of its JS tools (stored in layers.js). Than

your project-adapted coreplugin will look like:

/projects/<yourProjectName>/coreplugins/layers/
/projects/<yourProjectName>/coreplugins/layers/templates/
/projects/<yourProjectName>/coreplugins/layers/templates/layers.tpl
/projects/<yourProjectName>/coreplugins/layers/htdocs/
/projects/<yourProjectName>/coreplugins/layers/htdocs/js/
/projects/<yourProjectName>/coreplugins/layers/htdocs/js/layers.js

If you don't need to override the CSS file, it is no use to create a css/ directory

containing a copy of the upstream layers.css.

If you want to neutralize a file, you can simply override it with a blank version. For

instance to have a void output, create a template file with no content.
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It is also possible to override the plugin configuration files by adding

<pluginName>.ini files in the project configuration directories client_conf/

and/or server_conf/<mapId>/. When the plugin is launched, upstream and project

configuration files are merged so you don't need to duplicate the configuration

parameters that stay unchanged with your adapted plugin.

2.3.3. Extending a Plugin

Extending a plugin is required when your adaptations involve deep changes such as

additions or overloadings of methods in the plugin PHP classes.

To do so you will have to extend the plugin PHP classes in the object-oriented

programing definition. Since plugin main classes are named using a plugin-name

based convention (eg. ClientLayers and ServerLayers for the CartoClient and

CartoServer main classes of the layers coreplugin) and since extended classes

cannot have the same name than their parent class, you will have to rename your

plugin. Any plugin name is OK (as long as it is not already used!) but it is

recommended to use a <projectName><initialPluginName> separating words with

caps.

Extended coreplugins directories and files must be saved in /projects/

<projectName>/coreplugins/<extendedPluginName>/ whereas extended simple

plugins ones will be located in /projects/<projectName>/plugins/

<extendedPluginName>/.

When writing your extended class, the first thing to do is to specify what plugin is

replaced by the new one. This is done by overloading the replacePlugin() method.

It should return the replaced plugin name. For instance, to extend the layers

coreplugin CartoClient part in your myProject project, create a

ClientMyProjectLayers.php as follows:

<?php
/**
* @package CorePlugins
* @version $Id: ClientMyProjectLayers.php,v 1.8 2005/02/23 11:52:43 johndoe Exp $
*/

class ClientMyProjectLayers extends ClientLayers {

public function replacePlugin() {
return 'layers';

}

/* Add or overload methods here */

}
?>

To be activated, extended plugins AND coreplugins must be explicitely be declared

in the loadPlugins parameter of your project general configuration files:
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loadPlugins = exportPdf, auth, myProjectLayers

With no surprise, extended classes can take advantage of the tools provided by the

interfaces their parent classes implement. By implementing additional interfaces, they

will have access to complementary interactions as well. In that case, don't forget to

overload the matching interface-defined methods in your extended class. For

instance:

ClientMyProjectLayers extends ClientLayers
implements ToolProvider {

/* ... */

}

Tip

To use new config parameters in your extended plugin, add them in the .ini file of

your project original plugin (eg. /projects/<your_project>/client_conf/

<original_plugin>.ini).

2.3.4. Combining Both Approaches

If you need to modify/add templates or resources (overrriding) AND PHP classes

(extension), you can combine both approaches by following the instructions of the

two last sections.

Say you would like to customize the images coreplugin (mainmap size and formats

management) to:

• update the layout (new pictos, new texts, new CSS),

• add some JS processing,

• add a new form field in a separated area of the CartoWeb interface.

First point is achieved by creating a images/ directory in /projects/yourProject/

coreplugins/ and filling it with an overriden template mapsizes.tpl, a new

images.css and some pictos:

/projects/yourProject/coreplugins/images/
/projects/yourProject/coreplugins/images/templates/mapsizes.tpl
/projects/yourProject/coreplugins/images/htdocs/css/images.css
/projects/yourProject/coreplugins/images/htdocs/gfx/button.png

<!-- mapsizes.tpl -->
<p>{t}Mapsize:{/t}
<select name="mapsize" id="mapsize" onchange="javascript:checkMapsize();">
{html_options options=$mapsizes_options selected=$mapsize_selected}
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</select>
<input type="image" src="{r type=gfx plugin=images}button.png{/r}"
alt="{t}Ok button{/t}" id="imagesButton" /></p>

For details about template {r} (resource) and {t} (translation) tags, see Section 18.2,

“Internationalization” and Section 18.3, “Resources”.

checkMapsize() JavaScript function is not defined in the upstream coreplugin. So

we have to add a JS file in our overriden plugin:

/projects/yourProject/coreplugins/images/htdocs/js/
/projects/yourProject/coreplugins/images/htdocs/js/images.js

/* images.js */

function checkMapsize() {
alert('foobar');

}

To add a new form field in a separated area and consequently in a separated template,

there is no other way than to modify the ClientImages PHP class in order to call the

additional template in a special method. The extension approach is thus required.

Then create a yourProjectImages/ directory in /projects/yourProject/

coreplugins/ as follows:

/projects/yourProject/coreplugins/yourProjectImages/
/projects/yourProject/coreplugins/yourProjectImages/client/
/projects/yourProject/coreplugins/yourProjectImages/client/ClientYourProjectImages.php

It can seem a little tricky but the new template file (say yourImages.tpl) will not be

stored in /projects/yourProject/coreplugins/yourProjectImages/

templates/ as one can expect it but in /projects/yourProject/coreplugins/

images/templates/ with the templates of the "overriden part" of the coreplugin.

Remember: templates are stored in the overriden part and PHP classes in the extended

part.

<!-- yourImages.tpl -->

<input type="text" name="testField" value="{$imagesTest}" />

<?php
/**
* @version $Id: ClientYourProjectImages.php,v 1.8 2005/02/23 11:52:43 johndoe Exp $
*/

class ClientYourProjectImages extends ClientImages {

// indicates that we want to use current plugin instead of
// regular images plugin
public function replacePlugin() {

return 'images';
}

// overloaded method
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public function renderForm(Smarty $template) {
// a {$image2} Smarty var must have been added in cartoclient.tpl
$template->assign('image2', $this->drawNewImagesField());
parent::renderForm($template);

}

// additional method
private function drawNewImagesField() {

$smarty = new Smarty_Plugin($this->getCartoclient(), $this);
$smarty->assign('imagesTest', 'Foobar');
return $smarty->fetch('yourImages.tpl');

}
}
?>

Don't forget to activate the extended plugin in /projects/yourProject/

client_conf/client.ini:

loadPlugins = yourProjectImages

2.4. Special Plugins

2.4.1. Export Plugins

Export plugins allow to export maps and data. Concepts described below provide

tools to help writing such plugins.

In brief, export plugins follow these steps in order to generate an output:

• Retrieve last request that was sent to server

• Call all plugins to ask for request modification (eg. map resolution changes,

keymap generation enabled/disabled, etc.)

• Call server to get a new modified result

• Use the result to generate output

• Return output in a standardized form

2.4.1.1. Export Plugin Naming Convention

Warning

Export plugins MUST have names that begin with the string "export", for instance

exportPdf, exportCsv or exportHtml.

This rule does not apply to extended plugins since only the original plugin name is

detected.

2.4.1.2. ExportPlugin
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Class ExportPlugin implements a special type of client plugin, with some specific

functionnalities for export. It implements interface GuiProvider so child classes

must implement corresponding methods. Class methods are:

• getLastMapRequest: returns last used request object. This is useful to prepare a

new call to server in order to obtain data specific to export. This call is done in

method getExportResult

• getLastMapResult: This can also be useful in some cases to have the last returned

result obect

• getExportResult: executes call to server in order to obtain a modified result

suitable for export generation. Calls all exportable plugins in order to modify

request (see Section 2.4.1.4, “Exportable Interface”)

• getExport (abstract): contains export generation itself. Should prepare export

configuration, call getExportResult and generate export in an ExportOutput

object

2.4.1.3. ExportConfiguration

Export configuration objects contain information on what is needed by export plugin

to generate output. For instance, for a CSV export, no images are needed and it would

be a waste of time to generate them.

Configuration is set in method getExport, then passed to method getExportResult

in order to get modified result. Configuration is used by plugin to know how to

modify request to retrieve useful data.

2.4.1.4. Exportable Interface

Exportable interface declares a method adjustExportMapRequest which modifies a

standard map request to a special export request. For instance, plugin Image uses

ExportConfiguration object to know if maps are needed by export plugin. If not,

image request is modified.

2.4.1.5. Example

Plugin exportCsv is a good, simple example of export plugin.

Configuration is filled in method getConfiguration. No images are required to

output a CSV file:

protected function getConfiguration() {
$config = new ExportConfiguration();
$config->setRenderMap(false);
$config->setRenderKeymap(false);
$config->setRenderScalebar(false);
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}

Result rendering is done in method getExport. Note that no calls to methods

getLastMapRequest or adjustExportMapRequest are needed, as those calls are

handled by method getExportResult:

protected function getExport() {
$this->getExportResult($this->getConfiguration());

// ...

$output = new ExportOutput();
$output->setContents($contents);
return $output;

}

Final output (headers + content) is done in method output. For instance:

public function output() {
header('Content-Type: text/html');
print $this->getExport()->getContents();
return '';

}

2.4.2. Filters

Filter plugins can be used to modify parameters transfered from browser to CartoWeb

client. These parameters can be part of a POST request (HTML forms) or a GET

request (URL query string).

Once a new filter plugin has been developed, it can be activated by adding it to the

loadPlugins variable in file client_conf/client.ini.

2.4.2.1. Interface and Classes

Interface FilterProvider declares following methods:

• filterPostRequest(FilterRequestModifier $request): modifies parameters

transfered via a POST request

• filterGetRequest(FilterRequestModifier $request): modifies parameters

transfered via a GET request

Class FilterRequestModifier is used to get old values from the request and set

new ones. It implements two main methods:

• getValue($key): retrieves old value

• setValue($key, $value): sets new value
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2.4.2.2. Available Parameters

This is the list of global parameters accepted by CartoWeb via GET

• reset_session : This will reset all session parameters to default value. Useful

when you want to go back to the initial stats of the application

http://www.yoursite.org/cartoweb3/htdocs/client.php?reset_session

• prevent_save_session : This will bypass the session save. Useful when you

want to performe an action without effect on the actual state of the application.

This was added specifically when using the mode=image global parameter

http://www.yoursite.org/cartoweb3/htdocs/client.php?prevent_save_session

• force_map_refresh : This will force the map to be redrawn by Mapserver,

effectively removing all cache.

http://www.yoursite.org/cartoweb3/htdocs/client.php?force_map_refresh

Warning

This may impact performances and load. It's adviced to only use it for development

purpose.

• mode : This will define the kind of output of CartoWeb. By default it will be html.

Another possible output is image. In this case, CartoWeb will only output an

image.

http://www.yoursite.org/cartoweb3/htdocs/client.php?mode=image

The image mode can be used with other plugin specific parameters:

http://www.yoursite.org/cartoweb3/htdocs/client.php?mode=image&recenter_x=300000&recenter_y=5150000&recenter_scale=150000

This is the list of parameters that can be set in a filter plugin using function

setValue() (in php file) or GET request (URL query string):

• Images plugin

o mapsize - ID of the selected map size (see Section 8.1, “ Client-side

Configuration ”)
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o customMapsize - this string parameter enables to specify a customized map size

using the syntax [width]x[height], [width] and [height] being positive

integers (size in pixels). You may specify dimensions limitations in

client_conf/images.ini (see Section 8.1, “ Client-side Configuration ”)

o drawMainmap - boolean indicating if the mainmap must be drawn or not.

o drawKeymap - boolean indicating if the keymap must be drawn or not.

o drawScalebar - boolean indicating if the scalebar must be drawn or not.

• Location plugin

o recenter_bbox - new bounding box, comma-separated coordinates, eg.

"10.5,20,15.5,28"

o recenter_x - re-centering: new x-coordinate

o recenter_y - re-centering: new y-coordinate

o show_crosshair - '0' or '1', default '0'. If '1' display a crosshair on (recenter_x,

recenter_y).

o recenter_scale - new scale

o id_recenter_layer - re-centering on objects: layer to look for IDs

o id_recenter_ids - re-centering on objects: list of IDs, comma-separated

o shortcut_id - ID of the selected map size (see Section 7.2, “Server-side

Configuration”)

Warning

A layer must be queryable before id recentering works! Add TEMPLATE "ttt" to

that layer in the mapfile.

• Query plugin

o query_layer - layer to look for IDs

o query_select - IDs of objects to add to selection

o query_unselect - IDs of objects to remove from selection

o query_policy - selection policy: 'POLICY_XOR', 'POLICY_UNION' or

'POLICY_INTERSECTION', default is 'POLICY_XOR'

o query_maskmode - '0' or '1', default is '0'. If '1', will show selection as a mask.

o query_hilight - '0' or '1', default is '1'. If '0', won't shows selection hilighted.

o query_return_attributes - '0' or '1', default is '1'. If '0', won't return attributes

other than IDs.

o query_return_table - '0' or '1', default is '1'. If '0', won't return any table

results.

o query_clear - '0' or '1', default is '0'. If '1', previous query results are purged

even if they were marked as persistent.
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o query_blocks - an "associative array" parameter used to select objects from

several layers at once. Indexes are layers ids whereas values are ids of objects to

query. For instance query_blocks[layer1] =

123,345,358&query_blocks[layer2]=4,2345,98. When this parameter is

used, query_select and query_unselect parameters are ignored.

• Layers plugin

o switch_id - id of the switch to be used when the children switching is activated

(see Section 6.2.4, “Children Switching”).

o layer_select - comma-separated list of layers or layerGroups id's that must be

added into the activated layers list.

o layer_unselect - comma-separated list of layers or layerGroups id's that must

be removed from the activated layers list. In some cases, layerGroups children

might have to be explicitely listed to actually be removed.

• Outline plugin

o GET parameters are available to interact with the outline plugin. See

Section 10.4, “GET Parameters”.

Warning

Note that for Query plugin, display of extended selection must be disabled in client's

query.ini in order to use above parameters (see Section 9.1, “Client-side

Configuration”).

Tip

To make CartoWeb outputs a map as a raw image file (no HTML generated), you

may use the GET parameter mode=image. For instance:

http://example.com/cartoweb3/client.php?mode=image&mapsize=2

2.4.2.3. Example

The following class implements a filter which allows to recenter on an object while

hilighting it:

class ClientFilterIdrecenter extends ClientPlugin
implements FilterProvider {

public function filterPostRequest(FilterRequestModifier $request) {}

public function filterGetRequest(FilterRequestModifier $request) {

$id = $request->getValue('id');
if (!is_null($id)) {

$layer = 'grid_classhilight';
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$request->setValue('query_layer', $layer);
$request->setValue('query_maskmode', '1');
$request->setValue('query_select', $id);

$request->setValue('id_recenter_layer', $layer);
$request->setValue('id_recenter_ids', $id);

}
}

}

2.4.3. Tables

Tables plugin is responsible for table formatting and display.

2.4.3.1. Tables Structures

Tables plugin declares several structures to help plugin developer manage tables.

These structures are:

• Class Table which includes in particular a list of rows (class TableRow)

• Class TableGroup which includes in particular a list of tables. Table groups are

used for instance to separate table results coming from several plugins

• Class TableFlags which defines parameters that will be useful for a plugin using

tables

Typically, a plugin using table will include a TableFlags in its request and a

TableGroup in its result. This is the case for Query plugin, which is the only core

plugin which uses tables.

2.4.3.2. Setting Rules

Tables plugin maintains an object called the registry (one on client and one on

server). This object allows to add table rules, which will describes how tables must be

displayed.

It is recommended to add rules in plugin's initialize() method, so they are ready

at the earliest stage. To obtain the registry object, first you have to get the Tables

plugin object.

On client:

public function initialize() {

$tablesPlugin = $this->cartoclient->getPluginManager()->tables;
$registry = $tablesPlugin->getTableRulesRegistry();

// Add rules here
}
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On server, plugin manager is stored in ServerContext object:

// ...
$tablesPlugin = $this->serverContext->getPluginManager()->tables;
// ...

Now you are ready to add rules. Next sections describe the different types of rules.

Registry's method signature is explained for each type.

Once rules have been added in registry, they must be executed on tables. See

Section 2.4.3.4, “Executing Rules” for a description of table rules execution.

2.4.3.2.1. Column Selector

public function addColumnSelector($groupId, $tableId, $columnIds)

Column selector rules allow to keep only a subset of columns from the source table.

Parameter $columnIds should contain an array of column IDs determining which

columns to keep.

2.4.3.2.2. Column Unselector

public function addColumnUnselector($groupId, $tableId, $columnIds)

Column unselector rules allow to keep only a subset of columns from the source

table, by removing a list of columns. Parameter $columnIds should contain an array

of column IDs determining which columns to remove.

2.4.3.2.3. Group Filter

public function addGroupFilter($groupId, $callback)

Group filter rules allow to modify group title. Parameter $callback should contain a

pointer to a callback method with the following signature:

static function myCallbackMethod('group_id', 'group_title')
return 'group_new_title'

2.4.3.2.4. Table Filter

public function addTableFilter($groupId, $tableId, $callback)
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Table filter rules allow to modify table title. Parameter $callback should contain a

pointer to a callback method with the following signature:

static function myCallbackMethod('table_id', 'table_title')
return 'table_new_title'

2.4.3.2.5. Column Filter

public function addColumnFilter($groupId, $tableId,
$columnId, $callback)

Column filter rules allow to modify column title. Parameter $callback should

contain a pointer to a callback method with the following signature:

static function myCallbackMethod('table_id', 'column_id', 'column_title')
return 'column_new_title'

2.4.3.2.6. Cell Filter

public function addCellFilter($groupId, $tableId, $columnId,
$inputColumnIds, $callback)

Cell filter rules allow to modify content of a cell. Values of columns given in

parameter $inputColumnIds will be transfered to the callback method for cell

content calculation. Parameter $callback should contain a pointer to a callback

method with the following signature:

static function myCallbackMethod('table_id', 'column_id',
array ('column_1' => 'value_1',

'column_2' => 'value_2'))
return 'cell_value'

Note

To return all column's data to the callback function, you can use NULL.

$registry->addCellFilter('query', 'table_name', '*', NULL,
array('TableRulesClassName', 'callbackFunctionName'));

This will apply the callbackFunctionName function to all column of table table_name

and the callback function will receive an array containing the values of all columns.

2.4.3.2.7. Cell Filter (Batch)

public function addCellFilterBatch($groupId, $tableId, $columnId,
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$inputColumnIds, $callback)

Cell filter rules used in batch mode allow to modify content of all cells of a given

column. Values of columns given in parameter $inputColumnIds will be transfered

to the callback method for cells content calculation. Values for all rows are transfered

at the same time. Parameter $callback should contain a pointer to a callback method

with the following signature:

static function myCallbackMethod('table_id', 'column_id',
array (
'0' => array (

'column_1' => 'value_1_row_1',
'column_2' => 'value_2_row_1'),

'1' => array (
'column_1' => 'value_1_row_2',
'column_2' => 'value_2_row_2')))

return array ('0' => 'cell_value_row_1', '1' => 'cell_value_row_2')

2.4.3.2.8. Row Unselector

public function addRowUnselector($groupId, $tableId,
$columnId, $rowIds)

Row unselector rules allow to remove some rows from a table. Parameter rowIds

contains IDs of row that must be removed.

2.4.3.2.9. Row Selector

public function addRowSelector($groupId, $tableId,
$columnId, $rowIds)

Row selector rules allow to keep only some rows from a table. Parameter rowIds

contains IDs of row that must be kept.

2.4.3.2.10. ColumnAdder

public function addColumnAdder($groupId, $tableId,
$columnPosition, $newColumnIds,
$inputColumnIds, $callback)

Column adder rules allow to add one or more columns to the table. Parameter

$newColumnIds should contain the list of new column IDs. Values of columns given

in parameter $inputColumnIds will be transfered to the callback method for cell

content calculation. Parameter $callback should contain a pointer to a callback

method with the following signature:
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static function myCallbackMethod('table_id',
array ('column_1' => 'value_1',

'column_2' => 'value_2'))
return array ('new_column_1' => 'cell_value_1',

'new_column_2' => 'cell_value_2')

Parameter $columnPosition indicates where the new columns must be inserted. It

should be an instance of class ColumnPosition. Positions can be absolute or relative,

with a positive or negative offset:

•
$position = new ColumnPosition(ColumnPosition::TYPE_ABSOLUTE, 1);

The new columns will be added after the first column

•
$position = new ColumnPosition(ColumnPosition::TYPE_ABSOLUTE, -2);

The new columns will be added just before the last column

•
$position = new ColumnPosition(ColumnPosition::TYPE_RELATIVE,

0, 'column_1');

The new columns will be added just before column 'column_1'

•
$position = new ColumnPosition(ColumnPosition::TYPE_RELATIVE,

1, 'column_1');

The new columns will be added just after column 'column_1'

2.4.3.2.11. Column Adder (Batch)

public function addColumnAdderBatch($groupId, $tableId,
$columnPosition, $newColumnIds,
$inputColumnIds, $callback)

Column adder rules used in batch mode allow to add one or more columns to the

table, while calculating values for all newly added cells. Parameter $newColumnIds

should contain the list of new column IDs. Values of columns given in parameter

$inputColumnIds will be transfered to the callback method for cells content

calculation. Values for all rows are transfered at the same time. Parameter $callback

should contain a pointer to a callback method with the following signature:

static function myCallbackMethod('table_id',
array (
'0' => array (

'column_1' => 'value_1_row_1',
'column_2' => 'value_2_row_1'),

'1' => array (
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'column_1' => 'value_1_row_2',
'column_2' => 'value_2_row_2')))

return array (
'0' => array (

'new_column_1' => 'cell_value_1_row_1',
'new_column_2' => 'cell_value_2_row_1'),

'1' => array (
'new_column_1' => 'cell_value_1_row_2',
'new_column_2' => 'cell_value_2_row_2')))

See Section 2.4.3.2.10, “ColumnAdder” to know more about parameter

$columnPosition.

2.4.3.2.12. Column reorder

public function addColumnReorder($groupId, $tableId, $columnIds)

Column reorder rule allow you to reorder the columns and their contents. Parameter

$columnIds should contain an array of column IDs given the new column's order.

Note that all the IDs must appear in $columnIds even they don't move.

2.4.3.3. Precedence of Rules

Depending on rule type, rules are set for a group, a table or a column. Parameters

($groupId, $tableId or $columnId) can point to one object or to a group of object,

using wildcard '*':

• 'column_1': rule will be executed on columns called 'column_1' only

• 'col*': rule will be executed on columns with name starting with 'col'

• '*': rule will be executed on any columns

For instance, following rule may be executed on groups with name starting with

'myGr', tables called 'myTable' and all columns:

$registry->addColumnFilter('myGr*', 'myTable', '*',
array($this, 'myCallbackMethod));

Only one rule of each type may be executed on one item. If two or more rules apply,

most specific rule will be choosen. In the following rule definition, only the third rule

will be executed on a table 'myTable' in a group 'myGroup':

$registry->addColumnSelector('*', '*', array('column_1', 'column_2'));
$registry->addColumnSelector('myGr*', '*', array('column_1'));
$registry->addColumnSelector('myGr*', 'myTable', array('column_2'));
$registry->addColumnSelector('myGroup', 'toto', array('column_3'));
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2.4.3.4. Executing Rules

2.4.3.4.1. On Client

Each time a table group is created, it must be stored in Tables plugin in order to

display it:

$tablesPlugin = $this->cartoclient->getPluginManager()->tables;
$tablesPlugin->addTableGroups($newTableGroup);

Tables rules are executed automatically at the same time.

2.4.3.4.2. On Server

Rules execution must be done explicitly on server. A call to Tables plugin

applyRules method is needed for each new table group before returning it to client:

$tablesPlugin = $this->serverContext->getPluginManager()->tables;
readyForClientTableGroups = $tablesPlugin->applyRules($newTableGroup);
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3. Dynamic mapfile modifications

3.1. Introduction

This chapter describes the mapOverlay plugin. This plugin allows dynamic

modifications of the mapfile, it can be used for example to: let the user add a WMS

layer, restrict data to be exported to the user, change the color of layers, etc ...

The plugin has only a server part and only a public method:

public function updateMap(BasicOverlay $overlay)

The $overlay argument is either a MapOverlay or a LayerOverlay instance, it

represent respectively a mapfile or a layer.

Customizable elements are:

• ColorOverlay

• StyleOverlay

• LabelOverlay

• ClassOverlay

• MetadataOverlay

• LayerOverlay

• MapOverlay

The organization of these elements are the same as the mapfile structure: a

MapOverlay contains zero or many LayerOverlay who cantains zero or many

MetadataOverlay etc. None of theses elements or instance variables are mandatory,

you just need to provide informations about property you want to search, update,

insert or delete.

For each of theses mapfile elements the developer have to provide an action by

setting the action instance variable. The action set the behavior of the element

during the mapfile update process. action is one of:

• BasicOverlay::ACTION_SEARCH: this action search or create the element.

• BasicOverlay::ACTION_INSERT: insert the element at a given position or at the

end if not specified.

• BasicOverlay::ACTION_REMOVE: remove the element.

• BasicOverlay::ACTION_UPDATE: update or create the element.

If no action is specified, the default action is BasicOverlay::ACTION_UPDATE.
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The standards steps to use this mechanism are:

1. Create all the needed elements and combine them together in a MapOverlay or a

LayerOverlay instance.

2. Call the updateMap() function. The function returns a MapOverlay instance.

3. If needed, use the result instance to retrieve an index or a element name.

Note that the modification are not saved in the project's mapfile: the result of the

mapfile modifications are specific to a session.

3.2. Plugin usage

This chapter contains some basic examples of the plugin usage. All the code listed

here must be placed in the server part of a plugin.

3.2.1. Class creation

Consider this code excerpt:

$color = new ColorOverlay();
$color->red = 255;
$color->green = 0;
$color->blue = 0;

$style = new StyleOverlay();
$style->index = 0;
$style->color = $color;

$label = new LabelOverlay();
$label->outlineColor = $color;

$class = new ClassOverlay();
$class->action = BasicOverlay::ACTION_INSERT;
$class->name = 'foobar';
$class->styles = array($style);
$class->label = $label;

A ColorOverlay and a StyleOverlay are created. Create a LabelOverlay and set

the text color. Note that those three instances ($color, $style and $label) have only a

subset of theirs variable who are set.

$layer1 = new LayerOverlay();
$layer1->name = 'cartoweb_point_outline';
$layer1->classes = array($class);

Put the class in the layer. The behavior of $layer1 can be resumed as: Update or

create a layer named 'cartoweb_point_outline'. In this layer, insert a new class an call

it 'foobar', the first style of this class render as red.

Dynamic mapfile modifications

241



$layer2 = new LayerOverlay();
$layer2->action = BasicOverlay::ACTION_SEARCH;
$layer2->name = 'cartoweb_point_outline';
$layer2->transparency = 30;

Search a layer named 'point_point_outline' with a 30% transparency. If this layer

don't exist in the mapfile it will be created

$map = new MapOverlay();
$map->layers = array($layer1, $layer2);

$plugins = $this->serverContext->getPluginManager();
$result = $plugins->mapOverlay->updateMap($map);

The two layers are inserted in a MapOverlay and the mapfile is updated.

3.2.2. Add a feature

The goal of this example is to add a feature with a specific style and transparency.

The layer name and transparency are given ('foo' and 40%).

$layer = new LayerOverlay();
$layer->name = 'foo';
$layer->action = BasicOverlay::ACTION_SEARCH;
$layer->transparency = 40;

$mapOverlay = $this->serverContext->getPluginManager()->mapOverlay;
$result = $mapOverlay->updateMap($layer);

At this point, the layer and its classes are created or updated. Now we need to insert

the feature:

$f = ms_newShapeObj(MS_SHAPE_POINT);
$p->addXY(30000, 20000);
$f->set('classindex', $result->layers[0]->classes[0]->index);

A ms_newShapeObj is created and the class index is fetched from the updateMap()

return instance.

$msLayer = $this->serverContext->getMapObj()->getLayer($result->layers[0]->index);
$msLayer->addFeature($f);
$msLayer->set('status', MS_ON);

This example also show that you can mix standard phpMapscript and mapOverlay

code.

3.2.3. Filter data

$layer = new LayerOverlay();
$layer->name = "field";
$layer->data = "geom FROM (SELECT gid, geom, name FROM fields WHERE farm_id = {$farmId}) " .

"AS foo USING UNIQUE gid USING SRID=-1";
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$mapOverlay = $this->serverContext->getPluginManager()->mapOverlay;
$mapOverlay->updateMap($layer);

The DATA field of the field layer is update to only display some informations.

$farmId is defined elsewhere.

In this case, a much more clever solution is to use the filter attribute of the

LayerOverlay object.

$layer = new LayerOverlay();
$layer->name = "field";
$layer->filter = "farm_id = {$farmId})";

$mapOverlay = $this->serverContext->getPluginManager()->mapOverlay;
$mapOverlay->updateMap($layer);

3.2.4. Debugging

At any time you can see the result of the modifications by calling:

$this->serverContext->getMapObj()->save('/tmp/debug.map');

This will save the updated mapfile to /tmp/debug.map.
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4. Using the Security
Infrastructure

4.1. Introduction

This chapter describes the security infrastructure from the developer point of view.

For general details about security and its configuration see Chapter 15, Security

Configuration.

The security management in cartoweb is separated in the following parts:

• Management of the user/password/roles database. (SecurityContainer class in

common/SecurityManager.php).

• Management of user authentication (calling checkUser and

setUser/setUserAndRoles in SecurityManager).

• Granting access to objects based on the current roles.

4.2. Plugins Managing Security Database and
Authentication

Point 1. and 2. in the previous section are the responsibility of specific plugins. For an

example, see the auth plugin.

4.3. Plugins Granting or Denying Access to
Objects/Features in CartoWeb

This point is the most important for plugin developers wanting to use the CartoWeb

security mechanisms to allow or deny an access to a feature/object.

The plugin can call the method hasRole($roles) on the current security manager.

For an example, let's take the pdf plugin which has to restrict printing some formats

only to allowed users.

in the .ini file, we could have:

formats.A4.allowedRoles = printers, admin

In the plugin, we can then check the permissions with:

in the routine building the available format list:
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foreach($formats as $format) {

... add the format to the list ...
$roles = $this->getRolesForFormat($format); //this should get it from the .ini
if (!SecurityManager::getInstance()->hasRole($roles))

continue; // skips unauthorized resolution for this user

.. do the work with the format ...
}

in the routine handling the user passed parameters:

.. to the same check as above ..
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5. Internationalization

5.1. Translations

Texts to be translated can be found in:

• Smarty templates (see Section 18.2, “Internationalization”)

• Client and server .ini files and map files (see Chapter 4, Configuration Files)

• Client and server PHP code

In the last case, the script which finds strings to be translated (see Section 17.1.2, “PO

Templates”) looks for calls to gt() functions. There are two different gt() functions:

• I18n::gt(): tries to translate the string given as argument and returns the

translation. This function assumes that string is UTF-8 encoded and returns a string

ready for output (see Section 5.2, “Character Set Encoding”). It can be used on

client side only

• I18nNoop::gt(): does nothing during runtime ("noop" stands for "no

operations"). Call to this function is only needed to indicates that the string must be

translated. This function can be used on client and server side

Below is an example on how to use I18nNoop::gt():

/**
* Example for use of I18n gt() functions (client side)
*/
class ClientMyPlugin extends ClientPlugin

implements GuiProvider, ServerCaller {

// ...

public function initializeResult($myPluginResult) {

// Retrieves message
$this->message = $myPluginResult->message;

}

public function renderForm(Smarty $smarty) {

// Translation and display
$smarty->assign('message', I18n::gt($this->message));

}
}

/**
* Example for use of I18n gt() functions (server side)
*/
class ServerMyPlugin extends ClientResponderAdapter {
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// ...

public function handlePreDrawing($request) {

$myPluginResult = new MyPluginResult();

// Message must be translated, but not now!
$myPluginResult>message = I18nNoop::gt('hello, world');

return $myPluginResult;
}

}

In this example, message sent by server has to be translated. But as translation

process is always done on client, we only indicates to the script that there is a text to

add to the translation template.

5.2. Character Set Encoding

As already described in Section 17.2, “Character Set Encoding Configuration”,

character set encoding is done using Encoder set of classes. It uses functions

Encoder::encode() and Encoder::decode():

• Encoder::encode($text, $context): converts text from context's character set

to CartoWeb's internal character set (UTF-8)

• Encoder::decode($text, $context): converts text from CartoWeb's internal

character set (UTF-8) to context's character

Context can be either 'config' or 'output', default is 'output'. Corresponding

configuration is set in server.ini and client.ini (see Section 17.2, “Character Set

Encoding Configuration”).

Function Encoder::encode() must be used in the following situation:

• on client or server when reading a text from a configuration file:

$encodedText = Encoder::encode($readText, 'config');

Function Encoder::decode() must be used in the following situations:

• on client when outputing a text without calling I18n::gt():

$textToDisplay = Encoder::decode($encodedText);

• on client or server when calling an external module, eg. Mapserver for a query:

$textToUseInMapserver = Encoder::decode($encodedText, 'config');
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Note that function I18n::gt() takes an encoded text as argument and already

prepares texts for output. It means you don't need to call Encoder::decode() after a

call to I18n::gt().

Internationalization

248



6. Code Convention

6.1. Introduction

As an Open-Source software, CartoWeb needs to be written following some coding

guidelines and/or rules. It is the required condition unless the developpers community

isn't able to share new features and enhancements.

Some of those advises may seem obvious, others less. For all, it is principaly a good

way to produce more readable, maintainable and portable code.

6.2. General Coding Rules

6.2.1. Paths

It is highly recommended to be avoid absolute paths as much as possible. CartoClient

and CartoServer may be relocated with very minimal even none reconfiguration.

6.2.2. Extract and Run Deployement

It should be possible to extract the archive, launch a script, edit few options, and be

ready to use the application with the built-in data set (see test mapfile).

6.2.3. Development Configuration

Developers should absolutely set the following variables to true in their config (on

both client and server sides):

Warning

These parameters will be overrided by the profile parameter (See Section 4.1,

“Common client.ini and server.ini Options”).

• showDevelMessages = true

• developerIniConfig = true

6.2.4. Unit Tests

Code should produce no notices before any CVS commit. Code should pass all tests.

This also means that the developpers should add and run unit tests for every new
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feature they add.

See Chapter 7, Unit Tests.

6.3. PHP

6.3.1. Coding Style

Developers should use the PEAR coding standards as the coding style reference in

CartoWeb, with some exceptions. Have a look at http://pear.php.net/manual/en/

standards.php.

Following are briefly described some guidelines to respect.

6.3.1.1. Indent

Developers should respect some indentation conventions when writing PHP code in

CartoWeb:

• 4 spaces indentations are recommended,

• the use of tabs for indentation is prohibited, use space instead (select the

appropriate preferences in your favorite code editor if needed).

6.3.1.2. Control Structures

Control statements should have one space between the control keyword and opening

parenthesis.

It is also recommended to use curly braces even when they are optional.

This is correct:

if (condition) {
...

}

6.3.1.3. Function Calls

Functions should be called with no spaces between the function name, the opening

parenthesis, and the first parameter; spaces between commas and each parameter, and

no space between the last parameter, the closing parenthesis, and the semicolon.

This is correct:

$var = foo($bar, $baz, $quux);

Code Convention

250

http://pear.php.net/manual/en/standards.php
http://pear.php.net/manual/en/standards.php


6.3.1.4. Function Definitions

Function declarations follow the "one true brace" convention.

Arguments with default values go at the end of the argument list. Always attempt to

return a meaningful value from a function if one is appropriate.

6.3.1.5. Class Modifiers

Modifiers keywords (public, protected, private) are mandatory in class members and

methods definitions. It is recommended to use private for most members and

properties. Use public only for methods that needs to be accessible from outside the

class.

In coreplugins or plugins classes, it is generally better to use protected instead of

private since most methods may have to be redeclared in extended classes (projects

plugins). Then only use private for members/properties you do not want to be

redeclared.

6.3.1.6. Nesting

Avoid deep blocks nesting:

This is correct:

for ($i = 0; $i < 10; i++) {
if (! something ($i))
continue;

doMore();
}

6.3.1.7. PHP Code Tags

Always use

<?php ?>

to delimit PHP code, not the

<? ?>

shorthand.

6.3.1.8. Naming Conventions

6.3.1.8.1. Classes

Classes should be given descriptive names that should always begin with an

uppercase letter. Avoid using abbreviations.
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6.3.1.8.2. Functions and Methods

Functions and methods should be named using the "studly caps" style (also referred

to as "bumpy case" or "camel caps").

function handleKeymapTool()

Functions and methods names should always describe actions.

Developpers should declare the access modifiers (public, private, protected) for each

function or method.

6.3.1.8.3. Constants

Constants should always be all-uppercase, with underscores to seperate words.

6.3.2. Comments

6.3.2.1. Php Doc Comments

To improve php code and object structure readability, automatic code documentation

is implemented in CartoWeb. It is based on specific comments describing classes,

methods, interfaces and objects. See Chapter 8, Code Documentation for more

information.

6.3.2.2. Inline Comments

As often as necessary, the developers should add code comments to explain verbosly

the purposes of commands.

6.4. HTML Coding Standards

In CartoWeb, mainly for the templates, HTML coding should respect some rules.

To take benefits of recent browsers enhancements and, above all, to make HTML

codes easier to read and maintain, some HTML-coding guidelines should be

followed.

• for indentation : preferably use 2 white spaces (such an indentation might be used

for javascript coding as well).

• Generated HTML pages should be XHTML 1.0 (say Transitional for now) valid

and pass matching W3C validation: http://validator.w3.org/ [http://

validator.w3.org/]
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XHTML (standing for eXtensible Hypertext Markup Language) was chosen vs

simple HTML for following reasons:

• XHTML is aimed to replace HTML

• XHTML is a stricter and cleaner version of HTML

• XHTML is HTML defined as an XML application

For more information on XHTML, reference and tutorial are available here :

http://www.w3schools.com/xhtml/ Specially useful pages are:

• Differences between HTML and XHTML:

http://www.w3schools.com/xhtml/xhtml_html.asp

• XHTML syntax: http://www.w3schools.com/xhtml/xhtml_syntax.asp

But, here are some things people must know to get XHTML valid generated pages.

6.4.1. Nesting

In HTML some elements can be improperly nested within each other like this:

<b><i>This text is bold and italic</b></i>

In XHTML all elements must be properly nested within each other like this:

<b><i>This text is bold and italic</i></b>

All XHTML elements must be nested within the <html> root element. All other

elements can have sub (children) elements. Sub elements must be in pairs and

correctly nested within their parent element. The basic document structure is:

<html>
<head> ... </head>
<body> ... </body>

</html>

6.4.2. Lower Case

This is because XHTML documents are XML applications. XML is case-sensitive.

Tags like <br> and <BR> are interpreted as different tags.

This is wrong:

<BODY>
<P>This is a paragraph</P>
</BODY>

This is correct:
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<body>
<p>This is a paragraph</p>
</body>

This is wrong:

<table WIDTH="100%">

This is correct:

<table width="100%">

6.4.3. Closing

6.4.3.1. All Elements

Non-empty elements must have an end tag.

This is wrong:

<p>This is a paragraph
<p>This is another paragraph

This is correct:

<p>This is a paragraph</p>
<p>This is another paragraph</p>

6.4.3.2. Empty Elements

Empty elements must either have an end tag or the start tag must end with />

This is wrong:

This is a break<br>
Here comes a horizontal rule:<hr>
Here's an image <img src="happy.gif" alt="Happy face">

This is correct:

This is a break<br />
Here comes a horizontal rule:<hr />
Here's an image <img src="happy.gif" alt="Happy face" />

IMPORTANT Compatibility Note:

To make your XHTML compatible with older browsers, you should add an extra

space before the "/" symbol like this: <br />, and this: <hr />.

6.4.4. Minimization
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This is wrong:

<dl compact>
<input checked>
<input readonly>
<input disabled>
<option selected>
<frame noresize>

This is correct:

<dl compact="compact">
<input checked="checked" />
<input readonly="readonly" />
<input disabled="disabled" />
<option selected="selected" />
<frame noresize="noresize" />

Here is a list of the minimized attributes in HTML and how they should be written in

XHTML:

<dl compact="compact">
<input checked="checked" />
<input readonly="readonly" />
<input disabled="disabled" />
<option selected="selected" />
<frame noresize="noresize" />

6.4.5. Id vs Name

HTML 4.01 defines a name attribute for the elements a, applet, frame, iframe, img,

and map. In XHTML the name attribute is deprecated. Use id instead.

This is wrong:

<img src="picture.gif" name="picture1" />

This is correct:

<img src="picture.gif" id="picture1" />

Note: To interoperate with older browsers for a while, you should use both name and

id, with identical attribute values, like this:

<img src="picture.gif" id="picture1" name="picture1" />

IMPORTANT Compatibility Note:

To make your XHTML compatible with today's browsers, you should add an extra

space before the "/" symbol.

6.4.6. Image "alt"
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"alt" attribute is mandatory for <img /> tag in XHTML. But it can - and sometimes

should - have a void value. "alt" is used to specify a replacement text when image is

not loaded (image unavailable, not yet loaded or user deactivated images...). For

"data" images, a convenient alternative text should be specified but for layout-only

pictos it is no use to display a replacement message.

For instance:

<img src="mainmap.gif" width="400" height="200"
alt="Main map" />

<img src="pixel.gif" width="50px" height="1px" alt="" />
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7. Unit Tests

7.1. Introduction

Unit tests are an important componant in the CartoWeb development environment.

The framework used for unit testing is based on PHPUnit2 [http://www.phpunit.de/

en/index.php], a PEAR package. For more informations abouth PHPUnit2, see

http://pear.php.net/reference/PHPUnit2-2.0.3/

PHPUnit2 is included in the libraries shipped with CartoWeb. Thus, no installation is

needed to run and write new tests.

7.2. Writing Tests

Information about writing tests for CartoWeb can be separated into two parts. First

part about writing Unit tests in general, useful for people new to PhpUnit. Then a part

more specific about the infrastructure which is available in CartoWeb for writing

tests.

7.2.1. General Information About Writing Tests

Test cases are located in directory tests for testing the core of CartoWeb and in the

directories <project>/tests for for tests specific to project <project>. Inside these

tests directories, path hierarchy mirrors the existing hierarchy they are testing. For

instance, the tests hierarchy for the core CartoWeb testing is the following:

client
CartoclientTest.php
CartoserverServiceTest.php
AllTests.php

common
BasicTypesTest.php
AllTests.php

coreplugins
AllTests.php
...

plugins
AllTests.php
...

For the test_main project, the hierarchy is the following:

coreplugins
AllTests.php
...

plugins
AllTests.php
...

misc
AllTests.php
< misc tests >
...
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...

Each directory including tests root directory has a file named AllTests.php. This is

called a test suite. It is used to run all tests of a specific directory (ie "package").

Warning

All test case and test suite classes must have the name of their file relative path

without extension, with '/' replaced by '_'. For instance, class

client_CartoclientTest file name must be <cartoweb3_root>/tests/client/

CartoclientTest.php.

The following example shows a test in common/BasicTypeTest.php file:

Example 7.1. Simple test case (BasicTypesTests.php)

<?php
require_once 'PHPUnit2/Framework/TestCase.php';
require_once(CARTOWEB_HOME . 'common/basic_types.php');

class common_BasicTypesTest extends PHPUnit2_Framework_TestCase {

public function testBboxFrom2Points() {

$bbox = new Bbox();
$point1 = new Point(12, 34);
$point2 = new Point(56, 78);
$bbox->SetFrom2Points($point1, $point2);

$this->assertEquals(12, $bbox->minx);
$this->assertEquals(34, $bbox->miny);
$this->assertEquals(56, $bbox->maxx);
$this->assertEquals(78, $bbox->maxy);

}
}
?>

Each function with name starting with 'test' will be considered as a test case by the

automated test runner. You may also want to use functions setUp() and tearDown()

to initialize and clean a test environment.

Method assertEquals tests if two values have the same values. If not, the test will

be added to the final report as failure.

As stated previously, all test classes have to belong to a test suite. The next example

shows how such a test suite is built, by grouping all tests together in the suite()

method.
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Example 7.2. Test suite (AllTests.php)

<?php

require_once 'PHPUnit2/Framework/TestSuite.php';
require_once 'CartoclientTest.php';
require_once 'CartoserverServiceTest.php';

class client_AllTests {

public static function suite() {

$suite = new PHPUnit2_Framework_TestSuite;

$suite->addTestSuite('client_CartoclientTest');
$suite->addTestSuite('client_CartoserverServiceTest');

return $suite;
}

}
?>

All test suites are then grouped together into the root test suite. It is shown there for

information.

Example 7.3. Root directory's AllTests.php:

<?php

require_once 'PHPUnit2/Framework/TestSuite.php';
require_once 'client/AllTests.php';
require_once 'common/AllTests.php';

class AllTests {

public static function suite() {

$suite = new PHPUnit2_Framework_TestSuite;

$suite->addTest(client_AllTests::suite());
$suite->addTest(common_AllTests::suite());

return $suite;
}

}
?>

7.2.2. Specific Information for Tests

This section describes specific features developped in CartoWeb for running tests,

and infrastructure classes for more simple test case writing.
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7.2.2.1. HttpUnit Based Tests

To test features of the cartoclient, the HttpUnit [http://httpunit.sourceforge.net/]

software is used. It is written in Java, and there is no Php port. The http unit tests are

run if you have a JVM in you path.

For more information about running HttpUnit tests, see the tests/client/

httpunit/README file in the CartoWeb distribution.

7.2.2.2. Testing CartoWeb Plugins

Plugins are a main component in CartoWeb architecture. That's why there is support

to maintain common code used for testing plugins. As described in Section 7.2.1,

“General Information About Writing Tests” the tests for plugins have to mirror the

file hierarchy of the base application. That's why there are coreplugins and plugins

directories where test for core plugins and plugins are stored respectively.

Note

Tests are also available for projects. So, to test a plugin in a project, the path of the

test will be <cartoweb3>/<projectname>/tests/plugin/<pluginname>

Testing plugins is separated into two tasks:

1. Locally testing client, common or server classes. For plugin client classes, it

requires a CartoClient environment available, and identically a CartoServer

environment for testing server classes.

2. Remote plugin tests, throught the webservice API. This kind of tests are related to

the server plugins, that's why we chose to put them in the server folder of

plugins.

For the first point mentionned above, general Unit tests rules apply, as described in

Section 7.2.1, “General Information About Writing Tests”.

For the second point stated, a help class named client_CartoserverServiceTest

can be extended by the testing classes. In turn, client_CartoserverServiceTest

extends other classes which offer additional helpful methods. For the complete list of

available methods, please have a look at the generate API docs (as more may be

added in future). The main useful methods are createRequest() for initializing a

new request, getMap() for lanching the request.

Tip
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Having a look at an existing plugin test case is the best starting point for writing new

tests.

7.2.2.3. Tests for projects

Each CartoWeb project can have its set of tests directly inside the project, in a

directory tests. Inside this directory, you have to use the same hierarchy as in the

main tests directory.

Inside these tests directories, the same mechanism is used for testing as the main

tests directory. The best way to get started is to have a look at the test_main

project for a starting point.

7.2.2.3.1. Invoking tests for a specific project

For now, only the command line can be used for invoking tests for a specific project.

An environment variable CARTOWEB_TEST_PROJECT can be used to define

which test to launch. Under a Unix like shell enviroment, the command line to use is:

CARTOWEB_TEST_PROJECT=<myproject> <php-bin> phpunit.php projects_AllTests projects/AllTests.php

7.3. Running Tests

Unit tests are runned using the command line interface (CLI). To run a test case or a

test suite, type the following command in directory <cartoweb3_root>/tests:

<php-bin> phpunit.php <test-class> <php-file>

Where <php-bin> is the PHP binary, <test-class> is the name of the test class

(AllTests, client_AllTests, client_CartoclientTest, etc.) and <php-file> is

the name of the PHP file containing the test case (client/CartoclientTest.php).

Result should look like this:

PHPUnit 2.0.3 by Sebastian Bergmann.

.......F.....

Time: 0.0410950183868
There was 1 failure:
1) testpointtobbox
expected same: <113> was not: <123>
/home/yves/cartoweb3-proto2/tests/common/BasicTypesTest.php:59
/home/yves/cartoweb3-proto2/tests/phpunit.php:24

FAILURES!!!
Tests run: 12, Failures: 1, Errors: 0, Incomplete Tests: 0.
Content-type: text/html
X-Powered-By: PHP/5.0.1

In this case, 12 tests were run with one failure.
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8. Code Documentation
CartoWeb code documentation is generated using PhpDocumentor [http://

www.phpdoc.org/], a JavaDoc-style doc generator. CartoWeb already includes

version 1.3.0rc3 of PhpDocumentor.

8.1. Generating Documentation

Documentation is generated using script makedoc.php:

cd scripts
php makedoc.php

This will generate documentation in directory CARTOWEB_HOME/documentation/

apidoc.

8.2. DocBlocks

DocBlocks are comments located at the beginning of a file, or just before a class, a

method, a function outside a class or a variable declaration. These comments will be

parsed by PhpDocumentor to generate documentation.

For a full description of DocBlocks, see official PhpDocumentor documentation

[http://phpdoc.org/docs/HTMLSmartyConverter/default/phpDocumentor/

tutorial_phpDocumentor.howto.pkg.html#basics.docblock].

8.2.1. DocBlocks Types

In CartoWeb we use:

• Page-level DocBlocks: one DocBlock for each PHP file.

• Class, method, class variable and function (outside a class) DocBlocks: one

DocBlock for each.

• Require, include, define: if needed, one DocBlock for each or all.

8.2.2. DocBlocks Contents

• Short description: if needed, a one line description.

• Long description: if needed, a longer description.

• @package <package> (file, class): we use one package for each directory which
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contains PHP files, it means there are the following packages: Client, Server,

Common, CorePlugins, Plugins, Scripts, Tests.

• @author <author> (file): author with email address.

• @version $Id:$ (file): always '$Id:$', content automatically set by CVS.

• @param <type> [<description>] (method): type mandatory, description if needed.

• @return <type> [<description>] (method): type mandatory, description if needed.

• @var <type> [<description>] (variable): type mandatory, description if needed.

• {@link [<class>|<method>]} (anywhere): to add a hyperlink to a class or method.

• @see [<class>|<method>] (anywhere): to add a reference to a class or method.

@see is also used for interface implementation: Because PhpDocumentor doesn't

inherit tags @param, @return, etc. and because we don't want to copy/paste these

tags, we add a simple @see tag to interface method definition. See example below.

8.2.3. Example

Here is a code example. Please note:

• $simpleVariable doesn't need a description, but @var tag is mandatory.

• here constructor doesn't need a description.

• getters and setters are too simple to have a description, but don't forget the @param

and @return!

• use (but not abuse) of {@link} and @see. This can be really useful to navigate

through documentation.

<?php
/**
* Test file
*
* The purpose of this file is to show an example of how to use
* PhpDocumentor DocBlocks in CartoWeb.
* @package MyPackage
* @author Gustave Dupond <gustave.dupond@camptocamp.com>
* @version $Id:$
*/

/**
* This is a require description
*/
require_once('required_file.php');

/**
* This is a short description of MyClass
*
* MyClass long descrition.
* @package MyPackage
*/
class MyClass extends MySuperClass {

/**
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* @var int
*/
public $simpleVariable;

/**
* @var MyVarClass
*/
public $simpleObjectVariable;

/**
* This variable needs a description
* @var string
*/
public $notSoSimpleVariable;

/**
* @param int
*/
function __construct($initialValue) {

parent::__construct();
$this->simpleVariable = $initialValue;
$this->simpleObjectVariable = NULL;
$this->notSoSimpleVariable = '';

}

/**
* @param int
*/
function setSimpleVariable($newValue) {

$this->simpleVariable = $newValue;
}

/**
* @return int
*/
function getSimpleVariable() {

return $this->simpleVariable;
}

/**
* This is a short description for method
*
* This is a longer description. Don't forget to have a
* look here {@link MyLinkClass::myLinkMethod()}. blah blah.
* @param string description of first parameter
* @param MyParamClass description of second parameter
* @return boolean true if everything's fine
* @see MyInterestingClass
*/
function myMethod($myFirstParameter, $mySecondParameter) {

// blah blah

return true;
}

/**
* @see MyInterface::myImplementingMethod()
*/
function myImplementingMethod($myParameter) {

// blah blah

return true;
}

function myOverridingMethod($myParameter) {
// blah blah

return true;
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}
}
?>
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9. Logging and Debugging

9.1. Introduction

This chapter is about the logging framework used in CartoWeb, and gives some tips

for debugging the application. The two concepts are somewhat related, as logging is

often used as a way to ease debugging.

9.2. Logging

Logging is an important feature for being able to see what happens, debug more

easily the application, and track invalid or unexpected situations.

The logging framework used for CartoWeb is Log4php [http://logging.apache.org/

log4php/]. Log4php is a portage to Php of the famous Log4j Java logging library.

Thus, Log4php has lots of similarities with Log4j, and users familiar with it will have

no problems understanding it.

9.2.1. Log4php Activation

To activate the logging with the default settings, uncomment the line :

;log4php.rootLogger=DEBUG, A1

in client_conf/cartoclientLogger.properties

9.2.2. Log4php Configuration Files

Log4php settings are customizable in the client_conf/

cartoclientLogger.properties configuration file on the CartoClient and

server_conf/cartoserverLogger.properties on the CartoServer.

For the detailed syntax of the configuration file, see the Log4php documentation. A

very short introduction is given there. The line "log4php.rootLogger=DEBUG, A1"

can be uncommented, which will activate the loggers defined in the lines starting with

log4php.appender.NAME, (where NAME is the name in the list "DEBUG, A1"). After

the loggers are activated, the the log output will be redirected to the corresponding

location. In the line log4php.appender.A1.file="LOG_HOME/cartoclient.log"

the LOG_HOME variable has a special meaning: it is expanded to the log directory of

the CartoWeb distribution.

One powerful feature of Log4php, among others, is the ability to filter log message
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according to their severity. Each log message has a severity which may be ALL,

DEBUG, INFO, WARN, ERROR, FATAL, OFF. As described in the configuration file

comments, the lines like log4php.logger.CLASSNAME can be used to apply a

filtering of the log message for the class CLASSNAME. For instance, adding a line

"log4php.logger.Cartoclient = INFO", means that only log message of severity

INFO or above will be printed. This is useful to avoid displaying unwanted log

messages.

9.2.3. Default Log File Location

Default log messages will be written to log/cartoclient.log and the CartoServer

ones to log/cartoserver.log. Of course, the Log4php configuration files can be

adapted to write messages elsewhere.

9.2.4. Using Log4php in Source Files

The Log4php usage in code is quite easy.

1. For objects, it is advised to store a Logger object as an instance variable

class MyClass {
/**
* @var Logger
*/
private $log;

[...]

/**
* Constructor
*/
public function __construct() {

$this->log =& LoggerManager::getLogger(__CLASS__);
[ ... ]
parent::__construct();

}

For non object, a reference to a Logger object can be obtained this way:

$log =& LoggerManager::getLogger(__METHOD__);

Tip

Using __METHOD__ allows the same line to be used independently of the method

where it is located.

2. On the Logger object, several methods can be used to log messages: debug(),

info(), warn(), error(), fatal() They take a string as argument, which is

the message to log. Example:
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$this->log->debug('My Message'); // Inside objects
$log->warn('My Message'); // Outside objects

9.3. Debugging

Debugging is a large topic. Everyone has its preference over the tool to be used like

using an integrated debugging tool inside an IDE, using print statements, code

printing and reading, ... Because of this, this section does not tells what tools to use,

but rather gives some tips when debugging.

9.3.1. Understanding Exceptions and Stack Traces

When a failure is encountered in CartoWeb the Php5 mechanism for exceptions

handling is used to manage exception and display stack traces. People knowing the

Java™ language will be familiar with such stack traces. The following example

shows such a stack trace display. It is easily understood as the list of functions called,

and the line numbers where the call happened.

Failure

class: SoapFault
message: Error [8, Undefined property: ServerMapquery::$currentQeury,

/var/www/cartoweb3/coreplugins/mapquery/server/ServerMapquery.php, 222]
Backtrace:

file: 182 - /var/www/cartoweb3/common/Common.php
call: Common::cartowebErrorHandler()

file: 222 - /var/www/cartoweb3/coreplugins/mapquery/server/ServerMapquery.php
call: Common::cartowebErrorHandler()

file: 222 - /var/www/cartoweb3/coreplugins/mapquery/server/ServerMapquery.php
call: ServerMapquery::queryByBbox()

file: 248 - /var/www/cartoweb3/coreplugins/query/server/ServerQuery.php
call: ServerMapquery->queryByBbox(8, "Undefined property:

ServerMapquery::$currentQeury",
"/var/www/cartoweb3/coreplugins/mapquery/server...", 222, Array(2))

file: 369 - /var/www/cartoweb3/coreplugins/query/server/ServerQuery.php
call: ServerQuery->queryLayer("polygon", Object(Bbox))

file: 58 - /var/www/cartoweb3/server/ServerPluginHelper.php
call: ServerQuery->handlePreDrawing(Object(Bbox), Object(QuerySelection))

file: 96 - /var/www/cartoweb3/server/ServerPluginHelper.php
call: ClientResponderHelper->callHandleFunction(Object(QueryRequest))

9.3.2. Using Direct for More Verbosity

In some situations, a fatal error on the server will display a message with not much

verbosity:
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Failure

class: SoapFault
message: parse error, unexpected T_VARIABLE

The fact no line number and Php file is displayed is a limitation of the Php SOAP

implementation (workarounds are welcomed ;-) ).

In such a situation, a solution for this problem is to enable the CartoWeb direct access

mode of operation. Direct access mode is set with the cartoserverDirectAccess

parameter of the client_conf/client.ini configuration file. For more details

about this parameter, see Section 4.2, “ client.ini ”.
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10. Performance Tests

10.1. Main Parameters

This is a non-exhaustive list of interesting parameters for CartoWeb performance

tests. You may want to vary these parameters values when testing performance before

and after development of new functionalities.

• Cartoweb configuration

o Local SOAP, distant SOAP or direct mode

o Data on PC or through NFS

o Map size

o Number of active layers

o Dynamic legends or not

• Logs and cache

o MapInfo cached or not

o MapResult cached or not

o SOAP XML cached or not

o Logs activated or not

• Map data

o Number of layers (10, 50, 250)

10.2. Executing Tests

This section describes performance tests execution using APD, a debugging/profiling

tool available as a Zend PHP module.

10.2.1. APD Module Installation

First thing to do is to install APD's PHP Zend module. You can download archive

here [http://pecl.php.net/package/apd].

Follow instructions to compile APD. Then load the module by adding the following

two lines in php.ini:

zend_extension = <php_home>/lib/php/extensions/no-debug-non-zts-20040412/apd.so
apd.dumpdir = /tmp/apd

On a win32 installation:
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zend_extension_debug_ts = <php_lib_home>\apd.dll
apd.dumpdir = c:\apd\traces

Path to apd.so may vary. See also README file in APD archive.

You may now activate tracing by adding an empty file trace.apd in directories

<cartoweb_home>/client and <cartoweb_home>/server:

touch trace.apd

When using Cartoweb in direct mode, only one trace file will be generated. When

using Cartoweb in SOAP mode, two trace files will be generated, one for client and

one for server. These files can be found in directory set in apd.dumpdir variable

(php.ini, see above).

10.2.2. Simple Execution Times

To get global execution times, use script cwprof.php:

• First usage: execute script on each trace file. This could be useful to re-parse an old

trace file. If you have separated trace files for client and server, you will need to

execute the script twice.

cd <cartoweb_home>/scripts
php cwprof.php <trace_file>

• Second usage: execute script on a directory. The script will parse the most recent

trace file. The -local option is used when client and server trace files are located

in same directory. In this case, the two most recent trace files are parsed and results

for client and server are merged.

cd <cartoweb_home>/scripts
php cwprof.php [-local] <trace_directory>

Script output will look like this (times in milliseconds):

Exec client = 451
Exec server total = 707
Exec MS obj = 472
Exec MS other = 85
Exec total = 1524

• Exec client: time elapsed on client. Will be empty if script is executed on a

server-only trace file

• Exec server total: time elapsed on server. It includes Exec MS obj and Exec MS

other times. Will be empty if script is executed on a client-only trace file, or if
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direct mode is on

• Exec MS obj: time elapsed while creating Mapserver main object. It includes

reading the mapfile. Will be empty is script is executed on a client-only trace file

• Exec MS other: time elapsed in other Mapserver tasks. Will be empty is script is

executed on a client-only trace file

• Exec total: time elapsed in total. If direct mode is off, it also includes time elapsed

in SOAP data transmission

10.2.3. Graphical Interface (Unix-like)

To have more information about execution times and calls stack, you can use a

powerful graphical viewer called KCachegrind. This tool is available on Unix-like

environments only. On Win32, it can be used via KDE on CygWin.

KCachegrind is included in KDE (package kdesdk). To install it on a Debian

distribution, type:

apt-get install kcachegrind

APD package includes a script called pprof2calltree that can translate a trace

generated by APD to a file in KCachegrind format. To translate a pprof file, type:

./pprof2calltree -f <pprof_file> >/dev/null

Redirecting to /dev/null is needed because script generates a large number of PHP

notices. Then you can open the resulting file in KCachegrind.
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11. Upgrading Views Data

11.1. Introduction

Views saves given CartoWeb states by recording the plugins session data. Only

client-side plugins implementing Sessionable interface may be saved in views.

Because CartoWeb and its plugins evolve, views might become outdated after some

time. Plugin session containers may change: properties may be added, removed,

renamed, etc. and thus shifts between old views and new plugin session formats

appear. Those shifts then prevent some views from correctly displaying or even make

CartoWeb crash.

However CartoWeb offers upgrade tools to read outdated views.

11.2. Upgrade Tools

11.2.1. Views Versions

Plugins session data are saved in views in separated XML elements. Each element

records the plugin session container version. Plugin session container version must be

incremented whenever a change is applied on the container format (new property,

name change, etc.). Container version, if not specified, defaults to 1. To explicitely

update it, add following constant definition before container declaration:

define('PLUGINNAME_SESSION_VERSION', 3);

where PLUGINNAME is the uppercased plugin name. Container versions are always

integers.

11.2.2. Upgrade Filters

Upgrading a view is done by sequentially applying filters, each one updating it to the

following version (from version N to version N+1). If matching sequence cannot be

detected (missing filters), upgrade is aborted and outdated data is discarded. Current

plugin data is then used instead.

Upgrade filters are PHP classes extending ViewUpgrader, the latter class being

defined at the end of client/Views.php. They are saved in a ViewsUpgrade.php

file, located in the same directory than the plugin client-side class file (for instance

coreplugins/location/client/). Filters naming convention is

<UppercasedPluginName>V<initialVersion>ToV<initialVersion+1>.

Some basic methods (rename, remove, add) are available in every filters but you may
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define your own transformers methods. Details about basic methods are given in

ViewUpgrader class documentation (CartoWeb API manual). At least an upgrade

filter class must redefine the callFilters() method that indicates the sequence of

transformations to apply.

An example of filters might be:

<?php
/**
* coreplugins/location/client/ViewsUpgrade.php
*/

class test {
var $game = 'arkanoid';
var $i = 12;
}

/**
* Upgrades from V1 to V2
*/
class LocationV1ToV2 extends ViewUpgrader {

protected function callFilters() {
$this->add('test', 'toto');

}
}

/**
* Upgrades from V2 to V3
*/
class LocationV2ToV3 extends ViewUpgrader {

protected function callFilters() {
$this->rename('test', 'foo');
$this->add('bar', new test);
$this->add('someProperty', 2);
$this->add('caramba', 'ole');
$this->remove('someProperty');

}
}
?>

Warning

It is the responsibility of each developer to provide adapted filters when he/she

updates plugin session containers!

Warning

Upgrade filters do not support non object-typed plugin session containers.

11.2.3. Upgrade Configuration

See Section 13.2.2, “Main Views Controller”. Only two of these parameters are

related to views upgrading. viewLogErrors enables to log outdated views loadings

whereas viewUpgradeOutdated is useful to activate or not the upgrading device (if
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deactivated, outdated views parts are discarded).

11.3. Customizing Views Processing Using Project
Hooks

CartoWeb offers the ability to add some project-specific controls ("hooks") within the

views processing.

For now only one hook is available, right before the data of the loaded view is

merged with the current session data. See method ViewManager::handleView() in

client/Views.php.

To create hooks, write a PHP class extending the basic ViewHooks class defined in

client/Views.php. The extended class must be saved in a file with the same name,

located in your project plugins/views/client/ directory. If the latter directory

does not exist, simply create it. The standard "views" plugin is not required to have

hooks working. Finally, set the viewHooksClassName with your extended class name

in client.ini.

; configuration in client.ini
viewOn = true
viewStorage = db
viewablePlugins = location, layers, query, outline
viewMetas = author
...
viewHooksClassName = FoobarViewHooks

<?php
/**
* projects/<your_project>/plugins/views/client/FoobarViewHooks.php
*/
class FoobarViewHooks extends ViewHooks {

/**
* @see ViewHooks::handlePreLoading()
*/
public function handlePreLoading($data, $viewId) {

// Your customized code...
}

}
?>
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12. AJAX Implementation

12.1. Introduction

CartoWeb implements an AJAX layer, enabling asynchronous update of the HTML

GUI.

12.2. AJAX Implementation Outline

The implementation of AJAX in CartoWeb is achieved by extending the Cartoclient

and creating a lightweight Javascript engine. It introduces a few new concepts:

• Synchronous and asynchronous modes

• Ajaxable interface

• Plugins Javascript side

• Plugins actions

• Plugins enablement level

12.2.1. Synchronous And Asynchronous Modes

In addition to the implicit synchronous mode (traditional until-now Cartoclient

execution flow), an asynchronous mode has been implemented to process AJAX

calls.

• The synchronous mode is the default Cartoclient execution flow, that processes

each plugin's logic and renders a monolithic HTML page. Non-AJAX projects will

run the synchronous mode without any alteration.

• The asynchronous mode is the execution flow specifically built to process AJAX

calls. In this mode, a subset of the plugins features is processed and an XML
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document, containing plugins output, is rendered - to be processed by the

Javascript part.

12.2.2. Ajaxable Interface

Client plugins can now implement an interface called Ajaxable that enables a plugin

to handle an asynchronous request and render XML.

See CartoWeb 3.3 API documentation, interface Ajaxable [http://

www.CartoWeb.org/doc/cw3.3/apidoc/Client/Ajaxable.html].

12.2.3. Plugins Javascript Side

Each Ajaxable plugin is made of a Javascript part that handles:

• HTTP POST/GET parameters generation for AJAX requests

• GUI refresh logic: processing of the plugin XML response and DOM

injection/manipulation.

12.2.4. Plugins Actions

AJAX introduces the concept of actions. An action is provided by a plugin and is

used to define:

• From the Javascript side, what are the HTTP parameters (GET & POST) to be sent

to the Cartoclient

• From the Caroclient side, what subset of each plugin's logic is to be processed

In example, the Location coreplugin provides the following actions:

• Location.Pan

• Location.Zoom

• Location.FullExtent

• Location.Recenter

12.2.5. Plugins Enablement Level

When the Cartoclient's asynchronous mode is triggered, the action is used to

determine what subset of each plugin's logic should be processed. Processing a subset

of a plugin's logic is achieved by changing it's enablement level. Enablement levels

are by default set to Full (i.e. the whole logic is processed).
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Here are the yet available enablement levels:

• Load: The plugin is loaded

• Process: The plugin is loaded and handles GET/POST Requests

• ServerCall: The plugin handles GET/POST requests, builds/overrides server

request and handles server result

• Full: The plugin's whole logic is executed

Note that all enablement levels perform a Sessionable::saveSession().

12.3. Making Your Plugin Ajaxable

An ajaxable plugin has the ability to refresh the CartoWeb GUI asynchronously, if

the project using it enables the AJAX mode (see how to enable AJAX in a project:

Section 21.2, “Make Your Project AJAX Enabled”

Please have a look at the wiki for an up-to-date howto explaining how to make a

plugin ajaxable: http://www.cartoweb.org/cwiki/HowToAjaxablePlugin
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Appendix A. Mapserver Debian
Installation
See CartoWeb wiki at http://cartoweb.org/cwiki/DebianPackages.
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Appendix B. Apache & Mapserver
Windows Manual Installation
This page describes the step-by-step procedure to install Cartoweb3 on Windows,

using WAMP, Mapscript and Cartoweb.

The following configuration was tested:

• Windows 2000

• WAMP 1.4.4 (Apache 1.3.33 + PHP 5.0.4)

• Mapserver 4.5

• Cartoweb 3.0.0 and Cartoweb3 CVS-version

B.1. Apache/PHP5 Install

Cartoweb requires php5. MS4W only supports php4.3 so we will need WAMP (1.4.4

or greater). You can get the installation package here: http://www.wampserver.com/

download.php

Launch the setup by clicking on the executable file you just downloaded (here

wamp5_1.4.4.exe). Keep default install options:

• Install WAMP in C:\wamp

• Set www root folder as C:\wamp\www

Once installation is completed:

• If WAMP didn't loaded automatically (icon in the system tray in the lower right of

the screen), load it (Stat menu, Programs, WampServer, Start Wampserver)

• Type http://localhost in a browser

• Once the page has loaded, click on Tools > phpinfo()

(http://localhost/exemples/phpinfo.php) to display the complete PHPINFO

information.

• Take note of the path to the php.ini file (Configuration File (php.ini) Path). It

should look like C:\wamp\apache\php.ini

• Open the file php.ini in any text editor and go to the Dynamic Extensions section.

Activate the SOAP, Curl and Gettext extensions. Simply remove the ";" at the

beginning of the lines.

Apache & Mapserver Windows Manual Installation

280

http://www.wampserver.com/download.php
http://www.wampserver.com/download.php


If you can not see the extension in the list, you will need to add it manually:

extension=php_soap.dll
extension=php_curl.dll
extension=php_gettext.dll

The corresponding DLL files must be present in the extensions folder of PHP. It

should be C:\wamp\php\ext by default. If you can not find it, look in the PHPINFO

("local value" for parameter extension_dir, visible in php.ini as well), you will

notice something like C:/wamp/php/ext/.

• Restart Apache (left-click on the WAMP icon in the systray > Apache > Restart

Service)

• Check in the PHPINFO if the new extensions loaded correctly (look for a section

with their name).

B.2. Mapserver/Mapscript Install

You need a Mapscript version compiled for PHP5/Win32. You can get one here:

http://www.maptools.org/dl/mapserver-4.5-win32-php5.0.3.zip

If the link doesn't work, go to http://dl.maptools.org/dl/ and look for

mapserver-4.5-win32-php5.0.3.zip or newer.

Note

MapServer for Windows/PHP5 archives are also available on CartoWeb website at

http://cartoweb.org/downloads.html#msw. Additional instructions for installing

DLL's are given in the matching README.txt files.

• Once you have downloaded the archive, uncompress it in any directory.

• The README.txt included in the archive tells you where you must place the

various files:

o Unzip gdal-1.2.5.zip, libcurl-7.10.7_dll.zip, xerces_dll.zip, ECW_DLL.zip,

pdfdll.zip, libpq.zip in C:\WINNT\System32 if you are using Windows 2000/NT

(C:\Windows\System32 for XP and C:\Windows\System for 95/98/Me)

o Move php_mapscript_45.dll in the extensions folder of PHP (see PHPINFO,

default is C:\wamp\php\ext). The file php_proj.dll is outdated, you can

ignore it.

o Open php.ini and add a call to this extension:

extension=php_mapscript_45.dll
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• Restart Apache and check that the mapscript module is loaded correctly (look in

PHPINFO)

• Install Proj4 by following the instructions in URL indicated in the README.txt:

http://mapserver.gis.umn.edu/cgi-bin/wiki.pl?WindowProjHowTo > Using

Prebuilt Binaries

o Download the archive Proj4 here: ftp://ftp.remotesensing.org/proj/

proj446_win32_bin.zip

o Uncompress it in C:\. If you want to install it elsewhere, look at point 2 of Using

Prebuilt Binaries

o Point 3 in the README is irrelevant in our case.

• CartoWeb setup script cw3setup.php requires an "unzip" program to uncompress

libraries and demo data archives. If you don't have one installed, download one on

the Web (type "unzip.exe" in your favorite search engine) and put it for instance in

your C:\Windows directory.

Note

The .exe in the Mapserver archive are not needed.

Note

If you are using Windows XP, it may be necessary to modify the extension_dir value

in php.ini by using "\" instead of "/"
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Appendix C. Create a New Project
This appendix describes how to configure your own project. The main steps are

detailed here.

C.1. Project Directory

Get in the projects folder of Cartoweb. Rename the sampleProject directory to the

name of your project.

Edit the client.ini.in of this new project, and modify the mapId parameter value

with the name of your project:

mapId = your_project_name

Open the server_conf directory and rename the sampleProject directory to the

name of your project.

In this folder, two more files need to be renamed ( sampleProject.map and

sampleProject.ini) with the name of the new project.

C.2. Setup Your Project

In a command line prompt (DOS, shell), launch the cw3setup.php setup script.

<PHP-INTERPRETER> cw3setup.php --install
--base-url http://localhost/cartoweb3/htdocs/ --profile development
--project <nameOfYourProject>

See Chapter 1, Installation for more info on the installation script.

If no error occured, you should be able to access your project by typing http://

localhost/cartoweb3/htdocs/client.php in your browser and selecting your project

from the projects drop-down menu.

C.3. Project Shortcut

To make development easier, you can create a shortcut file to access your project

directly. Go in cartoweb3/htdocs/ and copy the file demoCW3.php.

Rename the file to any name (usually your project name). Edit the file and replace

'demoCW3' by 'your_project_name'. Your project is now directly available with the

URL http://localhost/cartoweb3/htdocs/your_project_name.php. (the URL given

above depends on your installation, see the previous comments about
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cartoclientBaseUrl and --base-url).

C.4. Loading Data

As you can see, the project you created is hopelessly empty. Then, we'll load spatial

data in it.

Add the following in the mapfile (your_project_name.map) :

LAYER
NAME "region"
TYPE POLYGON
DATA "reg_france"
TEMPLATE "ttt"
CLASS
NAME "region"
STYLE
COLOR 240 240 240
OUTLINECOLOR 255 165 96

END
END
METADATA
"id_attribute_string" "CODE"

END
END

And in the layers.ini file (server_conf/your_project_name/) add the following

:

layers.region.className = Layer
layers.region.label = Régions
layers.region.msLayer = region

And add the new layer id in the root layer children list :

layers.root.children = region

For more details on how to fill the layers.ini file, see Chapter 6, Layers
[coreplugin]

.

Also edit the your_project_name.ini file in a text editor in order to set some initial

mapstates such as default selected layers.

Add the following :

mapInfo.initialMapStates.default.layers.region.selected = true

See Section 4.3.3.3, “Initial Mapstates” for more info about initialMapStates.

In your browser, click on the reset_session button and you should now see the France

regions.
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C.5. Location Parameters

Move the location.ini file you will find in the sampleFiles folder into the

server_conf/your_project_name/ one.

This file defines some parameters such as scales or shortcuts. For more details on

how to configure those parameters, see Chapter 7, Navigation
[coreplugin] (location)

Click on the reset_session button in your browser page. New elements should appear.

You should be able to choose a scale and a shortcut.

C.6. Your Own Data

After that the next point is to add your own data. You should just have to :

• get your data available, by default in the data folder or somewhere else on your

filesystem,

• modify the mapfile extent,

• modify the extent defined in the initialMapstates (your_project_name.ini),

• add layers definitions in the mapfile (your_project_name.map),

• add layers definitions in the layers.ini.

• reset the session in the browser, and get your data displayed.

C.7. Outline

Let's see how to load a plugin. Edit the client.ini.in file (client_conf/) and add

the outline plugin in the list of plugins to load:

loadPlugins = outline

Do the same in the your_project_name.ini file on server-side (server_conf/

your_project_name/) but also add the mapOverLay plugin :

mapInfo.loadPlugins = outline, mapOverlay

Move the outline.ini file from sampleFiles to server_conf/

your_project_name/.

In the mapfile (your_project_name.map), add the following at the bottom of the

layers definition section :

LAYER
NAME "cartoweb_point_outline"
TYPE POINT
CLASS
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STYLE
SYMBOL "circle"
COLOR 0 0 205
SIZE 10

END
LABEL
TYPE TRUETYPE
FONT "Vera"
SIZE 7
COLOR 0 0 0
OUTLINECOLOR 255 255 255
POSITION lc

END
END

END

LAYER
NAME "cartoweb_line_outline"
TYPE LINE
TRANSPARENCY 100
CLASS
STYLE
OUTLINECOLOR 255 0 0
SYMBOL "line-dashed"
SIZE 3

END
LABEL
TYPE TRUETYPE
FONT "Vera"
SIZE 7
COLOR 0 0 0
OUTLINECOLOR 255 255 255
ANGLE auto
POSITION uc

END
END

END

LAYER
NAME "cartoweb_polygon_outline"
TYPE POLYGON
TRANSPARENCY 60
CLASS
STYLE
COLOR 255 153 0
OUTLINECOLOR 0 0 0

END
LABEL
TYPE TRUETYPE
FONT "Vera"
SIZE 7
OUTLINECOLOR 255 255 255
COLOR 0 0 0
POSITION cc

END
END

END

Launch the setup script. This step is compulsary to convert .ini.in files into .ini

configuration files read by Cartoweb.

By clicking on the reset_session button in the browser window, you should see new

buttons in the toolbar and the corresponding folder in the leftbar.
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C.8. Pdf Printing

As done for the outline plugin, add "exportPdf" to the list of plugins to load on both

client and server-side.

After launching the setup script and refreshing the application (reset_session), you

should be able to test the new functionality as a new folder appeared in the interface.

But a warning printed in the pdf file advices you to edit your exportPdf.ini file.

So move exportPdf.ini from sampleFiles to client_conf. Take care that this is a

client-side configuration file. Try a new print (no need to reset).

For more information on how to edit your exportPdf.ini file, see Chapter 12, PDF

Export
[plugin]

.

C.9. Templating and Layout

Create a new templates folder in your project directory and move the

cartoclient.tpl file from sampleFiles to this new folder.

This file is the main template for CartoWeb.

Refresh the application in your browser (refresh button) and enjoy!

To customize your project even more, you may apply styles sheets. To do so, first

create a htdocs folder in your project directory. In this folder, create a new folder

named css. Then move cartoweb.css and folders.css from sampleFiles to this

new folder.

At this step, you need to launch the setup script so that the new ressources you just

created are copied or linked (depending on your OS) in a web reachable folder.

You can now refresh the browser and see the new colors and styles.
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Appendix D. DocBook
Documentation Generation
CartoWeb documentation source are in DocBook XML [http://www.docbook.org]

format and located in documentation/user_manual/source in CartoWeb archive.

You may want to generate it by yourself in order to produce XHTML or PDF output.

D.1. Documentation Generation on UNIX-like System

D.1.1. Tiny DocBook Install

Uncompress the tiny-docbook-1-6-19.tar.bz2 [http://www.cartoweb.org/downloads/

docbook/tiny-docbook-1-6-19.tar.bz2] archive somewhere in your filesystem.

Execute:

$ ./configure --enable-install
$ make install

to install and configure Tiny DocBook environment.

D.1.2. Create a Symbolic Link to Documentation Source

Create a symbolic link in the Tiny DocBook install directory pointing to the

CartoWeb documentation sources <cartoweb_home>/documentation/

user_manual/source , like that:

$ ln -s CARTOWEB_HOME/documentation/user_manual/source

D.1.3. XHTML Generation

Then, to generate an XHTML version of the documentation, execute as follow:

$ ./configure
$ make xhtml

Output result will be generated in xhtml/ directory.

D.1.4. PDF Generation

To generate a pdf version of the documentation, execute instead:

$ ./configure
$ make pdf

DocBook Documentation Generation

288

http://www.docbook.org
http://www.docbook.org
http://www.cartoweb.org/downloads/docbook/tiny-docbook-1-6-19.tar.bz2
http://www.cartoweb.org/downloads/docbook/tiny-docbook-1-6-19.tar.bz2
http://www.cartoweb.org/downloads/docbook/tiny-docbook-1-6-19.tar.bz2


Resulting pdf will be generated in book.pdf file.

Note

You need to have at least a JRE (or JDK ) installed on your system in order to

generate PDF . The environment variable JAVA_HOME must also be rightly set, e.g

$ export JAVA_HOME=dir_path_where_jre_is_put_on_your_system

D.2. Documentation Generation on Windows using
Cygwin

At this time, the only known way to generate xhml or pdf version of the

documentation on Windows is by using Cygwin.

You will need to install the following Cygwin packages: libxml2, libxslt, make .

Then follow the same instructions as for UNIX-like system Section D.1, “

Documentation Generation on UNIX-like System ”.
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